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Abstract

Transverse coronal loop oscillations were first observed by TRACE in 1998
and reported by Aschwanden et al. (1999) and Nakariakov et al. (1999).
One important property of transverse coronal loop oscillations is that they
are usually strongly damped with the damping time being comparable with
the oscillation period. However, sometimes this is not the case. At present,
a generally accepted mechanism of this damping is resonant absorption.
Observations show that very often oscillating coronal loops are in a highly
dynamic state. In particular, they can cool quickly with a characteristic
cooling time of the order of a few periods of kink oscillation. It was later
showed theoretically that cooling causes amplification and may result in ex-
istence of oscillations for which amplitude does not vary in time. Although
the coronal loop expansion is relatively small, the ratio of the loop cross-
section radii at the apex and at the foot-points still can be about 1.5. These
leads to particular interest the effect of expansion on kink oscillations. A
coronal loop is modelled as a cylindrical magnetic flux tube. The tube con-
sists of a core region and a thin transitional region at the tube boundary.
The plasma density monotonically decreases from its value in the core re-
gion to the value outside the tube. Both the plasma density and velocity
of background flow vary along the tube and in time. Using multiscale ex-
pansions, the system of two equations describing the kink oscillations was
derived. This model is studied both analytically by employing Wentzel-
Kramer-Brillouin (WKB) method and numerically. We found out that the
expansion of cross-section enhances the amplification of amplitude of kink
oscillations and decreases the frequency of the oscillations. In addition we
showed theoretically that a coronal loop cooling may lead to amplification of
amplitude or non-monotonic amplitude profile even in presence of resonant
damping. That result is particularly interesting from the coronal seismology
point of view, since it is a good candidate for physical mechanism behind
recent observation of kink oscillations of coronal loops with amplified and
varying amplitudes.
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§ 1.1 Sun Structure and Coronal Loops

1.1.1 Sun Structure

The Sun is a marvellous object, which we all can observe in everyday life. It gives us
almost all the energy to sustain life in our planet. It is a subject of great interest for
humanity starting from the ancient times. For example, there is historical evidence of
recording solar eclipses by ancient Chinese and Greeks. However, until recently, the
observational tools were not able to produce detailed picture of the Sun. The new era of
observations started by launching space instruments. This revolutionised observations
and helped us to have better understanding of the Sun. The first instrument to give
us the moderately detailed impression of solar surface and atmosphere is known as
SkyLab which was launched in 1973. SkyLab was able to obtain images in soft x-ray
wavelength (2.34 – 4.4nm). Afterwards more space missions were launched with even
better suits of instruments. These instruments were able to produce images with wider
and better resolved spectra and higher quality resolution.

Now, we describe the structure of the Sun. It is assumed that the Sun consists of
plasma. Plasma is a state of matter in which a fluid is highly ionised, which results
in high electrical conductivity, so that electric and magnetic field govern the behaviour
of the matter. Solar structure may be summarised as follows (see e.g. Priest, 2014).
The Sun consists of a few different layers (see Figure 1.1). These layers are united into
two distinct groups: internal region and solar atmosphere. The former cannot be seen
directly and consists of the core, the radiative zone, the tachocline and the convection
zone. On the contrary, the latter is visible and consists of the photosphere, the chromo-
sphere, the transition zone and the corona. The theory suggests that about 50% of the
solar mass, M⊙ ≈ 1.99× 1030 kg, is located inside the core. However, its radius is only
25% of the radius of the Sun, R⊙ = 695.5 Mm. It is estimated that 99% of nuclear fu-
sion occurs in this region, giving the enormous amount of energy, with estimate of core
temperature Tcs = 1.5×107 K. The produced energy is carried by different processes to
the surrounding plasma. The other internal regions, with exception of the tachocline,
are named by the proposed main energy transfer mechanism. The closest layer to the
core is known as the radiative zone, with the main mechanism of energy transfer as
radiation and estimated thickness 0.45R⊙. The next layer is known as the tachocline.
This is a very thin transition region between the radiative zone and the convection
zone with estimated thickness of 0.04R⊙. The main property the tachocline is known
to posses is high shear stress. That is because the two adjacent layers: the radiative
zone and convection zone, posses different rotational behaviours, with the first rotating
more like a solid and with the second rotating as a liquid. The next layer is known as
convection zone, where convection is assumed to be the main mechanism of the energy
transfer. That means that, in this layer, hot plasma is literally moving outward of
the the Sun center to the cooler parts of the Sun. The estimated thickness for this
zone is 0.3R⊙. The next layer is on the surface of the Sun and the first visible layer
is known as the photosphere. Its estimated thickness is 7 ∗ 10−4R⊙ Mm, which makes
it relatively thin compare to other Sun’s regions. However, it is relatively dense if one
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Figure 1.1: The graphical representation of the Sun’s structure. The length and dis-
tances are not up to scale. The region between chromosphere and corona may varies
between 2.5 – 15 Mm and indicated as pinstripes region.

compares it with densities of the solar atmosphere, the chromosphere and the corona.
The typical density for photosphere is 10−9 kg/m3, where chromospheric, lower corona
and higher corona densities are typically 104, 108 and 1012 times lower, respectively.
The thickness of solar chromosphere varies around the Sun with estimated variation of
0.003 – 0.02R⊙ Mm. The transition zone is the thin layer of the atmosphere, where
the temperature rises from the chromospheric values to that of the lower corona. The
corona is the outer layer of the solar atmosphere with a strong magnetic field and low
density. This layer is, normally, not visible without special equipments. Nevertheless,
in case of a solar eclipse it is possible to see it even with bare eye. The low solar corona
is normally considered to be present within 1 – 3 R⊙ from the Sun center, where the
higher solar corona is further away from the center. For better understanding of the
processes discussed later, it is convenient to introduce the plasma-beta β,
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β =
2µ0p

B2
, (1.1)

where µ0 is the magnetic field permeability, p is the kinetic pressure and B is the
strength of the magnetic field. This parameter enables us to understand what types of
forces are dominant in the region of study. Also, P = B2/2µ0 is known as the magnetic
pressure. The corona has low plasma-beta, β ≪ 1 in the low corona and active regions,
while β varies in the high corona.

The solar corona is an object of high interest for research as it has temperatures
between 1 MK and 10 MK, while in the photosphere T ≈ 6 kK (see e.g. Eddy et al.,
1979). So far the difference in temperatures remains a mystery and it is one of the major
problems of solar physics, known as coronal heating problem. However, there are two
main mechanisms suggested to solve this problem. One is the magnetic reconnection
of current sheets (see e.g. Priest, 1999) and the other is the dissipation of magnetic
waves generated in the convection zone (see e.g. Roberts, 2000).

1.1.2 Coronal Loops

To describe what is a coronal loop, it is important to define a magnetic field line. A
field line is a curve, for which the tangent line at each point is parallel to the magnetic
field direction. The Sun’s surface contains many closed field lines, the ones that are
filled with a relatively dense plasma are known as coronal loops (see Figure 1.2). These
structures are normally observed in various parts of electromagnetic spectrum, such
as soft X-rays, EUV (extreme ultraviolet) and visible spectrum. The temperature of
coronal loops varies from 0.1 MK to 5 MK and are classified as cool loops for tempera-
tures between 0.1 MK and 1MK (observed in UV(ultraviolet) spectrum by, e.g. SOHO
(Solar and Heliospheric Observatory) launched in 1996), warm loops for temperatures
between 1 MK and 2 MK (observed in EUV spectrum by, e.g. TRACE (Transitional
Layer and Solar Corona) launched in 1998) and hot loops with temperatures greater
the than 2 MK (observed in the soft X-rays spectrum, by e.g. Skylab). The length of
loops also varies from 0.1 Mm to 1000 Mm. To be able to understand what follows we
need to define what is a kink oscillation. Two normal modes of oscillation which are
considered in this thesis are the kink mode and the sausage mode. These modes have
simple mathematical formulation. We apply Fourier analysis to perturbed variables
in governing equations. In the cylindrical polar coordinates, this means that pertur-
bations will be proportional to the exponent term of a form exp[i(kz + mφ − ω(t))].
Here k is the longitudinal wavenumber, m is wavenumber and ω(t) is the oscillation
frequency. In case m = 0 oscillation mode is known as sausage mode, for m = 1 it is
known as kink mode (there are also modes for m > 1 known as flute modes).

Known properties of kink oscillations may be summarised as follows: oscillations
have boundaries of a plasma object going in phase, they are weakly compressible, have
little variation in cross-section, density and thus produce the motion of the coronal
loops. On the other hand, sausage modes are highly compressible, the boundaries of
a plasma object are moving out of phase and pulsate. In what follows we focus on
magnetic flux tubes of cylindrical shape. The schematic representation for kink and
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Figure 1.2: Image of the Sun obtained by TRACE on 8 of September 2005. In the
171 Å

sausage waves for the case of flux tube is shown in Figure 1.3. The cylindrical shape is
a relatively good approximation as theoretical results obtained using it correlate with
the one obtained with observation (see e.g. Goossens et al., 2005). Nevertheless, since
our observations are limited, we do not know for sure if this shape is correct or even
that the loop is monolithic and does not consist of separate discrete threads.

The transverse coronal loop oscillations were first observed by TRACE in 1998
and were reported by Aschwanden et al. (1999) and Nakariakov et al. (1999). It has
also been seen that usually kink oscillations of coronal loops are heavily damped (see
e.g. Nakariakov et al., 1999), however, sometimes this is not the case (see e.g. Wang
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B B

Figure 1.3: Kink oscillation (m = 1) and Sausage oscillations (m = 0) in a presence of
background magnetic field B

et al., 2012; Anfinogentov et al., 2013; Nisticò et al., 2013). It is still not known why
there is such a fast decay of kink oscillations. Although there is a good candidate
for explanation, which is resonant absorption (see e.g. Ruderman and Roberts, 2002;
Goossens et al., 2002). Resonant absorption occurs when the external driving waves
reach location, where their frequency matches the local Alfvén or cusp frequency (see
e.g. Goossens et al., 2011 and references therein). The latest absorb the energy from the
driving waves at the resonance layer. This results in a stronger wave which propagates
perpendicular to the direction of the magnetic field. As a result, the energy will be
dissipated and heating will occur. Cool chromosphere plasma entering the coronal loop
may cause flows inside the magnetic flux tube (see e.g. Ofman and Wang, 2008; Chae
et al., 2008). Therefore, the effects of resonant absorption on kink oscillations of an
expanding magnetic flux tube in a presence of the bulk flow will be of a great interest
to study.

§ 1.2 Previous Work and Observations

After transverse coronal loop oscillations were first observed by TRACE in 1998 and
reported by Aschwanden et al. (1999) and Nakariakov et al. (1999), they received ample
attention in the solar physics community. Since then, these oscillations were routinely
observed during various space missions (see e.g. Erdélyi and Taroyan, 2008; Duckenfield
et al., 2018; Su et al., 2018; Abedini, 2018, and references therein).

An important property of transverse coronal loop oscillations is that they are
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strongly damped with the damping time being comparable with the oscillation period.
At present, a generally accepted mechanism of this damping is resonant absorption.
It was suggested by Hollweg and Yang (1988) ten years before the first observation
of transverse coronal loop oscillations that they can be strongly damped by resonant
absorption. Hollweg and Yang (1988) studied resonant absorption using planar geom-
etry, but then translated their result to cylindrical geometry and obtained the correct
expression for the decrement in the thin tube approximation. Later, Goossens et al.
(1992) studied the damping of kink oscillations of magnetic flux tubes due to resonant
absorption in the general case. Ruderman and Roberts (2002) applied the theory of
wave damping due to resonant absorption to the first observation of coronal loop kink
oscillations. They showed that the observed damping of these oscillations can be used
to obtain information about the internal structure of coronal magnetic loops. Ruder-
man and Roberts (2002) modelled a coronal loop as a magnetic tube consisting of an
internal core of radius R and a transitional or boundary layer of thickness ℓ between
the dense core plasma and the rarefied surrounding plasma. They obtained that the
decrement is proportional to ℓ/R. Using the data on the oscillation damping reported
by Nakariakov et al. (1999) Ruderman and Roberts (2002) obtained that ℓ/R = 0.23.
Goossens et al. (2002) used observations of eleven cases of damped kink oscillations of
coronal magnetic loops to estimate ℓ/R. They obtained values of ℓ/R between 0.16
and 0.49. Since then, observations of damped coronal loop oscillations are continuously
used to obtain information on the loop internal structure (e.g. Ruderman and Erdélyi,
2009; Goossens et al., 2011).

In the earlier studies of kink oscillations of coronal magnetic loops, a very simple
model of a homogeneous magnetic cylinder was used (e.g. Ryutov and Ryutova, 1976;
Edwin and Roberts, 1983). In this model, the tube has a sharp boundary. That means
that there will be no singularity which will include dissipative terms in the analyitcal
solution, so such models do not describe resonant absorption. To describe resonant ab-
sorption, the model with sharp boundary was modified by including a transitional layer
at the tube boundary. By adding the transitional layer with varying density, the ana-
lytical solution will have a singularity, which will lead to inclusion of dissipative terms
to proceed with analytical results (see e.g. Ruderman, 2011b). Later, more realistic
models of coronal loops were studied. Such modification to the earlier homogeneous
mangetic flux tube model was obtained by considering the following: curved magnetic
flux tubes (see e.g. Ruderman, 2003), twisted magnetic flux tubes (see e.g. Ruderman,
2007), expanding magnetic flux tubes (see e.g. Ruderman et al., 2008), magnetic flux
tubes in a presence of background flows (see e.g. Ruderman, 2010) and magnetic flux
tubes with variable density (see e.g. Dymova and Ruderman, 2006a). In particular, the
variation of the plasma density along the tube was taken into account. Dymova and
Ruderman (2006a) investigated the resonant damping of kink oscillations of a magnetic
tube with such density variation. The main result that they obtained is the following:
if the ratio of densities in the tube core and in the surrounding plasma is constant, and
the ratio of density inside the boundary layer and in the tube core does not vary along
the tube, then the ratio of the damping time and oscillation period is not affected by
the density variation along the tube.
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Although the coronal loop expansion is relatively small, the ratio of the loop cross-
section radii at the apex and at the foot-points still can be about 1.5 (Klimchuk, 2000;
Watko and Klimchuk, 2000). On the other hand, in the chromosphere the expansion
of vertical magnetic flux tubes can be as large as a few hundred (e.g. Tsuneta et al.,
2008). Hence, to account for magnetic flux tube expansion is important. Ruderman
et al. (2008) and Verth and Erdélyi (2008) derived the equation describing kink oscilla-
tions of an expanding magnetic flux tube. They considered a magnetic flux tube with
a sharp boundary meaning that the equation that they derived does not describe reso-
nant damping. Ruderman et al. (2017) generalised this derivation to include a siphon
flow, temporal variation of the plasma parameters, and a transitional layer at the tube
boundary.

Observations show that very often oscillating coronal loops are in a highly dynamic
state. In particular, they can cool quickly with a characteristic cooling time of the or-
der of a few periods of kink oscillation (e.g. Aschwanden and Terradas, 2008). Morton
and Erdélyi (2009, 2010) found that cooling results in the decrease of the period of
the coronal loop kink oscillations, while similar results were found by Al-Ghafri et al.
(2014) for longitudinal oscillations. Ruderman (2011a) showed that cooling causes the
amplification of coronal loop kink oscillations. Ruderman (2011b) studied the compe-
tition between cooling and resonant damping. He showed that this competition can
result in the existence of kink oscillations with the amplitude not varying in time. Re-
cently, Ruderman et al. (2017) studied the effect of tube expansion on kink oscillations
of cooling coronal loops. Shukhobodskiy and Ruderman (2018) studied the effect of
damping of the resonant absorption on the amplification due to cooling.

§ 1.3 Motivation

In previous section we discussed previous works done in the area of kink oscillations
of coronal loops. Although we have good analytical models we still have numerous
observations, which are hard to explain by applying the current analytical knowledge
on the observed features the good candidate will be non-damped and amplified kink
oscillations of coronal loops. Thus, it will be a particularly interesting to add new degree
of complexity in existing models to be able obtain better physical understanding behind
the processes involved in such complex phenomena. As a result, the main aim of this
thesis is to obtain a model for kink oscillations of an expanding coronal loops in a
presence of background flow under cold plasma approximation. This approximation
means that magnetic forces are dominant compared to internal energy. Thus, we can
assume β = 0.

To have a better understanding of why such a model is proposed, we will briefly
describe two previous models, which will intuitively lead to our case.

First of all, we start from the work done by Ruderman et al. (2008). These authors
considered straight cylindrical magnetic flux tube with variable cross-section with equi-
librium configuration given by Figure 1.4. Here, R(z) is cross-section radius, B is back-
ground magnetic field ρi, ρe are internal and external densities and L is the length of
the tube. Ruderman et al. (2008) showed that for ideal MHD (Magnetohydrodynamics)
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Figure 1.4: Equilibrium configuration of the straight expanding the magnetic flux tube

equations, under cold plasma and thin tube approximations, the background magnetic
field B is potential (B = ∇ × Ψ, where Ψ is the magnetic vector potential). It was
also assumed that B → B∞ez as r → ∞, where B∞ is a positive constant and ez is a
unit vector in the z direction. The following model satisfying the potential magnetic
field was considered

ψ = (1/2)B∞r
2 + ψ∗rJ1(r/l) cosh(z/Lc), (1.2)

where ψ∗ and Lc are arbitrary constants, J1(x) is the Bessel function of the first kind
and first order and magnetic flux function ψ is defined by the following equation:

Br = −1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (1.3)

As a result, the expression for cross-section expansion R(z) was obtained

R(z) = Rfλ

√
cosh(L/2Lc)− 1

cosh(L/2lc)− λ2 + (λ2 − 1) cosh(z/Lc)
. (1.4)

The above equation will be used in the thesis to model the cross-section expansion under
different equilibrium configurations to study various effects. In addition Equation (1.4)
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Ruderman et al. (2008) derived equations which are governing the model proposed.
This equation reads as follows:

∂2u

∂t2
=
h
√
h

ρ

[
h

µ0

∂2

∂z2

(
u√
h

)
−
√

2ψ

(
h′

2

∂Q

∂z
+ h2

∂Q

∂ψ

)]
(1.5)

∂2ξφ
∂t2

=
h
√
h

ρ

[
1

µo

∂2(ξφ
√
h)

∂z2
− h√

2ψ

∂Q

∂φ

]
, (1.6)

Q =
−1

µ0
√
2hφ

(
h′ψ

h2
∂u

∂z
+ 2ψ

∂u

∂ψ
+ u+ h

∂ξφ
∂φ

)
, (1.7)

where u = Bξ⊥, ξ⊥ is perpendicular displacement, ξφ is angular displacement, ψ =
1/2r2h(z) and h(z) is an arbitrary function such that R2(z)h(z) = const. Then, again,
using the thin tube approximation, Ruderman et al. (2008) derived the equation that
determines eigenmodes and eigenfrequencies,

∂2η

∂z2
+
ω2

C2
k

η, η = 0 at z = ±L, (1.8)

where

C2
k =

2B2(z)

µ0 [ρi(z) + ρe(z)]
and η =

ξ⊥
R(z)

, (1.9)

ω is the frequency, and B(z) is the magnetic field strength. Note that Equations (1.5)–
(1.9) were obtained under thin tube approximation, author assumed that coronal loop
length is much larger than coronal loop diameter.

The second model was studied by Ruderman (2011a), where a straight magnetic
tube with constant cross-section and plasma flow driven by density ρ variation (see
Figure 1.5) was considered. The density varies in the radial direction between its value
inside the tube, ρi, and outside the tube, ρe, in a transitional layer of thickness l. This
additional layer enables to consider effect of the damping due to resonant absorption.
The density also varies along the tube and depends on time. Hence, the density is given
by

ρ =





ρi(t, z), 0 < r < R− l/2,

ρt(t, r, z), R− l/2 < r < R+ l/2,

ρe(t, z), r > R+ l/2.

(1.10)
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Figure 1.5: Equilibrium configuration of the straight two layered magnetic flux tube in
the presence of the background flow

Here the background velocity U0(t, r, z) satisfies the mass conservation equation,

∂ρ

∂t
+
∂(ρU)

∂z
= 0. (1.11)

It was shown by Ruderman (2011a) that magnetic pressure perturbation P satisfies the
equation

1

r

∂

∂r

(
r
∂P

∂r

)
− P

r2
= 0. (1.12)

The pressure perturbation is related to the plasma displacement by P = −ρV 2
A∇·ξ and

V 2
A is square of Alfvén speed. Solving equation (1.12), then using the WKB (Wentzel-

Kramers-Brillouin) approximation and introducing the small parameter ν̂ = l/R ≪ 1,
the equation is similar to equation (1.8) was found under approximation of geometrical
optics (the meaning of this approximation will be later explained further in this thesis):

∂2S0
∂z2

+
ω2

C2
k

S0, S0 = 0 at z = ±L/2, (1.13)
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where the radial component of the plasma displacement inside the tube is given by

ξri = S(t, z) exp[iν̂−1Θ(t)], (1.14)

where Θ(t) is arbitrary function and S expands in the series

S = S0 + ν̂S1 + . . . . (1.15)

Later, Ruderman (2011a) solved Equations (1.13) and (1.14) numerically. The depen-
dence of damping due to resonant absorption on amplification due to cooling for kink
oscillations of straight magnetic flux tube was shown. The aim of my work is to study
the model which includes both characteristics of model proposed by Ruderman et al.
(2008) and Ruderman (2011a), to obtain the governing equations. The obtained result
have a particular importance for the observation community especially for the coro-
nal seismology. As the model proposed in this thesis may enables to estimate various
properties of a coronal loop, by making very limited number assumptions on initial
background conditions and thus making the results more realistic and accurate.

§ 1.4 Outline and Structure

The Thesis is made of 6 chapters. After the introduction, Chapter 2 and Chapter 3 are
mainly based on Ruderman et al. (2017). Chapter 4 is mainly based on Shukhobodskiy
and Ruderman (2018). Chapter 5 is based on Shukhobodskiy et al. (2018).

Chapter 2 is introducing the equilibrium configuration of the model proposed. Then,
using the ideal MHD equations under cold plasma and thin tube approximation, we
will derive the set of equations in the parallel, perpendicular and azimuthal components
relative to the background magnetic field. At the end, using multiple scale expansion,
we will derive the governing equation describing the model proposed under the assump-
tion that the boundaries are thin. Since all the previous models have either presence
of a background flow or coronal loops expansion, the current governing equation will
enable to consider both of these phenomena simultaneously. Therefore it will help to
achieve better understanding behind kink oscillations of coronal loops

In Chapter 3 we study the governing equation obtained in Chapter 2 in the absence
of a transitional layer. We will start by modifying the equilibrium configurations pro-
posed in Chapter 3. Then we study the effect of siphon flow, considering the magnetic
flux tube as a loop of half-circular shape, and neglecting the effect of geometry on all
variables except the density variation. We will also consider the model of cross-section
variation proposed by Ruderman et al. (2008). Later, we will obtain the equation de-
scribing such configuration. This equation will be solved numerically to obtain the
dependence on fundamental frequency, ratio of fundamental frequency and first over-
tone, and amplitude on background flow for various values of cross-section expansion.
These results will be graphically presented. Then we will consider the effect of cooling
on kink oscillation. First of all, we will assume that the density varies slowly with time.
Again using multi-scale expansion, we will obtain equations describing kink oscillations.
We will obtain the quantity known as an adiabatic invariant. These equations will be
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studied numerically and the dependences of fundamental frequency, ratio of funda-
mental frequency and first overtone, and the amplitude on time will be presented and
discussed. Although the model we used in this chapter does not include the damping
which is usually observed for kink oscillations of coronal loops it provides some impor-
tant information for coronal seismology. First of all, it allows to neglect relatively slow
speed of background flows for kink oscillation of coronal loops. Secondly, it shows the
significant effect of coronal loop expansion of oscillations frequency.

In Chapter 4 we will study the governing equation under the assumption of absence
of background flow to obtain the decrement for damping of kink oscillation due to
resonant absorption. The modified equilibrium configuration will be presented. Then
we will introduce viscous MHD equations. These equations will be studied by the means
of general Fourier theory. Thus we will able to close the system of governing equations
obtained in Chapter 2 for the model with a presence of transitional layer. This will
allow us to obtain the decrement for kink oscillation of a magnetic flux tube. We will
discuss how the adiabatic invariant will be changed for the resonant model. Finally
we will describe properties of the decrement. In particular we conclude that the ratio
of decrement to the oscillation frequency for the time independent density profiles is
independent of a particular law of density variation along the tube as well as the tube
cross-section variation along the tube. This conclusion allows to neglect coronal loops
expansion to get information about the radial structure of loops, by observing damping
of kink oscillation.

