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Abstract  

Previous prognostic signatures for melanoma based on tumour transcriptomic data 

were developed predominantly on cohorts of AJCC (American Joint Committee on 

Cancer) stages III and IV melanoma. Since 92% of melanoma patients are diagnosed 

at AJCC stages I and II, there is an urgent need for better prognostic biomarkers to 

allow patient stratification for receiving early adjuvant therapies. 

This study uses genome-wide tumour gene expression levels and clinico-

histopathological characteristics of patients from the Leeds Melanoma Cohort (LMC). 

Several unsupervised and supervised classification approaches were applied to the 

transcriptomic data, to identify biological classes of melanoma, and to develop 

prognostic classification models respectively. 

Unsupervised clustering identified six biologically distinct primary melanoma classes 

(LMC classes). Unlike previous molecular classes of melanoma, the LMC classes were 

prognostic in both the whole LMC dataset and in stage I tumours. The prognostic value 

of the LMC classes was replicated in an independent dataset, but insufficient data were 

available to replicate in an AJCC stage I subset.  

Supervised classification using the Random Forest (RF) approach provided improved 

performances when adjustments were made to deal with class imbalance, while this did 

not improve performance of the Support Vector Machine (SVM). However, RF and SVM 

had similar results overall, with RF only marginally better. Combining clinical and 

transcriptomic information in the RF further improved the performance of the prediction 

model in comparison to using clinical information alone. Finally, the agnostically derived 

LMC classes and the supervised RF model showed convergence in their association 

with outcome in some groups of patients, but not in others.  

In conclusion, this study reports six molecular classes of primary melanoma with 

prognostic value in stage I disease and overall, and a prognostic classification model 

that predicts outcome in primary melanoma.  
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Chapter 1 
Introduction 

This chapter provides an introduction to melanoma research by presenting an 

overview of melanoma formation, epidemiology and genetics. This is followed by 

different methods of classification: histopathological, genomic and transcriptomic. 

1.1 Human skin and melanoma 

Human skin, the largest organ of the human body, is not directly thought of as a 

functional organ like the heart or the liver, but is simply believed to just protect us 

from external stimuli, like extreme hot or cold temperatures [1]. However it plays a 

unique and complex role in maintaining a barrier between internal and external 

environment, and in maintaining the steady state of internal body (homeostasis) in 

terms of heat and hydration [1, 2]. 

 

Figure 1.1 Anatomy of human skin 

Adapted from [2]. 

Human skin is arranged into three layers: epidermis (outer layer), dermis (inner layer) 

and hypodermis (inner most layer) (Figure 1.1). The epidermis can be further divided 

into an outer ‘dead’ layer and an inner ‘living’ cell layer [2]. The outer layer contains 

all the dead and peeling cells, and its major function is to maintain a barrier against 
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microbes and other environmental factors. The inner layer contains a higher 

proportion of keratinocytes (up to 90%)  and lower proportion (up to 10%) of other 

cell types known as melanocytes, Merkel cells and Langerhans cells [2]. The main 

function of the inner layer is to help in the formation of the main barrier, which protects 

against invasion of chemical substances and microbes. The majority of skin cancers 

originate in the epidermis [3]. Melanoma, the most aggressive form of skin cancer, 

originates from melanocytes or their precursor cells, melanoblasts, which are mainly 

present in the epidermis.  

1.1.1 Melanocytes 

In 1889, S. Meyerson first introduced the term ‘melanocyte’ to represent a dendritic 

cell which originates from the neural crest [4]. As described above, melanocytes are 

small subpopulations of cells located in the inner layer of the epidermis. A 

melanoblast is a precursor cell of melanocytes, and it is derived from the neural crest 

cells [4]. The melanoblasts differentiate from the neural crest cells and migrate 

extensively during embryonic development [1, 2]. Once melanoblasts have reached 

their terminal locations, most of these cells then differentiate into melanocytes. The 

process of differentiation from neural crest cell to becoming a melanocyte completes 

within the first 6 months of the gestation period [1, 2]. Most of the melanocytes 

migrate from dermis to epidermis and produce a pigment known as melanin. 

1.1.2 Melanin, melanogenesis and response to UVR 

 After a melanocyte has been formed, it starts producing an organelle known as the 

melanosome [4]. Melanosomes are the organelles that produce a pigment known as 

melanin. The variation in human skin colour is primarily due to variations in melanin. 

Melanin is classified into two types: eumelanin and pheomelanin [5, 6]. Eumelanin, a 

major source of pigmentation, is a high density dark pigment which is contained in 

eumelanosomes. Pheomelanin is a cysteine-derived compound which is 

reddish/yellow in colour that is largely responsible for the colour of red hair.  

The biological process of melanin synthesis is known as melanogenesis. After 

melanoblasts have differentiated into melanocytes, the melanosome formation is 

initiated. During melanogenesis, tyrosinase and tyrosinase-related proteins 1 and 2 

(TRP1 and TRP2) catalyse the synthesis of melanin [6]. After producing melanin, it 

is transferred to keratinocytes, where melanin plays an important role in protecting 

the skin from harmful ultraviolet radiation (UVR) [6]. Generally, in humans, one 

melanocyte is in contact with ~35 neighbouring keratinocytes [7]. Melanin is 
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transferred to keratinocytes located on the inner layer of the epidermis, and it is 

degraded before keratinocytes migrate to the outer dead layer [6]. 

UVR exposure increases melanin production, which causes tanning of the skin [4-6]. 

A sudden increase in pigmentation in response to UVR, also referred to as immediate 

tanning, is achieved by darkening and shifting pre-existing melanosomes from the 

nuclear region to the dendritic region. Delayed tanning is caused by a gradual 

increase in production of melanin (i.e. eumelanin) over 2-3 weeks after UVR 

exposure. Overall, in both immediate and delayed  tanning, a pigment is produced 

that protects the skin from UVR. In pale skin, melanin levels increase by 500 to 1000 

fold, in comparison to dark skin where the levels only increase by 10 to 15 fold [8, 9]. 

1.1.3 Melanocytes to melanoma  

The transition from melanocyte to the most readily recognisable form of melanoma, 

i.e. superficial spreading melanoma, occurs in five different phases as follows: benign 

naevi; dysplastic naevi; radial growth phase (RGP); vertical growth phase (VGP); 

metastatic melanoma [3]. This superficial spreading melanoma is typified by change 

in shape, size and colour and is the commonest form of melanoma in pale-skinned 

populations. As described above, many superficial spreading melanomas originate 

in naevi, although some melanoma may arise de novo from normal skin.   

Benign naevi are the normal moles present on the skin: they are benign proliferations 

of melanocytes such that the proliferation step is self-limiting. A small proportion of 

these benign naevi undergo continued cellular proliferation which leads to formation 

of an asymmetric dysplastic (or atypical)  naevus.  Even though the majority of such 

naevi eventually cease, a proportion of them emerge into RGP melanoma.  In RGP, 

the cells contained in the epidermis invade the outer dermis layer. In VGP, the 

malignant cells invade further into the inner dermis and subcutaneous fat layers. The 

melanoma at this stage has a high metastatic potential and can metastasize to distant 

organs. In the metastatic phase, the melanoma metastasizes both by lymphatics 

(probably the most frequent) but also via the blood vessels and then subsequently to 

different organs in the human body, such as the lungs, liver or brain [3].   

1.2 Cutaneous melanoma  

Melanoma is a cancer that arises from genetic changes in melanocytes and 

melanoblasts leading to an uncontrolled growth of these cells. Melanoma occurs 

most frequently on the skin, also referred as cutaneous melanoma, but also on body 

sites such as the uvea of the eye, mucosa, and leptomeninges. Although cutaneous 
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melanoma represents only 5% of skin cancer cases but it accounts for 80% of skin 

cancer related mortality [3]. 

Cutaneous melanoma most commonly presents as a mole in clinical settings, and 

initial diagnosis is based on the ABCDE criteria, where A stands for asymmetrical 

nevi, B for irregular border, C for multiple colours, D for diameter >5mm, and E for 

evolving shape and size [10]. Melanoma is further divided based on these criteria into 

four distinct subtypes: superficial spreading melanoma, nodular melanoma, lentigo 

maligna melanoma, and acral lentiginous melanoma [11]. Superficial spreading 

melanoma is the most common melanoma subtype and accounts for ~70-75% of 

melanoma cases; it occurs mostly on the limbs and trunk of the body [11]. The 

ABCDE criteria best describe this sort of melanoma. Nodular melanoma accounts for 

~20-25% of melanoma cases and can appear on any body site, including the sites 

mentioned for superficial spreading melanoma [11]. Lentigo maligna melanoma is 

the least frequent melanoma and accounts only for ~5-10% of melanoma cases [11]. 

It occurs mostly at older age and, unlike previous subtypes, it does not originate from 

an existing naevus but occurs as a result of prolonged sun exposure. The previous 

three melanoma subtypes are mostly observed in the Caucasian population. 

However, the fourth subtype, acral lentiginous melanoma, is rarely observed in this 

population, and the majority of cases are individuals with darker skin; it occurs mostly 

on non-sun exposed sites, such as feet, finger nail beds, and toes [11]. 

1.3 Melanoma epidemiology 

Cutaneous melanoma is the 5th most common form of cancer in the UK and is ranked 

19th worldwide [12, 13]. In the last 50 years, the world wide incidence of melanoma 

has risen sharply, with greatest incidence observed in pale-skinned populations. In 

the UK, the incidence rates have increased by 50% over the last decade [13], and 

males have had a higher increase (64%) in the incidence rate in comparison to 

females (39%). Across Europe, approximately 100,000 new cases of melanoma were 

diagnosed in 2012, and the incidence rate in the UK was ranked 9th in Europe [14]. 

In the UK, every year (2012-2014) ~15,000 patients are diagnosed with melanoma 

[13]. Melanoma is predominantly an adult cancer with very few cases prior to puberty. 

The risk factors for melanoma are a history of severe sunburn, a higher number of 

dysplastic naevi, older age, family history of melanoma, pale skin, and light hair 

colour [15-19]. A pooled analysis of 15 case-control studies showed that sun 

exposure increases melanoma risk [18]. This study provides stronger evidence for 

intermittent sun exposure than cumulative sun exposure [18], but  a so-called UVR 
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signature, i.e. C>T somatic mutations in the tumour [16], implicates sun exposure as 

the major environmental factor in pathogenesis. Along with sun exposure, greater 

numbers of melanocytic naevi, also known as “moles”, increases melanoma risk, and 

individuals with ≥ 100 moles have 7 fold increased risk of melanoma in comparison 

to individuals with <100 moles. Along with melanocytic naevi, the presence of 

dysplastic naevi further increases melanoma risk [17]. Age is an important risk factor 

for melanoma, and growing old increases the relative risk of melanoma [16, 19]. 

Family history of melanoma increases the risk 2 fold [16, 17]. A systematic review of 

10 case-control studies showed that hair colour predicts melanoma risk, as blond hair 

individuals had 1.8 fold increased risk, red hair individuals had 2.4 fold increased risk 

in comparison to black and dark brown hair individuals [20]. A recent study of a 

Norwegian-Swedish cohort reported consistent findings, as red haired, blond haired 

and brown haired individuals had increased risk of melanoma in comparison to dark 

brown and black haired individuals [21]. 

1.4 Melanoma genetics 

A family history of melanoma is reported in approximately 8% of melanoma cases 

[16]. In families with 3 or more cases, almost 40% of cases carry a germline mutation 

in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene [16, 22-25]. Linkage 

studies of melanoma have also identified other high penetrance genes such as 

CDK4, BAP1, POT1, and TERT [26-31]. GenoMEL, a consortium of familial 

melanoma research, led one of the biggest studies to examine these mutations and 

reported that these mutations characterise only a proportion of melanoma families, 

and mutations in more than 50% of families remain unexplained [25].  

Completion of the Human Genome Project has enabled development of cost effective 

genome-wide genotyping technologies. In addition to the previous linkage-based 

studies used to identify highly penetrant susceptibility genes, genome-wide 

association analysis studies (GWAS) have further characterised the genetic 

architecture of melanoma by identifying genes with intermediate and low penetrance. 

Several GWAS have identified a total of 20 loci associated with different melanoma 

phenotypes (physical characteristics associated with melanoma), such as 

pigmentation phenotypes, naevi in the skin and telomere length [32-39]. The variants 

mapping to the CDKN2A/MTAP, PLA2G6 and IRF4 regions were associated with 

development of naevi. The variants mapping to the MC1R, ASIP, OCA2, SLC45A2 

and TYR regions were observed to be associated with pigmentation phenotypes such 

as hair colour and eye colour. Variants in the TERT, PARP1, ATM and OBFC1 

regions were observed to be associated with telomere length. Several other variants 
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mapping to the CCND1, RMDN2, CDKAL1, ARG3, TMEM38B, ARNT1, MX2, and 

CASP8 regions were not associated with any specific melanoma phenotype despite 

being strongly associated with increased melanoma risk.  

1.5 Melanoma histopathological classification, prognostic 
factors and survival 

Melanoma has the highest mortality rate among the skin cancers, but if detected 

early, the majority of the patients survive for more than 10 years [40]. In clinical 

settings the initial diagnosis of melanoma is made using visual examination of the 

mole with the naked eye and then using a magnifying system (dermoscopy). 

Suspicious moles are then removed by performing a surgical excision [10, 11]. 

Several histopathological factors of melanoma and host factors (site, sex and age) 

have been shown to be determinants of melanoma prognosis [41-43]. After clinical 

diagnosis of melanoma, the extent (stage) of cancer is decided based on 

histopathological classification described in the AJCC (American Joint Committee on 

Cancer) staging system [44].  

1.5.4 AJCC staging system  

The final version of the 7th edition of the AJCC staging system classifies melanoma 

tumours using TNM staging, where T is primary tumour characteristics, N is the 

number of regional lymph nodes and M is metastasis of tumours to distinct organs 

[44]. The T staging is based on three main histopathological factors as follows: 

Breslow thickness, mitotic rate and ulceration status of tumours.  

Mitotic rate provides an estimate of the proliferation rate of cells [45] and is defined 

as the number of tumour cell divisions per square millimetres (mm) of the tissue slide. 

An increase in mitotic rate significantly reduces survival time [44]. In primary 

melanoma, mitotic rate has been identified as an independent predictor of poor 

prognosis in thin melanomas (stage I, Table 1.1, Table 1.2). The proposed threshold 

for mitotic rate is <1 /mm2 or ≥1 /mm2, classifying patients into T1a and T1b stages 

respectively (Table 1.1, Table 1.2). Several studies have shown an association of 

mitotic rate with poor prognosis in thicker melanomas as well, but when jointly 

analysed with other clinical predictors, mitotic rate did not reach the significance 

threshold. Therefore, mitotic rate was not included in the AJCC classification of 

thicker melanomas [44, 46, 47]. In fact, mitotic rate has been dropped in the 8th edition 

[48] but this system is only now being applied, and therefore in this study the 7th 

Edition was used [44].  
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Breslow thickness is a well-established, independent prognostic factor for melanoma 

which is used in TNM staging of primary tumours [44, 45, 47, 49, 50]. Breslow 

thickness measures the thickness of the tumour in mm from the surface of the skin 

(granular cell layer) to the deepest part of the tumour (Figure 1.2).  As shown in Table 

1.1 Breslow thickness is divided into four categories in the AJCC staging system, as: 

≤1mm, 1.01-2.0mm, 2.01-4.0mm, >4.0mm, and these categories classify primary 

tumours in T1, T2, T3, and T4 stages respectively. The recently published 8th edition 

of the AJCC staging system [51] uses  ≤0.8 mm as a cut-off for T1 stage, in 

comparison to the previous ≤1.0mm cut-off [48]. 

Ulceration status of the tumour is another prognostic indicator used in TNM 

classification and has been identified as an independent predictor of prognosis when 

jointly analysed with other clinical predictors of melanoma [44, 52]. The presence of 

ulceration increases the T stage (Table 1.1), and ulceration of the tumour also confers 

an increased risk of metastasis in comparison to non-ulceration. However, the 

detection of ulceration is associated with some interobserver variation, and several 

attempts has been made to standardise this variable [53].  

The advanced stage classification (AJCC stage IV) utilises additional information 

from N and M stages which are based on detection of regional lymph node 

metastases, distant organ metastases and lactate dehydrogenase levels respectively 

(Table 1.1, Table 1.2) [44].  

 

Figure 1.2 Measurement of tumour thickness across the T stages in the AJCC 
staging system 

Adapted from Macmillan Cancer support [54]   
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Table 1.1 TNM staging of cutaneous melanoma 

Adapted from Balch et al. [44].    

Primary Tumour Characteristics 

T stage 

T1 
T1a: ≤ 1.0 mm in thickness without ulceration, mitoses < 
1/mm2 
T1b: ≤ 1.0 mm in thickness with ulceration or mitoses ≥ 1/mm2 

T2 
T2a: 1.01-2.0 mm in thickness without ulceration 

T2b: 1.01-2.0 mm in thickness with ulceration 

T3 
T3a: 2.01-4.0 mm in thickness without ulceration 

T3b: 2.01-4.0 mm in thickness with ulceration 

T4 
T4a: >4.0 mm in thickness without ulceration 

T4b: >4.0 mm in thickness with ulceration 

Regional Lymph Nodes (N) 

N stage 

N0 No regional metastases detected 

N1 
N1a: Micrometastases in one lymph node 

N2b: Micrometastases in one lymph node 

N2 
 

N2a: Micrometastases in 2-3 lymph nodes 

N2b: Micrometastases in 2-3 lymph nodes 

N2c: In-transit metastases/satellites without metastatic lymph 
nodes 

N3 ≥ 4 metastatic lymph nodes, or matted lymph nodes, or in-
transit metastases/ satellites with metastatic lymph node (s) 

Distant metastases (M) 

M stage 

M0 No evidence of distant metastases 

M1a Metastases to the skin, subcutaneous tissue, or distant lymph 
nodes, normal serum lactate dehydrogenase (LDH) level 

M1b Lung metastases, normal LDH level 

M1c Metastases to all other visceral sites or distant metastases to 
any site combined with an elevated serum LDH level 
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Table 1.2 Clinical staging of cutaneous melanoma 

 Adapted from Balch et al. [44]. See Table 1.1. for definition of the TNM stages. 

Staging T N M 

Stage I 
IA T1a N0 M0 

IB T1b 
T2a 

N0 
N0 

M0 
M0 

Stage II 

IIA T2b 
T3a 

N0 
N0 

M0 
M0 

IIB T3b 
T4a 

N0 
N0 

M0 
M0 

IIC T4b N0 M0 

Stage III Any T N>N0 M0 

Stage IV Any T Any N M1 

 

1.5.5 Prognostic factors in primary melanoma 

As described before, histopathological factors such as tumour thickness, ulceration 

and mitotic rate were determined to be strong independent prognostic factors in 

melanoma and have been included in the calculation of the AJCC staging system 

[44]. Host factors such as sex, age at diagnosis and site of melanoma have also 

shown strong association with melanoma prognosis after adjusting for the 

histopathological factors of melanoma. 

Sex is a well-known predictor of melanoma prognosis with males being consistently 

identified as a poor prognostic group in comparison to females [55, 56]. However, the 

underlying biological reasons to explain the survival advantage for women are still 

not clear. It was also reported that men have increased propensity to develop 

metastases and have higher mutation burden in their metastases in comparison to 

females [57]. The 5 year survival for males is around 70% and for females it is around 

82% [13]. 

Age at diagnosis predicts poor prognosis, with the age group >70 years having the 

poorest prognosis [58]; this group also has a lower rate of sentinel lymph node 

positivity, which may imply that the poor prognosis of this group is due to the high 

morbidity [59, 60], or because of blood borne metastases which are more common 
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in older patients. Furthermore, older patients are less likely to have a strong immune 

system, leading to poor ability to mount an appropriate anti-tumour response  [61]. 

The site of melanoma is another strong prognostic factor for melanoma. The site of 

primary melanoma is usually classified as limbs, head and neck, trunk, and other rare 

sites on the body, e.g. on genital skin or the sole of the foot. Melanoma occurring on 

the trunk has a worse prognosis in comparison to melanoma on the limbs or head 

and neck [62]. Melanoma most commonly occurs on the trunk and lower limbs for 

males and females respectively [13]. 

The other relevant histopathological features of melanoma that are not included in 

the AJCC staging system are tumour infiltrating lymphocytes (TILs), the presence of 

vascular or lymphatic invasion and the presence of tumour regression. The 

histopathological classification of tumours based on TILs was developed by Clark et 

al., and it quantifies presence of immune cell populations surrounding and infiltrating 

the tumour [63]. Clark et al. categorised TILs as absent (when no lymphocyte 

aggregation is detected), non-brisk (presence of few lymphocytes) and brisk (when 

the lymphocyte population is large and lymphocytes have surrounded the tumour). 

The TILs classification has been shown to predict melanoma prognosis, with brisk 

TILs predicting good prognosis and the absence of TILs predicting the worst 

prognosis, independent of age, sex, tumour site, and the AJCC staging system [63, 

64] [65]. Vascular or lymphatic invasion is the presence of tumour cells in blood 

vessels, which has been shown to be associated with a higher Breslow thickness, 

ulceration of the tumour, mitotic rate and a nodular melanoma subtype; furthermore 

it predicts poor prognosis [66-68]. Tumour regression is the disappearance of tumour 

cells, most likely as a consequence of interactions between the tumour cells and 

immune cells leading to replacement of the tumour tissue with non-malignant tissue 

[69-71]. A few studies have shown that tumour regression predicts prognosis in thin 

melanomas and is associated with other clinical prognostic variables such as sex, 

older age at diagnosis, head and neck or trunk site of melanoma [69, 70, 72]. 

However other studies have found no evidence to indicate that regression influences 

survival [73, 74]. 

1.5.6 Melanoma survival based on the AJCC stage 

In the UK, the 5-year survival rate for patients diagnosed with melanoma is more than 

95% for AJCC stage I [40]. The survival rate decreases by ~20% for the patients 

diagnosed at AJCC stage II [40]. The survival for AJCC stage III patients is 50%; at 

this stage the tumour has reached the lymph nodes. The survival further drops down 
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to 15-17% for AJCC stage IV melanoma [40]. At stage IV, the tumour has already 

metastasized to different organs in the body.  

1.6 Genomic classification of melanoma 

The AJCC staging system is a powerful tool for predicting melanoma prognosis, but 

it only considers the pathological state of the tumour and does not include the 

genomic changes that contribute to driving tumour progression. Advances in cost-

effective DNA microarray and next-generation sequencing technologies have paved 

the way to discovery of biomarkers predicting disease outcome or response to 

treatment. These technologies have been broadly applied to detect changes in the 

tumour DNA to help in characterising the genomic landscape of melanoma. 

1.6.1 Mutational subtypes of melanoma 

BRAF and NRAS oncogenes have been identified as the most commonly mutated 

genes in melanoma [75-78]. Mutations in these genes are effectively mutually 

exclusive [79], and both activate the Mitogen-Activated Protein Kinase (MAPK) 

pathway [80]. In 2015, a study by The Cancer Genome Atlas consortium (TCGA) 

identified four mutation subtypes in a cohort predominantly of metastatic melanoma 

tumours [81]. The four mutation subtypes were named as BRAF, RAS, NF1 and triple 

wild type mutant groups. In this study, among 318 tumours, 52% (n=166) harboured 

a BRAF mutation, with 144 tumours specifically having a BRAFV600E mutation. The 

RAS subtype tumours harboured mutations mainly in NRAS (28%), and only a few 

tumours had mutation in other RAS-family member genes such KRAS and HRAS. 

Fourteen percent of tumours harboured NF1 mutation, classified as the NF1 subtype. 

The triple-wild type group contained a heterogeneous group of tumours harbouring 

mutations in different genes and was characterised based on the lack of mutation in 

BRAF, NRAS and NF1 [81]. 

Melanoma when classified based on body site showed different mutation patterns on 

chronically sun-damaged skin (CSD) in comparison to non-chronically sun damaged 

skin (non-CSD) sites [82]. Early stage tumours of the CSD class harboured NF1, 

BRAF, NRAS or KIT mutations in the tumour, and the non-CSD class harboured only 

BRAF mutations [83-85]. In both groups, metastatic stage melanomas harboured 

somatic mutations in genes associated with key signalling pathways relating to cell 

proliferation (NRAS, BRAF, NF1), cell growth (PTEN and KIT), cell identity (ARID2), 

resistance to apoptosis (TP53) and cell cycle control (CDKN2A) [86, 87].  
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A study led by Shain et al. showed that mutation in the BRAF gene is acquired at an 

early stage when the tumour is benign [88]. Mutation in the NRAS gene is a 

characteristic feature of intermediate stage, along with mutations in other genes such 

as TERT and PPP6C. Overall, the sequence of mutations that lead to melanoma 

initiation are still unclear because different individuals harbour different mutations 

which lead to activation of different pathways. This supports the view that there are 

several biological routes to melanoma progression, and only a few of them are 

highlighted by these analyses [86]. The research on melanoma genomes continues 

with an expectation that understanding of disease biology and routes of melanoma 

progression can be improved by examining other data types such as copy number 

alterations, gene expression, and methylation status of the tumours.  

1.6.2 Somatic copy number association with mutational subtypes  

In melanoma, genomic regions associated with genes such as CCND1, KIT, CDK4, 

TERT and MITF are frequently amplified, and regions associated with CDKN2A, 

PTEN are frequently deleted [86]. The level of amplifications and deletions are a 

measure to estimate whether regions of the genome are duplicated or deleted during 

cell replication. In the TCGA study, analyses testing the association between the 

mutational subtypes and copy number alterations revealed that the BRAF mutational 

subtype had significantly higher copy number gains in BRAF, MITF and PD-1, PDL-

1 genomic regions of the tumour DNA than other mutational subtypes. The NRAS 

subtype had significantly more copy number gains in the NRAS genomic region in 

comparison to other mutational subtypes. The NF1 subtype had significantly higher 

deletions in the PTPRD region. The triple-wild type mutational subtype had 

amplifications in KIT, PDGFRA, KDR, CDK4, CCND1 and MDM2 regions. Overall, 

the amplifications in CCND1 and TERT, and deletions in CDKN2A and PTEN 

genomic regions were observed across all the mutational subtypes, suggesting that 

these copy number alterations are an intrinsic characteristic of metastatic melanoma 

tumours [81]. 

1.7 Gene expression profiling technologies 

Gene expression is a process by which the genetic code or the nucleotide sequence 

of a gene is used in the synthesis of a functional gene product during transcription. 

Expression profiling at whole genome level is achieved using DNA microarray or 

RNA-sequencing technologies.  
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1.7.1 DNA microarrays  

Microarray based gene expression profiling captures the molecular state of the cell 

by quantifying expression of thousands of genes simultaneously (Figure 1.3) [89-91]. 

In this high throughput technique, mRNA extracted from tissues samples is further 

amplified using PCR (Polymerase Chain Reaction), and then reverse transcribed into 

cDNA using reverse transcriptase enzyme (Figure 1.3). The cDNA sequences are 

stained using a fluorescent dye. As a next step, the stained cDNA sequences are 

hybridised to the unique short fragments of single stranded DNA bound to the plates, 

known as probes. After the hybridisation step, the plates are washed to retain the 

strong probe-cDNA binding sequences. The fluorescently labelled cDNA bound to a 

probe generates a signal, and the intensity of signal provides an estimate of the gene 

expression (Figure 1.3). There exist two main techniques for DNA microarray: 

oligonucleotide microarray and cDNA microarray. The oligonucleotide microarray 

uses short probe sequences which are 25 to 70 bases in length, and the cDNA 

microarray used probes of 200 to 2000 bases in length [89].   

Gene expression profiling of disease using tissue specimens (such as blood, fresh 

tumour or archived Formalin Fixed Paraffin Embedded (FFPE) tumour) can lead to 

the discovery of biomarkers with prognostic potential that go beyond the 

histopathological classification [92]. Extracting RNA from FFPE samples stored over 

a long time yields low-quantity RNA, and analysing it is difficult because formalin 

fixation leads to crosslinking of RNA with proteins and causes nucleic acid to 

fragment [93]. To overcome these problems Fan et al. developed a gene expression 

assay known as DASLâ (cDNA mediated Annealing, Selection, extension and 

Ligation) [94], which had locus specific probes designed for probe-cDNA 

hybridisation. The limitation of this assay was the limited number of probes, but 

introduction of a whole-genome DASLâ assay has allowed profiling of approx. 29000 

transcripts [92]. The RNA from the frozen FFPE samples is partially degraded but 

studies have shown that transcriptome signature based disease subtyping is still 

feasible using this technique [92, 95]. 

1.7.2 RNA-sequencing 

RNA-sequencing (RNA-seq) is a another widely used technique for gene expression 

profiling which is based on next-generation sequencing (NGS) [96, 97]. In this 

technique, the mRNA extracted from the tissue sample is annealed to oligo-dT 

magnetic beads, and then a fragmentation agent is added to generate multiple 

fragments of mRNA. The fragments are reverse transcribed into single stranded 
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cDNA sequences. The opposite strands of cDNA are synthesized, and the resultant 

product is a double stranded cDNA. The double stranded cDNA sequences are end-

repaired, ligated to adaptors, and PCR amplified to generate a library that is ready 

for sequencing. The sequences in the library are then sequenced using a NGS 

platform, and reads of ~30-500 bases long are generated. The reads are then aligned 

to a reference genome to produce a genome-wide transcriptional state which 

determines the level of expression for each gene [96, 97].   

 

Figure 1.3 Summary steps of a microarray experiment 

Adapted from [98].  



15 

Malone et al. compared DNA microarray and RNA-sequencing technologies and 

reported that both the technologies had a comparable performance and provided a 

reliable estimate of gene expression [99]. Both the technologies showed poor 

performance in detecting genes with low expression. RNA-seq has an advantage 

over DNA microarrays as one can study a lot of other characteristics (e.g. splicing, 

gene/isoforms, gene fusions, structural variations) apart from studying gene 

expression. The limitation of RNA-seq is that it is an expensive and more time-

consuming technology than DNA microarrays [99].  

Along with the advantages of high-throughput profiling techniques come various 

challenges: how to deal with the variability due to the use of different platforms, 

variability due to heterogeneous sources of material, and different ways of analysing 

the data. 

1.8 Gene expression based classification of melanoma 

Previously, numerous studies have used supervised and unsupervised classification 

approaches to generate gene expression-based signatures which predict melanoma 

tumour outcome (Table 1.3) [84, 100-109]. The unsupervised classification approach 

identifies novel subgroups by exploring distinct patterns in the dataset. The 

supervised classification, including machine learning, on the other hand mine the 

knowledge from known subgroups or outcomes and develop prediction models to 

classify new observations into these groups [110-112].  

1.8.1 Supervised classification using gene expression 

In 2006, Winnepenninckx et al. published the first study (Table 1.3) that analysed the 

gene expression data from primary melanoma tumours and generated a 254 gene-

based signature predictive of metastasis free survival for 4 years (Agilent 

oligonucleotide microarray)  [100]. When comparing the prediction performance of 

this signature with histopathological factors like tumour stage based on TNM staging, 

the  signature misclassified 29% of samples in comparison to 28% misclassification 

when using histopathological factors alone. Overall the gene signature had similar 

prognostic value in comparison to the histopathological factors [100]. 

In 2007, Alonso et al. analysed the gene expression data from 34 vertical growth 

melanomas with every patient followed for at least 36 months (OncoChip DNA 

microarray) (Table 1.3) [101] . The study compared the patients who developed nodal 

metastases (n=21) with those who did not (n=13) and generated a 243 gene-based 

signature that predicted risk of metastasis. The biological pathway enrichment 
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analyses revealed that genes in the signature were associated with the epithelial-

mesenchymal transition pathway, and these findings were further confirmed in an 

independent dataset [101]. 

In 2008, John et al. performed molecular profiling of 29 patients diagnosed at AJCC 

stages IIIB and IIIC with clinical outcome defined as melanoma progression in 2 years 

(oligonucleotide microarray) (Table 1.3) [102]. Thirteen patients did not experience 

disease progression in 2 years whereas 16 patients experienced disease 

progression. Comparing gene expression differences between the two groups 

identified 21 genes, which were experimentally validated and used to generate a 

predictive risk score. This score was applied on two independent datasets, and it 

accurately predicted outcome in 90% and 85% of patients respectively [102].  

In 2009, Bogunovic et al. analysed gene expression data, mitotic rate and TILs from 

38 melanomas to explore the molecular basis for metastasis and to generate 

biomarkers of melanoma survival (Affymetrix Human Genome microarray) (Table 

1.3) [103]. Comparing gene expression differences between patients with prolonged 

survival and patients with short survival led to the generation of a 266 gene-based 

signature. For the 266 genes, pathway enrichment analysis revealed that immune 

response related genes were enriched in the good prognosis groups and cell 

proliferation related genes were enriched in the poor prognosis group. The prognostic 

value of the gene signature was validated in an independent dataset of comparatively 

similar size [103].  

Conway et al. (former PhD student in the Leeds research group) performed gene 

expression profiling using archived FFPE tumour blocks of 254 melanoma patients 

(part of Leeds Melanoma Cohort described in chapter 2) diagnosed at AJCC stages 

I, II, and III (DASL microarray cancer chip based on 502 genes) (Table 1.3) [104]. 

Increased expression of the Osteopontin gene (SPP1) was identified as a prognostic 

biomarker predicting relapse-free survival in the training set. When jointly analysed 

with other clinico-histopathological factors of melanoma in a multivariable analysis, 

this gene remained a significant predictor of relapse-free survival. The prognostic 

significance of this gene was validated in an independent dataset (n=218). A follow 

up study in 2010 by Jewell et al. (another PhD student in the group) jointly analysed 

the two datasets analysed in Conway et al. (n=472) and identified that genes 

associated with DNA repair mechanisms as significant predictors of relapse-free 

survival [113]. The increased expression of DNA repair mechanism genes in 

progressive tumours supported the view that melanoma progression requires genetic 

stability.  
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In 2013, Mann et al. analysed the mutational and gene expression data generated 

from 73 melanoma patients diagnosed at AJCC stage III and identified a 46 gene-

based signature that predicted outcome (Expression BeadChips microarray) (Table 

1.3) [84]. Pathway enrichment analysis revealed overrepresentation of immune 

response mechanisms. The gene signature showed independent prognostic value 

when jointly analysed with clinico-pathological variables. The prognostic value of the 

signatures was validated in two previously published cohorts of AJCC stage III 

melanoma. The study concluded that BRAF and NRAF mutation, along with absence 

of immune related gene expression, is associated with poor prognosis in stage III 

melanoma [84]. 

In 2015, Gerami et al. analysed the differences between primary and metastatic 

melanoma tumours using available gene expression datasets and selected the 28 

most discriminatory genes (Table 1.3) [109]. These 28 genes were used to developed 

a classification model to predict risk of metastasis using training set observations 

(n=164). When applying the classification model to the validation set (n=104), the 

model robustly predicted risk of metastasis (area under Receiver Operating 

Characteristic (ROC) curve =0.91) [109]. 

In 2018, Brunner et al. developed a classification model that predicted Melanoma-

Specific Survival (MSS) based on expression values of 8 genes (Table 1.3) [108]. 

The classification model was developed using tumours in the training set (n=125) and 

was validated on the tumours in the test set (n=211). Both the sets were a mixture of 

primary tumours from AJCC stages I, II and III. The generated classification model 

significantly predicted MSS in both the training set and the test set observations. 

When the gene signature was jointly analysed with the AJCC staging system, the 

area under the ROC predicting MSS increased by 4% in the training set and 6% in 

the test set when compared to the AJCC staging system alone [108].  

 



 

Table 1.3 Summary of studies investigating prognostic signatures of melanoma 

Study Cohort Outcome Gene signature and prognostic performance 

Winnepenninckx et al. 
(2006) [100] 

38 AJCC stage I-IV melanoma 
tumours 

≥ 4 years distant metastasis-
free survival versus < 4 year 
distant metastasis free survival 

259 gene-based signature, signature 
misclassified 29% cases and histopathological 
variables misclassified 28% cases 

Alonso et al. (2007) [101] 
34 vertical phase melanoma 
tumours (21 with metastasis 
and 13 without) 

Metastasis versus without 
metastasis 

243 gene-based signature, only 3 genes were 
validated and showed association with survival 

John et al. (2008) [102] 
29 AJCC stage III and stage 
IV melanoma tumours 

≥2 years to tumour progression 
versus <2 years to tumour 
progression 

21 gene-based signature, no prognostic impact 
shown 

Bogunovic et al. (2009) [103] 
38 AJCC stage III and stage 
IV melanoma tumours 

≥ 1.5 years of survival versus 
<1.5 years of survival 

266 gene-based signature, independent 
prognostic indicator of survival when jointly 
analysed with mitotic rate and TNM stage 

Conway et al. (2009) [104] 
254 primary melanoma AJCC 
stage I-III 

Relapse free survival and 
overall survival 

1 gene, Osteopontin (SPP1) expression, gene 
expression did not maintain significance in the 
validation set 

Jonsson et al. (2010) [106] 
57 AJCC stage IV melanoma 
tumours 

Overall survival difference in 
four groups 

503 gene-based signature, strong association 
with overall survival in four groups and 
association of increased immune response with 
good prognosis. 
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Study Cohort Outcome Gene signature and prognostic performance 

Harbst et al. (2012) [105] 
223 AJCC stage I and stage II 
melanoma tumours 

Overall survival (OS) and 
relapse-free survival (RFS) 
difference in two groups 

1864 gene-based signature, strong association 
with OS and RFS in two groups. Association of 
increased immune response with good prognosis 

Mann et al. (2013) [84] 
79 AJCC stage III melanoma 
tumours 

<1 year survival versus survival 
> 4 years post-surgery 

46 gene-based signature, strong over 
representation of immune response gene with 
good prognosis 

The Cancer Genome Atlas 
Network (2015) [81] 

331 primary and metastatic 
melanomas, AJCC stage I-IV 

Overall survival difference 
between three groups 

1500 gene-based signature, increased immune 
gene expression predicted good prognosis 

Gerami et al. (2015) [109] 
268 AJCC stage I-III 
melanoma tumours 

Risk of metastasis 
28 gene-based signature predicted risk of 
metastasis in the training and validation cohorts 

Brunner et al. (2018) [108] 
336 AJCC I-III melanoma 
tumours 

Melanoma-specific survival 
(MSS) 

8 gene-based signature predicted MSS in the 
training and validation dataset 

19 
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1.8.2 Unsupervised classification using gene expression 

The other studies have taken an unsupervised classification (clustering) approach to 

identify gene signatures of melanoma (Table 1.3). In 2010, Jonsson et al. (a group 

from the University of Lund with whom we collaborate) performed unsupervised 

hierarchical clustering on gene expression of 57 metastatic melanoma tumour 

samples; data was generated using an Illumina bead microarray [106]. The clustering 

identified four distinct classes: High-Immune, Normal-like, Proliferative and 

Pigmentation. This 4-class signature based on 503 genes will be referred to as the 

Lund 4-class signature in this report. The Lund 4-classes significantly predicted 

survival in stage IV melanoma as high-immune and normal-like class tumours had a 

good prognosis, and pigmentation and proliferative class tumours had significantly 

poorer prognosis. Histopathological factors such as Breslow thickness, mitotic rate, 

ulceration and AJCC stage were not observed to be associated with the Lund 4-

classes, which could have been due to the small sample size (n=57) and the 

advanced stage of those tumours [106].  

In 2012, the same group published another study where the Lund 4-class signature 

was validated in 223 melanoma primaries [105], and the signature collapsed into a 

2-grade signature. The survival curves of Lund 4-classes showed a convergence into 

just two significantly different survival curves; furthermore this led to generation of a 

2-grade signature, high-grade and low-grade (Figure 1.4A-B), from now on referred 

to as the Lund 2-grade signature [105]. The high-grade reflected metastatic tumours 

from proliferative and pigmentation classes, and the low-grade contained localised 

tumours from high-immune and normal-like classes [105].  

