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ABSTRACT

The rapid solidification of the Ag−40at%Cu alloys was studied by the drop tube technique, aiming

to investigate the formation of anomalous eutectic and morphology transitions at different cool-

ing rates. The droplets of different diameters with 38 ∼ 850 µm droplets were obtained. Several

characteristic techniques were used to analyse the as-solidified samples, including SEM and DTA.

The drop-tube processed Ag−40at%Cu alloys formed anomalous eutectic as the dominant phase

in all ranges of droplets, with either lamellar eutectic or lamellar eutectic and single phase dendrite

being present. Among those droplets, certain large degrees of undercooling can theoretically be at-

tained, either by the avoidance or at least the reduction of heterogeneous nucleation on container

walls, or by the great amount of cooling rate to hinder the nucleation event in response. Three typ-

ical morphologies were observed: (1) lamellar and anomalous eutectic at undercooling 10 ∼ 60 K;

(2) lamellar eutectic and single phase dendrite at > 60 K; and (3) lamellar and anomalous eutectic

and single phase dendrite at ∼ 60 K.

Unfortunately, the drop tube technique has not yet been developed a proper experimental mea-

surement of neither the nucleation temperature nor the undercooling directly. Therefore the indi-

rect method by using heat transfer modelling is used to quantitatively predict the thermal history

with regard to time and the size of the as-solidified droplets. Furthermore, the 2D unsteady con-

vection heat transfer model is developed to better numerically estimate the thermal extraction sit-

uation during the solidification, in which minimum value of Nusselt number Nu no longer stays at

2 as a portion of the heat transferred from the leading part of sphere is return to the rear part. Thus,

the Nu changing along the surface of sphere gives rise to the temperature gradient inside droplet,

regardless of its size.

To further prove the temperature gradient existed in droplet, the ImageJ macro scripting is de-

veloped to analyse the BSE images quantitatively. It is found that the distribution of anomalous

eutectic due to temperature gradient, is changed with the droplet size. With the increase of droplet

size, the greater amount of anomalous eutectic is retained in the centre of droplet than the surface

of droplet.
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CHAPTER 1

BACKGROUND

1.1 THERMODYNAMICS

1.1.1 EQUILIBRIUM

A phase transformation from one phase at Tl to another phase at Ts occurs, giving rise to the neg-

ative change in Gibbs free energy ∆G under certain conditions. Accordingly, the principle driving

force for phase transformation, such as solidification, is examined by

∆G =∆H −T ∆S < 0 (1.1.1)

where the changes in enthalpy ∆H and entropy ∆S are expressed respectively by

∆H = L f −
∫ Tl

Ts

∆cp dT (1.1.2a)

∆S =∆S f −
∫ Tl

Ts

∆cp

T
dT (1.1.2b)

In Eq. (1.1.2a), the difference of between heat capacity cp,l at Tl and cp,s at Ts under constant pres-

sure is

∆cp = cp,l − cp,s (1.1.3)

Although the decrease in Gibbs free energy is possible to drive new phase transformation, the

existence of Gibbs activation energy barrier thermodynamically prevents the transition between

the metastable phase and another new stable equilibrium phase from happening as shown in

Fig. 1.1.1 [1]. In nature, few raw metastable materials such as diamond can last at room tempera-

ture and pressure. But the well-designed forming processes, such as the containerless technique*,

that can successfully attain high undercooling, might trap a large amount of metastable phases

after solidification.

* the detail review of containerless technique shall refer Section 2.2 and the operation of drop tube is introduced in

Section 5.1.2.

1
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Figure 1.1.1: Schematic representation of the principles of thermodynamic stability due to

variation in Gibbs free energy, where a certain activation energy is between the metastable A and

the stable C

1.1.2 NUCLEATION

In solidification, heat transmission from the melt to the surroundings changes the amount of Gibbs

free energy such that the relative thermodynamic stability of present phase might be interpreted

by its driving force due to Eq. (1.1.1). The rearrangement of the atoms in matrix then causes some

irreversible departure from its previous equilibrium, followed by an embryo may be created by

those thermal fluctuations. This embryo might be unstable when the initial occurrence appears

at the temperatures higher than the melting point Tm . After a critical temperature is reached in

the cooling process, the unstable embryo changes to metastable and eventually to stable. Once

nucleations are generated, atom transfer would continue to ensure the crystal growth afterwards.

