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Abstract

Rhythmic data are ubiquitous in the life sciences, with biologists needing reliable sta-

tistical tools for the analysis of such data. When these signals display rhythmic yet non-

stationary behaviour, common in many biological systems, the established methodologies

are often misleading.

Chapter 2 develops and tests a new method for clustering nonstationary rhythmic bio-

logical data. The method combines locally stationary wavelet time series modelling with

functional principal components analysis and thus extracts time—scale patterns useful for

identifying common characteristics. We demonstrate the advantages of our methodology

over alternative approaches by means of a simulation study and for real circadian data ap-

plications.

Motivated by three complementary applications in circadian biology, Chapter 3 devel-

ops new reliable statistical tests to identify whether a particular experimental treatment

has caused a significant change in a rhythmic signal that displays nonstationary charac-

teristics. As circadian behaviour is best understood in the spectral domain, we develop

novel hypothesis testing procedures in the (wavelet) spectral domain, which facilitate the

identification of three specific types of spectral difference. We demonstrate the advantages

of our methodology over alternative approaches by means of a comprehensive simulation

study and for real data applications, involving both plant and animal signals.

Chapter 4 investigates the effect of industrial and agricultural pollutants on the plant

circadian clock. We examine the impact of exposure to a comprehensive range of environ-

mentally relevant pollutants by utilising the methodologies developed in Chapters 2 and 3.

Our findings indicate that many of the tested chemicals have an effect on the plant circa-

dian clock, most of which would have remained undetected by classical methods overlook-

ing nonstationarity. The results of Chapter 4 demonstrate the additional insight gained by

using the appropriate methodologies, as developed in Chapters 2 and 3, and also have im-

portant implications for understanding environmental ramifications associated with soil

pollution.
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Introduction

The earth rotates on its axis every 24 hours resulting in a day and night cycle. Correspondingly,

almost all species exhibit changes in their behaviour between day and night (Bell-Pedersen

et al., 2005). These daily rhythms are not only caused by a response to daily changes in the

physical environment, but are also the result of an internal timekeeping system or ‘biological

clock’ within the organism (Vitaterna et al., 2001; Minors and Waterhouse, 2013). In partic-

ular, most plants are able to anticipate dawn and adjust their biochemistry accordingly. The

mechanisms underlying the biological timekeeping systems, and the potential consequences

of their failure, are among the issues addressed by researchers in the field of circadian biology

(McClung, 2006; Bujdoso and Davis, 2013).

Circadian rhythms are a subset of biological rhythms with a period of approximately 24

hours. The term ‘circadian’ (derived from the Latin words “circa” (about) and “dies”(day)) was

first used by Franz Halberg in the 1950s (McClung, 2006). Furthermore, a defining attribute

of circadian rhythms is that they are “endogenously generated and self-sustaining” (McClung,

2006). In other words, they are the result of an internal timekeeping system–“endogenously

generated”– and the period remains approximately 24 hours under constant environmental

conditions, such as constant light (or dark) and constant temperature (i.e. when deprived of

any external time cues)– “self-sustaining”.

The first recorded observations (in western literature) of circadian rhythms appeared in the

fourth century BC, when Androsthenes described the daily leaf movements of the tamarind tree

(McClung, 2006). However, at the time it was assumed that these movements were due to the

plant reacting to the day-night cycle (not the result of an internal clock) and it took over 2000

years for these observations to be experimentally tested. The first instance of scientific litera-

ture on circadian rhythms was in 1729 when the French astronomer de Mairan discovered that

the daily leaf movements of certain plants persisted in constant darkness. This demonstrated

for the first time that the plant could not be reacting to the external cues associated with a

light–dark cycle, potentially indicating the existence of an internal timekeeping system. How-

ever, these experiments did not take temperature into account and it took a further 30 years

before de Mairan’s observations were independently repeated (in constant darkness) with con-

stant ambient temperature (McClung, 2006). Almost 100 years later, the period length of these

leaf movements was accurately measured and shown to be only approximately 24 hours. The

result that the rhythms were not exactly 24 hours was crucial as it provided evidence that these

rhythms were driven by an internal timekeeping system and not simply responses to an unde-

tected geophysical cue associated with the rotation of the earth on its axis (such as light leaking

into the laboratory darkroom!)

However, leaf movement is only one among many circadian rhythms in plants that include:

germination; growth; enzyme activity; stomatal movement and gas exchange; photosynthetic

activity; flower opening and fragrance emission (McClung, 2006). Therefore, in the 1970s, re-

searchers began using genetic analysis with the intention of: identifying components of circa-

dian clocks and elucidating the oscillator mechanism central to the circadian clock in a number

of organisms, including the laboratory model plant species Arabidopsis thaliana. These early

experiments were quite labour intensive, but advances in experimental methods in the 1990s

meant that relative gene expression could be quantified in vivo (Plautz et al., 1997; Southern
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and Millar, 2005; Perea-García et al., 2016a). Experiments recording plant response to light

entrainment (constant light) result in datasets that, from a statistical point of view, can be con-

sidered as time series realisations.

Time series are ubiquitous and their analysis has found important applications in, for ex-

ample, economics, climatology and, of course, circadian biology. For series that satisfy certain

properties, such as stationarity (i.e. statistical properties such as the mean and variance are as-

sumed constant over time) there are well—established methods of statistical analysis which are

classically based on Fourier representations (see for example Priestley (1982); Shumway and

Stoffer (2000); Brillinger (2001); Percival and Walden (2006) for an introduction to the topic).

This thesis is concerned with analysis methods for nonstationary time series. In particular, we

address a number of applied problems in the field of circadian biology, where nonstationar-

ity is common (Zielinski et al., 2014) and replicate information is available. Access to replicate

information, though standard in many biological applications, is atypical for time series data.

Consequently, there is a gap in the current time series literature. In this thesis, we are primarily

interested in clustering nonstationary time series and also determining if two (groups of) time

series differ in terms of their spectral structure, and, if so, how?

Wavelets can be thought of as localised, oscillatory basis functions with several attractive

properties for function representation. They are localised in both time and frequency, provid-

ing sparse multiscale representations for many signals. Due to their time localisation, wavelets

provide natural ‘building blocks’ for nonstationary series. In this thesis, we develop clustering

and hypothesis testing procedures based on wavelets.

This thesis is structured as follows: Chapter 1 provides an overview of aspects of the litera-

ture which are essential to the work subsequently developed. In particular, we give an overview

of basis representations and an introduction to wavelet theory including the discrete wavelet

transform (DWT). We then introduce the topic of stationary time series analysis, and its rele-

vant applications in circadian biology. We also review the current state-of-the-art period es-

timation methods for circadian data. We then describe various approaches to nonstationary

time series analysis and, in particular, the locally stationary wavelet (LSW) model of Nason et al.

(2000), which provides the modelling framework for the methodology developed in Chapters 2

and 3 .

The work in Chapter 2 is motivated by the phenomenon of individual-level variability in

plant response to stimuli, despite their sharing identical genetic characteristics (Doyle et al.,

2002). The presence of multiple nonstationary behaviours within the same experimental treat-

ment group motivates the development of a clustering procedure that can detect these different

characteristics and analyse them separately, whilst accounting for nonstationarity. Hence, in

Chapter 2, we develop and test (both through an extensive simulation study and application

to a previously published circadian dataset) a new method for clustering rhythmic biological

data. The proposed methodology combines locally stationary wavelet time series modelling

with functional principal components analysis and thus extracts the time-scale patterns aris-

ing in a range of rhythmic data. Interesting and encouraging results are obtained by applying

the clustering methodology to a newly–generated circadian dataset. Nevertheless, the devel-

oped methodology has wider applicability; it can be applied to other circadian datasets, as well

as to data originating in other fields.

Chapter 3 addresses the problem of identifying whether a particular experimental treat-
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ment has caused a significant change in a rhythmic biological signal. When these signals dis-

play nonstationary behaviour, the established methodologies may be misleading. Therefore, in

this chapter, we develop new methodology that enables the formal comparison of nonstation-

ary processes. As circadian behaviour is best understood in the spectral domain (Hargreaves

et al., 2018), we develop novel hypothesis testing procedures in the (wavelet) spectral domain,

embedding replicate information when available. Motivated by three complementary appli-

cations in circadian biology, our new methodology allows the identification of three specific

types of spectral difference. We demonstrate the advantages of our methodology over alterna-

tive approaches, by means of a comprehensive simulation study and real data applications, us-

ing both published and newly generated circadian datasets. In contrast to the current standard

methodologies, our proposed method successfully identifies differences within the motivat-

ing circadian datasets, and facilitates wider ranging analyses of rhythmic biological data. This

demonstrates the utility of the proposed methodology, which again is not restricted to these

applications.

Throughout this thesis, our work is motivated by a specific application in the field of cir-

cadian biology– the effect of industrial and agricultural pollutants on the plant circadian clock

(Foley et al., 2005; Senesil et al., 1998; Hargreaves et al., 2018; Nicholson et al., 2003). Specifi-

cally, the Department for Environment, Food and Rural Affairs (DEFRA) developed ‘Soil Guide-

line Values’ (SGVs) that can be used to determine appropriate concentrations of certain chem-

icals in soil. Therefore, in Chapter 4, we apply the wavelet spectral testing and clustering

methodologies developed within this thesis to investigate the impact of exposure to the chem-

icals at the concentrations outlined in the DEFRA report, as well as to chemicals not included

in the report, on the plant circadian clock. Our findings indicate that many of the tested chem-

icals have an effect on the plant circadian clock. Therefore, the results of Chapter 4 could be

used to inform a revision of the SGVs. Thus, the results of Chapter 4 not only have important

implications for understanding environmental ramifications associated with soil pollution, but

also demonstrate the additional insight gained by using the appropriate methodologies, as de-

veloped in Chapters 2 and 3.

Finally, Chapter 5 concludes with a summary of our work and some interesting ideas for

future research.

19



Acknowledgements

First and foremost my thanks go to my team of supervisors: Marina Knight, Jon Pitchford and

Seth Davis. A few people questioned the wisdom of having three voices, but I think we proved

them wrong! Thank you Jon for being the maths–biology translator! Also thank you for your

support and kindness and sense of humour (which was so often needed)! Thank you Seth for

your generosity with your time, all your useful/ useless (delete as appropriate) facts and all

the conversations about American sports and Eurovision! And thank you to Marina Knight

(always right). I have nominated her for supervisor of the year every year for the last four years!

But, due to the fact that I never threatened to quit my PhD (which of course is down to their

excellent supervision), she is yet to win the award! Marina, you are an inspiration on a personal

and professional level. And look– I went a whole paragraph without writing “in particular” or

“therefore”! You have taught me so much!

Thanks also go to Agostino Nobile for being an excellent and very helpful Thesis Advisory

Panel. I cannot apologise enough for the 40 page TAP reports that arrived 2 days before meet-

ings! Also, thank you for all your time and patience when we worked together lecturing Stats 2.

I wouldn’t be where I am without that experience and you were there every step of the way.

Also thank you to all members of the Davis Lab. The lessons I have learnt through pre-

senting and listening at the weekly lab meetings have been invaluable. Special mentions to:

Jack; Kayla (one of the kindest people I have ever met); Mandi (Go Tribe!) and Rachael (without

which none of the work in this thesis would have been possible). I wish all of you the best in

your future endeavours.

Finally, I want to thank my family for much more than words can ever say. Mainly, proof

reading and counselling! And generally putting up with me in work–mode for the past four

years.

20



Declaration

I declare that this thesis is a presentation of original work and that I am the sole author, under

the supervision of Dr. Marina Knight, Dr. Jon Pitchford and Prof. Seth Davis. Unless specified

otherwise (see below), I performed all literature research, programming, analysis and writing

of the thesis chapters. Under the supervision of Dr. Marina Knight, Dr. Jon Pitchford and Prof.

Seth Davis, I developed and implemented the statistical methodology in Chapters 2 and 3. The

novel circadian datasets analysed in this thesis were obtained by the Davis and Chawla Labs

(Biology, University of York).

This work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

The following chapters of the thesis have been published in or submitted to peer–reviewed

journals. I am the first author on two of the three papers, but have received feedback and

corrections from my co–authors.

0.1 Chapter 2

The novel circadian dataset analysed in this chapter was obtained by the Davis Lab (Biology,

University of York). The BRASS analysis of this dataset was performed by R. Oakenfull.

This chapter has been published as:

Hargreaves, J. K., Knight, M. I., Pitchford, J. W., Oakenfull, R. and Davis, S. J. (2018). Clus-

tering nonstationary circadian plant rhythms using locally stationary wavelet representations.

SIAM Multiscale modeling and simulation, 16(1):184–214.

0.2 Chapter 3

The novel ‘Lead dataset’ analysed in this chapter was obtained by the Davis Lab (Biology, Uni-

versity of York). The BRASS analysis of this dataset was performed by R. Oakenfull. The novel

‘Nematode dataset’ analysed in this chapter was obtained by the Chawla Lab (Biology, Univer-

sity of York). The BRASS analysis of this dataset was performed by J. Munns.

This chapter has been submitted for publication to the Annals of Applied Statistics as:

Hargreaves, J. K., Knight, M. I., Pitchford, J. W., Oakenfull, R., Chawla, S., Munns, J. and

Davis, S. J. (2018). Wavelet spectral testing: application to nonstationary circadian rhythms.

arXiv preprint arXiv:1803.09507.

0.3 Chapter 4

The novel circadian dataset analysed in this chapter was obtained by the Davis Lab (Biology,

University of York). The BRASS analysis of this dataset was performed by R. Oakenfull. I per-

formed the wavelet spectral testing and produced the resulting figures.

The results and discussion of the BRASS analysis and wavelet spectral testing are in prepa-

ration for publication (with R. Oakenfull as the lead author) as:

Oakenfull, R., Hargreaves, J. K., Knight, M. I., Pitchford, J. W. and Davis, S. J. (In Preparation).

Out of the sewage rises new maths...

In Chapter 4, I present the results of the above analyses. However, I selected which of the

above results to discuss in detail and wrote the text of the thesis chapter (with feedback and

21



guidance from my supervisors). I also performed the cluster analysis (which is not included in

the manuscript in preparation).

22



1 Literature Review

This chapter provides an overview of aspects of the literature which are essential to the work

presented in this thesis. Section 1.1 gives an overview of basis representations and Section

1.2 gives a more detailed introduction to wavelet theory. Section 1.3 introduces the topic of

stationary time series analysis, and, in particular, Section 1.3.2 its applications in circadian

biology (which motivated the work in this thesis), as well as reviewing the current state-of-the-

art period estimation methods for circadian data. Finally, Section 1.4 describes approaches to

nonstationary time series analysis and, in particular, the locally stationary wavelet model.

1.1 Basis Representations

We begin by first reviewing some relevant concepts from Fourier analysis. An understanding

of these methods provides the motivation for the use of wavelets, since certain signals cannot

be represented efficiently using the trigonometric functions which form the basis of Fourier

analysis. Fourier methods also underpin some of the commonly used period estimation meth-

ods for circadian data (see Section 1.3.2) and provide the benchmark for comparison with the

(wavelet-based) methodology we develop in later chapters.

Our review of Fourier analysis follows the description in Priestley (1982) and the review of

wavelet theory synthesises the descriptions in Daubechies (1992), Vidakovic (1999) and Nason

(2010). We refer the reader to these texts for a more detailed discussion.

1.1.1 Fourier Analysis

In classical Fourier analysis, trigonometric functions (i.e. sine and cosine waves) are used to

form the bases for functions in the space of square integrable functions,

L2(R) =
{

f |
∫ ∞

−∞
| f (t )|2d t <∞

}
.

We define the Fourier series representation of a function, f , as follows.

Definition 1.1.1. Let f be periodic (with period 2π) and square integrable over the interval

[0,2π). Then the Fourier series representation of f is:

f (x) = a0

2
+ ∑

n∈Z+

(
an cos(nx)+bn sin(nx)

)
,

where the Fourier coefficients are calculated from

an = 1

π

∫ 2π

0
f (x)cos(nx)d x, bn = 1

π

∫ 2π

0
f (x)sin(nx)d x.

The Fourier coefficients, an and bn in Definition 1.1.1, are calculated using the L2 inner

product. The magnitudes of the Fourier coefficients provide information about the frequency

composition of the signal. The Fourier functions, {cos(nx),sin(nx)}n∈N, form an orthonormal

basis and can be thought of as the “building blocks” from which certain periodic functions can

be constructed.

However, most functions are not periodic. The Fourier transform is an extension of the

Fourier series in that it provides a representation of non-periodic functions in the space of
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absolutely integrable functions,

L1(R) = {
g |

∫ ∞

−∞
|g (t )|d t <∞}

.

The trigonometric “building blocks” of the Fourier series in Definition 1.1.1 are replaced by

complex exponentials in the definition of the Fourier (and inverse Fourier) transform.

Definition 1.1.2. The Fourier transform of a function g ∈ L1(R) is given by

ĝ (ω) = 1p
2π

∫
R

g (x)exp−iωx d x.

If ĝ is the Fourier transform of g and ĝ , g ∈ L1(R), then the inverse Fourier transform is given by

g (x) = 1p
2π

∫
R

ĝ (ω)expiωx dω. (1)

Note that in the Fourier integral representation, frequency varies on a continuous scale, as

opposed to the Fourier series decomposition which involves a discrete set of frequencies.

1.1.1.1 Sampling and Aliasing

In many practical applications, a discrete series is obtained by sampling a continuous function

at equal intervals, ∆t . For a sampling interval ∆t > 0 and an arbitrary time offset t0, we can

define a discrete process through

X t ≡ X (t0 + t∆t ),

for t = 0,±1,±2, . . . . The frequency 1/(2∆t ) is called the Nyquist frequency (or folding fre-

quency) and defines the highest frequency that can be seen in discrete sampling. Higher fre-

quencies sampled in this way will appear at lower frequencies called aliases (Shumway and

Stoffer, 2000).

Example 1.1.3. In this example, we demonstrate the effect of aliasing by sampling from two

different cosine curves (one at the Nyquist frequency and one over this value) at equal inter-

vals ∆t = 1. The results can be seen in Figure 1. In Figure 1, the dashed lines represent the

underlying (continuous) functions from which we are sampling. The dashed black line rep-

resents a cosine curve with a frequency of 1/(2∆t ) = 0.5 (i.e. the Nyquist frequency) and an

amplitude of 2. This function makes a cycle every two time units, therefore, the value of each

observation of this function is zero (the black circles, Figure 1). The dashed blue line repre-

sents a cosine curve with a frequency of 1 = 2×1/(2∆t ) (i.e. double the Nyquist frequency) and

an amplitude of 2. This function makes a cycle every time unit, therefore, the value of each

observation of this function is also zero. This demonstrates how sampling the function with

the higher frequency in this way would give the same results as sampling the function at the

Nyquist frequency (known as aliasing).

Example 1.1.4. In Chapter 2, we analyse a dataset taken from a broad investigation of the effect

of various salt stresses on the plant circadian clock. In this experiment, measurements were

taken at intervals of approximately 45 minutes. Therefore, the Nyquist frequency (the highest
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Figure 1: Example 1.1.3. Dashed black line: Underlying cosine curve with a frequency of
1/(2∆t ) = 0.5 (i.e. the Nyquist frequency) and an amplitude of 2; Dashed blue line: Underly-
ing cosine curve with a frequency of 1 = 2×1/(2∆t ) (i.e. double the Nyquist frequency) and an
amplitude of 2; Black circles: Observed value of underlying functions at t = 1,2, . . . ,5.

frequency that can be seen in discrete sampling) is

1

2∆t
= 1

2×0.75
= 2

3
,

which is equivalent to a period of 1.5 hours.

1.1.1.2 Discrete Fourier Transform

We can now define the discrete Fourier transform as follows.

Definition 1.1.5. Given data X1, . . . , Xn we define the discrete Fourier transform (DFT) to be

d(ω j ) = 1p
n

n∑
t=1

X t exp−2πiω j t (2)

for j = 0,1, . . . ,n −1, where frequencies ω j = j /n are called the Fourier or fundamental fre-

quencies.

Example 1.1.6. In this example, we create a simple time series, and then demonstrate how

we can extract the frequency information using Fourier analysis. The time series is the sum of

two underlying cosine curves: the first at a frequency of 6/128 with an amplitude of 2 and the

second at a frequency of 10/128 with an amplitude of 4:

X (t ) = 2cos

(
2πt

6

128

)
+4cos

(
2πt

10

128

)
. (3)

The underlying cosine curves and resulting time series (sampled at t = 1, . . . ,128) are shown in

Figure 2. The (squared) DFT (called the periodogram– also see Section 1.3.1 later) is also plotted

in Figure 2. Note that the periodogram is only non–zero at the frequencies 6/128 and 10/128

and the value of the periodogram at these values is equal to the amplitude of the corresponding
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Figure 2: Example 1.1.6. Top left: First underlying cosine curve with a frequency of 6/128 and
an amplitude of 2; Top right: Second underlying cosine curve with a frequency of 10/128 and an
amplitude of 4; Bottom left: The time series is a linear combination of two underlying cosine
curves (see equation (3)); Bottom right: raw periodogram of the series with the frequencies
6/128 and 10/128 indicated by vertical red lines and horizontal green lines indicating values of
4 and 16 (which correspond to the amplitudes of the underlying cosine components squared–
see equation (3)).

underlying cosine curve squared. Therefore, the periodogram has correctly determined the

underlying frequencies of our time series.

Example 1.1.7. In this example, we modify the time series from Example 1.1.6 such that the

period of the series abruptly changes. The time series is now the concatenation of the above

two underlying cosine curves:

X (t ) =


2cos

(
2πt 6

128

)
, t ∈ [1,128].

4cos

(
2πt 10

128

)
, t ∈ (128,256].

(4)

The underlying cosine curves (sampled at t = 1, . . . ,128), resulting time series (sampled at t =
1, . . . ,256) and periodogram are shown in Figure 3. Note that the periodogram is almost identi-

cal to the periodogram in Figure 2. Therefore, this analysis has identified the periodicity of the

data, however, it cannot detect changes of period through time. Such changes are common in

many biological systems (see Section 1.3.2) and will call for more sophisticated methodology,

able to cope with time–varying periods and amplitudes.

When representing a series by a combination of basis functions, it is usually desirable that

the representation is sparse (i.e. there are only a small number of non-zero coefficients). This is

because a sparse representation can aid understanding of the signal structure. Furthermore, a

sparse representation also leads to better signal compression. In other words, we would prefer

to represent a large number of data points by a much smaller number of basis coefficients in-

stead. Sparse decompositions can be achieved by using basis functions with similar properties

to the function that is being represented. Fourier functions are localised in frequency but not

in time. Therefore, Fourier functions are suitable for representing smooth, periodic functions,
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Figure 3: Example 1.1.7. Top left: First underlying cosine curve with a frequency of 6/128
and an amplitude of 2; Top right: Second underlying cosine curve with a frequency of 10/128
and an amplitude of 4; Bottom left: The time series is the concatenation of the two cosine
curves (see equation (4)); Bottom right: raw periodogram of the series with the frequencies
6/128 and 10/128 indicated by vertical red lines and horizontal green lines indicating values of
4 and 16 (which correspond to the amplitudes of the underlying cosine components squared–
see equation (4)).

but are not as suitable for functions with local features such as sharp changes and disconti-

nuities. In order to represent such functions, we would prefer basis functions that have short

support i.e. are localised in time. One solution is to use wavelets, which are described in the

next section.

1.1.2 Wavelet Representations

The name “wavelet” gives us a clue as to two important properties of wavelets: this word ap-

pears to describe a “little wave” (as opposed to a “big wave” such as the trigonometric functions

in Fourier theory). A “wavelet” can thus be thought of as a small, localised wave. This property

makes it an ideal candidate to represent functions with local features (which proved problem-

atic for the Fourier functions above). Formally, as in Daubechies (1992) we define a wavelet as

follows.

Definition 1.1.8. A wavelet is any square integrable function, ψ ∈ L2(R) which satisfies the ad-

missibility condition,

Cψ =
∫
R

|ψ̂(ω)|2
|ω| dω<∞, (5)

where ψ̂(ω) is the Fourier transform of ψ(x) (see definition 1.1.2).

The admissibility condition (5) implies∫ ∞

−∞
ψ(x)d x = 0, (6)

which ensures its oscillatory behaviour (Vidakovic, 1999).

A wavelet basis can be formed by translating and dilating a basis function called the mother

wavelet, which we will denoteψ(x). In this thesis, we focus on wavelet functions whose dyadic
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dilations and translations form an orthonormal basis of L2(R). Formally, the collection of func-

tions {ψ j ,k } j ,k∈Z, defined by:

ψ j ,k (x) = 2
j
2ψ(2 j x −k), (7)

known as a discrete (decimated) wavelet family, forms an orthonormal basis of L2(R). The

functions ψ j ,k (x) in equation (7) are the wavelets generated by the mother ψ. Informally, this

demonstrates that once the “type” of wavelet has been chosen and fixed (in this case, the ψ

function) we can now generate other wavelets by transforming the mother wavelet. In partic-

ular, we can generate wavelets (in our case, the ψ j ,k ’s) by dilating and translating the mother

wavelet. In fact, the parameters j and k in equation (7) are known as the dilation and transla-

tion parameters respectively. The dilation parameter indicates the wavelet scale (see section

1.2.1) and the translation parameter indicates the location. The wavelet family then forms an

orthonormal basis of L2(R) and is analogous to the sine and cosine functions used in Fourier

analysis.

When for each k ∈ {0, . . . ,m}, we have∫ ∞

−∞
xkψ(x)d x = 0, (8)

the waveletψ in equation (8) is said to have m+1 vanishing moments. The vanishing moments

property of a wavelet implies that the wavelet coefficients of polynomials of degree m or less

are zero in a decomposition on such a wavelet basis. Therefore, this property has important

implications when selecting a wavelet basis that would give a sparse representation of a given

function.

Example 1.1.9. The Haar Basis. The simplest wavelet is the Haar wavelet (see Figure 4) and we

discuss it as an introductory example throughout this review. The Haar wavelet is commonly

used to introduce the topic of wavelets due to its simplicity, yet it displays many characteristic

features of wavelets.

The Haar mother wavelet is a mathematical function, ψH :R→ {±1,0}, defined by

ψH (x) =


1, if x ∈ [0,1/2).

−1, if x ∈ [1/2,1).

0, otherwise.

(9)

Using equation (7), the translations for j ,k ∈Z of the Haar mother wavelet are given by

ψH
j ,k (x) =


2

j
2 , if x ∈

[
k
2 j , k

2 j + 1
2 j+1

)
.

−2
j
2 , if x ∈

[
k
2 j + 1

2 j+1 , k
2 j + 1

2 j

)
.

0, otherwise.

(10)

and example plots for various values of j and k are given in Figure 4.

As in Fourier analysis, we can use wavelet functions as a basis to represent other functions.

Recall (above) that dilations and translations of a mother wavelet function ψ(x) (ie. ψ j ,k ) de-

fine an orthonormal basis in L2(R). Throughout this thesis, we will consider only real–valued

wavelet functions, therefore, we define the wavelet representation of a function f as follows.
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Figure 4: Panel (a): Haar mother wavelet. Panels (b), (c), (d): translations and dilations of the
Haar mother wavelet (using equation (10) for various combinations of j = 1,2 and k = 1,2).

Definition 1.1.10. Given a function f ∈ L2(R), its wavelet representation is given by

f (x) =
∞∑

j=−∞

∞∑
k=−∞

d j ,kψ j ,k (x), (11)

where, due to the orthogonality of wavelets, for j ,k ∈Z:

d j ,k =
∫ ∞

−∞
f (x)ψ j ,k (x)d x =< f ,ψ j ,k >, (12)

where < ·, · > is the L2-inner product.

The numbers {d j ,k } j ,k∈Z are referred to as the wavelet coefficients of f . As for the Fourier

coefficients discussed in Section 1.1.1, the wavelet coefficients also provide information about

the structure of the function, f . However, we note that the Fourier coefficients only provide

information about the amplitude associated with each frequency, whereas the wavelet coeffi-

cients provide information about the amplitude of the wavelet at both a given (time) location

and scale (associated with frequency, see Section 1.2.1).

1.2 Wavelet Theory

1.2.1 Multiresolution Analysis

A common way of introducing wavelet bases and demonstrating their properties is to con-

struct them within the framework of a multiresolution analysis (MRA), introduced by Mallat
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(1989a,b). An MRA provides a mathematical framework for looking at functions at different

resolution levels or scales. Essentially, an MRA of, for example, the space of square integrable

functions, L2(R), allows for the approximation of any function f ∈ L2(R), at different resolu-

tions by projecting the function f onto a sequence of approximation spaces. Informally, we

can think of the approximations at different resolution levels in terms of a camera “zooming”

in and out: a higher resolution level is equivalent to zooming in and obtaining a fine detailed

representation, whereas a lower resolution level is equivalent to zooming out and obtaining a

coarse representation. In this section, we will briefly discuss some of the important features of

an MRA as presented in Mallat (1989a,b), Fan and Gijbels (1996) and Nason (2010).

Definition 1.2.1. A multiresolution analysis of L2(R) is a chain of nested closed subspaces,

{V j } j∈Z of L2(R),

. . . ⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ . . . (13)

satisfying the following conditions:

1. The spaces have trivial intersection:

⋂
j∈Z

V j = {0}.

2. The union is dense in L2(R): ⋃
j∈Z

V j = L2(R).

3. The following scale relations exist:

f (x) ∈V j ⇐⇒ f (2x) ∈V j+1,∀x ∈R, and

f (x) ∈V0 ⇐⇒ f (x −k) ∈V0,∀k ∈Z, x ∈R.
(14)

4. There exists a scaling function φ(x) ∈ V0, with
∫ ∞
−∞φ(x)d x = 1, such that {φ(x −k),k ∈Z}

constitutes an orthonormal basis of V0.

Equations (14) of condition 3 along with condition 4, imply that {φ j ,k := 2 j /2φ(2 j x −k)}k∈Z
is an orthonormal basis of V j ,∀ j ∈ Z (Vidakovic, 1999). Furthermore, since φ ∈ V0 ⊂ V1, and

{φ1,k }k∈Z is an orthonormal basis of V1, the function φ(x) ∈ V0 can be represented as a linear

combination of functions from V1:

φ(x) = ∑
k∈Z

hkφ1,k (x) = ∑
k∈Z

hk 2
1
2φ(2x −k) (15)

for some coefficients hk ,k ∈Z, which form a vector that is referred to as a low-pass filter. Equa-

tion (15) is known as the scaling equation and is fundamental in the construction of wavelets.

This theoretical framework allows us to develop the mother wavelet function,ψ(x), in terms

of an MRA. We can think of the mother wavelet function, ψ(x), as explaining the detail at each

level j . In other words, it represents the information that is lost when moving from one approx-

imation space, V j+1, to the next (coarser) space, V j . Now, consider the detail space, which we

will denote W j , to be the orthogonal complement of V j in V j+1, so that:

V j+1 =V j ⊕W j ,∀ j ∈Z, (16)
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(where ⊕ denotes the direct sum of spaces). Repeated application of the relationship in equa-

tion (16) gives

V j+1 =V0 ⊕
j⊕

i=0
Wi . (17)

Furthermore, condition 2 states that the union,
⋃

j∈ZV j , is dense in L2(R), therefore, taking the

limit and using condition 1, we obtain

L2(R) = ⊕
j∈Z

Wi . (18)

Therefore, an orthonormal basis for L2(R) could be obtained from the orthonormal bases for

W j ,∀ j ∈Z. In particular, the spaces W j inherit the scaling property (condition 5) from the V j .

Therefore, if ψ(x) is a function such that its integer translations form an orthonormal basis of

W0, then through dyadic dilations and translations, {ψ j ,k (x)}k∈Z is an orthonormal basis for the

space W j . Hence, {ψ j ,k (x)} j ,k∈Z provides an orthonormal basis for L2(R).

As in the derivation of the scaling equation (15), since ψ(x) ∈ W0 ⊂ V1, the function ψ(x)

can similarly be represented as a linear combination of the functions from V1:

ψ(x) = ∑
k∈Z

gk 2
1
2φ(2x −k) (19)

for some coefficients gk ,k ∈Z, which form a vector that is referred to as a high-pass filter.

Informally, we can think of the space V j as the collection of functions with detail up to some

finest resolution scale. This space can contain functions with less detail, but there is some

maximum level of detail allowed in this collection. Here, larger values of j indicate V j contains

functions with finer detail. Therefore, if a function is in V j then it is also in Vk if k > j . Intuitively,

we can think of V j+1 as being “V j plus some detail (W j )” (see equation (16)). Therefore, an

approximation of a function, f , at resolution level j is given by:

f j (x) = ∑
k∈Z

c j ,kφ j ,k (x) = P j f (20)

where P j is the projection operator onto V j . Essentially, in equation (20), we approximate the

function at resolution level j by not including any of the detail from the finer scales. Note that

as {φ j ,k ,k ∈Z} are orthonormal, the {c j ,k } may be obtained using:

c j ,k =< f ,φ j ,k >=
∫ ∞

−∞
f (x)φ j ,k (x)d x (21)

as in equation (12). Intuitively, we start with a low-resolution function, f j , and then add finer

and finer detail by including a new layer of detail coefficients (the “zooming in” of our cam-

era). Figure 5 illustrates this concept for successive resolution levels, j . We can see that the

finer-scale approximations (with larger values of j ) capture more and more of the detail of the

original function.

1.2.2 The Discrete Wavelet Transform (DWT)

In many practical situations, functions or data sets are observed at a finite number of discrete

time points. In such cases, the representation of a continuous function in Definition 1.1.10
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Figure 5: Successive approximations of the Doppler test function introduced by Donoho and
Johnstone (1994) using the Haar wavelet basis. Plot (a) shows the original function, plots (b),
(c), (d), (e) and (f) display successively finer scale approximations (where j = 5,6,7,8 and 9
respectively).

would not be suitable. In this section, we introduce the discrete equivalent of equation (11) and

discuss an efficient scheme for performing the discrete wavelet transform, Mallat’s Pyramid

Algorithm (Mallat, 1989a,b). Our description of the DWT is based largely upon Vidakovic (1999)

and Nason (2010).

The basic premise of this method is to filter the data sequence using the low pass filter,

H = {hk }, and high pass filter, G = {gk }, associated with the scaling equations (15) and (19) in

Section 1.2.1, to obtain the wavelet coefficients at different levels. Essentially, we start with a

data sequence and compute coarser level wavelet coefficients using a relation which we derive

next.

Assume a function, f , is observed at N = 2J equally spaced locations {xi , i = 0, . . . , N − 1}.

First, interpolate the observations by using the basis of scaling functions from the space VJ .

Set c J ,i = f (xi ) for i = 0, . . . , N − 1, then a function f̄ can be constructed using {φJ ,k (x)}k∈Z as

follows:

f̄ (x) =∑
k

c J ,kφJ ,k (x). (22)

The function f̄ can be used as an approximation of the observed function f . Consequently,

the wavelet coefficients of f̄ are actually an approximation of the wavelet coefficients d j ,k =<
f ,ψ j ,k > of the observed function f , and are sometimes referred to as the empirical wavelet

coefficients of f . The empirical wavelet coefficients are approximately proportional to their

continuous counterparts (see e.g. Abramovich et al. (2000)).

To obtain the empirical wavelet coefficients, note that f̄ is an element of VJ (since {φ j ,k ,k ∈
Z} is a basis of V j ). Equation (16) implies that any function v j ∈V j may be represented uniquely

as:

v j (x) = v j−1(x)+w j−1(x)

where v j−1 ∈ V j−1 and w j−1 ∈ W j−1. Recall: {φ j ,k ,k ∈ Z} is a basis of V j and {ψ j ,k ,k ∈ Z} is a
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basis of W j . Therefore:

v j (x) = v j−1(x)+w j−1(x) =∑
l

c j−1,lφ j−1,l (x)+∑
l

d j−1,lψ j−1,l (x) (23)

for some coefficients {c j ,l } and {d j ,l } known as the smooth and detail coefficients of the trans-

formation respectively. This is because {c j ,l } provides a coarser description of the original func-

tion and {d j ,l } extracts the features lost when representing the function in a coarser version.

To obtain the smooth coefficients of the transform, equation (23) together with the orthog-

onality of the w j−1(x) and φ j−1,l (x) imply that:

c j−1,l =< v j ,φ j−1,l >, (24)

and by equations (7) and (15):

φ j−1,l (x) =∑
k

hk−2lφ j ,k (x). (25)

Therefore, substituting (25) into equation (24), we obtain:

c j−1,l =< v j ,
∑
k

hk−2lφ j ,k >

=∑
k

hk−2l < v j ,φ j ,k >

=∑
k

hk−2l c j ,k ,

where the last line follows from equation (24). An equation to obtain the detail coefficients

can be developed in a similar way. To summarise, the DWT of the sequence is then obtained

recursively using the relations:

c j−1,l =
∑
k

hk−2l c j ,k and d j−1,l =
∑
k

gk−2l c j ,k (26)

to obtain

d = (c0,0,dJ−1,dJ−2, . . . ,d1,d0,0), (27)

where dj is the vector of coefficients, dj = (d j ,0, . . . ,d j ,2 j−1).

By examining the relations in (26), we can see that the coarser level coefficients are given by

multiplying the data sequence by the coefficients gk and hk given in the scaling equations (15)

and (19). These coefficients are specific to the wavelet selected to perform the decomposition.

Figure 6 gives a visual representation the implementation of this algorithm. This figure

illustrates that at each step of the algorithm, an input vector, cj, is transformed into two output

vectors, cj−1 and dj−1, using the filters defined in (26). Furthermore, note that the output of

each step, cj−1, becomes the input for the next step of the algorithm, producing vectors cj−2 and

dj−2 and so on. The resulting wavelet transform in (27) is the collection of detail coefficients at

each level together with the smooth or father coefficient at the zero level. Also, note the 2l

term in the relations in (26). This represents the decimation step in the DWT. In other words,

it ensures the number of coefficients is halved at each level. To illustrate this, the number of

coefficients at each level is displayed in the orange boxes in Figure 6.
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Figure 6: Flow diagram of the discrete wavelet transform of an observed dataset, cj, using suc-
cessive applications of the low and high pass filters g and h. The orange boxes (below) give the
number of coefficients at each level.

Finally, we note that it is possible to reconstruct the original data series from the output

coefficients in equation (27). In order to do this we perform the inverse (discrete) wavelet

transform (IWT). The inverse relation is given by:

c j ,n =∑
k

hn−2k c j−1,k +
∑
k

gn−2k d j−1,k , (28)

where hn and gn are known as the quadrature mirror filters defined by (15) and (19) (Mallat,

1989b). Note that the filters associated with the inverse transform have the same structure as

those that computed the forward transform in (26).

To summarise, the IWT takes the coarsest level father and mother coefficients and uses

them to reconstruct the next finer level using equation (28). The reconstruction of the original

data sequence is then achieved by iterating this process and climbing the resolution levels back

to the original data.

Example 1.2.2. Figure 7 shows a plot of the “Doppler” test function introduced by Donoho and

Johnstone (1994) along with a plot of the Haar wavelet transform (the detail coefficients at each

level) of the Doppler function. Each coefficient is depicted by a small vertical line (the bigger

the vertical line, the larger the wavelet coefficient). The coefficients d j ,k , corresponding to the

same resolution level j , are arranged along an imaginary horizontal line. Note that the number

of coefficients is halved at each resolution level.

The oscillatory nature of the Doppler signal is clearly visible in the wavelet coefficients,

especially at the finer scales (resolution levels 6–9). Large variation in the fine–scale coeffi-

cients corresponds with the high frequencies in the Doppler function whereas large variation

in coarser–level coefficients corresponds with lower frequencies. Thus, the plot of wavelet co-

efficients can be thought of as a time-frequency display of the varying frequency information

contained with the Doppler signal.

Finally, the Daubechies ‘extremal-phase’ (with eight vanishing moments) wavelet coeffi-

cents are also plotted in the bottom right subplot of Figure 7. As discussed in Section 1.1.1,

sparse decompositions can be achieved by using basis functions with similar properties to the

function that is being represented. Therefore, the smoother wavelet with a higher number of

vanishing moments, has resulted in a sparser representation of the Doppler signal than the

Haar wavelet.

Example 1.2.3. A Numerical Example of the DWT. Suppose that we begin with the following
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Figure 7: Top row: left and right: identical copies of the Doppler function. Bottom left: Haar
discrete wavelet coefficients, {d j ,k }, of Doppler function (plotted with a different scale for each
resolution level). Bottom right: as left but with Daubechies ‘extremal-phase’ with 8 vanish-
ing moments. Note the smoother wavelet with a higher number of vanishing moments, has
resulted in a sparser representation of the Doppler signal than the Haar wavelet

data sequence (from Nason (2010)):

y = (y0, . . . , yN−1) = (1,1,7,9,2,8,8,6).

In this example, we will find the wavelet decomposition using the Haar basis from Example

1.1.9. The low and high pass filters for the Haar basis are:

H = (h0,h1) =
(

1p
2

,
1p
2

)
and G = (g0, g1) =

(
1p
2

,
−1p

2

)
. (29)

Since there are eight elements of y, N = 8 = 2J and hence J = 3. Recall: we set cJ equal to our

original data sequence. Therefore, c3 = y. Repeatedly applying equation (26), we obtain the

output, as in (27):

(21
p

2/2,0,−
p

2,−3
p

2,
p

2,−7,−2,−3
p

2/2).