In 2015, our group validated the Lund 4-classes and 2-grades on a subset of the 

Leeds dataset observing the previously reported association with survival [114].  

In 2015, another study by the TCGA group clustered a mixture of metastatic and 

primary melanomas into three distinct classes [81]. The tumour classes were named 

as: immune, keratin and MITF-low. Survival analysis illustrated that patients from the 

immune class had better survival, while patients from the MITF-low and keratin class 

had intermediate and worse survival (Figure 1.4C) [81].  
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Figure 1.4 Melanoma tumour subtypes identified by the Lund group 

Adapted from Harbst et al. [105], Kaplan–Meier curves showing overall survival 

of patients in (A) the Lund 4-classes and (B) the Lund 2-grades. (C) Adapted 

from the TCGA study [81], Kaplan-Meier curve showing survival of the TCGA 

3-classes. The survival comparison was done using the log-rank test.  
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1.8.3 Overlap between the signatures 

In 2011 Schramm et al., conducted a systematic review of some of the previously 

published gene signatures of melanoma (between 2006-2010) and performed cross-

validation of these signatures on different datasets from the respective studies [107]. 

A direct comparison of gene lists of these signatures identified only a few genes in 

common, but pathway enrichment analysis revealed consistent enrichment of 

immune response related mechanisms. Although some differences in classification 

by gene signatures was observed, the gene signatures consistently predicted 

prognosis in the majority of the datasets [107]. The analysed gene signatures did not 

outperform the clinico-histopathological characteristics in predicting prognosis, and 

therefore it was noted that the prognostic value of new gene signatures in future 

should continue to be assessed in a multivariable model including existing prognostic 

factors of melanoma [107]. 

In 2013, Liu et al., analysed four previously published microarray based studies and 

made similar observations, as they also found that only a few genes were common 

across the published gene signatures [115]. The meta-analysis of the four datasets 

revealed a 200 gene-based signature that distinguished melanoma cells from normal 

skin cells. Comparison with other studies and gene enrichment analysis led to 

selection of a 12 gene-based signature which was validated experimentally. This 

study did not test the association of the signature with melanoma prognosis [115]. 

In 2016, Lauss et al. compared the molecular signatures of melanoma from 

unsupervised clustering [116]. It was reported that only 34 genes overlapped from 

the Lund and TCGA signatures, but pathway enrichment analysis revealed a good 

overlap of the biological pathways [116]. The Lund and TCGA signatures were 

developed agnostically using a similar clustering algorithm but were based on 

different types of analysis platform (array-based platform in Lund, RNA-sequencing 

in TCGA). Their convergence supports the view that transcriptomic data can indeed 

produce stable results. This indicated that even though gene signatures were 

generated from different platforms, they identify similar biological differences across 

tumours. 

All the three studies mentioned above highlighted that different classification or 

clustering methods may select different genes, but an overlap of the biological 

pathways associated with these genes suggests that the methods might be selecting 

genes which are highly correlated and also belong to the same pathway. Hence a 

direct comparison of gene lists may not be useful in analysing the overlap between 

the signatures. 
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1.9 Outline of this study 

Previous studies on unsupervised and supervised classification of melanoma have 

analysed gene expression datasets of comparatively small size, generated 

predominantly from advanced stage primary tumours, i.e. AJCC stages II and III. In 

2015, our group had published a validation of the Lund 4-class and 2-grade 

signatures on a subset of LMC (Leeds Melanoma Cohort) tumours [114]. This study 

was based on 224 tumours of the LMC that were transcriptome-profiled at the time.  

Currently the gene expression profiling has been done for 702 tumours of the LMC. 

In this study, various unsupervised and unsupervised classification approaches will 

be applied to the LMC dataset with an aim to identify molecular and prognostic 

signatures of melanoma. 

1.9.1 Aims and objectives 

Aim 1: Previously, melanoma tumours have been classified into 2-grades and 4-

classes by the Lund group and into 3-classes by the TCGA group. The tumour groups 

have been shown to predict prognosis in metastatic and primary melanoma cohorts. 

To extend this further the current research has the following objectives,  

Objective 1: To assess the prognostic value of the Lund and TCGA gene signatures 

in the whole LMC dataset (702 tumours)  

Hypothesis: The gene signatures with prognostic value in the published literature will 

also predict survival in the LMC  

Objective 2: To assess the prognostic value of the Lund and TCGA gene signatures 

across the AJCC stages 

Objective 3: To cluster tumours of the LMC dataset using different methods to those 

used in deriving the existing signatures 

Hypothesis: De novo cluster analysis of a comparatively larger dataset (up to 3 times 

larger than previous studies) may reveal novel tumour classes  

Objective 4: To use an independent measure of cluster separation to assess stability 

of the newly identified tumour classes referred to as the LMC classes (Leeds 

Melanoma Cohort classes)  

Objective 5: To test association of the LMC classes with clinico-histopathological 

features of melanoma  
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Objective 6: To test prognostic significance of the LMC classes in the whole LMC 

dataset and in the stage I subset  

Objective 7: To generate a reduced signature of the LMC classes and replicate 

prognostic significance of the LMC classes in an independent dataset from Lund, 

Sweden 

Objective 8: To explore biological differences between LMC classes using pathway 

enrichment analysis and using melanoma-specific biological modules 

Aim 2: Supervised classification can be used to develop models to predict outcome 

in future patients using analyses from existing data where the outcome is known. 

Classification models will be developed using Random Forest (RF) and Support 

Vector Machine (SVM),  

Objective 9: To apply RF to develop a classification model for predicting outcome in 

the LMC. The performance of the model will be assessed using sensitivity, specificity, 

and the kappa index 

Objective 10: To apply SVM using linear and non-linear kernel functions to develop 

classification models for predicting outcome in the LMC. The performance of SVM 

model will be compared with the RF model 

Objective 11: To generate a RF model after combining clinical information and gene 

expression data and compare its performance with a clinical information based RF 

model 

Objective 12: To generate a refined RF model by performing variable selection 

Hypothesis: The refined RF model using top predictor genes will predict prognosis 

similarly to the model using all genes 

Objective 13: To validate the prognostic value of the refined RF on an independent 

dataset of primary melanoma from Lund, Sweden  

Objective 14: Biological interpretation of the refined model using pathway enrichment 

analysis 

1.9.2 Outline of the chapters 

Chapter 2 provides a general methodological overview of the LMC cohort, generation 

and pre-processing of gene expression dataset and definition and analysis of MSS.  

In Chapter 3, the Lund and TCGA signatures were applied to the LMC gene 

expression dataset, and association with MSS was tested across the AJCC stages 

especially in stage I tumours. It was hypothesized that clustering of LMC tumours 
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may identify novel molecular signatures of melanoma. Therefore, LMC tumours were 

clustered using three different clustering algorithms and the stability of clusters and 

agreement with the Lund and TCGA signatures was calculated. The clusters 

identified by an algorithm that demonstrated highest cluster stability were further 

explored. 

In Chapter 4, the identified clusters, referred to as the LMC classes, were tested for 

association with clinico-histopathological characteristics and MSS stratified by the 

AJCC stages. To validate the prognostic value of the LMC classes on an independent 

dataset of primary melanoma (Lund dataset) generated by the Lund group, a refined 

gene signature was developed using the LMC data. This gene signature was applied 

to the Lund dataset to classify tumours into the LMC classes and association with 

prognosis was tested. The independent prognostic value of the LMC classes was 

assessed in both the datasets (LMC and Lund) using the AJCC staging system as a 

baseline. 

In Chapter 5, two supervised classification approaches (Random Forest and Support 

Vector Machine) were applied to the gene expression dataset to develop 

classification models to predict outcome. The outcome was defined as MSS up to a 

selected time point. The classification models were generated using unbalanced and 

balanced training datasets, and performance was compared on a separate test 

dataset. To appraise the performance of the best performing classification model, 

several permutation-based classification models were generated and performance 

was compared with the best performing gene expression-based model. 

In Chapter 6, performance of the selected gene expression-based model was 

compared with the classification model generated using clinical variables alone. It 

was hypothesized that combining the gene expression and clinical variables datasets 

may further improve prediction performance. Hence, the gene expression dataset 

and clinical variables were combined, and prediction of the combined model was 

compared to a clinical variable based model. Variable selection was performed to 

generate a final refined model which was further applied on the Lund dataset to 

predict outcome. Finally, the LMC classes identified in chapters 3 and 4 were 

compared with the predicted classes of the final refined model in this chapter. 

Chapter 7 summarizes the main findings, sets them in context, presents a final 

discussion of the results, and highlights the strengths, limitations, and future 

perspectives of this study
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Chapter 2 
General Methods 

2.1 Leeds Melanoma Cohort (LMC) 

The Leeds Melanoma Cohort (LMC) is a population-based sample cohort of 2184 

primary melanoma patients recruited from Yorkshire and the northern region of the 

United Kingdom [114, 117]. The melanoma cases in the LMC study were identified 

by clinicians, pathologists and from the cancer registry. The recruitment took place 

between 2000 and 2012.  

The study was designed to understand the role of genetic and environmental factors 

on melanoma risk and on patient survival. After consenting to participate in the study, 

participants were asked to complete postal and telephone questionnaires. This 

generated detailed information about lifestyle factors and lifetime environmental 

exposures. Blood samples of the participants were collected during recruitment, for 

extraction of plasma, serum and DNA.  

Participants in the LMC study were followed annually for first 5 years (active follow-

up). General practitioner records and linkage to Office for National Statistics (ONS) 

death data was also used (passive follow-up). At the annual follow-up, research 

nurses contacted the consented participants to complete an extended questionnaire 

and sought their consent for donating another blood sample for studying blood 

constituents that are likely to be relevant for melanoma prognosis. Participants were 

consented for assessing formalin-fixed paraffin-embedded (FFPE) primary tumour 

blocks stored in the NHS (UK National Health Service) department where they had 

surgery for tissue sampling.  

The approval for this study was granted by the Multi-centre Research Ethics 

Committee (MREC) and the Patient Information Advisory Group (PIAG 3-

09(d)/2003). An amendment was sought from the Northern and Yorkshire Research 

Ethics Committee (01/3/057) for using the plasma samples for biomarker discovery 

[114, 117]. 

The variables used in this research were the genome-wide gene expressions 

extracted from a subset of FFPE tumours of the LMC and the clinical characteristics 

of these primary melanomas. 
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2.2 Gene expression data  

Gene expression data was generated from the FFPE tumour blocks of 702 patients 

of the 2184 total cohort [117]. The data was generated from a selected group of 

participants in the cohort based on two criteria: 1) Breslow thickness greater than 

0.75mm, and 2) patients with the longest follow-up time, to increase statistical power 

in survival analyses. Tumour less than 0.75mm thick were not selected due to 

difficulties in sampling. As a result, not all incident cases were sampled from the LMC. 

Among 702 patients, only 16 were treated with targeted therapies or 

immunotherapies, so the LMC data effectively reflects the outcome in treatment-

naïve patients.  

2.2.3 Tumour core generation 

The tumour cores were extracted from FFPE blocks using a 0.6mm diameter tissue 

microarray (TMA) needle. A standard protocol has been developed by our group for 

managing and sampling tissues from FFPE blocks. The Human Tissue Act manager, 

Ms. Sandra Tovey led the process of tracing the FFPE blocks. The tissue sectioning, 

staining and sampling was performed by Dr. Filomena Esteves and Dr. Jonathan 

Laye. The sectioned tissues were stained using Mayer’s Haematoxylin and 1% Eosin 

(H&E) to allow identification of areas for sampling after review. Prof. Julia Newton-

Bishop and Dr. Jonathan Laye reviewed the H&E slides under a microscope and 

selected the areas for sampling. Up to two cores were sampled from each block, and 

to increase the comparability between tumours, the samples were consistently drawn 

from the regions with highest tumour content and least inflammation. All the tumour 

blocks were reviewed prior to sampling, and if there was a small amount of tumour 

left in the block then the block was not sampled, lest a clinically very important block 

be destroyed. 

2.2.4 RNA extraction and Expression data generation 

RNA was extracted from the tumour cores for the whole-genome gene expression 

assay by the lab technicians, following a previously established protocol (1,2). Whole-

genome mRNA expression was profiled on Illumina’s DASL (cDNA-mediated 

Annealing, Selection, extension and Ligation) HT12-v4 array [92]. For quality control, 

the mRNA was extracted from multiple cores for a number of patients (117 duplicates 

in total). However, gene expression data was analysed from only one extraction per 

patient in subsequent analyses, selecting the sample showing the best performances 

in terms of the number of genes detected.  
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2.2.5 Data pre-processing 

Data pre-processing is a crucial step for removing technical variation or bias in the 

data [118-120]. This obscuring variation arises from different sources, for example 

differences in sample preparation, processing or scanning of the array. As described 

previously, the pre-processing of the gene expression data was conducted by Dr 

Jeremie Nsengimana (senior statistician) [117]. The pre-processing steps involved 

1) image extraction using GenomeStudio (Illumina, Inc., San Francisco), 2) 

background correction to adjust out non-specific hybridisation (as measured by the 

negative control probes that are present on the array), 3) quantile-normalisation 

(steps 2 and 3 were accomplished using the R-package Lumi [121]), and 4) batch 

correction.  

2.2.5.1 Sample quality control 

Quality control was performed by examining the density plots of log-intensity 

distribution for each sample before and after pre-processing of data. This allowed 

identification of samples that had an abnormal distribution, which were subsequently 

removed. Data were re-normalised after removing the samples with an abnormal 

distribution. In previous studies conducted in our group [104, 122], the number of 

probes detected at P<0.05 was shown to be correlated with sample quality and was 

a good measure of array performance. The detection P-value is the probability that 

the signal for a given probe is greater than the signal from the background noise, i.e. 

the average of negative controls. When sample duplicates existed, the sample with 

largest number of probes detected was chosen. 

2.2.5.2 Batch Correction 

Batch correction requires particular attention in microarray studies, in particular as 

not all samples were processed at the same time. They were run in 3 separate 

batches, each containing multiple plates which were loaded on multiple chips before 

scanning. As part of the normalisation process, Single Value Decomposition (SVD) 

was applied to the expression data to check for any biases. The top 25 principal 

components were tested for association with technical variables like chip, plate, batch 

number, age of the FFPE block, RNA concentration, and extraction assay. The 

principal components were found to be strongly associated with the chip, batch 

number and plate. The adjustment of expression data for batch number using a linear 
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model (R-package SWAMP [118]) removed the association with other technical 

variables. The data were converted to the log2 scale for variance stabilisation. 

2.2.5.3 Gene quality control 

The array included 29,262 probes corresponding to 20,715 unique genes. For genes 

with multiple probes, the probe detected in the higher proportion of tumours was 

retained. Genes were further selected on the basis of two additional filters: 1) genes 

which were detected at P-value <0.05 in at least 40% of tumours and 2) had standard 

deviation (SD) > 0.40 (this SD threshold was chosen based on the overall distribution 

across the 20,715 genes on the log2 scale, median 0.68) were selected for 

downstream analysis. Finally, the dataset contained 13,688 genes across 702 

tumour samples. The expression values were standardised so that for each gene the 

mean was 0 and SD was 1.  

 

2.3 Clinico-pathological characteristics 

The following clinico-pathological characteristics of melanoma patients from the LMC 

(Table 2.1) were used: 

1. Sex (male or female) 

2. Tumour site (limbs, trunk, head and neck, other rare sites). Rare sites are 

those rarely sun-exposed such as subungual, anal, penile, vulvar, etc. 

3. Presence of ulceration (yes or no) 

4. Tumour stage (American Joint Committee on Cancer, or AJCC staging 

system) 

5. Age at diagnosis (years) 

6. Breslow thickness (mm) 

7. Mitotic rate (per mm2) was stratified into two categories (<1/ mm2 and ≥1/ 

mm2) based on the 7th edition AJCC staging system guidelines [44]. 

8. BRAF and NRAS mutation status (yes or no – V600 for BRAF, codons 12, 13 

and 61 for NRAS) 

9. Tumour Infiltrating Lymphocytes (TILs) (absent, non-brisk, brisk ) 
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Table 2.1 Summary of clinico-histopathological characteristics of the LMC 
cohort 

Variable LMC cohort 

Sex 
females n(%) 384(55) 

males n(%) 318(45) 

Site 

limbs n(%) 298(42) 

head and neck n (%) 80(11) 

trunk n(%) 233(33) 

other sites n(%) 91(13) 

Ulceration status 
no n(%) 468(67) 

yes n(%) 234(33) 

AJCC stage 

I n(%) 233(34) 

II n(%) 355(51) 

III n(%) 106(15) 

Mitotic rate 
<1 n(%) 88(14) 

≥1 n(%) 521(86) 

BRAF mutant 
no n(%) 309(53) 

yes n(%) 273(47) 

NRAS mutant 
no n(%) 432(75) 

yes n(%) 142(25) 

TILS 

absent n(%) 76(15) 

non-brisk n(%) 340(68) 

brisk n(%) 82(16) 

Age at diagnosis, median(range) 58.4(18.3,81.3) 

Breslow Thickness, median(range) 2.3(0.3,20) 

 

2.4 Survival analysis 

The aim of survival analysis is to test whether independent variables are associated 

with an event of interest. In our case, the event of interest was death from melanoma, 

and the predictors were the clinico-pathological and gene expression features. The 

survival time was the time from diagnosis to death from melanoma. Observations are 

censored when information about their survival time are incomplete [123]. Censoring 

can be further classified into left and right censoring. Left censoring occurs when the 

event of interest occurs before observations begin. Right censoring occurs for the 
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following reasons: a) a patient has not experienced the event of interest by the end 

of the study, b) a patient is lost to follow-up during the study, c) a patient died due to 

some other reason [123]. Patients who did not experience death from melanoma 

within the period of the study were censored at the time of last follow-up or of death 

from another cause. Kaplan-Meier curves were used for visualising survival curves, 

and Cox proportional hazards models were used for estimating the hazard ratios. In 

this study, it was assumed that all survival times are independent of one another, left 

censoring is not an issue because all the patients were recruited soon after diagnosis, 

and censoring solely occurs as right censoring.  

2.4.1 Survival Outcome 

Melanoma-specific survival (MSS) was used as the survival outcome. The MSS time 

was calculated from the date of diagnosis to the date of death caused by melanoma. 

For censored patients, survival time was calculated from the date of diagnosis to the 

date of the last follow-up or death from causes other than melanoma. Survival status 

was determined by looking at the definitive cause of death from the Office of National 

Statistics (ONS) and from the death certificate 

2.4.2 Kaplan-Meier survival estimate  

The Kaplan-Meier method is a non-parametric approach to estimate and visualize 

survival probabilities as a function of time [123, 124]. The survival probability S(t) is 

the probability that an individual survives from the initial time (t0) (e.g. date of cancer 

diagnosis) to a specified future time t. Survival analysis models S(t) as a function of 

a set of predictor variables.   

The survival probability is estimated as follows: 

Suppose X patients have experienced the event of interest during follow-up at distinct 

times as t1<t2<t3<t4...<tn.  

Assuming that the events occurred independently of one another, the survival 

probability S(tj) at time tj (indexed j) is calculated from S(tj-1), the probability of survival 

at tj-1, by: 

 
!"#$% = !(#$()) +1 −

.$
/$
0 (2.1) 

where dj is the number of deaths at tj and, nj is the number of patients alive before tj. 

The value of S is constant along the time interval between events and changes only 

at the time of each event. At t0 the value of S is equal to 1. Therefore, S(t) is a step 
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function and this estimator includes each patient in the denominator for as long as 

they are known to be event-free. The graphical visualization of Kaplan-Meier survival 

probability against time provides a useful summary that can be used to estimate the 

median survival time.  

2.4.3 Log-rank test 

The Kaplan-Meier survival probabilities were compared across different groups using 

the log-rank test. This is a non-parametric test used for comparing survival times 

between two or more groups. The null hypothesis is that there is no difference 

between survival curves of the groups, and the alternative hypothesis is that there is. 

At each event time, this test calculates the expected number of events for each group 

since the previous event, under the null hypothesis. The expected values are 

summed over all the event times to give the total number of expected events (Ei) for 

each group (indexed i). The observed number of events (Oi) for that group are 

compared with their expectation under the null using the test statistic 

 
c1 =2

(34 − 54)1

54

6

47)

 (2.2) 

where k is the total number of groups compared. 

The P value for this test statistic is derived from c2 distribution with (k-1) degrees of 

freedom. The log-rank test provides a P value for the difference between the groups 

but it offers no estimate of the actual effect size. Several other survival modelling 

strategies have been proposed to overcome these limitations. 

2.4.4 Cox Proportional Hazards model (CPH) 

The Cox Proportional Hazards (CPH) model is a semi-parametric approach for 

modelling survival data [124, 125]. It is a regression-based method which describes 

the relationship between an event’s occurrence and a set of covariates using a 

hazard function. All individuals who have not yet experienced the event of interest at 

any given time are considered to be at risk of experiencing it at a later time. The 

hazard function, usually denoted by h(t) or λ(t), is the probability that an individual will 

experience the event at time t, conditional on them having survived to t. 

Mathematically, the CPH model is written as 

 ℎ(#) = ℎ9(#) × ;<=>ß)<) + ß1<1 +⋯+ ßB<BC (2.3) 
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where the hazard function h(t) is dependent on the vector of p covariates (x1, x2,…, 

xp) whose effect sizes are measured by the coefficients (ß1, ß2,…, ßp). The coefficients 

are unknown and are estimated by maximum likelihood or, more precisely using 

partial likelihood. The partial likelihood approach considers the individuals with an 

event and not the not the ones which are censored and does not estimate the 

baseline h0(t): 

 
D(ß) = 	F

;<=(ß<4)

∑ exp"ß<$%$∈LM

N

47)

 (2.4) 

Where D is the vector of failure times and Ri is the number of patients at risk at 

ordered time intervals t1 < t2 <…<tD. 

The baseline hazard function is estimated non-parametrically i.e. the survival times 

are not assumed to follow a particular statistical distribution. The function can vary 

with time but remains independent of the covariates, whence the assumption of 

proportional hazards. The quantity exp(ßi) is known as the hazard ratio (HR). HR>1 

corresponds to increased probability of the event of interest, while HR<1 implies a 

decreased probability, for presence (or increased level) of that covariate. The 

proportional hazards assumption of the Cox model can be tested using Schoenfeld 

residuals. The null hypothesis is that the slope of scaled residuals on time is zero and 

the alternate hypothesis is that slope is not zero. The Schoenfeld residual value for 

each predictor variable is the difference between the expected value and observed 

value of the predictor variable. The residual values are regressed against time to test 

independence between residuals and time.  

 

2.5 Statistical tests 

2.5.1 Mann-Whitney/Wilcoxon test 

The Mann-Whitney U test, also called Wilcoxon or rank sum test, is a non-parametric 

test equivalent of Student’s t-test, used to test whether two statistical samples comes 

from the same distribution [126]. The test assumes that observations in both groups 

are independent and have no relationship between and within each group. The null 

hypothesis is that the distributions of two populations are the same and the alternate 

hypothesis is that they are not. The test calculates the U statistic whose distribution 

is known under the null hypothesis. The observations from both groups are merged 
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in one data set and ordered from the smallest (rank 1) to the largest (rank n, where 

n=total number of observations). The sum of ranks, R, is calculated for each group. 

The U statistic is given by: 

 
O) = P) −

/)(/) + 1)

2
 (2.5) 

 

 
O1 = P1 −

/1(/1 + 1)

2
 (2.6) 

 

 O = min(O), O)) (2.7) 

where n1	and n2 is the number of observations in groups 1 and 2 respectively. R1 and 

R2 are the sums of ranks in groups 1 and 2. The U statistic follows a normal 

distribution, which is thus used to derive the significance level [126]. This test was 

used to compare groups of patients for dichotomous tumour and patient 

characteristics.  

2.5.2 Kruskal-Wallis test  

The Kruskal-Wallis test is an extension of the Mann-Whitney test for categorical 

variables with more than two categories. This is a non-parametric test used for 

comparing differences in more than two independent groups (k) [127]. The null 

hypothesis is the median of all groups are equal and the alternative hypothesis is that 

the median is different between at least two groups [127]. The observations from all 

groups are combined and ranked from lowest to highest with 1 being the lowest rank. 

The test statistic, H, is calculated as: 
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6

47)

− 3(/ + 1) (2.8) 

where n is the total number of observations, k is the total number of groups, ri  is the 

sum of ranks in group i and ni is the number of observations in group i. This statistic 

follows a c2 distribution with k-1 degrees of freedom under the null hypothesis [127].  

2.5.3 Pearson’s chi-squared test 

The Pearson’s chi-squared test is a non-parametric test for testing the association 

between two categorical variables [128]. The null hypothesis is that the two variables 

are independent and there is no association between them and the alternative 
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hypothesis is that there is an association. The test statistic utilises a contingency 

table for calculation and is calculated as: 

 
Y1 =22
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Z
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 (2.9) 

where r is the total number of rows, c is the total number of columns, Oij is the 

observed value in the ith row and jth column of the table, Eij is the expected value in 

the ith row and jth column of the table, computed as: 
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where ai	is the sum of ith row and aj is the sum of jth row, aij is the sum of all the values 

in the table. Under the null hypothesis the statistic follows a chi-squared distribution 

with degrees of freedom equal to product of r-1 and c-1.  [128].  
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Chapter 3 
Analysing existing melanoma gene signatures and 
devising a new one by clustering of LMC tumours 

The objectives of this chapter are:  

Objective 1: To assess the prognostic value of the Lund and TCGA gene signatures 

in the whole LMC dataset (702 tumours)  

Hypothesis: The gene signatures with prognostic value in the published literature will 

also predict survival in the LMC  

Objective 2: To assess the prognostic value of the Lund and TCGA gene signatures 

across the AJCC stages 

Objective 3: To cluster tumours of the LMC dataset using different methods to those 

used in deriving the existing signatures 

Hypothesis: De novo cluster analysis of a comparatively larger dataset (up to 3 times 

larger than previous studies) may reveal novel tumour classes 

 

3.1 Introduction 

3.1.1 Gene expression based cluster analyses in melanoma  

Previously, gene expression based cluster analysis of cutaneous melanoma has 

generated gene signatures with demonstrated prognostic value. Two studies led by 

the Lund [106] and the TCGA group [81] have identified biologically distinct classes 

of melanoma (Lund 4-classes and TCGA 3-classes) using similar clustering 

algorithms, i.e. hierarchical clustering. Both studies were conducted using the gene 

expression data derived from predominantly metastatic melanoma tumours. In 2012, 

Harbst et al. showed the prognostic value of the Lund signatures in primary tumours 

from the Lund cohort [114]. In 2015, our group replicated the prognostic value of the 

Lund signatures in the LMC. In 2016, a study led by the Lund group reported the 

overlap of biological pathways between the Lund and TCGA signatures [116]. 
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3.1.1.1 Lund 4-class signature  

As described previously (Section 1.8.2), the cluster analysis performed by the Lund 

group identified four tumour classes from the Swedish metastatic melanoma cohort 

(n=57 FFPE tumours), referred to as the Lund 4-class signature [106]. Hierarchical 

cluster analysis was used to generate this signature on the basis of the ~9,000 genes 

with the best detection performance on the Illumina DASL HT8 array [106]. The four 

classes were named high-immune, normal-like, pigmentation and proliferative [106]. 

The high-immune class was associated with higher expression of genes involved in 

different immunologic processes. The normal-like class expressed genes involved in 

epidermis and ectodermal development. The pigmentation class had higher 

expression of genes associated with melanin synthesis and melanocyte 

differentiation. The proliferative class had higher expression of genes involved in cell 

cycle related mechanisms. The four classes were also associated with BRAF and 

NRAS mutation status in metastatic tumours [106]. The proliferative and 

pigmentation class had a higher proportion of cases with BRAF and NRAS mutations 

in comparison to high-immune and normal-like classes [106]. In terms of prognosis, 

the high-immune class predicted good prognosis and proliferative class predicted 

poor prognosis, whereas the pigmentation and normal-like classes were predictive of 

intermediate prognosis [106]. 

3.1.1.2 Replication of Lund 4-class signature 

The Lund 4-class signature was replicated in a cohort of primary melanoma tumours, 

referred to as the Lund primary melanoma cohort, composed of 223 patients 

diagnosed at AJCC stages I and II [105]. The signature robustly predicted prognosis 

in these primary tumours, with high-immune and normal-like classes associated with 

good prognosis, while proliferative and pigmentation classes predicted poor 

prognosis [105]. The Lund 4-classes were associated with clinico-pathological 

variables like Breslow thickness, ulceration status, mitotic rate, tumour site, AJCC 

stage, and tumour infiltrating lymphocytes (TILS) [105]. The high-immune and 

normal-like class tumours were thin, non-ulcerated and were predominantly 

diagnosed at AJCC stage IIA [105]. The proliferative and pigmentation class tumours 

were thick, ulcerated and were diagnosed predominantly at AJCC stage IIB [105]. 

The high-immune and normal-like tumours had lower mitotic rate in comparison to 

proliferative and pigmentation class tumours. The high-immune class had higher 

incidence of brisk TILs and the pigmentation class had absence of TILs [105]. The 

normal-like and proliferative class had intermediate levels of non-brisk TILs. Brisk 
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TILs are those infiltrating the tumour core to attack it, while non-brisk tend to remain 

at the tumour periphery and are low in number. The Lund 4-classes were not 

associated with NRAS and BRAF mutation status in primary melanoma [105].  

3.1.1.3 Lund 2-grade signature 

The survival curves of the Lund 4-classes converged into two groups in the Lund 

primary melanoma cohort (Section 1.8.2) [105]. Further examination of histological 

parameters, overlap between upregulated genes and survival across the four classes 

led to refining the 4-class signature into a new two-grade signature, referred to here 

and throughout as the Lund 2-grades. The Lund 2-grades were high-grade and low-

grade. High-grade tumours were an aggressive class of tumours which overlapped 

with tumours from the proliferative and pigmentation classes [105]. Low-grade class 

tumours overlapped with high-immune and normal-like class tumours. In contrast to 

Lund 4-classes, the Lund 2-grades showed significant association with BRAF 

mutation status and borderline association with NRAS mutation status [105]. Overall, 

the Lund 2-grades signature is an extension of Lund 4-classes, with higher statistical 

power to detect associations with survival and clinical variables. This new signature 

was not obtained by merely merging pairs of groupings from the Lund 4-classes; 

rather it was generated from 1864 genes, although many of these were also among 

the 503 defining the Lund 4-classes. 

3.1.1.4 Independent replication of Lund signatures 

In 2015, our group applied the Lund 4-class and Lund 2-grade signatures to a subset 

of LMC tumours (n=204 FFPE primary tumours profiled at the time) and an additional 

set of 76 melanomas (predominantly metastases from the Leeds Chemotherapy 

Study, LCS) using the nearest centroid classification (NCC) approach [114]. The 

expression data was generated on the DASL HT12.4 array. Both signatures were 

well replicated in these independent cohorts.  In keeping with previous reports, high-

immune and normal-like classes were predicted good prognosis, while proliferative 

and pigmentation groups predicted worse prognosis. In Lund 2-grades, high-grade 

predicted worse prognosis and low-grade predicted good prognosis. The Lund 4-

classes and Lund 2-grades were associated with clinico-pathological features like 

ulceration status, mitotic count, age at diagnosis, Breslow thickness, and AJCC 

stage. These observations were consistent with previous studies [105, 106]. The 

Lund 4-classes and Lund 2-grades were not associated with BRAF and NRAS 

mutations in the LMC tumours [114]. 
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3.1.1.5 TCGA 3-class signature  

In 2015, The Cancer Genome Atlas (TCGA) network published a study which 

identified three classes of melanoma in a predominantly metastatic cohort (262 

metastases and 58 primaries from fresh frozen tumours) (Section 1.8.2) [81]. The 

three TCGA classes were named as immune, keratin and MITF low. The immune 

class was associated with good prognosis and the keratin class was associated with 

poor prognosis, whereas the MITF low class had intermediate prognosis. The 

immune class tumours had increased expression of genes involved in immune 

response mechanisms. The keratin class had increased expression of genes 

involved in keratin, epithelial and neuronal development mechanisms. The MITF low 

class tumours had increased expression of genes associated with embryonic 

development, nervous development, cell adhesion, and extracellular matrix protein 

organisation [81].  

3.1.1.6 Overlap between Lund and TCGA signatures 

In 2016, a collaboration between the Leeds and Lund groups compared the Lund 4-

class signature with the TCGA 3-class signature (Figure 3.1) [116]. Although the 2 

signatures have only 34 genes in common (among the 503 of Lund 4-classes and 

1500 of TCGA), the gene ontology of both signatures showed a good overlap of the 

associated biological pathways (Figure 3.1) [116]. The Lund 4-class and TCGA 3-

class signatures were applied to the TCGA (n=254, metastases), Lund (n=124, stage 

III primaries), Leeds (n=204, primaries) and Bergen (n=54, metastases) melanoma 

datasets using the supervised NCC approach [116] and it was observed that Lund 4-

classes highly overlapped with the TCGA 3-classes in each of these datasets (Figure 

3.1B). The tumours classified in the high-immune class of the Lund 4-classes 

overlapped with the immune class of TCGA 3-classes. Similarly, the normal-like class 

overlapped with the keratin class. The proliferative class overlapped with MITF low 

class. The pigmentation class overlapped with immune and keratin classes of the 

TCGA 3-classes. Overall, the study suggested that even though Lund and TCGA 

signatures were developed using different sample types (archived tissue in Lund and 

fresh-frozen tissue in TCGA), and different technologies (microarray-based platform 

in Lund, RNA-seq in TCGA) (see Section 1.8.3), the convergence of signatures 

supports the view that transcriptomic data do produce stable results [116]. These 

data also confirmed that similar mechanisms can be observed in primary tumours 

and in more advanced disease. 
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Figure 3.1 Comparison of Lund and TCGA melanoma subtypes. 

Adapted from Lauss et. al. [116]. (A) A Venn diagram showing the common 

genes between the Lund and TCGA gene signatures and histogram showing 

the gene expression level across the Lund and TCGA gene sets. (B) The 

overlap between the Lund 4 classes and the TCGA classes when the 

signatures were applied across 4 different datasets. 
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3.1.2 Replication of Lund and TCGA signatures in the whole 
dataset  

The above-mentioned studies using the Lund and TCGA signatures have been 

conducted on melanoma cohorts containing mainly AJCC stages II-IV tumours. 

Therefore, the prognostic significance of these signatures has not been assessed in 

patients diagnosed at AJCC stage I. At the time of replication in LMC [114], 

expression data was available for only 204 tumours, including 58 stage I tumours. 

Now, with a dataset three times larger (n=702, including at 233 stage I), the first 

objective of this research was to test the utility of these signatures in the whole LMC 

dataset, especially in stage I tumours. As a second objective, since the whole LMC 

dataset had more power, it was hypothesised that re-clustering tumour 

transcriptomes of LMC could identify novel prognostic signatures. As described in 

this chapter, a consensus-based approach was applied to cluster gene expression 

data of primary melanomas from LMC using three different unsupervised 

classification algorithms. The results from these algorithms were compared for 

cluster stability and for their agreement with the Lund and TCGA signatures. 

 

3.2 Methods 

3.2.1 Replicating Lund 4-class and Lund 2-grade signatures in 
LMC 

Supervised Nearest Centroid Classification (NCC) approach was used to classify the 

702 primary tumours from the LMC into the Lund 4-classes [114]. The Lund 4-class 

signature contains the centroid values for each class. The centroid values are an 

average expression value of 503 genes in the signature. Among the 503 genes of 

the signature, 449 genes were present in LMC (incomplete overlap due to using 

different versions of DASL array).  

In the NCC approach, the tumour expression values of the matching 449 genes were 

extracted from the LMC gene expression dataset. Each tumour sample was 

correlated with the Lund 4-class centroids, and the sample was put into the class 

corresponding to the largest correlation. The samples for which the largest 

Spearman’s rank correlation coefficient value was less than 0.10 were considered 

unclassified. 
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Similarly, LMC tumours were classified into the Lund 2-grades using the supervised 

NCC approach. The Lund 2-grades centroids are average expression value of 1864 

genes, among which 1586 were present in the LMC dataset. The classification of 

LMC tumours using the TCGA 3-class signature had already been performed by Dr 

Jérémie Nsengimana using the same NCC approach. 

3.2.2 The Lund and TCGA signatures association with clinico-
histopathological variables 

The association of LMC tumours classified into the Lund 4-classes, Lund 2-grades, 

and TCGA 3-classes with clinico-histopathological variables was tested. The clinico-

histopathological variables used for analyses were age at diagnosis, sex, AJCC 

stage, Breslow thickness, site of tumour, tumour ulceration status, mitotic rate, TILs, 

and BRAF and NRAS mutation status. The mitotic rate calculation for the LMC 

tumours was done by Dr Sally O’Shea (former PhD student in the group). Pearson’s 

chi-squared test was used for testing categorical variables. Non-parametric Mann-

Whitney test and Kruskal-Wallis rank sum test were used for testing continuous 

variables (refer to 2.5). Association analyses excluded the unclassified tumours.  

3.2.3 Lund and TCGA signatures association with melanoma-
specific survival 

CPH models (refer to 2.4.4) were used to test the association of the Lund and TCGA 

signatures with melanoma-specific survival (MSS), and the survival differences 

between tumour classes were plotted in Kaplan-Meier curves (refer to 2.4.2). The 

differences in these curves were tested using a log-rank test (refer to 2.4.3). These 

analyses were conducted using R-packages survival [129], ggplot2 [130] and ggkm 

function. The high-immune class from the Lund 4-classes, low-grade from the Lund 

2-grades, and immune class from the TCGA 3-classes were used as the baseline 

comparison group. The analyses excluded the unclassified tumours. 

3.2.4 Statistical interaction test between the Lund grade and AJCC 
stage 

The Lund and TCGA signatures were generated from cohorts of AJCC stage II-IV 

melanomas. Since LMC dataset includes a high proportion of stage I patients (33.5% 

of data), the utility of the Lund and TCGA signatures was tested across stages. To 

check whether the signature’s prognostic value was maintained at all disease stages, 

and having observed no evidence of prognostic values in Stage I, we conducted a 
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formal statistical interaction test between the AJCC stage and the Lund 2-grades in 

the CPH regression was tested using Wald’s test. This signature was chosen due to 

its higher statistical power among the three signatures. Following the same line of 

reasoning, because the signature is known to be prognostic in the AJCC stages II 

and III, these two levels were merged, i.e. the AJCC stage variable had two levels: 

stage I or higher (there was no stage IV, so higher means II or III). The AJCC stage 

I and low-grade from Lund 2-grades were chosen as baseline comparison groups.  

3.2.4.1 Power calculation in LMC stage I 

Power and sample size calculations were performed to ascertain whether the stage 

I sample size is large enough to draw valid conclusions. The equation used for 

calculating power is [131]: 
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where za/2 and zb are values taken from standard normal distribution at a given level 

of significance (or type I error), a; b is the type II error and 1-b is the statistical power 

of the test. The p1, p2 are the proportion of patients in the two groups (i.e. low- or high-

grade). Parameter qR is the log-hazard ratio (natural base) and d is the total number 

of melanoma-specific deaths in AJCC stage I patients.   