CONDITIONS FOR NUCLEATION

For an initial embryo of atoms to form a crystal nucleus in the beginning of solidification, the ac-

tivation energy, introduced in Section 1.1.1, is conquered by generating nucleus accident with the

critical radius r∗, which is related to
d(∆G)

dr
= 0 (1.1.4)

where

∆G =∆Gi +∆Gv =σsl A+∆g V (1.1.5)

In Eq. (1.1.5), the interface term ∆Gi is the thermal fluctuations that leads to the creation of inter-

face between the liquid and the solid, and the volume term∆Gv attributes the Gibbs free energy to

the creation of variously sized crystal embryos.
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Providing a nucleus initiates as a spherical form with radius r , the surface-area (A) dependent Gi

and the volume (V ) dependent Gv in Eq. (1.1.5), can be given as

∆G =σsl
(
4πr 2)+∆g

(
4

3
πr 3

)
(1.1.6)

where the Gibbs free energy difference between the liquid and the solid per unit volume is by

∆g =−∆S f ∆T =− L f

Tm
∆T (1.1.7)

It should be noted that the unit of latent heat L f in Eq. (1.1.7) is J/m3 since the Gibbs free energy

∆G is with regards to radius r in Eq. (1.1.6). Because L f is more likely to be characteristic with the

unit of either J/kg or J/mol in Eq. (1.1.7) in the reference book [2], the extra care is necessary in

application of L f .

The free energy change of both ∆Gi and ∆Gv in Eq. (1.1.6) increases monotonically with the in-

crement of spherical radius r at negative undercooling (∆T = Tm −T < 0). When temperature T

is cooled down to less than Tm , negative ∆Gv decreases the total amount of Gibbs free energy

∆G . Once the absolute value of ∆Gv becomes equal to or greater than that of the quadratic term,

∆Gi , ∆Gv prevails in the nucleation-controlled solidification at the expense of a large excess en-

ergy to weight the balance against surface creation of an interface between the liquid and the solid

phases. In the following cooling process, the subsequent growth-controlled solidification is domi-

nant, which will be further introduced in Section 1.2)

In the most cases, the nucleation would be assisted with the external inclusions such as the solid

particle, or the crystalline crucible or oxide layer to reduce the barrier energy, which is also known

as heterogeneous nucleation. The relationship between the homogeneous nucleation and the het-

erogeneous nucleation is

∆Ghet =∆Ghom · f (θ) (1.1.8)

where the magnitude of the effect on heterogeneous nucleus accident is well defined in [3]

f (θ) = (2+cosθ) (1−cosθ)2

4
= 1

4

(
2−3 cosθ+cos3θ

)
(1.1.9)

With the assistance of a foreign solid, the barrier energy required for heterogeneous nucleation

∆Ghet, dependent on the contact angle factor f (θ) which is no greater than 1, should be lower than

that for homogeneous nucleation ∆Ghom.

Furthermore, the relationship between undercooling ∆T and the critical radius r∗ can be gener-

ated by combining Eq. (1.1.6) with Eq. (1.1.4) and Eq. (1.1.7)

d

dr
(∆G) = 8πr σsl +4πr 2∆g = 0 ⇒ r∗ =−2σsl

∆g
= 2σsl

∆S f ∆T
(1.1.10)

The smaller the undercooling ∆T , the larger the size of the critical radius r∗ for nucleation and so

the lower probability the occurrence of nucleation event.
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RATE OF NUCLEATION

Considering there is no external enthalpy ∆Hn due to the existence of an mixture between crystal

clusters Nn and liquid atoms Nl , the condition to reach the equilibrium concentration of cluster is

similar with Eq. (1.1.4) as
d(∆G)

dNn
= 0 (1.1.11)

and the free enthalpy change of such a system is

∆G = Nn∆G∗
n −T ∆Sn (1.1.12)

where ∆G∗
n stands for the activation energy for the nucleation of the critical number of clustered

atoms at temperature T .

