
Real-Time I/O System for

Many-core Embedded

Systems

Zhe Jiang

Doctor of Philosophy

University of York

Computer Science

August 2018

Abstract

In modern real-time embedded systems, time predictability is vital. This

extends to I/O operations which require predictability, timing-accuracy, en-

hanced performance, scalability, parallel access and isolation. Currently, exist-

ing approaches cannot achieve all these requirements at the same time. In this

thesis, we propose a framework of hardware-implemented real-time I/O virtu-

alization system to meet all these requirements simultaneously — BlueIO.

BlueIO integrates the important functionalities of I/O virtualization and

low layer I/O drivers (achieved via Virtualized Complicated Device Con-

troller (VCDC)), as well as a clock cycle level timing-accurate I/O controller

(i.e. GPIO Command Processor (GPIOCP)). BlueIO provides this func-

tionality in the hardware layer, supporting abstract virtualized access to I/O

devices from the software domain. The hardware implementation includes

I/O virtualization and I/O drivers provide isolation and parallel (concurrent)

access to I/O operations and improves I/O performance. Furthermore, the

approach includes GPIOCP to guarantee that I/O operations will occur at a

specific clock cycle (i.e. be timing-accurate and predictable).

This thesis proposes the design and implementation of BlueIO, together

with its components — GPIOCP and VCDC. It is demonstrated how a BlueIO-

based system can be exploited to meet real-time requirements with significant

improvements in I/O performance and low running cost on different OSs. The

thesis presents a hardware consumption analysis of BlueIO, in order to show

that it linearly scales with the number of CPUs and I/O devices.

Finally, the thesis proposes a scalable real-time hardware hypervisor termed

BlueVisor, which is built upon proposed modules. BlueVisor enables pre-

dictable virtualization on CPU, memory, and I/O; together with fast interrupt

handling and inter-virtual machine communication. BlueVisor shows that the

approaches towards I/O proposed in this thesis can be applied and expanded

to different architectures, whilst maintaining required properties.

ii

Contents

Abstract ii

Contents iii

List of Figures viii

List of Tables xi

Acknowledgement xiii

Declaration xiv

1 Introduction 1

1.1 Input and Output Systems (I/O Systems) 2

1.2 Performance Features . 2

1.3 Real-time Features . 3

1.4 Protection Features . 5

1.4.1 Virtualization Technology 5

1.5 Hypothesis . 8

1.6 Success Criteria . 9

1.7 Structure . 10

2 Literature Review 12

2.1 Real-time System . 12

2.1.1 Classifications . 12

2.1.2 Deriving Worst Case Execution Time (WCET) 13

2.2 Input and Output Systems (I/O Systems) 16

2.2.1 I/O Devices . 17

2.2.2 I/O Controllers . 18

2.2.3 I/O Drivers . 20

iii

2.2.4 Conflict to Performance and Real-time Features 22

2.3 The Move to Multi-core and Many-core 24

2.3.1 Bus-based Multi-core System 25

2.3.2 NoC-based Many-core System 26

2.3.3 I/O Systems in Multi-core and Many-core Systems . . . 27

2.3.4 Real-time Many-core Architectures 29

2.4 Virtualization Technology . 30

2.4.1 Notions of Virtualization 30

2.4.2 Classification of Virtualization 32

2.4.3 Conflict in Performance and Real-time Features 34

2.4.4 Real-time Virtualization 36

2.4.5 I/O Virtualization . 38

2.4.6 Hardware-assisted I/O virtualization 42

2.5 Programmable Timely I/O Controllers 43

2.5.1 Programmable Real-time Unit (PRU) 44

2.5.2 Time Processor Unit (TPU) 45

2.5.3 Programmable Real-time Unit (PRU) 45

2.6 Implementations Fabrics for Embedded Systems 46

2.6.1 Application-Specific Integrated Circuits (ASICs) 47

2.6.2 Field-Programmable Gate Arrays (FPGAs) 47

2.6.3 ASICs vs FPGAs . 49

2.6.4 Design Flows . 50

2.6.5 Generic Fabric Designs 52

2.7 Summary and Problem Statements 53

3 Real-time I/O System 57

3.1 Baseline Systems . 58

3.2 Performance Features . 59

3.2.1 I/O Performance . 59

3.2.2 Timing Scalability Model 60

3.3 Real-time Features . 62

3.3.1 Predictability . 62

3.3.2 Timing-accuracy Model 63

3.4 Protection Features . 65

3.4.1 Parallel Access . 65

3.4.2 Isolation . 65

3.5 Summary . 65

iv

4 VCDC: The Virtualized Complicated Device Controller 67

4.1 Overview . 68

4.1.1 Background . 68

4.1.2 Design Idea . 69

4.2 Virtualized Complicated Device Controller (VCDC) 70

4.2.1 Virtualization in the VCDC Systems 71

4.2.2 Guest Virtual Machine and Guest OS 71

4.2.3 Overall Architecture . 73

4.2.4 Detailed Architecture 74

4.3 Evaluation . 78

4.3.1 Performance features: Response Time of I/O Operations 80

4.3.2 Performance features: I/O Throughput 82

4.3.3 Performance Feature: Scalability 83

4.3.4 Hardware and Software Overhead 88

4.3.5 On-chip Communication Overhead 90

4.4 Summary . 91

5 GPIOCP: Timing-Accurate Real-time I/O Controller 93

5.1 Overview . 94

5.1.1 Context . 94

5.1.2 Approach . 94

5.2 GPIO Command Processor (GPIOCP) 95

5.2.1 Hardware Manager . 97

5.2.2 Command Memory Controller 98

5.2.3 Command Queue . 99

5.2.4 Synchronisation Processor 101

5.3 GPIOCP Commands . 102

5.3.1 Example . 103

5.3.2 Invoking a GPIOCP Command 104

5.4 Evaluation . 104

5.4.1 Real-time Performance 105

5.4.2 Hardware Overhead . 106

5.4.3 Case Study . 107

5.5 Summary . 109

v

6 BlueIO: The Scalable Real-Time Hardware I/O Virtualization

System 111

6.1 Overview . 112

6.1.1 General Architecture . 112

6.1.2 Context . 113

6.1.3 Virtual Machine (VM) and Guest OS 114

6.2 BlueIO . 115

6.2.1 BlueGrass . 116

6.2.2 Virtualized Complicated Device Controller (VCDC) [72] 117

6.2.3 GPIO Command Processor (GPIOCP) [120] 118

6.2.4 BlueTree [62] . 120

6.3 Hardware Consumption Analysis 121

6.3.1 Implementing BlueIO in VLSI 123

6.3.2 Hardware Consumption in RTL Level (FPGA) 124

6.4 Evaluation . 126

6.4.1 Memory Footprint . 127

6.4.2 Real-time Features . 128

6.4.3 Performance Features — I/O Performance 129

6.4.4 Performance Features — Timing Scalability 132

6.4.5 On-chip Communication Overhead and Scalability . . . 135

6.5 Summary . 136

7 BlueVisor: A Scalable Real-Time Hardware Hypervisor for

Many-core Embedded Systems 139

7.1 Overview . 140

7.1.1 General Architecture . 140

7.2 BlueVisor: Implementation . 141

7.2.1 CPU Virtualization and Guest VM 141

7.2.2 Memory Virtualization 143

7.2.3 I/O Virtualization . 145

7.2.4 Interrupt Management 145

7.2.5 Inter-VM Communication 146

7.3 Evaluation . 147

7.3.1 Memory Footprint . 148

7.3.2 Hardware Consumption 149

7.3.3 Real-time Features . 150

7.3.4 I/O Performance . 151

vi

7.3.5 Interrupt Handling . 153

7.4 Limitations of BlueVisor . 154

7.5 Summary . 154

8 Conclusion and Future Work 157

8.1 Major Contributions and Key Findings 160

8.2 Future Work . 163

8.2.1 Supporting SMP OS . 163

8.2.2 Timing Analysis — Hard Real-time 163

8.2.3 Supporting More I/O Drivers 164

8.3 Closing Remarks . 164

Appendices 166

A Implementing a GPIOCP/VCDC/BlueIO/BlueVisor 167

A.1 Generic Number of Processors 169

B Connecting GPIOCP/VCDC/BlueIO/BlueVisor to a Bluetile

Many-core System 170

B.1 Building Bluetile system . 171

B.1.1 Compiling Bluespec System Verilog Files 172

B.1.2 Encapsulating Verilog Files as IP cores 172

B.1.3 Building the NoC . 172

B.1.4 Connecting Local Components 173

B.1.5 Building a Bluetile System with Script 174

B.2 Connecting GPIOCP/VCDC/BlueIO/BlueVisor to a Bluetile

System . 174

C Running FreeRTOS/uCosII/Xilinx Kernel 175

C.1 Building BSP of FreeRTOS . 175

C.2 Adding the I/O Manager . 176

C.3 Invoking High Layer I/O Drivers 176

Bibliography 178

vii

List of Figures

1.1 Flow of I/O Request in Traditional Virtualization System . . . 6

2.1 Graphical view of the execution times of a task, along with the

relevant bounds [114] . 15

2.2 Structure of I/O System in a Conventional Bus-based System . 16

2.3 A General-purposed I/O Controller [67] 18

2.4 Two types of I/O Controllers 19

2.5 Send “Hello World” from High Layer Application to the I/O

devices . 21

2.6 An Example of a Shared Bus 25

2.7 An Example of Crossbar Interconnects (AXI Bus) [30]

SI = Slave Interface; MI = Master Interface 25

2.8 Examples of NoC and Router Architectures

A - G: Routers; IP: Intellectual Property core 26

2.9 Structure of Multi-processor and Many-core Systems with I/O

devices. C - Core, R - Router/Arbiter 27

2.10 Hosted-Virtualization . 33

2.11 Bare-metal virtualization . 34

2.12 Models to Achieve I/O Virtualization

(The grey parts are involved in Virtualization implementation) 39

2.13 Traditional System and a System with Solarflare NIC ASIC [15] 44

2.14 Comparison of Conventional and PRU-based Embedded Systems 45

2.15 Early FPGA Architecture [29] 48

2.16 Simple Design Flow of ASICs 51

2.17 Simple Design Flow of FPGAs 52

3.1 Example of a Baseline System

M - Microblaze R - Router . 58

viii

4.1 FreeRTOS Kernel in a non-VCDC systems 72

4.2 FreeRTOS Kernel in a VCDC system 72

4.3 Overall architecture of a NoC with VCDC

VM - Virtual Machine; R - Router / Arbiter 73

4.4 Architecture of VCDC . 74

4.5 Architecture of Hardware Manager 75

4.6 Architecture of Hardware Manager 76

4.7 Architecture of I/O Low Layer Driver 78

4.8 Experimental Platform

R - Router / Arbiter; M - Microblaze;

VM - Guest Virtual Machine; T - Timer 79

4.9 Performance feature: I/O Throughput

FIFO — Local FIFO; RoundRobin — Global RoundRobin . . 83

4.10 Connection between VCDC and Ethernet System 84

4.11 Virtualization Module of Ethernet I/O VMM 85

5.1 GPIOCP Connected to a NoC

(R - Router / Arbiter; T - Global Timer) 96

5.2 Architecture of GPIOCP . 97

5.3 Architecture of Hardware Manager 98

5.4 Architecture of Command Memory Controller 99

5.5 Architecture of the GPIO Command Queue 100

5.6 Architecture of Synchronization Processor 101

5.7 Format of GPIO Subcommand 103

5.8 Format of GPIO Command . 104

5.9 Experiment Platform

R - Router/Arbiter M - Microblaze T - Global Timer 105

6.1 Embedded Virtualization Architecture 112

6.2 Platform Overview

C - Core; R - Router / Arbiter; T - Global Timer 113

6.3 Traditional and Modified FreeRTOS Kernels 114

6.4 The Structure of the BlueIO . 115

6.5 The Structure of the BlueGrass 116

6.6 Structure of VCDC . 118

6.7 Structure of GPIOCP . 119

6.8 BlueTree Memory Hierarchy . 121

ix

6.9 Experimental Platform

(M - Microblaze; A - ARM Processor;

VM - Guest VM; R - Router / Arbiter) 127

6.10 Experimental Setup for the Timing Accuracy of I/O Operations

(T - Timer) . 129

6.11 I/O Throughput . 131

7.1 Embedded Virtualization Architecture 141

7.2 Platform Overview

M - Microblaze; A - ARM Processor;

R - Router / Arbiter; T - Global Timer 142

7.3 Traditional and Modified FreeRTOS Kernels 143

7.4 Memory Configuration . 144

7.5 Two Types of Interrupt Handlers in BlueVisor System 145

7.6 Inter-VM Communication . 146

7.7 Experimental Platform

(M - Microblaze; A - ARM Processor;

VM - Guest VM; R - Router / Arbiter) 147

7.8 I/O Throughput . 153

8.1 Supporting SMP OS (M - Microblaze; R - Router / Arbiter) . . 163

A.1 Top Level Architecture of GPIOCP 167

A.2 The Toplevel of the IP Core - GPIOCP 168

B.1 Flow of Building Bluetile System 171

B.2 Encapsulated Bluetile System IP Cores 172

B.3 Size 2*3 BlutTile NoC . 173

B.4 Connecting an UART to the NoC 173

B.5 Connecting the GPIOCP on the NoC 174

C.1 BSP for different OSs . 175

C.2 Add the BSP . 176

C.3 I/O manager in FreeRTOS . 176

C.4 I/O Drivers in FreeRTOS . 177

x

List of Tables

3.1 Baseline System Information 59

3.2 Baseline System — I/O performance 60

3.3 Baseline System — Timing Scalability 61

3.4 Timing Scalability Model in Single-core, 4-core and 9-core Base-

line Systems (unit: clock cycle) 61

3.5 Baseline System — Predictability 62

3.6 I/O Response Time in Baseline Systems (unit: Clock Cycles) . 63

3.7 Baseline System — Timing-accuracy 63

3.8 The Errors in Timing-accuracy of I/O Operations in Baseline

Systems (unit: ns) . 64

4.1 I/O response time in VCDC and non-VCDC systems (unit:

clock cycle) . 81

4.2 Average Response Time of Loop Back 1KB Ethernet Packets in

VCDC System (Global Scheduling Policy: Fixed Priority; Unit:

us) . 87

4.3 Average Response Time of Loop Back 1KB Ethernet Packets in

VCDC System (Global Scheduling Policy: Round Robin; Unit:

us) . 88

4.4 Software Usage(object code) . 89

4.5 Hardware Usage (Without GPIOCP) 89

4.6 On-chip Communication Overhead 91

5.1 Errors in Timing-accuracy (E) in GPIOCP architecture 106

5.2 FPGA Hardware Usage

L - Lookup Table, R - Register, B - BRAM 107

5.3 Deadline Miss Rate in Two Architectures 107

5.4 Variances in Two Architectures 108

xi

6.1 Hardware Consumption of Basic Modules (Gate Level) 124

6.2 Hardware Consumption of BlueIO (Gate Level) 125

6.3 Hardware Consumption of 2-CPU BlueIO with Different I/Os

on FPGA (RTL Level) . 126

6.4 Hardware Consumption of BlueIO (+GPIOCP) with Different

Number of CPUs on FPGA (RTL Level) 126

6.5 BlueIO Memory Footprint (Bytes) 128

6.6 I/O Response Time in Non-BlueIO Systems (unit: clock cycle)

(Summarized Version) . 130

6.7 I/O Response Time in BlueIO Systems (unit: clock cycle)

(Summarized Version) . 130

6.8 Average Response Time of Loop Back 1KB Ethernet Packets

in BlueIO System (Global Scheduling Policy: Fixed Priority;

Unit: us) . 133

6.9 Average Response Time of Loop Back 1KB Ethernet Packets in

BlueIO System (Global Scheduling Policy: Round Robin; Unit:

us) . 134

6.10 On-chip Communication Overhead 136

7.1 BlueVisor Memory Footprint (Bytes)

(I/O: UART + VGA) . 149

7.2 Hardware Consumption of 2-CPU BlueVisor with Different I/Os

on FPGA (RTL Level) . 149

7.3 Hardware Consumption of BlueVisor (+GPIOCP) with Differ-

ent Number of CPUs on FPGA (RTL Level) 150

7.4 Interrupt Handling (Unit: Clock Cycles) 153

xii

Acknowledgement

It would not be possible to complete my Ph.D. study and to finish this disser-

tation without the help and support of the people around me.

Firstly, I would like to present my deepest appreciation to Prof. Neil

Audsley for his persistent guidance, help and care for the past four years.

Without him, my research work and this Ph.D. thesis would not be even

possible. In addition, I would like to thank Prof. Andy Wellings for his

assessments and comments during my whole Ph.D. study. He is always nice

and patient to point out my weakness and encourage me to carry on my study.

From him, I learned not only the right attitude not only on research but also

on work and life. In addition, I would like to thank Dr. Ian Gray for his

guidance and help duration my Ph.D. study.

I would also like to thank my parents for their unconditional support and

continuously encouragement, which allows me to focus on my research and

gives me the strength to overcome the difficulties and challenges from both

my study and daily life.

The appreciation also goes to the members in the Real-time Systems group

for their brilliant advice to my research and their encouragements. From my

point of view, this the best research group in this world. I will be always proud

of the group.

Finally, many thanks also go to my friends: Dr. Yunfeng Ma, Dr. Xinwei

Fang, Dr. Haitao Mei, Dr. Shuai Zhao, Mr. Xiaotian Dai, Mr. Dizhong Zhu,

Ms. Yanting Dai and Ms. Qianhan Xu –– for blowing my mind with the

discussion of research questions and support me when I run to troubles.

xiii

Declaration

I declare that all work contained within this thesis is a result of my own investi-

gations, except where explicit attribution has been given. The content of some

of the chapters has already been published within the following publications:

• Zhe Jiang, and Neil C. Audsley. GPIOCP: Timing-accurate general pur-

pose I/O controller for many-core real-time systems. Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), 2017. [120]

• Zhe Jiang, and Neil C. Audsley. VCDC: The Virtualized Complicated

Device Controller. Euromicro Conference on Real-Time Systems (ECRTS),

2017. [72]

• Zhe Jiang, Neil C. Audsley and Pan Dong. BlueVisor: A scalable real-

time hardware hypervisor for many-core embedded systems. Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2018.

[73]

• Zhe Jiang, Neil C. Audsley and Pan Dong. BlueIO: A scalable real-

time hardware I/O virtualization system for many-core embedded sys-

tems. ACM Transactions on Embedded Computing Systems (TECS).

(Accepted to be published) [121]

This work has not previously been presented for an award at this, or any

other, University.

xiv

Chapter 1

Introduction

Recently, embedded systems have become widespread, e.g. in transportation

systems, medical systems, mp3 players, telephone switches, etc. It is estimated

that more than 99% of microprocessors are used for embedded systems [74,86].

By definition [115], an embedded system is:

a collection of programmable parts surrounded by Application-

Specific Integrated Circuits (ASIC s) and other standard compo-

nents, that interact continuously with an environment through

sensors and actuators.

In embedded systems, some component systems have bounded time con-

straints. Often, these time constraints have to be guaranteed. Representative

examples of such systems are flight controllers in aircraft, braking controllers

in cars and train control systems. In these systems, an input stimuli must re-

ceive a response before a given deadline, because any deadline miss may cause

a catastrophic failure, even death. These systems are called real-time systems.

The definition of a real-time system in [44] is:

a system that is required to react to stimuli from the environ-

ment (including the passage of physical time) within time intervals

dictated by the environment.

In architectures of embedded and computer systems, due to the recent

breakdown of Dennard scaling [58], system designers have been not been able

to improve system performance by increasing processor frequencies directly.

Instead, in order to maintain expected year-on-year performance increases

1

(also known as Moore’s Law [99]), designers have turned to increase the num-

ber of cores on one chip. Nowadays, an eight-core processor is commonplace,

and the number of cores on one chip is continually increasing, e.g. Knight’s

Landing is a commercial 72-core processor proposed by Intel [9], and Parallela

has even proposed a 256-core processor [12]. Therefore, in order to efficiently

achieve increased computational ability, the platforms of modern real-time sys-

tems have been moved from single-core systems to multi-core and many-core

systems.

1.1 Input and Output Systems (I/O Systems)

Not only in real-time systems, but also in all embedded and computer archi-

tectures, an Input and Output system (I/O system) is vital, as:

• The I/O system extends the functionalities of the whole system [74];

• The I/O system provides interactive interfaces between the embedded

and computer architectures and the outside world [115].

An I/O system is composed of I/O devices (peripherals), I/O controllers,

and I/O drivers (specific details are described in Section 2.2).

1.2 Performance Features

In real-time systems (even single-core systems), I/O performance is a major

system bottleneck [37, 72]. This mainly results from the significantly slower

processing speed of normal I/O facilities compared to CPUs. This may result

in the performance reduction of the whole system [72].

However, when it comes to real-time systems with more than one core,

the bottleneck of I/O performance is magnified, mainly resulting from pro-

cessor scheduling and contention over I/O resources. For example, in a tra-

ditional bus-based multi-processor system (e.g. an AMBA High-performance

Bus-based system [45]), if an I/O operation is requested by a user application,

the system has to deal with scheduling between the cores in each processor,

as well as I/O resource scheduling between different processors.

2

This leads to the first research question:

Research Question 1: How can I/O performance in real-time

systems be enhanced by an increased number of cores? (com-

pared to a traditional system)

In order to answer the question, an expected I/O system requires both

enhanced I/O performance and good scalability, which are referred to as Per-

formance Features in this thesis.

1.3 Real-time Features

As described in [44], satisfying timing constraints is a basic requirement of an

I/O system in real-time systems:

• Predictability [104]: I/O operations have to be predictable in order to

ensure a timely reaction when a critical situation occurs, e.g. the braking

operations of a car are always required to be handled within a hard

deadline [104].

• Timing-accuracy [120]: In real-time systems, I/O operations are often re-

quired to be timely — occurring at a specific clock cycle.1 This feature is

vital for both I/O devices and the whole system. Specifically, on the I/O

side, timing-accurate I/O operations achieve accurate control over I/O

devices. For example, the accuracy of the motor controls in a 3D printer

determines the accuracy of the final printed product [49,56,107]. When

it comes to the system side, I/O operations are often requested repeat-

edly and frequently with other system instructions. Frequent missing

of clock cycles between I/O operations will damage the predictability of

the whole system. Therefore, timing-accuracy is a vital feature for I/O

devices, and even the whole system.

As defined in [106], predictability means:

1In this thesis, all I/O devices share a single synchronization clock source with the whole

system. For example, if the frequency of the system clock is 100 MHz, the granularity of a

clock cycle is 10 ns.

3

It should be possible to show, demonstrate, or prove that require-

ments are met subject to any assumptions made, e.g., concerning

failures and workloads. In other words, predictability is always

subject to the underlying assumptions being made.

As defined in [120], timing-accuracy is presented as:

If an operation occurs absolutely at the expected time, this oper-

ation is totally timing-accurate.

However, achieving predictability of an I/O system is always challeng-

ing [44], mainly resulting from the extremely uncertain execution time of I/O

operations on various I/O devices, and the transmission latencies of I/O oper-

ations from a user program to a targeted I/O device. Specifically, in standard

computer and embedded architectures, even in a single-core system, latencies

caused by device drivers and application process scheduling make predictable

and timing-accurate I/O operations problematic, often leading to a dedicated

CPU for the I/O application, or to that application being made the highest pri-

ority. However, neither solution is scalable nor does it offer good predictability,

timing-accuracy and resource use [120].

In multi-core and many-core systems, these issues are compounded. Whilst

an application can invoke an I/O operation accurately via the interrupt of a

high-resolution timer (e.g. the nanosecond timer provided by an RTOS [22,

23]), the transmission latencies from a CPU to an I/O controller can be sub-

stantial and variable due to the communication bottlenecks and contention.

For example, in a bus-based many-core system, the arbitration of the bus and

the I/O controller may delay the I/O request. For a Network-on Chip (NoC)

architecture, the arbitration of on-chip data flows across the communications

mesh will also increase latencies. More details are introduced in Section 2.2

and Section 2.3

4

This leads to the second research question:

Research Question 2: Apart from performance features, how

can the predictability and timing-accuracy of I/O operations

in multi-core and many-core real-time systems be guaran-

teed?

In this thesis, we classify predictability and timing-accuracy as Real-

time Features.

1.4 Protection Features

In practice, hard real-time systems are often associated with safety-critical

systems [39,44,106], since any deadline miss may cause catastrophic failure of

the whole system.

In safety-critical systems, in particular for I/O operations, isolation is an-

other vital feature. Specifically, with the number of cores increased on one

chip, I/O operations may be required to occur at the same time. For example,

multiple motors in a 3D printer are required to be controlled simultaneously,

in order to achieve efficient and precise controls on the nozzle [122]. However,

it is common for different applications to try and access the same I/O device

simultaneously, and even worse, a side channel may damage access attempts

from the other cores.

In this situation, an I/O system should simultaneously enable parallel

accesses and isolation of I/O operations. In this thesis, we term these two

features Protection Features.

1.4.1 Virtualization Technology

Currently, virtualization technology is the most widely used technology [57,82]

to achieve protection features (e.g. [82] [57] [66] and [109]). By definition [64],

virtualization technology presents:

A framework or methodology of dividing the resources of a com-

puter or an embedded system into multiple execution environ-

ments, by applying one or more concepts or technologies such as

5

hardware and software partitioning, time-sharing, partial or com-

plete machine simulation, emulation, quality of service, and many

others.

In a virtualization system, each independent execution environment (also

known as a virtual machine (VM)) enables a guest operating systems (OS)

to run logically isolated, which means I/O operations requested from different

VMs can never affect each other [33, 102, 113]. At the same time, the I/O

operations are also prevented from being affected by other VMs, even if the

VMs break down [113].

Moreover, other reasons for widespread use of virtualization in real-time

systems are the superior benefits brought to the whole system, including

increased resource use, reduced volume and cost of hardware and load bal-

ance [33,102].

User
Application

User
Application

…

I/O
 Stack

Buffer Cache

I/O Scheduler

Device Driver

Emulated
I/O

Applications

Guest OS

Virtual Hardware

Guest VM Guest VM Guest VM…

I/O
 Stack

Virtual-to-physical translation

Interpose/Transform

I/O Scheduler

Physical
I/O

Virtual Machines

VMM

Device Driver

Physical Hardware

Figure 1.1: Flow of I/O Request in Traditional Virtualization System

However, virtualization technology (I/O virtualization) involves compli-

cated I/O access paths (i.e. indirection and interposition of privileged instruc-

tions, see Figure 1.1) and complicated shared I/O resource management (i.e.

scheduling and prioritization) [72, 102]. These two issues significantly conflict

with the performance features (performance and scalability) and real-time fea-

tures (predictability and timing-accuracy) [72,102]. Eliminating the issues and

fitting virtualization technology to real-time systems is challenging.

6

Since virtualization technology relies on hardware support [33], today’s

chip manufacturers have promoted different hardware assists in order to sim-

plify the complicated I/O access paths and assist complicated shared I/O re-

source management [33,94]. Intel’s Virtualization Technology for Directed I/O

(VT-D) [68], which can provide direct I/O access from guest VMs, is an exam-

ple of this. The IOMMU [39] is applied to commercial PCI-based systems to

offload memory protection and address translation, in order to provide fast I/O

access from guest VMs. These commonly used hardware-assisted I/O virtual-

izations have successfully reduced the performance loss caused by complicated

I/O paths, and complex shared I/O resource management, in traditional virtu-

alized systems. However, they cannot improve I/O performance or guarantee

real-time features (predictability and timing-accuracy) [33, 102, 120, 122]. For

example, in [90], a hardware-based I/O virtualization approach using memory-

mapped I/O, MMU and IOMMU is proposed, which achieves maximally only

73.10% of the normal DMA write data rate with no improvement on perfor-

mance features or real-time features.

In order to improve real-time features, a number of real-time virtualizations

have been proposed. For example, RT-Xen [116] integrates real-time schedul-

ing theories with Xen [25] and instantiates a suite of fixed-priority servers (e.g.

Deferrable Server), which is able to provide effective real-time scheduling to

a guest Linux OS within a 1ms quantum. This gives good predictability, but

no improvement on timing-accuracy. Similarly, Kiszka [76] proposed improve-

ments in predictability regarding KVM, without any improvement in timing-

accuracy. Generally, current approaches cannot satisfy the requirements of

both performance and real-time. (Note that, more approaches are reviewed

in Sections 2.4.4 and 2.4.5.) Therefore, current I/O virtualization cannot be

directly applied to real-time systems. This leads to the third research question:

Research Question 3: How can performance features and

real-time features for I/O systems be achieved when I/O vir-

tualization is deployed (to achieve protection features)?

To sum up, in real-time arenas, the following features are required by an

I/O system simultaneously:

• Performance features:

7

– Enhanced I/O performance;

– Scalability.

• Real-time feature:

– Predictability;

– Timing-accuracy.

• Protection feature:

– Parallel accesses;

– Isolation.

As mentioned in Section 1.1, the I/O system is one of the most vital parts

of embedded and computer architectures. Therefore, research in the area of

an I/O system have to be associated with a complete system, which leads to

the fourth research question:

Research Question 4: How to integrate the ready-built I/O

system to the complete system with the expected features

inherited?

1.5 Hypothesis

Virtualization technology (i.e., I/O virtualization) has been shown to be a

useful technique for achieving protection features to I/O operations (i.e. par-

allel access and isolation). However, the deployment of I/O virtualization

introduces complicated I/O access paths and complex shared I/O resource

managements, which leads to decreased I/O throughput, worsen scalability,

more complicated timing analysis, and decreased timing-accuracy compared

to a non-virtualized system — significantly conflicting to the performance and

real-time features. Therefore, current I/O virtualization cannot be directly

applied to real-time systems.

The hypothesis of the thesis is that:

Effective real-time I/O and Virtualization can be achieved by moving

Virtualization, I/O drivers and I/O operations into hardware.

8

The thesis will show that moving the virtualization layer and I/O

drivers from software layer to hardware layer significantly increases I/O

performance compared to traditional virtualized and non-virtualized sys-

tems. Also, it will show that a programmable I/O controller contained

in the virtualization system permits applications to instigate complex

sequences of I/O operations at an exact time (the output values can be

both static and dynamic), so achieving timing-accurate and predictable

I/O operations with I/O virtualization.

Moreover, The design of the real-time I/O virtualization system is

generic, which can be ported to different platforms with a scaled number

of processors and I/O devices. Therefore, it can be directly applied to

a real-time system, with the inherited performance features, real-time

features and protection features.

1.6 Success Criteria

To facilitate the assessment of the work proposed in this thesis, a set of success

criteria (SC) are given. In order to support the thesis hypothesis given in

Section 1.5, the following need to be developed:

• SC-1: A virtualized complicated I/O controller that moves the function-

alities of I/O virtualization and I/O drivers from the software layer to

the hardware layer, which increases I/O throughput compared to both

traditional virtualized and non-virtualized systems – performance fea-

tures;

• SC-2: A timing-accurate I/O controller that can permit user applications

to instigate complex sequences of I/O operations (with both static and

dynamic output values) at an exact time, which achieves timing-accurate

and more predictable I/O operations compared to traditional systems,

which are real-time features (verified by experimentation).

• SC-3: A real-time I/O virtualization system built on SC-1 and SC-2 that

can simultaneously support timing-accurate and predictable virtualized

I/O operations with increased I/O throughput compared to traditional

virtualized systems. The design of the I/O virtualization system can be

scaled with a different number of processors and I/O devices;

9

• SC-4: A complete virtualization system built on the ready-built real-

time I/O virtualization system (in SC-3), which inherits the expected

real-time features (in SC-2) and performance features (in SC-1). The

integration work verifies the design of the real-time I/O virtualization

system (in SC-3) in an architecture agnostic way.

1.7 Structure

The thesis is structured as follows:

• Chapter 2 Reviews the background and related research of the thesis.

Firstly, real-time systems, I/O systems and I/O systems in multi-core

and many-core architectures are reviewed. Then, the literature related

to achieving the expected features is reviewed, including virtualization

technology, timely I/O controllers and implementation platforms. At

the end of this chapter, the current problems which the thesis looks at

solving are given.

• Chapter 3 Firstly describes the system context of the research. It then

introduces the six expected features of a real-time I/O system and their

corresponding evaluation metrics, used in the following chapters.

• Chapter 4 Proposes a hardware-implemented I/O virtualization system

called Virtualized Complicated Device Controller (VCDC). It permits

user applications to access and operate I/O devices directly from a guest

VM, bypassing the guest OS, the VMM, and low layer I/O drivers.

This achieves significant performance improvements (i.e. I/O perfor-

mance and scalability), containing shorter I/O response time, greater

I/O throughput and less on-chip communication overheads. This is ver-

ified by evaluations in Section 4.3. This chapter provides the solution to

research question 1.

• Chapter 5 Proposes a resource efficient programmable I/O controller,

termed the GPIO Command Processor (GPIOCP). It enables appli-

cations to instigate complex sequences of I/O operations at an exactly

specific clock cycle, thus achieving real-time features (i.e. predictabil-

ity and timing-accuracy) which are verified by evaluation in Section 5.4.

This chapter provides the solution to research question 2.

10

• Chapter 6 Proposes a real-time I/O virtualization system integrat-

ing GPIOCP and VCDC, termed BlueIO. The evaluation results in

Section 6.4 demonstrate that BlueIO inherits the benefits brought by

GPIOCP and VCDC real-time features (i.e. timing-accuracy and pre-

dictability) and performance features (i.e. enhanced I/O performance

and scalability). Furthermore, due to the employment of I/O virtualiza-

tion, significant protection features (i.e. parallel accesses and isolation)

are also brought. This chapter demonstrates the solution to research

question 3.

• Chapter 7 Proposes a scalable real-time hardware hypervisor for multi-

core and many-core embedded architectures, termed BlueVisor, which

is built on GPIOCP, VCDC and BlueIO. BlueVisor enables predictable

virtualization on CPU, memory and I/O, as well as fast interrupt han-

dler and inter-VM communication. The establishment of BlueVisor aims

to show our methodologies can be applied and expanded to different ar-

chitectures and platforms, with maintained features on real-time, per-

formance and protection as evidenced by the evaluation results in Sec-

tion 7.3

• Chapter 8 Draws the final conclusions and summarises future work.

11

Chapter 2

Literature Review

This chapter introduces the background and literature related to this thesis,

which is divided into four major parts:

Firstly, in Sections 2.1 to 2.3, the background material related to the thesis

is reviewed, which includes real-time systems, I/O systems and I/O systems in

multi-core and many-core architectures. Secondly, in Sections 2.4 and 2.5, the

research on achieving performance features, real-time features and protection

features for I/O systems is reviewed. Thirdly, in Section 2.6, an overview of

implementation fabrics that are commonly used for embedded systems is given.

Finally, Section 2.7 concludes with existing problems which are expected to

be solved in the thesis.

2.1 Real-time System

The literature in real-time systems is broad. This section mainly presents a

top-level view in order to place our work in context. More details are given

when work is used later in the thesis. In this section, we review the basic

classifications of real-time systems, and two classes of approaches commonly

used to measure predictability in the systems.

2.1.1 Classifications

As introduced in [44], real-time systems are split into hard real-time systems,

firm real-time systems, and soft real-time systems. Common definitions of the

terms are [44]:

12

• Hard real-time system: Where it is absolutely imperative that the

system reacts within its given time frame, else there may be disastrous

consequences.

• Firm real-time system: Where the deadline may be missed occasion-

ally, but there is no benefit from it being late.

• Soft real-time system: Where the deadline may be missed occasion-

ally, or a service can occasionally be delivered late.

In firm real-time systems and soft real-time systems, there may be an

upper limit on the times of tasks missing deadlines. In addition, some systems

may have both soft real-time and hardware real-time requirements [44]. For

example, a communication system may have a soft real-time deadline of 30ms

for optimal signal processing; at the same time, a hard real-time deadline of

500ms also guarantees completion of basic communication.

In this situation, it is vital to determine the range of time in which the task

executes in order to show that the task is able to meet the timing constraint.

While determining the range of execution time, a commonly used technique

in both academia and industry is predicting the Worst Case Execution Time

(WCET) of the task.

2.1.2 Deriving Worst Case Execution Time (WCET)

As reviewed in [114], commonly used methodologies of achieving the WCET

of tasks can be mainly classified into static analysis and measurement-based

analysis.

2.1.2.1 Static Analysis

Static analysis is an offline methodology, attempting to analyse and calculate

the WCET of tasks via modelling the target architecture [47]. As described

in [54], static analysis has three steps:

• Flow analysis: Reconstructing all the possible paths through a process,

via the source and the final output.

• Global low-level analysis: Computing the factors may affecting tasks

on a specific machine via its global constructs (e.g. memory accessing).

13

• Local low-level analysis: Computing the same factors as above, but

localised to a single task and code segment (pipeline).

In order to ensure the analysis is accurate, it is important to establish an

extremely accurate model for the architecture, including processor, memory

etc. In practice, if the architecture is simple, the model can be established eas-

ily (e.g. Intel 8080 [2] uses a fixed number of clock cycles to execute different

instructions). When it comes to complicated modern architectures, accurate

modelling becomes almost impossible because of a mass of unpredictable fac-

tors, e.g. cache, memory, etc. For example, in the modern Intel x86 [24]

system architecture, different models of memory and cache may cause uncer-

tain timing variances which are very difficult to predict. As described further

in Section 2.3, the unpredictability of I/O also increases the difficulty of static

analysis.

These factors result in issues with pessimism in static analysis. Because

it is very hard to assert conditions on the state of the system, static analysis

has to assert worst-case conditions. As an example, worst-case I/O access

latencies are normally assumed and worst-case transmission latencies between

processors and I/Os have to be assumed as well. Therefore, without a large

number of assumptions, it will be very difficult to determine the WCET in

practice.

2.1.2.2 Measurement-based Analysis

As it is different to rely on an extremely accurate model of the architecture

(static analysis), measurement-based analysis adopts the behaviour of the sys-

tem itself to measure the execution time [114].

As with static analysis, measurement-based analysis starts from recon-

structing a flow graph of the program. Specifically, in the flow graph, a pro-

gram is re-constructed into a number of basic blocks. In the measurement, the

tool executes the program many times under a set of inputs and environment

conditions. It then records the duration of each block, deriving a distribution

of probabilities. After this, the execution time of each block can be combined

into the flow graph. If the basic blocks are connected to a sequential func-

tion, the execution times of each block are summed. If the basic blocks are

connected to a parallel function (e.g. in a switch construct), the maximum

execution time of all parallel blocks will be chosen. The combination of all

these basic blocks forms an estimate of the WCET of the program.

14

asserted over, and hence may assume that cache blocks are missing when they will
definitely reside in cache. Despite this pessimism, static analysis should always be
able to find the worst-case path, assuming that the model of the processor is sound
and is hence typically regarded as safer than measurement-based approaches.

Measurement-based Analysis

Rather on relying upon an accurate model of the processor, measurement-based
analysis instead uses the behaviour of the processor itself to model the execution
times [34], after all, “the best model of the processor is the processor itself”. As
with static analysis, measurement based techniques begin by re-constructing a flow
graph of the program, where each block in the graph typically corresponds to a
single-entry single-exit block of instructions which are executed sequentially, typ-
ically known as a basic block. The tool then executes the program a number of
times under a set of inputs and environmental conditions, then times how long
each of these blocks takes to execute to derive a distribution of probabilities for
each block.

After this has taken place for each block, the execution times for each block can
be combined according to the flow graph. If blocks are connected in a sequential
fashion, then the execution times of each are summed, if they appear in parallel
(e.g. in an if/then/else construct), then the maximum execution time of all of the
parallel blocks is selected. The combination of all of these basic blocks then forms
an estimate of the worst-case execution time of the entire task.The Worst-Case Execution-Time Problem • 36:3

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset
of measured executions. Its minimum and maximum are the minimal and maximal observed exe-
cution times, respectively. The darker curve, an envelope of the former, represents the times of all
executions. Its minimum and maximum are the best- and worst-case execution times, respectively,
abbreviated BCET and WCET.

exhaustively explore all possible executions and thereby determine the exact
worst- and best-case execution times.

Today, in most parts of industry, the common method to estimate execution-
time bounds is to measure the end-to-end execution time of the task for a subset
of the possible executions—test cases. This determines the minimal observed
and maximal observed execution times. These will, in general, overestimate the
BCET and underestimate the WCET and so are not safe for hard real-time
systems. This method is often called dynamic timing analysis.

Newer measurement-based approaches make more detailed measurements
of the execution time of different parts of the task and combine them to give
better estimates of the BCET and WCET for the whole task. Still, these methods
are rarely guaranteed to give bounds on the execution time.