3.2.5 Clustering gene expression data of LMC tumours 

The clustering of gene expression data was performed for 702 tumours of LMC. The 

whole transcriptome contained expression of 20,715 unique genes. The gene were 

further filtered prior to cluster analysis, based on two criteria: genes had to be 

detected with P<0.05 in at least 40% of tumours and had to have a standard deviation 

(SD)>0.40. This SD threshold was chosen based on the overall distribution across 

all the genes on the log2 scale. The median SD was 0.68. The data were 

standardized to give each gene a mean of 0 and SD of 1. After filtering, the final 

dataset contained expression of 13,688 genes, larger than the 7,200 genes used in 

the Lund study [106] and the 1,500 genes used in the TCGA study [81]. We chose a 

larger number in order to cover more biological variation. The LMC tumours were 

clustered using a consensus-based approach with implementation of Hierarchical 

clustering (HC), k-means (KM) and Partitioning Around Medoids (PAM) algorithms.  
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3.2.5.1 Hierarchical clustering (HC) 

HC is a data partitioning method that generates hierarchical series of nested clusters 

using a distance metric e.g. correlation coefficient, dissimilarity (1-correlation 

coefficient), Euclidean distance etc. [132]. The tree-based graphical representation 

of these nested clusters is called a dendogram. The dendogram records the 

information about similarity between the clusters. The k clusters are generated by 

cutting the dendogram at a specified threshold of distance/similarity. HC can be done 

using a divisive or agglomerative approach  [132]. The divisive approach, also known 

as top-down, starts with placing all the samples in one big cluster. It then iteratively 

divides the big cluster into smaller clusters until the final clusters contains only one 

sample per cluster. The agglomerative approach, also known as the bottom-up, starts 

with placing all samples into individual clusters, which are then merged in successive 

steps based on the similarity between them. This process is repeated until all clusters 

are merged together to form one big cluster. In my thesis, an agglomerative approach 

was used. The similarity D between the clusters is calculated using UPGMA 

(Unweighted Pair Group Method with Arithmetic mean) as follows: 

 
e(f, g) =

1
|f|. |g|

22.(<, j)		
k∈lm∈n

 (3.2) 

where A and B are the two clusters, |(| is the total number of samples in cluster ( 

and |)| is the total number of samples in cluster B. The symbol d(x, y) is the distance 

(here I used dissimilarity) between sample x from cluster A and sample y from cluster 

B. Although HC provides good visualisation of similarity between samples, it is 

computer-intensive. The limitation of HC is that it does not provide the number of 

clusters: it progressively groups or splits samples based on similarity, and users, 

often subjectively, decide the number of clusters based on the dendrogram. Another 

limitation is that a small perturbation in the dataset can greatly change the end results 

of the clustering, and it is sensitive to outliers [132, 133]. 

3.2.5.2 k-means clustering (KM) 

The KM clustering algorithm aims to partition data into a predetermined (i.e. user 

input) number of clusters, k, into which the samples are placed based on their 

similarities [132]. The mean value of samples in a cluster is known as the cluster 

centroid. The clustering process has two main steps: 1) initialisation of centroid 

values; 2) iterations to find optimal centroid values. In the initialisation step, k samples 

are randomly selected and assigned to different clusters (i.e. one sample per cluster). 
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In the iteration step, each of the remaining n-k samples is classified into the cluster 

with nearest centroid. Then for each cluster, the mean value is re-calculated and 

assigned as the new centroid of the cluster. The samples are re-classified using the 

new centroids and re-assigned to the cluster with the nearest centroid. These steps 

are repeated until the centroid values do not change. The iteration step minimises 

the sum of squared distances (S) between samples within a cluster and its centroid 

as 
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where k is the number of clusters, x are samples in cluster Ci, ui is the centroid of 

cluster Ci. The KM method is computationally efficient, but like HC it is sensitive to 

outliers and a small change in starting position can change the clustering results. 

Also, the number of clusters, k, has to be provided as an input when the user rarely 

has much information on which to base this choice [132, 133].  

3.2.5.3 Partitioning Around Medoids (PAM)  

Partitioning around medoids (PAM), also known as k-medoid clustering, aims to 

minimise the within cluster distance W 
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where k is the number for clusters, x are the samples in cluster Ci, mi is the medoid 

(central element) of cluster Ci, and d(.) is the distance function (here I used Euclidean 

distance) [134, 135]. It is constructed in a similar way to k-means but uses the cluster 

medoid (i.e. the most central element) instead of the average of all samples in a 

cluster, thereby avoiding the influence of outliers. The clustering solution of the data 

is at the minimum value of W. The algorithm performs clustering in two phases, 1) 

build phase; 2) swap phase. In the build phase, PAM randomly assigns k samples as 

the medoids (i.e. 1 sample per cluster). The rest of the samples are classified into a 

cluster based on their nearest medoid, and W is calculated. In the swap phase, a new 

medoid is determined for each cluster by finding a sample that minimizes the 

dissimilarity with other samples of the cluster. The samples are reclassified into the 

clusters based on the new medoids. The swapping phase is repeated until the W 

value stabilizes. The usage of medoids in PAM makes it more robust to outliers in 
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the dataset compared to KM [136], although like KM, PAM requires a priori 

information on the number of clusters, k. 

3.2.5.4 Consensus-based clustering 

All the methods described above, HC, KM and PAM are sensitive to starting 

positions. Hence, a method was needed to help inform the choice of k. Consensus-

based clustering is an iterative technique for identifying stable clusters in high-

dimensional datasets [137]. It sub-samples data to generate multiple datasets over 

N iterations (Figure 3.2). At each iteration, the sampled dataset is clustered into a 

varying number of clusters k using the specified clustering algorithm and distance 

metric. In the sampled dataset, each pair of samples is assigned a consensus value 

of 1 if they are classified in the same cluster or 0 otherwise. Across N iterations (re-

samples) and for each k value, the sample pair consensus is the proportion of 

iterations in which the pair is put in the same cluster by the chosen clustering 

algorithm. This consensus information is stored in an n*n consensus matrix where n 

is the total number of samples (Figure 3.2). Finally, the consensus matrix values are 

clustered using hierarchical clustering and the resulting dendogram is split at the 

appropriate threshold to give k clusters. In this study, at each iteration, we sampled 

80% of genes and samples and varied k values from 2 to 12. 

 

Figure 3.2 Consensus clustering workflow  

The LMC data contained expression values for 702 tumours. A random subset 

of 80% of genes in 80% of tumours were sampled with 1000 repetitions. These 

data were clustered using different algorithms for k=2 to 12.  

Consensus clustering of LMC tumours was performed with HC, KM and PAM 

algorithms in the consensus clustering workflow. The correlation coefficient-based 
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metric has been reported to perform well with HC and Euclidean distance has been 

observed to have higher performance when applied with KM and PAM algorithm 

[138]. The analysis was performed using the R-package ConsensusClusterPlus [137, 

139] with the distance metric 1-Spearman’s correlation coefficient for HC and 

Euclidean distance for KM and PAM.  

3.2.5.4.1 Selecting the number of clusters k  

As stated above, the consensus clustering was performed by varying k from 2 to 12 

and a consensus matrix obtained at each k was stored for downstream analysis. The 

consensus matrix contains the calculated consensus score for each pair of samples. 

The consensus score, M(i,j), is the proportion of times that samples i and j are 

observed in the same cluster out of all the times these 2 samples were both observed 

in the sampled subset, over N iterations. The choice of k was determined by 

visualising a number of graphics, 1) the consensus matrix heatmap; 2) the cumulative 

density function (CDF) of the consensus score values in consensus matrix; 3) relative 

change (delta) in the area under the CDF curves. The consensus matrix heatmap is 

generated for each k value. For a consensus matrix, the CDF(c) can be defined as 

the proportion of pairs whose consensus score is less than or equal to c (0 ≤c ≤ 1). 

The term A(k) is the area under CDF curve of a consensus matrix at k clusters. The 

delta graph contains relative changes in A(k) in comparison to A(k-1).  

The CDF and area under the CDF was calculated as: 

 
*+,(.) =

∑ 1{4(5, 7) ≤ .}!:"

;(; − 1)
2

 (3.5) 

 

 
((>) = 	@[B! − B!C%]*+,(B!)

E

!$F

 (3.6) 

where 1{ }denotes the indicator function, n is the total number of samples, k is the 

number of clusters being tested, M is the consensus matrix obtained at that k and (x1, 

x2, . . .,xm) is the sorted set of entries of the consensus matrix M (with m= n(n-1)/2, i.e. 

the total number of possible sample pairings). The relative change in the CDF, ∆(k), 

was computed as  

 
∆(>) = H

((>), 5I	> = 2
[((>) − ((> − 1)]

((> − 1)
, 5I	> > 2

 (3.7) 
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Finally, the k value is selected on the basis of the ∆(k) value by choosing the k when 

there is a minimal increase in area from A(k-1) to A(k), and hence little improvement 

in cluster stability as the number of clusters decreases.  

3.2.6 Comparing the HC, KM and PAM based clusters  

The tumour clusters derived with consensus HC, KM and PAM were compared for 

stability and agreement with previous signatures. The stability of the clusters was 

calculated as the average consensus score of the samples in the clusters. The 

agreement between these new tumour clusters and those obtained by applying 

previously published Lund and TCGA gene signatures in a supervised NCC manner 

(see section 3.2.1) was calculated using Cramer’s V statistic [140]. Cramer’s V, an 

extension of Cramer’s Phi, is a statistic used to measure the strength of association 

between two nominal variables. Cramer Phi is used when a contingency table has 

size 2 C 2. For larger tables, Cramer’s V is used and it is calculated as: 

 
*KLMNKOP	Q = R

SF

.(M − 1)
 (3.8) 

where, c is the total cell count from the contingency table, m is the minimum value 

between the number of rows and the number of columns and c2 is the chi-squared 

statistic. Cramer’s V varies between 0 and 1 regardless of the dimension of the 

nominal variables. A value of 1 represents the maximum agreement, while 0 

represents no agreement. The calculations were performed using R-package VCD 

[141]. 

 

3.3 Results 

3.3.1 Applying the existing signatures to the whole LMC dataset 

The Lund (4-class and 2-grade) and TCGA signatures (3-class) were applied to the 

whole LMC dataset (n=702) using the NCC approach. The LMC tumours which could 

not be classified were labelled unclassified. 

With the Lund 4-class signature, the NCC method classified 25% of tumours into the 

high-immune class, 28% into the normal-like class, 32% into the pigmentation class, 

and 12% into the proliferative class (Table 3.1), while 3% of tumours could not be 

classified. The high-immune class (median r=0.40), normal-like class (median 
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r=0.40) and pigmentation class tumours (median r=0.38) had similar level of 

correlation with their class centroids (Table 3.1), while the proliferative class tumours 

had a much lower correlation with the proliferative class centroid (median r=0.26). 

With the Lund 2-grade signature, 38% of LMC tumours were classified into the low-

grade (Table 3.1) and 42% into the high-grade, whereas 20% of tumours were 

unclassified. The low-grade (median r=0.31) and high-grade (median r=0.31) tumour 

has similar correlation with their respective class centroids (Table 3.1). 

The classification of LMC tumours based on TCGA 3-class signature was performed 

by Dr Jeremie Nsengimana. Twenty seven percent of tumours were classified in the 

immune class, 35% in the keratin class and 21% in the MITF low class, while 16% 

could not be classified into any of the classes. The immune class (median r=0.25) 

and keratin class (median r=0.25) had comparatively higher correlation with their 

respective class centroids and MITF low class (median r=0.22) had slightly lower 

correlation with its class centroid (Table 3.1). 

Table 3.1 Summary statistics of the LMC tumour classification using the Lund 
and TCGA signatures  

Three percent, twenty percent and sixteen percent of LMC tumours could not 

be classified using the Lund 4-class, Lund 2-grade and TCGA 3-class 

signatures respectively. The r value is the median correlation in each of the 

classes.  

Signature Class n(%) r 

Lund 4-class 

High-immune 175(25) 0.40 

Normal-like 198(28) 0.40 

Proliferative 222(32) 0.38 

Pigmentation 84(12) 0.26 

Unclassified 23(3) 0.07 

Lund 2-grade 

Low-grade 266(38) 0.31 

High-grade 296(42) 0.31 

Unclassified 140(20) 0.05 

TCGA 3-class 

Immune 192(27) 0.25 

Keratin 247(35) 0.25 

MITF low 150(21) 0.22 

Unclassified 113(16) 0.06 
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3.3.2 Clinico-histopathological association with the Lund and 
TCGA signatures 

Previous studies have shown the association of the existing signatures with 

melanoma prognostic factors such as Breslow thickness, AJCC stage and ulceration 

status [105, 106, 114]. It was tested whether these associations can be reproduced 

in the LMC dataset.  

In LMC dataset, the Lund 4-class signature was significantly associated with patient 

sex, tumour site, age at diagnosis, Breslow thickness, AJCC stage, ulceration status, 

mitotic rate, TILs, and NRAS mutation status (Table 3.2). The high-immune and 

normal-like tumours were thin, non-ulcerated, early stage tumours, whereas the 

proliferative and pigmentation tumours were thicker, ulcerated and diagnosed at an 

advanced stage. The high-immune and normal-like tumours occurred more 

frequently on limbs while the proliferative and pigmentation tumours were observed 

more frequently on other body sites. The high-immune tumours had a higher 

incidence of brisk TILs than the proliferative tumours, while pigmentation and normal-

like tumours had intermediate levels of brisk TILs. BRAF mutation status showed 

weak evidence of association with the Lund 4-classes (P=0.07), but NRAS mutation 

status was significantly associated (P=0.01), with the proliferative tumours having 

more frequent NRAS mutations (Table 3.2). The normal-like and pigmentation 

tumours showed a relatively lower fraction of patients with NRAS mutations in 

comparison to the proliferative class, while the high-immune tumours contained the 

lowest proportion of NRAS mutated tumours (Table 3.2). 

Similar to the Lund 4-classes, and unsurprisingly, the Lund 2-grades also showed 

significant association with tumour site, age at diagnosis, Breslow thickness, AJCC 

stages, ulceration status, mitotic rate, TILs, BRAF and NRAS mutation status (Table 

3.2). The low-grade tumours were thin, non-ulcerated and diagnosed at an early 

stage compared to the high-grade tumours. The low-grade tumours also occurred 

more frequently on limbs and were more frequently BRAF mutated. By contrast, the 

high-grade tumours had a higher mitotic rate, absence of TILs and more NRAS 

mutations (Table 3.2).  

The TCGA 3-classes were also significantly associated with patient’s sex, age at 

diagnosis, Breslow thickness, AJCC stage, ulceration status, mitotic rate and TILs 

(Table 3.3). The immune and keratin types of tumours were thin in comparison to the 

MITF low type. The keratin tumours were more frequently diagnosed at AJCC stage 

I. MITF low had a higher mitotic rate in comparison to other types (Table 3.3). The 

immune class had higher incidence of brisk TILs, and MITF low class had the lowest. 
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The TCGA classes showed no association with the BRAF and NRAS mutation status 

(Table 3.3). 

 



 
 

Table 3.2 Lund signatures association with clinico-pathological characteristics of LMC primary tumours  

The associations were tested using Pearson’s chi-squared test for categorical variables and the Mann-Whitney Kruskal-Wallis test for 

continuous variables. The symbol n is the number of samples, m is the median and r is the range. Unclassified tumours were excluded from 

the analysis.  

Clinico-pathological variables 
Lund 4-classes 

P 
Lund 2-grades 

P HI 
n(%) 

NL 
n(%) 

Pigm. 
n(%) 

Prolif. 
n(%) 

High-grade 
n(%) 

Low-grade 
n(%) 

Sex: male 85(49) 72(36) 107(48) 41(49) 0.04 141(48) 118(44) 0.5 

Tumour site: limbs 85(49) 98(50) 81(37) 27(32) 0.004 112(38) 126(47) 0.03 

Age at diagnosis, (years) m(r) 59(21, 76) 57(20, 75) 59(28, 82) 58(19, 82) 0.001 60(20, 81) 58(19,76) 0.04 

Breslow thickness(mm), m(r) 1.9(0.7, 18) 1.8(0.3, 10) 3(0.8, 20) 3(1.1, 15) 8 x 10-24 3(0.5, 20) 1.8(0.7, 18) 5 x 10-19 
AJCC stage(%): I 70(40) 103(52) 34(16) 18(23) 

8 x 10-14 

56(19) 129(49) 

8 x 10-13 II 86(49) 76(38) 137(63) 45(56) 172(60) 112(42) 

III 19(11) 19(10) 48(22) 17(21) 61(21) 25(9) 

Ulceration(yes) 57(33) 30(15) 104(47) 37(44) 3 x 10-11 132(45) 56(21) 6 x 10-9 
Mitotic rate, =>1(%) 124(81) 131(78) 82(92) 67(94) 5 x 10-5 240(93) 175(76) 2 x 10-7 

TILs(%): Absent 8(6) 22(16) 30(19) 11(21) 

0.01 

40(19) 18(9) 

0.005 Non-brisk 97(72) 93(77) 106(67) 37(71) 144(69) 140(72) 

Brisk 29(22) 24(17) 23(15) 4(7) 24(12) 37(19) 

BRAF mutant, yes(%) 74(50) 79(51) 86(45) 23(33) 0.07 99(40) 110(50) 0.04 

NRAS mutant, yes(%) 23(16) 38(24) 50(27) 24(35) 0.01 75(32) 35(16) 2 x 10-4 
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Table 3.3 TCGA signatures association with clinico-pathological characteristics of LMC primary tumours.  

The associations were tested using Pearson’s chi-squared test for categorical variables and the Kruskal-Wallis test for continuous variables. 

The symbol n is the number of samples, m is the median and r is the range. Unclassified tumours were excluded from the analysis.  

 

Clinico-pathological variables 
TCGA 3-classes 

P 
Immune n(%) Keratin n(%) MITF low n(%) 

Sex: male 102(53) 98(40) 67(45) 0.02 

Tumour site: limbs 79(41) 121(49) 57(38) 0.07 

Age at diagnosis, (years) m(r) 61(21, 77) 56(18, 75) 60(20, 81) 1 x 10-4 
Breslow thickness(mm), m(r) 2.5(0.7, 20) 2.0(0.3, 10) 3.2(0.8, 18) 7 x 10-11 

AJCC stage(%): I 52(27) 107(44) 32(22) 

3 x 10-5 II 114(59) 105(43) 84(58) 

III 26(14) 33(13) 29(20) 

Ulceration(yes) 71(37) 64(26) 65(43) 0.001 

Mitotic rate, =>1(%) 147(86) 173(82) 119(95) 0.003 

TILs(%): Absent 9(7) 33(18) 23(22) 

7 x 10-4 Non-brisk 97(71) 113(63) 73(70) 

Brisk 30(22) 33(18) 8(8) 

BRAF mutant, yes(%) 73(44) 94(49) 63(49) 0.6 
NRAS mutant, yes(%) 38(24) 53(28) 31(24) 0.7 
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3.3.3 Lund and TCGA signatures association with survival in the 
LMC primary tumours 

In keeping with previous studies [81, 105, 106, 114], the association of Lund and 

TCGA signatures was tested with melanoma-specific survival (MSS) in this larger 

dataset. The association with MSS was assessed using CPH and survival differences 

were visualised using Kaplan-Meier plots. 

3.3.3.1 Lund 4-classes 

Previously, high-immune and normal-like tumours were shown to predict better 

survival than proliferative and pigmentation tumours. In this analysis, 18% of high-

immune class and 19% of normal-like class patients died from melanoma, and the 

corresponding rates were at least twice as high in pigmentation (40%) and 

proliferative (38%) classes (hazard ratio 2.5 in each case), (Table 3.4, Figure 3.3). 

These results replicate earlier reports from smaller datasets. 

Table 3.4 Unadjusted Cox proportional hazard analysis of the Lund 4-classes 

The pigmentation and proliferative class had increased hazard of melanoma-

specific deaths in comparison to the baseline high-immune class. All deaths 

were caused by melanoma. CI is confidence interval. HR is the hazard ratio. 

Lund 4-classes HR 95% CI P 

High-immune 
(n=175, deaths= 32) 1.0 - - 

Normal-like 
(n=198, deaths= 38) 1.0 0.6-1.6 0.96 

Pigmentation 
(n=222, deaths= 88) 2.5 1.7-3.8 8 x 10-6 

Proliferative 
(n=84, deaths=32) 2.5 1.5-4.0 2.9 x 10-4 

 



55 

 

Figure 3.3 Melanoma-specific survival for the Lund 4-classes  

(HI- high-immune, NL- normal-like, Pigm- pigmentation, Prolif- proliferative). 

The high-immune class and normal-like class predicted a better survival than 

the pigmentation and proliferative classes (P value from log-rank test). The risk 

table below the plot shows the number of patients at risk at a given time. 

3.3.3.2 Lund 2-grades 

Previously high-grade of the Lund 2-grades has been shown to be associated with 

poor survival in melanoma compared to low-grade [105, 114]. These observations 

were recapitulated in this analysis: 38% of patients in high-grade and 18% of 

patients in low-grade have died from melanoma, with a hazard risk ratio of 2.5 in 

unadjusted CPH model (Table 3.5, Figure 3.4). 
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Table 3.5 Unadjusted Cox proportional hazard analysis of the Lund 2-grades 

Low-grade was chosen as baseline, all deaths were caused by melanoma. CI 

is confidence interval. HR is the hazard ratio. 

Lund 2-grades HR 95% CI P 

Low-grade  
(n=266, deaths= 48) 1.0 - - 

High-grade  
(n=296, deaths= 113) 2.5 1.8-3.5 1 x 10-7 

 

 

Figure 3.4 Melanoma-specific survival for the Lund 2-grades  

Low-grade was associated with better survival than the high-grade (P value 

from log-rank test). The risk table below the plot shows the number of patients 

at risk at a given time. 
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3.3.3.3 TCGA 3-classes 

The TCGA 3-classes had been shown to predict survival in metastatic melanomas 

[81, 116]. In our dataset, 23% of patients in the immune class, 25% in keratin class, 

and 42% of patients in MITF low class have died from melanoma. MITF low class 

predicted therefore worse survival (HR=2.0) while the immune and keratin class 

predicted good survival (Figure 3.5). Unlike in metastatic tumours where the keratin 

class tumours had a survival close to MITF low [81], the keratin class had similar 

survival profile to the immune class in this primary melanoma dataset (Table 3.6 and 

Figure 3.5).  

Table 3.6 Unadjusted Cox proportional hazard analysis of the TCGA 3-classes  

Immune class was chosen as baseline, all deaths were caused by melanoma. 

CI is confidence interval. HR is the hazard ratio.  

TCGA 3-classes HR 95% CI P 

Immune  
(n=192, deaths= 44) 1.0 - - 

Keratin  
(n=247, deaths= 61) 1.0 0.7-1.5 0.8 

MITF low  
(n=150, deaths=63) 2.0 1.4-3.0 4 x 10-4 
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Figure 3.5 Melanoma-specific survival for the TCGA 3-classes  

The MITF low class was associated with poor survival compared to the immune 

and keratin class (P value from log-rank test). The risk table below the plot 

shows the number of patients at risk at a given time. 

3.3.4 Signature’s prognostic value when stratified on AJCC stage 

The LMC dataset contains 34% stage I tumours, 51% stage II tumours and 15% 

stage III tumours. The patients were stratified into two groups: AJCC stage I group 

and AJCC stage II & III pooled group. The prognostic values of the Lund and TCGA 

signatures was assessed across these two groups. In stage I, 14% of patients died 

from melanoma, while in stages II & III 35% of patients died. The Lund and TCGA 

signatures showed distinct prognostic properties across these two groups.  
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3.3.4.1  Prognostic value of the signatures in AJCC stage I  

In the AJCC stage I group, none of the 3 signatures (Lund-4 class, Lund 2-grade and 

TCGA-3class) showed a significant association with MSS (Table 3.7 and Figure 3.6). 

In Lund 4-classes, 11% of patients in high-immune class diagnosed at stage I died 

from melanoma, the normal-like class had 14% melanoma-specific deaths, 

pigmentation class had 24% and proliferative class had 5%. As shown on the Kaplan-

Meier curves, the proliferative class appeared to have the best survival profile, 

comparable to high immune (Figure 3.6A), which is the opposite of the result from 

whole data analysis (Figure 3.3). However this is only based on 18 cases in the 

proliferative class.  

In Lund 2-grades, 13% of AJCC stage I diagnosed patients classified in low-grade 

and 12% of patients in high-grade died from melanoma. These numbers are similar, 

and the Lund 2-grades did not show any association with MSS in the stage I group 

(Table 3.7 and Figure 3.6B). 

Similarly, the number of melanoma-caused deaths in patients diagnosed at stage I 

in TCGA 3-classes were: 15% in immune class, 12% in keratin class, and 21% in 

MITF low class, and there was no significant association with MSS in CPH model 

and the log-rank test (Table 3.7 and Figure 3.6C).  

Table 3.7 Unadjusted Cox proportional hazard models for the Lund 4-class, 
Lund 2-grades and TCGA 3-classes in the AJCC stage I group  

High-immune, low-grade, and immune classes were chosen as baseline, all 

deaths were caused by melanoma. CI is confidence interval. HR is the hazard 

ratio. 

Signature Class (n) HR 95% CI P 

Lund 4 classes 
(n=225, deaths=31) 

High-immune (70) 1.0 - - 

Normal-like (103) 1.2 0.5-2.9 0.6 

Pigmentation (34) 2.1 0.8-5.5 0.1 

Proliferative (18) 0.5 0.1-3.8 0.5 

Lund 2-grades 
(n= 185, deaths=24) 

Low grade (129) 1.0 - - 

High grade (56) 0.9 0.4-2.1 0.7 

TCGA 3-classes 
(n=191, death=28) 

Immune (52) 1.0 - - 

Keratin (107) 0.8 0.3-1.9 0.6 

MITF low (32) 1.3 0.5-3.7 0.6 
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Figure 3.6 Melanoma-specific survival for the Lund 4-classes, Lund 2-grades 
and TCGA 3-classes in the AJCC stage I group.  

P values were calculated from the log-rank test. The risk table below the plot 

shows the number of patients at risk at a given time. 
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3.3.4.2 Prognostic value of the signatures in AJCC stage II & III group  

Similar to the AJCC stage I group, the Lund and TCGA signatures were tested for 

association with MSS in the pooled AJCC stage II & III group. In Lund 4-classes, 23% 

of patients in high-immune, 25% of normal-like class died from melanoma. In the 

pigmentation (43%) and proliferative (47%) class, a higher proportion of people died 

from melanoma. Therefore, in advanced stage tumours, the Lund 4-classes 

significantly predicted MSS (Figure 3.7A) with the pigmentation and proliferative 

class having the worse survival (HR=2.1 and HR=2.4 respectively, Table 3.8).  

In Lund 2-grades, 23% of patients in low-grade and 45% of patients in high-grade 

died from melanoma; the Lund 2-grades were significantly associated with MSS 

(Figure 3.7B). The CPH model suggested that high-grade (HR=2.4) had increased 

hazard of death from melanoma in comparison to the baseline low-grade (Table 3.8).  

Similar to Lund 4-classes and 2-grades, the TCGA 3-classes were also significantly 

associated with MSS in the stage II & III group (Figure 3.7C). The Cox model 

indicated that MITF low class (HR=2.1) had increased hazard of death from 

melanoma in comparison to the baseline immune class (Table 3.8). The keratin class 

(HR=1.3) had a hazard ratio comparable to that of the immune class.  

Table 3.8 Unadjusted Cox proportional hazard models for the Lund 4-class, 
Lund 2-grades and TCGA 3-classes in the AJCC stages II & III 

CI is confidence interval. HR is the hazard ratio. 

Signature Class (n) HR 95% CI P 

Lund 4 classes 
(n=447, deaths=157) 

High-immune (105) 1.0 - - 

Normal-like (95) 1.0 0.6-1.7 0.9 

Pigmentation (185) 2.1 1.4-3.4 0.001 

Proliferative (63) 2.4 1.4-4.2 0.001 

Lund 2-grades 
(n= 370, deaths=135) 

Low-grade (137) 1.0 - - 

High-grade (233) 2.4 1.6-3.6 1.9 x 10-5 

TCGA 3-classes 
(n=391, death=138) 

Immune (140) 1.0 - - 

Keratin (138) 1.3 0.8-2.0 0.2 

MITF low (113) 2.1 1.4-3.2 4 x 10-4 
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Figure 3.7 Melanoma-specific survival for the Lund 4-classes, Lund 2-grades 
and TCGA 3-classes in the AJCC stages II&III 

P values were calculated from the log-rank test. The risk table below the plot 

shows the number of patients at risk at a given time. 

3.3.5 Statistical Interaction between the Lund signature and AJCC 
stage 

As shown above, the Lund and TCGA signatures strongly predicted MSS in stage II 

& III tumours but not in the stage I group. The AJCC stage I group tumours are thin, 

have lower mitotic rate and are mainly non-ulcerated [44], while AJCC stage II & III 

tumours are thicker, have higher mitotic rate and are mainly ulcerated.  

To rule out the possibility that the difference in prognostic value of the signatures 

might be solely due to limited power in the stage I group, a formal test of statistical 

interaction was conducted between the AJCC stage and the Lund 2-grades. This 

analysis (Table 3.9) confirmed AJCC stage as an independent prognostic factor 

(HR=1.9, P=0.03), but also showed an evidence of interaction with the Lund 2-grades 

(P=0.04), suggesting a heterogeneity of effect of the Lund 2-grades on the AJCC 

stage. 
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Table 3.9 Test of interaction between AJCC stage and Lund 2-grade signature 
in Cox proportional hazards model of MSS 

Low-grade and AJCC stage I was chosen as baseline, all deaths were caused 

from melanoma, HR is the hazard ratio. 

Variable (n=555, deaths=159) HR 95% CI P 

Lund 2-grades 
Low-grade 1.0 - - 

High-grade 0.9 0.4- 2.1 0.7 

AJCC stage 
I 1.0 - - 

II&III 1.9 1.1-3.5 0.03 

High-grade: AJCC stage II&III 2.8 1.1-7.3 0.04 

3.3.5.1  Statistical power in AJCC stage I 

To test if the effect of Lund 2-grades on hazard of death is not limited by the number 

of deaths in AJCC stage I, a statistical power calculation analysis was performed. In 

AJCC stage I group, 70% of patients were classified in low-grade and 30% were high-

grade. The total number of deaths in AJCC stage I group was 33. Power and sample 

size calculations showed that the stage I group had 70% power to detect a hazard 

ratio of 2.6 at a significance level 0.05 (Figure 3.8). 

 

Figure 3.8 Sample size and power calculation 

There were 33 deaths among patients diagnosed at AJCC stage I, providing a 

reasonable statistical power for HR>2.5 (a=0.05).  



66 

3.3.6  Devising a new signature by consensus-based clustering 

The lack of prognostic effect in stage I tumours from the 3 published signatures was 

surprising since these signatures have been shown to predict prognosis in primary 

melanoma [105, 114]. Having shown this limitation, I sought to design a new 

signature based on a dataset with a good mixture of tumours at all stages. It was 

hypothesised that re-clustering the whole LMC dataset and exploring different 

clustering algorithms may reveal new melanoma molecular subtypes. Three different 

algorithms, HC, KM and PAM were applied in a consensus clustering approach.  

The optimal k was selected based on examination of cumulative density function 

(CDF) graph, relative change in area under the CDF (delta) graph and heatmap of 

the consensus matrices.  

Examining the HC CDF and delta graph suggested good k values at 4 and 5 (Figure 

3.9A, B). However, the consensus matrix heatmap did not show a clear separation 

between the clusters at k=4 or 5 (Figure 3.10A, B). The KM clustering CDF and delta 

graphs suggested good k values at 5 and 6 (Figure 3.9C, D) and the corresponding 

consensus matrix heatmaps showed a neater cluster separation at k=6 (Figure 

3.10C, D). On the other hand, PAM clustering suggested good k values at 6 and 7 

from the CDF and delta CDF (Figure 3.9E, F) and from the consensus matrix 

heatmap (Figure 3.10E, F). For further comparisons of clustering algorithms, k was 

selected as 5 for HC, 6 for KM and 7 for PAM algorithms.  
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Figure 3.9 Selecting k by examining the relative change in area under the CDF 
curve  

The LMC tumours were clustered using HC, KM and PAM based consensus 

clustering. The CDF plot shows the distribution of consensus indices for all 

possible pairings of tumours at each value of k. Typically, the majority of pairs 

have a low consensus index, reflecting their belonging to different clusters 

(panels A, C, E). The relative change in area under the CDF curves (delta 

graph) shows increments in the area under the CDF with increasing k (panels 

B, D, F). Arrows show suggested k value on the basis of flattening of the curves.  
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Figure 3.10 Consensus matrix heatmaps for HC, KM and PAM 

Row and columns represent tumours in their respective inferred clusters; each 

heatmap is symmetrical. The blue represents consensus index=1 (i.e. samples 

frequently clustered together), white colour represents consensus index=0 (i.e. 

samples rarely clustered together). 
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3.3.7  Comparing HC, KM, and PAM based clusters 

The clusters derived from the HC, KM, and PAM were compared using cluster 

stability measures, and their overlap with the Lund and TCGA signatures was 

evaluated.  

3.3.7.1  Measuring cluster stability 

The cluster stability was calculated as the average consensus score for samples in 

a given cluster. In HC derived clusters, median consensus score was 0.57 for cluster 

1, 0.62 for cluster 2, 0.65 for cluster 3, 0.65 for cluster 4, and 0.80 for cluster 5 (Figure 

3.11A). The overall median consensus score across the HC clusters was 0.64. 

Among KM derived clusters, median consensus score was 0.71 for cluster 1, 0.79 for 

cluster 2, 0.79 for cluster 3, 0.60 for cluster 4, 0.83 for cluster 5, and 0.95 for cluster 

6 (Figure 3.11B). The overall median consensus score across the KM derived 

clusters was 0.73. 

Among PAM derived clusters, median consensus score was 0.80 for cluster 1, 0.84 

for cluster 2, 0.7 for cluster 3, 0.79 for cluster 4, 0.75 for cluster 5, 0.71 for cluster 6 

and 0.94 for cluster 7 (Figure 3.11). The overall median consensus score was highest 

for the PAM derived clusters (0.76).  
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Figure 3.11 Comparing stability of HC, KM and PAM derived clusters  

(A-C) The boxplot shows the consensus score for samples in each cluster.  

3.3.8 Agreement with Lund and TCGA signatures 

The HC, KM, and PAM derived clusters were assessed for agreement with the Lund 

and TCGA signatures in the LMC dataset (Table 3.10). Cramer’s V statistic was used 

for measuring the agreement between the signatures. As described earlier, the Lund 

2-grades largely overlap with Lund 4-classes [105]. We found that Cramer’s V 

statistic between them was 0.90, the highest of any comparison made (Table 3.10). 

The TCGA signatures were developed from a different platform (RNA seq) but they 

were shown to overlap with the Lund 4-classes in terms of biological significance, 

which was also reflected in a higher (0.63) Cramer’s V statistic (Table 3.10).  

Among our three clustering methods, HC (0.76) and KM (0.78) derived clusters had 

similar agreement with the Lund 2-grades. However, both had a clearly lower overlap 

with Lund 4-classes (Cramer’s V= 0.46 and 0.57 respectively) and with the TCGA 3-

classes (V=0.37 and 0.50 respectively). PAM derived clusters had weakest overlap 

with the Lund 2-grades (V=0.59) but agreement with TCGA 3-classes (V=0.54) was 
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slightly stronger. Among the three clustering methods, HC derived clusters had 

stronger agreement (V=0.67) with KM derived clusters in comparison to PAM 

(V=0.38) derived clusters (Table 3.10).  

Table 3.10 Cramer’s V statistic comparing agreement between HC, KM, and 
PAM derived clusters and the Lund and TCGA signatures  

 Lund 2-
grades 

Lund 4-
classes 

TCGA 3- 
classes HC KM PAM 

Lund 2- 
grades 1 0.90 0.39 0.76 0.78 0.59 

Lund 4- 
classes  1 0.63 0.46 0.57 0.49 

TCGA 3-
classes   1 0.37 0.50 0.54 

HC    1 0.67 0.38 

KM     1 0.45 

PAM      1 

 

3.4 Discussion 

Previous studies have demonstrated the prognostic value of the Lund and TCGA 

signatures in smaller primary melanoma datasets [105, 114]. The Lund 4-classes 

initially developed from metastatic tumours have been applied to the primary 

melanoma datasets from Lund and Leeds [105, 114]. The Lund 2-grade is a 

derivative signature of Lund 4-classes which was applied on the primary cohort from 

Leeds and Lund [105, 114]. The TCGA signature had been developed from a mixture 

of primary and metastatic melanoma tumours [81].  

Previously, Dr Jeremie Nsengimana (senior statistician in the group) applied the Lund 

signatures to the subset of LMC tumours which were profiled at the time [114]. Now 

with a bigger LMC dataset, the first objective was to test the prognostic value of Lund 

and TCGA signatures in the whole LMC dataset. Secondly it was hypothesized that 

re-clustering the primary tumour transcriptomes of LMC may improve the existing 

signatures and could lead to the discovery of new signatures.  
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3.4.1 The Lund and TCGA signatures were reproducible in the 
Leeds Melanoma cohort 

The Lund 4-class and Lund 2-grade signatures were applied to the whole LMC 

dataset using the supervised NCC approach. Dr. Jeremie Nsengimana applied the 

TCGA signatures to the classify the LMC tumours using the same approach. Twenty 

and sixteen percent of LMC tumours could not be classified into the Lund 2-grades 

and TCGA 3-classes respectively, whereas only 3% of tumours could not be 

classified into the Lund 4-classes. The higher proportion of unclassified tumours in 

the Lund 2-grades and TCGA 3-classes may reflect the fact that these signatures 

were developed from more advanced stage tumours and have not captured all 

tumour subtypes in primary melanoma. 

In this larger and independent dataset, the Lund signatures showed similar 

associations with clinico-histopathological variables and MSS as previously reported 

[114]: the high-immune and normal-like class of Lund 4-classes predicted good 

prognosis in LMC, while the proliferative and pigmentation class predicted poor 

prognosis. The high-immune and normal-like classes contained thin, non-ulcerated 

early stage melanomas, whereas proliferative and pigmentation classes contained 

thicker, mainly ulcerated advanced stage melanomas. The pathological reports 

further indicated that good prognosis classes had a higher incidence of brisk TILs, 

and poor prognosis groups had fewer TILs. Also, consistent with previous reports, 

another pathological indicator, number of mitoses, was lower in the good prognosis 

groups compared to poor prognosis groups. In keeping with previous reports, low-

grade of Lund 2-grades predicted good prognosis and high-grade predicted poor 

prognosis. The low-grade tumours were thin, non-ulcerated early stage melanomas 

and high-grade tumours were thick, mainly ulcerated advanced stage melanomas. In 

TCGA 3-classes, the MITF low class predicted poor prognosis and keratin and 

immune class predicted good prognosis. This is consistent with the previous 

replication report of the TCGA signature [116]. However, in the TCGA study, keratin 

class was associated with poor prognosis. The differences in survival of keratin class 

may be driven by the differences in the nature of samples used in these studies 

(mostly metastatic tumours in TCGA dataset and exclusively primary tumours in the 

LMC study). Overall, the prognostic value of the Lund and TCGA signatures was 

successfully replicated in LMC dataset. 
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3.4.2  The Lund and TCGA signatures’ lack of association with 
AJCC stage 

Despite an apparent reproducibility when the LMC is analysed as one large dataset, 

the Lund and TCGA signatures showed different prognostic properties when the 

dataset was stratified on the basis of AJCC stage. None of the signatures predicted 

prognosis in AJCC stage I, but they all showed strong prognostic value in AJCC 

stages II & III. This was surprising because the Lund 4-class and Lund 2-grade 

signatures have been shown to predict prognosis in primary melanoma but these 

studies based on relatively smaller cohorts with only few stage I cases [105, 114]. 