Combining Eq. (1.1.8) with Eq. (1.1.6) and Eq. (1.1.10),

∆G∗
n =

{
σsl

(
4π (r∗)2)+∆g

(
4π

3
(r∗)3

)}
· f (θ)

=
{

4πσsl

(
−2σsl

∆g

)2

+ 4π

3
∆g

(
−2σSL

∆g

)3}
· f (θ)

= 16π

3

σ3
sl

∆g 2 · f (θ) (1.1.13)

The mixing entropy ∆Sn in Eq. (1.1.12) is

∆Sn = kB ln

[
(Nl +Nn)!

Nn ! Nl !

]
(1.1.14)

Applying Stirling’s approximation for large N as ln(N !) = N ln(N )−N in Eq. (1.1.12) in Eq. (1.1.14),

then the condition in Eq. (1.1.11) can be derived as

d
{

Nn∆G∗
n −kB T

[
(Nl +Nn) ln(Nl +Nn)− (Nl +Nn)

]+kB T
[
Nn ln(Nn)−Nn

]+kB T
[
Nl ln(Nl )−Nl

]}
dNn

⇒
d
{

Nn∆G∗
n −kB T

[
(Nl +Nn) ln(Nl +Nn)

]+kB T Nn ln(Nn)+kB T Nl ln(Nl )
}

dNn

⇒∆G∗
n −kB T

[
ln(Nl +Nn)+1

]+kB T
[

ln(Nn)+1
]

⇒∆G∗
n −kB T ln

[
Nl +Nn

Nn

]
= 0 (1.1.15)

Because the atoms of liquid is predominant in the undercooled melt ( Nl À Nn ), the number of

critical clusters in equilibrium is obtained by neglecting Nn in Eq. (1.1.15) as

N∗
n = Nl exp

[
−∆G∗

n

kB T

]
(1.1.16)
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When there are N∗
n clusters achieve the activation energy ∆G∗

n to pass through the barrier energy,

the thermal fluctuations might still move the cluster with critical radius r∗ backwards and forwards

to decrease their energy. So the nucleation rate Jv is not characteristic only with the number of

critical cluster (N∗
n ) in Eq. (1.1.16), but also with the rate of random additions to, or removals of

atoms from the unstable nucleus ( dn/ dt ) as

Jv = N∗
n · dn

dt
(1.1.17)

where the adsorption rate according to [4] can be expressed

dn

dt
= v0 p n∗

s exp

[
−∆Gd

kB T

]
(1.1.18)

Combining Eq. (1.1.17) with Eq. (1.1.16) and Eq. (1.1.18),

Jv = Kv exp

[
−∆G∗

n +∆Gd

kB T

]
= Kv exp

[
−∆G∗

n

kB T

]
exp

[
−∆Gd

kB T

]
(1.1.19)

For metals, the exact value of Kv is unimportant in Eq. (1.1.19) and is approximated in [3] as

Kv = Nl · v0 p n∗
s ≈ 1042 (1.1.20)

Moreover, the attachment of atomic on the non-faceted interface is easy and largely independent

of crystal orientation. As a result, it is more likely for atomically rough interface to grow at low

undercooling ∆T , which leads to the second exponential function in Eq. (1.1.19) [4]

exp

[
−∆Gd

kB T

]
≈ 0.01 (1.1.21)

Therefore, the nucleation rate combined with Eq. (1.1.13), Eq. (1.1.20) and Eq. (1.1.21) becomes

Jv = 1040 exp

[
−∆G∗

n

kB T

]
= 1040 exp

[
− 16π

3kB T

σ3
SL

∆g 2 · f (θ)

]
(1.1.22)

The further substitution of Eq. (1.1.7) with ∆g in Eq. (1.1.22) reveals the relationship between Jv

and T ∆T 2 as

Jv ∝− 1

T ∆g 2 ∝− 1

T ∆T 2 (1.1.23)

When the melt cools down a small amount of temperature below the melting point, the change

of nucleation rate Jv is firstly controlled by undercoolings ∆T , resulting in more numerous and

smaller nucleus of critical radius, also in agreement with Eq. (1.1.10). On the other hand, when

