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Abstract

A Network Component Analysis based Divide and Conquer
Method for Transcriptional Regulatory Network Analysis

Understanding gene regulation has played a major role in several biomedical appli-
cations ranging from cancer studies to genetic engineering. Transcriptional regu-
latory networks (TRN) have been studied extensively to understand rules of inter-
actions between transcription factor (TF) and genes that constitute gene regulation.
In a particular type of gene expression data modelling problem, only gene expres-
sion profiles and regulatory patterns are available. Regulatory patterns or networks
are binary matrices that indicate connections between genes and TFs. A TRN mod-
elling method must simultaneously estimate regulatory strengths and concentrations
of TFs. Therefore, TRN modelling problem is a structure-constrained matrix fac-
torisation (SCMF) problem.

In this thesis, among various available TRN modelling algorithms, Network
Component Analysis (NCA) is chosen for further investigation. Several methods
that extend NCA are proposed in literature. However, the following fundamental
issues in NCA theory have remained unresolved

1. a method to test feasibility of NCA problem does not exist

2. a method to solve NCA problem with an infeasible start does not exist

One of the major contributions in this thesis is a method to test NCA feasi-
bility. It is made possible for the first time in relevant literature to test a dataset-
network pair for NCA feasibility before applying NCA. This is done by translating
NCA rank conditions on posteriori variables to rank conditions on a priori available
dataset-network pair. In this process, it is shown that binary rank of a regulatory
pattern is important to define NCA feasibility.

Another major contribution in thesis is a divide and conquer method that com-
putes unique solutions corresponding to NCA infeasible dataset-network pairs. Tech-
niques that extend NCA to solve SCMF problems with an infeasible start proposed
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in literature are shown to be inaccurate and limited in applicability. In this thesis,
a bipartite matching based approach is developed to decompose an infeasible NCA
network into a set of full-rank factorisable sub-networks. A solution corresponding
to the original network is obtained as a convex combination of matrix factors cor-
responding to identified sub-networks. It is shown that the resulting matrix factors
for the whole network are unique up to two scaling factors if all data subset-sub-
network pairs are NCA feasible.
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Chapter 1

Introduction

1.1 Background

Cells are one of the complex systems that have been studied extensively [4]. Several
thousands of datasets related to cell biology, collectively known as multi-omics data,
can be found in research areas dedicated to understanding different mechanisms of
a cell. A sub-topic that focuses on genes and associated research questions is called
genomics. Genes are segments of DNA that encode a specific function of biolog-
ical significance. Gene expression is a process where a genes produce messenger
RNAs (mRNA) which in turn produce protein compounds [5]. Gene expression
data contains a measure of concentrations of genes in a population of living cells in
a controlled experiment. Modelling gene expression data is a topic that has gained
a great amount of interest over the past decades. Gene network modelling provides
valuable insight into disease mechanisms and aids drug discovery [6]. However,
extracting meaningful models from gene expression profiles is challenging.

Genomics is a popular research area. More than a thousand articles were pub-
lished between years 2005 and 2012 reporting studies solely dedicated to identify-
ing biological pathways related diseases in humans [7]. A wide variety of mathe-
matical problems arises from different aspects of genomics [8]. A particular area
of research that combines knowledge from genomics and proteomics (are of study
related to protein networks) is called as transcriptomics [4]. Transcriptional regu-
latory network (TRN) models are an integral part of transcriptomics studies. Large
scale experimental data analysis has shown that transcriptional regulation plays an
important role in understanding cellular mechanisms [9].

Transcriptional regulation is a process where the expression of a gene is con-
trolled by protein compounds facilitated by RNA polymerase [5]. Structures of
compounds that constitute transcriptional regulation are well studied [10]. Tran-
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1.2. TRANSCRIPTIONAL REGULATION 13

scription factors (TF) are protein compounds that regulate gene expression. An
ordered series of gene expression is crucial for adaptation of a cell to varying envi-
ronmental conditions. Disrupting the order of gene expression can result in several
undesirable events such as cancer – uncontrolled cell multiplication. As a conse-
quence, understanding transcriptional regulatory mechanism is of great importance
in drug discovery, cancer treatment, and many more areas of study [11].

1.2 Transcriptional regulation

A brief discussion on transcriptional regulatory mechanism is presented here, a de-
tailed description can be found in [12]. Structure of a regulated gene is illustrated
in Fig. 1.1 and 1.2. The strip running from left to right is a strand of DNA. All
genes related to a particular biological function are generally found next to each
other on this strand. The number of genes and regulatory mechanisms vary for dif-
ferent biological functions. Two key regions involved in regulating expression of a
gene are promoter and operator regions found right before genes on a DNA strand.
Each gene produces a protien as shown in Fig. 1.1. Some of these proteins regulate
expressions of other genes.

RNA polymerase binds to the promoter region of the gene(s) of interest. If
the operator region of gene(s) is free, i.e., no protein compound is binding to that
region, then RNA polymerase slides along the DNA to make RNA which then pro-
duces corresponding protein products, Fig. 1.1. These proteins are then used for
various processes in the cell. Proteins that facilitate gene expression by helping
RNA polymerase dock onto the promoter region are called promotors. On the other

RNA polymerase
-

· · · Promoter Operator Gene 1 Gene 2 · · ·

Protein 1 Protein 2

Figure 1.1: Gene expression – operator is free

hand, RNA polymerase is restricted by a protein compound called repressor or an
inhibitor (black solid circle, Fig. 1.2) when it binds to the operator region of gene(s)
and prevents polymerase from sliding. There are other mechanisms of repression,
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but they are not important in the context of this thesis and hence, not discussed
here. A gene can be positively regulated in which case one or more transcription

RNA polymerase
-

�
�@
@

· · · Promoter Operator

~
Gene 1 Gene 2 · · ·

Figure 1.2: No gene expression – repressor binds to operator region

factors promote its expression. Negative regulation of gene occurs when one or
more transcription factors act as repressors. Promotors are represented by a positive
variable in mathematical models discussed in the next chapter, whereas repressors
are represented by negative variables.

1.3 Transcriptonal regulatory networks

Chromatin Immuno-Precipitation (ChIP) sequencing technique [13] is used along
with Trimmed Mean of M values (TMM) [14] normalisation technique to record
gene expression data in biological experiments. The nature of recorded data directs
the choice of two representations of TRNs introduced in this section – graphs and
system of linear equations. A wide variety of biological systems are represented
as bipartite graphs [15]. In a graph representation, interacting compounds such as
genes and TFs are represented by vertices whereas the edges represent regulatory
connections. Weights of the edges encode regulatory strength. A bipartite graph is
shown in Fig. 1.3 (edited Fig. 3.6, [16]). In Fig. 1.3, X = {u1, u2, u3} represents a
set of source signal vertices, TFs in the case of TRNs. Y = {v1, v2} represents a set
of data vertices, genes in TRNs. The edge weights can be collected in a matrix as

W =

(
w11 0 w13

0 w22 w23

)
(1.1)

Edge set B(G) corresponding to the graph in Fig. 1.3 can be represented as

B(G) =

(
1 0 1
0 1 1

)
(1.2)
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Figure 1.3: Undirected bipartite graph

In the context of graph theory, neighbours of a vertex vi is a set of all vertices that
are connected to vi. For the example graph in Fig. 1.3, set of neighbours of v1 is
given as

N (v1) = {u1, u3}

TRNs can be represented using bipartite graphs similar to the one in Fig. 1.3 as
G = (V,B(G)), where set of nodes are partitioned in to two disjoint sets as V =

X ∪Y,X ∩Y = {}. X represents a set of TFs and Y represents a set of genes in the
TRN. Edges (i, j) ∈ B(G) connect nodes ui ∈ X and v j ∈ Y . Gene expression data
D corresponding to TRN in Fig. 1.3 can be represented as

D =WS (1.3)

where, D ∈ RM×N and S ∈ RL×N represent N samples of M genes and L TFs, re-
spectively. W ∈ RM×L similar to that in (1.1) contains regulatory strengths corre-
sponding to the edges in B(G) described in (1.2). It is easy to move from graph
representation of TRN in Fig. 1.3 to a system of linear equations representation in
(1.3). These two representations are used throughout this thesis. Generally, gene
expression data D and regulatory pattern B(G) are available whereas the regulatory
strengths or weights in W and source signals or TF activities in S must be simul-
taneously estimated. Therefore, obtaining a TRN description of the form (1.3) re-
quires factorising data matrix D while enforcing the structure described by B(G)

on W . This is problem is referred to as a structure-constrained matrix factorisation
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(SCMF) problem [17] in the context of this thesis.

1.4 Network component analysis - a popular method

Several algorithms are proposed in literature to solve SCMF problem related to a
TRN. Among such methods, Network Component Analysis (NCA) [2] has gained
popuarity as evidenced by a citation report generated from web of science reposi-
tory [3]. It is found that NCA [2] proposed in year 2003 has been cited 370 times
between years 2004 and 2017 according to web of science [3]. A yearly publication
trend is tabulated in table 1.1.

Year no. of publications Year no. of publications
2004 9 2011 22
2005 25 2012 31
2006 34 2013 28
2007 36 2014 19
2008 33 2015 17
2009 39 2016 22
2010 42 2017 13

Table 1.1: number of publications citing NCA [2] by year according to we of science
citation tool [3]

It looks like there has been a recent decline in interest. However, coverage of
journals is limited with web of science [18]. Therefore, the numbers in table 1.1
are only representative of a continued interest in NCA, and not the actual level of
its reception among whole research community. Nevertheless, NCA has been used
in several studies to model underlying TRNs. In a recent article [19] published in
current opinions in biotechnology, NCA has been pointed out as one of the data-
integrative approaches that provides meaningful biological insights.

1.5 Overview of thesis

NCA is a popular choice for modelling TRNs as evidenced by literature. In addi-
tion to being a popular choice, NCA MATLAB toolbox [20] contains experimental
datasets that can be used for testing TRN modelling methods. In this thesis, un-
resolved theoretical issues related to NCA are identified and fixed. The thesis is
organised as follows
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• Chapter 2 – a review of different models of TRN and associated parameter
estimation methods is presented. A particular model is chosen based on the
data acquisition technology used in biological experiments. A particular class
of SCMF methods applicable to TRNs are reviewed. One of these methods,
NCA, is discussed in greater detail. Methods that describe NCA identifiability
of a TRN and methods that extend NCA are discussed. Open theoretical
problems in NCA are pointed out. A case is made for use of graph based
methods to exploit better the sparse structure of TRNs. An experimental data
available in literature is introduced. This dataset is used in other chapters to
test the methods developed in this thesis.

• Chapter 3 – numerical examples are used to test the validity of NCA rank
conditions. It is found that the fundamental definition of NCA compatible
networks is partially inaccurate. This inaccuracy stems from the fact that reg-
ulatory pattern of a TRN is a binary matrix whereas NCA rank conditions are
defined over real numerical field. Importance of binary rank of a network is
demonstrated and a fundamental relationship between real rank and binary
rank is developed. It is demonstrated that size of a maximal matching in a
graph is not necessarily equal to its rank. Possibility of estimating graph rank
by applying three different graph operations is explored. A method to test
uniqueness of NCA solutions is developed. This method is used to demon-
strate the fact that full-ranked NCA solution are not necessarily uniqueness.
Findings in this chapter are used as motivation for the next three chapters.

• Chapter 4 – NCA rank conditions are amended to include binary rank of a
network in order to accurately characterise NCA feasibility. A method to cal-
culate a trivial solution when a network fails to satisfy binary rank based NCA
feasibility conditions but satisfies original NCA rank conditions is presented.
A method to characterise a subspace that can be avoided while looking for
NCA solutions for this type of infeasibility is proposed. NCA rank condi-
tion on source signal matrix is translated to rank conditions on an augmented
matrix containing dataset and structural constraints matrix. As dataset and
network structure are known a priori, theorems developed in this chapter can
be used to test a given dataset-network pair for NCA feasibility ahead of NCA
implementation.

• Chapter 5 – a method is developed to calculate binary rank of a bipartite
graph using breadth-first search, graph reduction and minimum degree vertex
reordering based matching. Graph theoretical conditions developed in this
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chapter are shown to be equivalent to NCA feasibility conditions developed
in chapter 4. Using these conditions, an algorithm is proposed to decompose a
network into NCA feasible sub-networks. This algorithm is extended to limit
the size of identified sub-networks based on number of available data points.
This ensures that the resulting data subset-sub-network pairs are full-rank fac-
torisable. It is demonstrated that full-rank factorisability of all sub-networks
can be guaranteed even though their NCA feasibility is not guaranteed.

• Chapter 6 – a possibility of obtaining unique matrix factors corresponding to
NCA infeasible dataset-network pairs by combining NCA estimates of data
subset-sub-network pairs is pointed out. Data subset-sub-networks are as-
sumed to be identified using algorithms developed in chapter 5. A need to in-
troduce more parameters whilst combining sub-network estimates is pointed
out. Scaling issues related to adding more parameters are identified. These
issues are addressed by reducing a multi-part mixing problem to a chain of
two-part mixing problems. It is shown that matrix factors obtained by us-
ing such a divide and conquer method are unique up to two scaling factors.
Strengths and weaknesses of the developed method are demonstrated with the
help of a randomly chosen multi-part network and an experimental dataset-
network pair available in literature.

• Chapter 7 – contributions of this thesis are summarised. Scope and limita-
tions of methods developed in this thesis are discussed. Few problems iden-
tified, but not addressed, throughout this thesis are discussed and objectives
for future work are identified.

1.5.1 Contributions

• Chapter 4 – an accurate method is proposed to test a priori available dataset-
network pair for NCA feasibility before estimating corresponding matrix fac-
tors.

1. theorem 2 accurately defines an NCA feasible network using its binary
rank

2. proposition 1 presents a linear algebra based method to tackle a particu-
lar type of NCA infeasibility

3. theorem 3 defines NCA feasibility conditions based on rank conditions
on a priori available dataset-network pair
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• Chapter 5 – a graph based method is developed to decompose NCA infeasi-
ble networks into a set of NCA feasible sub-networks.

1. lemma 2 establishes a relationship between a particular type of graph
matching and rank of a binary matrix

2. lemma 3 establishes a relationship between a particular type of graph
matching and binary rank of a binary matrix after removing all linearly
dependent columns using algorithm 3

3. theorem 4 defines graph theoretical NCA feasibility conditions for a
given network

4. algorithm 4 decomposes a given NCA infeasible network into multiple
NCA feasible sub-networks

5. algorithm 5 ensures full-rank factorisability by limiting sizes of sub-
networks identified using algorithm 4 based on the number of available
data points

• Chapter 6 – results from chapters 4 and 5 are combined along with a mixing
problem to uniquely solve a general SCMF problem.

1. algorithm 6 combines results from previous chapters to estimate a unique
convex combination of NCA solutions corresponding to identified full-
rank factorisable sub-networks of a given network

1.5.2 Publications

• Conference papers based on results from chapter 5 –
Prabhu, H. R. S., Wei, H. L. ”Preprocessing Graphs for Network Inference
Applications.” 14th International Conference on Informatics in Control, Au-

tomation, and Robotics, vol. 1, pp. 406 – 413, 2017.

• Conference paper based on a brief version of results from chapter 6 –
Prabhu, H. R. S., Wei, H. L. ”Incremental modelling of transcriptional reg-
ulatory networks.” IEEE Global Conference on Signal and Information Pro-

cessing (GlobalSIP), pp. 740 – 744, 2017.

• Book chapter based on results from section 4.2, chapter 5, and chapter 6 –
Prabhu, H. R. S., Wei, H. L. ”BNCA: full-rank fatorisable subgraphs based
unique structure-constrained matrix factorisation”, Lecture Notes in Electri-

cal Engineering, In press.



Chapter 2

Literature review

2.1 Models of transcriptional regulation

Modelling principles and methods for a wide range of biological systems are pre-
sented in [21], where importance of recruiting simple models is explained. In this
section, various models of TRN available in literature are considered followed by a
discussion on two simple modelling methods.

As mRNA is a single strand copy of a gene, each gene maps to a unique mRNA.
Expression of a gene is quantified by measuring concentration of corresponding
mRNA in post-transcriptional phase [22]. Gene expression recorded in lab based
experiments using Chromatin Immuno-Precipitation (ChIP) sequencing technique
is useful in predicting biological pathways [13]. This is referred to as high-throughput
data in relevant area of research called genomics. Various methods used to model
different aspects of biological systems using ChIP sequences are reported in [23].
Among those methods, rule-based networks are used to model transcriptional reg-
ulation. Such rule-based networks are called Transcriptional Regulatory Networks
(TRN) where genes are assumed to be regulated by proteins or transcription fac-
tors. In [24], different modelling approaches are compared in terms of how close
the estimates are to biological reality, amount of data required, the degree of in-
sight provided, and others. There, it is pointed out that differential equations based
models are well-balanced with respect to different dimensions of comparison.

Ordinary differential equations [25] and log-linear models [26] are popular among
biologists who study gene regulation. Stochastic differential equations with delays
are used in [27] in order to capture the effects of noise and bistability in regula-
tory networks. However, in general, stable states in biological systems are well
separated and hence, ordinary differential equations based models are sufficient to
capture dynamics of a regulatory network [28].

20
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2.1.1 Ordinary differential equations based model

Gene regulation can be interpreted as a nonlinear dynamical stable system described
by a pair of differential equations as described in [29] as

d
dt T (t) = AR(t)−BT (t)

d
dt R(t) = f (T (t))−CR(t)

(2.1)

where, f : RL 7→ RM is a vector of M polynomials, R(t) ∈RM is a vector of mRNA
concentrations, and T (t) ∈ RL is a vector of protein concentration at time t. A,
B and C are matrices of appropriate dimensions representing degradation factors
of associated transcription factors and mRNAs. T (t) is generally referred to as
transcription factor activity. The model in (2.1) can be linearised at T (0) to obtain
a first-order linear autonomous state-space model as

d
dt

X(t) = ΦX(t) (2.2)

where, X(t)T =
(

T (t)T R(t)T
)

are the states of the system and

Φ =

(
−B A

E −C

)

is the state transition matrix, where E = d
dt f (T (t)) is evaluated at T (0). As men-

tioned in the previous subsection, linearised state-space model in (2.2) provides
a biologically sensible description of transcriptonal regulation [29]. A state-space
based approach for simultaneous estimation of inputs and states is presented in [30].
This method works well with the model in (2.2), but it assumes availability of state
transition matrix Φ. However, T (t) is not measured, but inferred from gene expres-
sion data [31]. As a result, A and B are unknown and hence, the Φ is only partially
known. In order to overcome this issue, a specific type of ODE model is considered
in the next subsection.

2.1.2 Log-linear model

As mentioned in the previous subsection, as T (t) is generally not measured. There-
fore, an estimate of Φ in (2.2) cannot be obtained. However, as discussed in the
previously, ODE based models offer a simple and realistic representation of tran-
scriptional regulatory networks. Log-linear models introduced in [32] use a partic-
ular type of ODE to address this issue by imposing quasi-steady state assumption.
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In [33], log-linear models are recommended for ease of parameter estimation among
different modelling techniques that are reviewed therein.

A brief discussion on log-linear models is presented next. Log-linear models
boil down the regulatory network modelling problem to a simple set of linear equa-
tions as shown in [34]. The following first-order dynamical model, generally re-
ferred to as power-law model is used in [34]

d
dt

Ri(t) = αi ∏
j

Tj(t)wi j −βiRi(t), 1≤ i≤M, 1≤ j ≤ L (2.3)

where, Ri(t) represents mRNA concentration at time t and βi represents degrada-
tion factor corresponding to i-th gene. Tj(t) represents concentration of j-th tran-
scription factor at time t and αi some constant based on underlying biochemistry.
Exponent wi j is the strength with which j-th transcription factor regulates i-th gene.
The regulatory strengths wi j ∈ R are such that

wi j > 0, if Tj promotes Ri

wi j < 0, if Tj represses Ri

wi j = 0, if Tj has no effect on Ri

(2.4)

Generally, mRNA concentrations Ri(t) are measured at discrete time instants k

where the expression levels Ri(k)s are assumed to have achieved (quasi) steady-
state [35]. With that assumption, the equation in (2.3) reduces to a difference equa-
tion given by

βiRi(k) = αi ∏
j

Tj(k)wi j (2.5)

Rearranging the equation and dividing throughout by Ri(0) gives

βiRi(k)
βiRi(0)

=
αi ∏ j Tj(k)

wi j

αi ∏ j Tj(0)
wi j

=⇒ ��βiRi(k)

��βiRi(0)
= ��

αi ∏ j Tj(k)
wi j

��αi ∏ j Tj(0)
wi j

Thus, with quasi-steady state assumption in place, the equation in (2.3) can be
rewritten as

Ri(k)
Ri(0)

= ∏
j

(
Tj(k)
Tj(0)

)wi j

(2.6)

For a regulatory network with L transcription factors Tjs regulating M genes Ris, a
log-linear relationship between Ris and Tjs can be obtained by applying logarithm
on both sides in (2.6) as

D(k) =WS(k) (2.7)
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where,

D(k) =


log R1(k)

R1(0)

log R2(k)
R2(0)
...

log RM(k)
RM(0)

 , S(k) =


log T1(k)

T1(0)

log T2(k)
T2(0)
...

log TL(k)
TL(0)


and

W =


w11 w12 · · · w1L

w21 w22 · · · w2L
...

... . . . ...
wM1 wM2 · · · wML


In this thesis, matrix notations of the following form are used for all matrices

W (i, j) = wi j, W (i, :) =
(

wi,1 · · · wiM

)
, W (:, j) =


w1 j

...
wL j


For an experiment where N samples of gene expression D(k) are recorded, the sys-
tem of equations in (2.7) can be written as a set of linear equations in (1.3) with

D =


D1(1) D1(2) · · · D1(k) · · · D1(N)

D2(1) D2(2) · · · D2(k) · · · D2(N)
...

... . . . ... . . . ...
DM(1) DM(2) · · · DM(k) · · · DM(N)


and

S =


S1(1) S1(2) · · · S1(k) · · · S1(N)

S2(1) S2(2) · · · S2(k) · · · S2(N)
...

... . . . ... . . . ...
SL(1) SL(2) · · · SL(k) · · · SL(N)


In the context of this thesis, variables D, W and S respectively represent experimen-
tal dataset, weights of the regulatory network and source signals or transcription fac-
tors. Equation (1.3) represents a hypothetical experiment with no noise. However,
in reality, experimentally recorded mRNA concentrations are noisy in nature [27].
Noise can be factored into the model in (1.3) by adding a matrix Γ ∈ RM×N as

D =WS+Γ (2.8)

where, Γ is generally assumed to be Gaussian in nature [36] and hence, maximum
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likelihood estimates W and S can be obtained. With this assumption, system equa-
tion in (1.3) is used throughtout the rest of this thesis.

As mentioned earlier, transcription factor activities in S are not available from
biological experiments. Therefore, both W and S in (1.3) must be estimated and
hence, this is a matrix factorisation problem. ChIP sequencing technology can only
reveal the pattern of regulation [31] – a binary connectivity pattern indicating reg-
ulatory relationship between transcription factors and genes. ChIP data cannot be
used to quantify the strengths of these connections. Therefore, in practice, S is
unknown and only the structure, a binary matrix B(G), of W is known as

B(G)(i, j) =

1 (on), if Tj regulates Ri

0 (off), if Tj has no effect on Ri

(2.9)

Therefore, the problem of estimating parameters of the model in (1.3) is a structure-
constrained matrix factorisation (SCMF) problem. A formal definition of SCMF
problem is presented in the next section where a binary valued matrix B(G) is used
to impose structural constraints in (2.9).

2.2 Structure-Constrained Matrix Factorisation

The problem of Structure-Constrained Matrix Factorisation (SCMF) arises when
one of the factors is sparse. Characterisation of sparsity depends on the target
application. For example, intra-sample correlations are used in [37] to construct
constraint matrices for image processing applications, graph-theoretical metrics
are used in [38] for applications in neuroscience, mass-spectrometry and machine-
learning techniques are used in [39] for protein interaction network mapping, cor-
relation based clustering is used to identify data sub-matrices in [40]. Regardless
of how the structural constraints are identified, the objective that follows is to ex-
tract useful information from the recorded data by solving a SCMF problem. In
the context of TRNs, structural constraints are imposed by regulatory patterns. It
is assumed in this thesis that regulatory patterns are fixed and corresponding TRNs
strictly follow specified regulatory pattern.

In this section, mathematical formulation of SCMF is presented followed by
a review of methods available in literature to solve a general SCMF problem and
those used in the context of TRNs in particular. Consider a porblem where a data
matrix D ∈ RM×N is to be factorised into a product of two full-rank matrices W ∈
RM×L and S ∈ RL×N as described in (1.3). In a general SCMF [17], one of the two
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matrix factors is expected to follow a specific structure defined by a binary matrix
B(G)∈GFM×L

2 . Here, GF2 = [0,1] is the binary field over which B(G) is defined. In
other words, entries of B(G) are either 0 or 1. Without loss of generality, structural
constraints can be imposed on matrix factor W . Notation B(G) is used to make room
for a graph theoretical interpretation of structural constraints where G is a bipartite
graph with rows and columns of B(G) representing two disjoint set of vertices as
described in section 1.3. Further discussion on graph theoretical interpretation is
presented later in this chapter.

Consider a bijection φ : RM×L 7→ GFM×L
2 defined as

φ(W )(i, j) =

1, if W (i, j) 6= 0

0, otherwise
(2.10)

Thus, the structural constraints on W can be written as

φ(W ) = B(G) (2.11)

A SCMF problem can be defined as

min
W,S

J = ‖D−WS‖2
F

sub. to φ(W ) = B(G)
(2.12)

where, ‖.‖F represents Frobenius norm. Frobenius norm [41] of a matrix W ∈RM×L

is defined as

‖W‖2
F =

M

∑
i=1

L

∑
j=1

W (i, j)2

Square of Frobenius norm is considered in SCMF problem (2.12) as a quadratic
function has a global minimum.

2.2.1 General sparse matrix factorisation methods

Several techniques have been proposed to address the problem of biological network
inference. Techniques applicable to gene expression data are reviewed in [42], [43],
[44] and more recently in [45]. Dimensionality reduction methods such as Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD) are used to
extract regulatory patterns from gene expression data [46]. However, these meth-
ods are not considered in this thesis as a regulatory pattern B(G) is assumed to be
known in SCMF problem (2.12). A Partial Least Squares (PLS) based method is
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presented in [47] where S in (1.3) is decomposed into latent components. However,
no structural constraints are explicitly imposed on W or S. Therefore, PLS based
methods are also not considered. Methods in [17] and [48] impose different forms
of sparsity constraints on W in the norm sense in order to minimise the number of
non-zero entries in W . These methods do not respect structural constraints in B(G)

arising from underlying biology. These methods are not considered in this thesis.