The significant interaction between the Lund 2-grades and MSS provided further 

evidence that effect of Lund 2-grade signature is effectively different across the AJCC 

stages. The power calculation suggested that, although not very large, the data size 

for AJCC stage I patients is sufficiently powered (power=0.70) for detecting a hazard 

ratio greater than 2.5 (a=0.05). This magnitude of effect is reasonable since Lund 

signatures have a comparable effect in the full data. Hence, it was hypothesised that 

re-clustering the LMC dataset may identify novel signatures with prognostic value 

across all AJCC stages, including stage I. Identifying a prognostic signature in stage 

I melanoma would be of particular interest because there is no other biomarker 

known so far to be prognostic within these early-stage melanomas. Since most of 

melanoma research is conducted on advanced stage tumours, it was challenging to 

find a validation dataset that comprises stage I melanomas. 

3.4.3  Unsupervised clustering of the LMC dataset 

The Lund 4-class and TCGA signatures were generated using similar a clustering 

algorithm, hierarchical clustering [81, 106]. HC is a popular method for identifying 

disease subtypes in clinical research. The significant increase in the dataset size 

(more than 3-fold increase) compared to previous studies, provided an opportunity to 

derive a new signature by exploring several clustering algorithms. The integrated 

framework of clustering algorithms with a consensus based resampling approach 

was applied to the LMC dataset [137]. Multiple resamples and unsupervised 

clustering using HC, KM and PAM generated a consensus matrix which was further 

analysed and examined to identify the k value. Previous comparisons of clustering 

algorithms showed that none of the algorithms consistently outperformed the other 

algorithms in identifying known subgroups from the analysed microarray datasets 

[142, 143]. In this study, the three applied algorithms identified different number of 

clusters and the cluster stability examination allowed selection of 7 clusters identified 
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by the PAM algorithm. These classes (clusters) showed a reasonable agreement with 

Lund and TCGA signatures (Table 1.19) although they did not entirely overlap, which 

is an indication that the published signatures did not explain all the variability in our 

dataset.   

In conclusion, previous melanoma transcriptomic signatures predicted prognosis in 

the LMC dataset as a whole. However, when patients were stratified on the basis of 

AJCC stage, these signatures showed distinct prognostic properties and did not 

predict prognosis in patients diagnosed at AJCC stage I. Re-clustering the LMC 

dataset using three different clustering algorithms (HC, KM and PAM) identified new 

classes. The PAM classes had higher stability in comparison to the HC and KM 

classes and will be explored further in the next chapter.  
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Chapter 4 
Properties of the new tumour classes in primary 

melanoma: prognostic significance and biological 
characterisation 

The objectives of this chapter are: 

Objective 4: To use an independent measure of cluster separation to assess stability 

of the newly identified tumour classes referred to as the LMC classes (Leeds 

Melanoma Cohort classes)  

Objective 5: To test association of the LMC classes with clinico-histopathological 

features of melanoma  

Objective 6: To test prognostic significance of the LMC classes in the whole LMC 

dataset and in the stage I subset  

Objective 7: To generate a reduced signature of the LMC classes and replicate 

prognostic significance of the LMC classes in an independent dataset from Lund, 

Sweden 

Objective 8: To explore biological differences between LMC classes using pathway 

enrichment analysis and using melanoma-specific biological modules 

 

4.1 Introduction 

Previously, it has been shown that the Lund signatures have independent prognostic 

value in comparison to the AJCC stage [114], but this analysis was based on a subset 

of 200 tumours from the LMC. The area under the Receiver Operating Characteristic 

(ROC) curve increased by 4% when Lund signatures were added to the AJCC 

staging system [114]. It was shown in the previous chapter that, when applied to the 

whole LMC dataset, the Lund signatures were only prognostic at advanced stages of 

primary melanoma (refer to 3.3.4). Therefore, it was hypothesized that re-clustering 

LMC tumours may identify novel classes which are prognostic at all stages of 

melanoma. As described in Chapter 3, LMC tumours were clustered using a 

consensus clustering approach using three different clustering algorithms (HC, KM 

and PAM). The PAM clustering algorithm identified seven LMC classes which had 
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higher stability in comparison to HC and KM based classes, using a stability metric 

from the consensus clustering algorithm (refer to 3.3.7).  

In this chapter the PAM-derived classes (from now on referred to as the LMC classes) 

were further explored. An objective measure of cluster separation was used to select 

the number of classes. The identified LMC classes were tested for association with 

clinico-histopathological features of melanoma patients. The prognostic value of the 

LMC classes was assessed in the whole LMC dataset and in an independent dataset 

of primary melanoma from Lund, Sweden [105]. The tumour classes were also 

biologically characterised using pathway enrichment analysis and using melanoma-

specific biological modules [144]. 

4.2 Methods 

4.2.1 Identifying LMC classes using a cluster separation measure 

The approach to identifying the optimal number of classes, k, was further explored 

using an objective criterion, cluster separation index. The cluster separation index 

was calculated as the ratio of intra- to inter-cluster similarity at each k value (in this 

case from k =2 to k =12).  The intra-cluster similarity is the average consensus score 

of all pairs of sample observations in the respective clusters. The intra-cluster 

similarity has been previously described as the cluster stability in Chapter 3 (refer to 

3.2.6). The inter-cluster similarity is calculated as the consensus score of all pairs of 

sample observations in different clusters. The ratio of intra-cluster to inter-cluster 

similarity was estimated for various k values. The intra-cluster and inter-cluster 

similarity calculations were done using R-package FPC [145]. The cluster separation 

index generally increases with k, and the k value where the cluster separation index 

had minimal increase at k+1 and thereafter was selected as the number of clusters 

in the LMC dataset. 

4.2.2 Association of the LMC classes with clinico-
histopathological characteristics 

The LMC classes were tested for association with clinico-histopathological 

characteristics. The clinico-histopathological variables used in the analysis were age 

at diagnosis, patient’s sex, AJCC stage, Breslow thickness, site of tumour, ulceration 

status of tumour, number of mitoses, TILs, BRAF, and NRAS mutation status. 

Pearson’s chi-squared test (refer to 2.5.3) was used for testing categorical variables 
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and Mann-Whitney (refer to 2.5.1) or Kruskal-Wallis tests (refer to 2.5.2) were used 

for testing continuous variables.  

4.2.3 Association of LMC classes with MSS  

The LMC class association with melanoma-specific survival (MSS) was tested using 

CPH models (refer to 2.4.4). The survival differences between the classes were 

graphically visualised using Kaplan-Meier plots (refer to 2.4.2). The survival 

differences between the LMC classes were tested using the log-rank test (refer to 

2.4.3). The analyses were done using R-packages survival [129], ggplot2 [130] and 

ggkm [146]. In all the analyses, the LMC class 1 was chosen as the baseline. The 

independent prognostic value of LMC classes in the whole LMC data was tested by 

including age at diagnosis, sex, AJCC stage and number of mitoses in the 

multivariable CPH models. The TILs variable had 27% of missing values and was 

excluded from the survival analyses.  

4.2.3.1 Association of LMC classes with MSS in stage I tumours 

As described previously, mitotic rate, Breslow thickness and Ulceration status are a 

significant predictor of prognosis in the AJCC stage I melanoma (refer to 1.5.4). The 

LMC patients were stratified on the basis of AJCC stage. The association of LMC 

classes with MSS was tested in the AJCC stage I group. To test the independent 

prognostic value of LMC classes, mitotic rate, Breslow thickness, and ulceration 

status were included in the multivariable CPH models. The analyses were performed 

using R-package survival [129]. 

4.2.4 Refining the LMC class signature 

The consensus-based clustering of LMC tumours was conducted using 13,688 genes 

which passed the previously described filters (refer to 2.2.5.3). However, such a large 

gene signature would not be economically/technically feasible in clinical practice. To 

mitigate this, a reduced gene signature for LMC classes was generated. The 

signature reduction was done such that the reduced signature reclassified LMC 

tumours in their respective classes with minimal loss in accuracy. The reduced 

signature was derived as follows: 

1 The genes were tested for differential expression across the LMC classes 

using a Kruskal-Wallis test (refer to 2.5.2). 
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2 The P-values were adjusted for multiple-testing using a Bonferroni correction 

and genes with adjusted P <0.0001 were selected. 

3 The top n=1, 5, 10, 25 or 100 most significantly upregulated genes of each 

LMC class were selected to generate 6 reduced signatures. 

4 The average gene expressions for each gene in each of the 6 reduced 

signatures were calculated for each LMC class to generate the class 

centroids. 

The reduced signatures were applied to the LMC dataset to classify tumours into the 

LMC classes using the NCC approach (refer to 3.2.1). As a comparison baseline, the 

LMC tumours were also classified by including all genes in the signature. The 

classification using all genes in the signature may yield slightly different results in 

comparison to the initial consensus clustering results (refer to 3.2.5). This is because 

consensus clustering algorithm, when applied to the LMC dataset, identified the LMC 

classes by merging clustering results from the 1000 resampled subsets (by selecting 

only 80% of genes and samples in each subset) of the LMC dataset (refer to 3.2.5).  

The classification accuracy for each reduced gene signature was calculated by 

comparing new classification labels with original classification labels in a contingency 

table. The proportion of diagonal values in the table represents classification 

accuracy (degree of overlap between signatures). The overlap was plotted to 

appraise the performance of each reduced signature, and the best performing among 

the 6 signatures was chosen.  

4.2.5 Replicating the prognostic value of the LMC signature in the 
Lund cohort 

4.2.5.1 Lund primary melanoma cohort  

The cohort used for validation was generated from the melanoma study conducted 

in Lund University, Lund, Sweden [105]. The melanoma patients recruited into the 

study were diagnosed between 1995 and 2002 (n=223) [105]. The FFPE tumour 

blocks of these patients were retrieved, and up to 3 tumour core sections were 

generated for the extraction of mRNA. Expression profiling was done using the 

Illumina WG-DASL HT8 array [92], a similar array to the one used for the LMC study, 

but an earlier version. The generated gene expression data underwent background 

correction and cubic spline normalisation using GenomeStudio software from 

Illumina. After initial pre-processing steps, the effect of other technical variables like 

batch, chip, plate, etc., were removed using principal components analysis [105]. 
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Since this version of the array showed poor detection, the genes were filtered and 

only those detected at p<0.05 in at least 80% of samples were retained. The final 

gene expression data from the Lund cohort comprised expression values of 8932 

genes across 223 samples. In this cohort, 29% of patients were diagnosed at AJCC 

stage I, 28% patients were diagnosed at AJCC stage II, and for the remainder of the 

patients AJCC stage was not specified [105]. 

4.2.5.2 Applying reduced LMC signature to the Lund cohort 

The reduced LMC gene signature was applied to the gene expression data from the 

Lund primary melanoma cohort using the previously described NCC approach (refer 

to 3.2.1). Similar to LMC dataset, the gene expression data from the Lund cohort was 

standardised to give each gene mean 0 and standard deviation 1. The tumours which 

had correlation less than 0.1 were labelled as unclassified. 

Since cause of death was not reported in the Lund cohort, overall survival and 

relapse-free survival were used as outcomes. The relapse-free survival time is the 

time difference between age at diagnosis and age at recurrence of melanoma. The 

overall survival time is the time difference between age at diagnosis and age at death. 

The LMC class association with overall and relapse-free survival was tested using 

CPH models (refer to 2.4.4). The survival differences between the LMC classes were 

graphically visualised using Kaplan-Meier plots (refer to 2.4.2). The survival 

differences between the LMC classes were tested using the log-rank test (refer to 

2.4.3). The analyses were performed using R-package survival [129].  

4.2.5.3 Stratification of analysis by the AJCC stage in the Lund cohort 

The patients in the Lund primary melanoma dataset were stratified on the basis of 

the recorded AJCC stage. The prognostic value of LMC classes was tested across 

the AJCC stages using CPH models (refer to 2.4.4). The survival differences between 

groups were tested using the log-rank test and visualised using Kaplan-Meier plots 

(refer to 2.4.2). Overall survival was used as the outcome measure. The analyses 

were performed using R-package survival [129]. 

4.2.6 Area under Receiver Operating Characteristic Curve 

The prognostic value of the LMC signature in comparison to the AJCC stage was 

analysed using ROC analysis [147]. The conventional way of testing classifier 

performance is by calculating the accuracy value using a 2´2 contingency table 
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containing the disease status in columns and test prediction status in rows. However, 

this approach for calculating the accuracy of a classifier has limitations, as the 

prediction status values are influenced by the cut-off criterion which is often chosen 

arbitrarily. ROC analysis is not influenced by the arbitrary cut-off [147]. ROC analysis 

chooses a set of operating points that divides the data into groups [147]. The ROC 

graph is obtained by plotting the sensitivity values on the y-axis and 1- specificity 

values on the x-axis [147, 148]. The sensitivity is also referred to as the True Positive 

Fraction (TPF) and 1-specificity is referred to as the False Positive Fraction (FPF). 

The x and y axis values vary between 0 and 1 [147, 148]. The extreme values (0,0) 

& (1,1) in the graph are extremes of TPF and FPF. The points on the graph are 

connected to the extremes to complete the graph. A ROC curve lying on the diagonal 

line indicates that the performance of the classifier is not better than chance. A ROC 

curve lying towards the upper left corner indicates that performance of the classifier 

is much better than expected by chance. The area under the ROC curve (AUC) 

measures the accuracy of the classifier. This interpretation is based on the Mann-

Whitney U test statistic which is used in calculating the AUC. AUC values range 

between 0.50 and 1, where 1 indicates perfect separation between the diseased and 

non-diseased cases, and 0.50 is equivalent to expected by chance.  

The performance of two classifiers can be compared using the Z-score statistic. The 

null hypothesis is that there is no difference between the AUC’s of two classifiers and 

the alternate hypothesis is that the AUC of the two classifiers differ [147, 148]. The 

Z-score statistic is calculated as:  

 
! =

#$%&' −#$%)'

*+,#$%&' −#$%)'-
 (4.1) 

where, #$%&'  is area under ROC curve for first classifier and #$%)'  is area under ROC 

curve for second classifier, 

 *+,#$%&' −#$%)' -

= ./01,#$%&'-+/01,#$%)'-− 2%45,#$%&' ,#$%)' - 
(4.2) 

The performance of the AJCC staging system and LMC signature in the LMC and 

Lund datasets were compared using the ROC analysis. The predicted probabilities 

for the ROC analysis was calculated from a logistic regression model predicting 

melanoma-specific deaths in the LMC dataset, and melanoma relapse and overall 

deaths in the Lund dataset. The time point cut-off was chosen at 6 years and patients 

censored before 6 years in both the datasets were excluded from the analysis. The 

univariable model was generated for the LMC classes and the AJCC stage. The 
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multivariable included both the LMC classes and the AJCC stage. The AUC 

calculation and plots were generated and compared using R-packages ROCR, 

plotROC and ggplot2 [130, 149, 150].  

4.2.7 Biological significance of LMC classes 

To understand the biological differences between the LMC classes, differentially 

expressed genes in each tumour class were identified. The differentially expressed 

genes in LMC classes were identified by comparing one class to all other classes 

combined. The comparison was done using the Significance Analysis of Microarrays 

(SAM) tool [151, 152]. Pathway enrichment analysis was performed for over- and 

under-expressed genes in each LMC class. 

4.2.7.1 Significance Analysis of Microarrays (SAM) 

Tusher et al. proposed the SAM method to identify genes with a significant difference 

in their expression under different experimental conditions (Figure 4.1) [152]. This 

method is widely applied in microarray-based studies. It performs a regularised t-test 

for each gene separately and calculates a score based on changes in gene 

expression value relative to standard deviation of repeated measurements for that 

gene [151, 152]. The False Discovery Rate (FDR) is calculated to estimate the 

percentage of genes identified as significant by chance, based on random data 

permutations. The permutations account for the correlation between the genes and 

avoid parametric assumptions about the distribution of genes [152]. After setting a 

threshold value (referred to as delta) for the amount of difference to consider as 

relevant, which is often done subjectively, the set of significant genes are identified, 

and the FDR (or q-value) is calculated for this gene list (Figure 4.1).  

For each gene i, the SAM statistic is calculated between 2 groups as  

 !" =
$̅"& − $̅"(
)" + )+

 (4.3) 

Where xi2 and xi1 are the expression values of gene xi in group 1 and group 2. The 

term s0 denotes a constant value called the exchangeability factor or regularisation 

factor. Without this factor, equation (4.3) becomes a standard t-test. The addition of 

term s0 stabilises si which tends to be smaller at lower gene expression levels, making 

di less sensitive to small changes in the expression levels. Ideally, when making a 

comparison across genes, the di should be independent of expression levels. 

Therefore, the value of s0 is set such that the dependence of di on si should be 
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minimal. The ideal value of s0 is such that the coefficient of variation of di is 

approximately constant as function of si. 

 

 

The parameters $̅"& and $̅"( are calculated as: 

 
7̅9& =

∑ 7;<=∈?&

@&
 (4.4) 
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 (4.5) 

where n1 and n2 are the total number of samples in class 1 (C1) and class 2 (C2), xij 

are samples observations for gene xi in each class. The variable si is calculated as:  
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(4.6) 

The analysis was done using R-package samr [151]. Two-class comparisons were 

performed and 500 permutations were used. The significantly over-expressed and 

under-expressed genes with q value=0 were selected for pathway enrichment 

analysis. 



84 

 

 

Figure 4.1 Summary of SAM workflow 

Adapted from Chu et al. [153] . 

 

Calculate di statistic for each gene

Sort the di statistics:
d1 ≤ d2 ≤ d3 ≤ d3…. ≤ dp

Take P sets of permutations for response yi . For each permutation 
p, calculate dpi statistic and order them in increasing order. The 

expected order statistic is calculated as:

!̅ #$ =
1
'( !#$#

Fix a threshold (∆)
!($) − !̅(#$) > ∆ : significantly positive genes
!̅(#$) − !($)> ∆ : significantly negative genes

Calculate False Discovery Rate for each list of genes obtained at 
various ∆ values.

FDR = ,-./01 (12,3-4	67	8-1-9	70:9-:;	<0::-. 	)
12,3-4	67	8-1-9	<0::-.	9/81/=/<01>	

At same threshold values, for each permuted set calculate
!(#$) − !̅(#$) > ∆ : falsely positive genes
!̅(#$) − !(#$)	> ∆ : falsely negative genes

Calculate q value for each gene
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4.2.7.2 Pathway enrichment analysis  

The significantly over-expressed and under-expressed genes identified from the 

SAM analysis were used for pathway enrichment analysis within ReactomeFIViz 

[154], a Cytoscape plugin [154, 155]. 

4.2.7.2.1 Reactome FIViz tool 

Reactome FI is a Cytoscape based plugin used to perform pathway and network 

analysis of high dimensional datasets [154]. This tool matches the input set of genes 

against the Reactome functional interaction network to generate the list of enriched 

pathways [154]. Reactome functional interaction network is a reliable, manually 

curated protein functional interaction network which covers more than 60% of human 

proteins [154]. This tool allows construction of a functional interaction network for a 

set of query genes and analyses the sources of underlying evidence for physical 

interaction between the genes. The tool performs a binomial test comparing the list 

of input genes to the number of genes associated with a specific pathway. The 

pathways are queried from KEGG, Reactome and other open source databases 

[154]. The FDR of the P values is calculated using the Benjamini-Hochberg method 

of multiple testing correction [156]. The over- and under-expressed gene sets were 

input into the Reactome tool to perform pathway enrichment. The pathways with FDR 

< 0.01 were selected and further analysed. 

4.2.8 Assessing the Lund module activity in LMC classes 

4.2.8.1 Lund biological modules 

Cirenajwis et al. performed transcriptional network analysis of highly correlated 

genes in an another cohort from Lund University, consisting of metastatic melanomas 

[144]. The pathways associated with highly correlated genes were summarised into 

five distinct modules named immune, stroma, MITF, cell cycle and interferon, from 

now on referred to as the Lund modules. These modules were found to be associated 

with the Lund 4-classes [144]. The high-immune class of Lund 4-classes had higher 

expression of the immune and stroma modules and lower expression of the MITF 

and cell cycle modules. The pigmentation class had higher expression of the MITF 

and cell cycle modules. The proliferative class had higher expression of the cell cycle 

module and lower expression of the immune and stroma modules. The normal-like 

class had increased expression of the stroma module and lower expression of the 

cell cycle module [144]. 
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4.2.8.2 Application of the Lund modules to the LMC dataset 

The LMC classes were characterised using the Lund modules. The immune module 

contained 231 genes, of which 215 were present in the LMC while 25/26 genes 

matched from the MITF module. All genes in the stroma (119 genes), cell cycle (11 

genes) and interferon (7 genes) modules were present. The module score was 

calculated for each LMC tumour sample as: 

 A9J =K 79L
L∈M

 (4.7) 

where m is the module (immune, stroma, MITF, cell cycle and interferon) and sim is 

the module score for ith sample, g is the gene in module gene set G and xig is the 

expression value of ith sample for gene g. The correlation between the modules was 

assessed using Spearman’s rank correlation. 

 

4.3 Results 

4.3.1 Identifying the number of classes in the LMC dataset 

As described in the previous chapter, seven classes were selected using a subjective 

criterion based on the consensus clustering matrix graphics (refer to 3.2.5.4). To 

further confirm k using an objective criterion, a cluster separation measure was 

defined: the ratio of intra-cluster similarity to inter-cluster similarity. The cluster 

separation generally increased with the k value (Table 4.1). However, it was lower 

for k=4 than at k=3. In keeping with previous observations from the consensus matrix 

graphics, k=7 had the maximum increase (from k=6) in cluster separation in 

comparison to other k values. This observation confirmed selection of k =7 as the 

number of classes.  
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Table 4.1 Summary of cluster separation measure at various k values  

The cluster separation generally increased with k values, with a maximum 

increase at k=7.  

k Cluster separation 

2 5.1 

3 5.5 

4 5.1 

5 5.9 

6 7.2 

7 9.1 

8 9.6 

9 9.9 

10 10.2 
 

4.3.1.1 Association of the LMC classes with Batch 

To test whether clustering of tumours was influenced by differences due to the batch 

in which the samples were processed, the association of the LMC classes with batch 

number was tested. The LMC tumours were sent for profiling in three batches to a 

service provider (Service XS, Leiden, The Netherlands). Apart from the LMC class 7, 

all other LMC class samples were distributed across the three batches (Table 4.2). 

The LMC class 7 had lower number of samples (n=15), and 14 out of 15 samples 

were processed in the same batch. The statistically significant (P=0.01) association 

between batch and LMC classes suggested that clustering of some LMC classes 

may have been affected by artefacts arising from the batch in which samples were 

processed. Further exploration of LMC class 7 tumour samples suggested that these 

tumours were mainly present on the edges of a plate. After excluding class 7 samples 

the LMC classes were not associated with the batch (P=0.2). 
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Table 4.2 Summary of LMC class tumours across the three batches sent for 
gene expression profiling  

LMC classes Batch 101998 Batch 102232 Batch 102503 

1 18 32 21 

2 31 60 31 

3 23 29 21 

4 36 78 29 

5 33 56 47 

6 38 75 29 

7 1 14 0 
 

4.3.1.2 Re-clustering the LMC tumours after removing 15 samples 

The above analysis suggested that the class with small sample size may be driven 

by artefactual features. The low sample sized class would also have limited power 

for downstream statistical analysis. For these reasons LMC class 7 samples were 

excluded from the LMC dataset, and the remaining samples were re-clustered using 

the same method as described previously (refer to 3.2.5.4) (consensus-based PAM 

clustering with the same parameters as before).  

Re-clustering the LMC tumours indicated k=6 as a good number of classes. The CDF 

of the consensus matrix and delta area graph suggested minimal increase in area at 

k=6 (Figure 4.2). The cluster separation measure also had maximum increase at k=6 

(Table 4.3). These observations clearly indicated that k=6 was the new optimal 

number of classes in the LMC dataset. These six classes largely overlapped with 

previously identified LMC classes with a very high agreement (Cramer’ V= 0.97) 

(Table 4.4).  
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Figure 4.2 Re-clustering of LMC tumours after excluding 15 samples, using 
consensus clustering PAM method  

(A) The heatmap of consensus matrix at k=5, 6 and 7. At k=7 only sample was 

classified into the new cluster. (B) Cumulative Distribution Function (CDF) of 

the consensus scores at various values of k. (C) Relative change (delta) in the 

area under the CDF curve comparing k with k-1.  
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Table 4.3 Summary of cluster separation measure at various k values after 
removing 15 samples  

k Cluster separation measure 

2 4.92 

3 5.73 

4 4.82 

5 6.62 

6 8.55 

7 9.18 

8 9.20 

9 9.48 

10 9.76 

Table 4.4 Comparing new classification with initial classification after removing 
15 samples  

Class 
Initial clustering  

1 2 3 4 5 6 

  Re-clustering after 
  removing 15 samples 

1 71 0 0 0 0 1 

2 0 122 0 0 1 3 

3 0 0 72 5 0 6 

4 0 0 1 135 0 0 

5 0 0 0 3 135 0 

6 0 0 0 0 0 132 
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4.3.2 The LMC class association with clinico-histopathological 
features 

As shown in Table 4.5, the LMC classes were significantly associated with tumour 

site, age at diagnosis, Breslow thickness, AJCC stage, ulceration status, TILs, NRAS, 

and BRAF mutation status. The LMC class 1, class 2 and class 5 tumours occurred 

more frequently on limbs. The LMC class 1 and class 5 tumours were most frequently 

non-ulcerated and thin while class 2 and class 4 tumours were thicker more likely to 

be ulcerated. The LMC class 3 and class 6 tumours were the thickest and mainly 

ulcerated. In term of AJCC stage, class 1 and class 5 tumours had a higher proportion 

of early stage tumours whereas class 3 and class 6 tumours had a higher proportion 

of advanced stage tumours (Table 4.5). LMC class 1 had a higher percentage of brisk 

TILs and LMC class 3 absence of TILs. LMC class 2 and class 6 had higher 

percentages of non-brisk TILs, and LMC classes 4 and 5 had intermediate levels of 

brisk and non-brisk TILs. The LMC classes also differed in NRAS and BRAF mutation 

status. LMC class 5 and class 6 were frequently BRAF mutated. LMC class 2, class 

3 and class 4 contained frequently NRAS-mutated tumours (Table 4.5).  

 



 

Table 4.5 LMC classes association with clinico-histopathological variables 

 Where n is the number of samples, m is the median and r is the range.  

Histopathological variables 

Whole 

dataset 

n=687 (%) 

LMC class 

Class 1 

(n=71) 

Class 2 

(n=122) 

Class 3 

(n= 73) 

Class 4 

(n=143) 

Class 5 

(n=136) 

Class 6 

(n=142) 
P 

Sex : male n (%) 310 (45) 39 (55) 51 (42) 34 (47) 56 (39) 55 (40) 75 (52) 0.07 

Tumour site: limbs n (%) 289 (42) 37 (52) 58 (48) 26 (36) 58 (41) 64 (47) 46 (32) 0.03 

Age at diagnosis (years), m(r) 58 (18, 81) 59 (21,76) 59 (22,79) 60 (20,77) 58 (18,81) 53 (25,76) 59 (22,81) 0.03 

Breslow thickness (mm) 

n=691 m(r) 
2.3 (0.3, 20) 1.7 (0.7, 5.5) 2.1 (0.8, 8.9) 3.2 (0.8, 20) 2.3 (0.3, 15) 1.8 (0.7, 12) 3.0 (0.8, 18) 9.5 x 10-14 

AJCC stage n=680 (%)       I 

                                            II 

                                           III 

230 (34) 
344 (51) 
106 (15) 

37 (52) 
29 (41) 
5 (7) 

41 (34) 
59 (49) 
21 (17) 

10 (14) 
46 (65) 
15 (21) 

46 (33) 
77 (55) 
16 (12) 

69 (51) 
47 (34) 
20 (15) 

27 (19) 
86 (61) 
29 (20) 

5.2 x 10-9 

Ulceration (present) n (%) 228 (33) 16 (23) 26 (32) 30 (41) 53 (37) 38 (28) 59 (42) 0.01 

Number of mitoses (n= 577) ³1 358 (62) 30 (50) 53 (58) 43 (70) 83 (64) 74 (64) 75 (64) 0.2 

TILs n=490 (%)          Absent 

         Non-Brisk 

         Brisk 

76 (15) 
333 (68) 
81 (17) 

2 (4) 
30 (60) 
18 (36) 

13 (14) 
65 (71) 
14 (15) 

17 (32) 
32 (60) 
4 (8) 

14 (16) 
60 (68) 
14 (16) 

15 (16) 
63 (66) 
17 (18) 

15 (13) 
83 (74) 
14 (13) 

5.5 x 10-4 

BRAF mutant (n = 568) yes (%) 266 (47) 26 (43) 38 (30) 23 (40) 44 (36) 63 (59) 72 (61) 5.6 x 10-5 

NRAS mutant (n= 561) yes (%) 138 (25) 8 (14) 35 (34) 17 (30) 41 (34) 20 (19) 17 (15) 3.2 x 10-4 
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4.3.3 Prognostic value of the LMC signature 

4.3.3.1 Prognostic value in the whole LMC dataset 

LMC classes strongly predicted MSS in the LMC dataset (Figure 4.3, Table 4.6). The 

proportion of deaths from melanoma ranged from 14% in LMC class 1 patients to 49% 

in class 3, with 20% in class 2, 30% in class 4, 20% in class 5 and 36% in class 6. 

In univariable analysis, LMC class 1 patients had good prognosis. LMC class 2 (HR=1.8 

compared with class 1), class 5 (HR=1.6) and class 4 (HR=2.3) patients had 

intermediate prognosis (Figure 4.3). LMC class 3 (HR=5.0) and class 6 (HR=3.2) 

patients had the worst prognosis (Figure 4.3). Clinical variables such as the AJCC 

stage, age at diagnosis, tumour site, sex, and number of mitoses also significantly 

predicted MSS in the LMC dataset (Table 4.6).  

In a multivariable model adjusting for clinical variables, LMC class 3 (HR= 3.6), class 4 

(HR=2.2) and class 6 (HR= 2.2) maintained an independent association with survival 

(Table 4.6).  

 

Figure 4.3 Melanoma-specific survival for the LMC classes on the whole LMC 
dataset 
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Table 4.6 Summary of the univariable and multivariable analysis of the LMC signature with melanoma-specific survival in the whole LMC 
dataset  

The variable n is the total number of samples, deaths are the number of melanoma-specific deaths. CI is confidence interval and HR is the 

hazard ratio.  

 Univariable  Multivariable (n=571, deaths=157) 

Class (n) HR 95% CI P Class (n) HR 95% CI P 

LMC class 
(n=687, 

deaths=194) 

1 (71) 1.00 - - 

LMC class 
 
 

1 (61) 1.00 - - 

2 (122) 1.8 0.9-3.7 0.1 2 (91) 0.9 0.4-2.0 0.7 

3 (73) 5.0 2.5-10.1 8 x 10-6 3 (59) 3.6 1.7-7.6 0.001 

4 (143) 2.3 1.8-4.7 0.02 4 (126) 2.1 1.0-4.4 0.04 

5 (136) 1.6 0.8-3.2 0.2 5 (116) 1.4 0.7-3.1 0.3 

6 (142) 3.2 1.6-6.2 9 x 10-4 6 (188) 1.9 0.9-3.7 0.08 

AJCC stage 
(n= 680, 

deaths=192) 

I (230) 1.00 - - 
AJCC stage 

 

I (182) 1.0 - - 

II (344) 2.5 1.7-3.7 5 x 10-6 II (301) 1.6 1.0-2.6 0.04 

III (106) 6.0 3.8-9.2 2 x 10-15 III (88) 4.7 2.8-7.9 5 x 10-9 

Sex 
(n=687, 

deaths=194) 

F (377) 1.0 - - 
Sex 

F (310) 1.0 - - 

M (310) 1.5 1.1-1.9 8 x 10-3 M (261) 1.2 0.8-1.7 0.3 
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 Univariable  Multivariable (n=571, deaths=157) 

Class (n) HR 95% CI P Class (n) HR 95% CI P 
Age at 

diagnosis 
(n=687, 

deaths=194) 
years 1.03 1.01-1.04 4 x 10-6 Age at 

diagnosis years 1.03 1.01-1.05 1 x 10-5 

Mitotic rate 
(n=577, 

deaths=158) 

<1 (219) 1.0 - - 
Mitotic rate 

<1 (216) 1.0 - - 

>=1 (358) 1.9 1.3-2.7 4 x 10-4 >=1 (355) 1.6 1.2-2.3 0.01 

Site of tumour 

Limbs (289) 1.0 - - 

Site of tumour 

Limbs (240) 1.0 - - 

Head (80) 1.1 0.6-1.9 0.6 Head (74) 1.0 0.5-1.7 0.9 

Trunk (230) 1.8 1.3-2.5 6 x 10-4 Trunk (187) 1.8 1.2-2.7 0.007 

Other (88) 2.9 1.9-4.3 3 x 10-7 Other (70) 2.0 1.2-3.2 0.002 
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4.3.3.2 Prognostic value of LMC signature in stage I tumours 

As described in the previous chapter, the Lund and TCGA signatures did not predict 

survival in stage I tumours (refer to 3.3.4.1). To test the prognostic value of the LMC 

signature in stage I tumours, a univariable analysis and multivariable analyses 

(adjusting for the effect of clinical predictors) were performed.  

In the univariable analysis, the LMC class 6 had relatively poor survival (Figure 4.4, 

Table 4.7). The overall survival difference between the six LMC classes was not 

significant (Figure 4.4) but the LMC class 6 had a significantly higher melanoma death 

hazard ratio (HR=6.6) than class 1 at P=0.02 (Table 4.7). LMC class 3 (HR=4.0) and 

class 4 (HR=3.1) had similar hazard ratios in AJCC stage l compared to the whole LMC 

dataset, although these did not reach the significance threshold of 0.05 due to the much 

reduced sample size. Among the clinical variables, mitotic rate (HR=2.4), Breslow 

thickness (HR=3.1), Sex (males: HR=2.2) and Site (limbs: HR=2.1) significantly 

predicted survival in the AJCC stage I group (Table 4.7).  

In a multivariable model after adjusting for clinical variables (mitotic rate, Breslow 

thickness, Sex and Site), although not significant (P=0.07) but the LMC class 6 

maintained a higher melanoma death hazard ratio (HR=7.8) (Table 4.7). 

 

Figure 4.4 Melanoma-specific survival for the LMC classes on the AJCC stage I 
group
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Table 4.7 Summary of the univariable and multivariable analysis of the LMC signature with melanoma-specific survival in the AJCC stage 
I group  

The other tumour site variables like head and other rare site were excluded as only few samples were classified into these categories. The 

variable n is the total number of samples, deaths are the number of melanoma-specific deaths. CI is confidence interval and HR is the hazard 

ratio.  

 Univariable 
 

Multivariable (n=158, deaths=25) 

Class (n) HR 95% CI P Class (n) HR 95% CI P 

LMC class 
(n=230, deaths=33) 

1 (37) 1.0 - - 

LMC class 
 

1 (26) 1.0 - - 

2 (41) 3.5 0.7-17.3 0.1 2 (22) 5.7 0.6-54.1 0.1 

3 (10) 4.0 0.6-28.5 0.2 3 (7) 4.6 0.3-80.2 0.3 

4 (46) 3.1 0.7-15.2 0.2 4 (34) 5.5 0.7-46.4 0.1 

5 (69) 2.3 0.5-10.7 0.3 5 (50) 3.2 0.4-27.0 0.3 

6 (27) 6.6 1.4-31.0 0.02 6 (19) 7.8 0.9-70.7 0.07 

Sex 
(n=230, deaths=33) 

F (134) 1.0 - - 
Sex 

F (94) 1.0 - - 

M (96) 2.2 1.1-4.5 0.02 M (64) 2.6 1.1-6.5 0.05 

Age at diagnosis 
(n=230, deaths=33) Years 1.01 0.98-1.04 0.3      
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 Univariable 
 

Multivariable (n=158, deaths=25) 

Class (n) HR 95% CI P Class (n) HR 95% CI P 

Breslow thickness 
(n=230, deaths=33) mm 3.1 1.2-8.2 0.02 Breslow 

thickness mm 1.32 0.4-4.2 0.6 

Site  
(n=201, deaths=32) 

Limbs 
(115) 1.0 - - 

Site 
Limbs (90) 1.0 - - 

Trunk (86) 2.1 1.0-4.2 0.04 Trunk (68) 1.6 0.6-4.2 0.3 

Mitotic rate 
(n=182, deaths=25) 

<1 (96) 1.0 - - Mitotic rate <1 (96) 1.0 -  

>=1 (86) 2.4 1.0-5.5 0.04  >=1 (86) 2.6 1.1-6.3 0.04 

Ulceration of 
tumour 

(n=230, deaths=33) 

No 1.0 - -      

Yes 1.1 0-Inf 0.9      
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4.3.4 Comparing LMC signatures with Lund 4-classes and TCGA 3-
classes 

The LMC signatures overlapped with previously described Lund 4-classes and TCGA 

3-classes (Figure 4.5). The LMC class 1 tumours overlapped to a large extent with high-

immune class, class 3 overlapped with pigmentation class, class 5 overlapped with 

normal-like class of Lund 4-classes (Figure 4.5A). The LMC class 2, class 4 and class 

6 were a mixture of the Lund 4-classes (Figure 4.5A).  

Similarly, for TCGA 3-classes, the LMC class 1 overlapped with the Immune class, LMC 

class 3 overlapped with MITF low class and LMC class 5 overlapped with Keratin class 

(Figure 4.5B). LMC class 2, class 4 and class 6 were a mixture of the TCGA 3-classes. 

 

Figure 4.5 Overlap between the LMC signatures and the Lund 4-classes and 

TCGA 3-classes  

Lund 4-classes: HI- high immune, NL- normal-like, Pigm.- pigmentation, Prolif.- 

proliferative; TCGA 3-classes: immune, keratin and MITF low. Unclassified 

samples are shown in black. 
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4.3.5 Replicating prognostic value of LMC signature 

4.3.5.1 Generating a refined LMC signature 

The initial LMC signature comprised ~13,000 genes. Applying this gene signature in 

clinical practice would not be feasible. To mitigate this, the gene signature was reduced 

to form multiple smaller subsets by selecting the top n (1, 5, 10, 25, 100 and 500) ranked 

upregulated genes in each of the LMC classes, resulting in signatures of 6, 30, 60, 150, 

600 (599 unique) and 3000 (2908 unique) genes (refer to 4.2.4). For all signatures, the 

LMC classes 1, 3 and 5 had lower misclassification rate and LMC classes 2, 4 and 6 

has higher misclassification rate (Figure 4.6). The 6 gene-based, 30 gene-based and 

60-gene based signature sets had low accuracy in classifying LMC tumours into their 

respective classes (Figure 4.6). All other gene set signatures had a comparatively 

similar performance to the all gene-based signature. Among these gene signatures, the 

signature with fewer genes, the 150 gene-based signature, was selected for validation 

on an external dataset (Figure 4.6; Appendix I Table 8.1).  