∆T becomes large in the further cooling process, Jv is then temperature-controlled, since most of

atoms frozen at the low temperature cause fewer atoms having enough energy to transfer from the

liquid to the nucleus.
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1.2 SOLIDIFICATION

1.2.1 SOLID/LIQUID INTERFACE

Once a nucleus with critical radius r∗ is formed in the nucleation-controlled solidification, the fol-

lowing growth-controlled solidification is mainly determined by the interface growth. Such growth

has three main factors to determine the growth morphology: (a) the kinetics of atom attachment

to the interface (b) diffusion of heat and mass (c) capillarity

KINETICS

For metals, value of dimensionless entropy α calculated in Eq. (1.2.1) is as low as ∼ 2.

α= ∆S f

R
= L f

Tm R
(1.2.1)

which leads to a negligible kinetics of transfer of atoms from the liquid to the crystal in non-faceted

crystal growth.

DIFFUSION

In the simple assumption, only diffusion-dependent morphology is assumed under the maximum

growth rate or minimum undercooling. The excess solute is rejected from the solid and piles up

ahead of the interface during the solidification. Once a steady-state growth is reached after a tran-

sient diffusion, a fully developed boundary layer ( C0 for solid and C0/k for liquid ) is established

as

D ∇2 C = ∂C

∂t
= 0 (1.2.2)

Considering the local interface is moving with respect to time ( t ) under the growth velocity (

V = ds/dt ) in z ′ direction, the location of interface z ′(s) = z(0) at any instant of time.

z = z ′−V t =⇒ ∂z

∂t
= ∂z ′

∂t
−V ,

∂z

∂z ′ = 1 (1.2.3)

In unidirectional diffusion, Eq. (1.2.2) is simplified

D
∂2C

∂z ′2 = ∂C

∂t

D
∂2C

∂z2 = ∂C

∂z
· ∂z

∂t
=−V

∂C

∂z
+ ∂C

∂t
⇒ D

∂2C

∂z2 +V
∂C

∂z
= ∂C

∂t
= 0 (1.2.4)

The general solution of Eq. (1.2.4) is in the form of exponential function as

C (z) = A+B exp

(
−V

D
z

)
(1.2.5)
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In the steady-state situation, there are two boundary conditions applied in Eq. (1.2.5) as

BC1: Cz=0 = C0

k
(1.2.6)

BC2: −D

(
dC

dz

)
z=0

=
(

C0

k
−C0

)
V (1.2.7)

where BC2 represents the rate of solute rejection must be equal to the diffusional flux from solid to

liquid at the interface z = 0.

Combining Eq. (1.2.5) with Eq. (1.2.6) and Eq. (1.2.7),

A =C0

B = C0

k
−C0 =∆C0

and the complete solution is

C (z) =C0 +∆C0 exp

(
−V

D
z

)
(1.2.8)

Then the local equilibrium liquidus temperature ahead of interface expressed in Eq. (1.2.9) can

generate the curve line in Fig. 1.2.1.

Tl = Tl (C0)−m
(
C0 −Cl

)
= Tl (C0)−m∆C0 exp

(
−V

D
z

)
(1.2.9)

where m is the liquidus slope in the binary diagram.

For practical estimation of concentration boundary layer δc ahead of interface, the area of triangle

MON is assumed to equal to that of the grey region as shown in Fig. 1.2.2

1

2
∆C0δc =

∫ ∞

0

(
C (z)−C0

)
dz =

∫ ∞

0
∆C0 exp

(
−V

D
z

)
dz =∆C0

D

V

δc = 2D

V
(1.2.10)

When the actual temperature gradient due to heat flux ( T1 in Fig. 1.2.1 ) is lower than the equi-

librium temperature gradient due to the concentration change ahead of interface ( TL ), a zone of

constitutional undercooling ( the pink region in Fig. 1.2.1 ) is formed and the melt in this zone is

undercooled so as to outbreak the dendritic microstructure.