Boolean logic based method to identify TRNs is presented in [49]. Primary
goal of this and related methods available in literature is to identify the connectiv-
ity pattern B(G), not to solve an SCMF problem of the form (2.12). Tensor based
methods are proposed in [50, 51]. Tensor based TRN modelling problem is similar
to the SCMF problem in (2.12), but additional information such as DNA methy-
lation profiles are required. Such information cannot be made available by ChIP
sequencing technology alone.

SCMF problem defined in (2.12) can be interpreted as a blind source separation
problem [52] or that of generalised component analysis [53]. Independent Compo-
nent Analysis (ICA), Non-negative Matrix Factorisation (NMF), Sparse Component
Analysis (SCA), and their extensions are used to solve such problems [53]. Data
integrative methods reviewed in [45] are frequently used in the context of gene
expression data analysis. These techniques impose certain assumptions on the un-
derlying system of equations in (1.3) as

• ICA based methods assume S js in (1.3) are statistically independent and W is
completely unknown [54]

• NMF based methods assume that the entries of all the matrices in (1.3) are
non-negative [55]

• SCA based methods estimate W based on correlations in the recorded data
D [56]

• Data integrative methods assume availability of B(G) described in (2.11)

Practical considerations – each of the techniques identified above have been suc-
cessfully applied in the context of TRN modelling. However, choice of a method to
analyse data at hand must be based on the following factors identified in [45]

1. objective of the study

2. type of prior information being used

3. measurement techniques used in procuring data
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As mentioned in section 1.5, methods used to model TRNs in bacterial cells based
on defined regulatory patterns are being considered in this thesis. Going by this
objective and the type of prior knowledge, ICA and SCA based methods can be
discarded as those methods do not impose specified constraints on the structure
of W . From (2.4), entries of W can be positive or negative. From (2.6), T (k) is
normalised with respect to its initial value T (0). This implies that S = log T (k)

T (0) in
(2.7) can be negative if T (k) < T (0). Therefore, NMF cannot be directly used to
solve SCMF in (2.12). Furthermore, NMF based methods might result in solutions
stuck in multiple local-extrema [57]. NMF involves normalisation of W whereas
solutions with normalised S are easier to interpret in the context of TRNs [58].
In addition to that, Trimmed Mean of M-values (TMM) [14] is a commonly used
sampling schemes along with ChIP sequencing technique. TMM is favoured over
other sampling procedures as it is good at avoiding false positives [59]. TMM
normalises recorded gene expression data with respect to a chosen initial data-point
and generates log-fold changes in gene expression relative to their initial value. This
directly corresponds to the type of model chosen in section 2.1.2. Therefore, ICA,
NMF or SCA are not directly applicable to ChIP sequence data based log-linear
models. Based on these practical considerations, data integrative TRN modelling
methods identified in [45] are considered for further discussions.

2.2.2 Data integrative methods

Data integrative methods in the context of TRN modelling are those that use a priori
available information to solve SCMF problem in (2.12). As mentioned earlier, B(G)

is assumed to be known. Data integrative parameter estimation methods in [2], [60],
[20], [61], [47] solve the original SCMF problem (2.12) whereas [62], [63], [64]
employ modified version of log-linear model in (2.7). A new variable es(i, j) is
used to encode edge/connection strength between a given gene-TF pair such that
entries of W in (1.3) are given as

W (i, j) = es(i, j)w̃(i, j) (2.13)

where, w̃(i, j) is a parameter to be estimated. This calls for modification of SCMF
problem in (2.12). Equation in (2.13) replaces the constraint φ(W )=B(G) in (2.12).
In [64] es(i, j) is a real-valued variable used to quantify the degree of confidence in
a gene-TF connection based on the number of times such a connection is evidenced
in literature. On the other hand, es(i, j) is binary-valued in [61], [62] and [63]. Data
integrative TRN modelling methods can be broadly categorised as
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1. optimisation based methods – [2], [60], [20], [64]

2. probabilistic methods – [61], [62], [63]

3. singular value based method – [65], [66]

Optimisation based methods – Network Component Analysis (NCA) introduced
in [2] solves the original SCMF problem by exploiting the sparsity of W . NCA
starts with a random choice of W and S and estimates a solution of the form (1.3).
An iterative procedure is proposed in [2] where W is estimated assuming S is con-
stant and vice versa at each iteration. Solutions are guaranteed to be unique up to a
scaling factor. A method to identify largest NCA identifiable sub-network of a TRN
is presented in [60]. NCA is extended in [20] to model TRNs in cases where the
number of recorded data points is smaller than the number of source signals in S.
Different mathematical functions are used to define S in [64] and a switching based
method is proposed to solve a modified SCMF problem. All the optimisation based
TRN modelling methods use mixed integer linear programming to solve SCMF
problem. However, any other optimisation method discussed in [67] such as linear
or quadratic programming can be used. A regression based approach is presented
in [68] where log-linear model similar to that in (2.6), but without normalising with
respect to initial measurement is used. However, this can be translated to an SCMF
problem of the form (2.12).

Probabilistic methods – it was mentioned in section 2.1.1 that a state-space model
cannot be used to model TRNs directly as protein concentrations are not measured.
However, in [61] and [62], S(1) is chosen from a set of prior distributions computed
from D and the dynamics of S is assumed to form a first-order Markov chain. This
allows use of a state-space model similar to that in (2.2). Separate SCMF problem
of the form (2.12) is set up for each row of D in [61]. This allows for different set
of matrix factors (Wi,Si) corresponding to Di. This idea is extended in [62] where
a modified SCMF problem formulation is used. Both methods resort to Maximum
Likelihood Estimation (MLE) to compute W and S. An open source MATLAB soft-
ware package that implements the method in [62] is presented in [63]. A dynamic
Bayesian network and MLE based approach is presented in [69]. Applicability of
this model is limited as it assumes that values of degradation factors βis in (2.3) are
available.

Singular value based method – a semi-blind source separation technique is pre-
sented in [65] where for every column of B(G)(:, j) in (2.11), two sub-matrices of
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D in (1.3) are identified corresponding to 1s and 0s in the chosen column of B(G).
A generalised eigen value problem is solved to simultaneously diagonalise sub-
matrices of D. Column W (:, j) in (1.3) is set equal to eigen vector corresponding to
the largest generalised eigen value. S in (1.3) is estimated as W †D, where † repre-
sents pseudo-inverse. This is a fast and direct method. However, as shown in [65],
for some i, j, W (i, j) 6= 0 when B(G)(i, j) = 0. As a result, underlying biological
constraints are not strictly respected. Therefore, this method is not considered in
this thesis. A non-iterative technique is presented in [66] where SVD of correlation
of noisy data D in (2.8) is used to obtain direct estimates of W and S. However, the
method in [66] assumes that NCA rank conditions in [2] hold. As a result, NCA
identifiability of a TRN is necessary for the method in [66].

There is no particular reason to choose or discard one of the methods identified
in this subsection over the other. Strengths and weaknesses of all these methods are
discussed in the articles in which they are proposed. However, NCA in [2] is chosen
for further investigation in this thesis for two reasons

1. as pointed out in section 1.4, NCA is a popular and tested TRN modelling
method

2. a few fundamental issues pertaining to NCA theory have gone unnoticed in
relevant literature

The second reason is of higher priority and this thesis is dedicated to addressing
issues identified in chapter 3.

2.3 Network Component Analysis

In this section, a brief overview of NCA [2] is presented. Various methods that ex-
tend NCA are discussed in section 2.3.2. A review of theoretical results in literature
that characterise NCA identifiability is presented in section 2.3.3.

The cost function J in (2.12) must be minimised over W and S. NCA [2] is one
of the optimisation based algorithms that solve the original problem (2.12). NCA
is a two-step iterative approach where at each iteration J is minimised with respect
to S with W constant and then with respect to W with S constant. It is shown in [2]
that a solution obtained using NCA is unique up to a scaling factor if the solution
satisfies the following assumptions

Assumption 1 W has full column rank, i.e., rk(W ) = L
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Assumption 2 All reduced sub-matrices Wj obtained by removing every i-th row

with W (i, j) 6= 0 have full column rank, i.e., rk(Wj) = L−1

Assumption 3 S has full row rank, i.e., rk(S) = L

M ≥ L and N ≥ L are implied respectively by assumption 1 and 3. Therefore, the
system of linear equations in (1.3) is assumed to be over-determined.

NCA algorithm proposed in [2] implements a two-step iterative procedure de-
scribed as

Algorithm 1 NCA [2]

input: D,B(G)
Randomly choose W0, S0 which satisfy assumptions 1-3, set k = 0
while Γ̂ = ‖D−WS‖2

F > Γ̄ do
step 1 – solve for S in (2.12) with W constant
step 2 – solve for W in (2.12) with S constant

end while
outputs: W, S

for some arbitrarily small Γ̄ > 0. In algorithm 1, the original SCMF problem in
(2.12) is solved iteratively in an alternating fashion. In this sense, this is a bilinear
optimisation problem. A discussion on bilinear optimisation algorithm and its ap-
plication to biological systems can be found in [70].

NCA implementation – optimisation problem in step 2 can be divided into M in-
dividual problems corresponding to M rows in W . This is a simple way to ad-
dress the constraint imposed by B(G) on structure of W as described in (2.10). In
doing so, it is easy to consider the non-zero parameters in W alone, along with
corresponding rows in D and S. This also reduces the number of optimisation vari-
ables in each of the M sub-problems. Another reason to divide the problem into
M sub-problems is to facilitate the use of any optimisation algorithm or interior
point method in [67] to solve the NCA problem. This extra step is necessary as
the NCA problem looks at Frobenius norm whereas interior-point algorithms con-
sider 2-norm. Equivalence between Frobenius and 2 norms can also be achieved by
vectorisation approach [71].

2.3.1 Uniqueness and robustness of NCA solutions

In the context of this thesis, a network B(G) is NCA identifiable if for a given
dataset D corresponding NCA solutions (W,S) satisfy assumptions 1–3. For some
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NCA identifiable network B(G) and a dataset D, let two pairs of NCA solutions be
given as

D = (1W )(1S) and D = (2W )(2S)

it is shown in [2] that a diagonal matrix χ ∈ RL×L can be computed such that

(2W ) = (1W )χ, (2S) = χ
−1(1S) (2.14)

The original NCA theorem [2] combines assumptions 1–3 with (2.14) as

Theorem 1 Given matrices D ∈ RM×N and B(G) ∈ GFM×L
2 such that L≤ N ≤M,

if there exist matrices (1W ),(2W ) ∈ RM×L and (1S),(2S) ∈ RL×N such that

φ((1W )) = φ((2W )) = B(G),

D = (1W )(1S) = (2W )(2S)

and assumptions 1–3 are satisfied, then there exists a non-singular diagonal matrix

χ as given in (2.14)

Proof of uniqueness is presented in [2]. However, existence of a solution or identi-
fiability of a given network has not been characterised therein. These can only be
checked after applying NCA.

Robustness of NCA has been addressed in [2]. Following application of NCA
in algorithm 1 to obtain a solution (W,S), bootstrap technique [72] is used in [2] to
generate replacement samples Γ∗ of resulting error

Γ̂ = D−WS (2.15)

A population of resampled data is then generated as D∗ = WS + Γ̂∗. Algorithm
1 is applied to each D∗ in resampled population to obtain new estimates of W , S,
and Γ̂∗ in (2.15). The authors show that 95% confidence intervals achieved with
bootstrap resampling technique are tight.This stands to validate the robustness in
obtained estimates in the sense that the obtained estimates are consistent across
multiple trials. However, accuracy of estimates of W and S can be validated only by
experiments. As mentioned earlier S is not measured and hence, such a validation
might be hard in practice. Experimental validation of NCA estimate of one of the
transcription factor activities is presented in [1].
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2.3.2 Extensions of NCA

An in-depth review of NCA and related factorisation techniques designed to solve
the problem in (2.12) is available in [73]. NCA has continued to peak the interest
of researchers, most recent extensions of NCA can be found in [40, 74, 75]. NCA
based algorithms can be categorised as iterative and non-iterative approaches. It-
erative approaches start from randomly chosen W and S as described in algorithm
1 whereas non-iterative techniques utilise linear algebraic tools to reduce computa-
tional complexity. Six different methods that extend NCA are briefly discussed here.

Generalized NCA [34]:
Generalized NCA (gNCA) extends NCA to resolve the issue of ill-conditioned so-
lutions by adding a regularisation parameter λ that penalises S. In addition to that,
the structure of S is constrained by requiring it to follow the pattern imposed by
B(S). Structural constraints on S are introduced to represent variability in experi-
ments where one of the source signals might be turned off. This does not improve
robustness or uniqueness of NCA solutions. The problem is redefined as:

min
W,S

‖D−WS‖2
F +λ‖S‖2

F

subject to φ(W ) = B(G)

φ(S) = B(S)

Some matrix manipulation techniques are presented in [34] which allow simultane-
ous factorisation of different epochs or experimental data records of same TRN.

Fast NCA [76]:
Fast NCA provides a linear algebra based non-iterative solution to the NCA prob-
lem. Gene expression profiles in D are rearranged for every individual transcription
factor S( j, :) as

D =

(
D j

D′j

)
where, D j consists rows D(i, :) for which B(G)(i, j) = 1 whereas D′j is comprised
of remaining rows of D regulated by transcription factor S j. SVD decomposition of
size m j is applied to rearranged D, where m j is equal to the number of rows in D j.
Resulting left eigen vectors are used to estimate W by imposing a sparsity constraint
in terms of l1 norm. S is estimated in a similar way without a sparsity constraint.
This method improves speed of convergence. However, the original structural con-
straints B(G) are not necessarily enforced directly, but via rearranging the dataset.
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This means that the estimates of W may not strictly follow the constraints in B(G)

Robust NCA [77]:
Robust NCA(ROBNCA) address the problems created by statistical outliers in the
observed data D. This is done by modifying the objective function Jk in (2.12)as

Jk = ‖D−WS−O‖2
F +λ0‖O‖0

where, O represents unknown outliers, ‖ · ‖0 represents a l0 norm that counts the
number of non-zero entries in O, and λ0 is a regularisation parameter. ROBNCA
penalises the outliers and thereby reducing uncertainties in the obtained solutions.

Iterative Sub-NCA [74, 78]:
Many biological entities work in synergy to achieve a common objective. This gives
rise to redundancy in processes which appears as linearly dependent rows in W or S

in the case of TRNs. Iterative Sub-NCA (ISNCA) factors in such redundancies by
isolating regulatory pattern in B(G) into three parts – two independent parts that are
regulated by two disjoint sets of transcription factors and a coregulated part. System
of linear equations in (1.3) after such a decomposition is given as D(1)

U

D(2)
U

DC

=

 W (1)
U

0

0

W (2)
U

W (1)
C W (2)

C


(

S(1)

S(2)

)
(2.16)

where, D(1)
U and D(2)

U are independently regulated respectively by S(1) and S(2)

through W (1)
U and W (2)

U . Common data DC is regulated by both S(1) and S(2) through
W (1)

C and W (2). Independent parts of W are estimated by applying conventional
NCA. Common parts of W are randomly initialised and updated at every step such
that error in data reconstruction is minimised. This approach breaks the problem
down into three parts out of which two parts abide by the rank conditions of NCA
and are solved using NCA. A random search approach is used to construct two in-
dependent parts shown in (2.16).

Local NCA [40]:
Global expression profile recorded in a dataset D is decomposed into multiple data
subsets. Each data subset consists rows D that are highly correlated as obtained
by k nearest neighbours method. These are called local data profiles. Data subset
in each neighbourhood along with the corresponding sub-network of B(G) is fac-
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torised using NCA. A weighted sum of source signals corresponding to different
profiles is obtained to estimate global source signal profile S. As the estimates of
S are updated to estimate a global profile, estimates of W must also be updated.
Therefore, a correction factor is introduced to reduce the errors in reconstructing
local profiles. LNCA solution generates estimates of global profile of S, local con-
nectivity patterns W , and correction factors. LNCA is used in [40] to combine data
from different experiments in order to identify general regulatory mechanisms.

Sparse NCA [75]:
This method extends Fast NCA proposed in [76] by changing the way in which W

is estimated. A change in computational method is introduced as the singular values
computed in [76] are dependent on the number of samples available in a dataset D.
The new iterative method to compute W introduced in [75] is shown to eliminate
this problem. However, as in the case of Fast NCA, estimated W may not follow
structural constraints in B(G).

The goal in this thesis is not to improve computational efficiency of NCA as is the
case with the methods identified here. Regardless of which method among those
identified here is used, the issue of NCA identifiability persists as all these methods
assume NCA identifiability of a given network. Developing accurate NCA identifi-
ability conditions is one of the objectives in this thesis.

2.3.3 NCA identifiability - state-of-art

Characterising identifiability of complex systems related to network inference prob-
lems of the form in (2.12) is still a problem of interest for researchers [79]. NCA
rank conditions in assumption 1–3 require a over-determined set of linear equa-
tions. However, number of data points available on different databases correspond-
ing to individual experiments is lesser than the number of source signals or TFs
[8,80,81]. As a consequence, SCMF problems related to TRNs are generally under-
determined. Uniqueness of NCA solution corresponding to such datasets cannot be
guaranteed. Therefore, there is a need to develop accurate NCA identifiability con-
ditions that can be exploited to develop methods that solve under-determined SCMF
problems.

As mentioned in section 2.3.3, a proof of uniqueness of NCA solutions is pre-
sented in [2], but no discussion is presented on existence of a solution or, a method
to test uniqueness of NCA solutions. A simple method can be developed to test
the uniqueness (2.14) of NCA-solutions whenever they are available. However, it is
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desirable to check in advance if NCA is applicable to SCMF problem (2.12). This
is not trivial as only D and B(G) are known a priori whereas W and S are unknown.
Therefore, assumptions 1–3 must be translated to equivalent assumptions on B(G)

and/or D.
Translations of assumptions 1 and 2 in terms of B(G) are given in [60](lemma

1, page 292). The conditions therein are based on a graph theoretical interpretation
of the underlying structural constraints matrix B(G). These conditions essentially
translate to

Assumption 4 B(G) has full column rank, i.e., rk(B(G)) = L

Assumption 5 All reduced sub-matrices B(H j) obtained by removing every i-th

row with B(G)(i, j) 6= 0 have full column rank, i.e., rk(B(H j)) = L−1

In assumptions 4 and 5, H j ⊂ G is the sub-graph corresponding to reduced sub-
matrices Wj

φ(Wj) = B(H j)

A network B(G) satisfying these assumptions is said to be NCA compatible/identifiable.
An attempt is made in [60](theorem 1, page 293) to outline generalised identfiability
criteria where NCA solutions to SCMF problem in (2.12) are argued to be unique
up to a scaling factor X (2.14) if the corresponding graph B(G) is NCA compatible
and S has full row rank. Two major drawbacks of NCA identifiability conditions
in [60] are

1. graph theoretical interpretation of NCA rank conditions on W are not used in
any method proposed in the same article

2. S is argued to have full row rank as it is a part of assumptions, but no mathe-
matical proof is provided to show if and when this argument is valid

A specific case of NCA incompatibility is addressed in [20] where L > N, i.e.,
number of source signals is more than the number of samples available. In this
case, rk(S) < L and hence, assumption 3 cannot be satisfied. A modification to
assumption 3 is proposed in [20] as

Assumption 6 Every sub-matrix Si,1≤ i≤M of S formed by rows S( j,1 : N) such

that B(G)(i, j) = 1 has full row rank

In other words, every row D(i,1 : N) of data matrix is obtained by mixing linearly
independent signals. This also implies that number of 1s on every row of B(G) is
less than N. A method to enforce this assumption in NCA is presented in [20]. A



36 CHAPTER 2. LITERATURE REVIEW

proof is also provided in [20] in which it is shown that if χ (2.14) is a diagonal ma-
trix then assumption 6 holds. However, converse is not proven. Therefore, there is
no guarantee that enforcing this assumption ensures uniqueness of NCA solutions.
Authors of [20] have made available a MATLAB toolbox for NCA along with sev-
eral datasets to test its applicability. It is shown in next chapter that NCA solutions
of one of those datasets are not unique. Therefore, NCA uniqueness conditions
proposed in [20] are incomplete.

Another attempt to characterise NCA identifiability is made in [82] where graph
theoretical property of matching is used. A network, in the context of NCA, is
interpreted as a bipartite graph G = (X ∪Y,B(G)), where X = {u j} is the set of
source vertices u js, Y = {vi} the set of output vertices vis, and B(G) the adja-
cency matrix. A matching M is a set of edges representing unique pairs of vertices
(ui,v j). No vertex is repeated in a matching. For example, consider the graph
in Fig. 1.3. Two unique pairs (u1,v1) and (u2,v2) can be identified as shown
in Fig. 2.1. Edges corresponding to these two pairs of vertices form a matching
M = {(u1,v1), (u2,v2)}. A maximal matching is a matching with maximum possi-

Figure 2.1: Maximal matching in bipartite graph presented in Fig. 1.3

ble number of edges, max(|M|). As there are no more pairings possible in the graph
in Fig. 1.3, matching shown in Fig. 2.1 is maximal. Phrase ’maximal matching’ is
used as two more matchings of size 2 can be identified in the same graph.

An identifiable graph is argued to be the one that has a maximal matching of
size L and every sub-graph H j ⊂G induced by anti-neighbourhood of source vertex
j ∈ X has a matching of size L−1. This result is shown to be applicable in testing
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if a network is NCA compatible or not. However, the fundamental assumption that
rank of any bipartite graph is equal to the size of a maximal matching is inaccu-
rate as shown in the next chapter. In fact, size of a maximal matching is equal to
the structural rank of a matrix [83] which is the maximum rank that a matrix of a
particular structure can achieve. Accurate description of NCA identifiability is de-
veloped in chapter 4 where assumptions 1–3 are translated to assumptions on B(G)

and D.

Methods to identify largest NCA identfiable sub-networks of a given network
are presented in [60], [82] and [74]. Despite the fact that these methods are based on
inaccurate description of NCA identifiability, they carry other limitations. Methods
developed in [60] and [82] identify one largest NCA identifiable sub-network in a
given network B(G). This implies that a part of the system of linear equations in
(1.3) remains unsolved. On the other hand, methods presented in [60] and [74] iden-
tify two sub-networks and can be extended to idenify more NCA identifiable sub-
networks. The method employs a random search based method to group columns
of B(G) that satisfy assumption 5 individually and assumption 4 collectively. How-
ever, such a method might take a long time to converge and might end up in a
sub-optimal solution. Method proposed in [82] is defines largest sub-network as the
one that is made up of the largest separable set of vertices that is NCA identifiable.
A separable set of vertices is the one whose neighbours are not connected to any
other vertex outside the identified set. It is shown in chapter 5 that the whole net-
work can be decomposed into NCA identifiable parts without ignoring any part of
the original network or requiring them to be completely separable.

In summary, rank conditions imposed in [2] on W and S are sufficient to char-
acterise uniqueness of NCA solutions. However, uniqueness of NCA solutions can
be tested only after application of NCA. One of the goals in this thesis is to develop
equivalent rank conditions on B(G) and D that facilitate a priori NCA identifiabil-
ity test of a given network. NCA identifiability of networks apt for such a priori
feasibility test has not been accurately described in any relevant work.

2.4 Exploiting sparsity and graph based approaches

Graph representations play a major role in solving sparse systems of linear equa-
tions [84]. Use of graph theoretical interpretations in analysing data from biological
experiments is not new. A review of graph based methods applied to general data
based modelling problems in the context of cell biology is presented in [85]. Use
of graph matching is not new and is shown to be comparable to matrix inversion in
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terms of computational complexity [86]. A review on graph matching techniques is
available in [87]. Methods that improve the speed of computing maximal matching
in bipartite graphs are presented in [88] and [89].

In the context of NCA, [60] and [82] have explicitly use graph notations to
achieve two goals – characterising NCA identifiability and identifying a largest
NCA identifiable sub-network of a given network. Though these methods attempt
to exploit the structure of B(G) to a certain extent, they are limited in applicability.
Method in [60] attempts to find a largest possible NCA identifiable sub-network in
a random manner. A computational complexity analysis is not presented in [60],
but this problem can be compared to the optimal graph pattern mining problem
discussed in [90]. It is pointed there that a brute-force method involves listing all
possible patterns and then maximising a criterion. Such an approach can prove
to be a significant computational hurdle. For a network B(G) with M rows and L

columns, total number of possible permutations are

nP =
M

∑
m=1

MPm×
L

∑
l=1

LPl (2.17)

where, m and l respectively represent the number of rows and columns being moved
in B(G) to obtain a new permutation. First part the equation in (2.17) represents
number of possible ways in which rows of B(G) can be reordered whereas the sec-
ond part represents the number of possible ways in which the columns of B(G) can
be reordered. In Fig. 2.2, growth of nP (2.17) as a function of M and L is shown on
a log scale. It can be seen in Fig. 2.2 that the number of possible permutations grow
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Figure 2.2: log(nP) as a function of M and L

rapidly for a networks with maximum of 20 rows and 20 columns. Method in [60] is
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not computationally as complex as an brute-force based optimal graph pattern min-
ing problem as not all possible combinations are considered. However, this implies
that there is no guarantee that a sub-network identified in [60] is the largest possi-
ble sub-network. Therefore, this method is not considered in this thesis. Matching
based method in [82] looks for a single largest separable set of columns that are
NCA identifiable. Though this method is computationally not as intensive as the
previous one, but the definition of the largest NCA identifiable graph is quite lim-
iting. This is because modularity in transcriptional regulatory networks does not
imply functional separability [91] and hence, NCA identifiable separable sets might
be either too small in size to be meaningful or simply might not exist in a given bio-
logical network. Definition of largest NCA identifiable sub-network in [82] is based
on inaccurate matching based asumption and limited in its applicability. Therefore,
it is not used for decomposing a network into NCA identifiable sub-networks or for
comparative analysis in this thesis.