 

Figure 4.6 Refining the LMC class gene signature  

The six gene signatures were generated by combining the top n (1, 5, 10, 25, 50, 

100 and 500) highly expressed genes from each LMC class. The LMC tumours 

were reclassified into the LMC classes based on these signatures using the NCC 

approach. The plot compares the proportion of samples in each class in the 

original classification classified in the same way by the reduced signature. 
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4.3.5.2 Prognostic value of LMC signature in Lund cohort  

The 150-gene based LMC signature was applied to the independent cohort of primary 

melanomas from Lund, Sweden. Among 150 genes in the LMC signature, 73 genes 

were present in the gene expression dataset from the Lund cohort. In the Lund cohort, 

27% of tumours were classified into LMC class 1, 4% in class 2, 23% in class 3, 9% in 

class 4, 18% in class 5 and 14% tumours in class 6. The LMC class 1 tumours (r=0.44) 

had the highest median correlation with LMC class 1 centroids. The LMC class 2 

(r=0.37) and class 3 (r=0.40) tumours had a similar correlation with their respective 

centroids. The LMC class 4 (r=0.26), class 5 (r=0.32) and class 6 (r=0.28) tumours had 

comparatively lower correlation with their respective class centroids. Three percent of 

tumours in the Lund cohort could not be classified. 

The LMC classes significantly predicted relapse-free and overall survival in the Lund 

cohort (Figure 4.7, Table 4.8). In LMC class 1, 33% patients died, 27% in class 2, 75% 

in class 3, 71% in class 4, 35% in class 5 and 58% in class 6. The survival plot indicated 

that LMC class 1, class 2 and class 5 predicted good prognosis in the Lund cohort 

(Figure 4.7). The LMC class 3, class 4 and class 6 predicted worse prognosis with 

increased hazard for relapse and overall deaths in the Lund cohort (Figure 4.7, Table 

4.8). 
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Figure 4.7 Relapse-free survival and overall survival for the LMC classes on the 

Lund dataset 

Since melanoma-specific survival was not available, (A) relapse-free survival and 

(B) overall survival were used as clinical outcomes for survival analysis. 
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Table 4.8 Summary of the univariable analysis of the LMC signature with relapse-

free survival and overall survival in the Lund cohort  

The variable n is the total number of samples, e is the event (relapsed or death) 

and HR is the hazard ratio. 

LMC class 

Relapse-Free Survival 
(n=200, relapsed=75) 

Overall Survival 
(n=215, deaths=109) 

HR 95% CI P HR 95% CI P 

Class 1 1.0 - - 1.0 - - 

Class 2 1.5 0.4-5.4 0.5 0.8 0.2-2.7 0.7 

Class 3 6.3 3.1-12.9 6 x 10-7 4.0 2.3-6.9 6 x 10-7 

Class 4 4.2 1.7-10.1 0.001 3.6 1.8-7.0 2 x 10-4 

Class 5 1.1 0.4-3.0 0.8 1.2 0.6-2.3 0.6 

Class 6 3.7 1.6-8.4 0.001 2.1 1.1-4.0 0.02 
 

4.3.5.3 Prognostic value of LMC signature in AJCC stage I group  

The LMC classes showed no significant association with relapse-free survival or overall 

survival in the AJCC stage I group of the Lund cohort (Table 4.9). In AJCC stage I, 7 

out of 28 people in LMC class 1, 3 out of 5 people in class 3, 4 out of 18 people in LMC 

class 5, and 2 out of 6 people in LMC class 6 died. The LMC classes 2 and 4 had less 

than 5 samples in AJCC stage I and were excluded from the survival analysis. The CPH 

model analysis indicated that class 3 had increased hazard for melanoma relapse 

(HR=2.3) as well as death (HR=3.5) in comparison to baseline LMC class 1 (Table 4.9), 

although this was not statistically significant. The hazard for relapse and death was also 

slightly higher in LMC classes 5 and 6 compared to class 1. 
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Table 4.9 Summary of the univariable analysis of the LMC signature with relapse-

free survival and overall survival in the AJCC stage I group of Lund cohort.  

The LMC classes 2 and 4 had less than 5 samples in AJCC stage I and were 

excluded from the analysis, n is the number of samples, e is the event (relapsed 

or death), CI is confidence interval, and HR is the hazard ratio. 

LMC 
class 

Relapse-free Survival 
(n=54, relapsed= 8) 

Overall Survival 
(n=74, deaths=16) 

n, e HR 95% CI P n, e HR 95% CI P 

Class 1 26, 4 1.0 - - 28, 7 1.0 - - 

Class 3 5, 1 2.3 0.2-21.3 0.5 5, 3 3.5 0.9-14.0 0.07 

Class 5 18, 3 1.7 0.3-8.5 0.5 18, 4 1.1 0.3-3.9 0.8 

Class 6 6, 1 1.2 0.1-12.1 0.8 6, 2 1.2 0.2-6.1 0.8 
 

4.3.5.4 Independent prognostic value of the LMC signature 

To assess the independent prognostic value of the LMC signature, ROC analysis was 

performed predicting melanoma-specific deaths in the LMC dataset and melanoma 

relapse  and overall deaths in the Lund dataset (Figure 4.8). The time point cut-off was 

chosen at 6 years and patients censored before 6 years were excluded from the 

analysis.  

The AJCC classification system showed an AUC of 70% in the LMC dataset (Figure 

4.8A) and 81% and 78% in the Lund dataset (Figure 4.8B-C). The LMC signature had 

similar performance to the AJCC staging system in the LMC dataset (AUC=65%) and 

the Lund data (AUC= 78%-79%) (Figure 4.8). Combining the two i.e. the AJCC staging 

system with the LMC signature showed 4% improvement of AUC in the LMC dataset in 

comparison to the AJCC staging system alone (Figure 4.8A). The improvement for the 

combination improved by 5% and 7% in the Lund dataset for the two outcomes, 

melanoma relapse and overall deaths respectively (Figure 4.8B-C). The improvement 

in AUC for both the datasets was statistically significant (LMC MSS P=0.001, Lund 

relapse P=0.02, Lund overall deaths P=0.02).   
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Figure 4.8 Independent prognostic value of the LMC signature 

ROC curves of the LMC classes and the AJCC staging system predicting (A) 

melanoma-specific deaths in the LMC dataset and (B) melanoma relapse and (C) 

overall deaths in the Lund dataset. 
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4.3.6 Biological significance of the LMC classes 

4.3.6.1 Pathway enrichment analyses of LMC classes 

The biological differences between the LMC classes were explored using differentially 

expressed genes identified from SAM analysis [151, 152]. These genes were input into 

ReactomeFIViz tool [154] for identifying the associated biological pathways. All 

pathways reported here were significant at FDR <0.01. 

The LMC class 1 tumours had increased expression of genes in the immune response 

pathways (Figure 4.9). The most significant pathways were NF-KB signalling, 

chemokine signalling, osteoclast differentiation, T-cell receptor signalling, etc. (Figure 

4.9). The LMC class 1 tumours had decreased expression of genes in the cell cycle 

related pathways (Figure 4.9), such as mitotic G1-G1/S phase, cell cycle checkpoints, 

cell cycle, etc. The LMC class 2 tumours had increased expression of genes in the 

eukaryotic translation and with nonsense-mediated decay pathways and decreased 

expression of genes in the PLK1 signalling and FOXM1 transcription factor network 

pathways (Figure 4.10). 

The LMC class 3 tumours mirrored class 1 tumours and had increased expression of 

genes in the cell cycle related pathways and decreased expression of genes in the 

immune response pathways (Figure 4.11). The LMC class 4 tumours had very few 

genes with significantly increased expression. The associated pathways were 

assembly of the primary cilium and RNA polymerase II transcription (Figure 4.12).  

The LMC class 5 tumours had increased expression of genes in the Cell junction 

organisation and extra cellular matrix-receptor interaction (Figure 4.13). These tumours 

had decreased expression of genes in the Wnt signalling, Cadherin signalling and 

assembly of primary cilium pathways. 

The LMC class 6 showed some characteristics of LMC class 1 and class 3 tumours. 

The class 6 tumours had increased expression of genes in the cell cycle related, focal 

adhesion and immune response pathways (Figure 4.14). These tumours had 

decreased expression of genes in the eukaryotic translation and nonsense-mediated 

decay pathways. 

The complete list of the associated biological pathways is provided in Appendix I (Table 

8.2 - Table 8.13). 
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Figure 4.9 Summary of biological pathways associated with the LMC class 1  

The upregulated pathways are represented in red and downregulated pathways 

are represented in blue. The font size is based on the significance level, with most 

significant pathways shown in larger fonts. The bracket indicates the database 

used for each pathway (K- KEGG, R- Reactome, N- NCBI database).   
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Figure 4.10 Summary of biological pathways associated with the LMC class 2  

The upregulated pathways are represented in red and downregulated pathways 

are represented in blue. The font size is based on the significance level, with most 

significant pathways shown in larger fonts. The bracket indicates the database 

used for each pathway (K- KEGG, R- Reactome, N- NCBI database).   
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Figure 4.11 Summary of biological pathways associated with the LMC class 3  

The upregulated pathways are represented in red and downregulated pathways 

are represented in blue. The font size is based on the significance level, with most 

significant pathways shown in larger fonts. The bracket indicates the database 

used for each pathway (K- KEGG, R- Reactome, N- NCBI database).   
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Figure 4.12 Summary of biological pathways associated with the LMC class 4  

The upregulated pathways are represented in red and downregulated pathways 

are represented in blue. The font size is based on the significance level, with most 

significant pathways shown in larger fonts. The bracket indicates the database 

used for each pathway (K- KEGG, R- Reactome, N- NCBI database).   
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Figure 4.13 Summary of biological pathways associated with the LMC class 5  

The upregulated pathways are represented in red and downregulated pathways 

are represented in blue. The font size is based on the significance level, with most 

significant pathways shown in larger fonts. The bracket indicates the database 

used for each pathway (K- KEGG, R- Reactome, N- NCBI database). 
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Figure 4.14 Summary of biological pathways associated with LMC class 6  

The upregulated pathways are represented in red and downregulated pathways 

are represented in blue. The font size is based on the significance level, with most 

significant pathways shown in larger fonts. The bracket indicates the database 

used for each pathway (K- KEGG, R- Reactome, N- NCBI database).  
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4.3.6.2 Characterising LMC classes using Lund modules 

The LMC classes were further characterised using Lund modules identified by 

Cirenajwis et al. [144] in an independent cohort of metastatic melanoma from Lund, 

Sweden. In keeping with observations from pathway enrichment analysis (refer 

previous section), the LMC classes demonstrated distinct Lund module activity. The 

LMC class 1 tumours had higher immune, stroma and interferon module activity and 

lower MITF and cell cycle module activity (Figure 4.15A-E). The LMC class 2 tumours 

had higher MITF module activity and lower cell cycle module activity. As observed in 

pathway enrichment analysis, LMC class 3 tumours mirrored LMC class 1 tumours and 

had higher MITF and cell cycle module activity and lower immune, stroma and 

interferon module activity (Figure 4.15A-E). The LMC class 4 tumours had higher MITF 

module activity and lower immune and stroma module activity. The LMC class 5 

tumours had higher immune and interferon module activity. The LMC class 6 tumours 

had higher immune and cell cycle module activity (Figure 4.15A-E).  

When comparing modules scores with one another, the immune module scores were 

positively correlated with stroma and interferon modules and negatively correlated with 

MITF and cell cycle module scores (Figure 4.15F). The MITF module scores were 

positively correlated with cell cycle module score and negatively correlated with 

immune, stroma and interferon modules (Figure 4.15F). 
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Figure 4.15 Characterising LMC classes using the Lund modules  

The dot and boxplot show the distribution of scores for (A) immune, (B) stroma, 

(C) MITF, (D) Cell cycle and (E) interferon modules across the LMC classes. (F) 

Spearman’s correlation coefficient between these modules [144].   
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4.4 Discussion 

In this study, six melanoma tumour classes were defined using one of the largest 

cohorts of primary melanoma. The LMC classes were associated with distinct clinical 

features of melanoma and independently predicted survival. Unlike previous 

signatures, the LMC classes strongly predicted outcome in the whole LMC dataset 

including in stage I tumours. The prognostic value of LMC classes was recovered in an 

independent cohort of primary melanomas from Lund, Sweden. The biological 

differences were explored using genome-wide gene expression and candidate 

functional modules. 

Previously, consensus clustering using the PAM algorithm identified seven classes of 

melanoma (refer to chapter 3). Applying a novel cluster separation method confirmed 

selection of seven classes in the LMC dataset. Interestingly, one of the classes 

contained only a few samples which were later identified to be processed in the same 

batch. At the time, it was not clear whether this class may represent technical bias, and 

these samples were excluded from the downstream analysis. Consensus clustering has 

been shown to be robust for obtaining a stable number of clusters [137, 157]. This was 

true in LMC, as re-clustering the dataset after removing the small class robustly 

recovered the previously observed six LMC classes with a very large agreement 

(Cramer V=97%). 

4.4.1 Clinical-pathological characteristics of the LMC classes  

Similar to Lund and TCGA signatures, the LMC classes were significantly associated 

with clinico-pathological features of melanoma patients like age, Breslow thickness, 

tumour site, AJCC stage, ulceration of tumour and TILS. The LMC class 1 and class 5 

tumours were thin, non-ulcerated and presented at early stages. The LMC classes 2 

and 4 had increased tumour thickness and ulceration of tumours. The LMC class 3 and 

class 6 were the thickest and were advanced stage tumours. In melanoma, BRAF and 

NRAS mutations have been reported to be mutually exclusive with strong therapeutic 

implications [77, 78, 83, 84, 158-162]. Interestingly, unlike previous signatures, the LMC 

classes were strongly associated with BRAF and NRAS mutation status [81, 106]. LMC 

class 5 and class 6 were frequently BRAF mutated and LMC class 2, class 3 and class 

4 were frequently NRAS mutated. 
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4.4.2 Prognostic significance of the LMC classes in stage I 
melanoma 

In keeping with Lund and TCGA classes, the LMC classes were also predictive of 

outcome in the whole LMC dataset. However, as shown previously, the Lund and TCGA 

signatures did not predict prognosis in the AJCC stage I tumours, and one of the 

objectives of this research was to devise a prognostic signature for these early stage 

tumours. Although the 5-year survival rate is about 95% for patients diagnosed at stage 

I [44], it remains of clear importance to predict those at risk of dying from their disease. 

In the LMC classes, LMC class 6 predicted significantly worse outcome in the AJCC 

stage I in the univariable model. When jointly analysed with other clinical variables the 

LMC class 6 still had increased melanoma death hazard for stage I tumours but it did 

not reach the significance threshold in the multivariate model. The lack of significance 

in the multivariate model could be due to the fact that this analysis was done on 

comparatively smaller set of samples as many samples had missing clinical information, 

and therefore were removed from the analysis. The comparable hazard ratios in the 

univariable and multivariable models suggests that the LMC class 6 predicts poor 

outcome in stage I group, and this class may have potential clinical relevance.  

It has been shown that metastatic melanoma has distinct gene expression signatures 

in comparison to primary cutaneous melanoma [122, 163-165]. However, the LMC 

classes from primary melanoma showed an overlap with the Lund and TCGA 

signatures derived from metastatic melanoma. This suggests that primary and 

metastatic melanoma tumours do converge and share common biological 

characteristics which can be very well captured using the transcriptomic data. The good 

prognosis groups of LMC classes overlapped with good prognosis groups from Lund 4-

classes and TCGA 3-classes. Similarly, the poor prognosis group LMC class 3 

overlapped with the poor prognosis group from the Lund and TCGA classes. However, 

LMC class 2, class 4 and class 6 were novel in that they could not be distinguished 

using the Lund 4-classes and TCGA 3-classes. 

The prognostic value of LMC classes was assessed in an independent cohort from 

Lund, Sweden [105]. Before this step, and to mimic real time clinical application, a 

reduced signature of the LMC classes was generated and trained in the LMC dataset. 

The reduced signature comprising 150 genes was found optimal in terms of using the 

smallest number of genes without loss of performance. 

The reduced signature maintained similar association with outcome in the Lund cohort 

as it did in the Leeds dataset. The LMC classes 1 and 5 predicted good prognosis, and 

classes 3 and 6 predicted worse prognosis in both the cohorts. The LMC class 2 and 
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class 4, which had intermediate prognosis in the Leeds dataset, showed good and 

worse in the Lund dataset respectively. When stratifying patients on the basis of AJCC 

stage, the LMC classes showed no association with survival in stage I patients from the 

Lund dataset. As shown previously, (refer to 3.3.4.1), the Lund and TCGA signatures 

showed no association with prognosis in the stage I group of the Leeds dataset and 

had different hazard ratios in stage I when compared to the whole dataset (confirmed 

as a significant interaction). Although LMC classes were prognostic in the stage I group 

of the Leeds dataset, these classes showed no association with prognosis in the stage 

I group of the Lund dataset. Unlike the Lund and TCGA signatures, the hazard ratios 

for the LMC classes were comparable in the stage I group and the whole Lund dataset. 

Therefore, the lack of association for the LMC classes in the stage I group of the Lund 

dataset could be due to limited sample size (Leeds stage I group n=233, Lund stage I 

group n=74).  

The gene expression data in the Lund cohort was generated using a different array 

platform and different pre-processing steps in comparison to Leeds data. Despite half 

of the genes in the LMC signature not being present in the Lund dataset, the LMC 

classes still demonstrated prognostic significance which supports the view that these 

classes are robust and capture meaningful biological information about melanoma 

tumours. In future, the genes that were not present on the Lund dataset will be imputed 

using the correlated genes selected from the LMC dataset. 

AJCC stage is a strong predictor for melanoma outcome, and very few additional 

variables have shown an improvement in AUC by more than 2% [44, 114]. The LMC 

classes predicted prognosis independent of the AJCC staging system. The area under 

ROC value of LMC classes was comparatively similar to the AJCC classification system 

in the LMC and Lund datasets. However, a significant improvement in AUC by 4-7% 

was observed when combining the LMC classification system with AJCC staging in 

comparison to AJCC staging system alone.   

4.4.3 Biological interpretation of the LMC classes 

The LMC classes showed distinct gene expression profiles. Previously it has been 

shown that increased immune gene expression predicts good prognosis and good 

response to treatment in melanoma [81, 104-106, 117, 166, 167].  In keeping with the 

literature, classes associated with upregulation of immune response mechanism had 

the best prognosis and classes associated with increased cell cycle mechanism and 

low immune response had the worst prognosis in the LMC data. However, the novel 

non-overlapping LMC classes (LMC classes 2, 4 and 6) showed association with 

gradient of immune gene expression, cell cycle, cell communication, and cell 
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metabolism related pathways. The LMC class 4 tumours showed low immune response 

and had poor prognosis. In contrast, LMC class 6 tumours showed evidence of 

increased immune response along with cell proliferation activity but still had worse 

prognosis in comparison to class 4 tumours. This is interesting, as LMC class 6 

highlights a class of tumours who have poor prognosis despite relatively high immune 

expression. Further work is required to understand the role of immune response in 

driving the poor prognosis of LMC class 6 tumours.   

Overall, this chapter defined six molecular classes of melanoma. The classes were 

prognostic in the whole LMC dataset and in an independent dataset from Lund. Unlike 

previous signatures, LMC class signature showed prognostic value at the AJCC stage 

I. However, due to limited sample size in the Lund cohort this finding has not yet been 

replicated. 
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Chapter 5 

Machine learning applications to predict melanoma 

prognosis using gene expression 

The objectives of this chapter are: 

Objective 9: To apply Random Forest (RF) to develop a classification model for 

predicting outcome in the LMC. The performance of the model will be assessed using 

sensitivity, specificity, and the kappa index 

Objective 10: To apply Support Vector Machine (SVM) using linear and non-linear 

kernel functions to develop classification models for predicting outcome in the LMC. 

The performance of SVM model will be compared with the RF model 

 

5.1 Introduction 

The advances in cost-effective next-generation sequencing and gene expression 

profiling techniques have brought about an era of large biomedical datasets. The 

unsupervised classification methods described previously identify novel subgroups 

by exploring distinct patterns in these datasets. Supervised methods, including 

machine learning, on the other hand mine the knowledge from known subgroups or 

outcomes and develop prediction models to classify new observations into these 

groups [110-112]. Machine learning techniques are now being widely applied to learn 

complex relationships in these datasets and forecast health and disease outcomes 

[168-170]. Previously, a comprehensive performance comparison of machine 

learning algorithms on different datasets indicated that performance was primarily 

dependent on data quality, and showed that in good quality datasets the majority of 

these algorithms made similar predictions [170].  

In this chapter two widely applied machine learning algorithms, RF and SVM, were 

used to predict prognosis in primary melanoma [171, 172]. The RF and SVM 

prediction models were generated using the training subset of LMC, and the 

performance of these models was assessed on the test subset of LMC.  
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5.2 Methods 

5.2.1 Devising a supervised classification framework 

The supervised classification framework presented in Figure 5.1 was applied to 

develop prediction models using gene expression data of LMC tumours. The gene 

expression dataset was divided into training (70%) and test (30%) sets based on 

random sampling of observations. RF and SVM algorithms were applied to the 

training set to develop prediction models across N number of iterations. The model 

with minimal classification error during training was tested on the test set (Figure 5.1). 

 

Figure 5.1 Summary of supervised classification framework  

5.2.2 Defining a dichotomous outcome in the LMC 

The prediction outcome was melanoma-specific survival (refer to section 2.4.1). The 

life table shows statistics for the numbers of deaths, people censored, people still 

alive, and number of people eligible for this analysis in the LMC (Table 5.1). The 

censored observations are patients whose cause of death was not recorded, who left 

the study or who have been followed up for a shorter time. In this study, to create a 

dichotomous outcome status, a survival time threshold was selected by aiming to 

maximise number of deaths and not losing many samples to censoring (Table 5.1). 

Therefore, melanoma-specific survival up to 6 years was chosen as a threshold. 

Patients who survived up to 6 years post-diagnosis were put in class 0 and those 

who died from their melanoma within 6 years were assigned to class 1. Patients 

Gene expression dataset

Test

Training

Minimal error
model

Predicting outcome

Classification algorithm
- Random forest
- Support vector machine
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censored before 6 years follow-up were excluded. As Table 5.1 shows, 168 patients 

have died of melanoma within 6 years post-diagnosis (class 0) while 368 were still 

alive in that period (class 1), making a total of 536 patients.  

Table 5.1 Life table of patients in LMC for 16-year time interval  

Follow up 
time (years) 

Died from 
melanoma 

Censored Alive 
Patients eligible 

for analysis 

1 10 3 689 699 

2 55 12 635 690 

3 95 54 553 648 

4 122 97 483 605 

5 144 128 430 574 

6 168 166 368 536 

7 174 217 311 485 

8 178 267 257 435 

9 181 322 199 380 

10 186 347 169 355 

11 187 384 131 318 

12 190 435 77 267 

13 193 483 26 219 

14 196 503 3 199 

15 196 506 0 196 

16 196 506 0 196 

5.2.3 Creating the training and test sets in LMC 

Although transcriptomic data were available for all 536 patients retained for the 

dichotomised outcome, a small number were lost to gene expression quality-control 

(refer to section 4.3.1.1), leaving 525 patients as the final dataset. This dataset was 

randomly divided into 70% and 30% referred to as training and test sets respectively. 

The genes in the training set were scaled to give each gene a mean 0 and standard 

deviation 1. The genes in test set were scaled using mean and standard deviation 

measures from the training set. 
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5.2.4 Prediction performance measures 

The prediction performance was assessed using the sensitivity, specificity, negative 

predictive value (NPV), positive predictive value (PPV) and kappa index. These 

measures are defined below in Figure 5.2 and in the equations below. 

 

Figure 5.2 Summary of reference terms when comparing actual status with 

predicted status 

 

The performance measures are calculated as follows: 
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In unbalanced datasets, the accuracy is not a useful performance measure [173]. 

The Cohen’s kappa index is used for measuring the agreement between the actual 
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and predicted outcome by accounting for agreement by chance [174, 175]. This index 

is calculated as: 

 > =
1? − 1A
1 − 1A

 (5.6) 

where po is the observed agreement and pe is the expected agreement by chance, 

derived from the Figure 5.2 as: 

 !A =
[(DEFGE)(DEFGH)]F[(GHFDH)(GEFDH)]

(DEFGEFDHFGH)J
  (5.7) 

Kappa varies between 0 and 1, with 0 indicating no agreement, 0-0.20 a slight 

agreement, 0.21- 0.40 a fair agreement, 0.41-0.60 a moderate agreement, 0.61-0.80 

a substantial agreement, and 0.81-1.00 almost perfect agreement between the actual 

and predicted classes [174, 176]. In this thesis, kappa was used to assess the 

prediction performance of classification models. 

5.2.5 Developing classification models using Random Forest (RF) 

In 2001, L Breiman  formulated a classification method, known as the Random 

Forest, that is an aggregation of a large number of classification trees [171]. From a 

given set of training observations, a series of bootstrap datasets S of size X are drawn 

with replacement, where X is the number of observations [171, 177, 178]. For each 

bootstrap dataset, a decision tree is grown, and after S iterations the resultant S 

decision trees are collectively referred to as the Random Forest (RF). At each branch 

(node) of each tree, m input variables are randomly selected as potential predictors 

on which the bootstrap dataset is split. In each bootstrap dataset, the observations 

that were not included from the training set are referred to as the out-of-bag (OOB) 

samples.  

Each OOB sample receives a classification “vote” from every decision tree that was 

grown independently of that sample. Finally, the RF algorithm chooses a 

classification label that receives the most votes, and the proportion of trees choosing 

that classification provides a measure of certainty about the classification. Since each 

training set observation has a probability of 1-e-1 (~0.632) of being included in the 

bootstrap dataset of size X, so there will be approximately S/3 decision trees which 

will have that training observation as OOB. Similarly, a new observation can be 

classified in the same way using all the trees in the forest.  

RF algorithm is a slight modification of the bagging algorithm [178, 179]. The bagging 

algorithm generates decision trees in a similar way to the RF algorithm, but in the 
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bagging algorithm each tree node is split using a large number of predictor variables. 

Hence, if a dataset has a very strong predictor variable, the bagging algorithm will 

make the split using this variable across most of the decision trees. This may lead to 

generation of decision trees which are strongly correlated [178]. The RF algorithm 

reduces, but does not eliminate, correlation by random selection of predictor 

variables at each node. 

As described above, from a training set, S bootstrap datasets are generated and for 

each dataset the RF algorithm repeats the three following steps for constructing a 

decision tree (Figure 5.3):  

1) randomly select a predefined number (m, which is usually chosen as the square 

root of total number of predictor variables in the dataset) of variables from the data 

at each node  

2) among m variables, select the variable which gives the best data split according to 

the outcome status at that node 

3) the node is split into two daughter nodes. 

These steps are repeated until the terminal node size is just greater than a predefined 

minimum node size (Figure 5.4). The number of observations at each node is referred 

to as the node size. Figure 5.4 shows an example of a decision tree with 100 

observations. In this example, observations are divided into smaller subsets until the 

daughter node contains just over 14 observations.  

 

Figure 5.3 Workflow of RF algorithm  

Adapted from James et al. [178] 

Random Forest basic workflow

Training dataset (X observations)

Boostrap datasets S of size X

Generate a decision tree by repeating the following  steps, until the 
minimum node size is reached:
1) Randomly select m variables 
2) Among m variables, select the variable that gives the best split of the 
    dataset at that node
3) Split the node into two daughter nodes

Classify the OOB samples 

Calculate OOB error rate

Each Bootstrap dataset
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Figure 5.4 Example of a RF decision tree.  

The minimum node size is 14. 

After generating a decision tree, the prediction is made on OOB samples and a 

classification error is calculated, referred to as OOB error (Figure 5.3). The RF also 

calculates an importance measure for each predictor variable in the training set [177, 

178]. The importance measure indicates the contribution of that variable in correctly 

classifying each OOB observation. 

5.2.5.1 OOB error 

During training, the RF algorithm does not require cross-validation or a separate test 

set to evaluate the error rate of a prediction model [171, 177, 178]. The classification 

error rate is calculated during the iteration steps as follows: 

5 Each ith decision tree is constructed using observations in the bootstrap 

dataset generated from random sampling of training set. 

6 The OOB observations for the bootstrap dataset are classified using the ith 

decision tree.  

7 After S iterations, jth observation classification label is decided based on 

majority vote from the decision trees that were grown independently of this 

observation. 

n=100

n=50n=50

n=15 n=35 n=20 n=30

n=15 n=20 n=15 n=15
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8 Finally, after classifying all OOB observations, the proportion of OOB 

observations that were incorrectly classified is referred to as the OOB error of 

the RF model.  

5.2.5.2 Variable importance measure 

The RF algorithm calculates the variable importance using a permutation-based 

approach and Gini index [171, 178]. In the permutation-based approach, OOB 

samples are used to measure the prediction strength of each variable. When the ith 

tree is grown, the OOB samples are passed down this tree and a prediction accuracy 

is calculated. Values for the gth variable are permuted in the OOB set and the 

prediction accuracy is re-calculated. The difference in accuracy after permutation is 

averaged over all the trees and normalised using the standard deviation of 

differences, and this measure is used as an importance measure of the  gth variable 

[178].  

Another importance measure, decrease in Gini index, is calculated every time the 

split is made at each node. This measure does not require permutations and is 

therefore less computer-intensive and gives often similar results as the permutation-

based measure described above. The Gini index is calculated for the parent node 

and each of two daughter nodes. The Gini index is calculated as: 

 
K = 1 −L1MN

O

MPQ

 (5.8) 

where pk is the proportion of observations at each node that belong to k class and K 

are the total number of classes. Values of this index varies between 0 and 0.5. G=0 

when all observations belong to the same class and G=0.5 when all classes contain 

the same number of observations. The difference in Gini index is calculated between 

the parent and the two daughter nodes and more informative variable will associate 

with larger decrease in Gini index value. The decrease in Gini index measure for gth 

variable is calculated by averaging over all the nodes that have used that variable to 

make the split. Finally, this value is averaged over all the trees in the forest. 

5.2.5.3 Properties of RF 

RF works well with high dimensional datasets containing many predictors [178] and 

gives an unbiased estimate of the prediction error as the forest trees are grown [177]. 

It also provides an estimate of which variables are important in the classification. It 

can deal with unbalanced datasets by assigning different weights to the minority 
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classes. The algorithm also calculates a proximity matrix or “similarity” measure 

between the observations which can be used in clustering or detecting outliers in the 

dataset. Overall the random nature of selecting variables and observations for 

constructing decision tree makes this method less prone to overfitting. Like other 

methods, however, RF also has a limitation: as it uses a large number of trees for 

making prediction, it can be very computer-intensive, although this can be alleviated 

by using the Gini index instead of a permutation-based approach to assess variable 

importance. 

5.2.5.4 Application of the RF to LMC 

The RF algorithm was applied on the LMC training set to develop prediction models. 

The number of trees was set to 20,000, which means that 20,000 bootstrap datasets 

were generated. The number of predictor variables selected at each node of the 

decision tree was set as the square root of the total number of predictor variables in 

the training set (mTry=117). The variable importance was calculated using the mean 

decrease in Gini index [177]. The analysis was performed using R-packages Caret 

[180] and randomForest [181]. The generated RF model was applied on the test set 

and performance measures were calculated for both the training and test sets.  

5.2.5.5 Dealing with class imbalance using undersampling 

The training set was not balanced, i.e. the majority of observations were in class 0 

(n=253) in comparison to class 1 (n=115). To overcome class imbalance, the under-

sampling scheme was applied on the majority class [182, 183] using sampsize 

function in randomForest R-package [181]. This function randomly selected equal 

number of observations (number of observations in minority class 1 was chosen in 

this case) from both classes at each iteration to generate bootstrap datasets. The 

same parameters were used for the RF application as described in the previous 

section. 

5.2.6 Developing classification models using SVM 

The SVM is a supervised classification approach developed in the 1990s [184]. This 

technique is a non-linear extension of the maximum margin classifier, which is 

applicable when classes are linearly separable [185]. The SVM algorithm uses a 

training set to identify a hyperplane separating observations, which is used to make 

predictions on future observations.  
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5.2.6.1  Maximum Margin classifier 

The maximum margin classifier in p dimensions identifies a hyperplane in a subspace 

of p-1 dimensions that separates and maximizes the distance from the training set 

observations [178]. In the special case of a two-dimensional space the hyperplane 

would be a straight line (Figure 5.5), which is defined as the set of points X = (x1, x2) 

such that 

 3(R) = ST + SQRQ + SNRN = 0 (5.9) 

where β0,	β1,	β2, are the variable coefficients [178]. The test set observations are 

classified using the hyperplane. If f(x)=0, the test set observation lies on the line. If 

f(x) <0, the observation is classified into class 0 and if f(x) > 0 the observation is 

classified into class 1. The magnitude of f(x) gives an estimate about how far the 

observation x lies from the hyperplane. 

 

Figure 5.5 Maximum margin classifier 

Adapted from James et al. [178]. Example of a maximum margin classifier 

identified hyperplane in two dimensions. The margin is the distance from the 

solid line to the dashed lines. The distance from the three points indicated by 

the arrows are the support vectors. 
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The smallest perpendicular distance from an observation to the hyperplane is 

referred as the margin (Figure 5.5).  

Generalizing to p dimensions, with a given a set of observations X1, X2,…, Xn Î Rp and 

associated two class labels y1, y2,…,yn Î (-1,1), the maximum margin hyperplane 

solution is given by the values of b maximizing the margin, M, such that: 

 (VWS? + SQRVQ +⋯+ SYRVYZ ≥ \, ∀	% = 1,2,3, … , # (5.10) 

The maximum margin classifier has largest marginal distance on the training set 

observations but may not have the largest margin on the test set, which is an example 

of overfitting. The maximum margin classifiers are desirable when classes are 

clearly/linearly separable. However, the need to classify all observations accurately 

can often lead to overfitting on the training data. This makes the maximum margin 

hyperplane extremely sensitive to individual observations. The support vector 

classifier is an extension of this method which can tolerate some misclassifications 

while classifying the majority of the observations accurately [178].  

5.2.6.2 Support vector classifiers 

Support vector classifiers are also called soft-margin classifiers [178]. The soft-

margin concept does not strictly adhere to classifying all the observations on the right 

side of a hyperplane; it allows some misclassifications. The solution to optimizing a 

soft-margin classifier is choosing b such that: 

 (VWST + SQRVQ +⋯+ SYRVYZ ≥ \(1 − bV) (5.11) 

for all i = 1, . . . , n, subject to the constraint: 

 
LbV ≤
d

VPQ

e (5.12) 

where C is a non-negative hyperparameter, M is the width of the margin and 

e1,e2,…,en are the (non-negative) slack variables that allow misclassification of 

observations. The slack variables provide information about location of training 

observations with reference to the margin and the hyperplane. If ei =0, the observation 

is on the correct side of hyperplane. If ei >0, the observation is on the wrong side of 

the margin. If ei >1, the observation is on the wrong side of hyperplane.  

The hyperparameter C controls the misclassification rate allowed in the training set. 

At large values of C, a narrow margin is chosen and no misclassification is tolerated; 
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the SVM algorithm tries to classify all training observations correctly [172, 186, 187]. 

For small values of C, the SVM algorithm tries to identify a hyperplane with wider 

margin and tolerates some misclassification of training set observations. 

This hyperparameter also controls bias-variance trade-off: lower C values result in a 

model with higher bias and lower variance (underfitting), and higher C results in a 

model with high variance and low bias (overfitting). This hyperparameter C is tuned 

using a k-fold cross-validation approach. The observations that lie on margins are 

known as support vectors. When C is large, many support vectors are involved in 

determining the hyperplane, while smaller values of C correspond to fewer support 

vectors. 

Like maximum margin classifiers, support vector classifiers work well with classes 

that are linearly separable by tolerating some misclassification. In case of non-linearly 

separable classes, support vector classifiers extend to higher order feature space 

functions, e.g. quadratic, cubic etc. This would require a lot computation time which 

is not practically feasible [178].  

5.2.6.3 SVM using linear kernel function 

SVM are an extension of support vector classifiers which enlarge the features space 

using kernel functions [172, 178, 188]. The idea of this is to find linear boundaries in 

the enlarged space and transform it back to non-linear boundaries in the original 

space. The solution to the support vector machine problem with a linear kernel 

involves calculation of inner product of observations, given by 

 
fWgV,ghZ = LRVMRhM

Y

MPQ

 
(5.13) 

where K is the kernel function which quantifies similarity between two observations 

gi and gj, each having p predictor variables. The equation (5.5) is the linear kernel 

function that quantifies similarity between two observations using a Pearson’s 

correlation coefficient form. 

5.2.6.4 SVM using non-linear kernel function 

The SVM kernel function can be extended to a higher order polynomial function as, 

 
fWgV,ghZ = i1 +LRVMRhM

Y

MPQ

j

k

 
(5.14) 
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where d is the degree of the polynomial [178]. Using a higher order polynomial 

function provides a flexible decision boundary since it tries to fit the classifier in a 

higher dimensional space than the original feature space (Figure 5.6 left).  

The features of observation X in higher dimensional space are calculated as: 

 
3(g) = S? +	LlVf(g, gV)

m

VPQ

 (5.15) 

where f(X) is the new feature vector of X. The feature vector can be input into equation 

5.11 to calculate the predicted class of observation X. The parameter a is a vector of 

coefficients, b0 is a constant parameter and S are the total number of training set 

observations. 

Another choice apart from polynomial kernels is the radial basis kernel (Figure 5.6 

right) which takes the form, 

 
fWgV,ghZ = exp i−qLWRVM−RhMZ

N
Y

MPQ

j (5.16) 

where g is a positive constant. The radial basis kernel calculates the Euclidean 

distance between the observations, and if the distance is large then kernel term will 

be small.  

The hyperparameter g controls a trade-off between errors due to the bias and the 

variance in the model. If a test observation X* is far from a training observation Xi 

(based on Euclidian distance), then the kernel term will be small and Xi will play no 

role in predicting the class of X*. This suggests that radial kernels have a local 

behaviour, and training observations have a larger impact on predicting the class of 

test observations closest to them (Figure 5.6 right). A further advantage of using 

kernels in comparison to support vector classifiers is that it is computationally 

efficient.  
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Figure 5.6 Polynomial kernel SVM and radial kernel SVM 

 Adapted from James et al. [178]. The figure shows an example of polynomial 

kernel SVM, with degree=3 (left) and radial Kernel SVM (right). 

5.2.6.5 k-fold Cross-validation  

Resampling-based strategies have been applied to estimate the error rate of 

prediction models [178, 189]. The two widely used resampling strategies are 

bootstrapping and cross-validation [178]. Bootstrapping proceeds by randomly re-

sampling a subset of data multiple times, with replacement, to generate several 

prediction models. The performance of these models is assessed on observations 

that were not included in the bootstrapped subset [178]. (This is the approach taken 

in RF algorithm). The cross-validation approach, on the other hand, proceeds by re-

sampling data subsets multiple times without replacement to generate prediction 

models.  

The k-fold cross-validation approach divides training data into k equal subsets 

referred to as k-folds. The first fold is held out and referred to as the validation set. 

The prediction model is generated by training on the remaining k-1 folds. The 

performance of this prediction model is assessed on the validation set. This process 

is repeated k times and each time a different set of observations are assigned to the 

validation set. The overall performance estimate of the prediction model after k 

iterations is calculated as, 

 
e8 =

1
r
L+"63V

M

VPQ

 
(5.17) 
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where CV is the cross-validation performance estimate across k iterations and Perfi 

is the performance estimate on the validation set at the ith iteration. The advantage 

of using the k-fold cross-validation approach is that it is not prone to overfit and it 

gives a reliable estimate of performance of the model during training [178]. 

5.2.6.6 Application of SVM to LMC 

SVM algorithm was applied on the training set using linear and non-linear kernel 

(polynomial and radial basis) functions to generate prediction models. The 

hyperparameters of these kernel functions were tuned via grid-search using a 10-fold 

cross-validation approach. The cross-validation sets were generated using stratified 

sampling which maintained the proportion of classes across the training and 

validation sets. Kappa measure was used to estimate the performance of the model 

in 10-fold cross-validation. The hyperparameter values which showed the best 

performance on the cross-validation set were selected in the final model. The 

predictions made by the final model on the left-out observations were used to 

estimate model performance during training. The final model was applied on the test 

set observations and performance measures were calculated. The analyses were 

performed using R-packages Caret [180] and kernlab [190].   