The computations are displayed in a graphical form in Figure 8. On examining Figure 8, we

note that the coefficients can be visualized as an inverted pyramid (hence the name “Pyramid

Algorithm”). It is also useful to note the decimation step of the DWT whilst examining this

representation. We can see here that we use two coefficients from the previous level to calculate

the next coefficient, and then move on to the next (non-overlapping) pair. This will be useful to

bear in mind when we discuss the nondecimated wavelet transform in Section 1.2.4.

1.2.3 Matrix Representation of the Discrete Wavelet Transform

Example 1.2.3 above illustrates that the DWT takes a vector input and produces a set of output

coefficients that can also be represented as a vector, as in equation (27). Furthermore, we note

that since the output vector has been obtained from the input using a series of summations and

scalings, we can alternatively compute the output from the input using matrix multiplication.

Therefore, an alternative way to formulate the DWT is to construct an orthogonal matrix W

associated with the particular wavelet being used.

More formally, note that at each step of the DWT, the input signal is represented on two
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Figure 8: Graphical depiction of the DWT. The dotted arrows represent applying the filter G

and the solid arrows represent applying the filter H (i.e. the application of the relations in
(26)). This figure is reproduced following Figure 2.2 in Nason (2010).

different bases (see equation 23). Since any change of basis of this type can be represented

by matrix multiplication, it follows that the DWT can also be represented in this manner. Fur-

thermore, since the bases used for representing the signal at each step are orthonormal, the

matrix W is an orthogonal matrix (i.e. W T W = I2J , where In is the identity matrix of order n).

The DWT can then be formally defined as the matrix multiplication of the orthogonal matrix

W with a vector of data points, y:

d =W y, (30)

where d is the output vector comprising both the discrete mother and father wavelet coeffi-

cients defined in (27).

Finally, recall from Section 1.2.2 that it is possible to reconstruct the original data series

from the output coefficients using the IWT. We can also develop the inverse discrete wavelet

transform in matrix notation. In particular, multiplying both sides of equation (30) by the in-

verse of the matrix W gives:

W −1d = y. (31)

Therefore, the original data is obtained by pre–multiplying the output vector of coefficients by

the inverse of the matrix W . Finally, recall that matrix W was orthogonal (so W −1 =W T ), which

implies that the inverse discrete wavelet transform in matrix notation is W T .

1.2.4 The Nondecimated Wavelet Transform

In Section 1.2.2, we noted that the 2l term in the relations in (26) represents the decimation

step in the DWT. Furthermore, recall the discussion of Figure 8 in Example 1.2.3– to calculate

one coefficient at a particular level, we use two coefficients from the previous level and then

move on to the next non-overlapping pair for the next coefficient to be calculated. Hence, the

2l in the index of the summations in (26) essentially picks every even element from a vector.

36



For example, in Example 1.2.3 we calculated:

d2,0 = (y0 − y1)/
p

2

d2,1 = (y2 − y3)/
p

2.

The first two coefficients encode the difference between (y0, y1) and (y2, y3) respectively. But

what about the information that might be contained in the difference between y2 and y1? One

of the motivations behind the nondecimated wavelet transform (NDWT) is to “fill in the gaps”

caused by the decimation step in the discrete wavelet transform (Nason and Silverman, 1995).

Example 1.2.4. We begin by returning to Example 1.2.3 in Section 1.2.2. If we shifted the origi-

nal sequence cyclically by one position, we would obtain the sequence:

(y7, y0, . . . , y6). (32)

Then, taking the Haar wavelet transform as before gives:

d2,1 = (y1 − y2)/
p

2,

i.e. the “missing information” outlined above. Applying the transform to the shifted sequence

in (32) obtains the “missing” odd elements of the filter vector.

Therefore, to obtain more information about the data, we could calculate both the original

set of (even) wavelet coefficients and the coefficients that resulted after shifting and transform-

ing the sequence (the odd coefficients). However, as a result, the orthogonal structure of the

DWT is lost. Furthermore, the extra transformation is redundant. In particular, we could use

either the original or the shifted coefficients to reconstruct the original sequence using the IWT.

Another undesirable property of the DWT is that it is not translation invariant. In partic-

ular, an undesirable consequence of the decimation step is that a shift in the data leads to a

non-trivial change in the wavelet transform. Thus, the DWT of a shifted data set is not a shift of

the DWT of the original data. However, the NDWT of a shifted data set is a shift of the NDWT of

the original data.

Example 1.2.5. In this example, we return to the example dataset from Section 1.2.2, which is

plotted in Figure 9(a). Figure 9(b) depicts the same data sequence rotated by a simple unit shift

(as in (32)), and the detail coefficients associated with the original and shifted sequences. Note

how the detail coefficients associated with the shifted sequence (Figure 9(d)) do not correspond

to a simple shift of the detail coefficients associated with the original sequence. However, the

NDWT of a shifted data set is a shift of the DWT of the original data (see Figure 10). Note how

the coefficients in Figure 10(b) are a unit shift of the coefficients displayed in Figure 10(a).

In order to describe the NDWT, we formally introduce some notation. Firstly, define the

action of a filter P on a sequence (or vector) x = {xn} by

(P x) j =
∑
n

pn− j xn .

Now define the even dyadic decimation operator D0 by:

(D0x)l = x2l . (33)
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Figure 9: Example 1.2.5: the DWT is not translational invariant. Figure (a) depicts the origi-
nal data sequence whilst (b) depicts the same sequence rotated by a simple unit shift. Figures
(c) and(d) depict the detail coefficients of the Haar DWT for the original and shifted data re-
spectively. Note that the coefficients in Figure (d) do not correspond to a simple shift of the
coefficients displayed in Figure (c).

Figure 10: Example 1.2.5 of the translational invariance of the NDWT. Figure (a) depicts the
NDWT Haar wavelet detail coefficients of the original data. Figure (b) depicts the NDWT Haar
wavelet detail coefficients of the shifted data. Observe that the coefficients in Figure (b) are a
unit shift of the coefficients displayed in Figure (a).
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Therefore, D0 represents selecting every other element of the filter vector (in this case, the even

elements). Using this notation, we can write the operations described by (26) more succinctly

as:

cj−1 =D0H cj and dj−1 =D0G cj, (34)

where H and G denote the low and high pass filters respectively (see Section 1.2.2). Note

that in (34) we have denoted the inputs and outputs of these operations using vector nota-

tion cJ,cJ−1,dJ−1 rather than indexed sequences. Similarly, define the odd dyadic decimation

operator D1 by:

(D1x)l = x2l+1. (35)

Therefore, D1 does exactly the same as D0, except it takes the odd elements of the filter vector

instead.

We will now describe the NDWT as in Nason and Silverman (1995) and Nason (2010). The

basic idea of the NDWT is to retain both the odd and even decimations at each scale and con-

tinue to do the same at each subsequent scale.

Definition 1.2.6. The nondecimated wavelet transform.

1. Given the input vector y = (y0, . . . , yN−1), apply and retain both D0G y and D1G y (the odd

and even indexed filtered observations).

2. Perform a similar operation to obtain the finest-scale father wavelet coefficients and com-

pute D0H y and D1H y.

3. For the next level wavelet coefficients, apply both D0G and D1G to both D0H y and D1H y.

4. Similarly, to obtain the father wavelet coefficients at this level, apply both D0H and D1H

to both D0H y and D1H y.

5. Continue in this manner, applying D0G and D1G and D0H and D1H to each father

wavelet coefficient in the previous level.

The NDWT is useful for studying (nonstationary) time series, as discussed in Section 1.3.

Example 1.2.7. NDWT using the Haar Basis. To summarise, when performing the DWT using

the Haar basis, to calculate one coefficient at a particular level, we use two adjacent coefficients

from the previous level and then move on to the next non-overlapping pair for the next coef-

ficient to be calculated. However, when performing the NDWT for the Haar basis, to calculate

one coefficient at a particular level, we use two adjacent coefficients from the previous level

but then move on to the next pair for the next coefficient to be calculated.

For example, given a data sequence (y0, y1, y2, y3), we would calculate:

c1,0 = (y0 − y1)/
p

2

c1,1 = (y1 − y2)/
p

2

c1,2 = (y2 − y3)/
p

2

c1,3 = (y3 − y0)/
p

2.
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1.3 Stationary Time Series Analysis

A time series is a set of random variables recorded sequentially through time. The analysis of

experimental data that have been observed at different points in time leads to specific chal-

lenges in statistical modelling and inference. This is because successive time series observa-

tions are (generally) not independent. The correlation introduced by the sampling of adjacent

points in time means that many conventional statistical methods (traditionally dependent on

the assumption that adjacent observations are independent and identically distributed) are

not applicable. The systematic approach by which one goes about answering the mathemati-

cal and statistical questions posed by these time correlations is commonly referred to as time

series analysis.

The impact of time series analysis in many different applications is highlighted by listing the

diverse fields in which important time series problems may arise. For example, economics (e.g.

daily stock market quotations or monthly unemployment figures); meteorology (e.g. measure-

ments of rainfall or temperature) and medicine (e.g. blood pressure measurements or magnetic

resonance imaging of brain activity). In particular, this thesis shall consider the application of

time series analysis to data originating from various experiments in the field of circadian biol-

ogy.

In this section, we begin by stating some key results in stationary time series analysis fol-

lowing Priestley (1982), Shumway and Stoffer (2000), Brillinger (2001), and Percival and Walden

(2006). Intuitively, a time series is stationary if its statistical characteristics are assumed con-

stant over time. This means that parameters such as the mean and variance (if they exist) do

not change over time. This foundation will then allow us to describe and contrast how wavelets

can be used to analyse nonstationary time series in Section 1.4.

Definition 1.3.1. A stochastic process {X t , t ∈T } is said to be strictly stationary if, for all n ≥ 1,

for any t1, . . . , tn ∈T , and for any τ such that t1 +τ, ..., tn +τ ∈T are also contained in the index

set, T , the joint distribution function of {X t1 , . . . , X tn } is the same as that of {X t1+τ, . . . , X tn+τ}.

Often this assumption is relaxed to that of weak or second-order stationarity:

Definition 1.3.2. A stochastic process {X t , t ∈T } is said to be weakly stationary or second–order

stationary if, for all n ≥ 1, for any t1, . . . , tn ∈T , and for any τ such that t1 +τ, ..., tn +τ ∈T are

also contained in the index set, T , all the joint moments of orders 1 and 2 of {X t1 , . . . , X tn } exist,

are finite and are equal to the corresponding joint moments of {X t1+τ, . . . , X tn+τ}.

Hence,

E(X t ) =µX and Cov(X t , X t+τ) = γ(τ), (36)

where µX ∈ R. Therefore, the autocovariance of a weakly stationary time series is dependent

only on the time lag, τ, and not the value of time.

Example 1.3.3. A sequence {Zt , t ∈ Z} of uncorrelated random variables with mean zero and

finite variance σ2
Z (often called a purely random process or white noise) is a weakly stationary

process (Shumway and Stoffer, 2000).

A sequence of independent and identically distributed (iid) random variables, Wt , with

mean zero and finite variance σ2
W (known as white independent noise) is both a strictly and
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Figure 11: Stationary processes. Top: An example realisation of a white noise process (Example
1.3.3) of length T = 1000. Bottom: An example realisation of a stationary ARMA(2, 1) process
(Example 1.3.4) of length T = 1000 with AR parameters (α1,α2) = (0.9,−0.2) and MA parameter
of 0.5.

weakly stationary process (Shumway and Stoffer, 2000). A common example of a white (in-

dependent) noise series is Gaussian white noise, wherein the Wt are independent normal ran-

dom variables, with mean 0 and varianceσ2
W . An example realisation of a Gaussian white noise

process (with variance σ2
W = 1) can be found in Figure 11.

Example 1.3.4. Autoregressive moving average (ARMA) processes are one of the most com-

monly used time series models. An ARMA(p, q) process X t is defined as

X t =
p∑

j=1
α j X t− j +Zt +

q∑
i=1

βi Zt−i , (37)

where Zt is a white noise process (see Example 1.3.3). An ARMA(p, q) process is stationary if

the polynomial

α(λ) = 1−α1λ−·· ·−αpλ
p (38)

has no roots inside the unit circle (Shumway and Stoffer, 2000). An example realisation of a

stationary ARMA(2, 1) process can be found in Figure 11.

1.3.1 Fourier Analysis of Stationary Time Series

The Cramér-Rao representation of stationary processes (Priestley, 1982) states that all zero-

mean discrete time second-order stationary time series {X t }t∈ Z can be written as

X t =
∫ π

−π
A(ω)exp(iωt )dξ(ω), (39)

where A(ω) is the amplitude of the process and {ξ(ω)}ω is a stochastic process with orthonor-

mal increments (i.e. E (dξ(ω)) = 0 and Cov(dξ(ω1),dξ(ω2)) = dω1δ{ω1=ω2} (ω1), where δ(·) is

the Kronecker delta function). The representation in (39) implies that a stationary process can

be represented by a “Fourier-type” expansion (see Section 1.1.1). In other words, a stationary

time series can be thought of as a linear combination of Fourier sinusoids of various frequen-
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cies with an associated amplitude. However, in equation (39), for each frequency, ω, dξ(ω) is

a random quantity and the integral is a stochastic integral (unlike the representation in (1) for

deterministic series).

Definition 1.3.5. The quantity

f (ω) = |A(ω)|2 (40)

is called the spectrum or spectral density function.

The spectral density function quantifies the contribution of a frequency, ω, to the process

variance.

Example 1.3.6. The spectral density of an ARMA(p, q) process X t (see equation (37)) is given

by

fX (ω) = σ2

2π

∣∣∣∣β(e−iω)

α(e−iω)

∣∣∣∣2

, (41)

where β(λ) = 1+β1λ+·· ·+βqλ
q and σ2 = Var(Zt ).

The periodogram is an estimator of the spectral density, and is defined as the squared mod-

ulus of the discrete Fourier transform (see Section 1.1.1):

Definition 1.3.7. Given data x1, . . . , xn we define the periodogram to be

I (ω j ) = |d(ω j )|2 (42)

for j = 0,1,2, . . . ,n −1, where d(ω j ) = 1p
n

∑n
t=1 xt exp−2πiω j t and ω j = j /n (see equation (2)).

The periodogram is asymptotically unbiased for the spectral density, but it is not a consis-

tent estimator of the spectral density. Therefore, a common approach to obtain a consistent

estimator of the spectral density is to smooth the periodogram by averaging in the spectral

domain. There are many different approaches to smoothing the periodogram, for a detailed

description see Priestley (1982).

Example 1.3.8. Figure 12 depicts the spectral estimate (the periodogram) and the smoothed

periodogram for the realisation of an ARMA(2,1) process (Example 1.3.4) in Figure 11. In this

example, we used kernel smoothing. In particular, we used a centred moving average proce-

dure, the Daniell kernel with parameter m, which is defined as follows

x̂t = xt−m +·· ·+xt−1 +xt +xt+1 + . . . xt+m

2m +1
.

In this particular example, we used m = 10.

1.3.2 Stationary Time Series Analysis of Circadian Data

Almost all species exhibit changes in their behaviour between day and night (Bell-Pedersen

et al., 2005). These circadian rhythms are not only caused by a response to daily changes in the

physical environment, but are also the result of an internal timekeeping system or ‘biological

clock’ within the organism (Vitaterna et al., 2001; Minors and Waterhouse, 2013). For many

species, a circadian clock is believed to enhance survival by directing anticipatory changes in

physiology in tune with environmental fluctuations. When an organism is deprived of external
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Figure 12: Example 1.3.8: Spectral Estimation for the realisation of an ARMA(2,1) process (Ex-
ample 1.3.4) in Figure 11. Top: Raw periodogram. Bottom: Smoothed periodogram (using the
Daniell kernel with parameter m = 10).

time cues, its circadian rhythms typically persist qualitatively but may change in detail; the

study of these changes can reveal the biochemical reactions underpinning the circadian clock

(McClung, 2006; Bujdoso and Davis, 2013).

Period and phase estimation (see Figure 13 for a visual interpretation of this terminology)

are the fundamental elements of most circadian analyses. There are many different techniques

for estimating period, all with different advantages and disadvantages, different assumptions

and different levels of complexity. The current standard estimates period via software pack-

ages such as BRASS (Biological Rhythm Analysis Software System (Edwards et al., 2010)) or

BioDare (Moore et al., 2014). BioDare and BRASS implement six of the most commonly used

methods to estimate period: Enright periodogram (EPR) (Enright, 1965); Lomb-Scargle peri-

odogram (Lomb, 1976); Fast Fourier Transform Non–Linear Least Squares (FFT-NLLS) (Plautz

et al., 1997); mFourfit (Edwards et al., 2010); Maximum Entropy Spectral Analysis (MESA) (Burg,

1972) and Spectrum Resampling (Costa et al., 2011).

The six methods above represent the range of the approaches to period estimation for cir-

cadian time series in the literature. In particular, these six methods can be categorised as one of

the following three approaches to period estimation: intuitive algorithms; curve fitting meth-

ods and spectrum-based methods. EPR is an example of one of the more intuitive approaches

to analysing rhythmic biological data. mFourfit and FFT-NLLS are examples of curve fitting

methods where we use a function (with known period) to represent our data and then report

the period of the modelling function as the estimate. Lomb-Scargle Periodogram, MESA and

spectrum resampling represent spectrum-based methods, where the fact that the data is a time

series means that the theory and methods of stationary time series analysis (Section 1.3) can

be used to produce the period estimate.

In the remainder of this section, we briefly introduce and review one method pertaining

to each category (intuitive algorithms: EPR, curve fitting methods: FFT–NLLS and spectrum–

based methods: MESA). We refer the interested reader to the original papers for more detailed

descriptions of the above techniques. Alternatively, Zielinski et al. (2014) conducted an exten-

43



Figure 13: The defined rhythmic parameters: periodicity, phase, amplitude and clock precision
(based on an image from Hanano et al. (2006)).

sive review of the six period estimation methods above in the context of analysing circadian

data.

1.3.2.1 Intuitive Algorithms: EPR

The EPR is one of the more intuitive algorithms for the analysis of rhythmic biological data. The

concept behind EPR is that, if the period of the data was known, the data could be split into sec-

tions where the length of the section was the same as the underlying period. Then each of the

sections should contain similar data, since rhythmic data should exhibit some form of repeat-

ing pattern. Furthermore, overlaying the sections should give a clear waveform (with peak and

trough) where the troughs align and give a low sum across the sections and similarly the peaks

align and give a large sum. Therefore, the resulting waveform should have a large amplitude.

However, if the data were not split exactly into sections whose length is equal to the period,

then the peaks and troughs would not align and summing the sections together would result

in a lower amplitude. Therefore, to analyse data with unknown period, the algorithm iterates

through a series of test period values, implements the above procedure (for each test period)

and selects the period that gives the average waveform with the highest amplitude. More re-

cently, the calculation of the resulting average waveform has been improved. Therefore, it is the

modified version of the Enright Periodogram which is actually implemented in BRASS and Bio-

Dare and used for circadian data with constant period and equally spaced observations. The

main advantage of EPR is that it is intuitively accessible and computationally simple. The main

limitation of EPR (for stationary data) is that the step size between test periods is constrained

by the duration and sampling frequency of the collected data (see Section 1.1.1.1).

1.3.2.2 Curve Fitting Methods: FFT–NLLS

One general approach to period estimation is based on the idea of curve fitting. The motivation

is that, if the data can be represented by a function of known period, then the period of the data

can be assumed to be the same as that of the function. As an example of curve fitting methods,

we outline the FFT–NLLS method since it is the most commonly used period analysis technique
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in the field of circadian biology (see Costa et al. (2011); Perea-García et al. (2016a)). Hence, we

will also use FFT–NLLS as the benchmark to assess the performance of the methodologies we

develop in later chapters.

In FFT–NLLS, a model-based approach is adopted. That is, a function is chosen to represent

the data that depends on parameters that determine its period and shape. The next stage is

to estimate optimal parameters for this function (in other words, parameters that define the

function that best fits the data) using non-linear least-squares fitting.

The FFT-NLLS algorithm was developed to analyse data that has constant period (Zielinski

et al., 2014). The data are modelled by a sum of (up to 25) cosine functions. More formally the

function used to represent the data for FFT-NLLS, f̃F F T , is given by:

f̃F F T (t ) =
N∑

i=1
αi cos

[
2π(t −φi )

τi

]
, (43)

where αi is the amplitude of each cosine; φi its phase and τi its period and N ≤ 25.

FFT–NLLS is a two–step procedure, in which a Fast Fourier Transform (FFT) is coupled with

a non–linear least squares (NLLS) fitting of cosine functions to the data (Plautz et al., 1997) in

the following way:

1. Remove long–term trends in the time series by fitting a linear regression model to the

data and then subtracting the estimate from the original series.

2. Calculate the FFT of the transformed series.

3. Use FFT peak frequencies to sequentially (in order of descending power, up to a maxi-

mum of 25 frequencies) initialise NLLS cosine fitting (using a modified Gauss–Newton

minimisation algorithm) which estimates the parameters (τi ,φi ,αi ).

4. Output confidence intervals for the estimated parameters of the fitted curves.

5. Stop when the latest period estimate, τ̂i is not statistically significant or the maximum

number of frequencies was reached.

6. Report all estimated significant periodicities, τ̂1, . . . , τ̂l , l ≤ 25.

Under the assumption of constant period for the circadian component, the period estimate

is taken to be the period of the cosine component lying within a user–defined range of likely

circadian periods (typically between 15 and 35 hours). If more than one cosine component is

within this range, it is up to the user to decide which period to select.

In Step 3 of the FFT–NLLS algorithm described above, the non-linear least squares pro-

cedure (NLLS) is used to find parameter estimates by iteratively improving initial values via

numerical search. However, it only works well when given sensible starting values. Thus, a Fast

Fourier Transform (FFT) is performed on the circadian time series to obtain good period and

amplitude estimates using the data (as opposed to using user-defined or default values as the

initial guess). In Example 1.1.6 (Section 1.3.1), we found that the FFT, when used to compute

the DFT and thus the periodogram, was an effective method to identify the frequency com-

ponents of a linear combination of cosine curves and their respective amplitudes. However, in

Example 1.1.7 (Section 1.3.1), we found that although the periodogram effectively identified the

frequency components of a concatenation of cosine curves and their respective amplitudes, it
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Figure 14: Example 1.3.9: Implementation of FFT–NLLS. Black line: A time series from the
control group (Chapter 2); Blue line: cosine curve with period 27.03 hours (the period estimate
obtained using FFT–NLLS).

could not identify changes of period and thus could not differentiate between the signals in

examples 1.1.6 and 1.1.7. This illustrates a disadvantage of FFT-NLLS– because the technique

utilises the FFT, it is limited to modelling (linear combinations of) sinusoidal waveforms with

constant period and does not perform well on data that are not of this type (Zielinski et al.,

2014; Hargreaves et al., 2018).

Example 1.3.9. In Chapter 2, we analyse a dataset taken from a broad investigation of the effect

of various salt stresses on the plant circadian clock. An example time series from the control

group of this dataset is shown in Figure 14. For reference, we also plot a cosine curve with the

estimated period obtained using FFT–NLLS (via BRASS). Note that the period estimate appears

to approximately describe the data. However, we also note a ‘lack of precision’ and changes

in period and amplitude (see Figure 13 for a visual interpretation of this terminology). These

features are not captured by this method, demonstrating the limitations of this analysis.

1.3.2.3 Spectrum-based Methods: MESA

Another general approach to period estimation is spectrum-based methods, based on stochas-

tic modelling (e.g. MESA). MESA first fits an autoregressive model to the data (see Section 1.3).

Various methods (e.g. examination of the autocorrelation and partial autocorrelation func-

tions, or an information criterion) can be used to determine the order of the AR process, p.

The associated parameters can then be estimated using, for example, the method of moments,

least squares estimation or maximum likelihood estimation. The estimated coefficients can

then be used to obtain an estimate of the spectrum of the data (see Section 1.3.1). Recall: the

(frequency) spectrum quantifies the contribution of a frequency, ω, to the process variance.

Therefore, since frequency is the inverse of period, finding the maximum of a frequency spec-

trum is equivalent to finding the strongest period of the data. For the MESA approach, an es-

timate of the spectrum is constructed using the following formula (where the scaling constant

has been removed):

f̂ (ω) = 1∣∣∣1−∑p̂
k=1 α̂k e−iωk

∣∣∣2 (44)

where p̂ is an estimate of the order of the AR process, α̂k are the estimated model coefficients,

ω is the circular frequency: ω= 2π
τ and τ is the period. The period value corresponding to the
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maximum of f̂ is then returned as the period estimate for the MESA approach.

The main advantage of MESA is that although it is still Fourier-based, it does not assume

any pre-determined shape of the data (as opposed to FFT-NLLS which assumed the shape of

the circadian component of the underlying function was sinusoidal). However, MESA does as-

sume that the data can be modelled as an AR process, which often may not be appropriate.

Furthermore, its performance is also dependent on the estimation of the order of the AR pro-

cess, p, and the associated parameters.

1.3.3 Wavelet Analysis of Stationary Time Series

The wavelet methods introduced in Section 1.2 can also be a useful tool for stationary time

series analysis. In this section, we briefly introduce (wavelet) scale analysis of stationary time

series. For an introduction to this topic see Nason (2010), for a comprehensive review of the

field see Percival and Walden (2006) or Chiann and Morettin (1998).

The wavelet variance is the process variance represented in the wavelet domain and is rep-

resented by the wavelet spectrum. Since the wavelet basis is orthogonal, energy is preserved

in the wavelet domain. The wavelet variance can be estimated using, for example, the discrete

wavelet transform or the nondecimated wavelet transform. Since the wavelet variance decom-

poses the variance of certain stochastic processes by scale, it is useful in applications such as

signal processing, where the process can conceptualised as variations operating over a range

of different scales. However, in general a wavelet spectrum is less informative than the Fourier

spectrum since it has a much lower frequency resolution. In such cases, Fourier analysis would

be advisable. For example, the theoretical model of a circadian rhythm assumes that the data

can be represented by a function of known period (see Section 1.3.2). In this situation, it is of

interest to estimate the period of the function to a high degree of accuracy and, thus, Fourier

analysis would be preferable.

1.4 Nonstationary Time Series Analysis

In the representation in equation (39) (Section 1.3), note that for stationary processes the am-

plitude A(ω) does not depend on time (i.e. the frequency behaviour is the same across time).

However, for many real time series, including the motivating circadian datasets we analyse in

later chapters, this assumption is not realistic (Zielinski et al., 2014). Price et al. (2008) asserted

that data arising from circadian experiments is nonstationary and discussed the features which

support this claim, namely a progressively dampened signal with a changing period. A mod-

elling framework for time series where the frequency behaviour can vary with time would there-

fore be preferable in such applications.

Example 1.4.1. In Chapter 2, we analyse a dataset taken from a broad investigation of the effect

of various salt stresses on plants. Four time series from this dataset are shown in Figure 15 and

nonstationary behaviour such as changes in amplitude can easily be noted in each.

Furthermore, we investigated whether the individual plant signals in Figure 15 are (second-

order) stationary via hypothesis testing. We employed a wavelet-based test of stationarity, the

wavelet spectrum test (Nason, 2013), implemented in the locits package in R, which is avail-

able on CRAN. All four plant signals provided enough evidence to reject the null hypothesis of

stationarity.
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Additionally, this test also indicates where the nonstationarities are located in the series and

these are also plotted for reference (as red double–headed arrows) in Figure 15. Each arrow cor-

responds to one of the nonstationarities identified by the test. The span of the arrow indicates

the time period over which the nonstationarity has been detected. In the time domain, the es-

timated nonstationarities appear to coincide with the changes in amplitude previously noted

(in Figure 15) within this example. (Note: the right–hand axis in Figure 15 indicates the scale

of the (time–varying) wavelet spectrum (see Section 1.4.2) that contains the nonstationarity-

further details are given in Section 3.3.3.)

1.4.1 Locally Stationary Time Series

If the stationarity assumption is dropped, other (less restrictive) assumptions still have to be

imposed on the process to enable inferences on the process characteristics. Throughout this

chapter, we will focus on trend–free processes with a second order structure that varies slowly

with time. Such time series are called locally stationary (Dahlhaus, 1997; Nason et al., 2000),

since they appear to have stationary behaviour over short periods of time. This ensures that

their statistical characteristics (such as the autocovariance function) can be (locally) estimated

by pooling the observed data over regions of local stationarity.

One way of introducing time dependence into a model is by replacing the amplitudes A(ω)

in equation (39) with a time-dependent form. Priestley (1965) introduced a time-frequency

model with the amplitude replaced by At (ω), leading to a class of nonstationary processes

called oscillatory processes. The amplitude variation as a function of time was assumed to

have a degree of regularity which ensured the locally stationary character of the process. Priest-

ley (1965) also defines a time–dependent evolutionary spectrum, which describes the frequency

content of the process over regions of time.

Dahlhaus (1997) developed the locally stationary Fourier (LSF) model where the process

X t is modelled as a triangular stochastic array {X t ;T }T−1
t=0 such that

X t ;T =
∫ π

−π
A0

t ;T (ω)exp(iωt )dξ(ω), (45)

where there exists K such that

sup
t ,w

|A0
t ;T (ω)− A(t/T,ω)| ≤ K /T, (46)

∀T, and {ξ(ω)}ω is a random process satisfying certain specific properties (see Dahlhaus (1997)

for a detailed description). As discussed in Section 1.4, asymptotic considerations are more dif-

ficult in a nonstationary setting as any future observations may not contain any information on

the structure of the process at the current time. Therefore, in the LSF setting, the evolution of

the individual time-dependent amplitudes, At (ω), is controlled through a function, A(z,ω), de-

pendent on rescaled time, z = t/T, t = 0, . . . ,T −1 (see equation (46)), known as the asymptotic

transfer function. The asymptotic transfer function regulates the behaviour of the time–varying

individual amplitudes, At (ω). The smoothness of A(z,ω) with respect to z, tunes the degree of

local stationarity of the process. As the length of the time series T increases, there is more in-

formation about the local behaviour of the function A(z,ω), z = t/T ∈ (0,1), which thus paves

the way to estimation.
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Figure 15: Example 1.4.1: A time series for each of the four groups (see Chapter 2) is shown
as an example– Group 1, a time series from the 100µM group; Group 2, a time series from the
150µM group; Group 3, a time series from the 200µM group. Red arrows: Plots of the estimated
locations of the nonstationarities in the circadian plant signals in response to differing quanti-
ties of ammonium cerium nitrate, using the wavelet spectrum test (Nason, 2013), implemented
in the locits package in R which is available on CRAN.
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Dahlhaus (1997) also defined an associated evolutionary spectral function which is also

defined in terms of rescaled time, z = t/T ,

fX (z,ω) = |A(z,ω)|2.

This spectrum has the advantage of being uniquely defined (Dahlhaus, 1997), as opposed to the

time–dependent evolutionary spectrum of the oscillatory processes (Priestley, 1965) discussed

above.

1.4.2 Locally Stationary Wavelet Model

Later, Nason et al. (2000) introduced a locally stationary wavelet (LSW) model, where the Fourier

building blocks (present in the LSF model) are replaced by families of discrete nondecimated

wavelets. The LSW model forms the basis of the methodology we develop in this thesis. There-

fore, for the remainder of this section, we introduce the definition of an LSW process as well as

several related quantities. We begin by describing nondecimated discrete wavelets, the build-

ing blocks of the LSW model.

Let {hk } and {gk } be the low– and high–pass quadrature mirror filters as defined in Section

1.2.2. Following Nason et al. (2000), the compactly supported discrete wavelet vectors ψ j =
(ψ j ,0, . . . ,ψ j ,(N j−1)) of length N j for scale j > 0, are obtained using the following formulae:

ψ1,n =∑
k

gn−2kδ0,k = gn , for n = 0, . . . , N1 −1,

ψ j+1,n =∑
k

hn−2kψ j ,k , for n = 0, . . . , N j+1 −1,

N j = (2 j −1)(Nh −1)+1,

(47)

where δ0,k is the Kronecker delta and Nh is the number of non-zero elements of {hk }. The

notation j = 1 denotes the finest scale wavelet, j = 2 the next finest scale and so on.

The collection of (discrete) nondecimated wavelet vectors, ψ j ,k (t ) for t = 0,1, . . . ,T −1, is

formed by translations of the discrete wavelet vectors ψ j to all (discrete) integer locations k as:

ψ j ,k (t ) :=ψ j ,k−t . (48)

Note the notation in equation (48), established in Nason et al. (2000), will be used throughout

this thesis.

Definition 1.4.2. A Locally Stationary Wavelet (LSW) process (Nason et al., 2000), {X t ;T }T−1
t=0 ,T =

2J ≥ 1, is a sequence of doubly indexed stochastic process with the following representation:

X t ;T =
J∑

j=1

∑
k∈Z

w j ,k;Tψ j ,k (t )ξ j ,k , (49)

where {ξ j ,k } is a random orthonormal sequence of increments, {ψ j ,k (t ) = ψ j ,k−t } j ,k is a set of

discrete non-decimated wavelets and {w j ,k:T } is a set of amplitudes, each of which at a scale j

and time k. The quantities in representation (49) posses the following properties:

1. E(ξ j ,k ) = 0. Hence, E
(
X t ,T

)= 0 for all t and T .

2. cov(ξ j ,kξl ,m) = δ j ,lδk,m , where δ j ,l is the Kronecker delta.
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3. There exists for each j ≥ 1 a Liphschitz continuous function W j (z) for z ∈ (0,1) which sat-

isfies the following properties:

•
∑∞

j=1 |W j (z)|2 <∞ uniformly in z ∈ (0,1).

• The Lipschitz constants L j are uniformly bounded in j and

∞∑
j=1

2 j L j <∞.

• There exists a sequence of constants C j such that, for each T

sup
k

|w j ,k;T −W j (k/T )| ≤C j /T,

where, for each j = 1, . . . , J , the sup is over k = 0, . . . ,T −1, and where {C j } fulfils

∞∑
j=1

C j <∞.

Intuitively, the representation in (49) can be thought of as building a time series model

{X t ;T } out of a linear combination of oscillating functions (ψ j ,k ) with random amplitudes

(w j ,k;T ξ j ,k ). Therefore, it is simply the multiscale version of the representation for stationary

processes in (39).

Property 3 of the quantities in the LSW representation (49) states that the amplitudes {w j ,k;T }

are not allowed to evolve too rapidly through not deviating too much from a “control” function

W j (z), which itself has certain constraints to prevent it from oscillating too wildly. Intuitively,

this condition sets a limit on how “nonstationary” a time series can be, in order to allow esti-

mation (as discussed for the alternative locally stationary models outlined in Section 1.4.1).

An analogous quantity to the spectrum of a stationary process (equation (40)), which quan-

tifies the contribution of a frequencyω to the process variance, is introduced in the LSW setting.

This quantity, commonly referred to as the evolutionary wavelet spectrum (EWS), quantifies

the power distribution in an LSW process over time and scale and is formally defined as:

S j (z) = |W j (z)|2, (50)

for j = 1, . . . , J , and rescaled time z ∈ (0,1).

As in Nason et al. (2000), define the autocorrelation wavelets,Ψ j (τ), of the discrete wavelets

as:

Ψ j (τ) = ∑
k∈Z

ψ j ,k (0)ψ j ,k (τ), (51)

for all j = 1, . . . , J and τ ∈Z.

The process autocovariance function of an LSW process X t ,T at lag τ and rescaled time

location z is defined as

cT (z,τ) = cov(XbzT c,T , XbzT c+τ,T ). (52)

Nason et al. (2000) show that cT (z,τ) → c(z,τ) as T →∞, where

c(z,τ) =
J∑

j=1
S j (z)Ψ j (τ) (53)
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is the local autocovariance function and bxc is the largest integer less than or equal to x.

An asymptotically unbiased estimator of the EWS {S j (z)} is obtained by correcting the raw

wavelet periodogram

I j
k,T = |d j ,k;T |2, (54)

where

d j ,k;T =
T∑

t=0
X t ,Tψ j ,k (t ) (55)

are the empirical nondecimated wavelet coefficients. The correction is attained by premulti-

plying the raw wavelet periodogram vector I(z) := (I j
[zT ],T )J

j=1 by the inverse of the J × J auto-

correlation wavelet inner product matrix,

A J = (
∑
τ
Ψ j (τ)Ψl (τ)) j ,l ,

where Ψ j (τ) is the autocorrelation wavelet. Thus, the corrected wavelet periodogram is de-

fined as

L(z) = A−1
J I(z), for all z ∈ (0,1). (56)

Example 1.4.3. Let T = 256 and specify a wavelet spectrum S j (z) as follows:

S j (z) =


4cos2(2πz), for j = 3, z ∈ (0,1)

1, for j = 7, z ∈ (1/256,56/256)

0, otherwise.

(57)

Figure 16(a) provides a visualisation of the wavelet spectrum in equation (57) and an example

of a signal realisation generated from equation (57) can be found in 16(b). (A realisation can

be generated from a spectrum using the locits R package; for more information on how to

generate an LSW process from a defined spectrum see Nason (2010).)

To demonstrate the importance of the bias correction of the wavelet periodogram, we be-

gin with the spectrum in equation (57) and simulate a realisation (as outlined above). We then

compute the raw wavelet periodogram (equation (54)) and the corrected periodogram (equa-

tion (56)). We repeat this process for 100 realisations and then average the respective peri-

odograms to produce Figures 16(c) and (d). On examining Figures 16(c) and (d), note that the

(corrected) spectral estimate in (d) is much closer to the true underlying spectrum than the raw

wavelet periodogram in (c).

As in the stationary setting, the wavelet periodogram is not a consistent estimator of the

wavelet spectrum (Nason, 2010). One method to overcome this is to smooth the raw wavelet

periodogram as a function of (rescaled) time within each scale j , and then to apply the cor-

rection above. Various smoothing approaches have been proposed in the literature, see e.g.

smoothing using variance stabilisation of Fryzlewicz and Nason (2006).

1.4.3 Nonstationary Time Series Analysis of Circadian Data

As discussed in Section 1.3.2, Zielinski et al. (2014) conducted an extensive review of period

estimation methods for circadian data. Zielinski et al. (2014) omitted wavelet-based methods

because they have not been shown to be better than the six methods discussed in 1.3.2 for
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Figure 16: Example 1.4.3. Figure (a) depicts the spectrum defined in equation (57); (b) depicts
a realisation generated from the spectrum shown in (a); (c) shows the mean of 100 uncorrected
periodogram estimations computed on realisations from the spectrum shown in (a) and (d)
shows the mean of 100 corrected periodogram estimations computed on realisations from the
spectrum shown in (a). Note that the spectral estimate in (d) is much closer to the true under-
lying spectrum than (c).

stationary data with constant period, which was the focus of the paper. However, the authors

assert that the wavelet transform can be performed to extract changes of period over time and,

therefore, wavelet-based methods are particularly useful for analysing nonstationary time se-

ries. Zielinski et al. (2014) also states that nonstationarity is common in many biological sys-

tems and this was evidenced by the circadian time series in Example 1.4.1. Therefore, in this

section we briefly review wavelet-based circadian data analysis tools present in the current lit-

erature.

Price et al. (2008) asserted that data arising from circadian experiments is nonstationary

and discussed the features which support this claim, namely a progressively dampened signal

with changing period. Therefore, Price et al. (2008) advocated the use of wavelets to analyse cir-

cadian data and developed a technique for characterising the modal periods present in circa-

dian data using a continuous wavelet decomposition (this is disseminated in the waveclock

package in R, currently on CRAN archive). Later, Harang et al. (2012) also supported the cir-

cadian data nonstationarity view, and furthermore claimed that circadian analysis under non-

stationary behaviour by means of traditional Fourier methods can lead to inaccurate results.

Harang et al. (2012) thus recommended the use of wavelets to allow for the changes in period

to be tracked through time; the authors developed ‘WAVOS’- a wavelet-based MATLAB toolkit

that allows for analysis of nonstationary circadian data.

Leise et al. (2013) discussed the appropriateness of traditional methods to determine pe-

riod length from experimental datasets that assume a rhythm of fixed period and amplitude,

proposing that most biological rhythms exhibit changes in both period and amplitude (see Ex-

ample 1.4.1). The authors extended wavelet methods to measure how biological rhythms vary

over time and developed MATLAB scripts to implement their analysis using both continuous

and discrete wavelet transforms.

The methodology we develop in Chapters 2 and 3 is different, as it combines the use of
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wavelets (ideal for analysing nonstationary behaviour due to their time localisation) with the

rigorous statistical (process) modelling introduced in Section 1.4.2. Using this statistical mod-

elling framework will, of course, be advantageous when the LSW modelling assumption is cor-

rect. For example, unbiased estimators of the EWS can be calculated (see Example 1.4.3). How-

ever, there may be times when the data is nonstationary but the underlying model is not an LSW

process. In such circumstances, the added computational burden of utilising the LSW method-

ology may be a disadvantage. However, in the simulation studies in Chapter 2, we demonstrate

the advantages of utilising the LSW methodology over standard wavelet–based approaches in

a range of different scenarios (both when the LSW modelling assumption is correct and when

the data consists of nonstationary AR processes (see Section 1.3.1)).
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2 Clustering Nonstationary Circadian Rhythms Using Locally Station-

ary Wavelet Representations

In this chapter we develop and test a new method for clustering rhythmic biological data. The

proposed method is the result of joint work with M.I. Knight, J. W. Pitchford, R. Oakenfull and

S. J. Davis, and corresponds to the publication Hargreaves et al. (2018). Please see page 21 for

details of author contributions.