In Chapter 5 we will generalise the results obtained in Chapter 4 by adding the
background flow to the model. We will start by using the WKB approximation on
governing equation obtained in Chapter 4, to obtain Sturm-Liouville problem. Using
general Fourier analysis, we will expand the results obtained in Chapter 4 to close the
governing equations. The equation describing the decrement will be obtained and com-
pared with one obtained in Chapter 4. We again will consider the model of cross-section
variation proposed by Ruderman et al. (2008). We will assume that the density is slowly
varying with time, and considering a loop with a half-circular shape in a fashion similar
to Chapter 2. Finally we will obtain the equation describing such configuration, assum-
ing again that the loop geometry affects only the density variation. These equations
will be studied numerically. The graphical dependence of amplitude on dimensionless
time for various values of expansion factors and various values of the relative strength
of resonant damping and amplification caused by cooling will be presented and dis-
cussed. The critical value of relative strength of resonant damping and amplification
caused by cooling, for which damping due to resonant absorption is in balance with
amplification due to cooling, will be presented. Finally the dependence of critical value
on expansion factor will be shown and discussed. The model in this chapter have the
fewest amount of restrictions with the comparison to the models used in Chapters 3
and 4, which makes analytical and numerical results more realistic. First of all we
now are able estimate the radial structure and background flow of kink oscillations of
coronal loops by observing the frequency of a coronal loop oscillation, amplitude of the
coronal loop oscillation and coronal loops expansion. Secondly, we showed that the
cooling is a potential candidate for explanation origin of recently observed non-damped
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and amplified of kink oscillation coronal loops. Therefore Chapter 5 has a particular
significance for the coronal seismology.

In Chapter 6 the thesis results will be summarised and the discussion on possible
further generalisation will be presented.

The structure of Chapters 2–5 will be presented as follows. Each chapter will start
from describing the equilibrium state which will be needed to handled. The main body
will include all the relevant calculations and assumptions. At the end of each chapter
a brief summary will be presented.



Chapter 2

Model Proposed and Governing
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27
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§ 2.1 Equilibrium configuration
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Figure 2.1: Equilibrium configuration of the straight expanding two layered magnetic
flux tube in the presence of the background flow

In this thesis we model a coronal loop as a thin straight expanding magnetic flux tube
with circular cross-section R(z). Figure 2.1 shows the sketch of equilibrium configura-
tion of the model proposed. In what follows, cylindrical coordinates r, φ, z are used.
The density inside the tube ρi(t, r, z) varies with time along and across the magnetic
flux tube as well as the density in surrounding plasma ρe(t, r, z) and in transitional
layer ρt(t, r, z) and is given by

ρ =





ρi(t, r, z), 0 ≤ r ≤ R(z)(1− l/2),

ρt(t, r, z), R(z)(1− l/2) ≤ r ≤ R(z)(1 + l/2),

ρe(t, r, z), r ≥ R(z)(1 + l/2),

(2.1)

where l is a constant determining the thickness of a transitional layer. It is assumed
that ρ(t, r, z) is a continuous function, and ρt(t, r, z) is a monotonically decreasing
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function of r. The reason why the tube is split into core and transitional layer is
because of the ability to take into account damping due to resonance absorption later
in this thesis. The time-independent non-twisted equilibrium magnetic field is B =
(Br(r, z), 0, Bz(r, z)). Therefore the divergence-free condition∇·B = 0 for the magnetic
field may be written as

1

r

∂(rBr)

∂r
+
∂Bz
∂z

= 0. (2.2)

Thus employing above equation B can be expressed in terms of magnetic flux function
ψ as

Br = −1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (2.3)

In addition, we assume that the boundaries of the transitional layer are magnetic sur-
faces. Therefore equations r = R(z)(1 − l/2) and r = R(z)(1 + l/2) can be written
as ψ = ψi = const and ψ = ψe = const, respectively, where indices i and e refer
to internal and external values respectively. In what follows, we use the cold plasma
approximation and thin tube thin boundary approximation. Therefore it follows from
equilibrium configuration that magnetic field must be potential. As a result, we have
∇×B = 0, which can be rewritten in polar coordinates as

∂Br
∂z

=
∂Bz
∂r

. (2.4)

Substituting Equation (2.3) into Equation (2.4), we express the later equation in terms
of magnetic flux function ψ as

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= 0. (2.5)

There is also a time-dependent background flow U = (Ur(t, r, z), 0, Uz(t, r, z)). It is
assumed that the background flow velocity is parallel to the equilibrium magnetic field,
U ‖ B. The plasma density and velocity are related by the mass conservation equation

∂ρ

∂t
+

1

r

∂(rρUr)

∂r
+
∂(ρUz)

∂z
= 0. (2.6)

The perturbations of the magnetic field and plasma velocity, b = (br, bφ, bz) and
u = (ur, uφ, uz), are described by the linearised MHD equations in the cold plasma
approximation,

∂u

∂t
+ (U · ∇)u+ (u · ∇)U =

1

µ0ρ
(∇× b)×B, (2.7)

∂b

∂t
= ∇× (u×B +U × b), (2.8)

∇ · b = 0, (2.9)

where µ0 is the magnetic permeability of free space.
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§ 2.2 Transformation of the governing equations

In this section we transform the governing equations in terms of the angular and per-
pendicular components. The term angular and perpendicular will be explained later in
this section. Below, we use the following identities (e.g. Korn and Korn, 1961):

2(G · ∇)F = ∇× (F×G) +∇(F ·G)− F(∇ ·G) +G(∇ · F)
− F× (∇×G)−G× (∇× F),

∇ · (F×G) = G · (∇× F)− F · (∇×G),

∇× (F×G) = (G · ∇)F− (F · ∇)G+ F(∇ ·G)−G(∇ · F),

(2.10)

where F and G are arbitrary vector-functions.
To be able to proceed further with calculations we use the Lagrangian description

and thus consider a particle with the initial position defined by vector a. A current
position of this particle is x(t,a), so x(0,a) = a. The trajectory of this particle is given
by x = x(t,a). In the unperturbed flow it is x = x0(t,a). We introduce the plasma
displacement ξ = x − x0. In what follows, we consider ξ as a function of Eulerian
coordinates, meaning that it is a function of t and x. Then, the particle velocity is
given by

Ũ =
∂x

∂t

∣∣∣∣
a

=
∂x0

∂t

∣∣∣∣
a

+
∂ξ

∂t

∣∣∣∣
x

+ (Ũ · ∇)ξ, (2.11)

where the subscript a and x indicate that the derivative with respect to t is calculated
at constant a and constant x, respectively. Now, ∂x0/∂t = U(t,x0). Since we use the
linear approximation, we can substitute U(t,x0) for Ũ in the last term on the right-
hand side of Equation (2.11). The Eulerian perturbation of the velocity is u(t,x) =
Ũ(t,x) − U(t,x). Then, employing the approximate relation U(t,x) = U(t, x0) ≈
U(t,x0)+ (ξ · ∇)U (the approximate relation may be obtained using similar technique
to the one used in Appendix A.1 for total derivative in Lagrangian representation), we
obtain from Equation (2.11) in the linear approximation that the velocity perturbation
is given by

u =
∂ξ

∂t
+ (U · ∇)ξ − (ξ · ∇)U , (2.12)

where, here and below, the time derivative is calculated at constant x. Applying the
first identity in Equation (2.10) to last two terms on the right hand side of Equation
(2.12), yields

u =
∂ξ

∂t
+∇× (ξ ×U)− ξ(∇ ·U ) +U(∇ · ξ). (2.13)

Further, we assume that the velocity U is potential, so that ∇×U = 0. Then, using
again the first identity in Equation (2.10), we obtain

(U · ∇)u+ (u · ∇)U = ∇(Uu‖)−U × (∇× u), (2.14)

where u‖ = b0 · u and b0 = B/B is the unit vector in the magnetic field direction.
Employing this result in Equation (2.7) and taking the scalar product of the obtained
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equation with b0 yields
∂u‖

∂t
+ b0 · ∇(Uu‖) = 0. (2.15)

We assume that u‖ = 0 at t = 0, then it follows from this equation that u‖ = 0 for
t > 0. Taking the scalar product of Equation (2.13) with b0 and using the second
identity in Equation (2.10), we obtain

∂ξ‖

∂t
=

1

B
∇ · (BUξ1) + ξ‖∇ ·U − U∇ · ξ, (2.16)

where ξ‖ = b0 · ξ and ξ1 = ξ − ξ‖b0.
With the aid of the third identity in Equation (2.10) and divergence-free condition

for the magnetic field we have

∇× (ξ ×B) = f −B(∇ · ξ), (2.17)

where
f = (B · ∇)ξ − (ξ · ∇)B. (2.18)

Substituting Equation (2.12) into Equation (2.8), yields

∂b

∂t
= ∇× (U × b)−∇×

[
B ×

(
∂ξ

∂t
+ (U · ∇)ξ − (ξ · ∇)U

)]
. (2.19)

With the aid of Equation (2.17) we reduce this equation to

∂

∂t
[b− f +B(∇ · ξ)] = ∇× [Ub0 × (b− (B · ∇)ξ]

+∇× [B × (ξ · ∇)U ]. (2.20)

Since U ‖ B and using chain rule we obtain the following identity

(ξ · ∇)U = B(ξ · ∇)
U

B
+
U

B
(ξ · ∇)B, (2.21)

Then, we finally arrive at

∂

∂t
[b− f +B(∇ · ξ)] = ∇× {Ub0 × [b− f +B(∇ · ξ)]}. (2.22)

It follows from Equation (2.22) that b− f+B(∇·ξ) = 0 for t > 0 if b− f+B(∇·ξ) = 0
at t = 0, which is assumed in what follows. As a result, we obtain

b = (B · ∇)ξ − (ξ · ∇)B −B(∇ · ξ). (2.23)

Then, applying the third identity in Equation (2.10) and recalling that the magnetic
field is divergence-free we can rewrite this expression as

b = ∇× (ξ ×B). (2.24)
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We now recall that the magnetic pressure perturbation P = B ·b/µ0. Taking the scalar
product of Equation (2.24) with B, using the second identity in Equation (2.1), and
recalling that the equilibrium magnetic field is potential, we easily obtain

P = − 1

µ0
∇ · (B2ξ1). (2.25)

Substituting Equations (2.14) and (2.24) in Equation (2.7), and taking into account
that u‖ = 0 yields

∂u

∂t
= b0 ×

(
U∇× u− B

µ0ρ
∇×∇× (ξ ×B)

)
. (2.26)

Equations (2.13), (2.16) and (2.26) constitute the system of equations for ξ.
Further, we introduce the components of the displacement and velocity that are in

the planes containing the z-axis and perpendicular to the magnetic field lines,

ξ⊥ = ξrb0z − ξzb0r u⊥ = urb0z − uzb0r. (2.27)

Then, recalling that B is solenoidal (solenoidal means the same as divergence-free) and
potential, we transform Equations (2.16) and (2.25) to

∂ξ‖

∂t
=
ξ⊥
B

(
b0z

∂(BU)

∂r
− b0r

∂(BU)

∂z

)

− U2

[
b0r

∂

∂r

(
ξ‖

U

)
+ b0z

∂

∂z

(
ξ‖

U

)]
, (2.28)

P = − B

µ0

(
b0z
r

∂(rw)

∂r
+
B

r

∂ξφ
∂φ

− b0r
∂w

∂z

)
, (2.29)

where w = Bξ⊥. To obtain the expression for u in terms of ξ we use Equation (2.13).
First, we take the scalar product of this equation with the vector (b0z , 0,−b0r) and use
the third identity in Equation (2.10) to obtain the expression for u⊥. Then, we take
the φ-component of Equation (2.13) to obtain the expression for uφ. As a result we
arrive at

u⊥ =
1

B

∂w

∂t
+
U

B

(
b0r
r

∂(rw)

∂r
+ b0z

∂w

∂z

)
, (2.30)

uφ =
∂ξφ
∂t

+ U

[
rb0r

∂

∂r

(
ξφ
r

)
+ b0z

∂ξφ
∂z

]
. (2.31)

Now, we take the scalar product of Equation (2.26) with the vector (b0z, 0,−b0r). Using
the third identity in Equation (2.10) yields

∂u⊥
∂t

+ U

[
rBr

∂

∂r

(u⊥
rB

)
+Bz

∂

∂z

(u⊥
B

)]
=

B

µ0ρ

[
∂2w

∂z2

+
∂

∂r

(
1

r

∂(rw)

∂r

)
+Bz

∂

∂r

(
1

r

∂ξφ
∂φ

)
− Br

r

∂2ξφ
∂φ∂z

]
. (2.32)
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Then, we take the φ-component of Equation (2.26) and, again, use the third identity
in Equation (2.10) to obtain

∂uφ
∂t

+ U

(
b0r
r

∂(ruφ)

∂r
+ b0z

∂uφ
∂z

)
=

B

µ0ρ

[
B

r2
∂2ξφ
∂φ2

+
b0z
r2
∂2(rw)

∂φ∂r
− b0r

r

∂2w

∂φ∂z
+
b0r
r

∂

∂r

(
r2Br

∂

∂r

(
ξφ
r

)

+ rBz
∂ξφ
∂z

)
+ b0z

∂

∂z

(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

)]
. (2.33)

Using Equation (2.29) we reduce Equations (2.32) and (2.33) to

∂u⊥
∂t

+ U

[
rBr

∂

∂r

(u⊥
rB

)
+Bz

∂

∂z

(u⊥
B

)]

=
B2

ρ

[
b0r

∂

∂z

(
P

B2

)
− b0z

∂

∂r

(
P

B2

)]

+
B2

µ0ρ

(
rb0r

∂

∂r

1

r
+ b0z

∂

∂z

)(
b0r
rB

∂(rw)

∂r
+
b0z
B

∂w

∂z

)
, (2.34)

∂uφ
∂t

+ U

(
b0r
r

∂(ruφ)

∂r
+ b0z

∂uφ
∂z

)
= − 1

ρr

∂P

∂φ

+
1

µ0ρ

(
Br
r

∂

∂r
r +Bz

∂

∂z

)(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

)
. (2.35)

For further details of the derivation of Equations (2.28) – (2.31), (2.34) and (2.35), see
Appendix A.2.

We see that Equation (2.28) is detached from the other equations and only serves
to determine ξ‖. Therefore, we do not use it below. Equations (2.29)–(2.31), (2.34),
and (2.35) constitute the system of equations for ξ⊥, ξφ, u⊥, uφ, and P .

Following the analysis in Ruderman et al. (2008), we use the magnetic flux function
ψ as an independent variable instead of r. With the aid of the chain rule we obtain the
following relation:

∂f

∂r
= rBz

∂f

∂ψ
,

∂f

∂z

∣∣∣∣
r

=
∂f

∂z

∣∣∣∣
ψ

− rBr
∂f

∂ψ
, (2.36)

where f is an arbitrary function, and the subscripts r and ψ indicate that the derivative
is taken at constant r and constant ψ, respectively. In particular, taking f = r in these
relations, we obtain

∂r

∂z
=
Br
Bz

,
∂r

∂ψ
=

1

rBz
. (2.37)

Using Equations (2.36) and (2.37) we transform Equations (2.29)–(2.31), (2.34), and
(2.35) to

P = − 1

µ0

(
rB2∂w

∂ψ
+
B2

r

∂ξφ
∂φ

−Br
∂w

∂z
+Bz

w

r

)
, (2.38)
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u⊥ =
1

B

∂w

∂t
+
Uz
rB

∂(rw)

∂z
, (2.39)

uφ =
∂ξφ
∂t

+ rUz
∂

∂z

(
ξφ
r

)
, (2.40)

∂u⊥
∂t

+ rUBz
∂

∂z

(u⊥
rB

)
=
rBBz
µ0ρ

∂

∂z

(
Bz
r2B2

∂(rw)

∂z

)

+
B2

ρ

[
b0r

∂

∂z

(
P

B2

)
− rB

∂

∂ψ

(
P

B2

)]
, (2.41)

∂uφ
∂t

+
Uz
r

∂(ruφ)

∂z
=

Bz
µ0ρr

∂

∂z

[
r2Bz

∂

∂z

(
ξφ
r

)]
− 1

ρr

∂P

∂φ
. (2.42)

The system of Equations (2.38)–(2.42) is used in the next section to derive the governing
equations for the kink oscillations of a thin expanding flux tube.

§ 2.3 Derivation of the governing equations

We now assume that the magnetic tube is thin, R(z)/L = O(ǫ), where ǫ ≪ 1 and L is
the characteristic scale of spatial variation along the tube. In the case of standing waves
L is the tube length, while in the case of propagating waves it is a typical wavelength.
In accordance with this we introduce the stretching variable along the tube defined as
Z = ǫz. The characteristic time of the problem is L/V∗, where V∗ is the characteristic
Alfvén speed. Its ratio to the Alfvénic time determined with respect to the tube radius,
R∗/V∗, where R∗ is the characteristic value of the tube radius, is of the order of ǫ−1. In
accordance with this, we also introduce the stretching time T = ǫt. The characteristic
scale of variation of perturbations in the radial direction is R∗. However, we assume
that the characteristic scale of variation of ρ, B, and U outside of the transitional layer,
since the tube is thin, i.e in the core of the tube (r < R(z)(1 − l/2)) and outside of
the tube (r > R(z)(1 + l/2)) is L. While the characteristic scale of variation of B is
L even in the transitional layer, ρ and U can vary in this layer on the scale lR∗. The
ratio of the radial and azimuthal component of the equilibrium magnetic field is of the
order of ǫ, and the same estimate is valid for the radial and azimuthal component of the
equilibrium flow. In accordance with these estimates, we introduce the scaled radial
components of the magnetic field and bulk flow, namely B̃r = ǫ−1Br and Ũr = ǫ−1Ur.

Below, we impose the restriction Bz > 0. Since the tube is thin, in the vicinity
of the magnetic tube we can approximate ψ by the first term of its expansion in the
Taylor series. Since the tube axis is a magnetic field line itself, ψ = const at r = 0.
Without loss of generality we can take ψ = 0 at r = 0. Then, it follows from Equation
(2.3) that the first term of the Taylor expansion of ψ with respect to r is proportional
to r2 and we can use the approximate expression

ψ =
1

2
r2h(z). (2.43)
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Now, it follows from Equation (2.3) that the equilibrium magnetic field is given by

Br = −r
2
h′(z), Bz = h(z), (2.44)

where the prime indicates the derivative. For the magnetic field magnitude we obtain

B =
√
B2
r +B2

z = Bz +O
(
ǫ2
)
= h(z) +O

(
ǫ2
)
. (2.45)

It follows from the magnetic flux conservation that

h(z)R2(z) = C = const. (2.46)

For the flow speed we obtain

U =
√
U2
r + U2

z = Uz +O
(
ǫ2
)
. (2.47)

It follows from symmetry that ∂U/∂r = 0 at r = 0. Then, using Taylor’s theorem, we
obtain in the core region (r < R(z)(1 − l/2))

U(r, z) = U(0, z) +
r2

2

∂2U

∂r2

∣∣∣∣
r=r∗

= U(0, z) +O
(
R2

∗/L
2
)
= U(0, z) +O

(
ǫ2
)
, (2.48)

where 0 < r∗ < R(z)(1−l/2). Outside of the tube in its vicinity (R(z)(1+l/2) < r ≪ L)
we have

U(r, z) = U(R(z)(1 + l/2), z) + r
∂U

∂r

∣∣∣∣
r=r∗

= U(0, z) +O(R∗/L) = U(0, z) +O(ǫ), (2.49)

where R(z)(1 + l/2) < r∗ ≪ L. Expressions similar to Equations (2.48) and (2.49) are
also valid for ρ outside of the transitional layer and for B everywhere not far from the
tube (r ≪ L). Hence, in the leading order approximation with respect to ǫ, we can
consider U and ρ as quantities independent of r outside of the transitional layer, while
B can be considered as a quantity independent of r everywhere in the region r ≪ L.

We now integrate Equation (2.6) over the area of the tube core cross-section, that
is over a circle of radius R(z)(1− l/2). Below, we assume that l ≪ 1 meaning that we
can neglect l in comparison with unity. Then, we obtain

R2∂ρ

∂t
+R2∂(ρUz)

∂z
+ 2(ρRUr)

∣∣
r=R

= 0. (2.50)

Since the velocity is parallel to the magnetic field, we have with the aid of Equations
(2.44) and (2.46)

Ur
U

∣∣∣∣
r=R

=
Br
B

∣∣∣∣
r=R

= −h
′R

2h
= R′. (2.51)
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Substituting this result in Equation (2.50) and recalling that Bz ≈ B, we eventually
arrive at

∂ρ

∂t
+

1

R2

∂(ρR2U)

∂z
= 0. (2.52)

This equation is valid in the core of the tube. Since B ‖ U , BR2 = const and ρ, U are
independent of r in the leading order approximation then it follows from Equations (2.6)
and (2.49) that Equation (2.52) is also valid outside the transitional layer.

Using the new stretched variables we transform Equation (2.38)–(2.42) to

P = − 1

µ0

(
rB2∂w

∂ψ
+
B2

r

∂ξφ
∂φ

− ǫ2B̃r
∂w

∂Z
+Bz

w

r

)
, (2.53)

u⊥ =
ǫ

B

∂w

∂T
+
ǫUz
rB

∂(rw)

∂Z
, (2.54)

uφ = ǫ
∂ξφ
∂T

+ ǫrUz
∂

∂Z

(
ξφ
r

)
, (2.55)

ǫ
∂u⊥
∂T

+ ǫrUBz
∂

∂Z

(u⊥
rB

)
= ǫ2

rBBz
µ0ρ

∂

∂Z

(
Bz
r2B2

∂(rw)

∂Z

)

+
B2

ρ

[
ǫ2b̃0r

∂

∂Z

(
P

B2

)
− rB

∂

∂ψ

(
P

B2

)]
, (2.56)

ǫ
∂uφ
∂T

+ ǫ
Uz
r

∂(ruφ)

∂Z
=
ǫ2Bz
µ0ρr

∂

∂Z

[
r2Bz

∂

∂Z

(
ξφ
r

)]
− 1

ρr

∂P

∂φ
, (2.57)

where b̃0r = ǫ−1b0r. Below, we consider ξ⊥ and ξφ as quantities of the order of unity.
Then, it follows from Equations (2.54) and (2.55) that u⊥ = O(ǫ) and uφ = O(ǫ).
With the aid of these estimates, we obtain from Equations (2.56) and (2.57) that
P = O(ǫ2). In accordance with these estimates, we put u⊥ = ǫũ⊥, uφ = ǫũφ, and
P = ǫ2B2Q. Further, assuming that perturbations of all quantities are proportional to
eiφ, we reduce the system of Equations (2.53)–(2.57) to

rB2∂w

∂ψ
+
iB2ξφ
r

+Bz
w

r
= O(ǫ2), (2.58)

ũ⊥ =
1

B

∂w

∂T
+
Uz
rB

∂(rw)

∂Z
, (2.59)

ũφ =
∂ξφ
∂T

+ rUz
∂

∂Z

(
ξφ
r

)
, (2.60)

∂ũ⊥
∂T

+ rUBz
∂

∂Z

(
ũ⊥
rB

)
=
rBBz
µ0ρ

∂

∂Z

(
Bz
r2B2

∂(rw)

∂Z

)

− rB3

ρ

∂Q

∂ψ
+O(ǫ2), (2.61)
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∂ũφ
∂T

+
Uz
r

∂(rũφ)

∂Z
=

Bz
µ0ρr

∂

∂Z

[
r2Bz

∂

∂Z

(
ξφ
r

)]
− iB2Q

ρr
. (2.62)

Eliminating ũ⊥, ũφ, and ξφ and only keeping the leading terms with respect to ǫ, we
now obtain the system of equations for w and Q in the leading order approximation:

Q =
1

µ0B

∂

∂Z

(
r2B

∂2W

∂ψ∂Z

)

− ρ

B2

(
r2

∂

∂T
+ U

∂

∂Z
r2
)(

∂2W

∂T∂ψ
+ U

∂2W

∂ψ∂Z

)
, (2.63)

(
∂

∂T
+ r2UB2 ∂

∂Z

1

r2B2

)(
∂W

∂T
+ U

∂W

∂Z

)

=
r2B3

µ0ρ

∂

∂Z

(
1

r2B

∂W

∂Z

)
− r2B4

ρ

∂Q

∂ψ
, (2.64)

where W = rw = rBξ⊥. Using Equation (2.43) and recalling that, outside of the
transitional layer, we can consider ρ, B, and U as quantities independent of r, we
reduce Equations (2.63) and (2.64) to

Q =
2ψ

h

∂

∂ψ

[
1

µ0

∂2W

∂Z2

− ρ

h2

(
∂

∂T
+ hU

∂

∂Z

1

h

)(
∂W

∂T
+ U

∂W

∂Z

)]
, (2.65)

(
∂

∂T
+ hU

∂

∂Z

1

h

)(
∂W

∂T
+ U

∂W

∂Z

)
=

h2

µ0ρ

∂2W

∂Z2
− 2ψh3

ρ

∂Q

∂ψ
. (2.66)

We differentiate Equation (2.66) with respect to ψ and then eliminate W from the
obtained equation and Equation (2.65), to obtain

4ψ
∂

∂ψ

(
ψ
∂Q

∂ψ

)
−Q = 0. (2.67)

The solution to this equation must be regular at ψ = 0 and decays as ψ → ∞. Hence,
we obtain

Q =

{
Qi(T,Z)ψ

1/2, 0 ≤ ψ ≤ ψi,

Qe(T,Z)ψ
−1/2, ψ ≥ ψe,

, (2.68)

where Qi(T,Z) and Qe(T,Z) are arbitrary functions. Recall that ψ = ψi and ψ = ψe,
where ψi and ψe are constants, are the equations of the boundaries of the transitional
layer. It follows from Equation (2.43) that

ψi =
C

2

(
1− l

2

)2

, ψe =
C

2

(
1 +

l

2

)2

. (2.69)
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Equations (2.66) and (2.68) imply that W = ψ1/2W̃ (T,Z) inside the tube core region.
Then, recalling the definition of W and using Equation (2.43) we conclude that ξ⊥
is independent of r inside the tube core region, which implies that, in the thin tube
approximation, the tube oscillates as a solid.