5.2.6.7 Dealing with class imbalance using under sampling  

As for the RF, the SVM model was generated using the under-sampling scheme for 

the majority class. This was done at each cross-validation iteration using down-

sampling function in Caret R-package [180]. The model was generated using a linear 

kernel, and cross-validation performance was assessed using Kappa index. The 

performance measures on the training and test sets were calculated as described in 

the previous section. The analyses were performed using R-packages Caret [180] 

and kernlab [190] . 

5.2.7 Calculating agreement between RF and SVM models 

The agreement between the RF model and SVM model was calculated using the 

Cramer’s V statistic (refer to section 3.2.6). The predictions of these two models were 

compared on the test set and the model with higher performance was further 

explored.  
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5.2.8 Generating permutation-based baseline models 

Permutation-based classification models were developed using random datasets 

generated after shuffling of class labels in the training set over 100 iterations. The 

best performing algorithm among RF and SVM was used to generate prediction 

models using each of these random datasets and the model performance was 

assessed on the test set (non-shuffled). The aim of these analyses was to produce 

average classification performance metrics from 100 random models and use them 

as baseline to appraise the real value of similar metrics obtained from the unshuffled 

training dataset. 

 

5.3 Results 

5.3.1 Training and test sets in LMC 

The gene expression dataset was divided into training and test sets after selecting 

survival cut-off at 6 years. The training set contained 70% of the observations and 

test set contained 30% of the observations. As expected, the training and test sets 

showed no significant differences in clinico-histopathological characteristics of the 

observations (Table 5.2). 

5.3.2 RF applications to predict outcome 

5.3.2.1 RF with unbalanced class design 

The RF algorithm sampled 20,000 bootstrap datasets from the training set and 

generated 20,000 decision trees that predicted outcome. The performance was 

assessed on OOB samples for each bootstrap dataset. Initially, the overall OOB error 

decreased with the addition of more decision trees, however the error stabilised after 

generating approximately 2500 trees (Figure 5.7). The OOB error was much lower 

for majority class observations (class 0, survivors) in comparison to minority class 

observations (class 1, non-survivors). Since the training set was unbalanced, the 

prediction model based on this set will be referred to as the RF model with 

unbalanced class design. 
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Table 5.2 Comparing histopathological differences between the training and 

test set  

Characteristics n(%) 
LMC dataset 

P Training 
n=368(%) 

Test  
n=157(%) 

Sex: male, 226 (43) 159 (43) 67 (43) 0.98 

Site: limbs, 222 (58) 155 (42) 67 (43) 0.98 

Ulceration status: yes 176 (34) 127 (34) 49 (31) 0.53 

AJCC stage:               I 181 (35)  124 (34) 57 (37) 

0.33                                    II 266 (51) 194 (53) 72 (47) 

                                  III 74 (14) 48 (13) 26 (17) 
Breslow (mm)  
median =2.3 (range= (0.3,20)) 2.3 (0.3, 18) 2.1 (0.5, 20) 0.20 

Age (years)  
median=57.4 (range= (20,81)) 58 (20, 81) 57 (20, 76) 0.96 

TILS:  Absent 59 (15) 37 (15) 17 (15) 

0.83 Non-Brisk 260 (72) 181 (72) 79 (70) 

Brisk 49 (13) 32 (13) 17 (15) 
 

When the RF model with unbalanced class design was applied on test set 

observations, the model had similar prediction performance when compared with the 

training set (Table 5.3). The model performance parameters indicated that the RF 

model had high specificity (0.95) and low sensitivity (0.23) on test set (Table 5.3). 

There was no difference between the NPV (0.71) and PPV (0.71) of the RF model. 

The kappa index (0.22) for the model suggested low agreement between actual and 

predicted classes (Table 5.3). 
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Figure 5.7 RF model using unbalanced class design 

RF OOB error estimate as the number of decision trees were added to the 

forest. The red line is the overall OOB error, green line shows the error rate for 

class 0 observations, and blue line shows the error rate for class 1 

observations.  
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Table 5.3 Summary of the RF model performance on training and test set 

Sens. is the sensitivity, spec. is the specificity, PPV is the positive predictive 

value and NPV is the negative predictive value. 

Class 
design Set Sens. Spec. PPV NPV kappa 

Unbalanced 
Training 0.19 0.95 0.62 0.72 0.17 

Test 0.23 0.95 0.71 0.71 0.22 

Balanced 
Training 0.44 0.77 0.47 0.75 0.22 

Test 0.54 0.86 0.65 0.79 0.41 
 

5.3.2.2 RF with balanced class design 

As shown above, in the unbalanced class design, the RF model predicted majority 

class (class 0) observations more accurately than minority class (class 1) 

observations. To overcome this, RF model was re-run under-sampling the majority 

class at each iteration to achieve a balanced class design. The new model showed 

a much lower OOB error for class 1 observations in comparison to the previous model 

with unbalanced design (Figure 5.7 and Figure 5.8). However, this improvement 

came at the expense of an increased error rate for class 0; the overall error rates in 

the two designs were comparable (Figure 5.7, Figure 5.8). As a result of the shift in 

error rates corresponding to class 1 and class 0, the RF model in the balanced design 

had an higher sensitivity (0.54) and lower specificity (0.86) in comparison to the RF 

model with unbalanced design (sens.= 0.23, spec.= 0.95) (Table 5.3). Compared with 

the unbalanced design, the kappa index was much higher for the balanced design 

(kappa= 0.41), and this further indicated that the balanced design RF model had 

better agreement between predicted class labels and actual class labels on the test 

set (Table 5.3). 
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Figure 5.8 RF model using balanced class design 

RF OOB error estimate using balanced class design. The red line is the overall 

OOB error, green line is the error rate for class 0, and blue line shows the error 

rate for class 1 observations. 
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5.3.3 SVM applications to predict outcome 

The SVM prediction models were generated using linear and non-linear kernel 

functions. 

5.3.3.1 SVM application using linear kernel  

The SVM algorithm using a linear kernel generated a model that achieved similar 

classification performance on both the training and test sets. The kappa index 

increased with the hyperparameter C and stabilised after C reached 0.0005. The SVM 

model with the highest average kappa index across the 10-fold cross validation 

during training was selected and was applied to the test set.  

The SVM model had comparable performance measures on the training 

(sensitivity=0.43, specificity=0.83, kappa=0.27) and test sets (sensitivity=0.46, 

specificity=0.80, kappa=0.27) (Table 5.4). Like the RF model, the SVM model had a 

high specificity (0.80) and NPV (0.75), and a low sensitivity (0.46) and PPV (0.53) 

(Table 5.4).   

The initial grid search for hyperparameter C was done for a large range of values. It 

was hypothesized that fine-tuning the grid search around the above selected C value 

may further improve the model performance. Fine-tuning the hyperparameter C value 

did not improve the performance of SVM model as this model achieved comparatively 

similar performance to the previous SVM model (Table 5.4). As before, the fine-tuned 

SVM model had a higher specificity (0.90) and NPV (0.74), than the sensitivity (0.34) 

and PPV (0.60) on the test set. 

Table 5.4 Summary of SVM model performance on training and test set 

Sens. is the sensitivity, spec. is the specificity, PPV is the positive predictive 

value and NPV is the negative predictive value. 

SVM Set Sens. Spec. PPV NPV kappa 

Wide range C 
Training 0.43 0.83 0.53 0.76 0.27 

Test 0.46 0.80 0.53 0.75 0.27 

Fine-tuned C 
Training 0.38 0.86 0.56 0.75 0.26 

Test 0.34 0.90 0.60 0.74 0.27 
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5.3.3.2 SVM application using non-linear kernel  

Overall, the SVM algorithm with non-linear kernel functions (radial and polynomial) 

performed poorly in predicting outcome (Table 5.5). The SVM radial kernel function 

generated a majority class model with low sensitivity (0) and high specificity (1) and 

a kappa index of 0 in both training and test sets (Table 5.5). The SVM algorithm with 

a polynomial kernel function generated a model with low sensitivity (0.15) and high 

specificity (0.93) (Table 5.5) in the test set with a kappa index of 0.10, a PPV of 0.53 

and NPV of 0.69 (Table 5.5). 

Table 5.5 Summary of SVM non-linear kernel functions on training and test set 

Sens. is the sensitivity, spec. is the specificity, PPV is the positive predictive 

value and NPV is the negative predictive value. 

Kernel Set Sens. Spec. PPV NPV kappa 

SVM radial 
Training 0 1 NaN 0.66 0 

Test 0 1 NaN 0.69 0 

SVM poly 
Training 0.24 0.95 0.68 0.73 0.23 

Test 0.15 0.93 0.53 0.69 0.10 

5.3.4 SVM using balanced class design 

The SVM models described above were generated using unbalanced classes. Like 

RF, it was hypothesised that under-sampling the majority class to achieve a balanced 

class design may further improve the model performance.  

Unlike RF, using balanced class design did not generate a better performing SVM 

model. This newly generated SVM model had similar performance to the SVM model 

with unbalanced class design. The SVM model with balanced design had similar 

kappa index on the test set (kappa=0.26) when compared with SVM model with 

unbalanced design (kappa=0.27) (Table 5.4, Table 5.6). However, the new model 

had improved sensitivity (0.61) in comparison to the model with unbalanced design 

(sensitivity=0.46) on the test set (Table 5.4, Table 5.6), at the expense of a decreased 

specificity (0.67 in the balanced design, 0.80 in the unbalanced design) (Table 5.4, 

Table 5.6).  
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Table 5.6 Summary of SVM linear kernel model after under sampling the 

majority class 

Sens. is the sensitivity, spec. is the specificity, PPV is the positive predictive 

value and NPV is the negative predictive value. 

Set Sens. Spec. PPV NPV Kappa 

Training 0.63 0.66 0.47 0.80 0.28 

Test 0.61 0.67 0.48 0.78 0.26 

5.3.5 Comparing RF and SVM predictions 

The Cramer’s V statistic (0.71) indicated good agreement between predictions from 

the RF and SVM classification models (Table 5.7). The RF and SVM models were 

generated using the balanced class design approach (refer to 5.3.2.2 and 5.3.4). All 

the observations classified by RF in class 1 were also classified in same class by 

SVM model (Table 5.7). Seventy nine percent of observations classified in class 0 by 

RF were classified also in the same class by SVM and rest 21% of observation 

showed different class labels (Table 5.7). Overall both the methods made consistent 

predictions on test set but the RF model (kappa=0.41) had slightly better performance 

when compared with SVM model (kappa=0.27) (Table 5.6). 

The RF and SVM models classified 90 observations as class 0 (survivors, n=90) and 

78% of these observations had survival time greater than 6 years (Figure 5.9A). The 

observations that were classified as class 1 (non-survivors, n=43) by both the 

models, 65% experienced death from melanoma within 6 years (Figure 5.9B).  

Among 24 disagreeing observations, 20 had survived for more than 6 years (Figure 

5.9). The RF model predicted these 24 observations as survivors and the prediction 

was correct for 20 cases and incorrect for just 4 cases. SVM model on the other hand 

predicted these 24 observations as non-survivors and the prediction was correct only 

for 4 observations and was incorrect for 20 observations. Overall, these results 

highlight that RF model had higher classification performance than the SVM model 

on the test set.  
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Figure 5.9 Comparing RF and SVM predictions  

Survival time of the observations classified in the same classes by RF and SVM, 

i.e. (A) class 0, (B) class 1. (C) Survival time of the observations which had 

disagreement between their predictions by RF and SVM models. The red line 

indicates the survival cut-off at 6 years. 

Table 5.7 Comparing overlap between RF model and SVM model prediction on 

test set 

Test set 
RF 

Class 1 n(%) Class 0 n(%) 

SVM 
Class 1 43 (100) 24 (21) 

Class 0 0 90 (79) 
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5.3.6 Permutation-based RF model 

As shown in previous section, the RF algorithm had higher performance than the 

SVM algorithm. Therefore, RF algorithm was selected and applied to 100 random 

datasets generated by permuting class labels in the training set. As in the real data, 

the prediction in these random datasets showed a higher specificity than sensitivity 

(Figure 5.10). Over 100 iterations, the median specificity, sensitivity, and kappa index 

were respectively 0.89, 0.09 and -0.01 (Figure 5.10).  

The non-permuted RF model (refer to section 5.3.2.2) had higher sensitivity and 

kappa in comparison to the permuted models. Across the 100 permuted datasets, 

none of the models showed a kappa index and sensitivity value higher than 0.41 and 

0.54 respectively (Figure 5.10). However, the median specificity of the permuted 

model was sometimes higher than the non-permuted RF model. This analysis 

therefore shows that specificity is a poor performance metric for the analysis of our 

dataset; sensitivity and the kappa index are good metrics as they are close to 0 on 

average in random data.  



146 

 

 

Figure 5.10 Performance summary of the permuted model 

Permuted model performance parameters (A) sensitivity (B) specificity and (C) 

kappa on the test set over 100 iterations of permutation based RF model. The 

red line is the median value of performance measure for permuted models and 

blue line represents the observed performance measure for the non-permuted 

RF model.   
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5.4 Discussion 

Machine learning applications have shown great promise in improving diagnosis and 

predicting prognosis of cancer patients [109, 111, 112, 168, 191, 192]. Recently, it 

was shown that a machine learning approach achieved better diagnostic 

performance than a group of trained dermatologists in detecting melanoma from 

dermoscopic images [169].  

The main aim of this chapter was to test whether transcriptomic information from the 

tumours of patients from LMC can predict clinical outcome (death from melanoma 

within 6 years). To this end, the LMC data were partitioned into a training and test set 

to respectively develop and evaluate two machine learning classification methods, 

RF and SVM. The random data splitting meant that the two obtained subsets had no 

difference between them in terms of clinical characteristics. The prediction outcome 

was defined as surviving up to 6 years, as the majority of patients who have 

melanoma metastasis and die from it, normally do so very early after the initial 

diagnosis [193].  

One major advantage of using the RF is that the use of OOB samples to evaluate 

performance in the training step yields an unbiased estimate of the model 

performance [171]. The unbiasedness means that the results observed in the training 

dataset are reproduced in the test set. This was confirmed in the LMC as the RF 

model showed similar performance measures in both training and test sets (Table 

5.3). The RF model predicted the majority class observations better than the minority 

class observations, i.e. had a higher specificity than the sensitivity. This class-

imbalance is a well-recognized problem in supervised classification [173, 183, 194]. 

Several methods were proposed to overcome this issue and have shown some 

improvement in performance of machine learning algorithms [173, 182, 183, 194-

196]. Among the available methods, over-sampling the minority class and synthetic 

minority over-sampling technique are more prone to overfit the training data, and 

hence the majority class was under-sampled (less prone to overfitting) to achieve 

balanced class design. Applying an under-sampling approach resulted in improved 

sensitivity and kappa index of RF model. The new RF model with balanced design 

had a lower OOB error for the minority class in comparison to the unbalanced design. 

The SVM approach identifies a hyperplane using linear or non-linear kernel functions 

[184]. The hyperparameters in SVM were tuned using 10-fold cross validation and 

the selected parameter value was used in the final SVM model [186]. In LMC dataset, 

the SVM with linear kernel outperformed SVM with non-linear kernel functions. In 

particular, the SVM model with a radial kernel showed no utility at all as it classified 
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all observations in the majority class (maximum specificity, zero sensitivity), which is 

equivalent to the best guess without using the available transcriptomic data. The 

linear SVM outperformed the non-linear and its performance on the training set was 

comparable to the test set. The initial grid search for hyperparameter C of the linear 

kernel function was done on a large interval and its fine-tuning on the grid search 

around the previously selected C value did not improve prediction performance of the 

SVM model.  

Like the RF model with unbalanced design, the SVM model also had a much higher 

specificity than sensitivity. Undersampling the majority class to overcome class 

imbalance brought an improvement to the sensitivity of the SVM model but this 

improvement came at a greater cost to the specificity. The kappa value however 

remained unchanged, suggesting a similar level of agreement overall between actual 

and predicted class labels with and without undersampling.  

Shi et al. compared several machine learning methods by generating more than 

30,000 models using different microarray datasets and assessing their performances 

on independent test sets [170]. They found none of the methods to consistently 

outperform all the others. The prediction performance was observed to be mainly 

dependent on the quality of the microarray data (i.e. pre-processing) and prediction 

endpoint variable. Overall, in good quality microarray datasets, the majority of 

methods made similar predictions [170]. In our analysis of the LMC, the RF and SVM 

models made similar predictions on the test dataset. However, for the observations 

with conflicting predictions, the RF model showed higher classification accuracy and 

classified most of the observation into the actual classes. 

Transcriptomic information of a patient’s tumour has been demonstrated to be of 

prognostic significance [105, 106, 114, 116, 197]. To assess whether the generated 

RF model has captured truly prognostic information from the dataset, several null 

models were generated after randomly shuffling training set observations. As 

expected, the RF model had consistently a better performance (higher sensitivity and 

kappa index) than the permuted RF models. The permuted models had high 

specificity and low sensitivity and kappa, which suggests that these models are likely 

to misclassify non-survivors as survivors. It also hints that higher sensitivity and 

higher kappa are good measures to assess the performance of prediction models in 

LMC.  

Overall, these results provide evidence that machine learning methods can predict 

prognosis of a patient using transcriptomic information from the patient’s tumour. The 

limitation of these approaches is that although training and test sets were scaled 
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independently, some dependency still lies between the two sets as the samples were 

profiled using the same technique and were pre-processed together. In next chapter, 

these issues will be addressed by pursuing model validation on an independently 

generated dataset. 

In summary, RF and SVM algorithms generated models that predicted the patient 

prognosis in the LMC. Undersampling to achieve balanced class design further 

improved the performance of RF but not the SVM model. Overall, the RF and SVM 

made comparable predictions on the test dataset. In the next chapter, only the RF 

will be further explored, both because this method performed better as a classifier 

and because it provides an estimate of the importance of each gene in the model, 

while SVM works as “black box” in nature and generates very limited output. In what 

is presented so far, the RF model was based on gene expression data alone. The 

next step is to combine gene expression data and clinical information to see if an 

improvement is possible. The performance of the combined model will be validated 

on an independent dataset from Lund, Sweden. 
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Chapter 6 

Combining clinical information and gene expression 

for predicting outcome and independent validation 

The objectives of this chapter are: 

Objective 11: To generate a RF model after combining clinical information and gene 

expression data and compare its performance with a clinical information based RF 

model 

Objective 12: To generate a refined RF model by performing variable selection 

Hypothesis: The refined RF model using top predictor genes will predict prognosis 

similarly to the model using all genes 

Objective 13: To validate the prognostic value of the refined RF on an independent 

dataset of primary melanoma from Lund, Sweden  

Objective 14: Biological interpretation of the refined model using pathway 

enrichment analysis 

 

6.1 Introduction 

Machine learning approaches like Random Forest (RF) and Support Vector 

Machines (SVM) are black-box in nature; they allow the user a very limited control 

over the steps involved in making predictions. The RF algorithm partly overcomes 

this issue by calculating a Gini index for each predictor variable in the model (refer to 

5.2.5.2). This importance measure can be used to assess the contribution of each 

variable included in the model. The prediction models previously generated using RF 

with a balanced class design will be further explored in this chapter (refer to 5.3.2.2).  

In clinical settings, AJCC staging system is a widely used procedure for predicting 

prognosis and deciding treatment protocols [44]. However it predicts outcome 

accurately only for 68% of the population (AUC:0.68) [114]. Therefore, it is of interest 

to develop better prognostic biomarkers which can complement AJCC staging in 

clinical settings. Other clinical variables, such as age at diagnosis, sex and body site 

of tumour have been shown to be associated with melanoma prognosis [42]. These 

variables independently predicted melanoma-specific survival in the LMC (refer to 
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4.3.3.1). Hence, a baseline RF model was generated by jointly analysing the clinical 

variables described above.  

In this chapter, a RF model will be constructed after combining clinical variable 

information and gene expression data. The performance of this model will be 

compared with the baseline clinical variable based RF model. To maximise clinical 

utility, a refined model with a limited number of predictor variables will be generated. 

The refined model will be validated by comparing its performance with the baseline 

model in an independent cohort of primary melanoma from Lund, Sweden (refer to 

section 4.2.5.1). To get biological insights into the decision-making process of the 

refined RF model, the predictor genes included in this model will be tested for their 

overrepresentation in curated biological pathways. Finally, to compare the 

unsupervised clustering signature with the supervised classification signature, the six 

LMC classes defined in chapter 4 will be compared with the refined RF model 

classification. 

 

6.2 Methods 

6.2.1 Using clinical information to generate RF model 

The RF model was generated using clinical variable information of melanoma 

tumours in LMC. The clinical variables included in the model were AJCC stage, age 

at diagnosis, sex and body site of tumour. AJCC stage was treated as an ordered 

categorical variable, age at diagnosis was treated as a continuous variable, sex was 

coded as 0 for females and 1 for males, and body site of tumour (limbs, trunk, head 

and neck, rare) was converted into a series of dummy variables using model.matrix 

function in the R base package. The dummy variables form the main variable was 

generated by assigning its categorical levels a value of 1 if true and 0 if false. In this 

case, from site of tumour, four new variables were generated named as limbs, trunk, 

head and neck, and rare. These variables were initialised with a value of 1 if true for 

a patient or 0 if not. 

As described previously, the RF model was generated using a balanced class design 

approach (refer to 5.2.5.5), the number of trees was set to 500 and the number of 

variables selected for consideration at each node  (mTry) was 2. The RF analysis 

was performed using R-packages randomForest and Caret [180, 181]. The error for 

OOB samples was plotted using R-package ggplot2 [130]. The performance of this 
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model was assessed on the test set using previously described performance 

measures (refer to 5.2.4). 

Since clinical variables Breslow thickness and ulceration are included in the definition 

of AJCC stage [44], these variables were not included in the model. Four 

observations in the dataset had missing information on AJCC stage, and these 

samples were excluded. TILs and mitotic rate had more than 21% (n=115) and 14% 

(n=74) of missing values respectively. Hence, these variables were not included in 

the analysis.  

6.2.2 Removing clinical information from the gene expression 

To remove clinical variable information from gene expression data, a linear 

regression approach was used with the gene expression as the outcome variable 

(equation (6.1)). The regression approach assumes a linear relationship between the 

outcome variable and the predictors. The linear regression line is represented as: 

 K"#"V = SV? + SVQRQ + SVNRN +⋯+ SVYRY + sV (6.1) 

where Genei is a vector of expression values of ith gene (outcome variable) and x is a 

vector of p predictor variables (e.g. x1 for AJCC stage, x2 for age, x3 for sex ….). bs 

are the parameter coefficients for predictor variables and are different for different 

genes. bo is the intercept and sV	is the error term in the model or the residual, i.e. the 

difference between the actual outcomes and those predicted by the model. All 

parameters are estimated using a least squares approach which tries to minimise the 

sum of squared errors. Residuals are assumed to be normally distributed with mean 

zero and are independent of the predictor variables.  

The linear regression was performed using clinical variables as independent 

predictors and gene expression data as the outcome variable. The residual values 

for each gene from the linear regression were used as input data in the RF algorithm. 

A new RF analysis was conducted using the same parameters as described 

previously (refer to the 5.2.5.5), and the performance measures were calculated for 

both training and test sets (refer to 5.2.4). 

6.2.3 Combining clinical information and gene expression 

The RF model was generated after combining clinical variable information and gene 

expression residuals for LMC patients. The clinical variables used in the previous 

section were included in this analysis. During training, at each node the predictor 
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variables were selected such that the selected variable pool included all the clinical 

variables along with randomly selected genes. The variable from the selected pool 

that gave the best split at the node was chosen to make the split into two daughter 

nodes. The number of randomly selected genes was decided based on the value of 

mTry parameter which was set to 117 (square root of total number of gene). The 

number of trees was fixed at 20,000. 

 In keeping with previous analyses, the RF model was generated using a balanced 

class design by selecting an equal proportion of samples from both classes at each 

iteration (refer to 5.2.5.5). During training, the error rate of the RF model was 

calculated on OOB samples, and final performance was assessed on the test set. 

This analysis was done using R-packages Caret [180] and ranger [198]. The ranger 

R-package contains ranger function, which performs fast implementation of the RF 

algorithm and also forces selection of a desired set of variables at each node of the 

decision tree (clinical variables in this instance). 

6.2.4 Refining the RF model via variable selection 

The RF model developed in the previous chapter was generated using ~13,000 

genes (refer to 5.2.5.5). In clinical settings however, it may not be practical to use a 

biomarker/signature based on such a large number of genes. To mitigate this, smaller 

gene sets of varying size were selected based on Gini index (Figure 6.1). The top n 

(10, 50,100, 200, 400, 800, 1600 and all genes) ranked genes were selected and 

combined with the clinical variables to generate several RF models (Table 6.1). 

These RF models were built using the same training set, and the performances of 

these models were compared on the test set. The RF model with best performance 

was retained as the final refined model. The analysis was done using R-packages 

Caret [180] and ranger [198]. 
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Figure 6.1 Gini importance index  

Plot showing Gini importance measure for each gene in the RF model, x-axis 

is the gene index and y-axis is the Gini index for each gene. The red line shown 

the importance measure of the 1600th gene. 

Table 6.1 Refining the RF model by selecting variable number of genes, mTry, 

and number of trees 

Number of genes mTry Number of trees 

10 3 100 

50 7 700 

100 10 1000 

200 14 2000 

400 20 4000 

800 29 5000 

1600 40 5000 
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6.2.5 ROC analysis for the refined RF model 

The prognostic value of the refined RF model was compared with the baseline RF 

model (based on clinical variables alone) using ROC analysis. Previously, for each 

sample logistic regression was used for calculating probabilities of MSS up to 6 years 

(refer to 4.2.6). In this analysis, for each sample, the proportion of votes received that 

classified in class 0 in the refined RF and baseline RF models were used in place of 

probability of surviving up to six years. The comparison was drawn for four RF models 

described as follows:  

1) Baseline RF model using clinical variable alone; 

2) RF model based on gene expression alone (refer to 5.2.5.5); 

3) Combined RF model; 

4) The final refined RF model. 

ROC curves were plotted for each of these models and AUCs were calculated. The 

test of AUC improvement in nested models was performed using DeLong’s test (refer 

to 4.2.6). These analyses were performed using R-packages ROCR, plotROC, pROC 

and ggplot2 [130, 149, 150, 199]. 

6.2.6  Application of the refined RF model on independent dataset 

The prognostic value of the refined RF model was validated on an independent 

dataset of primary melanomas from Lund, Sweden (refer to 4.2.5.1). Clinical 

variables including AJCC stage, sex, age at diagnosis and tumour site were provided 

upon request by Prof. Göran Jonsson and Dr. Martin Lauss (collaborators at Lund 

University). Some of the tumour samples had missing AJCC stage value (n=76). For 

a subset of these (n=49), the AJCC stage was calculated manually based on the 

guidelines of the 7th edition of AJCC staging system [44], using the records of Breslow 

thickness and ulceration status of tumours. This AJCC edition had been used for all 

other samples in that dataset, as was the case also in the LMC. 

The tumour samples for which AJCC stage could not be calculated were excluded 

from the analysis (n=37). Finally, the dataset had gene expression values of 186 

tumours. Since cause of death was not recorded in the Lund cohort, death from any 

cause (deaths due to melanoma and other causes) and melanoma relapse before 6 

years were used as outcomes. The cut-off at six years was consistent with the LMC, 

and samples were classified as class 0 or class 1, henceforth referred to as actual 

class labels. 
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In keeping with previous chapters, gene expression data from the Lund cohort was 

standardised to give each gene mean 0 and standard deviation 1. The refined RF 

model was applied to the Lund dataset similarly to how it was applied to the LMC test 

set. The refined RF model stored after previous analyses was re-loaded in the R 

environment for application to the Lund dataset, and Lund samples were classified 

into class 0 or class 1. The predicted class labels were compared to the actual class 

labels and performance measures were calculated (refer to 5.2.4). The baseline RF 

model (refer to 6.2.1) was also applied on the Lund dataset, and the performance 

was compared with the refined RF model (based on gene expression and clinical 

variables). As before, these analyses were done using R-package ranger [198]. 

The prognostic value of the refined RF model was compared with the baseline RF 

model using ROC analyses. Similar to section 6.2.5, the proportion of votes received 

classifying in class 0 was used as a probability measure. The outcome measures 

were death from any cause and melanoma relapse at 6 years. The ROC curves for 

both the RF models were plotted, and AUC was calculated for each ROC curve. The 

analysis was performed using R-packages ROCR, plotROC, pROC and ggplot2 [130, 

149, 150, 199]. The statistical comparison of AUC in ROC was performed using 

DeLong’s test (refer to 4.2.6). 

6.2.7 Pathway enrichment of predictor genes in the refined RF 
model 

Pathway enrichment analysis was performed for the selected predictor genes in the 

refined RF model. The genes were input into ReatcomeFIViz, a tool designed to 

identify associated biological pathways. The pathways were visualised using R-

packages wordcloud [200] and RColorBrewer [201]. 

6.2.8 Comparison between the LMC classes and the refined RF 
model predictions  

In this thesis, the two final gene signatures developed are: the refined LMC class 

signature from the unsupervised clustering (refer to 4.3.5.1) and the refined RF model 

signature after combining clinical variable information and gene expression data from 

the supervised classification model. To compare these signatures, their classification 

was tabulated against the actual outcome. During supervised classification, the 

training and test set samples were classified into the four categories, true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN). The bar plot 
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comparing samples classified in the four categories with the LMC classes was 

generated using R-package ggplot2 [130]. 

 

6.3 Results 

6.3.1 Baseline RF model using clinical information alone 

To evaluate the combined prognostic value of the clinical variables, an RF model was 

generated using AJCC stage, sex, site of tumour and age at diagnosis. During the 

training stage, the RF model had a lower OOB error for class 0 observations in 

comparison to class 1 observations (Figure 6.2). The overall OOB error stabilised 

after generating 200 decision trees (Figure 6.2). 

The performance of the model was comparable on both training and test sets. The 

RF model had higher specificity in both training (0.68) and test (0.71) sets than the 

sensitivity (training:0.63, test:0.63) (Table 6.2). This also translated in a higher NPV 

than the PPV in both training and test sets (Table 6.2). The kappa value was slightly 

higher in the test set (0.32) in comparison to training set (0.28) indicating better 

agreement between actual and predicted class labels in the test set (Table 6.2). 

Table 6.2 Summary of clinical variable based RF model performance  

Set Sensitivity Specificity PPV NPV kappa 

Training 0.63 0.68 0.48 0.80 0.28 

Test 0.63 0.71 0.50 0.81 0.32 
 

6.3.2 Prediction after removing clinical information from gene 
expression  

Gene expression data has shown to be associated with prognostic clinical variables 

such as stage of tumour, sex and age of the patient. To test whether gene expression 

data can independently predict prognosis after removing clinical information from the 

expression data, a linear regression model was fitted for each gene using clinical 

variables as predictors in the multivariable model. A strong correlation was found 

between gene expression and clinical variables as illustrated in Figure 6.3. Among 

the 13,688 genes tested, the clinical variables were a significant predictor of gene 

expression for approximately 5500 genes (FDR adjusted p <0.05) in the multi-
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variable model (Figure 6.3A). From the linear regression model, residual values for 

each gene were extracted. Figure 6.3B shows an example of a gene that has different 

expression value across males and females but, as expected, the residuals were no 

longer associated with sex.  

 

 

 

Figure 6.2 Clinical variable based RF model. 

RF model OOB error estimates as the decision trees were added to the forest. 

The red line is the overall OOB error, the green line is the error rate for class 0, 

and the blue line is the error rate for class 1. 
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Figure 6.3 Gene expression association with clinical predictors of melanoma.  

(A) Histogram plot of FDR adjusted P values from the linear regression model 

predicting gene expression using clinical variables. Red line shows the adj. P 

value (FDR) cut off at <0.05. (B) Example boxplot showing expression values 

of a Y-linked gene USP9Y across males and females (left) and the same 

distribution when applied to the gene expression residuals values after 

adjusting for clinical variables in linear regression. P value was calculated using 

Mann-Whitney/Wilcoxon test. 
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6.3.2.1 RF model from using adjusted gene expression 

To test whether gene expression can predict outcome after adjusting for clinical 

information, a RF model was generated using residual values as described above. 

To be consistent with previous analyses (refer to 5.2.5.5), the RF model was 

generated using a balanced class design. Similar to previous results, the RF model 

had a higher OOB error rate in class 1 than in class 0 during training (Figure 6.4). 

The overall error rate of the RF model (combining the 2 classes) stabilised after 

adding 5000 trees to the model (Figure 6.4). 

The model had a higher specificity in both training (0.81) and test sets (0.78) than 

sensitivity (training: 0.32, test: 0.49), and consequently, a higher NPV than PPV in 

both the sets (Table 6.3). When comparing training and test sets, the RF model had 

higher performance on the test set (kappa=0.27 in the test set and 0.14 in the training 

set) (Table 6.3). 

 

Figure 6.4 RF model from adjusted gene expression 

RF model OOB error estimate as more decision trees were added to the forest. 

The red line is the overall OOB error, green line is the error rate for class 0 

observations, and blue line is the error rate for class 1 observations. 
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Table 6.3 Summary of residual based RF model performance  

Set Sensitivity Specificity PPV NPV kappa 

Training 0.32 0.81 0.43 0.72 0.14 

Test 0.49 0.78 0.50 0.77 0.27 

6.3.3 RF model from combining clinical information and gene 
expression 

As shown earlier, even after adjusting for clinical variable information, the gene 

expression demonstrated prognostic significance as the resultant RF model 

predicted outcome on the test set. Hence it was hypothesised that combining clinical 

variable information and gene expression data may lead to generation of a RF model 

with improved performance in comparison to clinical variables alone.  

As expected, the RF model from combining gene expression data and clinical 

variables (combined RF model) (kappa=0.37) had higher performance on the test set 

in comparison to the RF model from clinical variables alone (kappa=0.32). Overall 

the combined RF model had higher specificity in both training (0.82) and test sets 

(0.76) compared to the sensitivity (training:0.50, test:0.63) and a higher NPV than 

PPV; indicating that the model predicted class 0 observations more accurately than 

class 1 observations. The kappa values were similar in both training (0.33) and test 

sets (0.37) (Table 6.4). 

The combined RF model (sens.=0.50, spec=0.82, kappa=0.33) also had higher 

performance on the training set in comparison to the gene expression based model 

developed in chapter 5 (sens.=0.44, spec.=0.77, kappa=0.22) (Table 6.4, refer to 

5.2.5.5). However, performance of the combined RF model (sens.=0.63, spec.=0.76, 

kappa=0.37) was slightly lower than the gene expression based model (sens.=0.54, 

spec.=0.86, kappa=0.41) on the test set.  

Table 6.4 Summary of combined RF model performance  

Set Sensitivity Specificity PPV NPV kappa 

Training 0.50 0.82 0.53 0.78 0.33 

Test 0.63 0.76 0.54 0.82 0.37 
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6.3.4 Variable selection to generate the final refined RF model 

The combined RF model was based on ~13 thousand gene expression values and 

four clinical variables. To improve clinical utility of the RF model, variable selection 

was performed on the gene expression dataset. The top n genes (10, 50, 100, 200, 

400, 800, 1600) were selected based on Gini index and new RF models were 

generated for each of the gene sets (total 7 models). Clinical data was integrated into 

gene expression as described above (refer to 6.2.3).  

Interestingly, reducing the number of genes did not result in a reduced performance 

as the RF models with 10, 50, 100, 200, 400, 800 and 1600 genes along with clinical 

variables had a better kappa index than all genes- and clinical variable-based RF 

model (Table 6.5).  

The RF models with reduced gene sets had comparable kappa values on the test set 

indicating similar levels of agreement between actual and predicted class labels 

(Table 6.5). All the reduced signatures (gene sets) RF models maintained a higher 

specificity than sensitivity, as in all previous analyses, but the difference between 

these two metrics was much lower in these models in comparison to RF models 

based on all genes or referred to as the combined RF model previously. These 

reduced models maintained a higher NPV than PPV, consistent with previous results. 

The RF model with 200 genes had the highest kappa value in both training and test 

sets (Table 6.5) and was selected as the “final refined RF model” for further analyses. 

 



 

 

Table 6.5 Summary performance of RF models generated after selection of genes based on Gini index measure 

 ClinVar refers to the clinical variables.  

Set Gene set Sensitivity Specificity PPV NPV kappa 

Training 

10 genes + ClinVar 0.61 0.81 0.60 0.81 0.42 
50 genes + ClinVar 0.59 0.76 0.53 0.80 0.34 

100 genes + ClinVar 0.59 0.78 0.56 0.80 0.36 
200 genes + ClinVar 0.59 0.82 0.61 0.81 0.42 
400 genes + ClinVar 0.58 0.82 0.60 0.81 0.40 
800 genes + ClinVar 0.59 0.82 0.60 0.81 0.41 

1600 genes + ClinVar 0.58 0.81 0.58 0.80 0.39 
All genes 0.50 0.82 0.53 0.78 0.33 

Test 

10 genes + ClinVar 0.71 0.75 0.56 0.85 0.43 
50 genes + ClinVar 0.69 0.78 0.59 0.85 0.45 

100 genes + ClinVar 0.71 0.76 0.57 0.85 0.44 
200 genes + ClinVar 0.69 0.79 0.60 0.85 0.46 
400 genes + ClinVar 0.67 0.77 0.57 0.84 0.42 
800 genes + ClinVar 0.67 0.75 0.55 0.83 0.40 

1600 genes + ClinVar 0.67 0.75 0.55 0.83 0.40 
All genes 0.63 0.76 0.54 0.82 0.37 
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6.3.5 ROC analysis of the final refined RF model 

A ROC analysis was performed to compare the prognostic value of the final refined 

RF model with three other models on the training and test sets of LMC. Overall, the 

four RF models compared were: 

1) Baseline RF model using clinical variable alone (refer to 6.3.1) 

2) RF model based on gene expression alone (refer to 5.2.5.5)  

3) Combined RF model (refer to 6.3.3) 

4) The final refined RF model (refer to 6.3.4).   

 

On the training set, the final refined RF model (0.77) had the highest AUC in 

comparison to the other three models (baseline clinical variable based, gene 

expression based, and combined RF models) (Figure 6.5A). This observation was 

consistent on the test set as the final refined RF model (0.83) maintained the highest 

AUC value in comparison to the other three models (Figure 6.5B). Among the three 

other models, the combined RF model (0.71) had slightly better performance than 

the baseline clinical variable based RF model (0.70) and had much better 

performance than the gene expression based RF model (0.66) on the training set 

(Figure 6.5A). On the test set, the combined RF model and the gene expression RF 

model had same AUC (0.78) and AUC for the baseline clinical variable RF model 

(0.73) was much lower (Figure 6.5B). 

Overall, the final refined RF model consistently outperformed the other three models 

in both training and test sets (Figure 6.5). Moreover, the 7% (training) and 10% (test) 

increase in the AUC of the final refined model was statistically significant when 

compared with the baseline RF model using clinical variables alone (train: P=0.03 , 

test: P=0.02) (Figure 6.5).  
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Figure 6.5  Comparison of the refined RF model with baseline RF models 

ROC curves of the RF models on (A) training and (B) test sets. ClinVar refers 

to the clinical variables model, All genes refers to the genome-wide gene 

expression based model, ClinVar+ All genes is the model including clinical 

variables and genome-wide gene expression, and ClinVar + 200 genes is the 

final refined model.  