2.1 Introduction

The earth rotates on its axis every 24 hours resulting in a day and night cycle. Correspondingly,

almost all species exhibit changes in their behaviour between day and night (Bell-Pedersen

et al., 2005). These daily rhythms are not only caused by a response to daily changes in the

physical environment, but are also the result of an internal timekeeping system or ‘biological

clock’ within the organism (Vitaterna et al., 2001; Minors and Waterhouse, 2013). In particu-

lar, most plants are able to anticipate dawn and adjust their biochemistry accordingly. When

an organism is deprived of external time cues, these rhythms typically persist qualitatively but

may change in detail; the study of these changes can reveal the biochemical reactions under-

pinning the circadian clock and, at a larger scale, can provide valuable insight into the possible

consequences of environmental change (McClung, 2006; Bujdoso and Davis, 2013).

Experiments recording plant response to light entrainment result in datasets that, from a

statistical point of view, can be considered as time series realisations. Period and phase esti-

mation (see Figure 13 in Chapter 1 for a visual interpretation of this terminology) are the fun-

damental elements of most circadian analyses. The current standard uses BRASS (Biological

Rhythm Analysis Software System (Edwards et al., 2010)) to estimate the period of each time

series using Fourier analysis (see Moore et al. (2014) or Zielinski et al. (2014) for a complete de-

scription of the underlying period analysis methods). Data stationarity is an implicit assump-

tion within the underlying methodology – put simply, its statistical characteristics are assumed

constant over time. However, in reality, nonstationary behaviour is common in biological sys-

tems (Zielinski et al., 2014). Here we propose, develop and test methods that are capable of

detecting changes of period over time by drawing on the plant time-frequency signature as

quantified by its spectrum.

The methodology developed here is general, but our concrete example concerns (i) iden-

tifying if a plant’s clock is affected under exposure to different concentrations of ammonium

cerium nitrate, (ii) establishing which concentrations produce similar effects and (iii) subse-

quently characterising these effects. The answers to these questions have important implica-

tions, not only for the understanding of the mechanism of the plant’s circadian clock, but also

for the environmental impact associated with soil pollution (Yang et al., 2016).

In order to answer the above questions, we propose to estimate the spectral behaviour of

our time series under the formal framework of locally stationary wavelet processes (Nason

et al., 2000), introduced in Section 1.4.2, which are able to account for data nonstationarity.

Wavelets (introduced in Section 1.1.2) are ideal for identifying discriminant local time and

scale (frequency) features, and time-frequency (scale) patterns are known to be indicative of

the plant response to various stimuli (Zielinski et al., 2014). A functional principal components

analysis on the spectral data treated as an ‘image’ (as suggested in a Fourier context by Holan
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Figure 17: Luminescence evolution over time for plants subjected to a control and 3 differ-
ent ammonium cerium nitrate concentrations. Time is measured in hours relative to zeitgeber
time (time of last external temporal cue: the dawn signal of lights-on). Top left: Each plant
signal from the control group (in grey) along with the group average (dashed black). Other
panels: Each realisation from the groups (in grey) along with the group average and the con-
trol group average (dashed black). Group 1: 100µM ammonium cerium nitrate with average
in blue. Group 2: 150µM ammonium cerium nitrate with average in green. Group 3: 200µM
ammonium cerium nitrate with average in red. (Each time series has been normalised to have
mean zero.) Note: the free run started from time 24; shaded bars below each graph indicate the
subjective darkness that plants expected to experience during the ‘normal’ day.

et al. (2010)) is then used to reduce the data dimensionality and allows the extraction of impor-

tant behavioural features. Furthermore, this functional representation is also used to inform

a clustering method that facilitates quantifying the effects induced by different concentrations

of ammonium cerium nitrate.

This chapter is organised as follows. Section 2.2 outlines the novel circadian dataset and es-

tablishes its nonstationary behaviour. Section 2.3 develops our proposed novel locally station-

ary wavelet-based clustering method. The findings of an extensive simulation study are pre-

sented in Section 2.4. Section 2.6.1 demonstrates the additional insight our clustering method

can provide when applied to a published circadian plant dataset. Section 2.6.2 presents the

results of clustering the novel circadian plant dataset using the proposed methodology and ex-

amines them in the context of several relevant biological questions. Section 2.7 concludes with

a brief discussion and suggests topics for further investigation.

2.2 Motivation

In this section we briefly outline the experimental details that led to the novel circadian dataset

and assess the prominent features of the plant rhythms under analysis, namely their lack of sta-

tionarity. This result, along with several others recorded in the literature (e.g. Price et al. (2008),

Leise et al. (2013)) motivates the development of analysis techniques that can account for non-

stationarity. Furthermore, we also discuss the phenomenon of individual-level variability in

plant response to stimuli, despite their sharing identical genetic characteristics (Doyle et al.,

2002). The presence of multiple behaviours within the same treatment group motivates our
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development of a clustering procedure that can detect these different characteristics and anal-

yse them separately. For completeness, we also report the results of the analysis a circadian

biologist would typically use.

2.2.1 Experimental Details

The novel circadian dataset (henceforth referred to as the cerium dataset) was obtained by the

Davis Lab (Biology, University of York) following a similar method to Hanano et al. (2006). For a

detailed description of these methods see Appendix 2.9. Briefly, for each plant, gene expression

levels are measured (using a firefly luciferase reporter system) at regular intervals resulting in an

individual time series. In this experiment, the gene of interest was ‘cold and circadian regulated

and RNA binding 2’, known as CCR2 (Doyle et al., 2002).

The cerium dataset consists of a total 96 plant signals (time series) recorded at 128 time

points, with the control and groups 1–3 (each corresponding to a different concentration of

ammonium cerium nitrate) all containing 24 plants. The control group is grown in Hoagland’s

media (Hoagland et al., 1950), which contains essential nutrients required for plant growth, and

is not exposed to any additional levels of ammonium cerium nitrate. To examine the effects of

cerium on the circadian clock, the other three groups, while also grown in Hoagland’s media,

were additionally exposed to varying additional concentrations of ammonium cerium nitrate–

100µM for Group 1, 150µM for Group 2 and 200µM for Group 3. A plot of individual lumines-

cence time series, the average expression at each time point, for each of the treatment groups,

is shown in Figure 17. Note that time is measured in hours relative to zeitgeber time, which is

the time of the last external temporal cue: the dawn signal of lights-on.

2.2.2 BRASS Analysis

In the circadian community, analysis of this data would typically be performed by the Microsoft

Excel macro BRASS (introduced in Section 1.3.2). Table 1 provides a summary of the output of

the analysis of the cerium dataset in BRASS. In particular, it shows the mean period estimate

(obtained using FFT-NLLS analysis (Plautz et al., 1997) considering only period estimates be-

tween 15 and 40 hours), the number of plants that could not be analysed by BRASS and the

mean Relative Amplitude Error (RAE) for each of the 4 groups. RAE is a value between 0 and

1 and gives information about the goodness of fit of the model (a value of 0 indicates a per-

fect fit). In the circadian community, standard practice dictates that results with an RAE value

above the threshold of 0.4 are discarded (Doyle et al., 2002). Circadian biologists often visualise

the results in a scatter plot of relative amplitude error against period length for the plants anal-

ysed by BRASS (see e.g. Hanano et al. (2006)) and such a plot for this dataset is given in Figure

30, Appendix 2.8.

On examining Table 1, note that not all data is used to produce the period estimate reported

by BRASS– in particular, the ‘number of plants excluded by BRASS’ is the number of time series

for which the FFT–NLLS algorithm (Plautz et al., 1997) was not able to return a period estimate,

possibly due to a loss of rhythmicity. Thus, under the assumption of stationarity (and the above

constraints), these methods are not able to analyse all data produced by this experiment, indi-

cating that this dataset is not suitably modelled using Fourier methods.

Furthermore, by just reporting the results of this analysis, the biologist would conclude

that adding 100µM or 150µM ammonium cerium nitrate produces no detectable effect on the
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Group Hoagland’s
Group 1 Group 2 Group 3
(100µM) (150µM) (200µM)

Average period estimate
27 27 26 24

(in hours)
Number of plants

7 10 12 21
excluded by BRASS

Average RAE 0.23 0.44 0.41 0.74

Table 1: Summary of the output of the analysis of the circadian dataset in BRASS. The ‘number
of plants excluded by BRASS’ is the number of time series for which BRASS was not able to
return a period estimate. ‘RAE’ (Relative Amplitude Error) is a value between 0 and 1 and gives
information about the goodness of fit of the model (a value of 0 indicates a perfect fit). Results
with an RAE over 0.4 are discarded. Recall: there are 24 plants in each of the groups.

circadian clock (as these period estimates are similar to the control, see Table 1). Moreover,

within the circadian community, the results from adding 200µM ammonium cerium nitrate

would not be considered, since they produce an RAE value of 0.74 (which is over the threshold

of 0.4). Therefore, using the current methodology, the circadian biologist would not be able to

conclude that exposure to ammonium cerium nitrate (at any of the tested concentrations) has

an effect on the circadian clock of A. thaliana. However, visual examination of Figure 17 shows

that this chemical appears to have a strong effect on these plants, providing further evidence

that more statistically advanced approaches are needed.

2.2.3 Nonstationarity in Circadian Rhythms

In Section 1.4.3 we reviewed the literature that asserts that data arising from circadian exper-

iments is nonstationary and also discussed a number of wavelet–based methods for nonsta-

tionary time series analysis of circadian data (Price et al., 2008; Harang et al., 2012; Leise et al.,

2013). Therefore, for our novel circadian dataset, we investigated whether the individual plant

signals are (second-order) stationary via hypothesis testing.

We employed two tests for stationarity– a Fourier-based test (Priestley and Rao, 1969) and

a wavelet-based test (Nason, 2013). The Fourier-based test we used was the Priestley-Subba

Rao (PSR) test. The results, which can be found in Table 2, show that over 70% of the plant

signals provided enough evidence to reject the null hypothesis of stationarity. This conclusion

is backed-up by the wavelet-based spectrum test for stationarity. Additionally, this test also

indicates where the nonstationarities are located in the series. (A visual representation for each

group can be found in Figure 31, Appendix 2.8.)

Therefore, in agreement with previous observations in circadian literature (see Section 1.4.3),

both tests suggest that our circadian data also displays nonstationary features. In order to as-

sess the impact of different concentrations of ammonium cerium nitrate, we propose a novel

clustering technique that combines the use of wavelets (ideal for analysing nonstationary be-

haviour) with rigorous statistical (process) modelling. Additionally, to mitigate against individ-

ual plant variability, our technique proposes the use of time-scale patterns as explained next.

2.2.4 Individual-level Variability in Circadian Rhythms

We noticed in our dataset the presence of individual-level variability in plant responses to the

same stimuli, despite their sharing identical genetic characteristics (Doyle et al., 2002). For
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Group Hoagland’s
Group 1 Group 2 Group 3
(100µM) (150µM) (200µM)

Number of nonstationary plants 22 19 19 8

Table 2: Results for the Priestley-Subba Rao test of stationarity, implemented in the fractal
package in R and available from the CRAN package repository. Number of nonstationary plants
indicates the number of time series (in each group) with enough evidence to reject the null
hypothesis of stationarity at the 1% significance level. Recall: there are 24 plants in each of the
groups.

example, different types of behaviour can be seen in the control group of Figure 17. This is par-

ticularly noticeable at the beginning (prior to time T = 36) and end (after time T = 96) of the

experiment where the plant signals displayed one of two different amplitudes. This variability

highlights the issues caused by taking an average period estimate for each group and compar-

ing the results, or comparing the average raw time series for each group. Although all plants in

each treatment group share identical genetic characteristics and have been treated in identical

conditions, they respond differently. In such situations, looking at average behaviour masks

the individual differences and is conducive to misleading conclusions, as also acknowledged

in other fields (Fiecas and Ombao, 2016). This motivates our choice to cluster the circadian

plant data using their time-frequency (scale) patterns and further accounts for their proven

(see Section 2.2.3) nonstationary features.

2.3 Proposed Clustering Method

Our proposed methodology combines the use of wavelets, as recommended (but not imple-

mented) by Zielinski et al. (2014) in their review of period estimation methods for circadian

data, with rigorous stochastic nonstationary time series modelling. We exploit the locally sta-

tionary wavelet processes of Nason et al. (2000), arriving at a novel and general approach for

clustering circadian signals according to their leading time-scale spectral patterns, as extracted

by functional principal components analysis.

2.3.1 Modelling Nonstationary Time Series

In Section 1.4 we introduced a number of statistically rigorous approaches to modelling non-

stationary time series. In our work we adopt the locally stationary wavelet (LSW) model (Nason

et al., 2000). Recall (Section 1.4.3) that the advantage of wavelets is that they are localised in

both time and scale (frequency) and are therefore well-suited to modelling second-order char-

acteristics that evolve over time. Therefore, the locally stationary wavelet model combines the

advantages of a wavelet analysis with rigorous stochastic nonstationary time series modelling.

Under the locally stationary wavelet (LSW) process framework, a time series {X t ;T }T−1
t=0 , T =

2J ≥ 1 is defined to be a sequence of (doubly-indexed) stochastic processes with the following

representation

X t ,T =
J∑

j=1

∑
k∈Z

w j ,k;Tψ j ,k (t )ξ j ,k , (58)

where {ξ j ,k } is a random orthonormal increment sequence, {ψ j ,k (t ) =ψ j ,t−k } j ,k is a set of dis-

crete non-decimated wavelets and {w j ,k;T } is a set of amplitudes, each of which at a scale j and
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time k.

The properties of the random increment sequence {ξ j ,k } ensure that {X t ,T } is a zero-mean

process (see definition 1.4.2 in Section 1.4.2). In practice, for a process with non-zero mean,

it is customary to re-centre it around zero (Nason, 2010) and this is our approach here, as the

quantity of our primary interest is the process spectral signature.

The definition of the LSW process in equation (58) requires the data to be of dyadic length

(T = 2J ). In many practical applications, this is not realistic and there are a number of ap-

proaches to address this situation. For example, the practitioner could truncate the time series

and analyse a segment of the data (of length T = 2J ), and this is our approach here. Alterna-

tively, it is possible to extend the data to the next greater power of two by artificially appending

values. In particular, common approaches include padding the data with zeros, replicating a

data value (such as the final value) or reflecting the dataset about an end point. Another ap-

proach is to interpolate data values to produce a new data set of the required length (Ogden,

1997). However, preconditioning the data could lead to misleading results. Therefore, we do

not artificially extend the data in this thesis.

In Section 1.4.2, we formally defined the evolutionary wavelet spectrum (EWS) as

S j (z) = |W j (z)|2, (59)

at each scale j ∈ 1, J and rescaled time z = k/T ∈ (0,1). An unbiased estimator of the EWS {S j (z)}

is obtained by correcting the raw wavelet periodogram

I j
k,T = |d j ,k;T |2, (60)

where d j ,k;T =∑T
t=0 X t ,Tψ j ,k (t ) are the empirical nondecimated wavelet coefficients. Thus, the

corrected wavelet periodogram is

L(z) = A−1
J I(z), for all z ∈ (0,1), (61)

where A J = (
∑
τΨ j (τ)Ψl (τ)) j ,l is the autocorrelation wavelet inner product (J × J ) matrix and

Ψ j (τ) = ∑
k ψ j ,k (0)ψ j ,k (τ) is the autocorrelation wavelet. For the remainder of this chapter, let

us denote the corrected and smoothed periodogram of a time series (plant signal) {X t ,T }T−1
t=0 as

{Ŝ j (z)} j , for rescaled time z ∈ (0,1).

2.3.2 Overview of Current Clustering/Classification Techniques that Account for Nonsta-

tionarity

The problem of clustering and classification for nonstationary data has received a good deal

of attention in the statistical literature, thanks to its relevance in many applied fields. In the

context of monitoring potential nuclear testing, Shumway (2003) considered the use of time-

varying spectra for the classification and clustering of nonstationary time series by means of

locally stationary Fourier models and Kullback-Leibler discrimination measures. Also in this

context, Fryzlewicz and Ombao (2009) developed a procedure for the classification of non-

stationary time series. The observed data were modelled as realisations of locally stationary

wavelet processes and their corresponding wavelet spectra were estimated and used as the sig-

nal classification signature. In the context of an industrial experiment, Krzemieniewska et al.
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(2014) further developed this method by proposing an alternative divergence index to the sim-

ple squared quadratic distance of Fryzlewicz and Ombao (2009) for comparing the spectra of

two time series. Note that the above techniques are underpinned by rigorous process modelling

but the focus is on classification into known groups, rather than on clustering. When classifying

animal communication signals, known to have a nonstationary character, Holan et al. (2010)

achieved dimension reduction by treating each windowed Fourier spectrum as an ‘image’ and

performing a functional principal components analysis. In this context, the authors proposed

to classify nonstationary time series by means of a generalised linear model that incorporated

the (dimension-reduced) spectrogram of a short-time Fourier transform into the model as a

predictor.

For clustering applications, the maximum covariance analysis (MCA) on wavelet represen-

tations of two series has been proposed in previous works. MCA has the advantage of extract-

ing common time-scale (frequency) patterns while also reducing the dimension of the data.

Rouyer et al. (2008) used MCA to yield a quantitative measure of the common time-scale con-

tent in squared wavelet coefficients for pairs of time series. This subsequently yields a distance

matrix used to obtain a cluster tree that groups signals according to their spectral time-scale

patterns. In the context of an energy application, Antoniadis et al. (2013) also used an MCA

over the wavelet coefficients obtained via a continuous wavelet transform and quantify signal

similarity by comparing the evolution in time of each pair of leading patterns. This builds a dis-

tance matrix which is then used within classical clustering algorithms to differentiate among

high dimensional populations.

Formally, consider two time series, {X (i )
t } and {X ( j )

t }. Both Antoniadis et al. (2013) and

Rouyer et al. (2008) obtained a time-scale decomposition of each time series (the wavelet trans-

form and its squared version, respectively). Regardless of the usage of wavelet coefficients or

their squared version, denote these new quantities in the wavelet domain by Q(i ) and Q( j ), for

the {X (i )
t } and {X ( j )

t } signals respectively, and define the time-scale covariance matrix by

R(i , j ) =Q(i )Q( j )H , (62)

where Q( j )H denotes the conjugate transpose and R(i , j ) is a J × J matrix with possibly complex

values. Performing a singular value decomposition of R(i , j ) gives the following decomposition:

R(i , j ) =U (i )Λ(i , j )V ( j )H (63)

where the columns of U (i ) and V ( j ) are the orthonormal singular vectors of Q(i ) and Q( j ) respec-

tively, andΛ(i , j ) is a diagonal matrix with the singular values of the decomposition arranged in

decreasing order. Denote the k-th pair of the singular vectors of U (i ) and V ( j ) as uk and vk re-

spectively. We can then define the k-th leading pattern as the projections of Q(i ) and Q( j ) over

their respective k-th singular vectors:

P (i )
k = uH

k Q(i ) and P ( j )
k = v H

k Q( j ). (64)

This process is then repeated for each pair of time series to produce the leading patterns and

singular vectors which are then used with various distance measures (described in Section

2.3.4.1) to obtain the dissimilarity matrix which forms the input of classical clustering algo-
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rithms.

Contrasting with the classification techniques described above, these clustering approaches

are not underpinned by rigorous statistical modelling, and while they propose respectively the

usage of wavelet coefficients or their squares, the reasoning that should drive this choice is not

discussed by either Rouyer et al. (2008) or Antoniadis et al. (2013).

2.3.3 Proposed Functional Principal Components Analysis for the Wavelet Spectral Con-

tent

In this work we propose to combine the rigorous modelling framework provided by the locally

stationary wavelet (LSW) processes that allows for the reliable (unbiased and consistent) esti-

mation of the spectral time-scale features specific to each plant, with the dimension reduction

afforded through the use of a functional principal components analysis (FPCA).

In our biological problem of interest, the time-scale representation of the signal is high-

dimensional. Since any useful biological information is likely to relate to the low-dimensional

mechanisms known to regulate the clock (Bujdoso and Davis, 2013), this motivates our pro-

posal to use a FPCA to perform dimension reduction over the spectral content. In the spirit

of Holan et al. (2010), we treat our LSW spectral estimate as an ‘image’ and the spectral coef-

ficients as time-scale ‘pixels’. The pixels are not independent– in fact, the spectrum presents

coherent patterns that should be accounted for. This motivates the use of the Karhunen-Loéve

representation (at the heart of FPCA) which, in our context, for a continuous spectrum {S(v) :

v = ( j , z),v ∈R×(0,1)} allows for its covariance function CS(v,v′) to be decomposed via an eigen-

decomposition (Ramsay and Silverman, 2005). Consequently, the spectra may be decomposed

as S(v) = ∑
m≥1αmφm(v), with scores (αm)m independent random variables whose variance is

given by the corresponding eigenvalues (Var(αm) = λm) and φm(v) orthonormal eigenvectors

that capture the variability in the spectral domain.

Assuming we observed N plant signals at T = 128 equally spaced time points, we model the

i -th plant signal as an LSW process {X (i )
t ,T }T−1

t=0 for each i = 1, . . . , N . As biological evidence points

towards the relevance of the plant spectral signature in understanding its response to stimuli,

we estimate the wavelet spectrum by means of its corresponding corrected and smoothed pe-

riodogram, {Ŝ(i )
j (t/T )}J

j=1 for each time series i = 1, . . . , N , where t = 0, . . . ,T −1 and J = log2(T ).

The estimated spectra, viewed as continuous functions {Ŝ(i )(v)} with v = ( j , z = t/T ) ∈R× (0,1),

are then treated as input observations in a FPCA. Their corresponding estimated covariance

function Ĉ (v,v′) thus summarises the dependence of plants across time and scale.

Although the continuous Karhunen-Loéve representation is often the most realistic from

the point of view of modelling a biological process, due to the discrete nature of observations

resulting from most experiments, it is rarely considered in applications. In practice, we use its

empirical version, also known as empirical orthogonal function analysis, as is common in e.g.

spatial statistics and geophysics (Cressie and Wikle, 2015). In particular, the estimated spectral

coefficients can be arranged in N matrices, each of size J ×T , which we denote Ŝ(1), . . . , Ŝ(N ). In
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particular, for each time series i = 1, . . . , N ,

Ŝ(i ) =


Ŝ(i )

1

( 0
T

)
Ŝ(i )

1

( 1
T

)
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1
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)
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)
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2

( 0
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2

( 1
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2
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J

( 0
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( 1
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)
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
For each plant signal (each i = 1, . . . , N ), vectorise the matrix Ŝ(i ), i.e. concatenate the rows of

the matrix Ŝ(i ) to produce a vector ŝ(i ) with length J ×T = n:

ŝ(i ) =
[(

Ŝ(i )
1

(
0

T

)
, . . . , Ŝ(i )

1

(
T −1

T

))
, . . . ,

(
Ŝ(i )

J

(
0

T

)
, . . . , Ŝ(i )

J

(
T −1

T

))]T

.

These N vectors are combined to form a data matrix Q of size N ×n, where each row of Q

represents the spectral content of a plant. Formally,

Q = [
ŝ(1), . . . , ŝ(N )]T

. (65)

Note that in practice, this analysis is equivalent to performing a classical principal components

analysis on the mean centred data, which we still denote by Q in order not to further clutter the

notation. The spectral decomposition of the sample covariance matrix R =QT Q is given by

R =UΛU T , (66)

where U is an orthonormal matrix whose columns are the eigenvectors of R (also known as the

principal directions of the data; here, we can conceptualise these as representing ‘images’) and

Λ is a diagonal matrix whose diagonal elements are eigenvalues of R (positive real numbers

arranged in decreasing order of magnitude; these are proportional to the variance accounted

for by each direction).

We can achieve size reduction by choosing to represent our data in fewer dimensions. The

usual practice is to use the set of p < n eigenvectors of R corresponding to the p largest eigen-

values and aggregate these in an n×p matrix, UPCA, which performs the PCA projection. There-

fore, for each eigenvector, we can find a corresponding projection in the principal component

space by computing

QUPCA.

In this transformed space, each process is now represented by a p-dimensional vector, i.e. the

principal co-ordinates of the i -th process are given by the i -th row of the matrix QUPCA, de-

noted from now on as Score(i ) (p-dimensional vector). Therefore,

Score(i ),T =
[

Score(i )
1 , . . . ,Score(i )

p

]
= ŝ(i ),T UPCA. (67)

2.3.4 Proposed Clustering Method

Our proposal is to construct a clustering method that assesses time series similarity/ dissimi-

larity on the basis of their spectral content as distilled in the scores developed in Section 2.3.3

above. Next we shall introduce potential distance measure candidates and assess various meth-

ods to determine the number of principal components to retain and the optimal number of
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clusters.

2.3.4.1 Distance Measures

The success of any clustering algorithm depends on the adopted dissimilarity measure. In this

section, we propose four possible distance measures and discuss their advantages and disad-

vantages. The proposed distance measures consist of developments of those adopted in the

work reviewed in Section 2.3.2. The distance measures are then utilised to form an N ×N ma-

trix, D , which we will refer to as the dissimilarity matrix. In particular, the (i , j )th entry of the

dissimilarity matrix is defined as the value of a chosen distance measure between the two time

series {X (i )
t ,T }T−1

t=0 and {X ( j )
t ,T }T−1

t=0 , for each i = 1, . . . , N and j = 1, . . . , N . In our simulation studies

(Section 2.4), we compare the performance of clustering algorithms embedding the different

distance measures outlined below.

The simplest choice for the dissimilarity measure is the squared quadratic (SQ) distance be-

tween two time series, {X (i )
t ,T }T−1

t=0 and {X ( j )
t ,T }T−1

t=0 . This distance measure is adopted by Fryzlewicz

and Ombao (2009) who quote its advantages of good practical performance and computational

ease. In our context it is defined as the sum of the squared differences between the scores re-

lating to the p principal components retained

SQ(X (i )
t ,T , X ( j )

t ,T ) =
p∑

k=1

[
Score(i )

k −Score( j )
k

]2
, (68)

where Score(i )
k denotes the score associated to the k-th principal component of time series

{X (i )
t ,T }, as defined in equation (67). The value SQ(i , j ) is the (i , j )th entry of the dissimilarity

matrix, D .

Our proposal is to develop this simplistic measure by aggregating the scores in the most sig-

nificant p directions using a weighted combination with weights given by the squared singular

values. We refer to this measure as the weighted squared quadratic (WSQ) distance and define

the WSQ distance between two time series, {X (i )
t ,T }T−1

t=0 and {X ( j )
t ,T }T−1

t=0 as the weighted sum of the

squared differences between their scores in p directions. Formally

W SQ(X (i )
t ,T , X ( j )

t ,T ) =
∑p

k=1λk

[
Score(i )

k −Score( j )
k

]2

∑p
k=1λk

, (69)

where Score(i )
k is as in equation (67) and λk denotes the corresponding k-th squared singular

value. The value W SQ(i , j ) is the (i , j )th entry of the dissimilarity matrix, D .

We now outline the distance measures as adopted in Antoniadis et al. (2013) and Rouyer

et al. (2008). Both approaches hinge on the singular vectors and leading patterns for each time

series pair. Specifically, Antoniadis et al. (2013) compared the time evolution of each pair of

leading patterns. In particular, for the k-th pair of leading patterns corresponding to time series

{X (i )
t ,T }T−1

t=0 and {X ( j )
t ,T }T−1

t=0 , the authors take the first difference (∆) and measure energy by means

of its modulus

dk (i , j ) = |∆(P (i )
k −P ( j )

k )|. (70)

Finally, the most significant p directions are aggregated using a weighted combination with
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weights given by the squared singular values:

D(i , j ) =
∑p

k=1λk d 2
k (i , j )∑p

k=1λk
. (71)

The last comparison metric is

DT (i , j ) =
∑p

k=1λk (RD(P (i )
k ,P ( j )

k )+RD(u(i )
k ,u( j )

k ))∑p
j=1λk

, (72)

where u(i )
k and u( j )

k are the k-th singular vectors of X (i )
t ,T and X ( j )

t ,T respectively, and RD denotes

the measure from Rouyer et al. (2008), adapted from Keogh and Pazzani (1998). Formally, for

two vectors u = [u1, . . . ,un]T and v = [v1, . . . , vn]T of length n,

RD (u,v) =
n−1∑
i=1

at an[|(ui − vi ))− (ui+1 − vi+1)|]. (73)

The metric in equation (73) compares two vectors by measuring the angle between each pair of

corresponding segments (a segment is defined as a pair of consecutive points of a vector) and is

a method for measuring parallelism between curves. The overall distance is then computed as

a weighted mean of the distance for each of the p pairs of leading patterns and singular vectors

retained (with the weights being equal to the amount of covariance explained by each axis), see

equation (72).

Note that in the simulation study (Section 2.4), when comparing our method with the meth-

ods outlined in Antoniadis et al. (2013) and Rouyer et al. (2008), we cluster the data using their

specified time-scale decomposition and distance measure.

2.3.4.2 Determining the number of principal components to retain

Recall the aim to reduce the dimensionality of our problem; for each of the distance metrics

above, we must decide how many axes, p, to retain. Antoniadis et al. (2013) and Rouyer et al.

(2008) both decided to use the number of axes that correspond to a fixed percentage of the

total covariance (as is common in principal components analysis). A different approach is to

select the number of components based on a screeplot. This displays the proportion of vari-

ance explained by the (ordered) eigenvalues, and p is then selected by looking for an elbow in

the screeplot. Finally, our proposed methodology is motivated by an applied problem in the

field of circadian biology. In order to interpret the results of our proposed clustering algorithm

and potentially to gain biological insight, practitioners expressed a desire for a method of visu-

alising the clusters. In particular, if two principal components were retained, the scores could

be plotted as a (colour–coded) two-dimensional scatter plot (see Figure 28). Therefore, we also

investigated the impact on our proposed methodology of always retaining two principal com-

ponents.

2.3.4.3 Determining the Number of Clusters

One of the most difficult tasks in clustering is determining the number of clusters (Antoniadis

et al., 2013). This can be informed through a number of statistical techniques (Kaufman and
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Rousseeuw, 2009) as well as by scientific expert knowledge. For example, the ‘elbow method’

examines the percentage of variance explained as a function of the number of clusters; the

number of clusters is then chosen by looking for an elbow in the plot of this function. Tibshi-

rani et al. (2001) developed this methodology by estimating the number of clusters in a dataset

via the ‘gap statistic’. This technique uses the output of any clustering algorithm and compares

the change in within–cluster dispersion (e.g. the pooled within–cluster sum of squares around

the cluster mean) with that expected under an appropriate reference null distribution. Tibshi-

rani et al. (2001) provide two choices for the reference distribution (see the original manuscript

for further details). Alternatively, the ‘silhouette method’ (Rousseeuw, 1987) can be used. The

‘silhouette’ of a data point is a number between −1 and 1, with values of 1 indicating correct

clustering. Briefly, the silhouette of an observation compares the average distance of that ob-

servation to all other elements in the cluster to which it has been assigned with the average dis-

tance between the observation and the “closest” alternative cluster. Optimization techniques

are then used to determine the number of clusters that gives rise to the largest ‘silhouette’

(Kaufman and Rousseeuw, 2009).

2.3.4.4 Proposed LSW-PCA Clustering Algorithm

Our proposed clustering method, which we shall refer to as LSW-PCA clustering, is outlined

in Algorithm 1 below. We perform a partitioning around medoids (PAM). The motivation be-

hind this choice was that this method (implemented in R) admits a general dissimilarity matrix

as input (as opposed to the raw data). Therefore, this method permitted the comparison of

the proposed distance measures (outlined in Section 2.3.4.1). Furthermore, PAM is known to

be more robust than other alternatives such as k-means (Antoniadis et al., 2013). Each of the

proposed choices, i.e. spectral information, number of principal components retained (p) and

distance measure, are informed by the findings of the simulation study (see Section 2.4 and

Appendix 2.10).

Algorithm 1 Proposed LSW-PCA clustering algorithm

Assume that each of the N observed (e.g. circadian) signals is a realisation of a locally stationary
LSW process {X (i )

t ,T }T−1
t=0 , with i = 1,2, . . . , N .

1. Spectral estimation: estimate the spectral content of each process by using a model-
based LSW corrected estimator and aggregate all information in a matrix (see Section
2.3.3).

2. Dimension reduction: achieve dimension reduction by projecting the spectral informa-
tion of each process in a functional principal component space and obtain the scores
associated to each signal. The number of principal components retained (p) is decided
by means of the screeplot of percentage variance explained (see Section 2.3.4.2).

3. Spectral distance matrix: quantify the spectral differences between two signals by using
the (weighted) squared quadratic distance measure (see Section 2.3.4.1).

4. Cluster the data: by performing a partitioning around medoids (PAM) with the distance
matrix above as input.
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2.4 Simulation Study

The goals of our simulation study are twofold. First, we investigate the impact of the wavelet

information choice (e.g. wavelet coefficients versus model-based spectral estimate), distance

measure choice and methods to determine the number of principal components to retain. Sec-

ondly, we assess the comparative performance of our proposed procedure with other methods.

Since our work is motivated by an application in the field of circadian biology, we have de-

signed our simulated scenarios to display typical characteristics of circadian rhythms and also

to reflect the limitations of empirical work in the life sciences, where the resolution and length

of the time series would be limited in practice.

2.4.1 Simulated Data

The basic structure of each simulated experiment can be described as follows. A dataset of

N = 100 (50 simulations from each of the two groups) was generated. For cases 1, 2 and 3,

the data was generated using the LSW representation (see equation (58)) with Daubechies’ ex-

tremal phase wavelet with one vanishing moment and a Gaussian orthonormal increment se-

quence with mean zero and unit variance (the locits R package was used). For Case 4, the

data was generated from an AR process (see Section 1.3) with time–varying coefficients. For

the proposed methodology, each periodogram was level smoothed by log transform, followed

by translation invariant global universal thresholding and then the inverse transform was ap-

plied. For each scale of the wavelet periodogram, only levels 3 and finer were thresholded. For

all methods, using the appropriate estimated spectral information, we obtained a dissimilar-

ity matrix for each of the methods under investigation. This matrix was the input of a PAM

algorithm (performed in the cluster R package) which clustered the data into two groups.

We then compared the clusters with the known group memberships and recorded the correctly

clustered percentage. The above procedure was then repeated 100 times and the results for

each method were averaged.

Case 1: Defined spectra. For this study, we assume each time series is a realisation from one

of g = 1,2 possible groups, each with different spectral characteristics. Define the evolutionary

wavelet spectrum of each group {S(g )
j (z)}J

j=1 with J = log2(T ) for all z ∈ (0,1) and T = 64 by

S(1)
j (z) =


4cos2(4πz), for j = 2, z ∈ (1/64,16/64)

4cos2(2πz), for j = 3, z ∈ (17/64,1)

0, otherwise;

(74)

and

S(2)
j (z) =


4cos2(2πz), for j = 2, z ∈ (17/64,1)

4cos2(4πz), for j = 3, z ∈ (1/64,1/2)

0, otherwise;

(75)

The choice above encompasses changes in amplitude and period through time, akin to those

of interest to the circadian biologist. Figure 18 provides a visualisation of the wavelet spectra

above (top row) and an example of a signal realisation from each of the two groups (bottom

row).
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Figure 18: Case 1. Top left: Group 1 wavelet spectrum; Top right: Group 2 wavelet spectrum;
Bottom left: Group 1 realisation and Bottom right: Group 2 realisation.

Case 2: Gradual period change. For our second study, we assume each time series is a reali-

sation from one of 3 possible groups, each with different spectral characteristics. In particular,

each group represents a time series that gradually changes period from 24 to: 25 (Group 1), 26

(Group 2) and 27 (Group 3) over (approximately) two days, before continuing with the relevant

period for a further two days. The purpose of this simulation study is to replicate a typical cir-

cadian experiment with changes that could not be captured by standard analyses that assume

stationarity and report an average period value. Therefore, we will take T = 256 which is equiv-

alent to a free-running period of 4 days with equally spaced observations every 22.5 minutes.

Figure 19 shows the wavelet spectra which represent the gradually changing periods that de-

fine each of the 3 groups above. Notice that the increased period is shown by the movement

up through the resolution levels and the gradual increase in period of the wavelet coefficients.

To determine which changes can be discriminated by the methods, we perform two studies

within this setting (i) Case 2A: simulations from Group 1 and Group 2, and (ii) Case 2B: simula-

tions from Group 1 and Group 3.

Case 3: Different rates of change. For our next study, let us assume each time series is a reali-

sation from one of 3 possible groups, each with different spectral characteristics. In particular,

each group represents a time series that gradually changes period from 24 to period 27 over 2

days (Group 1), 3 days (Group 2), 5 days (Group 3) and then continues with period 27 for the

remainder of the experiment. The purpose of this simulation study is to replicate a circadian

experiment with changes that could not be captured by standard analyses that assume station-

arity and report an average period value. Therefore, we also take T = 256 which is equivalent to

a free-running period of 4 days with equally spaced observations every 22.5 minutes. Figure 20

shows the wavelet spectra which represent the characteristics that define each of the 3 groups

above. To determine which changes can be discriminated by the methods, we perform three

studies within this setting: (i) Case 3A: simulations from Group 1 and Group 2, (ii) Case 3B:

simulations from Group 1 and Group 3, and (iii) Case 3C: simulations from Group 2 and Group
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Figure 19: Case 2. Left: Group 1 wavelet spectrum (gradual period change from 24 to 25 hours);
Centre: Group 2 wavelet spectrum (gradual period change from 24 to 26 hours); Right: Group
3 wavelet spectrum (gradual period change from 24 to 27 hours).

3.

Figure 20: Case 3. Left: Group 1 wavelet spectrum (2-day transition); Centre: Group 2 wavelet
spectrum (3-day transition); Right: Group 3 wavelet spectrum (5-day transition).

Case 4: Nonstationary AR process. The signals in cases 1, 2, and 3 are generated from a

defined group spectrum, satisfying the underlying LSW modelling assumptions of our pro-

posed methodology. The purpose of this study is to asses the performance of our tests when

this assumption is not met. Therefore, we simulate from an important class of nonstationary

processes– AR processes with time-varying coefficients. We propose a simulation study in a

setting as described in Fryzlewicz and Ombao (2009) Section 4.1 Case 1 (AR processes with

abruptly changing parameters). The ri -th time series from group i = 1,2, denoted X (i ),ri
n,t is gen-

erated from the process defined by:

X (i ),ri
t =φ(i )

1 (t )X (i ),ri
t−1 +φ(i )

2 (t )X (i ),ri
t−2 +ε(i ),ri

t , (76)
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Time-varying parameters Time Index Group i = 1 Group i = 2

φ(i )
1 (t ) t = 1, . . . ,53 0.8 0.8

t = 54, . . . ,128 -0.9 0.6
t = 129, . . . ,256 0.8 0.8

φ(i )
2 (t ) t = 1, . . . ,256 -0.81 -0.81

Table 3: Case 4. The abruptly changing parameters of two nonstationary autoregressive pro-
cesses.

Figure 21: Case 4. Nonstationary autoregressive processes. Top left: Estimated wavelet spec-
trum of Group 1; Top right: Estimated wavelet spectrum of Group 2; Bottom left: Group 1
realisation; Bottom right: Group 2 realisation.

where the innovations ε(i ),ri
t are independent and identically distributed (iid) Gaussian with

zero mean and unit variance. In this study, the squared difference between the group spectra

is relatively large and the abruptly changing parameters for the two groups are shown in Table

3. Representative time series plots from each group and the estimated spectra are shown in

Figure 21.

2.5 Results

For each of our simulation studies outlined above, we investigate the impact of the wavelet

information choice (e.g. wavelet coefficients versus model-based spectral estimate), distance

measure choice and methods to determine the number of principal components to retain. We

report our findings next, with detailed results for Cases 1 and 4 presented in Appendix 2.10.

Distance measure choice. To examine the effect of the choice of distance measure on our pro-

posed clustering method, we performed the simulation studies as outlined above using all four

distance measures defined in Section 2.3.4.1. We found that our method is fairly robust to the

choice of distance measure, although the squared and weighted squared quadratic distances

(SQ, respectively WSQ), appear to give superior results to the distance choices in Antoniadis

et al. (2013) and Rouyer et al. (2008).
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Dimension choice. We also examined the different methods outlined in Section 2.3.4.2 to se-

lect the number of principal components to retain for our LSW-PCA clustering method. We

thus compared determining the number of principal components to retain by examining the

screeplot with the situation where we retain the minimal number of components that cor-

respond to 90% of the total covariance. Once again we found that the LSW-PCA clustering

method is robust to the way in which we choose the number of principal components to re-

tain. Based on these results, we suggest using the LSW-PCA clustering method with the squared

quadratic distance (see equation (68)), and retaining principal components by examining the

screeplot. However, note that our algorithm is robust to an automatic choice based on a set

percentage of the total covariance.

Furthermore, recall in Section 2.3.4.2 we outlined that in certain practical situations (such

as our motivating example), retaining two principal components could aid visualisation and

hence interpretation of the results of our clustering algorithm. Therefore, we also compared

the above methods with this situation. We found that, in these settings, our proposed method-

ology is also fairly robust to this choice. For example, in Case 4 (AR processes), we found that

this method had a correct clustering rate of 99% compared with 98% for the total covariance

explained method (detailed results can be found in Table 9). However, this is potentially due to

the other methods also choosing similar numbers of components (typically less than 5). There-

fore, in certain practical situations, to aid ease of interpretation, we would permit the choice

of retaining two components, if this was justifiable using the screeplot or total covariance ex-

plained methods.