Bounds on the execution time of a task can be computed only by methods that
consider all possible execution times, that is, all possible executions of the task.
These methods use abstraction of the task to make timing analysis of the task
feasible. Abstraction loses information, so the computed WCET bound usually
overestimates the exact WCET and vice versa for the BCET. The WCET bound
represents the worst-case guarantee the method or tool can give. How much
is lost depends both on the methods used for timing analysis and on overall
system properties, such as the hardware architecture and characteristics of the
software. These system properties can be subsumed under the notion of timing
predictability.

The two main criteria for evaluating a method or tool for timing analysis
are thus safety—does it produce bounds or estimates?— and precision—are the
bounds or estimates close to the exact values?

Performance prediction is also required for application domains that do not
have hard real-time characteristics. There, systems may have deadlines, but
are not required to absolutely observe them. Different methods may be applied
and different criteria may be used to measure the quality of methods and tools.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.

Figure 2.1: Graphical view of the execuiton times of a task, along with the relevant
bounds [2].

In order to be sound, this approach must be able to assert that it has actually
observed the worst-case path through the task and the worst-case conditions of
the system. An example of this is shown in Figure 2.1, where the meaning of each
item is explained as follows:

34

Figure 2.1: Graphical view of the execution times of a task, along with the

relevant bounds [114]

In order to make the analysis sound, the worst-case path of the program

and the worst-case conditions of the system have to be accurately found. Fig-

ure [114] demonstrates an example where the meanings of the items are as

follows:

• Measured execution times: Observed maximum/minimum execution

times for the program. These could not be accurate, since the actual

maximum/minimum execution times are very difficult to observe.

• BCET/WCET: Actual best and worst-case execution times.

• Upper/lower timing bound: Best and worst case execution times

with a safety margin added.

• Possible execution times: The set of all possible execution times for

all different program paths, inputs and initial hardware conditions.

• Timing predictability: The possible range of execution times after

the safety margin has been added.

In Figure 2.1, the maximal observed execution time is lower than the

WCET, which is under a different condition set. As described in [114], there

are two solutions to eliminate the gap. The first solution is observing the flow

graph, and ensuring full program coverage has been achieved. If this cannot

be ensured, a block of code with an extremely high actual execution time may

be missed. The second solution is testing all possible inputs and executing

15

the code with a sufficient number of iterations, in order to ensure all possible

system states can be tested.

Even though measurement-based analysis is simpler than static analysis

techniques, it is much more difficult to assert measurement-based analysis is

sound, resulting from the unpredictability of system components, including

I/Os, caches, external memory etc. In the following sections 2.2 and 2.3, we

will specifically introduce the unpredictability caused by I/Os, and analyse

the unpredictability in different types of system architectures.

2.2 Input and Output Systems (I/O Systems)

In computer and embedded architectures, input and output (I/O) systems

transfer information between the main memory and the outside world [53].

An I/O system is composed of I/O devices (peripherals), I/O controllers and

I/O drivers (carrying out the I/O request(s) through a sequence of I/O op-

erations). Figure 2.2 illustrates an I/O system in a traditional single-core

bus-based system, e.g. AHB Bus. In the figure, the shaded blocks represent

the components of the I/O system.

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

DDR Backend

DDR

μ

Many-Core System

Processor
/I/O

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

CPU Memory

I/O

Controller

I/O Device

I/O

Controller

I/O Device

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

Software
Hardw are

User M ode

Kernel

Mode

User M ode
Kernel Mode

ApplicationApplication

Operating System (OS)

I/O Driver

Figure 2.2: Structure of I/O System in a Conventional Bus-based System

This section is divided into two parts. Specifically, in Section 2.2.1 to

Section 2.2.3, we introduce the basic idea of the three components in I/O

systems. In Section 2.2.4, we discuss the reasons that I/O systems affect the

16

performance and real-time features of the whole system.

2.2.1 I/O Devices

In computer and embedded architectures, I/O device are computing facilities

to provide user input/output, data storage and retrieval, network access capa-

bilities, etc [53]. In order to make the controls and developments of different

I/O devices to be general, classification of I/O devices is vital. In the thesis,

we describe four types of commonly used classification for I/O devices.

According to the functionalities [92], I/O devices can be classified as:

• Input devices: Input information from a user to a computer, e.g.

mouse and keyboard.

• Output devices: Output information from a computer to a user, e.g.

screen and speaker.

• Input and output devices: Have functionalities of both input and

output, e.g. network.

• Storage devices: Are used to store information, e.g. disks.

UNIX has proposed a widely used classification method of I/O devices:

“depending on types of transmission, I/O devices are divided into character

devices and block devices” [108] . Specifically, if the hardware device is ac-

cessed by a stream of data, it is a character device (e.g. keyboards and UART).

Otherwise, if the device is accessed randomly (non-sequentially), it is a block

device (e.g. disk) [108].

As described in Section 2.1.2, the WCET of a program is always varied

due to the specific hardware in both static analysis and measurement-based

analysis. Therefore, even with the same system architecture and the same

software, if an I/O device is replaced, the WCET of the program may be

different. In general, the number of I/O devices increases the likelihood of the

program’s WCET being affected.

Furthermore, I/O devices are also impact on the performance features

of the whole system, because I/O devices are much slower than processors.

Consider a common input device, a keyboard. Typing at 120 words per minute

is equivalent to 10 characters per second, or 100 milliseconds between each

character. A processor running at 2 GHz can execute approximately 200

17

million instructions during that time. If a blocking I/O operation happens,

the processor will suffer from significant performance degradation.

2.2.2 I/O Controllers

In computer and embedded architectures, in order to handle I/O devices suf-

ficiently and effectively, the following requirements are necessary [92]:

• Individual addressing of each device;

• Allowing devices to initiate communication with the processor;

• Method for transferring the bulk of data between I/O devices and mem-

ory;

• Consistent method for programs to handle I/O from extremely different

devices.

All these requirements suggest that it is not practical to connect the I/O

devices directly to the processor. Each device or class of devices should have

its own hardware interface connected to the processor [92] — interface module

or I/O controller. Therefore, instead of handling thousands of different I/O

devices, programs are only required to handle dozens of interface modules

(I/O controllers). In Figure 2.2, an I/O controller acts as a direct interface

between the system bus and the controlled I/O device. Figure 2.3 illustrates

an example of general-purposed I/O controller.

Figure 2.3: A General-purposed I/O Controller [67]

18

As shown in Figure 2.3, a general-purpose I/O controller has two commu-

nication interfaces, which are physically connected to a bus and I/O devices

respectively:

• Bus-side Interface: Is responsible for buffering data to be transferred

from the processor to an I/O device and allowing the processor to control

the I/O device and read its status.

• I/O-side Interface: Is in charge of communicating with I/O devices,

including data, status, control etc.

An I/O controller enables the following functionalities:

• Accepting requests from the processor to control and perform I/O oper-

ations on the connected device(s);

• Controlling and managing the connected I/O device(s);

• Buffering received data until it is transferred to memory or the connected

I/O device(s);

• Directly transferring data between I/O devices and memory.

Different I/O controllers have been widely adopted in different situations.

According to the types of communication interface, I/O controllers can be clas-

sified as serial I/O controllers or parallel I/O controllers. Figure 2.4 demon-

strates an example of these two types of I/O controllers.

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

DDR Backend

DDR

μ

Many-Core System

Processor
/I/O

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

CPU Memory

I/O

Controller

I/O Device

I/O

Controller

I/O Device

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

Software
Hardw are

Data

Kernel

Mode

User M ode
Kernel Mode

ApplicationApplication

Operating System (OS)

I/O Driver

I/ O

Controll er
I/ O Dev ice

Data

I/ O

Controll er
I/ O Dev ice

(a) Serial Controller

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

DDR Backend

DDR

μ

Many-Core System

Processor
/I/O

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

CPU Memory

I/O

Controller

I/O Device

I/O

Controller

I/O Device

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

Software
Hardw are

Data

Kernel

Mode

User M ode
Kernel Mode

ApplicationApplication

Operating System (OS)

I/O Driver

I/ O

Controll er
I/ O Dev ice

Data

I/ O

Controll er
I/ O Dev ice

(b) Parallel˙Controler

Figure 2.4: Two types of I/O Controllers

19

As shown in Figure 2.4, the difference between serial I/O controllers and

parallel I/O controllers is the transmission method of transmitted data. Specif-

ically, via a parallel I/O controller employed, each bit (of the transmitted data)

has a single wire devoted to it and all the bits are transmitted at same time.

Conversely, via a serial I/O controller employed, the bits are transmitted as

a series of pulses. One of the typical parallel I/O controllers is the HDMI

controller, and one of the typical serial I/O controllers is the SPI controller.

Adopting I/O controllers brings the following advantages to the whole

system:

• Simplifying the interfaces between I/O devices and processors;

• Providing consistent I/O handling methods for processors across the

different I/O devices;

• Allowing parallel control of different I/O devices.

However, even though timing constraints are required in both types of I/O

controllers (e.g. SCLK line in SPI controller), the real-time features cannot

be guaranteed. Specifically, I/O controllers cannot ensure an I/O operation

occurs at a specific clock cycle, which means the timing-accuracy of an I/O

operation cannot be guaranteed by an I/O controller. Moreover, even though

an I/O operation can be completed within a predictable timing variance, it

cannot eliminate the unpredictability caused by I/O devices (see Section 2.2.1)

or buses (see Section 2.3), etc.

2.2.3 I/O Drivers

An I/O driver (also known as a device driver) is a program that operates a

particular I/O device by controlling the connected I/O controller [92]. The

I/O driver provides a software interface to I/O devices, which enables operat-

ing systems (OSs) and other programs to access hardware functions without

knowing specific details (e.g. type of the I/O controller). Specifically, if a

process requests an I/O device, the invoked I/O driver will translate this high

layer request to serial specific instructions on the I/O controller, then the I/O

controller will operate the target I/O device.

The main purpose of I/O drivers is to provide abstraction by acting as

a translator between a hardware device and the programs or OSs that uses

it [92]. In practice, programmers are able to write high-level application code

20

independently of the specific hardware the end-user is using. For example,

a high-level application for interacting with a serial port may simply have a

function called “printf”. At a lower level, the function “printf” calls an I/O

driver function “SendToUart” to achieve data sending via a particular serial

port controller installed on a user’s computer. The I/O drivers controlling a

16550 UART are totally different from the drivers controlling an FTDI serial

port converter, but each hardware-specific I/O driver abstracts these details

into the same (or similar) software interface (see Figure 2.5). Note that, this

example deals with synchronous I/O, even though the thesis considers both

synchronous and asynchronous I/Os.

As demonstrated in Figure 2.5, the specific I/O drivers of 16550 UART

Figure 2.5: Send “Hello World” from High Layer Application to the I/O

devices

21

and FTDI serial port converters are totally different. However, the interfaces

abstracted to the programs at the high level are the same. Specifically, no

matter which UART controller is used in the system, high-level programs can

use a unified interface such as

“printf ()” to send data.

However, having multiple different I/O drivers in a system significantly

impacts real-time I/O features. Specifically, as described in Section 2.2.1, a

number of different I/O devices results in a large amount of I/O drivers in the

system. The execution times of these introduced I/O drivers are different, and

hard to unify. Therefore, the predictability and timing-accuracy of I/O oper-

ations may worsen. Furthermore, the different I/O drivers also lead to extra

software overhead to the system, which can affect overall system performance.

In this research, software overhead is measured using memory footprint, see

Section 6.4.1 and 7.3.1.

2.2.4 Conflict to Performance and Real-time Features

As introduced at the beginning of Section 2.2, an I/O system is mainly com-

posed of three modules: I/O devices, I/O controllers, and I/O drivers. Fur-

thermore, as described in Sections 2.2.1 to 2.2.3, interference between I/O

devices can detract from the performance and real-time features of I/O sys-

tems, and even the whole system.

2.2.4.1 Conflict to Real-time Features

As reviewed in Section 2.1.2, the methods of achieving WCET are typically

classified as static analysis and measurement-based analysis. Of these two

methods, flow analysis is compulsory (reconstructing all the possible paths of

an operation). Therefore, in order to estimate the WCET of a complete I/O

operation, it is necessary to calculate the WCET consumed on its correspond-

ing driver, controller and device.

Currently, because the number of I/O devices is increasing, it is almost

impossible to achieve the WCET of executing a specific I/O operation on all

kinds of I/O devices. Specifically, even in a system with the same architecture

and software, if the involved I/O device is replaced, the WCET of the same

I/O operation may suffer from significant variance. With I/O drivers, this

issue is magnified. Therefore, in order to drive such different I/O devices,

22

various I/O drivers are added to systems. However, the WCETs of executing

all these different drivers cannot be unified or predicted.

Moreover, latencies caused by device drivers and application process schedul-

ing make timing-accurate I/O control problematic, often leading to a dedicated

processor for the I/O application or that application being made the highest

priority, neither solution is scalable or offers good resource utilisation. With

RTOS employed, e.g. [22] [14], an application can invoke an I/O operation

accurately via the interrupt of a high-resolution timer (e.g., the nanosecond

timer), the transmission latencies from a processor to an I/O controller can

be substantial.

Transmission Latency v.s. Jitter

Note that in this research, transmission latencies cannot simply be treated

as jitter.

In real-time systems, jitter is defined as the worst-case time a task can

spend waiting to be released after arrival [36]. However, the latency may be

have a number of reasons, such as application scheduling, core scheduling,

processor scheduling, bus scheduling, bus contention, I/O contention, etc. If

we just treat the latency as jitter, the timing analysis may become easier, but

it may make the timing analysis more unreliable.

The only situation that we can treat the transmission latency as jitter is

when the I/O operation is requested in a single-core system with constant

output values. However, this thesis mainly focuses on general systems, which

is not only the special situation.

2.2.4.2 Conflict to Performance Features

In order to support as many I/O devices as possible, a large number of I/O

drivers have to be integrated into a system, e.g. in OSs [101]. The integration

of so many I/O drivers results in two main drawbacks to performance features:

• Significant software overhead: I/O drivers have to be loaded in to

memory while running, which consumes a large amount of memory foot-

print and significant processor overheads.

• Longer response times of I/O operations: The operations of I/O

drivers in OSs increase the response times of I/O operations, which re-

duces I/O throughput significantly.

23

In order to alleviate these issues, the micro-kernel proposed by Regnecen-

tralen [81] allows I/O drivers to be optionally added into an OS kernel de-

pending on actual requirements. The deployment of a micro-kernel efficiently

reduces the software overhead and increases the I/O performance compared to

a traditional system. Moreover, exo-kernel [55] has completely removed I/O

drivers from the OS kernel (kernel space) and allowed developers to write I/O

drivers in user programs (user space). Compared to micro-kernel based sys-

tems, user applications with exo-kernel based systems are able to optimise the

I/O drivers according to particular requirements, which achieves less software

overhead and better I/O performance. Neither method completely eliminates

software overhead nor achieves enhanced I/O performance.

When it comes to multi-core and many-core systems, these issues are mag-

nified even further in real-time features and performance features . In the

following section, we introduce systems evolved from single-core to many-core.

This is followed by specific reasons why the issues are magnified.

2.3 The Move to Multi-core and Many-core

Currently, due to the breakdown of Dennard scaling [58], it has become difficult

to continuously increase clock speed/frequency of processors. Furthermore, as

feature sizes become smaller, so do the interconnecting wires. Because the

resistance of a wire is inversely proportional to its size, and the capacitance is

proportional to its length, the capacitor time constant dictates the maximum

wire length, as wires are made thinner (T = RC). (Note: T implies time

constant; R implies resistance; and C represents capacitance [58]). Therefore,

the area of a chip which is reachable in a single clock cycle [34] quickly makes

large circuits at a high clock speed unfeasible.

Instead of using the conventional method of increasing processor frequency

in order to meet the expected year-on-year performance increase, i.e. Moore’s

Law [99], designers have started to increase the number of cores on one chip.

In this section, we review the two kinds of classic multi-core and many-

core system architectures: bus-based multi-core systems (in Section 2.3.1), and

NoC-based many-core systems (in Section 2.3.2). Section 2.3.3 then introduces

and analyses real-time and performance features of the I/O systems in these

systems.

24

2.3.1 Bus-based Multi-core System

With the number of processors on one chip increasing, different processors

have to deal with the communication and operations between both shared

memory and I/O devices. In typical embedded systems, these communication

operations are normally achieved via adopting a shared bus, e.g AHB bus [45]

(see Figure 2.6).

Processor

Memory

Bus

I/O_1

Processor

I/O_2

Figure 2.6: An Example of a Shared Bus

However, classical shared buses suffer as the number of cores continues to

increase. Specifically, in a system with a shared bus, once a processor accesses

an I/O device, the whole bus will be locked. Therefore, other processors cannot

initiate a request, even if the requested destination is a completely different

I/O device.

In order to alleviate this issue, crossbar interconnects has been proposed.

Specifically, crossbar interconnects connect all processors and I/O devices

through a set of switch-boxes, and employ dedicated links which replace a

shared bus, e.g. AXI interconnect [30] (See Figure 2.7).

Many-Core System

BlueIO System

DDR

VCDC

BlueTree
BlueGrass

I/O

GPIOCP

I/O Controller 1

I/O 1

I/O Controller 2

I/O 2

I/O Controller n

I/O n

I/O

I/O Controller I/O

ProcessorProcessor

Processor

I/O

I/O

Figure 2.7: An Example of Crossbar Interconnects (AXI Bus) [30]

SI = Slave Interface; MI = Master Interface

With crossbar interconnects, multiple transactions are able to occur at the

25

same time, which provides great improvements on system performance. How-

ever, extra hardware consumption is also generated, due to the requirement

for a large number of switches, which may damage the maximum possible

clock frequency. In a digital design, the maximum clock frequency is inversely

proportional to the design area [32,112].

The issue with scaling of processors has led to system designers moving to

network-on-chip (NoC) based approaches [95].

2.3.2 NoC-based Many-core System

The NoC architecture consists of three basic components (link, network inter-

face and router). An example of NoC architecture with 3*3 topology is shown

in Figure 2.8. It can be seen that communication between IPs is completed

by a set of routers which are linked together through physical links. The

connections between IPs and routers are provided through Network Interfaces

(NIs).

Different from bus-based multi-core systems (including crossbar intercon-

nects systems), NoC-based many core systems attach each processor to a small

network router (see left part of Figure 2.8), then each message is encapsulated

into a network packet and routed over the network based upon some routing

scheme (see right part of Figure 2.8).

Crossbar

Virtual Channel
Allocation

Routing Computation

Switch Allocation

Scheduler Arbiter

Router

A

IP(0) IP(3)

G

IP(6)

B

IP(1)

E

IP(4)

H

IP(7)

C

IP(2)

F

IP(5)

I

IP(8)

E

Routing Computation

Figure 2.8: Examples of NoC and Router Architectures

A - G: Routers; IP: Intellectual Property core

In a NoC, packets are routed in any direction at each router to their des-

26

tination. Commonly, they will be routed in an X-Y fashion, where they will

first be routed to the correct column within the network, then either up or

down the column to their target [43, 63, 88] are examples of current widely

used NoCs.

Compared to bus-based multi-core systems, overheads resulted from com-

munication have been distributed from a single bus or a big switch to multiple

independent routers in a NoC, which has successfully solved the bottleneck of

clock frequency resulting from the scaling of processors.

2.3.3 I/O Systems in Multi-core and Many-core Systems

In multi-core and many-core systems, the most significant challenges associ-

ated with I/O systems are loss of performance and lack of real-time features,

resulting from the complicated I/O resource management, i.e. scheduling and

prioritisation [72].

Because this section focuses on I/O resource managements, we only classify

systems into single processor systems (multi-core), multi-processor systems

(multi-core) and many-core systems (NoC-based), see Figure 2.9

CPU Memory

AXI_Lite

I/O

C

C

C

CPU
Memory

Bus

I/O

C C

CPU

C

C

CPU

C

R

R

R

R

R

R

R

R

R

R

R

R

C C C

C C C

C CC

I/O

User
Application

FreeRTOS I/O Manager

Kernel Mode

User Mode System Calls

Timer
Timer

Hardware

Software

INTC

Memory

Bus

I/O
C

CPU

C

(a) Single Processor system

(multi-core)

C C

C C

CPU

Memory

Bus

I/O

C

C

C

CPU
Memory

Bus

I/O

C C

CPU

C

C

CPU

C

(b) Multi-Processor System (multi-core)

C

C

R

C

R

I/O

R

C

R

C

R

I/O

R

C

R

C

R

I/O

R

C

R

C

R

I/O

R

C

R

C

R

I/O

R

C

R

C

R

I/O

R

(c) Many-core System

Figure 2.9: Structure of Multi-processor and Many-core Systems with I/O

devices. C - Core, R - Router/Arbiter

27

• Single processor (multi-core) system (Figure 2.9(a)): User ap-

plications can normally request and operate I/O devices by modifying

memory-mapped registers. The overhead of I/O resource management

mainly comes from the scheduling of the processor — deciding which

core has priority to access the I/O device. This procedure is normally

handled by an OS.

• Multi-processor (multi-core) system (Figure 2.9(b)): Apart from

processor scheduling, contention over I/O devices is unavoidable when

a shared I/O is to be accessed. To solve the issue of I/O contention

between processors, hardware mutexes are normally added in multi-

processor systems, which causes extra hardware overhead as well as high

bus workload (frequent communication is required between processors

and hardware mutex).

• Many-core System (Figure 2.9(c)): All arbitration between cores

is controlled by the system arbiter (e.g. the routers in a NoC-based

system), therefore processor scheduling is not required. However, many-

core systems still suffer from I/O contention when different cores need

to access I/O devices at the same time.

In general, complicated I/O resource management has main three draw-

backs for the system as a whole:

• Significant system overhead: Processor scheduling is mostly imple-

mented at the software level, and I/O contention is mostly handled at

the hardware level, which both consume significant system overhead.

• I/O operations with bad timing features: The complexity of I/O

management makes I/O operations difficult to predict, and timing-accuracy

cannot be guaranteed.

• Bad scalability: With the number of cores and processors increasing

in a system, the of resource management workload will be also increased,

which causes more serious performance reduction of the whole system.

As described in Section 2.3.2, NoC is the main trend of many-core archi-

tectures. Therefore, we review the I/O systems in popular NoC architectures.

Related approaches for I/O systems over many-core NoC architectures

can be divided into those that use a standard architecture (as demonstrated

28

in Figure 2.9(c)) and those that introduce a dedicated unit for handling I/O

operations. Technologies such as Programmable Logic Controllers (PLC s)

and associated I/O controllers are out-of-scope. The following reviews the

standard architectures of I/O systems in NoCs. Note: dedicated units will be

reviewed in Section 2.5.

Typical NoC based architectures (i.e. Figure 2.9(c)) that have been im-

plemented in silicon contain integrated I/O devices connected to the edge of

the mesh, e.g. Tilera’s TILE64 [17] and Kalray’s MPPA-256 [48]. Specifically,

the TILE64 requires processors within the mesh to instigate I/O operations,

with a shared I/O controller passing the operations to the actual I/O devices

– hence significant latencies will occur between I/O command instigation and

actual I/O occurring, which detracts from predictability and timing-accuracy.

The MPPA-256 provides 4 I/O subsystems, with I/O operations instigated

by the processor passed to the Resource Manager (RM) cores within one of

these I/O systems, depending which device is required. The MPPA-256 RM

cores are essentially Linux based processors controlling many devices (although

real-time OS RTEMS [14] can also be used). Hence, predictable and timing

accurate controls (real-time features) of many external devices connected to

the GPIO are not possible. In addition, neither approach is resource efficient,

as independent processors are required for I/O controls.

2.3.4 Real-time Many-core Architectures

As described in Section 2.3.3, modern many-core systems mainly focus on func-

tionalities. Therefore, these systems cannot be directly applied in a real-time

system. This section examines research which uses many-core architecture in

a real-time system, e.g. XMOS [85] and PicoChip [52].

XMOS is a real-time many-core architecture proposed at the University

of Bristol [85], which can be scaled from a single-core system to a thousands-

core system. In particular, the architecture proposes real-time communication

channels, a real-time scheduler and predictable instruction sets. The experi-

mental results show that the system supports predictable inter-core commu-

nication and instructions handling. On the I/O side, the processors are able

to read the I/O pins using a special interface – I/O reading becomes quick

and efficient.However, the architecture suffers from the following issues: 1.

The system requires a particular instruction set, which has to be a general

propose. 2. Even though the system is able to provide more predictable I/O

29

access, it cannot eliminate the transmission latency, so is not timing-accurate.

Similar to XMOS, the PicoChip designed by picoChip Designs Ltd [52]

proposes a many-core architecture for real-time systems. However, the system

mainly focuses on the architecture designs, e.g. switches and communication

channel. The system cannot provide an efficient solution for issues on the I/O

side.

In addition, neither project supports the virtualization technology, and

therefore do not have an efficient method to support the protection features.

2.4 Virtualization Technology

Virtualization technology is a general term for the abstraction of computing

resources from their physical implementation. In computer and embedded

architectures, the abstracted resources are frequently the processors, memory

and I/O devices (e.g. Ethernet, keyboards, etc.). However, the term can be

used much more generally and can relate to almost any part of a system.

Virtualization introduces a layer in the abstraction hierarchy of a system

which exposes a set of virtual resources on top of which items at higher ab-

straction levels (e.g. OSs and applications) can be implemented, whilst the

mapping of virtual resources to physical resources is hidden.

This section has two main parts. Sections 2.4.1 to 2.4.3 consider virtu-

alization technologies, including classification, analysis of conflicts between

virtualization technology and expected features and research on real-time vir-

tualization technologies. In the second part (Sections 2.4.5 and 2.4.6), I/O

virtualization is the main topic, containing descriptions and reviews of I/O

virtualization technologies, as well as related hardware assists.

2.4.1 Notions of Virtualization

In virtualization systems, the abstraction layer is called the virtual machine

monitor (VMM) or hypervisor. It hides the physical resources (e.g. pro-

cessors, memory, I/O devices, etc.) from the upper layers (e.g. OSs, user

applications). Because physical resources are directly controlled by the VMM

rather than the OSs, it becomes possible to execute different OSs in parallel

on the same hardware. As a result, the hardware resources are partitioned

into one or more logical units, termed virtual machines (VM).

30

2.4.1.1 Virtual Machine (VM)

Virtual Machines (VMs) are the most well-known application of virtualization

and are commonly adopted in all areas of computing. VMs became popular in

the early 1970s as an alternative to system simulation [65], including the run-

time interpretation of the entire ISA of simulated processors and simulation

of the memory and system buses. The simulated machine becomes a VM.

In [98], a VM is defined as:

An efficient, isolated duplicate of a real machine.

The software running on each VM is guest software, which is defined as [68]:

Each virtual machine is a guest software environment that supports

a stack consisting of an operating system (OS) and application

software. Each operates independently of other VMs and uses the

same interface to processor(s), memory, storage, graphics, and I/O

provided by a physical platform.

2.4.1.2 Virtual Machine Monitor (VMM)

The paper also presents the idea of a virtual machine monitor (VMM):

A piece of software running on the host machine that enables this

virtualization to take place.

The main responsibility of a VMM is abstracting the single physical re-

source to multiple virtual resources for Guest VMs and hiding the physical

resources and other VMs. In a virtualized system, multiple guest OSs are

able to execute on their own virtual resources in parallel without knowledge

of the existence of other VMs, because all shared resources are controlled by

the VMM.

The definition of a VMM has the following features:

• Equivalence: Software operations executed by the VM have to be the

same as if it were run on a native machine, even if the VMM hosts

multiple VMs.

• Resource control: The VMM has complete control over the virtual

resources.

31

2.4.1.3 Protection Features

Deployment of virtualization brings superior benefits for the whole system,

e.g. reduced volume and cost of hardware, load balance, etc. In this research,

we mainly focus on the protection features of isolation and parallel accesses.

• Isolation: In a virtualization system, VMs are logically isolated, which

means the applications executed in one guest VM can never affect other

VMs, even if it breaks. Moreover, isolation can be divided into spatial

and temporal isolation. Specifically, with spatial isolation, a partition

(i.e. VM) is completely allocated to a unique address space (e.g. code,

virtual I/O resources, etc.). This address space is not accessible by other

partitions (i.e. VMs). With temporal isolation, a partition (i.e. VM)

is executed under a cyclic policy. The execution of a partition is not

impacted by others [109]. Note that this research mainly focuses on

temporal isolation (see Chapter 7).

• Parallel accesses: Because all VMs are logically isolated, applications

on different VMs are allowed to directly access their own resource (vir-

tualized) in parallel without recognising the existence of other VMs.

Currently, there are a large number of modern VMMs available, which are

also more frequently known by the modern term “hypervisor”. We review

some of the classic VMMs in Section 2.4.4, while reviewing the classifications

of virtualization technology.

2.4.2 Classification of Virtualization

Currently, virtualization technologies are normally classified as:

• Bare-metal or hosted virtualization [65]: According to whether a

VMM is run either on the hardware directly or run on top of a host OS,

virtualization technologies can be classified as bare-metal virtualization

(Type-1) or hosted virtualization (or Type-2).

• Full and para-virtualization [65]: Depending on whether the guest

OS is required to be modified by adding hyper-calls into the VMMs, vir-

tualization technologies can be classified into full-virtualization or para-

virtualization.

32

2.4.2.1 Bare-metal and Hosted Virtualization

Hosted virtualization (Type-2) is widely used in the desktop market, as its

compatibility means it can be easily ported to different platforms [65]. In a

hosted virtualization system, the VMM has to be executed above the OS as a

program, see Figure 2.10.

Hence, extra software overhead has been introduced. Moreover, the effi-

ciency and performance of the guest OS has also been reduced significantly,

compared to the original system.

App

VM 1

User Mode
Kernel Mode

Guest OS

App

VM 2

Guest OS

App

VM n

Guest OS

Virtual Machine Monitor (Hypervisor)

Software
Hardware

CPU (e.g.
Microblze)

Mmeory UART Ethernet GPIOCP

App

VM 1

User Mode
Kernel Mode

Guest OS

App

VM 2

Guest OS

App

VM n

Guest OS

Virtual Machine Monitor (Hypervisor)

Software
Hardware

CPU (e.g.
Microblze)

Memory UART Ethernet GPIOCP

Host OS

Figure 2.10: Hosted-Virtualization

In order to alleviate the introduced software overhead, bare-metal virtual-

ization (Type-1) was proposed. In practice, bare-metal virtualization is widely

used in the server market because of its lighter software overhead [65, 100].

With bare-metal virtualization, the VMM executes directly on hardware, con-

trolling and synchronising the access of guest OSs to the physical resources.

Figure 2.11 demonstrates the architecture.

Compared to hosted virtualization, bare-metal virtualization consumes less

software overhead and gives better system performance, since no hosted OS

is required. For example, Xen [25] is a typical example of bare-metal virtu-

alization. As evaluated in [64], the system performance of the Guest OS in a

Xen-based system is able to achieve 60% of a native OS.

33

App

VM 1

User Mode
Kernel Mode

Guest OS

App

VM 2

Guest OS

App

VM n

Guest OS

Virtual Machine Monitor (Hypervisor)

Software
Hardware

CPU (e.g.
Microblze)

Memory UART Ethernet GPIOCP

App

VM 1

User Mode
Kernel Mode

Guest OS

App

VM 2

Guest OS

App

VM n

Guest OS

Virtual Machine Monitor (Hypervisor)

Software
Hardware

CPU (e.g.
Microblze)

Mmeory UART Ethernet GPIOCP

Host OS

Figure 2.11: Bare-metal virtualization

2.4.2.2 Full and Para-Virtualization

Another way to classify virtualization technologies is full virtualization vs.

para-virtualization. Full virtualization allows the guest OS to be executed

on the VMM without any modification, while para-virtualization requires

the guest OS to be modified by adding hyper-calls into the VMM. Repre-

sentative hosted (Type-2) full virtualization solutions include KVM, Virtual-

Box, Microsoft Virtual PC, VMWare Workstation. Representative bara-metal

(Type-1) para-virtualization solutions include Xen, L4, VMWare ESX. There

are some research attempts at constructing bare-metal (Type-1), full virtu-

alization solutions, such as Kinebuchi et al. [75] which implements such a

solution porting the QEMU machine emulator to run as an application on

L4Ka::Pistachio microkernel; in turn, an unmodified guest OS can run on top

of QEMU; Schild et al. [103] has successfully executed an unmodified guest

OS on L4. There are also hosted (Type-2) para-virtualization solutions, e.g.

VMWare MVP (Mobile virtualization Platform) [38].

2.4.3 Conflict in Performance and Real-time Features

The most significant challenges in virtualization technologies are the loss of

performance features and real-time features, which mainly result from indirec-

tion and interposition of privileged instructions, as well as complicated shared

resource management (i.e. scheduling and prioritisation) [59] [100].

34

2.4.3.1 Indirection and Interposition of Privileged Instructions

When an application running within a VM issues a privileged instruction,

(e.g. a system call and an I/O request), the processors traps into the VMM –

emulating the privileged operations on the VM state that the VMM manages.

Figure 1.1 depicts the flow of a privileged instruction (i.e. an I/O request)

in a conventional hosted and full virtualization system. Specifically, when an

application running within a VM issues an I/O request, it is initially processed

by the I/O drivers of the guest OS kernel (running within the VM). The device

driver in the guest VM issues the request to a virtual I/O device, and the VMM

then intercepts.

This indirection and interposition of privileged instructions poses difficul-

ties for the virtualization system [113]:

• Significant software overhead [102] – Most of these operations are pro-

cessed in the software, which causes significant processor overhead.

• Larger response time of the privileged instructions [102] [113] – Com-

pared with an original system, virtualization technology requires more

time to handle the same instruction from a guest OS, also causing a

decline in system performance. This issue significantly conflicts with the

performance features.

• Decreased predictability [120] – Longer access paths resulting from the

dissimilar access paths of different requests (from user applications to

hardware devices) increase the uncertainty of access times, detracting

from predictability. This issue significantly conflicts with the real-time

features.

2.4.3.2 Complicated Shared Resource Management

Managing and scheduling shared resources is another overhead of virtualiza-

tion technology. A VMM should be responsible for all shared resource man-

agement introduced in Section 2.3.3. Generally, complicated shared resource

management results in the following drawbacks for the whole system:

• Significant system overhead - CPU scheduling is mostly implemented at

the software level, and shared resource contention is mostly handled at

the hardware level, both consuming significant system overhead.

35

• Decreased predictability - The complexity of shared resource management

makes the system difficult to predict. This issue conflicts with real-time

requirements.

• Bad scalability - With the number of cores and CPUs increasing in a

system, the workload of resource management will also increase which

causes a more serious performance reduction of the whole system. This

issue significantly conflicts with the performance features.

In order to eliminate the issues described above, a number of real-time

virtualizations have been proposed. Some related research is reviewed in the

following section.

2.4.4 Real-time Virtualization

In this section, we review some real-time virtualizations, which mainly include

Xen-based (Type-1) solutions and KVM-based (Type-2) solutions. Currently,

Xen and KVM are the most popular VMMs of the virtualization technologies.

2.4.4.1 Xen-based Solutions (Type-1 Virtualization)

Cherkasova et al. [46] review and evaluate three CPU schedulers in Xen, Bor-

rowed Virtual Time (BVT), Simple Earliest Deadline First (SEDF) and

Credit. Note that, due to the deprecation of BVT, we only discuss SEDF and

Credit in the thesis.

In Xen, the default configured scheduling algorithm is Credit Scheduler.

This implements a proportional-share scheduling strategy where a user is able

to adjust the CPU share for each VM. Moreover, the VMM also features au-

tomatic workload balancing of virtual CPUs (vCPUs) across physical cores

(pCPUs) on a multi-core processor. This algorithm ensures that no pCPU

will be idle when there is a runnable vCPU in the system. Each VM is asso-

ciated with a weight and a cap. Once the cap equals 0, the VM will receive

extra processor time unused by other VMs in Work-Conserving (WC) mode.

Conversely, if the cap is larger than 0, it limits the amount of processor time

given to a VM to not exceed the cap in Non-Work-Conserving (NWC) mode.

By default, the credits of all runnable VMs are recalculated in intervals of

30ms in proportion to each VM’s weight parameter and the scheduling time

slice is 10ms.

36

When it comes to the SEDF scheduler, each VM is able to specify a lower

bound on the CPU reservations that it requests by specifying a tuple of slice

and period. Therefore the VM can receive at least slice time units during each

period time units. Different from the Credit scheduler, SEDF is a partitioned

scheduling algorithm that does not allow VM migrations between different

cores, which no global workload balancing is required.

Masrur et al. [83] presented improvements to Xen’s SEDF scheduler. As

presented in the paper, a VM is able to use its whole budget (slice) within its

period even if it blocks for I/O before using up its whole slice (in the original

SEDF scheduler, the unused budget is lost once a task blocks). Moreover, a

certain critical VM is able to be designated as a real-time domain and given

higher priority than the other domains scheduled with SEDF. The limitation

of this work is that each real-time domain is constrained to contain a single

real-time task. In their evolved work [84], this limitation has been removed by

introducing a hierarchical scheduling architecture — both hypervisor and guest

VMs deploy deadline-monotonic fixed-priority scheduling. Additionally, they

have also proposed a method for selecting optimum time slices and periods for

each VM in the system to achieve schedulability while minimizing the lengths

of time slices.

RT-Xen [116] is the first real-time hypervisor scheduling framework for

Xen [25]. It integrates compositional and hierarchical scheduling architecture

within Xen and instantiates a suite of fixed-priority servers (e.g. Deferrable

Server). Empirical evaluation shows that RT-Xen can provide effective real-

time scheduling to a guest Linux OS within a 1ms quantum, which is excellent

predictability. Currently, RT-Xen has not provided real-time features for I/O

requests. In addition, the software implementation of RT-Xen implies an

introduced software overhead and reduction of system performance. Similar

work to RT-Xen can be seen in [117] [71].

Yoo et al. [117] proposed the Compositional Scheduling Framework [117] in

Xen-ARM. Jeong et al. [71] developed PARFAIT on Xen-ARM, a hierarchical

scheduling framework. Moreover, Lee et al. [78] improved the soft real-time

performance of the Credit Scheduler in Xen. Yu et al. [118] proposed enhanced

real-time improvements to the Xen Credit Scheduler, so that real-time vCPUs

are always given priority over non real-time vCPUs and can preempt any non

real-time vCPUs that may be running.

37

2.4.4.2 KVM-based Solutions (Type-2 Virtualization)

KVM is a representative VMM in Type-2 virtualization (hosted virtualiza-

tion), using Linux as the host OS. Therefore, any improvements to the Linux

kernel are directly inherited in improvements to the VMM in KVM, e.g. real-

time patches on Linux.

Kiszka [76] proposed improvements to real-time features regarding the

KVM. Firstly, real-time VMs are assigned with real-time priorities. More-

over, para-virtualized scheduling interfaces were also integrated, which allows

task-grain scheduling by introducing two hyper-calls for the VMs: 1). inform-

ing the VMM regarding the current priority of the running task; 2). informing

the VMM when an interrupt handling is completed.

The work has efficiently improved the performance features of KVM, how-

ever it is no longer a strict full virtualization system like the traditional KVM.

Zhang et al. [119] introduced two enhancements in real-time features to KVM

via coexisting RTOS and GPOS VMs – giving the guest RTOS vCPUs higher

priority than GPOS vCPUs and using processor shielding to dedicate which

core to the RTOS guest and shield it from GPOS interrupts. Experimen-

tal results indicate that the RTOS interrupt response latencies are reduced.

Evolved from [119], Zuo et al. [123] introduced additional improvements by

adding two hyper-calls, enabling a guest OS to boost priority of its vCPU

when a high-priority task is started.

Currently, some research has been carried out on real-time virtualization,

although little of it includes I/O (most focus on processor virtualization).

However, even though some work has proposed solutions to I/O virtualization

(e.g. Quest-V [80] and [69]), it cannot satisfy the requirements of performance

features and real-time features simultaneously. In the following sections, I/O

virtualization and related improvements are reviewed.

2.4.5 I/O Virtualization

A VMM has to support virtualization of I/O requests from VMs. The I/O

virtualization may be supported by a VMM through any of the following

models:

• Emulation model (Figure 2.12(a)): A VMM might expose a virtual

I/O device to VMs by emulating an existing (legacy) I/O device. A

VMM emulates the functionalities of I/O devices in the software layer,

38

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Legacy Device
Emulation

VMM I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Modified)

Fronted I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM
Device

Management

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

I/O

I/O

I/O

vI /O vI /O vI /O

(a) Emulation Model

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Legacy Device
Emulation

VMM I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Modified)

Fronted I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM
Device

Management

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

I/O

I/O

I/O

vI /O vI /O vI /O

(b) New Software Interfaces

Model

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Legacy Device
Emulation

VMM I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Modified)

Fronted I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM
Device

Management

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

I/O

I/O

I/O

vI /O vI /O vI /O

(c) Assignment Model

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Legacy Device
Emulation

VMM I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Modified)

Fronted I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM
Device

Management

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

Guest OS (Lagacy)

Legacy I/O Driver

VMM

Software
Hardware

User Mode
Kernel Mod e

VM

AppApp

I/O

I/O

I/O

vI /O vI /O vI /O

(d) I/O Device Sharing Model

Figure 2.12: Models to Achieve I/O Virtualization

(The grey parts are involved in Virtualization implementation)

no matter what physical I/O devices are available in the hardware layer.