Substituting Equation (2.68) in Equation (2.66) we arrive at

(
∂

∂T
+ hUi

∂

∂Z

1

h

)(
∂Wi

∂T
+ Ui

∂Wi

∂Z

)
− h2

µ0ρi

∂2Wi

∂Z2
= −ψ

1/2
i h3Qi
ρi

, (2.70)

(
∂

∂T
+ hUe

∂

∂Z

1

h

)(
∂We

∂T
+ Ue

∂We

∂Z

)
− h2

µ0ρe

∂2We

∂Z2
=

h3Qe

ρeψ
1/2
e

, (2.71)

where Wi and We are calculated at ψ = ψi and ψ = ψe, respectively. Let us now
introduce the new variable

η =
1

R(z)
ξ⊥
∣∣
ψ=ψi

. (2.72)

Let us also introduce the jumps of this new variable and the magnetic pressure pertur-
bation across the transitional layer,

δη =
1

R(z)

(
ξ⊥
∣∣
ψ=ψe

− ξ⊥
∣∣
ψ=ψi

)
, δP = P

∣∣
ψ=ψe

− P
∣∣
ψ=ψi

. (2.73)

We have the estimates δη = O(l), δP = O(l). Then, with the aid of Equation (2.68),
we obtain

Wi = C(1− l/2)η, We = C[(1 + l/2)η + δη],

ψ
1/2
i h3Qi =

ǫ−2C

R2
P
∣∣
ψ=ψi

, ψ−1/2
e h3Qe =

ǫ−2C

R2
P
∣∣
ψ=ψe

.
(2.74)

Now, we multiply Equation (2.70) by ρi, Equation (2.71) by ρe, add the results, use
Equations (2.46), Equation (2.73), and Equation (2.74), and return to the original
non-scaled independent variables. As a result, we arrive at

ρi

(
∂

∂t
+
Ui
R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2B2

µ0

∂2η

∂z2
= L, (2.75)

L =
δP

R2
+
B2

µ0

∂2(lη + δη)

∂z2

− ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂

∂t
+ Ue

∂

∂z

)
(lη + δη). (2.76)
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§ 2.4 Summary

We now summarise Chapter 2. First of all we considered linear MHD equations. Then
by the means of perturbation method we rearranged the system in terms of parallel
and perpendicular components. Under the thin tube thin boundary approximation
we obtained governing equation for kink oscillations. This equation will be used in
following chapters to study the effect of background flow and resonant absorption on
kink oscillations of coronal loops. We notice that in the absence of the transitional
layer, l = 0, we have L = 0. Then Equation (2.75) governs the kink oscillations
of a thin expanding magnetic flux tube with a background field-aligned flow. Such
configuration will be studied in Chapter 3 in more details. However, in the presence of
transitional layer the system of Equations (2.75) and (2.76) is not closed. To close this
system we need to express jumps across transitional layer of the plasma displacement
across transitional layer divided by the tube radius, δη , and the plasma pressure across
the transitional layer, δP , in terms of the plasma displacement of the magnetic flux
tube boundary divided by its radius, η. These jumps will be obtained in case of the
absence of a background field-aligned flow in Chapter 4 and in case of the presence
of a background field-aligned flow in Chapter 5. The resulting governing equations
will be investigated analytically and numerically to study the effects of a magnetic
flux tube expansion, a background field-aligned flow and a resonant absorption on kink
oscillations of coronal loops.
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§ 3.1 Equilibrium configuration

In this chapter we assume that kink oscillation of magnetic tube has sharp boundaries.
That means that l = 0. The sketch of such equilibrium configuration is given by Figure
3.1.

r

φ

z

R(z)

ρi(t, r, z))

ρe(t, r, z)

B(r, z) U(t, r, z)

L

Figure 3.1: Equilibrium configuration of the straight expanding magnetic flux tube in
the presence of the background flow

Since transitional layer is absent under the current equilibrium configuration in this
chapter, we will use Equation (2.75), with the right-hand side of it equal to 0, since
l = 0. Hence, we rewrite Equation (2.75) as

ρi

(
∂

∂t
+
Ui
R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)
+

ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2B2

µ0

∂2η

∂z2
= 0. (3.1)
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§ 3.2 Eigenvalue problem in the presence of stationary flow: General

analysis

In this section we assume that both the density and flow velocity are independent of
time and the external plasma is at rest, Ue = 0. Since we assume that the characteristic
scale of variation of the equilibrium quantities in the radial direction is the same as
in the axial direction, we can neglect their radial variation inside the tube in the thin
tube approximation. Then, it follows from mass conservation Equation (2.6) that the
density and flow speed are related by

ρiUR
2 = const, (3.2)

where we have dropped the subscript “i” at the internal flow speed U . It follows from
the magnetic flux conservation that

BR2 = const. (3.3)

Below, we study standing waves and assume that magnetic flux tube ends are fixed at
the dense photosphere. Thus we impose the boundary conditions

η = 0 at z = ±L/2, (3.4)

where L is the tube length. We look for stationary solutions, so we take η ∝ e−iωt.
Then, Equation (3.2) reduces to

(
2B2

µ0
− ρiU

2

)
d2η

dz2
+

(
2iωρiU − ρiU

R2

d(UR2)

dz

)
dη

dz

+

(
2iωρiU

R

dR

dz
+ ω2(ρi + ρe)

)
η = 0. (3.5)

This equation, together with the boundary conditions Equation (3.4), constitute an
eigenvalue problem. The aim of this section is to study general properties of this
problem. We are interested in condition for which the tube will be stable with respect
to long kink perturbations. Thus, we assume that µ0ρiU

2 < 2B2, that is U2 < 2V 2
Ai ≡

2B2/µ0ρi, and this condition is satisfied for all z ∈ [−L/2, L/2]. Then, we make the
variable substitution

η = q exp(−iωσ(z)), σ =

∫ z

−L/2

µ0ρiU dz
′

2B2 − µ0ρiU2
. (3.6)

Now, multiplying the obtained equation by R4, we reduce Equation (3.5) to

d

dz

[
R4

(
2B2

µ0
− ρiU

2

)
dq

dz

]
+ ω2W (z)q = 0, (3.7)

where

W (z) = R4 2(ρi + ρe)B
2 − µ0ρiρeU

2

2B2 − µ0ρiU2
. (3.8)
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Equation (3.7) with the boundary conditions Equation (3.4) constitute the classical
Sturm-Liouville problem with the eigenvalue ω2. It follows from the general theory of
the Sturm-Liouville problem (e.g. Coddington and Levinson, 1955) that the eigenval-
ues are real and constitute a monotonically increasing unbounded sequence. The first
eigenvalue is the square of the fundamental frequency, and the corresponding eigenfunc-
tion has no nodes in (−L/2, L/2). All other eigenvalues are the squares of frequencies
of corresponding overtones. The eigenfunction corresponding to the nth overtone has
n− 1 nodes in (−L/2, L/2).

It is obvious that we can always take q to be real. Multiplying Equation(3.7) by q,
integrating the obtained equation, and using Equation (3.12) we obtain

ω2

∫ L/2

−L/2
W (z)q2 dz =

∫ L/2

−L/2
R4

(
2B2

µ0
− ρiU

2

)(
dq

dz

)2

dz. (3.9)

Since W (z) > 0, it follows from this equation that ω2 > 0, that all the eigenfrequencies
are real. This implies that the inequality U2 < 2V 2

Ai is a sufficient condition for stability
of the tube with respect to long kink perturbations. We emphasize that this condition
is sufficient but not necessary. On the other hand, this analysis does not prove that
the tube is stable if the condition U2 < 2V 2

Ai is satisfied. While it guaranties that the
tube is stable with respect to long kink perturbations, it can be unstable with respect
to other types of perturbations.

§ 3.3 Eigenmodes of kink oscillations of expanding coronal loops with

siphon flow

3.3.1 Unperturbed state

We consider now a loop of a semicircle shape with the variable cross-section of radius
R(z). Below, we neglect the effect of the loop curvature on kink oscillations. Hence, the
loop shape only determines the density variation along the loop. There is the plasma
flow inside the loop, while the external plasma is at rest (Ue = 0). The flow velocity
at one of the loop foot points is fixed and equal to Uf . We assume that the plasma
temperature is constant and it is the same inside the loop and in the external plasma.
Then, the plasma density in the external plasma is given by barometric formula

ρe(z) =
ρf
ζ

exp

(
− L

πH
cos

πz

L

)
, H =

kBT

mg
, (3.10)

where H is the atmospheric scale height, kB is the Boltzmann constant, T is the plasma
temperature, m the mean mass per particle (approximately equal to 0.6mp in the solar
corona with mp being the proton mass), g ≈ 274 ms−2 the gravity acceleration, ρf the
density inside the loop at the foot point, and ζ > 1 is the ratio of densities inside and
outside the loop at the foot point. The plasma density, radius of the flux tube and
the flow bulk velocity are all related by the mass conservation Equation (3.2) that now
takes the form

ρi(z)U(z)R2(z) = ρfUfR
2
f , (3.11)
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where Rf is the radius of the tube at the footpoint. For the isothermal motion the
equilibrium flow velocity is defined by the following momentum equation:

U
dU

dz
= −g

(
H

ρi

dρi
dz

− sin
πz

L

)
. (3.12)

Integrating this equation, we obtain

U2

2
+ gH ln

ρi
ρf

=
U2
f

2
− gL

π
cos

πz

L
. (3.13)

Using Equation (3.11) we transform Equation (3.13) to

χ

[
1

κ2

(
Rf
R

)4

− 1

]
+ 2 lnκ = − 2L

πH
cos

πz

L
, (3.14)

where

χ =
U2
f

gH
, κ =

ρi
ρf
. (3.15)

Now, we take R(z) the same as in Ruderman et al. (2008),

R(z) = Rfϑ

√
cosh(L/2Lc)− 1

cosh(L/2Lc)− ϑ2 + (ϑ2 − 1) cosh(z/Lc)
, (3.16)

where Lc is an arbitrary positive constant with the dimension of length and ϑ =
R(0)/Rf is the expansion factor. It is shown in Ruderman et al. (2008) that, to have
the z-component of the magnetic field positive everywhere in the region |z| ≤ L/2, the
expansion factor must satisfy the inequality ϑ < ϑm, where

ϑ2m ≈ 1.4 cosh(L/2Lc)

1 + 0.4 cosh(L/2Lc)
. (3.17)

The parameter ϑm is a monotonically increasing function of L/Lc, ϑm → 1 as L/Lc → 0,
and ϑm → 1.87 as L/Lc → ∞. Substituting Equation (3.16) in Equation (3.14) we
obtain the equation determining the dependence of κ on z,

f(κ, z) ≡ χ

(
cosh(L/2Lc)− ϑ2 + (ϑ2 − 1) cosh(z/Lc)

κϑ2[cosh(L/2Lc)− 1]

)2

− χ+ 2 lnκ+
2L

πH
cos

πz

L
= 0. (3.18)

The solution describing the plasma flow only exists when Equation (3.18), considered
as an equation determining κ, has a positive solution for any z ∈ [−L/2, L/2]. At fixed
z the function f(κ, z) takes its minimum equal to

fm(z) = 1− χ+ lnχ+
2L

πH
cos

πz

L

+ 2 ln
cosh(L/2Lc)− ϑ2 + (ϑ2 − 1) cosh(z/Lc)

ϑ2[cosh(L/2Lc)− 1]
(3.19)
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at

κ = κz ≡
√
χ
cosh(L/2Lc)− ϑ2 + (ϑ2 − 1) cosh(z/Lc)

ϑ2[cosh(L/2Lc)− 1]
. (3.20)

It is straightforward to see that κz > 0 and κz =
√
χ when z = ±L/2. The condition

that Equation (3.18) has a positive solution reduces to fm(z) < 0 for z ∈ [−L/2, L/2].
It is easy to show that the last term on the left-hand side of Equation (3.19) is negative
when ϑ > 1 and it is zero when ϑ = 1. This implies that the condition that fm(z) < 0
for z ∈ [−L/2, L/2] is satisfied for any ϑ > 1 if it is satisfied for ϑ = 1. When ϑ = 1
this condition reduces to (see Ruderman, 2010)

L

πH
<
LM
πH

=
1

2
(χ− lnχ− 1) . (3.21)

The dependence of LM/πH on χ is shown in Figure 3.2. Below, we assume that the
condition Equation (3.21) is satisfied.

Figure 3.2: The dependence of the maximum possible ratio of the coronal loop height
to the atmospheric scale height, LM/πH, on χ.

At any fixed z function f(κ, z) tends to infinity as either κ → 0 or κ → ∞. It
monotonically decreases for κ ∈ (0, κz), monotonically increases for κ ∈ (κz,∞), and
f(κz, z) < 0. This implies that Equation (3.18) defines two functions of z: κ1(z) < κz
and κ2(z) > κz . In the solar atmosphere g ≈ 274 m s−2. The observed flow velocities
in coronal loops do not exceed 100 km s−1 (see Schrijver, 2001), so that we can take
Uf . 100 km s−1. Then, taking H ∼ 60 Mm, we obtain χ . 0.61 < 1. Since
κ(−L/2) = 1 and κz =

√
χ when z = ±L/2, this result implies that we have to choose

the solution κ2(z). In what follows we will drop the subscript 2.
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Figure 3.3: The dependence of the density κ on the length along the loop z at χ =
0.25χM . The upper, middle, and lower panels correspond to L/πH = 0.25, L/πH =
0.5, and L/πH = 1. In all panels the solid, dashed, and dotted lines correspond to
ϑ = 1, ϑ = 1.25, and ϑ = 1.5.
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Figure 3.4: The dependence of the density κ on the length along the loop z at χ =
0.5χM . The upper, middle, and lower panels correspond to L/πH = 0.25, L/πH = 0.5,
and L/πH = 1. In all panels the solid, dashed, and dotted lines correspond to ϑ = 1,
ϑ = 1.25, and ϑ = 1.5.
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Figure 3.5: The dependence of the density κ on the length along the loop z at χ = χM .
The upper, middle, and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and
L/πH = 1. In all panels the solid, dashed, and dotted lines correspond to ϑ = 1,
ϑ = 1.25, and ϑ = 1.5.
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Below, we assume that χ < 1. Then, we can see from Figure 3.2 that, when
L/πH is fixed, there is a value of χ, denoted as χM , such that the inequality Equation
(3.21) is only satisfied when χ < χM . In particular, χM ≈ 0.301 when L/πH = 0.25,
χM ≈ 0.158 when L/πH = 0.5, and χM ≈ 0.0524 when L/πH = 1. These estimates
yield the maximum values of Uf equal to 87 km/s, 63 km/s, and 36.6 km/s, respectively.
Note that κ(0) =

√
χM when ϑ = 1 and χ = χM .

In our calculations we have taken Lc = L/6, which is the same as that used by
Ruderman et al. (2008) (note that these authors considered the loop length equal to
2L, while it is L in the present study).

In Figures 3.3 – 3.5, we display the dependence of κ on z for various values of χ, ϑ,
and L/πH.

We can see that the effect of the siphon flow on the density inside tube, ρi =
ρfκ, decreases with the increase of the relative loop height, L/πH, and with the loop
expansion ϑ. We also can see that the increase of flow speed amplifies the difference of
density profiles inside the tube for various expansion ϑ.

3.3.2 The effect of flow on the eigenmode frequencies

We now study the effect of bulk flows on the frequencies of eigenmodes of kink os-
cillations using the model described in the previous subsection. To determine the
eigenfrequencies, we solve Equations (3.5) with the boundary conditions Equation (3.4)
numerically. In addition to the dimensionless parameters ϑ, χ, and L/πH, and function
κ(z) we introduce the dimensionless quantities

s =
z

L
, MA =

Uf
√
µ0ρf

Bf
, Ω =

ω

ωf
,

Λ =
R(s)

Rf
, ρ̂e =

ζρe
ρf

≡ exp

(
− L

πH
cos(πs)

)
,

(3.22)

where Bf is the magnetic field magnitude at the footpoint, and ωf is the fundamental
frequency of oscillations of a homogeneous tube with the internal density ρf , external
density ρf/ζ, and constant cross-section with radius equal to Rf , defined by

ωf =
πCf
L

, C2
f =

2ζB2
f

µ0ρf (1 + ζ)
. (3.23)

Now, using Equation (3.11) and the relation BR2 = BfR
2
f we rewrite Equation (3.7)

and the boundary condition Equation (3.12) in the dimensionless form as

d

ds

[(
2− M2

A

κ

)
dq

ds

]
+
π2Λ4Ω2

ζ + 1

2κ2ζ − (M2
A − 2)ρ̂e

2κ−M2
A

q = 0, (3.24)

q = 0 at s = ±1/2. (3.25)
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Figure 3.6: The dependence of scaled frequency Ω on χ at ϑ = 1. The upper, middle,
and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and L/πH = 1. In all
panels the solid, dashed, and dotted lines correspond to gH/C2

f = 0.02, 0.03, and 0.05,
respectively.
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Figure 3.7: The dependence of scaled frequency Ω on χ at ϑ = 1.25. The upper,
middle, and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and L/πH = 1. In
all panels the solid, dashed, and dotted lines correspond to gH/C2

f = 0.02, 0.03, and
0.05, respectively.
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Figure 3.8: The dependence of scaled frequency Ω on χ at ϑ = 1.5. The upper, middle,
and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and L/πH = 1. In all
panels the solid, dashed, and dotted lines correspond to gH/C2

f = 0.02, 0.03, and 0.05,
respectively.
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Figure 3.9: The dependence of the period ratio, P1/P2, on χ at ϑ = 1. The upper,
middle, and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and L/πH = 1.
In all panels the solid, dashed, and dotted lines correspond to gH/C2

f = 0.02, 0.03,
and 0.05, respectively. Note that in the upper and middle, and lower panels, the three
curves are practically indistinguishable for realistic values of gH/C2

f .
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Figure 3.10: The dependence of the period ratio, P1/P2, on χ at ϑ = 1.25. The upper,
middle, and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and L/πH = 1.
In all panels the solid, dashed, and dotted lines correspond to gH/C2

f = 0.02, 0.03,
and 0.05, respectively. Note that in the upper and middle, and lower panels, the three
curves are practically indistinguishable for realistic values of gH/C2

f .
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Figure 3.11: The dependence of the period ratio, P1/P2, on χ at ϑ = 1.5. The upper,
middle, and lower panels correspond to L/πH = 0.25, L/πH = 0.5, and L/πH = 1. In
all panels the solid, dashed, and dotted lines correspond to gH/C2

f = 0.02, 0.03, and
0.05, respectively.
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The eigenvalue Ω of the boundary value problem defined by Equations (3.24) and
(3.25) depends on five dimensionless parameters: ζ, L/πH, ϑ, χ, and MA. We aim to
study the dependence of the kink oscillation eigenfrequencies on the magnitude Uf of
the siphon flow. Then it is not convenient to use these five dimensionless parameters
because both χ and M2

A are proportional to U2
f . Therefore we use the dimensionless

parameter gH/C2
f that was also introduced by Ruderman (2010). Note that MA is

expressed in terms of other parameters by

M2
A =

2ζχ

ζ + 1

gH

C2
f

. (3.26)

Below, we take ζ = 3 same as proposed by Ruderman (2010). Ruderman et al. (2008)
showed, employing the observations made by Verwichte et al. (2004) and Van Doors-
selaere et al. (2007), that scale height may vary between 38 and 109 Mm. If we take
H = 60 Mm, then, for realistic values of Cf , say, for Cf = 600 km s−1, we obtain
gH/C2

f = 0.05. In Figures 3.6 – 3.8 the dependence of Ω on χ is shown for the fun-

damental harmonic for various values of L/πH, ϑ, and gH/C2
f . We also calculated

the dependence of the ratio of periods of the fundamental harmonic and first overtone
P1/P2, on χ for various values of L/πH, ϑ, and gH/C2

f . This dependence is shown in
Figures 3.9 – 3.11. After analysing the numerical results we first of all note that the
effect of realistic flow values on the fundamental frequency of kink oscillations is fairly
weak. When the flow velocity increases from zero to its maximum value the fundamen-
tal frequency varies by less than 10%. Another interesting property is that, depending
on the other parameters, the flow can result either in the increase or decrease of the
fundamental frequency.

The effect of background flow on the ratio of frequencies of the first overtone and
fundamental mode also only weakly depends on the magnitude of the flow velocity.
Again, depending on the other parameters, the flow can result either in the increase or
decrease of this ratio frequency. The frequency ratio is less than two at Figure 3.9 and
lower panel of Figure 3.10, and exceeds two on five other panels of Figures 3.10 and
3.11. In the absence of flow this behaviour is in a complete agreement with the theorem
proved by Ruderman et al. (2016). Indeed, it can be shown that, when χ = 0, the kink
speed increases from the foot point to the loop apex for the parameters corresponding
to the Figure 3.9 and the lower panel of Figure 3.10, and decreases for the parameters
corresponding to five other panels of Figures 3.10 and 3.11 .

§ 3.4 Kink oscillations of coronal loops with slowly varying density

The analysis in this section is motivated by observations of kink oscillation of coronal
loops (e.g. Aschwanden and Terradas, 2008; Aschwanden and Schrijver, 2011). Be-
low we consider kink oscillations of a magnetic tube with slowly varying density. We
assume that magnetic flux tube is fixed at the dense photosphere, which means that
the boundary condition Equation (3.5) is satisfied. In addition, we also assume that
the characteristic time of density variation, tch, is much greater than the character-
istic time of oscillations. We note that this is not very restrictive assumption. It is
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usually believed that the characteristic time of oscillations is the oscillation period.
However, in fact it is 1/ω, where ω is the oscillation frequency. This time is about 6
times smaller than the oscillation period. Hence, the condition that tch should be much
larger than the characteristic time of oscillations is satisfied even when tch is of the
order of oscillation period.

3.4.1 Derivation of adiabatic invariant

We denote the ratio of tch to the characteristic time of oscillations as ν−1, where ν ≪ 1.
Hence, the characteristic time of oscillations is νtch. On the other hand, it is also of
the order of the loop length divided by the characteristic kink speed, which is equal to
L/(B/

√
µ0ρch), where ρch is the characteristic density. As a result, we have

B ∼ ν−1√µ0ρch
L

tch
. (3.27)

Following this estimate we introduce the scaled magnetic field B̃ = νB. Then we
rewrite Equation (3.1) as

ρi

(
∂

∂t
+
Ui
R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2ν−2B̃2

µ0

∂2η

∂z2
= 0. (3.28)

Now, we use the Wentzel-Kramer-Brillouin (WKB) method (e.g. (Bender and Orszag,
1978)) and look for solution to this equation in the form

η = S(t, z) exp[ν−1Θ(t)]. (3.29)

Then we expand S in the series

S = S0 + νS1 + . . . (3.30)

We substitute Equation (3.29) in Equation (3.28) (for more details see Appendix B).
Then, using equation (3.30) and collecting terms of order ν−2, we obtain

∂2S0
∂z2

+
Ω2

C̃2
k

S0 = 0, (3.31)

where

Ω =
dΘ

t
, C̃2

k =
2B̃2

µ0(ρi + ρe)
. (3.32)

Finally, taking into account boundary condition Equation (3.4), yields

S0 = 0 at z = ±L/2. (3.33)
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As a result, Equations (3.31) and (3.33) constitute the classical Sturm-Liouville prob-
lem. An approximation of such order is called the approximation of geometrical optics
(e.g. Bender and Orszag (1978)). The Sturm-Liouville problem Equations (3.31) and
(3.33) coincides with a problem obtained by Dymova and Ruderman (2005) to describe
oscillations of magnetic flux tubes whose density varies along the tube, and by Rud-
erman et al. (2008) to describe kink oscillation of magnetic tubes whose density and
cross-section radius vary along the tube. Below, we assume that Ω2 is an eigenvalue
and S0 the corresponding eigenfunction. In accordance with the general theory (e.g.
Coddington and Levinson (1955)), Ω2 is real. It is easy to prove that Ω2 > 0 by multi-
plying equation (3.31) by S0, then integrating by parts with respect to z from −L/2 to
L/2 and using the boundary condition (3.33). Obviously, we can always assume that
S0 is real function.