Wavelet information choice. In Section 2.3.2 we noted that other wavelet-based clustering ap-

proaches in the literature, while non-model based techniques (unlike our proposed LSW-PCA),

extract the information by means of wavelet coefficients (Antoniadis et al., 2013) or squared

wavelet coefficients (Rouyer et al., 2008). Therefore, to justify our decision to formulate our

proposed methodology using within the LSW framework, we performed two simulation stud-

ies (using the Case 1 and Case 4 settings). This allows us to compare utilising the LSW method-

ology over standard wavelet–based approaches in a range of different scenarios, both when

the LSW modelling assumption is correct (Case 1) and when the data consists of nonstationary

AR processes (Case 4). Therefore, to investigate the impact of wavelet information choice, we

performed each simulation study with the following input data: original signals (thus extract-

ing time-dependent information only), wavelet coefficients (time-scale information), squared

wavelet coefficients (second-order time scale information) and finally the LSW corrected wavelet

periodogram (to consistently estimate the spectrum under the LSW modelling framework, but

without the FPCA stage). The results can be found in Table 10 in Appendix 2.10.

For Case 1, we found that clustering based on the raw data and the raw wavelet transform

gave poor results (54% correctly clustered compared to 63% for squared wavelet coefficients

and 69% for the corrected periodogram) which supports the assertion that clustering based on

the second-moment information is preferable. Also note that using the FPCA approach fur-

ther improves the results, from 69% correctly clustered to 76% (see Table 4). Similar results

are also obtained for the Case 4 setting (nonstationary AR processes), see Table 10 in Appendix

2.10. These results demonstrate the advantages of utilising the LSW methodology over standard

wavelet–based approaches in a range of different scenarios, both when the LSW modelling as-
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sumption is correct (Case 1) and when the data consists of nonstationary AR processes (Case 4).

Performance comparison. Finally, we compare the LSW-PCA method with the competitor

methods proposed by Rouyer et al. (2008) and Antoniadis et al. (2013) (outlined in Section

2.3.2). Both of these benchmark methods do well in practice and represent the state-of-the-

art among procedures for clustering nonstationary time series. The results are summarised

in Table 4. These simulation studies provide empirical evidence that our proposed LSW-PCA

method works very well and outperforms its competitors for clustering nonstationary time se-

ries. Again we see that (for this particular application) methods based on the second-order in-

formation (our LSW-PCA method and the Rouyer et al. (2008) method) perform better than the

method based on the wavelet transform (Antoniadis et al., 2013). Moreover, our method, which

utilises an LSW model to obtain an unbiased, consistent estimator of the underlying spectral

information, performs considerably better still than the method which uses the raw wavelet

periodogram. These results also show that our proposed method, which performs an FPCA on

the estimated spectral coefficients of the entire dataset, outperforms the pairwise methods of

Rouyer et al. (2008) and Antoniadis et al. (2013). However, note that in Cases 2A, 3A and 3C, the

LSW-PCA method also has difficulty discriminating between the defined groups. These results

may be due to the resolution of the data. Therefore, if the analyst predicted that a treatment

effect would be characterised by this behaviour, we would recommend increasing the length of

the experiment and taking observations at shorter intervals which would improve the resolu-

tion of all methods.

Sim. Study Rouyer et al. (2008) Antoniadis et al. (2013)
LSW-PCA
Method

Case 1 66% 61% 76%

Case 2A 56% 54% 65%
Case 2B 58% 55% 76%

Case 3A 54% 54% 61%
Case 3B 55% 55% 75%
Case 3C 55% 54% 63%

Case 4 54% 53% 99%

Table 4: Comparison of the proposed LSW-PCA clustering method with the methods proposed
by Rouyer et al. (2008) and Antoniadis et al. (2013) for the simulation studies. Percentages show
correct clustering rates.

2.6 Real Data Analysis

2.6.1 Previously Published Circadian Data

In this section, we apply our method to an already published circadian dataset, which tested

the effects of copper on plants in a method similar to our cerium dataset. Our aim is to demon-

strate the additional insights provided by our proposed method. The dataset from Perea-García

et al. (2016a,b) examined circadian rhythms in high concentrations of copper as well as cop-

per deficiency. This previously published circadian data will henceforth be referred to as the

copper dataset.

The copper dataset was also obtained using a firefly luciferase reporter system, as described
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Figure 22: Luminescence evolution over time for plants subjected to a control and 2 different
copper regimes. Time is measured in hours relative to zeitgeber time (time of last external tem-
poral cue: the dawn signal of lights-on). Centre: Each plant signal from the ‘Control’ group
(in grey) along with the group average (dashed black). Other panels: Each realisation from the
groups (in grey) along with the group average (in blue) and the control group average (dashed
black). Left: ‘Deficiency’ Group (1/2 MS). Right: ‘Excess’ group (10 µM CuSO4). (Each time
series has been normalised to have mean zero.) The grey and white bars indicate the subjective
night and day, respectively.

in Appendix 2.9. However, this experiment used a different gene of interest, GIGANTEA (GI).

For a detailed description of these experimental methods see Appendix 2.11 and Perea-García

et al. (2016a,b). Briefly, plants were grown under different copper regimes: ‘Deficiency’ (no

CuSO4), ‘Sufficiency’ or ‘Control’ (1 µM CuSO4), and ‘Excess’ (10 µM CuSO4). The copper

dataset consists of a total of 74 plant signals (time series) recorded at 151 time points, with

the ‘Deficiency’ group containing 19 plants; the ‘Control’ or ‘Sufficiency’ group, 26 plants and

the ‘Excess’ group, 29 plants. Perea-García et al. (2016a) conducted an analysis in BRASS (see

Section 2.2.2) and concluded that the period did not seem to be affected by copper deficiency

or excess. In particular, the average period estimates for each group were reported not statisti-

cally significantly different. Therefore, it was concluded that changes in available copper were

not readily detected by BRASS, even though qualitative differences were easily noted. These

findings provide supportive evidence that more statistically advanced approaches are needed

to analyse these types of data.

We analysed the circadian copper data using the proposed LSW-PCA clustering method

(outlined in Algorithm 1) to establish and characterise the effect copper has on GI within the

Arabidopsis circadian clock. As the LSW model is underpinned by wavelets and requires the

data to be of dyadic length
(
T = 2J

)
, in our analysis, we chose a segment of length T = 128 out

of the copper dataset. This truncation was decided upon after consultation with the experi-

mental scientists, who confirmed that the selected segments contained the times during which

the plant transfered from entrained cycles into ‘free-running conditions’ (constant light). Fig-

ure 22 shows each individual luminescence time series from each treatment group (in grey)

along with the group average (in bold) for our truncated demeaned dataset. The average of the

‘Control’ group is also shown in (dashed) black in each plot for comparison. For each plant
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Number of plants Deficiency Control Excess Total

Cluster 1 11 14 13 38
Cluster 2 8 12 16 36

Total 19 26 29 74

Table 5: Results of clustering the copper dataset into two clusters using the proposed LSW-PCA
method. The modal cluster for each copper regime is highlighted in bold.

we estimated the wavelet spectrum by means of the corrected wavelet periodogram estimate

(with the same setting as described in the simulation study). After examining the screeplot, and

for ease of interpretation, we retained two principal components to use for clustering. Using

a dissimilarity matrix obtained by computing the squared quadratic distance between the first

two scores of each time series, the proposed LSW-PCA clustering method yielded the results

detailed in Table 5.

In determining the optimal number of clusters, we used the ‘elbow method’ and then vali-

dated this result via the ‘silhouette method’ (implemented in the fpc R package), as outlined

in Section 2.3.4.3. Both approaches indicated that we should cluster the data into two groups.

This result was also supported by consultations with experimental scientists, since clustering

the data into two groups could answer the question, ‘Is it the local concentration of copper, or

simply the presence or absence of copper, which dictates plant–level response?’ Such results

would be of biological interest, as copper is an important environmental pollutant (Oakenfull

et al., 2018) with guidelines governing its acceptable concentrations in soils (Environmental

Protection Act, 1990). (This will be explored in more detail in Chapter 4.)

Discussion of findings. Both approaches (outlined in Section 2.3.4.3) indicated that we should

cluster the data into two groups. This initial result is of biological interest, since two clus-

ters suggests the presence of two distinct groups within this dataset, each with different time-

frequency behaviour. This is in contrast to the results in Perea-García et al. (2016a), which

found no detectable difference in period (even though qualitative differences were easily noted).

On examining Table 5, we can see that the LSW-PCA clustering method has clustered the

behaviour of the data into the following two groups: Cluster 1 identifies similar behaviour of

plants in the ‘Control’ and copper ‘Deficiency’ groups, and Cluster 2 is the modal cluster of the

copper ‘Excess’ group. These results are biologically insightful and in agreement with Figure 22

which provides visual evidence that the plants in the copper ‘Excess’ group seemed to display

distinct behaviour from the other groups.

However, on examining Figure 22, note the presence of two distinct types of behaviour

within each treatment group. This is particularly noticeable in the ‘Excess’ group (where the

time series appear to peak at around 36 hours or at around 40 hours). Figure 23 shows the final

cluster each individual time series was assigned to: the individual signals are plotted in red for

Cluster 1 and blue for Cluster 2, for each treatment group. Figure 23 highlights individual-level

variability in plant response to stimuli, despite their sharing identical genetic characteristics

(Doyle et al., 2002)- although all plants in each treatment group share identical genetic char-

acteristics and have been treated in identical conditions, they respond in two different ways.

Note that the treatment group averages (in black) lie between the two (within treatment group)

cluster averages. This is particularly noticeable in the ‘Deficiency’ group. Therefore, the pres-
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Figure 23: Results of clustering the copper dataset into two clusters using the proposed LSW-
PCA method. For each treatment group the individual signals are plotted in: red for Cluster 1
and blue for Cluster 2. The average of each treatment group is shown in black. Within each
treatment group, the Cluster 1 average is shown in bold red and the Cluster 2 average in bold
blue.

ence of both types of behaviour in each of the original treatment groups has resulted in similar

average behaviour (which could explain the misleading results of the original investigation in

Perea-García et al. (2016a)). On examining Table 5 and Figure 23, we find that the Cluster 2

‘Excess’ behaviour can also be seen in some plants in the other two groups, particularly in the

‘Control’ group. The presence of ‘Control’ and ‘Deficiency’ treated plants in the cluster associ-

ated mostly with ‘Excess’ levels of copper may be due to the individual plants in some instances

showing a general stress response, particularly those individuals from the ‘Deficiency’ group in

Cluster 2. Alternatively, this may be due to stress induced by the experimental method itself.

Thus, although both types of behaviour are present in each treatment group, we can conclude

that increased levels of copper increase the likelihood of a Cluster 2-type response.

Our proposed method also allows us to characterise the behaviour associated with each

cluster. The signals within each cluster are shown (in grey) along with the cluster average (in

bold) in Figure 24. The cluster estimated average spectra appear in Figure 25.

Note in Figure 24 that Cluster 1 is characterised by a gradual increase in period throughout

the experiment and gradual amplitude dampening with time. The amplitude dampening can

also clearly be seen in the decreasing coefficients in resolution levels 2–4 (and particularly in

level 2) in the average spectrum of Cluster 1 in Figure 25. The gradual increase in period can be

seen as the activity in the spectrum begins in resolution level 4 and moves into levels 3 and 2

with time.

Cluster 2 is characterised by low frequency behaviour throughout the experiment (a longer

period) and marked amplitude dampening with time, resulting in a rhythmicity loss. Indeed,

this behaviour is also identified by the average spectrum in Figure 25. The increased period

is reflected in the large coefficients at coarsest levels and the increased period of the wavelet

coefficients in resolution levels 2 and 3. The dampening is apparent as the magnitude of the

spectral coefficients decreases as time progresses.

Furthermore, note the nonstationary behaviour that characterises both clusters (changing
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Figure 24: Results of clustering the copper dataset into two clusters using the proposed LSW-
PCA method. The individual signals (grey) along with the cluster average in: red for Cluster 1
and (dashed) blue for Cluster 2.

Figure 25: Cluster average estimated spectra on the copper dataset using the proposed LSW-
PCA method.
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Number of plants Hoagland’s 100 µM 150 µM 200 µM Total

Cluster 1 13 2 3 0 18
Cluster 2 6 14 0 0 20
Cluster 3 5 8 21 24 58

Total 24 24 24 24 96

Table 6: Results of clustering the (normalised, truncated) cerium dataset into three groups us-
ing the proposed LSW-PCA method. The modal cluster for each concentration is highlighted in
bold.

period and amplitude). The presence of these nonstationary characteristics supports our asser-

tion that the existing methods (which assume stationarity) are inappropriate for such datasets

and cannot capture this behaviour. In conclusion, our LSW-PCA clustering method has de-

tected and characterised the interesting effects excess levels of copper have on the circadian

clock, that were not detectable in the original analysis of the copper dataset (Perea-García et al.,

2016a).

2.6.2 Novel Circadian Plant Data

We now return to the circadian data that motivated this work and apply our proposed LSW-

PCA clustering method to analyse the novel cerium data. As the LSW model is underpinned

by wavelets and requires the data to be of dyadic length (T = 2J ), in our analysis we chose a

segment of length T = 128 out of the original dataset. This truncation was decided upon after

consultation with the experimental scientists, as in Section 2.6.1. For each plant we estimated

the wavelet spectrum by means of the corrected wavelet periodogram estimate (with the same

setting as described in the simulation study in Section 2.4). For ease of interpretation we re-

tained two principal components to cluster the data (see Section 2.3.4.2). This was justified

by examining the screeplot (see Figure 32 in Appendix 2.8). The proposed LSW-PCA clustering

method yielded the results detailed in Table 6.

The methods outlined in Section 2.3.4.3 were used to determine the optimal number of

clusters. All methods indicated that we should cluster the data into three groups. This was

supported by experimental scientists who confirmed that it would be useful to cluster the data

into three groups: ‘No Change’ and two distinct departures from this group. In particular, we

hoped to differentiate between and characterise the effects of lower and higher concentrations

of cerium. This is because recent research has shown that certain compounds can produce

very different effects on plant growth at low and high doses (Yang et al., 2016). Furthermore,

this phenomenon seems to be present in our circadian dataset. On examining Figure 17, it ap-

pears that plants subjected to higher concentrations of cerium (150µM and 200µM) seem to

exhibit similar behaviour, while the control group and concentration 100µM seem to display

average behaviour which is distinct from each other and from the higher concentrations.

Discussion of findings. On examining Table 6, we can see that this method has effectively

clustered the behaviour of the data into the following three groups:

1. Cluster 1: contains mostly plants in the Control dataset (Hoagland’s), and very few plants

subjected to lower-medium concentrations of ammonium cerium nitrate (100µM and

150µM)– conceptualised as essentially ‘Control’;
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2. Cluster 2: contains mostly plants with lower concentration of ammonium cerium nitrate

(100µM) and a few plants from the Control dataset– conceptualised as ‘Low concentra-

tion’;

3. Cluster 3: identifies similar behaviour to plants mostly exposed to medium-high concen-

trations (150µM, 200µM ), but interestingly also contains a few plants from the Control

and 100µM concentration.

These results are in agreement with Figure 17 (which we recall provided visual evidence

that the plants subjected to higher concentrations of cerium exhibit similar behaviour, while

the control group and concentration 100µM seem to display distinct behaviour). Therefore,

this analysis has enabled us to achieve our first goal: to differentiate between the effects of

lower and higher concentrations of cerium. Of interest to circadian biologists, however, is the

presence of control and low concentration treated plants in the group associated mostly with

higher concentrations. This highlights individual-level variability in plant response to stimuli,

despite their sharing identical genetic characteristics (Doyle et al., 2002).

Our proposed method also allows us to characterise these groups, both in terms of first

and second-order plant behaviour. The signals within each clustered group are shown (in grey)

along with the cluster average (in bold) in Figure 26, while the cluster estimated average spectra

appear in Figure 27.

On examining Figure 26, notice the different behaviour of Cluster 3 from the other clusters–

this is characterised by high frequency behaviour throughout the experiment and a marked

amplitude dampening with time, resulting in a rhythmicity loss. Indeed, this behaviour is also

identified by the average spectrum in Figure 27. The high frequency behaviour is reflected in

the large coefficients in resolution level 6. The dampening is apparent as the magnitude of the

spectral coefficients decreases as time progresses (particularly in resolution level 2).

In contrast, Clusters 1 and 2 (approximately corresponding to the control and low concen-

tration groups respectively) display more similar, rhythmic behaviour. On examining Figure

26, the rhythmic periods of the cluster averages seem approximately equal. However, there are

also clear differences between the two groups. Firstly, there is a difference in the amplitudes

of the two cluster averages. Cluster 1 has a larger peak at approximately t = 36 and an even

larger peak at t = 120. This can be seen in the large coefficients around these time points in

resolution levels 1-4 in the average spectrum of Cluster 1. Alternatively, Cluster 2 seems to have

a very large peak at t = 36 followed by a distinct reduction in the amplitude of the other peaks.

This can also be seen in the large coefficients in resolution levels 2-4 in the average spectrum

of Cluster 2 in Figure 27.

The spectral content extracted in the first two principal components can be found in Figure

28. The projection of the original plant signals onto the principal component plane appears in

Figure 29, by cluster and group membership. These indicate that the first principal component

represents the departure from the control group after exposure to ammonium cerium nitrate,

with larger values indicating a distinct change. The second principal component appears to

reflect the spectral behaviour of the 100µM group, in particular the larger amplitude at around

t = 36. Finally, note that Figure 29 shows that Cluster 1 has the biggest spread, while Cluster 3

is the most tightly packed. This supports biological expectations that plants behave in a similar

manner when ‘under stress’ (Hanano et al., 2006).
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Figure 26: The results of clustering the cerium dataset into three groups using the proposed
LSW-PCA method. The individual signals (grey) along with the cluster average in: (dashed)
black for Cluster 1; blue for Cluster 2 and red for Cluster 3. The average of Cluster 1 (conceptu-
alised as essentially ‘Control’) is shown (in dashed black) in all plots for reference.

Figure 27: Cluster average estimated spectra on the cerium dataset using the proposed LSW-
PCA method. Cluster 1 approximately corresponds to the ‘Control’ group; Cluster 2 depicts
‘Low concentration’ behaviour (100 µM) and Cluster 3 the ‘Higher concentration’ (150 µM and
200 µM).
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Figure 28: First two principal components obtained using the proposed LSW-PCA method on
the cerium dataset.

Figure 29: The cerium dataset projected onto the first two principal components obtained from
the LSW-PCA clustering method. The colours represent the clusters: black for Cluster 1, blue
for Cluster 2 and red for Cluster 3. The symbols represent the plant treatments.
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2.7 Conclusions and Further Work

In this chapter we have developed a new procedure for clustering inherently nonstationary

rhythmic data by modelling them as locally stationary wavelet processes and exploiting their

local time-scale spectral properties by means of a functional principal component analysis.

Our method combines the advantages of a wavelet analysis with the benefits of rigorous stochas-

tic nonstationary time series modelling and has desirable properties, such as low sensitivity to

the choice of distance measure and number of principal components to retain. These charac-

teristics show the method’s suitability in organising and understanding multiple nonstationary

time series, such as the gene expression levels in our novel circadian dataset. When com-

pared to competitor (non-model based) methods, we found that our methodology brought

clear gains for simulated data (Table 4). Furthermore, when compared to existing methods

(which assume stationarity), the LSW-PCA clustering method also displayed advantages for

real data (Table 6).

The proposed model-based clusterings can be used to answer questions such as, ‘What

other concentrations of this compound produce similar effects in plants?’ Our approach can

also produce visualisations helpful in answering questions such as, ‘What characterises the dif-

ferent types of reactions present in this dataset?’ Such answers have important implications for

understanding the mechanism of the plant’s circadian clock and also environmental implica-

tions associated with soil pollution.

Also note that our proposed algorithm is not restricted to the datasets analysed in this chap-

ter; it can be applied to other circadian datasets, as well as to data originating in other fields.

The flexibility and computational efficiency of our approach allows more global analyses of

plant behaviour to be undertaken which would not be possible within the stationary statisti-

cal constraints underlying traditional methods of period estimation. For example, the roles of a

wide range of soil pollutants can be assessed within a single statistical framework. By extending

this statistical methodology and empirical protocol to include exposure to other compounds,

one could address the question, ‘Which other elements in the periodic table, and at which con-

centrations, produce similar kinds of reactions in plants?’ We can also extend the dataset to

include plants with deficiencies of elements other than copper. These studies would also en-

able deeper understanding of the circadian clock mechanisms and its adaptations to change

(Perea-García et al., 2016a).

The wavelet system gives a representation for nonstationary time series under which we es-

timate the wavelet spectrum and subsequently cluster the data. Ideally, we would envisage the

use of the wavelet that is best suited to modelling and discriminating between the particular

dataset. In simulations we found our method to be fairly robust to the wavelet choice. How-

ever, we found that Haar wavelets seemed to achieve superior results to other wavelets. This

result supports the intuition that, as the scope of our work is to devise a clustering procedure

that can locally identify dissimilarities (and hence discriminate) between pairs of spectra, the

short support overlaps of Haar wavelets counterbalance their otherwise reduced capacity of

representing smooth signals (such as certain circadian time series). However, an area of fur-

ther work would be to derive a procedure for determining which wavelet system to adopt for

any given dataset.

We are aware of the propensity of the recording equipment (see Appendix 2.9) to break

down, resulting in gaps in the data. Such failures in hardware are an objective reality of empiri-
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cal work in the life sciences, and another area of future work is to adapt current methods under

the presence of missingness, or ‘gappy’ data, often arising in experimental data. This estimate

could then be used as a classification signature or within our clustering procedure.
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2.8 Appendix: Supplementary Figures

In this section we offer visual evidence to support claims in Sections 2.1, 2.2 and 2.6. All figures

(30, 31 and 32) are referred to in context as part of the main body of the chapter.

Figure 30: Summary of the BRASS analysis of the circadian plant signals in response to differ-
ing quantities of ammonium cerium nitrate, represented by plots of period estimates plotted
against the respective relative amplitude errors (RAE). The colours and symbols represent the
plant treatment groups: blue squares for the Control Group; green circles for Group 1 (100µM);
red triangles for Group 2 (150µM) and purple stars for Group 3 (200µM).
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Figure 31: Plots of the estimated locations of the nonstationarities in the circadian plant signals
in response to differing quantities of ammonium cerium nitrate, using the wavelet spectrum
test (Nason, 2013), implemented in the locits package in R which is available on CRAN. A
time series for each of the four groups is shown as an example– Group 1, a time series from the
100µM group; Group 2, a time series from the 150µM group; Group 3, a time series from the
200µM group.
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Figure 32: The screeplot used to inform the selection of the number of principal components
to retain for the cerium dataset. Note 2 or 3 components could potentially be used, but for ease
of interpretation (see Section 2.3.4.2), 2 were selected for clustering.
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2.9 Appendix: Experimental Details: Novel Circadian Plant Data

In this section we outline the experimental details that led to the novel circadian plant rhythms

under analysis (Section 2.2.1).

To obtain this dataset, the Davis Lab (Biology, University of York) used a firefly luciferase

reporter system. This method uses a fusion of the gene of interest to luciferase. In this ex-

periment, the gene of interest was ‘cold and circadian regulated and RNA binding 2’, known

as CCR2 (further details of CCR2:LUC can be found in Doyle et al. (2002)). When CCR2 is ex-

pressed, luciferase is produced, causing the plant to produce quantifiable levels of light. This

bioluminescence was measured using a TopCount NXT scintillation counter (Perkin Elmer),

allowing relative gene expression of CCR2 to be quantified in vivo (Plautz et al., 1997; South-

ern and Millar, 2005; Perea-García et al., 2016a). These experiments were carried out using

the following methods: Arabidopsis thaliana seeds (Ws–CCR2:LUC) were surface sterilised and

plated onto Hoagland’s media containing 1% sucrose, 1.5% phyto agar (Hoagland et al., 1950).

The seeds were stratified for 2 days at 4◦C and transferred to growth chambers to entrain un-

der 12:12 light/dark cycles at a constant temperature of 20◦C. These conditions were chosen

to simulate the ‘normal’ light/dark cycles of a day. Six-day-old seedlings were transferred to 96

well microtiter plates containing Hoagland’s 1% sucrose, 1.5% agar (Southern and Millar, 2005)

also containing supplemental (NH4)2Ce(NO3)6 (ammonium cerium nitrate) at a concentration

of 100µM, 150µM or 200µM. The plants were then transferred to the TOPCount machine. Mea-

surements were taken at intervals of approximately 45 minutes. Measurement began after the

transition to 12 hours of darkness (known as subjective dusk) on the seventh day of the plants’

life. Therefore, the plant experiences one ‘normal’ day in the TOPCount machine (known as

entrainment). After this, the plant was exposed to constant light (known as an LL free-run)

for approximately four days. In Figure 1, the shaded bars below the graph represent the light

conditions the plants would experience during the ‘normal’ day. The plants are under constant

light throughout the experiment, however, the grey bars indicate that they would be in darkness

during a ‘normal’ 12 hour light/12 hour dark cycle.

Our dataset therefore consists of a total 96 plant signals (time series) recorded at 128 time

points, with each of the control and groups 1–3 (each corresponding to a different concen-

tration of ammonium cerium nitrate) containing 24 plants. In particular, the control group is

grown in Hoagland’s media (Hoagland et al., 1950) which contains essential nutrients required

for plant growth and is not exposed to any additional levels of ammonium cerium nitrate. To

examine the effects of cerium on the circadian clock, the other three groups, while also grown

in the Hoagland’s media, were additionally exposed to varying additional concentrations of

ammonium cerium nitrate– 100µM for Group 1, 150µM for Group 2 and 200µM for Group 3.
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2.10 Appendix: Results of Simulation Study Cases 1 and 4

In this section we report the findings of the simulation study associated with Cases 1 and 4

in Section 2.4.1. These consist of Tables 7, 8, 9 and 10, which further justify the distance and

dimension reduction choices adopted for our proposed method.

Distance Measure SQ WSQ DT D

Case 1 Correctly Clustered (%) 76% 70% 69% 65%
Case 4 Correctly Clustered (%) 99% 99% 84% 80%

Table 7: Distance measure (Section 2.3.4.1) comparison for the proposed LSW-PCA method for
Cases 1 and 4.

Dimension reduction method 90% of total covariance Screeplot

SQ distance 73% 76%
WSQ distance 69% 70%
DT distance 54% 69%

Table 8: Case 1: Comparison for selection of principal components for proposed LSW-PCA
clustering method. Percentages show correct clustering rates.

Dimension reduction method 90% of total covariance Screeplot Always retain 2 PCs

SQ distance 98% 99% 99%
WSQ distance 99% 99% 99%
DT distance 54% 84% 80%

Table 9: Case 4: Comparison for selection of principal components for proposed LSW-PCA
clustering method. Percentages show correct clustering rates.

Input Original Signals Wavelet Coefficients
Squared Wavelet

Coefficients
Corrected Wavelet

Periodogram

Case 1 54% 54% 63% 69%
Case 4 54% 54% 53% 87%

Table 10: Wavelet information comparison for the proposed LSW-PCA method for Cases 1 and
4. Percentages show correct clustering rates.
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2.11 Appendix: Experimental Details: Previously Published Circadian Data

In this section we outline the experimental details that led to the previously published copper

dataset (Section 2.6.1).

This dataset (Perea-García et al., 2016a,b) was also obtained using a firefly luciferase re-

porter system as described in Appendix 2.9. Experimental Details: Novel Circadian Plant Data.

However, this experiment uses a different gene of interest GIGANTEA (GI). Plants were grown

on plates as described in Andrés-Colás et al. (2010), incubated on MS (Murashige and Skoog)

medium (Murashige and Skoog, 1962) at half concentration (1/2 MS) [phytoagar 0.8% (w/v)

plus 1% sucrose (w/v) in 0.5% MES (w/v)]. WS GI:LUC seedlings were grown under different

copper regimes: ‘Deficiency’ (1/2 MS), ‘Sufficiency’ or ‘Control’ (1 µM CuSO4), and ‘Excess’ (10

µM CuSO4). 96 plants were grown in total, 32 under each copper regime. The plants were en-

trained for 7 days under 12:12 light-dark cycles at a constant temperature of 20◦C. The plants

were then exposed to constant light (LL free-run) for the remainder of the experiment. Biolumi-

nescence was then measured every hour using the same TopCount NXT system as in Appendix

2.9.

The dataset analysed in Perea-García et al. (2016a,b) consists of a total 74 plant signals (time

series) recorded at 151 time points. Plants with an average luminescence of 40 or below were

excluded prior to analysis as luminescence values below this are considered background noise.

Therefore, the ‘Deficiency’ group (1/2 MS) contains 19 plants; the ‘Control’ or ‘Sufficiency’

group (1 µM CuSO4) contains 26 plants and the ‘Excess’ group (10 µM CuSO4) contains 29

plants.
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3 Wavelet Spectral Testing: Application to Nonstationary Circadian

Rhythms

In this chapter we develop and test novel hypothesis testing procedures in the (wavelet) spec-

tral domain, embedding replicate information when available. The proposed methodology is

the result of joint work with M. I. Knight, J. W. Pitchford and S. J. Davis. The novel circadian

datasets analysed in this thesis were obtained by R. Oakenfull and J. Munns from the Davis and

Chawla Labs (Biology, University of York), respectively. Please see page 21 for further details of

author contributions. This work has been submitted for publication.

3.1 Introduction and Motivation

The ‘circadian clock’ enhances survival by directing anticipatory changes in physiology syn-

chronised with environmental fluctuations. When an organism is deprived of external time

cues, its circadian rhythms typically persist qualitatively but may change in detail; the study of

these changes can reveal the biochemical reactions underpinning the circadian clock and, at a

larger scale, can provide valuable insight into the possible consequences of environmental and

ecological challenges (McClung, 2006; Bujdoso and Davis, 2013).

In many scientific applications, available data consist of signals with known group mem-

berships and scientists are interested in establishing whether these groups display statistically

different behaviour. Our work is motivated by a general problem: biologists need reliable sta-

tistical tests to identify whether a particular experimental treatment has caused a significant

change in the circadian rhythm. If the changes are limited to period and/or phase then exist-

ing Fourier-based theory may be adequate. However, when the changes to the circadian clock

are less straightforward, for example involving nonstationarity or changes at multiple scales

(Hargreaves et al., 2018), the application of these established methods may be conducive to

misleading conclusions.

3.1.1 Motivating Datasets

The potential value of our approach is illustrated by three complementary examples encom-

passing: the effect of various salt stresses on plants; the identification of mutations induc-

ing rapid rhythms and the response of nematode clocks to pharmacological treatment, as de-

scribed in the following sections. The biological experimental details for each dataset appear

in Appendix 3.7.

3.1.1.1 Lead Nitrate Dataset (Davis Lab, Biology, University of York)

This dataset (hereafter referred to as the ‘Lead dataset’) is from a broad investigation of whether

plant circadian clocks are affected by industrial and agricultural pollutants (Foley et al., 2005;

Senesil et al., 1998; Hargreaves et al., 2018; Nicholson et al., 2003). Specifically, this experiment

asks whether lead affects the Arabidopsis thaliana circadian clock and, if so, when and how?

Figure 33 displays the luminescence profiles for both untreated A. thaliana plants, as well as

for those exposed to lead nitrate.
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Figure 33: Lead dataset: Luminescence profiles over time for untreated A. thaliana plants
(Control) and those exposed to lead nitrate (Lead). Left: Individuals in the control group (in
grey) along with the group average (blue). Right: Individuals in the lead treatment group (in
grey) along with the treatment group average (red) and the control group average (blue). Each
time series has been standardised to have mean zero.

3.1.1.2 Ultradian Dataset (Millar Lab, Biology, University of Edinburgh)

In order to understand the clock mechanism, a common approach is to mutate a gene and

examine the resulting behaviour in response to a variety of stimuli. Figure 34 depicts the lu-

minescence profiles recording plant response to light, for both the control and genetically mu-

tated A. thaliana plants (Millar et al., 2015). Researchers are interested in establishing whether

a specific genetic mutation induced high-frequency behaviour (known as ‘ultradian rhythms’)

in the laboratory model plant A. thaliana.

3.1.1.3 Nematode Dataset (Chawla Lab, Biology, University of York)

The free-living nematode Caenorhabditis elegans is an animal widely used in neuroscience and

genetics, but its circadian clock is still poorly understood. To increase understanding of the ne-

matode clock, and potentially uncover rhythmicity not detected by conventional approaches,

researchers applied a pharmacological treatment to C. elegans, based on evidence that it causes

aberrant circadian rhythms in other established mammalian and insect circadian models (Kon

et al., 2015; Dusik et al., 2014). Figure 35 depicts the luminescence profiles for both untreated

and treated C. elegans and reveals apparently similar traces. In particular, the two groups seem

to display similar average behaviour, but with differing intensities. Therefore, a useful research

question is to ask whether these similar signals are the result of the two groups being under-

pinned by the same profile spectra, up to a scale-dependent additive constant.

3.1.1.4 Summary

On examining Figures 33 and 34, it is visually clear that changes in period and amplitude be-

tween the control and test groups occur in both datasets. Nevertheless, in each of our mo-

tivating examples, less easily quantified or subtle differences between these groups may also

exist.
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Figure 34: Ultradian dataset: Luminescence profiles over time for control and mutant A.
thaliana plants. Left: Individuals in the control group (in grey) along with the group average
(blue). Right: Individuals in the mutant group (in grey) along with the mutant group average
(red) and the control group average (blue). Each time series has been standardised to have
mean zero.

Figure 35: Nematode dataset: Luminescence profiles over time for untreated C. elegans (Con-
trol) and those subjected to a pharmacological treatment (Treatment). Left: Individuals in the
control group (in grey) along with the group average (blue). Right: Individuals in the treatment
group (in grey) along with the treatment group average (red) and the control group average
(blue). Each time series has been standardised to have mean zero.
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3.1.2 Aims and Structure of this Chapter

Period estimation is central to the analysis of circadian data, with the current standard achiev-

ing this using Fourier analysis (Zielinski et al., 2014; Costa et al., 2011) via software packages,

such as BRASS (Biological Rhythm Analysis Software System (Edwards et al., 2010)) or BioDare

(Moore et al., 2014). The practitioner estimates the period of the control and treatment groups

respectively, and then tests for statistically significant differences (see for example Perea-García

et al. (2016a), Costa et al. (2011)). Crucially, in all of our motivating examples, such established

Fourier-based tests found no significant difference between the groups (see Table 16 in Ap-

pendix 3.8), even though qualitative differences are easily noted (see Section 3.1.1.4).

One obvious limitation of this analysis is that the employed methodology does not typically

evaluate the crucial underpinning assumption of data stationarity. In the context examined

here, assuming stationarity can be inappropriate (Hargreaves et al., 2018; Leise et al., 2013), a

feature shared by many biological systems (Zielinski et al., 2014). For our motivating example

datasets, we investigated whether the individual time series are (second-order) stationary via

hypothesis testing. We employed two tests for stationarity– a Fourier-based test (the Priestley-

Subba Rao test (Priestley and Rao, 1969)) and a wavelet-based test (the wavelet–spectrum test

(Nason, 2013)). The results (Table 2 in Appendix 3.8) show that, for each of our motivating ex-

ample datasets, over 80% of the time series provided enough evidence to reject the null hypoth-

esis of stationarity. This result suggests that the application of the current methodology (which

assumes data stationarity) would be inappropriate for our motivating datasets and highlights

the urgent need for more statistically advanced approaches.

The primary contribution of this work is the development of novel wavelet-based hypothe-

sis tests that allow for circadian behaviour comparison while accounting for data nonstationar-

ity. A substantial body of circadian literature advocates the use of wavelet (Price et al., 2008; Ha-

rang et al., 2012; Leise et al., 2013) and in particular spectral representations (Hargreaves et al.,

2018) of circadian rhythms. This motivates our choice to formally compare circadian signals in

the wavelet spectral domain by using their time-scale signature patterns, thus accounting for

their proven nonstationary features.

This chapter is organised as follows. Section 3.2 reviews the theoretical wavelet-based

framework we adopt for modelling nonstationary data and the relevant literature on hypoth-

esis testing in the spectral domain. Our new hypothesis testing procedures are introduced in

Section 3.3. Section 3.4 provides a comprehensive performance assessment of our new meth-

ods via simulation. Section 3.5 demonstrates the additional insight our techniques provide for

the motivating circadian datasets and Section 3.6 concludes this work.

3.2 Overview: Nonstationary Processes and Hypothesis Testing in the Spectral Do-

main

3.2.1 Modelling Nonstationary Processes

In Section 1.4 we introduced a number of statistically rigorous approaches to modelling non-

stationary time series. Motivated by literature advocating wavelets as analysis tools for circa-

dian rhythms (Leise et al., 2013), we adopt the locally stationary wavelet (LSW) process model

of Nason et al. (2000) with previously demonstrated utility for circadian analysis (Hargreaves
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et al., 2018). Recall, an LSW process {X t ;T }T−1
t=0 , T = 2J ≥ 1 is represented as follows

X t ,T =
J∑

j=1

∑
k∈Z

w j ,k;Tψ j ,k (t )ξ j ,k , (77)

where {ξ j ,k } is a random orthonormal increment sequence, {ψ j ,k (t ) =ψ j ,k−t } j ,k is a set of dis-

crete non-decimated wavelets and {w j ,k;T } is a set of amplitudes, each of which at a scale j and

time k.

3.2.1.1 Practical Considerations

In this paper, we assume the innovations {ξ j ,k } to be normally distributed, resulting in mod-

elling the data {X t ,T } as a Gaussian LSW process. The normality assumption is typically em-

ployed for the (Fourier) circadian testing methodology (Perea-García et al., 2016a). This as-

sumption is also commonly made in time series analysis in general and in LSW modelling in

particular (e.g. Oh et al. (2003), Van Bellegem and von Sachs (2008) and Nason and Stevens

(2015)), with Nason (2013) arguing for its non-limiting character in this context. In Appendix

3.9 we show this assumption is tenable for our circadian datasets.

The properties of the random increment sequence {ξ j ,k } ensure that {X t ,T } is a zero-mean

process. In practice, for a process with non-zero mean, it is customary to re-centre it around

zero (Nason, 2010) and this is our approach here, as the quantity of our primary interest is the

process spectral signature.

As is typical for wavelet representations, the data is often required to be of dyadic length,

T = 2J . In many practical applications, this is not realistic and there are a number of ap-

proaches to address this situation (see e.g. Ogden (1997)). Our approach is to analyse a (dyadic

length) segment of the data, with the truncation decided upon careful consultation with the

experimental scientists in order to ensure the time-frame of interest is represented.

3.2.1.2 The Evolutionary Wavelet Spectrum

In Section 1.4.2, we formally defined the evolutionary wavelet spectrum (EWS) as

S j (z) := |W j (z)|2, (78)

at each scale j ∈ 1, J and rescaled time z = k/T ∈ (0,1). We also defined the raw wavelet peri-

odogram as

I j ,k;T := |d j ,k;T |2, (79)

where d j ,k;T = ∑T
t=0 X t ,Tψ j ,k (t ) are the empirical nondecimated wavelet coefficients. In the

remainder of this chapter we drop the explicit dependence on T for the wavelet coefficients

and the periodogram.

The raw wavelet periodogram is an asymptotically unbiased estimator of the quantityβ j (z)

introduced by Fryzlewicz and Nason (2006) and defined as

β j (z) :=
J∑

i=1
Ai , j Si (z) = (AS) j (z), (80)

where A = (Ai , j )J
i , j=1 = (

∑
τΨi (τ)Ψ j (τ))J

i , j=1 is the autocorrelation wavelet inner product ma-
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trix, with Ψ j (τ) = ∑
k ψ j ,k (0)ψ j ,k (τ) the autocorrelation wavelet (Nason et al., 2000). In other

words, the expectation of the raw wavelet periodogram (computed at rescaled time z) con-

verges pointwise to a linear combination of wavelet spectra at location z (Fryzlewicz and Na-

son, 2006). Recall (Section 1.4.2) that an asymptotically unbiased estimator of the EWS is the

empirical wavelet spectrum (or corrected periodogram), defined as

L(z) := A−1I(z), (81)

for all z ∈ (0,1), where I(z) := (I j ,[zT ])
J
j=1 is the raw wavelet periodogram vector.

The quantity β j (z) (equation (80)) is often easier to work with theoretically than the spec-

trum (see Nason (2013) and Sections 3.3.2 and 3.3.3). One immediate advantage of working

with β j (k/T ) as opposed to the spectrum S j (k/T ) is the direct access to the distribution of

its corresponding estimator I j ,k;T , the raw wavelet periodogram, as opposed to the distribu-

tion of the corrected periodogram L j ,k;T , needed to asymptotically estimate the spectrum. In

particular, the empirical wavelet spectrum is a collection of random variables that are not in-

dependent, nor is their (joint or marginal) distribution easy to determine.