Emulation models provide good compatibility (existing I/O drivers can

be used directly), but suffer from the limitations of performance features,

such as lower I/O throughput and longer I/O response time.

• New software interfaces model (Figure 2.12(b)): The model is simi-

lar to the emulation model, but instead of emulating a legacy I/O device,

the VMM exposes synthetic device interfaces to VMs. The synthetic de-

vice interfaces are defined to enable efficient I/O virtualization, with

enhanced performance. However, this model suffers from reduced com-

patibility, resulting from the requirements of a modified guest OS or

39

drivers.

• Assignment model (Figure 2.12(c)): A VMM may assign the physical

I/O devices to VMs directly. The I/O drivers executed in each VM allow

the guest OS to interact with the physical I/O devices directly with

minimal involvement, or even no involvement of the VMM. However, in

order to achieve a robust I/O assignment, additional hardware assistance

is required, which guarantees the accesses of the assigned device are

isolated (see Section 2.4.4.1).

• I/O device sharing model (extended from assignment model)

(Figure 2.12(d)): In this model, an I/O device may support multiple

functional interfaces. Moreover, each interface may be independently

assigned to an independent VM. The I/O device is capable of accepting

multiple I/O requests through any of these functional interfaces and

processing them using the device’s hardware resources.

Depending on specific requirements, a VMM may support any of the above

models for I/O virtualization. For example, the I/O emulation model is suited

for full-virtualization, meanwhile I/O assignment model achieves the best per-

formance while hosting I/O-intensive workloads within VMs. In addition, the

new software interfaces model gains a trade-off between compatibility and

performance and the I/O device sharing model efficiently reduces the software

overhead.

Generally speaking, the emulation model (Figure 2.12(a)) is associated

with full virtualization. Specifically, emulation is implemented within a stan-

dalone VMM, which multiplexes a physical I/O device to multiple virtual I/O

devices, meanwhile abstracting access interfaces to the legacy drivers in each

VM, e.g. VMWare Workstation [38]. With VMWare Workstation, an I/O

request (privileged instruction) sent from a guest OS always traps into VMM.

Afterwards, the VMM decodes/translates the trapped request and maps it to

the corresponding physical I/O device. This process is transparent but not

efficient [64], since the trap handling suffers from significant overhead and un-

predictable processing time. Therefore, the emulation model does not meet

the requirements of performance features and real-time features for a real-

time I/O system. Moreover, with the emulation model, the VMM has to fully

control the physical I/O devices, which is complicated to implement and if a

40

physical I/O device is changed or upgraded, the VMM has to be modified as

well.

In the new software interfaces models (Figure 2.12(b)), split drivers are

required for the back-end and front-end. Specifically, back-end drivers are

executed in the VMM and provide special interfaces to the front-end drivers

in guest OSs. An I/O request sent to a front-end driver is always transmitted

to a back-end driver. It will then be interpreted and mapped to a physical I/O

device via the legacy I/O driver. The most well-known VMM using the new

software interfaces model is Xen [25]. The software interfaces model does not

require direct control of I/O devices by the VMM, therefore its implementation

is simpler. Research focused on the software interfaces models has successfully

achieved better performance features and real-time features by modifying the

kernels of guest OSs and simplifying the VMM, e.g. RT-Xen [116] (which will

be specifically introduced in Section 2.4.4.1). The most difficult challenge in

the software interfaces models is the requirement of modification of a guest

OS, which means legacy OSs cannot be executed directly.

Different from the emulation model and the new software interfaces model,

the assignment model (Figure 2.12(c)) proposes an I/O virtualization model

with minimal or even no involvement of the VMM. This model eliminates

the extra overhead generated by the VMM and improves I/O performance

significantly [113]. However, additional hardware assistance is required to

achieve robust and isolated I/O assignment. Examples of hardware assistance

models are Intel’s VT-d [68] and AMD’s IOMMU [39]. In an assignment

model, the hardware assistance (i.e. VT-d and IOMMU) ensures the isolation

of I/O address space between different VMs. More details are described in

Section 2.4.6.

Extended from the assignment model, an I/O device sharing model (Fig-

ure 2.12(d)) does not require the involvement of hardware assistance — I/O

virtualization is achieved by I/O devices. Specifically, in an assignment model,

I/O virtualization is associated with I/O devices — an I/O device virtualized

to multiple virtual I/O devices and allocated to different VMs. Single Root

I/O virtualization (SR-IOV) [90] and Multi Root I/O virtualization (MR-

IOV) [90] are the representatives of the assignment model. Note that, more

details will be described in Section 2.4.6.

As described above, conventional I/O virtualization models (i.e. emula-

tion model and new software interfaces model) significantly conflict with per-

41

formance features and real-time features. In order to eliminate these issues,

the trend of I/O virtualization is developed towards hardware-assistance (i.e.

assignment model and I/O device sharing model).

2.4.6 Hardware-assisted I/O virtualization

Hardware-assisted virtualization over a multi-core or many-core architecture

is a steadily growing field that is gaining momentum. In this section, we

review three typical related approaches: Intel’s VT-d [68] (assignment model),

SR-IOV [16] (I/O device sharing model) and a real-time I/O subsystem for

commercial-off-the-shelf-based (COTS-based) embedded systems. Note that,

since the technologies adopted by AMD’s IOMMU [39] are extremely similar

to Intel’s VT-d, we only review and discuss VT-d in this thesis.

VT-d is hardware support for isolating and restricting device access to the

owner of the partition managing the device, developed by Intel [68]. VT-d

includes three key capabilities: 1). allowing an administrator to assign I/O

devices to guest VMs in any desired configuration; 2). supporting address

translations for device DMA data transfers; and 3). providing VM routing

and isolation of device interrupts. Generally speaking, VT-d uses an emulation

model to provide a hardware VMM that allows user applications running in

the guest VMs to access and operate the I/O devices directly. Compared with

conventional software virtualization, VT-d offloads most of the overhead of

virtualization to the hardware level. In a system with VT-d, in addition to I/O

drivers, extra drivers for VT-d are also required in the software layer. In [90],

a hardware-based I/O virtualization approach using memory-mapped I/O,

MMU, and IOMMU is proposed, which achieves maximally only 73.10% of the

normal DMA write data rate. In addition, real-time properties (predictability

and timing-accuracy) of the system cannot be guaranteed.

Single Root I/O virtualization (SR-IOV) is a specification, which proposes

a set of hardware enhancements for the PCIe device. SR-IOV aims to remove

major VMM intervention for performance data movement to I/O devices, such

as the packet classification and address translation. A SR-IOV-based device

is able to create multiple “light-weight” instances of PCI function entities

(also known as VFs). Each VF can be assigned to a guest for direct access,

but still shares major device resources, achieving both resource sharing and

high performance. Currently, many I/O devices already support the SR-IOV

specification, such as [50] and [51]. Similar to the Intel VT-d, to support a

42

SR-IOV-based I/O more drivers are needed in the software, which reduces the

performance of the I/O. Additionally, real-time features cannot be guaranteed.

In [40], a real-time I/O management system is proposed, which comprises

1) real-time bridges with I/O virtualization capabilities, and 2) a peripheral

scheduler. This proposed framework is used to transparently put the I/O sub-

system of a commercial-off-the-shelf-based (COTS-based) embedded system

using real-time scheduling, minimizing the timing unpredictability due to the

peripherals sharing the bus. As described in the experiments, the proposed

real-time I/O management system efficiently improves the uncertainty of I/O

requests, which achieves predictability, but without timing-accuracy. Addi-

tionally, the system performance cannot be improved.

Generally, current popular hardware-assisted I/O virtualization technolo-

gies have efficiently eliminated performance reduction compared to a system

with traditional I/O virtualization. However, they are not able to support

enhanced I/O performance. Moreover, the requirements of real-time features

cannot be guaranteed.

2.5 Programmable Timely I/O Controllers

As described in Sections 2.2 and 2.3, one of the main issues in real-time I/O

operations in multi-core and many-core systems is the transmission latency

from an application to the I/O devices resulting from application scheduling,

processor scheduling and I/O contention.

In order to reduce this latency, hardware assistants are commonly used.

For example, Solarflare NIC ASIC [15] is a network adaptor enabling user

applications access to hardware directly from the software layer, bypassing

the OS kernels, as shown in Figure 2.13.

As demonstrated in [15], the lowest I/O response time can be reduced to

less than 500 nanoseconds in a system with Solarflare NIC ASIC, resulting from

the significantly reduced transmission latency, as the OS kernel is not required.

However, hardware assistants can only reduce the transmission latency, rather

than eliminate it.

In order to eliminate the latency, using a programmable timely I/O con-

troller has become a popular trend. With a programmable timely I/O con-

troller, a user application is able to pre-program the controller to operate an

I/O device, rather than requesting the I/O device when required. The deploy-

43

Figure 2.13: Traditional System and a System with Solarflare NIC ASIC [15]

ment of programmable timely I/O controllers has removed the transmission

latency generated by application scheduling and processor scheduling. In this

section, we review two classical programmable timely I/O controllers, which

could be connected to a NoC mesh for GPIO control – TI’s Programmable

Real-time Unit (PRU) [42] (see Section 2.5.3) and Freescale’s Time Proces-

sor Unit (TUP) [18] (see Section 2.5.2). Note that, both I/O controllers are

designed to output constant data. If the output data is non-constant, there

will still be jitter when the data is sent.

2.5.1 Programmable Real-time Unit (PRU)

Programmable Real-time Unit (PRU) is a low-latency, deterministic real-time

I/O subsystem designed by TI [42], which is deployed along with ARM cores

in the Sitara AM335x, AM437X, AM5x processors and AMIC10 SoCs. In a

PRU-based system, PRU is physically connected between the system bus and

I/O devices, which enables user applications to gain low-latency I/O controls

via pre-programming, see Figure 2.14.

Inside each PRU subsystem, two 200-MHz real-time RISC cores are con-

tained. The execution time of each instruction executed on each core is fixed

at one cycle – 5 ns. Since real-time cores are not equipped with an instruc-

tion pipeline, single-cycle instruction execution is ensured. The PRU’s small,

44

Processor

Memory

Bus

I/O_1

Processor

I/O_2

(a) An Example of a Conventional Em-

bedded System

Processor

Memory

Bus

I/O_1

Processor

I/O_2

Processor

Memory

Bus

I/O_1

Processor

PRU

I/O_2

(b) An Example of a PRU-based Embed-

ded System

Figure 2.14: Comparison of Conventional and PRU-based Embedded

Systems

deterministic instruction set with multiple bit-manipulation instructions can

always be executed within a predictable timing variance, which decreases the

timing uncertainty of the sub-system. Moreover, the 5 ns cycle time of instruc-

tion execution time, as well as low-latency data transfers and high-speed I/O

accesses assure that I/O operations can be performed in a predictable period

of time [42].

Even though PRU provides increased predictability of I/O operations, it

suffers from the following two drawbacks: 1) cannot guarantee that an I/O

operation occurs at a specific time in the future – i.e. not timing-accurate;

2) the requirement of two 32-bit RISC cores generates additional hardware

overhead – i.e. not resource efficient.

2.5.2 Time Processor Unit (TPU)

Another widely used pre-programmable real-time I/O controller is the Time

Processor Unit(TPU) developed by FreeScale [18]. Similar to PRU, TPU is

a co-processor independent of the main processor which is responsible for pre-

dictable I/O operations. Therefore, the architecture of a TPU-based system

is very similar to the PRU-based system, see Figure 2.14(b).

2.5.3 Programmable Real-time Unit (PRU)

A Programmable Real-time Unit (PRU) is a low-latency, deterministic real-

time I/O subsystem designed by TI [42], which is deployed along with ARM

cores in the Sitara AM335x, AM437X and AM5x processors and AMIC10

SoCs. In a PRU-based system, the PRU is physically connected between

the system bus and I/O devices, which enables user applications to gain low-

45

latency I/O controls via pre-programming, see Figure 2.14.

Inside a TPU, a set of pre-programmed functions have been integrated into

the ROMs, with different ROMs for different I/O controls, e.g. SPI, I2C, etc.

Moreover, a TPU also provides interfaces for designers to create customised

I/O control functions and save them in the RAMs. These ready-built I/O

control functions can be executed on the two RISC cores inside the TPU,

which are physically connected to the I/O devices. Predictable timing control

of each I/O operation can be guaranteed by a 16-bit time base connected to

each RISC core.

Different from the PRU, the customised interfaces enable developers to

simplify complicated I/O controls and create brand new I/O controls accord-

ing to specific requirements. However, the TPU suffers from the same draw-

backs as the PRU, non-timing-accurate I/O controls and significant hardware

overhead.

Moreover, no matter whether PRU or TPU is used, I/O controls are as-

sociated with the RISC cores. Therefore, the number of cores in each pro-

grammable timely I/O controller indicates the number of I/O operations that

can be handled in parallel. This limitation significantly conflicts with the re-

quirements of scalability (performance feature) and parallel access (protection

feature) in a real-time I/O system.

2.6 Implementations Fabrics for Embedded Systems

In this section, we present an overview of the implementation fabrics that are

widely used in embedded systems. Determining an appropriate fabric is vital

in the system design, since it may result in a drastic effect on the efficiency of

the system.

This section contains four subsections. Section 2.6.1 introduces the history

of Application-Specific Integrated Circuits (ASIC s), followed by an analysis

of the advantages and disadvantages. Section 2.6.2 illustrates the concepts of

Field-Programmable Gate Arrays (FPGAs), including the history, architec-

tures, and analysis of the benefits and drawbacks. In Section 2.6.3, compar-

isons between ASICs and FPGAs are presented. The design flows of ASICs

and FPGAs are introduced in Section 2.6.3, which aims to demonstrate how

to make hardware designs generic to both ASICs and FPGAs.

46

2.6.1 Application-Specific Integrated Circuits (ASICs)

As described in [97], Application-Specific Integrated Circuits (ASIC s) are

integrated circuits designed to satisfy a particular purpose. In order to be

application-specific, an ASIC is custom-built at dedicated silicon fabrication

plants, which results in an extremely high cost to set up the plant — generating

a photo-mask. A photo-mask is normally used to lay out the various layers of

silicon to compose the final design in an ASIC fabrication process.

The main advantages brought by ASICs is the extremely high transistor

density. In an ASIC design, over 100 million transistors can be contained

in a tiny area. Compared to a similar system built using stock parts, the

requirements of power in an ASIC system is significantly lower, as well as

the maximum clock frequency being higher. As described in [105], the same

design implemented on an FPGA is around three times slower than that de-

sign implemented on an ASIC. This disparity may be even larger in certain

designs [105].

There are two main drawbacks to ASICs: 1) The cost of photo-mask (re-

quired by ASIC) is incredibly high, e.g. the price of a 45nm photo-mask can

reach up to $0.75m. This drawback determines that an ASIC is only cost-

effective when a large mount is required. 2) The design of an ASIC has to be

completely fixed during fabrication time. This disadvantage determines that

the design of the ASIC has to be perfect before being manufactured as it can-

not be corrected even if errors are later found. Moreover, these two drawbacks

also result in high costs for simulation and verification. This lack of flexibility

results in a trend towards using Programmable Logic Devices (PLDs).

PLDs try to maintain the speed and integration levels of ASICs, as well

as achieving the same amount of flexibility, which aims to eliminate the dis-

advantages of ASICs. In the early stages, PLDs were very simple, which only

allowed the synthesis of single combinatorial logic functions. Later, as integra-

tion increased, the effective logic density of these devices also increased leading

to the development of FPGAs, which are truly ‘reprogrammable ASICs’.

2.6.2 Field-Programmable Gate Arrays (FPGAs)

FPGAs belongs to the gate arrays class in PLDs. In gate array architectures,

resources (i.e. transistors, logic gates and other active devices) and intercon-

necting wires have been placed in a lattice pattern. The interconnecting wires

47

are configurable and can be arranged to connect the resources via a routing

process.

FPGAs were firstly proposed in the 1980s [41] and labelled as an alternative

method of ASIC verification. Before FPGAs were proposed, the verification

of an ASIC required either the design to be manually built by connecting

discrete components or fabricated as a custom-built ASIC, with both costing

significant time and money. The feature of re-programmability provided by

FPGAs has eliminated the issues. The prototyping method of FPGA not only

increased the efficiency of ASIC design, but also opened up a new implemen-

tation method. Because of the increment in size and speed, as well as the

decrement to the cost, FPGAs have been widely used in embedded systems

instead of ASICs [41]. With FPGA, the significant set-up costs resulting from

ASICs have been avoided.

2.6.2.1 FPGAs Architectures

On a primary FPGA, the basic resources are Configurable Logic Blocks (CLBs),

interconnects and input/output blocks (IOBs), which are shown in Figure 2.15.

Figure 2.15: Early FPGA Architecture [29]

In an FPGA architecture, CLBs are the majority of the components used

to create the sections of logic that implement the primary functionality of the

device. They are built on Look-up Tables (LUT s) and flip-flops. CLBs are

48

connected to each other by interconnects which can be configured to route

signals across the FPGAs.

When it comes to modern FPGA architectures, interconnects follow a hi-

erarchical model. The majority of interconnects are constructed from short

wires (termed ‘local interconnects’), which can be used to span a small num-

ber of CLBs. Local interconnects are normally used to connect the IOBs of

adjacent CLBs to form a single large logic function, e.g. a shift register. As

well as local interconnects, ‘global interconnects’ in the FPGA are longer wires

which can be used to span the entire components. Compared to the number

of local interconnects, the number of global interconnects is much less because

of the high cost. Among global interconnects, ‘global clock nets’ take charge

of propagating clock signals throughout the FPGA.

Whilst FPGAs are composed of LUTs and interconnects, some additional

modules are also included in modern FPGA architectures, in order to sat-

isfy specialised requirements. The introduction of additional modules results

in better design flexibility compared to a conventional FPGA. In order to

perform complicated control operations, some ready-built processors are also

integrated into high-end FPGAS, e.g. the ARM cores are contained in Xilinx

ZC706 [31]. Because the implementation of the ARM processors is ASICs,

their clock frequencies are significantly higher than the soft processors synthe-

sised from FPGA (e.g. Microblaze [10]).

Moreover, in order to store data or programs, storage units are also re-

quired by FPGAs. Due to the inefficiency of the RAM synthesised by LUTs,

ready-built RAM blocks are also commonly integrated in model FPGA ar-

chitectures, with Block RAMs in Xilinx and Altera FPGAs(BRAM s) [29].

Currently, the size of BRAMs owned by the largest Xilinx FPGA (i.e. VC709)

is nearly 54 Megabytes, which can be highly configurable with different widths,

depths and number of access ports [29].

Currently, many other ready-built elements have been integrated into FPGA

fabrics. For example, dedicated multiplier units, clock management circuits

etc. These ready-built elements always have higher efficiency than the ele-

ments synthesised by FPGAs.

2.6.3 ASICs vs FPGAs

This section compares the features of ASICs and FPGAs, and summarises

their advantages and disadvantages [97] [41]. One of the fabric designs is

49

chosen according to the specific requirements.

• Performance(ASIC): an ASIC is around three times faster than a

FPGA while achieving the same design. In certain designs, this disparity

may be even larger [41].

• Cost(ASIC): once the photo-mask is established, the cost of producing

in an ASIC is much lower than an FPGA [41].

• Power(ASIC): compared to the same system built on an FPGA, the

requirement of power in an ASIC system is significantly lower [41].

• Analog Circuit(ASIC): an ASIC can support analog circuits, and mix

signal designs, which are generally not possible in an FPGA [97].

• Time-to-market(FPGA): due to simpler manufacturing steps and no

requirement of a photo-mask, the FPGA always needs less time from

design to product as achieving the same design in an ASIC [41].

• Reprogramability(FPGA): A FPGA can be reprogrammed in a few

minutes, while an ASIC may take more than 4-6 weeks to make the same

changes [41]. Note that, an ASIC design can be modified, but requires

more complicated procedures [41].

2.6.4 Design Flows

This section firstly introduces the design flows in ASICs and FPGAs. It then

describes the similarities and dissimilarities between the two processes. The

main aim of this section is to show how a hardware design can be generic to

both ASICs and FPGAs.

2.6.4.1 Design Flow of ASICs

As introduced in [79], the design flow of ASICs is divided into front-end de-

signs and back-end designs, see Figure 2.16. Specifically, the front-end designs

include specification, RTL coding, simulation, synthesis and pre-layout tim-

ing analysis, meanwhile the back-end design includes auto-place-rout (APR),

back annotation, post-layout timing analysis and logic verification.

• Specification : defines the features and functionalities of an ASIC chip.

Moreover, Chip planning is also performed.

50

Specification

RTL Coding Simulation Synthesis

Back-end
Front-end

Auto-Place-Rout
(APR)

Back Annotation
Post-layout

Timing Analysis
Logic

Verification

Tape out

Pre-layout Timing

Analysis

Specification

RTL Coding Simulation
Synthesis/Transl

ate

Back-end
Front-end

MapPlaceRoute

Generate BitFile

Figure 2.16: Simple Design Flow of ASICs

• RTL Coding : implements the architectures and micro-architectures

derived from the specification. The implementation is coded in synthesis-

able RTL, e.g. VHDL, Verilog etc.

• Simulation : generates the test benches to simulate RTL code. A test

bench is basically a wraparound environment surrounding a design. It

injects a specified set of stimuli into the inputs of the design in order to

check if the outputs of the design match designer expectations.

• Synthesis: converts the RTL code into logic gates which have the same

logic functionalities as described in the RTL code.

• Pre-layout Timing Analysis: builds the timing model for the syn-

thesised RTL code, which performs the timing analysis of the design.

This process catches any possible timing violations in the design when

used across specified temperature and voltage range.

• Auto-Place-Rout (APR): places and routes the synthesised logic gates.

This process owns some degree of flexibility, therefore, the designers can

place the logic gates of each module according to a pre-defined floor plan.

• Back Annotation : extracts the RC parasitics in the layout.

• Post-layout Timing Analysis: catches real timing violations, e.g.

hold and setup. This step is similar to pre-layout timing analysis, but

focuses on physical layout information.

• Logic Verification : acts as a final sanity check to ensure the design

has the correct functionalities. After this, the ASICs can be taped out.

51

2.6.4.2 Design Flow of FPGAs

Similar to the design flow for ASICs, the design flow for FPGAs is also divided

into front-end design and back-end design, see Figure 2.17.

Specification

RTL Coding Simulation Synthesis

Back-end
Front-end

Auto-Place-Rout
(APR)

Back Annotation
Post-layout

Timing Analysis
Logic

Verification

Tape out

Pre-layout Timing

Analysis

Specification

RTL Coding Simulation
Synthesis/Transl

ate

Back-end
Front-end

MapPlaceRoute

Generate BitFile

Figure 2.17: Simple Design Flow of FPGAs

Compared with the ASICs design flow (see Figure 2.16), the front-end

designs in the FPGAs design flow are nearly the same, except that pre-layout

timing analysis is not required. However, the back-end designs in the FPGAs

are totally different from the back-end designs in the ASICs design:

• Map: allocates translated/synthesised logic gates into CLBs and other

atomic elements of the target FPGA fabric.

• Place : configures mapped CLBs onto the device. Because the placement

algorithm is a version of the bin packing problem (NP-complete), this

step always takes a long time.

• Route : finalise the interconnects between the placed CLBs. This stage

tries to use the shortest interconnection lines to reduce the propagation

delay and power consumption.

• Bitfile Generation : converts the placed and routed design to a bitfile,

which can be used to configure a target FPGA and can be applied to an

exact FPGA.

2.6.5 Generic Fabric Designs

As introduced in Sections 2.6.4.1 and 2.6.4.2, the design flows of ASICs and

FPGAs are divided into back-end designs and front-end designs. Furthermore,

52

the front-end designs in both fabric designs are extremely similar, apart from

the synthesis stage. Therefore, a front-end design can be easily ported from

an ASIC to a FPGA and vice versa.

Normally, the front-end designs are implemented in Hardware Description

Language (HDL), e.g. VHDL, Verilog, etc. In the synthesis stage of both

fabric designs, HDL-built designs are synthesised/translated into logic gates,

and can then be used in the back-end designs. Therefore, the gate level design

is generic, which can be implemented in the back-end designs on an FPGA or

an ASIC.

The real-time I/O system proposed in this thesis is mainly designed and

implemented in front-end hardware design. Therefore, the prototype system

can be easily ported between FPGAs and ASICs.

2.7 Summary and Problem Statements

As introduced in Chapter 1, real-time I/O systems simultaneously require

performance, real-time guarantees and protection.

In this chapter (Chapter 2), we firstly reviewed the background of the the-

sis, i.e. real-time systems, I/O systems and system architectures. We then

reviewed work in the area of performance, real-time and protection features,

i.e. virtualization technologies and programmable timely I/O controllers. Fi-

nally, we introduced the two types of implementation fabric for embedded

systems, ASICs and FPGAs. This chapter is used in the thesis when explor-

ing the hypothesis presented in Section 1.5. In this section, we summarise

the major research described in this chapter and detail the existing research

problems.

Section 2.1 introduced the concept of real-time systems and what they

mean for predictability, for example, deriving the WCET. Two typical methods

used to estimate the WCET were described, static and measurement-based

analysis.

Section 2.2 introduced the idea of the three main components of an I/O

systems, I/O devices, I/O controllers and I/O drivers. Performance features

and real-time features of I/O systems were discussed and analysed, which leads

to the following research issues:

In I/O systems, the variety of I/O devices and I/O drivers

53

results in complexity in deriving the WCETs of I/O opera-

tions, which makes guaranteeing predictability problematic.

At the same time, the transmission latencies caused by de-

vice drivers and application process scheduling make timing-

accurate I/O control problematic. Moreover, the amount of

I/O drivers integrated into the systems lead to a significant

software overhead and longer I/O response time, which con-

flicts with performance features.

Therefore, the I/O systems significantly conflicts with

real-time features and performance features.

Section 2.3 introduced two typical classes of multi-core and many-core ar-

chitectures, i.e. bus-based multi-core architectures and NoC-based many-core

architectures, followed by review and analysis of the I/O systems in these ar-

chitectures. This section leads to the following research problems:

With the number of cores increasing, systems move from

single-core architectures to multi-core and many-core archi-

tectures. The introduction of resource management (proces-

sor scheduling and I/O contention) in multi-core and many-

core architectures magnifies the reduction in performance

and real-time features caused by conventional I/O systems.

Therefore, the performance features and real-time fea-

tures of I/O systems in multi-core and many-core architec-

tures can be worse than the I/O systems in single-core ar-

chitectures.

Section 2.4 discussed virtualization technologies, which can be divided into

two parts. The first part of this section introduced the basic ideas and classifi-

cations of virtualization technology, in order to clarify that they bring superior

protection features. The analysis of the popular virtualization technologies

(state-of-art) implies the following research difficulties:

Virtualization technology brings protection features, via the

indirection and interposition of privileged instructions, as

well as complicated shared resource management. These two

54

main issues lead to extra system overhead (in both hardware

and software), longer response time of the privileged instruc-

tions, reduced predictability and scalability.

Therefore, with virtualization technologies, the perfor-

mance features and real-time features of I/O systems are

reduced even further compared to multi-core and many-core

architectures. This is evidenced by the evaluation results in

Chapter 3.

In order to inherit the excellent protection features from virtualization

technologies, whilst alleviating the side effects of performance and real-time

features, related research on real-time virtualization and hardware-assisted

virtualization is reviewed in the second part of Section 2.4. Some approaches

provide excellent predictability, e.g. RT-Xen; some approaches can also alle-

viate reduction in performance features. However,

Currently existing approaches do not provide timing-accuracy,

enhanced I/O performance and scalability (they only allevi-

ate the reduction in performance features).

In order to achieve better timing-accuracy and predictability on I/O opera-

tions, Section 2.5 reviews two programmable timely I/O controllers, PRU and

TPU. Because both PRU and TPU enable pre-programming, the transmission

latencies between user programs and I/O devices can be removed. Nonetheless,

These I/O controllers cannot guarantee that an I/O oper-

ation occurs at a specific time in the future, i.e. they are

not absolutely timing-accurate. Moreover, both I/O con-

trollers require two 32-bit RISC cores, which generate addi-

tional hardware overhead, i.e. they are not resource efficient.

Also, the number of RISC cores determines the number of

I/O devices which can be operated in parallel, i.e. there is

poor scalability and parallel access

Section 2.6 can be divided into two parts. Specifically, in the first part,

the histories of ASICs and FPGAs were introduced, followed by the analysis

55

of their advantages and disadvantages. In the second part, a comparison be-

tween ASICs and FPGAs was presented, including their design flows, which

demonstrated how to make hardware designs generic between ASICs and FP-

GAs. The real-time I/O system proposed in this thesis is mainly designed and

implemented in front-end hardware design. Therefore, the prototype system

can be easily ported between FPGAs and ASICs.

56

Chapter 3

Real-time I/O System

In the thesis, we assume that performance features, real-time features and

protection features are simultaneously required by user applications. Although

our designed real-time I/O system is architecture-agnostic, we assume that

applications are implemented on a multi-core system, specifically an embedded

Network-on-Chip (NoC) to enable the timing accuracy of multiple I/O devices

in parallel.

In standard computer and embedded architectures, an I/O system can be

evaluated using multiple metrics, e.g. memory footprint and I/O throughput

etc [72, 90]. This chapter presents the basic idea of the expected features

in real-time I/O systems, as well as the corresponding evaluation metrics of

performance features, real-time features and protection features. Moreover,

the evaluated results, with regard to the expected features of the baseline

systems, are also demonstrated.

For the purposes of the discussion in this thesis, we define the following

terms in this way:

• I/O request — Sent directly from a user application. It could be a high-

level abstracted command, which cannot be used directly on an I/O

controller.

• I/O instructions — Can be used to control an I/O device controller

directly.

57

3.1 Baseline Systems

In this thesis, all designs and evaluation experiments are implemented on

Xilinx ZC706 and VC709 development boards [20]. The many-core system

adopted in the thesis is a 2D mesh type open source NoC called BlueShell [95],

implemented using Bluespec System Verilog (BSV) [4]. Further implementa-

tion is detailed in Appendix B. The number of processors (i.e. MicroBlaze [11])

in BlueShell can be scaled from 1 to 2, 4, 9, 16. . . . The RTOS running on

each processor is FreeRTOS (kernel version, FreeRTOS v9.0.0). An example

of a 4x5 size NoC with 16 processors is shown in Figure 3.1.

Figure 3.1: Example of a Baseline System

M - Microblaze R - Router

Note that, in the different evaluation experiments, the size of the NoC and

the number of processors may vary. The evaluated I/O devices can be GPIO,

SPI NOR-Flash, VGA or Ethernet, etc.

In the following sections, the basic concept of the six expected features in a

real-time I/O system and the corresponding evaluation metrics are illustrated.

The evaluated results of a corresponding baseline system are given and detailed

information on the baseline system will also be shown in tabular form (see

58

Table 3.1: Baseline System Information

Evaluated

Feature

Evaluated

I/O Device

Size of

NoC

Number of

Processors

Display

Method

Table 3.1).

3.2 Performance Features

In this thesis, the performance features of an I/O system include enhanced

I/O performance and scalability.

3.2.1 I/O Performance

I/O performance is normally evaluated using I/O response time and I/O

throughput. Specifically, if an I/O operation is requested by a user application

at time Tr and completed by the I/O device at time Tc, the I/O response time

R can be calculated as:

R = Tr − Tc (3.1)

A smaller R implies a shorter I/O operation execution time, and therefore

better I/O performance. The units of I/O response time (R) are normally

seconds (s), milliseconds (ms), microseconds (us) and nanoseconds (ns).

The quantity of data (Q) handled by an I/O device in a specific time

duration (τ) is measured by I/O throughput (C).

C =
Q

τ
(3.2)

A higher C means more data can be handled in a fixed time duration giving

better I/O performance. The unit of I/O throughput is normally megabytes

per second (MB/s), kilobytes per millisecond (KB/ms) and bytes per mi-

crosecond (B/us), etc.

Therefore, a smaller I/O response time (R) and a larger I/O throughput

(C) are required by a real-time I/O system.

Information on the baseline system used to evaluate the I/O performance is

detailed in Table 3.2. The I/O response time and throughput in the proposed

59

real-time I/O system are compared with the baseline systems via tables and

bar charts. The required enhancement to I/O performance is demonstrated

by comparing the I/O response time and I/O throughput between baseline

systems and proposed systems. Therefore, the I/O response time and I/O

throughput in a baseline system are not shown in this chapter, rather, the

comparison results are shown in Chapter 4, 6 and 7.

Table 3.2: Baseline System — I/O performance

Evaluated

Feature

Evaluated

I/O Device

Size of

NoC

Number of

Processors

Display

Method

I/O Performance SPI Flash 3x3 4 Bar Chart

3.2.2 Timing Scalability Model

The scalability of an I/O system in terms of timing can be considered by

evaluating the average response time of an I/O device (R) in a many-core

system with a different number of processors. In the experimental systems,

only one application is set to run on each processor, which continues to send

I/O requests. The experiment settings aim to achieve the same context in

different systems in different experiments, while the I/O achieves maximum

throughput.

In theory, the optimal average I/O response time (RN) in a n-core system

should be n times the average I/O response time, as in a single-core system

(R1). Such a system would be timing scalable. In practice, the difference

between the actual and optimal average I/O response times in an n-core system

is regarded as the performance loss by the I/O system, termed ∆R:

∆R = RN − n ∗R1 (3.3)

The average I/O performance loss for each processor is calculated as ∆r:

∆r =
RN − n ∗R1

n
(3.4)

In a many-core system, if ∆r = 0, it means no loss of I/O performance

occurred, compared to a single-core system. Conversely, a larger ∆r implies a

reduction of I/O performance and reduced timing scalability of the evaluated

I/O system.

60

Table 3.3: Baseline System — Timing Scalability

Evaluated

Feature

Evaluated

I/O Device

Size of

NoC

Number of

Processors

Display

Method

Timing Scalability SPI Flash 4x4 1, 4, 9 Table

The timing scalability of an I/O system can be evaluated in existing single-

core and many-core (NoC-based) architectures. (For baseline systems, see

Table 3.3).

The average I/O response time of reading one byte of data from an SPI

NOR-flash and the corresponding ∆r in different architectures with different

scheduling policies are shown in Table 3.4. (Further experiment design is

described in the Section 6.4). It is clear that in traditional many-core systems

(baseline systems), with the number of processors increased, ∆r also increases

drastically, which implies a significant reduction in I/O performance and poor

scalability of the I/O system.

Therefore, the proposed I/O system is expected to have a smaller increment

Table 3.4: Timing Scalability Model in Single-core, 4-core and 9-core

Baseline Systems (unit: clock cycle)

Scheduling Policy: RR

(Global)

Scheduling Policy: FIFO

(Local)

Processor Index R ∆r R ∆r

Single-core Baseline System

(0,0) 513 0 408 0

4-core Baseline System

(0,0) 9015

1750

2916

284
(0,1) 8995 2875

(1,0) 9213 2638

(1,1) 8985 2645

9-core Baseline System

(0,0) 36060

3535.8

9357

496.5

(0,1) 35860 8915

(0,2) 36049 8415

(1,0) 36237 8203

(1,1) 36410 9748

(1,2) 36576 7476

(2,0) 36741 7467

(2,1) 36930 7576

(2,2) 37102 6121

61

in ∆r as the number of processors increases, compared to baseline systems.

3.3 Real-time Features

As described in Section 1.3, the real-time features of an I/O system contain

predictability and timing-accuracy.

3.3.1 Predictability

In real-time systems, the predictability of a task requires the range of its

execution time to be determined (in particular, the Worst-Case Execution

Time (WCET)), which aims to show that the task is able to meet any timing

constraints. In both academia and industry, the WCET is normally achieved in

two ways, static analysis and measurement-based analysis. These two methods

are introduced in Sections 2.1.2.1 and 2.1.2.2, respectively.

In this research, the measurement-based analysis is adopted to evaluate the

predictability of an I/O system. In the analysis, an experiment measuring the

I/O response time when reading an SPI NOR-flash was executed 1,000 times

and the corresponding I/O response time (R) was recorded. The variance

of the I/O response time across 1,000 executions of the experiment indicated

the predictability of the I/O system, with a larger variance indicating worse

predictability.

The predictability of an I/O system can be evaluated in existing single-core

and many-core NoC-based architectures. (For baseline systems, see Table 3.5).

In the evaluations, the I/O requests of the SPI NOR-flash read 1, 4, 8, 16 bytes

of data. (Further experiment design is described in Section 5.4 and Section 4.3)

Table 3.5: Baseline System — Predictability

Evaluated

Feature

Evaluated

I/O Device

Size of

NoC

Number of

Processors

Display

Method

Predictability SPI Flash 4x4 9 Table

As shown in Table 3.6, the variation in I/O response time across 1,000

iterations of the experiment in a 9-core system can be increased to 284,142

clock cycles while requesting to read 16 bytes of data.

Therefore, a smaller variance is required by a real-time I/O system, giving

better predictability compared to a baseline system.

62

Table 3.6: I/O Response Time in Baseline Systems (unit: Clock Cycles)

Scheduling Policy: Scheduling Policy:

Written Bytes Local FIFO Global Round-Robin

Worst Case Variation Worst Case Variation

1 9,357 1,541 65,885 59,736

4 58,844 7,061 327,813 286,733

8 936,166 98,026 4,555,159 3,823,104

16 3,702,565 284,142 17,345,151 15,475,355

3.3.2 Timing-accuracy Model

The error in the timing-accuracy of I/O operations is defined as the absolute

time difference between the time at which an I/O operation is required (Tr)

and the actual time that the I/O operation (e.g. read) occurs (Ta):

E = Tr − Ta (3.5)

Thus a smaller E implies a higher timing-accuracy of the I/O operation.

If E equals 0, this I/O operation occurs at the expected time - i.e. totally

timing-accurate. In practice, if E is less than one cycle period, then the I/O

operation occurred at the required clock cycle.

The timing-accuracy that can be achieved in existing single-core and many-

core architectures (for baseline systems, see Table 3.7) can be assessed by

constructing a system on FPGA and measuring the effect of the latencies

between the application and I/O device on the timing-accuracy of the I/O.

Table 3.7: Baseline System — Timing-accuracy

Evaluated

Feature

Evaluated

I/O Device

Size of

NoC

Number of

Processors

Display

Method

Timing-accuracy GPIO 4x4 9 Table

Errors found in 1,000 test runs for four systems are given in Table 3.8.

(Further experiment design is described in Section 5.4.1). It is clear that,

even in a single-core system, E is not close to a single cycle, with the timing

error in multi-core and many-core systems considerably worse due to com-

munication bottlenecks and contention of the system. With a VMM added,

this issue is magnified further. Note that the experiment only measures hard-

63

ware latencies (across buses/NoC meshes) of I/O instructions issued by the

application CPU. Therefore, clearly software effects (control/data flow within

code), scheduling (between competing software tasks), real-time OS system

calls and the implementation of I/O virtualization would add considerably to

the overall latencies in Table 3.8.

Therefore, a certain WCET and none error in timing-accuracy (E = 0) are

required by the I/O system — real-time features.

Table 3.8: The Errors in Timing-accuracy of I/O Operations in Baseline

Systems (unit: ns)

CPU Index
E

Minimum Median Mean Maximum

Single-Core Architecture

2090.0 2090.0 2012.5 2100.00

Dual-core Architecture

Core 0 2440.0 2480.0 2477.2 2500.0

Core 1 2446.0 2450.0 2470.0 2490.0

NoC-based Many-core Architecture

(Scheduling Policy: Local FIFO)

(0,0) 3140.0 3140.0 3145.8 3160.0

(0,1) 3000.0 3000.0 3005.8 3020.0

(0,2) 2790.0 2790.0 2795.8 2810.0

(1,0) 2720.0 2720.0 2725.8 2740.0

(1,1) 3070.0 3070.0 3075.8 3090.0

(1,2) 2860.0 2880.0 2899.4 2940.0

(2,0) 2580.0 2580.0 2585.8 2600.0

(2,1) 2650.0 2650.0 2655.8 2670.0

(2,2) 2860.0 2930.0 2902.2 2950.0

NoC-based Many-core Architecture

(Scheduling Policy: Global RR)

(0,0) 4220.0 4220.0 4045.6 4260.0

(0,1) 4000.0 4000.0 4010.2 4080.0

(0,2) 3800.0 3800.0 3890.8 3920.0

(1,0) 3780.0 3780.0 3802.2 3840.0

(1,1) 4070.0 4070.0 4078.8 4100.0

(1,2) 3860.0 3880.0 3920.0 4000.0

(2,0) 3620.0 3620.0 3670.8 3760.0

(2,1) 3710.0 3710.0 3715.2 3770.0

(2,2) 3860.0 3930.0 3940.2 3980.0

64

3.4 Protection Features

As described in Section 1.4, the protection features of an I/O system include

parallel accesses and isolation.