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

●

●

●

●

ClinVar+ 200 genes: 0.83
ClinVar+ All genes: 0.78
All genes: 0.78
ClinVar: 0.73

Test set

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

●

●

●

●

ClinVar+ 200 genes: 0.77
ClinVar+ All genes: 0.71
All genes: 0.66
ClinVar: 0.7

Training setA

B



166 

 

6.3.6 Validating prognostic significance of the refined RF model 
on Lund dataset 

To validate the prognostic significance of the refined RF model, it was applied to the 

Lund primary melanoma dataset, using the same clinical variables as used in the 

LMC dataset. Among 200 predictor genes of the refined RF model, 96 genes were 

not present in the Lund dataset. The missing genes were initialised with 0 value in 

the Lund data. Since cause of death was not recorded in the Lund dataset, death 

from any cause and melanoma relapse at 6 years were used as alternative outcomes. 

For both these outcomes, the refined RF model predicted outcome in the Lund 

dataset (Table 6.6). Similarly to the LMC dataset, this model had higher specificity 

(0.86-0.88) than sensitivity (0.54-0.57) and higher NPV (0.81) than PPV (0.63-0.69) 

in the Lund dataset (Table 6.6). The kappa index was comparable to what was 

observed in the LMC test set (Table 6.6).  

The ROC analysis confirmed the model’s prognostic value in this new dataset (Figure 

6.6). For melanoma relapse before 6 years endpoint, the increase in the AUC for the 

refined RF model was 4% when compared with using clinical variables alone, 

although it failed to reach statistical significance (P=0.2). The AUC improvement was 

more modest for deaths from any cause before 6 years post diagnosis (1% increase, 

P=0.7, Figure 6.6B).  

Table 6.6 Summary of refined RF model performance on the Lund dataset 

Event at 6 years Sensitivity Specificity PPV NPV Kappa 

Relapse 0.57 0.88 0.69 0.81 0.47 

Death from any cause 0.54 0.86 0.63 0.81 0.42 
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Figure 6.6 ROC analysis of the RF models in the Lund dataset  

The outcome was (A) relapse and (B) deaths within 6 years post diagnosis. 

ClinVar refers to the baseline model and ClinVar + 200 genes is the final refined 

model.  

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

●

●

ClinVar+ 200 genes: 0.79
ClinVar: 0.78

Overall deaths

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

●

●

ClinVar+ 200 genes: 0.78
ClinVar: 0.74

RelapsedA

B



168 

 

6.3.7 Biological interpretation of the refined RF model  

To understand the biology behind the refined RF model predictions, a pathway 

enrichment analysis was performed on the 200 predictor genes of the refined RF 

model (Appendix I, Table 8.14). The enrichment analysis identified association with 

pathways linked to DNA damage repair (e.g. Fanconi anemia pathway),  cell cycle 

and cell proliferation (e.g. meiotic recombination, mitotic prometaphase, mitotic 

metaphase and anaphase, mitochondrial translation), PIK3-Akt signaling, and 

generic terms like pathways in cancer, small cell lung cancer, Parkinson’s disease 

and Alzheimer’s disease etc (Figure 6.7).  

 

Figure 6.7 Biological interpretation of the refined RF model. 

Summary of biological pathways enriched in the top 200 genes from the RF 

model. All the pathways with FDR <0.1 were selected. The text size in the figure 

is based on FDR value associated with each pathway i.e. more significant 

pathways are shown in a larger font. (K)- refers to entry from KEGG database, 

N- NCBI database and R- Reactome database. 

6.3.8 The LMC class association with the refined RF model 
predictions 

The LMC classes defined in Chapter 4 (refer to 4.3.1) were compared to the refined 

RF model prediction classes (class 0 and class 1) (Figure 6.8). The LMC classes 

showed significant association with RF model predictions in training (P< 2 C 10-16) 

and test sets (P= 7 C 10-9). The LMC class 1 and class 5 samples were almost 

exclusively predicted as survivors (class 0) by the RF forest model (i.e. true 
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negatives, with some false negatives) (Figure 6.8). The LMC class 2 samples were 

also mainly predicted as survivors but with a. few true and false positives (Figure 

6.8). The LMC class 3 samples were mainly predicted as non-survivors (class 1) by 

the RF model (Figure 6.8). The LMC class 4 and class 6 had a mixture of samples 

from each of the predictor categories; these classes had the highest proportion of 

wrongly classified samples (Figure 6.8).  

 

Figure 6.8 Comparing the LMC classes with refined RF model. 

The overlap between the RF model predictions and LMC classes in the (A) 

training and (B) test dataset. TP refers to true positive samples, FP are false 

positive samples, FN are false negative samples, TN are true negative 

samples. 
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6.4 Discussion 

In this chapter, the prognostic performance of gene expression-based RF models 

was compared with a clinical information-based RF model. Moreover, integration of 

these 2 data types demonstrated an improvement in the prediction performance. The 

performance further improved after refining the RF model using variable selection on 

gene expression. The refined RF model prediction performance was higher than the 

baseline clinical variable RF based model, although it showed only a little 

improvement in the Lund dataset.  

6.4.1 Prognostic value of clinical information and gene expression 
based RF models 

The baseline RF model using clinical variables alone predicted prognosis in training 

and test sets. The clinical variables included were AJCC stage, sex, body site of 

tumour and age at diagnosis; these variables are also most likely to be recorded 

during a clinical visit. The AJCC staging system is one of the most widely used clinical 

variable for predicting prognosis of melanoma patients and is built upon strong 

prognostic factors like Breslow thickness and ulceration status [44]. Other clinical 

variables like sex, age and tumour site have also shown an association with 

melanoma prognosis [42]. Therefore, as expected, the RF model generated using 

these clinical variables predicted prognosis in the LMC data. Previous studies have 

shown strong association between clinical variables and gene expression in 

melanoma [114, 202]. In keeping with these studies, in LMC it was observed that 

clinical variables significantly predicted gene expression for more than five thousand 

genes (Figure 6.3). Removing the clinical variable information from the gene 

expression data demonstrated that the resultant RF model based on gene expression 

residuals was still predictive of prognosis. This is interesting as it signifies that gene 

expression data has independent prognostic information of melanoma tumours. 

Hence it was hypothesised that combining clinical variables and gene expression 

data may improve prediction performance in comparison to using clinical variables 

alone. As expected, the combined RF model has improved performance in 

comparison to the baseline clinical variables based RF model. These results highlight 

the potential clinical relevance of performing gene expression profiling alongside 

assessing the clinical characteristics of tumours for predicting prognosis of 

melanoma patients. 
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6.4.2 Refining combination of clinical information and gene 
expression based RF model 

Application of the combined RF model would require profiling a large number of 

genes, and this would limit the clinical utility due to the associated higher economical 

cost or practicality. Variable selection is crucial in supervised classification as 

selecting irrelevant features can sometimes leads to low accuracy and overfitting 

[203-206]. Therefore, to mitigate this, the model was refined by performing variable 

selection using the Gini index measure for each gene in the RF model (refer to 

5.2.5.5). Multiple subsets were evaluated, and the final refined RF model with 200 

genes had a higher performance than the original model. The difference in 

performance of the final refined RF model and original RF model may well be due 

the difference in the number of predictor variables used for generating the RF model 

at each iteration. The RF randomly selects genes to be included in the model at each 

iteration and selecting them from the whole genome means there is a high likelihood 

of using uninformative genes (i.e. those not associated with the outcome) in a 

significant number of iterations. The selection of which genes to consider at each 

node is random, and does not use information on which variables are most relevant. 

Therefore, incorporating variable importance measures into the model building 

process is a two-staged approach, and our results indicate that this approach may 

be more efficient than a one-staged approach which does not use variable 

importance information. 

6.4.3 Prognostic value of refined RF model and validation  

The refined RF model showed an improved prognostic value when compared with 

the baseline RF model based on clinical variables. Interestingly, the increase in AUC 

from ROC analysis of the refined RF model increased by 10% in the test set when 

compared with the baseline model (p=0.02). This highlights the potential translational 

value of the refined RF model in clinical settings for predicting melanoma prognosis. 

However, in order to confirm this, an independent validation was required. 

The refined RF model was tested on an independently generated dataset of primaries 

from Lund. In keeping with the LMC test set, the refined RF model showed 

consistency in predicting prognosis and improved the AUC by 4% (relapsed) and by 

1% (death from any cause) when compared with the baseline model. The 

improvement in AUC was modest and did not reach the significance threshold of 

P<0.05. The AUC was higher for melanoma relapse than using death from any cause 

as an outcome because not all deaths were caused by melanoma in the Lund cohort 
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(median age 67), as the cohort had high morbidity given the advanced age of patients 

in comparison to LMC (median age 57). As described previously, Lund data was 

generated in a different population and using a different microarray platform and 

quality control steps [105]. It is noteworthy that among the 200 genes selected in our 

refined model, the Lund dataset only contained 104 genes. The others were excluded 

in quality control steps (in fact, only ~8900 probes, representing 7753 unique genes 

were in the Lund data, compared to ~29000 probes and 20807 genes in the LMC). 

Hence, a further validation on larger primary melanoma datasets is required to fully 

confirm the robustness of this model and demonstrate its superiority to one based on 

clinical variables alone. The current limitation is that only one primary melanoma 

dataset is so far publicly available. Therefore, the robustness of refined RF model 

could not be assessed on additional datasets.  

6.4.4 Biological interpretation of the refined RF model 

Biological pathway enrichment analysis of predictor genes in the refined model 

showed association with pathways such as the Fanconi anemia pathway, PI3K-AKT 

signalling pathway and cell cycle related pathways. These pathways have been 

implicated in various cancers. The Fanconi anemia pathway has been shown to play 

crucial role in DNA repair mechanisms [207-209]. Disruption of this pathway has been 

associated with acquiring tumour resistance in various cancers [210-214]. The PI3K-

AKT signalling pathway has been reported as one of the most frequently disrupted 

pathways in melanoma, which has now paved the way for therapeutic drug discovery 

[215-219]. The predictor genes were also associated with cell cycle related pathways. 

These pathways provide an overview of biological information being utilised by the 

RF model in the decision-making process. However, furthermore work is required to 

investigate the individual impact of the predictor genes on melanoma survival which 

is beyond the scope of this thesis. 

In summary, integrating clinical variables into the gene expression-based RF model 

improved the prediction performance. Applying variable selection further improved 

the performance and generated a refined model with better prognostic value in the 

LMC and the Lund datasets. The refined model was shown to be of biological 

significance. Overall, this model after further validation on larger cohorts could be 

useful in clinical settings for predicting prognosis of melanoma patients. 
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Chapter 7 
Final summary and discussion 

7.1 Summary of the two main aims of this study 

In this study, statistical and bioinformatic analysis were developed to classify primary 

melanoma tumours of the LMC. The analyses addressed the two main aims: 1) 

generating molecular classes of melanoma using unsupervised clustering and 2) 

developing a prognostic classification model using supervised classification. 

Chapters 3 and 4 reported the results of unsupervised clustering while chapters 5 

and 6 dealt with supervised classification. 

In the first aim, applying unsupervised clustering to gene expression data of LMC 

tumours led to discovery of the six LMC classes signature. This LMC class signature 

showed prognostic value in the whole dataset, including in the stage I tumours. A 

validation of this signature was conducted in primary melanomas from the Lund 

cohort, although the paucity of stage I samples in the Lund cohort did not allow 

replication in that particular subgroup. 

In the second aim, supervised classification models were generated to classify the 

LMC patients into two classes (survivors and non-survivors) based on survival up to 

6 years. The classification models were developed using Random Forest (RF) and 

Support Vector Machine (SVM) algorithms, after splitting the LMC dataset in a 

training and a test set. The training set was imbalanced (the majority being survivors), 

and an attempt to overcome the class imbalance problem still generated prediction 

models with higher accuracy in predicting the majority class (survivors) than the 

minority class (non-survivors). 

In a comparison, the supervised classification model (refined RF model) showed 

good agreement with some of the LMC classes. LMC classes 1 and 5, with strong 

upregulation of immune and stroma related genes, were consistently predicted as 

the survivors by the supervised classification model. Tumours of LMC class 3, with 

downregulation of immune genes and upregulation of cell cycle mechanisms, were 

consistently predicted as non-survivors by the supervised classification model. The 

strong overlap between some of the LMC classes and supervised classification 

model prediction is not surprising because the association between the immune and 

cell cycle related gene expression and survival is well-established in the field [103, 

117, 197, 220-224]. Interestingly, the LMC classes which showed intermediate levels 
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of immune and cell cycle related gene expression (LMC classes 2, 4, 6) were 

predicted to include both survivors and non-survivors by the supervised classification 

model. The LMC molecular classes are a good foundation for understanding the 

underlying biological pathways driving melanoma prognosis, and the LMC class 

signature, after successful validation on another dataset, could be of direct clinical 

relevance to AJCC stage I melanoma. The machine learning (refined RF model) 

model on the other hand would be more appealing in clinical practice because it is 

based on only two classes (survivors or non-survivors), and therefore has lower 

complexity in interpretation of the results generated from this model. 

 

7.2 Context and discussion of findings 

The AJCC staging system is one of the most powerful and widely used classification 

tools in clinical settings for predicting melanoma prognosis [44]. In keeping with 

previous reports, the AJCC staging system performed only  moderately well at 

predicting prognosis (AUC= 0.69) (refer to 4.3.5.4) [114]. Therefore, additional 

biomarkers are required to complement this tool for predicting prognosis in clinical 

settings.  

Gene expression profiling has allowed molecular classification of tumours in several 

cancers [85, 106, 158, 225-236]. Molecular classification has drastically improved the 

biological understanding of the disease and has led to development of new drug 

targets. Additionally, these molecular classes have also been shown to predict 

clinical outcome for a patient [81, 105, 106, 225, 228, 234, 235, 237-239]. In breast 

cancer, for example, previous retrospective studies of gene expression profiling have 

identified five molecular classes with prognostic significance, and  furthermore these 

classes predicted response to adjuvant treatments [237, 240-245]. Paik et al. 

surveyed 250 genes reported to be associated with clinical outcome for breast cancer 

patients and generated a refined 21 gene-based prognostic biomarker (Oncotype-

DX) which has been successfully validated in prospective clinical trials [231, 246-

251]. This test predicts recurrence of breast cancer, and recently its ability to stratify 

patients for adjuvant chemotherapy has been demonstrated [251]. Overall, these 

studies highlight the crucial role of gene expression profiling in developing 

biomarkers with prognostic and predictive value. 

Similarly, in melanoma, several studies have performed gene expression profiling of 

tumours from retrospective cohorts to generate prognostic gene signatures [81, 100, 

102, 104-106, 108, 113, 114, 144, 252-254]. Unlike breast cancer, the prognostic 
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significance of these gene signatures has not yet been tested in prospective clinical 

trials. Most of these studies have been based on small sample size, and the gene 

signatures were generated from cohorts predominantly of advanced stage tumours 

[81, 84, 100, 101, 104-106, 113]. 

Most of the biomarkers developed from retrospective studies fail to translate into 

clinical settings due to low prognostic and predictive value on other validation cohorts 

[255, 256]. Therefore, it is highly recommended that studies are conducted with low 

ascertainment bias, with appropriate sample size, and with validation on other 

independently generated datasets to avoid overfitting [255, 256]. It has also been 

suggested that a biomarker based on gene expression must be jointly analysed in a 

multivariate model with the histopathological factors of a disease [107]. 

7.2.1 Class discovery using unsupervised clustering 

Previously, the Lund and TCGA groups have developed molecular classes of 

melanoma using a similar unsupervised clustering algorithm [81, 105, 106]. These 

molecular classes (Lund and TCGA classes) were applied to the LMC dataset. As 

shown in Chapter 3, the Lund and TCGA classes were predictive of MSS in the whole 

LMC dataset. When the LMC patients were stratified on the basis of AJCC stage, the 

signatures predicted outcome in stage II & III tumours but showed no association with 

MSS in stage I tumours. This was confirmed as a significant statistical interaction, 

illustrating the fact that the lack of association in stage I was not merely due to a 

power issue. 

The Lund and TCGA class signatures were derived from cohorts predominantly of 

metastatic tumours (i.e. AJCC stages III and IV) [81, 106], but subsequent replication 

studies have validated their prognostic value in primary tumours with only few AJCC 

stage I cases (n=61 in Lund, n=58 in Leeds subset) [105, 114]. The lack of 

association of these signatures with prognosis in stage I tumours in this larger dataset 

was disappointing, since currently the majority of melanomas (91%) are diagnosed 

at AJCC stages I and II [257]. Although these patients have a good prognosis overall, 

there is a significant number of deaths among these patients [257, 258]. Therefore, 

there is an urgent need to develop both prognostic and predictive biomarkers for 

those early stage melanoma patients.  

The LMC dataset has a large number of stage 1 cases, and its make-up in terms of 

disease stages offered the potential to generate a prognostic signature across all 

AJCC stages in a new unsupervised analysis. As shown in Chapter 3, the LMC 

tumours were clustered using robust consensus based HC, KM and PAM clustering 
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algorithms. Previous comparisons of clustering algorithms spanning over multiple 

gene expression and protein sequence information datasets suggested that none of 

the algorithms clearly outperformed the others [142, 143, 259]. In keeping with that, 

although different clustering algorithms (HC, KM and PAM) identified a different 

number of tumour classes in the LMC, i.e. HC algorithm identified 5 classes, KM 

identified 6 classes, and PAM identified 7 classes, the algorithms showed agreement 

with each other and with the existing Lund and TCGA classes. Since the PAM classes 

had higher stability in comparison to HC and KM classes, the 7 PAM classes were 

further explored.  

It has been reported that some noise may remain in the dataset even after adjusting 

for technical variation in gene expression quality control [260]. However, over-

normalisation can remove some biological variation, thereby reducing the utility of 

these experiments. Although batch correction was applied during normalisation, the 

PAM algorithm still identified one small class whose mRNA samples were processed 

in the same batch [117]. On further investigation, these samples were identified to be 

in similar positions on the plates, i.e. in first or last rows of the plates. Previously, the 

LMC samples were plated and sent to a gene expression profiling company in Leiden 

(Netherlands). The plate edges may have been impacted (for example by 

evaporation) during transport or other manipulations for one particular batch. 

Investigating different clustering algorithms allowed identification of these samples. 

Taking a cautious approach, it was concluded that this class may represent technical 

noise, and hence samples from this class were excluded. 

Re-clustering the remaining samples using the same consensus PAM algorithm 

confirmed the previously observed six classes (LMC classes). As shown in Chapter 

4, the LMC classes were significantly associated with clinical prognostic factors of 

melanoma, such as sex, body site of tumour, ulceration status, age at diagnosis, 

Breslow thickness and TILs. Most of these factors were also associated with the Lund 

and TCGA classes when applied to the LMC data. However, the LMC classes further 

showed a strong association with tumour mutation status in BRAF and NRAS 

oncogenes, while the Lund and TCGA classes did not.  

Interestingly, the LMC classes were prognostic in the whole dataset, including within 

the AJCC stage I group. To our knowledge this is the first and only clustering based 

prognostic molecular signature in stage I melanoma. This study used a much larger 

number of genes (~13,000) in comparison to the Lund (~7000) and TCGA  (1500) 

studies [81, 106]. Using a larger number of genes may have allowed more biological 

variation in the data to be captured. Secondly, the LMC data is based on the HT12-
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version 4 array, whereas the Lund study used a previous version of array and the 

TCGA study used an altogether different platform (RNA-seq). However, high overlap 

for some of the classes (LMC classes, 1, 3 and 5) with the Lund and TCGA classes 

may reflect the conservation of gene expression profiles in primary and metastatic 

melanoma. 

In clinical settings, performing expression profiling with a large number of genes is 

associated with higher economical cost. Hence, a prognostic test with few genes is 

preferred over a test based on large number of genes. To make the LMC classes 

signature clinically feasible, the signature was refined from 13,688 genes to 150 

genes. Since gene reduction was done by selecting the top genes which characterise 

the LMC classes, this may have also removed relevant biological information. As 

expected, application of the reduced LMC signature (150 genes) to the LMC dataset 

resulted in some misclassification (especially for LMC class 2) in comparison to using 

the original classification. 

The biological characterisation of the LMC classes using pathway enrichment 

analysis and Lund biological modules gave consistent results [81, 106]. High immune 

gene expression has been reported to be predictive of good prognosis in melanoma 

and other cancers [103, 117, 197, 206, 220-223, 226, 261-267]. In keeping with this, 

the LMC classes with good prognosis had higher immune gene expression and lower 

cell cycle related gene expression; LMC classes with poor prognosis had higher cell 

cycle related gene expression and lower immune gene expression. A similar 

observation has also been made by a fellow PhD student in the group (Joanna 

Pozniak personal communication) by clustering the LMC tumours based on immune 

response related genes and observing an inverse correlation between the genes in 

proliferation pathways and the genes in immune response pathways. However, this 

dichotomy did not apply to all the classes: LMC class 6 showed evidence of increased 

expression of both immune and cell cycle genes and the corresponding prognosis 

was very poor, especially in stage I tumours. This class is therefore unusual and was 

poorly captured with the existing Lund and TCGA classification systems (refer to 

4.3.4). Although it was not among the aims of this thesis, a preliminary biological 

investigation found significant increase in JUN expression and copy number in LMC 

class 6 tumours along with evidence for activation of the epithelial to mesenchymal 

transition pathway. Overall these results suggests that the LMC class 6 may be a 

biologically different class with strong clinical relevance for AJCC stage I melanoma. 
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7.2.2 Class prediction using machine learning  

Several studies have performed comparisons between patients with various clinical 

endpoints of melanoma and have generated biomarkers based on clinico-

histopathological and genomic characteristics [104, 109, 252, 254, 268-271]. A gene 

expression based prognostic test for melanoma, Decision-Dx by Castle Biosciences, 

identifies patients who are likely to metastasize in 5 years and is available 

commercially [109]. It contains 28 prognostic genes and 3 control genes and 

produces an accurate prediction of high and low risk of metastasis. Another 12-gene 

based biomarker from Liu et al. achieved higher diagnostic performance in 

distinguishing metastatic melanomas from normal skin and benign naevi. The 11 

gene-based signature from Brunner et al. when combined with the AJCC staging 

system for predicting MSS showed 4-6% increase in performance in comparison to 

the AJCC staging system alone [108]. Overall, these signatures have been 

developed on comparatively small retrospective cohorts of primary melanoma, and 

the robustness of these gene signatures is yet to be determined on larger melanoma 

cohorts and especially in prospective cohorts. Recently, it was showed that a 

machine learning based algorithm achieved higher classification accuracy in 

detecting melanoma in comparison to several trained dermatologists [169]. This 

study suggested that dermatologists may benefit from using this machine learning 

model in clinical settings for detecting melanoma at early stages.  

Previously, several other studies have developed gene signatures predicting various 

melanoma outcomes, but none of the studies were done using a large number of 

early stage patients and using machine learning algorithms [84, 100-102, 104, 108, 

109, 113, 272]. The LMC dataset so far is the largest dataset available for early stage 

melanoma with good follow-up data. In Chapter 5, two machine learning approaches, 

Random Forest (RF) and Support Vector Machine (SVM), were applied to predict 

outcome. Although these methods have been used in different applications, they 

have not been widely used for class prediction based on gene expression data.  

To avoid sample losses to censoring, a survival time cut-off was chosen at 6 years, 

but the LMC dataset still had a higher proportion of survivors than non-survivors. This 

is inevitable given that the majority of patients with primary melanoma survive for 

more than 5 years but the unbalanced dataset caused a challenge in machine 

learning. Consistent with the literature [182], in RF, under-sampling the majority class 

in the training set to achieve a balanced class design showed an improvement in 

prediction performance in comparison to using an unbalanced class design. Unlike 

RF, the SVM model performance did not change with or without balanced class 
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design approaches. Overall both the RF and SVM algorithms were influenced by 

class imbalance and generated prediction models which predicted the majority class 

(survivors) better than minority class (non-survivors), i.e. these models had higher 

specificity than sensitivity. In future, more investigations will be required to overcome 

the class imbalance problem. 

Several studies have compared the performance of RF and SVM algorithms and 

have found contradictory results. The study by Diaz-Uriarte et al. showed that the RF 

algorithm achieved comparable performance to that of SVM on simulated and real 

microarray datasets [273]. However, Statnikov et al. performed comparisons across 

22 diagnostic and prognostic datasets and reported that the SVM algorithm 

outperformed the RF algorithm [274]. In LMC, the RF model was identified to have a 

higher performance overall in comparison to the SVM model. A grid search to select 

the parameters of SVM initially improved the performance of the model, but further 

fine-tuning of the hyperparameter search brought no further improvement. Further 

comparisons indicated that the RF and SVM models made consistent predictions on 

test set observations which was reflected in higher Carmer’s V agreement. However, 

when comparing the inconsistent predictions between the models, the RF model 

showed higher accuracy than the SVM model.  

Previous studies have shown that although gene expression data has prognostic 

significance, when jointly analysed with other clinico-histopathological variables of 

melanoma it does not show much improvement in predicting outcome in comparison 

to clinical variable variables alone [52, 100, 107, 113, 114]. Therefore, in Chapter 6, 

the prediction of outcome using gene expression (analyses performed in Chapter 5) 

was compared to that of the known prognostic clinico-histopathological variables of 

primary melanoma. As expected, the RF model generated using clinical variables 

alone predicted outcome in the LMC test set. When clinical variables were combined 

with the gene expression data, the performance of the resulting model improved 

slightly in comparison to using clinical variables alone. A feature selection was 

conducted (based on their importance in the RF) which generated a reduced RF 

model with 200 genes and clinical variables. The predictor genes in the refined RF 

model had biological relevance, as many of them are implicated in pathways, e.g. 

fanconi anemia pathway, PI3-AKT signalling and cell cycle related mechanisms, that 

have previously been reported to play a role in melanoma and other cancers [207-

210, 212-219]. 

Ferris et al. reported that combining Decision-DX test and AJCC stage information 

further improved prediction of overall deaths and risk of metastasis in comparison to 
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using the AJCC stage alone [253]. They found that the model based on the Decision-

DX test + AJCC stage had 82% sensitivity and 62% specificity while the model based 

on the AJCC stage alone had 60% sensitivity and 74% specificity [253]. Brunner et 

al. reported that the combining the gene signature and the AJCC staging system 

(AUC=0.66) had comparable AUC to the AJCC staging system alone (AUC=0.60). In 

keeping with these studies, the refined RF model had 69% sensitivity and 79% 

specificity, while the clinical variables model had 63% sensitivity and 71% specificity. 

The AUC for the combined model (AUC=0.83) was 10% higher than the clinical 

variables alone (AUC=0.73). It is worth noting that previous studies [108, 253] used 

the AJCC stage as the only clinical variable, whereas in this study sex, age at 

diagnosis and site of primary melanoma were also included in addition to the AJCC 

stage.  

The prognostic value of the refined RF model was validated on the dataset from Lund. 

Since the Lund dataset did not have MSS information, melanoma relapse and death 

from any cause in 6 years was used as the outcome measures. In keeping with the 

LMC dataset, this model predicted outcome in the Lund cohort. The AUC for the 

refined RF model increased by 4% (melanoma relapse as outcome) and 1% (death 

from any cause as outcome) when compared to clinical variables alone in the Lund 

cohort. The improvement in AUC reached statistical significance in the LMC, but not 

in the Lund dataset, probably due to the smaller sample size, exacerbated by a 

considerable amount of missing data. Therefore, in future, validation of the refined 

RF model is required on another independent dataset to fully confirm the prognostic 

value of this model. 

 

7.3 Strengths and limitations 

The major strengths of this study are: 

1. Cohort size: This study is one of the largest studies conducted on 

understanding the influence of tumour transcriptomics on primary melanoma 

survival. The largest cohort used in previous studies (Lund cohort) was about 

one third of the size of the LMC. 

2. Extensive genomic and phenotypic data: Detailed clinico-histopathological 

and survival information has been recorded for the participants of the LMC. 

The gene expression data were generated from the tumour samples using a 

genome-wide array. Altogether these data are complementary to each other 
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and their integration can bring additional insights in melanoma biology, patient 

survival and a potential basis for a stratified care. 

3. Melanoma-specific survival: Unlike previous studies, this study utilised 

melanoma-specific survival for testing the association of signatures with 

survival. This was made possible by the attention to detail in the  data 

collection, which includes records of the cause of death, rarely recorded in 

most other studies. This information is continually retrieved from reliable 

sources (Public Health England) as the cohort follow-up continues. 

4. AJCC stage subsets: The LMC participants have been recruited in hospitals 

as they were diagnosed, so they represent more closely the population as a 

whole (North of England). Although population ascertained but due to 

difficulties in sampling thin tumours, the tumour cores were sampled 

predominantly from thick tumours. However, sufficient thin tumours were also 

sampled to ensure that the conclusions drawn are more likely to be applicable 

to the wider population. This is in contrast with many other transcriptomic 

studies which often use highly selected samples (e.g. most advanced 

disease), which may result in a deeper biological understanding and even 

drug development but may be less applicable to the whole patient group. 

Having a good representation of AJCC stage I patients (the most common 

diagnosis in the population) allowed development of a signature of relevance 

in this group. 

5. Validation dataset: The LMC classes and supervised classification signatures 

developed in this thesis were validated on an independent dataset published 

in 2012 [105] by Prof Göran Jönsson and Dr Martin Lauss (Lund University, 

Sweden). My work has therefore benefitted from the long-held collaboration 

between the two universities. 

 

The main limitations of this study are: 

1. Availability of data at one time point: The gene expression data used in this 

study represent the tumour’s characteristics at only one time point. 

Longitudinal data were not available to evaluate the consistency of tumour 

gene expression patterns with time. However, it was noted that previously 

reported survival associations with gene expression were validated in this 

dataset (Chapter 3), indicating the robustness of the approaches used. 

Moreover, there is a need to identify a prognostic biomarker relevant to 

patients at presentation with primary disease. 
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2. AJCC stage I validation set: The LMC 6 class signature was shown to be of 

prognostic value in AJCC stage I melanoma. Unfortunately, this finding could 

not be validated in an independent dataset because none of the studies have 

generated gene expression dataset from sufficient stage I melanomas. As 

shown in Chapter 4, the replication of the refined LMC signature on the Lund 

dataset regenerated the LMC classes in this dataset. However, this cohort 

had only few AJCC stage I tumours and the prognostic value of the signature 

could not be validated in stage I melanoma. Most of melanoma research is 

conducted in advanced stage melanoma because of the challenges 

associated with sampling thin early stage melanomas, hence our efforts to 

find a validation dataset comprising of AJCC stage I tumours was not 

successful. 

3. Missing information in the Lund dataset: Half of the predictor genes of the 

refined RF model were missing in the Lund data. The missing genes were 

filtered out in quality control steps due to the poor quality of the array platform 

that was used, the Illumina HT8.3 (only ~7,200 genes passed the QC filters). 

Hence, the Lund dataset was not an ideal replication dataset but it was the 

only one available. 

4. Clinical utility: The prognostic signatures generated in this study have been 

demonstrated to be of prognostic value in LMC data and on an additional 

cohort. However, validation in additional cohorts is required to further confirm 

the robustness of the signatures, especially for stage I tumours.  

 

7.4 Future perspectives 

There are several recommendations for future work following the analyses conducted 

in this thesis: 

1. Biological characterisation of the LMC classes: In chapter 4, differentially 

expressed genes and an overview of biological pathways associated with 

LMC classes were presented. For future analysis it would be interesting to 

explore the key regulatory genes governing the outcome in each of the 

classes. 

2. Predictive value of LMC classes: The LMC signature had shown to be of 

prognostic importance but its association with response to adjuvant therapies, 

especially immunotherapy, was not tested. Immunotherapy response 
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datasets are currently being collected to test the value of these signatures in 

predicting response to immunotherapy. 

3. Additional validation cohorts: There are currently no large enough AJCC 

stage I gene expression datasets available. It would be a step forward to 

generate data from stage I melanoma and validate the prognostic value of the 

signature. 

4. Comparison with other signatures: Several molecular signatures have been 

proposed to predict risk of metastasis in melanoma. It would be interesting to 

compare these signatures and those presented in this thesis for their 

performance and their composition and possibly to pool them into one 

signature if the comparison reveals a limited overlap. 

5. Combining gene expressions with Copy Number Variation (CNV) data: This 

thesis was focused on gene expression and clinical data. Next-generation 

sequencing derived copy number variation data have been generated in a 

subset of the same tumours (N=266) and are being analysed by another PhD 

student in the group. Despite the limited number of tumours profiled, it would 

be interesting to investigate the additional power of combining the two 

datasets, although this would certainly not be of relevance for stage I disease 

where the overlap would be even smaller.
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Chapter 8 
Appendix I 

Table 8.1 The 150-gene based LMC 6 class signature 

Gene 
LMC class 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

RASAL3 1.619 0.016 -0.996 -0.401 -0.019 0.111 

SH2D1A 1.549 0.128 -1.047 -0.327 0.053 -0.068 

SMAP2 1.548 0.127 -0.84 -0.584 0.073 0.067 

TRAT1 1.542 0.139 -0.845 -0.33 -0.026 -0.099 

BTLA 1.541 0.078 -0.801 -0.384 -0.059 0.018 

ZNF831 1.504 0.048 -0.598 -0.408 -0.172 0.09 

RHOF 1.498 -0.04 -0.944 -0.381 0.151 0.01 

NLRC3 1.495 0.053 -1.04 -0.249 0.101 -0.104 

TIGIT 1.491 0.059 -0.994 -0.349 0.017 0.05 

WAS 1.488 0.016 -1.207 -0.359 0.003 0.222 

SPN 1.487 -0.137 -0.866 -0.28 0.171 -0.063 

SPOCK2 1.478 0.118 -1.273 -0.369 0.06 0.129 

FCRL3 1.47 0.069 -0.752 -0.348 -0.045 -0.015 

STAP1 1.47 0.113 -0.702 -0.361 -0.068 -0.042 

P2RY8 1.468 0.084 -0.732 -0.436 -0.086 0.092 

CD3G 1.466 0.134 -1.178 -0.366 0.116 0.015 

VAV1 1.464 -0.082 -0.944 -0.268 0.086 0.011 

CD2 1.463 0.109 -1.009 -0.518 0.146 0.075 

SLAMF6 1.46 0.024 -1.003 -0.333 -0.027 0.126 

NOD3 1.46 0.064 -0.84 -0.314 -0.021 -0.016 

RAB37 1.459 -0.019 -0.63 -0.208 -0.187 0 

ELMO1 1.458 0.074 -1.074 -0.383 0.106 0.043 

LCK 1.453 0.161 -1.044 -0.492 0.061 0.109 

IKZF1 1.449 0.109 -1.268 -0.435 0.115 0.162 

FAM113B 1.448 0.01 -1.371 -0.325 0.106 0.198 

NCRNA00219 -0.275 0.643 0.676 -0.132 -0.476 -0.175 

TIGA1 -0.279 0.631 0.66 -0.096 -0.492 -0.174 
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Gene 
LMC class 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

ARID5B 0.165 0.615 0.301 -0.234 -0.413 -0.135 

HNRNPA2B1 -0.133 0.607 0.666 -0.499 -0.479 0.164 

C20orf199 -0.435 0.603 0.746 -0.003 -0.1 -0.585 

RPL15 -0.072 0.601 0.698 -0.009 -0.334 -0.51 

CCNI 0.085 0.594 0.628 -0.771 -0.272 0.161 

RPS13 -0.134 0.593 0.481 -0.273 0.004 -0.418 

EPS15 -0.183 0.591 0.556 -0.375 -0.51 0.164 

ANKRD36B 0.179 0.587 0.276 -0.193 -0.205 -0.346 

C5orf53 -0.005 0.58 0.491 -0.383 -0.467 0.085 

RPS3A -0.162 0.558 0.708 -0.188 -0.119 -0.459 

APEX1 -0.349 0.547 0.836 -0.351 -0.252 -0.131 

ENOSF1 -0.416 0.547 0.237 0.196 -0.169 -0.419 

ARGLU1 0.113 0.544 0.47 -0.534 -0.479 0.231 

C9orf61 -0.368 0.534 0.531 -0.083 -0.392 -0.089 

SUPV3L1 0.032 0.53 0.327 -0.481 -0.081 -0.077 

CCNH 0.169 0.526 0.427 -0.332 -0.281 -0.152 

PPP3CB 0.502 0.525 -0.039 -0.554 -0.331 0.193 

KIAA0141 0.066 0.523 0.564 -0.485 -0.36 0.062 

RPS15A 0.2 0.523 0.566 -0.418 -0.091 -0.331 

UNC84A -0.048 0.522 0.389 -0.235 -0.257 -0.141 

PAN2 -0.081 0.521 0.531 -0.44 -0.356 0.104 

ABCA10 0.042 0.518 0.292 0.108 -0.452 -0.293 

HNRPA1L.2 -0.267 0.516 0.568 -0.267 -0.116 -0.221 

CCT7 -0.734 -0.402 0.101 0.765 0.114 -0.219 

SOCS6 -0.71 -0.273 0.391 0.72 -0.159 -0.184 

BAHCC1 -0.578 -0.249 0.384 0.709 -0.073 -0.339 

CLN6 -0.513 -0.307 0.108 0.705 0.194 -0.432 

RBM8A -0.365 -0.198 0.079 0.692 0.122 -0.503 

POLR2K -0.514 -0.435 0.032 0.68 0.074 -0.142 

AGPAT1 -0.397 -0.395 0.032 0.672 0.052 -0.205 

C17orf41 -0.345 -0.356 0.357 0.666 -0.048 -0.329 

NDNL2 -0.17 -0.443 0.193 0.659 -0.11 -0.191 
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Gene 
LMC class 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

C4orf23 -0.385 -0.315 0.132 0.655 0.048 -0.31 

ISYNA1 -0.803 -0.36 0.58 0.652 -0.353 0.094 

SCARNA11 -0.002 -0.183 -0.212 0.65 0.063 -0.447 

PRPF39 -0.4 -0.006 0.315 0.645 -0.243 -0.375 

ANKRD40 -0.304 -0.28 0.167 0.643 0.075 -0.412 

PTPN9 -0.506 -0.411 0.067 0.638 0.009 -0.079 

LOC100128164 -0.305 -0.344 0.162 0.635 -0.275 -0.012 

HRH4 -0.35 -0.089 0.5 0.633 -0.356 -0.302 

EPM2A -0.343 -0.212 0.425 0.629 -0.329 -0.183 

CLEC17A 0.109 -0.317 0.072 0.628 -0.187 -0.273 

ZBTB6 -0.165 -0.36 0.287 0.627 -0.183 -0.211 

FIZ1 -0.174 -0.526 -0.043 0.624 -0.184 0.109 

NUTF2 -0.557 -0.539 0.178 0.623 0.229 -0.197 

LOC100125556 -0.737 -0.062 0.366 0.622 -0.064 -0.332 

CXorf64 -0.552 -0.425 0.25 0.619 -0.072 -0.041 

C19orf12 -0.181 -0.192 0.166 0.615 -0.175 -0.281 

MPZL2 -0.1 -0.264 -1 0.14 1.048 -0.355 

IL20RB -0.071 -0.007 -0.849 -0.002 1.036 -0.513 

FAM83A -0.195 -0.274 -0.751 0.186 1.029 -0.454 

AQP3 -0.062 -0.136 -0.976 0.146 1.027 -0.481 

PPL 0.005 0.001 -0.783 -0.025 1.026 -0.559 

PVRL1 -0.183 -0.143 -0.692 0.066 1.026 -0.478 

S100A9 0.032 -0.193 -1.237 0.141 1.019 -0.332 

SERPINB3 -0.309 -0.183 -0.752 0.183 1.008 -0.451 

TRIM16 -0.057 -0.18 -0.539 0.067 1.003 -0.568 

TMEM45A -0.128 -0.134 -0.898 0.153 1.002 -0.474 

GRHL1 0.033 -0.031 -1.091 0.16 1.002 -0.55 

FAM83C -0.133 -0.096 -0.796 0.181 1 -0.582 

GJA1 0.087 -0.041 -1.17 0.067 1 -0.432 

GSDMC -0.114 -0.087 -0.772 0.016 0.997 -0.442 

RHOV -0.099 -0.14 -0.803 0.168 0.997 -0.541 

PPP1R13L 0.093 -0.131 -1.095 0.208 0.995 -0.533 
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Gene 
LMC class 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