In biological systems, sparsity is an emergent property [92]. Graph based meth-
ods and sparse matrix based techniques are frequently used together for big-data
analysis [93]. General interest in problems involving sparse matrices is growing
steadily and a wide variety of techniques are applicable to biological systems [94].
Biological systems are modular in nature [95, 96]. Modularity and sparseness of a
biological network are assumed to be inter-dependent in some cases and assessed
separately in others [97]. Modularity can be considered by treating the constraint
matrix B(G) in (2.12) as semi-separable along the lines discussed in [98]. Minimum
degree reordering has been used for pivoting to achieve less fill-in for Gaussian
elimination thereby reducing computation complexity [84]. In a recent study, it is
shown that minimum degree reordering improves speed of convergence in interior
point based iterative methods for solving systems of linear equations [99]. Re-
ordering rows and columns of B(G) based on the number of zeros leads to modular
structures in SCMF problem as shown in [74, 78]. Apart from those two methods,
modularity has not been an important aspect of NCA discussed in section 2.3.1 and
its extensions in section 2.3.2.

As discusssd in this subsection, graph based techniques that exploit sparsity of
a given network not only offer computationally efficient solutions, but also pro-
vide a way to exploit modularity that is generally observed in biological networks.
However, previous attempts in NCA literature to develop such methods are only
partially successful. Interesting ideas have been proposed in [82] and [78]. The
former method is theoretically inaccurate and limited in its applicability whereas
the latter lacks in theoretical rigour. Moreover, it is shown in this thesis that it is not
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necessary to find a largest NCA identifiable sub-network when given network B(G)

is NCA incompatible. It is shown in this thesis that decomposing B(G) into NCA
feasible parts is sufficient to solve SCMF problem in (2.12).

2.5 Carbon source switch in Escherichia coli - exper-
imental data

Escherichia coli (E. coli) is a model organism biological mechanisms of which
are well understood [100]. Thousands of functional genes and hundreds of tran-
scriptional factors in E. coli have been discovered and studied. Large number of
multi-omics experimental datasets related to E. coli studies are available in [101]
and [102]. However, a dataset presented in [1] related to a carbon source switch ex-
periment that focuses on a relatively small regulatory network with 100 genes and
16 transcription factors is chosen for comparative analysis in this thesis. Reasons to
choose this dataset are

1. indirect measure of activity of a protein called CRP is available, this can be
used to validate methods developed in this thesis

2. this dataset can be used to validate new methods developed in this thesis with
minimal understanding of underlying biology

This dataset provides a neat platform to test applicability and validate the outcomes
of methods developed in this thesis. A brief discussion on the experimental data is
presented next.

The experiment in [1] is designed to record gene expression D of 100 genes of
E. coli bacteria when carbon source changes in the culture’s environment. 25 data
points are collected using ChIP sequencing technology. However, only 9 data points
are made available along with NCA toolbox [20]. As mentioned in section 2.3.3,
gene expression data is generally recorded at few time points. Authors of NCA-
toolbox [20] have not made any more data points available. Data points recorded in
columns 2 to 10 of D correspond to 5, 15, 30, 60, 120, 180, 240, 300,
and 360 minutes, respectively. Available data matrix D is illustrated in Fig. 2.3.
Goal in [1] is to estimate activities S of 16 transcription factors. The underlying
regulatory network B(G) represents regulatory connections between different genes
and proteins. The network B(G) with 100 rows and 16 columns is illustrated in
Fig. 2.4 where black colour corresponds to 0 or no connection whereas white rep-
resents 1 or a connection. As mentioned earlier, protein activities are not generally
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Figure 2.3: Colour map of gene expression data – carbon source switching experi-
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Figure 2.4: Colour map of B(G) (0 – black, 1 – white): transcriptional regulatory
network, carbon source switching experiment [1]

measured in ChIP sequencing based experimental setups. However, it is mentioned
in [1] that one of the transcription factors called CRP must bind to a particular
metabolite called cyclic AMP. Concentrations of cyclic AMP are measured and are
used to validate NCA estimate of CRP activity in [1]. Most important features de-
duced from cyclic AMP concentrations that are used to validate CRP activity are

1. CRP activity is expected to peak within 60 minutes and monotonically reduce
thereafter

2. a time difference of approximately 4 hours is expected between peak and
valley of CRP activity

These features are used to validate estimates of CRP activity obtained by new meth-
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ods developed in this thesis.

Some initial assessment on NCA identifiability of the chosen dataset D and
network B(G) is done. It is found that B(G) (Fig. 2.4) satisfies assumptions 4
and 5. However, number of transcription factors L = 16 is greater than the number
of data points N = 9. Therefore, rank of source signal matrix S cannot exceed 9.
This violates the condition in theorem 1 that S must have full row rank. Thus, NCA
solutions are not expected to be unique for this experimental data. It cannot be tested
if S satisfies assumption 6 or not unless NCA is applied to the given dataset-network
pair (D,B(G)). It is shown in the next chapter that NCA solutions are not unique
as uniqueness criteria in (2.14) is not satisfied. This dataset is used throughout
the chapter to demonstrate theoretical gaps in state-of-art and to validate the novel
contributions made in this thesis.

2.6 Summary

ChIP sequencing technology for recording gene expression combined with TMM
data normalisation technique limits the choice of models and modelling methods.
Among different models of TRN that are available in literature ODE and log-linear
models are best suited to model data recorded in a ChIP-TMM setup. As ChIP
sequencing method is generally not used to record protein concentrations in lab
based experiments, the problem of modelling TRNs using log-linear models is,
mathematically, a matrix factorisation problem. TRNs generally have well defined
structure stemming from biology. Therefore, gene expression data modelling is a
structure-constrained matrix factorisation problem. In this thesis, it is assumed that
a regulatory pattern for a TRN of interest is available and the TRN strictly follows
this pattern. This further limits the type of parameter estimation methods that can
be used. NCA is a popular optimisation based method designed to obtain unique
matrix factors for a given dataset-network pair. However, NCA imposes several
rank conditions on these matrix factors which cannot be tested beforehand. Dif-
ferent methods based on NCA available in literature do not accurately define NCA
identifiability. Furthermore, NCA based methods which address a case where a
given network is not NCA identifiable only partially solve the original SCMF prob-
lem. Therefore, there are three open issues with respect to NCA – method to test
NCA problem feasibility, accurate definition of NCA identifiability, and method
to uniquely and completely solve problems involving non-NCA identifiable TRNs.
Exploiting sparsity of TRNs with the help of graph based methods might be useful
in resolving these open issues. However, sparsity of TRNs has not been exploited
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well in the context of NCA. Goals related to the three open issues are pursued in this
thesis. First goal in this thesis is to develop accurate NCA identifiability conditions
that can be tested before applying NCA to a dataset. Second goal is to develop a
graph based method to decompose a given network into NCA identifiable sub-parts
and the third is to develop a method to combine NCA solutions of the identified
sub-networks to obtain unique solutions to a general SCMF problem.



Chapter 3

Preliminary analysis

The objective of this chapter is to test NCA with a set of numerical examples to
identify open issues in NCA. NCA proposed in [2] and [20], among other SCMF
techniques, factorise gene expression data obtained using ChIP sequencing. As
pointed out in section 2.2.2, this thesis focuses only on NCA as there are ample
opportunities to carry out fundamental theoretical research. Two key aspects related
to NCA studied in this chapter are

1. rank conditions imposed on matrices W and S – assumptions 1, 2 and 3

2. uniqueness of solutions

In this chapter, these two aspects of NCA are probed with the help of numerical
examples to expose gaps in theory and implementation of NCA.

As pointed out in section 2.3.3, only handful number of articles in NCA liter-
ature focus on theoretical aspects of NCA identifiability. It is argued in the same
section that all such theoretical results related to NCA are only partially accurate.
Counter examples are used in this chapter to demonstrated that such a claim is valid
and an accurate description of NCA identifiability is not yet available. In section
3.1, it is shown that binary rank of B(G) might affect its NCA compatibility. A rela-
tionship between rank of W and binary rank of B(G) is developed in section 3.1.3.
Observations made in section 3.1 serve as motivation for chapter 4 where accurate
NCA feasibilty conditions are developed.

Use of graph theoretical methods to identify NCA feasible sub-networks of a
given network is reported in section 2.4. Size of a maximal matching in a bipartite
graph G is claimed to be equal to the rank of its adjacency matrix B(G) in [82].
This relationship is shown to be inaccurate in section 3.2 with the help of a counter
example. It is shown in section 3.2.2 that rank of an example matrix B(G) is equal
to size of a matching after removing duplicate and zero rows in B(G). This serves

44
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as motivation for chapter 5 where a bipartite matching based method is developed
to identify NCA feasible sub-networks of a given network.

As mentioned in section 2.3.1, uniqueness of NCA solutions can be guaranteed
by testing a pair of NCA solutions ((1W ),(1S)) and ((2W ),(2S)) against (2.14).
However, no method is explicitly made available in NCA literature. Moreover,
testing uniqueness of NCA solutions is generally ignored in most of the associated
literature. A method to compute a scaling matrix that connects two NCA solutions
as given by (2.14) is developed in section 3.3. This method is used in section 3.3.2 to
demonstrate the fact that NCA solutions corresponding to the experimental dataset
presented in section 2.5 are not unique. Results from chapters 4 and 5 are combined
in chapter 6 where estimating unique solutions corresponding to NCA incompatible
networks is of prime importance.

3.1 Binary rank of a network

In this section, it is shown with the help of a numerical example that binary rank of
B(G) can affect NCA compatibility of a network. This serves as a counter example
that disproves NCA identifiability theorem [60]. Consider a binary matrix B(G) ∈
GF6×4

2 with set of rows Y = {vi : 1≤ i≤ 6} and set of columns X = { j : 1≤ j ≤ 4}

B(G) u1 u2 u3 u4

v1 0 0 1 1
v2 0 1 0 1
v3 0 1 1 0

v4 1 0 0 1
v5 1 0 1 0

v6 1 1 0 0

(3.1)

B(G) is the adjacency matrix of a bipartite graph G = (X ∪Y,B(G)) similar to the
one in Fig. 1.3, where i j-th element of B(G) is given as

B(G)(i, j) =

1, if (i, j) is an edge

0, otherwise

If the network in (3.1) is NCA identifiable, then B(G) is expected to satisfy assump-
tions 4 and 5. In this section, it is shown that these assumptions are inaccurate.
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3.1.1 NCA identifiability - example network

In section 2.3.3, assumption 5 is introduced where reduced sub-matrices B(H j)s of
B(G) are discussed. It is important to note the difference in reduction of B(G) in the
sense of NCA and graph theory. In the context of NCA, reduction refers to deletion
of j-th column and all rows with non-zero entries on j-th position in B(G) whereas
in graph theory, reduction of a graph G means removal of duplicate and isolated
vertices in G. These two operations are not equivalent. A reduced sub-matrix in the
sense of NCA is equal to the adjacency matrix of a sub-graph obtained by deleting
vertex u j and all its neighbours N(u j)

B(H j) = B(G\{u j,N(u j)}) (3.2)

B(G) in (3.1) has 4 linearly-independent rows in R: v1, v2, v3 and v4, and hence,
rk(B(G)) = 4. The other rows can be expressed as

v5 = v2− v3 + v4

v6 =−v1 + v3 + v4
(3.3)

The sub-matrices of B(G), B(H j), j = 1, 2, 3 and 4, are obtained by removing j-th
column and all rows with 1 on j-th position as

B(H1)u1 u2 u3 u4

v1 0 0 1 1
v2 0 1 0 1
v3 0 1 1 0

v4 1 0 0 1
v5 1 0 1 0

v6 1 1 0 0

B(H2)u1 u2 u3 u4

v1 0 0 1 1
v2 0 1 0 1
v3 0 1 1 0

v4 1 0 0 1
v5 1 0 1 0

v6 1 1 0 0

(3.4)

B(H3)u1 u2 u3 u4

v1 0 0 1 1
v2 0 1 0 1
v3 0 1 1 0

v4 1 0 0 1
v5 1 0 1 0

v6 1 1 0 0

B(H4)u1 u2 u3 u4

v1 0 0 1 1
v2 0 1 0 1
v3 0 1 1 0

v4 1 0 0 1
v5 1 0 1 0

v6 1 1 0 0

(3.5)
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It can be verified that all sub-matrices B(H j)s (3.4) and (3.5) are permutations of

B(H) c1 c2 c3

r1 0 1 1
r2 1 0 1
r3 1 1 0

(3.6)

It is easy to verify that B(H) (3.6) is full-ranked. Therefore, all sub-matrices B(H j)s
(3.4) and (3.5) of B(G) (3.1) are full-ranked. Thus, B(G) is NCA-compatible ac-
cording to assumptions 4 and 5 (chapter 2, section 2.3).

Consider W ∈ R6×4

W u1 u2 u3 u4

v1 0 0 2 -2
v2 0 2 0 -2
v3 0 -2 2 0

v4 -2 0 0 2
v5 2 0 -2 0

v6 -2 2 0 0

(3.7)

W is such that φ(W ) = B(G), i.e., W follows the structure imposed by B(G). In
theory, it is possible to construct a dataset D such that NCA-estimate of the corre-
sponding weight matrix is as given in (3.7). It is shown in the next chapter that W

(3.7) can be derived from B(G). It can be verified that in W (3.7)

−v5 = v2 + v3 + v4

v6 = v1− v3 + v4

v3 = v1− v2

(3.8)

and hence,
rk(W ) = 3 (3.9)

It is important to note that not all choices of W,φ(W ) = B(G) will lose rank. It can
be verified W (3.7) will achieve full column rank when one of its entries is changed
to some real number other than 2 or −2. Therefore, only those matrices chosen
from a particular subspace of matrices characterised by the linear dependencies in
(3.8) will lose rank. Existence of such matrices is explored in chapter 4.

Sub-matrices Wj of S corresponding to B(H j), j = 1, 2, 3 and 4 in (3.4) and
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(3.5) are permutations of

W̄ c1 c2 c3

r1 0 2 -2
r2 2 0 -2
r3 -2 2 0

(3.10)

It is evident in (3.10) that r3 = r1− r2 and hence,

rk(W̄ ) = 2 (3.11)

From (3.9) and (3.11), any NCA solution with W (3.7) as the weight matrix is not
unique according to the original NCA theorem 1 (chapter 2, section 2.3). This also
implies by contradiction that B(G) = φ(W ) is not NCA compatible. This is a case
of inaccurate classification of given network as NCA compatible.

3.1.2 Binary rank - example network

Ranks of B(G) (3.1) and B(H j)s (3.4) and (3.5) are computed over real-field R in
section 3.1.1, but all matrices are binary valued. Computing binary ranks of these
matrices may lead to accurate classification of networks as NCA compatible. B(G)

(3.1) is used here to demonstrate the importance of considering binary rank to test
a network for NCA compatibility.

Definition of elementary operations such as addition, subtraction, and multipli-
cation depend on the numerical field to which the variables of interest belong [41].
In binary field, denoted by GF2 in this thesis, both addition and subtraction are
defined as

0⊕0 = 0, 1⊕0 = 1 and 1⊕1 = 0 (3.12)

where ⊕ denotes logical-XOR operation. Multiplication in GF2 is defined as

0 �0 = 0, 1 �0 = 0 and 1 �1 = 1 (3.13)

where � denotes logical-AND operation. Binary rank of a binary matrix B(G), de-
noted by rk2(B(G)), can be computed using any conventional technique in [103]
whilst considering the definitions in (3.12) and (3.13).

It is shown in section 3.1.1 that rk(B(G)) = 4 and rk(B(H)) = 3 and hence,
B(G) is NCA-compatible. However, these matrices lose rank when their ranks are
computed over GF2. Upon examining the rows of B(G), it can be seen that the
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linearly-dependent rows in R (3.3) are linearly-dependent in GF2

v5 = v2⊕ v3⊕ v4

v6 = v1⊕ v3⊕ v4

In addition to that,
v3 = v1⊕ v2 (3.14)

Thus, there are 3 linearly-independent rows in GF2: v1, v2 and v4 and hence,

rk2(B(G)) = 3 (3.15)

Similarly, upon examining B(H) (3.6), it is evident that r3 = r1⊕ r2 and hence,

rk2(B(H)) = 2 (3.16)

Therefore, from (3.15) and (3.16), B(G) does not satisfy extended NCA rank-
conditions if rk2 is considered.

Thus, considering binary rank of any structural-constraints matrix is crucial for
ensuring uniqueness of NCA solutions. These observations serve as motivation in
the next chapter to develop an accurate definition of NCA compatible structural
constraints matrix.

3.1.3 Binary rank and real rank

It is shown in the previous section that binary rank of a network plays an important
role in testing NCA compatibility. In this section, a fundamental result that relates
binary rank of B(G) rk2(B(G)) to the real rank of W rk(W ) is developed as

Lemma 1 Matrices W ∈ RM×L and B(G) ∈ GFM×L
2 satisfy

rk(W )≥ rk2(B(G))

if φ(W ) = B(G), where φ(.) is a bijection defined in (2.10).

Proof If φ(W ) = B(G), then

B(G)(i, j) 6= 0 =⇒ W (i, j) 6= 0, 1≤ i≤M, 1≤ j ≤ L
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Using appropriate row and column reordering followed by row reduction, it can be
shown that B(G) and W will have same number of pivots

rk(W ) = rk(B(G))

A binary matrix B(G) satisfies the condition rk(B(G))≥ rk2(B(G)) [104]. Thus,

rk(W )≥ rk2(B(G))

�

This result is used in the next chapter to develop binary rank based NCA compati-
bility conditions.

3.2 Matching based NCA identifiability

It is shown in the previous section that binary rank of a network is important in
characterising a network B(G) as NCA identifiable or otherwise. In section 2.4, it is
pointed out that accurate graph theoretical interpretation of NCA rank conditions is
useful in identifying NCA identifiable sub-networks. Graph theoretical interpreta-
tion of NCA conditions in [82] is based on the fact that size of a maximal matching
in a graph G is equal to rk(B(G)). In section 3.2.1, it is shown that a matching
based characterisation of NCA compatible networks in [82] is inaccurate. Also, it
is shown that for B(G) in (3.1) that size of a maximal matching in G is not equal
to rk2(B(G)). This further reduces the applicability of results in [82] as binary rank
is shown to be important in the context of NCA. It is shown in sections 3.2.3 and
3.2.2 that matrix manipulation such as reordering and deleting some of the rows and
columns might lead to a better graph theoretical charcaterisation of NCA identifi-
able graphs.

3.2.1 Matching and rank of a network

Consider a sub-matrix B(H) of B(G) in (3.1) given by

B(H) =

u1 u2 u3 u4

v1 0 0 1 1
v3 0 1 1 0

v4 1 0 0 1
v6 1 1 0 0

(3.17)
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It can be seen that B(H) in (3.17) has linearly dependent rows identified in (3.3) and
hence

rk(B(H)) = 3 (3.18)

A maximal matching in B(H) is given by

M(H) = ({u1, u2, u3, u4},{v4, v6, v3, v1}) (3.19)

Entries of B(H) that correspond to M(H) in (3.19) are encircled as

B(H) u1 u2 u3 u4

v1 0 0 1 1
v3 0 1 1 0

v4 1 0 0 1
v6 1 1 0 0

From (3.18) and (3.19)

rk(B(H)) = 3, |M(H)|= 4
rk(B(H))< |M(H)|

(3.20)

This shows that it is possible to construct a network B(H) such that its rank is
smaller than size of a maximal matching |M(H)|. Therefore, maximal matching
based NCA identifiability conditions presented in [82] are inaccurate.

Importance of binary rank in the context of NCA is demonstrated in the previous
section. It is shown here that size of a maximal matching in a graph is not equal
to the binary rank of its adjacency matrix. Consider B(G) in (3.1). A maximal
matching in B(G) is given by

M(G) = (X∗,Y ∗),X∗ ⊂ X = {u1, u2, u3, u4},Y ∗ ⊂ Y = {v4, v2, v3, v1} (3.21)

Entries of B(G) that correspond to M(G) in (3.21) are encircled as

B(G) u1 u2 u3 u4

v1 0 0 1 1
v2 0 1 0 1
v3 0 1 1 0

v4 1 0 0 1
v5 1 0 1 0

v6 1 1 0 0
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As claimed in [82], from (3.21) and (3.3)

rk(B(G)) = |M(G)|

However, from (3.15) and (3.21)

rk2(B(G))< |M(G)| (3.22)

It can be seen from the two examples in this subsection that

rk2(B(G))≤ rk(B(G))≤ |M(G)| (3.23)

As mentioned in section 2.4, finding a maximal matching is equivalent to comput-
ing structural rank of a matrix. In section 3.1.1, it is shown that W in (3.7) char-
acterised by linear dependencies in (3.8) lose rank despite corresponding structural
constraints matrix B(G) being full ranked in R. Thus, identifying a maximal match-
ing (X∗1 ,Y

∗
1 ) is not necessarily equivalent to calculating binary rank of the original

graph G

rk2(B(G)) 6= |M(G)|

For B(H) in (3.17), a simple breadth-first based matching is employed to check if
rk2(B(H)) can be accurately estimated. This is done by scanning rows from left
to right until a 1 is found. The found 1 is encircled and the corresponding row
and column are removed from search and the process is repeated till all rows are
exhausted. A breadth-first search based matching M(H,b f s) in B(H) is identified as

B(H) u1 u2 u3 u4

v1 0 0 1 1
v3 0 1 1 0

v4 1 0 0 1
v6 1 1 0 0

(3.24)

Note that this is not a maximal matching. However, from (3.24), size of the match-
ing M(H,b f s) with breadth-first approach is such that

|M(H,b f s)|= rk2(B(H)) = 3 (3.25)

However, B(H) in (3.17) has equal number of non-zero entries across rows and
columns. It is shown in the next subsection that a breadth-first matching fails to
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accurately estimate binary-rank of a binary matrix if its rows and columns differ in
number of non-zero entries.

3.2.2 Eliminating duplicate and zero rows

Consider another example B(G1) with breadth-first search based matching M(G1,b f s)

given as

B(G1)u1 u2 u3 u4

v1 1 0 1 1
v2 0 1 1 0
v3 0 1 1 0

v4 0 1 1 1

(3.26)

In this case M(G1,b f s) is maximal and is such that

|M(G1,b f s)|> rk2(B(G1))

It can be seen in B(G1) (3.26) that row v3 is a duplicate of v2. A reduced bipartite
graph is defined as follows

Definition 1 A reduced bipartite graph Gr = (Xr∪Yr) is a sub-graph of G such that

1. Xr ⊆ X and Yr ⊆ Y

2. there are no isolated vertices, d(v)> 0,∀v ∈ Xr∪Yr

3. there are no duplicate vertices, N (v1) 6= N (v2),∀v1,v2 ∈ Xr∪Yr

Consider a reduced version of B(G1) in (3.26) given by

B(G1,r) =

u1 u2 u3 u4

v1 1 0 1 1
v2 0 1 1 0
v4 0 1 1 1

(3.27)

where, r in subscript represents graph reduction. A breadth first matching in B(G1,r)

can be identified as

B(G1,r) =

u1 u2 u3 u4

v1 1 0 1 1
v2 0 1 1 0
v4 0 1 1 1

(3.28)
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It can be verified that rk2(B(G1)) = 3. From (3.28)

|M(G1,r,b f s)|= rk2(B(G1)) (3.29)

It is shown in chapter 5 that reducing graph is important in the context of NCA
feasibility.

3.2.3 Reordering rows and columns

Importance of identifying largest full-ranked sub-network in the context of NCA is
highlighted in section 2.3.3. It is shown in the previous subsection that reducing
graphs combined with breadth-first matching can lead to an accurate estimate of
binary rank of a binary matrix. However, the pivots identified in B(G1,r) in (3.28)
may not necessarily correspond to largest full-ranked sub-matrix of B(G1). In order
to demonstrate this fact, consider the following sub-matrix of B(G1,r) in (3.28) with
a breadth-first matching given as

B(H1) =

u1 u2 u3

v1 1 0 1
v2 0 1 1
v4 0 1 1

(3.30)

It is easy to see that rk2(B(H1)) = 2 whereas |M(H1,b f s)| = 3 > rk2(B(G1)). This is
because v4 is a copy of v2. Reducing H1 can lead to accurate estimate of binary
rank of B(H1), but it does not resolve the issue of finding the largest full-ranked
sub-matrix of the original matrix B(G1) in (3.26).

A minimum degree reordering on G is defined as

Definition 2 A minimum degree reordered bipartite graph G< = {X<∪Y<} is ob-

tained by rearranging vertices in X and Y in the increasing order of their degrees.

Consider a minimum degree reordering as described in definition 2 of B(G1,r) in
(3.27) given as

B(G1,r<) =

u1 u2 u4 u3

v2 0 1 0 1
v1 1 0 1 1
v4 0 1 1 1

(3.31)

Note that the row and column indices in (3.27) have been reordered in (3.31) such
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that rows and columns appear in the increasing order of the number of 1s in them.
Notation G1,r< is used in (3.31) where < represents minimum degree ordering. A
breadth-first matching M(G1,r<) can be identified in (3.31) as

B(G1,r<) =

u1 u2 u4 u3

v2 0 1 0 1
v1 1 0 1 1
v4 0 1 1 1

(3.32)

From (3.32), a full-ranked sub-matrix of B(G1) in (3.26) as

B(H f ull−ranked) =

u1 u2 u4

v2 0 1 0
v1 1 0 1
v4 0 1 1

In the context of NCA, discussion in this section demonstrates the need to reduce
and order adjacency matrix of a given network before looking for a maximal match-
ing as defined in [82]. A formal definition of NCA feasible sub-networks is devel-
oped in chapter 5 based on the findings of this section.

3.3 NCA uniqueness test

As pointed out in section 2.3.1, uniqueness of NCA solutions can be guaranteed
if χ (2.14) is diagonal [2]. However, there is no method available in literature to
compute χ. In this section, a method based on vectorisation of (2.14) is developed.
This method is used to test uniqueness of NCA solutions corresponding to the ex-
perimental dataset presented in section 2.5. An open issue with respect to NCA
uniqueness is pointed out in this section.

3.3.1 Vectorised NCA uniqueness relationship

Vectorised version vec.X of a matrix X ∈RN×P is obtained by stacking all columns
of X in a single column. Kronecker-product A⊗B ∈ RMP×NQ of arbitrary matrices
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A ∈ RM×N and B ∈ RP×Q is defined as

A⊗B =


A(1,1)B · · · A(1,N)B

... . . . ...
A(M,1)B · · · A(M,N)B


Consider a matrix relationship

AXB =C (3.33)

where, C is of appropriate dimensions. Vectorising (3.33) results in

(BT ⊗A)vec.X = vec.C (3.34)

Using the relationship in (3.34), (2.14) can be rewritten as

(IL⊗ (1W ))vec.χ = vec.(2W ) (3.35)

Given any two pairs of NCA solutions ((1W ),(1S)) and ((2W ),(2S)), vec.χ can be
calculated by solving (3.35). NCA solutions are unique if χ obtained by rearranging
vec.χ is a diagonal matrix.