3.4.1 Parallel Access

The feature of parallel access means different user applications request (an)

I/O device(s) at the same time.

Parallel access of an I/O system is normally evaluated through the error

of timing-accuracy of different I/O operations (E). For example, two user

applications are both required to access I/O devices at time T0. If the E of

the I/O operations requested from the two user applications are both equal to

0, the I/O system enables the feature of parallel access.

3.4.2 Isolation

Isolation requires the independence of I/O operations, which means the I/O

operations requested from a user application should never be affected or at-

tacked by a side channel. Because isolation is hard to verify using experiments,

a discussion around supporting mechanisms is given in Section 2.4.

Currently, the most widely adopted methodology for achieving both paral-

lel access and isolation is virtualization technology. As demonstrated in [93],

[90], [109] and [103], the features of parallel access and isolation are already

well supported by virtualization technologies. Some related work is reviewed

in Section 2.4.

3.5 Summary

In this chapter, we described the basic concepts of the features required by

real-time I/O systems, I/O performance, scalability, predictability, timing-

accuracy, parallel access and isolation, followed by the description of each

feature. We also proposed evaluation metrics corresponding to the features

and some measured results in traditional architectures – baseline systems.

From the evaluation results, we noticed that protection features (i.e. par-

allel access and isolation) are already fully supported by virtualization tech-

nology. However, performance features (i.e. enhanced I/O performance and

scalability) and real-time features (i.e. predictability and timing-accuracy) of

65

I/O systems in traditional architectures suffer from significant effects when

the number of processors/cores is increased. With virtualization technolo-

gies deployed, the reductions are magnified even further. This implies that

supporting good performance features and real-time features for I/O systems

in multi-core and many-core systems is difficult. Furthermore, the difficulty

will be magnified even further, if virtualization technologies are employed (for

performance and real-time features).

66

Chapter 4

VCDC: The Virtualized

Complicated Device

Controller

As described in Chapter 1, Section 1.4 and 1.2, research question 3 is related

to the research question 1. Specifically, research question 1 asks “How can

I/O performance in real-time systems be enhanced by an increased number of

cores?”; and part of the research question 3 is “How can performance features

and real-time features for I/O systems be achieved while I/O virtualization is

deployed (to achieve protection features)?” (Note that, the real-time features

are also required by research question 3). The aims of this chapter are to

examine research question 1, and the performance requirements of research

question 3.

Specifically, I/O virtualization enables time and space multiplexing of I/O

devices, by mapping multiple logical I/O devices upon a smaller number of

physical devices. However, due to the existence of additional virtualization

layers (i.e. VMM), requesting an I/O device from a guest virtual machine

requires a complex sequence of operations. This leads to I/O performance

loss, and makes precise and predictable timing of I/O operations problematic

(the details are specifically introduced in Section 2.4.3).

This chapter proposes a hardware I/O virtualization system, termed the

Virtualized Complicated Device Controller (VCDC). This I/O system allows

user applications to access and operate I/O devices directly from guest VMs,

and bypasses the guest OS, the Virtual Machine Monitor (VMM) and low layer

67

I/O drivers. We show that the VCDC efficiently reduces the software overhead

and enhances the I/O performance (performance feature), predictability and

timing-accuracy (real-time features). Furthermore, VCDC also exhibits good

scalability that can handle I/O requests from a variable number of processors

in a system.

This chapter has five sections. Specifically, Section 4.1 proposes an overview

of VCDC, including some brief background, context, and high level design

ideas. Section 4.2 introduces the specific design and implementations of VCDC.

Afterwards, the evaluations on VCDC is demonstrated in Section 4.3. At last,

the summary of this chapter is given in Section 4.4.

4.1 Overview

4.1.1 Background

In the last decade, virtualization technology has been widely used not only in

server and desktop platforms, but also in embedded systems [102]. Using vir-

tualization brings superior benefits for the whole system, including increased

resource utilization, reduced volume and cost of hardware, and a better load

balance in cores [102] [33] [111].

In real-time systems, the primary benefits offered by virtualization are

parallel access and isolation (protection features). Specifically, guest virtual

machines (VMs) are logically isolated, which means the applications executed

in one guest VM can never affect the other virtual machines, even if it breaks

down. The feature of isolation also brings significant support for the timing

analysis of the tasks in a virtual machine [59]. Note that the isolation in

virtualization technology can be split into temporal and spatial isolation. As

mentioned in Section 2.4.1.2, the thesis mainly focuses on temporal isolation.

In real-time systems, the I/O performance is often a bottleneck of an I/O-

bound system [44], which mainly results from the very slow processing speed

of normal I/O devices compared to CPUs. This results in a performance

reduction for the whole system. When it comes to multi-core and many-core

systems, these issues are magnified, because of CPU scheduling and contention

over I/O resources. For example, in a traditional bus-based multi-CPU system,

if an I/O operation is requested by a user application, the system should

deal with the scheduling of cores inside one CPU as well as the I/O resource

scheduling among all the CPUs. These issues are magnified with virtualization

68

technology. When an application invokes an I/O request from a guest Virtual

Machine (VM), this I/O request will be transmitted via low layer drivers to

the guest OS, Virtual Machine Monitor (VMM) and Host OS, which results

in a serious loss of the system and I/O performance, see Figure 1.1.

Furthermore, virtualization technology can also impact the real-time fea-

tures of an I/O system (specifically introduced in Section 2.4.3). Briefly, in a

single-core system, latencies caused by device drivers and application process

scheduling make predictable and timing-accurate I/O control problematic. In

many-core systems, these issues are magnified: the transmission latencies from

a processor to an I/O controller can be substantial and variable due to the

communication bottlenecks and contention. These issues are magnified even

further with virtualization technology. Virtualizing one physical I/O to mul-

tiple virtual I/Os, complex I/O resource management (e.g. scheduling and

prioritization) and the complicated path of an I/O request worsen the trans-

mission latencies from a processor to an I/O controller. Hence, it is difficult

for an application from a guest VM to issue an I/O operation that will result

in a timing-accurate device level I/O operation.

Virtualization relies on hardware support, therefore today’s chip manu-

facturers have promoted different technologies for I/O virtualization in order

to mitigate these issues. Intel’s Virtualization Technology for Directed I/O

(VT-D) [68], which can provide a direct I/O access from guest VMs, is one

example. The IOMMU [39] is applied to commercial PC-based systems to

offload memory protection and address translation, in order to provide a fast

I/O access from guest VMs. However, even with hardware assistance, the I/O

performance from the guest VMs cannot reach the original I/O performance

in a system without virtualization, let alone improve on it. Achieving tim-

ing accuracy of I/O operations in a virtualized system, even with hardware

support is difficult [122].

4.1.2 Design Idea

To overcome these issues, a hardware I/O system for multi-core and many-

core systems was designed. The contribution of this chapter is the Virtualized

Complicated Device Controller VCDC, which integrates the VMM and I/O

drivers into the hardware layer, thus achieving significant improvements of

I/O performance in guest VMs. The VMM in VCDC virtualizes a physical

I/O device to multiple virtual I/O devices for guest VMs. For example, in

69

a 16-core system, the VMM can separate a single monitor into 16 individual

partitions and provide access interfaces for each guest VM. In addition, the

I/O drivers in VCDC provide high layer control interfaces for the guest VMs.

With VCDC, the user applications in a guest VM are able to operate an I/O

via very simple requests. Furthermore, if a user application is going to request

the VGA controller to display a character from a guest VM, such as ‘A’, at

coordinate (2, 1), the user application is only required to transfer the ASCII

of the character followed by its coordinates to the VGA part inside VCDC,

that is ‘0x41’ ,‘0x02’, ‘0x01’.

The VCDC utilises a timing-accurate I/O controller [120] to provide clock

cycle level accurate I/O operations (more details, please see Chapter 6).

4.2 Virtualized Complicated Device Controller (VCDC)

Having presented the I/O problems suffered by virtualization technology in

many-core and multi-core real-time systems, in this section we proceed by

introducing our proposed Virtualized Complicated Device Controller (VCDC),

which enables:

• Better I/O performance (performance feature) — Includes the lower re-

sponse time of I/O operations and higher I/O throughput.

• Scalability (performance feature) — We propose a distributed imple-

mentation. When the VCDC is employed, to add one more CPU into

a system, the user applications are only required to add one group of

dedicated CPU FIFO, which aims to provide an interface between the

added CPU and the VCDC.

• Predictability (real-time feature) — I/O operations requested from a

guest OS are more predictable than under conventional virtualization.

• Cycle level timing-accuracy (real-time feature) — All I/O operations

over the GPIO pins can be issued with an accuracy of a single cycle via

being integrated with our clock cycle level timing-accurate I/O controller

[120].

• Lower software overhead — Moves the VMM and low level I/O drivers

from kernel mode (at the software level) to the VCDC.

70

• Abstracted high layer access — The user application in a guest virtual

machine is able to request and operate an I/O device via invoking simple

high layer drivers. For example, a user application can request to read a

series of data from an SPI-Flash by sending a request with parameters

to the VCDC: “Read SPI-Flash (instruction), from the start address to

the end address (parameters)”.

• Global arbitration — We propose a modularized implementation, whereby

the scheduling policy of the arbiter can be switched easily between round

robin, fixed priority and customized scheduling policies [21].

4.2.1 Virtualization in the VCDC Systems

VCDC provides I/O virtualization for guest VMs, such that a physical I/O

device can be virtualized to multiple virtual I/Os for each virtual machine. In

a system with VCDC, the I/O virtualization has the following features:

• Bare-metal virtualization [102] - Host OS is not required. A guest OS

can be executed on a processor, directly.

• Para-virtualization [77] - The I/O management module of a guest OS

should be replaced by our high layer I/O drivers, which can significantly

reduce the software overhead.

The VCDC transforms each high level I/O request to single or multiple

I/O instruction(s), that can be used on the physical I/O directly. For exam-

ple, in our prototype implementation, a physical monitor (VGA controller) is

virtualized into four sections. The screen of the monitor is separated into four

sections by VCDC, which is used to display the content sent from each guest

VM. In each VM, the initial coordinate of the (virtual) screen is (0, 0), which

is respectively mapped to the following physical coordinates of the screen: (0,

0), (0, 100), (0, 200) and (0, 300). When a user application in the guest VM

#3 sends an I/O request “Display ‘Hello World’ at coordinate (0, 0)”, the

VCDC will transform this request to “Display ‘Hello World’ at coordinate (0,

300)” and send corresponding instructions to the VGA controller.

4.2.2 Guest Virtual Machine and Guest OS

In our approach, each processor has an individual guest VM. As bare-metal

virtualization is deployed (no host OS required), in each guest VM, a guest OS

71

is able to execute in kernel mode to achieve full functionality. Given that the

VCDC provides part of the device driver, we also employ para-virtualization

(modified OS kernel) to reduce software size, which we build using some high

layer I/O drivers to replace the original I/O manager. Currently, we have

provided three modified OS to support the I/O virtualization [21], which are

FreeRTOS [7], ucosII [19] and Xilkernel [29]. In Figure 6.3, we use FreeRTOS

as an example to illustrate the modification of a guest OS kernel in the VCDC

systems.

Application

Kernel Mode
User Mode

FreeRTOS

FreeRTOS I/O Manager

Low Layer I/O Driver

I/O

OS Kernel

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

Fr
e

e
R

TO
S_

O
p

e
n

()

Fr
e

e
R

TO
S_

W
ri

te
()

Fr
e

e
R

TO
S_

R
e

ad
()

Fr
e

e
R

TO
S_

IO
ct

l(
)

Application

Kernel Mode

User Mode

FreeRTOS

Virtualized I/O

OS Kernel

High Layer I/O Driver

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

V
C

D
C

_O
p

e
n

()

V
C

D
C

_W
ri

te
()

V
C

D
C

_R
e

ad
()

V
C

D
C

_I
O

ct
l(

)

Guest VM

Hardware

Hardware

CPU
CPU

Figure 4.1: FreeRTOS Kernel in a non-VCDC systems

Application

Kernel Mode
User Mode

FreeRTOS

FreeRTOS I/O Manager

Low Layer I/O Driver

I/O

OS Kernel

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

Fr
e

e
R

TO
S_

O
p

e
n

()

Fr
e

e
R

TO
S_

W
ri

te
()

Fr
e

e
R

TO
S_

R
e

ad
()

Fr
e

e
R

TO
S_

IO
ct

l(
)

Application

Kernel Mode

User Mode

FreeRTOS

Virtualized I/O

OS Kernel

High Layer I/O Driver

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

V
C

D
C

_O
p

e
n

()

V
C

D
C

_W
ri

te
()

V
C

D
C

_R
e

ad
()

V
C

D
C

_I
O

ct
l(

)

Guest VM

Hardware

Hardware

CPU
CPU

Figure 4.2: FreeRTOS Kernel in a VCDC system

Compared with the original FreeROTS kernel (Figure 4.1), the user ap-

plication in a guest VM in VCDC system (Figure 4.2) is able to access and

72

operate I/O via the high layer I/O drivers, which are independent of the core

module of the FreeRTOS.

Additionally, user applications running on the original FreeRTOS kernel

can be ported to the modified kernel directly in a VCDC system (without any

modification), since we have not modified the OS interfaces.

4.2.3 Overall Architecture

A typical use of the VCDC within a NoC architecture is shown in Figure 4.3

– all the I/O functions are performed by the VCDC rather than remotely by

software.

OS Kernel

I/O #1

VM 1 VM 2 VM n…

VCDC

Virtual
I/O #1

Virtual
I/O #1

Virtual
I/O #1

Software

Hardware

VCDCI/O

CPU

I/O

I/O I/O

SW

HW

R

R

R

R

R

R

R

R

R

VM

CPU

SW

HW

VM

User
Application

FreeRTOS
High Layer I/O

Driver

Guest Virtual Machine

Kernel Mode

User Mode System Calls

Figure 4.3: Overall architecture of a NoC with VCDC

VM - Virtual Machine; R - Router / Arbiter

At run-time, an application in a guest VM can invoke a high layer I/O

driver on the VCDC to achieve the required I/O. The communications packets

are transferred between the CPU and the VCDC via routers in the NoC. As

an example, the path of such an I/O request message is shown in Figure 4.3

as a red line.

Note that use of a NoC is not required by VCDC — alternatively, a shared

bus could be used. However, in the experiments presented in this thesis use a

73

NoC architecture.

VCDC

Memory

I/O Controller 1

I/O Low Layer Driver 1

I/O Controller 2

I/O Low Layer Driver 2

I/O 1

I/O 2

I/O VMM 1

I/O VMM 2

Memory
Access

Module

I/
O

 V
M

M
_1

I/
O

 V
M

M
_

2

I/
O

 V
M

M
_3

I/
O

 V
M

M
_0

…..

Hardware
Manager

Many-Core System

Figure 4.4: Architecture of VCDC

• Hardware Manager - Provides the interface to/from application CPUs

via the NoC mesh.

• I/O Virtual Machine Monitor (I/O VMM) - Provides the functionality

of virtualization for I/O devices.

• I/O Low Layer Drivers - Encapsulates the corresponding drivers of the

specific I/O controllers (via I/O instructions).

• I/O Controllers - Controls the I/O devices, and can be driven by the

low layer drivers directly.

• Memory Access Module - Provides the memory access interfaces for I/Os.

4.2.4 Detailed Architecture

These architectural elements are detailed in the following subsections.

4.2.4.1 Hardware Manager

The hardware manager is responsible for communicating with application

CPUs, allocating incoming messages (I/O requests) from different CPUs to

74

corresponding I/O VMMs, as well as allocating response messages (I/O re-

sponses) from I/O VMMs back to CPUs. The architecture of the hardware

is shown in Figure 4.5, with the right hand part allocating incoming requests

from the NoC; and the left hand part taking ending data back to CPUs from

VCDC.

Control Signal

Child
I/O

VMM 1

Child
I/O

VMM 2

Child
I/O

VMM n
…

BlueGrass

Scheduler

Instruction
Translation

Module

Lib: ANSI
Escape Code

Instruction
De-

Translation
Module

Receive UART instruction from
VM #A to print a string S

Get the virtual coordinate (Xv,
Yv) of the cursor in the virtual

console of VM #A

Convert the virtual coordinate
to the physical coordinate (Xp,

Yp) of the console

Use the ANSI Escape Code to
move the cursor to (Xp, Yp) of

the console

Print the string S

Child I/O VMM n

I/O Driver 1 I/O Driver 2 I/O Driver n

I/O
VMM n

Control Signal

Scheduler

I/O
VMM_1

Many-Core System
Memory
Access

Module

VMM
I/O

Controllers

Memory
Write

Memory
Read

Memory Access:
BlueTree

… I/O
VMM n

I/O
VMM_1

…

Figure 4.5: Architecture of Hardware Manager

The hardware manager is responsible for communicating with application

CPUs, allocating incoming messages (I/O requests) from different CPUs to

corresponding I/O VMMs, as well as allocating response messages (I/O re-

sponses) from I/O VMMs back to CPUs. The architecture of the hardware

is shown in Figure 4.5, with the right hand part allocating incoming requests

from the NoC; and the left hand part taking ending data back to CPUs from

VCDC.

The right hand part of the hardware manager is mainly comprised of one

input FIFO, a multiplexer and multiple output FIFOs (dependent on the num-

ber of I/O VMMs). The output FIFOs are connected to the different I/O

VMMs. Similarly, the left hand part of the hardware manager is mainly com-

prised of multiple input FIFOs (dependent on the number of I/O VMMs), a

multiplexer, an output FIFO and a scheduler. The input FIFOs are connected

to the I/O VMMs, in order to receive the data to be sent back to the CPUs.

The scheduler controls the multiplexer to choose which input FIFO can trans-

mit data into the output FIFO (if neither input FIFO is empty the FIFOs are

75

chosen in a round-robin manner).

Additionally, the FIFOs used to connect with I/O VMMs can be connected

to I/O controllers directly, which assists in supporting different I/O devices.

4.2.4.2 I/O VMM

I/O VMM maintains the virtualization of I/O devices. Considering that the

functionalities and features of I/O devices are different, it is very difficult to

build a general-purpose module to achieve virtualization for all kinds of I/O

devices. Therefore, this thesis concentrates upon specific-purpose I/O VMM

for commonly used I/O devices – eg. UART, VGA, DMA, Ethernet, etc.

Users can also easily add their customized I/O VMM into VCDC via provided

interfaces [21]. All of these I/O VMMs have a general architecture, see Figure

4.6.

The general architectures of the I/O VMMs are the same, except for the

virtualization module. The I/O VMM is comprised of two groups of commu-

nication FIFOs, four multiplexers, two schedulers, groups of dedicated CPU

…

Virtualization Module

Dedicated
CPU FIFO

Scheduler_1

Scheduler_2

Low Layer I/O Driver

Hardware Manager

Control Signal

Control Signal

Figure 4.6: Architecture of Hardware Manager

76

FIFOs and a virtualization module.

The two groups of communication FIFOs are connected with the hardware

manager and a low layer I/O driver respectively, providing the communication

interfaces between the hardware manager and the low layer I/O drivers. The

dedicated CPU FIFOs are built to store the I/O requests sent from different

CPUs and I/O response messages sent back from the I/O (as buffers); one

CPU owns an individual group of dedicated CPU FIFOs. The number of

groups of dedicated FIFOs is generic, so that users can add any number (max-

imum to 64) of dedicated CPU FIFOs into the VCDC [21], which provides

scalability. The two schedulers take charge of the scheduling of I/O requests

and I/O response. Specifically, Scheduler 1 determines which I/O request can

be served by the virtualization module first, and Scheduler 2 determines which

I/O response can be sent back to the hardware manager first.

The virtualization module transforms I/O requests (sent to a virtual I/O)

to I/O instructions (can be used to control a physical I/O). The implemen-

tation of this virtualization module depends on the specific I/O devices to be

controlled. Currently, we have provided the virtualization modules for many

commonly used I/O devices, including UART, VGA, DMA, Ethernet and an

SPI NOR-flash. This thesis (including Section 4.3.3) focusses upon the virtu-

alization module for Ethernet as an example I/O virtualization module.

4.2.4.3 Low Layer I/O Driver

Low layer I/O drivers take charge of encapsulating the specific I/O drivers

for a specific I/O controller (shown in Figure 4.7). Users can also easily add

their customized low layer I/O drivers via our provided interfaces [21]. We

encapsulate the functions of I/O drivers into separate hardware modules, e.g.

read the data from a specific address of the SPI NOR-flash.

As shown, a low layer I/O driver is comprised of two FIFOs (one input

and one output), two multiplexers, one mutex and multiple functions of I/O

drivers. Specifically, the input FIFO is responsible for receiving I/O instruc-

tions from I/O VMM, and the output FIFO takes charge of receiving I/O

responses from the I/O controller. In order to guarantee that the low layer

I/O driver is able to execute the I/O instructions in the same sequence as they

are sent by the I/O VMM, a mutex is added. While instructions are being

carried out by one of the hardware functions, other I/O instructions must be

blocked to wait to access the I/O controller.

77

Control Signal

Func 1 Func 2 Func n…

I/O VMM

I/O
Controller

Mutex

Figure 4.7: Architecture of I/O Low Layer Driver

4.2.4.4 Memory Access Module

VCDC also provides an interface to access the external memory (DDR), which

is named BlueTree [62]. I/O devices are able to use this interface to read

and write the external memory, such as the DMA. We will not introduce the

implementation of the memory access module in this chapter; for more details

please see [62], [60] and [61].

4.2.4.5 Timing-accurate Real-time I/O Controller

Clock cycle level timing-accurate I/O operations can be achieved by connecting

the GPIO Command Processor (GPIOCP) [120] — see Chapter 5; and the

integration of VCDC and GPIOCP is in Chapter 6.

4.3 Evaluation

The VCDC was implemented using Bluespec [4] and synthesised for the Xilinx

VC709 development board [20] (further implementation details are given in

Appendix A and B). The VCDC is connected to a 4 x 5 size 2D mesh type

open source NoC [95] containing 16 Microblaze processors [11] running the

78

modified guest OS FreeRTOS (v9.0.0) in the guest VM. The modification of

the FreeRTOS is described in Section 4.2.2. The architecture is shown in

Figure 4.8.

R

R

R

R

R

R

M

M

（0， 0）

（0， 1）

VCDC

SW

HW

VM

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

I/O I/O T

R

R

R

R

R

R

M

M

SW

HW

VM

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

RR

M

SW

HW

VM

RR

M

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

M

SW

HW

VM

RR RR

Figure 4.8: Experimental Platform

R - Router / Arbiter; M - Microblaze;

VM - Guest Virtual Machine; T - Timer

To enable comparison, a similar hardware architecture was built, but with-

out the VCDC and I/O virtualization – note that this architecture requires

I/O operations requested by Microblaze to pass through the mesh to the I/O

rather than being controlled by a VCDC. The OS running on each Microblaze

is FreeRTOS (v9.0.0) with its official I/O management module [6]. Note that,

the non-VCDC system does not support any virtualization, instead, the I/O

scheduling is achieved via the I/O manager in FreeRTOS. Both architectures

run at 100 MHz.

79

4.3.1 Performance features: Response Time of I/O Operations

This experiment evaluates the performance of the I/O system whilst CPU and

I/O are fully loaded in a VCDC and non-VCDC system. In both architectures,

9 CPUs are active, whose coordinates are from (0, 0) to (0, 2), (1, 0) to (1, 2)

and (2, 0) to (2, 2). In both architectures, all the active CPUs have an inde-

pendent application that is set to be running, which continuously reads data

from an SPI NOR-flash (model: S25FL128S). Specifically, the experiments are

divided into four groups, depending on the read bytes in each I/O request: 1,

4, 64 and 256. All the experiments are implemented 1000 times and recorded

in tables. A lower I/O response time indicates a higher performance of the

corresponding I/O system. We name the experiments according to the global

scheduling policy and bytes of read data in one I/O request. For example,

non-VCDC-RR-4B stands for a non-VCDC system with round-robin global

scheduling policy; and 4 bytes of data read from the NOR-flash in one I/O

request.

In the non-VCDC architecture, we modify the I/O management of FreeR-

TOS to be suitable for many-core systems1. While the user applications on

different CPUs are requesting the I/O at the same time point, the scheduling

policy can be set as FIFO (non-VCDC-FF) and Round-Robin (non-VCDC-

RR) respectively.

Results of 1000 experiments are given in Table 4.1, showing that the re-

sponse time of I/O requests in the non-VCDC architecture is significantly

higher for the reading of 1 byte, 4 bytes, 64 bytes or 256 bytes from the NOR-

flash, especially while Round-Robin scheduling policy being employed. For ex-

ample, the average response time of non-VDCD-RR-1B is higher than 360, 000

ns (36, 000 clock cycles). In contrast, in VDCD-1B, the worst I/O response

time is lower than 4, 000 ns (400 clock cycles). The high I/O response time

in non-VCDC-RR is mainly caused by the software implementation of round-

robin I/O scheduling policy (complicated on-chip communication is required).

In experiments with more bytes being read, the VCDC system maintains its

superior performance. For example, in VCDC-256B, the I/O response time

is lower than 900, 000 ns (90, 000 clock cycles), which is similar to the worst

case of the I/O response time in non-VCDC-RR-1B - 658, 850 ns (65, 885 clock

cycles).

1The I/O management in FreeRTOS is designed for a single-core system; in our experi-

ments, we modify it to be suitable for many-core systems.

80

Table 4.1: I/O response time in VCDC and non-VCDC systems (unit: clock

cycle)

Non-VCDC System

Scheduling Policy: FIFO

Non-VCDC System

Scheduling Policy: RoundRobin
VCDC System

CPU Index Min Max Mean Min Max Mean Min Max Mean

Read 1 Byte

(0, 0) 9357 9357 9357 6149 65885 36060 285 285 285

(0, 1) 7425 8989 8915 7073 65849 35860 380 403 396

(0, 2) 7057 8598 8415 7096 65849 36049 380 403 395

(1, 0) 7057 8207 8203 7096 65826 36237 357 403 391

(1, 1) 9748 9748 9748 7073 65826 36410 403 403 403

(1, 2) 7425 8966 7476 7073 65826 36576 334 334 334

(2, 0) 7034 8598 7467 7073 65826 36741 357 403 366

(2, 1) 7057 8207 7576 7096 65826 36930 357 403 377

(2, 2) 6121 6121 6121 7073 65803 37102 334 334 334

Read 4 Bytes

(0, 0) 58002 58477 58021 29515 316248 173091 1066 1123 1093

(0, 1) 29611 36281 34908 33243 309490 168542 1247 1408 1356

(0, 2) 29657 37017 36191 34770 322660 176642 1293 1569 1398

(1, 0) 28875 36258 35264 34770 322547 177561 1362 1569 1412

(1, 1) 58361 58844 58381 33243 309382 171130 1316 1385 1325

(1, 2) 29588 35499 30208 34657 322547 179222 1247 1408 1270

(2, 0) 29979 37040 31290 35223 327813 182972 1247 1569 1322

(2, 1) 28139 36235 34785 32641 302799 169881 1293 1431 1369

(2, 2) 57579 58062 57599 32535 302693 170670 1247 1270 1249

Read 64 Bytes

(0, 0) 907744 929955 918905 408908 4381352 2398035 18770 19245 18935

(0, 1) 450935 478696 460279 393536 4216640 2307883 19007 20272 19521

(0, 2) 479501 579758 538170 476993 4426369 2423243 19053 22549 20808

(1, 0) 473268 571294 520525 476993 4424823 2435851 19145 23032 21203

(1, 1) 909739 936166 921822 488037 4541994 2512343 19076 19398 19188

(1, 2) 449348 473636 456782 475305 4423507 2446804 19007 20157 19418

(2, 0) 474027 579068 535487 475305 4423507 2469029 19007 22043 20535

(2, 1) 472095 565429 518137 489451 4555159 2542512 19007 22549 20895

(2, 2) 900332 920618 907492 468232 4356158 2456170 19007 19237 19073

Read 256 Bytes

(0 ,0) 3628902 3702565 3674076 1586442 16998330 9303655 75609 78231 76046

(0, 1) 1810819 1897023 1826232 1848174 17206343 9370227 75839 79841 77648

(0, 2) 1897828 2181970 2119170 1830492 17041721 9280577 75885 88305 83101

(1, 0) 1890399 2132060 2046512 1862700 17279325 9512215 75997 89708 84212

(1, 1) 3631085 3708365 3679649 1848508 17147673 9620444 75908 78484 76336

(1, 2) 1808220 1897000 1823103 1842516 17147673 9528055 75839 79542 77494

(2, 0) 1897391 2180659 2116159 1828370 17016021 9497681 75839 87040 82616

(2, 1) 1890422 2131301 2044241 1869796 17345151 9731236 75839 89202 83631

(2, 2) 3616296 3682191 3641053 1826248 16990334 9579806 75839 78346 76212

81

Additionally, the variance of I/O response time across 1000 experiments

shows that VCDC systems have a better performance than the non-VCDC

systems. For example, in the non-VCDC-FF-1B, the highest variance of I/O

response time is greater than 15, 000 ns (1, 500 clock cycles). When it comes

to the non-VCDC-RR-1B, the situation becomes worse: the highest variance

of I/O response time reaches 600, 000 ns (60, 000 clock cycles). Conversely,

in the VCDC-1B, the highest variance of I/O response time is less than 500

ns (50 clock cycles). For experiments with more bytes being read, VCDC

systems still have a better performance. For example, in non-VCDC-RR-

256B, the maximum variance of the I/O response time reaches 154, 118, 880 ns

(15, 411, 888 clock cycles). Conversely, in VCDC-256B, the maximum variance

of the I/O response time is only 137, 310 ns (13, 731 clock cycles), which is

1/1000 of the variance in the non-VCDC-RR-256B.

Therefore, the evaluation results show that a system with VCDC can pro-

vide more predictable I/O operations with lower response time.

4.3.2 Performance features: I/O Throughput

We evaluated the I/O throughput in two architectures (with VCDC and with-

out VCDC). In the experiment, we use the same NOR-flash illustrated in

Section 4.3.1 be connected to the VCDC as our evaluation object.

In both architectures, one independent application is set to be running

on each of four Microblaze CPUs (coordinates are from (0,0) to (0,3)) and

continuously writing to the NOR-flash - one byte can be written during one

I/O request. We record the written bytes from each CPU within 1 second as

the I/O throughput. The result of higher I/O throughput implies a better

performance of the I/O system. All the evaluations are implemented 1000

times. The evaluation results are shown in Figure 4.9.

In the figure, four groups of bar charts present the average I/O throughput

in the VCDC system and the non-VCDC system; and the error bar on each bar

chart presents the variance of the I/O throughput in these 1000 experiments.

As shown, on all CPUs considered, the VCDC system always provides a better

performance on I/O throughput. Specifically, the I/O throughput from any

of the CPUs in the VCDC system is nearly 7 times higher than the non-

VCDC system with FIFO scheduling policy, and 20 times higher than the

non-VCDC system with round-robin scheduling policy. Additionally, when

it comes to the variance of I/O throughput, the VCDC system has a better

82

cpu (0,0) cpu (0,1) cpu (0,2) cpu (0,3)
0

200

400

600

800

1000

1200

1400

1600

T
hr

ou
gh

pu
t (

U
ni

t:
K

B
/s

)

Non-VCDC; Scheduling Policy: FIFO
Non-VCDC; Scheduling Policy: RoundRobin
VCDC; Scheduling Policy: RoundRobin

Figure 4.9: Performance feature: I/O Throughput

FIFO — Local FIFO; RoundRobin — Global RoundRobin

performance than the non-VCDC systems. Note that, the VCDC system with

local FIFO scheduling has better I/O performance than the VCDC system

with global round robin scheduling. This because the local FIFO scheduling

can be executed on each CPU in parallel, and the global round robin can be

only calculated via a processor independently.

In general, the evaluation results in this section show that a system with

VCDC can provide higher I/O throughput with smaller variance than a non-

VCDC system.

4.3.3 Performance Feature: Scalability

In this section, we evaluate the scalability of the VCDC by measuring the I/O

response time of Ethernet packets sent from different CPUs in single-core,

4-core, 8-core and 16-core systems, respectively.

4.3.3.1 Ethernet Virtualization

A full Ethernet packet comprises an Ethernet header, an IP header, a TCP

header and the payload [96]. The virtualization of Ethernet is implemented

by virtualizing the IP address of Ethernet packets sent from each processor.

83

In a many-core or multi-core system, all the Ethernet packets sent from

different CPUs should have the same IP address. In a system with VCDC,

the virtualization module sets the last 8 bits of the source IP address as the

CPU ID, so that the Ethernet packets sent from each CPU can have a unique

source IP address. With VCDC employed, one CPU is able to communicate

with a dedicated destination without interference from other CPUs.

In our approach, the VCDC connects with the Xilinx 1G/2.5G Ethernet

subsystem [26], which comprises three IP cores: a Tri-mode Ethernet MAC

(TEMAC) [110], a Gigabit MII (GMII) [110] and an AXI Ethernet buffer [27],

see Figure 4.10.

Ethernet Virtualization
Module

VCDC

1G/2.5G Ethernet
subsystem

TEMAC

GMII

AXI Ethernet Buffer

AXI StreamI/O control pins

AXI Lite AXI Stream

PHY

I/O VMM

Sending to the
Ethernet Buffer

Figure 4.10: Connection between VCDC and Ethernet System

In Xilinx 1G/2.5G Ethernet subsystem, the GMII provides an interface

between MAC and PHY, which is controlled by the TEMAC and the AXI

Ethernet buffer. Specifically, the TEMAC takes charge of the control parts

of the GMII, such as initialization and settings of communication speed. The

AXI Ethernet buffer takes charge of transmission of Ethernet packets. When

84

an Ethernet packet is received by the AXI Ethernet buffer, the packet will

be sent to the GMII directly via an AXI stream interface, then sent to the

physical layer.

As described in Section 4.2.4.2, inside I/O VMM, the virtualization module

is responsible for the virtualization of a specific I/O. Figure 4.11 describes

the inner architecture of the virtualization module inside the I/O VMM for

Ethernet.

If source
IP Addr

(Source IP &
0xFFFFFF00) |

CPU_ID

Y

N

Send to AXI
Ethernet Buffer

Dedicate CPU
FIFO (output)

Types of
I/O

Request ?

Send to the
TEMAC

Control

AXI Lite

Ethernet
Packet

AXI Stream

AXI Ethernet Buffer

Receive from
AXI Ethernet

Buffer

AXI Stream

Ethernet
Buffer

Dedicate CPU
FIFO (input)

N

Virtualization
Module - Ethernet

Dedicated CPU FIFOs

TEMAC

I/O VMM

Low Layer I/O Drivers

1G/2.5G Ethernet subsystem

If an entire
Ethernet
Packet

Received

Y

Figure 4.11: Virtualization Module of Ethernet I/O VMM

The virtualization module inside the Ethernet I/O VMM has two parts:

down and up. The down part takes charge of the analysis and allocation of

incoming I/O requests from the dedicated CPU FIFOs. Specifically, the I/O

requests received by the virtualization module are divided into the control

operations and the Ethernet packets. If the incoming I/O request is the control

operation, the virtualization module will allocate it to the TEMAC inside the

Ethernet subsystem via the low layer I/O drivers (AXI lite interface). If the

incoming I/O request is an Ethernet packet, the virtualization module will

85

virtualize its IP address according to its corresponding CPU IP; and send it to

the AXI Ethernet buffer via the low layer I/O drivers (AXI Stream interface).

Additionally, the up part takes charge of receiving Ethernet packets from the

physical layer (PHY). It buffers and sends an entire Ethernet packet back

to the corresponding dedicated CPU FIFO according to the destination IP

address of this Ethernet packet.

4.3.3.2 Experiment

The experiment is divided into two groups, dependent on the global schedul-

ing policy of the VCDC: round-robin (named VCDC-RR) and fixed priority

(named VCDC-FP). In VCDC-RR and VCDC-FP, the experiments can be

further divided into four parts, according to the number of active CPUs. In

these four parts of the experiments, we activate 1, 4, 8 and 16 Microblazes

respectively. We name these experiment parts according to the label of the

experiment plus the number of active CPUs. For example, in a 4-core VCDC

system with round-robin global scheduling policy, the experiment is labelled

VCDC-RR-4.

The software application running on each active CPU is the same, and is

designed to continuously send 1 KB Ethernet packets via VCDC to a dedicated

component. The 1 KB Ethernet packets sent from different CPUs are exactly

the same, including the MAC header, the IP header, and the payload. How-

ever, the VCDC will virtualize the source IP address of each Ethernet packet

based on the rules in Section 4.3.3.1. Additionally, the dedicated component is

designed to monitor the response time of these Ethernet packets by recording

the response time and analysing the virtual source IP address of the packets.

All the experiments were implemented 1000 times; and the experiment results

are depicted in tables.

In VCDC-FP, CPU (0, 0) is always set as the highest priority, followed by

CPU (1, 0), (2, 0) , (3,0) and (1, 0) etc. The experiment results are shown in

Table 6.8. As shown, for all multi-core systems, the I/O response time from

the CPU with the highest priority is always fixed around 12 us; and the I/O

requests from the CPUs with the lower priorities are always blocked by the

the I/O requests with higher priorities, which guarantees the execution of the

I/O requests with higher priorities. For example, in VCDC-FP-8, the average

response time of the I/O requests from CPU (0,0) (the highest priority) is

kept to 12 us, which means it can never be blocked by others. When it

86

Table 4.2: Average Response Time of Loop Back 1KB Ethernet Packets in

VCDC System (Global Scheduling Policy: Fixed Priority; Unit: us)

Number of CPUs

CPU Index 1 4 8 16

(0, 0) 12.09 12.07 12.09 12.08

(1, 0) - 25.50 25.51 25.50

(2, 0) - 36.92 36.94 36.93

(3, 0) - 48.35 48.36 48.35

(0, 1) - - 59.78 59.78

(1, 1) - - 71.21 71.19

(2, 1) - - 82.62 82.62

(3, 1) - - 94.06 95.06

(0, 2) - - - 105.46

(1, 2) - - - 116.90

(2, 2) - - - 128.31

(3, 2) - - - 139.74

(0, 3) - - - 151.17

(1, 3) - - - 162.58

(2, 3) - - - 174.02

(3, 3) - - - 185.44

comes to the I/O requests from CPU (3, 1) (the lowest priority), the I/O

response time is always around 96 us, which is 8 times the highest priority I/O

requests. The I/O response time of the lowest priority I/O request is extended

due to blocking from other CPUs, which means that the VCDC system does

not introduce an extra delay for the lowest priority I/O request. In an 8-

core system, the theoretical optimal response time of the lowest priority I/O

request should be 8 times the highest priority I/O request, and our experiment

results obtain this. Similarly, in VCDC-FP-16, the average response time of

the I/O request from CPU (3,3) (the lowest priority) is around 190 us, which

is 16 times the response time of the highest priority I/O requests. The results

still meet the theoretical optimal value. These experiments indicate a good

scalability of the VCDC.

For VCDC-RR, the experimental results are shown in Table 6.9. As shown,

with an increase in the number of CPUs, the I/O response time of each CPU

87

Table 4.3: Average Response Time of Loop Back 1KB Ethernet Packets in

VCDC System (Global Scheduling Policy: Round Robin; Unit: us)

Number of CPUs

CPU Index 1 4 8 16

(0, 0) 12.32 46.71 90.58 180.15

(1, 0) - 47.20 90.88 180.71

(2, 0) - 47.68 91.22 179.99

(3, 0) - 48.19 91.58 180.66

(0, 1) - - 91.93 180.04

(1, 1) - - 92.27 180.71

(2, 1) - - 92.63 180.09

(3, 1) - - 92.98 180.77

(0, 2) - - - 180.04

(1, 2) - - - 180.71

(2, 2) - - - 180.09

(3, 2) - - - 180.77

(0, 3) - - - 180.04

(1, 3) - - - 180.71

(2, 3) - - - 180.09

(3, 3) - - - 180.77

is proportional to the number of CPUs. Specifically, compared to the response

time of an I/O request in VCDC-RR-1, the average I/O response time of an

I/O request in VCDC-RR-4, VCDC-RR-4 and VCDC-RR-16 is respectively

around 4, 8 and 16 times the average I/O response time in a single-core system.