As the individual raw periodogram ordinates within each scale are correlated, Fryzlewicz

and Nason (2006) model the raw wavelet periodogram as

I j ,k ∼β j (z)Z 2
j ,k ,

where z = k/T and Z 2
j ,k ∼ χ2

1, for j ∈ N, k = 0, . . . ,2J −1 = T −1. A way to ‘correct’ these unde-

sirable features is to employ a transform that brings the raw periodogram ordinates closer to

Gaussianity and decorrelates within each scale. In Section 3.3.2, we adopt the Haar-Fisz trans-

form (denoted F ), introduced (for spectral estimation) by Fryzlewicz and Nason (2006) and

apply it separately to each scale j = 1, . . . , J of the raw wavelet periodogram (see Appendix 3.10

for details), denoted H j ,k;T := F I j ,k;T . Proposition 6.1 in Fryzlewicz and Nason (2006) then

suggests a potential model

H j ,k ∼ N (B j (z),σ2
j ),

where B j (z) = Fβ j (z) with z = k/T and F Z 2
j ,k ∼ N (0,σ2

j ) and again dropping the explicit de-

pendence on T . This model, viewed as a nonparametric additive regression model, was also

employed by Nason and Stevens (2015) in the context of Bayesian spectral estimation, where

its viability was demonstrated.

3.2.2 Existing Spectral Domain Hypothesis Testing

Assuming that the available data consists of multiple nonstationary time series with known

group memberships, to the authors’ knowledge no hypothesis tests exist to determine whether

two groups are significantly different in terms of their associated (evolutionary) wavelet spec-

tra. Wavelet spectral comparison is closest framed as a (consistent) classification method by

Fryzlewicz and Ombao (2009), further improved by Krzemieniewska et al. (2014). Spectral

comparison, framed as testing for spectral constancy, also appears in connection with test-

ing for time series stationarity and white noise testing. In the Fourier domain, Priestley and

Rao (1969) determined (as a hypothesis test) whether the spectrum is time-varying and, hence,

whether the process is nonstationary. von Sachs and Neumann (2000) introduced the principle
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of assessing the constancy of the time-varying Fourier spectrum by examining its Haar wavelet

coefficients across time. In the wavelet domain, Nason (2013) developed a test for second-

order stationarity which examines the constancy of a wavelet spectrum by also examining its

Haar wavelet coefficients. A similar approach is adopted by Nason and Savchev (2014) in the

development of white noise tests.

The problem of testing that involves curves is often posed in time series literature as a func-

tional regression problem defined using a functional response and categorical predictors (func-

tional ANOVA; see the monograph of Ramsay and Silverman (2005) for its introduction and the

review of Morris (2015) for developments in the field). Functional regression problems are of-

ten treated by projection in the Fourier or wavelet domain, where the spectral time series rep-

resentations become subject to modelling. Shumway (1988) compares groups of curves (with

stationary stochastic errors) by testing whether the mean curves have the same Fourier spec-

trum at each given frequency. Fan and Lin (1998) developed this method by applying the adap-

tive Neyman test to the (Fourier or wavelet) transformed difference vector (the difference be-

tween the two group-average time series). Vidakovic (2001) introduces a wavelet-based func-

tional data analysis, with McKay et al. (2012) developing this as an approach for comparing

neurophysiological signals that are functions of time. This approach was also subsequently

adopted by Atkinson et al. (2017) to develop model validation using a test statistic based on

thresholded wavelet coefficients. Tavakoli and Panaretos (2016) compare pairs of stationary

functional time series by developing t-tests for the equality of their (Fourier) spectral density

operators. However, these approaches fail to account for potential nonstationarity in the data.

This is mitigated by Guo et al. (2003), who propose a smoothing-spline ANOVA on the logarithm

of the Fourier spectrum of a locally stationary process that is specifically designed to discrimi-

nate between models that contain a linear trend, modulation, time and frequency interaction

terms, thus yielding global model comparisons, rather than time- and frequency- specific ones.

The closest methodology for spectral comparison while allowing for a localised representation

comes from Martinez et al. (2013) who identify regional differences in (the Fourier spectro-

grams of) bat mating chirps. The statistical modelling of windowed Fourier spectrograms as

an image was first proposed by Holan et al. (2010) in a study that aimed to classify animal

communication signals. Martinez et al. (2013) apply the higher-dimension functional mixed

model of Morris et al. (2011) and use a Bayesian approach to fit a model that incorporates lo-

calised chirp Fourier spectrograms as the functional response and categorical regressors that

identify bat location (fixed-effects) and independent bat (random)-effects. The observed data

is modelled in a (projected) wavelet-domain with several distributional assumptions in place,

e.g. data Gaussianity, spike Gaussian-slab prior distributions for the wavelet coefficients. How-

ever, while their windowed Fourier spectrogram does offer a time-frequency representation of

the data, thus potentially capturing nonstationarity, it is sensitive to the choice of kernel and

crucially of window-width (Martinez et al., 2013). In the context of clustering circadian plant

rhythms, Hargreaves et al. (2018) demonstrated the superiority of a principled model-based

spectral estimator that, in the spirit of Holan et al. (2010), was also used as an image in subse-

quent modelling. Additionally, we note that our study aims to identify not only (i) time-scale

(frequency) group differences (conceptually a task close to Martinez et al. (2013)), but also (ii)

to detect global scale-level differences (while still allowing for a development that incorporates

potential nonstationarity) and (iii) to identify similar patterns within each scale, rather than

95



exact differences (the reader will find precise details in the next section).

3.3 Proposed Spectral Domain Hypothesis Tests

Aligned to our motivating examples, the key goals of our work are to develop novel hypothesis

tests, each capable of detecting one of three specific types of spectral differences between two

groups and to identify the scales and times (e.g. Lead and Nematode datasets– Sections 3.1.1.1

and 3.1.1.3) or scales only (e.g. Ultradian dataset– Section 3.1.1.2) at which these difference

arise, as appropriate.

Formally, we model the observed nonstationary circadian rhythms using the LSW frame-

work of Nason et al. (2000) (see Section 1.4.2 for details). Denote each individual profile by

{X (i ),ri
t ,T }T−1

t=0 with i = 1, 2 corresponding to one of two groups (e.g. control/ treatment) and po-

tential replicates ri = 1, . . . , Ni (i.e. Ni circadian traces in the i th group). Note that when Ni = 1

we drop the ri index for simplicity. Assume the signals in group i are underpinned by a com-

mon wavelet spectrum and denote this by S(i )
j (t/T ) for each group i = 1, 2 at scales j ∈ 1, J

(J = log2 T ) and rescaled times z = t/T ∈ (0,1).

3.3.1 Lead Dataset: Hypothesis Testing for Spectral Equality (‘WST’ and ‘FT’)

Put simply, our soil pollutant example focussed on detecting whether the two plant groups,

‘Control’ and ‘Lead’, display significant differences in the evolution of their spectral structures,

and if so, the particular scales and times at which such differences occur. Mathematically we

formalise our hypotheses as

H0 : S(1)
j (z) = S(2)

j (z), ∀ j , z (82)

versus the alternative HA : S(1)
j∗ (z∗) 6= S(2)

j∗ (z∗) for some scale j∗ and rescaled time z∗. In the time

domain, we visually note that differences in the circadian rhythms of the two groups appear

towards the end of the experiment (see Figure 33).

3.3.1.1 A Naive Wavelet Spectrum Test (‘WST’)

Since in reality we do not know the group spectrum S(i )
j (z), we replace it with a well-behaved

estimator, denoted Ŝ(i )
j (z). Assuming independent replicates are available for each group, we

use the group (i = 1, 2) averaged spectral estimators

Ŝ(i )
j (k/T ) = 1

Ni

Ni∑
ri=1

L(i ),ri

j (k/T ), (83)

where L(i ),ri

j (k/T ) is the empirical wavelet spectrum of the ri th series in group i at scale j and

time k. Assuming independence across the replicates and a Gaussian distribution for the spec-

tral estimates, because the LSW theory constructs asymptotically unbiased spectral estimators,

it follows that under the null hypothesis Ŝ(1)
j (k/T )−Ŝ(2)

j (k/T ) has an asymptotically normal dis-

tribution with mean zero. Hence, should our spectral estimators satisfy the classical assump-

tions for a t-test (which in our context amount to independence of the spectral estimates across

replicates and a Gaussian distribution), we propose a naive wavelet spectrum test (WST), cen-
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tred on a test statistic of the form

T j ,k =
Ŝ(1)

j (k/T )− Ŝ(2)
j (k/T )(

(σ̂(1)
j ,k )2/N1 + (σ̂(2)

j ,k )2/N2

)1/2
∼ td f under the null hypothesis, (84)

where (σ̂(i )
j ,k )2 is an estimate of the variance of Ŝ(i )

j (k/T ) for i = 1,2 across the Ni observations in

group i , obtained using the standard sum–of–squares sample variance formula (as in Krzemie-

niewska et al. (2014)). Under the null hypothesis of spectral equality, T j ,k (asymptotically) fol-

lows a t-distribution with the number of degrees of freedom (d f ) directly related to the vari-

ance estimation procedure we employ. Each test statistic is then compared with a critical value

derived from the t-distribution in the usual way.

When the variance of Ŝ(i )
j (k/T ) is unknown but common to both i = 1, 2 groups (denoted

(σ j ,k )2 := (σ(1)
j ,k )2 = (σ(2)

j ,k )2), it can be estimated using the pooled estimator:

σ̂2
j ,k =

(N1 −1)(σ̂(1)
j ,k )2 + (N2 −1)(σ̂(2)

j ,k )2

N1 +N2 −2
, (85)

replacing (σ̂(1)
j ,k )2 and (σ̂(2)

j ,k )2 in equation (84). The number of degrees of freedom in the t-

distribution of the test statistic is then d f = N1 +N2 −2.

If there is no reason to believe the group variances are equal, then use a t-distribution with

degrees of freedom

d f =
(
(σ̂(1)

j ,k )2/N1 + (σ̂(2)
j ,k )2/N2

)2

(
(σ̂(1)

j ,k )2/N1

)2

N1−1 +
(
(σ̂(2)

j ,k )2/N2

)2

N2−1

.

However, the test statistic does not exactly follow the t-distribution, since two standard devia-

tions are estimated in the statistic. Conservative critical values may also be obtained by using

the t-distribution with N degrees of freedom, where N represents the smaller of N1 and N2

(Moore, 2007).

Discussion. As we wish to test many hypotheses of the type H0 :β(1)
j (k/T ) =β(2)

j (k/T ) for several

values of j and k, we are in the field of multiple-hypothesis testing. For all tests we develop, we

use Bonferroni correction and, for a less conservative approach, the false discovery rate (FDR)

procedure introduced by Benjamini and Hochberg (1995). Our simulations in Section 3.4 show

that both these methods work well. However, of course the tests themselves are related to one

another, but just as in Nason (2013) we do not pursue this topic further in this work.

In practice, the spectral estimators in equation (83) may breach the Gaussianity testing

assumption, especially when only a low number of replicates are available. The assumption

of approximate normality for individual replicate spectral estimates, cautiously used in Fry-

zlewicz and Ombao (2009), will be strengthened by the presence of a higher collection of group

replicates (N1, N2) (see Section 3.4 for a discussion of WST’s features and caveats).

3.3.1.2 Raw Periodogram F-Test (‘FT’)

We now construct a testing procedure that is not reliant on the Gaussianity assumption whose

validity we challenged above. Formally, for each scale j ∈ N and rescaled time z ∈ (0,1), the

spectral equality S(1)
j (z) = S(2)

j (z) is equivalent to β(1)
j (z) =β(2)

j (z) as the autocorrelation wavelet
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inner product matrix A that links the two (see equation (80)) is invertible. We therefore replace

our initial collection of multiple hypothesis tests with equivalent re-framed versions

H0 :β(1)
j (z) =β(2)

j (z),∀ j , z

against the alternative (HA) that there exist a scale j∗ and rescaled time z∗ such that

β(1)
j∗ (z∗) 6=β(2)

j∗ (z∗).

In order to construct our test statistic, we test for spectral equality by examining theβ j (z) quan-

tities instead.

In reality we do not know β(i )
j (z) for i = 1, 2 so we replace it by an asymptotically unbiased

estimator. As data are available consisting of multiple time series with known group member-

ships, we replace β(i )
j (z) with an estimate across the group replicates. Specifically, if we have Ni

independent time series replicates from group i , we define

Ni Ī (i )
j ,k

:=
Ni∑

ri=1
I (i ),ri

j ,k ∼β(i )
j (k/T )χ2

Ni
. (86)

The distribution above follows as the raw wavelet periodogram coefficient of each ri th pe-

riodogram replicate I (i ),ri

j ,k is (scaled) χ2
1 distributed (e.g. Nason and Stevens (2015)) and inde-

pendent of all other raw wavelet periodogram coefficients across all other replicates from the

same group (also see Fryzlewicz and Ombao (2009) and the discussion in Section 3.2.1). Under

the further assumption of group independence, Ī (1)
j ,k and Ī (2)

j ,k are independent and distributed

as detailed in equation (86). Hence we propose the test statistic

F j ,k =
Ī (1)

j ,k

Ī (2)
j ,k

∼ FN1,N2 under the null hypothesis. (87)

Each test statistic is then compared with a critical value derived from the FN1,N2 -distribution in

the usual way.

Discussion. An advantage of the FT, particularly as opposed to the WST, is that its underlying

distributional assumption is theoretically, as well as practically, more reliable. We would there-

fore expect the FT to outperform the WST in many applications, and this is indeed validated

across a variety of simulation settings (see Section 3.4).

In certain practical applications, the binary distinction provided by a hypothesis test could

be seen as somewhat restrictive in terms of characterising the difference between two groups

(Das and Nason, 2016). However, the WST and FT developed above both report the time-scale

locations of the significant differences between the two group spectra. These can be visualised

as a ‘barcode’ plot, where a significant difference is represented by a black line at the time-scale

location of the rejection of the null hypothesis (see for example Figure 36, right). In many prac-

tical applications (such as our motivating example), such information can be extremely useful

as, in contrast with the established period–estimation techniques, our proposed methodology

can identify the time point at which the control and treatment groups start to have different

circadian rhythms (see Section 3.5.1 for a detailed example). Alternatively, there may be practi-

cal situations when a degree of dissimilarity would be of interest (see for example Section 4.5).
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For all our proposed tests, practitioners can also be informed by the number of rejections (as

a coarse dissimilarity measure), with larger values potentially indicating a greater departure

from the null hypothesis (as cautiously used in Nason (2013) and in Section 3.4.2). However,

factors such as correlations between coefficients (see discussion in Section 3.3.1.1) mean that

such numbers should be treated with caution, but just as in Nason (2013) we do not pursue this

topic further in this work.

3.3.2 Ultradian Dataset: Hypothesis Testing for Spectral Equality Across Scales (‘HFT’)

For certain biological applications, such as the Ultradian motivating example, it is more im-

portant to identify spectral differences between groups at scale-level and the time locations of

spectral differences are of less interest. For such situations, we replace the spectral comparison

H0 : S(1)
j (z) = S(2)

j (z) of the previous section, in general equivalent to H0 :β(1)
j (z) =β(2)

j (z), by the

comparison of the respective Haar-Fisz transforms, i.e. test for

H0 : Fβ(1)
j (z) =Fβ(2)

j (z),∀ j , z.

Equivalently, in the notation established in Section 3.2.1 we test

H0 : B(1)
j (z) =B(2)

j (z), ∀ j , z (88)

versus the alternative (HA) that there exist some scale j∗ and rescaled time z∗ for which the

equality does not hold. We shall refer to this test as the Haar-Fisz test (HFT).

As we do not know B(i )
j (z), we replace it by its unbiased estimator H (i )

j ,k at scale j and time

k (with z = k/T ) for group i = 1,2. In applications which do not provide access to replicate data,

we could adopt equation (84) with Ŝ(i )
j (k/T ) replaced by H (i )

j ,k and estimate the variance across

each scale as the Haar-Fisz transform stabilises variance (Nason and Stevens, 2015). When

replicates are available, we use equation (83) with H (i )
j ,k to obtain group averaged estimators of

B(i )
j (z), denoted Ĥ (i )

j ,k , and propose a test statistic as in equation (84) with Ŝ(i )
j (k/T ) replaced

by Ĥ (i )
j ,k . The variance estimation techniques and subsequent test statistic distribution follow

as detailed in Section 3.3.1 and the results of the HFT can also be visualised as a ‘barcode’ plot.

Discussion. The HFT identifies both scales and times at which the null hypothesis of spectral

equality in the Haar-Fisz domain does not hold. However, as the Haar-Fisz transform essen-

tially ‘averages’ within each scale of the raw wavelet periodogram, potential differences ‘spread’

throughout the scale. This property makes it ideal for identifying scale-level differences be-

tween group wavelet spectra (see for example Figure 37, right).

In practice, due to its scale averaging construction, the HFT results in many more time-

localised rejections than the actual number of differing coefficients in the original spectra. Fur-

thermore, the HFT does sometimes have difficulty discriminating between spectra which differ

by a small number of coefficients; however, the HFT does correctly identify scale-level spectral

differences (see Section 3.4 for further investigations).

An additional benefit of this approach is also to bring the data (in this context, the Haar-Fisz

transform of the raw wavelet periodogram) closer to Gaussianity and to break the dependencies

across time. Consequently, the assumptions behind the t-test are closely adhered to and the

dependencies between the multiple tests we perform are weak.
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3.3.3 Nematode Dataset: Hypothesis Testing for ‘Same Shape’ Spectra (‘HT’)

In applications such as the Nematode example, the focus may be on identifying whether groups

evolve according to spectra that have the same shape at each scale (up to a scale-dependent

additive constant), thus indicating that the same patterns are identified in the data, albeit with

potentially different magnitudes.

Mathematically, for a scale-dependent (non-zero) constant denoted by C j , we formalise

our hypotheses as

H0 : S(1)
j (z) = S(2)

j (z)+C j , ∀ j , z (89)

versus the alternative HA : S(1)
j∗ (z∗) 6= S(2)

j∗ (z∗)+C j∗ for some scale j∗ and time z∗.

Denoting by C the J ×1 vector that holds C j as its j th component and recalling equation

(80), we can equivalently re-frame the problem into testing whether

H0 :β(1)
j (z) =β(2)

j (z)+ c j , or equivalently H0 :β(D)
j (z) = c j , ∀ j , z

where c j is the j th entry of the vector c = AC and β(D)
j (z) :=β(1)

j (z)−β(2)
j (z).

In the spirit of the tests developed in Fan and Lin (1998), and as undertaken by von Sachs

and Neumann (2000) and Nason (2013), at each scale j we assess the constancy through time

of β(D)
j (z) by examining its associated Haar wavelet coefficients. Although, in principle, any

wavelet system could be adopted, von Sachs and Neumann (2000) note that the Haar wavelet

coefficients are ideal for testing the constancy of a function. Hence we employ these wavelets

and refer to the test developed in this section as the Haar Test (HT).

The underlying principle behind these tests is that the wavelet transform of a constant func-

tion is zero, hence under H0 above, the wavelet coefficients of β(D)
j (z) are

v j
`,p =

∫ 1

0
β(D)

j (z)ψH
`,p (z)d z = c j

∫ 1

0
ψH
`,p (z)d z = 0,

where {ψH
`,p (z)}`,p denote the usual Haar wavelets at scale ` and location p.

This suggests performing multiple hypothesis testing on the collection of hypotheses

H0 : v j
`,p = 0, ∀ j ,` and p

against the alternative (HA) that there exist j∗,`∗ and p∗ such that v j∗

`∗,p∗ 6= 0.

As the spectral and related quantities are unknown, and since the wavelet transform is lin-

ear, we estimate each v j
`,p by v̂ j

`,p = v̂ j ,(1)
`,p −v̂ j ,(2)

`,p , with the Haar wavelet coefficients correspond-

ing to each group i = 1, 2 estimated in the spirit of Nason (2013) as

v̂ j ,(i )
`,p = 2−`/2

(2`−1−1∑
r=0

I (i )
j ,2`p−r

−
2`−1∑

q=2`−1

I (i )
j ,2`p−q

)
, (90)

at each (original) scale j and Haar scale ` and locations p, q .

With the availability of independent replicates within each group, we estimate the group i

Haar wavelet coefficients as

v̂ j ,(i )
`,p = 1

Ni

Ni∑
ri=1

v̂ j ,(i ),ri

`,p , (91)
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where each v̂ j ,(i ),ri

`,p is obtained as in equation (90) for the ri -th replicate.

Under a specific set of assumptions, Nason (2013) shows the asymptotic normality of the

Haar wavelet coefficient estimator of the wavelet periodogram at scale j . Thus, in our setting,

each v̂ j ,(i ),ri

`,p for i = 1, 2 is asymptotically normal with mean v j ,(i ),ri

`,p and variance (σ j ,(i )
`,p )2. Us-

ing the replicate independence, we have that v̂ j ,(i )
`,p is asymptotically normally distributed with

mean v j ,(i )
`,p and variance (σ j ,(i )

`,p )2/Ni and note that its distributional closeness to the normal

increases via a central limit theorem argument with the increasing number of replicates.

The group independence assumption then leads to an asymptotically joint normal distri-

bution for (v̂ j ,(1)
`,p , v̂ j ,(2)

`,p ). Following the continuous mapping theorem, we obtain that

v̂ j
`,p = v̂ j ,(1)

`,p − v̂ j ,(2)
`,p

has an asymptotic normal distribution with mean v j ,(1)
`,p − v j ,(2)

`,p and variance

(
σ

j ,(1)
`,p

)2

N1
+

(
σ

j ,(2)
`,p

)2

N2
.

In the presence of replicates, we propose a test statistic of the form discussed in equa-

tion (84)

T j
`,p =

v̂ j
`,p(

(σ̂ j ,(1)
`,p )2/N1 + (σ̂ j ,(2)

`,p )2/N2

)1/2
∼ td f under the null hypothesis, (92)

where (σ̂ j ,(i )
`,p )2 is an estimate of the variance of v̂ j ,(i )

`,p for i = 1,2 across the Ni observations in

group i , obtained using the standard sum–of–squares sample variance formula and d f denotes

the degrees of freedom associated with the variance estimation procedure (see Section 3.3.1.1).

Each test statistic is then compared with a critical value derived from the t-distribution in the

usual way.

Discussion. In order to control the asymptotic bias derivation, one of the assumptions under

which the distributional theory is derived consists of limiting the scales of the Haar wavelet

coefficients v j
`,p to be sufficiently coarse, ` = 0, . . . , (J − dJ/2e − 2). Furthermore, as in Nason

(2013), we only consider the wavelet coefficients of the periodogram at levels j ≥ 3 in order to

avoid the effects of a region similar to the ‘cone of influence’ described by Torrence and Compo

(1998).

To aid the visualisation of the WST, FT and HFT results, we use a ‘barcode’ plot that indicates

the time- and scale- locations where significant differences are present (see for example Figure

38). The HT can also indicate where the significant differences are located in the series and can

plot the results in a manner similar to the wavelet test of stationarity (see for example Figure

13). However, due to its construction, these locations are more difficult to interpret than for the

WST, FT and HFT.

3.3.4 Summary

A summary of the hypothesis tests developed in this chapter detailing the test name, its acronym

and the motivation behind its development can be found in Table 11.
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Name Acronym Designed to ...

Wavelet Spectrum Test WST Detect whether two groups display sig-
nificant differences in the evolution of
their spectral structures, and if so, the
particular scales and times at which such
differences occur.

Raw periodogram F-Test FT Detect whether two groups display sig-
nificant differences in the evolution of
their spectral structures, and if so, the
particular scales and times at which such
differences occur.

Haar-Fisz Test HFT Detect differences when the total power
within a scale differs between groups.

Haar Test HT Detect whether groups evolve according
to spectra that have the same shape (up
to an additive constant) at each scale.

Table 11: A summary of the hypothesis tests developed in this chapter.

3.4 Simulation Studies

The goals of the simulation studies were: (1) to evaluate the empirical power and size of our

new tests; (2) to consider the effect of sample size on the accuracy of the tests; (3) to investigate

two approaches to multiple-hypothesis testing: Bonferroni correction (denoted ‘Bon.’) and the

false discovery rate procedure (‘FDR’); (4) to investigate the performance of our proposed tests

when certain modelling assumptions are broken and (5) to evaluate the empirical power and

size of our new tests in comparison with the adaptive Neyman Test (ANT) of Fan and Lin (1998),

see Section 3.2.2. This benchmark method performs well in practice when the assumption

that the data can be modelled as an (unknown) underlying function plus noise (henceforth

referred to as a ‘function plus noise’ time series) is valid. (For more details regarding the ANT

see Appendix 3.11.1.)

The basic structure of each simulated experiment (a comprehensive description of the sim-

ulation studies can be found in Appendix 3.11.2) can be described as follows. In each case,

we assumed that the signal was a realisation from one of i = 1,2 possible groups. For each

group, we generated a set of N1 = N2 = 1,10,25,50 signal realisations, each of length T = 256,

the equivalent of a free-running period of 4 days. For each realisation, we obtained the raw

and corrected wavelet periodograms using (unless otherwise stated) the Haar wavelet from

the locits software package for R (available from the CRAN package repository), although,

any wavelet system can, in principle be used (see Section 3.4.3.2). The Haar–transformed and

Haar–Fisz transformed raw wavelet periodogram were subsequently obtained and the spectral

testing procedures carried out as described in Section 3.3. The results are compared with the

known group memberships, and the procedure is then repeated 1000 times to obtain empirical

size and power estimates as outlined in the following sections.
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3.4.1 Power Comparisons

To explore statistical power we simulate a set of N1 = N2 = 1,10,25,50 signal realisations from

each group where the individual group spectra are defined such that there exists a scale j∗ and

time t∗ such that HA : S(1)
j∗ (t∗/T ) 6= S(2)

j∗ (t∗/T ). The empirical power estimates are obtained

by counting the number of times our tests reject the null hypothesis of spectral equality. The

models we will use are denoted P1–P12 respectively and are briefly described below. (Precise

details can be found in Appendix 3.11.2.)

1. P1: Fixed Spectra. We follow Krzemieniewska et al. (2014) and design the spectra of the

two groups to differ at the finest level (resolution level 7) by 100 coefficients.

2. P2: Fixed Spectra-Fine Difference. We modify the model P1 such that the spectra of the

two groups differ by only 6 coefficients.

3. P3: Fixed Spectra-Plus Constant. Modify the model P1 such that the spectra of the two

groups differ by a constant in the finest resolution level.

4. P4/P5: Gradual Period Change. This study replicates a typical circadian experiment with

changes that cannot be captured by standard analyses assuming stationarity and only re-

porting an average period value. We thus define 3 possible groups, where each group rep-

resents a signal that gradually changes period from 24 to: 25 (Group 1), 26 (Group 2) and

27 (Group 3) over (approximately) two days, before continuing with the relevant period

for a further two days (also see Hargreaves et al. (2018)). To determine which changes can

be discriminated by the methods, we perform two studies within this setting: simulations

from Groups 1 and 2 (P4) and simulations from Groups 1 and 3 (P5).

5. P6/P7: AR Processes with time-varying coefficients. We simulate from an important

class of nonstationary processes– AR(2) processes with: abruptly (P6) and slowly (P7)

changing parameters (as in Fryzlewicz and Ombao (2009)).

6. P8–P12: ‘Function Plus Noise’ Time Series (Constant Period). This study follows Zielin-

ski et al. (2014) and generates each time series using an underlying cosine curve with ad-

ditive noise, which also coincides with the theoretical assumptions of the ANT. We define

time series as realisations from one of 6 possible groups, each with a different (constant)

period, relevant to our circadian setting. To determine which period changes can be dis-

criminated by the methods, we perform five studies within this setting: simulations from

a group with a period of 24 hours versus a group with a period of 21, 22, 23, 23.5 and 23.75

hours (models P8–P12 respectively).

3.4.1.1 Discussion of Findings

The empirical power values for N1 = N2 = 25 (this is the typical number of available replicates

in circadian studies, see Section 3.5) for models P1–P7 are reported in Table 12. We found that

all tests perform well when the spectra differ by a large number of coefficients (model P1). The

FT (and, to a lesser extent, the HT) are able to discriminate between spectra that differ by a

small number of coefficients (model P2) whereas the HFT has lower empirical power. By con-

struction, the HT cannot differentiate between spectra that differ by a constant at a particular
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Model
WST

(Bon.)
WST

(FDR)
FT

(Bon.)
FT

(FDR)
HFT

(Bon.)
HFT

(FDR)
HT

(Bon.)
HT

(FDR)

P1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
P2 39.3 48.0 100.0 100.0 29.1 31.8 86.2 86.4
P3 100.0 100.0 100.0 100.0 100.0 100.0 4.3 4.4
P4 1.0 2.7 45.5 54.5 33.2 36.5 100.0 100.0
P5 5.9 14.6 97.0 99.9 100.0 100.0 100.0 100.0
P6 100.0 100.0 87.5 92.6 44.8 89.1 66.5 67.7
P7 100.0 100.0 54.3 64.5 97.4 99.9 100.0 100.0

Table 12: Simulated power estimates (%) for models P1-P7 with nominal size of 5% with N1 =
N2 = 25 realisations from each group. Highest empirical power estimates are highlighted in
bold.

resolution level (model P3), but we found that the HT performs well in our synthetic circadian

example of gradual small period change across many time-scale locations (models P4 and P5).

Due to the higher distributional reliability of the FT, it unsurprisingly outperforms the WST

when the times series are generated from a defined spectrum (models P1–P5). However, dis-

tributional properties of the time-varying AR process ensure that the WST performs best when

data are generated using models P6 and P7, with the HT and HFT also performing well for

model P7.

Effect of sample size. The number of replicates in each group (N1, N2) are also an important

factor in achieved power. The results for the HFT with N1 = N2 = 1 are shown in Table 20

(Appendix 3.11.3), since we recall that the HFT is the only proposed test which can be applied

when replicate data is not available– see Section 3.3.2. The results for all tests with N1 = N2 = 10

and 50 replicates are shown in Table 21 (Appendix 3.11.3). Increasing the number of replicates

should, and indeed does, increase the empirical power of all tests (with the exception of the HT

for model P3). For example, note the increase in empirical power (particularly for models P2

and P4) as the number of replicates increases from 10 to 25.

Approach to multiple-hypothesis testing. These studies show that the Bonferroni correction

provides a more conservative approach. The false discovery rate gives an empirical power

greater than (or equal to) that of the Bonferroni correction (see e.g. model P6 in Table 12).

Performance comparison. We also report that the empirical power of the ANT for model P5

(gradual period change, 25 replicates) was 10.7%, which is below the results in Table 12 for our

proposed tests. This is to be expected as the underlying assumptions of the ANT are no longer

met. (Similar results are obtained for models P1–P7, hence we do not provide these here.)

Table 13 presents a selection of the performance comparison results for models P8–P12

when N1 = N2 = 25. (The results for all tests with N1 = N2 = 10 replicates are also shown in Table

22, Appendix 3.11.3.) As expected, the ANT performs extremely well in all these studies since

the underlying assumptions of the methodology are adhered to. Nevertheless, it is encouraging

that the WST, FT and HT also all have an empirical power over 95% (25 replicates) showing

that our methodology can also be successfully applied to ‘function plus noise’ time series as

designed for the ANT. However, the HFT had difficulty discriminating between groups when

the period difference was less than 2 hours. This was no surprise as the HFT was constructed

to detect differences in scale only and, due to the lower frequency resolution of the wavelet
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Model
Test Group

Period
WST

(FDR)
FT

(FDR)
HFT

(FDR)
HT

(FDR) ANT

P8 21 100.0 100.0 100.0 100.0 100.0
P9 22 100.0 100.0 100.0 100.0 100.0

P10 23 100.0 100.0 92.0 100.0 100.0
P11 23.5 100.0 100.0 31.8 100.0 100.0
P12 23.75 100.0 97.9 9.1 98.3 100.0

Table 13: Performance Comparison: Simulated power estimates (%) for models P8-P12 with
nominal size of 5% with N1 = N2 = 25 realisations from each group and using the false discovery
rate procedure (FDR). Note: Control group period is 24 hours in each model.

spectrum, the total power within each scale of the wavelet spectrum will be very similar for

both groups.

3.4.1.2 Power Comparisons: Conclusions

In practice, the suitability of the testing procedures is determined by a combination of fac-

tors, such as the practical problem posed by scientists, the degree to which the data adheres to

the underlying theoretical assumptions and the number of available replicates. For example,

models P1-P3 all stem from a simulated LSW structure and thus would be subject to a test for

time-scale equality departure, carried out through an ‘FT’ as its theoretical assumptions are

closely adhered to. Recall that the ‘WST’ was proposed as a ‘naive’ variant and is heavily re-

liant on the number of replicates in order to achieve the appropriate distributional properties,

thus its best results are obtained for models that have been simulated from time-varying AR

processes. Meanwhile, for data following models that exhibit a gradual period change (such

as P4-P5) one might be interested in identifying scale-dependent patterns or discrepancies,

carried out through the ‘HT’ or ‘HFT’.

3.4.2 Size Comparisons

To explore statistical size, we simulate data from a number of models and we asses how often

our hypothesis tests reject the null hypothesis of spectral equality (i.e. the time series are gen-

erated in the same way for both test groups). The models are denoted M1–M5 respectively and

defined as follows. (Precise details can be found in Appendix 3.11.2.)

1. M1: Fixed Spectra. We simulate all data from the wavelet spectrum associated with

Group 1 in models P1, P2 and P3, which we define as {S(1)
j (z)}J

j=1 in equation (99).

2. M2: Gradual Period Change. We simulate all data from the wavelet spectrum which

corresponds to a time series that gradually changes period from 24 to 25 hours over (ap-

proximately two days), before continuing with period 25 hours for a further two days (i.e.

Group 1 from models P4/P5).

3. M3: AR Processes With Abruptly Changing Parameters. Each time series is generated

from the process defined by equation (103) with the abruptly changing parameters as

defined for group i = 1 in Table 18 (i.e. Group 1 from model P6).
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4. M4: AR Processes With Slowly Changing Parameters. Each time series is generated from

the process defined by equation (104) with the slowly changing parameters as defined for

group i = 1 in Table 19 (i.e. Group 1 from model P7).

5. M5: ‘Function Plus Noise’ Time Series (Constant Period). All data are simulated (using

equation (105)) from the model that corresponds to a time series with a constant period

of 24 hours (i.e. Group 1 from models P8–P12).

3.4.2.1 Discussion of Findings

The empirical size values for models M1–M4 with N1 = N2 = 25 (this is the typical number of

available replicates in circadian experiments, see Appendix 3.7) are reported in Table 14. The

results for the HFT (for models M1–M4) with N1 = N2 = 1 are shown in Table 20, Appendix

3.11.3 (recall: the HFT is the only proposed test which can be applied when replicate data is

not available– see Section 3.3.2). The results for all tests (for models M1–M4) with N1 = N2 = 10

and 50 replicates are shown in Table 23 (Appendix 3.11.3). The results (for all tests) for model

M5 with N1 = N2 = 10 and 25 are shown in Table 22 (Appendix 3.11.3).

These studies show that the empirical size corresponding to all proposed tests (apart from

the FT for model M4 with N1 = N2 = 10 and 25) are less than the nominal size of 5%. A close

inspection of rejections for the FT for model M4 with N1 = N2 = 10 and 25 and both multiple-

hypothesis testing methods (Table 24 in Appendix 3.11.3) reveals that, for this particular exam-

ple, the number of rejections is often 1. If we disregard such situations, the empirical size of the

FT also falls below the nominal size of 5% for all sample sizes and multiple-hypothesis testing

procedures. In practice, circadian scientists are mostly interested in the numbers of rejections

and their locations and often choose to disregard situations where very few coefficients are

significantly different. Indeed, this is also our approach in Section 3.5.

Effect of sample size. Note that the tests scale well with increasing sample size, with the nom-

inal size acting as an upper bound, a behaviour also present in other related empirical size

investigations (see e.g. Cho (2016)).

Approach to multiple-hypothesis testing. These studies show that the Bonferroni correction

provides a more conservative approach, whereas the false discovery rate (using the correction

outlined above) is closer to the nominal size.

Performance comparison. The results for model M5 with N1 = N2 = 10 and 25 are shown in

Table 22 (Appendix 3.11.3). Note that the empirical size estimates for our proposed tests are

all lower than the nominal size of 5%, whereas for 10 replicates the empirical size of the ANT is

7.9%.

3.4.2.2 Size Comparisons: Conclusions

These studies show that the empirical size corresponding to all proposed tests is less than the

nominal size of 5% (apart from the FT for model M4 with N1 = N2 = 10 and 25– where, in most

cases, the number of significant coefficients was less than 5). We thus recommend using the

less conservative FDR procedure (ignoring situations with very small numbers of rejections).

Note this also yields better results for empirical power (see Section 3.4.1) whilst also remaining

below the nominal size.
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Model
WST

(Bon.)
WST

(FDR)
FT

(Bon.)
FT

(FDR)
HFT

(Bon.)
HFT

(FDR)
HT

(Bon.)
HT

(FDR)

M1 0.6 1.3 2.5 3.1 0.1 2.0 2.3 2.7
M2 0.3 0.6 3.0 3.9 0.4 3.3 2.5 2.7
M3 0.2 1.5 3.6 3.9 0.0 1.6 3.5 3.8
M4 0.4 0.9 4.6 5.2 1.0 2.4 3.4 3.8

Table 14: Simulated size estimates (%) for models M1-M4 with nominal size of 5% and N1 =
N2 = 25 realisations from each group. Empirical size estimates over the nominal size of 5% are
highlighted in bold.

3.4.3 Sensitivity Analysis

In this section we investigate the sensitivity of our proposed tests to certain modelling assump-

tions. We investigate: (1) departures from the normality assumption and (2) the impact of the

choice of wavelet family used within the spectral estimation procedures of each of our pro-

posed tests. Throughout this section, we use N1 = N2 = 25, since this is the typical number of

available replicates in circadian experiments (see Appendix 3.7).

3.4.3.1 Departures from Normality

Recall the proposed statistical testing methodology assumes the innovations {ξ j ,k } to be nor-

mally distributed. To investigate the impact of this assumption, we computationally assess

the power and size of the proposed tests within the settings outlined in Section 2.4 for models

P1–P5 and M1–M2 but simulated using non-Gaussian innovations (specifically following a t-

distribution with 5, and subsequently 3, degrees of freedom). The results can be found in Table

25 (Appendix 3.11.3). Unsurprisingly, when the normality assumption is broken, the empirical

power of all tests is less than (or equal to) the empirical power when the innovations follow a

standard normal distribution. The increasing distributional departure from normality appears

to be of little relevant influence when testing data simulated from models P1 and P3 (across

all tests), while the empirical power drops for the HT corresponding to models P2 and P4/P5.

The testing procedures break for models P4/P5 with t3-distributed innovations, as intuitively,

the presence of heavier innovations make the gradual period change structure of models P4/P5

very difficult to discriminate. We also note that the HT is heavily reliant on the distributional

assumptions (see Section 3.3.3) which explains its sensitivity. Due to its construction (see Sec-

tion 3.3.1.2), the FT appears to more readily reject the null hypothesis, increasing the empirical

size of the test. However, if we disregard situations where there are a very low number of re-

jections (see Section 3.4.2.1) the empirical size of the FT falls below the nominal size of 5% for

both multiple–hypothesis testing procedures and all studies (other than M1 with FDR). We re-

port here that the empirical power of the ANT for model P1 (fixed spectra) with t-distributions

with 5 degrees of freedom was 6.8%, which is below the results in Table 25 for all our proposed

tests (which are all over 99.9%). This is to be expected since, as in Section 3.4.1, the underlying

assumptions of the ANT are not valid. (Similar results are obtained for models P2–P7, hence

we do not provide these here.)

We also investigated the power and size for models P8–P12 and M5 (see Section 2.4) simu-

lated using non-Gaussian errors (specifically following t-distributions with 5, and subsequently
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3, degrees of freedom). The results can be found in Table 26 (Appendix 3.11.3). The WST, FT and

HT appear to share a good degree of robustness as they all have an empirical power over 99%

for models P8–P11, showing that our methodology can also be successfully applied to ‘function

plus noise’ time series (as designed for the ANT) with non-Gaussian error. Akin to the previous

results for the gradual period change models P4/P5, the distribution of the noise term does

appear to have an adverse effect in model P12, where the difference between the periods of the

two underlying signals is only 15 minutes. Across this study, the HFT was most affected. A pos-

sible explanation is that the HFT was constructed to detect differences in scale only and, due to

the lower frequency resolution of the wavelet spectrum, the total power within each scale of the

wavelet spectrum will be very similar for both groups. This issue will have been compounded

by the heavier tailed distribution of the noise term. We also report here that, in the settings of

this study, the performance of ANT was sustained as its underlying assumptions are adhered

to.

3.4.3.2 Choice of wavelet

The wavelet system gives a representation for nonstationary time series under which we esti-

mate the wavelet spectrum and subsequently perform hypothesis testing. We investigated the

sensitivity of our methods to the wavelet choice. For models P1–P5, the Haar wavelet was used

for spectral estimation, but different, potentially mismatched wavelets were used to generate

the processes from the spectrum: Haar wavelets, Daubechies’ least-asymmetric wavelets with

4 vanishing moments and Daubechies’ extremal phase wavelets with 10 vanishing moments.

Models P6–P12 were not generated from LSW spectra (see Section 2.4), hence we report the

results when using a selection of wavelets for the empirical wavelet spectrum.