Now, we collect terms of the order ν−1 to obtain

∂2S1
∂z2

+
Ω2

C̃2
k

S1 =
2iΩ

C̃2
k

(
∂S0
∂t

+
S0
2Ω

∂Ω

∂t
+
ρiUi + ρeUe
R(ρi + ρe)

∂RS0
∂z

)
. (3.34)

This order of approximation is the approximation of the physical optics. S1 must satisfy
the boundary conditions

S1 = 0 z = ±L/2. (3.35)

The homogeneous counterpart of the boundary value problem constituted by Equation
(3.34) and the boundary condition Equation (3.35) has non-trivial solution S1 = S0.
This implies that the boundary value problem determining S1 has a solution only if
the right-hand side of Equation (3.34) satisfies the compatibility condition, which is
the condition that it should be orthogonal to S0. To obtain this condition we multiply
Equation (3.34) by S0 and then integrate with respect to z from −L/2 to L/2. After
some algebra (for more details please see Appendix C) we obtain

∫ L/2

−L/2

1

C̃2
k

∂ΩS2
0

∂t
dz = −µ0Ω

2

∫ L/2

−L/2

ρiUi + ρeUe

R2B̃2

∂(S2
0R

2)

∂z
dz. (3.36)

Using integration by parts, Equation (2.52) and the relation R2B̃ = const, yields

∫ L/2

−L/2

ρiUi + ρeUe

R2B̃2

∂S2
0R

2

∂z
dz =

∫ L/2

−L/2

S2
0

B̃2

∂(ρi + ρe)

∂t
dz. (3.37)

Substituting Equation (3.37) in Equation (3.36) and using Equation (3.32) we eventu-
ally obtain

ω

∫ L/2

−L/2

S2
0

C2
k

dz = const, (3.38)

where

ω = ν−1Ω, C2
k = ν−2C̃2

k =
2B2

µ0(ρi + ρe)
. (3.39)
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The left-hand side of Equation (3.38) is an adiabatic invariant. Equation (3.38) states
that this invariant is conserved. It is worth noting that the adiabatic invariant is the
same as that obtained by Ruderman (2011b) for oscillations of magnetic tubes with
constant cross-section radius. Hence, the tube expansion only affects the time evolution
of kink oscillations of magnetic flux tubes with the varying density through Ck and S0
that both depend on R(z).

3.4.2 Effect of cooling on the kink oscillations of coronal magnetic

loops

In this subsection, we consider the kink oscillations of cooling coronal loops. The main
cause of the loop cooling is radiation. The coronal loop is an object, which is assumed
to consist of optically thin confined plasma. Then, its intensity is proportional to the
plasma density squared. This implies that the energy deposition that is sufficient to
cover the energy losses in the rarefied plasma outside the loop may be too small to cover
the energy losses inside the loop. Hence, it seems to be viable assumption that, while
the plasma inside the loop is cooling, the temperature of the plasma outside the loop
remains constant. Following Aschwanden and Terradas (2008) and Morton and Erdélyi
(2010), we approximate the temperature evolution inside the loop by an exponentially
decaying function, e.g.,

T (t) = T0 exp(−t/tcool), (3.40)

where we have assumed that the cooling starts at the initial time t = 0, implying that
the temperature of external plasma remains equal to T0. Below, we again consider the
loop with a half-circle shape and neglect the effect of the loop curvature. Hence, the
loop shape only determines the density variation along the loop. In the external plasma
it is given by the barometric formulae

ρe(z) =
ρf
ζ

exp

(
− L

πH0
cos

πz

L

)
, (3.41)

where ζ is ratio of the densities inside and outside the loop at t = 0,

H0 =
kbT0
mg

, (3.42)

The cooling causes the plasma flow inside the loop. This flow affects the plasma density
meaning that it is not described by the barometric formulae. However, Ruderman
(2011b) showed that for typical coronal conditions and observed cooling times the
effect of this flow on the plasma is fairly weak. Hence, the barometric formula provides
a sufficiently good approximation for the plasma density inside the loop. Thus we have

ρi(z) = ρf exp

(
− L

πH(t)
cos

πz

L

)
, (3.43)

where

H(t) =
kBT (t)

mg
. (3.44)
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To describe the cross-section radius variation along the loop follow Ruderman et al.
(2008), Equation (3.16). Here, analysis is analogous to section 3.3, and holds for ϑ.
Recalling that loop expansion factor ϑ typically does not exceed 1.5. By properly
choosing L/Lc, we can cover the entire range of expansion factor variations. Similarly
to section 3.3, we introduce dimensionless variables and parameters

Z =
2z

L
, τ =

t

tcool
, ̟ =

ωL

Cf
, κ =

L

πH0
. (3.45)

Then, using Equations (3.22) and (3.23) Equation (3.31) reduces to

∂2S0
∂Z2

+
̟2Λ4(Z)S0
4(ζ + 1)

[ζ exp (−κeτ cos(πZ/2)) + exp (−κ cos(πZ/2))] = 0. (3.46)

When deriving this equation we dropped the prime at S0 and used the relation BΛ2 =
Bf . The function Λ(Z) is defined by Equations (3.16) and (3.22). The eigenfunction
corresponding to the fundamental mode is even, while the eigenfunction corresponding
to first overtone is odd. This enables us to solve Equation (3.46) not on the interval
[−1, 1], but on the interval [0, 1]. The solution corresponding to the fundamental mode
must satisfy the boundary condition.

∂S0
∂Z

= 0 at Z = 0, S0 = 0 at Z = 1, (3.47)

and the solution corresponding to first overtone must satisfy the boundary conditions

S0 = 0 at Z = 0, 1. (3.48)

Since the eigenfunction S0 is determined with the accuracy up to the multiplication
by an arbitrary function τ , we can always fix its value at one particular point. Let
X(τ, Z) be an eigenfunction corresponding to the fundamental mode that satisfies the
condition X(τ, 0) = 1. Then the general solution corresponding to the fundamental
mode is S0(τ, Z) = A(τ)X(τ, Z), where A(τ) is the oscillation amplitude at Z = 0.
Then Equation (3.38) reduces to

̟A2

∫ 1

−1
X2Λ4[ζ exp(−κeτ cos(πZ/2)) + exp(−κ cos(πZ/2))]dZ = const. (3.49)

Equations (3.46) and (3.49) have been solved numerically for ζ = 3, similarly to Ruder-
man (2011b), and Lc = L/6 enables to cover the full range of expansion factors. In this
case ϑ ≈ 1.67. In Figures 3.12 – 3.14 the dependence of the dimensionless fundamental
mode frequency, the ratio of frequencies of the first overtone and fundamental mode,
and oscillation amplitude at Z = 0 on τ are shown for various values of κ and ϑ.
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Figure 3.12: The dependence of the dimensionless fundamental mode frequency on
dimensionless time τ . The upper, middle, and lower panel correspond to values of
relative lengths κ = 0.5, κ = 1, and κ = 2. The dotted, solid, dashed, and dashed
dotted lines correspond to expansion factors ϑ = 1, 1.15, 1.3 and 1.5, respectively.
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Figure 3.13: The dependence of the ratio frequencies of the first overtone and funda-
mental mode on dimensionless time τ . The upper, middle, and lower panel correspond
to values of relative loop length κ = 0.5, κ = 1, and κ = 2. The dotted, solid, dashed,
and dashed dotted lines correspond to expansion factors ϑ = 1, 1.15, 1.3 and 1.5,
respectively.
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Figure 3.14: The dependence of the dimensionless amplitude of the fundamental mode
at Z = 0 on dimensionless time τ . The upper, middle, and lower panel correspond to
values of relative loop length κ = 0.5, κ = 1, and κ = 2. The dotted, solid, dashed,
and dashed dotted lines correspond to expansion factors ϑ = 1, 1.15, 1.3 and 1.5,
respectively.
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We conclude from Figure 3.12 that the oscillation frequency grows for all parameters
of the expansion factor and for all values of the loop. A similar result was obtained
by Morton and Erdélyi (2009), Morton and Erdélyi (2010) and Ruderman (2011b) for
non-expanding magnetic loops. This result has a simple physical explanation. When
the loop is cooling the plasma starts to flow with the velocity directed to the loop
footpoints. The plasma is evacuated from the loop meaning that the mass of the loop
decreases. At the same time the restoring force created by magnetic tension remains
the same. As a result the oscillation frequency increases.

Figure 3.13 shows that the ratio frequencies of the first overtone and fundamental
harmonic decreases with time. Again analogous results were obtained by Morton and
Erdélyi (2009), Morton and Erdélyi (2010) and Ruderman (2011b) for non-expanding
loops. As a result of cooling, the plasma density at the loop decreases everywhere
except for the loop footpoints. In particular, the density decreases at the loop apex.
Therefore, the kink speed at the loop apex increases, while it remains the same at
the loop footpoints. Ruderman et al. (2016) showed that the frequency ratio is a
monotonically decreasing function of the ratio of the kink speed at the loop apex and
footpoints.

The most interesting result of this section is shown in Figure 3.14. We see that
cooling enhances the oscillation amplitude. Previously, a similar result was obtained
by Ruderman (2011b) for non-expanding loops. We also see that the loop expansion
makes the oscillation amplification stronger. This effect becomes more pronounced
when the loop height increases. However, even for loops whose height is equal to two
times the initial atmospheric scale height, the effect is fairly weak.

§ 3.5 Summary

We now summarise Chapter 3. First of all we assumed that transitional layer is absent
and considered the density and flow velocity independent of time. We also assumed
that footpoints are fixed. Then by using the model for coronal loop cross-section
expansion proposed by Ruderman et al. (2008), we obtained equation describing kink
oscillation. We then studied numerically the dependence of density along the loop for
various expansion factors. We found out that, for typical parameters of coronal loops,
the increase in the relative loop height and the loop expansion causes the decrease in
density inside the tube. We then numerically studied the effect of background flow
on kink oscillation. We found out that the expansion effect on kink oscillations of
coronal loops is fairly weak, the difference for frequency evolution of non-expanding
tube to the frequency evolution of expanding cases is less than 10%. We also found
out that the presence of relatively slow bulk flow with flow speed less than double
of Alfvén has negligible effect on dimensionless fundamental frequency and ratio of
first overtone period on fundamental period. This result is particularly important for
coronal seismology as it allows to neglect the presence of a relatively slow background
flow even in an expanding coronal loop.

In the next subsection we considered the case of slowly varying density. We assumed
that there is no heat transfer between the coronal loop and surroundings. By the means
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of WKB approximation we obtained the equation describing kink oscillations. From
that equation we obtained the adiabatic invariant. We numerically studied the effect
of cooling on kink oscillation. We concluded that oscillation frequency grows with time
for all parameters of the expansion factor and for all values of the relative loop length.
We also noticed that the increase in expansion factor decreases both the dimensionless
fundamental frequency as well as the ratio of the first overtone on the fundamental
mode. In addition, we found out that the ratio of the first overtone on fundamental
mode decreases with time for all the parameters of the expansion factor and for all
values of the relative loop length. Finally, we conclude that the expansion factor effect
on the amplitude is fairly weak, even for high values of the relative loop length. These
results have a particularly high value for the coronal seismology as it presents the
significant importance of expansion factor on the evolution of frequency with time
for cooling coronal loops. In addition to that by obtaining the values of observable
expansion factor, frequency profile and length of a coronal loop these results create a
possibility to estimate the kink speed at the footpoints of the loop.
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§ 4.1 Equilibrium configuration and governing equations

r

φ

z

R(z)

ρt(t, r, z)

ρi(t, r, z))

ρe(t, r, z)

B(r, z)

lR(z)

L

Figure 4.1: Equilibrium configuration of the straight expanding two layered magnetic
flux tube

In this chapter, we consider an amended version of model of the one proposed in Chapter
2. Here, we assume that there is no background flow U . Thus, we consider coronal
loops as straight, thin, and expanding magnetic tubes with a circular cross-section.
The tube consists of a core and a transition region where the density decreases from
a higher value inside the tube to the lower value representing the surrounding plasma.
Figure 4.1 shows such an equilibrium configuration, in cylindrical coordinates r, φ, z
with the z-axis coinciding with the tube axis. We recall that the plasma density is
defined by Equation 2.1 in Chapter 2.

Once again, assume that the boundaries of the transitional layer are magnetic sur-
faces. We use the cold plasma approximation and thin tube and thin boundary (TTTB)
approximation and assume that R(z) ≪ L and l ≪ 1, where L is the tube length. This
assumption slightly differs to that in Chapter 2 as L may be also wavelength for prop-
agating waves. We also assume that the characteristic scale of variation of ρi(r, z),
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ρe(r, z), and B in the radial direction is R∗. On the other hand, the characteristic
scale of variation of ρt(r, z) in the radial direction is lR∗, where R∗ is a typical value
of R(z). Below, we use the notation R∗/L = ǫ ≪ 0. The tube ends are assumed to
be frozen in the dense plasma at z = ±L/2. In Chaper 2 we derived the system of
two equations that describe kink oscillations of expanding magnetic flux tubes in the
presence of siphon flow and the equilibrium quantities varying in time using the cold
plasma and TTTB approximation. In the case of a static equilibrium, i.e. when there is
no background flow and the equilibrium quantities are time-independent, these system
of equations reduces to

∂2η

∂t2
−C2

k

∂2η

∂z2
= L̃, (4.1)

L̃ =
1

ρi + ρe

(
δP

R2
+
B2

µ0

∂2(lη + δη)

∂z2
− ρe

∂2(lη + δη)

∂t2

)
. (4.2)

We recall that in these equations η = ξ⊥/R(z), where ξ⊥ is the plasma displacement
in the direction perpendicular to B and in the plane φ = const, P is the perturbation
of the magnetic pressure, µ0 is magnetic permeability of free space, Ck , δP and δη are
defined by Equations (3.39) and (2.73) respectively where ψ = ψe and ψ = ψi are the
equations of the external and internal boundaries of the transitional layer, respectively.

It follows from analysis in Chapter 2 that, in the thin tube approximation, the
dependence of B, ρi, and ρe on r is neglected, and these quantities are only considered
as functions of z. In Equation (4.1) η is calculated in the core of the tube where it
is independent of r in the thin tube approximation. It follows from the magnetic flux
conservation that B and R are related by

BR2 = const. (4.3)

The system of Equations (4.1) and (4.2) is not closed. To close it we need to express
δP and δη in terms of η. This will be done in the next section.

§ 4.2 Derivation of expressions for δP and δη

4.2.1 Transformation of linearised MHD equations

To derive the expressions for δP and δη we solve the linearised MHD equations using the
approximation of low beta. To remove the singularity at the Alfvén resonant position
we take viscosity into account. In the solar corona, viscosity is strongly anisotropic.
The full Braginkii’s expression for the viscosity tensor contains five terms (Braginskii,
1965). For typical coronal conditions the coefficient at the first term describing the
compressional viscosity is at least ten orders of magnitude larger than the coefficients
at the fourth and fifth term describing the shear viscosity (see e.g. Ofman et al.
(1994)). However in weakly dissipative plasmas like the coronal plasma the viscosity is
only important in the vicinity of the ideal resonant position. In this vicinity only the
shear viscosity works (e.g. Ofman et al., 1994; Erdélyi and Goossens, 1995). Hence,
we can only keep the terms describing shear viscosity. As a result, the term describing
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the viscous force on the right-hand side of the momentum equation is given by ρι∇2u,
where ι is the coefficient of shear viscosity and u = (ur, uφ, uz) is the velocity. Then
the linearised set of MHD equations in the cold plasma approximation is

∂ρ

∂t
+∇ · (ρu) = 0, (4.4)

ρ
∂u

∂t
=

1

µ0
(∇× b)×B + ρι∇2u, (4.5)

∂b

∂t
= ∇× (u×B). (4.6)

Similarly to Chapter 2, we introduce the plasma displacement ξ = (ξr, ξφ, ξz) related
to the velocity by u = ∂ξ/∂t. Below, we again use the components of the velocity and
plasma displacement that are perpendicular to the equilibrium magnetic field and are
in the φ = const plane,

ξ⊥ =
ξrBz − ξzBr

B
, u⊥ =

urBz − uzBr
B

. (4.7)

We also use the magnetic pressure perturbation P = b ·B/µ0.
Below, we need the expression for the viscous force in terms of ξ⊥ and ξφ. We use

the identity (Korn and Korn, 1961)

∇2u = ∇(∇ · u)−∇×∇× u. (4.8)

Applying the expressions for the gradient, divergence, and curl in cylindrical coordinates
and taking into account that in the cold plasma approximation the velocity perturbation
is orthogonal to the equilibrium magnetic field, ξrBr + ξzBz = 0, we obtain

(
∇2u

)
r
=

∂

∂r

1

r

∂

∂r

(
rBzu⊥
B

)
+

∂2

∂z2

(
Bzu⊥
B

)
+

Bz
r2B

∂2u⊥
∂φ2

− 2

r2
∂uφ
∂φ

, (4.9)

(
∇2u

)
φ
=

∂

∂r

1

r

∂(ruφ)

∂r
+

1

r2
∂2uφ
∂φ2

+
∂2uφ
∂z2

+
2Bz
r2B

∂u⊥
∂φ

, (4.10)

(
∇2u

)
z
= −1

r

∂

∂r
r
∂

∂r

(
Bru⊥
B

)
− Br
r2B

∂2u⊥
∂φ2

− ∂2

∂z2

(
Bru⊥
B

)
. (4.11)

Now, we note that in the thin tube approximation Br = O(ǫB), Bz = B[1 + O(ǫ)],
and the derivative with respect to z is of the order of ǫ times the derivative either with
respect to r or φ. In addition, viscosity is only important in the vicinity of the ideal
resonant position where the gradients of perturbations strongly dominate the gradients
of equilibrium quantities (see e.g. Goossens et al. (2011)), which implies that the
second derivatives with respect to r and φ of u⊥ and uφ strongly dominate all other
terms in Equations (4.9)–(4.11). Then, using the relation between u and ξ we obtain
the approximate expressions

(
∇2u

)
⊥
=

∂

∂t

(
∂2ξ⊥
∂r2

+
1

r2
∂2ξ⊥
∂φ2

)
, (4.12)
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(
∇2u

)
φ
=

∂

∂t

(
∂2ξφ
∂r2

+
1

r2
∂2ξφ
∂φ2

)
. (4.13)

We have already derived the system of equations describing the kink oscillations in a
thin non-stationary expanding tube in the approximation of ideal MHD in the presence
of flow in Chapter 2 (see Equations (2.73), (2.75) and (2.76)). To obtain the system of
equations describing the kink oscillations in thin static expanding tube, assuming the
approximation of a viscous MHD, we take all equilibrium quantities in equations derived
in Chapter 2 independent of time, the background velocity equal to zero, eliminate the
velocity perturbation, and add the terms describing the viscosity force in the momentum
equation. Then, we obtain

P = − 1

µ0

(
Bz
r

∂(rw)

∂r
+
B2

r

∂ξφ
∂φ

−Br
∂w

∂z

)
, (4.14)

∂2w

∂t2
=
B2

ρ

[
Br

∂

∂z

(
P

B2

)
−Bz

∂

∂r

(
P

B2

)]
+

B

µ0ρ

(
rBr

∂

∂r

1

r
+Bz

∂

∂z

)

(
Br
rB

∂(rw)

∂r
+
Bz
B

∂w

∂z

)
+ ι

∂

∂t

(
∂2w

∂r2
+

1

r2
∂2w

∂φ2

)
, (4.15)

∂2ξφ
∂t2

+
1

rρ

∂P

∂φ
=

1

µ0ρ

(
Br
r

∂

∂r
r +Bz

∂

∂z

)(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

)

+ ι
∂

∂t

(
∂2ξφ
∂r2

+
1

r2
∂2ξφ
∂φ2

)
. (4.16)

We recall that w = Bξ⊥. We also recall that, since ∇ · B = 0, we can express B in
terms of the flux function ψ. Similar to Chapter 2 we use ψ as an independent variable
instead of r. Then, using the following relations obtained in Chapter 2

∂f

∂r
= rBz

∂f

∂ψ
,

∂f

∂z

∣∣∣∣
r

=
∂f

∂z

∣∣∣∣
ψ

− rBr
∂f

∂ψ
, (4.17)

where f is any function, and the subscripts r and ψ indicate that a derivative is taken
at constant r and ψ, respectively, and assuming that P , ξ⊥, and ξφ are proportional to
exp(iφ− iωt), we reduce Equations (4.14)–(4.16) to

P = − 1

µ0

(
rB2∂w

∂ψ
+ iB2 ξφ

r
−Br

∂w

∂z
+Bz

w

r

)
, (4.18)

ω2w = −rB
2Bz
µ0ρ

∂

∂z

(
Bz
r2B2

∂(rw)

∂z

)
− B2

ρ

[
Br

∂

∂z

(
P

B2

)

− rB2 ∂

∂ψ

(
P

B2

)]
+ iιω

(
r2B2

z

∂2w

∂ψ2
− w

r2

)
, (4.19)
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ω2ξφ =
iP

ρr
− Bz
µ0ρr

∂

∂z

[
r2Bz

∂

∂z

(
ξφ
r

)]
+ iιω

(
r2B2

z

∂2ξφ
∂ψ2

− ξφ
r2

)
. (4.20)

We now consider the terms on the right-hand sides of Equations (4.19) and (4.20)
that are proportional to ι. The second term in the brackets is of the order of ξφ/R

2
∗

while the first term is of the order of ξφ divided by the characteristic spatial scale in the
vicinity of the ideal resonant position squared. Since this characteristic spatial scale is
much smaller than R∗ we can neglect the second term in these brackets. Taking into
account that the characteristic scale in the z-direction is R∗ = ǫL similarly to Chapter
2 we introduce the stretching variable Z = ǫz. We also introduce the scaled frequency
Ω = ǫ−1ω, scaled magnetic pressure perturbation Q = ǫ−2P/B2, and scaled viscosity
ῑ = ǫ−1ι. Then we use the scaled variables to transform Equations (4.18)–(4.20) and
only keep leading terms with respect to ǫ. As a result we obtain

ξφ = ir2
∂w

∂ψ
+
iw

B
, (4.21)

Ω2w =
rB4

ρ

∂Q

∂ψ
− rB3

µ0ρ

∂

∂Z

(
1

r2B

∂(rw)

∂Z

)
+ iῑΩr2B2∂

2w

∂ψ2
, (4.22)

Ω2ξφ =
iB2Q

ρr
− B

µ0ρr

∂

∂Z

[
r2B

∂

∂Z

(
ξφ
r

)]
+ iῑΩr2B2∂

2ξφ
∂ψ2

. (4.23)

Substituting r for f in the first relation in Equation (4.17) we obtain

rB
∂r

∂ψ
= 1, (4.24)

where we substituted B for Bz. Using this result we transform Equation (4.21) to

ξφ = ir
∂(rw)

∂ψ
. (4.25)

4.2.2 Solution outside the dissipative layer

Since the Alfvén speed in the core region is almost independent of the radial direction,
the magnetic field lines frozen in the dense plasma at z = ±L/2 oscillate with the
same frequency. The same is true for the magnetic field lines outside the magnetic
tube. However there is strong density variation in the transition layer, which implies
that there is also strong variation of the Alvén speed. This means that the oscillation
frequency of magnetic field lines in the transitional layer depends on ψ. If this oscillation
frequency coincides with the frequency of a kink oscillation at a particular magnetic
surface then at this surface there is resonance between the global kink oscillation and
the local Alfvén oscillations of magnetic field lines. In a weakly dissipative plasma
there are large gradients of perturbations in the vicinity of the resonant surface, and
the size of this vicinity is much smaller than lR∗. Dissipation is only important in a thin
dissipative layer surrounding the resonant position. This observation suggests a method
of solving problems involving resonant interaction of MHD waves. In this method the
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wave motion is described by the dissipative MHD equations in the dissipative layer
and by the ideal MHD equations at the two sides of this layer. Then the solutions are
matched in the two overlap regions.