KLC3 -0.286 -0.104 -0.847 0.208 0.993 -0.492 

ABCA12 -0.187 -0.063 -0.829 0.167 0.992 -0.545 

PLEKHN1 -0.016 -0.222 -0.903 0.204 0.989 -0.49 

GLTP -0.202 -0.112 -0.619 -0.084 0.989 -0.347 

FABP5 -0.379 -0.196 -0.566 0.049 0.987 -0.346 

CD24 -0.057 -0.116 -0.682 0.061 0.985 -0.526 

PGLYRP3 -0.155 -0.064 -0.808 0.152 0.981 -0.545 

FAM110C 0.011 -0.16 -0.837 0.112 0.98 -0.49 

PKP1 -0.132 -0.094 -0.831 0.193 0.977 -0.556 

HSPA13 -0.239 0.067 0.492 -0.469 -0.491 0.752 

PRAF2 -0.14 0.022 0.353 -0.351 -0.526 0.727 

GNS -0.054 0.04 -0.008 -0.464 -0.27 0.723 

SDSL -0.241 -0.243 0.222 -0.348 -0.16 0.719 

C3AR1 0.447 -0.052 -0.382 -0.473 -0.206 0.69 

VKORC1 -0.494 -0.025 0.527 -0.35 -0.353 0.688 

CYTSA -0.162 0.156 0.296 -0.341 -0.571 0.686 

RNGTT -0.139 -0.138 0.196 -0.262 -0.332 0.669 

SNAPIN -0.582 -0.193 0.535 -0.099 -0.397 0.662 

GAL3ST4 -0.605 -0.11 0.322 -0.188 -0.25 0.66 

CDR2 0.302 0.123 0.216 -0.592 -0.45 0.659 

MUL1 -0.35 -0.054 0.292 -0.363 -0.229 0.657 

YIPF5 -0.382 0.182 0.578 -0.503 -0.429 0.655 

RAB23 -0.167 -0.206 0.036 0.031 -0.462 0.652 

ATP6V0B -0.035 -0.178 -0.05 -0.519 0.072 0.65 

TOMM34 -0.419 0.083 0.32 -0.308 -0.382 0.649 

CHPF -0.683 -0.103 0.448 -0.311 -0.136 0.643 

C11orf17 -0.222 0.096 0.375 -0.348 -0.475 0.641 

ATP2B1 0.224 -0.08 0.347 -0.294 -0.591 0.641 

SNX11 0.156 -0.13 0.033 -0.345 -0.287 0.639 

SACM1L 0.008 0.067 0.436 -0.368 -0.578 0.639 

BIRC2 0.31 0.178 0.007 -0.487 -0.478 0.637 

RAB8B 0.619 0.192 0.134 -0.597 -0.601 0.634 
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Gene 
LMC class 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

CNN3 -0.098 0.184 0.251 -0.475 -0.412 0.634 

UBLCP1 -0.063 0.109 0.304 -0.504 -0.352 0.627 

CDC73 -0.361 0.071 1.03 0.113 -0.583 0.035 

MKI67IP -0.686 0.135 1.027 0.013 -0.392 0.061 

KLHL12 -0.725 0.172 1.022 -0.064 -0.429 0.165 

FAM172A -0.242 0.282 1.014 -0.082 -0.52 -0.062 

ZFAND1 -0.611 0.401 1.008 -0.043 -0.522 -0.014 

LYSMD1 -0.665 0.149 1.006 -0.005 -0.493 0.165 

TMEM55A -0.632 0.324 0.983 0.003 -0.578 0.083 

SNRPE -0.398 0.277 0.972 -0.18 -0.688 0.302 

PHF20 -0.5 0.047 0.967 0.212 -0.444 -0.075 

TMEM133 -0.654 0.166 0.966 0.225 -0.565 0.002 

C12orf23 -0.547 -0.013 0.96 -0.165 -0.622 0.553 

PLA2G12A -0.508 0.291 0.95 0.061 -0.37 -0.191 

ZBTB41 -0.595 -0.059 0.948 0.263 -0.414 -0.008 

ZFP106 -0.883 0.226 0.948 0.316 -0.384 -0.19 

WDR3 -0.615 0.386 0.947 -0.091 -0.551 0.108 

SSR1 -0.389 -0.014 0.945 -0.142 -0.373 0.222 

BEND5 -0.237 0.167 0.935 0.123 -0.409 -0.238 

BTBD3 -1.073 0.076 0.931 0.325 -0.306 -0.041 

SLC9A5 -0.675 0.259 0.923 0.294 -0.444 -0.23 

DENND5B -0.423 0.387 0.92 -0.324 -0.356 0.073 

TTPA -0.537 0.298 0.914 0.135 -0.526 -0.089 

OSBPL9 -0.699 0.36 0.908 0.049 -0.321 -0.169 

KANK2 -0.518 0.067 0.908 0.01 -0.29 0.002 

LOC441743 -0.402 0.411 0.903 -0.294 -0.211 -0.119 

LASS2 -0.703 -0.026 0.899 0.073 -0.351 0.174 
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Table 8.2 Summary of upregulated biological pathways in LMC class 1, FDR is 
the false discovery rate 

Pathway P value FDR 

NF-kappa B signaling pathway(K) 1.11 x 10-16 1.10 x 10-14 

Chemokine signaling pathway(K) 1.11 x 10-16 1.10 x 10-14 

Natural killer cell mediated cytotoxicity(K) 1.11 x 10-16 1.10 x 10-14 

TCR signaling in na&#xef;ve CD4+ T cells(N) 1.11 x 10-16 1.10 x 10-14 

TCR signaling in na&#xef;ve CD8+ T cells(N) 1.11 x 10-16 1.10 x 10-14 

Cytokine-cytokine receptor interaction(K) 1.11 x 10-16 1.10 x 10-14 

Osteoclast differentiation(K) 1.11 x 10-16 1.10 x 10-14 

Hematopoietic cell lineage(K) 1.11 x 10-16 1.10 x 10-14 

IL12-mediated signaling events(N) 4.44 x 10-16 3.91 x 10-14 

GPVI-mediated activation cascade(R) 6.66 x 10-16 5.26 x 10-14 

T cell receptor signaling pathway(K) 1.33 x 10-15 9.59 x 10-14 

Measles(K) 2.11 x 10-15 1.39 x 10-13 

Primary immunodeficiency(K) 2.89 x 10-15 1.76 x 10-13 

Interferon gamma signaling(R) 1.13 x 10-14 6.45 x 10-13 

Signaling by Interleukins(R) 6.89 x 10-14 3.65 x 10-12 

Tuberculosis(K) 1.21 x 10-13 5.92 x 10-12 

TNF signaling pathway(K) 1.82 x 10-13 8.38 x 10-12 

Pathways in cancer(K) 5.21 x 10-13 2.29 x 10-11 

B cell receptor signaling pathway(K) 6.05 x 10-12 2.54 x 10-10 

Jak-STAT signaling pathway(K) 7.84 x 10-12 3.06 x 10-10 

DAP12 interactions(R) 6.75 x 10-11 2.57 x 10-9 

T cell activation(P) 8.65 x 10-11 3.11 x 10-9 

Transcriptional misregulation in cancer(K) 1.01 x 10-10 3.43 x 10-9 

Toll-like receptor signaling pathway(K) 1.16 x 10-10 3.60 x 10-9 

Staphylococcus aureus infection(K) 1.16 x 10-10 3.60 x 10-9 

Interferon alpha/beta signaling(R) 1.39 x 10-10 4.18 x 10-9 

Gastrin-CREB signalling pathway via PKC and 
MAPK(R) 1.45 x 10-10 4.19 x 10-9 

Costimulation by the CD28 family(R) 2.90 x 10-10 8.12 x 10-9 

Chagas disease (American trypanosomiasis)(K) 3.05 x 10-10 8.13 x 10-9 

CXCR4-mediated signaling events(N) 3.13 x 10-10 8.13 x 10-9 

Cell adhesion molecules (CAMs)(K) 8.53 x 10-10 2.13 x 10-8 



190 

 

Pathway P value FDR 

Fc-epsilon receptor I signaling in mast cells(N) 1.11 x 10-9 2.67 x 10-8 

Leukocyte transendothelial migration(K) 1.53 x 10-9 3.67 x 10-8 

Toll-Like Receptors Cascades(R) 1.70 x 10-9 3.91 x 10-8 

Cell surface interactions at the vascular wall(R) 2.08 x 10-9 4.57 x 10-8 

BCR signaling pathway(N) 2.67 x 10-9 5.88 x 10-8 

Interleukin signaling pathway(P) 3.57 x 10-9 7.50 x 10-8 

Leishmaniasis(K) 3.79 x 10-9 7.95 x 10-8 

IL12 signaling mediated by STAT4(N) 4.37 x 10-9 8.73 x 10-8 

Pertussis(K) 8.16 x 10-9 1.55 x 10-7 

Signaling by SCF-KIT(R) 9.21 x 10-9 1.75 x 10-7 

IL4-mediated signaling events(N) 9.79 x 10-9 1.76 x 10-7 

Downstream signaling in na&#xef;ve CD8+ T 
cells(N) 9.79 x 10-9 1.76 x 10-7 

HTLV-I infection(K) 1.06 x 10-9 1.91 x 10-7 

Inflammatory bowel disease (IBD)(K) 1.28 x 10-8 2.18 x 10-7 

Antigen processing and presentation(K) 1.33 x 10-8 2.27 x 10-7 

Signalling by NGF(R) 1.50 x 10-8 2.40 x 10-7 

Malaria(K) 1.54 x 10-8 2.47 x 10-7 
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Table 8.3 Summary of upregulated biological pathways in LMC class 2, FDR is 
the false discovery rate 

Pathway P value FDR 

Eukaryotic Translation Initiation(R) 1.49 x 10-14 8.48 x 10-12 

Eukaryotic Translation Elongation(R) 2.85 x 10-13 8.11 x 10-11 

Eukaryotic Translation Termination(R) 2.13 x 10-12 4.06 x 10-10 

SRP-dependent cotranslational protein targeting 
to membrane(R) 5.35 x 10-12 7.60 x 10-10 

Nonsense-Mediated Decay (NMD)(R) 6.40 x 10-11 6.08 x 10-9 

Selenoamino acid metabolism(R) 6.40 x 10-11 6.08 x 10-9 

Ribosome(K) 3.09 x 10-10 2.50 x 10-8 

Processing of Capped Intron-Containing Pre-
mRNA(R) 7.98 x 10-6 5.30 x 10-4 

Regulation of nuclear SMAD2/3 signaling(N) 8.41 x 10-6 5.30 x 10-4 

SUMOylation(R) 6.34 x 10-5 3.61 x 10-3 

Regulation of cytoplasmic and nuclear SMAD2/3 
signaling(N) 2.80 x 10-4 0.0143 

Internalization of ErbB1(N) 3.67 x 10-4 0.0172 

Signaling events mediated by focal adhesion 
kinase(N) 6.83 x 10-4 0.0294 

BMP receptor signaling(N) 7.46 x 10-4 0.0298 

Nongenotropic Androgen signaling(N) 9.51 x 10-4 0.0362 
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Table 8.4 Summary of upregulated biological pathways in LMC class 3, FDR is 
the false discovery rate 

Pathway P value FDR 

Mitotic Metaphase and Anaphase(R) 5.42 x 10-12 3.76 x 10-9 

Assembly of the primary cilium(R) 8.95 x 10-12 3.76 x 10-9 

Mitotic Prometaphase(R) 1.50 x 10-10 4.21 x 10-8 

Mitochondrial translation(R) 2.14 x 10-10 4.48 x 10-8 

The citric acid (TCA) cycle and respiratory 
electron transport(R) 1.15 x 10-9 1.93 x 10-7 

RNA Polymerase I, RNA Polymerase III, and 
Mitochondrial Transcription(R) 1.47 x 10-8 2.06 x 10-6 

Ribosome(K) 2.78 x 10-8 3.34 x 10-6 

Fanconi anemia pathway(K) 3.60 x 10-8 3.78 x 10-6 

S Phase(R) 1.55 x 10-7 1.44 x 10-5 

Cell cycle(K) 3.05 x 10-7 2.56 x 10-5 

Processing of Capped Intron-Containing Pre-
mRNA(R) 4.24 x 10-7 3.22 x 10-5 

HDR through Homologous Recombination (HR) 
or Single Strand Annealing (SSA)(R) 1.17 x 10-6 7.12 x 10-5 

Mitotic G1-G1/S phases(R) 1.27 x 10-6 7.12 x 10-5 

Signaling by Rho GTPases(R) 1.28 x 10-6 7.12 x 10-5 

Huntington's disease(K) 1.32 x 10-6 7.12 x 10-5 

Nucleosome assembly(R) 1.37 x 10-6 7.12 x 10-5 

SUMOylation(R) 1.64 x 10-6 8.04 x 10-5 

Resolution of Abasic Sites (AP sites)(R) 2.81 x 10-6 1.29 x 10-4 

Eukaryotic Translation Initiation(R) 5.19 x 10-6 2.28 x 10-4 

Nucleotide Excision Repair(R) 7.14 x 10-6 3.00 x 10-4 

Fanconi anemia pathway(N) 7.73 x 10-6 3.09 x 10-4 

Mitotic G2-G2/M phases(R) 9.63 x 10-6 3.53 x 10-4 

Oxidative phosphorylation(K) 9.82 x 10-6 3.53 x 10-4 

SRP-dependent cotranslational protein targeting 
to membrane(R) 1.14 x 10-5 3.99 x 10-4 

Base excision repair(K) 2.68 x 10-5 8.86 x 10-4 
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Table 8.5 Summary of upregulated biological pathways in LMC class 4, FDR is 
the false discovery rate 

Pathways P-value FDR 

Assembly of the primary cilium(R) 5.50 x 10-7 4.10 x 10-4 

Processing of Capped Intron-Containing Pre-
mRNA(R) 1.82 x 10-6 6.79 x 10-4 

RNA Polymerase II Transcription(R) 2.93 x 10-6 7.26 x 10-4 

p75(NTR)-mediated signaling(N) 5.12 x 10-6 9.53 x 10-4 

Intrinsic Pathway for Apoptosis(R) 8.11 x 10-5 0.0105 

NoRC negatively regulates rRNA expression(R) 8.48 x 10-5 0.0105 

Syndecan-3-mediated signaling events(N) 1.31 x 10-4 0.0139 

Nonsense-Mediated Decay (NMD)(R) 2.34 x 10-4 0.0218 
 

Table 8.6 Summary of upregulated biological pathways in LMC class 5, FDR is 
the false discovery rate 

Pathway P value FDR 

Cell junction organization(R) 2.01 x 10-7 1.58 x 10-5 

Validated transcriptional targets of AP1 family 
members Fra1 and Fra2(N) 1.22 x 10-7 3.81 x 10-5 

Pathways in cancer(K) 1.46 x 10-7 3.81 x 10-5 

EPH-Ephrin signaling(R) 5.67 x 10-7 1.11 x 10-4 

Beta1 integrin cell surface interactions(N) 1.71 x 10-6 2.24 x 10-4 

ECM-receptor interaction(K) 1.97 x 10-6 2.24 x 10-4 

Extracellular matrix organization(R) 2.02 x 10-6 2.24 x 10-4 

Validated transcriptional targets of TAp63 
isoforms(N) 2.73 x 10-6 2.65 x 10-4 

AP-1 transcription factor network(N) 3.34 x 10-6 2.91 x 10-4 

Proteoglycans in cancer(K) 4.31 x 10-6 3.36 x 10-4 

Axon guidance(K) 1.58 x 10-5 1.12 x 10-3 

Hippo signaling pathway(K) 1.87 x 10-5 1.21 x 10-3 

Ras signaling pathway(K) 2.74 x 10-5 1.55 x 10-3 
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Table 8.7 Summary of upregulated biological pathways in LMC class 6, FDR is 
the false discovery rate 

Pathway P value FDR 

Signaling by Rho GTPases(R) 3.90 x 10-8 3.45 x 10-5 

Mitotic Metaphase and Anaphase(R) 7.98 x 10-8 3.52 x 10-5 

Mitotic G1-G1/S phases(R) 5.27 x 10-7 1.43 x 10-4 

Phagosome(K) 6.48 x 10-7 1.43 x 10-4 
APC/C-mediated degradation of cell cycle 
proteins(R) 9.15 x 10-7 1.61 x 10-4 

Regulation of retinoblastoma protein(N) 1.58 x 10-6 2.33 x 10-4 

Iron uptake and transport(R) 2.88 x 10-6 3.62 x 10-4 

Signaling by Insulin receptor(R) 8.82 x 10-6 8.64 x 10-4 

Rheumatoid arthritis(K) 1.10 x 10-5 8.64 x 10-4 

Mitochondrial translation(R) 1.10 x 10-5 8.64 x 10-4 

Toll-Like Receptors Cascades(R) 1.15 x 10-5 8.64 x 10-4 

Beta1 integrin cell surface interactions(N) 1.18 x 10-5 8.64 x 10-4 

Oxidative phosphorylation(K) 1.30 x 10-5 8.72 x 10-4 

Mitotic Prometaphase(R) 1.42 x 10-5 8.97 x 10-4 

ROS, RNS production in response to bacteria(R) 2.15 x 10-5 1.25 x 10-3 

Mitotic G2-G2/M phases(R) 2.27 x 10-5 1.25 x 10-3 

Cell Cycle Checkpoints(R) 2.83 x 10-5 1.36 x 10-3 
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Table 8.8 Summary of downregulated biological pathways in LMC class 1, FDR 
is the false discovery rate 

Pathway P value FDR 

Mitotic G1-G1/S phases(R) 1.16 x 10-11 5.62 x 10-9 

Mitochondrial translation(R) 1.44 x 10-11 5.62 x 10-9 

Cell Cycle Checkpoints(R) 6.52 x 10-10 1.70 x 10-7 

Cell cycle(K) 1.35 x 10-8 2.63 x 10-6 

Mitotic Metaphase and Anaphase(R) 1.88 x 10-8 2.93 x 10-6 
APC/C-mediated degradation of cell cycle 
proteins(R) 6.04 x 10-8 7.51 x 10-6 

Signaling by Rho GTPases(R) 6.77 x 10-8 7.51 x 10-6 

Validated targets of C-MYC transcriptional 
activation(N) 3.46 x 10-8 3.35 x 10-5 

S Phase(R) 4.33 x 10-8 3.72 x 10-5 

FOXM1 transcription factor network(N) 7.42 x 10-7 5.79 x 10-5 

Nucleosome assembly(R) 9.63 x 10-7 6.83 x 10-5 

The citric acid (TCA) cycle and respiratory 
electron transport(R) 1.47 x 10-6 9.55 x 10-5 

Mitotic G2-G2/M phases(R) 1.67 x 10-6 1.00 x 10-5 

Aurora B signaling(N) 3.44 x 10-6 1.89 x 10-5 

Mitotic Prometaphase(R) 4.22 x 10-6 2.20 x 10-5 

M/G1 Transition(R) 5.00 x 10-6 2.40 x 10-5 

E2F transcription factor network(N) 1.22 x 10-5 5.60 x 10-5 

Hedgehog 'off' state(R) 1.42 x 10-5 6.10 x 10-5 

Regulation of DNA replication(R) 1.97 x 10-5 8.07 x 10-4 

Parkinson's disease(K) 2.10 x 10-5 8.18 x 10-4 

Nucleotide Excision Repair(R) 2.25 x 10-5 8.34 x 10-4 
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Table 8.9 Summary of downregulated biological pathways in LMC class 2, FDR 
is the false discovery rate 

Pathway P value FDR 

PLK1 signaling events(N) 2.12 x 10-8 3.63 x 10-6 

Systemic lupus erythematosus(K) 2.20 x 10-8 3.63 x 10-6 

Alcoholism(K) 2.93 x 10-8 3.63 x 10-6 

ATR signaling pathway(N) 2.04 x 10-7 1.90 x 10-5 

FOXM1 transcription factor network(N) 3.70 x 10-7 2.74 x 10-5 

APC/C-mediated degradation of cell cycle 
proteins(R) 1.36 x 10-6 8.42 x 10-5 

Signaling by Rho GTPases(R) 9.17 x 10-6 4.47 x 10-4 

Mitotic G2-G2/M phases(R) 9.72 x 10-6 4.47 x 10-4 

Mitotic Metaphase and Anaphase(R) 1.33 x 10-6 5.44 x 10-4 

Progesterone-mediated oocyte maturation(K) 2.66 x 10-5 9.85 x 10-4 

Mitotic Prometaphase(R) 5.43 x 10-5 1.85 x 10-3 

Cell Cycle Checkpoints(R) 6.26 x 10-5 1.94 x 10-3 

Oxidative Stress Induced Senescence(R) 7.25 x 10-5 2.03 x 10-3 

Assembly of the primary cilium(R) 1.52 x 10-4 3.87 x 10-3 

p73 transcription factor network(N) 1.61 x 10-4 3.87 x 10-3 

Cell cycle(K) 1.84 x 10-4 4.23 x 10-3 

NoRC negatively regulates rRNA expression(R) 3.38 x 10-4 7.43 x 10-3 

Oocyte meiosis(K) 9.32 x 10-4 0.0186 

General transcription by RNA polymerase I(P) 1.04 x 10-3 0.0197 

Meiotic recombination(R) 1.32 x 10-3 0.0238 

Validated targets of C-MYC transcriptional 
activation(N) 1.63 x 10-3 0.0277 

regulators of bone mineralization(B) 2.52 x 10-3 0.0409 

HDR through Homologous Recombination (HR) 
or Single Strand Annealing (SSA)(R) 2.56 x 10-3 0.0409 

Mechanism of protein import into the nucleus(B) 2.99 x 10-3 0.0422 

RNA Polymerase I, RNA Polymerase III, and 
Mitochondrial Transcription(R) 3.01 x 10-3 0.0422 
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Table 8.10 Summary of downregulated biological pathways in LMC class 3, 
FDR is the false discovery rate 

Pathway P value FDR 

IL12-mediated signaling events(N) 1.11 x 10-16 2.22 x 10-14 

Cytokine-cytokine receptor interaction(K) 1.11 x 10-16 2.22 x 10-14 

Osteoclast differentiation(K) 1.11 x 10-16 2.22 x 10-14 

Hematopoietic cell lineage(K) 1.11 x 10-16 2.22 x 10-14 

TNF signaling pathway(K) 2.22 x 10-16 3.55 x 10-14 

NF-kappa B signaling pathway(K) 3.33 x 10-16 4.43 x 10-14 

Extracellular matrix organization(R) 1.59 x 10-14 1.81 x 10-14 

Chemokine signaling pathway(K) 2.02 x 10-13 2.02 x 10-14 

Pathways in cancer(K) 9.33 x 10-13 8.31 x 10-11 

Natural killer cell mediated cytotoxicity(K) 2.05 x 10-12 1.64 x 10-10 

GPVI-mediated activation cascade(R) 3.61 x 10-12 2.60 x 10-10 

Primary immunodeficiency(K) 2.56 x 10-11 1.57 x 10-9 

TCR signaling in na&#xef;ve CD8+ T cells(N) 2.58 x 10-11 1.57 x 10-9 

T cell receptor signaling pathway(K) 3.79 x 10-11 2.16 x 10-9 

Beta1 integrin cell surface interactions(N) 5.14 x 10-11 2.72 x 10-9 

TCR signaling in na&#xef;ve CD4+ T cells(N) 7.06 x 10-11 3.53 x 10-9 

Interferon gamma signaling(R) 1.17 x 10-10 5.48 x 10-9 

Signaling by Interleukins(R) 1.70 x 10-10 7.47 x 10-9 

DAP12 interactions(R) 2.28 x 10-10 9.57 x 10-9 

Interferon alpha/beta signaling(R) 2.66 x 10-10 1.07 x 10-8 

Downstream signaling in na&#xef;ve CD8+ T 
cells(N) 7.34 x 10-10 2.79 x 10-8 

IL12 signaling mediated by STAT4(N) 9.47 x 10-10 3.41 x 10-8 

Cell adhesion molecules (CAMs)(K) 1.95 x 10-9 6.64 x 10-8 

Focal adhesion(K) 2.15 x 10-9 7.11 x 10-8 

Cell surface interactions at the vascular wall(R) 4.18 x 10-9 1.34 x 10-7 

Staphylococcus aureus infection(K) 6.16 x 10-9 1.85 x 10-7 

Signaling by PDGF(R) 6.42 x 10-9 1.86 x 10-7 

Signaling by SCF-KIT(R) 9.69 x 10-9 2.71 x 10-7 

Fc gamma R-mediated phagocytosis(K) 1.12 x 10-8 3.02 x 10-7 

Complement and coagulation cascades(K) 1.42 x 10-8 3.64 x 10-7 

ECM-receptor interaction(K) 1.46 x 10-8 3.64 x 10-7 
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Pathway P value FDR 

PI3K-Akt signaling pathway(K) 1.78 x 10-8 4.33 x 10-7 

Measles(K) 1.81 x 10-8 4.33 x 10-7 

IL23-mediated signaling events(N) 5.17 x 10-8 1.19 x 10-6 

Costimulation by the CD28 family(R) 5.96 x 10-8 1.31 x 10-6 

T cell activation(P) 6.06 x 10-8 1.33 x 10-6 
Validated transcriptional targets of AP1 family 
members Fra1 and Fra2(N) 7.46 x 10-8 1.57 x 10-6 
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Table 8.11 Summary of downregulated biological pathways in LMC class 4, FDR is 
the false discovery rate 

Pathway P value FDR 

T cell receptor signaling pathway(K) 1.98 x 10-11 1.75 x 10-8 

Osteoclast differentiation(K) 3.82 x 10-10 1.69 x 10-7 

Natural killer cell mediated cytotoxicity(K) 6.75 x 10-10 1.98 x 10-7 

Toll-Like Receptors Cascades(R) 1.72 x 10-9 3.11 x 10-7 

TCR signaling in na&#xef;ve CD4+ T cells(N) 1.79 x 10-9 3.11 x 10-7 

Interferon gamma signaling(R) 2.37 x 10-9 3.11 x 10-7 

Measles(K) 2.47 x 10-9 3.11 x 10-7 

Signalling by NGF(R) 5.11 x 10-9 5.62 x 10-7 

IL12-mediated signaling events(N) 8.59 x 10-9 8.42 x 10-7 

Primary immunodeficiency(K) 1.67 x 10-8 1.47 x 10-6 

TCR signaling in na&#xef;ve CD8+ T cells(N) 3.11 x 10-8 2.49 x 10-6 

T cell activation(P) 5.51 x 10-8 4.02 x 10-6 

Chemokine signaling pathway(K) 7.40 x 10-8 4.96 x 10-6 

TCR signaling(R) 1.18 x 10-7 7.37 x 10-6 

B cell receptor signaling pathway(K) 1.34 x 10-7 7.37 x 10-6 

Leishmaniasis(K) 1.34 x 10-7 7.37 x 10-6 

Interferon alpha/beta signaling(R) 1.46 x 10-7 7.46 x 10-6 

DAP12 interactions(R) 1.64 x 10-7 7.76 x 10-6 

Tuberculosis(K) 1.69 x 10-7 7.76 x 10-6 

Signaling by SCF-KIT(R) 2.22 x 10-7 9.78 x 10-6 

Costimulation by the CD28 family(R) 3.20 x 10-7 1.34 x 10-6 

Signaling by Interleukins(R) 4.04 x 10-7 1.56 x 10-6 

NF-kappa B signaling pathway(K) 4.11 x 10-7 1.56 x 10-6 

BCR signaling pathway(N) 5.07 x 10-7 1.82 x 10-6 

Cell surface interactions at the vascular wall(R) 5.72 x 10-7 2.00 x 10-5 

Signaling by Rho GTPases(R) 7.02 x 10-7 2.32 x 10-5 

MAPK signaling pathway(K) 1.21 x 10-6 3.88 x 10-5 

Cytokine-cytokine receptor interaction(K) 1.32 x 10-6 4.10 x 10-5 
Downstream signaling in na&#xef;ve CD8+ T 
cells(N) 1.71 x 10-6 5.14 x 10-5 

Fc gamma R-mediated phagocytosis(K) 1.77 x 10-6 5.14 x 10-5 

CXCR4-mediated signaling events(N) 2.70 x 10-6 7.56 x 10-5 
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Pathway P value FDR 

HTLV-I infection(K) 3.83 x 10-6 1.00 x 10-4 

Pertussis(K) 3.96 x 10-6 1.00 x 10-4 

Signaling by EGFR(R) 4.01 x 10-6 1.00 x 10-4 

IL12 signaling mediated by STAT4(N) 4.08 x 10-6 1.02 x 10-4 

Phagosome(K) 4.25 x 10-6 1.02 x 10-4 

GPVI-mediated activation cascade(R) 4.57 x 10-6 1.05 x 10-4 

Fc-epsilon receptor I signaling in mast cells(N) 4.58 x 10-6 1.05 x 10-4 

Signaling by PDGF(R) 6.60 x 10-6 1.45 x 10-4 

TNF signaling pathway(K) 9.06 x 10-6 1.91 x 10-4 

Hematopoietic cell lineage(K) 9.08 x 10-6 1.91 x 10-4 

Leukocyte transendothelial migration(K) 9.13 x 10-6 1.92 x 10-4 

Chagas disease (American trypanosomiasis)(K) 1.18 x 10-5 2.36 x 10-4 

Beta2 integrin cell surface interactions(N) 1.23 x 10-5 2.46 x 10-4 

Signaling by VEGF(R) 1.54 x 10-5 2.92 x 10-4 

Signaling by FGFR3(R) 1.67 x 10-5 3.01 x 10-4 

Signaling by FGFR4(R) 1.67 x 10-5 3.01 x 10-4 

Signaling by FGFR1(R) 1.81 x 10-5 3.26 x 10-4 

Signaling by FGFR2(R) 1.81 x 10-5 3.26 x 10-4 

amb2 Integrin signaling(N) 2.25 x 10-5 3.82 x 10-4 

Class I PI3K signaling events(N) 2.98 x 10-5 5.07 x 10-4 

Signaling by Insulin receptor(R) 3.25 x 10-5 5.20 x 10-4 

EPO signaling pathway(N) 3.93 x 10-5 6.29 x 10-4 

Pathways in cancer(K) 4.07 x 10-5 6.52 x 10-4 

Fc epsilon RI signaling pathway(K) 4.47 x 10-5 6.83 x 10-4 

Signaling by ERBB2(R) 4.56 x 10-5 6.83 x 10-4 

Toll-like receptor signaling pathway(K) 4.70 x 10-5 7.04 x 10-4 
Class I MHC mediated antigen processing & 
presentation(R) 5.40 x 10-5 8.10 x 10-4 
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Table 8.12 Summary of downregulated biological pathways in LMC class 5, 
FDR is the false discovery rate 

Pathway P value FDR 

Wnt signaling pathway(P) 1.99 x 10-10 1.56 x 10-7 

Assembly of the primary cilium(R) 6.85 x 10-8 2.69 x 10-5 

Cadherin signaling pathway(P) 1.42 x 10-7 3.20 x 10-5 

Processing of Capped Intron-Containing Pre-
mRNA(R) 1.63 x 10-7 3.20 x 10-5 

RNA Polymerase I, RNA Polymerase III, and 
Mitochondrial Transcription(R) 1.00 x 10-4 0.0126 

SUMOylation(R) 1.08 x 10-4 0.0126 

E2F transcription factor network(N) 1.13 x 10-4 0.0126 

Ubiquitin mediated proteolysis(K) 1.60 x 10-4 0.0142 

Regulation of retinoblastoma protein(N) 1.63 x 10-4 0.0142 

tRNA processing in the nucleus(R) 2.33 x 10-4 0.0182 
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Table 8.13 Summary of downregulated biological pathways in LMC class 6, 
FDR is the false discovery rate 

Pathway P value FDR 

Eukaryotic Translation Termination(R) 1.11 x 10-16 1.35 x 10-14 

Eukaryotic Translation Initiation(R) 1.11 x 10-16 1.35 x 10-14 

Nonsense-Mediated Decay (NMD)(R) 1.11 x 10-16 1.35 x 10-14 

SRP-dependent cotranslational protein targeting 
to membrane(R) 1.11 x 10-16 1.35 x 10-14 

Eukaryotic Translation Elongation(R) 1.11 x 10-16 1.35 x 10-14 

Selenoamino acid metabolism(R) 1.11 x 10-16 1.35 x 10-14 

Ribosome(K) 8.88  x 10-16 9.24 x 10-14 

Cell junction organization(R) 2.06 x 10-8 1.87 x 10-6 

Phosphatidylinositol signaling system(K) 1.13 x 10-6 9.18 x 10-5 

Rap1 signaling pathway(K) 4.19 x 10-5 3.06 x 10-3 

Regulation of actin cytoskeleton(K) 5.01 x 10-5 3.30 x 10-3 

Oxytocin signaling pathway(K) 5.71 x 10-5 3.48 x 10-3 

Focal adhesion(K) 1.07 x 10-4 6.00 x 10-3 

Direct p53 effectors(N) 1.15 x 10-4 6.00 x 10-3 

Regulation of Telomerase(N) 1.66 x 10-4 7.96 x 10-3 

Tight junction(K) 1.91 x 10-4 8.26 x 10-3 

Sphingolipid signaling pathway(K) 1.96 x 10-4 8.26 x 10-3 
Stabilization and expansion of the E-cadherin 
adherens junction(N) 2.25 x 10-4 8.26 x 10-3 

Inositol phosphate metabolism(K) 2.27 x 10-4 8.26 x 10-3 

Generic Transcription Pathway(R) 2.30 x 10-4 8.26 x 10-3 

Nectin adhesion pathway(N) 2.43 x 10-4 8.26 x 10-3 

Adherens junction(K) 2.78 x 10-4 8.96 x 10-3 

EPHA forward signaling(N) 2.89 x 10-4 8.96 x 10-3 

Ras signaling pathway(K) 3.12 x 10-4 9.36 x 10-3 
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Table 8.14 Gini index value for 200 predictor genes of the refined RF model 

Gene Gini  Gene Gini 
RNF31 0.11 

 

FOXD1 0.06 

SEC11C 0.1 IMPA1 0.06 

LMAN2L 0.1 MLL3 0.06 

SNORA12 0.09 C21orf63 0.05 

ATP5A1 0.09 CACNB1 0.05 

PPP1R3B 0.09 CENPQ 0.05 

C1orf43 0.09 USP50 0.05 

CBLN1 0.08 HDGFRP3 0.05 

MS4A1 0.08 FAM65C 0.05 

CCL19 0.08 GMIP 0.05 

CUGBP2 0.08 ELP4 0.05 

RCN2 0.08 ZNF281 0.05 

NDUFAB1 0.08 ABCB6 0.05 

RMI1 0.07 CHKB 0.05 
HSPA13 0.07 MRPL13 0.05 

DNAJA3 0.07 RASA4 0.05 

MOV10 0.07 DOK2 0.05 

BTBD3 0.07 TNFRSF18 0.05 

PHF20 0.07 KLHL12 0.05 

DLL3 0.07 RPIA 0.05 

PRICKLE4 0.07 GBAS 0.05 

IFI44 0.07 C8orf33 0.05 

YTHDF3 0.07 CD1A 0.05 

WDSOF1 0.07 H19 0.05 

UBL5 0.06 GPR19 0.05 

UBA2 0.06 DDX28 0.05 

LAMP3 0.06 ZC3H12D 0.05 

NDUFB2 0.06 PECI 0.05 

COPA 0.06 SLC35E3 0.05 

FCRLB 0.06 PLEKHG1 0.05 

ZNF322A 0.06 PBK 0.05 

ST13 0.06 ATP6V1G1 0.05 

NOL11 0.06 C12orf23 0.05 

BOC 0.06 PARP12 0.05 

STMN1 0.06 PRRC1 0.05 
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Gene Gini  Gene Gini 
ZCRB1 0.05 

 

LAMA2 0.04 

TYMS 0.05 LASS2 0.04 

P2RY4 0.05 CLIC2 0.04 

CYBRD1 0.05 PTTG1IP 0.04 

PDE1B 0.05 HOXC5 0.04 

ATHL1 0.05 MANEAL 0.04 

LPAR1 0.05 VCPIP1 0.04 

ACBD3 0.05 FH 0.04 

TATDN1 0.05 PGCP 0.04 

FLJ42986 0.05 EPRS 0.04 
C11orf46 0.05 UTP14C 0.04 

CCDC17 0.05 RNASE2 0.04 

MRPS28 0.05 ZNF512 0.04 

PRDX4 0.05 GGH 0.04 

PMP22 0.05 ERI2 0.04 

ST14 0.05 TMEM178 0.04 

RAB27B 0.05 FANCC 0.04 

TUBB4 0.05 CCR7 0.04 

HERC6 0.05 SEC24A 0.04 

CDK4 0.05 ZNF146 0.04 

C5orf20 0.05 N6AMT2 0.04 

RPA3 0.05 ZUFSP 0.04 

DHX58 0.05 MED20 0.04 

DDX60 0.05 MRPL30 0.04 

NFKB2 0.04 NDUFS2 0.04 

NAB1 0.04 PROK2 0.04 

ZNF385A 0.04 DCI 0.04 

COL29A1 0.04 PIGM 0.04 

ZNF318 0.04 PTK2 0.04 

NLRP1 0.04 CBX4 0.04 

KIAA1683 0.04 PLAT 0.04 

IL28RA 0.04 C6orf125 0.04 

CD37 0.04 GATA4 0.04 

CCDC7 0.04 NKD2 0.04 
RAD54B 0.04 CENPF 0.04 

ITPR2 0.04 BLM 0.04 
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Gene Gini  Gene Gini 
TMEM117 0.04 

 

CYTH1 0.03 

BRPF3 0.04 ETV6 0.03 

C11orf21 0.04 C16orf59 0.03 

SLC25A28 0.04 PCDH21 0.03 

FCER1A 0.04 OR2W3 0.03 

FKBP4 0.04 FAM78B 0.03 

PTAR1 0.04 COX5A 0.03 

PPM1D 0.04 KIF4B 0.03 

SNORD112 0.04 PCDHB10 0.03 

USP37 0.04 HLA.DQB1 0.03 
CBFA2T3 0.04 ERCC6L 0.03 

IFI44L 0.04 LARP6 0.03 

MVP 0.04 HOXB8 0.03 

C6orf111 0.04 SFRP2 0.03 

C1orf53 0.04 SNRPA1 0.03 

DHX15 0.04 KCNH4 0.03 

IL16 0.04 PCGF1 0.03 

F11R 0.04 SLC25A45 0.03 

EPHA4 0.04 DKK1 0.03 

MKI67IP 0.04 CCDC48 0.03 

KIFC1 0.04 PUS7 0.03 

JMJD2C 0.04 MIR24.1 0.03 

DNAJC25 0.04 OTUD6B 0.03 

DCTPP1 0.04 FOSL2 0.03 

KITLG 0.04 MRPL50 0.03 

ANXA11 0.04 TMEM203 0.03 

TMEM64 0.04 RSPO1 0.03 

GFRA3 0.04 HBB 0.03 

HOXB13 0.03 POMP 0.03 
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