3.3.2 Carbon source switch - uniqueness

NCA for short data records [20] is applied twice to dataset D (Fig. 2.3) obtained
from carbon source switch experiment [1]. Solutions ((1W ),(1S)) and ((2W ),(2S))

are illustrated in Fig. 3.2 – 3.5. It can be seen from the scales in Fig. 3.2 and 3.3
that all the entries in (1W ) and (2W ) are within the range (−2.5,2.5). However, the
two matrices are not identical. On visual inspection, it can be seen that patterns in
columns 2 and 14 are noticably different. From Fig. 3.4 and 3.5, colour maps of (1S)

and (2S) are visibly different. The maximum and minimum values on scales next
to the colour maps are also different in the two figures. It is found in computations
that both (1S) and (2S) satisfy assumption 6.

NCA uniqueness can be tested by solving for vec.χ in (3.35). It was observed
that matrix χ corresponding to (1W ) (Fig. 3.2) and (2W ) (Fig. 3.3) is not diago-
nal. Several off-diagonal entries are non-zero as shown in Fig. 3.1, where dashed
line runs along the diagonal entries. Diagonal entries of χ are larger in magnitude
compared to non-zero off-diagonal entries. Therefore diagonal entries of χ in Fig.
3.1 are set to zero to improve readability of the figure. From Fig. 3.1, it is evident
that NCA solutions are not unique as (2.14) is not satisfied. Furthermore, though
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Figure 3.1: Colour map of χ after setting diagonal entries to zero

assumption 6 is satisfied,
(2S) 6= χ

−1(1S) (3.36)

Findings in this section demonstrates the fact mentioned in section 2.3.3 that sat-
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Figure 3.2: Colour map of (1W ) – carbon source switching experiment

isfying assumption 6 is not sufficient to show that NCA solutions are unique. All of
the methods that extend NCA presented in section 2.3.2 are based on the assump-
tion that NCA algorithms in [2] and [20] generate unique solutions. However, this
is not true as demonstrated in this section. In chapter 6, a new divide and conquer
method is proposed to obtain unique solutions to the SCMF problem in (2.12).
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Figure 3.3: Colour map of (2W ) – carbon source switching experiment
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Figure 3.4: Colour map of (1S) – carbon source switching experiment

3.4 Summary

In this chapter, two theoretical aspects of NCA – identifiability and uniqueness of
solutions – are probed. Numerical examples are used to demonstrate the shortcom-
ings of NCA. It is shown that the rank conditions imposed on the matrix factors
in [2] are only partially accurate with the help of a counter example. In doing so,
importance of binary rank of a network is demonstrated. A possible way to test
existence of a solution is introduced. These open problems are solved in chapter
4. A graph based method to identify largest NCA sub-network available in litera-
ture assumes that size of a maximal bipartite matching is equal to graph rank. It is
shown in this chapter that such an assumption is inaccurate. Graph operations such
as breadth-first search, reduction and ordering are shown to be useful in identifying
the largest full-ranked sub-matrix of a given binary matrix. These findings are used
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Figure 3.5: Colour map of (2S) – carbon source switching experiment

in chapter 5 to identify the largest NCA feasible sub-network and decompose the
whole network into multiple NCA feasible parts. It is shown in this chapter that
rank conditions imposed on source signals matrix in [20] are insufficient to guar-
antee uniqueness of NCA solutions. This issue is resolved in chapter 6 where a
method is developed to compute unique solutions to a general SCMF problem.



Chapter 4

NCA feasibility

NCA compatibility of a network, D = WS, is defined based on rank properties of
W and S whereas only D and B(G) are available in an application. In the context
of this thesis, NCA compatibility refers to pair (W,S) that satisfies assumptions 1–
3, or B(G) that satisfies assumptions 4 and 5 (section 2.3). The definition of NCA
compatible network can be used to test compatibility of a given network B(G), but
uniqueness of NCA solutions can be tested only after W and S are available. NCA
compatible networks are those with a full-ranked S. It is impossible to use the orig-
inal NCA compatibility definition [2] to test beforehand if a network satisfies this
condition or not as S is a priori unknown. An alternate version of full rank condi-
tion is enforced on S in a modified NCA algorithm [20]. This algorithm has been
used in its original form by several algorithms reviewed in [73], and those reported
more recently in [40] and [74]. It is shown in section 3.3 that these conditions are
inaccurate. No other work in literature has attempted developing a priori feasibility
test. In addition to that, it is shown in section 3.1 that ignoring binary rank of B(G)

can lead to misclassification of B(G) as NCA compatible. Therefore, there is a need
to incorporate binary rank in the definition of NCA compatibility. Any priori NCA
feasibility test should translate the rank conditions on the posteriori pair (W,S) to
equivalent conditions on priori known pair (D,B(G)). This chapter addresses these
challenges. Novel contributions in this chapter are as follows:

• Results from linear algebra, matrix theory and optimisation theory are used
to compute a trivial solution in section 4.1.1. A proposition to characterise
NCA feasible region is presented.

• In section 4.1.2, inaccuracies of assumptions 4 and 5 (chapter 2, section 2.3.3)
are amended to accurately test NCA feasibility of B(G).

• Bounds on rk(S) based on pair (D,B(G)) are developed in section 4.2.

60
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• NCA feasibility theorem is developed in section 4.3. This theorem can be
used to test NCA feasibility of dataset-network pair (D,B(G)) before appli-
cation of NCA.

Applicability of these novel results are demonstrated in section 4.4 with the help of
dataset from a biological application described in section 2.5. In the context of this
thesis, NCA feasibility refers to a pair (D,B(G)) that satisfies set of conditions de-
veloped in this chapter. Keyword feasibility is used to signify that all corresponding
computations can be executed independent of and before applying NCA.

4.1 Accurate classification of structural constraints
matrix

It is shown in section 3.1 that assumptions 4 and 5 (section 2.3.3) are invalid. In
section 4.1.1, a linear algebra and optimisation based method is proposed to com-
pute a trivial solution that not only respects the structural constraints imposed by
underlying network, but also mimics the linear dependencies seen therein. Such a
trivial solution is used to define a region in solution space that must be avoided and
conditions that must be met to achieve uniqueness in NCA. Relationship between
rk2(B(G)) and rk(W ) developed in section 3.1.3 is used to modify assumptions 4
and 5.

4.1.1 A trivial solution

The goal in this section is to compute a trivial solution W0, φ(W0) = B(G) the rows
and columns of which mimic in R linear dependencies exhibited in GF2 by rows
and columns of B(G). Motivation to do so is to develop a method to compute a
W0 that is not full ranked whereas underlying B(G) satisfies assumptions 4 and 5,
but loses rank in GF2. Such a pursuit is in the interest of NCA. If it is possible to
compute such a W0, then a region I (B(G)) defined by W0 in NCA solution space
R (B(G)) can be avoided to obtain unique NCA solutions. Three regions of interest
– R (B(G)), I (B(G)), and R (B(G))\ I (B(G)) – are depicted in Fig. 4.1.

Binary matrices that record linear dependencies in B(G) are defined in this sec-
tion. These matrices are used to define network parameter subspace I (B(G)) and
solve for W0. Only those B(G)s are of interest in this section that satisfy one of the
following two conditions:

1. M > L
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Figure 4.1: R (B(G)) – NCA weights matrix solution space, I (B(G)) – subspace
where W loses rank, R (B(G))\I (B(G)) – subspace corresponding to unique NCA
solutions

2. M = L and rk2(B(G))< L

Consider a structural-constraints matrix B(G)∈GFM×L
2 with set of rows Y = {vi : 1≤ i≤M}

and set of columns X =
{

u j : 1≤ j ≤ L
}

. Let nR and nC respectively be the number
of rows and columns in B(G) that are linearly dependent in GF2. Using rank-nullity
theorem [105],

nR = M− rk2(B(G))

nC = L− rk2(B(G))
(4.1)

Let ψR ∈GFnR×M
2 be such that each row ψR(.,1 : M) represents an equation in GF2

connecting a linearly dependent row in B(G) to its linearly independent rows. For
example,

v3 = v1⊕ v2

maps to a row
ψR(.,1 : M) =

(
1 1 1 01×M−3

)
where, 01×M−3 is a vector of M− 3 zeros. Similarly, let ψC ∈ GFL×nC

2 be such
that each column ψC(1 : L, .) represents an equation connecting a linearly depen-
dent column to linearly independent columns in B(G). B(G) satisfies the following
equation

ψRB(G) = 0nR×L (4.2)

and
B(G)ψC = 0M×nC (4.3)

In other words, ψC lies in the null-space of B(G) evaluated over GF2

ψC ∈ N2(B(G)) (4.4)
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Similarly,
ψ

T
R ∈ N2(B(G)T ) (4.5)

Two definitions of a NCA network parameter space are presented next.

Definition 3 Given a network B(G), a network parameter subspace I (B(G)) ⊂
R (B(G)) is defined as a space of real valued matrices such that any W0 ∈ I (B(G))

satisfies

1. φ(W0) = B(G)

2. ψRW0 = 0nR×L

3. W0ψC = 0M×nC

where, ψR and ψC are respectively computed as given in (4.5) and (4.4). An alter-
nate definition is provided here

Definition 4 Given a network B(G), a network parameter subspace I (B(G)) ⊂
R (B(G)) is defined as

I (B(G)) = {W0 ∈ N(ψR)∩NT (ψT
C) : φ(W0) = B(G)}

Note that definitions 3 and 4 are different in that the former defines network param-
eter space as a space of matrices whereas the latter defines the same as a constrained
vector space. Either of the two definitions can be used to devise a computational
method to compute a trivial solution. In this section, a linear algebra and optimisa-
tion based method is proposed in line with definition 4 by solving for W0 in

ψRW0ψC = 0nR×nC

sub. to φ(W0) = B(G)
(4.6)

On vectorising equation (4.6), we have

Ψvec.W0 = 0ML×1 (4.7)

where, Ψ ∈ GF(nRL+nCM)×ML
2 is determined as

Ψ =

(
IL⊗ψR

ψT
C⊗ IM

)
(4.8)
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In (4.8), ⊗ represents Kronecker product, IM and IL are identity matrices of size M

and L. nR > 0 follows from the assumption made at the beginning of this section
and

rk2(ψR) = nR

rk2(ψC) = nC

However, Ψ is not always full-ranked and a solution to (4.7) might not exist. As-
suming that a solution exists, solving for vec.W0 (4.7) does not guarantee that
φ(W0) = B(G). This is because Ψ captures all linear-dependencies in B(G), but
not the structural information. Therefore, a pruned version Ψ̄ of Ψ is obtained by
removing every ( j−1)M+ i th column, where B(G)(i, j) = 0. Let Z be the number
of zeros in B(G). ML−Z non-zero entries of vec.W0, denoted by vec.W̄0, can be
computed by solving for null-space of Ψ̄ as

Ψ̄vec.W̄0 = 0(ML−Z)×1 (4.9)

Ψ̄ may not be full-ranked and hence, solution to (4.9) might not exist. Even if a
solution exists, it may not be unique as Ψ̄ may be non-square/fat. vec.W0 can be
obtained by inserting Z zeros in vec.W̄0 in appropriate locations and matrix W0 can
be obtained by rearranging vec.W0. A straightforward way to solve the problem in
(4.9) is

W̄0 = Ψ̄
−10(ML−Z)×1 (4.10)

However, it cannot be guaranteed that all the entries in W̄0 are non zero. From
lemma 1, rk(W0) = rk(B(G)) is true only if all entries of vec.W̄0 are non-zero. This
can be achieved by reformulating problem in (4.9) as an optimisation problem with
element-wise absolute value constraints

min ‖vec.W̄0‖2
2

sub. to Ψ̄vec.W̄0 = 0
|vec.W̄0,i| ≥ w

(4.11)

where, w > 0 is an arbitrary constant dependent on application of interest and ‖.‖ is
the standard two-norm. Two-norm [41] of a vector a ∈ Rm is defined as

‖a‖2
2 =

m

∑
i=1

a(i)2

Optimisation method [106] with nonlinear inequality constraints can be used to
solve this problem. Ideally, a W0 that solves (4.11) is such that W0(i, j) 6= 0 for any
i, j such that B(G)(i, j) = 1 and hence, rk(W0) = rk2(B(G)). Such a W0 is not full
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ranked and hence, is not NCA compatible. However, a solution may not always
exist as the feasible region in (4.11) is not convex, i.e., there is a discontinuity at 0.

The steps to compute a trivial solution proposed in this section are summarised
in the form of an algorithm in 2.

Algorithm 2 Trivial NCA solution

input: B(G) ∈ GFM×L
2

STEP 1: compute ψC (4.3), ψR (4.2), and Ψ (4.8)
STEP 2: determine Ψ̄ by deleting row ( j− 1)M + i from Ψ whenever B(i, j) =
0, 1≤ i≤M, 1≤ j ≤ L
STEP 3: solve (4.11) to obtain W̄0
STEP 4: insert 0 in vec.W̄0 wherever appropriate and rearrange to obtain W0
output: W0

It is important to develop a meaningful interpretation of results in this section.
As mentioned at the beginning of this section, the goal in this section is not to
fix the issues raised by using rk2 in the context of NCA. Instead, the objective
is to identify a trivial solution so as to identify that region which corresponds to
a low rank NCA incompatible network. Excluding I (B(G)) defined by W0 from
NCA solution space R (B(G)) might allow computation of unique NCA solutions
despite rk2(B(G)) < rk(B(G)). This interpretation is summarised in the form of a
proposition

Proposition 1 Let B(G) ∈ GFM×L
2 be such that it satisfies assumptions 4 and 5,

and

rk2(B(G))< L

or

rk2(B(H j))< L−1

for some sub-matrix B(H j), H j ⊂ G,1 ≤ j ≤ L. If there exists a solution W0 to

(4.11), NCA solutions that are unique up to a diagonal matrix can be computed by

solving for W in the subspace characterised by

R (B(G))\ I (B(G))

�

Results in this section are not included in NCA framework in this thesis as they
need further refinement. This is considered as a candidate for future work.
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4.1.2 NCA feasible networks

Replacing W with B(G) in original NCA conditions leads to inaccuracies as shown
in section 3.1.2. This is because B(G) is binary valued matrix. NCA feasibility
conditions for B(G) can be designed by considering rk2 instead of rk. However,
such a choice must be theoretically justified. This can be done by relating rk(B(G))

to rk(W ). From lemma 1
rk(W )≥ rk2(B(G))

This is true only when |W (i, j)| > 0 for any i, j such that B(G)(i, j) = 1. In this
section, it is assumed that this is true even though NCA does not explicitly impose
such a constraint on W . This partially justifies the decision to replace real valued
matrices in assumptions 1 and 2 with corresponding binary valued structural con-
straints matrices. However, rk may overestimate ranks of binary matrices as shown
in section 3.1.2. Lemma 1 can be used to bridge this gap by replacing rk with rk2.

Assumption 7 B(G) has full column rank, i.e., rk2(B(G)) = L

Assumption 8 All reduced sub-matrices B(H j) obtained by removing every i-th

row with B(G)(i, j) 6= 0 have full column rank, i.e., rk2(B(H j)) = L−1

NCA feasibility conditions for B(G) can now be developed as

Theorem 2 A network B(G) ∈ GFM×L
2 is NCA feasible if B(G) satisfies assump-

tions 7 and 8

Proof Assume B(G) satisfies assumptions 7 and 8. Consider an arbitrary matrix
W ∈ RM×L,φ(W ) = B(G). From lemma 1, rk(W ) ≥ rk2(B(G)). Since, M ≥ L,
rk(W ) 6> L and hence,

rk(W ) = rk2(B(G))

Similarly, sub-matrices Wj,1≤ j ≤ L,φ(Wj) = B(H j) corresponding to sub-graphs
H j ⊂ G are such that

rk(Wj) = rk2(B(H j))

Therefore, W is NCA compatible as it satisfies assumptions 1 and 2. Hence, B(G)

is NCA feasible. �

Assumptions 7 and 8 can be tested before applying NCA. Therefore, these can be
used to test NCA feasibility of a given network B(G). Results in this section are
combined with those in the next section to develop a NCA feasibility test for a
dataset-network pair (D,B(G)) arising from an application.
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4.2 Bounds on rank of input matrix

Uniqueness of NCA solutions can be guaranteed only if rk(S) = L for S ∈ RL×N .
Though an attempt to enforce uniqueness has been made in [20] by introducing
assumption 6 (section 2.3.3), an example where it fails is presented in section 3.3.
It is impossible to compute rk(S) prior to applying NCA. The only way to guarantee
uniqueness of NCA-solutions in state-of-art is to obtain estimates of W and S, and
test if assumptions 1 –3 are satisfied.

In previous section, a method to test NCA feasibility of B(G) was presented. In
this section, it is shown that NCA solution may not be unique despite B(G) being
NCA feasible. An obvious case is one where N < L which is common in most of
the TRN applications [81]. It is trivial to see that NCA solutions are not unique in
this case as S will not have full row rank. There can be cases in which S losing rank
is not obvious. In this section, theoretical bounds on rk(S) are developed based on
priori available information – D and B(G) so as to avoid such cases.

Consider an augmented matrix [B(G) : D]. Using the result in [107], rank([B(G) :
D]) can be computed as

rk([B(G) : D]) = rk(B(G))+ rk((IM−B(G)B(G)−)D) (4.12)

where, IM is an identity matrix of size M and B(G)− is a generalised inverse of
B(G).

rk(D) = rk(WS)≤ min(rk(W ),rk(S)) (4.13)

From (4.12) and (4.13)

rk((IM−B(G)B(G)−)D)≤min(rk((IM−B(G)B(G)−)W ),rk(S))

=⇒ rk((IM−B(G)B(G)−)D)≤ rk(S) (4.14)

Original NCA assumes L≤ N and hence,

rk(S)≤ L

However, in a general application this may not be true. Therefore, rank of S is
bounded above as

rk(S)≤min(L,N) (4.15)
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From (4.14) and (4.15),

rk([B(G) : D])− rk(B(G))≤ rk(S)≤min(L,N) (4.16)

The upper bound in (4.16) is used in [20] to show that NCA uniqueness can be
achieved despite L > N. Note that the objective here is only to test whether NCA
can be applied to (D,B(G)) or not. Guaranteeing uniqueness in cases where L > N

requires additional set of theoretical results developed in chapter 5 and 6.
Theoretical bounds in (4.16) can be computed before applying NCA as both D

and B(G) are available. There are two ways of interpreting (4.16)

1. Uniqueness of NCA solutions can be tested apriori whenever L is fixed

2. size of the largest NCA feasible sub-network can be determined based on
number of data points N

First of these interpretations is used in the next section to develop two NCA feasi-
bility theorem whereas the latter is used to motivate discussions in the next chapter.

It was demonstrated in section 3.1.2 that binary rank rk2 is important in NCA
setting. This raises an important question on usage of rk(B(G)) in (4.16). Answer-
ing this question requires further analysis which is not necessary as only the upper
bound on rk(S) is of importance in NCA setting. As a result, rk(B(G)) is retained
in (4.16).

4.3 NCA feasibility theorem

NCA feasible networks are characterised in section 4.1.2. Theoretical bounds on
rk(S) based on priori available information are presented in section 4.2. In this sec-
tion, results from previous two sections are combined to characterise NCA feasible
dataset-network pair (D,B(G)).

Theorem 3 A dataset-network pair (D ∈ RM×N , B(G) ∈ GFM×L
2 ) is NCA feasible

if

1. B(G) satisfies assumption 7 and 8

2. rank([B(G) : D]) = 2L

Proof From theorem 2, B(G) is NCA feasible if assumptions 7 and 8 are satisfied.
Furthermore,

rk(B(G)) = L
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and there exists a W ∈ RM×L,φ(W ) = B(G) that satisfies assumptions 1 and 2. If
rank([B(G) : D]) = 2L, then from (4.16)

L≤ rank(P)≤ L

=⇒ rank(P) = L

Thus, assumptions 1–3 of the original NCA theorem [2] are satisfied. Hence, the
dataset-network pair is NCA compatible. As all the conditions in this theorem can
be tested before applying NCA, pair (D,B(G)) is NCA feasible. �

Applicability of this theorem is demonstrated with the help of two examples in
next section.

4.4 Simulation results

In this section, applicability and limitations of the results developed in this chapter
are demonstrated. Discussions in this section are organised in two subsections.
Synthetic numerical examples, systems 1 and 2, are presented in section 4.4.1 to
explore applicability of algorithm 2 and proposition 1. In section 4.4.2, dataset
from a biological experiment [1] is used to demonstrate applicability of algorithm 2
and theorem 3.

4.4.1 Synthetic numerical examples

Two networks are studied in this section – Network 1 – NCA infeasible with a trivial
solution and Network 2 – NCA infeasible with no trivial solution. In the context of
structural constraints, no trivial solution means some of the parameters W0(i, j) = 0
whereas B(G)(i, j) = 1. In such cases, structural constraints are not respected as
φ(W0) 6= B(G).

Network 1 – Numerical example in (3.1) is shown to be NCA infeasible in section
3.1.2 with the help of carefully chosen W (3.7). When algorithm 2 is applied to a
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B(G), a trivial solution W0 is obtained as

W0 =



0 0 w −w

0 w 0 −w

0 −w w 0
−w 0 0 w

w 0 −w 0
−w w 0 0


(4.17)

with w = 0.0031. W0 obtained by solving for W̄0 as in (4.10) is equal to the matrix
in (4.17) with w = 0.2887. W in (3.7) can be obtained by setting w = 2 in (4.17).
W0 (4.17) seems to represent a general solution to this system that can be used to
define I (B(G)).

Network 2 – Consider a network B(G) given by

B(G) =



0 1 0 1
0 0 1 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0


(4.18)

It can be verified that B(G) in (4.18) does not satisfy assumptions 7 and 8 and is
NCA infeasible. W0 determined from W̄0 (4.10) is given by

W0 =



0 w 0 −w

0 0 0 0
0 −w 0 w

−w 0 0 w

w 0 0 −w

−w w 0 0
w −w 0 0


(4.19)

with w = 0.2887. Third column of W0 (4.19) is zero and rk(W0) = 3. This means to
say that some of the linear dependencies in B(G) (4.18) cannot be captured by W0,
i.e. φ(W0) 6= B(G). This observation is consistent with the fact that any solution to
the optimisation problem in (4.11) will converge to an infeasible point.
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Remarks – networks 1 and 2 show that the results in section 4.1.1 have some poten-
tial in going a step beyond NCA. Both networks are NCA infeasible, but the former
might allow application of NCA if resulting W lies outside a space I (B(G)) defined
by general-trivial- solution W0. This is possible as network 1 satisfies 4 and 5. In
the latter case, neither does a trivial solution exist nor does the network satisfy as-
sumption 5. These observations show that there is an opportunity to explore further
differences between rk and rk2 based NCA rank conditions. This is not dealt with
in this thesis, but is a potential candidate for future work.

4.4.2 Carbon source switch - NCA feasibility

Consider the transcriptional regulatory network B(G) (Fig. 2.4, section 2.5). The
following facts are mentioned in section 2.5

• B(G) has M = 100 rows and L = 16

• B(G) satisfies assumptions 4 and 5

• dataset D made available by the authors of [1] has only N = 9 data points

• pair (D,B(G)) is NCA incompatible as rk(S)≤ N < L

It is shown in section 3.3 that applying NCA to (D,B(G)) results in solutions that
satisfy assumptions 1, 2, and 6. However, in the same section, the solutions are
shown to be non unique as χ that scales both matrix factors W and S could not be
found. In this section, results from this chapter are used to identify a data subset D(1)

and a sub-network B(H(1)) of B(G) such that pair (D(1),B(H(1))) is NCA feasible.

It can be verified that B(G) satisfies assumptions 7 and 8. From theorem 2,
B(G) is NCA feasible. However, pair (D,B(G)) is NCA infeasible as L > N. How-
ever, (4.16) can be used to identify lower and upper bounds on rk(S). In this case,
min(L,N) = N, rk(B(G)) = 9 and

rk([B(G) : D]) = 25

From (4.16),
9≤ rk(S)≤ 9

=⇒ rk(S) = 9 (4.20)
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This implies that applying NCA to (D,B(G)) will result in a matrix factor S with
rank 9. This agrees with outcome of simulations in section 3.3 where it is also
shown that NCA solutions are not unique up to a diagonal scaling matrix.

Consider a sub-network B(H(1)) that consists of first 9 columns of B(G) and
corresponding non zero rows as depicted in Fig. 4.2. Neither the result in (4.16)
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Figure 4.2: Colour map of B(H(1)) (0 – black, 1 – white): NCA feasible sub-
network of transcriptional regulatory network in [1]

nor the conditions in theorem 3 can be used to identify B(H(1)). A method to
identify NCA feasible sub-networks of a NCA infeasible network is presented in
next chapter.

From theorem 2, B(H(1)) is NCA feasible as it satisfies assumptions 7 and 8.
Pair (D(1),B(H(1))) is NCA feasible as

rk([B(H(1)) : D(1)]) = 18

and
rk(B(H(1))) = 9

=⇒ 9≤ rk(S(1))≤ 9

In order to verify that NCA solutions are indeed unique up to a diagonal matrix,
NCA is applied twice to the pair (D(1),B(H(1))) to obtain two pairs of estimates of
matrix factors – ((1W (1)),(1P(1))) and ((2W (1)),(2P(1))). (1W (1)) and (2W (1)) are
as illustrated respectively in Fig. 4.3 and 4.4. It can be seen in Fig. 4.3 that the max-
imum and minimum values on scale to the right of the colour map are respectively
> 2.5 and <−1.5. Maximum and minimum values on scale in Fig. 4.4 respectively
are < 2.5 and < −2. Columns 2, 3, and 7 in Fig. 4.3 and 4.4 are visibly different.
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Similar observations can be made in colour maps of (1S(1)) and (2S(1)) depicted in
Fig. 4.5 and 4.6.
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Figure 4.3: Colour map of (1W (1)): NCA feasible sub-network of transcriptional
regulatory network in [1]
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Figure 4.4: Colour map of (2W (1)): NCA feasible sub-network of transcriptional
regulatory network in [1]
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Figure 4.5: Colour map of (1S(1)): NCA feasible sub-network of transcriptional
regulatory network in [1]
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Figure 4.6: Colour map of (2S(1)): NCA feasible sub-network of transcriptional
regulatory network in [1]

Using the method presented in section 3.3, chapter3, χ(1) is determined as

χ
(1) =



1 0 0 0 0 0 0 0 0
0 −0.84 0 0 0 0 0 0 0
0 0 −0.83 0 0 0 0 0 0
0 0 0 0.97 0 0 0 0 0
0 0 0 0 0.99 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −0.83 0 0
0 0 0 0 0 0 0 1.06 0
0 0 0 0 0 0 0 0 0.97


(4.21)
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χ(1) satisfies (2.14) (section 2.3.3, chapter 2). Thus, NCA solutions of (D(1),B(H(1)))

are indeed unique. It is important to note that χ is not unique with respect to
a given dataset-network pair. Value of χ depends on the values of NCA solu-
tions being tested for uniqueness. In this section, value of χ(1) in (4.21) is depen-
dent on ((1W (1)),(1S(1))) and ((2W (1)),(2S(1))). Value of χ(1) changes if unique-
ness of ((1W (1)),(1S(1))) is tested with respect to an arbitrary third NCA solution
((3W (1)),(3S(1))). However, from theorem 3, (D(1),B(H(1)) is NCA feasible and
hence, χ(1) is guaranteed to be diagonal in nature.