The results in Tables 27 and 28 (Appendix 3.11.3) show that our methodology is fairly ro-

bust to the wavelet choice. The empirical size estimates all fall below the nominal size. The

results indeed support the intuition that, as the scope of our work is to devise tests that locally

identify dissimilarities between pairs of spectra, the short support overlaps of Haar wavelets

counterbalance their otherwise reduced capacity of representing smooth signals.

3.4.4 Summary of Findings

A summary of the hypothesis tests developed in this chapter detailing the test name, its acronym,

strengths and weaknesses can be found in Table 29 (Appendix 3.12).

3.5 Real Data Analysis: Back to the Motivating Circadian Datasets

We now use our proposed methodology to analyse the motivating examples (Section 3.1). Prior

to analysis, we investigate whether the normality assumption is tenable for each of our moti-

vating datasets. The results (Appendix 3.9) show that, for each of our motivating datasets, the

normality assumption is appropriate. We then model each circadian trace as an LSW process,

estimate its corresponding group wavelet spectral representation and consequently construct

the appropriate test statistic that aims to identify whether a departure towards a specific type

of spectral difference is present or not (as described in Section 3.3). For each dataset, the cor-

responding number of rejections can be found in Table 15, with corresponding representative

‘barcode’ plots in Figures 36, 37 and 38.
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Dataset (Test) Bon. FDR

Lead (FT) 31 (3%) 133 (15%)
Ultradian (HFT) 1102 (54%) 1538 (75%)
Nematode (HT) 0 (0%) 0 (0%)

Table 15: The number of rejections (as a percentage in brackets) for each relevant proposed test
and multiple-hypothesis testing procedure for the motivating example datasets.

3.5.1 Lead Dataset

Section 3.1.1.1 outlined the scientific aims to determine if lead nitrate affects the circadian

clock and, if so, to detect the times and scales at which any significant differences arise be-

tween the ‘Control’ and ‘Lead’ exposure groups. Therefore we are particularly interested in the

results of the FT. Table 15 shows the results for the FT and includes both the more conserva-

tive Bonferroni correction and FDR. In order to visualise the areas of null hypothesis rejection

of spectral equality between the control and lead-exposure groups, both group average esti-

mated spectra as well as the ‘barcode’ plot for the FT (with FDR) appear in Figure 36. Figure

36 indicates that the differences between the two spectra lie in resolution levels 2–4, directly

corresponding to a circadian rhythm, with the number of rejections increasing with exposure

time. We conclude that there is evidence that exposure to lead does affect the circadian clock

of A. thaliana, and this change manifests itself after approximately three days of free-running

conditions.

As discussed in Section 3.1, the ‘circadian clock’ allows plants to synchronise their inter-

nal processes with the external environment (Oakenfull et al., 2018). In particular, it allows the

anticipation of daily changes and, therefore, future environmental stresses, such as mid–day

drought and midnight coldness (Sanchez et al., 2011). Therefore, a ‘circadian clock’ provides

fitness by anticipating predictable environmental stresses and coordinating appropriate phys-

iological responses (Sanchez et al., 2011). Consequently, if clock function is impaired, for exam-

ple by changes in the plant’s chemical environment, then there could be major consequences

for growth (Oakenfull et al., 2018). Our results suggest that exposure to lead does affect the

circadian clock of A. thaliana which, therefore, may negatively impact growth efficiency. How-

ever, the change in the circadian clock manifests itself after approximately three days of free-

running conditions. Therefore, transient changes in lead exposure would be less detrimental to

the plant. In conclusion, this study suggests that long–term exposure to lead (at this particular

concentration) may negatively impact the fitness of A. thaliana and hence would not be rec-

ommended. This result could be used to inform the appropriate concentration of lead (nitrate)

in soil (see Chapter 4 for further details).

3.5.2 Ultradian Dataset

Section 3.1.1.2 introduced this experiment and highlighted the need to detect whether any

differences appear in the circadian and ultradian components of the ‘Control’ and ‘Mutant’

groups. Hence we are interested in the results of the HFT, specifically developed to identify the

scales, rather than the times, at which potential differences arise. Table 15 shows the results for

the HFT, including both the Bonferroni correction and FDR. The results indicate rejections of
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Figure 36: Lead dataset. Left: Average estimated spectrum of the ‘Control’ group; Centre: Av-
erage estimated spectrum of the ‘Lead’ group; Right: ‘Barcode’ plot for FT (with FDR).

the null hypothesis of spectral equality between the control and mutant plants across a range

of scales. The group average estimated spectra and ‘barcode’ plot for the HFT (with FDR) can

be found in Figure 37. Note that the differences between the two spectra lie in the coarsest

resolution levels 1–4, associated with circadian rhythms, and higher-frequency levels 6 and 7,

corresponding to an ultradian rhythm. We conclude that there is evidence that the mutant

plants have altered circadian and ultradian rhythms within A. thaliana.

Circadian clocks depend on species–specific clock genes and proteins that interact in com-

plex feedback loops to rhythmically control gene expression (Sanchez et al., 2011; Dusik et al.,

2014; Millar et al., 2015). As outlined in Section 3.1.1.2, one approach towards determining and

understanding the clock mechanism, is to mutate a gene and examine the resulting behaviour

in response to a variety of stimuli. If a mutation affects the circadian rhythms of an organism,

this could indicate that this gene is under circadian control within this species. The results

in this section indicate that this genetic mutation has altered the circadian rhythm and in-

duced high-frequency behaviour (known as ‘ultradian rhythms’) in the laboratory model plant

A. thaliana. These results could reveal new aspects and interactions in the clock mechanism of

A. thaliana.

3.5.3 Nematode Dataset

The experiment in Section 3.1.1.3 aimed to elucidate the effect of a pharmacological treatment

on the C. elegans clock. The average estimated spectra of the ‘Control’ and ‘Treatment’ groups

in Figure 38 share a common profile but with differences in magnitude, indicating that the HT

would be appropriate in this context. Table 15 shows that the HT found no significant differ-

ence between the shapes of the two spectra, but when tested for equality, the FT (with FDR)

found multiple rejections of the null hypothesis of spectral equality between the ‘Control’ and

‘Treatment’ groups (refer to the ‘barcode’ plot in Figure 38). This provides evidence that the

two spectra have the same profile within each scale up to an additive non-zero constant. We

thus conclude that there is evidence that the treatment significantly affects the intensity of the

spectral behaviour, but not its pattern. The spectral differences are present at the highest fre-
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Figure 37: Ultradian dataset. Left: Average estimated spectrum of the ‘Control’ group; Centre:
Average estimated spectrum of the ‘Mutant’ group; Right: ‘Barcode’ plot for HFT (with FDR).

Figure 38: Nematode dataset. Left: Average estimated spectrum of the ‘Control’ group; Centre:
Average estimated spectrum of the ‘Treatment’ group; Right: ‘Barcode’ plot for FT (with FDR).

quencies (resolution levels 6–8) as an early response to the onset of treatment (prior to time

T = 48), see Figure 38.

These results indicate that this pharmacological treatment (which has been shown to cause

aberrant circadian rhythms in other established mammalian and insect circadian models (Kon

et al., 2015; Dusik et al., 2014)) is having an impact on the expression of a gene that has been

demonstrated as being under circadian control in the C. elegans (Goya et al., 2016). These re-

sults support the findings of Goya et al. (2016), that this nematode expresses circadian rhythms.

Interestingly, this pharmacological treatment increased the period of the circadian rhythms

within other established mammalian and insect circadian models (Kon et al., 2015; Dusik et al.,

2014), whereas these results suggest that it affected the intensity of the spectral behaviour, but

not its pattern within the C. elegans. Nevertheless, these results could aid the precise determi-

nation of the elusive circadian clock of C. elegans. However, the biological details are beyond

the scope of this thesis.

111



3.6 Conclusions and Further Work

This work was stimulated by a variety of challenging applications faced by the circadian–biology

community, which is becoming increasingly aware of the nonstationary characteristics present

in much of their data (Hargreaves et al., 2018; Zielinski et al., 2014; Leise et al., 2013). Our

methodology fills the gap in the current literature by developing and testing a much needed

tool for the formal spectral comparison of nonstationary data. Our methods are developed as

testing procedures, analogous to the period analysis techniques currently adopted within cir-

cadian community. Motivated by three complementary applications in circadian biology, our

new methodology allows the identification of three specific types of spectral difference. Table

29 in Appendix 3.12 provides a summary of the hypothesis tests developed in this manuscript

detailing their strengths and weaknesses.

The competitive performance of our methods was comparatively assessed in an extensive

simulation study (Section 3.4). Additionally, when compared to existing methods currently

adopted within the circadian community, our proposed tests were able to discriminate be-

tween real data sets (Table 15 and Figure 38) where the current methodology could not (Table

16, Appendix 3.8).

In the applications provided, we illustrated the important implications in further under-

standing the mechanisms behind the plant and nematode circadian clocks, and the environ-

mental implications associated with soil pollution. However, we note that our methodology

can readily be applied to other circadian datasets, as well as to data originating in other fields,

as long as the data share the same dyadic length (T ). This assumption is easily achievable for

most experimental data, but for other setups might necessitate further specific treatments de-

pending on the discrepancy between the number of observations.

In all of our proposed hypothesis tests, we wish to test many hypotheses of the type H0 :

S(1)
j (k/T ) = S(2)

j (k/T ) for several values of j and k. In this chapter we adopted the Bonferroni

correction and, for a less conservative approach, the false discovery rate (FDR) procedure. Our

simulations in Section 3.4 showed that both these methods work well. However, the multiple-

hypothesis testing methods we use do not account for the dependence of the spectral coef-

ficients. The hypothesis tests developed in Sections 3.3.2 and 3.3.3 alleviate this problem by

transforming the data to produce coefficients that are approximately uncorrelated. However,

neither method fully decorrelates the data and multiple-hypothesis testing methods that take

the dependence of the (transformed) spectral coefficients into account are an interesting av-

enue of further work.

There may be practical situations when a measure of the degree of difference between the

underlying evolutionary wavelet spectra of two groups of time series would be of interest (see

for example Section 4.5). In Section 3.3.1.2 we discussed how, for all our proposed tests, prac-

titioners can be informed by the number of rejections of the null hypothesis (as a coarse dis-

similarity measure), with larger values potentially indicating a greater difference between the

spectral behaviour of the two groups. However, factors such as the dependence of the spectral

coefficients (see discussion in Section 3.3.1.1) mean that such numbers should be treated with

caution. The hypothesis tests developed in Sections 3.3.2 and 3.3.3 alleviate this problem by

transforming the data to produce coefficients that are approximately uncorrelated. However,

transforming the coefficients adds an additional level of complexity when utilising the number

of rejections as a dissimilarity measure. For example, the HFT can result in many more time–
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localised rejections than the actual number of differing coefficients in the original spectra (see

Section 3.4), as potential differences tend to spread throughout the scale. An interesting av-

enue of further work would be the development of a robust method that measures the degree

of difference between the underlying evolutionary wavelet spectra of two groups of time series.
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3.7 Appendix: Experimental Details

In this section we outline the experimental details that led to the datasets introduced in Section

3.1 and subsequently analysed in Sections 3.5.1, 3.5.2 and 3.5.3.

3.7.1 Experimental Overview: Lead and Ultradian Datasets

Both Davis and Millar labs used a firefly luciferase reporter system. This involves fusing the

gene of interest (here, ‘cold and circadian regulated and RNA binding 2’, CCR2) to a biolumi-

nescent enzyme called luciferase (Doyle et al., 2002). When CCR2 is expressed, the resultant

luciferase emits light which is measured using a TopCount NXT scintillation counter (Perkin

Elmer), allowing relative gene expression of CCR2 to be quantified in vivo (Southern and Mil-

lar, 2005; Perea-García et al., 2016a).

3.7.2 Lead Nitrate Dataset

Arabidopsis thaliana seeds (Ws–CCR2:LUC (Doyle et al., 2002)) were surface sterilised and plated

onto Hoagland’s media containing 1% sucrose, 1.5% phyto agar (Hoagland et al., 1950). The

seeds were stratified for 2 days at 4◦C and transferred to growth chambers to entrain under

12:12 light/dark cycles at a constant temperature of 20◦C. Six-day-old seedlings were trans-

ferred to 96 well microtiter plates containing Hoagland’s 1% sucrose, 1.5% agar (Hanano et al.,

2006) with or without supplemental Pb(NO3)2 (lead nitrate) at a concentration of 1.4mM. Af-

ter 24 hours, the plants were then transferred to the TOPCount machine. Measurements were

taken at intervals of approximately 45 minutes. Measurement began after the transition to 12

hours of darkness (known as subjective dusk) on the seventh day of the plants’ life. Therefore,

the plants experience one ‘normal’ day in the TOPCount machine (known as entrainment). Af-

ter this, the plants are exposed to constant light (known as an LL free-run) for approximately

four days. This dataset consists of 48 plant signals recorded at T = 128 time points, with both

the ‘Control’ and ‘Lead’ groups containing 24 plants.

3.7.3 Ultradian Dataset

(Millar et al., 2015). This dataset was obtained following a similar method as outlined for the

Lead dataset above, but compared ‘Control’ A. thaliana plants (Ws–2 with CCR2:LUC (Doyle

et al., 2002)) with ‘Mutant’ A. thaliana plants (Ws–2 cca1 lhy). Plants were grown on MS media

Murashige and Skoog (1962) with 3% sucrose and 1.5% phyto-agar. Plants were entrained in

12:12 L:D conditions at 22◦C followed by an LL free-run. Measurements were taken at intervals

of approximately 30 minutes. This dataset consists of 48 plant signals recorded at T = 256 time

points, with both the ‘Control’ and ‘Mutant’ groups containing 24 plants.

3.7.4 Nematode Dataset

This dataset was obtained using male Caenorhabditis elegans strain PE254 (obtained from the

CGC), which expresses firefly luciferase under the promoter of the sur-5 gene (Lagido et al.,

2008). Nematodes expressing luciferase driven by the sur-5 promoter have previously been

reported to show circadian rhythms in luminescence (Goya et al., 2016). Single nematodes

were placed in wells containing 100µl S buffer (Stiernagle, 1999), supplemented with 5 mg/mL
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cholesterol, 1 g/L wet weight pelleted Escherichia coli OP50 strain and 100 µM luciferin. Treat-

ment wells also contained 10 µM SB 203580 (a p38 MAPK inhibitor (Sigma S8307)). Entrain-

ment conditions were 12 hours at 20◦C followed by 12 hours at 15◦C for two days in constant

darkness. Free-running was at 20◦C in constant darkness. Luciferase measurements were

recorded approximately every 13 minutes. Nematodes that died (shown by a sudden loss of

luciferase expression) were excluded from data analysis. Therefore, this dataset consists of 62

signals recorded at T = 512 time points, with the ‘Control’ and ‘Treatment’ groups containing

32 and 30 time series respectively.
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3.8 Appendix: Real Data Analysis: Supplementary Material

In this section, for each motivating example dataset, we report: a summary of the output of the

analysis of the motivating datasets in BRASS (Table 16) and the results of the Priestley-Subba

Rao test of stationarity (for each time series) in Table 17.

Dataset
Mean Period Estimate:

Control Group
Mean Period Estimate:

Test Group Difference p–value

Lead 27.4 26.8 -0.6 0.16
Ultradian 6.5 6.5 0.0 0.98
Nematode 24.8 25.6 +0.8 0.55

Table 16: A summary of the output of the analysis of the motivating example datasets in BRASS:
the mean period estimate for the control and test groups in hours (obtained using FFT-NLLS
analysis (Plautz et al., 1997)), the difference between the period estimates and the correspond-
ing p–value.

Dataset Lead Ultradian Nematode

Number of nonstationary time series 39 (81%) 41 (85%) 61 (98%)
Total number of time series 48 48 62

Table 17: Results for the Priestley-Subba Rao test of stationarity, implemented in the fractal
package in R and available from the CRAN package repository. Number of nonstationary plants
indicates the number of time series (in each motivating example dataset) with enough evidence
to reject the null hypothesis of stationarity at the 5% significance level (as a percentage in brack-
ets).
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Figure 39: Q–Q plots for a representative series from the control (Plots A, C, E) and test groups
(Plots B, D, F) of each of our motivating datasets. Lead Dataset: Plots A and B. Ultradian Dataset:
C and D. Nematode Dataset: E and F.

3.9 Appendix: Tenability of the Normality Assumption

In this section we investigate the tenability of the normality assumption for each of our moti-

vating datasets. Following Fryzlewicz (2005), for each series, we standardise the (zero-mean)

data using an estimate of the local standard deviation. The estimate was obtained by means of

a localised Gaussian kernel with bandwidth chosen using the methods of Fryzlewicz (2005). We

then examine the Q–Q plot of the standardised series against the normal quantiles. We report

Q–Q plots for a representative series from the control and test groups of each of our motivating

datasets in Figure 39. These demonstrate that the normality assumption holds for our motivat-

ing data, an assumption also typically undertaken by the circadian community (Perea-García

et al., 2016a).
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3.10 Appendix: Haar-Fisz Transform

We adapt the definition from Fryzlewicz and Nason (2006), Section 6, which applies the Haar-

Fisz transform to the raw wavelet periodogram I j ,k;T . The algorithm is applied to each scale j

of the periodogram separately as follows.

1. Let c J ,m := I j ,m for m = 0, . . .T −1, where T = 2J .

2. For l = (J −1), . . . ,0, recursively form the vectors

dl ,m = cl+1,2m − cl+1,2m+1p
2

and cl ,m = cl+1,2m + cl+1,2m+1p
2

,

where m = 1, . . . ,2l −1, and dl ,m and cl ,m are the Haar wavelet and scaling coefficient of

the raw wavelet periodogram at scale j , respectively.

3. Divide the wavelet coefficients by the scaling coefficients to produce the Haar-Fisz coef-

ficients

fl ,m = dl ,m

cl ,m
(93)

for cl ,m 6= 0. For cl ,m = 0 set fl ,m = 0.

4. For l = 0, . . . , J −1, recursively modify the vectors cl :

cl+1,2m = cl ,m + fl ,m and cl+1,2m−1 = cl ,m − fl ,m ,

where c0,0 = c0,0 and m = 1, . . . ,2l .

5. Define Hm = c J ,m ,m = 1, . . . ,2J .

In other words, we have transformed the input vector {I j ,k;T }T−1
k=0 into the Haar-Fisz output

vector {H j ,k;T }T−1
k=0 . This Haar-Fisz processing is then replicated at each scale j of the wavelet

periodogram.
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3.11 Appendix: Detailed Description of Simulation Studies

In this section we give a more detailed description of the simulation studies outlined in Sec-

tion 3.4. In Section 3.11.1, we describe the adaptive Neyman test (ANT) of Fan and Lin (1998)

(see Section 3.2.2) which provides the benchmark for comparison within the simulation stud-

ies outlined in Section 3.4. In Section 3.11.2, we describe the basic structure of each simulated

experiment and give a detailed description of each model outlined in Sections 3.4.1 and 3.4.2.

In Section 3.11.3 we provide results which support the discussion of the hypothesis tests in

Section 3.4.

3.11.1 Detailed Description of Adaptive Neyman Test

In this section, we describe the adaptive Neyman test (ANT) of Fan and Lin (1998) (see Section

3.2.2) which provides the benchmark for comparison with the hypothesis testing methodol-

ogy we develop in this chapter for the simulation studies outlined in Section 3.4. Firstly, we

formulate the motivating applied problem within the framework of Fan and Lin (1998). Sec-

ondly, the ANT is based on the adaptive Neyman Test Statistic (Fan, 1996). Therefore, in Sec-

tion 3.11.1.1 we briefly outline the adaptive Neyman Test Statistic before describing the ANT in

Section 3.11.1.2.

For our proposed methodology, we model the observed signals using the LSW framework

of Nason et al. (2000) (see Section 1.4.2 for details). We denote each individual profile by

{X (i ),ri
t ,T }T−1

t=0 with i = 1, 2 corresponding to one of two groups (e.g. control/ treatment) and po-

tential replicates ri = 1, . . . , Ni (i.e. Ni circadian traces in the i th group). We then assume that

the signals in each group, i = 1, 2, are underpinned by a common wavelet spectrum, denoted

S(i )
j (t/T ) at scales j ∈ 1, J (J = log2 T ) and rescaled times z = t/T ∈ (0,1).

In contrast with our proposed methodology, the ANT assumes that the observed signals in

each group, i = 1, 2, are a random sample from the model

X (i ),ri
t = f (i )(t )+ε(i ),ri

t ,

for t = 1, ...,T and potential replicates ri = 1, . . . , Ni where the random variables ε(i ),ri
t have mean

zero and variance
(
σ(i )

t

)2
. Fan and Lin (1998) then test whether there is any statistically signifi-

cant difference between groups of curves by testing

H0 : f (1)(t ) = f (2)(t ) vs. HA : f (1)(t ) 6= f (2)(t ),

based on the observed signals.

3.11.1.1 Adaptive Neyman Test Statistic

The ANT utilises the Adaptive Neyman Test Statistic of Fan (1996). The adaptive Neyman test

statistic was developed as a high–dimensional hypothesis testing technique. Formally, let X be

an n-dimensional normal random vector with

X ∼ N (θ, In).
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Fan (1996) wish to test

H0 : θ = 0 vs. HA : θ 6= 0. (94)

The maximum likelihood ratio test statistic for problem (94) tests all components of X, but this

decreases the power of the test (Fan and Lin, 1998). However, if there is a “vague prior” indi-

cating that most of the large absolute values are located on the first m components of θ, then

Fan (1996) propose testing only the first m-dimensional subproblem. Fan (1996) then develop

a method of determining the parameter m based on power considerations, which leads to the

adaptive Neyman test statistic (see Fan (1996) for details). Fan and Lin (1998) note that ap-

plying the discrete Fourier transform to the observations, X, before implementing the adaptive

Neyman test, obtains the required “vague prior”.

3.11.1.2 Adaptive Neyman Test

Fan and Lin (1998) utilise the adaptive Neyman test statistic in the development of the ANT.

Denote the standardised difference:

Zt =
X̄ (1)

t − X̄ (2)
t(

(σ̂(1)
t )2/N1 + (σ̂(2)

t )2/N2

)1/2
, (95)

where:

X̄ (i )
t = 1

Ni

Ni∑
ri=1

X (i ),ri
t (96)

and (
σ̂(i )

t

)2 = 1

Ni −1

Ni∑
ri=1

(
X (i ),ri

t − X̄ (i )
t

)2
, (97)

for i = 1, 2. Fan and Lin (1998) then define the standardised difference vector as follows:

Z = (Z1, . . . , ZT )T , (98)

where vT denotes the transpose of the vector v.

Fan and Lin (1998) further assume that the random variables, ε(i ),ri
t , i = 1, 2 are normally

distributed

ε
(i ),ri
t ∼ N

(
0,

(
σ(i )

t

)2
)

and are independent for all ri and t . Then, when N1 and N2 are “reasonably large”, the stan-

dardised difference, Zt has an approximate normal distribution with mean

dt = f (1)(t )− f (2)(t )((
σ(1)

t

)2
/N1 +

(
σ(2)

t

)2
/N2

)1/2

and variance 1. As for our proposed methodology, Fan and Lin (1998) note that when
(
σ(1)

t

)2 =(
σ(2)

t

)2
, we can use the pooled variance estimates (see Section 3.3.1.1) in equation 95.

In order to obtain the required “vague prior” of the adaptive Neyman test statistic, Fan and

Lin (1998) apply the Fourier transform to the standardized difference vector, Z, and denote the

resulting vector Z∗. The adaptive Neyman test statistic (Fan, 1996) is then applied to the vector
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Z∗ to obtain a p value for the test (as outlined in Fan and Lin (1998)).

3.11.2 Basic Structure of Hypothesis Tests and Model Details

3.11.2.1 Basic Structure

The basic structure of each simulated experiment can be described as follows. In each case,

we assumed that the signal was a realisation of length T = 256 from one of i = 1,2 possible

groups, each having (possibly) different spectral structure. A set of N1 = N2 = 1,10,25,50 signal

realisations for each group was generated either from variously defined: spectra (models P1–

P5 and M1 and M2); AR processes (models P6, P7, M3 and M4) or ‘function plus noise’ time

series (models P8–P12 and M5).

For the models defined by group spectra (models P1–P5 and M1 and M2), signal realisa-

tions were generated using the locits package in R (available from the CRAN package repos-

itory) and the representation in equation (77) with the Haar wavelet and a Gaussian orthonor-

mal increment sequence with mean zero and unit variance. (Note that thewavethresh pack-

age in R preceded the locits package and can also be used to generate LSW processes. For

more information on how to generate LSW processes from a particular spectrum see Nason

(2010).)

3.11.2.2 Model Details

In this section we give a detailed description of each model outlined in Sections 3.4.1 and 3.4.2.

1. P1: Fixed Spectra. We follow Krzemieniewska et al. (2014) Section 4.1.1- Fixed spectra

where the spectra of the two groups differ only at the finest level by 100 coefficients. We

simulate each replicate ri -th time series of length T = 256 of the i -th group from the

wavelet spectrum {S(i )
j (z)}J

j=1 which we define for each of the i = 1,2 groups as follows:

S(1)
j (z) =


4cos2(2πz), for j = 3, z ∈ (0,1)

1, for j = 7, z ∈ (1/256,56/256)

0, otherwise;

(99)

and

S(2)
j (z) =


4cos2(2πz), for j = 3, z ∈ (0,1)

1, for j = 7, z ∈ (1/256,156/256)

0, otherwise.

(100)

Figure 40 provides a visualisation of the wavelet spectra (top row) and an example of a

signal realisation from each of the two groups (bottom row).

2. P2: Fixed Spectra-Fine Difference. For our next study, we modify the setting above such

that the spectra of the two groups differ by 6 coefficients (in resolution level 7). Therefore,

{S(1)
j (z)}J

j=1 is as defined in equation (99) above but we specify the evolutionary wavelet
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Figure 40: P1:Fixed Spectra. Top left: Group 1 wavelet spectrum; Top right: Group 2 wavelet
spectrum; Bottom left: Group 1 realisation; Bottom right: Group 2 realisation.

Figure 41: P2:Fixed Spectra-Fine Difference. Top left: Group 1 wavelet spectrum; Top right:
Group 2 wavelet spectrum; Bottom left: Group 1 realisation; Bottom right: Group 2 realisation.

spectrum {S(2)
j (z)}J

j=1 as follows:

S(2)
j (z) =


4cos2(2πz), for j = 3, z ∈ (0,1)

1, for j = 7, z ∈ (1/256,50/256)

0, otherwise.

(101)

Figure 41 provides a visualisation of the wavelet spectra (top row) and an example of a

signal realisation from each of the two groups (bottom row).

3. P3: Fixed Spectra-Plus Constant. We now define fixed spectra such that the spectra of

the two groups differ by a constant at the finest resolution level. Therefore, {S(1)
j (z)}J

j=1

is as defined in equation (99) above but we specify the evolutionary wavelet spectrum
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Figure 42: P3:Fixed Spectra-Plus Constant. Top left: Group 1 wavelet spectrum; Top right:
Group 2 wavelet spectrum; Bottom left: Group 1 realisation; Bottom right: Group 2 realisation.

{S(2)
j (z)}J

j=1 as follows:

S(2)
j (z) =



4cos2(2πz), for j = 3, z ∈ (0,1)

2, for j = 7, z ∈ (1/256,56/256)

1, for j = 7, z ∈ (57/256,256/256)

0, otherwise.

(102)

Figure 42 provides a visualisation of the wavelet spectra (top row) and an example of a

signal realisation from each of the two groups.

4. P4/P5: Gradual Period Change. With this simulation study aiming to replicate a typical

circadian experiment with changes beyond the stationarity assumption, we define time

series as realisations from one of 3 possible groups, each with different spectral charac-

teristics. In particular, each group represents a time series that gradually changes period

from 24 to: 25 (Group 1), 26 (Group 2) and 27 (Group 3) over (approximately) two days,

before continuing with the relevant period for a further two days. We choose T = 256

which is equivalent to a free-running period of 4 days with equally spaced observations

every 22.5 minutes. Figure 43 shows the wavelet spectra which display the gradually

changing periods that define each of the 3 groups. (Note that the increased period is

shown by the movement up through the resolution levels and the gradual increase in pe-

riod of the wavelet coefficients.) To determine which changes can be discriminated by

the methods, we perform two studies within this setting: P4: simulations from Group 1

and Group 2 and P5: simulations from Group 1 and Group 3.

5. P6/P7: AR Processes with Time-Varying Coefficients. The signals in models P1–P5 are

generated from a defined group spectrum, satisfying the underlying LSW modelling as-

sumptions of our proposed tests. The purpose of this study is to asses the performance

of our tests when these assumptions are not met. Therefore, we simulate from an im-

portant class of nonstationary processes– AR processes with time-varying coefficients.
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Figure 43: P4/P5: Gradual Period Change. Left: Group 1 wavelet spectrum (gradual period
change from 24 to 25 hours); Centre: Group 2 wavelet spectrum (gradual period change from
24 to 26 hours); Right: Group 3 wavelet spectrum (gradual period change from 24 to 27 hours).

Time-varying parameters Time Index Group i = 1 Group i = 2

φ(i )
1 (t ) t = 1, . . . ,53 0.8 0.8

t = 54, . . . ,128 -0.9 -0.3
t = 129, . . . ,256 0.8 0.8

φ(i )
2 (t ) t = 1, . . . ,256 -0.81 -0.81

Table 18: P6: AR Processes with Abruptly Changing Parameters. The abruptly changing pa-
rameters of two nonstationary autoregressive processes.

We propose a simulation study in a setting as described in Fryzlewicz and Ombao (2009)

Section 4.1 Cases 1 and 2.

P6: AR Processes with Abruptly Changing Parameters. The ri -th time series from group

i = 1,2, denoted X (i ),ri
n,t is generated from the process defined by:

X (i ),ri
t =φ(i )

1 (t )X (i ),ri
t−1 +φ(i )

2 (t )X (i ),ri
t−2 +ε(i ),ri

t , (103)

where the innovations ε(i ),ri
t are independent and identically distributed (iid) Gaussian

with zero mean and unit variance. In this study, the squared difference between the

group spectra is relatively small and the abruptly changing parameters for the two groups

are shown in Table 18. Representative time series plots from each group and the esti-

mated spectra are shown in Figure 44.

P7: AR Processes With Slowly Changing Parameters. The ri -th time series from group

i = 1,2, denoted X (i ),ri
t is generated from the process defined by:

X (i ),ri
t =φ(i )

1 (t )X (i ),ri
t−1 +φ(i )

2 (t )X (i ),ri
t−2 +ε(i ),ri

t , (104)

where the innovations ε(i ),ri
t are iid Gaussian with zero mean and unit variance. In this

study, the group wavelet spectra are highly similar and hence the squared difference

between group spectra is relatively small. The slowly changing parameters for groups
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Figure 44: P6: AR Processes with Abruptly Changing Parameters. Nonstationary autoregres-
sive processes. Top left: Estimated wavelet spectrum of Group 1; Top right: Estimated wavelet
spectrum of Group 2; Bottom left: Group 1 realisation; Bottom right: Group 2 realisation.

Time-varying parameters Group i = 1 Group i = 2

φ(i )
1 (t ) −0.8[1−0.7cos(πt/T )] −0.8[1−0.1cos(πt/T )]

φ(i )
2 (t ) -0.81 -0.81

Table 19: P7: AR Processes With Slowly Changing Parameters. The slowly changing parame-
ters of two nonstationary autoregressive processes.

i = 1,2 are shown in Table 19. Representative time series plots from each group and the

estimated spectra are shown in Figure 45.

6. P8–P12: ‘Function Plus Noise’ Time Series (Constant Period). This study follows Zielin-

ski et al. (2014) and generates each time series using an underlying cosine curve with

additive noise, which also coincides with the theoretical assumptions of the ANT. As in

Models P4 and P5, we choose T = 256, which is equivalent to a free-running period of

4 days with equally spaced observations every 22.5 minutes. The ri -th time series from

group i = 1,2, denoted X (i ),ri
t is generated from the process defined by:

X (i ),ri
t = f (i )(t )+ε(i ),ri

t , (105)

where the random variables ε(i ),ri
t are iid Gaussian with zero mean and unit variance and

the functions f (i )(t ) are defined below. We define time series as realisations from one

of 6 possible groups, each with a different (constant) period. The function f (i )(t ) is set

as a cosine curve with an amplitude of 2 and a period of: 24 hours (Group 1), 21 hours

(Group 2), 22 hours (Group 3), 23 hours (Group 4), 23.5 hours (Group 5) and 23.75 hours

(Group 6). Representative time series plots and the estimated spectra for Groups 1 and

4 are shown in Figure 46. To determine which period changes can be discriminated by

the methods, we perform five studies within this setting: simulations from Group 1 and

Groups 2–6 (models P8–P12 respectively).
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Figure 45: P7: AR Processes with Slowly Changing Parameters. Top left: Estimated wavelet
spectrum of Group 1; Top right: Estimated wavelet spectrum of Group 2; Bottom left: Group 1
realisation; Bottom right: Group 2 realisation.

Figure 46: P10: ‘Function Plus Noise’ Time Series with Constant Period. Top left: Estimated
wavelet spectrum of Group 1 (24 hour period); Top right: Estimated wavelet spectrum of Group
4 (23 hour period); Bottom left: Group 1 realisation; Bottom right: Group 4 realisation. Grey
lines indicate a 24 hour period.
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Model P1 P2 P3 P4 P5 P6 P7 M1 M2 M3 M4

HFT
(Bon.) 69.4 3.8 72.6 4.1 51.3 2.5 21.8 2.8 4.1 0.8 1.5

HFT
(FDR) 77.7 4.9 79.0 5.4 57.9 15.2 35.9 3.2 4.8 1.7 2.1

Table 20: Simulated power and size estimates (%) for the HFT for models P1-P7 and M1-M4
with nominal size of 5% and N1 = N2 = 1 realisation from each group.

N Model
WST

(Bon.)
WST

(FDR)
FT

(Bon.)
FT

(FDR)
HFT

(Bon.)
HFT

(FDR)
HT

(Bon.)
HT

(FDR)

10 P1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 P2 3.5 4.6 51.9 54.3 4.1 6.5 16.9 17.4
10 P3 100.0 100.0 100.0 100.0 100.0 100.0 4.2 4.3
10 P4 0.5 0.6 8.4 10.8 4.8 7.0 50.4 55.4
10 P5 0.4 1.1 22.6 31.0 73.4 80.2 95.8 98.4
10 P6 92.2 99.7 14.7 16.4 3.4 30.7 11.6 12.2
10 P7 99.2 100.0 11.5 12.1 30.0 54.7 75.6 77.4

50 P1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 P2 94.8 97.2 100.0 100.0 87.1 88.5 100.0 100.0
50 P3 100.0 100.0 100.0 100.0 100.0 100.0 5.3 5.3
50 P4 11.8 28.0 96.0 99.0 92.0 94.8 100.0 100.0
50 P5 60.2 86.6 100.0 100.0 100.0 100.0 100.0 100.0
50 P6 100.0 100.0 100.0 100.0 96.7 100.0 99.3 99.8
50 P7 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0

Table 21: Simulated power estimates (%) for models P1-P7 with nominal size of 5%. N = N1 =
N2 is the number of realisations in each group. Highest empirical power estimates are high-
lighted in bold.

3.11.3 Supplementary Tables

In this section we provide results which support the discussion of the hypothesis tests in Sec-

tion 2.4. We report the simulated power and size estimates for N1 = N2 = 1,10,50 for the simu-

lation studies outlined in Sections 3.4.1 and 3.4.2 in tables 20 – 23. Additionally, we report the

number of rejections for the FT for model M4 with N1 = N2 = 10 and 25 and both multiple-

hypothesis testing methods in Table 24.

We also report the simulated power and size estimates for N1 = N2 = 25 for the simulation

studies outlined in: Section 3.4.3.1 in Tables 25 and 26 and Section 3.4.3.2 in Tables 27 and 28.
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N Model
Test Group

Period
WST

(FDR)
FT

(FDR)
HFT

(FDR)
HT

(FDR) ANT

10 P8 21 100.0 100.0 100.0 100.0 100.0
10 P9 22 100.0 100.0 93.3 100.0 100.0
10 P10 23 100.0 100.0 31.9 100.0 100.0
10 P11 23.5 100 96.1 9.5 99.4 100.0
10 P12 23.75 81.2 14.6 5.6 32.4 100.0

10 M5 24 2.0 2.1 3.1 4.1 7.9
25 M5 24 3.0 2.7 2.7 3.5 4.8

Table 22: Simulated size and power estimates (%) for models P8-P12 and M5 with nominal
size of 5% and using the false discovery rate procedure (FDR). N = N1 = N2 is the number of
realisations in each group. Note: Control group period is 24 hours in each model.

N Model
WST

(Bon.)
WST

(FDR)
FT

(Bon.)
FT

(FDR)
HFT

(Bon.)
HFT

(FDR)
HT

(Bon.)
HT

(FDR)

10 M1 0.3 0.5 2.6 3.3 1.0 2.6 2.5 2.7
10 M2 0.0 0.2 2.4 3.6 2.0 5.0 3.3 3.3
10 M3 0.3 1.2 4.1 4.4 0.2 1.4 1.9 2.1
10 M4 0.4 1.6 5.1 5.6 0.9 1.8 2.1 2.2

50 M1 0.4 1.1 2.4 3.9 0.3 2.4 3.1 3.3
50 M2 0.3 0.6 3.1 3.8 1.4 3.1 2.5 2.6
50 M3 0.5 1.2 4.4 4.8 0.2 2.2 3.9 4.2
50 M4 0.2 1.1 4.4 4.8 1.3 2.6 2.8 2.9

Table 23: Simulated size estimates (%) for models M1-M4 with nominal size of 5%. N = N1 = N2

is the number of realisations in each group. Empirical size estimates over the nominal size of
5% are highlighted in bold.

N
Multiple-hypothesis

Testing Method
1

Rej.
2

Rej.
3

Rej.
4

Rej.
>5

Rej.
Modified Empirical

Size Estimate

10 Bon. 44 5 2 0 0 0.7
10 FDR 40 12 3 0 1 1.6

25 Bon. 38 8 0 0 0 0.8
25 FDR 31 16 3 2 0 2.1

50 Bon. 39 5 0 0 0 0.5
50 FDR 32 10 3 0 3 1.6

Table 24: M4: AR Process with Slowly Changing Parameters. Numbers of rejections in empiri-
cal size estimates for the Raw Periodogram F-Test (FT), with Bonferroni Correction (Bon.) and
false discovery rate (FDR) and with nominal size of 5%. “Modified Empirical Size Estimate” is
calculated by examining only cases with more than one significant coefficient.
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Model Test N(0,1) t5 t3

P1 WST 100.0 100.0 100.0
P1 FT 100.0 100.0 100.0
P1 HFT 100.0 99.9 88.4
P1 HT 100.0 100.0 93.3

P2 WST 48.0 30.5 11.6
P2 FT 100.0 100.0 100.0
P2 HFT 31.8 5.6 1.6
P2 HT 86.4 53.5 17.9

P3 WST 100.0 100.0 100.0
P3 FT 100.0 100.0 100.0
P3 HFT 100.0 100.0 97.0
P3 HT 4.4 2.4 1.9

P4 WST 2.7 1.2 0.6
P4 FT 54.5 49.1 35.7
P4 HFT 36.5 4.7 4.0
P4 HT 100.0 79.7 40.0

P5 WST 14.6 1.1 0.3
P5 FT 99.9 76.6 32.9
P5 HFT 100.0 30.1 11.3
P5 HT 100.0 81.6 38.4

M1 WST 1.3 0.7 0.1
M1 FT 3.1 4.1 14.5
M1 HFT 2.0 3.2 1.8
M1 HT 2.7 2.7 0.6

M2 WST 0.6 0.1 0.4
M2 FT 3.9 4.5 4.5
M2 HFT 3.3 2.9 2.1
M2 HT 2.7 0.9 0.9

Table 25: Potential Non-Gaussian Innovations: Simulated size and power estimates (%) for
models P1-P5 and M1, M2 with nominal size of 5% and N1 = N2 = 25 realisations from each
group. Innovations are distributed as: standard normal (denoted N(0,1)) or t-distribution with
5 or 3 degrees of freedom (denoted t5, t3 respectively). For the FT, the modified size and power
estimates are recorded (i.e. only consider cases when more than 5 rejections are reported– see
Section 3.4.2). Empirical size estimates over the nominal size of 5% are highlighted in bold.
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Model Test N(0,1) t5 t3

P8 WST 100.0 100.0 100.0
P8 FT 100.0 100.0 100.0
P8 HFT 100.0 100.0 99.6
P8 HT 100.0 100.0 100.0

P9 WST 100.0 100.0 100.0
P9 FT 100.0 100.0 100.0
P9 HFT 100.0 99.9 79.4
P9 HT 100.0 100.0 100.0

P10 WST 100.0 100.0 100.0
P10 FT 100.0 100.0 100.0
P10 HFT 92.0 59.5 25.6
P10 HT 100.0 100.0 100.0

P11 WST 100.0 100.0 100.0
P11 FT 100.0 100.0 100.0
P11 HFT 31.8 15.1 8.1
P11 HT 100.0 100.0 99.5

P12 WST 100.0 98.5 52.4
P12 FT 97.9 83.6 80.0
P12 HFT 9.1 5.9 3.6
P12 HT 98.3 77.2 31.6

M5 WST 3.0 1.0 1.5
M5 FT 2.7 1.7 10.4
M5 HFT 2.7 2.0 0.9
M5 HT 3.5 4.2 1.5

Table 26: Potential Non-Gaussian Errors: Simulated size and power estimates (%) for mod-
els P8-P12 and M5 with nominal size of 5% and N1 = N2 = 25 realisations from each group.
The noise term in equation (105) is distributed as: standard normal (denoted N(0,1)) or t-
distribution with 5 or 3 degrees of freedom (denoted t5, t3 respectively). For the FT, the mod-
ified size and power estimates are recorded (i.e. only consider cases when more than 5 rejec-
tions are reported– see Section 3.4.2). Empirical size estimates over the nominal size of 5% are
highlighted in bold.
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Model Test

Haar
wavelet
(1 V.M.)