These results are close to the theoretical optimal values, which shows a good

scalability of the VCDC.

4.3.4 Hardware and Software Overhead

This section can be mainly divided into two parts. In the first part, we com-

pare the software overhead of a VCDC system and non-VCDC system with

a software implementation of I/O management (i.e. I/O manager in FreeR-

TOS), see Table 4.4. In the second part, we compare the hardware overhead

of a VCDC and a Microblaze CPU (running as a VMM), see Table 4.5.

88

4.3.4.1 Software Overhead

As shown in Table 4.4, the VCDC system significantly reduces the software

overhead. Specifically, the software I/O manager is not required and the size

of I/O drivers is smaller in the VCDC system.

Table 4.4: Software Usage(object code)

Software Module VCDC
Non-VCDC

(FIFO)

Non-VCDC

(Round-Robin)

I/O Manager

(KB)
0 139.2 148.5

UART Driver

(KB)
60.5 122.4 122.4

VGA Driver

(KB)
70.2 105.2 105.2

Non-Flash Driver

(KB)
90.2 135.8 145.6

Ethernet Driver

(KB)
88.7 210.2 230.2

4.3.4.2 Hardware Overhead

This section evaluates the hardware consumption of VCDC, which can be

divided into two parts: 1) the comparison between VCDC and a commonly

used SPI controller; 2) the comparison between VCDC and a full-featured

Microblaze with same I/O functionalities (I/O drivers) installed.

Table 4.5: Hardware Usage (Without GPIOCP)

Hardware Consumption VCDC SPI Controller
Microblaze

FIFO RR

Look Up Tables 4812 886 1860 1860

Registers 1413 615 2133 2133

Block RAMs (KB) 0 0 8 8

DDR3 309.8 KB 0 712.8 KB 751.9 KB

As shown in Table 4.5, compared with a dedicated I/O controller (SPI

controller), VCDC consumes more FPGA hardware resources, including look

89

up tables and registers.

When compared with a full-featured Microblaze, the VCDC consumes ex-

tra look up tables but fewer registers and BRAMs. Moreover, compared to the

memory sizes required by I/O drivers stored in DDR (detailed in Table 4.4),

VCDC only consumes half DDR resources.

It is a trade-off between software overhead and hardware overhead. How-

ever, the VCDC system brings significant improvements of the I/O perfor-

mance, including I/O throughput, response time, variance and scalability.

4.3.5 On-chip Communication Overhead

In NoC-based many-core systems, all the I/O requests are transmitted as on-

chip packets. A larger requirement for on-chip packets means a higher on-chip

communication overhead. In this section, we compare the on-chip communi-

cation overhead while invoking commonly used I/O requests in a VCDC and

non-VCDC system by recording the number of packets on the NoC. In the

NoC [95], the width of all the on-chip packets is 32 bits. The evaluation re-

sults are demonstrated in Table 6.10. The table shows that whilst the invoked

I/O request is simple (e.g. displaying one pixel via the VGA in a single-core

system), the on-chip communication overhead is similar in all systems. When

the I/O operations become complex or the number of CPUs is increased, the

on-chip communication overhead in non-VCDC architecture is significant; in

contrast, the VCDC architecture has a lower on-chip communication overhead,

for example, reading 10 bytes data from the SPI flash in 10-core systems.

4.3.5.1 Bottleneck of On-chip Communication

In the VCDC a single channel interface is used for transmitting VCDC re-

quests. It connects the many-core system and the VCDC (see Section 4.2.4.1).

Frequently invoked VCDC requests might cause traffic congestion at the inter-

face of the VCDC, which decreases the predictability of I/O operations. This

traffic congestion can further affect communication issues at the system level.

4.3.5.2 Discussion

The current implementation assumes that the number of communication chan-

nels in the interface between the many-core system and VCDC can be increased

(relatively easy on an FPGA implementation). Then, multiple communication

90

Table 4.6: On-chip Communication Overhead

I/O Device I/O Operation

Number of on-chip Packets

(Each Packet: 32-bit)

Non-VCDC

FIFO

Non-VCDC

Round-Robin
VCDC

VGA

Display 1 Pixel

1 CPU 6 6 3

4 CPUs 24 33 12

10 CPUs 60 87 30

Display 10 Pixels

1 CPU 60 60 30

4 CPUs 240 357 120

10 CPUs 600 897 300

SPI Flash

Read 1 Byte

1 CPU 12 12 4

4 CPUs 48 57 16

10 CPUs 120 237 40

Read 10 Bytes

1 CPU 120 120 40

4 CPUs 480 597 160

10 CPUs 1200 1497 400

channels can alleviate communication traffic significantly. However, changing

the number of communication channels requires a rebuild of the whole hard-

ware, which is not suitable for a ready-built IC.

4.4 Summary

In this chapter, we have presented the concept of predictable hardware I/O

virtualization for multi-core and many-core systems — the Virtualized Compli-

cated Device Controller (VCDC). It enables applications to access and operate

I/O devices directly from guest VMs, bypassing the guest OS, the VMM and

low layer I/O drivers in software layer.

Evaluation reveals that VCDC can virtualize a physical I/O to multiple

virtual I/Os with significant performance improvements, including faster I/O

response time, greater I/O throughput, less on-chip communication overhead

and good scalability. When it comes to the system overhead, the VCDC

represents a trade-off between software and hardware, decreasing the software

usage but requiring a greater consumption of hardware.

The contributions of the chapter are as follows. Firstly, Section 4.1 gives

the overview of VCDC, including the backgroun, and design. Specifically, Sec-

tion 4.1.1 introduces the benefits brought by I/O virtualization (i.e. protection

features) and then presents the conflicts between I/O virtualization and per-

formance features. Afterwards, Section 4.1.2 introduces the main design idea

91

of the VCDC — the integration of the VMM and I/O drivers into the hard-

ware layer, enabling applications to access and operate I/O devices directly

from guest VMs, bypassing the guest OS, the VMM and low layer I/O drivers

in software layer, thus achieving significant improvements of I/O performance

in guest VMs.

Secondly, Section 4.2 presents the specific design and implementation de-

tails of VCDC, including the high level designs (see Figure 4.3 and 4.4) as

well as the detailed designs of internal components — hardware manager,

I/O VMM, low layer I/O drivers, memory access module and timing-accurate

real-time I/O controller (see Section 4.2.4.1 to 4.2.4.5).

Finally, Section 4.3 evaluates the performance features (both I/O perfor-

mance and scalability), hardware overhead and on-chip communication over-

head of VCDC. Specifically, Section 4.3.1 and 4.3.2 evaluate the I/O perfor-

mance via I/O throughput and I/O response time (see Chapter 3, Section 3.2).

The evaluation results reveal that VCDC significantly enhances the I/O per-

formance compared to a non-VCDC architecture — increased I/O throughput

and reduced I/O response time. Section 4.3.3 evaluates the scalability via

measuring the I/O response time of a VCDC architecture with a different

number of processors. As shown in the evaluation results, the VCDC system

achieves better scalability compared to a non-VCDC architecture. Moreover,

Section 4.3.4 evaluates the overhead related to VCDC — significantly reduced

software overhead, but extra hardware overhead. Finally, Section 4.3.5 demon-

strates the significantly reduced on-chip communication overhead of VCDC,

compared to a non-VCDC system.

92

Chapter 5

GPIOCP: Timing-Accurate

Real-time I/O Controller

The main aim of this chapter is to solve the second research problem: “ Apart

from performance features, how can the predictability and timing-accuracy of

I/O operations in multi-core and many-core real-time systems be guaranteed?”

(see Chapter 1, Section 1.3 and Chapter 2, Section 2.7).

Specifically, modern SoC/NoC chips often provide General-Purpose I/O

(GPIO) pins for connecting devices that are not directly integrated within the

chip. Predictable and timing-accurate control of devices connected to GPIO

is often required within embedded real-time systems — I/O operations should

occur at exact times, with minimal error, neither being significantly early or

late. This is difficult to achieve due to the latencies and contentions present in

architecture, between processor instigating the I/O operation, and the device

connected to the GPIO — software drivers, OS, buses and bus contentions

all introduce significant variable latencies before the command reaches the

device. This is compounded in NoC devices utilising a mesh interconnect

between processors and I/O devices.

The contribution of this chapter is a resource efficient programmable I/O

controller, termed the GPIO Command Processor (GPIOCP), that permits

applications to instigate complex sequences of I/O operations at an exact time,

so achieving timing-accuracy at a single clock cycle level — predictable and

timing-accurate. Also, I/O operations can be programmed to occur at some

point in the future, periodically, or reactively. The GPIOCP is a parallel I/O

controller, supporting cycle level timing accuracy across several devices con-

93

nected to GPIO simultaneously. Moreover, the GPIOCP exploits the tradeoff

between using a full sequential CPU to control each GPIO connected device,

which achieves some timing accuracy at high resource cost; and poor timing-

accuracy achieved where the application CPU controls the device remotely.

The GPIOCP has efficient hardware cost compared to CPU approaches, with

the additional benefits of total timing accuracy (CPU solutions do not provide

this in general) and parallel control of many I/O devices.

This chapter has five sections. Specifically, Section 5.1 proposes an overview

of GPIOCP, including some brief background, context, and high level design

ideas. Section 5.2 introduces the specific design and implementations of GPI-

OCP, followed by its control commands in Section 5.3. Afterwards, the evalu-

ations on GPIOCP are presented in Section 5.4. At last, the summary of this

chapter is given in Section 5.5.

5.1 Overview

As introduced in Chapter 1, Section 1.3, in real-time systems, I/O operations

often need to be both predictable and timing-accurate [104, 120], in order

to assure a timely reaction when critical situations occur (e.g. the braking

operation of a car always has to be handled within a hard deadline [44]), or

when an accurate control over I/O devices is required (e.g. an automotive

engine requires I/O timing accuracy to inject fuel at the optimal time [89]).

5.1.1 Context

The specific architectural context of this chapter is predictable and timing-

accurate control of I/O devices that are off-chip, accessed via GPIO pins,

potentially using some bus protocol over those pins. This is in contrast to

devices that are integrated within a chip (ie. a SoC or NoC chip) –– such

integrated devices have their latencies and timing-accuracy largely fixed by

the existing architecture.

5.1.2 Approach

GPIOCP is a resource efficient programmable I/O controller that permits

applications to instigate complex sequences of I/O operations at an exact

time, so achieving timing-accuracy of a single clock cycle and predictability.

This is achieved by loading application specific programs into the GPIOCP,

94

which can be interpreted at run-time to generate the specified sequence of

control signals over a set of General Purpose I/O (GPIO) pins, eg. for read

/ write. Applications then invoke a specific program at run-time by sending

the GPIOCP commands such as run command X at time Y (where Y is some

future time). This achieves predictability and cycle level timing-accuracy as

the latencies of the bus or NoC are removed.

For example, a periodic read of a sensor value by an application can be

achieved by loading the GPIOCP with an appropriate program, then at run-

time the application issues a command such as run command X at time Y and

repeat with period Z —- the values are read at exact times, with the latency of

moving the data back to the application considered within that application’s

execution time.

The GPIOCP is a parallel multi-functional controller, supporting differ-

ent I/O devices in parallel —- so can provide timing-accurate I/O for appli-

cations simultaneously — i.e. parallel accesses. The GPIOCP can also be

reprogrammed at run-time to control an I/O device in a different way, or po-

tentially allowing hot-swap of I/O devices (noting that the program needs to

be moved to the controller, requiring that traffic to be included in any system

timing analysis).

5.2 GPIO Command Processor (GPIOCP)

The GPIO Command Processor (GPIOCP) proposed within this chapter

enables:

• Predictability and timing-accuracy : All I/O operations over the GPIO

pins can be predictably issued with an accuracy of a single cycle. Note

that, the output values among GPIO pins can be constant or dynamic.

• Programmability : The GPIOCP holds small programs designed to con-

trol connected devices. They are loaded into GPIOCP memory by the

application during system initialisation (so that loading does not inter-

fere with normal execution and timeliness of the system). Importantly,

commands within the program can be executed at exact times (cf. con-

ventional CPU instructions).

• Control of multiple connected devices in parallel : Multiple I/O devices

connected to the GPIO pins can be controlled in parallel, whilst main-

95

taining predictability and timing-accuracy of a single cycle.

A typical use of the GPIOCP within a NoC architecture is shown in Fig-

ure 5.1 — low level driving of the I/O device is performed by the GPIOCP

rather than remotely by the application. At run-time an application can in-

voke a command program on the GPIOCP to achieve required I/O. This can

execute immediately or at some time in the future; can be periodic; and can

return data to the application CPU.

Figure 5.1: GPIOCP Connected to a NoC

(R - Router / Arbiter; T - Global Timer)

The architecture of the GPIOCP consists of the following main parts (see

Figure 5.2):

• Hardware manager : Provides the interface to/from application CPUs

via the NoC mesh.

96

Figure 5.2: Architecture of GPIOCP

• Command memory controller : Manages internal GPIOCP memory to

store/retrieve commands and data.

• Command queue: Manages GPIO CPUs which execute commands.

• Synchronisation processor : Provides synchronisation between the GPIO

CPUs and external GPIO pins.

These architectural elements are detailed in the following subsections.

5.2.1 Hardware Manager

The hardware manager is responsible for communicating with application

CPUs, allocating incoming messages to either the command memory controller

(to store new commands) or the command queue (to initiate an existing com-

mand). The architecture of the hardware manager is shown in Figure 5.3,

with the left part allocating incoming requests; the right part allows data to

be sent from GPIOCP to CPUs.

The GPIOCP receives two forms of request:

• Type 1 : Creating a new GPIO command — allocated to the output

FIFO which is connected to the command memory controller.

97

Hardware Manager

Command
Memory

Controller

Command
Queue

Synchronization
Processor

I/O Pins

…

Tag of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub-CMD 0

GPIO Sub-CMD 1

…

Tag of GPIO CMD 1

…

Depth: 64

Block RAMs

BRAM
Controller

Hardware
Manager

Finite
State

Machine
A

BRAM
Controller

Finite
State

Machine
B

PORT A

PORT B
Command

Queue

Width : 32

Input FIFO

Command
Memory

Controller

Control Signal

Command
Queue

Output FIFO

Command
Memory

Controller

Command
Queue

Scheduler

Command
Queue

I/O Status
Register

I/O Pins

…

I/O Status Buffer

Fixed Interval
Timer

Enable

Figure 5.3: Architecture of Hardware Manager

• Type 2 : Invoking a ready-built GPIO command Type 1 requests —

allocated to the output FIFO connected to the command queue.

Similarly, the right-hand part of hardware manager (in Figure 5.3) is

mainly comprised by two input FIFOs, a multiplexer, an output FIFO and a

scheduler. The two input FIFOs are respectively connected to the command

memory controller and the command queue, in order to receive the data to be

sent back to the CPUs. The scheduler controls the multiplexer to choose which

input FIFO can transmit data into the output FIFO (if both input FIFOs are

not empty the FIFOs are chosen in a round-robin manner).

5.2.2 Command Memory Controller

The Command Memory Controller stores new GPIO command into the FPGA

Block RAM (BRAM s); and accesses existing GPIO commands for execution

by a GPIO CPU (within the command queue). The architecture of command

memory controller is shown in Figure 5.4. Memory is divided into pages, with

one GPIOCP command per page; each page containing command identifier

(integer 4 bytes), command length (4 bytes) and the commands themselves

(GPIO commands discussed in section 5.3), Eg. a 32KB BRAM can be split

into 128 pages, each able to store identifier, length and up to 62 commands

98

Hardware Manager

Command
Memory

Controller

Command
Queue

Synchronization
Processor

I/O Pins

…

Tag of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub-CMD 0

GPIO Sub-CMD 1

…

Tag of GPIO CMD 1

…

Depth: 64

Block RAMs

BRAM
Controller

Hardware
Manager

Finite
State

Machine
A

BRAM
Controller

Finite
State

Machine
B

PORT A

PORT B
Command

Queue

Width : 32
Bits

Input FIFO

Command
Memory

Controller

Control Signal

Command
Queue

Output FIFO

Command
Memory

Controller

Command
Queue

Scheduler

Command
Queue

I/O Status
Register

I/O Pins

…

I/O Status Buffer

Fixed Interval
Timer

Enable

0x0000 0000

Figure 5.4: Architecture of Command Memory Controller

(each of 32 bits). Finally, the dual-ported nature of BRAM is exploited to

provide separate interfaces to the command memory controller and command

queue to improve performance.

5.2.3 Command Queue

The main functionality of command queue is allocating GPIOCP commands

to GPIO CPUs for execution (architecture is shown in Figure 5.5). The com-

mand translation module requests commands from the internal memory via

the command memory controller, sending the commands to a GPIO CPU for

execution.

Each GPIO CPU is a simple finite state machine, with guaranteed exe-

cution time so achieving timing-accuracy. Each GPIO CPU has a dedicated

I/O status cache (4 bytes), which only stores the status of I/O pins belonged

to this GPIO CPU. This dedicated cache synchronises its I/O status with a

globally shared register at a fixed frequency. The status of all I/O pins are

stored in this shared register. Meanwhile, a register bank is also built in each

GPIO CPU, which is used to achieve the 8th and 10th GPIO subcommand —

delay for a specific time or set the group of I/O pins, equalling to the value

stored in a register.

Moreover, a global timer is connected to all GPIO CPUs so providing time

99

Figure 5.5: Architecture of the GPIO Command Queue

synchronisation between different processors and system clock — e.g. if several

GPIO CPUs all need to execute a command at time t, the global timer enables

100

this. However, the conversion between absolute time (I/O devices) and relative

time (user application) requires additional drivers – normally built into the

software layer.

A supervisor/arbiter is also built inside the command queue, whose re-

sponsibility is handling the conflicts between different I/O requests, e.g. tim-

ing and bus conflicts, etc.. Because, the supervisor/arbiter is not related to

the functionality of GPIOCP, it is not contained in the architecture diagram.

5.2.4 Synchronisation Processor

The synchronisation processor takes charge of synchronising the values of I/O

pins, which may be written by different GPIO CPUs and I/O devices. The

architecture of the synchronisation processor is shown in Figure 5.6.

Hardware Manager

Command
Memory

Controller

Command
Queue

Synchronization
Processor

I/O Pins

…

Tag of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub-CMD 0

GPIO Sub-CMD 1

…

Tag of GPIO CMD 1

…

Depth: 64

Block RAMs

BRAM
Controller

Hardware
Manager

Finite
State

Machine
A

BRAM
Controller

Finite
State

Machine
B

PORT A

PORT B
Command

Queue

Width : 32

Input FIFO

Command
Memory

Controller

Control Signal

Command
Queue

Output FIFO

Command
Memory

Controller

Command
Queue

Scheduler

Command
Queue

I/O Status
Register

I/O Pins

…

I/O Status Buffer

Fixed Interval
Timer

Enable

0x0000 0000

Figure 5.6: Architecture of Synchronization Processor

The modified values of I/O pins received from the input FIFO are stored

in the I/O status buffer, rather than being updated immediately. A fixed

interval timer enables the synchronisation between the I/O status buffer and

the I/O status register every 5 clock cycles. Once the value of I/O status

register changed, the changed value will be sent back to the command queue

via the output FIFO. The timer owns the same frequency as the system clock.

101

5.3 GPIOCP Commands

A set of composable I/O control instructions, termed sub-commands are pro-

vided, consisting of I/O control subcommands, timing control sub-commands

and a loop control sub-command. Application specific programs can thus

be built from the sub-commands and stored in a page in GPIOCP internal

memory (see Section 5.2.2)

GPIO write sub-commands supported are:

1) Execute the next write sub-command at a specific time.

2) Set a specific I/O pin to high/low.

3) Set a group of I/O pins to specific values.

4) Delay for a specified time (in clock cycles1).

GPIO read sub-commands supported are:

5) Execute the next reading sub-command at a specific time;

6) Read the value(s) of an specified I/O pin(s).

7) Read the value(s) of an specified I/O pin(s) while a predefined I/O

pin triggered high/low.

The GPIO control sub-command supported is:

8) Delay for a specific time, stored in the register (in clock cycles).

9) Go to a specified GPIO sub-command.

The special GPIO write sub-commands supported is:

10) Set a group I/O pins to specific values, stored in the register.

The timing control sub-commands (1, 4, 5 and 8 above) provide timing con-

straints for I/O control sub-commands (2, 3, 6 and 7 above) which guarantee

that an I/O device can be operated accurately at a given clock cycle — pre-

dictability and timing-accuracy. Running a subcommand 4 or sub-command

8 may take more than one clock cycle, but can be bounded by users. Any

other seven sub-commands always use exactly 1 clock cycle. Therefore, the

running time of GPIO commands is predictable, as they are comprised by

GPIO sub-commands.

1In this thesis, all the I/O devices share a single synchronization clock source with the

whole system. For example, if the frequency of the system clock is 100 MHz, the granularity

of a clock cycle is 10 ns.

102

We define a GPIO sub-command as a 32 bit instruction, defined as follows

(see Figure 5.7):

Index of GPIO CPU

Operation Parameter

16

Index of GPIO Command

08

Index of GPIOCP

15

W/R

2431

16

Index of GPIO Sub-Command

015

W/R

2431

Operation Parameters

015

Operated I/O Pin I/O Pin Operation

015

Time Base Time

14

GPIO Sub-Command 1, 4, 5, 8:

GPIO Sub-Command 2, 3, 6, 7:

Figure 5.7: Format of GPIO Subcommand

• Bit 0 - Bit 15: Operation parameters of the GPIO subcommand, which

allows for different additional information for different sub-commands.

Specifically, in sub-commands 1, 4, 5 and 8, additional information re-

gards timing; in subcommands 2, 3, 6 and 7, additional information

regards the specific I/O pins; in sub-command 9, additional information

includes the index of the sub-command to go to.

• Bit 16: The function type of GPIO sub-command read/write; ‘1’ stands

for writing function and ‘0’ represents reading function.

• Bit 24 - Bit 31: The index of GPIO sub-command.

5.3.1 Example

To achieve a PWM signal on I/O pin #6 with 50% duty cycle the following

sub-commands can be used:

1) Execute the next sub-command at time 200ns (i.e. delay until start

of PWM signal): 0x010100C8.

2) Pull I/O pin #6 high: 0x02010601.

3) Wait for 20ms: 0x04018014.

4) Pull I/O pin #6 low: 0x02010601.

103

5) Wait for 20ms: 0x04018014.

6) Go back to 2 and infinite loop: 0x090102FF.

Note that, the output values and delay times both can be dynamic — set

by the values in the registers. In order to make the example simple, constant

values are adopted.

5.3.2 Invoking a GPIOCP Command

Requesting the GPIOCP to execute a command stored in a GPIOCP internal

memory page requires the unique index of that command to be sent from the

user application CPU to the GPIOCP. The format of the request is given in

Figure 5.8:

• Bit 8 - Bit 15: The index of GPIO CPU which will execute this GPIO

command.

• Bit 16: Read (0) / write (1).

• Bit 24 - Bit 31: The index of GPIO command.

For example, to execute command with index #2 on GPIOCP #3 would

be: 0x02010300. Index of GPIO CPU

Operation Parameter

16

Index of GPIO Command

08

Index of GPIOCP

15

W/R

2431

16

Index of GPIO Sub-Command

015

W/R

2431

Operation Parameters

015

Operated I/O Pin I/O Pin Operation

015

Time Base Time

14

GPIO Sub-Command 1, 4, 5, 8:

GPIO Sub-Command 2, 3, 6, 7:

Figure 5.8: Format of GPIO Command

5.4 Evaluation

The GPIOCP is implemented using Bluespec System Verilog (BSV) [4], and

synthesised for the Xilinx VC709 development board [20] (further implemen-

tation detailed in Appendix A and B). The GPIOCP is connected to a 4*3

size 2D mesh type open source NoC (BlueShell [95]) containing 9 Microblaze

CPUs [10] running the uCosII RTOS (v1.41) [19].The architecture is shown in

Figure 5.9.

104

To enable comparison, a similar hardware architecture was built, without

the GPIOCP – note that this architecture requires I/O operations requested

by CPUs to pass through the mesh to the GPIO rather than being controlled

by a GPIOCP. Both architectures run at 100 MHz.

5.4.1 Real-time Performance

In this section, we evaluate the real-time performance (i.e. predictability and

timing-accuracy) of GPIOCP, via the errors in timing-accuracy(E) (see Equa-

tion 3.1, in Section 3.2.1) and corresponding variances.

In the evaluation, when processors are required to access and read the

GPIO at a specific time, then for a non-GPIOCP architecture the processors

have to instigate the I/O operation, for the GPIOCP architecture, this can be

delegated to the GPIOCP to achieve timing accuracy. This was measured by

connecting a timer to the GPIO (updating its value every cycle), with every

Figure 5.9: Experiment Platform

R - Router/Arbiter M - Microblaze T - Global Timer

105

CPU needing to read the value simultaneously. Results of 1000 experiments

are given in Table 3.4 and 5.1, showing that the latencies and variance for the

non-GPIOCP architecture (baseline system) are significant (errors calculated

according to Equation 3.5); in contrast, the GPIO architecture is accurate at

the cycle level.

Table 5.1: Errors in Timing-accuracy (E) in GPIOCP architecture

CPU Index E (unit: ns) E (unit: clock cycle)

Min Med Mean Max Min Med Mean Max

(0, 0) 0.0 0.0 0.0 0.0 0 0 0 0

(0, 1) 0.0 0.0 0.0 0.0 0 0 0 0

(0, 2) 0.0 0.0 0.0 0.0 0 0 0 0

(1, 0) 0.0 0.0 0.0 0.0 0 0 0 0

(1, 1) 0.0 0.0 0.0 0.0 0 0 0 0

(1, 2) 0.0 0.0 0.0 0.0 0 0 0 0

(2, 0) 0.0 0.0 0.0 0.0 0 0 0 0

(2, 1) 0.0 0.0 0.0 0.0 0 0 0 0

(2, 2) 0.0 0.0 0.0 0.0 0 0 0 0

5.4.2 Hardware Overhead

The resource efficiency of the GPIOCP when implemented on the Xilinx

VC709 FPGA development board is shown in Table 5.2. The GPIOCP is

compared with FPGA (i.e. softcore) implementations of a processor and an

SPI controller. The former enables comparison against approaches that use a

dedicated processor as an I/O controllers, and a dedicated core for the specific

I/O device. The GPIOCP utilises significantly less hardware than the proces-

sor, but more than the dedicated controller. Thus a parallel reprogrammable

I/O controller can be achieved in less resource than a processor, and offers true

timing accuracy across multiple GPIO connected external devices; but more

resources than a dedicated controller that is useful for only one I/O device.

Note that in this comparison, the GPIOCP is configured with 2 GPIO CPUs

and 8 KB storage units.

However, even when GPIOCP works with a normal I/O controller (timing-

accuracy is not required), the extra overhead can not be eliminated.

106

Table 5.2: FPGA Hardware Usage

L - Lookup Table, R - Register, B - BRAM

Microblaze

Softcore Processro
SPI Softcore

GPIOCP

2 GPIO CPUs

L R B L R B L R B

1170 1568 8 326 501 0 886 15 4

5.4.3 Case Study

The effectiveness of the GPIOCP approach is illustrated by considering the

control of a 3D printer [13] which requires X and Y co-ordinates (via multiple

motors) updating at a 5Mhz frequency. The printer is required to print out

the following patterns:

(Note: This is in excess of usual 3D printer motor control frequencies but

illustrates the effectiveness of the GPIOCP approach in that higher control

frequencies are possible — offering potentially more accurate printing.)

• Pattern 1: f1(t) = 8

• Pattern 2: f2(t) = t

• Pattern 3: f3(t) = 128/t+ sin(t) − t ∗ cos(t)

• Pattern 4: f4(t) = 80 ∗ (sin(t))5

• Pattern 5: f5(t) = 128/t

• Pattern 6: f6(t) =
√

((142 − (t− 14)2) + 18)

Table 5.3: Deadline Miss Rate in Two Architectures

Pattern Index Non-GPIOCP GPIOCP

1 81.67% 0.00%

2 83.33% 0.00%

3 91.67% 0.00%

4 88.83% 0.00%

5 86.67% 0.00%

6 85.00% 0.00%

107

Table 5.4: Variances in Two Architectures

Pattern Index Non-GPIOCP GPIOCP

1 0.0000 0

2 2.8735 0

3 18.6886 0

4 25.7971 0

5 18.8541 0

6 3.4698 0

Control of the motors to draw the above patterns is required at a frequency

of 5 MHz. No time was measured for the calculation of values by CPU, these

were pre-calculated.

This was implemented with and without GPIOCP support. The non-

GPIOCP implementation used a single processor accessing the GPIO directly;

the GPIOCP implementation placed the entire control for generating the pat-

tern in the GPIOCP as a single program.

To evaluate the patterns generated by the two implementations, the GPIO

pins were monitored (by as separate core) that compared the generated values

against expected values (stored as a pre-calculated table within the monitor).

Table 5.3 and 5.4 respectively shows the miss-rate (values that were not written

at the correct frequency) and variance (RMS error of output value compared

with expected value at that time) – both are expressions of timing accuracy

defined by Equation 3.1, in Section 3.2.1.

The non-GPIOCP implementation has a high miss rate, even for simple

patterns (even the constant, pattern A), showing the latency of controlling

GPIO from a processor. Where the pattern is simple, variance is low for the

non-GPIOCP showing that if the pattern value does not change quickly, then

outputting the wrong value (for the time) has less effect. However where the

pattern varies more over time, variance increases. The GPIOCP implementa-

tion has zero miss rate and variances for all patterns – hence is timing-accurate

and predictable.

108

5.5 Summary

In this chapter, the concept of a programmable I/O controller (GPIOCP) with

a clock cycle level granularity and real-time features (i.e. predictability and

timing-accuracy) has been presented. This enables application specific I/O

control protocols, as well as operating multiple I/O devices in parallel with

clock cycle level accuracy, all with timing accuracy appropriate to demanding

real-time systems.

Evaluation reveals that GPIOCP can handle multiple I/O operations with

clock cycle accuracy, in many cases totally timing accurate. However, the

hardware overhead was 50% less compared to a testbed with the same func-

tionality build using a minimalistic version of the soft core microprocessor;

ie. using a Microblaze CPU instead of the GPIOCP. Therefore, compared

to the timely I/O controllers reviewed in Chapter 2.5.3 (e.g. RPU & TPU),

GPIOCP enables timing-accurate and predictable I/O operations with more

flexibility. Meantime, GPIOCP consumes less hardware consumption (no CPU

cores needed).

Summarising, section 5.1 discusses the GPIOCP, highlighting the real-

time capability for I/O operations (i.e. predictability and timing-accuracy),

followed by the introduction of the difficulties on achieving these features —

transmission latencies and I/O contention. Section 5.1.1 introduced the system

context of the GPIOCP, ie. even though the design of GPIOCP is architec-

ture agnostic, it was connected to an embedded NoC. Section 5.1.2 introduced

the main design of the GPIOCP: enabling programmability and permitting

user applications to instigate complex sequences of I/O operations at an exact

time, so achieving timing-accuracy of a single clock cycle and predictability.

Then, Section 5.2 presented the specific design and implementation details of

GPIOCP, including the high level designs (see Figure 5.1 and 5.2) as well as

the detailed designs of internal components — hardware manager, command

memory controller, command queue and synchronisation processor (see Sec-

tion 5.2.1 to 5.2.4). Finally, Section 5.3 described the steps of programming

GPIOCP and using GPIOCP to control I/O devices with real-time features

(i.e. predictability and timing-accuracy) via invoking GPIOCP commands and

GPIO sub-commands. Finally, section 5.4 evaluated the real-time features,

and hardware overhead of GPIOCP. Specifically, Section 5.4.1 measured the

error in timing-accuracy (E) of two architectures and corresponding variances

(with and without GPIOCP). The evaluation results reveal that a GPIOCP-

109

based system can handle multiple I/O operations with clock cycle accuracy

and predictability. Section 5.4.2 evaluated the resource efficiency of GPIOCP

when implemented on the Xilinx VC709 FPGA development board. The eval-

uation results imply the hardware overhead of GPIOCP is 50% less compared

to a tested minimalistic version of the soft core microprocessor (with the same

functionalities).

110

Chapter 6

BlueIO: The Scalable

Real-Time Hardware I/O

Virtualization System

As described in Chapter 4, VCDC has provided significant improvements on

performance features of I/O operations (i.e. I/O performance and scalability).

Meanwhile, as introduced in Chapter 5, GPIOCP has solved the first research

question, which enables real-time features on I/O operations (i.e. predictabil-

ity and timing-accuracy). The main aim of this chapter is to solve the third

research problem: “How can performance features and real-time features for

I/O systems be achieved when I/O virtualization is deployed (to achieve pro-

tection features)?”, see Chapter 1, Section 1.4.

In this chapter, we propose the design and implementation of BlueIO

— which provides support for real-time I/O virtualization. We demonstrate

how a BlueIO-based I/O virtualization system can be exploited to meet real-

time requirements with significant improvements in I/O performance and a

low running cost on different OSs. We also present a hardware consumption

analysis of BlueIO, in order to show that it linearly scales with the number of

CPUs and I/O devices, evidenced by our implementation which targets both

FPGA and VLSI.

This chapter has five sections. Specifically, Section 6.1 proposes an overview

of BlueIO, including general architecture, context and the I/O virtualization

in the BlueIO-based system. Section 6.2 introduces the design and implemen-

tation of BlueIO. Afterwards, the hardware consumption analysis is demon-

111

strated in Section 6.3, followed by evaluations in Section 6.4. Finally, the

summary of this chapter is given in Section 6.5.

6.1 Overview

The main design ethos of BlueIO is the integration of key functionalities of I/O

virtualization, low layer I/O drivers (VCDC, see Chapter 4) and clock cycle

level timing-accurate I/O control (GPIOCP, see Chapter 5) — all within

the hardware layer, meanwhile providing abstracted high-layer access to soft-

ware layers (Guest VMs). I/O virtualization provides isolation and parallel

access to I/O operations. The hardware implementation of I/O virtualization

offloads most or the overhead of virtualization into hardware, and enables the

guest OSs to execute on ring 0 with full privilege. The hardware implemented

low layer I/O drivers and the abstracted high layer access interfaces (VCDC)

provides better I/O performance and scalability compared to baseline systems.

The deployment of the GPIOCP guarantees the I/O operations will occur at

a specific clock cycle (i.e. be timing-accurate and predictable).

6.1.1 General Architecture

Figure 6.1 depicts our proposed general embedded virtualization architecture.

It can be seen, the RTOS kernel in each VM can be executed in kernel mode

Figure 6.1: Embedded Virtualization Architecture

112

(ring 0) to achieve full functionality. Meanwhile, it can provide a real-time

environment essential for the development of applications which need to guar-

antee specific deadlines. Finally, the I/O system, running in hardware, is

responsible for I/O virtualization, physical isolation between VMs, and pro-

viding high layer access interfaces for user applications (in Guest VMs).

6.1.2 Context

In order to enhance the predictability of I/O requests, the BlueIO system is

mounted to a 2D mesh type open source NoC, termed BlueTiles [95]. Use of

a NoC is not required by BlueIO, because it is a general-purpose I/O system,

which is agnostic to the type of bus and the software running on CPUs. To

support a complete BlueIO system, the platform requires:

• Communication channels between BlueIO and CPUs;

• A global synchronization timer;

• A memory access interface (in the proposed design, BlueTree [62] is

adopted as the memory access interface (see Section 6.2.4).)

BlueIO

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

RR

C

R

C

R

T

R

R

C

R

C

R

C

R

C

R

RR

C

R

T

R

BlueIOBlueIO

I/OI/O I/OI/O I/OI/O I/OI/O

DDR

BlueTreeBlueTree

R

C

R

C

R

C

R

C

R

RR

C

R

T

R

BlueIO

I/O I/O I/O I/O

DDR

BlueTree

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

RR

C

R

C

R

T

R

R

C

R

C

R

C

R

C

R

RR

C

R

T

R

BlueIOBlueIO

I/OI/O I/OI/O I/OI/O I/OI/O

DDR

BlueTreeBlueTree

Figure 6.2: Platform Overview

C - Core; R - Router / Arbiter; T - Global Timer

113

The use of BlueIO within BlueTiles is shown in Figure 6.2. BlueIO is

physically connected to the home port (via the physical link) of a router, the

global timer T , and the memory access interface — BlueTree.

6.1.3 Virtual Machine (VM) and Guest OS

In our proposed approach, each CPU has an individual guest VM. Virtualiza-

tion support in the system has following features:

• Bare-metal virtualization [102] - A guest OS can be executed on a CPU

directly, without host OS. Therefore, a guest OS is able to execute in

kernel mode to achieve full functionality.

• Para-virtualization [77] - I/O management module in each guest OS

has to be replaced by high level I/O drivers, which enables smaller OS

software and simplified I/O access paths.

Currently, in the proposed design, three OS kernels have been modified

to support the I/O virtualization [21], i.e. FreeRTOS [7], uCosII [19] and

Xilkernel [29]. In Figure 6.3, we use FreeRTOS as an example to demonstrate

this modification.

Compared with the original FreeROTS kernel (Figure 6.3(a)), the user

application in a modified kernel (Figure 6.3(b)) is able to access and operate

I/Os via the high layer I/O drivers, which are independent from the kernel of

Application

Kernel Mode
User Mode

FreeRTOS

FreeRTOS I/O Manager

Low Layer I/O Driver

I/O

OS Kernel

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

Fr
e

e
R

TO
S_

O
p

e
n

()

Fr
e

e
R

TO
S_

W
ri

te
()

Fr
e

e
R

TO
S_

R
e

ad
()

Fr
e

e
R

TO
S_

IO
ct

l(
)

Application

Kernel Mode

User Mode

FreeRTOS

Virtualized I/O

OS Kernel

High Layer I/O Driver

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

V
C

D
C

_O
p

e
n

()

V
C

D
C

_W
ri

te
()

V
C

D
C

_R
e

ad
()

V
C

D
C

_I
O

ct
l(

)

Guest VM

Hardware

Hardware

CPU
CPU

(a) Traditional FreeRTOS Kernel

Application

Kernel Mode
User Mode

FreeRTOS

FreeRTOS I/O Manager

Low Layer I/O Driver

I/O

OS Kernel

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

Fr
e

e
R

TO
S_

O
p

e
n

()

Fr
e

e
R

TO
S_

W
ri

te
()

Fr
e

e
R

TO
S_

R
e

ad
()

Fr
e

e
R

TO
S_

IO
ct

l(
)

Application

Kernel Mode

User Mode

FreeRTOS

Virtualized I/O

OS Kernel

High Layer I/O Driver

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

B
lu

e
IO

_O
p

e
n

()

B
lu

e
IO

_W
ri

te
()

B
lu

e
IO

_R
e

ad
()

B
lu

e
IO

_I
O

ct
l(

)

Guest VM

Hardware

Hardware

CPU
CPU

(b) Modified FreeRTOS Kernel

Figure 6.3: Traditional and Modified FreeRTOS Kernels

114

FreeRTOS. Additionally, user applications running on the original OS kernel

can be ported to the modified kernel directly (without any modification), since

we have not modified the OS interfaces.

The architecture builds upon three existing technologies, Virtualized Com-

plicated Device Controller (VCDC) [72], GPIOCP [120] and BlueTree [60–62].

The full implementation of the BlueIO architecture is described in section 6.2.

6.2 BlueIO

The proposed BlueIO system contains four main modules (see Figure 6.4):(Note

that: the I/O devices supported in the system can be both virtualized and

non-virtualized; specifically, I/O virtualization is achieved via connecting I/O

controllers and I/O devices to the VCDC).

Figure 6.4: The Structure of the BlueIO

• BlueGrass — Is a communication interface between application CPUs,

VCDC [120] (see Chapter 4), I/O controllers and external memories

(DDR).

• Virtualized Complicated Device Controller (VCDC) [120] — Integrates

functionalities of I/O virtualization and low layer I/O drivers.

• GPIO Command Processor (GPIOCP) [120] — Is a programmable real-

time I/O controller, that permits applications to instigate complex se-

115

quences of I/O operations at an exact single clock cycle.

• BlueTree [60–62] — Provides an interface to access the external memory

for I/O devices (e.g. DMA).

Note that GPIOCP and VCDC have been described extensively in Chap-

ter 5 and 4, respectively. This section describes how they are utilized within

BlueIO, and their interconnectivity.

6.2.1 BlueGrass

BlueGrass is the communication interface between application CPUs and BlueIO,

including four communication interfaces:

• Interface from/to application CPUs;

• Interface from/to I/O controllers;

• Interface from/to VCDC;

• Interface from/to the external memory.