We calculate δP and δη in the leading order approximation with respect to l. In
accordance with this, we substitute Qi for Q in Equation (4.23), where Qi is the value
of Q calculated at ψ = ψi. Now substituting Equation (4.25) in Equation (4.23) and
taking into account that BR2 = const we obtain

V 2
A

∂2W

∂Z2
+Ω2W − iῑΩR2B2∂

2W

∂ψ2
=
µ0V

2
AQi
R2

, (4.26)

where

W =
∂(rw)

∂ψ
, V 2

A =
B2

µ0ρ
. (4.27)

We then consider the Sturm-Liouville problem

V 2
A

∂2Y

∂Z2
= −λY, Y (±L̃/2) = 0, (4.28)

where L̃ = ǫL. The eigenvalues of this problem are real and constitute a monotonically
increasing sequence {λn}, λn → ∞ as n → ∞ (Coddington and Levinson, 1955). It is
straightforward to show that all eigenvalues are positive. Any integrable by quadrature
in the interval [−L̃/2, L̃/2] function f(z) can be expanded in the generalised Fourier
series

f(Z) =
∞∑

n=1

fnYn(Z), (4.29)

where Yn(z) is the eigenfunction corresponding to the eigenvalue λn. Obviously, we
can choose all eigenfunctions to be real. If f(z) has the continuous second derivative
and satisfies the boundary condition f(±L̃/2) = 0, then the series in Equation (4.29)
convergences uniformly and can be differentiated twice. The eigenfunctions satisfy the
orthogonality condition

∫ L/2

−L/2
V −2
A (Z)Yn(Z)Ym(Z) dZ = 0 for m 6= n. (4.30)

Dymova and Ruderman (2006a) assumed that the density is factorised and equal to a
product of two functions, one depending on r and the other on z. They called this the
condition of homogeneous stratification. We, similarly, assume that the density in the
transitional layer can be factorised and expressed as a product of two functions, one
depending on z and the other on ψ. Since we neglect the radial dependence of B this
implies that the Alfvén speed can be written as

V 2
A(ψ,Z) = V 2

Ai(Z)g(ψ), g(ψi) = 1, g(ψe) =
V 2
Ae

V 2
Ai

, (4.31)

where g(ψ) = const for ψ ≤ ψi and ψ ≥ ψe, while g(ψ) is a monotonically increasing
function in ψ ∈ (ψi, ψe), VAi and VAe are the values of the Alfvén speed at ψ = ψi
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and ψ = ψe, respectively, and ψ = ψe is the equation of the external boundary of the
transitional layer. Then we can rewrite Equations (4.28) as

V 2
Ai

∂2Y

∂Z2
= − λ

g(ψ)
Y, Y (±L̃/2) = 0. (4.32)

It follows from this equation that

λn(ψ) = g(ψ)λn(ψi). (4.33)

We normalise the eigenfunctions by the condition

∫ L̃/2

−L̃/2
V −2
Ai Y

2
n (Z) dZ = 1. (4.34)

Then the Fourier coefficients in Equation (4.29) are given by

fn =

∫ L/2

−L/2
V −2
Ai (Z)f(Z)Yn(Z) dZ. (4.35)

Below, we will see that the ratio of the imaginary and real part of Ω is of the order
of l ≪ 1. This enables us to look for Ω in the form Ω0+ lΩ1, where Ω0 and Ω1 are of the
same order. In Equation (4.26) we keep terms of the order of one and l, while we neglect
smaller terms. Hence, we write Ω2 ≈ Ω2

0 +2lΩ0Ω1. The last term on the left-hand side
of Equation (4.26) is calculated in the leading order approximation. Next, we take
ῑΩ0r

2B2 ≈ ῑΩ0R
2B2. Since the viscosity is only used to remove the singularity at the

ideal resonant surface, we can choose the z-dependence of ι arbitrarily. It is convenient
to assume that ιB is independent of z. Then it follows from Equation (4.3) that the
coefficient at the second derivative with respect to ψ in Equation (4.26) is independent
of Z. Now, substituting the expansions

W (ψ,Z) =
∞∑

n=1

Wn(ψ)Yn(Z),
V 2
AiQi
R2

=
∞∑

n=1

ΦnYn(Z) (4.36)

in (4.26) yields

[Ω2
0 + 2lΩ0Ω1 − λn(ψ)]Wn − iῑΩ0B

2R2d
2Wn

dψ2
= µ0Φng(ψ). (4.37)

The resonant surfaces are defined by the equation

λn(ψ) = Ω2
0. (4.38)

There is the Alfvén resonance at any surface defined by this equation. Below, we
assume that the intervals (λn(ψi), λn(ψe)) do not overlap and Ω2

0 is in one of these
intervals. Let it be in the interval with n = N . Then there is exactly one value of ψ
satisfying Equation (4.38) which we denote as ψA. The last term on the left-hand side
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of Equation (4.37) is only important in a dissipative layer surrounding the resonant
magnetic surface. The thickness of this layer is much smaller than lR∗. Outside of this
layer we can neglect the last term on the left-hand side of Equation (4.37). We also
can neglect 2lΩ0Ω1 in comparison with Ω2

0. Then we obtain

Wn =
µ0Φng(ψ)

Ω2
0 − λn(ψ)

. (4.39)

Since there is no Alfvén resonance when n 6= N this equation is valid in the entire
transition layer when n 6= N . Then using Eq. (4.27) and substituting R(z) for r yields

(Rw)n =





(Rw)ni + µ0Φn

∫ ψ

ψi

g(ψ′) dψ′

Ω2
0 − λn(ψ′)

, ψ < ψA,

(Rw)ne − µ0Φn

∫ ψe

ψ

g(ψ′) dψ′

Ω2
0 − λn(ψ′)

, ψ > ψA.

(4.40)

We see that there is a non-integrable singularity in the integrals when at ψ = ψA when
n = N . Substituting R(z) for r in Equation (4.22), and using Equations (4.3) and
(4.28) we obtain

∂Q

∂ψ
=

ρ

R2B4

∞∑

n=1

[Ω2
0 − λn(ψ)](Rw)n. (4.41)

We see that, in contrast to w, Q does not have a singularity at ψ = ψA.

4.2.3 Connection formulae

As we have seen, the solution to the ideal linear MHD equations has a singularity at
ψ = ψA. Near this surface there are large gradients, which implies that the viscosity
becomes important in a thin dissipative layer embracing the magnetic surface ψ = ψA.
If we are not interested in the motion in the dissipative layer, then all what we need from
the dissipative solution are the jumps of the total pressure and the normal component
of the plasma displacement across this dissipative layer. Sakurai et al. (1991) suggested
to call the expressions giving these jumps the connection formulae. They found, for a
static system, the solution of the dissipative MHD equations in terms of Bessel functions
and obtained the connection formulae for driven problem where the system oscillations
are driven by an external source and the system oscillates with the constant amplitude.
Later, Goossens et al. (1995) obtained the solution in the dissipative layer in terms of
so-called F and G functions. Erdélyi et al. (2001) generalised the connection formulae
for steady dissipative systems. Goossens et al. (1992) used the connection formulae to
study the damping of magnetic tube kink oscillations. In this study it was assumed that
the viscosity is not very weak in the sense that the last term on the left-hand side of
Equation (4.37) dominates the term proportional to Ω1, so the latter can be neglected.
Ruderman et al. (1995) showed that when this is not the case the type of solution in the
dissipative layer changes substantially and it becomes strongly oscillatory. Ruderman
et al. (1995) studied a planar problem. Tirry and Goossens (1996) generalised this
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study to the cylindrical geometry. Since the thickness of the dissipative layer is much
smaller than that of the transitional layer, the variation of λN (ψ) in the dissipative layer
is small and it can be approximated by the first two terms of the Taylor expansion:

λN (ψ) ≈ Ω2
0 −∆(ψ − ψA), ∆ = −dλN

dψ

∣∣∣∣
ψ=ψA

. (4.42)

Using this equation and introducing the dimensionless quantities τ and Λ defined by

τ =
ψ − ψA
δA

, Λ =
2ilΩ0Ω1

δA
, δA =

(
ῑΩ0B

2R2

|∆|

)1/3

, (4.43)

we reduce Equation (4.37) with n = N to

d2WN

dτ2
+ [i sign(∆) + Λ]WN =

iµ0ΦNg(ψA)

δA|∆| . (4.44)

This equation can be obtained from Equation (A1) in Tirry and Goossens (1996) by
substituting WN for Ψ, −Λ for Λ, and −µ0ΦN/δA|∆| for right hand side in the lat-
ter. Then we obtain the solution to Equation (4.44) making the same substitution in
Equation (A4) in Tirry and Goossens (1996). This yields

WN = − iµ0ΦNg(ψA)
δA|∆| FΛ(τ), (4.45)

where

FΛ(τ) =

∫ ∞

0
exp

(
iστ sign(∆)− 1

3σ
3 + Λσ

)
dσ. (4.46)

Further, using Equations (4.27), (4.45), and (4.46), the relations η = ξ⊥/R and w =
Bξ⊥, and substituting R for r we obtain

dηN
dτ

= − iµ0ΦNg(ψA)|∆|BR2
FΛ(τ). (4.47)

Integrating this equation yields

ηN = −µ0ΦNg(ψA)
∆BR2

GΛ(τ) + C, (4.48)

where C is an arbitrary constant and

GΛ(τ) =

∫ ∞

0

e−σ
3/3

σ
[exp(iστ sign(∆) + Λσ)− 1] dσ. (4.49)

The function FΛ and GΛ were introduced by Goossens et al. (2011). When Λ = 0 they
coincide with the F and G functions, respectively. We defined the jump of function
f(τ) through the dissipative layer as

[f(τ)] = lim
τ→∞

[f(τ)− f(−τ)]. (4.50)
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Using the substitution στ = ς, we obtain

[GΛ(τ)] = 2i sign(∆) lim
τ→∞

∫ ∞

0
exp

(
Λς

τ
− ς3

3τ3

)
sin ς

ς
dς

= 2i sign(∆)

∫ ∞

0

sin ς

ς
dς = πi sign(∆). (4.51)

Then using the expansion of η in the Fourier series and Equation (4.48), and taking
into account that [ηn] = 0 for n 6= N , we finally arrive at

[η(τ)] = −πiµ0ΦNg(ψA)|∆|BR2
YN (Z). (4.52)

It follows from Equation (4.41) that [Q] = 0.

4.2.4 Matching solutions

To calculate δη and δP we need to match the internal solution, which is the solution
in the dissipative layer, and the external solution, which is the solution outside the
dissipative layer, in two overlap regions at the left and right of the dissipative layer.
In these overlap regions both solutions are valid. In accordance with the method of
matched asymptotic expansions (e.g. Bender and Orszag, 1978) the jump of function
f(ψ) across the dissipative layer can be calculated using the external solution as

[f(ψ)] = lim
ε→+0

[f(ψA + ε)− f(ψA − ε)]. (4.53)

Using the relation Rw = BR2η and recalling that BR2 = const, we obtain (Rw)n =
BR2ηn. Then it follows from Equations (4.40) and (4.53) that

[η] = δη − µ0
BR2

P
∫ ψe

ψi

∞∑

n=1

Φng(ψ)Yn(Z)

Ω2
0 − λn(ψ)

dψ, (4.54)

where P indicates the Cauchy principal part of the integral. Comparing Equations
(4.52) and (4.54) yields

δη =
µ0
BR2

P
∫ ψe

ψi

∞∑

n=1

Φng(ψ)Yn(Z)

Ω2
0 − λn(ψ)

dψ − πiµ0ΦNg(ψA)

|∆|BR2
YN (Z). (4.55)

To calculate δQ we use Equation (4.22). In the transitional layer we can take
r ≈ R(z). We also can neglect the derivative of r with respect to ψ because the ratio
its characteristic variation scale with respect to ψ to the characteristic scale of variation
of w, P , and ξφ with respect to ψ is R∗/l. Then, using Equation (4.3) we obtain from
Equation (4.22)

∂Q

∂ψ
= M[Rw], (4.56)
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where

M[Rw] =

(
ρΩ2

R2B4
+

1

µ0R2B2

∂2

∂Z2
− iρῑΩ

B2

∂2

∂ψ2

)
Rw. (4.57)

We can use the expansion Rw =
∑∞

n=1(Rw)nYn. Since the variation of w in the
transitional layer is of the order of lw, it follows that (Rw)n = (Rw)ni[1+O(l)]. It also
immediately follows from this relation that M[(Rw)nYn] = M[(Rw)niYn][1 +O(l)] for
all n except n = N . The problem is that, although the expression for (Rw)N obtained
in the approximation of ideal MHD has only a logarithmic singularity at ψ = ψA, the
second derivative of (Rw)n with respect to ψ has a singularity of the form (ψ = ψA)

−2.
Hence, in principle, M[Rw] can be significantly different from M[(Rw)i]. However,
in fact, this is not the case. The straightforward calculation using Equations (4.28),
(4.43), (4.48) and (4.49) shows that M[Rw] = 0 in the dissipative layer. As a result,
we can now write that M[Rw] = M[(Rw)i][1 +O(l)].

In Chapter 2 we showed that P/ψ is independent of ψ in the core region of the
tube defined by the inequality r ≤ R(1 − l/2). It follows from this result that in the
core region Q = Qi(ψ/ψi). Using this expression we obtain from Equation (4.22) that
(M[Rw])i = Qi/ψi, and consequently

M[Rw] =

(
Qi
ψi

− (ρi − ρ)Ω2wi
RB4

)
[1 +O(l)]. (4.58)

Substituting this result in Equation (4.56), integrating the obtained equation, and using
the relation w = BRη yields in the leading order approximation with respect to l

δQ =

∫ ψe

ψi

(
Qi
ψi

− (ρi − ρ)Ω2η

B3

)
dψ. (4.59)

Equations (4.55) and (4.59) enable us to calculate jumps δη and δQ in terms of η.
Thus, we finally closed the system of governing equations (4.1) and (4.2) and are able
to proceed with theoretical analysis.

§ 4.3 Calculation of the eigenmode decrement

Taking η, δη, and δP proportional to e−iωt and only keeping terms of the order of unity
and l we transform Equations (4.1) and (2.73) to

C2
k

d2η

dZ2
+Ω2η = −L, (4.60)

L =
1

ρi + ρe

(
B2

R2
δQ+

B2

µ0

d2(lη + δη)

dZ2
+ ρeΩ

2
0(lη + δη)

)
. (4.61)

Recall that in these equations η calculated in the tube core region where it is indepen-
dent of ψ. Using Equations (3.39), (4.28), (4.55), and (4.59) we obtain

L = L1 +
πiµ0(ρi − ρe)Ω

2
0ΦNg(ψA)YN (Z)

|∆|BR2(ρi + ρe)
, (4.62)
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where

L1 =
µ0ρe

BR2(ρi + ρe)
P
∫ ψe

ψi

g(ψ)
∞∑

n=1

[Ω2
0 − λn(ψe)]ΦnYn(Z)

Ω2
0 − λn(ψ)

dψ

+
2lB2Qi

R2(ρi + ρe)
+

Ω2
0η

ρi + ρe

(
1

BR2

∫ ψe

ψi

ρ dψ − l(3ρi − ρe)

)
. (4.63)

Now, we substitute Ω = Ω0 + lΩ1 in Equation (4.60) and then look for a solution to
Equations (4.60) and (4.61) in the form

η = η0 + lη1 + . . . (4.64)

Taking into account that L = O(l) we obtain in the leading order approximation

C2
k

d2η0
dZ2

+Ω2
0η0 = 0, η0 = 0 at Z = ±L̃/2. (4.65)

We see that η must be an eigenfunction of the boundary value problem Equation (4.65)
and Ω2

0 the corresponding eigenvalue. Obviously, we can take η0 to be real.

In the next order approximation we obtain

d2η1
dZ2

+
Ω2
0

C2
k

η1 = −πiµ
2
0(ρi − ρe)Ω

2
0ΦNg(ψA)YN (Z)

2|∆|B3R2

− L1 + 2Ω0Ω1η0
C2
k

, η1 = 0 at Z = ±L̃/2. (4.66)

This boundary layer problem only has solutions if its right-hand side satisfies the com-
patibility condition. To obtain this condition, we multiply Equation (4.66) by η0,
integrate the obtained equation, use the integration by parts, and use the boundary
conditions. As a result, we obtain

Ω0Ω1

∫ L̃/2

−L̃/2

η20
C2
k

dZ = −1

l

∫ L̃/2

−L̃/2

L1η0
2C2

k

dZ

− πiµ20Ω
2
0ΦNg(ψA)

4l|∆|BR2

∫ L̃/2

−L̃/2

(ρi − ρe)YNη0
B2

dZ . (4.67)

We write Ω1 = Ω1r − iΓ, where both Ω1r and Γ are real quantities. Ω1r only gives
a small correction to the oscillation frequency Ω0, while Γ determines the oscillation
damping rate. Below, we mainly are interested in Γ, which is defined by

Γ =
πµ20Ω0ΦNg(ψA)

4l|∆|BR2

(∫ L̃/2

−L̃/2

η20
C2
k

dZ

)−1 ∫ L̃/2

−L̃/2

(ρi − ρe)YNη0
B2

dZ . (4.68)

We note that Γ is the scaled decrement, while non-scaled decrement is γ = ǫlΓ.
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Using Equation (4.31) we transform Equation (4.65) to

V 2
Ai

d2η0
dZ2

= −χ−1Ω2
0η0, χ =

2g(ψe)

1 + g(ψe)
. (4.69)

Comparing Equations (4.32) and (4.69) we conclude that χ−1Ω2
0 = λn(ψi) and η0

is proportional to Yn(Z) for some n. To have the proper dimension of η we take
η0 = L̃−1/2Ω−1

0 Yn(Z). Since 1 < χ < g(ψe), it follows that Ω2
0 ∈ (λn(ψi), λn(ψe)).

Then the condition that Ω2
0 ∈ (λN (ψi), λN (ψe)) implies that n = N and we obtain

Ω2
0 = χλN (ψi) and η0 = L̃−1/2Ω−1

0 YN (Z). Using this result and Equations (3.39),
(4.31), and (4.34) we obtain

∫ L̃/2

−L̃/2

η20
C2
k

dZ =
1

χL̃Ω2
0

,

µ0

∫ L̃/2

−L̃/2

(ρi − ρe)YNη0
B2

dZ =
2(χ− 1)

χΩ0L̃1/2
.

(4.70)

Using Equations (4.57) and (4.58) and the relation Rwi = BR2η0 we obtain in the
leading order approximation

Qi =
ρiψi
B3

[
Ω2
0 − λN (ψi)

]
η0. (4.71)

Then we obtain with the aid of Equations (4.34)–(4.36)

ΦN =

∫ L̃/2

−L̃/2

QiYN
R2

dZ =
ψi
[
Ω2
0 − λN (ψi)

]

µ0Ω0L̃1/2BR2

∫ L̃/2

−L̃/2

Y 2
N

V 2
Ai

dZ

=
ψi
[
Ω2
0 − λN (ψi)

]

µ0Ω0L̃1/2BR2
. (4.72)

Substituting Equations (4.70) and (4.72) in Equation (4.68) and recalling that γ = ǫlΓ
and ω0 = ǫΩ0 we reduce this equation to

γ

ω0
=
πψiλN (ψi)g(ψA)(χ− 1)[g(ψA)− 1]

2|∆|B2R4
. (4.73)

In Chapter 2 we have shown that in the approximation of thin tube ψ = 1
2r

2B. It
follows from this relation that ψi ≈ 1

2R
2B. In addition, it follows from Equations (4.31),

(4.33), and (4.42) that ∆ = −λN (ψi)g′(ψA), where the prime indicates the derivative.
It follows from Equations (4.33) and (4.38), and from the relation Ω2

0 = χλN (ψi) that
ψA is defined by

g(ψA) = χ. (4.74)

Then we can simplify Equation (4.73) to

γ

ω0
=

πχ(χ− 1)2

4g′(ψA)BR2
. (4.75)
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It is straightforward to verify that this expression coincides with the corresponding
expression in Dymova and Ruderman (2006a) (see their Equation (83)).

Now, we can notice that, while to calculate ω0 and γ we need to define VAi(z), the
ratio γ/ω0 is independent of a particular form of this function. The ratio γ/ω0 is also
independent of the number of mode N . We recall that this result was obtained under
the assumption of homogeneous stratification. It is a generalisation of a similar result
previously obtained by Dymova and Ruderman (2006a) for non-expanding magnetic
tubes.

As a example, we consider the linear density variation in the transitional layer and
take

ρt(r, z) =
ρi + ρe

2
+ (ρi − ρe)

R− r

lR
. (4.76)

Using the relation ψ = 1
2Br

2, we obtain

r = R

(
1− l

2

)
+
ψ − ψi
lBR

+O
(
l2
)
. (4.77)

It follows from Equations (4.31), (4.76), and (4.77) that

1

g(ψ)
= 1− (ρi − ρe)(ψ − ψi)

ρi(ψe − ψi)
+O(l). (4.78)

Using this equation and Equation (4.69), we obtain

χ =
2ρi

ρi + ρe
+O(l). (4.79)

Then it follows from Equation (4.74) that

ψA =
ψi + ψe

2
+O(l). (4.80)

Using Equations (4.78) and (4.80), we obtain in the leading order approximation with
respect to l

g′(ψA) =
4ρi(ρi − ρe)

(ρi + ρe)2(ψe − ψi)
=

4ρi(ρi − ρe)

lBR2(ρi + ρe)2
. (4.81)

When deriving this expression we used the relation ψ = 1
2r

2B. Substituting this
expression in Equation (4.75) and using Equation (4.79) yields

γ

ω0
=
πl(ζ − 1)

8(ζ + 1)
, (4.82)

where ζ = ρi/ρe. This expression coincides with that obtained for a non-expanding tube
with the density non-varying along the tube (e.g. Goossens et al., 2002). We repeat
that, in accordance with the homogeneous stratification assumption ρi/ρe = const, the
ratio of the decrement to the frequency is independent of a particular law of the density
variation along the tube.
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§ 4.4 Summary

We summarise results of Chapter 4 in what follows. First of all we slightly amended
the equilibrium configuration proposed in Chapter 2, by neglecting a field-aligned back-
ground flow. Thus we modified the governing equations. Then we assumed approxi-
mation of a viscous MHD in the transitional layer. Using it we derived set of equations
describing kink oscillations. Then, by the means of general Fourier series, and in ac-
cordance with homogeneous stratification assumption ρi/ρe = const we obtained the
connection formulae and jumps of δP and δη. As a result, we closed the system of
governing equations. Thus, we gained ability to proceed with theoretical results.

Further, employing the closed system of governing equations we obtained the decre-
ment of kink oscillations. We concluded that the ratio of the decrement γ on the oscil-
lation frequency ω0 is independent of number of mode N . We also obtained that the
ratio of the kink oscillation decrement to the oscillation frequency is independent of a
particular law of the density variation along the tube as well as the tube cross-section
variation along the tube. This conclusion is particularly important for coronal seismol-
ogy observations. Since this result allows us to neglect coronal loops expansions and
density variation along the loops to get information about the radial structure of the
loops, by observing damping of kink oscillations.
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§ 5.1 Equilibrium Configuration

In this chapter we use the equilibrium configuration proposed in Chapter 2. We recall
that we consider kink oscillations of a thin straight magnetic flux tube with circular
cross-section. The cross-section radius varies along the tube. The tube consists of a
core region where the plasma density only weakly varies in the radial direction, and the
transitional region where the density quickly decreases from its value in the core region
to that in the external plasma. The sketch of unperturbed configuration is shown in
Figure 2.1.

§ 5.2 Kink oscillations of coronal loops with slowly varying density

5.2.1 The WKB approximation

In this section we study kink oscillations of a magnetic flux tube with the variable
cross-section and slowly varying density. Similarly to Chapters 3 and 4 we assume that
the resonant damping is weak and the damping time is much larger than the oscillation
period. Since the ratio of the oscillation period to the damping time is of the order of
l (e.g. Hollweg and Yang, 1988; Goossens et al., 1992; Ruderman and Roberts, 2002;
Shukhobodskiy and Ruderman, 2018) we assume that l ≪ 1.

We aim to study the competition between the oscillation amplification due to cool-
ing and damping due to resonant absorption. The oscillation amplification occurs on
the time-scale comparable to the characteristic time tch of the density variation (Ru-
derman, 2011a; Ruderman et al., 2017). We assume that the characteristic time of
the amplitude variation is comparable to the damping time and take tch equal to l−1

times the characteristic wave period. In accordance with this estimate we introduce
the “slow” time t1 = lt.