Remarks – applicability of theorem 3 is demonstrated with the help of a real ap-
plication data in this section. It is shown that the bounds on rk(S) developed in
(4.16) can be used to address cases of NCA infeasibility. However, the choice of
sub-network B(H(1)) (Fig. 4.2) is not explained in this section. Challenge of devel-
oping a method to identify NCA feasible sub-networks of NCA infeasible networks
is taken up in the next chapter.

4.5 Summary

In this chapter, conditions that a dataset-network pair must satisfy for NCA to be
applicable is developed. One of the major challenges in developing a feasibility test
for NCA is that of developing accurate rank conditions for binary valued matrix rep-
resenting the underlying network. In order to address this issue, NCA feasibility of
a network is defined based on its binary rank. The other major hurdle in developing
NCA feasibility test is that source matrix cannot be tested for original NCA rank
condition. In this chapter bounds on rank of source matrix are developed based on
priori available information which can be tested before applying NCA. In addition
to successfully achieving the goal of developing a priori NCA feasibility test, math-
ematical description of a region in NCA solution space is developed with the help of
linear algebra and optimistaion methods. Though this is applicable only to a partic-
ular type of networks, it provides a better characterisation of NCA feasible region.
The case where such a region cannot be described is not addressed in this chapter. A
proposition to extend definition of NCA compatibility is presented where the idea is
to avoid this region while computing NCA solutions. Furthermore, it is shown with
the help of simulation that NCA feasible sub-network of a NCA infeasible network
can be uniquely factorised. This finding serves as a motivation for the next chapter.



Chapter 5

Full-rank factorisable sub-networks

According to theorem 3, a network B(G)) ∈ GFM×L
2 and a dataset D ∈ RM×N are

NCA feasible if B(G) satisfies the conditions of theorem 2 and rk([B(G) : D]) = 2L.
Unique solutions to an associated structure constrained matrix factorisation problem
(2.12) cannot be sought if either of the two conditions are not satisfied. The goal
in this chapter is to identify full-rank factorisable sub-networks of a given NCA
infeasible dataset-network pair. Theoretical results and algorithms developed in
this chapter decompose the given structure constrained matrix factorisation prob-
lem into a set of sub-problems each working with a data-subset-sub-network pair
(D(i),B(H(i))). In this chapter, it is shown that each identified sub-network is NCA
feasible and the associated source signal matrix is full-ranked. Hence the name
full-rank factorisable sub-networks. Solving the sub-problems, uniqueness of the
obtained solutions and finding a solution to the original structure constrained matrix
factorisation problem (2.12) are addressed in the next chapter.

As pointed out in section 2.4, bipartite matching based method can be used to
develop graph theoretical conditions equivalent to the NCA rank conditions in the-
orem 1. Graph theoretical methods developed in [82] are based on the assumption
that rank rk(B(G)) of a bipartite graph G and size of a maximal matching in G

are equal. However, it was shown in section 3.2 that such an assumption is in-
accurate. In sections 3.2.2 and 3.2.3 importance of a breadth-first matching in G

after removing duplicate vertices and reordering the remaining vertices in calculat-
ing rk2(B(G)) is demonstrated. This chapter builds on the preliminary results in
sections 3.2.2 and 3.2.3.

Three novel contributions in this chapter are

1. a method to calculate rk2(B(G)) based on graph reduction, vertex reordering
and breadth-first matching is developed in section 5.2

76
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2. accurate graph theoretical conditions are developed in section 5.2 equivalent
to the original NCA rank condition (theorem 1)

3. Two algorithms are presented in section 5.3 to identify full-rank factorisable
sub-networks of B(G) when the given dataset-network pair (D,B(G)) is NCA
infeasible

Note that in this chapter reduction refers to elimination of duplicate and iso-
lated vertices. sub-graphs corresponding to sub-matrices B(H j) (3.2), referred to as
reduced sub-matrices in the context of NCA, are induced sub-graphs given by

H j = (X j∪Yj,B(H j))≡ G\{u j,N (u j)} (5.1)

where, X j is defined as
X j = X \u j

and Yj as
Yj = Y \N (u j)

5.1 Bipartite matching and rank

It is mentioned in passing in [82] that rk(B(G)) is equal to the size of a maximal
matching. As pointed out in section 2.3.3, structural rank, not the rank, of a sparse
matrix is equal to the size of a maximal matching. This is not in the interest of
NCA and hence, structural rank of B(G) is not discussed in this thesis. In section
3.2, a counter example is used to demonstrate that removing duplicates and isolated
nodes followed by reordering rows and columns can potentially lead to accurate
estimation of rk(B(G)). In this section, a relationship between a particular type of
matching and rk2(B(G)) is developed. This relationship is used later in this chapter
to develop graph theoretical NCA feasibility conditions.

5.1.1 Reduced ordered matching

Consider a bipartite graph G = (X ∪Y,B(G),W ), where B(G) and W are as defined
in section 2.4 with φ(W ) = B(G). X = {u j,1 ≤ j ≤ L} and Y = {vi,1 ≤ i ≤ M}
are set of vertices that respectively represent columns and rows of B(G). In order
to develop accurate graph theoretical interpretation of assumptions 4 and 5, three
graph operations are considered

1. Reduce: determine a set of vertices Xr ⊆ X and Yr ⊆ Y by eliminating dupli-
cate and isolated vertices in G
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2. Order: determine posets Xr< and Yr< by sorting Xr and Yr in increasing order
of degrees of their elements

3. Match: find the largest possible matching M(Gr<) in the ordered-reduced graph
Gr< = (Xr<∪Yr<, · · ·) using a breadth-first search strategy

A novel concept of ordered matching is introduced as

Definition 5 An ordered matching M(G<) is a breadth-first matching in an ordered

graph G<

Definition 6 A reduced ordered matching (ROM) M(Gr<) is a breadth-first matching

in a reduced and ordered graph Gr<

Ordering a graph corresponds to permutations of rows and columns of B(G). Per-
mutations are edge preserving bijections and hence, a graph G is isomorphic [108]
to its ordered version G<

G≡ G<

Reducing a graph removes duplicate rows and columns of B(G). As G is isomorphic
to G<, same vertices get deleted from G and G< when reduced. Thus, sequentially
ordering and reducing G is equivalent to sequentially reducing and ordering G

Gr< ≡ G<r

However, breadth-first matching can be different in G< and Gr. Therefore, breadth-
first matching is obtained only after reduction and ordering.

Remark 1 M(Gr<) can be uniquely determined using the following rules:

• B(G) is ordered starting from the top most row and left most column. When
two vertices ui, u j ∈ X , i, j ∈ R, i < j are such that |N (ui)|= |N (ui)|, then
column corresponding to ui precedes that corresponding to u j in B(G). Simi-
larly, row corresponding to vi precedes that corresponding to v j if |N (ui)|=
|N (ui)| for some vertices vi, v j ∈ Y, i, j ∈ R, i < j

• A graph is reduced as follows: if for some ui, u j ∈ X , i, j ∈R, i < j are such
that N (ui)≡N (ui), then ui is retained and u j is deleted

These rules for ordering and reducing graphs makes it possible to uniquely deter-
mine M(Gr<) as same nodes will be picked by a matching algorithm every time.
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5.1.2 Determining rank based on reduced ordered matching

The relationship between reduced ordered matching (definition 6) and rank of a
graph is established as follows

Lemma 2 Rank over R of a bipartite graph G = (X ∪Y,B(G)) can be determined

as

rk(G) = |M(Gr<)|

where, M(Gr<) is as defined in definition 6

Proof Rank of a graph is equal to the rank of reduced graph Gr [109]. Defining
a partial order < on vertices of Gr does not affect its rank as it corresponds to
permutations of B(G). Every linearly independent column in B(Gr<) corresponds
to a pivot in the row-reduced echelon form of B(Gr<). A simple breadth-first search
based reduced ordered matching M(Gr<) will contain all the pivots. Therefore, it is
sufficient to show that M(Gr<) corresponds to a set of linearly independent columns
in B(Gr<), and hence, in Gr and G.

Assume that there exists a vertex ui ∈ Xr< such that the corresponding column
B(Gr<)(:, i) can be expressed as

B(Gr<)(:, i) = Σ
j 6=i

α jB(Gr<)(:, j)

where, B(Gr<)(:, j)s are linearly independent in B(Gr<). As a result of partial order
imposed in Gr<, vertices corresponding to B(Gr<)(:, j)s, u js, are such that

|N (ui)| ≥ |N (u j)|

Thus, for every neighbour of ui, v ∈ N (ui), there exists some u j ∈ Xr<, j 6= i such
that v ∈ N (u j). As the columns corresponding to u js precede the column corre-
sponding to ui in B(Gr<), every v ∈N (ui) matches with some preceding vertex u j.
Therefore, ui will not be a part of M(Gr<) . Thus, columns B(Gr<)(:, j)s correspond-
ing u j ∈M(Gr<) are linearly independent and hence,

rk(B(Gr<)) = |M(Gr<)|

=⇒ rk(B(G)) = |M(Gr<)|

A similar argument with respect to the rows of B(Gr<) by replacing u with v com-
pletes the proof. �

Lemma 2 can be used to identify linear dependencies in R, but not in GF2. No
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graph theoretical method is presented in this thesis to identify linearly dependent
rows or columns of B(G) in GF2. An algorithm that combines graph theoretical and
linear algebraic methods to determine binary rank of B(G), rk2(B(G)) is presented
next.

Algorithm 3 Removing columns linearly dependent in GF2

input: G and corresponding B(G) ∈ GFM×L
2

set G′ = Gr< and ψC = N2(B(G′))
while ψC 6= {} do

step 1 – for every column i of ψC, determine highest j such that ψC(i, j) = 1
step 2 – update G′ by deleting from B(G′) columns corresponding to js identi-
fied in step 1
set ψC = N2(B(G′))

end while
output: G′

Lemma 3 Rank over GF2 of a bipartite graph G=(X∪Y,B(G)) can be determined

as

rk2(G) = |M(G′)|

where, G′ is determined using algorithm 3

Proof G′ has no columns that are linearly dependent in GF2. Therefore,

rk(B(G′)) = rk2(B(G′))

From lemma 2,
rk(B(G′)) = |M(G′)|

=⇒ rk2(B(G′)) = |M(G′)|

�

5.2 Bipartite matching based NCA feasibility

In this section, novel graph theoretical interpretation of NCA rank conditions on
weight matrix is developed. Rank of a given graph can be determined using reduce
order matching as shown in lemma 2. This novel result is used to devise graph
theoretical conditions that B(G) must satisfy for G to be NCA feasible as

Theorem 4 A bipartite graph G = (X ∪Y,B(G),W ), |X | ≤ |Y | is NCA feasible if

and only if for each u j ∈ X

|M(H ′j)
|= L−1
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where, graphs H ′j are determined using algorithm 3

Proof Condition |X | ≤ |Y | is imposed to make sure that the system of equations
D =WS is over determined as required by NCA (theorem 1, section 2.3.1). Assume
every vertex u j ∈ X satisfies the condition

|M(H ′j)
|= L−1

Then, from lemma 3,for all u j ∈ X ,

rk2(B(H j)) = L−1

Adding u j and any one of its neighbours v ∈ N (u j) will add a pivot to H ′j. There-
fore, upon adding all vertices v ∈N (u j) that constitute G′

|MG′)|= L

Thus, assumptions 7 and 8 (section 4.1.2) are satisfied and hence, G is NCA feasi-
ble.

Conversely, assume G is NCA feasible. B(G) satisfies assumptions 7 and 8 by
definition. From lemma 3 and assumption 7,

rk2(B(G)) = L =⇒ |MG′)|= L

Similarly, from lemma 3 and assumption 8,

rk2(B(H j)) = L−1 =⇒ |M(H ′j)
|= L−1

Thus,
|M(H ′j)

|= L−1

for all u j ∈ X if G is NCA feasible. �

Theorem 4 is equivalent to the rank conditions developed for NCA feasible net-
works in theorem 2, section 4.1.2.

5.3 NCA feasible sub-networks

Graph theoretical approach to assess NCA feasibility of a given network B(G) is
presented in theorem 4. As discussed in section 2.4, methods available in [82] and
[60] produce the largest possible NCA feasible sub-network of an NCA infeasible
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network. In this section, a reduced ordered matching based method is presented
to decompose a given NCA infeasible graph G = (X ∪Y,B(G)) into a set of NCA
feasible sub-graphs H(g), 1≤ g≤ L. The sub-graphs are defined as

H(g) = (X (g)∪Y (g), · · ·) (5.2)

where, X (g) ⊆ X are such that

X (a)∩X (b) = {}, a 6= b

and Y (g) = N (X (g))⊆ Y . Identified sub-graphs are such that

G = ∪
g

H(g) (5.3)

Thus, no part of the original graph is ignored as in the case of methods available in
literature.

Relationship between rk2(G) and a maximal reduced ordered matching M(G′)

presented in lemma 3 is used in algorithm 4 to identify subsets X (g) of X . All

Algorithm 4 NCA feasible sub-graph identification

input: B(G) ∈ GFM×L
2

STEP 1: for every u j ∈ X , identify M(H ′j)

STEP 2: set X (M)
j = {ui : ui ∈M(H ′j)

}∪u j

STEP 3: set g = 1, X (g) = {u1}, and I = {1, 2, · · · , L}
while I 6= {} do

for i = 2 to |I | do
if X (M)

I (1) ≡ X (M)
I (i) then

set X (g) = X (g)∪uI (i)
end if

end for
set I = I \X (g), g = g+1

end while
outputs: H(i) = (X (i)∪N (X (i)), · · ·), for i = 1,2, · · · ,g

vertices in a set X (g) form maximal ordered matching of the same size with other
vertices in the same set.

In theorem 1, a dataset-network pair is assumed to satisfy the condition that
|X | ≤ N, i.e the number of source signals are lesser than the number of available
data points. This assumption is not satisfied in several applications such as tran-
scriptional regulatory networks [20, 81]. Algorithm 4 and other methods in litera-
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ture to identify NCA feasible sub-networks do not address the case where L > N

and hence, rank(S) < L. As a result, a given dataset D cannot be factorised into
product of matrices with full rank. In order to address this problem, algorithm 4 is
extended by adding a step to limit size of groups X (i)s as

|X (i)| ≤ nmax = rank([B(G) : D])− rank(B(G)) (5.4)

The upper bound on cardinality of sets X (g) in (5.4) is derived from the upper bound

Algorithm 5 Identifying full-rank factorisable NCA feasible sub-graphs

input: sets X (i) from algorithm 4 and sample size N
regrouping subroutine
set i = 1, X (g+1) = {}, f = 0
while i≤ g do

if |X (i)|> nmax then
set X (g+1) = X (g+1)∪X (i)(nmax +1 to |X (i)|)
set X (i) = X (i)(1 to nmax)
f = 1

end if
i = i+1

end while
repeat

use algorithm 4 to decompose H = (X (g+1)∪N (X (g+1)))
call regrouping subroutine for H

until f = 0
outputs: H(i) = (X (i)∪N (X (i)), · · ·), for i = 1,2, · · · ,g

on rank of S given in section 4.2, (4.16). Limiting the size of groups in algorithm 4
ensures that

rank(B(H(i))) = rank(S(i)) = nmax, i = 1, 2, · · · , g

Extended graph decomposition algorithm 5 can be used to solve a general SCMF
problem (2.12) as long as dataset D satisfies the condition M≥ L. The newly formed
sub-graphs are full-rank factorisable as the sub-networks B(H(i))s satisfy the condi-
tions in theorem 2 and corresponding source signal matrices S(i)s are guaranteed to
be full-ranked. However, it cannot be guaranteed that all data-subset-sub-network
pairs (D(i),B(H(i))) satisfy the following condition in theorem 3

rk([B(H(i)) : D(i)]) = 2L(i)

where, L(i) = |X (i)| is the number of source signals in H(i). This fact is demonstrated
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in section 5.4.2 with the help of an NCA infeasible experimental dataset. Therefore,
algorithm 5 is titled Identifying full-rank factorisable NCA feasible sub-graphs and
not Identifying NCA feasible data subset-sub-graph pair.

5.4 Simulation results

In this section, applicability of lemma 3 and theorem 4 are demonstrated with the
help of

• example network B(G) (3.1) presented in section 3.1

• carbon source switching network B(G) (Fig. 2.4) presented in section 2.5)

It is shown that the example network is NCA infeasible whereas the carbon source
switching network is NCA feasible. Therefore, algorithm 4 is applied to the ex-
ample network to obtain NCA feasible sub-networks. On the other hand, it can
be verified that the carbon source switching network is NCA feasible. However,
the corresponding dataset D contains 9 data points as pointed out in section 2.5
whereas the number of source signals is 16. Hence, dataset-network pair (D,B(G))

corresponding to the carbon source switching network is NCA infeasible. There-
fore, algorithm 5 is applied to the carbon source switching network to identify NCA
feasible sub-networks.

5.4.1 Example network

Consider B(G) described in (3.1). B(G) represents a bipartite graph G = (X ∪
Y, B(G)), where

X = {u1, u2, u3, u4} (5.5)

and
Y = {v1, v2, v3, v4, v5, v6} (5.6)

It can be verified that B(G) has no duplicate rows or columns. In addition to that,
|vi|= 2,1≤ i≤ 6 and |u j|= 3,1≤ j ≤ 4. Hence, B(Gr<) = B(G). However,

ψC = N (B(Gr<)) =
(

1 1 1 1
)T

(5.7)
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From (5.7), column u4 of B(G) is linearly dependent in GF2 on its first three columns.
B(G′) obtained by applying algorithm 3 is given by

B(G′)u1 u2 u3

v1 0 0 1
v2 0 1 0
v3 0 1 1

v4 1 0 0
v5 1 0 1

v6 1 1 0

(5.8)

Reduced ordered matching in G′ is determined as

M(G′) = { (v4,u1), (v2,u2), (v1,u3) }

and
|M(G′)|= 3 (5.9)

From lemma 3 and (5.9), rk2(B(G)) can be accurately determined as 3. Similarly,
it can be verified that

|M(H ′j)
|= 2,1≤ j ≤ 4 (5.10)

From (5.10) and theorem 4, the example network B(G) is NCA infeasible. It is
shown in section 3.1.2 that example network B(G) is indeed NCA infeasible as a
W,φ(W ) = B(G) can be determined such that rk(W ) = 3.

On applying algorithm 4 to B(G) (3.1) two sub-graphs of G, H(1) and H(2), are
obtained. The two sub-graphs are defined as

H(1) = (X (1)∪Y (1), B(H(1))) (5.11)

and
H(2) = (X (2)∪Y (2), B(H(2))) (5.12)

The sets X (1) in (5.11) and X (2) in (5.12) are given by

X (1) = {u1, u2, u3}
X (2) = {u4}

(5.13)
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and sets Y (1) and Y (2) are given by

Y (1) = {v1, v2, v3, v4, v5, v6}
Y (2) = {v1, v2, v4}

(5.14)

It can be seen from (5.5) and (5.13) that

X (1)∩X (2) = {}

and
X = X (1)∪X (2)

B(H(1)) in (5.11) is a sub-matrix of B(G) (3.1) formed by choosing from B(G) rows
indexed by Y (1) (5.14) and columns indexed by X (1) (5.13). Similarly, B(H(2)) in
(5.12) is a sub-matrix of B(G) (3.1) formed by choosing from B(G) rows indexed
by Y (2) (5.14) and columns indexed by X (2) (5.13). The two sub-matrices of B(G),
B(H(1)) and B(H(2)), are such that

B(G) = ( B(H(1)) : B(H(2)) )

G | H(1) | H(2)

| u1 u2 u3 | u4

v1 | 0 0 1 | 1

v2 | 0 1 0 | 1

v3 | 0 1 1 | 0

v4 | 1 0 0 | 1

v5 | 1 0 1 | 0

v6 | 1 1 0 | 0

(5.15)

From (5.8) and (5.15)
H(1) ≡ G′

and hence, from (5.9) and lemma 3,

rk2(H(1)) = 3 (5.16)

In the sense of NCA, the reduced matrices B(H(1)
1 ), B(H(1)

2 ) and B(H(1)
3 ) obtained

by respectively removing columns u1, u2 and u3 from H(1) and their neighbour rows
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are equivalent to a bipartite graph H̄ as

B(H(1)
1 )≡ B(H(1)

2 )≡ B(H(1)
3 )≡ B(H̄) =

 0 1
1 0
1 1

 (5.17)

Note that the relationship≡ in (5.17) implies that the three sub-networks are homo-
morphic to H̄. This distinction is important as distinct set of vertices constitute each
sub-network. It can be verified from (5.17) that first two rows and two columns of
B(H̄) form a reduced ordered matching of size 2. Therefore,

|M(H̄ ′)|= 2 (5.18)

Thus, from (5.17), (5.18) and theorem 4, sub-network H(1) (5.15) is NCA feasible.
On the other hand, sub-network H(2) (5.15) has only one column and H(2) is NCA
feasible as

rk2(B(H(2))) = 1

Thus, NCA infeasible example network B(G) (3.1) is decomposed into a set of NCA
feasible sub-networks H(1) and H(2).

5.4.2 Carbon source switching network decomposition

In this section, results from this chapter are applied to the experimental dataset-
network pair (D,B(G)) (section 2.5). Unlike in the case of example network in
section 5.4.1, the transcriptional regulatory network B(G) (Fig. 2.4) is associated
with the experimental dataset D. Therefore, algorithm 5 is applied in this section to
the pair (D,B(G)) to obtain NCA feasible sub-networks.

It was shown in section 4.4.2 that though the underlying network B(G) is NCA
feasible, the dataset-network pair (D,B(G)) is NCA infeasible as the number of
data points N = 9 in D are lesser than the number of source signals L = 16 in S. It
was shown in (4.20) that unique NCA solutions can be obtained if the number of
source signals comprising matrix factor S is restricted to 9. A sub-network B(G)(1)

(Fig. 4.2) and the corresponding data-subset D(1) were chosen to illustrate this fact.
However, the choice of such a sub-network was not explained there. Such a choice
is not random as shown in this section.

Network decomposition – Carbon source switching network B(G) (fig. 2.4) corre-
sponds to a bipartite graph G = (X ∪Y,B(G)), where the set of column vertices X
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is given as
X = {u1, · · · , u16} (5.19)

and the set of row vertices Y is given as

Y = {v1, · · · , v100} (5.20)

B(G) has full column rank in GF2

rk2(B(G)) = 16

and hence, it has no zero or duplicate columns. There are no zero rows in B(G).
Symmetric difference [16] between sets of neighbours of row vertices vi and v j are
calculated as

(N (vi)−N (v j))− (N (v j)−N (vi)) = {}, 1≤ i, j ≤M

Not that the operation ’−’ represents set difference. Rows vi and v j are duplicates
if the corresponding symmetric difference is an empty set. Using this method, 61
out of 100 rows of B(G) are identified as duplicates of the other 39 rows vi, i ∈
{1, 4, 5, 6, 8, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 33,
34, 35, 39, 40, 41, 43, 47, 49, 51, 55, 57, 65, 68, 72, 77, 80, 87}. Therefore,
reduced version of B(G) B(Gr) has 39 rows and 16 columns. Reduced and ordered
version of B(G) B(Gr<) also has 39 rows and 16 columns. As there are no linearly
dependent columns in B(Gr<),

B(G′) = B(Gr<)

A maximal reduced ordered matching in G′ is given by

M(G′) = {(X ′,Y ′)} (5.21)

where, the set Y ′ is given as

Y ′ = {vi}, i = 4, 16, 11, 14, 5, 1, 15, 13, 2, 6, 9, 8, 3, 12, 7, 10

and the set X ′ is given as
X ′ = {u j}, 1≤ j ≤ 16
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From (5.21),
|M(G′)|= 16 (5.22)

From (5.22) and lemma 3,
rk2(B(G)) = 16 (5.23)

It can be verified that B(G) satisfies the conditions of theorem 4 and hence, it is
NCA feasible. However, as pointed out earlier, D has 9 data points which makes
the dataset-network pair (D,B(G)) NCA infeasible according to theorem 3, section
4.3. From (4.20), section 4.4.2 and (5.4),

nmax = 9 (5.24)

On applying algorithm 5 to B(G) (Fig. 2.4) with nmax as given in (5.24), two sub-
graphs of G, H(1) and H(2), are obtained. The two sub-graphs are defined as

H(1) = (X (1)∪Y (1), B(H(1))) (5.25)

and
H(2) = (X (2)∪Y (2), B(H(2))) (5.26)

The sets X (1) and Y (1) in (5.25) are given by

X (1) = {u1, · · · , u9}, Y (1) = {vi}
i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19,

22, 23, 25, 26, 27, 28, 29, 31, 32, 34, 36, 38, 40, 43, 47, 48, 50,
51, 52, 53, 57, 58, 60, 62, 65, 66, 67, 72, 73, 74, 75, 76, 80, 82, 83,

84, 87, 100
(5.27)

and sets X (2) and Y (2) in (5.26) are given by

X (2) = {u10, · · · , u16}, Y (2) = {vi}
i = 4, 10, 14, 20, 21, 22, 24, 25, 27, 30, 31, 32, 33, 35, 36, 37, 38,

39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 54, 55, 56, 57, 59, 61, 63, 64,
68, 69, 70, 71, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99
(5.28)

It can be seen from (5.19), (5.27) and (5.28) that

X (1)∩X (2) = {}
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and
X = X (1)∪X (2)

Let the sub-matrix B(H(1)) of B(G) be formed by choosing rows and columns of
B(G) indexed respectively by X (1) and Y (1) (5.27). On comparing the subscripts of
u and values of i in (5.27) respectively with the indices on horizontal and vertical
axes in Fig. 4.2, it can be seen that Fig. 4.2 is a colour map representing H(1)

described in (5.25).
NCA feasibility of sub-networks – It is demonstrated in section 4.4.2 that B(H(1))

(Fig. 4.2) is NCA feasible. It can be verified that H(1) satisfies the conditions in
theorem 4 and hence, is NCA feasible. NCA solutions corresponding to H(1) are
unique up to a diagonal matrix as the number of source signals is L(1) = 9 and

rk([B(H(1)) : D(1)]) = 18 = 2L(1)

On the other hand, consider the sub-network B(H(2)) defined by the underlying
NCA feasible sub-graph H(2) (5.26). B(H(2)) consists of last 7 columns of B(G) and
corresponding non zero rows as depicted in Fig. 5.1. It can be verified that B(H(2))

retained transcription factor indices
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Figure 5.1: Colour map of B(H(2)) (0 – black, 1 – white): NCA feasible sub-
network of transcriptional regulatory network in [1]

is NCA feasible as it satisfies conditions of both theorems 2 and 4. However, the pair
(D(2),B(H(2))) is NCA infeasible as it partially satisfies the conditions of theorem 3.
The data-subset D(2) does not satisfy second condition of theorem 3 as the number
of source signals in H(2) is L(2) = 7 whereas the number of source signal that are
required to ensure NCA feasibility is given as

rk([B(H(2)) : D(2)]) = 16 > 2L(2) (5.29)
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As pointed out at the end of section 5.3, algorithm 4 ensures that the matrix factors
W (2) and S(2) are full-ranked. However, it does not guarantee that the corresponding
NCA solutions are unique. It is shown later in this section that though H(2) is full-
rank factorisable, corresponding NCA solutions are not unique up to a scaling factor
as described in theorem 1.