BlueGrass

Control Signal
(If sent to VCDC)

VCDC

Control Signal
(Index of I/O)

I/O I/O…

Arbiter_1

Arbiter_0

I/O

Many-Core System:
BlueTile

Memory: BlueTree

Figure 6.5: The Structure of the BlueGrass

116

In the proposed design, BlueGrass is physically connected to the NoC

mesh (BlueTiles) and the memory access interface (BlueTree). Additionally,

the I/O controllers can be directly connected to the Bluegrass to maintain the

original functionalities, or indirectly connected to the VCDC to acquire I/O

virtualization.

The structure of BlueGrass (see Figure 6.5) contains two parts: downward

path and upward path. The downward path is responsible for allocating either

I/O requests or memory fetched data to I/O devices. In addition, the upward

path is responsible for sending I/O response back to application CPUs, as well

as memory requests to the external memories.

Specifically, the downward path consists of three half-duplex multiplexers

and a FIFO. The 2-into-1 multiplexer connected to BlueTile [95] and BlueTree

[60] is designed to receive, and then queue the I/O requests and memory

fetched data to the downward FIFO. The downward FIFO allocates these

queued I/O requests and memory fetched data to a specified I/O according

to the format of packets. The upward path consists of two arbiters, one half-

duplex multiplexer and one FIFO. The arbiters determine the served sequence

of I/O response and memory requests sent from each I/O. In order to prevent

one single I/O dominating the upward path, and to be able to satisfy the

requirement that the I/O system can be time-predictable, we have provided

multiple real-time scheduling policies to both arbiters, including the Round-

Robin, fixed priority and FIFO. In addition, users are also allowed to add a

customized scheduling policy to the arbiters via our provided interface. The

upward FIFO and connected 1-into-2 multiplexer are responsible for sending

I/O responses and memory requests out of the BlueIO system.

6.2.2 Virtualized Complicated Device Controller (VCDC) [72]

As described in Chapter 4 [72], the Virtualized Complicated Device Controller

(VCDC) was proposed to implement I/O virtualization and I/O drivers in

hardware.

The VCDC can be physically connected to a many-core system, which is

composed of two main parts (see Figure 6.6):

• I/O VMM - Maintains the virtualization of I/O devices.

• Low Layer I/O Drivers - Encapsulates the specific I/O drivers for a

specific I/O controller (e.g. read the data from a specific address of the

117

Buffer
Pool

Buffer
Pool

Buffer
Pool

Buffer
Pool

CPU ID

Virtualization Module

Scheduler_2

I/O VMM

Control
Signal

Func 1 Func 1 Func 1

I/O

Low Layer
I/O Driver

Scheduler_1VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

VGA
Module

VGA

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Depth = i

Figure 6.6: Structure of VCDC

SPI NOR-flash).

The I/O VMM has two main responsibilities: 1) Interpreting I/O requests

(sent from a guest OS) to the actual I/O instructions (used to control a phys-

ical I/O); 2) Scheduling and allocating the interpreted I/O instructions to

physical I/O. Considering that the functionalities and features of I/O devices

are different, it is very difficult to build a general purpose module to achieve

virtualization for all kinds of I/O devices. Therefore, we create some specific-

purpose I/O VMM for those commonly used I/O devices, including UART,

VGA, DMA, Ethernet, etc. Additionally, users can also easily add their cus-

tomized I/O VMM into VCDC via our provided interfaces (see Chapter 4).

Note that, in this section, we only demonstrate the VCDC from high level,

more details can be found in Chapter 4 and [72].

6.2.3 GPIO Command Processor (GPIOCP) [120]

As described in Chapter 5 and [120], the GPIO Command Processor (GPIOCP)

was proposed. It is a resource efficient programmable I/O controller, which

permits applications to instigate complex sequences of I/O operations at an ex-

act time, so achieving timing-accuracy of a single clock cycle. This is achieved

by loading application specific programs into the GPIOCP. Applications then

118

are able to invoke a specific program at run-time by sending the GPIO com-

mand, e.g. Run command X at time t (at a future time).

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

Memory
Virtualizat ion

DDR Backend

DDR

μ

Many-Core System

Processor

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

Figure 6.7: Structure of GPIOCP

The GPIOCP achieves cycle level timing-accuracy as the latencies of the

I/O virtualization and communication bus are eliminated. For example, a

periodic read of a sensor value by an application can be achieved by loading

the GPIOCP with an appropriate program, then at run-time the GPIOCP

issues a command such as run command X at time t and repeat with period

Z — the values are read at exact times, with the latency of moving the data

back to the application considered within that application’s execution time.

The GPIOCP can be physically connected to a many-core system or VCDC,

which is composed by four main components (see Figure 6.7):

• Hardware manager: Communicates with application CPUs, allocating

incoming messages to either the command memory controller (to store

119

new commands) or the command queue (to initiate an existing com-

mand).

• Command memory controller: Stores a new GPIO command into the

storage units; and accesses an existing GPIO command for execution by

a GPIO CPU (within the command queue).

• Command queue: Allocates GPIO commands to GPIO CPUs for execu-

tion (cooperate with command memory controller). Each GPIO CPU is

a simple finite state machine, with guaranteed execution time so achiev-

ing timing-accuracy.

• Synchronization processor: Synchronises the values of I/O pins, which

may be written by different GPIO CPUs and I/O devices.

Further details can be seen in Chapter 5, [120] and [8].

6.2.4 BlueTree [62]

BlueTree is a tree-like memory interconnect built for many-core systems, which

enables time-predictable memory read/write from a scaled number of CPUs

and I/Os [62] [60]. BlueTree memory interconnect is designed to support the

memory requirements of modern systems, leaving the TDM-based NoC for

core-to-core communication only. BlueTree distributes memory arbitration

across a set of 2-into-1 full-duplex multiplexers, each with a small arbiter (see

Figure 6.8), rather than using a large monolithic arbiter next to memory, which

allows the BlueTree to fulfill the scalability requirements of the system, and

enable a larger number of requesters at a higher clock frequency than would

be available with a single monolithic arbiter.

In order to prevent a single core dominating the tree, and to be able to

satisfy the requirement that the memory subsystem can be time-predictable,

each multiplexer contains a blocking counter which encodes the number of

times that a high-priority packet (i.e., a packet from the left) has blocked a

low-priority packet (i.e., a packet from the right). When this counter becomes

equal to a fixed value m, the counter is reset and a single low-priority packet

is given service. This then allows providing an upper bound of the WCET for

a memory transaction. The specific timing analysis of BlueTree can be viewed

in [62] [60] and [104].

120

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

DDR Backend

DDR

μ

Many-Core System

Processor
/I/O

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

Figure 6.8: BlueTree Memory Hierarchy

6.3 Hardware Consumption Analysis

In this section, hardware consumption of BlueIO is analysed regarding its

scalability. Firstly, the analysis is given to describe the hardware consumption

of BlueIO; secondly, actual hardware consumption of BlueIO in VLSI (logic

gates) and FPGA (LUTs, registers and BRAMs) is given.

In this hardware consumption analysis, we assume:

• Only BlueIO is included – hence BlueTree is not included (as the func-

tionality of BlueTree is memory access, which is not necessary for all the

I/Os).

• An independent I/O request buffer (buffer pool in VCDC) and an inde-

pendent I/O request execution unit (GPIOCPU in GPIOCP) is allocated

to each CPU – therefore, the number of buffer pools and GPIOCPUs in

BlueIO equals the number of CPUs in the whole system.

We introduce the following terms:

• Number of CPUs in the system: m

121

– I/Os are indexed as from IO 1 to IO n: UART — IO 1, SPI flash

— IO 2, VGA — IO 3, and Ethernet — IO 4.

• Hardware consumption: C where Cm,n
x gives the hardware consump-

tion of module x dependent on the number of CPUs (m) and I/Os (n)

respectively.

In the analysis, we define the hardware consumption of a 1-CPU BlueIO

system with GPIOCP (Cm=1,n=0
BIO) as the basic BlueIO system. We also define

the difference between the m-CPU and n-IO BlueIO (Cm,n
BIO) and the basic

BlueIO system as ∆Cm,n
BIO. Therefore, the hardware consumption of an m-

CPU and n-IO BlueIO system can be calculated as:

Cm, n
BIO = Cm=1, n=0

BIO + ∆Cm, n
BIO (6.1)

Similarly, the variation of hardware consumption of the m-CPU and n-IO

VCDC and GPIOCP compared with the basic systems are: ∆Cm,n
V CDC and

∆Cm,n
GPIOCP .

BlueIO is comprised of BlueGrass, VCDC and GPIOCP (See Figure 6.4).

Since the hardware consumption of BlueGrass is constant, the variation of

hardware consumption in BlueIO (∆Cm,n
BIO) equals the sum of the variation of

hardware consumption occurred in VCDC (∆Cm,n
V CDC) and GPIOCP (∆Cm,n

GPIOCP):

∆Cm, n
BIO = ∆Cm, n

V CDC + ∆Cm, n
GPIOCP (6.2)

The hardware consumption of the VCDC (see Figure 6.6) is dominated by

I/O VMMs and buffer pools (around 99% in our design). Hence we consider

VCDC hardware consumption as the summation of I/O VMMs (CV IO i) and

buffer pools (CBP), and ignore the effects from the other variables. In our

design, the hardware consumption of an I/O VMM (CV IO i) and a buffer

pool (CBP) is constant. Additionally, the number of I/O VMMs equals the

number of I/Os, meanwhile, the number of buffer pools equals the number of

CPUs. Therefore, the increased hardware consumption of VCDC (∆Cm,n
V CDC)

is calculated as:

∆Cm, n
V CDC ≈

n∑
i=1

(CV IO i + m ∗ CBP) (6.3)

In GPIOCP (see Figure 6.7), the only variation related to its hardware con-

sumption is the number of GPIOCPUs (CGCPU), equalling to the number of

122

CPUs in the whole system. Therefore, the variation of hardware consumption

of GPIOCP (∆CGPIOCP) is calculated as:

∆Cm
GPIOCP = (m − 1) ∗ CGCPU (6.4)

Combining equations 6.1, 6.2, 6.3, and 6.4 gives the hardware consumption

of BlueIO to be:

Cm, n
BIO = Cm=1, n=0

BIO +
n∑

i=1

(CV IO i + m ∗ CBP) + (m − 1) ∗ CGCPU (6.5)

Expanding gives:

Cm, n
BIO = Cm=1, n=0

BIO +

n∑
i=1

CV IO i + (m − 1) ∗ CGCPU + m ∗ n ∗ CBP (6.6)

Equation 6.6 shows the hardware consumption of implementing BlueIO is:

• Linearly scaled with the number of I/Os (n), while the number of CPUs

(m) is constant;

• Linearly scaled with the number of CPUs (m), while the number of I/Os

(n) is constant.

6.3.1 Implementing BlueIO in VLSI

This section shows that the implementation of BlueIO in VLSI has scalable

hardware consumption at the gate level.

Firstly, we use Cadence RTL encounter compiler (v11.20) [5] to synthe-

sis and provide gate level hardware consumption of each basic component

in BlueIO respectively, i.e. Cm=1,n=0
BIO , CGCPU , CBP , and CV IO n (see Ta-

ble 6.1). Secondly, we synthesise BlueIO with different number of CPUs and

I/Os respectively, and exhibit their gate level hardware consumption in Ta-

ble 6.2. Note that OSU SOC v2.5 [1] is the open source MOSIS SCMOS

TSMC 0.25um library used in the synthesis.

The consumption of logic gates may be varied by a specific synthesis com-

piler and adopted synthesis library.

Table 6.1 shows I/O VMM (CV IO n) consumes more gates resources when

compared with GPIOCPU (CGCPU) and buffer pool (CBP). Therefore, even

123

Table 6.1: Hardware Consumption of Basic Modules (Gate Level)

Component Cm=1,n=0
BIO CGCPU CBP CV IO 1 CV IO 2 CV IO 3 CV IO 4

AND 201 64 47 328 621 512 981

AOI 1,085 369 36 1,502 2,381 2,201 4,523

DFFPOS 1,020 382 54 1,196 2,021 1,981 3,708

HA 12 6 1 13 18 15 60

INV 1,346 666 59 1,621 2,531 2,512 5,128

MUX2 7 5 0 10 14 16 80

NAND 745 477 70 1,253 1,573 1,789 3,001

NOR 572 248 25 7,61 1,221 1,201 2,401

OAI 633 420 35 1,066 1,652 1,602 3,101

OR 115 35 2 62 141 142 250

XNOR 9 10 0 26 40 36 32

XOR 10 6 3 21 20 20 52

Total 5,755 2,688 332 7,859 12,233 12,027 23,317

though the hardware consumption of BlueIO is linearly scaled by the number

of CPUs (m) and I/Os (n) respectively (see equation 6.5), the number of I/Os

(n) and the specific implementation of the corresponding I/O VMMs (CV IO n)

dominates the hardware consumption.

Table 6.2 shows that the hardware consumption of BlueIO is linearly in-

creased with the number of CPUs (m) and I/Os (n) respectively. Specifically,

if the number of I/Os (n) is fixed, the hardware consumption may be slightly

linearly increased with the number of CPUs (m). Similarly, if m is fixed, the

hardware consumption may be obviously linearly increased with the addition

of I/Os (n). Additionally, the types of added I/Os can also affect the hardware

consumption — the required logic gates of a simple I/O (e.g. Cm=1,n=0
BIO with

IO1) is far less than a complicated I/O (e.g. Cm=1,n=0
BIO with IO4).

6.3.2 Hardware Consumption in RTL Level (FPGA)

Vivado (v2016.2) was used to synthesise and implement BlueIO on Xilinx

VC709 FPGA board [20] with increasing numbers of I/Os and CPUs. The

hardware consumption of BlueIO was recorded at the RTL level in terms

of LUTs, registers, BRAMs, power consumption and maximum working fre-

quency.

The resource efficiency of BlueIO is shown by Table 6.3 and 6.4, e.g. a

full featured 2-CPU BlueIO only consumes 2.24% LUTs and 1.04% Registers

124

T
ab

le
6.

2:
H

ar
d

w
ar

e
C

on
su

m
p

ti
on

of
B

lu
eI

O
(G

at
e

L
ev

el
)

[!
h

]
C

m
=
1
,n

=
0

B
I
O

+
I
O

1
+
I
O

2
+
I
O

3
+
I
O

4

N
u

m
b

.
C

P
U

s
1

1
2

4
1

2
4

1
2

4
1

2
4

A
N

D
20

1
29

2
38

1
4
8
2

5
2
9

5
5
0

6
8
0

1
,0

0
6

1
,2

0
5

1
,3

7
9

1
,9

2
1

2
,0

2
5

2
,1

5
0

A
IO

1,
08

5
1,

57
9

1,
99

6
2
,8

5
2

2
,5

7
3

2
,9

8
8

3
,9

2
5

4
,7

6
9

5
,2

6
8

6
,2

3
3

9
,2

2
2

9
,8

5
2

1
0
,8

5
0

D
E

E
P

O
S

1,
02

0
1,

28
8

1,
69

5
2
,5

1
2

2
,1

8
8

2
,7

7
6

3
,7

5
2

3
,9

8
8

4
,5

2
0

5
,4

2
5

7
,5

8
8

7
,9

9
2

8
,8

9
5

H
A

12
47

52
6
8

2
7

3
4

4
8

3
9

4
6

5
9

9
8

1
0
6

1
2
0

IN
V

1,
34

6
1,

80
1

2,
62

3
4
,1

5
6

2
,9

0
9

3
,6

5
0

5
,1

2
5

5
,3

7
1

6
,2

1
0

7
,6

8
5

1
0
,3

0
7

1
1
,1

2
5

1
2
,6

5
0

M
U

X
2

7
16

21
3
2

1
6

2
0

3
3

3
1

3
8

4
8

1
1
3

1
2
5

1
4
1

N
A

N
D

74
5

97
2

1,
52

5
2
,4

8
7

1
,8

7
6

2
,5

0
1

3
,6

0
2

3
,4

4
9

4
,0

0
0

5
,1

5
3

6
,3

3
0

6
,9

5
2

8
,0

5
3

N
O

R
57

2
72

9
1,

05
1

1
,7

5
3

1
,2

3
3

1
,6

6
6

2
,3

2
5

2
,3

5
0

3
,0

5
2

3
,7

5
2

4
,6

6
1

5
,1

2
5

6
,0

0
2

O
A

I
63

3
77

5
1,

32
5

2
,4

2
3

1
,6

9
4

2
,0

5
0

3
,1

1
2

3
,2

4
1

3
,8

2
5

4
,0

5
7

6
,3

3
7

6
,9

2
5

8
,1

2
5

O
R

11
5

83
12

5
1
9
3

1
8
2

2
5
2

3
8
8

3
1
2

3
8
8

4
1
2

5
7
9

6
2
8

7
5
5

X
N

O
R

9
7

19
4
3

2
9

4
1

6
5

6
4

7
9

1
0
2

9
6

1
1
3

1
4
1

X
O

R
10

16
28

4
9

2
7

3
9

5
7

4
6

5
5

7
1

9
1

1
0
2

1
1
5

T
ot

al
5,

75
5

7,
60

5
10

,8
41

1
7
,0

5
0

1
3
,2

8
3

1
6
,5

6
7

2
3
,1

1
2

2
4
,6

6
6

2
8
,6

8
6

3
4
,3

7
6

4
7
,3

4
3

5
1
,0

7
0

5
7
,9

9
7

125

of the VC709 FPGA board. As shown, DSP slices are not required by the

implementation of BlueIO on FPGA. Additionally, the number of LUT slices

and registers linearly increase as the number of I/Os and CPUs increase re-

spectively. Furthermore, the increased hardware consumption also leads to

a linear increment in power consumption; and a decrease in the maximum

working frequency. The maximum frequency is inversely proportional to the

size of the RTL design [112], specifically described in Section 2.3.

Table 6.3: Hardware Consumption of 2-CPU BlueIO with Different I/Os on

FPGA (RTL Level)

Added I/O
Hardware Consumption Power

(mW)

Maximum

Frequency

(Mhz)
LUTs

% of

VC709
Register

% of

VC709
BRAMs

% of

VC709
DSP

% of

VC709

+ UART 2192 0.12% 1471 0.17% 0 0% 0 0% 13 221.8

+ VGA 4566 0.51% 2315 0.27% 0 0% 0 0% 19 221.8

+ SPI Flash 6120 1.41% 4225 0.49% 0 0% 0 0% 29 221.8

+ Ethernet 9723 2.24% 9035 1.04% 0 0% 0 0% 75 192

Table 6.4: Hardware Consumption of BlueIO (+GPIOCP) with Different

Number of CPUs on FPGA (RTL Level)

Number of

CPUs

Hardware Consumption Power

(mW)

Maximum

Frequency

(Mhz)
LUTs

% of

VC709
Register

% of

VC709
BRAMs

% of

VC709
DSP

% of

VC709

1 632 0.146% 962 0.111% 16 1.09% 0 0% 19 318

2 886 0.205% 1156 0.113% 16 1.09% 0 0% 20 303

4 1314 0.303% 1468 0.169% 16 1.09% 0 0% 22 291

8 1942 0.448% 2094 0.242% 16 1.09% 0 0% 25 284

16 3236 0.747% 3346 0.386% 16 1.09% 0 0% 31 249

32 5065 1.169% 5311 0.613% 16 1.09% 0 0% 37 236

64 8698 2.008% 8449 0.975% 16 1.09% 0 0% 50 204

6.4 Evaluation

The BlueIO was implemented using Bluespec [4] and synthesised for Xilinx

VC709 development board [20] (further implementation details are given in

Appendix A and B).

The BlueIO system was connected to a 4 x 5 2D mesh type open source

NoC [95] containing 16 Microblaze CPUs [11] running the modified guest OS

(FreeRTOS v9.0.0) in the guest VM (see Section 6.1.3). The architecture is

shown in Figure 6.9.

To enable comparison, a similar hardware architecture without the BlueIO

system was built - note that this architecture requires I/O operations requested

126

Figure 6.9: Experimental Platform

(M - Microblaze; A - ARM Processor;

VM - Guest VM; R - Router / Arbiter)

by Mircoblazes to pass through the mesh to the I/O rather than being con-

trolled by a BlueIO. Both architectures run at 100 MHz.

6.4.1 Memory Footprint

In this section, we evaluate the memory footprint of BlueIO, as well as different

versions of FreeRTOS running on Microbalze CPU, via the size tool of the

Xilinx Microblaze GNU Tool chain. In the measurement, the native version

of FreeRTOS (nFreeRTOS) is full-featured [7], which is the foundation of the

127

other versions 1 2 3. Table 6.5 presents the collected measurements.

Table 6.5: BlueIO Memory Footprint (Bytes)

Software
Memory Footprint

.text .data .bss Total

BlueIO 0 0 0 0

nFreeRTOS 121,309 1,728 35,704 158,741

nFreeRTOS + I/O 179,652 1,852 36,250 217,754

vFreeRTOS + I/O 189,556 1,882 36,450 227,888

BV vFreeRTOS + I/O 131,969 1,732 35,723 169,424

As it can be seen, the memory overhead introduced by the hypervisor(BlueIO)

is zero, resulting from its pure hardware implementation. The native full-

featured FreeRTOS (nFreeRTOS) requires 158741 bytes – with I/O module

added, the memory footprint increases 37.18%, owing to the addition of I/O

manager and I/O drivers. When it comes to the vFreeRTOS + I/O, the intro-

duction of software implemented virtualization increases the memory footprint

to 227, 888 bytes. However, the BV vFreeRTOS + I/O only consumes 169, 424

bytes of memory, which is 6.73% increased compared to the native FreeRTOS,

as well as 77.81% and 74.35% of the nFreeRTOS + I/O and vFreeRTOS +

I/O, respectively. The main reason behind such a low memory footprint is

the implementation of para-virtualization (described in Section 6.1.3), has re-

moved the software overhead significantly.

6.4.2 Real-time Features

This experiment aims to evaluate the predictability and timing accuracy of the

I/O operations in a BlueIO and a non-BlueIO system. In both architectures,

9 CPUs are active, whose coordinates are from (0, 0) to (0, 2), (1, 0) to (1, 2)

and (2, 0) to (2, 2). When CPUs are required to access and read the GPIO at

a specific time, then for a non-BlueIO architecture the CPU has to instigate

the I/O operation, for the BlueIO architecture, this can be delegated to the

BlueIO (GPIOCP) to achieve timing accuracy. This was shown by connecting

1FreeRTOS + I/O involves UART, VGA and corresponding drivers.
2vFreeRTOS is a simply implemented software virtualized FreeRTOS for many-core sys-

tems, see [72].
3BV vFreeRTOS is the virtualized FreeRTOS in BlueIO system.

128

NoC

GPIOCP
BlueIO

GPIO T GPIO T

NoC

(a) BlueIO System

NoC

GPIOCP
BlueIO

GPIO T GPIO T

NoC

(b) Non-BlueIO System

Figure 6.10: Experimental Setup for the Timing Accuracy of I/O Operations

(T - Timer)

a timer to the GPIO (updating its value every cycle), with every CPU needing

to read the value simultaneously.

The results of 1000 experiments are given in Table 3.4 and 5.1, showing that

the latencies and variance for the non-BlueIO architecture (baseline system)

are significant (errors calculated according to equation 3.5); in contrast, the

BlueIO architecture is predictable and accurate at the cycle level, which is

totally the same as the GPIOCP architecture evaluated in Chapter 5. This

results from the employment of the real-time I/O controller (i.e. GPIOCP).

6.4.3 Performance Features — I/O Performance

The I/O performance evaluation considers I/O response time and I/O through-

put separately in the following sections.

6.4.3.1 I/O Response Time

This experiment is designed to evaluate the I/O response time whilst CPUs

and measured I/O are fully loaded within a BlueIO and non-BlueIO system. In

both architectures, all the active CPUs have an independent application that

is set to be running, which continuously reads data from an SPI NOR-flash

(model: S25FL128S). Specifically, the experiment is divided into four groups,

depending on the number of reading bytes: 1, 4, 64 and 256 bytes. All exper-

iments are implemented 1,000 times. We name the experiments according to

the scheduling policy and bytes of read data in once I/O request. For example,

non-BlueIO-RR-4B stands for a non-BlueIO system with Round-Robin global

scheduling policy; and 4 bytes of data read from the NOR-flash in once I/O

129

request.

In the non-BlueIO architecture, we modify the FreeRTOS to be suitable

for many-core systems4. In both architectures, while the user applications on

different CPUs are requesting the I/O at the same time point, the scheduling

policy can be set as local FIFO (non-BlueIO-FF and BlueIO-FF) and global

Round-Robin (non-BlueIO-RR and BlueIO-RR) respectively. Due to the non-

readability, the table with entire experimental results is shown in [21, 72].

Instead, a summarized version of experimental results showing the worst case

and variation of each group of experiments are demonstrated in Table 6.6

and 6.7.

Table 6.6: I/O Response Time in Non-BlueIO Systems (unit: clock cycle)

(Summarized Version)

Non-BlueIO Non-BlueIO

Written Bytes (FIFO) (Round-Robin)

Worst Case Variation Worst Case Variation

1 9,357 1,541 65,885 59,736

4 58,844 7,061 327,813 286,733

8 936,166 98,026 4,555,159 3,823,104

16 3,702,565 284,142 17,345,151 15,475,355

Table 6.7: I/O Response Time in BlueIO Systems (unit: clock cycle)

(Summarized Version)

BlueIO BlueIO

Written Bytes (FIFO) (Round-Robin)

Worst Case Variation Worst Case Variation

1 532 57 403 46

4 1,785 368 1,569 276

8 25,053 3,667 23,032 3,542

16 92,153 15,225 89,708 13,711

Table 6.6 shows that the worst case response time of I/O requests in the

non-BlueIO architecture is significantly high for the reading of 1, 4, 64 or 256

4FreeRTOS is designed for a single-core system; in our experiments, we modify it to be

suitable for many-core systems [72]

130

byte(s) from the NOR-flash, especially while global Round-Robin scheduling

policy being employed – noting that a lower I/O response time indicates a

higher I/O performance. In experiments with the number of read bytes in-

creased (see Table 6.7), BlueIO system maintains its superior performance.

Additionally, when it comes to the variation, the BlueIO systems also always

have a better performance than the non-BlueIO systems. For example, in the

non-BlueIO-FF-1B, the variation is greater than 1, 500 clock cycles; and in

non-BlueIO-RR-1B, the variation reaches 60, 000 clock cycles. Conversely, in

both BlueIO-FF-1B and BlueIO-RR-1B, the highest variance is less than 60

clock cycles.

Therefore, the evaluation results reveal that a system with BlueIO provides

more predictable I/O operations with lower response time.

6.4.3.2 I/O Throughput

We evaluate the I/O throughput in two architectures (with BlueIO and with-

out BlueIO). In the experiments, we use the same NOR-flash illustrated in the

previous section as our tested I/O. Additionally, the scheduling policy in both

architectures is set as local FIFO and global Round-Robin respectively.

cpu (0,0) cpu (0,1) cpu (0,2) cpu (0,3)
0

200

400

600

800

1000

1200

1400

1600

T
hr

ou
gh

pu
t (

U
ni

t:
K

B
/s

)

Non-BlueIO; Scheduling Policy: FIFO
Non-BlueIO; Scheduling Policy: RoundRobin
BlueIO; Scheduling Policy: FIFO
BlueIO; Scheduling Policy: Round-Robin

Figure 6.11: I/O Throughput

In both architectures, an independent application is set to be running

on each of 4 Microblaze CPUs, whose coordinates are from (0,1) to (0,3))

131

and continuously writing to the NOR-flash — one byte can be written in a

single I/O request. The number of bytes written from each CPU per second

is recorded as the I/O throughput (unit: KB/s). The result of higher I/O

throughput implies a better performance. All the evaluations are implemented

1,000 times. The evaluation results are shown in Figure 6.11.

As shown, four groups of bar charts present the average I/O throughput

in the BlueIO system and the non-BlueIO system; and the error bar on each

bar chart presents the variance of the I/O throughput during these 1,000

experiments. As shown, on all CPUs considered, no matter which scheduling

policy is deployed, the BlueIO system always provides a better performance

on I/O throughput (nearly 7 times), and less variance.

6.4.4 Performance Features — Timing Scalability

In this section, we evaluate the timing scalability of the BlueIO system via

a connected complex device — Ethernet. The evaluation is implemented by

measuring the I/O response time of Ethernet packets sent from different CPUs

in single-core, 4-core, 8-core and 16-core systems, respectively. The implemen-

tation of the Ethernet virtualization in BlueIO system can be found in [72,72].

The experiment is divided into two parts, dependent on the global schedul-

ing policy of the BlueIO: Round-Robin (named BlueIO-RR) and fixed priority

(named BlueIO-FP). In BlueIO-RR and BlueIO-FP, the experiments can be

further divided into four parts, according to the number of active CPUs. In

these four parts of the experiments, we activate 1, 4, 8 and 16 Microblaze

CPUs respectively. We name these experiment parts according to the global

scheduling policy of the experiment plus the number of active CPUs. For ex-

ample, in a 4-core BlueIO system with Round-Robin global scheduling policy,

the experiment is labelled as BlueIO-RR-4.

The software application running on each active CPU is the same, and is

designed to continuously send 1 KB Ethernet packets via BlueIO to a dedicated

component. The 1 KB Ethernet packets sent from different CPUs are exactly

the same. The dedicated component is designed to monitor the response time

of these Ethernet packets by recording the reach time and analysing the virtual

source IP address of the packets. All the experiments were implemented 1000

times; and the experiment results and ∆r (described in eq 3.4) are depicted

in tables.

In BlueIO-FP, CPU (0, 0) is always set as the highest priority, followed

132

T
a
b

le
6
.8

:
A

v
er

a
ge

R
es

p
on

se
T

im
e

o
f

L
o
op

B
ac

k
1K

B
E

th
er

n
et

P
ac

ke
ts

in
B

lu
eI

O
S

y
st

em
(G

lo
b

al
S
ch

ed
u

li
n

g
P

ol
ic

y
:

F
ix

ed

P
ri

or
it

y
;

U
n

it
:

u
s)

C
P

U
C

o
o
rd

in
a
te

N
u

m
b

er
of

C
P

U
s

(0
,0

)
(1

,0
)

(2
,0

)
(3

,0
)

(0
,1

)
(1

,1
)

(2
,1

)
(3

,1
)

(0
,2

)
(1

,2
)

(2
,2

)
(3

,2
)

(0
,3

)
(1

,3
)

(2
,3

)
(3

,3
)

∆
r

1
11

.5
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

0

4
12

.0
25

.5
36

.9
48

.3
X

X
X

X
X

X
X

X
X

X
X

X
1
.2

9

8
12

.1
25

.5
36

.9
48

.3
5
9
.7

7
1
.2

8
2
.6

9
4
.0

X
X

X
X

X
X

X
X

0
.9

6

16
12

.0
25

.5
36

.9
48

.3
5
9
.7

7
1
.1

8
2
.6

9
5
.0

1
0
5
.4

1
1
6
.9

1
2
8
.3

1
3
9
.7

1
5
1
.1

1
6
2
.5

1
7
4
.0

1
8
5
.4

0
.8

133

T
a
b

le
6
.9

:
A

v
er

a
ge

R
es

p
on

se
T

im
e

o
f

L
o
op

B
ac

k
1K

B
E

th
er

n
et

P
ac

ke
ts

in
B

lu
eI

O
S

y
st

em
(G

lo
b

al
S

ch
ed

u
li

n
g

P
ol

ic
y
:

R
ou

n
d

R
ob

in
;

U
n

it
:

u
s)

C
P

U
C

o
o
rd

in
a
te

N
u

m
b

er
of

C
P

U
s

(0
,0

)
(1

,0
)

(2
,0

)
(3

,0
)

(0
,1

)
(1

,1
)

(2
,1

)
(3

,1
)

(0
,2

)
(1

,2
)

(2
,2

)
(3

,2
)

(0
,3

)
(1

,3
)

(2
,3

)
(3

,3
)

∆
r

1
11

.0
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

0

4
46

.7
47

.2
47

.6
48

.1
X

X
X

X
X

X
X

X
X

X
X

X
0
.8

4

8
90

.5
90

.8
91

.2
91

.5
9
1
.9

9
2
.2

9
2
.6

9
2
.9

X
X

X
X

X
X

X
X

0
.4

4

16
18

0.
1

18
0.

7
17

9.
9

18
0.

6
1
8
0
.0

1
8
0
.7

1
8
0
.0

1
8
0
.7

1
8
0
.0

1
8
0
.7

1
8
0
.0

1
8
0
.7

1
8
0
.0

1
8
0
.7

1
8
0
.0

1
8
0
.7

0
.2

5

134

by CPU (1, 0), (2, 0), (3,0) and (1, 0) etc. The experiment results are shown

in Table 6.8. As shown, for all many-core systems, the I/O response time

from the CPU with the highest priority is always fixed around 12 us; and the

I/O requests from the CPUs with the lower priorities are always blocked by

the I/O requests with higher priorities, which guarantees the execution of the

I/O requests with higher priorities. For example, in BlueIO-FP-8, the average

response time of the I/O requests from CPU (0,0) (the highest priority) is

kept to 12 us, which means it can never be blocked by others. When it comes

to the I/O requests from CPU (3, 1) (the lowest priority), the I/O response

time is always around 94 us, which is 8 times of the highest priority I/O

requests. In an 8-core system, the theoretical optimal response time of the

lowest priority I/O request should be 8 times the highest priority I/O request,

which means that the BlueIO system does not introduce an extra delay for

the lowest priority I/O request; and our experiment results obtain this. In

addition, with the number of CPUs increased, there is no obvious increment

in ∆r, which implies the loss of I/O performance is not significant, while the

number of CPUs being increased, as well as the good scalability of the BlueIO

system (with the fixed priority scheduling policy).

In BlueIO-RR, the global arbiter is set to start from operating a random

I/O request. The experiment results are shown in Table 6.9. As shown, with

an increment in the number of CPUs, the I/O response time of each CPU

is proportional to the number of CPUs. For example, the average response

time of an I/O request in BlueIO-RR-4, BlueIO-RR-8 and BlueIO-RR-16 are

close to their theoretical optimal values, which are around 4, 8 and 16 times of

the one in a single-core system (BlueIO-RR-1). In addition, with the number

of CPUs increased, there is no obvious increment in ∆r, which also shows

the good scalability of the BlueIO system (with the Round-Robin scheduling

policy).

6.4.5 On-chip Communication Overhead and Scalability

In NoC-based many-core systems, all the I/O requests are transmitted as

on-chip packets. A larger requirement for on-chip packets means a higher

on-chip communication overhead. In this section, we compare the on-chip

communication overhead while invoking commonly used I/O requests in a

BlueIO and non-BlueIO system by recording the number of packets on the

NoC. In the NoC [95], the width of all the on-chip packets is 32 bits. The

135

evaluation results are demonstrated in Table 6.10. Results show that whilst

the invoked I/O request is simple, the on-chip communication overhead is

similar in all the systems, e.g. displaying one pixel via the VGA in a single-

core system. When the I/O operations become complicated or the number

of CPUs is increased, the on-chip communication overhead in non-BlueIO

architecture is significant; in contrast, the BlueIO architecture has a lower

on-chip communication overhead, for example, reading 10 bytes data from the

SPI flash in 10-core systems.

Table 6.10: On-chip Communication Overhead

I/O Device I/O Operation

Number of on-chip Packets

(Each Packet: 32-bit)

Non-VCDC

FIFO

Non-VCDC

Round-Robin
VCDC

VGA

Display 1 Pixel

1 CPU 6 6 3

4 CPUs 24 33 12

10 CPUs 60 87 30

Display 10 Pixels

1 CPU 60 60 30

4 CPUs 240 357 120

10 CPUs 600 897 300

SPI Flash

Read 1 Byte

1 CPU 12 12 4

4 CPUs 48 57 16

10 CPUs 120 237 40

Read 10 Bytes

1 CPU 120 120 40

4 CPUs 480 597 160

10 CPUs 1200 1497 400

6.5 Summary

In this chapter, we have presented a scalable hardware-implemented real-time

I/O virtualization system for multi-core and many-core systems — BlueIO. It

simultaneously enables improved performance features (i.e. I/O performance

and scalability) compared to baseline systems, real-time features (i.e. pre-

dictability and timing-accuracy) and protection features (i.e. parallel accesses

and isolation). BlueIO is designed based on previous research presented in

this thesis — VCDC, GPIOCP and BlueTree, integrating most of the func-

tionalities of I/O virtualization, low layer I/O drivers and the clock cycle level

timing-accurate I/O controller (GPIOCP) in hardware layer, meanwhile pro-

viding abstracted high-layer access interfaces to software layers (Guest VMs).

Evaluation reveals that BlueIO can support virtualization of a physical

136

I/O device to multiple virtual I/O devices with good performance features,

including faster I/O response time, higher I/O throughput, less on-chip com-

munication overhead and good scalability. In additional, BlueIO can also

handle multiple I/O operations with clock cycle accuracy, in many cases to-

tally timing-accurate and predictable. In the hardware consumption analysis,

we demonstrate the hardware consumption of BlueIO linearly scales with the

number of CPUs and I/Os respectively, evidenced by our implementation in

VLSI and FPGA.

The major contributions of the chapter follow. Firstly, Section 6.1 pro-

posed BlueIO, and gave the general architecture and the corresponding I/O

virtualization. Specifically, Section 6.1.1 briefly introduced the general archi-

tecture of BlueIO, followed by the system context introduced in Section 6.1.2.

Section 6.1.3 describes the I/O virtualization in the BlueIO-based system

— bare-metal virtualization and para-virtualization. Secondly, Section 6.2

presented the specific design and implementation details of BlueIO, which

included the high level structure (shown in Figure 6.4), as well as the de-

tailed introduction of internal components — BlueGrass, VCDC, GPIOCP

and BlueTree (from Section 6.2.1 to 6.2.4). Thirdly, Section 6.3 demonstrated

the hardware consumption analysis of BlueIO, which showed that it linearly

scales with the number of CPUs and I/O devices respectively. The results are

evidenced by our implementation which targets both VLSI (see Section 6.3.1)

and FPGA (see Section 6.3.2). Finally, Section 6.4 evaluated BlueIO. Sec-

tion 6.4.1 evaluated the memory footprint (software overhead) of BlueIO and

BlueIO-based systems. Due to the hardware implementation of BlueIO, the

software overhead in a BlueIO-based system is significantly lower than a con-

ventional solution. Moreover, Section 6.4.2 evaluated the real-time features

of BlueIO by measuring the error in timing-accuracy (E) of two architectures

and corresponding variances (with and without BlueIO). The evaluation re-

sults revealed that a BlueIO-based system can handle multiple I/O devices

with clock cycle timing-accuracy and predictability. Section 6.4.3 evaluated

the I/O performance via I/O throughput and I/O response time. The evalua-

tion results revealed that BlueIO significantly enhances the I/O performance

compared to a non-BlueIO architecture — increased I/O throughput and re-

duced I/O response time. Meanwhile, Section 6.4.4 evaluatd timing scalability

via measuring the I/O response time of a BlueIO architecture with a different

number of processors. As shown in the evaluation results, the BlueIO system

137

achieves better scalability compared to a non-BlueIO architecture.

Overall, BlueIO simultaneously provides good real-time features and per-

formance features on I/O virtualized systems. Meanwhile, the deployment of

I/O virtualization also brings protection features (i.e. parallel accesses and

isolation). Therefore, BlueIO has successfully solved the research question 3.

The following chapter proposes a real-time hypervisor (case study) built

upon VCDC (see Chapter 4), GPIOCP (see Chapter 5), and BlueIO (see Chap-

ter 6), in order to show our methodologies can be expanded to different system

architectures and platforms, with kept features on real-time, performance and

protection.

138

Chapter 7

BlueVisor: A Scalable

Real-Time Hardware

Hypervisor for Many-core

Embedded Systems

VCDC (see Chapter 4) has solved the research question 1; GPIOCP (see

Chaprter 5) has solved the research question 2; and BlueIO (see Chapter 6)

has solved research question 3. The main aim of this chapter is to solve the

fourth research problem: “How to integrating the ready-built I/O system to

the complete system with the expected features inherited?”, see Chapter 1,

Section 1.4.

Currently, virtualization technology is widespread in real-time embedded

systems [65, 87, 91, 93, 102, 121], resulting from the availability of hardware

support. Hardware assistance allows the penalties suffered by traditional soft-

ware virtualization technologies to be alleviated, e.g., significant software over-

head [109]. However, current technologies are not necessarily applicable to

real-time systems as they are not designed to satisfy strict performance and

timing requirements and constraints [73].

In this chapter, we propose a scalable real-time hardware hypervisor for

multi-core and many-core embedded system, termed BlueVisor, which enables

predictable virtualization on CPU, memory, and I/O, as well as fast interrupt

handler, and inter-VM communication.