Now, we follow Chapter 3 and use the WKB method to seek the solution to the
problem. In accordance with this method we write

η = S(t1, z) exp[il
−1Θ(t1)]. (5.1)

Then we expand S in the series

S = S0 + lS1 + . . . (5.2)

We have the estimate δP ∼ lP . In accordance with these estimates we introduce
the scaled jump of the magnetic pressure perturbation δ̃P = l−1 δP . We also have
the estimate δη ∼ lη. Since δη = δSeil

−1Θ, this estimate inspires us to introduce
δ̃S = l−1δS. Finally, it follows from Equation (2.50) that U ∼ l, so we introduce the
scaled velocity Ũ = l−1U . Now, substituting Equation (5.1) in Equations (2.75) and
(2.76) we obtain

(ρi + ρe)

[
Sω2 − il

(
2ω

∂S

∂t1
+ S

∂Ω

∂t1

)]

− 2ilω

R
(ρiŨi + ρeŨe)

∂(RS)

∂z
+

2B̃2

µ0

∂2S

∂z2
= −lL̃+O

(
l2
)
, (5.3)
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L̃ =

(
ρeω

2 +
B2

µ0

∂2

∂z2

)(
S + δ̃S

)
+
δ̃P

R2
e−il

−1Θ, (5.4)

where ω = dΘ/dt1.
Substituting Equation (5.2) in Equation (5.3) and collecting terms of order of unity

(for more details see Appendix B) yields

∂2S0
∂z2

+
ω2

C2
k

S0 = 0, C2
k =

2B2

µ0(ρi + ρe)
. (5.5)

This approximation is called the approximation of geometric optics. The same ap-
proximation was also used in Chapters 3 and 4. Since we assume that the tube ends
are frozen in the dense photosphere, we impose the boundary conditions η = 0 at
z = ±L/2. Then we obtain

S0 = 0 at z = ±L/2.. (5.6)

Equations (5.5) and (5.6) constitute the Sturm-Liouville problem for function S0. This
problem coincides with the boundary value problem obtained by Dymova and Rud-
erman (2005) for kink oscillations of a magnetic tube with the density varying along
the tube that is in a static equilibrium. This particular Sturm-Liouville problem also
coincides with the boundary value problem obtained by Shukhobodskiy and Ruderman
(2018) and described in Chapter 4 for kink oscillations of an expanding magnetic tube
with the density varying along the tube that is in a static equilibrium. We assume that
ω2 is the eigenvalue and S0 is the corresponding eigenfunction. In accordance with the
Sturm-Liouville theory, eigenvalues are real and constitute monotonically increasing
sequence. Multiplying Equation (5.6) by S0 and integrating it over z we have

ω2

∫ L/2

−L/2

S2
0

C2
k

dz =

∫ L/2

−L/2

(
∂S0
∂z

)2

dz. (5.7)

This result implies that ω2 > 0.
Proceeding to the next order approximation, we collect terms of the order of l in

Equation (5.3) (for more details see Appendix B). This yields

∂2S1
∂z2

+
ω2

C2
k

S1 =
i

C2
k

(
2ω
∂S0
∂t1

+ S0
∂ω

∂t1

+
2ω(ρiŨi + ρeŨe)

R(ρi + ρe)

∂(RS0)

∂z

)
− L̃
C2
k(ρi + ρe)

. (5.8)

The function S1 must satisfy the boundary conditions

S1 = 0 at z = ±L/2. (5.9)

The homogeneous counterpart of Equation (5.8) with the boundary conditions given
by Equation (5.9) has a non-trivial solution S1 = S0. This implies that the boundary
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value problem determining S1 has solutions only if the right-hand side of Equation (5.8)
satisfies the compatibility condition, which is the condition that it must be orthogonal to
S0. To obtain this condition, we multiply Equation (5.8) by S0, integrate the obtained
equation with respect to z, and use the integration by parts and the boundary conditions
given by Equations (5.6) and (5.9). As a result, we obtain

∫ L/2

−L/2

(
∂(ωS2

0)

∂t1
+
ω(ρiŨi + ρeŨe)

R2(ρi + ρe)

∂(R2S2
0)

∂z

)
dz

C2
k

= −i
∫ L/2

−L/2

L̃ dz
C2
k(ρi + ρe)

. (5.10)

Using integration by parts and Equations (2.50), (2.46), and (5.6) we obtain the identity

∫ L/2

−L/2

(ρiŨi + ρeŨe)

R2C2
k(ρi + ρe)

∂(R2S2
0)

∂z
dz

=
µ0

2R4B2

∫ L/2

−L/2
R2(ρiŨi + ρeŨe)

∂(R2S2
0)

∂z
dz

= −µ0
2

∫ L/2

−L/2

S2
0

R2B2

∂

∂z

[
R2(ρiŨi + ρeŨe)

]
dz

=
µ0
2

∫ L/2

−L/2

S2
0

B2

∂(ρi + ρe)

∂t1
dz =

∫ L/2

−L/2
S2
0

∂C−2
k

∂t1
dz. (5.11)

Using this identity and returning to the non-scaled time we transform Equation (5.10)
to

d

dt

(
ω

∫ L/2

−L/2

S2
0

C2
k

dz

)
= −il

∫ L/2

−L/2

S0L̃ dz
C2
k(ρi + ρe)

. (5.12)

The quantity in the brackets on the left-hand side of this equation is called adiabatic
invariant. This quantity can be interpreted as the wave action. When l = 0 the right-
hand side is zero and the adiabatic invariant is conserved. This result was previously
obtained by Ruderman et al. (2017) and presented in Chapter 3. It is worth noting
that the oscillation energy is not conserved because, in general, there is the plasma flow
through the loop footpoints. Even if we impose the condition that there is no plasma
flow through the footpoints, there is the plasma redistribution in the loop caused by
cooling. As a result, there is the exchange of energy between the oscillation and the
gravitational field.

5.2.2 Calculation of L̃

Equation (5.12) describes the evolution of S0 and, consequently, the oscillation ampli-

tude. This equation is not closed because the expression for L̃ contains δ̃S and δ̃P . To
close it we need to express δ̃S and δ̃P in terms of S0. Since we only need to calculate
the right-hand side of Equation (5.12) in the leading order approximation with respect
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to l, it follows that we need to calculate δ̃S and δ̃P also only in the leading order
approximation. Using Equation (2.50), we obtain the estimate that Ui,e ∼ lCk. It also
follows that ∂S0/∂t ∼ lωS0. These estimates imply that the account of the flow in
the transitional layer and the time derivative of S can only give corrections of order
l to δ̃S and δ̃P . Hence, we can neglect the flow and the time derivative of S when
calculating these quantities. Then we can use the same equations as in Chapter 4 to
calculate δ̃S and δ̃P . However, we cannot directly use the results obtained in Chapter
4. The reason is that it was assumed in Chapter 4 that the unperturbed density is
equal to the product of two functions, one depending on ψ, and the other on z. Here
we cannot make this assumption because even if it is satisfied at the initial time, in
general, later it will be not valid because of the density variation with time. Hence,
we need to modify the analysis given by Chapter 4. Below, we briefly describe this
analysis and the modification that we make.

Following Chapters 2 and 4, we use the variable ψ instead of r. Then we con-
sider Alfvén oscillations of individual magnetic filed lines, which are described by the
eigenvalue problem

V 2
A

∂2Y

∂z2
= −λY, Y = 0 at z = ±L/2, (5.13)

where Alfvén speed VA is defined by Equation (4.5). Here Y and VA depend on t, ψ,
and z, and λ on t and ψ. The eigenvalues of this problem are real and constitute a
monotonically increasing sequence λn, where λn → ∞ as n→ ∞ (e.g. Coddington and
Levinson, 1955). It is easy to show that all eigenvalues are positive. Any integrable by
quadrature in the interval [−L/2, L/2] function f(z) can be expanded in a generalised
Fourier series

f(t, ψ, z) =

∞∑

n=1

fn(t, ψ)Yn(t, ψ, z), (5.14)

where Yn(t, ψ, z) is an eigenfunction of the boundary value problem (5.13). Obviously,
all Yn can be chosen to be real. According to the classical Sturm-Liouville theory, the
eigenfunctions corresponding to different eigenvalues are orthogonal with the weight
V −2
A (t, ψ, z). In addition, we can normalise them in such a way that they satisfy the

relation ∫ L/2

−L/2
V −2
A (z)Ym(z)Yn(z) dz = δmn, (5.15)

where δmn is the Kronecker delta-symbol. If f(z) has a continuous second derivative
and satisfies the boundary condition f(±L/2) = 0, then the sum in (5.14) is uniformly
convergent and can be differentiated twice (see, e.g. Naimark, 1967). The Fourier
coefficients in the Fourier series (5.14) are given by

fn =

∫ L/2

−L/2
V −2
A (z)f(z)Yn(z) dz. (5.16)

The resonance of a global kink oscillation with the nth harmonic of local Alfvén oscil-
lations occurs at the resonant magnetic surface defined by the equation ψ = ψn if the
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relation λn(ψn) = ω2 is satisfied. Since λn → ∞ as n→ ∞, it follows that only a finite
number of Alfvén resonances exist.

Observations show that, in most cases, the fundamental harmonic of kink oscil-
lations is dominant, so the oscillation amplitude is determined by the fundamental
harmonic. In accordance with this, below, we restrict our analysis to the fundamen-
tal harmonic. We assume that ρ(t, ψ, z) is a monotonically decreasing function of ψ
for all z ∈ [−L/2, L/2] and at any time. Then VAi(z) < Ck(z) < VAe(z) for all
z ∈ [−L/2, L/2]. Using the comparison theorem for ordinary differential equations
(e.g. Coddington and Levinson, 1955) it is straightforward to show that λ1(ψi) < ω2 <
λ1(ψe). This implies that there is ψ1 ∈ [ψi, ψe] such that λ1(ψ1) = ω2. Hence, there is
always at least one resonant surface in the transitional layer. Below, we assume that
λ2(ψi) > λ1(ψe). Then it follows that there is exactly one resonant surface.

Now, the derivation of expressions for δP and δη are analogous to the derivations
of expressions for these quantities given already in Chapter 4. The only difference is
the following. In accordance with the assumption about the density made in Chapter 4
V 2
A = V 2

Aig(ψ), where g(ψ) is a monotonically increasing function and g(ψi) = 1. Then
in Chapter 4 we used Equation (4.36). Since in this chapter V 2

A cannot be factorised
we use, instead, the expansion

V 2
AQ

R2
=

∞∑

n=1

Φn(ψ)Yn(ψ, z). (5.17)

After that, we obtain the expressions for δQ and δη substituting Φn(ψ) for Φng(ψ) in
all equations from (4.37) to (4.52) in Chapter 4. They read

δQ =

∫ ψe

ψi

(
Qi
ψi

− (ρi − ρ)ω2η

B3

)
dψ, (5.18)

δη =
µ0
BR2

P
∫ ψe

ψi

∞∑

n=1

Φn(t, ψ)Yn(t, ψ, z)

ω2(t)− λn(t, ψ)
dψ

− πiµ0Φ1(t, ψ1)Y1(t, ψ1, z)

|∆(t)|BR2
, (5.19)

where P indicates the principal Cauchy part of the integral and

∆ = −dλ1
dψ

∣∣∣∣
ψ=ψ1

. (5.20)

When deriving Equation (5.19), we took into account that BR2 = const. Now, we use
the Equation (4.26) from Chapter 4 where we substitute ω for Ω, ι for ῑ, and z for Z
because in this chapter we do not use the scaled frequency, kinematic viscosity, and the
coordinate along the tube. Then we obtain

V 2
A

∂2W

∂z2
+ ω2W − iιωR2B2∂

2W

∂ψ2
=
µ0V

2
AQi
R2

, (5.21)
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where

W =
∂(rBξ⊥)

∂ψ
. (5.22)

The last term on the left-hand side of Equation (5.21) describing the effect of viscosity
is only important in the thin dissipative layer embracing the resonant surface. Below
we use Equation (5.21) outside of the dissipative layer and thus can neglect this term.
In Chapter 2 we showed that in the thin tube approximation B and ξ⊥ are independent
of ψ and ψ = 1

2r
2B. Then we obtain W = η. As a result, Equation (5.21) reduces to

V 2
A

∂2η

∂z2
+ ω2η =

µ0V
2
AQi
R2

. (5.23)

We take this equation at ψ = ψi. Then, using Equation (5.5), we obtain in the leading
order approximation with respect to l

Qi =
ω2R2S0(ρi − ρe)

2B2
eil

−1Θ. (5.24)

Substituting this result in Equation (5.18), noticing that ψi =
1
2BR

2[1 + O(l)], and

using the relation δ̃P = l−1B2δQ yields

δ̃P =
ω2l−1S0

B
eil

−1Θ

∫ ψe

ψi

(ρ− ρe) dψ. (5.25)

Now, we need to express δ̃S in terms of S0. We have δ̃S = l−1δη e−il
−1Θ, where δη is

given by Equation (5.19). This equation contains the functions Φn(t, ψ), thus we need
to express these functions in terms of S0. To achieve this we use Equation (5.17). Since
we only need to calculate Φn(t, ψ) in the leading order approximation with respect to
l, we can substitute Qi for Q in this equation. Then, using Equations (5.16) and (5.24)
we obtain

Φn = ω2eil
−1Θ

∫ L/2

−L/2

S0Yn(ρi − ρe)

2B2
dz. (5.26)

Substituting this expression in Equation (5.19) and using the relation between δ̃S and
δη yields

δ̃S =
l−1πiµ0ω

2Y1(ψ1, z)

|∆|BR2

∫ L/2

−L/2

S0(z̃)Y1(ψ1, z̃)[ρe(z̃)− ρi(z̃)]

2B2(z̃)
dz̃

+
l−1µ0ω

2

BR2
P
∫ ψe

ψi

(
∞∑

n=1

Yn(z)

ω2 − λn

×
∫ L/2

−L/2

S0(z̃)Yn(z̃)[ρi(z̃)− ρe(z̃)]

2B2(z̃)
dz̃

)
dψ, (5.27)
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where we only showed the dependence on z, but we did not show the dependence on t
and ψ. Finally, using Equations (5.4), (5.5), (5.25), and (5.27) we obtain

L̃ = l−1ω2S0(z)

(∫ ψe

ψi

ρ(z)− ρi(z)

B(z)R2(z)
dψ − ρi(z)− ρe(z)

2

)

+
µ0ω

2

BR2
P
∫ ψe

ψi

(
∞∑

n=1

Yn(z)[ω
2ρe(z)− λnρ(z)]

ω2 − λn

×
∫ L/2

−L/2

S0(z̃)Yn(z̃)[ρi(z̃)− ρe(z̃)]

2B2(z̃)
dz̃

)
dψ

+
l−1πiµ0ω

4Y1(ψ1, z)[ρ(ψ1, z) − ρe(z)]

|∆|BR2

×
∫ L/2

−L/2

S0(z̃)Y1(ψ1, z̃)[ρi(z̃)− ρe(z̃)]

2B2(z̃)
dz̃. (5.28)

5.2.3 Amplitude variation

We consider an eigenfunction X(t, z) of the boundary value problem constituted by
Equations (5.5) and (5.6) that is real-valued, corresponds to the fundamental mode,
and satisfies the condition maxzX(t, z) = 1. Since S0 is also an eigenvalue of the same
boundary value problem, it must be proportional to X(t, z) with the proportionality
coefficient depending on time. Hence, we can write

S0(t, z) = A(t) eiF (t)X(t, z), (5.29)

where A(t) and F (t) are real-valued functions, and A(t) > 0. Since maxz |S(t, z)| =
A(t), the function A(t) can be considered as the oscillation amplitude. Using Equation
(5.29), we obtain

d

dt

(
ω

∫ L/2

−L/2

S2
0

C2
k

dz

)
= e2iF (t) d

dt

(
ωA2

∫ L/2

−L/2

X2

C2
k

dz

)

+ 2iωA2e2iF (t) dF

dt

∫ L/2

−L/2

X2

C2
k

dz. (5.30)

With the aid of Equation (5.28) we calculate the right-hand side of Equation (5.12),

−il
∫ L/2

−L/2

S0L̃ dz
C2
k(ρi + ρe)

= A2e2iF (t) (Γ + iωΥ) , (5.31)

where

Γ =
πµ20ω

4

|∆|BR2

∫ L/2

−L/2

XY1(ψ1)

2B2
[ρ(ψ1)− ρe] dz

×
∫ L/2

−L/2

XY1(ψ1)(ρi − ρe)

2B2
dz, (5.32)
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Υ = ωe2iF (t)

[∫ L/2

−L/2

X2

2C2
k

(
ρi − ρe
ρi + ρe

− 2

∫ ψe

ψi

(ρ− ρi) dψ

BR2(ρi + ρe)

)
dz

− µ0
BR2

P
∫ ψe

ψi

(
∞∑

n=1

∫ L/2

−L/2

XYn(ω
2ρe − λnρ)

C2
k(ρi + ρe)(ω2 − λn)

×
∫ L/2

−L/2

XYn(ρi − ρe)

2B2
dz

)
dψ

]
. (5.33)

Substituting Equations (5.30) and (5.31) in Equation (5.12), we eventually arrive at

d

dt

(
ωA2

∫ L/2

−L/2

X2

C2
k

dz

)
= −ΓA2, (5.34)

dF

dt

∫ L/2

−L/2

X2

C2
k

dz = Υ. (5.35)

Equation (5.34) describes the evolution of the oscillation amplitude with time. The
function F (t) determines the phase shift related to the presence of the transitional
layer.

§ 5.3 Kink oscillations of coronal loops with barometric density

distribution

5.3.1 Kink oscillations of static coronal loops

We now verify that equation (5.34) correctly describes the damping of kink oscillations
of static coronal loops. In the case of a static loop Equation (5.34) becomes

dA

dt
= γA, γ =

Γ

2ωI
, (5.36)

where

I =

∫ L/2

−L/2

X2

C2
k

dz. (5.37)

It follows form equation (5.36) that oscillation amplitude decreases exponentially with
the decrement γ. Let ζ = ρi(L/2)/ρe(L/2). Similarly to Chapter 4, we assume, that
ρi(z)/ρe(z) = ζ and ρt(ψ, z) = ρi(z)/g(ψ), where g(ψ) is a monotonically increasing
function satisfying g(ψi) = 1 and g(ψe) = V 2

Ae/V
2
Ai. As a result, following the analysis

in Chapter 4, we can write λ1 as

λ1(ψ) = λ1(ψi)g(ψ). (5.38)

We recall that we assume that there is only one resonant surface ψ = ψ1. Now, we can
rewrite Equation (5.5) as

B2

µ0ρe(z)

∂2S0
∂z2

= −ω
2(ζ + 1)

2
S0. (5.39)
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For fundamental mode at ψ = ψ1 Equation (5.13) can be rewritten as

B2

µ0ρe(z)

∂2Y1(ψ1)

∂z2
= −ζλ1(ψ1)

g(ψ1)
Y1(ψ1). (5.40)

We see that both S0 and Y1 are eigenfunctions of the same differential operator cor-
responding to the fundamental mode. Therefore, the coefficients on the right-hand
sides of Equations (5.39) and (5.40) must be equal. Then it follows from the resonant
condition, λ1 = ω2, that

g(ψ1) =
2ζ

ζ + 1
. (5.41)

Substituting Equations (5.38) and (5.41) in Equation (5.20) yields

∆ = −ω2g′(ψ1) (5.42)

Using Equations (5.41) we obtain

ρe(z) =
2ρ(ψ1)

ζ + 1
. (5.43)

The functions X(z) and Y1(ψ1, z) are the eigenfunctions of the same eigenvalue problem
corresponding to the same eigenvalue. Therefore, we have X = ςY1(ψ1), where ς is a
constant. Using this result and Equations (5.15), (5.42), and (5.43) we transform
equation (5.32) to

Γ =
πς2ω2ζ(ζ − 1)2

BR2g′(ψ1)(ζ + 1)3
. (5.44)

Again, using the relation X = ςY1(ψ1), and also Equations (5.15) and (5.43) we obtain
I = ς2. Using this result and Equation (5.44) yields

γ =
πωζ(ζ − 1)2

2BR2g′(ψ1)(ζ + 1)3
, (5.45)

Following the analysis in Chapter 4 we consider the linear density profile in transitional
layer and assume that ρt is defined by Equation (4.76). Then, using Equation (5.41)
and the relation ψ = 1

2Br
2, we obtain in the leading order approximation

g′(ψ1) =
4ζ(ζ − 1)

lBR2(ζ + 1)2
. (5.46)

Substituting this expression in Equation (5.45) yields

γ

ω
=
πl(ζ − 1)

8(ζ + 1)
. (5.47)

This expression coincides with expression obtained by Goossens et al. (2002) for a tube
with the density not varying along the tube and in Chapter 4.
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Next, we consider sinusoidal profile determined by

ρt(r, z) =
ρi + ρe

2
− ρi − ρe

2
sin

(
π(r −R)

lR

)
. (5.48)

Using the relation ψ = 1
2Br

2, we obtain

r = R

(
1− l

2

)
+
ψ − ψi
BR

+O(l2). (5.49)

It follows from Equations (5.48) and (5.49) that

1

g(ψ)
=
ζ + 1

2ζ
+
ζ − 1

2ζ
cos

π(ψ − ψi)

lBR2
. (5.50)

With the aid of Equations (5.41) and (5.50) we obtain

ψ1 = ψi +
1

2
lBR2. (5.51)

Then, using Equations (5.41), (5.50) and (5.51) yields

g′(ψ1) =
2πζ(ζ − 1)

lBR2(ζ + 1)2
. (5.52)

Substituting this result in Equation (5.45) we arrive at

γ

ω
=
l(ζ − 1)

4(ζ + 1)
. (5.53)

This expression coincides with one obtained by Ruderman and Roberts (2002) who
considered damping of kink oscillations of a magnetic tube with the constant cross-
section and density invariant along the tube. This result, again, confirms the conclusion
made in Chapter 3 that the ratio γ/ω is not affected by the density and cross-section
radius variation along the tube if ρt(ψ, z) = ρi(z)/g(ψ).

5.3.2 Kink oscillations of cooling coronal loops

In this section, we again assume that there is only one resonant position ψ = ψ1. Also,
similarly to Ruderman (2011b) we assume that the temperature of plasma outside the
loop does not change with time and is T0, while inside the loop it decreases with time
due to the effect of radiative cooling. Similar to Aschwanden and Terradas (2008),
Morton and Erdélyi (2010), Ruderman (2011a), Ruderman et al. (2017) and Chapter 3
we approximate the temperature evolution inside the loop by the exponentially decaying
function by Equation (4.36). Following Ruderman et al. (2008, 2017) and Chapter 3
we describe R(z) by Equation (3.16). Then the same analysis hold for expansion factor
ϑ as in Chapter 3.

Typical coronal loop expansion factor does not exceed 1.5 (see e.g. Klimchuk, 2000;
Watko and Klimchuk, 2000), thus by varying L/Lc we can cover the whole range of
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values of the expansion factor. In what follows, we consider a loop with a half-circle
shape. We neglect the effect of the loop shape on oscillations because, as it was shown
by Van Doorsselaere et al. (2004) and Terradas et al. (2006), it is very weak. As a
result, the loop shape only determines the density variation along the loop. Hence, we
describe internal and external densities by equations proposed in Chapter 3. We also
assume that the density profile in transitional layer is linear, therefore

ρt(t, r, z) =
1

2
[ρi(t, z) + ρe(z)] + [ρi(t, z) − ρe(z)]

R − r

lR
. (5.54)

It follows that ρt = (ρi + ρe)/2 at r = R. It is straightforward to see that VA = Ck
when r = R, the boundary value problems for S0 and Y are the same and, consequently,
λ1 = ω2 and r = R is the resonant surface. Then, using the relation ψ = 1

2Br
2, we

obtain that ψ1 =
1
2BR

2.
The functions X and Y1(ψ1) are defined by the same boundary value problem which

implies that Y1(ψ1) is proportional toX and Y1(ψ1). Since the equilibrium is symmetric
with respect to the apex point, it follows that that X(z) describing the fundamental
mode is an even function. Hence, it takes maximum at z = 0, and thus the condition
maxz(X) = 1 reduces to X(0) = 1. Summarising, we obtain

Y1(ψ1, z) = Y1(ψ1, 0)X(z). (5.55)

Then, it follows from Equation (5.15) and the relation VA(ψ1) = Ck, that

Y 2
1 (ψ, 0) =

1

I
. (5.56)

We substitute Y1 for Y in Equation (5.13), differentiate the obtained equation with
respect to ψ, take ψ = ψ1, and use λ1(ψ1) = ω2 and VA(ψ1) = Ck. As a result we
obtain

∂3Y1
∂z2∂ψ

+
ω2

C2
k

∂Y1
∂ψ

= − 1

C2
k

∂V 2
A

∂ψ

∂2Y1
∂z2

− dλ1
dψ

Y1
C2
k

, (5.57)

where ψ = ψ1. Using Equation (5.54) yields

∂V 2
A

∂ψ

∣∣∣∣
ψ=ψ1

=
2C2

k(ρi − ρe)

lBR2(ρi + ρe)
. (5.58)

Using this result and Equations (5.13) and (5.55), we obtain

∂3Y1
∂z2∂ψ

+
ω2

C2
k

∂Y1
∂ψ

=

(
2ω2(ρi − ρe)

lBR2(ρi + ρe)
− ∂λ1
∂ψ

)
XY1(ψ1, 0)

C2
k

. (5.59)

Multiplying Equation (5.59) by X, integrating the obtained equation with respect to
z, and using Equation (5.5), (5.20), and (5.37) yields

∆ = −∂λ1
∂ψ

∣∣∣∣
ψ=ψ1

= − 2ω2J

lBR2I
, J =

∫ L/2

−L/2

(ρi − ρe)X
2

(ρi + ρe)C
2
k

dz. (5.60)
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Then, using Equations (5.54) – (5.56) and (5.60), and the relation ρ(ψ1) =
1
2(ρi + ρe),

we obtain from Equation (5.32)

Γ =
π

4
lω2|J |. (5.61)

We employ dimensionless variables proposed in Chapter 3. We solve a linear problem.
Hence, we can fix A at the initial instant arbitrary. If we take A(0) = 1, then A(t)
is the ratio of the current oscillation amplitude to its value at the initial time. We
substitute X for S0 in Equation (5.5). Then, using Equations (3.40), (3.41)–(3.43),
and the relation BR2 = const, we obtain

∂2X

∂Z2
+
̟2Λ4X

4(ζ + 1)

[
ζ exp

(
−κeτ cos πz

2

)
+ exp

(
−κ cos πz

2

)]
= 0, (5.62)

Since the loop is symmetric with respect to the apex point, and we consider the fun-
damental mode, we can solve Equation (5.62) using the boundary conditions

∂X

∂Z
= 0 at Z = 0, X = 0 at Z = 1. (5.63)

The functionX(Z) takes maximum at Z = 0, so we can reduce the condition maxzX(z) =
1 to X(0) = 1. This boundary value problem determines ̟ and X(Z).

Using Equations (3.22), (3.41), (3.41), (3.43), (5.34), (5.60) and (5.61) we obtain

d(̟Π+A
2)

dt
= −α̟2|Π−|A2, (5.64)

where

Π± =

∫ 1

0
X2Λ4

[
ζ exp

(
−κeτ cos πz

2

)
± exp

(
−κ cos πz

2

)]
dZ, (5.65)

α =
πlCf tcool

4L
. (5.66)

The parameter α determines the relative strength of resonant damping and amplifi-
cation caused by cooling. We see that the dependence of the oscillation amplitude is
determined by five non-dimensional parameters: α, ζ, κ, and ϑ.