Daubechies’
least-asymmetric

(4 V.M.)

Daubechies’
extremal phase

(10 V.M.)

P1 WST 100.0 100.0 100.0
P1 FT 100.0 100.0 100.0
P1 HFT 100.0 100.0 100.0
P1 HT 100.0 100.0 100.0

P2 WST 48.0 55.7 44.6
P2 FT 100.0 100.0 100.0
P2 HFT 31.8 78.2 73.9
P2 HT 86.4 99.9 99.6

P3 WST 100.0 100.0 100.0
P3 FT 100.0 100.0 100.0
P3 HFT 100.0 100.0 100.0
P3 HT 4.4 4.2 6.0

P4 WST 2.7 23.5 25.1
P4 FT 54.5 91.9 89.4
P4 HFT 36.5 96.5 78.0
P4 HT 100.0 50.8 12.3

P5 WST 14.6 55.3 68.0
P5 FT 99.9 98.6 100.0
P5 HFT 100.0 74.7 99.8
P5 HT 100.0 36.5 52.6

M1 WST 1.3 0.3 0.2
M1 FT 3.1 2.5 2.9
M1 HFT 2.0 2.0 1.6
M1 HT 2.7 1.3 1.8

M2 WST 0.6 0.0 0.2
M2 FT 3.9 1.8 2.8
M2 HFT 3.3 2.8 3.0
M2 HT 2.7 2.6 2.0

Table 27: Sensitivity to Generation and Estimation Wavelet Mismatch: Simulated size and
power estimates (%) for models P1-P5 and M1, M2 with nominal size of 5% and N1 = N2 = 25
realisations from each group. In all settings, the Haar wavelet is used for spectral estimation,
but the following wavelets are used to generate the true spectra: Haar wavelets, Daubechies’
least-asymmetric wavelets with 4 vanishing moments (V.M.) and Daubechies’ extremal phase
wavelets with 10 vanishing moments, respectively.
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Model Test

Haar
wavelet
(1 V.M.)

Daubechies’
least-asymmetric

(4 V.M.)

Daubechies’
extremal phase

(10 V.M.)

P6 WST 100.0 100.0 100.0
P6 FT 100.0 89.2 100.0
P6 HFT 100.0 89.5 87.6
P6 HT 100.0 68.7 66.3

P7 WST 100.0 100.0 100.0
P7 FT 100.0 92.0 93.0
P7 HFT 100.0 100.0 100.0
P7 HT 100.0 100.0 100.0

P8 WST 100.0 100.0 100.0
P8 FT 100.0 100.0 100.0
P8 HFT 100.0 100.0 100.0
P8 HT 100.0 100.0 100.0

P9 WST 100.0 100.0 100.0
P9 FT 100.0 100.0 100.0
P9 HFT 100.0 100.0 100.0
P9 HT 100.0 100.0 100.0

P10 WST 100.0 100.0 100.0
P10 FT 100.0 100.0 100.0
P10 HFT 92.0 92.5 92.0
P10 HT 100.0 100.0 100.0

P11 WST 100.0 100.0 100.0
P11 FT 100.0 100.0 100.0
P11 HFT 31.8 28.8 32.6
P11 HT 100.0 100.0 100.0

P12 WST 100.0 100.0 100.0
P12 FT 97.9 99.4 98.1
P12 HFT 9.1 7.1 7.9
P12 HT 98.3 98.8 99.1

Table 28: Sensitivity to the Change of Modelling Wavelet: Simulated power estimates (%)
for models P6-P12 with nominal size of 5% and N1 = N2 = 25 realisations from each group.
Different wavelets are used for the wavelet spectral estimation: Haar wavelets, Daubechies’
least-asymmetric wavelets with 4 vanishing moments (V.M.) and Daubechies’ extremal phase
wavelets with 10 vanishing moments, respectively.
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Name
(Acronym) Designed to ... Strengths Weaknesses

Wavelet Spec-
trum Test
(WST)

Detect whether two
groups display signifi-
cant differences in the
evolution of their spec-
tral structures, and if
so, the particular scales
and times at which such
differences occur.

Utilises CLT-type
idea, therefore not
sensitive to normality
assumption when
number of replicates
is large.

Power heavily de-
pendent on sample
size.

Raw peri-
odogram F-Test
(FT)

Detect whether two
groups display signifi-
cant differences in the
evolution of their spec-
tral structures, and if
so, the particular scales
and times at which such
differences occur.

Designed for (Gaus-
sian) LSW processes,
therefore can iden-
tify fine differences
between spectra.

Sensitive to normal-
ity assumption.

Haar-Fisz Test
(HFT)

Detect differences when
the total power within
a scale differs between
groups.

Can identify dif-
ferences when the
total power within a
scale differs between
groups.

Reduced perfor-
mance if there
is similar overall
power within each
scale.

Haar Test (HT) Detect whether groups
evolve according to spec-
tra that have the same
shape (up to an additive
constant) at each scale.

Can identify small
differences between
spectra.

It needs to be used
in conjunction with
WST or FT.
The plot indicating
where significant
differences are lo-
cated in the series
is less easy to in-
terpret than the
‘barcode’ plots of
the other tests.

Table 29: A summary of the hypothesis tests developed in this chapter.

3.12 Appendix: Summary Table

Table 29 provides a summary of the hypothesis tests developed in this chapter detailing the test

name, its acronym, strengths and weaknesses for each of the proposed tests.
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4 Investigating the Effect of Soil Pollution on the Plant Circadian Clock

The methodology developed throughout this thesis was motivated by a specific application in

the field of circadian biology– the effect of industrial and agricultural pollutants on the plant

circadian clock (Foley et al., 2005; Senesil et al., 1998; Hargreaves et al., 2018; Nicholson et al.,

2003). The ‘Cerium dataset’ that motivated the work in Chapter 2 and the ‘Lead dataset’ that

motivated the development of the raw periodogram F–test in Chapter 3 were taken from a

broad investigation of the effect of various salt stresses on plants (Oakenfull et al., 2018). There-

fore, in this chapter, we apply the wavelet spectral testing and clustering methodologies to the

dataset in Oakenfull et al. (2018), to organize and understand the impact on plant circadian

rhythms of a comprehensive range of environmentally relevant pollutants. A key strength of

the new methodologies developed in this thesis is that, compared to existing Fourier-based

methods, they allow a much more comprehensive investigation of the large datasets encoun-

tered in important practical problems, such as the dataset analysed in this chapter.

Thus, the aims of this chapter are to facilitate understanding of the environmental ramifi-

cations associated with soil pollution, thereby demonstrating the utility and additional insight

our wavelet spectral testing and clustering methodology can provide.

4.1 Introduction and Motivation

Soil pollution is defined as an alteration in the natural soil environment. Some of the most com-

mon causes are: industrial activity, application of agricultural chemicals (such as fertilisers and

pesticides) and improper disposal of waste. As a result, the growth conditions of many plants

are changing in various ways, such as exposure to essential nutrients at toxic levels, or exposure

to non—essential elements never before encountered by species in their natural environment

(Foley et al., 2005).

As discussed in Section 3.5.1, the circadian clock enhances survival by directing antici-

patory changes in physiology, synchronised with environmental fluctuations (Hanano et al.,

2006). Therefore, it is vitally important to understand the effects that soil contaminants have

on the plant circadian clock (Nicholson et al., 2003). For example, soil contamination of agri-

cultural land typically alters plant metabolism, often causing a reduction in crop yields. Soil

contaminants can also have significant consequences for ecosystems. In particular, changes

in soil chemistry which effect the numbers and fitness levels of plants will in turn have major

consequences for consumer species (and the rest of the food chain) as they respond to changes

in the food supply (Foley et al., 2005).

Part 2A of the Environmental Protection Act (1990) developed a procedure for the iden-

tification (and treatment) of ‘contaminated land’ (where contaminated land was defined ‘ac-

cording to whether it poses a significant risk to human health and/or the environment’). The

Department for Environment, Food and Rural Affairs (DEFRA) then developed ‘Soil Guideline

Values’ (SGVs) that can be used to determine appropriate concentrations of certain chemicals

in soil. Oakenfull et al. (2018) investigated the impact of exposure to the chemicals at the con-

centrations outlined in this report on the plant circadian clock (see Table 30). However, the

SGVs do not comprise an exhaustive list of the potential chemicals that plants can be exposed

to in the modern world. In particular, advances in technology utilising the latest developments

in material science rely on a growing range of previously unused chemicals (Nicholson et al.,
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2003). Therefore, Oakenfull et al. (2018) also investigated the effects of an extensive list of chem-

icals on the circadian clock of A. thaliana (see Tables 35 and 36).

This chapter is organised as follows. Section 4.2 outlines the experimental details that led

to the datasets analysed in this chapter. Section 4.3 reports the results of the analysis a circa-

dian biologist would typically use. In Sections 4.4 and 4.5, we apply the wavelet spectral test-

ing developed in Chapter 3 to the motivating circadian datasets before applying the clustering

methodology in Section 4.6. Section 4.7 concludes with a brief discussion and suggests topics

for further investigation.

4.2 Experimental Details

A comprehensive description of the biological experimental details (carried out in the Davis

Lab, University of York) can be found in Oakenfull et al. (2018). Briefly, each dataset was ob-

tained following the method outlined for the Lead dataset in Chapter 3 (Appendix 3.7). How-

ever, we generalise this method to include other salt stresses as follows: six-day-old seedlings

were transferred to 96 well microtiter plates containing Hoagland’s media (Hoagland et al.,

1950) with or without a supplemental chemical at a specific concentration. Therefore, each

microtiter plate comprises a control group and 3 chemical treatment groups (each contain-

ing 24 plants). A full list of the exact chemicals used and their concentrations can be found in

Tables 30, 35 and 36.

For the elements described in the DEFRA guidelines (henceforth referred to as the ‘DE-

FRA chemicals’), the maximum permissible concentration was tested (denoted ‘Max’) as well

as half of the maximum concentration (denoted ‘Half’) for the Ph of the media used (5.5<6.0).

Note that the ‘Lead dataset’ from Chapter 3 corresponds to the Lead (Max) group from this

investigation. For the remaining elements, multiple concentrations were tested: the final con-

centration for each chemical (appearing in Tables 35 and 36) was the maximum concentration

possible before becoming toxic to the plant. For each element, more than one compound was

tested (where possible), with the intention of helping to establish whether the effects on the

clock were due to the anion or cation of each compound.

A control group was included on each microtiter plate for a number of reasons. Firstly,

since we are investigating the effect of exposure to a particular chemical, we should compare

it to a control group that was not exposed to the chemical, but otherwise experienced identi-

cal growth conditions. In particular, in the control groups in Chapter 2, we noted individual–

level variability in plant response to stimuli, despite their sharing identical genetic character-

istics (Doyle et al., 2002) which we concluded may be due to the individual plants in some

instances showing a stress response, perhaps induced by the experimental method itself (Har-

greaves et al., 2018). This demonstrates that it is of the utmost importance that the control

and treatment groups should experience identical growth conditions, and therefore the same

stresses, as otherwise the specific experimental stress response may be confounded with the

effect of the chemical treatment. Furthermore, the machine that measures the luminescence

(a TopCount NXT scintillation counter (Perkin Elmer)– see Chapters 2 and 3) iterates through

multiple microtiter plates within an experiment. Therefore, the exact time of a given obser-

vation is not identical for each plate (see for example the slightly different timings in Figures

47 and 48). Since we will use the coefficients of the evolutionary wavelet spectrum (which are

indexed by time) to compare the control and treatment groups, the timings of the observations
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should also be identical for both groups.

4.3 Traditional Fourier Analysis

As discussed in previous chapters, period estimation has traditionally been central to the anal-

ysis of circadian data (see for example Perea-García et al. (2016a), Costa et al. (2011)). Oakenfull

et al. (2018) used the Microsoft Excel macro BRASS (see Section 1.3.2) to produce period esti-

mates for the control and treatment groups respectively (using FFT–NLLS analysis (see Section

1.3.2.2) over a window of ZT36 to 120, considering only period estimates between 15 and 40

hours). For each concentration of DEFRA chemical, Table 30 shows: the mean period estimate;

the difference in the mean period estimates for the (appropriate) control and treatment group;

the number of plants that were analysed and the mean relative amplitude error (RAE). (Recall:

RAE is a value between 0 and 1 and gives information about the goodness of fit of the model

with a value of 0 indicating that the estimated cosine curve perfectly fits the data–see Chapters

1 and 2 for details.)

Hypothesis testing (a two-tailed t-test at the 5% significance level) was then used to com-

pare the control and treatment period estimates (see for example Perea-García et al. (2016a))

and the results for the DEFRA chemicals can also be found in Table 30. This analysis found sig-

nificant differences in period for 6 out of the 24 treatment groups: Zinc (Max), Selenium (both

concentrations), Molybdenum (both) and Lead (Half). Figure 47 displays the individual time

series for these chemicals.

4.3.1 Discussion of Findings

The results of the BRASS analysis in Table 30 suggest that Zinc (Max) and Selenium (both) in-

crease period whereas Molybdenum (both) and Lead (Half) decrease period. To an extent, this

is supported by the individual time series in Figure 47, as the average time series for the Zinc

(Max) and Selenium (both) treatment groups appear to display an increased period and the av-

erage time series for Molybdenum (Half) seems to have a shorter period. However, the rhyth-

mic behaviour of the control and treatment groups does not appear to be accurately described

by a single cosine curve with a constant period (the period and amplitude of all time series

appear to gradually change throughout the experiment).

The results in Table 30 indicate that Molybdenum (Max) causes a significant decrease in

period (of approximately 3 hours) with an RAE of 0.65. In the circadian community, standard

practice dictates that results with an RAE value above the threshold of 0.4 are discarded (Doyle

et al., 2002). Therefore, this finding would not be considered as statistically reliable using ex-

isting Fourier–based methods. The decision to discard this result is validated upon examining

Figure 50– the Molybdenum (Max) time series appear to have a shorter period before becom-

ing what is known in the circadian community as ‘arrhythmic’ (after approximately 48 hours).

This non–sinusoidal behaviour could explain the high RAE and confirms that these time series

should not be modelled by a single cosine curve with a constant period. This highlights the

urgent need for more statistically advanced approaches to analyse these types of data.

In Chapters 2 and 3, we have repeatedly seen that some changes are not detected by BRASS,

even though qualitative differences can be noted by eye. Therefore, Figure 48 displays the indi-

vidual time series for a selection of the DEFRA chemicals which were not identified as causing

a significant change in period. Of the time series displayed in Figure 48, only Cadmium (Half)
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Treatment Chemical Concentration

Period
Estimate
(hours)

Period
Difference RAE

Number
Analysed

Fluorine NaF 26mM (Max) 29.33 3.27 0.56† 3
Fluorine NaF 13mM (Half) 28.45 0.39 0.18 22

Chromium KCr(SO4)2 7mM (Max) 34.04 NA NA 1
Chromium KCr(SO4)2 3.5mM (Half) 25.89 -1.18 0.60† 5

Nickel NiCl2 10mM (Max) 29.31 0.96 0.51† 4
Nickel NiCl2 500µM (Half) 29.23 1.41 0.53† 5

Copper CuSO4 1.6mM (Max) 30.82 2.82 0.92† 4
Copper CuSO4 800µM (Half) 24.98 -2.66 0.88† 3

Zinc ZnSO4 3mM (Max) 27.97 0.56∗ 0.17 24
Zinc ZnSO4 1.5mM (Half) 27.74 0.15 0.14 22

Arsenic KAsO4 670µM (Max) 29.13 1.94 0.42† 15
Arsenic KAsO4 335µM (Half) 28.78 1.59 0.31 24

Selenium Na2SeO4 40µM (Max) 31.63 3.83∗ 0.21 19
Selenium Na2SeO4 20µM (Half) 29.59 2.48∗ 0.20 22

Molybdenum Na2MoO4 4mM (Max) 24.86 -3.18∗ 0.65† 11
Molybdenum Na2MoO4 2mM (Half) 23.89 -3.99∗ 0.32 21

Cadmium CdCl2 26µM (Max) 27.19 0.17 0.22 23
Cadmium CdCl2 13µM (Half) 27.46 0.38 0.22 24

Cadmium CdSO4 26µM (Max) 26.96 -0.32 0.20 24
Cadmium CdSO4 13µM (Half) 27.19 0.28 0.21 24

Mercury HgCl2 5µM (Max) 26.94 -0.06 0.15 23
Mercury HgCl2 2.5µM (Half) 27.43 0.13 0.18 23

Lead‡ Pb(NO3)2 1.4mM (Max) 26.82 -0.62 0.32 21
Lead Pb(NO3)2 700µM (Half) 26.74 -0.70∗ 0.20 23

Table 30: BRASS Results– DEFRA Chemicals. Summary of the output of the analysis of the
DEFRA chemicals in BRASS. “Treatment” represents the element under investigation within
the chemical compound. ∗ indicates a significant change in period from the respective control
group. † denotes an RAE value above the 0.4 threshold. “Number Analysed” is the number of
time series for which BRASS was able to return a period estimate. There are 24 plants in each
treatment group. ‡ Note that the Lead (Max) treatment group coincides with the ‘Lead dataset’
from Chapter 3.
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Figure 47: DEFRA Chemicals: Luminescence profiles over time for A. thaliana plants exposed
to a selection of the DEFRA chemicals. Each Panel: Individuals in the chemical treatment group
(in grey) along with the treatment group average (red) and the control group average (blue).
Each time series has been standardised to have mean zero.
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and Mercury (Max) appear to have no significant effect. This again demonstrates that more

statistically advanced approaches to analyse these types of data.

The results of the Fourier analysis in Table 30 suggest that a higher concentration of lead

has no effect on the circadian clock of A. thaliana, whereas the lower concentration does. The

individual time series in Figures 47 and 48 do not support this conclusion, in fact, quite the

opposite. The Lead (Half) treatment group (Figure 47) does not visually appear to be signifi-

cantly different from the control but the Lead (Max) treatment group (Figure 48) does. (Recall

the ‘Lead dataset’ and associated discussion from Chapter 3 and note that the Lead (Max) treat-

ment group is equivalent to this dataset.)

Three of the remaining treatment groups in Figure 48 appear to display similar behaviour to

certain series in Figure 47, yet the FFT–NLLS analysis found no significant difference in period.

For example, Arsenic (Max) (Figure 48) seems to display similar behaviour to Molybdenum

(Max) (Figure 47)– the average time series appears to have a similar period to the control (albeit

with a different amplitude), followed by a slight increase in period, before becoming arrhythmic

(after approximately 60 hours). Furthermore, only 15 (out of 24) time series in the Arsenic (Max)

group were analysed by BRASS giving a mean RAE of 0.42 (which is above the threshold of 0.4,

indicating a poor fit).

These examples illustrate that the time series arising from this circadian experiment display

nonstationary behaviour (Price et al., 2008; Hargreaves et al., 2018) such as changes in both pe-

riod and amplitude. Therefore, traditional methods that assume a rhythm of fixed period and

amplitude and determine period length from experimental datasets are not appropriate (see

Leise et al. (2013) and Chapter 1) and can lead to inaccurate results and misleading conclu-

sions (Harang et al., 2012; Hargreaves et al., 2018).

Visual inspection of Figure 48 shows that Copper (Max) caused the clock to become ar-

rhythmic yet this was not detected by the BRASS analysis. The reported difference in period

estimates (Table 30) instead indicates that Copper (Max) increased period (which does not

seem credible) with an RAE of 0.92. This could be due to the constraints imposed on the FFT–

NLLS procedure (to only consider period estimates between 15 and 40 hours) which clearly

are not appropriate for this dataset. Therefore, this example highlights another flaw with this

methodology– high–frequency behaviour cannot be captured using BRASS (also see the Ultra-

dian dataset in Chapter 3 and associated discussion).

4.3.2 Testing for Stationarity

As discussed in Chapter 3, one limitation of the traditional Fourier analysis is that the employed

methodology does not typically evaluate the crucial underpinning assumption of data station-

arity. In Chapter 3, we noted that the Lead (Max) dataset displayed a number of nonstationary

features, so we investigated whether the individual time series in the Lead (Max) dataset were

(second–order) stationary via hypothesis testing. We found that over 80% of the time series

provided evidence to reject the null hypothesis of stationarity. Similarly, in Section 4.3.1 above

we discussed the nonstationary features of a number of time series from the DEFRA chemical

dataset. For example, the period and amplitude of the mean time series of the (Arsenic) con-

trol and Arsenic (Half) groups appeared to change throughout the experiment. Therefore, we

investigated whether the time series in the DEFRA chemical dataset are (second-order) station-

ary. We employed the Priestley-Subba Rao test (Priestley and Rao, 1969) and a selection of the
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Figure 48: DEFRA Chemicals: Luminescence profiles over time for A. thaliana plants exposed
to a selection of the DEFRA chemicals. Each Panel: Individuals in the chemical treatment group
(in grey) along with the treatment group average (red) and the control group average (blue).
Each time series has been standardised to have mean zero.
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Treatment Group
Control

(Arsenic)
Arsenic
(Max)

Arsenic
(Half )

Copper
(Max)

Number of nonstationary time series 19 (79%) 24 (100%) 23 (96%) 6 (25%)

Table 31: Results for the Priestley-Subba Rao test of stationarity, implemented in the fractal
package in R and available from the CRAN package repository. Number of nonstationary time
series indicates the number of time series (in each treatment group) with enough evidence to
reject the null hypothesis of stationarity at the 5% significance level (as a percentage in brack-
ets).

results can be found in Table 31.

Table 31 confirms our assertion that both arsenic treatment groups display nonstation-

ary behaviour (Section 4.3.1). We also note that 79% of the (Arsenic) control group provided

enough evidence to reject the null hypothesis of stationarity. These results support the argu-

ment in Section 4.3.1, that the rhythmic behaviours of the time series arising from this experi-

ment do not appear to be accurately described by a single cosine curve with a constant period

and amplitude. Therefore, the application of the current Fourier–based methodology (which

assumes data stationarity) would be inappropriate for these time series. This highlights the

urgent need for more statistically advanced approaches for formal spectral comparison.

4.4 Wavelet Spectral Testing Using the Methodology Developed in Chapter 3

FFT-NLLS analysis with software packages such as BRASS or BioDare assumes that time series

are stationary and can be represented by sinusoidal waveforms. However, we have demon-

strated throughout this chapter that many of the time series in the DEFRA chemicals dataset

displayed broadly periodic behaviour, but with time-varying period and amplitude, conducive

to a time–evolving period. Therefore, we now use the methodology developed in Chapter 3 for

the formal spectral comparison of nonstationary time series to analyse the effects of the DEFRA

chemicals.

In this investigation we want to determine whether each DEFRA chemical affects the Ara-

bidopsis thaliana circadian clock and, if so, when and how? Hence, we choose to use the raw

periodogram F-Test (‘FT’), which was developed in Chapter 3 to detect whether the two groups

display significant differences in the evolution of their spectral structures, and if so, to identify

the scales and times at which such differences occur.

For wavelet representations, the data is often required to be of dyadic length, T = 2J . There-

fore, as in Chapter 3, our approach is to analyse a (dyadic length) segment of the data, with the

truncation decided after consultation with the experimental scientists. We then model each

circadian time series as an LSW process, estimate its corresponding group-average raw wavelet

periodogram and then construct the test statistic proposed in equation (87). For each DE-

FRA chemical and concentration, the corresponding number of rejections of spectral equality

between the treatment and control groups can be found in Table 32, with a selection of the

corresponding representative ‘barcode’ plots in Figures 50 and 51.

4.4.1 Discussion of Findings

In this section, we present the results of the wavelet spectral testing methodology proposed

in Chapter 3 and compare them with the results in Section 4.3 which represent the traditional
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Treatment Chemical Concentration
Number of Rejections

FT (FDR)
Period

Difference

Fluorine (F) NaF 26mM (Max) 501 (56%) 3.27
Fluorine (F) NaF 13mM (Half) 15 (2%) 0.39

Chromium (Cr) KCr(SO4)2 7mM (Max) 594 (66%) NA
Chromium (Cr) KCr(SO4)2 3.5mM (Half) 544 (61%) -1.18

Nickel (Ni) NiCl2 10mM (Max) 534 (60%) 0.96
Nickel (Ni) NiCl2 500µM (Half) 498 (56%) 1.41

Copper (Cu) CuSO4 1.6mM (Max) 475 (53%) 2.82
Copper (Cu) CuSO4 800µM (Half) 442 (49%) -2.66

Zinc (Zn) ZnSO4 3mM (Max) 90 (10%) 0.56∗
Zinc (Zn) ZnSO4 1.5mM (Half) 3 (0%)† 0.15

Arsenic (As) KAsO4 670µM (Max) 458 (51%) 1.94
Arsenic (As) KAsO4 335µM (Half) 123 (14%) 1.59

Selenium (Se) Na2SeO4 40µM (Max) 196 (22%) 3.83∗
Selenium (Se) Na2SeO4 20µM (Half) 198 (22%) 2.48∗

Molybdenum (Mo) Na2MoO4 4mM (Max) 346 (39%) -3.18∗
Molybdenum (Mo) Na2MoO4 2mM (Half) 284 (32%) -3.99∗

Cadmium (Cd) CdCl2 26µM (Max) 3 (0%)† 0.17
Cadmium (Cd) CdCl2 13µM (Half) 1 (0%)† 0.38

Cadmium (Cd) CdSO4 26µM (Max) 1 (0%)† -0.32
Cadmium (Cd) CdSO4 13µM (Half) 1 (0%) † 0.28

Mercury (Hg) HgCl2 5µM (Max) 1 (0%)† -0.06
Mercury (Hg) HgCl2 2.5µM (Half) 1 (0%)† 0.13

Lead (Pb) Pb(NO3)2 1.4mM (Max) 133 (15%) -0.62
Lead (Pb) Pb(NO3)2 700µM (Half) 1 (0%)† -0.70∗

Table 32: FT (FDR) results– DEFRA Chemicals. The number of rejections (as a percentage
in brackets) for the FT with FDR (at the 5% significance level) for the DEFRA Chemicals with
† denoting 0% rejections. “Treatment” represents the element under investigation within the
chemical compound. The estimated mean difference in period (using FFT–NLLS) is also shown
for reference with ∗ indicating a significant change in period from the respective control group.
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Figure 49: Mercury (Max): Luminescence profiles over time for untreated A. thaliana plants
(denoted ‘Control’) and those exposed to mercuric chloride (HgCl2) at a concentration of 5µM
(denoted ‘Mercury (Max)’). Left: Individuals in the control group (in grey) along with the group
average (blue). Right: Individuals in the Mercury (Max) treatment group (in grey) along with
the treatment group average (red) and the control group average (blue). Each time series has
been standardised to have mean zero.

Fourier–based analysis a circadian biologist would typically perform. We begin with present-

ing examples of datasets where the wavelet spectral testing supports the results of the clas-

sical BRASS analysis. This also allows us to demonstrate the additional insight our proposed

methodology can provide. We then discuss examples where the wavelet spectral testing does

not support the BRASS analysis but confirms results that were visually apparent. This highlights

another advantage of our proposed methodology over traditional methods– it can discriminate

between real data sets where the current methodology cannot.

4.4.1.1 Examples of the FT Supporting the Classical Analysis

The results in Table 32 indicate that the FT found very few rejections of the null hypothesis of

spectral equality for 8 DEFRA chemicals. As discussed in Chapter 3, circadian scientists often

choose to disregard situations where very few coefficients are significantly different and this is

our approach here. Throughout this chapter, we will not infer that chemicals cause a significant

change to the spectral behaviour when the percentage of rejections is 0 (indicated by † in Table

32). This result is supported upon visual examination of the raw time series (see, for exam-

ple, Figure 48). Figure 49 displays the raw time series for both the control group (untreated A.

thaliana plants), as well as for those in the Mercury (Max) group. The raw time series in Figure

49 show very small differences between the control and treatment groups that do not appear

to be significant. Therefore, this example illustrates that the FT supports the visually–apparent

result that these 8 chemicals have no effect on the circadian clock of A. thaliana. This result

is also supported by the BRASS analysis as, excluding Lead (Half) (see discussion below), all of

the remaining 7 chemicals (which the FT found had no significant effect) also corresponded to

a small change in period (using FFT–NLLS) that was not statistically significant.

Table 30 shows that the Fourier analysis (using FFT–NLLS implemented in BRASS) found

significant differences in period for 6 out of the 24 treatment groups: Zinc (Max), Selenium
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(both concentrations), Molybdenum (both) and Lead (Half). To an extent, these findings are

reinforced by the FT (FDR) as, for all these chemicals (other than Lead (Half)), the FT found

a number of significant differences (over 0%), which indicates that these chemicals have an

effect on the circadian clock of A. thaliana.

As discussed in Section 3.3.1, practitioners can also be (cautiously) informed by the number

of rejections of the null hypothesis of spectral equality, with larger values potentially indicat-

ing a greater departure from the null hypothesis. In this investigation, this could suggest that

a chemical has a greater effect on the circadian clock of A. thaliana. For example, the FFT-

NLLS analysis (Table 30) and time series (Figure 47) indicated that Zinc (Max) caused a small

(yet statistically significant) increase in period whereas selenium (both concentrations) caused

a larger (statistically significant) increase in period. These results were reinforced by the FT

(FDR), which found relatively few significant differences (10%) between the control and treat-

ment group spectra for Zinc (Max) and found a large number of significant differences (22%)

between the treatment and control group spectra for both concentrations of selenium (Table

32). However, as discussed in Section 3.3.1, there are a number of factors which could influence

the number of rejections, therefore, these values should be treated with caution.

In contrast with the traditional Fourier–based analysis which is limited to identifying a fixed

change in period of the circadian component of a signal, the FT can provide additional insight

by identifying the time point at which the control and treatment groups start to have different

circadian rhythms. For example, the FFT-NLLS analysis (Table 30) found that Molybdenum

(Half) caused a significant decrease in period. This result was supported by the FT (FDR) which

found a number of significant differences between the spectra (32% (Table 32), which is greater

than the 0% threshold, see discussion above). Figure 47 visually indicated that this difference in

period manifested itself after 24 hours and the barcode plot in Figure 50 supports this assertion

as the rejections of spectral equality occur after ZT24.

4.4.1.2 Examples of the FT Not Supporting the Classical Analysis

There are also a number of instances where the wavelet spectral testing does not coincide with

the Fourier–based analysis. For example, the BRASS analysis (Table 30) of Lead (Half) reported

a small but significant decrease in period, though this was not visually apparent in the raw

time series (Figure 47). However, the FT (FDR) found 0% rejections of the null hypothesis of

spectral equality. In Section 4.4.1.1, we stated that we will not infer that a chemical causes a

significant change to the spectral behaviour when the percentage of rejections is 0. Therefore,

the FT supports the result that was visually apparent– Lead (Half) has no effect on the circadian

clock of A. thaliana.

We now analyse the chemicals in Figure 48 which BRASS reported as causing no significant

effect on the circadian clock of A. thaliana. Recall: of the time series displayed in Figure 48,

only Cadmium (Half) and Mercury (Max) appeared to have no significant effect. Again, the

FT supports this (intuitive) result. Table 32 indicates that Cadmium (Half) and Mercury (Max)

have no effect on the circadian clock of A. thaliana (with 0% rejections) whereas the remaining

chemicals in Figure 48 all had a number of rejections of the null hypothesis of spectral equality.

Figure 48 visually indicated that Copper (Max) caused the clock to become arrhythmic (in-

dicated by high–frequency behaviour throughout the experiment). The FT (FDR) found a num-

ber of significant differences between the spectra (53% (Table 32), which is greater than the 0%
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Figure 50: ‘Barcode’ plots for FT (with FDR) for the time series shown in Figure 47.
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Figure 51: ‘Barcode’ plots for FT (with FDR) for the time series shown in Figure 48.
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threshold, see Section 4.4.1.1). The barcode plot in Figure 51 indicates that these differences

are located in the coarsest resolution levels 1–4, associated with circadian rhythms, and higher-

frequency levels 6 and 7, corresponding to an ultradian rhythm (see Chapter 3). We conclude

that there is evidence that the Copper (Max) alters the circadian and ultradian rhythms within

A. thaliana.

Arsenic (Half) appeared to cause a period lengthening effect (Figure 48) and the FFT-NLLS

analysis supported this (though the result was not statistically significant). The FT (FDR) found

enough evidence to reject the null hypothesis of spectral equality at the 5% level (14% of co-

efficients tested found to be significantly different (Table 32), which is greater than the 0%

threshold, see Section 4.4.1.1). The time series (Figure 48) also indicated that the change in

periodicity only occurred after ZT84 and this is reflected in the barcode plot in Figure 51 where

we note that most significant differences appear after ZT84. We conclude that there is evidence

that Arsenic (Half) does affect the circadian clock of A. thaliana, and this change manifests

itself after approximately three days of free-running conditions.

Arsenic (Max) appeared to spike at ZT36 before increasing in period while decreasing in

amplitude at ZT72 and becoming arrhythmic (see Figure 48). The FFT–NLLS analysis found no

significant difference in period between the two groups whereas the FT (FDR) found a num-

ber of significant differences between the spectra (51% (Table 32), which is greater than the

0% threshold, see Section 4.4.1.1). Furthermore, the barcode plot reflects the visual differences

noted above, with rejections of the null hypothesis of spectral equality (between the control

and treatment group) located (at all scales) at ZT36, ZT72 and after ZT84 in Figure 51. We con-

clude that there is evidence that Arsenic (Max) alters circadian and ultradian rhythms within A.

thaliana.

4.4.2 Conclusions

In Section 4.1, we introduced the ‘Soil Guideline Values’ (SGVs) that can be used to determine

appropriate concentrations of certain chemicals in soil. We also recall that ‘contaminated land’

was defined ‘according to whether it poses a significant risk to human health and/or the envi-

ronment’ (Environmental Protection Act, 1990). In Sections 3.5.1 and 4.1 we noted that altered

plant circadian clocks (e.g. due to changes in the plant’s chemical environment) could have a

large impact on the numbers and fitness levels of plants, which would in turn have major con-

sequences for consumer species (and thus entire ecosystems) as they respond to a reduction

in the food supply (Foley et al., 2005). Thus, if a certain chemical at a particular concentration

affects the plant circadian clock, it would indeed pose a ‘significant risk to... the environment’

and hence would satisfy the definition of ‘contaminated land’ as outlined in the Environmen-

tal Protection Act (1990). Therefore, if the DEFRA guidelines are appropriate, all treatments

should have no effect on the circadian clock of A. thaliana, as the chemicals were tested at

or below the maximum permitted concentrations. However, the wavelet spectral testing in

Section 4.4 (Table 32) reveals that many of the DEFRA chemicals do have an effect. This sug-

gests that the DEFRA guidelines may need to be revised for all chemicals in Table 30 excluding

cadmium and mercury. In particular, the results in Table 32 indicate that for most of these

chemicals (fluorine, chromium, nickel, copper, arsenic, selenium and molybdenum) half of

the recommended maximum permitted concentration significantly affects the circadian clock

of A. thaliana. These results suggest that the SGVs of these seven chemicals should be below
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half the current value.

The results of this section are of particular importance as they suggest that currently ac-

ceptable levels of a large number of chemicals could be having a detrimental effect on many

ecosystems, leading to the potential extinction of certain species.

4.5 Extension to Other Chemicals

The DEFRA chemicals do not encompass all elements in the periodic table. This could be due

to the fact that, when the guidelines were written in 1990, certain chemicals were not antic-

ipated to be found in UK soils. However, advances in technology mean that, in the modern

world, plants are being exposed to a wider range of chemicals than ever before (Foley et al.,

2005). Alternatively, the exclusion of certain chemicals from the guidelines could also imply

that they are permitted at any concentration. Therefore, Oakenfull et al. (2018) also tested a

comprehensive range of environmentally relevant pollutants to ascertain whether these chem-

icals have an effect on the plant circadian clock and hence determine if the SGVs should be

extended to include other chemicals. A full list of chemicals and concentrations tested can be

found in Tables 35 and 36 (Appendix 4.8).

As in Section 4.3, FFT-NLLS analysis was implemented to establish whether each chemical

induced a change in periodicity and the results can be found in Tables 35 and 36 (Appendix

4.8). As discussed in Section 4.3.1, the results of the FFT–NLLS analysis can be used to group the

tested chemicals by effect: ‘No Change’, ‘Period Lengthening’ or ‘Period Shortening’. Oakenfull

et al. (2018) visualised these groupings in a colour–coded periodic table (Figure 52A). Figure

52A can then be used by circadian biologists to ascertain if certain groups of elements (such

as the rare earth metals) are having a similar effect on the circadian clock of A. thaliana. Such

results could offer biological insight into the mechanistic basis for the plant circadian clock.

However, the biological details are beyond the scope of this thesis.

The FT (FDR) was also implemented and the results can be found in Tables 35 and 36 (Ap-

pendix 4.8). Figures 53 and 54 display the individual time series and corresponding represen-

tative ‘barcode’ plots for a selection of the extension chemicals. As discussed in Section 3.3.1.2,

there may be practical situations where practitioners can also be (cautiously) informed by the

number of rejections of the null hypothesis of spectral equality, with larger values potentially

indicating a greater departure from the null hypothesis. In this application, larger numbers of

rejections could suggest a greater difference between the spectral behaviour in the control and

chemical treatment groups and hence could indicate that a chemical has a greater effect on the

circadian clock of A. thaliana. Therefore, Oakenfull et al. (2018) also used the percentage of re-

jections for the FT with FDR (at the 5% significance level) as a (coarse) dissimilarity measure, to

produce a colour–coded periodic table (Figure 52B). Figure 52B can then be used by practition-

ers as a quick reference guide to deduce which chemicals are potentially the most hazardous

to the environment.

4.5.1 Discussion of Findings

4.5.1.1 Examples of the FT Supporting the Classical Analysis

The results in Tables 35 and 36 indicate that the FT found 0% rejections of the null hypothesis

of spectral equality for 11 chemicals. Therefore, (as discussed in Section 4.4) we will not assume
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Figure 52: Periodic tables, coloured by effect on the circadian clock of A. thaliana (Oakenfull
et al., 2018). A: Coloured by FFT-NLLS period estimates (red outlines indicate a statistically
significant change in period for all compounds tested). B: Coloured by percentage change from
control using FT (FDR) analysis. A and B: Green elements are essential to life and were not
tested individually; White elements were not tested due to safety or solubility. The actinoids
and group 7 elements have been omitted as they were not tested.
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Figure 53: Time series and Barcode plots for Strontium, Platinum and Rubidium. Time se-
ries (left panels): Blue lines indicate the control average for each chemical; grey lines indicate
individual time series within each chemical treatment group and red lines indicate the average
time series for the chemical treatment group. Barcode plots (right panels): Barcode plots for FT
(with FDR) at the 5% significance level.
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Figure 54: Time series and Barcode plots for Gold, Tungsten and Lutetium. Time series (left
panels): Blue lines indicate the control group average for each chemical; grey lines indicate
individual time series within each chemical treatment group and red lines indicate the average
time series for the chemical treatment group. Barcode plots (right panels): Barcode plots for FT
(with FDR) at the 5% significance level.
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that these chemicals have a significant effect on the circadian clock of A. thaliana. These results

are also supported by the BRASS analysis as, excluding Ruthenium (see discussion below), all

of the remaining chemicals (which the FT found had no significant effect) also corresponded to

a small change in period (using FFT–NLLS) that was not statistically significant. Furthermore,

this conclusion is also supported by visual examination of the raw time series of each treat-

ment group and its respective control. For example, Figures 53 and 54 display the raw time

series and corresponding barcode plots for the Rubidium and Gold treatment groups, respec-

tively. The raw time series in Figures 53 and 54 suggest that there may be very small differences

between the average time series of control and treatment groups; however, these differences

do not appear to be significant.

Tables 35 and 36 indicate that the Fourier analysis (using FFT–NLLS implemented in BRASS)

found significant differences in period for 28 treatment groups. To an extent, these findings are

reinforced by the FT (FDR) as for all these chemicals (other than Ruthenium– see discussion

below) the FT found a number of significant differences (over the 0% threshold, see Section

4.4.1.1), indicating that these chemicals have an effect on the circadian clock of A. thaliana.

For example, on examining Table 36, note that the BRASS analysis found that Platinum caused

a significant decrease in period and the FT also found a number of rejections of spectral equal-

ity (46%, which is greater than the 0% threshold). Furthermore, the barcode plot (Figure 53)

shows that the differences between the treatment group and control lie in resolution levels 2–4

(directly corresponding to a circadian rhythm). We conclude that there is evidence that Plat-

inum does affect the circadian clock of A. thaliana.