We propose the design idea and specific implementation of the real-time hy-

139

pervisor, as well as demonstrate how a BlueVisor-based virtualization system

can be adequately exploited to meet the real-time requirements with significant

improvements on system performance, while presenting a low performance cost

executing different operating systems (OSs).

This chapter is organized as follows: Section 7.1 proposes an overview of

BlueVisor, which describes the general architecture. Section 7.2 demonstrates

the design and implementation details of BlueVisor. Furthermore, Section 7.3

evaluates BlueVisor via multiple metrics. At last Section 7.4 and 7.5 discusses

the drawbacks of BlueVisor, and draws the conclusion, respectively.

7.1 Overview

The design of the proposed real-time hardware hypervisor relies upon real-

time hardware assistance (i.e. VCDC (see Chapter 4 [72]), GPIOCP (see

Chapter 5 [120]), and virtualized BlueTree [35]) to move virtualization and

low layer drivers from software to hardware, including the virtualization of

CPU, memory, I/O and interrupts, as well as the inter-VM communication,

and I/O drivers, while providing abstracted high layer access interfaces for

guest VMs/OSs.

The hardware implemented hypervisor offloads the majority of the over-

head of virtualization (see Section 7.2) to hardware. This enables guest OSs

to execute in ring 0 with full privilege and removes application latency to

the OS, the buses/routers. Also, indirection and interposition of privileged

instructions are not required. Therefore, the real-time properties can be im-

proved. Additionally, the hardware implemented low layer drivers and the

abstracted high layer access interfaces (in software layer) significantly improve

the system performance.

7.1.1 General Architecture

Figure 7.1 shows the proposed embedded virtualization architecture. The

RTOS kernel in each VM can be executed in kernel mode (ring 0) to achieve

full functionality. Meanwhile, it can provide a real-time environment for appli-

cations that need to guarantee deadlines. Finally, the hypervisor, running in

hardware, is responsible for system virtualization, physical isolation between

VMs, and providing high layer access interfaces for user applications (in guest

VMs).

140

The architecture uses existing technologies: VCDC (see Chapter 4 [72]),

GPIOCP (see Chapter 5 [120]) and BlueTree (see Section 6.2.4 [62]).

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronizat ion Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblaze

)
Memory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System/VCDC

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

Memory
Virtualizat ion

DDR Backend

DDR

μ

Many-Core System

Processor

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

Figure 7.1: Embedded Virtualization Architecture

7.2 BlueVisor: Implementation

In this chapter, VCDC (see Chapter 4 [72]), GPIOCP (see Chapter 5 [120]),

BlueTree (see Section 6.2.4 [62]) and the memory virtualization extension are

supplemented with the real-time hardware hypervisor (BlueVisor). The mo-

tivation is to enhance the real-time features and performance features of whole

system. BlueVisor is mounted to a 2D mesh type open source NoC, termed

BlueTiles [95]. Use of a NoC is not required by BlueVisor, because it is a

general-purpose hypervisor, which is agnostic to the type of bus and the soft-

ware running on CPUs. To support a complete BlueVisor system, the platform

requires communication channels between BlueVisor and CPUs and a global

synchronization timer.

The use of BlueVisor within BlueTiles is shown in Figure 7.2. BlueVisor

is physically connected to the home port (via the physical link) of a router, as

well as the global timer.

7.2.1 CPU Virtualization and Guest VM

In our proposed approach, each processor (whatever the architecture) is set

as an individual guest VM. The virtualization in the system has the following

141

0x0000 0000

0x000F FFFF

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Virtual
Mmeory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System/VCDC

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

Memory
Virtualizat ion

DDR Backend

DDR

μ

Many-Core System

Processor

0x07FF FFFF

BRAMs

DDR3

T

Figure 7.2: Platform Overview

M - Microblaze; A - ARM Processor;

R - Router / Arbiter; T - Global Timer

features:

• Bare-metal virtualization [102] - A guest OS can be executed on a pro-

cessor directly, without host OS. Therefore, a guest OS is able to execute

in kernel mode to achieve full privilege.

• Para-virtualization [102] - Parts of the guest OSs (e.g. I/O management,

interrupts handler etc.) have to be replaced by our high layer drivers,

which aims to achieve a smaller software, and improved performance.

Currently, in our proposed design, three OS kernels have been modified

to support the virtualization [21], i.e. FreeRTOS [7], uCosII [19] and Xilker-

nel [29]. In Figure 7.3, we use FreeRTOS kernel as an example to demonstrate

the modification of I/O parts. Compared with the original FreeRTOS kernel

(Figure 7.3(a)), the user applications in the modified kernel(Figure 7.3(b)) are

able to access and operate the I/O via provided high layer drivers directly.

142

Application

Kernel Mode
User Mode

FreeRTOS

FreeRTOS I/O Manager

Low Layer I/O Driver

I/O

OS Kernel

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

Fr
e

e
R

TO
S_

O
p

e
n

()

Fr
e

e
R

TO
S_

W
ri

te
()

Fr
e

e
R

TO
S_

R
e

ad
()

Fr
e

e
R

TO
S_

IO
ct

l(
)

Application

Kernel Mode

User Mode

FreeRTOS

Virtualized I/O

OS Kernel

High Layer I/O Driver

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

B
lu

e
V

is
o

r_
O

p
e

n
()

B
lu

e
V

is
o

r_
W

ri
te

()

B
lu

e
V

is
o

r_
R

e
ad

()

B
lu

e
V

is
o

r_
IO

ct
l(

)

Guest VM

Hardware

Hardware

CPU
CPU

(a) Traditional FreeRTOS Kernel

Application

Kernel Mode
User Mode

FreeRTOS

FreeRTOS I/O Manager

Low Layer I/O Driver

I/O

OS Kernel

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

Fr
e

e
R

TO
S_

O
p

e
n

()

Fr
e

e
R

TO
S_

W
ri

te
()

Fr
e

e
R

TO
S_

R
e

ad
()

Fr
e

e
R

TO
S_

IO
ct

l(
)

Application

Kernel Mode

User Mode

FreeRTOS

Virtualized I/O

OS Kernel

High Layer I/O Driver

St
an

d
ar

d
 F

re
e

R
TO

S
A

P
I(

)

B
lu

e
V

is
o

r_
O

p
e

n
()

B
lu

e
V

is
o

r_
W

ri
te

()

B
lu

e
V

is
o

r_
R

e
ad

()

B
lu

e
V

is
o

r_
IO

ct
l(

)

Guest VM

Hardware

Hardware

CPU
CPU

(b) Modified FreeRTOS Kernel

Figure 7.3: Traditional and Modified FreeRTOS Kernels

Additionally, user applications running on the original FreeRTOS kernel

can be ported to the modified kernel directly in a BlueVisor system (without

any modification), since we have not modified the OS interfaces.

7.2.1.1 Timing Isolation

In our proposed design, VMs are logically isolated, which means the appli-

cations executed in one guest VM can never affect the other VMs, even if it

breaks down. Moreover, isolation can be divided into spatial and temporal iso-

lation. Specifically, with spatial isolation, a partition (i.e. VM) is completely

allocated in a unique address space (e.g. code, virtual I/O resources, etc.).

This address space is not accessible by other partitions (i.e. VMs). With

temporal isolation, a partition (i.e. VM) is executed under a cyclic policy.

The execution of partitions is not impacted by others [109]. Note that, this

chapter mainly focuses on temporal isolation (see Chapter 7).

7.2.2 Memory Virtualization

Traditional hardware-assisted memory virtualization relies on Memory Man-

agement Unit (MMU) support for 2-level address translation, mapping a

guest virtual address to a guest physical address, and then to a host physical

address.

BlueVisor provides a single level mapping between individual CPU host-

physical addresses and memory physical addresses using a MMU. In a BlueVi-

143

sor system, there are three types of physical memory allocated to each proces-

sor - local memory, individual external memory and shared external memory.

The BlueVisor virtualizes these three types of physical memory to one virtual

memory to each processor with continuous linear address, which is always

started from 0x0000 0000. For example, each processor in a BlueVisor system

implemented on Xilinx ZC706 FPGA board [31] is allocated with 128 MB

virtual memory, composed by 1 MB Block RAMs, 63 MB independent DDR3

and 64 MB shared DDR3, see Figure 7.4.

0x000F FFFF

0x0000 0000

0xFC0 0 000 0

0xFFFF FFFF

0x13FF FFFF

0x04FF FFFF

0x1000 0000

0x0000 0000

Local Memory

Virtual
Memory

BlueTree
Multiplexer

0x000F FFFF

0x0000 0000

Software
Hardware

User Mode
Kernel Mod e

Software
Hardware

User Mode
Kernel Mod e

Depth = j

Finite State
Machine

I/O Status

Local
Timer

GPIOCPU

Command
Queue

REG REG REG

Translation
Module

GPIOC
PU

GPIOC
PU

GPIOC
PU

REG

Synchronization Module

I/ O Pins

SH

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

BlueVisor

CPU (e.g.
Microblze)

Mmeory UART VGA Ethernet GPIOCP

PORT B

PORT A

Width: 32
Bits

Depth:
64

FSM
A

BRAM
Controll

er

Identifier of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub CMD 0

GPIO Sub CMD 1

Identifier of GPIO CMD 1

Length of GPIO CMD 1

GPIO Sub CMD 0

FSM
B

BRAM
Controll

er

Register
Control
Signal

Hardware
Manager

Command Memory

VCDC

I/O Type

I/OI/O VMM

Low Layer
Driver

SPI-Flash
Module

SPI-Flash

Many-Core System

Scheduler

I/O VMM

Low Layer
Driver

Ethernet
Module

Ethernet

I/O VMM

Low Layer
Driver

VGA
Module

VGA

Synchronization
Processor

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

VMM
Legacy Device

Emulation

VMM I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Modified Guest OS

Frontend I/O Driver

VMM
Backend I/O Driver

Legacy I/O Driver

I/O

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

Software
Hardware

User Mode
Kernel Mod e

Legacy Guest OS

Legacy I/O Driver

VMM
Legacy Device

Emulation

I/O Interface

VMM
Legacy Device

Emulation

I/O Interface

Host OS

Legacy I/O Driver

Host OS

Legacy I/O Driver

I/O

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 1)

User Mode

Kernel Mode

RTOS
(FreeRTOS)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 2)

User Mode

Kernel Mode

RTOS
(ucosII)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

App

Guest OS (VM 3)

User Mode

Kernel Mode

RTOS
(XilKernel)

High Layer I/O Driver

Software

Hardware

XXisor

Microblaze
ARM

CortexA9

Microblaze
ARM

CortexA9

CPUs

UART VGA

SPI Flash Ethernet

I/Os

GPIOCP DDR3

DDR3

Many-Core System/VCDC

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

Memory
Virtualizat ion

DDR Backend

DDR

μ

Many-Core System

Processor

0x07FF FFFF

BRAMs

DDR3

Individual
External
Memory

Shared
External
Memory

T

Figure 7.4: Memory Configuration

Memory segments can be configured with a specific granularity depend-

ing on the number of CPUs in the system, which enables good scalability.

In addition, the memory address translation is calculated based on the CPU

ID, which can be completed at fixed 1 clock cycle. As described in [62] [60]

and [104], the response time of memory access provided by BlueTree is pre-

dictable. Therefore, the virtualized version BlueTree (with address translation

added) is also predictable.

144

7.2.3 I/O Virtualization

VCDC inside BlueVisor virtualizes a physical I/O to multiple virtual I/Os, and

provides high level access to the guest VMs (see Chapter 4). This hardware

feature allows the partition of devices between guest VMs enforcing isolation at

the device level, as well as shorter I/O access paths from guest VMs (bypassing

guest OS kernel, VMM and host OS). In addition, VCDC also integrates low

layer I/O drivers, which decreases software overhead significantly [72]. The

I/O access path is shown in Figure 6.3(b).

Clock cycle level timing-accurate I/O operations can be achieved by con-

necting the GPIOCP [120]. In [120], we have shown that deployment of GPI-

OCP can guarantee the clock cycle level granularity of I/O operations. In

BlueVisor system, GPIOCP is integrated as an I/O controller to VCDC, in

order to achieve both I/O virtualization and cycle level timing-accurate I/O

operations.

7.2.4 Interrupt Management

We build two types of interrupt management in the BlueVisor system based

on GPIOCP (see Figure 7.5):

GPIOCP

Software
Hardware

GPIOCP
Interrupt

VM 0 VM 1 VM n

Interrupt Response

B
lu
e
V
is
o
r

GPIOCP

Software
Hardware

GPIOCP Interrupt

VM 0 VM 1 VM n

Interrupt ResponseB
lu
e
V
is
o
r

INTC

1

2

1

4

2 3

VM 1

Software

Hardware

BlueVisor-
MEM

BlueVisor - I/O
BlueVisor-

MEM

VM n

BlueVisor

DDR3

Shared Memory

1 2 3

RT-Task INTC RT-Task

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

BlueVisor

(0, 0)

VGA
SPI

Flash
Ethern

et

UART VGA
SPI-

Flash

Ether
net

GPIO
CP DDR3

(a) Type 1: Fast Interrupt Handler

GPIOCP

Software
Hardware

GPIOCP
Interrupt

VM 0 VM 1 VM n

Interrupt Response

B
lu
e
V
is
o
r

GPIOCP

Software
Hardware

GPIOCP Interrupt

VM 0 VM 1 VM n

Interrupt ResponseB
lu
e
V
is
o
r

INTC

1

2

1

4

2 3

VM 1

Software

Hardware

BlueVisor-
MEM

BlueVisor - I/O
BlueVisor-

MEM

VM n

BlueVisor

DDR3

Shared Memory

1 2 3

RT-Task INTC RT-Task

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

BlueVisor

(0, 0)

VGA
SPI

Flash
Ethern

et

UART VGA
SPI-

Flash

Ether
net

GPIO
CP DDR3

(b) Type 2: Normal Interrupt Handler

Figure 7.5: Two Types of Interrupt Handlers in BlueVisor System

145

• Type 1: Fast interrupt handler1 — User applications in different guest

VMs are allowed to pre-program GPIOCP to respond and handle to an

interrupt without sending it back to the software layer.

• Type 2: Normal interrupt handler — If the interrupt handler has not

been pre-programmed, the GPIOCP will send the interrupt back to the

guest VM according to its provided CPU ID.

7.2.5 Inter-VM Communication

Inter-VM communication is achieved via shared memory and interrupts. Specif-

ically, 64 MB shared memory is allocated to each processor (described in Sec-

tion 7.2.2) and is used as a communication buffer. Additionally, an interrupt is

used as the notification of the occurrence of inter-VM communication among

two VMs.

GPIOCP

Software
Hardware

GPIOCP Interrupt

VM 0 VM 1 VM n

Interrupt ResponseB
lu
e
V
is
o
r

GPIOCP

Software
Hardware

GPIOCP Interrupt

VM 0 VM 1 VM n

Interrupt ResponseB
lu
e
V
is
o
r

INTC

1

2

1

4

2 3

VM 1

Software

Hardware

BlueVisor-
MEM

BlueVisor - I/O
BlueVisor-

MEM

VM n

BlueVisor

DDR3

Shared Memory

1 2 3

RT-Task INTC RT-Task

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

BlueVisor

(0, 0)

VGA
SPI

Flash
Ethern

et

UART VGA
SPI-

Flash

Ether
net

GPIO
CP DDR3

Figure 7.6: Inter-VM Communication

As shown in Figure 7.6, an inter-VM communication can be divided into

three steps. Firstly, the sender guest VM writes the communication mes-

sage into the shared memory. Afterwards, the sender guest VM generates

an interrupt to the receiver guest VM, notifying the occurrence of the inter-

VM communication. Finally, the receiver guest VM reads the communication

message from the shared memory.

1In this chapter, the fast interrupt handler is different from the Fast Interrupt Request

(FIQ) in the ARM architecture.

146

Different from the traditional inter-core communication in NoC-based many-

core systems [95] (relying on on-chip communication), our proposed commu-

nication model reduces on-chip communication traffic significantly (only an

interrupt required to be transferred between guest VMs). In addition, be-

cause of the predictable memory access (see Section 7.2.2) and fast interrupt

handler (see Section 7.2.4) provided by BlueVisor, the predictability of the

inter-VM communication can be also guaranteed.

7.3 Evaluation

The BlueVisor was implemented using Bluespec [4] and synthesised for a Xilinx

ZC706 development board [31] (further implementation details are given in

Appendix A and B).

GPIOCP

Software
Hardware

GPIOCP
Interrupt

VM 0 VM 1 VM n

Interrupt Response

B
lu
e
V
is
o
r

GPIOCP

Software
Hardware

GPIOCP Interrupt

VM 0 VM 1 VM n

Interrupt ResponseB
lu
e
V
is
o
r

INTC

1

2

1

4

2 3

VM 1

Software

Hardware

BlueVisor-
MEM

BlueVisor - I/O
BlueVisor-

MEM

VM n

BlueVisor

DDR3

Shared Memory

1 2 3

RT-Task INTC RT-Task

R R R

R

R

R

R

R

M M M

R

A

R

A

RR

A

M M M

R

R

RR

R R R R

BlueVisor-I/O

UART VGA
SPI

Flash
Ethern

et
GPIOCP

D
D

R
3

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW
HW

M

R
VM

SW
HW

A

R
VM

SW
HW

M

R
VM

SW
HW

M

R

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

R
VM

SW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R
VM

SW
HW

M

R

HW

BlueVisor

(0, 0)

VGA
SPI

Flash
Ethern

et

UART VGA
SPI-

Flash

Ether
net

GPIO
CP DDR3

(1, 0)

(0, 1)

Figure 7.7: Experimental Platform

(M - Microblaze; A - ARM Processor;

VM - Guest VM; R - Router / Arbiter)

147

In the evaluation, the BlueVisor system is connected to a 4 x 5 2D mesh

type open source NoC [95] containing 14 Microblaze CPUs [11] and 2 ARM

Cortex-A9 CPUs [3], running the modified guest OS (kernel version, FreeRTOS

v9.0.0) in the guest VM (described in Section 7.2.1). The architecture is

shown in Figure 7.7. The software on Microblaze CPUs and ARM CPUs are

compiled using the Xilinx Microblaze GNU tool chain [11] (version 5.2), and

ARM GNU tool chain [3] (version 5.5) respectively. To enable comparison, a

similar hardware architecture without the BlueVisor system was built. Both

architectures run at 100 MHz.

Our evaluation focused on four metrics: 1) memory footprint, 2) hardware

overhead, 3) I/O performance, and 4) interrupt latency.

7.3.1 Memory Footprint

In this section, we evaluate the memory footprint of BlueVisor, as well as

different versions of FreeRTOS running on Microblaze CPU, via the size tool

of the Xilinx Microblaze GNU Tool chain. In the measurement, the native

version of FreeRTOS (nFreeRTOS) is full-featured [7], which is the foundation

of the other versions 2 3 4. Table 7.1 presents the collected measurements.

As it can be seen, there is no memory overhead introduced by the hypervi-

sor, resulting from its pure hardware implementation. The native full-featured

FreeRTOS (nFreeRTOS) requires 158, 741 bytes, with I/O module added, the

memory footprint increases 37.18%, owing to the addition of I/O manager and

I/O drivers. When it comes to the vFreeRTOS + I/O, the introducing of soft-

ware implemented virtualization increases the memory footprint to 227, 888

bytes. However, the BV vFreeRTOS + I/O only consumes 169, 424 bytes

memory footprint, which is 6.73% increased compared to the native FreeR-

TOS, as well as 77.81% and 74.35% of the nFreeRTOS + I/O and vFreeRTOS

+ I/O, respectively. The main reason behind such a low memory footprint is

the implementation of para-virtualization (described in Section 7.2.1), which

has removed the software overhead significantly.

2FreeRTOS + I/O involves UART, VGA and corresponding drivers.
3vFreeRTOS is a simply implemented software virtualized FreeRTOS for many-core sys-

tems, see [72].
4BV vFreeRTOS is the virtualized FreeRTOS in BlueVisor system.

148

Table 7.1: BlueVisor Memory Footprint (Bytes)

(I/O: UART + VGA)

Software
Memory Footprint

.text .data .bss Total

BlueVisor 0 0 0 0

nFreeRTOS 121,309 1,728 35,704 158,741

nFreeRTOS + I/O 179,652 1,852 36,250 217,754

vFreeRTOS + I/O 189,556 1,882 36,450 227,888

BV vFreeRTOS + I/O 131,969 1,732 35,723 169,424

7.3.2 Hardware Consumption

In this section, we use Vivado (v2016.2) to synthesize and implement Blue-

Visor on Xilinx ZC706 FPGA board [31], with increased number of I/Os and

CPUs respectively, which aims to demonstrate the hardware consumption of

BlueVisor scaled in RTL level (i.e. LUTs, registers, BRAMs, power and max-

imum working frequency).

As shown in Table 7.2 and 7.3, DSP slices are not required by the im-

plementation of BlueVisor on FPGA. Additionally, the number of LUTs and

registers increase linearly in the number of I/Os and CPUs respectively. Note

that the increased hardware consumption leads to the linear increment in

power consumption and a decrease in maximum working frequency.

The resource efficiency of BlueVisor is also shown by the tables, e.g. a full

featured 2-CPU BlueVisor only consumes 2.24% LUTs and 1.04% registers

of the ZC706 FPGA board; a 64-CPU BlueVisor (with GPCIOCP mounted)

consumes 2.008% LUTs, 0.975% registers and 10.9% BRAMs of the ZC706

FPGA board respectively.

Table 7.2: Hardware Consumption of 2-CPU BlueVisor with Different I/Os

on FPGA (RTL Level)

Added I/O
Hardware Consumption Power

(mW)

Maximum

Frequency

(Mhz)
LUTs

% of

ZC706
Register

% of

ZC706
BRAMs

% of

ZC706
DSP

% of

ZC706

+ UART 2,192 0.12% 1,471 0.17% 0 0% 0 0% 13 221.8

+ VGA 4,566 0.51% 2,315 0.27% 0 0% 0 0% 19 221.8

+ SPI Flash 6,120 1.41% 4,225 0.49% 0 0% 0 0% 29 221.8

+ Ethernet 9,723 2.24% 9,035 1.04% 0 0% 0 0% 75 192

149

Table 7.3: Hardware Consumption of BlueVisor (+GPIOCP) with Different

Number of CPUs on FPGA (RTL Level)

Number of

CPUs

Hardware Consumption Power

(mW)

Maximum

Frequency

(Mhz)
LUTs

% of

ZC706
Register

% of

ZC706
BRAMs

% of

ZC706
DSP

% of

ZC706

1 632 0.146% 962 0.111% 16 1.09% 0 0% 19 318

2 886 0.205% 1,156 0.113% 16 1.09% 0 0% 20 303

4 1,314 0.303% 1,468 0.169% 16 1.09% 0 0% 22 291

8 1,942 0.448% 2,094 0.242% 16 1.09% 0 0% 25 284

16 3,236 0.747% 3,346 0.386% 16 1.09% 0 0% 31 249

32 5,065 1.169% 5,311 0.613% 16 1.09% 0 0% 37 236

64 8,698 2.008% 8,449 0.975% 16 1.09% 0 0% 50 204

7.3.3 Real-time Features

This experiment aims to evaluate the predictability and timing accuracy of

the I/O operations in a BlueVisor and a non-BlueVisor system.

This experiment aims to evaluate the predictability and timing accuracy

of the I/O operations in a BlueVisor and a non-BBlueVisor system. As intro-

duced in Equation 3.5, Chapter 3, Section 3.3.2, smaller E implies a higher

timing-accuracy of the I/O operation. If E equals to 0, this I/O operation

occurs at the expected time - i.e. totally timing-accurate. Moreover, a smaller

variance of E implies more predictability of I/O operations.

In this evaluation, we evaluate the timing accuracy of the I/O operations

in a BlueVisor and a non-BlueVisor system. In both architectures, 9 CPUs

(7 Microblaze CPUs and 2 ARM CPUs) are active, whose coordinates are

from (0, 0) to (0, 2), (1, 0) to (1, 2) and (2, 0) to (2, 2). When CPUs

are required to access and read the GPIO at a specific time, then for a non-

BlueVisor architecture the CPU has to instigate the I/O operation, for the

BlueVisor architecture, this can be delegated to the BlueVisor (GPIOCP) to

achieve timing accuracy. This is shown by connecting a timer to the GPIO

(updating its value every cycle), with every CPU needing to read the value

simultaneously.

In this evaluation, we evaluate the timing accuracy of the I/O operations

in a BlueVisor and a non-BlueVisor system. In both architectures, 9 CPUs (7

Microblaze CPUs and 2 ARM CPUs) are active, whose coordinates are from

(0, 0) to (0, 2), (1, 0) to (1, 2) and (2, 0) to (2, 2). When CPUs are required

to access and read the GPIO at a specific time, then for a non-BlueVisor

architecture the CPU has to instigate the I/O operation, for the BlueVisor

150

architecture, this can be delegated to the BlueVisor (GPIOCP) to achieve

predictability and timing accuracy. This is shown by connecting a timer to

the GPIO (updating its value every cycle), with every CPU needing to read

the value simultaneously.

The result of 1,000 experiments is given in Table 3.4 and 5.1, showing that

the latencies and variances for the non-BlueVisor architecture (baseline sys-

tem) are significant (errors calculated according to Equation 3.5); in contrast,

the BlueVisor architecture is accurate at the cycle level with good predictabil-

ity, similar to the GPIOCP architecture evaluated in Chapter 5. This results

from the employment of the real-time I/O controller (i.e. GPIOCP).

Note that, in the experiments, the maximum resolution of the timer is 10

ns. Therefore, while the measured E is less than 10 ns (1 clock cycle), we

conclude that I/O operations exhibit high timing accuracy.

7.3.4 I/O Performance

The I/O performance evaluation is split into two different test case scenarios:

1) I/O response time, and 2) I/O throughput.

7.3.4.1 I/O Response Time

This experiment is designed to evaluate the I/O response time while CPUs

and the evaluated I/Os are fully loaded in a BlueVisor and non-BlueVisor

system. In both architectures, all the active CPUs have an independent ap-

plication that is set to be running, which continuously reads data from an

SPI NOR-flash (model: S25FL128S). Specifically, the experiment is divided

into four groups, depending on the number of reading bytes: 1, 4, 64 and 256

bytes. All experiments are implemented 1,000 times and recorded in tables.

A lower I/O response time indicates a higher I/O performance. We name the

experiments according to the global scheduling policy and bytes of read data

in once I/O request. For example, non-BlueVisor-RR-4B stands for a non-

BlueVisor system with Round-Robin global scheduling policy; and 4 bytes of

data read from the NOR-flash in once I/O request.

In the non-BlueVisor architecture, we modify the FreeRTOS to be suitable

for many-core systems5. In both architectures, while the user applications on

different CPUs are requesting the I/O at the same time instant, the scheduling

5FreeRTOS is designed for a single-core system; in our experiments, we modify it to be

suitable for many-core systems [72]

151

policy can be set as FIFO (non-BlueVisor-FF and BlueVisor-FF) and Round-

Robin (non-BlueVisor-RR and BlueVisor-RR), respectively. A summarized

version of experimental results showing the worst case and variation of each

group of experiments are demonstrated in Table 6.6 and 6.7.

Because the I/O virtualization is achieved via the VCDC inside BlueIO,

the evaluation results in this chapter are essentially the same as the results

in Chapter 4. The worst case response time of I/O requests in the non-

BlueVisor architecture is significantly high for the reading of 1, 4, 64 or 256

byte(s) from the NOR-flash, especially while Round-Robin scheduling policy

being employed. In experiments where the number of read bytes is increased,

the BlueVisor system maintains its superior performance. Additionally, when

it comes to the variation, BlueVisor systems always have a better performance

than the non-BlueVisor systems. For example, in the non-BlueVisor-FF-1B,

the variation is greater than 1, 500 clock cycles; and in non-BlueVisor-RR-1B,

the variation reaches 60, 000 clock cycles. Conversely, in both BlueVisor-FF-

1B and BlueVisor-RR-1B, the highest variance is less than 60 clock cycles.

Therefore, the evaluation results reveal that a system with BlueVisor pro-

vides more predictable I/O operations with lower response time.

7.3.4.2 I/O Throughput

We evaluate the I/O throughput in two architectures (with BlueVisor and

without BlueVisor). In the experiments, we use the same NOR-flash illustrated

in the previous section as our tested I/O. Additionally, the scheduling policy

in both architectures is set as FIFO and Round-Robin respectively.

In both architectures, an independent application is set to be running on

each of 4 CPUs, (3 Microblaze CPUs and 1 ARM CPU, whose coordinates are

from (0,1) to (0,3)) and continuously writing to the NOR-flash - one byte can

be written in one I/O request. We record the bytes written from each CPU

per second as the I/O throughput (unit: KB/s). The result of higher I/O

throughput implies a better performance. All the evaluations are implemented

1,000 times. The evaluation results are shown in Figure 7.8.

As demonstrated in Figure 7.8, four groups of bar charts present the aver-

age I/O throughput in the BlueVisor system and the non-BlueVisor system;

and the error bar on each bar chart presents the variance of the I/O throughput

during these 1,000 experiments. As shown, on all CPUs considered, no mat-

ter which scheduling policy deployed, the BlueVisor system always provides a

152

better performance on I/O throughput (nearly 7 times), and less variance.

7.3.5 Interrupt Handling

In this section, we evaluate the response time of interrupt handling in Blue-

Visor and non-BlueVisor architectures. In the measurements, a fixed interval

timer [28] is programmed to send an interrupt to the active Microblaze CPU,

with coordinate (0, 0), at a fixed frequency. We recorded and measured the

amount of time elapsed between interrupt occurrence and conclusion of the

handling routine. The 1,000 times experimental results are shown in Table 7.4.

Table 7.4: Interrupt Handling (Unit: Clock Cycles)

Best Case Worst Case Mean

Native FreeRTOS 520 652 577

BS vFreeRTOS (Fast IRQ) 10 10 10

BS vFreeRTOS (Normal IRQ) 544 682 592

As shown, in 1,000 times experiments, fast IRQs in the BlueVisor system

cpu (0,0) cpu (0,1) cpu (0,2) cpu (0,3)
0

200

400

600

800

1000

1200

1400

1600

T
hr

ou
gh

pu
t (

U
ni

t:
K

B
/s

)

Non-BlueVisor; Scheduling Policy: FIFO
Non-BlueVisor; Scheduling Policy: RoundRobin
BlueVisor; Scheduling Policy: FIFO
BlueVisor; Scheduling Policy: Round-Robin

Figure 7.8: I/O Throughput

153

can be always completed in 10 clock cycles, which is fast and predictable.

However, the response time of normal IRQs in a BlueVisor system is a little

higher than the IRQs in the native FreeRTOS (including best case, worst

case and mean value), mainly resulting from the need for a more complicated

interrupt handler, ie. to deal with the complicated interrupt handling path

(See Figure 7.5(b)).

7.4 Limitations of BlueVisor

BlueVisor requires significant hardware overhead (noting the gained predictabil-

ity) as the implementation of BlueVisor is completely in hardware. Also, there

is significant communication overhead at the communication interfaces of Blue-

Visor (Section 7.2): as all requests sent from Guest VMs have to be handled

via the communication interfaces. With the number of processors increasing,

some requests will be blocked and then may miss their deadlines, when the sys-

tem reaches the maximum capacity of BlueVisor. The maximum capacity can

be determined by different factors, e.g. the number of processors, the types of

I/O devices, etc. The analysis of the maximum capacity of BlueVisor and the

worst case of the system remains for future work (see Chapter 8.2). Further-

more, the hardware implementation of BlueVisor restricts the upgrade of the

virtualization logic and I/O drivers. In FPGA-based systems, the hardware

can be changed. However, this hardware implementation may be restrictive

for production systems (i.e. VLSI).

7.5 Summary

In this chapter, we have presented the concept of predictable hardware hy-

pervisor (VMM) for NoC many-core systems — BlueVisor. It enables a guest

OS running in kernel mode to achieve full privilege (CPU virtualization), as

well as predictable memory virtualization, I/O virtualization, faster interrupt

handler, and inter-VM communication.

Evaluation reveals that BlueVisor can achieve virtualization with signif-

icant performance improvements, including reduced memory footprint, im-

proved real-time features (i.e. predictability and timing-accuracy), perfor-

mance features (i.e I/O performance and scalability), predictable fast IRQ.

When it comes to the system overhead, the BlueVisor represents a trade-off

154

between software and hardware, decreasing the software usage but requiring

a greater consumption of hardware.

The major contributions detailed in the chapter follow. Firstly, Section 7.1

proposed BlueVisor including design and implementation of BlueVisor using

ready-built hardware components (i.e. GPIOCP, VCDC and BlueIO). Sec-

ondly, Section 7.2 introduced the specific design and implementation details

of BlueVisor, with the virtualization of CPU, memory, I/O, as well as interrupt

management and internal-VM communication described from Section 7.2.1 to

Section 7.2.5, respectively. Thirdly, Section 7.3 evaluated the BlueVisor with

multiple metrics. Specifically, Section 7.3.1 evaluated the memory footprint of

BlueVisor and BlueVisor-based systems. Because of the hardware implemen-

tation of BlueVisor, the software overhead in a BlueVisor-based system is sig-

nificantly lighter than a conventional solution. Then, Section 7.3.2 evaluated

the resource efficiency of BlueVisor when implemented on the Xilinx ZC706

FPGA development board. The introduction of BlueVisor introduced extra

hardware overhead. However, the BlueVisor occupies at most 1% of the FPGA

board (in a 64-core system). Furthermore, Section 7.3.3 evaluated the real-

time features of BlueVisor by measuring the error in timing-accuracy (E) of

two architectures and corresponding variances (with and without BlueVisor).

The evaluation results reveal that a BlueVisor-based system can always han-

dle multiple I/O devices with clock cycle timing-accuracy and predictability.

Moreover, Section 7.3.4 evaluated the I/O performance via I/O throughput

and I/O response time. The evaluation results reveal that BlueVisor signif-

icantly enhances the I/O performance compared to a non-BlueVisor archi-

tecture — increased I/O throughput and reduced I/O response time. Then,

Section 7.3.5 evaluated the response time to handle an external interrupt.

The evaluation resulted in Table 7.4 showing that fast IRQs in the BlueVisor

system can be always completed at 10 clock cycles — fast and predictable.

Finally, Section 7.4 discussed the current drawback of BlueVisor, including

extra hardware overhead, traffic congestion at its interface and difficulties in

upgrade (which on IC rather than FPGA).

The design and implementation of BlueVisor evidence that our ready-built

hardware components can be applied and expanded into different architec-

tures and platforms, i.e. VCDC (see Chapter 4), GPIOCP (see Chapter 5),

and BlueIO (see Chapter 6). The evaluation results demonstrate that the

expanded system can also maintain lower software overhead, better real-time

155

features (i.e. predictability and timing-accuracy), performance feature (i.e.

I/O performance and scalability) and protection features (parallel accesses

and isolation).

156

Chapter 8

Conclusion and Future Work

This thesis has proposed a real-time I/O virtualization system for multi-core

and many-core embedded systems, where the I/O system simultaneously en-

ables the following features (the proposed I/O system is architecture agnostic,

and can be easily applied to different architectures with a various number of

processors):

• Performance features:

– Enhanced I/O performance;

– Scalability.

• Real-time feature:

– Predictability;

– Timing-accuracy.

• Protection feature:

– Parallel accesses;

– Isolation.

The research questions described in Chapter 1, Section 1.2, 1.3 and 1.4

have all been answered and discussed below, respectively.

Research Question 1: How can I/O performance in real-time

systems be enhanced by an increased number of cores? (com-

pared to a traditional system)

157

Chapter 4 proposes a hardware-implemented I/O virtualization system

— i.e. Virtualized Complicated Device Controller (VCDC). VCDC enables

user applications to access and operate I/O devices directly from a guest VM,

bypassing the guest OS, the VMM, and low layer I/O drivers.

The evaluation results in Section 4.3 demonstrate that VCDC is able to

virtualize a physical I/O device to multiple virtual I/O devices with signifi-

cant performance improvements compared to baseline systems (i.e. I/O per-

formance and scalability), containing shorter I/O response time, greater I/O

throughput, and less on-chip communication overhead. Chapter 4 has satisfied

the success criteria SC-1.

Research Question 2: Apart from performance features, how

can the predictability and timing-accuracy of I/O operations

in multi-core and many-core real-time systems be guaran-

teed?

Chapter 5 has proposed a resource efficient programmable I/O controller,

termed the GPIO Command Processor (GPIOCP). GPIOCP permits ap-

plications to instigate complicated sequences of I/O operations at an exactly

specific clock cycle, so good real-time features (i.e. predictability and timing-

accuracy). Moreover, the I/O operations can be programmed to occur at some

point in the future, periodically, or reactively.

The evaluation results in Section 5.4 provide evidence that GPIOCP can

handle multiple I/O operations with predictability and clock cycle accuracy.

Furthermore, its hardware overhead was 50% less compared to a tested with

the same functionality build using a minimalistic version of the soft core micro-

processor; Microblaze instead of GPIOCP. Chapter 5 has satisfied the success

criteria SC-2.

Research Question 3: How can performance features and

real-time features for I/O systems be achieved when I/O vir-

tualization is deployed (to achieve protection features)?

Chapter 6 has integrated GPIOCP (see Chapter 5) and VCDC (see Chap-

ter 4) as a real-time I/O virtualization system, termed BlueIO.

The evaluation results in Section 6.4 demonstrate that BlueIO inherits

158

the benefits brought by GPIOCP and VCDC. Specifically, the deployment of

VCDC enables enhanced performance features, including faster I/O response

time, greater I/O throughput, good scalability and less on-chip communication

overhead. Moreover, the employment of GPIOCP enables BlueIO achieving

real-time features while handling multiple I/O operations in parallel, both pre-

dictability and clock cycle timing-accuracy. Furthermore, the implementation

of I/O virtualization brings significant protection features to the whole sys-

tem — i.e. parallel accesses and isolation. Chapter 6 has satisfied the success

criteria SC-3.

Research Question 4: How to integrate the ready-built I/O

system to the complete system with the expected features

inherited?

Chapter 7 establishes a scalable real-time hardware hypervisor for multi-

core and many-core embedded architectures, termed BlueVisor, which is built

upon GPIOCP, VCDC and BlueIO. BlueVisor enables predictable virtualiza-

tion on CPU, memory, and I/O, as well as fast interrupt handler, and inter-VM

communication. The establishment of BlueVisor aims to show our method-

ologies can be applied and expanded to different architectures and platforms,

with maintained features on real-time, performance and protection — evi-

denced by the evaluation results in Section 7.3. Chapter 7 has satisfied the

success criteria SC-4.

These research questions have been resolved, and demonstrated the thesis

hypothesis (stated in Section 1.5)

Effective real-time I/O and virtualization can be achieved by

moving virtualization, I/O drivers and I/O operations into

hardware.

The thesis will show that moving the virtualization layer

and I/O drivers from software layer to hardware layer sig-

nificantly increases I/O performance compared to traditional

virtualized and non-virtualized systems. Also, it will show that

a programmable I/O controller contained in the virtualization

system permits applications to instigate complex sequences of

I/O operations at an exact time (the output values can be both

159

static and dynamic), so achieving timing-accurate and pre-

dictable I/O operations with I/O virtualization.

Moreover, The design of the real-time I/O virtualization

system is generic, which can be ported to different platforms

with a scaled number of processors and I/O devices. There-

fore, it can be directly applied to a real-time system, with the

inherited performance features, real-time features and protec-

tion features.

8.1 Major Contributions and Key Findings

This section summarises major contributions and key findings in the thesis.

The findings are grouped under four headings: VCDC, GPIOCP, BlueIO and

BlueVisor.

Chapter 4: VCDC

The VCDC proposed within Chapter 4 enables:

• Better Performance Feature (compared to baseline systems)

— Includes the lower response time of I/O operations and higher I/O

throughput.

• Good Scalability (Performance Feature) — We propose a distributed

implementation. When the VCDC is employed, to add one more CPU

into a system, the users are only required to add one group of dedicated

CPU FIFO (see section 4.2.4.2), which provides an interface between the

added CPU and the VCDC.

• Predictability (Real-time Feature) — I/O operations requested

from a guest OS are more predictable than under conventional virtu-

alization.

• Lower Software Overhead — Moves the VMM and low level I/O

drivers from kernel mode (at the software level) to the VCDC.

• Abstracted High Layer Access — The user application in a guest

virtual machine is able to request and operate an I/O device via invoking

simple high layer drivers. For example, a user application can request

160

to read a series of data from an SPI-Flash by sending a request with

parameters to the VCDC: “Read SPI-Flash (instruction), from the start

address to the end address (parameters)”.