Numerical solution was obtained using software packages from Wolfram Mathemat-
ica 11.3. To obtain the solution to the eigenvalue problem constituted by Equation
(5.62) with the boundary conditions (5.63) we used the program NDEigenesystem that
calculates the eigenvalue τ and the eigenfunction X(τ, z). Then, we substituted τ and
X(τ, z) in Equation (5.64) and integrated this equation numerically using the program
NIntegrate. By default, this program uses the Global adaptive method that automati-
cally chooses a numerical method that minimises the error. As a result, we calculated
the dependence of A on τ .
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Figure 5.1: The dependence of dimensionless amplitude A of the fundamental mode on
the dimensionless time τ for ζ = 3 and L/Lc = 6 and α = 0. The upper, middle, and
lower panels correspond to κ = 0.5, 1, and 2 , respectively. The solid, dotted, dashed,
and dashed-dotted lines correspond to ϑ = 1, 1.15, 1.3, and 1.5.
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Figure 5.2: The dependence of dimensionless amplitude A of the fundamental mode on
the dimensionless time τ for ζ = 3 and L/Lc = 6 and α = 0.5. The upper, middle, and
lower panels correspond to κ = 0.5, 1, and 2 , respectively. The solid, dotted, dashed,
and dashed-dotted lines correspond to ϑ = 1, 1.15, 1.3, and 1.5.
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Figure 5.3: The dependence of dimensionless amplitude A of the fundamental mode on
the dimensionless time τ for ζ = 3 and L/Lc = 6 and α = 1. The upper, middle, and
lower panels correspond to κ = 0.5, 1, and 2 , respectively. The solid, dotted, dashed,
and dashed-dotted lines correspond to ϑ = 1, 1.15, 1.3, and 1.5.
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In our calculations we took ζ = 3 similarly to Ruderman (2011b) and Ruderman
et al. (2017) and L/Lc = 6. The latest asumption enables us to cover whole range of
reallistic expansion factors ϑ. The function A(t) is calculated numerically for various
values of α, κ and ϑ. The results of these calculations are presented in Figures 5.1–
5.3. We see that when there is no resonant absorption (α = 0) cooling results in the
amplification of oscillations. This result is in a perfect agreement with that obtained
by Ruderman (2011a), Ruderman (2011b), and Ruderman et al. (2017).

As we have already pointed out, our analysis describes competition between the am-
plification of oscillations due to cooling and damping of oscillations caused by resonance
absorption. We found that the magnetic tube expansion enhances the amplification.
As a result, when there is no resonant absorption the larger the tube expansion the
faster the oscillation amplitude grows. When resonant absorption is present, the larger
the tube expansion the slower the oscillation amplitude decays. For particular val-
ues of parameters the tube expansion we even can have the oscillation damping in a
non-expanding tube, and the oscillation amplification in an expanding tube.

Another interesting results is that the amplification due to cooling may result in
local increase of the amplitude for particular values of parameter, with overall damping
of kink oscillation. Those the presence of cooling may be the good candidate for physical
mechanism of recently found kink oscillations with varying amplitude profile (see e.g.
Pascoe et al., 2016).

Now, we introduce the critical value of α defined by the condition that A(1) = A(0)
for α = αc. That means that the oscillation amplitude at t = tcool is equal to its initial
amplitude. Similarly, we introduce the critical value of transitional layer thickness, lc,
given by

lc =
4αcL

πCf tcool
. (5.67)

1.1 1.2 1.3 1.4 1.5
ϑ

0.1

0.2

0.3

0.4

0.5

0.6

αc(ϑ)

Figure 5.4: Dependence of critical value αc on expansion factor ϑ. The solid, dotted,
dashed, and dash-dotted lines correspond to κ = 0.5, 1, 1.5, and 2, respectively.
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When l = lc the damping due to resonant absorption is balanced by amplification
due to cooling. Figure 5.4 shows the dependence of αc on ϑ for various values of κ.
Again, we see that the tube expansion enhances the effect of the amplitude ampli-
fication. What is also interesting, is that the dependence of this effect on κ is not
monotonic. The effect increases when κ changes from 0.5 to 1, and then is becoming
weaker when κ further increases.

§ 5.4 Summary

Here, we summarise results obtained in Chapter 5. First, we returned to the original
equilibrium configuration proposed in Chapter 2. We then used WKB approximation
and results presented in Chapter 4. As a result, we obtained jumps of pressure and
displacement across transitional layer to close the system of main governing equations.
That enabled us to proceed further with the theoretical analysis, to obtain equations
for decrement, frequency and time evolution of amplitude of kink oscillations of coronal
loops (Equations (5.32) – (5.35)). In case of analogous to Chapter 4 density stratifica-
tion, the ratio of decrement of kink oscillations to oscillation frequency coincides with
one obtained in Chapter 4.

Then we employed the model of loop cross-section variation proposed by Ruderman
et al. (2008). That enabled us to numerically solve the Equation (5.34), which describes
the time evolution of amplitude. We concluded that the loop expansion acts in favour
of oscillation amplification. In the absence of damping due to the resonant absorption,
the increase in loop expansion causes the faster growth of the oscillation amplitude.
The similar conclusion was obtained in Chapter 3. In case the resonant absorption
is present there are three possible scenarios of the oscillation amplitude behaviour.
First, coronal loop expansion can reduce the damping rate. Secondly, expansion can
balance out the damping, so that the amplitude before and after cooling stays the same.
Thirdly, the most interesting result is that loop expansion may amplify the amplitude
of loop oscillation, even in the presence of resonant absorption. These results have a
particular interest to the coronal seismology. First of all, it presents that cooling is a
good candidate for a mechanisms for the recently observed non-damped and amplified
kink oscillations of cooling coronal loops. Secondly, it suggests that expansion and the
ratio of tube length to scale height have significant effect on the amplitude profile for
kink oscillations and thus have a particular importance to be taken in consideration.
Finally, this model allows to obtain the estimate for the length of the transitional layer
for various profiles of a kink oscillations amplitude evolution.

We introduced the relative strength of resonant damping and amplification caused
by cooling. Then we defined its critical value for which the oscillation amplitude before
and after cooling does not change. Finally, we numerically found the dependence of
this critical value on the expansion factor. We concluded that increase in expansion
factor amplifies the critical value of the relative strength of resonant damping and
amplification caused by cooling.
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§ 6.1 Summary

This thesis is built on my earlier works published as Ruderman et al. (2017), Shukho-
bodskiy and Ruderman (2018), and Shukhobodskiy et al. (2018). Chapter 2 and 3 are
mainly based on Ruderman et al. (2017). Chapter 4 is mainly based on Shukhobodskiy
and Ruderman (2018). Finally Chapter 5 is based on Shukhobodskiy et al. (2018). In
this thesis we studied kink oscillations of coronal loops. The plasma structure was con-
sidered as straight cylindrical magnetic flux tube with a background flow inside them.
The magnetic flux tube was divided in core and transitional region of thickness l. In
the transitional region the density was assumed to decrease from a higher value inside
the tube to the lower value in surrounding plasma. This model was studied throughout
this thesis analytically and numerically.

In Chapter 2 we derived the main governing equations of this thesis. Equations
(2.75) and (2.76) are used throughout this thesis to study various effects on kink oscil-
lations of magnetic flux tube, such as damping of oscillation amplitude due to resonant
absorption, oscillation amplitude amplification during the cooling process and the effect
of background flow on oscillation frequency and amplitude.

Note that we only kept terms of the order of the constant determining the thickness
of transitional layer, l ≪ 1, when deriving Equation (2.76), while we neglected terms
of higher order with respect to l. When there is no transitional layer (l = 0) we have
L = 0 and Equation (2.75) governs the kink oscillations of a thin expanding magnetic
tube with a background field-aligned flow. However, in the presence of the transitional
layer the system of Equations (2.75) and (2.76) is not closed. To close the system one
needs to express the jump of plasma displacement across transitional layer divided by
the tube radius, δη, and the jump of plasma pressure across the transitional layer, δP ,
in terms of plasma displacement of the magnetic flux tube boundary divide by its radius
η.

When there is no flow (U = 0) and no transitional region (l = 0) Equation (2.75)
reduces to the equation describing the kink oscillations of a thin expanding magnetic
tube derived by Ruderman et al. (2008). On the other hand, when there is no expan-
sion (R = const), Equations (2.75) and (2.76) reduce to Equations (23) and (24) in
Ruderman (2011a) describing resonantly damped kink oscillations of a thin magnetic
tube with non-stationary density and flow. Note that the expression for L given by
Equation (2.76) is slightly different from that given by Equations (24) in Ruderman
(2011a). However, it is straightforward to show using Equation (2.75) that the differ-
ence between RL with L given by Equation (2.76) and L given by Equations (24) in
Ruderman (2011a) is of the order of l2.

In Chapter 3 we used the governing equations derived in Chapter 2 to study the
effect of background flow on kink oscillations. We assumed that there is no transitional
layer, which implies that the oscillations are described by Equation (2.75). First we
studied the general properties of the eigenvalue problem governing the kink oscillations
and proved that the frequencies of all eigenmodes are real. Then, we numerically
studied the effect of siphon flows on the fundamental frequency and on the ratio of
the frequencies of the first overtone and fundamental mode of kink oscillations of a
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loop with a half-circle shape. The general conclusion is that the effect of a realistic
background flow, with flow speed not exceeding 100 kms−1, is weak (see e.g. Schrijver,
2001). Depending on the tube and flow parameters, the background flow can either
increase or decrease both the fundamental frequency and the ratio of the frequencies of
the first overtone and fundamental mode of kink oscillations of a loop. An interesting
result is that for sufficiently strong tube expansion the ratio of frequencies exceeds two.
This result is related to the fact that the tube expansion reduces the magnitude of the
magnetic field. For sufficiently strong tube expansion this reduction of the magnetic
field magnitude dominates the decrease of the density with height due to gravitational
stratification. As a result, the kink speed decreases from its value of the tube footpoint
to its apex.

Then we used the WKB method to derive the expression for adiabatic invariant,
which is the quantity that is conserved while the plasma density changes. We assumed
that the plasma density inside the loop depends exponentially. Then we numerically
calculated the time dependence of the fundamental mode frequency, the ratio of fre-
quencies of the first overtone and fundamental mode, and the oscillation amplitude.

The numerical results can be summarised as follows. Cooling causes an increase
in the oscillation frequency and a decrease in the ratio of frequencies of the first over-
tone and fundamental mode. This is a generalisation of the results previously obtained
by Morton and Erdélyi (2009, 2010) and Ruderman (2011b). Cooling also causes the
enhancement of the oscillation amplitude. Previously, this result was obtained by Ru-
derman (2011b) for non-expanding loops. The amplitude enhancement due to cooling
becomes stronger when the loop expansion increases. This effect is more pronounced
for longer loops. However, amplitude enhancement due to cooling is very moderate
even for loops where the height is equal to the two times the initial atmospheric scale
height.

In Chapter 4, we studied resonant damping of kink oscillations of thin expanding
and stratified magnetic flux tubes. Our analysis is based on the equations describing
kink oscillations of expanding flux tubes derived by in Chapter 2. This system is not
closed because it contains the jumps of the magnetic pressure and plasma displacement
across the transitional layer where the plasma density decreases from its value in the
tube core region to that in the surrounding plasma. We derived expressions for these
quantities thus closing the system.

We used the obtained jumps across the transitional layer to calculate the decre-
ments of eigenmodes of the tube kink oscillations. We generalised the definition of
homogeneous stratification formulated by Dymova and Ruderman (2006a). We defined
homogeneous stratification as the condition that the ratio of densities in the tube core
region and outside the tube does not vary along the tube, and the density in the transi-
tional layer can be factorised and written as a product of two function, one depending
on the coordinate along the tube and the other depending on the magnetic flux func-
tion. Although at first sight this assumption looks artificial, in fact it is quite viable.
If the temperature does not change across the tube and in its vicinity, then the density
variation along a magnetic line in the tube and in its vicinity is the same along this
arbitrary line, while its absolute value can change from line to line. The main result
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is that, under the assumption of homogeneous stratification, the ratio of decrement
and oscillation frequency is independent of a particular form of the density and tube
cross-section radius variation along the tube, and it is also the same for any oscillation
eigenmode. This result has an important implication for coronal seismology. The find-
ing enables us not to care about the coronal loop expansions and density variation along
the loops when using the observed damping of kink oscillations to obtain information
about the radial structure of the loops.

In Chapter 5, we studied the process of resonant damping of kink oscillations of
cooling coronal magnetic loops. A coronal magnetic loop is modelled by a thin straight
magnetic tube with the plasma density and the cross-section radius varying along the
tube. The equilibrium plasma density is approximately independent of the radial co-
ordinate inside the core of the tube and outside of the tube. However, it varies in the
radial direction from its value in the core region to its value outside of the tube in a
thin transitional layer. This density variation results in the presence of resonant ab-
sorption. We use the system of two equations describing oscillations of non-stationary
magnetic tubes in the presence of resonance absorption in the thin tube approximation
that were derived by Ruderman et al. (2017). This system contains three dependent
variables: the tube displacement η, the jumps of the plasma displacement and the
magnetic pressure perturbation across the transitional layer in a cold plasma.

The system is not closed. To close it, we need to express the jumps of the plasma
displacement and the magnetic pressure perturbation in terms of η. Shukhobodskiy and
Ruderman (2018) has done this. The derivation of jumps was shown in Chapter 4 in the
case of static magnetic tubes, under the assumption that the density in the transitional
layer can be factorised and written as a product of two functions, one depending on
the coordinate along the tube and the other depending on the magnetic flux function.
However, we cannot make this assumption here, when a loop is dynamic, because even
if the condition is initially satisfied it will not be valid later because the density is
changing with time. Hence, we adapted the derivation given by Shukhobodskiy and
Ruderman (2018) and shown in Chapter 4. Eventually, we derived Equation (5.34)
describing the evolution of the oscillation amplitude. In the absence of transitional
layer Equation (5.34) reduces to the conservation of an adiabatic invariant previously
derived by Ruderman et al. (2017). The derivation was also shown in Chapter 3, where
there is no resonant absorption.

We studied the evolution of amplitude of kink oscillation of a cooling coronal mag-
netic loop. The cooling causes the amplification of loop oscillation, while resonant
absorption causes its decay. Hence, the governing equation for the oscillation ampli-
tude describes the competition between the amplification and damping. This equation
was solved numerically. There are numerous observations of expanding coronal loops.
However the effect of expansion is not fully understood. Our main aim was to study
the effect of the loop expansion on the evolution of the amplitude of transversal oscil-
lations. We found that the loop expansion acts in favour of oscillation amplification.
When there is no damping due to resonant absorption the larger the loop expansion the
faster the oscillation amplitude growths. If resonant absorption is present then the loop
expansion either reduces the damping rate, or even can turn it into the amplification
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of oscillation.

We also considered the possibility of oscillations that are not amplified and also do
not decay. We define such oscillations as those with the amplitude at the cooling time
tcool equal to its initial value. In this case, there is the balance between the amplification
due to cooling and decay due to resonant absorption. Again, we found that the loop
expansion acts in favour of amplification. As a result, the larger the loop expansion the
stronger resonant absorption can be counterbalanced by cooling with the same cooling
rate.

§ 6.2 Discussion

In this thesis we studied kink oscillation of straight magnetic flux tube in a presence of
bulk flow. There are several possibilities to improve such a model which we considered
here. As we know from observations, the coronal loops are not straight magnetic flux
tubes. This is one of simplifications used to be able to proceed with theoretical results
more easily. The simplification is in agreement with some observations. However,
Dymova and Ruderman (2006b) showed that the effect of the geometry on the ratio
of periods of the fundamental mode and first overtone is considerable for the non-
expanding magnetic flux tube with circular shape. Therefore, it will be interesting to
understand how the expansion of cross-section will affect kink oscillations for various
geometrical shapes of the magnetic flux tube. For example we may consider the same
model, however instead of the straight magnetic flux tube we may consider half-circular
shape of an expanding coronal loop and take into account the effect of gravity.

Another option is to consider the different shape of coronal loop cross-section. In
this thesis we considered circular cross-section as its symmetry considerably simplifies
theoretical analysis. However, this shape might be not the only one that is applicable
for modelling loop oscillations. It will be of great interest to consider also coronal loops
of other cross-section shape. One of the options is the elliptic cross-section option (see
e.g. Ruderman, 2003). The effect of resonant damping on kink oscillations of such
shape for straight non-expanding magnetic flux tube was studied by Ruderman (2003).
This study showed that there are only two kink modes and the other are fluting. With
one kink mode polarised on semi-major half axis and another polarised on semi-minor
half-axis. The decrements of such oscillation is not much different in case the ratio of
semi major half axis on semi manor half axis does not exceed 2. As a result, it will
be of a great interest to consider elliptic shape of cross-section for expanding tube.
Nevertheless, there are several potential difficulties which may arise. First, in case of
an elliptic shape, expansion will not only depend on the vertical component of straight
magnetic flux tube but also on the azimuthal component. The second difficulty is
that the tube is not symmetric, it is not clear what kind of expansion is appropriate
to consider. One option is to consider the uniform expansion of cross-section. That
means, the expansion which varies in a uniform manner around the original footpoint
of a elliptic shape cross-section. Another option is to consider expansion which varies
only along the semi-major or semi minor lines of elliptical cross-section.

Finally, observations suggest that some of the coronal loops are magnetically twisted.



CHAPTER 6. CONCLUSION 105

Such twist may arise due to electric current moving along the tube. Such a model was
firstly introduced by Alfvén (1950). Erdélyi and Fedun (2010) studied propagating
magneto-acustic waves in the weakly twisted magnetic flux tubes, for sausage, kink
and fluting modes. Erdélyi and Fedun (2010) found out that the fast kink modes of
propagting waves under photospheric conditions are either none existent, or very small.
One of more recent theoretical results for standing waves include the model introduced
by Ruderman (2007). In this model the twist has not affected the ratio of frequencies
of fundamental mode on first overtone for standing kink oscillations. In the model
proposed by Ruderman and Terradas (2015) twist indeed does affect the ratio of fre-
quencies of fundamental mode on first overtone for standing kink oscillations. Thus, it
will be of a particular interest to theoretically analyse the combined effect of magnetic
field twist and cross-section expansion of a mangetic flux tube. One of such possibili-
ties is to modify the model proposed in this thesis by adding twist to the background
magnetic field. The potential difficulty is that even for the case of straight magnetic
flux tube theoretical analysis is complicated. Adding another level of complexity will
complicate analysis even further.
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Appendix A

Derivation of Governing Equation

§A.1 Total Derivative in Lagrangian representation

Let a be a position of Lagrangian particle defined by position vector a. The trajectory
of this particle is given by x = x(t,a), such that x(0,a) = a. Let us assume that two
points have two positions a and a+ da. Then

x = x(t,a), (A.1)

x+ dx = x(t,a+ da). (A.2)

In addition it follows from chain rule that for vector

dxi =
∂xi
∂aj

daj, (A.3)

where indices i, j ∈ [1, n] ∀n ∈ N indicate the respectful scalar components of vector.
As a result, it follows from Equations (A.1) – (A.3) and the chain rule that,

dxi
dt

=
∂vi
∂aj

daj, (A.4)

where

v =
∂x

∂t
. (A.5)

Therefore, Equation (A.4) can be rewritten as

d(dx)

dt
= (dx · ∇)v. (A.6)
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§A.2 Transformation of Governing Equations

We define ξ‖ and ξ⊥ as

ξ‖ =
ξrBr + ξzBz

B
, (A.7)

ξ⊥ =
ξrBz − ξzBr

B
. (A.8)

Thus, following definitions in Chapter 2 we have from Equations (A.7) and (A.8) that

ξ = ξ⊥

(
φ̂× b0

)
+ ξφφ̂+ ξ‖b0 (A.9)

and

ξ1 = ξ⊥

(
φ̂× b0

)
+ ξφφ̂, (A.10)

where φ̂ is the unit vector in the azimuthal direction. Also, rearranging (A.9) and
(A.10), we have

ξr = ξ‖b0r + ξ⊥b0z (A.11)

and

ξz = ξ‖b0z − ξ⊥bor. (A.12)

Similarly for the parallel and perpendicular components of the velocity change u are

u‖ =
urBr + uzBz

B
(A.13)

and

u⊥ =
urBz − uzBr

B
. (A.14)

Therefore, we obtain from Equations (A.13) and (A.14) that

u = u⊥

(
φ̂× b0

)
+ uφφ̂+ u‖b0 (A.15)

and we define

u1 = u⊥

(
φ̂× b0

)
+ uφφ̂, (A.16)

Then, rewriting Equations (A.13) and (A.14), yields

ur = u‖b0r + u⊥b0z (A.17)

and

uz = u‖b0z − u⊥b0r. (A.18)

Applying Equations (A.11) and (A.12) on terms on the right hand side of Equation
(2.16), we have

ξ‖(∇ ·U) = ξ‖

(
1

r

∂rUr
∂r

+
∂Uz
∂z

)
, (A.19)
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U (∇ · ξ) = U

[
1

r

∂

∂r

(
r
(
b0zξ⊥ + ξ‖b0r

))
+

1

r

∂ξφ
∂φ

+
∂

∂z

(
ξ‖b0z − ξ⊥b0r

) ]
(A.20)

and

1

B
∇ · (BUξ1) =

1

B

[
1

r

∂

∂r
(rBzUξ⊥) +

BU

r

∂ξφ
∂φ

− ∂

∂z
(BrUξ⊥)

]
. (A.21)

Therefore, using Equations (A.19) – (A.21), Equation (2.17) becomes

∂ξ‖

∂t
=

1

B

[
1

r

∂

∂r
(rBzUξ⊥) +

BU

r

∂ξφ
∂φ

− ∂

∂z
(BrUξ⊥)

]

+ ξ‖

(
1

r

∂(rUr)

∂r
+
∂Uz
∂z

)
− U

[
1

r

∂

∂r

(
r
(
b0zξ⊥ + ξ‖b0r

))

+
1

r

∂ξφ
∂φ

+
∂

∂z

(
ξ‖b0z − ξ⊥b0r

) ]
. (A.22)

Then, rewriting Equation (A.22) yields

∂ξ‖

∂t
= b0z

∂(U0ξ⊥)

∂r
+
U0ξ⊥
B0r

∂(rB0z)

∂r
+
U0

r

∂ξφ
∂φ

− b0r
∂(U0ξ⊥)

∂z

− U0ξ⊥
B0

∂B0r

∂z
+ ξ‖

(
1

r

∂(rUr)

∂r
+
∂Uz
∂z

)
− U0ξ⊥

r

∂(rb0z)

∂r
− b0zU0

∂ξ⊥
∂r

− U0

r

∂(rξ‖b0r)

∂r
− U0

r

∂ξφ
∂φ

− U0

∂(ξ‖b0z)

∂z
+ U0ξ⊥

∂b0r
∂z

+ U0b0r
∂ξ⊥
∂z

. (A.23)

Expanding Equation (A.23) we obtain

∂ξ‖

∂t
= b0zξ⊥

∂U

∂r
+ b0zU

∂ξ⊥
∂r

+
Uξ⊥b0z
B

∂B

∂r
+
Uξ⊥
r

∂(rb0z)

∂r

− ξ⊥b0r
∂U

∂z
− Ub0r

∂ξ⊥
∂z

− U0ξ⊥
∂b0r
∂z

− Uξ⊥b0r
B

∂B

∂z

+ ξ‖

(
1

r

∂(rUr)

∂r
+
∂Uz
∂z

)
− Uξ⊥

r

∂(rb0z)

∂r
− b0zU

∂ξ⊥
∂r

−
Uξ‖

rB

∂(rBr)

∂r

− UBr
∂

∂r

(
ξ‖

B

)
−
Uξ‖

B

∂Bz
∂z

− UBz
∂

∂z

(
ξ‖

B

)
+ U0ξ⊥

∂b0r
∂z

+ U0b0r
∂ξ⊥
∂z

. (A.24)

Then, applying Equations (2.12) and (2.12) on Equation (A.24), we have

∂ξ‖

∂t
=
ξ⊥
B0

(
b0z

∂

∂r
(BU)− b0r

∂

∂z
(BU)

)

− U2

[
bor

∂

∂r

(
ξ‖

U

)
+ b0z

∂

∂z

(
ξ‖

U

)]
. (A.25)
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Now, employing Equations (A.11) and (A.12) on Equation (2.25), it follows that mag-
netic pressure perturbation is described by

P = − 1

µ0r

∂

∂r
(rBzw)−

B2

µ0r

∂ξφ
∂φ

+
1

µ0

∂

∂z
(Brw) , (A.26)

where w = B0ξ⊥.
Let us consider the right-hand side of equation (2.26). Rewriting it in cylindrical

coordinates, we obtain

ξ ×B = ξφBzr̂ − ξ⊥Bφ̂− ξφBrẑ, (A.27)

where r̂ is a unit vector in radial direction and ẑ is a unit vector in z direction. It
follows from equation (A.27) that

∇× (ξ ×B) =

(
−Br
r

∂ξφ
∂φ

+
∂w

∂z

)
r̂ +

(
∂(ξφBz)

∂z
+
∂(ξφBr)

∂r

)
φ̂

− 1

r

(
∂(rw)

∂r
+Bz

∂ξφ
∂φ

)
ẑ. (A.28)