As a direct result of application of algorithm 5, matrix factors W (2) correspond-
ing to H(2) is full-ranked. Here, it is shown that S(2) corresponding to H(2) is also
full-ranked. The bounds on rank of source signal matrix S(2) can be computed using
(4.16) as

rk([B(H(2)) : D(2)])− rk(B(H(2)))≤ rk(S(2))≤min(L(2),N)

where, L(2) = 7. The lower limit on rk(S(2)) evaluates to

rk([B(H(2)) : D(2)])− rk(B(H(2))) = 16−7 = 9

This is meaningless in this case as there are only 7 columns in B(H(2)). However,
an appropriate upper limit on rk(S(2)) can be calculated as

min(L(2),N) = min(7,9) = 7

As a result,
rk(S(2))≤ 7 (5.30)

It remains to see if S(2) obtained by applying NCA to the pair (D(2),B(H(2))) is full-
ranked. An estimate of S(2) obtained by applying NCA to the pair (D(2),B(H(2)))

is given as

S(2) =

−0.02 0.02 −0.03 −0.12 −0.28 −0.33 −0.32 −0.33 −0.30
0.3 0.33 0.35 0.25 0.10 −0.01 −0.02 −0.05 −0.07

0.37 0.38 0.41 0.36 0.18 0.05 0.04 0.07 0.08
−0.27 −0.41 −0.35 −0.34 −0.12 −0.12 −0.13 −0.11 −0.12
−0.53 −0.59 −0.60 −0.64 −0.50 −0.46 −0.43 −0.43 −0.41
−0.09 −0.22 −0.24 −0.22 −0.19 −0.21 −0.17 −0.19 −0.15

0.42 0.43 0.40 0.41 0.29 0.30 0.25 0.33 0.26


(5.31)
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It can be verified from (5.31) that

rk(S(2)) = 7

Uniqueness of NCA solutions – It is shown in section 4.4.2 that the solutions ob-
tained by applying NCA to data-subset corresponding to B(H(1)) (Fig. 4.2) are
unique up to a diagonal matrix χ(1) (4.21). These results are applicable to the
sub-network H(1) (5.25). A similar analysis is conducted here in order to test the
uniqueness of NCA solutions corresponding to H(2), two pairs of NCA solutions
((1W (2)),(1S(2))) and ((2W (2)),(2S(2))) are estimated.

Weight matrices (1W (2)) and (2W (2)) are as illustrated respectively in Fig. 5.2
and 5.3. It can be seen in Fig. 5.2 and Fig. 5.3 that the maximum and minimum
values on scale to the right of the colour map are the same for both weight matrices
– > 2 and <−2. However, columns 1, 3, and 5 in 5.2 and 5.3 are visibly different.
On the other hand, source signal matrices (1S(2)) and (2S(2)) depicted in Fig. 5.4
and 5.5 have different minimum values as seen on scales to the right of respective
colour maps. In addition to that, the two colour maps in Fig. 5.4 and 5.5 are visibly
different. These observations indicate that the two solutions ((1W (2)),(1S(2))) and
((2W (2)),(2S(2))) are not identical.
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Figure 5.2: Colour map of (1W (2)): NCA infeasible sub-network H(2) of transcrip-
tional regulatory network in [1]
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Figure 5.3: Colour map of (2W (2)): NCA infeasible sub-network H(2) of transcrip-
tional regulatory network in [1]
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Figure 5.4: Colour map of (1S(2)): NCA infeasible sub-network H(2) of transcrip-
tional regulatory network in [1]

Using the method presented in section 3.3, chapter3, χ(2) is determined as

χ
(2) =



−0.84 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −0.84 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1.19 0 0
0 0 0 0 0 1 0
0 0 0 0 −0.01 0 1.02


(5.32)

It can be seen in χ(2) (5.32) that one of the off-diagonal entries in the last row is
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Figure 5.5: Colour map of (2S(2)): NCA infeasible sub-network H(2) of transcrip-
tional regulatory network in [1]

non-zero. This is because, as pointed out in (5.29), the number of source signals is
lesser than what is necessary to ensure NCA feasibility. However, all hopes are not
lost as the error between (1S(2)) and χ(2)(2S(2)) is negligible

‖(1S(2))−χ
(2)(2S(2))‖F = 6×10−4 (5.33)

This implies that the two NCA solutions ((1W (2)),(1S(2))) and ((2W (2)),(2S(2)))

are almost unique up to a scaling factor χ(2).

Theoretically, an optimal number of data points that can ensure NCA feasibility
of all sub-networks can be sought if it exists. This number can be used in algorithm
5 to limit the size of sub-networks. This problem is considered as a part of future
work and is not pursued in this thesis.

5.5 Summary

In this chapter, a matching based method to calculate binary rank of a graph is de-
veloped. For the first time in NCA literature, accurate graph theoretical conditions
for NCA feasibility of a given network are developed in this chapter. Building on
these conditions, two algorithms are developed – one decomposes a given network
into a set of NCA feasible sub-networks when a dataset is not available whereas the
other identifies NCA feasible sub-networks that can be used to compute full-rank
factors for a given dataset. Applicability of these algorithms is demonstrated with
the help of a numerical example and an experimental dataset. Algorithms developed
in this chapter along with NCA are shown to generate full-ranked factors of a subset
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of an experimental dataset. However, uniqueness of obtained solutions cannot be
guaranteed. It is pointed out that an optimal size of sub-networks can be computed
to ensure NCA feasibility of sub-networks and hence, uniqueness of NCA solutions.
Such a problem is not addressed in this thesis. Results from this chapter are used
in the next chapter to develop a NCA based divide and conquer approach to solve a
general structure-constrained matrix factorisation problem.



Chapter 6

Divide and conquer NCA – unique
matrix factors

NCA feasibility is accurately defined in chapter 4. Method to decompose NCA
infeasible networks into full-rank factorisable sub-networks is developed in chapter
5. Goal in this chapter is to develop a method to solve a general SCMF problem
in (2.12) where the underlying dataset-network pair (D,B(G)) is not assumed to be
NCA feasible. This objective is achieved by combining the results developed in the
previous chapters.

A brief discussion on iterative sub-network network component analysis (IS-
NCA) [74] is presented in section 2.3.2. This chapter borrows the idea of partition-
ing the system of linear equations in (1.3) in a way similar to the one described in
(2.16).

The idea that is pursued in this chapter is – given a dataset-network pair (D,B(G))

does not satisfy one or more conditions of theorem 3 (section 4.3), algorithm 5 can
be used to identify full-rank factorisable sub-graphs as given in (5.3). NCA can then
be used to independently estimate W (i)s and S(i)s corresponding to data-subset-sub-
network pairs (D(i),B(H(i))s such that

D(i) =W (i)S(i), 1≤ i≤ g (6.1)

96
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A convex combination of the NCA solutions of all sub-networks given as

D =
(

λ(1)W (1) · · · λ(i)W (i) · · · λ(g)W (g)
)


S(1)
...

S(i)
...

S( j)


(6.2)

solves the SCMF problem in (2.12). The parameters λ(i) > 0,1≤ i≤ g in (6.2) are
such that

g

∑
i=1

λ
(i) = 1 (6.3)

The parameters λ(i)s quantify percentages of D factorised by the respective sub-
networks H(i)s. The divide and conquer solution proposed in (6.2) can be sum-
marised in words as

1. identify full-rank factorisable data-subset-sub-network pairs (D(i),B(H(i)))s

2. use NCA to estimate independently matrix factors W (i) and S(i) corresponding
to pairs (D(i),B(H(i)))s

3. combine estimated sub-network weight matrices W (i)s in a convex fashion so
as to minimise the error in reconstructing D

In the context of this thesis, the divide and conquer approach proposed in (6.2)
is referred to as 3DNCA where 3 indicates three steps involved and D stands for
divide and conquer. Uniqueness of solutions obtained by such a divide and con-
quer method is guaranteed up to two scaling factors, both of which are diagonal
matrices. It is shown in the previous chapter that algorithm 5 guarantees full-rank
factorisability, not NCA feasibility. Therefore, uniqueness results developed in this
chapter assume that all data subset-sub-network pairs are NCA feasible. Theoreti-
cal results with respect to the uniqueness of solutions developed in this chapter are
in coherence with that for NCA.

A formal definition of 3DNCA problem is presented in section 6.1. Need for
adding more parameters to achieve better solutions is pointed out in section 6.1.
Scalability issues related to adding more parameters in terms of book-keeping and
size of parameter space are brought forward in section 6.2. An iterative 3DNCA
algorithm is developed in section 6.3 that achieves the objective of adding more pa-
rameters while avoiding the issues of scalability. A theorem is presented in section
6.4 that guarantees uniqueness of 3DNCA solutions assuming all underlying data
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subset-sub-network pairs are NCA feasible. Strengths and limitations of 3DNCA
are demonstrated in section 6.5 with the help of a random numerical example. Ap-
plicability of 3DNCA is demonstrated with the help a practical dataset introduced
in section 2.5.

6.1 Divide and conquer NCA problem

In this section, a framework is developed to set up a structure constrained matrix
factorisation problem that formalises the idea presented in (6.2). There are 3 steps
involved in obtaining a solution of the form (6.2)

1. identifying all sub-networks H(i)s

2. NCA factorisation of individual datasets D(i)s

3. estimating mixing coefficients λ(i)s

Hence the name 3-part divdie and conquer NCA (3DNCA) In this section, the ob-
jective is to identify and address the difficulties in setting up a divide and conquer
problem, the solution to which is of the form given in (6.2).

Initially, it is assumed that the underlying dataset-network pair (D,B(G)) is
NCA infeasible. It is shown later in this section that a feasible NCA problem is
a special case of 3DNCA. Assume that algorithm 5 is used to identify sub-networks
H(i)s of a given NCA infeasible network G. Data-subsets D(i)s can be easily iden-
tified by collecting all rows of D corresponding to row subsets Y (i)s in H(i)s. Al-
gorithm 5 divides the network such that the column subsets X (i)s are disjoint. As a
result, dividing source signals matrix S as shown (6.2) is straightforward. However,
the row subsets Y (i)s are not necessarily disjoint. Therefore, D(i)s might have rows
that are to be factorised by multiple sub-networks. As a result, dividing D and W

is not as easy as in the case of S in (6.2). In order to overcome this difficulty, the
dataset D is divided into non-overlapping part DU and overlapping part DC as

D =

(
DU

DC

)
(6.4)

where, DU represents data subsets that are unique to the identified sub-networks
H(i)s and DC represents data subsets common to multiple sub-networks. The rows
in D(i)

U are such that the corresponding rows in all other sub-networks B(H( j)),1≤
j ≤,g, j 6= i are zero rows. On the other hand, rows in D(i)

C are such that there is
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at least one sub-network H( j),1 ≤ j ≤ g, j 6= i with corresponding rows in B(H( j))

non-zero. The weights matrix W will have a structure similar to that of D

W =

(
WU

WC

)
(6.5)

where, WU and WC correspond respectively to unique and common parts of D. For
every sub-network H(i),1≤ i≤ g, the weights sub-matrix W (i) estimated using NCA
can be rewritten as

W (i) =

(
W (i)

U

W (i)
C

)
(6.6)

Structural details of WU and WC are explored next. From (6.2)–(6.5), the overlap-
ping part of D is given by

DC =WCS (6.7)

Each row in DC can be shared by any number of sub-networks between n = 2 and
g. As a result, the maximum number of possible combinations is

g

∑
n=2

gCn (6.8)

where, gCn represents number of combinations possible while choosing n out of
g identified sub-networks. Thus, DC and WC cannot be characterised in a simple
way by separating rows or columns as in the case of S in (6.2). One of the ways
to address this issue is by defining DC as a convex combination of W (i)

C s, where
W (i)

C comprises of rows of sub-matrix WC corresponding to the sub-network H(i). In
other words, W (i)

C has those rows of W (i) for which the corresponding rows in some
W ( j), j 6= i is non-zero. The equation in (6.7) can be rewritten as

DC =WCS =
(

λ(1)W (1)
C · · · λ(i)W (i)

C · · · λ(g)W (g)
C

)


S(1)
...

S(i)
...

S(g)


(6.9)

where, λ(i)s are as given in (6.3). Unlike in the case of DC, there is only one way
in which DU can be divided – g unique data subsets corresponding to g individual
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sub-networks. As a consequence, DU in (6.11) is defined as

DU =



D(1)
U
...

D(i)

...

D(g)
U


(6.10)

where, D(i)
U ,1 ≤ i ≤ g correspond to those rows in D that are unique to individual

sub-networks H(i)s. From (6.2)–(6.5), non-overlapping part of D is given as

DU =WU S (6.11)

In order to maintain consistency in notations between (6.9) and (6.11), the relation-
ship in (6.11) must be of the form

DU =
(

λ(1)W (1)
U · · · λ(i)W (i)

U · · · λ(g)W (g)
U

)
S (6.12)

such that the whole system of equations resemble that in (6.2). However, for every
i,1≤ i≤ g,

D(i)
U =W (i)

U S(i)

must be satisfied indicating that 100% of D(i)
U is factorised by sub-network H(i). As

from (6.3) λ(i) > 0,∀i, WU can be defined as

WU =


1

λ(1)W
(1)

U 0 · · · 0

0 1
λ(2)W

(2)
U · · · 0

...
... . . . ...

0 0 · · · 1
λ(g)W

(g)
U

 (6.13)

such that
D(i)

U =�
�

λ
(i) 1

�
�

λ(i)
W (i)

U S(i)

and hence, (6.10) is satisfied. From (6.2) – (6.13), the whole system of equations
can be represented as

D =WS
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(
DU

DC

)
=



W (1)
U 0 · · · 0

0 W (2)
U · · · 0

...
... . . . ...

0 0 · · · W (g)
U

λ(1)W (1)
C λ(2)W (2)

C · · · λ(g)W (g)
C




S(1)

S(2)
...

S(g)

 (6.14)

It can be verified that (6.2) and (6.14) are equivalent. Note that, from (6.6) and
(6.14),

W 6=
(

W (1) · · · W (i) · · · W (g)
)

as W (i)
U s sit in a block diagonal form in W whereas W (i)

C s are multiplied by λ(i)s.
Also,

W 6=
(

λ(1)W (1) · · · λ(i)W (i) · · · λ(g)W (g)
)

The system representation in (6.14) implies that NCA solutions of the individual
sub-networks are sufficient to minimise error in reconstructing DU as W (i)

U s are not
affected by the mixing coefficients λ(i)s. Therefore, the problem statement involv-
ing λ(i)s must consider only DC. Accordingly, a mixing problem is formulated as

min
λ(i)

‖DC−∑
g
i=1 λ(i)W (i)

C S(i)‖2
F

subject to λ(i) > 0,1≤ i≤ g

∑
g
i=1 λ(i) = 1

(6.15)

Mixing problem in (6.15) formally completes description of three-part problem ver-
bally described at the beginning of this chapter. This presents an initial description
of 3DNCA problem. A few hurdles in implementing a solution to this problem are
identified in the following sections. Description of 3DNCA problem is modified
wherever such issues are addressed.

Step 2 of 3DNCA involves independent application of NCA to the identified
sub-networks. An underlying assumption is that the estimation of matrix factors
corresponding to one sub-network does not affect or depend on that of the others.
However, when the overlapping or shared part of data subsets D(i)

C ,1≤ i≤ g are non-
empty, NCA factorisation of the sub-networks are dependent on that of the others.
Mixing coefficients λ(i)s are used in the third step of 3DNCA to capture the effect
of these dependencies. This allows for parallel/independent NCA factorisation of
all identified data subsets. Note that classical NCA is a special case of 3DNCA. If a
dataset-network pair (D,B(G)) is NCA feasible, then there is only one sub-network
in step 1, H(1) = G. In this case, a solution to the divide and conquer problem is the
same as that to the classical NCA problem with W (1) =W , S(1) = S and λ(1) = 1.
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As pointed out in (6.8), in a general case with multiple sub-networks, there can
be a large number of possible ways in which data DC is shared among the sub-
networks. Number of non-zero entries increases in rows of WC with an increase in
the number of sub-networks sharing DC. As pointed out in section 2.2.1, denser
sub-matrices have a more significant impact on parameter estimation. As a conse-
quence, the values of λ(i)s in (6.15) depend heavily on the denser parts of WC. This
might result in larger errors in reconstructing other rows of DC shared by relatively
smaller number of sub-networks. This problem can be solved by setting up separate
mixing problems of the form (6.15) for each of the ∑

g
n=2

gCn (6.8) possible com-
bination of sub-networks. This ensures smaller errors in reconstructing all rows of
DC. However, it is shown in the next section that setting up multiple mixing prob-
lems is challenging. The notations provided in this section are limited to a single
mixing problem based 3DNCA. In the following section, notations used in this sec-
tion are modified to make way for multiple mixing problems. Changes in notations
are explained wherever they are introduced.

6.2 Scalability of multiple mixing problems

Setting up multiple mixing problems is recommended in the previous section to
improve the quality of data reconstruction. However, extending the problem in
(6.15) to formalise the idea of multiple mixing problems gives rise to scalability
issues. In this section, the challenges in setting up multiple mixing problems are
identified. An iterative approach is proposed in the next section to address these
challenges.

Scalability of mixing problems with respect to DC is challenging as there is
a large number (6.8) of ways in which data can be shared among sub-networks.
This requires introduction of addition parameters as shown in this section. To get
a flavour of this scalability issue, a two-part network is considered followed by a
three-part network. It is shown that the number of additional parameters required
grow significantly with an increase in the number of sub-networks added.

6.2.1 Two-part mixing problem

Consider a simple case with two sub-networks H(1) and H(2). Assume that for some
dataset-network pair (D,B(G)) algorithm 5 results in a two-part decomposition of
the whole network B(G) given as

G = H(1)∪H(2) (6.16)



6.2. SCALABILITY OF MULTIPLE MIXING PROBLEMS 103

A solution of the form (6.2) to a related 3DNCA problem is of the form

D =
(

λ(1)W (1) λ(2)W (2)
)( S(1)

S(2)

)
(6.17)

As mentioned in the previous section, data subsets D(1) and D(2) are identified by
collecting all rows of D corresponding to row subsets Y (1) and Y (2). As there are
only two sub-networks, from (6.8), there is only one possible way in which the two
sub-networks can share data – all rows in DC are common to both sub-networks.
Let D(1,2)

C ⊆ D(1) represent the rows in D(1) that are shared by H(2), which implies
the corresponding rows in B(H(1)) and B(H(2)) are non-zero. Similarly, let D(2,1)

C ⊆
D(2) represent the rows in D(2) that are shared by H(1). The common parts of data
subsets D(1) and D(2) are denoted in (6.4) respectively by D(1)

C and D(2)
C . At this

point, a change in notation from D(1)
C and D(2)

C to D(1,2)
C an D(2,1)

C seems unnecessary.
The reason is that there is no other way in which data can be shared among the two
sub-networks. Hence, D(1,2)

C and D(2,1)
C are identical

D(1,2)
C = D(2,1)

C (6.18)

Though a change in notation does not seem warranted when a two-part network
(6.16) is considered, it is necessary when a third sub-network H(3) is to be added.
When a third sub-network is added, from (6.8) there are

3

∑
i=2

3Ci = 4

possible ways in which common data can be shared among the three sub-networks.
Shared data subsets can be identified as

1. D(1,2)
C , data common to H(1) and H(2) only

2. D(1,3)
C , data common to H(1) and H(3) only

3. D(2,3)
C , data common to H(2) and H(3) only

4. D(1,2,3)
C , data common to all 3 sub-networks
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Though the following relationships hold

D(1,2)
C = D(2,1)

C

D(1,3)
C = D(3,1)

C

D(2,3)
C = D(3,2)

C

D(1,3,2)
C = D(2,1,3)

C = D(2,3,1)
C = D(3,1,2)

C = D(3,2,1)
C

(6.19)

Each of the four data subsets D(1,2)
C , D(1,3)

C , D(2,3)
C , and D(1,2,3)

C are distinct. As
mentioned in the previous section, rows of WC corresponding to D(1,2,3)

C are denser
and hence, might increase errors in reconstructing other three data subsets. It is
necessary to distinguish between the four data subsets in (6.19). Therefore, notation
different to that used in (6.4) is used. Similar notations are used for WC and λ in this
section. A two-part mixing problem is formulated as discussed next.

In the case of a network with two-part decomposition (6.16), D(1,2)
C must be

factorised by both the sub-networks. D(1,2)
C is not always an empty set and hence,

dataset D cannot necessarily be clearly divided into two disjoint parts. Instead, the
dataset D is divided into unique and common parts as described in (6.4) and (6.10)
as

D =


D(1)

U

D(2)
U

D(1,2)
C

 (6.20)

where, D(1)
U and D(2)

U are data subsets corresponding to rows in D unique to H(1) and
H(2), respectively. The two data subsets corresponding to H(1) and H(2) are given
by

D(1) =

(
D(1)

U

D(1,2)
C

)
, D(2) =

(
D(2)

U

D(1,2)
C

)
(6.21)

The source signal matrix factor S is divided into two disjoint parts as described in
(6.2) as

S =

(
S(1)

S(2)

)
(6.22)

The network parameter matrix factor W is divided into two parts as described in
(6.6)

W (1) =

(
W (1)

U

W (1,2)
C

)
, W (2) =

(
W (2)

U

W (2,1)
C

)
(6.23)
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where, W (1)
U and W (2)

U respectively correspond to D(1)
U and D(2)

U in (6.20) such that

D(i) =W (i)
U S(i), i = 1, 2 (6.24)

From (6.14), (6.20), (6.22), and (6.23), the whole network can be rewritten as

D =WS
D(1)

U

D(2)
U

D(1,2)
C

=

 W (1)
U

0

0

W (2)
U

λ(1,2)W (1,2)
C λ(2,1)W (2,1)

C


(

S(1)

S(2)

)
(6.25)

Note that the decomposition in (6.25) is similar to the one in (2.16). However, the
decomposition in (6.25) is achieved with the help of algorithm 5 whereas the one
in (2.16) is not well-defined in [74]. As established in (6.3), parameters λ(1,2) and
λ(2,1) in (6.23) are expected to satisfy the following relationships

λ
(1,2),λ(2,1) > 0, λ

(1,2)+λ
(2,1) = 1 (6.26)

The parameters λ(1,2) and λ(2,1) quantify percentages of D(1,2)
C factorised respec-

tively by the two sub-networks H(1) and H(2). W (1,2)
C and W (2,1)

C in (6.23) are such
that

D(1,2) = λ
(1,2)W (1,2)

C S(1)+λ
(2,1)W (2,1)

C S(2) (6.27)

In order to compute a complete solution (6.25), the two solutions in (6.24) are com-
bined by solving for λ(1,2) and λ(2,1) in

min
λ(1,2),λ(2,1)

‖D(1,2)
C −λ(1,2)W (1,2)

C S(1)−λ(2,1)W (2,1)
C S(2)‖2

F

subject to λ(1,2),λ(2,1) > 0
λ(1,2)+λ(2,1) = 1

(6.28)

The problem presented in (6.28) is referred to as the two-part mixing problem in the
context of this chapter. Though, from (6.18), D(1,2)

C = D(2,1)
C , in most of the cases

W (1,2)
C 6=W (2,1)

C , λ
(1,2) 6= λ

(2,1)

This is because of the fact that H(1) and H(2) are not necessarily identical. The two
sub-networks factorise D(1,2)

C in different ways as the sparsity patterns of B(H(1))
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and B(H(2)) are distinct. Only in those cases where B(H(1))≡ B(H(2)),

W (1,2)
C =W (2,1)

C , λ
(1,2) = λ

(2,1)

Apart from changes in notations, the mixing problem in (6.28) is similar to the one
in (6.15). This is because of the fact that from (6.8) there is only one combination
of sub-networks possible. Hence, one mixing problem is sufficient to address the
case of two-part network (6.16).