• Global Arbitration — We propose a modularized implementation,

whereby the scheduling policy of the arbiter can be switched easily be-

tween round robin, fixed priority and customized scheduling policies [21].

The design and implementation of VCDC have successfully answered the

research question 1.

Chapter 5: GPIOPCP

The GPIOCP proposed within Chapter 5 enables:

• Predictability and Timing-accuracy (i.e. Real-time Features)

— All I/O operations over the GPIO pins can be predictably issued

with an accuracy of a single cycle.

• Programmability — The GPIOCP holds small programs designed to

control connected devices. They are loaded into GPIOCP memory by

the application during system initialisation (so that loading does not

interfere with normal execution and timeliness of the system). Impor-

tantly, commands within the program can be executed at exact times

(cf. conventional CPU instructions).

• Parallel Controls — Multiple I/O devices connected to the GPIO

pins can be controlled in parallel, whilst maintaining predictability and

timing-accuracy of a single clock cycle.

The design and implementation of GPIOCP have successfully answered

the research question 2.

Chapter 6: BlueIO

Chapter 6 proposes the design and implementation details of BlueIO, achieving

the following contributions:

• A scalable hardware-implemented real-time I/O virtualization system,

with the following features:

161

1. Parallel Accesses and Isolation (i.e. Protection Features)

— BlueIO enables I/O virtualization, so that I/O operations re-

quested from different VMs are isolated, and able to access different

I/O devices simultaneously.

2. Predictability and Timing-accuracy (i.e. Real-time Fea-

tures) — BlueIO integrates the real-time timing-accurate I/O con-

troller GPIOCP, to enable predictable and timing-accurate I/O op-

erations, whilst maintaining isolation and parallel accesses.

3. Enhanced I/O Performance (i.e. Performance Feature) —

BlueIO integrates I/O drivers, and provides abstracted high-layer

access interfaces to software (Guest VMs), which simplify the I/O

access paths, and improve I/O performance.

• A hardware consumption analysis of BlueIO, in order to show that it is

linearly scaled by the number of CPUs and I/O devices respectively.

The design and implementation of BlueIO have successfully answered the

research question 3.

Moreover, the hardware consumption analysis has implied that its hard-

ware consumption is linearly scaled with the number of processors and I/O

devices respectively.

Chapter 7: BlueVisor

The BlueVisor proposed within Chapter 7 is a hardware hypervisor, which

enables:

• Predictable and Timing-accurate Virtualization (i.e. Real-time

Features) — BlueVisor enables virtualization with real-time features,

i.e. CPU virtualization, memory virtualization, I/O virtualization.

• Improved I/O Performance (i.e. Performance Feature) — Due

to the integration of I/O drivers (in hardware layer), the I/O response

time is reduced and the I/O throughput is increased.

• Fast and Predictable Interrupt Handling — Due to the deployment

of GPIOCP, the fast IRQ in BlueVisor can always handle interrupts at

a fixed time.

162

The design and implementation of BlueVisor have successfully answered

the research question 4. It verifies that our contributions (i.e. GPIOCP, VCDC

and BlueIO) can be applied and expanded to different system architectures and

platforms, with kept performance features, real-time features and protection

features.

8.2 Future Work

There are several possible areas of future research based on the work presented

in the thesis.

8.2.1 Supporting SMP OS

Currently, with our proposed components (i.e. GPIOCP, VCDC, BlueIO and

BlueVisor), one guest VM is always mapped to only one core. This implies that

one user application is not able to utilize more than one core simultaneously.

In order to overcome this drawback, we are considering a new architecture

among multiple cores, a router and a guest OS (see Figure 8.1).

RR

MM

SW

HW

OS (SMP)

Figure 8.1: Supporting SMP OS (M - Microblaze; R - Router / Arbiter)

With the new architecture, multiple processors can be used to support an

SMP OS. However, the development of this new architecture is still under

progress.

8.2.2 Timing Analysis — Hard Real-time

As reviewed in Section 2.1.2, two commonly used methodologies are adopted

to achieve the WCET of tasks — static analysis and a measurement-based

163

analysis.

In this thesis, we only adopted measurement-based analysis to derive the

WCET of the I/O operations, including in Section 5.4.1, 4.3.1, 4.3.1, 6.4.2, 7.3.3.

However, in order to make the analysis be sound, the worst-case path of the

program and the worst-case conditions of the system have to be accurately

found. However, it is difficult to determine the worst-case conditions via

observing, even though all the experiments have been repeated 1,000 times.

Hence, our systems can not be directly fitted in a hard real-time system.

In order to solve this issue and make sure our system is hard real-time, we

are considering to figure out the WCET of I/O operations in our systems via

schedulability analysis based on [36] and [70]. Once the WCET is found, our

methodologies can be fitted in a hard real-time system.

8.2.3 Supporting More I/O Drivers

As described in Section 2.2, the number of currently popular I/O devices is

countless. Due to the time limit, only a few types of I/O devices are supported

in the thesis.

In the future work, a number of complicated I/O devices are proposed to

be supported, e.g. USB hot devices.

8.3 Closing Remarks

In modern real-time embedded systems, I/O operations often simultaneously

require performance features (i.e. enhanced I/O performance and scalability),

real-time features (i.e. predictability and timing-accuracy), and protection

features (i.e. parallel accesses and isolation).

In this thesis, we have proposed a scalable hardware-implemented real-time

I/O system for multi-core and many-core systems — BlueIO, which satisfies

the requirements at the same time. BlueIO system integrates most of the

functionalities of I/O virtualization, low layer I/O drivers (i.e. VCDC) and

the clock cycle level timing-accurate I/O controller (i.e. GPIOCP) in hardware

layer, meanwhile providing abstracted high-layer access interfaces to the Guest

VMs in software layer.

Evaluation reveals that BlueIO can virtualize a physical I/O device to mul-

tiple virtual I/O devices with significant performance improvements, including

faster I/O response time, greater I/O throughput, and good scalability. In ad-

164

dition, BlueIO can also handle multiple I/O operations with clock-cycle-level

accuracy, in many cases totally timing-accurate and predictable. Due to the

employment of I/O virtualization, I/O operations requested from different

VMs are isolated, and able to access different I/O devices simultaneously.

At last, a scalable real-time hardware hypervisor is established, termed

BlueVisor. It is built upon GPIOCP, VCDC and BlueIO. BlueVisor enables

predictable virtualization on CPU, memory, and I/O, as well as fast inter-

rupt handler, and inter-VM communication. The establishment of BlueVisor

shows that our methodologies can be applied and expanded to different archi-

tectures and platforms, with maintained features on real-time, performance

and protection.

165

Appendices

166

Appendix A

Implementing a

GPIOCP/VCD-

C/BlueIO/BlueVisor

This chapter mainly describes the implementation steps of our proposed com-

ponents in hardware, i.e. GPIOCP, VCDC, BlueIO and BlueVisor. Because

the steps of implementing the components are same, we implement GPIOCP

on the Bluetile NoC in Xilinx VC709 FPGA board as an example. All the

source code can be accessed via link: https://github.com/RTSYork.

Hardware Manager

Command
Memory

Controller

Command
Queue

Synchronization
Processor

I/O Pins

…

Tag of GPIO CMD 0

Length of GPIO CMD 0

GPIO Sub-CMD 0

GPIO Sub-CMD 1

…

Tag of GPIO CMD 1

…

Depth: 64

Block RAMs

BRAM
Controller

Hardware
Manager

Finite
State

Machine
A

BRAM
Controller

Finite
State

Machine
B

PORT A

PORT B
Command

Queue

Width : 32
Bits

Input FIFO

Command
Memory

Controller

Control Signal

Command
Queue

Output FIFO

Command
Memory

Controller

Command
Queue

Scheduler

Command
Queue

I/O Status
Register

I/O Pins

…

I/O Status Buffer

Fixed Interval
Timer

Enable

0x0000 0000

Bluetile_client

RST_N

External Timer

CLK

Figure A.1: Top Level Architecture of GPIOCP

167

GPIOCP is comprised by four modules: hardware manager, command

memory controller, command queue and synchronization processor, which are

implemented via Bluespec System Verilog [4]. The interconnected system is

illustrated in Figure A.1.

Corresponding to these four modules, the source code can be found in

the root folder IP GPIOCP respectively: GPIOCMD hw manager.bsv, GPI-

OCMD cmd memory.bsv, GPIOCMD cmd q.bsv and GPIOCMD cmd processor.bsv.

Users can execute the script build.sh in wrap folder to compile the source files

to verilog files of the GPIOCP. The top level of the GPIOCP can be found

as BS GPIOProcessor.v. This top level of GPIOCP in VIVADO is shown in

Figure A.2.

BS_MB_0_1

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_MB_1_0

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_GPIOProcessor_0

BS_GPIOProcessor_v1_0

bluetile_client

pin_gpio[7:0]

pin_timer_timer_external[31:0]

pin_gpio_external_gpio_external[31:0]

CLK

RST_N

BS_MB_0_0

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_SignalGen_0

BS_SignalGen

CLK

RST_N

fre_div_div[15:0]

EN_fre_div

RDY_fre_div

wave[23:0]

RDY_wave

rtc[31:0]

RDY_rtcpin_timer_timer_external[31:0]

EN_pin_timer RDY_pin_timer

shared_axi

S00_AXI

S01_AXI

S02_AXI

S03_AXI

S04_AXI

S05_AXI

S06_AXI

S07_AXI

S08_AXI

ACLK

ARESETN[0:0]

rtc_out[31:0]

gpio_io_o[15:0]

rtc_out2[31:0]

BS_MB_0_2

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

rst_clk_wiz_1_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]
sys_diff_clock

clk_wiz_1

Clocking Wizard

CLK_IN1_D clk_out1

reset lockedreset

BS_MB_0_3

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

bluetiles_noc_4x4

home_0_0

home_0_1

home_0_2

home_0_3

home_1_0

home_1_1

home_1_2

home_1_3

home_2_0

home_2_1

home_2_2

home_2_3

home_3_0

home_3_1

home_3_2

home_3_3

CLK

RST_N[0:0]

BS_MB_1_1

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_MB_1_2

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_MB_1_3

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_MB_2_0

bluetile

M04_AXI

Reset

Clk

RST_N[0:0]

ARESETN[0:0]

SYS_Rst[0:0]

BS_UART_0

BS_UART

bluetile

uart

CLK

RST_N rs232_uart

BS_BlueGrass_2x2_0

BS_BlueGrass_2x2

bluetile_client

bluetree_client

bluetile_server_0_0

bluetree_server_0_0

bluetile_server_0_1

bluetree_server_0_1

bluetile_server_1_0

bluetree_server_1_0

bluetile_server_1_1

bluetree_server_1_1

CLK

RST_N

BS_GPIOProcessor_1

BS_GPIOProcessor_v1_0

bluetile_client

pin_gpio[7:0]

pin_timer_timer_external[31:0]

pin_gpio_external_gpio_external[31:0]

CLK

RST_N

Figure A.2: The Toplevel of the IP Core - GPIOCP

As shown, the top level has 4 input ports, 1 output port and 1 system

interface. Among these ports, the port CLK and port RST N should be re-

spectively connected to the clock source and the reset of the whole system.

The port pin gpio external gpio external[31:0] and port pin gpio[7:0] should

be connected to the output and input GPIO pins of I/O devices respectively,

which connects the GPIOCP and peripherals. The port pin timer timer external[31:0]

should be connected to the global timer of the whole system, whose resolu-

tion is 31-bit. This global timer provides a synchronization among GPIOCP

and the whole system. Finally, the port bluetile client should be connected

to a router on the Bluetile system, which provides a communication interface

between GPIOCP and the processors mounted on the NoC. In Bluetile NoC

system, all the communication are transmitted as packets. The format of the

packets follows uniform rules illustrate in Section ??.

The steps of wrapping other components (i.e. VCDC, BlueIO and Blue-

Visor) are same as GPIOCP.

168

A.1 Generic Number of Processors

As described in the thesis, the designs of proposed components are generic (i.e.

GPIOCP, VCDC, BlueIO and BlueVisor). This means the designs can be fit-

ted into systems with a scaled number of processors, which is achieved via mod-

ifying the pre-defined macro in each top module — numb CPU. numb CPU

indicates the number of processors in the whole system. For example, to

build a GPIOCP with 9 CPUs, the macro should be modified as the following

Listing.

1 Integer numb_CPU = 9;

Listing A.1: Modifying the macro to fit a 9-core system

The methods of changing macros in the other components are same as

GPIOCP.

169

Appendix B

Connecting GPIOCP/VCD-

C/BlueIO/BlueVisor to a

Bluetile Many-core System

This chapter mainly describes the steps of setting our experimental platform

— Bluetile Many-core systems [95]. Blueile system is a Manhattan grid (mesh)

interconnect for a network on chip (NoC) built using Bluespec System Ver-

ilog [95]. The interconnect enables a large number of CPUs and other process-

ing elements to exchange messages in the form of network packets, the more

details of Bluetile can be found in the website:

https://rtslab.wikispaces.com/Bluetiles.

Bluetile system implements a Manhattan grid interconnect. Two sorts of

component are important:

• A router: Each router has five connections - each a bidirectional 32-bit

channel of type ”BlueBits” (defined in Bluetiles.bsv). Four of these are

named North, East, South and West and are connected to other routers

(or, at the edge of the grid, nothing at all). The fifth is named Home and

connects to a local component. Each router has an address expressed

in the form (x, y): these are Cartesian co-ordinates representing a grid

location. The address is used when packets are routed. The router

compares its own address against the destination address in a network

packet, then directs the packet to one of the five interfaces accordingly.

170

• A local component: This could be a CPU, an I/O device, or a co-

processor. It implements the other side of the Home connection, which

allows it to send and receive messages over the network. GPIOCP is one

of the local component.

The source code related to Bluetile systems can be found in folder Sys-

tem Bluetile, which is accesed via the link:

https://github.com/RTSYork/GPIOCP/tree/master/System Bluetile.

B.1 Building Bluetile system

The source code of the router and local components, e.g. UART and mutex,

are written via Bluespec System Verilog. There are four steps are compulsory

while building a Bluetile system: 1) Compiling the source code of each compo-

nents to verilog files; 2) Encapsulating the verilog files as the Vivado IP cores;

3) Building the NoC via connecting routers; 4) Adding local components and

connecting them on the NoC, including CPUs, UART ,etc.. The flow chart of

these steps are shown in Figure B.1.

Start

Compiling source
code to Verilog

files

Encapsulating as
VIVADO IP Cores

Building NoC via
Connecting

Routers

Connecting Local
Components to

the NoC

Figure B.1: Flow of Building Bluetile System

171

B.1.1 Compiling Bluespec System Verilog Files

To compile the source code of all the components, users can run the script

build all.sh located in the System Bluetile folder.

B.1.2 Encapsulating Verilog Files as IP cores

Afterwards, users can run the script launch vivado.sh to encapsulate the ver-

ilog files as the Vivado IP cores. After the IP cores being built, users can

invoke these components in Vivado directly. The IP cores are listed in Figure

B.2.

Figure B.2: Encapsulated Bluetile System IP Cores

B.1.3 Building the NoC

We provide two methods for users to build a Bluetile NoC:

• Manual Building: Invoking the routers inside Vivado and connect cor-

responding communication ports.

• Automatic Building: Executing the provided tcl script to build a NoC

with particular size. For example:

1 bs::create_bluetiles_net_hier 2 3 BuleTile_NoC

Listing B.1: Building a 2*3 NoC via tcl script

After this script being executed, a size 2*3 NoC will be built, which named

as BlutTile NoC. Figure B.3 illustrates this NoC.

As it shown, the top level of a NoC has a clock signal port, a reset signal

port and some home ports. Each home port belongs to a corresponding router,

which can be used to connect local components.

172

BuleTile_NoC

home_0_0

home_0_1

home_0_2

home_1_0

home_1_1

home_1_2

CLK

RST_N

router_0_0

Bluetiles Router

north

east
south

west
home

CLK

RST_N

router_0_1

Bluetiles Router

north

east
south

west
home

CLK

RST_N

router_0_2

Bluetiles Router

north

east
south

west
home

CLK

RST_N

router_1_0

Bluetiles Router

north

east
south

west
home

CLK

RST_N

router_1_1

Bluetiles Router

north

east
south

west
home

CLK

RST_N

router_1_2

Bluetiles Router

north

east
south

west
home

CLK

RST_N

ZYNQ7 Processing System

AXI Interconnect

bs_dcm_locked_driver

Constant

dout[0:0]

bs_reset_manager

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Figure B.3: Size 2*3 BlutTile NoC

B.1.4 Connecting Local Components

The communication method in Bluetile system are implemented via an com-

munication interface provided by Bluespec System Verilog named ClientServer

interface. The ClientServer interface provides two interfaces - Client interface

and Server interface that can be used to define modules which have a request-

response type of interface. In Bluetile system, we set the communication inter-

faces of all the routers are Server; and set the communication interfaces of all

the local components are Client. Therefore, to connect local components, users

are only required to connected the client interfaces of local components to the

Server interfaces of the NoC. Figure B.4 illustrates an example of connecting

the UART to the router whose coordinate is (0, 0) in the NoC.

ZYNQ7 Processing System

bs_reset_manager

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

bs_dcm_locked_driver

Constant

dout[0:0]

UART

Bluetiles Inspector

bluetile

UART

CLK

RST_N

BuleTile_NoC

home_0_0

home_0_1

home_0_2

home_1_0

home_1_1

home_1_2

CLK

RST_N

Figure B.4: Connecting an UART to the NoC

173

B.1.5 Building a Bluetile System with Script

In the folder zedboard example, we provide a script create project.tcl, which

can build an example Bluetile system with commonly used IP cores.

B.2 Connecting GPIOCP/VCDC/BlueIO/BlueVi-

sor to a Bluetile System

The methods of connecting our proposed components (i.e. GPIOCP, VCDC,

BlueIO and BlueVisor) to a Bluetile system are same. In this chapter, con-

necting GPIOCP to a Bluetile system is demonstrated as an example.

Following the steps in Chapter A, users can build a GPIOCP shown as

Figure A.2. Same as other local components, to connect a GPIOCP, users are

only required to connect the Client interface of the GPIOCP to the Server

interface on one of the router, which is shown in Figure B.5.

GPIOCP

BS_GPIOProcessor_v1_0

bluetile_client

pin_gpio[7:0]

pin_timer_timer_external[31:0]

pin_gpio_external_gpio_external[31:0]

CLK

RST_N

BuleTile_NoC1

home_0_0

home_0_1

home_0_2

home_0_3

home_1_0

home_1_1

home_1_2

home_1_3

home_2_0

home_2_1

home_2_2

home_2_3

home_3_0

home_3_1

home_3_2

home_3_3

CLK

RST_N[0:0]

Figure B.5: Connecting the GPIOCP on the NoC

174

Appendix C

Running

FreeRTOS/uCosII/Xilinx

Kernel

As introduced in the thesis, our proposed systems enable para-virtualization.

Currently, the systems support three real-time kernels: FreeRTOS, uCosII,

and XilinxKernel. Due to the steps of executing the kernels are same, we

introduce the steps of running FreeRTOS as an example.

In our approaches, the official version of the FreeRTOS kernel are used,

which can be accessed via http://www.freertos.org/. Additionally, we also

modify the official I/O module of FreeRTOS, the official I/O module can be

accessed via

http://www.freertos.org/FreeRTOS-Plus/FreeRTOS Plus IO.html.

C.1 Building BSP of FreeRTOS

In the Github, the folder OS bsp stores the BSPs of different OSs: ucos II

(v1.41) and FreeRTOS (v9.0), see Figure C.1.

Figure C.1: BSP for different OSs

To invoke a BSP into a project, users only need to click Xilinx Tool, repos-

175

itories and add the BSP, see Figure C.2.

Figure C.2: Add the BSP

After that, users can build a project with FreeRTOS via using the FreeR-

TOS BSP.

C.2 Adding the I/O Manager

As mentioned in the thesis, an I/O manager is not required in our approaches.

However, we still provide a modified I/O manager for the real-time OS kernels,

which can be access in the folder FreeRTOS-Plus-IO, see Figure C.3.

Figure C.3: I/O manager in FreeRTOS

The folder VC709 stores the drivers for the Xilinx FPGA board VC709.

C.3 Invoking High Layer I/O Drivers

We provide the high layer I/O drivers in the folder I/O drivers, which is shown

in Figure C.4.

Users can just invoke this high layer I/O drivers in the project directly.

For example, BS NoC.c includes the drivers for the BlueTile system; BS rtc.c

176

Figure C.4: I/O Drivers in FreeRTOS

contains the drivers for the real-time clock; BS uart.c includes the drivers for

the UART.

177

Bibliography

[1] https://vlsiarch.ecen.okstate.edu/flows/?C=N;O=D, note = Ac-

cessed Otc 16, 2018, title = Encounter RTL Compiler.

[2] 8080 user manual. http://altairclone.com/downloads/manuals/

8080%20Programmers%20Manual.pdf. Accessed August 27, 2018.

[3] Arm cortex-a9 cpu official website. https://developer.arm.com/

products/processors/cortex-a/cortex-a9. Accessed April 12, 2017.

[4] Bluespec inc. bluespec system verilog (bsv). http://www.bluespec.

com/products/. Accessed September 27, 2017.

[5] Encounter rtl compiler. https://www.cadence.com/. Accessed Otc 16,

2018.

[6] Freertos i/o official website. http://www.freertos.org/

FreeRTOS-Plus/FreeRTOS_Plus_IO/FreeRTOS_Plus_IO.shtml. Ac-

cessed September 27, 2016.

[7] Freertos official website. http://www.freertos.org/. Accessed

September 27, 2017.

[8] Gpiocp technical report. https://github.com/RTSYork/GPIOCP/blob/

master/GPIOCP%20GPIO%20Command%20Processor%20(v1.0).pdf. Ac-

cessed August 27, 2018.

[9] Intel Knight Landing website. https://ark.intel.com/products/

codename/48999/Knights-Landing. Accessed April 12, 2017.

[10] Microblaze gnu tool chain. https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2014_1/

ug1043-embedded-system-tools.pdf. Accessed September 23,

2018.

178

[11] Miroblaze user manual. http://www.xilinx.com/support/

documentation/sw_manuals/xilinx11/mb_ref_guide.pdf. Accessed

August 27, 2016.

[12] Parallella official website. https://www.parallella.org/. Accessed

August 27, 2017.

[13] Reprap website. https://reprap.org/wiki/RepRap. Accessed August

27, 2018.

[14] Rtems official website. https://www.rtems.org/. Accessed August 26,

2017.

[15] Solar website. https://www.solarflare.com/ultra-low-latency.

Accessed August 27, 2018.

[16] Sr-iov official website. http://pcisig.com/. Accessed September 27,

2016.

[17] Tilera official website. http://www.tilera.com/. Accessed August 27,

2017.

[18] Tpu website. http://www.nxp.com/

products/microcontrollers-and-processors/

power-architecture-processors/mpc5xxx-5xxx-32-bit-mcus/

mpc56xx-mcus/enhanced-time-processor-unit:eTPU?uc=true&

lang_cd=en. Accessed August 27, 2017.

[19] ucos official website. https://www.micrium.com/rtos/kernels/. Ac-

cessed September 27, 2017.

[20] Vc709 official website. https://www.xilinx.com/products/

boards-and-kits/dk-v7-vc709-g.html. Accessed August 27,

2017.

[21] Vcdc technical report. https://github.com/RTSYork/BlueIO. Ac-

cessed January 27, 2017.

[22] Vxworks official website. http://windriver.com/products/vxworks/.

Accessed August 27, 2017.

[23] Vxworks timer library. http://www.vxdev.com/docs/vx55man/

vxworks/ref/timerLib.html. Accessed August 27, 2017.

179

[24] x86 user manual. https://www.intel.com/content/dam/www/public/

us/en/documents/manuals/64-ia-32-architectures.pdf. Accessed

January 26, 2018.

[25] Xen official website. https://www.xenproject.org/. Accessed Otc 16,

2017.

[26] Xilinx 1g/2.5g ethernet subsystem manual. https://www.xilinx.com/

support/documentation/ip_documentation/axi_ethernet/v7_0/

pg138-axi-ethernet.pdf. Accessed August 27, 2016.

[27] Xilinx axi fifo user manual. https://www.xilinx.com/

support/documentation/ip_documentation/axi_fifo_mm_s/v4_

1/pg080-axi-fifo-mm-s.pdf. Accessed August 27, 2018.

[28] Xilinx fixed interval timer website. https://www.xilinx.com/

support/documentation/ip_documentation/fit_timer/v2_0/

pg110-fit-timer.pdf. Accessed September 23, 2018.

[29] Xilinx official website. https://www.Xilinx.com. Accessed July 5,

2017.

[30] Xilinx official website - the introduction of axi bus. http://www.xilinx.

com/products/intellectual-property/do-axi-bfm.html. Accessed

July 5, 2017.

[31] Zc706 official website. https://www.xilinx.com/products/

boards-and-kits/ek-z7-zc706-g.html. Accessed April 12, 2017.

[32] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital systems

testing and testable design, volume 2. Computer Science Press New

York, 1990.

[33] K. Adams and O. Agesen. A comparison of software and hardware

techniques for x86 virtualization. ACM Sigplan Notices, 41(11):2–13,

2006.

[34] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate

versus ipc: The end of the road for conventional microarchitectures. In

ACM SIGARCH Computer Architecture News, volume 28, pages 248–

259. ACM, 2000.

180

[35] N. Audsley. Memory architectures for noc-based real-time mixed criti-

cality systems. Proc. WMC, RTSS, pages 37–42, 2013.

[36] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.

Applying new scheduling theory to static priority pre-emptive schedul-

ing. Software Engineering Journal, 8(5):284–292, 1993.

[37] J. Bacon and T. Harris. Operating systems: concurrent and distributed

software design. Pearson Education, 2003.

[38] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch,

and B. Zoppis. The vmware mobile virtualization platform: is that a

hypervisor in your pocket? ACM SIGOPS Operating Systems Review,

44(4):124–135, 2010.

[39] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer, and

L. Van Doorn. The price of safety: Evaluating iommu performance. In

The Ottawa Linux Symposium, pages 9–20, 2007.

[40] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-time

i/o management system with cots peripherals. IEEE Transactions on

Computers, 62(1):45–58, 2013.

[41] V. Betz and J. Rose. Vpr: A new packing, placement and routing tool

for fpga research. In International Workshop on Field Programmable

Logic and Applications, pages 213–222. Springer, 1997.

[42] R. Birkett. Enhancing real-time capabilities with the pru. In Embedded

Linux Conference, 2015.

[43] T. Bjerregaard and S. Mahadevan. A survey of research and practices

of network-on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

[44] A. Burns and A. J. Wellings. Real-time systems and programming lan-

guages: Ada 95, real-time Java, and real-time POSIX. Pearson Educa-

tion, 2001.

[45] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni, L. Pieralisi,

and C. Turchetti. System-level power analysis methodology applied to

the AMBA AHB bus [soc applications]. In Design, Automation and Test

in Europe Conference and Exhibition, 2003, pages 32–37. IEEE, 2003.

181

[46] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the three

cpu schedulers in Xen. SIGMETRICS Performance Evaluation Review,

35(2):42–51, 2007.

[47] P. Cousot. Abstract interpretation. ACM Computing Surveys (CSUR),

28(2):324–328, 1996.

[48] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,

J. Reybert, and T. Strudel. A distributed run-time environment for the

kalray mppa R©-256 integrated manycore processor. Procedia Computer

Science, 18:1654–1663, 2013.

[49] D. Dimitrov, W. Van Wijck, K. Schreve, and N. De Beer. Investigating

the achievable accuracy of three dimensional printing. Rapid Prototyping

Journal, 12(1):42–52, 2006.

[50] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan. High per-

formance network virtualization with sr-iov. Journal of Parallel and

Distributed Computing, 72(11):1471–1480, 2012.

[51] Y. Dong, Z. Yu, and G. Rose. SR-IOV Networking in Xen: Architecture,

design and implementation. In Workshop on I/O Virtualization, 2008.

[52] A. Duller, G. Panesar, and D. Towner. Parallel processing-the picochip

way. Communicating Processing Architectures, 2003:125–138, 2003.

[53] T. El-Ghazawi and G. Frieder. Input-output operations. 2003.

[54] J. Engblom. Processor pipelines and static worst-case execution time

analysis. PhD thesis, Acta Universitatis Upsaliensis, 2002.

[55] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An operating system ar-

chitecture for application-level resource management, volume 29. ACM,

1995.

[56] A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. A. A. Os-

man. Effect of layer thickness and printing orientation on mechanical

properties and dimensional accuracy of 3d printed porous samples for

bone tissue engineering. PloS one, 9(9):e108252, 2014.

182

[57] C. Fetzer, U. Schiffel, and M. Süßkraut. An-encoding compiler: Building

safety-critical systems with commodity hardware. In International Con-

ference on Computer Safety, Reliability, and Security, pages 283–296.

Springer, 2009.

[58] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and

H.-S. P. Wong. Device scaling limits of si mosfets and their application

dependencies. Proceedings of the IEEE, 89(3):259–288, 2001.

[59] M. Garćıa-Valls, T. Cucinotta, and C. Lu. Challenges in real-time vir-

tualization and predictable cloud computing. Journal of Systems Archi-

tecture, 60(9):726–740, 2014.

[60] J. Garside and N. C. Audsley. Prefetching across a shared memory tree

within a network-on-chip architecture. In ISSoC, pages 1–4, 2013.

[61] M. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens.

A globally arbitrated memory tree for mixed-time-criticality systems.

IEEE Transactions on Computers, 2016.

[62] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens.

A generic, scalable and globally arbitrated memory tree for shared dram

access in real-time systems. In Proceedings of the 2015 Design, Automa-

tion & Test in Europe Conference & Exhibition, pages 193–198. EDA

Consortium, 2015.

[63] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:

concepts, architectures, and implementations. IEEE Design & Test of

Computers, 22(5):414–421, 2005.

[64] C. D. Graziano. A performance analysis of xen and kvm hypervisors for

hosting the xen worlds project. 2011.

[65] Z. Gu and Q. Zhao. A state-of-the-art survey on real-time issues in

embedded systems virtualization. Journal of Software Engineering and

Applications, 5(04):277, 2012.

[66] G. Heiser and B. Leslie. The okl4 microvisor: convergence point of

microkernels and hypervisors. In Proceedings of the first ACM asia-

pacific workshop on Workshop on systems, pages 19–24. ACM, 2010.

183

[67] J. L. Hennessy and D. A. Patterson. Computer architecture: a quanti-

tative approach. Elsevier, 2011.

[68] R. Hiremane. Intel virtualization technology for directed i/o (intel vt-d).

Technology@ Intel Magazine, 4(10), 2007.

[69] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/o scheduling model of

virtual machine based on multi-core dynamic partitioning. In Proceed-

ings of the 19th ACM International Symposium on High Performance

Distributed Computing, pages 142–154. ACM, 2010.

[70] L. S. Indrusiak. End-to-end schedulability tests for multiprocessor em-

bedded systems based on networks-on-chip with priority-preemptive ar-

bitration. Journal of systems architecture, 60(7):553–561, 2014.

[71] J.-W. Jeong, S. Yoo, and C. Yoo. Parfait: A new scheduler framework

supporting heterogeneous xen-arm schedulers. In Consumer Communi-

cations and Networking Conference (CCNC), 2011 IEEE, pages 1192–

1196. IEEE, 2011.

[72] Z. Jiang and N. Audsley. Vcdc: The virtualized complicated device

controller. In LIPIcs-Leibniz International Proceedings in Informatics,

volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[73] A. N. Jiang Zhe and P. Dong. Bluevisor: A scalable real-time hardware

hypervisor for heterogeneous many-core embedded systems.

[74] M. A. Khan, S. Saeed, A. Darwish, and A. Abraham. Embedded and

Real Time System Development: A Software Engineering Perspective:

Concepts, Methods and Principles, volume 520. Springer, 2013.

[75] Y. Kinebuchi, H. Koshimae, and T. Nakajima. Constructing machine

emulator on portable microkernel. In Proceedings of the 2007 ACM

symposium on Applied computing, pages 1197–1198. ACM, 2007.

[76] J. Kiszka. Towards linux as a real-time hypervisor. In Proceedings of the

11th Real-Time Linux Workshop, pages 215–224. Citeseer, 2009.

[77] J. A. Landis, T. V. Powderly, R. Subrahmanian, A. Puthiyaparambil,

and J. R. Hunter Jr. Computer system para-virtualization using a hy-

pervisor that is implemented in a partition of the host system, July 19

2011. US Patent 7,984,108.

184

[78] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik.

Supporting soft real-time tasks in the xen hypervisor. In ACM Sigplan

Notices, volume 45, pages 97–108. ACM, 2010.

[79] W. F. Lee. Verilog coding for logic synthesis. Wiley Online Library,

2003.

[80] Y. Li, M. Danish, and R. West. Quest-v: A virtualized multikernel for

high-confidence systems. arXiv preprint arXiv:1112.5136, 2011.

[81] J. Liedtke. On micro-kernel construction, volume 29. ACM, 1995.

[82] M. Masmano, I. Ripoll, A. Crespo, and J. Metge. Xtratum: a hyper-

visor for safety critical embedded systems. In 11th Real-Time Linux

Workshop, pages 263–272, 2009.

[83] A. Masrur, S. Drossler, T. Pfeuffer, and S. Chakraborty. Vm-based

real-time services for automotive control applications. In Embedded and

Real-Time Computing Systems and Applications (RTCSA), 2010 IEEE

16th International Conference on, pages 218–223. IEEE, 2010.

[84] A. Masrur, T. Pfeuffer, M. Geier, S. Drössler, and S. Chakraborty. De-

signing vm schedulers for embedded real-time applications. In Proceed-

ings of the seventh IEEE/ACM/IFIP international conference on Hard-

ware/software codesign and system synthesis, pages 29–38. ACM, 2011.

[85] D. May. The xmos architecture and xs1 chips. IEEE Micro, 32(6):28–37,

2012.

[86] H. Mei. Real-Time Stream Processing in Embedded Systems. PhD thesis,

University of York, 2018.

[87] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing network vir-

tualization in xen. In USENIX Annual Technical Conference, number

LABOS-CONF-2006-003, 2006.

[88] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. Hermes: an

infrastructure for low area overhead packet-switching networks on chip.

INTEGRATION, the VLSI journal, 38(1):69–93, 2004.

[89] J. Mossinger. Software in automotive systems. IEEE software, 27(2):92,

2010.

185

[90] D. Muench, O. Isfort, K. Mueller, M. Paulitsch, and A. Herkersdorf.

Hardware-based i/o virtualization for mixed criticality real-time systems

using pcie sr-iov. In Computational Science and Engineering (CSE),

2013 IEEE 16th International Conference on, pages 706–713. IEEE,

2013.

[91] D. Pan, B. Alan, J. Zhe, and L. Xiangke. Tzdks: A new trustzone-based

dual-criticality system with balanced performance. In Embedded and

Real-Time Computing Systems and Applications (RTCSA), 2018 IEEE

24th International Conference on, pages 1–10. IEEE, 2018.

[92] J. L. Peterson and A. Silberschatz. Operating system concepts, volume 2.

Addison-Wesley Reading, MA, 1985.

[93] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong,

J. Cabral, and A. Tavares. Towards a lightweight embedded virtual-

ization architecture exploiting arm trustzone. In Emerging Technology

and Factory Automation (ETFA), 2014 IEEE, pages 1–4. IEEE, 2014.

[94] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral. Ltzvisor:

Trustzone is the key. In LIPIcs-Leibniz International Proceedings in

Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2017.

[95] G. Plumbridge, J. Whitham, and N. Audsley. Blueshell: a platform

for rapid prototyping of multiprocessor nocs and accelerators. ACM

SIGARCH Computer Architecture News, 41(5):107–117, 2014.

[96] D. Plummer. Ethernet address resolution protocol: Or converting net-

work protocol addresses to 48.bit ethernet address for transmission on

ethernet hardware, nov 1982.

[97] J. Polkinghorne and M. Desnoyers. Application specific integrated cir-

cuit, Mar. 28 1989. US Patent 4,816,823.

[98] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable

third generation architectures. Communications of the ACM, 17(7):412–

421, 1974.

[99] I. Present. Cramming more components onto integrated circuits. Read-

ings in computer architecture, 56, 2000.

186

[100] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current

technology and future trends. Computer, 38(5):39–47, 2005.

[101] A. Rubini and J. Corbet. Linux device drivers. ” O’Reilly Media, Inc.”,

2001.

[102] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on

concepts, taxonomy and associated security issues. In Computer and

Network Technology (ICCNT), 2010 Second International Conference

on, pages 222–226. IEEE, 2010.

[103] H. Schild, A. Lackorzynski, A. Warg, et al. Faithful virtualization on a

real-time operating system. RTLWS11, 2009.

[104] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,

J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, et al. T-

crest: Time-predictable multi-core architecture for embedded systems.

Journal of Systems Architecture, 61(9):449–471, 2015.

[105] M. J. S. Smith. Application-specific integrated circuits, volume 7.

Addison-Wesley Reading, MA, 1997.

[106] J. A. Stankovic and K. Ramamritham. What is predictability for real-

time systems? Real-Time Systems, 2(4):247–254, 1990.

[107] S. Stopp, T. Wolff, F. Irlinger, and T. Lueth. A new method for printer

calibration and contour accuracy manufacturing with 3d-print technol-

ogy. Rapid Prototyping Journal, 14(3):167–172, 2008.

[108] K. Thompson. Unix time-sharing system: Unix implementation. Bell

Labs Technical Journal, 57(6):1931–1946, 1978.

[109] S. Trujillo, A. Crespo, and A. Alonso. Multipartes: Multicore virtual-

ization for mixed-criticality systems. In Digital System Design (DSD),

2013 Euromicro Conference on, pages 260–265. IEEE, 2013.

[110] P. W. Tsai, H. Y. Chou, M. Y. Luo, and C. S. Yang. Design a flexible

software development environment on netfpga platform. In Applied Me-

chanics and Materials, volume 411, pages 1665–1669. Trans Tech Publ,

2013.

187

[111] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V.

Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith. Intel

virtualization technology. Computer, 38(5):48–56, 2005.

[112] J. F. Wakerly. Digital design. Pearson Australia Pty Limited, 2016.

[113] C. Waldspurger and M. Rosenblum. I/o virtualization. Communications

of the ACM, 55(1):66–73, 2012.

[114] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al. The worst-

case execution-time problem—overview of methods and survey of tools.

ACM Transactions on Embedded Computing Systems (TECS), 7(3):36,

2008.

[115] W. H. Wolf. Hardware-software co-design of embedded systems. Pro-

ceedings of the IEEE, 82(7):967–989, 1994.

[116] S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: Towards real-time hyper-

visor scheduling in xen. In Embedded Software (EMSOFT), 2011 Pro-

ceedings of the International Conference on, pages 39–48. IEEE, 2011.

[117] S. Yoo, Y.-P. Kim, and C. Yoo. Real-time scheduling in a virtualized

ce device. In Consumer Electronics (ICCE), 2010 Digest of Technical

Papers International Conference on, pages 261–262. IEEE, 2010.

[118] P. Yu, M. Xia, Q. Lin, M. Zhu, S. Gao, Z. Qi, K. Chen, and H. Guan.

Real-time enhancement for xen hypervisor. In Embedded and Ubiquitous

Computing (EUC), 2010 IEEE/IFIP 8th International Conference on,

pages 23–30. IEEE, 2010.

[119] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, and H. Guan. Performance

analysis towards a kvm-based embedded real-time virtualization archi-

tecture. In Computer Sciences and Convergence Information Technology

(ICCIT), 2010 5th International Conference on, pages 421–426. IEEE,

2010.

[120] N. A. Zhe Jiang. Gpiocp: Timing-accurate general purpose i/o controller

for many-core real-time systems. In Proceedings of the 2017 Design, Au-

tomation & Test in Europe Conference & Exhibition. EDA Consortium,

2017.

188

[121] N. A. Zhe Jiang. Blueio: A scalable real-time hardware i/o virtualiza-

tion system for many-core embedded systems. ACM Transactions on

Embedded Computing Systems (TECS), 2019.

[122] R. W. Zhuoqun Cheng and Y. Ye. Building Real-Time embedded appli-

cations on QduinoMC: A web-connected 3d printer case study. In Real-

Time and Embedded Technology and Applications Symposium (RTAS),

2017 IEEE. IEEE, 2017.

[123] B. Zuo, K. Chen, A. Liang, H. Guan, J. Zhang, R. Ma, and H. Yang.

Performance tuning towards a kvm-based low latency virtualization sys-

tem. In Information Engineering and Computer Science (ICIECS), 2010

2nd International Conference on, pages 1–4. IEEE, 2010.

189