Taking curl of Equation (A.28), yields

∇×∇× (ξ ×B) =

[
1

r

∂

∂φ

(
− 1

r

(
∂

∂r
(rw) +Bz

∂ξφ
∂φ

))
− ∂

∂z

(
∂(ξφBz)

∂z

+
∂(ξφBr)

∂r

)]
r̂ +

[
∂

∂z

(
−1

r

∂(ξφBr)

∂φ
+
∂w

∂z

)

+
∂

∂r

(
1

r

(
∂

∂r
(rw) +Bz

∂ξφ
∂φ

))]
φ̂

+
1

r

[
∂

∂r

(
r

(
∂(ξφBz)

∂z
+
∂(ξφBr)

∂r

))

− ∂

∂φ

(
−1

r

∂(ξφBr)

∂φ
+
∂w

∂z

)]
ẑ. (A.29)

Considering the r̂ component term of Equation (A.29) and employing Equations (2.2)
and (2.4), we obtain

1

r

∂

∂φ

(
1

r

(
∂

∂r
(rw) +Bz

∂ξφ
∂φ

))
+

∂

∂z

(
∂(ξφBz)

∂z
+
∂(ξφBr)

∂r

)
=

1

r2

[
∂

∂r

(
rB

∂ξ⊥
∂φ

)
+Bz

∂2ξφ
∂φ2

]
+

∂

∂z

(
Br
∂ξφ
∂r

+Bz
∂ξφ
∂z

− Br
r
ξφ

)
. (A.30)

Using Equations (2.2) and (2.4) we rewrite the term with φ̂ in Equation (A.29) as
follows

∂

∂z

[
∂w

∂z
− Br

r

∂ξφ
∂φ

]
+

∂

∂r

[
1

r

∂

∂r
(rw) +

Bz
r

∂ξφ
∂φ

]
=
∂2w

∂z2

+
∂

∂r

(
1

r

∂

∂r
(rw)

)
− Br

r

∂2ξφ
∂φ∂z

+Bz
∂

∂r

(
1

r

∂ξφ
∂φ

)
. (A.31)
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Then, using Equation (2.2) and (2.4) on the ẑ-component term of Equation (A.29), the
multiple of 1/r in ẑ component term becomes

∂

∂r

[
r

(
∂(Bzξφ)

∂z
+
∂(Brξφ)

∂r

)]
− ∂

∂φ

[
∂w

∂z
− Br

r

∂ξφ
∂φ

]
=

∂

∂r

[
r2Br

∂

∂r

(
ξφ
r

)
+ rBz

∂ξφ
∂z

]
− ∂2w

∂φ∂z
+
Br
r

∂2ξφ
∂φ2

. (A.32)

As a result, it follows from Equations (A.30) – (A.32) that Equation (A.29) turns into

∇×∇× (ξ ×B) = −
{

1

r2

[
∂2(rw)

∂φ∂r
+Bz

∂2ξφ
∂φ2

]
+

∂

∂z

[
rBr

∂

∂r

(
ξφ
r

)

+Bz
∂ξφ
∂z

]}
r̂ +

{
∂

∂r

(
1

r

∂

∂r
(rw)

)
+
∂2w

∂z2

+Bz
∂

∂r

(
1

r

∂ξφ
∂φ

)
− Br

r

∂2ξφ
∂φ∂z

}
φ̂+

{
1

r

∂

∂r

[
r2

×Br
∂

∂r

(
ξφ
r

)
+ rBz

∂ξφ
∂z

]
− 1

r

∂2w

∂φ∂z

+
Br
r2
∂2ξφ
∂φ2

}
ẑ. (A.33)

Now, we have

∇× u =

(
1

r

∂uz
∂φ

− ∂uφ
∂z

)
r̂ +

(
∂ur
∂z

− ∂uz
∂r

)
φ̂+

1

r

(
∂(ruφ)

∂r
− ∂ur

∂φ

)
ẑ. (A.34)

Considering the φ̂ component term of Equation (A.34) and employing Equations (A.18)
and (A.19), we obtain

∂

∂z

(
u‖Br + u⊥Bz

B

)
− ∂

∂r

(
u‖Bz − u⊥Br

B

)
= Br

[
r
∂

∂r

(u⊥
rB

)

+
∂

∂z

(u‖
B

)]
+Bz

[
∂

∂z

(u⊥
B

)
− ∂

∂r

(u‖
B

) ]
. (A.35)

Then, using Equations (2.2), (A.18), (A.19) and (A.35), Equation (A.34) becomes

∇× u =

{
1

r

(
b0z

∂u‖

∂φ
− b0r

∂u⊥
∂φ

)
− ∂uφ

∂z

}
r̂ +

{
Br

[
r
∂

∂r

(u⊥
rB

)

+
∂

∂z

(u‖
B

)]
+Bz

[
∂

∂z

(u⊥
B

)
− ∂

∂r

(u‖
B

)]}
φ̂+

1

r

{
∂(ruφ)

∂r

− b0r
∂u‖

∂φ
− b0z

∂u⊥
∂φ

}
ẑ. (A.36)
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It follows from Equations (A.33) and (A.36) that

U∇× u− B

µ0ρ
∇×∇× (ξ ×B) =

{
U

[
1

r

(
b0z

∂u‖

∂φ
− b0r

∂u⊥
∂φ

)
− ∂uφ

∂z

)]

+
B

µ0ρ

[
1

r2

(
∂2(wr)

∂φ∂r
+Bz

∂2ξφ
∂φ2

)
+

∂

∂z

(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

]}
r̂

+

{
U

[
Br

(
r
∂

∂r

(u⊥
rB

)
+

∂

∂z

(u‖
B

))
+Bz

(
∂

∂z

(u⊥
B

)
− ∂

∂r

(u‖
B

))]

− B

µ0ρ

[
∂

∂r

(
1

r

∂(rw)

∂r

)
+
∂2w

∂z2
+B0z

∂

∂r

(
1

r

∂ξφ
∂φ

)
− Br

r

∂2ξφ
∂φ∂z

]}
φ̂

+

{
U

r

[
∂(ruφ)

∂r
− b0r

∂u‖

∂φ
− b0z

∂u⊥
∂φ

]
− B

µ0ρ

[
1

r

∂

∂r

(
r2Br

∂

∂r

(
ξφ
r

)

+ rBz
∂ξφ
∂z

)
− 1

r

∂2w

∂φ∂z
+
Br
r2
∂2ξφ
∂φ2

]}
ẑ. (A.37)

Let

Q = U∇× u− 1

µ0ρ
∇×∇× (ξ ×B) . (A.38)

Then, applying Equation (A.38) on Equation (2.26), we have

∂u

∂t
= b0 ×Q = −b0zQφr̂ + (b0zQr − b0rQz) φ̂+ b0rQφẑ. (A.39)

Using Equations (2.2), (2.4), (A.37) and (A.38) we rewrite the φ̂ component term of
Equation (A.39) as

b0zQr − b0rQz = U0

[
1

r

(
∂u‖

∂φ
− b0r

∂(ruφ)

∂r

)
− b0z

∂uφ
∂z

]
+

B

µ0ρ

[
B

r2
∂2ξφ
∂φ2

+
b0z
r2

∂2(rw)

∂φ∂r
− b0r

r

∂2w

∂φ∂z
+
b0r
r

∂

∂r

(
r2B0r

∂

∂r

(
ξφ
r

)

+ rBz
∂ξφ
∂z

)
+ b0z

∂

∂z

(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

)]
. (A.40)

Substituting Equation (A.40) to Equation (A.39), we obtain

∂u

∂t
= −b0zQφr̂ +

{
U0

[
1

r

(
∂u‖

∂φ
− b0r

∂(ruφ)

∂r

)
− b0z

∂uφ
∂z

]
+
B0

µ0ρ

[
B0

r2
∂2ξφ
∂φ2

+
b0z
r2
∂2(rw)

∂φ∂r
− b0r

r

∂2w

∂φ∂z
+
b0r
r

∂

∂r

(
r2B0r

∂

∂r

(
ξφ
r

)
+ rB0z

∂ξφ
∂z

)

+ b0z
∂

∂z

(
rB0r

∂

∂r

)(
ξφ
r

+B0z
∂ξφ
∂z

)]}
φ̂+ b0rQφẑ. (A.41)
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Next, we assume that u‖ = 0 at t = 0. As a result Equation (A.41) can be rewritten as

∂u

∂t
= −b0z

{
U

[
rBr

∂

∂r

(u⊥
rB

)
+Bz

∂

∂z

(u⊥
B

)]
− B

µ0ρ

[
∂

∂r

(
1

r

∂(rw)

∂r

)

+
∂2w

∂z2
+Bz

∂

∂r

(
1

r

∂ξφ
∂φ

)
− Br

r

∂2ξφ
∂φ∂z

]}
r̂ +

{
U

[−b0r
r

∂(ruφ)

∂r

− b0z
∂uφ
∂z

]
+

B

µ0ρ

[
B

r2
∂2ξφ
∂φ2

+
b0z
r2
∂2(rw)

∂φ∂r
− b0r

r

∂2w

∂φ∂z

+
b0r
r

∂

∂r

(
r2Br

∂

∂r

(
ξφ
r

)
+ rBz

∂ξφ
∂z

)
+ b0z

∂

∂z

(
rB0r

∂

∂r

(
ξφ
r

)

+Bz
∂ξφ
∂z

)]}
φ̂+ b0r

{
U

[
rBr

∂

∂r

(u⊥
rB

)
+Bz

∂

∂z

(u⊥
B

)]

− B

µ0ρ

[
∂

∂r

(
1

r

∂(rw)

∂r

)
+
∂2w

∂z2
+Bz

∂

∂r

(
1

r

∂ξφ
∂φ

)
− Br

r

∂2ξφ
∂φ∂z

]}
ẑ. (A.42)

Expressing Equation (A.42) in components, we obtain

∂uφ
∂t

= −U
[
b0r
r

∂(ruφ)

∂r
+ b0z

∂uφ
∂z

]
+

B

µ0ρ

[
B

r2
∂2ξφ
∂φ2

+
b0z
r2

∂2(rw)

∂φ∂r

− b0r
r

∂2w

∂φ∂z
+
b0r
r

∂

∂r

(
r2Br

∂

∂r

(
ξφ
r

)
+ rBz

∂ξφ
∂z

)

+ b0z
∂

∂z

(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

)]
, (A.43)

∂u⊥
∂t

= −U
[
rBr

∂

∂r

(u⊥
rB

)
+Bz

∂

∂z

(u⊥
B

)]
+

B

µ0ρ

[
∂

∂r

(
1

r

∂(rw)

∂r

)

+
∂2w

∂z2
+Bz

∂

∂r

(
1

r

∂ξφ
∂φ

)
− Br

r

∂2ξφ
∂φ∂z

]
. (A.44)

Also, by the means of using Equation (2.4), Equation (2.25) becomes

P = − 1

µ0

(
B0z

r

∂(rw)

∂r
+
B2

0

r

∂ξφ
∂φ

−B0r
∂w

∂z

)
. (A.45)

Applying Equation (A.45) on Equations (A.43), we obtain

∂uφ
∂t

= −U
[
b0r
r

∂(ruφ)

∂r
+ b0z

∂uφ
∂z

]
+

1

ρ

[
− ∂

∂φ

(
P

r

)
+
Br
rµ0

∂

∂r

(
r2Br

× ∂

∂r

(
ξφ
r

)
+ rBz

∂ξφ
∂z

)
+
Bz
µ0

∂

∂z

(
rBr

∂

∂r

(
ξφ
r

)
+Bz

∂ξφ
∂z

)]
. (A.46)



Appendix B

WKB Approximation

Here, we show the detailed expansion of the governing Equations (2.75) and (2.76) using
Wentzel-Krammers-Brillounin (WKB) method (see, eg. Bender and Orszag, 1978).
First, we introduce the scaled magnetic field B̃ = ǫB, then we rewrite Equations (2.75)
and (2.76) as follows

ρi

(
∂

∂t
+
Ui
R2

∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2ǫ−2B̃2

µ0

∂2η

∂z2
= L, (B.1)

L =
δP

R2
+
ǫ−2B̃2

µ0

∂2(lη + δη)

∂z2
− ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂

∂t
+ Ue

∂

∂z

)

× (lη + δη). (B.2)

In accordance with WKB method, we seek the solution to this Equations (B.1) and
(B.2) in the form of

η = S(t, z) exp[iǫ−1θ(t)]. (B.3)

We expand S in the series
S = S0 + ǫS1 + · · · . (B.4)

Since B̃ = ǫB, using Equation (2.38), we have P ∼ ǫ−2 and thus it follows from
Equation (2.73) that δP ∼ ǫ−2. Substituting Equation (B.3) to Equations (B.1) and
(B.2), yields

ρi

(
∂

∂t
+
Ui
R2

∂

∂z
R2

)(
∂

∂t

(
S(t, z)e−iǫ

−1θ(t)
)
+ Ui

∂

∂z

(
S(t, z)e−iǫ

−1θ(t)
))

+ ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂

∂t

(
S(t, z)e−iǫ

−1θ(t)
)
+ Ue

∂

∂z

(
S(t, z)e−iǫ

−1θ(t)
))

− 2ǫ−2B̃2

µ0

∂2

∂z2

(
S(t, z)e−iǫ

−1θ(t)
)
= L, (B.5)

119



120

L =
ǫ−1δP̃

R2
+
ǫ−2eiǫ

−1θ(t)B̃2

µ0

∂2(lS(t, z) + ǫδS̃)

∂z2

− ρee
iǫ−1θ(t)

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂

∂t
+ Ue

∂

∂z

)
× (lS(t, z) + ǫδS̃), (B.6)

where

δη = δS exp(iǫ−1θ(t)), δS̃ = ǫ−1δS, δP̃ = ǫδP. (B.7)

We expand the first term (term containing elements with subscript i) of equation (B.5),
to obtain

ρi

(
∂

∂t
+
Ui
R2

∂

∂z
R2

)(
∂

∂t

(
S(t, z)e−iǫ

−1θ(t)
)
+ Ui

∂

∂z

(
S(t, z)e−iǫ

−1θ(t)
))

= ρi

[
eiǫ

−1θ(t) ∂
2S(t, z)

∂t2
+ iǫ−1eiǫ

−1θ(t) ∂S(t, z)

∂t

∂θ(t)

∂t

− ǫ−2eiǫ
−1θ(t)S(t, z)

(
∂θ(t)

∂t

)2

+ iǫ−1eiǫ
−1θ(t) ∂S(t, z)

∂t

∂θ(t)

∂t

+ iǫ−1S(t, z)eiǫ
−1θ(t) ∂

2θ(t)

∂t2
+ eiǫ

−1θ(t) ∂Ui
∂t

∂S(t, z)

∂z

+ eiǫ
−1θ(t)Ui

∂2

∂z∂t
(S(t, z)) + iǫ−1eiǫ

−1θ(t)Ui
∂S(t, z)

∂z

∂θ(t)

∂t

+
2Ui
R

∂R

∂z

(
eiǫ

−1θ(t) ∂S(t, z)

∂t
+ iǫ−1eiǫ

−1θ(t)S(t, z)
∂θ(t)

∂t
+ eiǫ

−1θ(t)Ui
∂S(t, z)

∂z

)

+ Ui

(
eiǫ

−1θ(t) ∂
2(S(t, z))

∂z∂t
+ iǫ−1eiǫ

−1θ(t) ∂S(t, z)

∂z

∂θ(t)

∂t

+ eiǫ
−1θ(t) ∂Ui

∂z

∂S(t, z)

∂z
+ eiǫ

−1θ(t)Ui
∂2S(t, z)

∂z2

)]
. (B.8)

Similarly, we expand the second term (term containing elements with subscript e) of
Equation (B.5), to obtain

ρe

(
∂

∂t
+
Ue
R2

∂

∂z
R2

)(
∂

∂t

(
S(t, z)e−iǫ

−1θ(t)
)
+ Ue

∂

∂z

(
S(t, z)e−iǫ

−1θ(t)
))

= ρe

[
eiǫ

−1θ(t) ∂
2S(t, z)

∂t2
+ iǫ−1eiǫ

−1θ(t) ∂S(t, z)

∂t

∂θ(t)

∂t
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− ǫ−2eiǫ
−1θ(t)S(t, z)

(
∂θ(t)

∂t

)2

+ iǫ−1eiǫ
−1θ(t) ∂S(t, z)

∂t

∂θ(t)

∂t

+ iǫ−1S(t, z)eiǫ
−1θ(t) ∂

2θ(t)

∂t2
+ eiǫ

−1θ(t) ∂Ue
∂t

∂S(t, z)

∂z

+ eiǫ
−1θ(t)Ue

∂2

∂z∂t
(S(t, z)) + iǫ−1eiǫ

−1θ(t)Ue
∂S(t, z)

∂z

∂θ(t)

∂t

+
2Ue
R

∂R

∂z

(
eiǫ

−1θ(t) ∂S(t, z)

∂t
+ iǫ−1eiǫ

−1θ(t)S(t, z)
∂θ(t)

∂t
+ eiǫ

−1θ(t)Ue
∂S(t, z)

∂z

)

+ Ue

(
eiǫ

−1θ(t) ∂
2(S(t, z))

∂z∂t
+ iǫ−1eiǫ

−1θ(t) ∂S(t, z)

∂z

∂θ(t)

∂t

+ eiǫ
−1θ(t) ∂Ue

∂z

∂S(t, z)

∂z
+ eiǫ

−1θ(t)Ue
∂2S(t, z)

∂z2

)]
. (B.9)

Finally, expanding Equation (B.6), we have

L =
ǫ−1δP̃

R2
+
ǫ−2lB̃2eiǫ

−1θ(t)

µ0

∂2S(t, z)

∂z2
+
ǫ−1B̃2eiǫ

−1θ(t)

µ0

∂2δS̃

∂z‘2

− ρel

[
eiǫ

−1θ(t) ∂
2S(t, z)

∂t2
+ iǫ−1eiǫ

−1θ(t) ∂S(t, z)

∂t

∂θ(t)

∂t

− ǫ−2eiǫ
−1θ(t)S(t, z)

(
∂θ(t)

∂t

)2

+ iǫ−1eiǫ
−1θ(t) ∂S(t, z)

∂t

∂θ(t)

∂t

+ iǫ−1S(t, z)eiǫ
−1θ(t) ∂

2θ(t)

∂t2
+ eiǫ

−1θ(t) ∂Ue
∂t

∂S(t, z)

∂z

+ eiǫ
−1θ(t)Ue

∂2

∂z∂t

(
S(t, z)

)
+ iǫ−1eiǫ

−1θ(t)Ue
∂S(t, z)

∂z

∂θ(t)

∂t

+
2Ue
R

∂R

∂z

(
eiǫ

−1θ(t) ∂S(t, z)

∂t
+ iǫ−1eiǫ

−1θ(t)S(t, z)
∂θ(t)

∂t
+ eiǫ

−1θ(t)Ue
∂S(t, z)

∂z

)

+ Ue

(
eiǫ

−1θ(t) ∂
2(S(t, z))

∂z∂t
+ iǫ−1eiǫ

−1θ(t) ∂S(t, z)

∂z

∂θ(t)

∂t

eiǫ
−1θ(t) ∂Ue

∂z

∂S(t, z)

∂z
+ eiǫ

−1θ(t)Ue
∂2S(t, z)

∂z2

)]

− ρe

[
ǫeiǫ

−1θ(t) ∂
2δS̃

∂t2
+ ieiǫ

−1θ(t) ∂δS̃

∂t

∂θ(t)

∂t
− ǫ−1eiǫ

−1θ(t)δS̃

(
∂θ(t)

∂t

)2

+ ieiǫ
−1θ(t) ∂δS̃

∂t

∂θ(t)

∂t
+ ieiǫ

−1θ(t)δS̃
∂2θ(t)

∂t2
+ eiǫ

−1θ(t) ∂Ue
∂t

∂δS̃

∂z

+ ǫeiǫ
−1θ(t)Ue

∂2δS̃

∂z∂t
+ ieiǫ

−1θ(t)Ue
∂δS̃

∂z

∂θ(t)

∂t
+

2Ue
R

∂R

∂z

(
ǫeiǫ

−1θ(t) ∂δS̃

∂t
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+ ieiǫ
−1θ(t)δS̃

∂θ(t)

∂t
+ ǫeiǫ

−1θ(t)Ue
∂δS̃

∂z

)
+ Ue

(
ǫeiǫ

−1θ(t) ∂
2δS̃

∂z∂t

+ ieiǫ
−1θ(t) ∂δS̃

∂z

∂θ(t)

∂t
+ ǫeiǫ

−1θ(t) ∂Ue
∂z

∂δS̃

∂z
+ ǫeiǫ

−1θ(t)Ue
∂2δS̃

∂z2

)]
. (B.10)



Appendix C

Compatibility condition

Here, we present the calculations of Compatibility condition used in Chapters 3 – 5.
We start from writing down the governing Equations (2.75) and (2.76) obtained under
approximation of geometrical optics

∂2S0
∂z2

+
Ω2

C̃2
k

S0 = 0, C̃k =
2B̃2

µ0(ρi + ρe)
, (C.1)

S0 = 0 at z = ±L/2. (C.2)

Then, we recall the governing equation obtained under approximation of physical optics

∂2S1
∂z2

+
Ω2

C̃2
k

S1 =
1

C̃2
k(ρi + ρe)

[
1

2
Ω2(ρi − ρe)S0 − ρe

(
Ω2δS̃ + ṼAe

∂2δS̃

∂z2

)

− δP̃

R2
e−iǫ

−1θ(t)

]
+

2iΩ

C̃2
k

[
∂S0
∂t

+
ρiUi + ρeUe
ρi + ρe

(
∂S0
∂z

+
S0
R

∂R

∂z

)
+
S0
2Ω

∂Ω

∂t

]
, (C.3)

where

VAe = ǫ−2ṼAe =
2B2

µ0ρe
, (C.4)

with the boundary condition

S1 = 0 at z = ±L/2. (C.5)

Note, that in case l = 0, the right-hand side of Equation (C.3) only the last term re-
mains. The homogeneous counterpart of Equation (C.3) with the boundary conditions
given by Equation (C.5) has a non-trivial solution S1 = S0. As a result, the bound-
ary value problem, which determines S1, has a solution only if the right-hand side of
Equation (C.3) satisfies the compatibility condition, meaning that it is orthogonal to
S0 . To obtain this condition we multiply Equation (C.3) by S0 and apply boundary
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condition Equation (C.5). Thus, we have

1

C̃2
k(ρi + ρe)

[
1

2
Ω2(ρe − ρi)S

2
0 + ρe

(
Ω2δS̃ + ˜VAe

∂2δS̃

∂z2

)
S0 +

δP̃

R2
e−iǫ

−1θ(t)S0

]

=
2iΩ

C̃2
k

[
S0
∂S0
∂t

+
ρiUi + ρeUe
ρi + ρe

(
S0
∂S0
∂z

+
S2
0

R

∂R

∂z

)
+
S2
0

2Ω

∂Ω

∂t

]
. (C.6)

Using the first and the last term of the right-hand side of Equation (C.6), we obtain

2iΩ

C̃2
k

(
S0
∂S0
∂t

+
S2
0

2Ω

∂Ω

∂t

)
=

i

C̃2
k

∂S2
0Ω

∂t
. (C.7)

It follows from Equations (C.1) and (C.7) that Equation (C.6) can be written as

1

C̃2
k

∂S2
0Ω

∂t
=

i

C̃2
k(ρi + ρe)

[
1

2
Ω2(ρi − ρe)S

2
0 − ρe

(
Ω2δS̃ + ṼAe

∂2δS̃

∂z2

)

− δP̃

R2
e−iǫ

−1θ(t)S0

]
− µ0Ω

B̃2

[
(ρiUi + ρeUe)

(
S0
∂S0
∂z

+
S2
0

R

∂R

∂z

)]
. (C.8)

Rewriting the last term of the Equation (C.8), we obtain the following

µ0Ω

B̃2

[(
ρiUi + ρeUe

)(
S0
∂S0
∂z

+
S2
0

R

∂R

∂Z

)
=

µ0Ω

2B̃2R2

[(
ρiUi + ρeUe

)
∂S2

0R
2

∂z

]
(C.9)

Recalling that the mass conservation law, outside the transitional layer and not far
away from the magnetic flux, may be written as

∂ρ

∂t
+

1

R2

∂ρR2U

∂z
= 0. (C.10)

Therefore, integrating equation (C.8), using integration by parts, and employing
equations (C.2), (C.10) and B̃R2 = const, we have

∫ L/2

−L/2

1

C̃2
k

∂S2
0Ω

∂t
dz =

∫ L/2

−L/2

i

C̃2
k(ρi + ρe)

[
1

2
Ω2(ρi − ρe)S

2
0 − ρe

(
Ω2δS̃

+ Ṽ 2
Ae

∂2δS̃

∂z2

)
S0 −

δP̃

R2
e−iǫ

−1θ(t)S0

]
dz +

µ0Ω

2

∫ L/2

−L/2

S2
0

B̃2R2

∂

∂z

(
R2(ρiUi + ρeUe)

)
dz.

(C.11)

Note that in the case of l = 0, the first integral term on the right-hand side of Equation
(C.11) disappears.