Combining the results of the FFT-NLLS analysis (where appropriate) and the FT can also

provide more detail regarding the change in period. For example, the BRASS analysis found

that Strontium and Platinum both cause a significant change in period (see Table 36) but the

barcode plots (Figure 53) show that Platinum is faster–acting than Strontium since the differ-

ences between the two spectra in resolution levels 2–4 are present throughout the experiment

for Platinum but only appear after ZT106 for Strontium. This conclusion is also visually sup-

ported by the time series in Figure 53.

The FT can also provide additional insight that cannot be captured through a single period

estimate, such as changes in spectral behaviour at multiple scales. For example, Strontium

also induces high–frequency behaviour throughout the experiment (see Figure 53). This is re-

flected in the large number of significant differences in the finest resolution level (level 6) of

the barcode plot in Figure 53 throughout the experiment. We conclude that there is evidence

that Strontium alters the circadian and ultradian rhythms within A. thaliana. Furthermore,

Strontium induces ultradian rhythms from the start of the experiment, but the changes to the

circadian rhythms occur after ZT106.

4.5.1.2 Examples of the FT Not Supporting the Classical Analysis

There are also a number of instances where the wavelet spectral testing does not coincide with

the Fourier–based analysis. For example, the BRASS analysis of Ruthenium reported a small

but significant increase in period (see Table 36). Conversely, the FT (FDR) found 0% rejections

of the null hypothesis of spectral equality (also see Table 36). As discussed in Section 4.4.1.1,

circadian scientists often choose to disregard situations where very few coefficients are signif-

icantly different. Therefore, throughout this chapter, we have applied a 0% threshold for in-
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Figure 55: Ruthenium: Luminescence profiles over time for untreated A. thaliana plants (de-
noted ‘Control’) and those exposed to ruthenium chloride (RuCl3) at a concentration of 2mM
(denoted ‘Ruthenium’). Left: Individuals in the control group (in grey) along with the group
average (blue). Right: Individuals in the Ruthenium treatment group (in grey) along with the
treatment group average (red) and the control group average (blue). Each time series has been
standardised to have mean zero.

ferring that chemicals cause a significant change to the spectral behaviour. Hence, the results

of the FT suggest that there is not enough evidence that Ruthenium affects the circadian clock

of A. thaliana. Figure 55 displays the raw time series for both the control group (untreated A.

thaliana plants), as well as for those in the Ruthenium treatment group. The average time se-

ries in Figure 55 indicate a very small difference. However, given the variation in the raw time

series, it could also be expected that this difference between the control and treatment groups

would not be found to be statistically significant. Therefore, there is an argument for both con-

clusions. This uncertainty may be due to the resolution of the data. As an avenue of further

work, we would recommend repeating this experiment for this treatment group but increasing

the length of the free-run and taking observations at shorter intervals, which would improve

the resolution of both methods.

Finally, there were also a large number of instances when the FT was able to detect a signifi-

cant change in behaviour but the BRASS analysis could not (see Figure 52 and Tables 35 and 36).

For example, the raw time series of Tungsten and Lutetium (Figure 54) indicate that both chem-

icals increased period. The BRASS analysis reported an increase in period for both chemicals,

however, it was not found to be statistically significant (see Table 36). Conversely, on exam-

ining Table 36, we note that the FT found that Tungsten and Lutetium both displayed enough

evidence to reject the null hypothesis of spectral equality between the treatment groups and

their respective control (over the 0% threshold, see Section 4.4.1.1). Hence, based on the FT, we

can conclude that there is evidence that Tungsten and Lutetium affect the circadian clock of

A. thaliana. Additionally, the barcode plots for both chemicals (Figure 54) show that Tungsten

is faster–acting than Lutetium, since the differences between the treatment and control group

spectra are present throughout the experiment for Tungsten, but only appear after ZT60 for

Lutetium. This conclusion is also visually supported by the time series in Figure 54.
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4.5.2 Conclusions

In Section 4.4.2, we argued that, if a certain chemical at a particular concentration affects the

plant circadian clock, this could have major consequences for entire ecosystems. Hence, by the

definition of ‘contaminated land’ in the Environmental Protection Act (1990), this particular

concentration of this chemical should not be permitted in soils and, consequently, the SGV

for this chemical should be below this particular value. The SGVs in the DEFRA guidelines do

not encompass all elements in the periodic table. If this is appropriate, all treatments tested in

Section 4.5 should have no effect on the circadian clock of A. thaliana, as their omission means

that they are permitted at any concentration. However, the wavelet spectral testing in Section

4.5 (Tables 35 and 36) found that many of these chemicals do have an effect. This suggests that

the SGVs should be extended to include other chemicals.

This result is particularly relevant as advances in technology mean that, in the modern

world, plants are being exposed to a wider range of chemicals than ever before (Foley et al.,

2005). Within this context, we have demonstrated that a large number of potentially harmful

chemicals have been historically overlooked by the procedures (such as Part 2A of the Environ-

mental Protection Act (1990)) which were designed to identify (and subsequently treat) ‘con-

taminated land’. These results are of particular importance as they suggest that a large number

of chemicals could pose a significant risk to the environment, yet are going undetected by cur-

rent assessment methods.

4.6 Cluster Analysis Using the Methodology Developed in Chapter 2

In Chapter 2, we developed a procedure for clustering inherently nonstationary rhythmic data

by modelling them as locally stationary wavelet processes and exploiting their local time-scale

spectral properties by means of a functional principal component analysis. We demonstrated

the method’s suitability in organising and understanding multiple nonstationary time series,

such as the gene expression levels in this dataset. In this section we apply the clustering method-

ology of Chapter 2 to a selection of the DEFRA chemicals. This will facilitate answering the

question, ‘Which elements in the periodic table (and at which concentrations) produce similar

kinds of reactions in plants?’

To answer this question, we analysed a number of different subsets of the DEFRA chemi-

cal dataset and the results are detailed below. The basic structure of each study is described

as follows: as the LSW model is underpinned by wavelets and requires the data to be of dyadic

length (T = 2J ), in our analysis we chose a segment of length T = 128 out of the original dataset,

as in Section 4.4. For each plant we estimated the (Haar) wavelet spectrum by means of the cor-

rected wavelet periodogram estimate (using the locits R package). Each periodogram was

level smoothed by log transform, followed by translation invariant global universal threshold-

ing and then the inverse transform was applied. For each scale of the wavelet periodogram,

only levels 3 and finer were thresholded. Using the estimated spectral information, we ob-

tained a dissimilarity matrix. As in Chapter 2, we determined the number of principal compo-

nents to retain based on a screeplot. The resulting dissimilarity matrix was the input of a PAM

algorithm (performed in theclusterR package) which clustered the data into a user–defined

number of groups. We used the methods outlined in Section 2.3.4.3 (Chapter 2) to determine

the optimal number of clusters.
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4.6.1 Clustering DEFRA Chemicals

We began by applying our proposed LSW-PCA clustering method to analyse the 12 chemicals

(and their respective controls) displayed in Figures 47 and 48. On examining the screeplot and

for ease of interpretation, we retained two principal components to cluster the data. The meth-

ods outlined in Section 2.3.4.3 were used to determine the optimal number of clusters and all

methods indicated that we should cluster the data into 2 groups. This was supported by exper-

imental scientists who confirmed that, as a preliminary analysis, it would be useful to cluster

the data into 2 groups: ‘No Change’ and any distinct departures from this group, thus indicat-

ing which chemicals have an effect on the circadian clock of A. thaliana and which do not. The

LSW-PCA clustering method yielded the results detailed in Table 37 (Appendix 4.8).

4.6.2 Discussion of Findings

On examining Table 37, we can see that the LSW-PCA clustering method has clustered the be-

haviour of the data into the following two groups: Cluster 2 identifies similar behaviour of

plants in the control groups and the Lead (Half), Mercury (Max) and Cadmium (Half) treat-

ment groups and Cluster 1 contains all 24 plants in the remaining treatment groups. These

results are in agreement with Figures 47 and 48 which provided visual evidence that the plants

in the Lead (Half), Mercury (Max) and Cadmium (Half) treatment groups seemed to display

similar behaviour to the control groups, indicating that these chemicals had no effect on the

circadian clock of A. thaliana. This conclusion was also supported by the wavelet spectral test-

ing (Section 4.4) which found 0% rejections of the null hypothesis of spectral equality for these

chemicals. Therefore, Cluster 2 can be conceptualised as essentially ‘No Change’ and Cluster 1

as ‘Change’.

Table 37 shows that, for nine chemical treatments, all 24 plants are in Cluster 1 (‘Change’).

(Note: these correspond with chemical treatments that the FT indicated had a statistically sig-

nificant effect on the circadian clock (Section 4.4).) However, there are no chemical treatment

or control groups where all 24 plants are in Cluster 2 (‘No Change’). That is, a number of plants

from the control and chemical treatment groups that were identified as having no significant

effect on the circadian clock, can be found in Cluster 1 (‘Change’). The presence of these ‘No

Change’ plants in the ‘Change’ cluster highlights individual-level variability in plant response

to stimuli, despite their sharing identical genetic characteristics (Doyle et al., 2002). This result

may be due to the individual plants in some instances showing a stress response, particularly

those individuals from the chemical treatment groups in Cluster 1 (which have more plants in

Cluster 1 than the control groups). Alternatively, this may be due to stress induced by the ex-

perimental method itself. This result supports the discussion in Section 4.5.1, that although the

average time series for some chemicals could indicate a very small difference (see for example

Ruthenium in Figure 55), the variation in the raw time series, even within the control groups,

means that such small differences between the control and treatment groups may not be found

to be statistically significant.

4.6.3 Example: Clustering Within Individual Microtiter Plates

We now attempt to answer the questions ‘Does exposure to different elements in the periodic

table produce a generic type of reaction in plants?’ and, if not, ‘Which elements induce similar
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Figure 56: DEFRA Chemicals (plate 0953): Luminescence profiles over time for A. thaliana
plants exposed to a selection of the DEFRA chemicals. Each Panel: Individuals in the chemical
treatment group (in grey) along with the treatment group average (red) and the control group
average (blue). Each time series has been standardised to have mean zero.

Number of plants Chromium (Max) Chromium (Half ) Lead (Max) Total

Cluster 1 24 24 9 57
Cluster 2 0 0 15 15

Total 24 24 24 72

Table 33: Results of clustering plate 0953 into two clusters using the proposed LSW-PCA
method. The modal cluster for each treatment group is highlighted in bold.

kinds of reactions in plants?’ by using the LSW–PCA clustering methodology. In Section 4.6.1

it was useful (as a preliminary analysis) to cluster data arising from different mictrotiter plates.

However, as highlighted in Section 4.2, it is preferable to perform data analysis on time series

from the same plate. Therefore, we applied the LSW–PCA clustering methodology to the indi-

vidual microtiter plates within the DEFRA chemical dataset. A representative selection of the

results are presented in this section and in Appendix 4.9.

In Section 4.6.1, we demonstrated that our LSW-PCA clustering method can effectively dis-

criminate between the control and treatment groups. Hence, we began by applying our pro-

posed LSW-PCA clustering method to analyse the 3 chemicals (not their respective control) on

plate 0953. This plate constituted: a control group, Chromium (both concentrations) and Lead

(Max). Figure 56 displays the individual time series for the 3 DEFRA chemicals on plate 0953.

On examining the screeplot and for ease of interpretation, we retained two principal compo-

nents to cluster this data. The methods outlined in Section 2.3.4.3 were used to determine the

optimal number of clusters and all methods indicated that we should cluster the data into 2

groups. The LSW-PCA clustering method yielded the results detailed in Table 33.

4.6.4 Discussion of Findings

On examining Table 33, we can see that the LSW-PCA clustering method has clustered the be-

haviour of the data into the following two groups: Cluster 1 identifies similar behaviour of

plants in both Chromium treatment groups (conceptualised as essentially ‘Chromium’) and
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Figure 57: The results of clustering the DEFRA Chemicals (plate 0953) into 2 groups using the
LSW-PCA method. The individual signals (grey) along with the cluster average in: red for Clus-
ter 1 and blue for Cluster 2. The individual signals of the Lead (Max) treatment group in Cluster
1 are plotted in green.

Cluster 2 is the modal cluster of the Lead (Max) treatment group (conceptualised as ‘Lead

(Max)’). These results are in agreement with Figure 56 which provided visual evidence that

the plants in both Chromium treatment groups seemed to display similar behaviour, while the

Lead (Max) group seems to display average behaviour which is distinct from the Chromium

groups and from the control group.

Combining the results of the cluster analysis and the FT, we can conclude that, although all

three chemicals have an effect on the circadian clock of A. thaliana (Table 32), they do not in-

duce the same effect. This suggests that the chemicals may not simply induce a generic chem-

ical stress response, but may actually induce a chemical–specific response. This could be due

to specific chemical reactions within the circadian oscillator. For example, exposure to certain

chemicals has been shown to inhibit the uptake of other (essential) ions (see for example Silver

et al. (1981)). Therefore, this result is of particular biological interest as it provides insight into

the different chemical input mechanisms of the circadian oscillator (Oakenfull et al., 2018). For

example, Perea-García et al. (2016a) examined the effect of copper on the circadian clock of

A. thaliana and the results of this investigation provided insight (on a chemical level) into the

structure and composition of a model proposed for the A. thaliana central oscillator (Bujdoso

and Davis, 2013). Similarly, these results could also offer biological insight into the mechanistic

basis for the plant circadian clock. However, the biological details are beyond the scope of this

thesis.

Our proposed method also allows us to characterise the behaviour associated with each

cluster. The signals within each cluster are shown (in grey) along with the cluster averages

(in bold) in Figure 57. Figure 57 also shows the individual time series from the Lead (Max)

treatment group that were assigned to Cluster 1 (plotted in green).

Note in Figure 57 that Cluster 1 is characterised by a marked amplitude dampening with

time, resulting in a rhythmicity loss at approximately ZT48. In particular, the individual time

series seem to display a burst of relative luminescence prior to ZT36, but at different points in

time. Also, note that the plants from the Lead (Max) treatment group in Cluster 1, also share
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Chemical
Treatment Group

Chemical
Treatment Group

Number of Rejections
FT (FDR)

Chromium (Max) Chromium (Half) 264 (29%)
Chromium (Max) Lead (Max) 553 (62%)
Chromium (Half) Lead (Max) 533 (59%)
Chromium (both) Lead (Max) 576 (64%)

Table 34: FT (FDR) results– DEFRA Chemicals (plate 0953). The number of rejections (as a
percentage in brackets) for the FT with FDR (at the 5% significance level) for the DEFRA Chem-
icals (plate 0953).

this behaviour. This illustrates the point in Section 4.2, that although plants in each treatment

group share identical genetic characteristics and have been treated in identical conditions, they

can respond differently.

In contrast to Cluster 1, Cluster 2 displays broadly periodic behaviour but with a gradual

decrease in period throughout the experiment and amplitude dampening with time. Further-

more, the variation between the individual time series seems to increase throughout the exper-

iment: the individual signals display very similar behaviour prior to time ZT48 (with a trough

at ZT30 and peak just after ZT36) and broadly similar behaviour thereafter.

The results of the LSW-PCA clustering method (Tables 37 and 33) indicate that all 3 chem-

icals have an effect on the circadian clock of A. thaliana but both concentrations of chromium

seem to have a similar effect which is distinct to the effect of Lead (Max). Since the data orig-

inates from the same microtiter plate, it is possible to apply the wavelet spectral testing of

Chapter 3 to test this hypothesis. Therefore, following the methods outlined in Section 4.4,

we applied the FT to plate 0953 and the results can be found in Table 34.

As discussed in Section 4.5, practitioners can be (cautiously) informed by the number of

rejections of the null hypothesis of spectral equality (as a dissimilarity measure), with larger

values indicating a greater departure from the null hypothesis. In our application, larger num-

bers of rejections could indicate a greater difference between the spectral behaviour of the two

chemical treatment groups. Therefore, the results in Table 34 confirm the conclusions of the

LSW–PCA clustering– the chromium treatment groups display similar behaviour, whereas the

Lead (Max) group displays distinct behaviour from the chromium treatment groups. This is re-

flected in the greater number of percentage rejections when comparing the Lead (Max) group

with the chromium groups (approximately 60%), than the chromium groups with each other

(29%). However, there are still a large number of rejections of spectral equality between the

two chromium treatment groups. This suggests that though the chromium treatment groups

are more similar than the Lead (Max) group, they are still significantly different. This result

supports the discussion in Chapter 2, that recent research has shown that certain compounds

can produce different effects on plant growth at low and high doses (Yang et al., 2016). Fur-

thermore, it also demonstrates the complementary utility of the methodology developed in

Chapters 2 and 3– wavelet spectral testing can identify relatively small differences in spectral

behaviour between two groups of nonstationary time series, whereas the LSW–PCA clustering

methodology can identify broadly similar spectral behaviour.
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4.7 Conclusions and Further Work

In this chapter, we applied our proposed wavelet spectral testing and clustering methodologies

(of Chapters 3 and 2, respectively) to the dataset that motivated the work in this thesis. This

allowed us to organise and understand the impact of a comprehensive range of environmen-

tally relevant pollutants on plant circadian rhythms. Our proposed methodology was able to

discriminate between treatment groups (Table 32) when the current methodology could not

(Table 30). This facilitated the understanding of the environmental ramifications associated

with soil pollution and demonstrated the additional insight our wavelet spectral testing and

clustering methodology can provide.

We also applied a period analysis technique currently adopted within the circadian com-

munity and contrasted it with one of the hypothesis tests developed in Chapter 3. The applica-

tion of the FT alongside the industry–standard BRASS analysis demonstrates that the hypoth-

esis tests developed in Chapter 3 fill the gap in the current literature by developing a much

needed tool for the formal spectral comparison of nonstationary data, analogous to the tech-

niques currently adopted within the circadian community.

The FT was also used to characterise the different types of behaviour present in the data as

the barcode plots (Figures 50, 51, 53 and 54) are able to identify the times and scales at which

spectral differences occur. In Section 4.5, we illustrated the additional insight our methodology

can provide as the FT is therefore able to identify how fast a chemical effects the plant circadian

clock and also identify spectral differences at multiple scales. Additionally, we demonstrated

that practitioners can also be informed by the number of rejections of the null hypothesis of

spectral equality (see Figure 52), with larger values (potentially) indicating that a particular

chemical has a greater effect on the circadian clock of A. thaliana.

We then applied the clustering methodology of Chapter 2 to a selection of the DEFRA chem-

icals. The results in Section 4.6 demonstrated the ability of the LSW–PCA clustering method to

determine the different types of reactions present in the DEFRA dataset and subsequently iden-

tify which elements in the periodic table (and at which concentrations) produce similar kinds

of reactions in plants. The complementary examples in Section 4.6 and Appendix 4.9 demon-

strate the method’s suitability in organizing and understanding multiple nonstationary time

series, such as the gene expression levels in the DEFRA chemical dataset.

This chapter also showcases the complementary utility of the methodology developed in

Chapters 2 and 3. In particular, while wavelet spectral testing can identify relatively small dif-

ferences in spectral behaviour between two groups of nonstationary time series, the LSW–PCA

clustering methodology can identify broadly similar spectral behaviour.

In Section 4.6.4 we combined the results of the cluster analysis and the FT, this enabled us to

conclude that, although three chemicals had an effect on the circadian clock of A. thaliana, they

did not induce the same effect. By extension, although a large number of chemicals tested in

Sections 4.4 and 4.5 had an effect on the circadian clock, they may not simply display a generic

chemical stress response but may induce a chemical–specific response or a similar response

to a selection of other chemicals. In Section 4.6.4 we discussed how the results of this chap-

ter could also offer biological insight into the mechanistic basis for the plant circadian clock.

These studies could also enable deeper understanding of the circadian clock mechanisms and

its adaptations to change (Perea-García et al., 2016a). However, the biological details are be-

yond the scope of this thesis.
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In Section 4.4.2 we argued that the DEFRA guidelines should be revised for all chemicals

in Table 30 excluding cadmium and mercury since we would expect that all the treatments

have no effect as the chemicals were tested at (or below) the recommended maximum per-

mitted concentrations according to the DEFRA guidelines. We also demonstrated that, for a

large number of the DEFRA chemicals, the recommended maximum permitted concentration

should be below half the current value. An interesting area of further work would be to deter-

mine the threshold at which these chemicals have an effect and hence produce new recom-

mendations for the SGVs. This could be achieved by varying the supplementary concentra-

tions of the 18 DEFRA chemicals that had a significant effect (as discussed in Section 4.2 for

the extension chemicals), and then applying our hypothesis testing methodology to test for

statistically significant differences. Upper and lower bounds for the concentrations to be in-

vestigated would be guided by the results of Section 4.4. For example, since Chromium (Half)

had a significant effect (Table 32), only concentrations below this value should be investigated.

Alternatively, since Lead (Max) had a significant effect but Lead (Half) did not, concentrations

between these values should be investigated.

The dataset used throughout this chapter was specifically designed for the period analy-

sis techniques and spectral testing methodology discussed in Section 4.3 and 4.4, respectively.

Thus, the optimal configuration of the microtiter plates was 4 groups of 24 plants, as approx-

imately this number of realisations is necessary for good performance of the wavelet spectral

testing procedures (see the results of the simulation studies in Chapter 3). On the other hand,

this format restricted the application of the clustering methodology in Section 4.6: since it is

preferable to perform cluster analysis on time series from the same plate (see Section 4.2 for

details), we were only able to cluster the behaviour of three chemicals. Nevertheless, Section

4.6 still demonstrated the additional insight the LSW–PCA method can provide for this applica-

tion. In particular, identifying the different types of reactions present in a particular dataset and

which elements in the periodic table (and at which concentrations) produce similar kinds of re-

actions in plants. An area of further work would be to repeat these experiments with smaller

treatment groups so that more chemicals could be compared on a single microtiter plate.
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4.8 Appendix: Supplementary Tables

In this section we provide supplementary tables that support the discussion throughout this

chapter. Tables 35 and 36 provide a full list of the exact chemicals and concentrations used in

the salt stress experiment. Table 37 reports the results of clustering the 12 DEFRA Chemicals in

Figures 47 and 48 and their respective controls into 2 groups using the LSW-PCA method.

AN Treatment Chemical Concentration
Rejections
FT (FDR)

Period
Difference

3 Lithium (Li) LiCl2 20mM 280 (31%) 4.54∗
3 Lithium (Li) LiSO4 15mM 455 (51%) 6.76
5 Boron (B) Na2B4O7 3mM 34 (4%) -1.68∗

11 Sodium (Na) NaCl 2mM 1 (0%) -0.21
11 Sodium (Na) NaBr 100mM 114 (13%) 1.33∗
11 Sodium (Na) NaI 100mM 545 (61%) 0.32
12 Magnesium (Mg) MgCl2 5mM 38 (4%) 0.01
12 Magnesium (Mg) C4H6O4Mg 5mM 512 (57%) 2.00∗
12 Magnesium (Mg) Mg(NO3)2 5mM 2 (0%) 0.05
13 Aluminium (Al) AlCl3 300µM 6 (1%) -0.45
14 Silicon (Si) Na2SiO3 25mM 7 (1%) 0.56
19 Potassium (K) KCl 100mM 146 (16%) 1.55∗
19 Potassium (K) KBr 100mM 95 (11%) 1.60∗
19 Potassium (K) KI 100mM 252 (28%) -1.42
20 Calcium (Ca) CaCl2 50mM 9 (1%) 1.77∗
20 Calcium (Ca) Ca(NO3)2 1mM 2 (0%) 0.08
21 Scandium (Sc) Sc(SO3CF3)3 100µM 1 (0%) 0.20
21 Scandium (Sc) ScF3 300µM 1 (0%) -0.58
23 Vanadium (V) H3NO3V 25µM 4 (1%) -0.41
25 Manganese (Mn) MnCl2 1mM 19 (2%) 0.87∗
25 Manganese (Mn) MnSO4 200µM 1 (0%) 0.48
26 Iron (Fe) FeCl3 300µM 16 (2%) -1.27∗
27 Cobalt (Co) CoCl2 250µM 133 (35%) 1.70∗
27 Cobalt (Co) CoSO4 250µM 158 (41%) 1.82∗

Table 35: Extension chemicals Part 1 (atomic numbers 3–27). The chemicals and concentra-
tions used in the salt stress experiment (Section 4.5), where “Treatment” represents the element
under investigation within the chemical compound (corresponding to the periodic table rep-
resentation used in Figure 52) and “AN” represents the associated atomic number. For each
chemical, the number of rejections (as a percentage in brackets) for the FT with FDR (at the
5% significance level) and the estimated mean difference in period (using FFT–NLLS), with ∗
indicating a significant change in period from the respective control group. ‡ indicates time
series and a barcode plot for the chemical are shown in Figures 53 or 54.
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AN Treatment Chemical Concentration
Rejections
FT (FDR)

Period
Difference

37 Rubidium (Rb)‡ RbCl 200µM 2 (0%) 0.38
38 Strontium (Sr)‡ SrCl2 30mM 189 (21%) 1.42∗
39 Yttrium (Y) YCl3 3mM 418 (47%) -3.18∗
41 Niobium (Nb) NbCl5 500µM 2 (1%) -0.39
44 Ruthenium (Ru) RuCl3 2mM 1 (0%) 0.64∗
47 Silver (Ag) AgNO3 200µM 50 (6%) -0.46
50 Tin (Sn) SnCl2 1.5mM 43 (11%) -1.81∗
55 Caesium (Cs) CsCl 200µM 4 (0%) 0.27
57 Lanthanum (La) LaCl3 5mM 420 (47%) -3.33∗
58 Cerium (Ce) CeCl3 3mM 630 (70%) -2.83∗
58 Cerium (Ce) (NH4)2Ce(NO3)6 150µM 281 (31%) -1.40
59 Praseodymium (Pr) PrCl3 2mM 625 (70%) -2.53∗
60 Neodymium (Nd) NdCl3 1.5mM 40 (4%) 0.62
63 Europium (Eu) EuCl3 5mM 490 (55%) -2.02∗
64 Gadolinium (Gd) (CF3SO3)3Gd 500µM 27 (3%) 0.57
64 Gadolinium (Gd) GdCl3 600µM 1 (0%) 0.03
65 Terbium (Tb) TbCl3 1.5mM 541 (60%) -2.60∗
66 Dysprosium (Dy) DyCl3 3mM 501 (56%) -1.56∗
66 Dysprosium (Dy) DyF3 100µM 2 (1%) 0.66
67 Holmium (Ho) HoCl3 1mM 447 (50%) -2.51∗
68 Erbium (Er) ErCl3 1mM 617 (69%) -1.92∗
69 Thulium (Tm) TmCl3 1mM 412 (46%) -2.48∗
70 Ytterbium (Yb) YbCl3 1mM 592 (66%) -2.64∗
71 Lutetium (Lu)‡ LuCl3 1mM 119 (13%) 0.92
74 Tungsten (W)‡ Na2WO4 20g/L 119 (31%) 1.61
78 Platinum (Pt)‡ K2PtCl4 200µM 409 (46%) -3.62∗
79 Gold (Au)‡ KAuCl4 50µM 3 (0%) 0.10
83 Bismuth (Bi) BiCl3 2mM 179 (20%) -1.10∗

Table 36: Extension chemicals Part 2 (atomic numbers 37–83). The chemicals and concentra-
tions used in the salt stress experiment (Section 4.5), where “Treatment” represents the element
under investigation within the chemical compound (corresponding to the periodic table rep-
resentation used in Figure 52) and “AN” represents the associated atomic number. For each
chemical, the number of rejections (as a percentage in brackets) for the FT with FDR (at the
5% significance level) and the estimated mean difference in period (using FFT–NLLS), with ∗
indicating a significant change in period from the respective control group. ‡ indicates time
series and a barcode plot for the chemical are shown in Figures 53 or 54.
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Treatment Group
Cluster 1

(Number of Plants)
Cluster 2

(Number of Plants)

Control 1 17 7
Copper (Max)∗ 24 0

Selenium (Max)∗ 24 0
Control 2 14 10

Lead (Half) 19 5
Mercury (Max) 20 4

Control 3 17 7
Lead (Max)∗ 24 0

Control 4 15 9
Selenium (Half)∗ 24 0
Cadmium (Half) 20 4

Control 5 10 14
Zinc (Max)∗ 24 0

Control 6 16 8
Molybdenum (Max)∗ 24 0
Molybdenum (Half)∗ 24 0

Control 7 16 8
Arsenic (Max)∗ 24 0
Arsenic (Half)∗ 24 0

Table 37: Results of clustering the 12 DEFRA Chemicals in Figures 47 and 48 and their respec-
tive controls into 2 groups using the LSW-PCA method. There are 24 plants in each treatment
group. ∗ indicates a treatment with 0 plants in cluster 2.
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Figure 58: DEFRA Chemicals (plate 0952): Luminescence profiles over time for A. thaliana
plants exposed to a selection of the DEFRA chemicals. Each Panel: Individuals in the chemical
treatment group (in grey) along with the treatment group average (red) and the control group
average (blue). Each time series has been standardised to have mean zero.

Number of plants Cadmium (Max) Arsenic (Max) Arsenic (Half ) Total

Cluster 1 14 1 3 18
Cluster 2 2 21 6 29
Cluster 3 8 2 15 25

Total 24 24 24 72

Table 38: Results of clustering plate 0952 into three clusters using the proposed LSW-PCA
method. The modal cluster for each treatment group is highlighted in bold.

4.9 Appendix: Additional Clustering Example

In this section, we apply our proposed LSW-PCA clustering method to analyse the three chem-

icals on plate 0952: Arsenic (both concentrations) and Cadmium (Max). The individual time

series for these chemicals are displayed in Figure 58. On examining the screeplot and for ease

of interpretation, we retained two principal components to cluster this data. The methods out-

lined in Section 2.3.4.3 were used to determine the optimal number of clusters and all meth-

ods indicated that we should cluster the data into 3 groups. The LSW-PCA clustering method

yielded the results detailed in Table 38.

4.9.1 Discussion of Findings

On examining Table 38, we can see that the LSW-PCA clustering method has clustered the

behaviour of the data into the following three groups: Cluster 1 is the modal cluster of the

Cadmium (Max) treatment group (conceptualised as ‘Cadmium (Max)’); Cluster 2 is the modal

cluster of the Arsenic (Max) treatment group (conceptualised as ‘Arsenic (Max)’) and Cluster 3

is the modal cluster of the Arsenic (Half) treatment group (conceptualised as ‘Arsenic (Half)’).

These results are in agreement with Figure 58 which provided visual evidence that the plants

in each treatment group display distinct behaviour (i.e. no two treatments provide a similar

effect). This conclusion was also supported by the wavelet spectral testing (Section 4.4) which

found very different numbers of rejections of the null hypothesis of spectral equality for each
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Figure 59: The results of clustering the DEFRA Chemicals (plate 0952) into 3 groups using the
LSW-PCA method. The cluster average time series in: red for Cluster 1 (conceptualised as ‘Cad-
mium (Max)’); blue for Cluster 2 (conceptualised as ‘Arsenic (Max)’) and green for Cluster 3
(conceptualised as ‘Arsenic (Half)’).

treatment group (see Table 32) indicating that these chemicals do not have a similar effect on

the circadian clock of A. thaliana. However, the fact that each chemical treatment group ap-

pears in each cluster again highlights individual–level variability in plant response to stimuli

which may result in individual plants displaying a similar response to different treatments. In

Chapter 2, we proposed that this may be due to the individual plants in some instances showing

a more general stress response, perhaps induced by the experimental method itself (Hargreaves

et al., 2018).

The LSW–PCA clustering method also allows us to characterise the behaviour associated

with each cluster. The average time series for each cluster are shown in Figure 59. The signals

within each cluster are shown (in grey) along with the cluster averages (in bold) in Figure 60.

For each cluster, Figure 60 also shows the individual signals in the non–modal treatment group

(plotted in: red for Cadmium (Max); blue for Arsenic (Max) and green for Arsenic (Half)).

Note in Figures 59 and 60 that all three clusters appear to have a similar period prior to

ZT48 (albeit with a different amplitude). However, Clusters 1 and 3 display broadly periodic

behaviour but with a time–varying period and amplitude dampening with time. The main dif-

ference between the clusters seems to be in the amplitude, with Cluster 1 having a higher am-

plitude. However, more subtle differences in period can also be noted. Furthermore, there ap-

pears to be more variation between the individual time series in Cluster 3 and this individual–

level variability seems to increase throughout the experiment. This is also confirmed by Ta-

ble 38 as this cluster contains the largest proportion of plants from the non–modal treatment

groups. In contrast to Clusters 1 and 3, Cluster 2 is characterised by an increase in period with

a marked amplitude dampening with time and a decreasing mean (decreasing linear trend).

The results of the LSW-PCA clustering method (Table 38) indicate that Arsenic (Max) seems

to display the most distinct behaviour (with 87.5% of the plants in Cluster 2). Cadmium (Max)

appears to most closely resemble Arsenic (Half) as 33% of its plants are in Cluster 3 (concep-

tualised as ‘Arsenic (Half)’) but only 8% are in Cluster 2 (conceptualised as ‘Arsenic (Max)’).
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Figure 60: The results of clustering the DEFRA Chemicals (plate 0952) into 3 groups using the
LSW-PCA method. The individual signals of the modal treatment group (grey) along with the
cluster average in: red for Cluster 1; blue for Cluster 2 and green for Cluster 3. For each clus-
ter, the individual signals in the non–modal treatment group are plotted in: red for Cadmium
(Max); blue for Arsenic (Max) and green for Arsenic (Half).

Chemical
Treatment Group

Chemical
Treatment Group

Number of Rejections
FT (FDR)

Cadmium (Max) Arsenic (Max) 525 (59%)
Cadmium (Max) Arsenic (Half) 154 (17%)

Arsenic (Max) Arsenic (Half) 325 (36%)

Table 39: FT (FDR) results– Comparing DEFRA Chemicals (plate 0952). The number of re-
jections (as a percentage in brackets) for the FT with FDR (at the 5% significance level) for the
DEFRA Chemicals (plate 0952).

Interestingly, Arsenic (Half) is more similar to Arsenic (Max) as 25% of its plants are in Cluster 2

(conceptualised as ‘Arsenic (Max)’) but only 13% are in Cluster 1 (conceptualised as ‘Cadmium

(Max)’). Following the methods outlined in Section 4.4, we applied the FT to plate 0952 to test

these hypotheses and the results are reported in Table 39.

The results in Table 39 confirm the conclusions of the LSW–PCA clustering– the Cadmium

(Max) and Arsenic (Half) treatment groups display some similar behavioural traits, whereas the

Arsenic (Max) group displays distinct behaviour from the other treatment groups. These results

are in agreement with Figure 58 which provided visual evidence that the plants in each treat-

ment group display distinct behaviour but the Cadmium (Max) and Arsenic (Half) treatment

groups display more similar behaviour.
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5 Conclusions and Further Work

This thesis has developed wavelet–based methodology, motivated by selected applied prob-

lems arising in nonstationary time series analysis of circadian signals. In particular, the work

in this thesis was motivated by the limitations of current time series analysis in the field of

circadian biology. In this chapter, we briefly summarise the main contributions made in Chap-

ters 2–4 before discussing possible directions for future research. Further discussions of each

element of work are also provided by the individual summaries at the end of each chapter.

Chapter 2

In Chapter 2 we discussed the phenomenon of individual-level variability in plant response

to stimuli, despite their sharing identical genetic characteristics Doyle et al. (2002). The pres-

ence of multiple behaviours within the same treatment group within our motivating dataset

motivated our development of a clustering procedure that can detect these different charac-

teristics and analyse them separately. In Chapter 2 we also investigated the lack of station-

arity of the circadian plant rhythms that motivated the work of this thesis. This result, along

with several others recorded in the literature (Price et al., 2008; Leise et al., 2013; Harang et al.,

2012) motivated the development of clustering techniques that can account for nonstation-

arity. The clustering method combines locally stationary wavelet time series modelling with

functional principal components analysis and thus extracts the time-scale patterns arising in

a range of rhythmic data. We demonstrated the advantages of our methodology over alter-

native approaches by means of a comprehensive simulation study and real data applications.

Although the data analysed throughout this chapter is from the field of circadian biology, the

methodology is general and can be readily applied to data originating in a range of fields (e.g.

finance, climatology, seismic problems).

Chapter 3

In Chapter 3 we addressed the problem of comparing circadian oscillation behaviour between

two groups of observations. The work in this chapter was motivated by three circadian datasets,

each posing a different research question. As a response, we developed a new methodology for

comparing nonstationary time series in the wavelet spectral domain through hypothesis test-

ing, embedding replicate information when available, analogous in spirit to the techniques

currently adopted within the circadian community, but accounting for the nonstationarity in

the data. Under the LSW modelling framework of Nason et al. (2000), we developed four differ-

ent hypothesis tests which detect three types of spectral differences between two groups. Our

methodology was applied to the motivating problems from circadian biology, illustrating the

practical use of the proposed techniques and the additional insight they provide.

Chapter 4

The methodology developed throughout this thesis was motivated by a specific applica-

tion in the field of circadian biology– the effect of industrial and agricultural pollutants on the

plant circadian clock (Foley et al., 2005; Senesil et al., 1998; Hargreaves et al., 2018; Nicholson

et al., 2003). The ‘Cerium dataset’ that motivated the work in Chapter 2 and the ‘Lead dataset’

that motivated the development of the raw periodogram F–test in Chapter 3 were taken from

a broad investigation of the effect of various salt stresses on plants (Oakenfull et al., 2018).

Specifically, the Department for Environment, Food and Rural Affairs (DEFRA) developed ‘Soil

Guideline Values’ (SGVs) that can be used to determine appropriate concentrations of certain
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chemicals in soil. Therefore, in Chapter 4, we applied the clustering methodology and wavelet

spectral testing (of Chapters 2 and 3, respectively) to investigate the impact of exposure to the

chemicals at the concentrations outlined in the DEFRA report, as well as to chemicals not in-

cluded in the report, on the plant circadian clock. Our findings provided novel evidence that

many of the tested chemicals do indeed have an effect on the plant circadian clock. There-

fore, the results of Chapter 4 could be used to inform a revision of the SGVs. Critically, for

certain chemicals, our findings suggest that the recommended maximum permitted concen-

tration should be below half the current value.

The results of Chapter 4 also demonstrated the additional insight our methodology can

provide. In particular, we identified how fast a chemical effects the plant circadian clock and

the spectral differences at multiple scales. Additionally, the analysis in Chapter 4 illustrated

the utility of our proposed methodologies. We showed that practitioners can be informed by

the number of rejections of the null hypothesis of spectral equality, with larger values indicat-

ing that a particular chemical has a greater effect on the circadian clock of A. thaliana. The

results in Chapter 4 also demonstrated the ability of the LSW–PCA clustering method to de-

termine which elements in the periodic table (and at which concentrations) produce similar

kinds of reactions in plants and to identify the different types of reactions present in a par-

ticular dataset. This application of the clustering methodology also highlighted the method’s

suitability in organizing and understanding multiple nonstationary time series and revealed

that individual–level plant variability is more prevalent under certain treatments. Therefore,

the methodologies developed in Chapters 2 and 3 have complementary utility: wavelet spec-

tral testing can identify relatively small differences in spectral behaviour between two groups of

nonstationary time series, whereas the LSW–PCA clustering methodology can identify broadly

similar spectral behaviour.

Directions for future research

In Chapters 2–4 we discussed specific areas of further work within the conclusions at the end

of each chapter. We describe more general potential avenues of future research next.

High dimensional multivariate time series often exhibit multi–collinearities. This suggests

that such signals can be decomposed into uncorrelated principal components with possibly

lower dimension than that of the original signal. In Chapter 2 we developed a clustering method

that combines locally stationary wavelet time series modelling with functional principal com-

ponents analysis. An interesting area of future work would be to develop a time-localised fre-

quency domain principal components analysis method for signals that exhibit locally station-

ary (wavelet) behaviour. In addition, it would also be of interest to develop formal statistical

procedures for testing the significance of the time–varying weights (components of an eigen-

vector) at a particular channel, and whether they do indeed change over time.

Consider the situation where we have training data containing a number of (nonstationary)

time series having known group membership and test data with unknown group membership

and we wish to classify the test data into the least dissimilar group. This is reminiscent of the

soil pollutant investigation that motivated the work in this thesis. For this particular appli-

cation, classification methodology could be used to determine if a new soil pollutant has no

effect or a similar effect to a particular known chemical. Hence, an interesting avenue of fu-

ture research would be to utilise the theoretical basis of the wavelet spectral testing in Chapter

3 to develop dissimilarity measures that take account of the distribution of the spectral co-

168



efficients which could be embedded within a classification procedure for nonstationary time

series. Furthermore, the results of Chapter 3, suggest that it may be beneficial to employ a

transform that brings the raw periodogram ordinates closer to Gaussianity and decorrelates

within each scale, for example the Haar or Haar–Fisz transform. Thus, the transformed evolu-

tionary wavelet spectrum could also be used as an alternative classification signature.

The Department for Environment, Food and Rural Affairs (DEFRA) developed ‘Soil Guide-

line Values’ (SGVs) that can be used to determine appropriate concentrations of certain chem-

ical elements in soil. In Chapter 4, we investigated the impact of exposure to these elements at

the concentrations outlined in the DEFRA report on the circadian clock of A. thaliana. How-

ever, it is impossible to add only one element to the growth media of the plants. Therefore, to

investigate the impact of a specific element, a compound containing that element has to be

added to the growth media. This makes it difficult to establish whether any effects on the clock

were due to the anion or cation of each compound. An area of further work would be to derive

a procedure for determining the individual effects of each element within a tested compound.
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