6.2.2 Three-part mixing problem

Here, a case with three sub-networks is considered. The whole network G is as-
sumed to be decomposed using algorithm 5 as

G = H(1)∪H(2)∪H(3) (6.29)

Let D(i)
U , i = 1, 2, 3 be the data subsets unique to corresponding sub-networks

H(i)s. Common part DC of data D can be further divided into four subsets as given
in (6.19). As some of the data subsets are identical, only four distinct data subsets
are used to divide D as

D =

(
DU

DC

)
=



D(1)
U

D(2)
U

D(3)
U

D(1,2)
C

D(1,3)
C

D(2,3)
C

D(1,2,3)
C


(6.30)

where, D(i)
U s are data unique to the three sub-networks. The data subsets D(i), i =

1, 2, 3 are of the form

D(1) =


D(1)

U

D(1,2)
C

D(1,3)
C

D(1,2,3)
C

 , D(2) =


D(2)

U

D(1,2)
C

D(2,3)
C

D(1,2,3)
C

 , D(3) =


D(3)

U

D(1,3)
C

D(2,3)
C

D(1,2,3)
C

 (6.31)
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Since X (i), i = 1, 2, 3 are disjoint, source signal matrix factor S can be divided as
describved in (6.2) as

S =

 S(1)

S(2)

S(3)

 (6.32)

The network parameter matrix factor W can be divided as described in (6.6) as

W (1) =


W (1)

U

W (1,2)
C

W (1,3)
C

W (1,2,3)
C

 , W (2) =


W (2)

U

W (2,1)
C

W (2,3)
C

W (2,3,1)
C

 , W (3) =


W (3)

U

W (3,1)
C

W (3,2)
C

W (3,1,2)
C

 (6.33)

As pointed out earlier, W (i, j)
C s in (6.33) are not identical. However, the following

holds
W (i, j,k)

C =W (i,k, j)
C , i, j = 1,2,3, i 6= j 6= k

This implies that as long as the first sub-network of interest H(i) is fixed, the weights
W (i,·,·)

C corresponding to the data common to all sub-networks is the same regardless
of what order the other sub-network indices appear in the notation. From (6.30),
(6.32), and (6.33), the whole network can be rewritten as

D =



W (1)
U

0
0

0

W (2)
U

0

0
0

W (3)
U

λ(1,2)W (1,2)
C

λ(1,3)W (1,3)
C

0

λ(1,2,3)W (1,2,3)
C

λ(2,1)W (2,1)
C

0

λ(2,3)W (2,3)
C

λ(2,3,1)W (2,3,1)
C

0

λ(3,1)W (3,1)
C

λ(3,2)W (3,2)
C

λ(3,1,2)W (3,1,2)
C



 S(1)

S(2)

S(3)



(6.34)
where, λ(i, j), i, j = 1,2,3, i 6= j quantify the percentages of corresponding D(i, j)

C s
factorised respectively by the two sub-networks H(i) and H( j), and λ(i, j,k)s quantify
the percentages of D(i, j,k)

C factorised respectively by all the three sub-networks. All
mixing coefficients λ(·)s in (6.34) satisfy relationships similar to that in (6.3) given



108CHAPTER 6. DIVIDE AND CONQUER NCA – UNIQUE MATRIX FACTORS

by
λ(i, j),λ(i, j,k) > 0,1≤ i, j,k ≤ 3, i 6= j 6= k

λ(1,2)+λ(2,1) = 1
λ(1,3)+λ(3,1) = 1
λ(2,3)+λ(3,2) = 1

λ(1,2,3)+λ(2,3,1)+λ(3,1,2) = 1

(6.35)

In this case, there are 4 mixing problems corresponding to 4 distinct data subsets in
DC (6.30). Mixing problems in this case are given as

min
λ(1,2),λ(2,1)

D(1,2)
C −λ(1,2)W (1,2)

C S(1)−λ(2,1)W (2,1)
C S(2)

min
λ(1,3),λ(3,1)

D(1,3)
C −λ(1,3)W (1,3)

C S(1)−λ(3,1)W (3,1)
C S(3)

min
λ(2,3),λ(3,2)

D(2,3)
C −λ(2,3)W (2,3)

C S(2)−λ(3,2)W (3,2)
C S(3)

min
λ(1,2,3),λ(2,3,1),λ(3,2,1)

D(1,2,3)
C −λ(1,2,3)W (1,2,3)

C S(1)−λ(2,3,1)W (2,3,1)
C S(2)

−λ(3,2,1)W (3,2,1)
C S(3)

subject to (6.35)

(6.36)

On comparing the problems in (6.28) and (6.36), it can be seen that the notations
get relatively complicated upon adding a sub-network. Addition of another sub-
network worsens the readability of notations. A combination with n out of g sub-
networks will require n gCn mixing coefficients λ(·)s. Therefore, the number of
parameters in a general case is

g

∑
n=2

n gCn

Fig. 6.1 shows the growth in number of mixing parameters on a log scale with an in-
crease in the number of parts constituting the whole network. Furthermore, it is not
necessary that for a given pair (D,B(G)) all ∑

g
n=2

gCn combinations of sub-networks
will be realised in resulting decomposition. Therefore, in a general case with large
number of sub-networks, identifying combination of sub-networks sharing data and
corresponding data subsets DC corresponding, and solving related mixing problems
requires a great amount of book-keeping and computational efforts. In order to
overcome this hurdle, an iterative approach is developed in the next section.

In summary, the challenges identified in this section in setting up 3DNCA with
multiple mixing problems are

1. identifying combinations of sub-networks for a given pair (D,B(G))

2. rapid growth in number of mixing coefficients with increase in number of



6.3. ITERATIVE APPROACH TO MULTIPLE MIXING PROBLEMS 109
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Figure 6.1: Log growth in number of parameters with increasing number of parts

6.3 Iterative approach to multiple mixing problems

In this section, two specific cases – two (6.25) and three (6.34) part networks –
presented in the previous section are used to demonstrate how three-part mixing
problem (6.36) can be reduced to a series of two two-part mixing problems (6.28).
This idea is then extended to a general case. It is also shown that a simple set of
notations can be used to solve a general g-part mixing problem thereby reducing the
book-keeping effort.

Consier the three-part network G described in (6.29). Let H(A) and H(B) such
that

H(A) = H(1)∪H(2), H(B) = H(3) (6.37)

From (6.29) and (6.37), three-part network G can be rewritten as a two-part network
as

G = H(A)∪H(B) (6.38)

From (6.37), H(A) is a two-part network. Therefore, at first, a two-part solution
(W (A),S(A)) of the form in (6.25) to a 3DNCA problem corresponding to H(A) is
sought. The obtained matrix factors are then used to compute a two-part solution
corresponding to the network G in (6.38). Thus, a three-part mixing problem can
be reduced to a pair of two-part mixing problems. By induction, g-part mixing
problem can be solved by sequentially solving n−1 two-part problems. Estimates
W (i)s and S(i)s computed in step 2 of 3DNCA do not change in the third step where
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mixing problem is to be solved. Therefore, it is not necessary to solve all the mix-
ing problems in one shot. Instead, the identified sub-networks can be sequentially
processed in pairs as shown in this section.

6.3.1 Three-part network as a pair of two-part networks

For the three-part network in (6.38), it is shown in the remainder of this section that
a solution obtained by iterative application of two-part 3DNCA is equivalent to that
obtained by solving three-part 3DNCA.

Assume NCA estimates (W (1),S(1)), (W (2),S(2)) and (W (3),S(3)) are available.
Assuming the pair W (A),S(A) corresponding to H(A) (6.37) is available, a complete
solution corresponding to G (6.38) – (W,S) as described in (6.34) – can be com-
puted. System equation corresponding to the two-part network G (6.38) is given
by

D =WS
D(A)

U

D(B)
U

D(A,B)
C

=


W (A)

U 0

0 W (B)
U

λ(A)W (A)
C λ(B)W (B)

C


(

S(A)

S(B)

)
(6.39)

Note that the quantities in W in (6.39) should have been denoted by the following
symbols – λ(A,B)W (A,B)

C and λ(B,A)W (B,A)
C . However, the notation is changed from

that used in section 6.2 back to the one presented in section 6.1. This is because a
relatively complicated set of notations in section 6.2 is necessary only if there are
more than two sub-networks. Discussions in this section follow notations presented
in section 6.1. sub-matrices in (6.39) are identified from three-part 3DNCA solution
in (6.34) as shown next.

W in (6.34) is reordered as follows

W =



W (1)
U

0

λ(1,2)W (1,2)
C

0

0

W (2)
U

λ(2,1)W (2,1)
C

0

0
0
0

W (3)
U

λ(1,3)W (1,3)
C

0

λ(1,2,3)W (1,2,3)
C

0

λ(2,3)W (2,3)
C

λ(2,3,1)W (2,3,1)
C

λ(3,1)W (3,1)
C

λ(3,2)W (3,2)
C

λ(3,1,2)W (3,1,2)
C


(6.40)

In order to further simplify the notations, let the mixing coefficients λs in (6.40) be
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defined as
λ(1,3) = λ(2,3) = λ(A)

λ(1,2) = λ(1)

λ(2,1) = λ(2)

λ(1,2,3) = λ(B)λ(1)

λ(2,3,1) = λ(B)λ(2)

λ(3,1) = λ(3,2) = λ(3,1,2) = λ(B)

(6.41)

From (6.40) and (6.41), W can be rewritten as

W =



W (1)
U

0

λ(1)W (2,1)
C

0

0

W (2)
U

λ(2)W (1,2)
C

0

0
0
0

W (3)
U

λ(A)W (1,3)
C

0

λ(A)λ(1)W (1,2,3)
C

0

λ(A)W (2,3)
C

λ(A)λ(2)W (2,3,1)
C

λ(B)W (3,1)
C

λ(B)W (3,2)
C

λ(B)W (3,1,2)
C


(6.42)

On comparing (6.42) to W in(6.39)

W (A)
U =

 W (1)
U

0

λ(1)W (2,1)
C

0

W (2)
U

λ(2)W (1,2)
C

 , W (B)
U =W (3)

U ,

W (A)
C =

 W (1,3)
C

0

λ(1)W (1,2,3)
C

0

W (2,3)
C

λ(2)W (2,3,1)
C

 , W (B)
C =

 W (3,1)
C

W (3,2)
C

W (3,1,2)
C


(6.43)

Similarly, dataset D in (6.34) can be used to define D in (6.39) as

D =


D(A)

U

D(B)
U

D(A,B)
C


with

D(A)
U =

 D(1)
U

D(2)
U

D(1,2)
C

 , D(B)
U = D(3)

U , D(A,B)
C =

 D(1,3)
C

D(2,3)
C

D(1,2,3)
C

 (6.44)
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and S in (6.34) can be used to define S in (6.39) as

S =

(
S(A)

S(B)

)
=

 S(1)

S(2)

S(3)

 (6.45)

Discussion is briefly diverted to consider H(A) alone. On comparing W in (6.39) to
that in (6.42), W (A) can be isolated as

W (A) =



W (1)
U

W (1,3)
C

0
0

0
0

W (2)
U

W (2,3)
C

λ(1)W (1,2)
C

λ(1)W (1,2,3)
C

λ(2)W (2,1)
C

λ(2)W (2,3,1)
C


(6.46)

Mixing coefficients λ(A) and λ(B) are dropped while defining W (A) as they are rel-
evant only when the whole network G is considered. W (A) in (6.46) can also be
represented in a form suitable for a two-part mixing problem as

W (A) =

(
W (A)

U

W (A)
C

)
=


W (A1)

U 0

0 W (A2)
U

λ(1)W (A1)
C λ(2)W (A2)

C

 (6.47)

Symbols A1 and A2 are introduced in (6.47) as W (A1)
U 6=W (1)

U , W (A2)
U 6=W (2)

U , W (A1)
C 6=

W (1,2)
C , W (A2)

C 6=W (2,1)
C , but

W (A1)
U =

(
W (1)

U

λ(1,3)W (1,3)
C

)
, W (A2)

U =

(
W (2)

U

λ(2,3)W (2,3)
C

)

W (A1)
C =

(
W (1,2)

C

W (1,2,3)
C

)
, W (A2)

C =

(
W (2,1)

C

W (2,3,1)
C

) (6.48)

dataset D(A) can be identified as

D(A) =


D(A1)

U

D(A2)
U

D(A1,A2)
C

 ,

D(A1)
U =

(
D(1)

U

D(1,3)
C

)
, D(A2)

U =

(
D(2)

U

D(2,3)
C

)
, D(A1,A2)

C =

(
D(1,2)

C

D(1,2,3)
C

) (6.49)
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It can be seen that data subset D(3)
U in (6.30) is not copied to D(A) (6.49). Similarly,

the row with W (3)
U in (6.33) is not copied to W (A) (6.46). This is because H(B)=H(3)

is not being considered at the moment and hence, is assumed to be non-existent. For
the sake of completeness, adding D(3)

U to D(A) would not affect computations as the
corresponding row, 4-th row in W (6.40), is a zero-row. Matrix factor S(A) is given
by

S(A) =

(
S(A1)

S(A2)

)
=

(
S(1)

S(2)

)
(6.50)

As H(A) is a two-part network, there is only one mixing problem of the form (6.28)
to be solved. The mixing problem is given as

min
λ(1),λ(2)

‖D(A1,A2)
C −λ(1)W (A1)

C S(1)−λ(2)W (A2)
C S(2)‖2

F

subject to λ(1),λ(2) > 0
λ(1)+λ(2) = 1

(6.51)

A two-part solution of the form (6.25) can be obtained by putting together the quan-
tities in (6.47), (6.49) and (6.50) as

D(A) =W (A)S(A) (6.52)

Bringing the focus of discussion back to the whole network G (6.38), matrix factors
W and S in (6.39) can be computed by solving for λ(A) and λ(B) in another two-part
mixing problem with A and B in place of A1 and A2 in (6.51). A two-part solution
to a 3DNCA problem corresponding to G in (6.29) can be obtained as described in
(6.39) by putting together all the required quantities in (6.42).

Discussion in this section up to this point shows that a three-part mixing problem
in (6.36) can be translated to a series of two two-part mixing problems of the form
(6.51). A solution D = WS can be obtained by aggregating all computations as
described in (6.39). However, it remains to verify if products of λs in the last row
of W in (6.42) satisfy convexity constraints similar to those in (6.3). This ensures
that all common data subsets in DC are factorised to an extent of 100%. A quick
check can confirm that all mixing coefficients satisfy convexity constraints imposed
in (6.3).

As claimed at the beginning of this section, it is shown in this section that a
three-part mixing problem can indeed be reduced to a pair of two-part mixing prob-
lems. By extension, a general g-part mixing problem can be reduced to a series of
g−1 two-part mixing problems that are to be solved sequentially.
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6.3.2 Divide and conquer algorithm

Following the discussions in the previous subsection, an algorithm is developed
in this subsection that processes a given network G with g parts in g− 1 steps.
Assuming g > 1, the algorithm starts with H(A) = H(1) and H(B) = H(2) to compute
a solution of the form (6.39). For every additional sub-network H(i),3≤ i≤ g, H(A)

and H(B) from the previous step are used to update the definitions of sub-networks
considered in (6.39) as

H(A) = H(A)∪H(B), H(B) = H(i)

Definitions of unique and common parts of sub-networks H(A) and H(B), and data
are also updated at each step. While updating the definitions of all variables, mix-
ing coefficients λ(A) and λ(B) are considered as integral parts of W (A) and W (B),
respectively. Mixing coefficients computed at the current step are multiplied to the
common parts of W (A) and W (B) regardless of whether some of the rows in there
were multiplied with mixing coefficients in the previous step. In this sense, each
step is independent of the previous step. Steps described up to this point are sum-
marised in the form of an algorithm as It can be seen in step 3 of algorithm 6 that if

Algorithm 6 3DNCA

inputs: D, B(G)
STEP 1: Identify sub-graphs H(i)s using algorithm 5 with B(G) as input
STEP 2: Estimate W (i)s and S(i)s using NCA
STEP 3: set H(A) = H(1)

if g > 1 then
for i = 2 to g do

set H(B) = H(i)

update definitions of D(A)
U ,D(B)

U , D(A,B)
C , W (A)

U , W (A)
C , W (B)

U and W (B)
C

estimate W in (6.39)
set H(A) = H(A)∪H(B)

end for
end if
outputs: W =W (A) and S = S(A)

there is only one sub-network H(A), then that is the solution to the SCMF problem
in (2.12). Therefore, as pointed out earlier, NCA [2] is a special case of 3DNCA.

As mentioned at the beginning of this chapter, the most important assumption
in 3DNCA is that a given dataset-network pair (D,B(G)) follows some mixing rule.
In other words, λs are defined. For some pair (D,B(G)), if λs are not defined, then it
is not guaranteed that 3DNCA solutions will result in small errors in reconstructing
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D. An example is provided later in this chapter where, 3DNCA results in unique
matrix factors, but large errors are observed in reconstructing corresponding D.

6.4 Uniqueness of solutions

Existence of a diagonal matrix χ as described in (2.14) establishes the uniqueness
of NCA solutions up to a scaling factor for an NCA feasible network. Uniqueness
of 3DNCA solutions obtained by applying algorithm 6 is established along similar
lines. A key assumption in establishing uniqueness of 3DNCA solutions is that
all data subset-sub-network pairs (D(i),B(H(i)),1 ≤ i ≤ g are NCA feasible. It is
shown in section (5.4.2) that algorithm 5 guarantees full-rank factorisability of all
sub-networks. However, not all pairs (D(i),B(H(i))s are necessarily NCA feasible.
This is because of the fact that the number of source signals |X (i)| in some of the
sub-networks are lesser than rk([B(H(i) : D(i)]) as shown in (5.29). Assuming NCA
feasibility of all data subset-sub-network pairs, uniqueness of 3DNCA solutions can
be established as described in this section.

In section (6.3.1), it is shown that a three-part mixing problem can be reduced
to a series of two two-part mixing problems. Algorithm 6 implements this idea
in a way such that g sub-networks are iteratively processed in g− 1 pairs of sub-
networks in a decoupled manner. It is shown in (??) that convexity constraints
imposed on λs are satisfied in the iterative process in 3DNCA. Therefore, it s suf-
ficient to establish uniqueness of solutions (6.39) corresponding to a two-part net-
work G = H(A)∪H(B) (6.37). However, uniqueness of 3DNCA solutions cannot be
established as with NCA solutions as described in [2]. This is because λ(A) and λ(B)

appear inside W in (6.39). Role of these mixing factors must be carefully analysed
while establishing uniqueness of 3DNCA solutions. It is demonstrated next that
3DNCA solutions of the form (6.39) are not unique up to a single scaling matrix χ

as in the case of NCA.

Let sub-matrices (1W (A)
U ), (1W (A)

C ) and (1S(A)) corresponding to H(A) be such
that

D(A) = (1W (A))(1S(A)) =

(
D(A)

U

D(A,B)
C

)
=

(
(1W (A)

U )

(1W (A,B)
C )

)
(1S(A))

Similarly, sub-matrices (2W (A)
U ), (2W (A)

C ) and (2S(A)) corresponding to H(A) and
sub-matrices (1W (B)

U ), (1W (B)
C ), (1S(B)), (2W (B)

U ), (2W (B)
C ) and (2S(B)) corresponding

to H(B) can be defined. It is assumed that NCA is used to compute these sub-
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matrices such that

D(A) = (1W (A))(1S(A)) = (2W (A))(2S(A))

and
D(B) = (1W (B))(1S(B)) = (2W (B))(2S(B))

As the two sub-networks H(A) and H(B) are NCA feasible, their corresponding NCA
solutions are unique according to theorem 1. In other words, the corresponding
NCA solutions are related by diagonal matrices χ(A) and χ(B) as

(1W (A))χ(A) = (2W (A)), (1S(A)) = χ(A)(2S(A)),

(1W (B))χ(B) = (2W (B)), (1S(B)) = χ(B)(2S(B))

(6.53)

Using these sub-matrices, two 3DNCA solutions of the form (6.39) corresponding
to G = H(A)∪H(B) can be defined as

D = (1W )(1S)
D(A)

U

D(B)
U

D(A,B)
C

=


(1W (A)

U ) 0

0 (1W (B)
U )

(1λ(A))(1W (A)
C ) (1λ(B))(1W (B)

C )


(

(1S(A))

(1S(B))

)
(6.54)

and
D = (2W )(2S)

D(A)
U

D(B)
U

D(A,B)
C

=


(2W (A)

U ) 0

0 (2W (B)
U )

(2λ(A))(2W (A)
C ) (2λ(B))(2W (B)

C )


(

(2S(A))

(2S(B))

)
(6.55)

Values of mixing factors (1λ(A)) and (1λ(B)) in (6.54) depend on the values of NCA
solutions ((1W (A)),(1S(A))) and ((1W (B)),(1S(B))). Similarly, values of (2λ(A)) and
(2λ(B)) in (6.55) depend on the values ((2W (A)),(2S(A))) and ((2W (B)), (2S(B))).
As NCA solutions corresponding H(A) and H(B) are not identical, corresponding
mixing factors are also not identical

(1
λ
(A)) 6= (2

λ
(A)), (1

λ
(B)) 6= (2

λ
(B))

Using the relationships in (6.53), consider rearranging right hand side of the equa-
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tion in (6.55) as
(1λ(A))

(2λ(A))
(1W (A)

U )χ
(A)
U

(2λ(A))

(1λ(A))
0

0 (1λ(B))

(2λ(B))
(1W (B)

U )χ
(B)
U

(2λ(B))

(1λ(B))
(2λ(A))

(1λ(A))
(1λ(A))(1W (A)

C )χ
(A)
C

(2λ(B))

(1λ(B))
(1λ(B))(1W (B)

C )χ
(B)
C


(

χ(A)−1
(1S(A))

χ(B)−1
(1S(B))

)

(6.56)
It can be verified that right hand side of the equation in (6.55) is equivalent to the
representation in (6.56). Consider two diagonal matrices ΛL and ΛR whose principal
diagonal pd(·)s are given as

pd(ΛR) =
(

(1λ(A))

(2λ(A))
· · · (1λ(A))

(2λ(A))

(1λ(B))

(2λ(B))
· · · (1λ(B))

(2λ(B))
1 · · · 1

)
pd(ΛL) =

(
(2λ(A))

(1λ(A))
· · · (2λ(A))

(1λ(A))

(2λ(B))

(1λ(B))
· · · (2λ(B))

(1λ(B))

) (6.57)

where, the three parts of pd(ΛL) correspond respectively to the rows in W (A)
U , W (B),

and WC whereas the two parts of pd(ΛR) correspond to the columns of W repre-
senting respectively H(A) and H(B). From (6.56) and (6.57), right hand side of the
equation in (6.55) can be rewritten as

ΛL


(1W (A)

U ) 0

0 (1W (B)
U )

(1λ(A))(1W (A)
C ) (1λ(B))(1W (B)

C )

χχ
−1

(
(1S(A))

(1S(B))

)
(6.58)

where, χ is given as

χ =

(
χ(A) 0

0 χ(B)

)
Λ

1
2
R (6.59)

As χ(A), χ(B) and ΛR in (6.59) are diagonal matrices, χ is also diagonal in nature.
From (6.58), the two 3DNCA solutions in (6.54) and (6.55) can be related to each
other as

(2W )(2S) = ΛL(
1W )χχ

−1(1S) (6.60)

A theorem on uniqueness of 3DNCA solutions is stated as

Theorem 5 Given a g-part G described by

G =
g
∪

i=1
H(i)

3DNCA solutions (W,S) obtained by using algorithm 6 are unique up to two scaling

factors ΛL (6.57) and χ (6.60)
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Proof For a general g-part network G, two pairs of solutions ((1W ),(1S)) and
((2W ),(2S)) can be obtained by using 3DNCA algorithm (algorithm 6). ΛL and
ΛR (6.57), and χ (6.59) corresponding to the two solutions being computed can be
calculated at every iteration of 3DNCA algorithm. Therefore, ΛL and χ calculated
in the last iteration of 3DNCA captures scaling factors corresponding to each it-
eration. ΛL and χ from the last iteration characterise the uniqueness of solutions
corresponding to the whole network G as described in (6.60). �

6.5 A multi-part network example

In section 5.4.1, example network in (3.1) is used to test the applicability of algo-
rithm 4. It is not possible to test the validity of algorithm 5 as an associated dataset D

is not available. In this section, a relatively larger example network B(G)∈GF24×12
2

is introduced. Using randomly chosen matrices W,φ(W ) = B(G) and S, a dataset
D ∈ R24×4 is constructed as D = WS. The newly introduced dataset-network pair
(D,B(G)) is then used to test the validity of algorithm 5. Note that the number of
source signals in S is L = 12 whereas the number of data points available is N = 4.
Therefore, application of algorithm 5 is warranted. Once the full-rank factorisable
sub-networks of G are identified, assuming W and S are unknown, the goal in this
section is to estimate (W,S) given (D,B(G)) using 3DNCA (algorithm 6).

Note that, as mentioned in section 6.3.2, algorithm 6 (3DNCA) assumes that
the underlying dataset is obtained from a system with well defined mixing rules. In
other words, 3DNCA results in minimal error in reconstructing a dataset D if the
corresponding W is not a random choice. In this section, W is chosen randomly
and hence, it is not expected that any mixing rule holds. Therefore, 3DNCA is not
expected to perform better than NCA in terms of reconstructing D, but it is shown
to generate unique solutions as described in section 6.4. This example serves to
demonstrate both strengths and weaknesses of the divide and conquer algorithm
developed in chapter.

Example network description – Consider a network B(G) shown in Fig. 6.2. It
can be verified that B(G) has full-column rank in both R and GF2

rk(B(G)) = rk2(B(G)) = 12

Matrices W ∈ R24×12 and S ∈ R12×4 are such that

φ(W ) = B(G), rk(S) = min(L,N) = 4
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Matrix entries W (i, j) and S( j,k) with 1 ≤ i ≤ 24, 1 ≤ j ≤ 12 and 1 ≤ k ≤ 4 are
chosen randomly as

W (i, j) = wmin +wi j× (wmax−wmin)

S( j,k) = smin + s jk× (smax− smin)

where, wi j and s jk are random numbers chosen from a uniform distribution U ∼
[0,1], wmax,smax = 10 and wmin,smin = −10. W and S are as shown respectively in
Figs. 6.3 and 6.4. A dataset D corresponding to B(G) in Fig. (6.2) is constructed as

2 4 6 8 10 12
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Figure 6.2: Colour map of B(H) (0 – black, 1 – white): NCA infeasible example
network
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Figure 6.3: Colour map of W corresponding to B(G) in Fig. 6.2

D =WS
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Figure 6.4: Colour map of S corresponding to B(G) in Fig. 6.2

D, W and S are as shown respectively in Figs. 6.5,
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Figure 6.5: Colour map of D corresponding to B(G) in Fig. 6.2

Network decomposition – B(G) is NCA infeasible according to theorem 4 as in-
duced sub-graphs H js of B(G) are such that

rk2(H1)< L−1, rk2(H8)< L−1, rk2(H j) = L−1, 1≤ j ≤ 12, j 6= 1,8 (6.61)

On applying algorithm 4, two NCA feasible sub-networks of B(G) can be identified
as

H(1) = (X (1)∪Y (1),B(H(1))), H(2) = (X (2)∪Y (2),B(H(2))) (6.62)

where, X (1) and X (2) are given as

X (1) = {u1, u8}, X (2) = {u j, 1≤ j ≤ 12, j 6= 1,8} (6.63)
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This is not surprising as H1 and H8 are not full-ranked as seen in (6.61). However,
sub-networks identified in (6.63) cannot be used in the context of NCA as D has
only 4 data points. Therefore, pair (D,B(G)) is NCA infeasible as well. Full-rank
factorisable sub-networks of B(G) are identified by applying algorithm 5 as

H(i) = (X (i)∪Y (i),B(H(i))),1≤ i≤ 4,
X (1) = {u1, u8}, X (2) = {u2, u3, u4, u5},

X (3) = {u6, u7, u9, u10}, X (4) = {u11, u12}
(6.64)

The whole network G can be represented as

G =
4
∪

i=1
H(i) (6.65)

where, sub-networks H(i)s are as described in (6.64). For 1 ≤ i ≤ 4, number of
source signals need in each S(i) to ensure NCA feasibility of corresponding data
subset-network pair (D(i),B(H(i)) are given as

rk([B(H(1)) : D(1)]) = 6
rk([B(H(2)) : D(2)]) = 8
rk([B(H(3)) : D(3)]) = 8
rk([B(H(4)) : D(4)]) = 4

(6.66)

From (6.64) and (6.66), (D(1),B(H(1))) is NCA infeasible according to theorem 3
whereas rest of the data subset-sub-network pairs are NCA feasible. However, all
sub-networks are guaranteed to be full-rank factorisable as a result of application of
algorithm 5.

3DNCA solutions – Two pairs of NCA estimates ((1W (i)),(1S(i))) and ((2W (i)),(2S(i)))

are obtained from pairs (D,B(H(i)))s corresponding to the sub-networks H(i)s in
(6.64). Diagonal matrices χ(i)s relating two pairs of solution of each sub-network
are calculated as described in (3.35). Principal diagonal of χ(i)s are determined as

pd(χ(1)) =
(
−2.03 1

)
pd(χ(2)) =

(
−1.44 −0.13 1.62 −0.005

)
pd(χ(3)) =

(
1.26 1 1 2.27

)
pd(χ(4)) =

(
−1.6 0.49

) (6.67)

From theorem 1, χ(2), χ(3) and χ(4) are guaranteed to be diagonal in nature as the
corresponding data subset-sub-network pairs are NCA feasible. Though (D(1),B(H(1)))
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H(A) H(B) (1λ(A)) (1λ(B)) (2λ(A)) (2λ(B))

H(1) H(2) 0.2429 0.7571 0.2365 0.7635
H(1)∪H(2) H(3) 0.1989 0.8011 0.1978 0.8022

H(1)∪H(2)∪H(3) H(4) 0.2066 0.7934 0.2061 0.7939

Table 6.1: sub-network descriptions and values of mixing factors at each iteration
of 3DNCA

is NCA infeasible, corresponding χ(1) is diagonal. However, this does not imply
NCA feasibility. It can be verified that for all 1≤ i≤ 4

(2W (i)) = (1W (i))χ(i), (2S(i)) = χ
(i)−1

(1S(i))

Now, two pairs of solutions ((1W ),(1S)) and ((2W ),(2S)) are obtained by applying
3DNCA (algorithm 6) to the multi-part network G in (6.65). Values of mixing
factors at each iteration is tabulated in table 6.1. Each row of table 6.1 represents
one iteration in step 3 of algorithm 6. sub-networks that make up H(A) and H(B)

at each iteration of 3DNCA are tabulated respectively in first two column of table
6.1 whereas next two pairs of columns respectively tabulate the values of mixing
factors λ(A) and λ(B) corresponding to the two 3DNCA solutions being computed.

In order to characterise the uniqueness of 3DNCA solutions, diagonal matrices
ΛL and ΛR must be calculated. This can be done by calculating diagonal matrices
described in (6.57) at each iteration of algorithm 6. ΛL and ΛR obtained in the
last iteration can be used to characterise uniqueness of G as described in (6.58).
However, from table 6.1, for every iteration

(1
λ
(i))≈ (2

λ
(i)), 1≤ i≤ 4

Therefore, final values of ΛL and ΛR can be calculated directly as

ΛL = I24, ΛR = I4 (6.68)

where, I24 and I4 are identity matrices of size 24 and 4, respectively. From (6.59)
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and (6.68), theoretical value of matrix χ can be evaluated as

χ =


χ(1) 0 0 0

0 χ(2) 0 0
0 0 χ(3) 0
0 0 0 χ(4)

Λ
1
2
R

Λ
1
2
R = I4, =⇒ χ =


χ(1) 0 0 0

0 χ(2) 0 0
0 0 χ(3) 0
0 0 0 χ(4)



(6.69)

where, χ(i), 1 ≤ i ≤ 4 are as defined in (6.67). If algorithm 6 works as expected,
then χ̂ computed as described in (3.35) from two 3DNCA solutions ((1W ),(1S)) and
((2W ),(2S)) must be equal to χ in (6.69). Principal diagonal entries of χ̂ evaluated
as described in (3.35) as

pd(χ̂) =

(
−2.04 1 −1.44 −1.13 1.61 −0.005

1.26 1 1 2.27 −1.6 0.49
) (6.70)

where, vertical bars are used to separate entries corresponding to the four sub-
networks H(i)s. From (6.67), (6.69) and (6.70), theoretical and estimated values
of χ are in agreement

pd(χ) = pd(χ̂) (6.71)

However, some of the off-diagonal entries in χ̂ evaluate to

χ̂(1,3) = 0.02, χ̂(3,1) =−0.002,
χ̂(5,1) = 0.003, χ̂(5,3) = 0.007, χ̂(6,2) =−0.004

(6.72)

An interesting observation is that all the non-zero off-diagonal entries identified in
(6.72) have either row or column indices equal to 1 or 2. This implies that unique-
ness of 3DNCA solutions is affected by NCA estimates corresponding to H(1). This
behaviour is expected as (D(1),B(H(1))) is found to be NCA infeasible as shown in
(6.66).

Numbers in (6.72) will not be visible on a colour map of χ̂ as they are smaller by
two orders compared to those in (6.70). Therefore, for the purpose of better illustra-
tion, Fig. 6.6 shows 100× χ̂ after setting diagonal entries to zero. White dashed line
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Figure 6.6: Colour map of 100× χ̂ corresponding to example network after setting
diagonal entries to zero

in Fig. 6.6 runs along the principal diagonal. In Fig. 6.6, lighter colours represent
positive non-zero values. It can be seen in Fig. 6.6 that there are a handful number
of off-diagonal entries that are non-zero as identified in (6.72).

Compring 3DNCA with NCA [2] – Applying NCA to B(G) in Fig. 6.2 and D in
Fig. 6.5 is futile as neither B(G) nor the pair (D,B(G)) is NCA feasible. However,
NCA is applied to the pair (D,B(G)) in this section to obtain two pairs of solutions
((1WN),(

1SN)) and ((2WN),(
2SN)), where subscript N represents NCA. A matrix

χN is sought by solving the equation in (3.35). As in the case of χ̂ in Fig. 6.6, χN is
shown in Fig. 6.7 after setting its diagonal entries to zero.
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Figure 6.7: Colour map of χN corresponding to example network after setting diag-
onal entries to zero
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In Fig. 6.7, black dashed line runs along the principal diagonal and several off-
diagonal entries are non-zero. On comparing Fig. 6.7 and Fig. 6.6, it can be seen
that number of off-diagonal entries that are non-zero in χN is bigger than that in
χ̂. Furthermore, χ̂ in Fig. 6.6 is scaled by a factor of 100 in order to improve
the contrast between zero and non-zero values whilst illustrating. On the other
hand, χN in Fig. 6.7 has not been scaled up or down. Despite that, non-zero entries
can be clearly identified in Fig. 6.7. This implies that the non-zero off-diagonal
entries in χN are comparable in value to those on its principal diagonal. This clearly
indicates that NCA solutions are not any close to being unique for the pair (D,B(G))

considered in this section.

Data reconstruction – First step of 3DNCA involves reordering columns to sep-
arate out sub-networks H(i)s. Third step of 3DNCA involves reordering rows to
identify unique and common parts of the two sub-networks considered in that itera-
tion. Therefore, it is important to ensure that the rows of (1W ) and (2W ) are aligned
with the original order as dictated by B(G) in Fig. 6.2. Once this is done, error Γ̂ in
reconstructing D can be calculated as described in (2.15).

Absolute values of error in reconstructing D using NCA is shown in Fig. 6.8
while that with one of the two 3DNCA solutions is shown in Fig. 6.9. The two
figures are plotted on same scale – 0 to 30 – as seen on the colour bars to their
left. On comparing the two figures, NCA results in almost zero error overall as
seen in in Fig. 6.8. However, uniqueness of NCA solutions cannot be guaranteed as
discussed earlier. On the other hand, from Fig. 6.9, 3DNCA results in significant
errors in reconstructing D. This shows that 3DNCA computes unique solutions
corresponding to a dataset D resulting from a random choice of W and S, but low
error in reconstructing D cannot be expected.
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Figure 6.8: Colour map of |Γ̂| with NCA corresponding to example network
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Figure 6.9: Colour map of |Γ̂| with 3DNCA corresponding to example network

6.6 Experimental data based algorithm validation

In the previous section, it is shown that 3DNCA generates unique solutions, but
it does not necessarily guarantee low errors in reconstructing a dataset D. This is
because the matrix factors W and S in the previous section were chosen randomly.
In this section, the dataset D of interest is generated from an experiment involving
a biological system in [1]. As mentioned in at the beginning of chapter 1, biolog-
ical systems are modular in nature. As pointed out in section 1.2, transcriptional
regulation is a stable process with well defined pathways. Therefore, B(G) in (2.4)
can be interpreted as a multi-part network and hence, W is unlikely to be random.
In section 2.1, it is shown that protein activity can be modelled using first-order
differential equations. Therefore, S is unlikely to be random.

Goals in this section are to show that 3DNCA generates unique solutions that re-
construct an experimental dataset with low error and to show that 3DNCA estimates
agree with experimentally observed facts. It is shown that the error in reconstruct-
ing experimental data D in [1] using 3DNCA is comparable to that with NCA. As
mentioned at the beginning of this chapter, 3DNCA is not expected to perform sig-
nificantly better than NCA in terms of data reconstruction as 3DNCA builds on
NCA sub-networks estimates. However, an important improvement over NCA is
that 3DNCA solutions are shown to be unique.

It is shown in section 3.3.2 that estimates of matrix factors obtained by applying
NCA to the experimental dataset D corresponding to the carbon source switching
network (section 2.5) are not unique. Two pairs of NCA solutions are estimated
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such that
D = ((1W ),(1S)) = ((2W ),(2S))

In (??), diagonal matrix χ is calculated that relates the two weight matrix estimates
((1W ) and (2W ) as

(2W ) = (1W )χ

However, it is shown in (3.36) that

(2S) 6= χ
−1((1S)

It is shown in section 4.4.2 that the dataset-network pair (D,B(G)) corresponding to
the carbon source switching experiment in [1] is NCA infeasible. Therefore, classi-
cal NCA in [2] cannot be applied to (D,B(G)). In this section, 3DNCA (algorithm
6) is applied to this experimental dataset-network pair.

Sub-network matrix factors – First step in 3DNCA is to identify full-rank fac-
torisable sub-networks H(i)s of G such that G = ∪

i
H(i). This problem is solved in

section 5.4.2 where two sub-networks H(1) and H(2) of G are identified by applying
algorithm 5 to (D,B(G)) in [1]. It is shown in section 4.4.2 that H(1) is NCA feasi-
ble and corresponding NCA solutions are unique up to a scaling factor χ(1) (4.21).
As mentioned there, χ(1) is guaranteed to be diagonal in nature. However, its value
is dependent on the two pairs of NCA solutions being tested for uniqueness. In this
section, values of ((1W (1)),(1S(1))), ((2W (1)),(2S(1))) and χ(1) are borrowed from
section 4.4.2.

In section 5.4.2, it is shown that the second sub-network H(2) of B(G) in [1]
is full-rank factorisable. In the same section, it is shown that (D(2),B(H(2))) is
NCA infeasible. As a result, corresponding NCA solutions ((1W (2)),(1S(2))) and
((2W (2)),(2S(2))) are found to be non-unique. However, in the same section, it is
shown with the help of (5.33) that the two solutions are almost unique up to χ(2)

(5.32). In this section, values of ((1W (2)),(1S(2))), ((2W (2)),(2S(2))) and χ(2) are
borrowed form section 5.4.2.

On comparing B(G) in Fig. 2.4 with B(H(1) in Fig. 4.2 and B(H(2) in Fig. 5.1,
there are 37 rows of D unique to H(1), 44 rows unique to H(2) and 19 rows common
to both the sub-networks. Subsets of rows of D, Y (1)

U , Y (2)
U and Y (1,2)

C corresponding
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respectively to D(1)
U , D(2)

U and D(1,2)
C are given as

Y (1)
U =

(1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15,16, 17, 18,

19, 23, 26, 28, 29, 34, 43, 47, 48,52, 53, 58, 60,

62, 65, 66, 67, 72, 73, 74, 75, 100)

Y (2)
U =

(14, 20, 21, 24, 30, 33, 35, 37, 39, 41, 42, 44, 45,

46, 49, 54, 55, 56, 59, 61, 63, 64, 68, 69, 70, 71,

77, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94,

95, 96, 97, 99, 99)

Y (1,2)
C =

(4, 10, 22, 25, 27, 31, 32, 36, 38, 40, 50, 51, 57,

76, 80, 82, 83, 84, 87)
(6.73)

3DNCA solutions – Given two sets of solutions

((1W (1)),(1S(1))), ((1W (2)),(1S(2)))

((2W (1)),(2S(1))), ((2W (2)),(2S(2)))
(6.74)

a two-part mixing problem in (6.51) is solved with

H(A) = H(1), H(B) = H(2)

Mixing coefficients corresponding to first set of solutions ((1W (A)),(1S(A))) and
((1W (B)),(1S(B))) are found to be

(1
λ
(A)) = 0.4147, (1

λ
(B)) = 0.5853 (6.75)

Similarly, mixing coefficients corresponding to second set of solutions ((2W (A)),

(2S(A))) and ((2W (B)),(2S(B))) are found to be

(2
λ
(A)) = 0.4148, (2

λ
(B)) = 0.5852 (6.76)

Diagonal matrices ΛL and ΛR can be defined as described in (6.57) where, lengths
of the parts of pd(ΛL) and pd(ΛR) are set in accordance with the lengths or row
subsets in (6.73). From (6.75) and (6.76)

(1λ(A))≈ (2λ(A)), (1λ(B))≈ (2λ(B))

=⇒ ΛL = I100, ΛR = I16
(6.77)
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where, I100 and I16 are identity matrices of size 100 and 16, respectively. From
(6.59) and (6.77), matrix χ can be evaluated as

χ =

(
χ(A) 0

0 χ(B)

)
Λ

1
2
R

=

(
χ(A) 0

0 χ(B)

)
I16

=

(
χ(A) 0

0 χ(B)

)

where, χ(A)= χ(1) as given in (4.21) and χ(B)= χ(2) as given in (5.32). An exception
is made by setting the non-zero off-diagonal element in the last row of χ(2) in (5.32)
to zero while evaluating χ in (6.78). This enforces the assumption that H(2) is NCA
feasible. This is done for the sake of testing the validity of results developed in this
chapter. Principal diagonal of χ is given as

pd(χ) =
(

pd(χ(1)) pd(χ(2))
)

=

(
1 −0.84 −0.83 0.97 0.99 1 −0.83 1.06 0.97

−0.84 1 −0.84 1 −1.19 1 1.02)
)

(6.78)
The two sets of solutions in (6.74) can be tested against 3DNCA uniqueness rela-
tionship in (6.60). On the other hand, as mentioned at the beginning of this section,
NCA solutions are not unique as the corresponding χ in Fig. 3.1 does not satisfy
the relationship between two pairs of solutions as described by theorem 1.

Data reconstruction – As mentioned in the previous section, it is made sure that
the rows and columns of W and S are restored to their original order. Error Γ̂ in
reconstructing D is calculated as described in (2.15) for one of the NCA and one of
the 3DNCA solutions. Absolute values of error in reconstructing D using NCA is
shown in Fig. 6.10 while that with 3DNCA is shown in Fig. 6.11.

The two figures are plotted on same scale – 0 to 0.7 – as seen on the colour bars
to their left. On comparing the two figures, it can be seen that error with 3DNCA is
comparable to that with NCA. It is mentioned at the beginning of this section that
3DNCA is expected to perform equally well as NCA in this case as the underlying
dataset D corresponds to a biological system. It is evident from Figs. 6.10 and 6.11
that the set expectation is met with.

As mentioned in section 2.5, the second source signal S(2, :) corresponds to a
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Figure 6.10: Colour map of |Γ̂| with NCA corresponding to experimental data D
in [1]
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Figure 6.11: Colour map of |Γ̂| with 3DNCA corresponding to experimental data D
in [1]

protein named CRP in E. coli. Activity of CRP is used in [1] to validate NCA
algorithm. CRP activity as estimated by 3DNCA is shown in Fig. 6.12. In [1], CRP
activity is expected peak around 5 minutes followed by a monotonous decline in
activity over next 4 hours. A key validating point in [1] is that there is a 4 hour time
difference between peak and valley of CRP activity. Howvever, the word valley is
not defined in the discussions in [1]. In this section, time taken for the value to drop
by more than 25% is considered to define valley in CRP activity. 3DNCA estimates
an activity of 0.31 units at 5 m nutes and a peak of 0.42 units in CRP activity at 30
minutes. More than 25% drop in activity is estimated over next 210 minutes. CRP
activity at 30 and 240 minutes are marked respectively with red and green cross in
Fig. 6.12. This means that 3DNCA estimates more than 3.5 hour time difference
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Figure 6.12: 3DNCA estimate of CRP (S(2, :)) activity

between peak and valley of CRP activity. As shown in [1], NCA results in similar
estimates as well. Thus, for a given experimental dataset, 3DNCA can be used to
estimate unique solutions that are in agreement with underlying biology.

Remarks – on comparing the results in Fig. 6.12 with CRP activity estimates
presented in [1], 3DNCA seems to be less accurate in terms of time to peak activ-
ity and time difference between peak and valley of CRP activity. It is important
to note that carbon source switch network in [1] has been studied by the different
researchers in the same research group in [34] and [20] under different experimen-
tal conditions. Only 9 data points are made available available in [20] whereas
CRP estimates in [1] are based on 25 data points. It is not clear which experiment
the dataset made available in [20] corresponds to. NCA estimates of CRP activi-
ties under two different experimental conditions are compared in Fig. 6, page 138
of [34]. Let solid line in that figure represent experiment– 1 and dashed line rep-
resent experiment–2. NCA estimates of CRP in [1] appear to be closer to those
corresponding to experiment–1 in [34] whereas 3DNCA estimates of CRP in Fig.
6.12 appear to be closer to CRP estimates corresponding to experiment–2. There is
no way to resolve this confusion other than asking for clarification from the authors.
As no explanation has not been sought from the authors of [20] yet, it is assumed
that the dataset made availble by the authors correspond to experiment–2. Never-
theless, it is shown in this section that 3DNCA achieves the primary goal of this
chapter – obtaining unique estimates of W and S.
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6.7 Summary

In this chapter, an iterative divide and conquer method is developed to solve a gen-
eral structure-constrained matrix factorisation problem. This method combines the
results developed in previous chapters thereby extending the applicability of a pop-
ular bioinformatics tool, NCA. In the process of developing such a method, chal-
lenges in scaling the problem to larger systems of equations are identified. Identi-
fied issues are addressed by reducing a mixing problem corresponding to a multi-
part network to a series of two-part mixing problems. Uniqueness of solutions so
obtained are shown to be unique up to two scaling factors. One of the two scal-
ing factors characterises uniqueness of NCA solutions corresponding to the sub-
networks whereas the other characterises uniqueness corresponding to the mixing
coefficients. Different features 3DNCA solutions are demonstrated using two ex-
amples – a random numerical example and an experimental dataset. It is shown
that 3DNCA is capable of generating unique estimates of mixing coefficients. Two
limitations of 3DNCA are identified – high error in factorising randomly generated
data and dependence on NCA feasibility of data subset-sub-network pairs. These
two issues are not addressed in this thesis and are counted as potential candidates
for future work.



Chapter 7

Conclusions

7.1 Summary of contributions

Novel theoretical results related to NCA [2] have been developed throughout this
thesis. A thorough review of NCA has been presented initially where every aspect
of NCA theorem is inspected. A minor detail related to binary rank of a network
has been ignored for the past 14 years. In this thesis, it is shown that binary rank of
a network affects NCA identifiability. A graph theoretical interpretation of TRNs
is discussed where three graph operations – reduction, minimum degree ordering
and breadth-first matching – are found to be of value in estimating rank of binary
matrices. Uniqueness of NCA solutions has been characterised in [2], but a method
to test the same is not provided. This aspect of NCA is again ignored in most of
the related work. In this thesis, a method based on vectorisation of NCA unique-
ness relationship is developed. This method is used to test uniqueness of NCA
like solutions computed using novel methods proposed in this thesis. Three major
unaddressed challenges related to NCA theory are identified as

• developing accurate NCA feasibility conditions that can be used to check if
NCA is applicable to a given dataset-network pair

• developing a method to identify sub-networks that are NCA feasible when-
ever a given network is NCA infeasible

• developing a method to compute unique solutions regardless of whether a
network is NCA feasible or not

Each of these identified research questions have been answered with sufficient tech-
nical depth in this thesis. In the process of developing a method to address each of
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the identified challenges, several associated hurdles are identified and overcome in
this thesis.

The problem of developing NCA feasibility conditions required finding condi-
tions on a priori known dataset and network. A straightforward extension of NCA
rank conditions is not possible. Therefore, results from linear algebra and aug-
mented matrix theory are used to define NCA feasibility in terms of given dataset-
network pair. Theorem 2 and 3 are developed to separately characterise NCA feasi-
bility of a network alone and that of a dataset-network pair. Binary rank of a network
is employed in doing so. This is the first instance in relevant literature where NCA
identifiability of a network and a dataset have been separately characterised.

Developing a technique to decompose a NCA infeasible network into multiple
NCA feasible sub-networks required exploiting structural properties of a given net-
work. As NCA feasibility conditions are based on binary rank of the given network,
bipartite matching based method to find pivots is used. Graph reduction and vertex
reordering are used to ensure that all pivots correspond to columns that are linearly
independent over binary field. Relationships between size of breadth-first search
based matching in reduced ordered graph and its rank over real and binary fields
are established. These relationships are used to define NCA feasibility of a net-
work using graph theoretical metrics. The reason to redefine NCA feasibility in the
language of graphs is justified with the help of algorithm 5 designed to decompose
NCA infeasible networks into NCA feasible sub-networks. As NCA feasibility con-
ditions are different when a dataset is brought into the picture, a method to limit the
size of sub-networks is devised. Algorithm 5 takes in a dataset-network pair and
returns a set of data subset-sub-network pairs that are full-rank factorisable.

Unique solutions corresponding to a general dataset-network pair is obtained in
three steps. First step is to decompose a given dataset-network pair into full-rank
factorisable data subset-sub-network pairs. Second step involves computation of
NCA solutions corresponding to each sub-network. Last step is to combine sub-
network NCA solutions in a convex manner. It is shown that if all data subset-sub-
network pairs are NCA feasible, then a convex combination of sub-network NCA
solutions is unique up to two scaling factors. This method is shown to generate
close to unique and biologically meaningful estimates of TF activities for a particu-
lar experimental dataset.

Limitations –

• Chapter 4 – though proposition 1 offers a better characterisation of NCA so-
lution space, cases where there is a need to use the same might be rare. Moti-
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vation to look at such special cases is that NCA identifiability conditions are
inaccurate. Existence of a trivial solution or lack thereof does not seem to
affect 3DNCA. Therefore, pursuing the idea presented in proposition 1 might
not be necessary.

• Chapter 5 – it is desirable to identify NCA feasible data subset-sub-network
pairs, but algorithm 5 generates only full rank factorisable data subset-sub-
network pairs.

• Chapter 6 – uniqueness of 3DNCA solution depends on NCA feasibility of
all data subset-sub-network pairs. Therefore, limitations of algorithm 5 limits
applicability of 3DNCA. Furthermore, error in reconstructing dataset using
3DNCA is not any better than that with NCA. This issue can possibly be
resolved by using some other TRN modelling method to factorise individual
sub-networks instead of NCA.

7.2 Future work

In the process of developing the methods summarised in the previous sections, a set
of problems are identified as potential candidates for future work.

• A particular kind of NCA infeasibility arising because of differences in real
and binary ranks of a network is characterised as a subspace in the associated
solution space. A proposition is made to tackle this kind of NCA infeasibility
by avoiding the defined subspace. This result is preliminary in nature, future
work in this direction will lead to a method that realises the proposition.

• Method to decompose NCA infeasible dataset-network pairs can only guar-
antee full-rank factorisability of resulting data subset-sub-network pairs, but
not their NCA feasibility. An idea to overcome this issue is discussed. NCA
feasibility of data subset-sub-network pairs if the limit on network size is cho-
sen in an optimal way. A formal definition of optimal sub-network size and a
method to calculate the same can be pursued as a part of the future work.

• Both for a randomly chosen example and an experimental dataset, divide and
conquer method generated close to unique solutions despite one of the data
subset-sub-network pairs being NCA infeasible. Furthermore, values of mix-
ing factors did not seem to change significantly when two different solutions
corresponding to the same dataset were compared. This was true despite
one of the sub-network solutions being different compared to the other. This
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might be indicative of uniqueness of mixing factors. Uniqueness of mixing
factors can be explicitly studied as a part of the future work.

Of the three candidates identified, last one offers a quickly reachable goal. This
can be a first choice for further exploration. Apart from the challenges spinning out
of the methods developed in this thesis, several other possibilities exists. Different
extensions of NCA discussed in the literature review chapter of this thesis can be
used to compute sub-network solutions. This will improve the speed of convergence
and data reconstruction quality as those are the goals that methods extending NCA
are designed to achieve. Divide and conquer method developed in this thesis can
be applied to different datasets available in different databses and its performance
can be validated. Different dataset correspond to experiments in which different
transcription factors were forced to be inactive. Divide and conquer method can be
simultaneously applied to multiple datasets. It will be interesting to see if mixing
factors so estimated can be used to quantify relative importance of different tran-
scription factors.
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nacker, M. Latendresse, L. Muñiz-Rascado, Q. Ong, S. Paley, M. Peralta-
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