In order to predict the interface stability, the difference between the heat-flux-imposed tempera-

ture gradient ( m Gc ) and the liquidus temperature gradient ( G ) at the interface is further con-

cerned

φ=
(

dTl

dz
− dTq

dz

)
z=0

= m Gc −G (1.2.11)

where the concentration gradient is obtained by differentiating Eq. (1.2.8) at z = 0

Gc =
(

dC

dz

)
z=0

=−∆C0
V

D
(1.2.12)
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It is apparent to note in Eq. (1.2.11) that the limiting condition for constitutional undercooling oc-

curs at φ= 0. If a high temperature gradient ( G ) is imposed to induce φ< 0 as T2 in Fig. 1.2.1, the

solid/liquid interface shall remain the planar growth and be restricted from unstable microstruc-

tures, such as dendrite that will be introduced in Section 1.2.3.

Figure 1.2.1: schematic diagram of constitutional undercooling, in which the local equilibrium

temperature TL expressed in Eq. (1.2.9) is higher than the actual interface temperature T1 and the

tangent line T2 extended from TL(C0) has greater liquidus slope despite TL(C0) = T1 at the

interface z = 0

Figure 1.2.2: schematic diagram of steady-state boundary layer δc along the direction of the

solid/liquid interface growth, which is obtained by assuming the triangle area of MON identical

to that of the grey region as
∫ ∞

0

(
C (z)−C0

)
dz in Eq. (1.2.10)
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CAPILLARITY

Once the interface becomes unstable ( φ ≥ 0 in Eq. (1.2.11) ), perturbations on the interface will

form and influence the form and scale of the resultant morphology. Thus the effect of the surface

tension along the solid/liquid interface also plays a significant role in interface stability.

A simple method in consideration of perturbation in the interface stability is to introduce a purely

mathematical perturbations ( see in Fig. 1.2.3 ) as

z = ε sin(ω y) (1.2.13)

where ε is the amplitude and ω= 2π/λ.

Figure 1.2.3: schematic diagram of perturbations at a solid/liquid interface

First of all, because the perturbation is two-dimensional dependent, Eq. (1.2.4) should be extended

as (
∂2C

∂y2 + ∂2C

∂z2

)
+ V

D

∂C

∂z
= 0 (1.2.14)

Assumed the solution of Eq. (1.2.14) is formed by the product of separate function

C (y, z) = Y (y) ·Z (z) (1.2.15)

then the relevant expression of Eq. (1.2.14) after inserting Eq. (1.2.15) is

− 1

Y
· d2Y

dy2 = 1

Z
· d2Z

dz2 + V

D

1

Z
· dZ

dz
= A (1.2.16)
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The general solution of each separated variable to Eq. (1.2.16)†is

d2Z

dz2 + V

D
· dZ

dz
− A ·Z = 0 ⇒Z = exp

{
−z

V

2D
− z

[(
V

2D

)2

+ A

]1/2}
(1.2.17a)

1

Y
· d2Y

dy2 + A Y = 0 ⇒Y = B1 cos(A1/2 y)+B2 sin(A1/2 y) (1.2.17b)

Thus,

C (y, z) =
(
B1 cos(A1/2 y)+B2 sin(A1/2 y)

)
exp

{
−z

V

2D
− z

[(
V

2D

)2

+ A

]1/2}
(1.2.18)

Provided the assumption introduced in Eq. (1.2.13) satisfy the general solution of two-dimensional

diffusion in Eq. (1.2.18), the arbitrary constant A = ω2, B1 = 0 and B2 = a ε is needed to meet the

perturbation morphology. As a result, the external diffusion Cr regarding the perturbed interface

is expressed by

Cr (y, z) = a ε sin(ω y) exp

{
−z

V

2D
− z

[(
V

2D

)2

+ω2
]1/2}

(1.2.19)

Therefore, the exact diffusion for a local interface is consistent of the unperturbed term in Eq. (1.2.8)

and the perturbed term in Eq. (1.2.19) as

C =C (z)+Cr (y, z)

=C0 +∆C0 exp

(
−V

D
z

)
+a ε sin(ω y) exp(−b z) (1.2.20)

where

∆C0 = C0

k
−C0 ω= 2π

λ
b = V

2D
+

[(
V

2D

)2

+ω2
]1/2

The arbitrary a in Eq. (1.2.20) is obtained by applying the boundary conditions that is similarly

illustrated in Eq. (1.2.6) and Eq. (1.2.7)

BC1: Cz=0 =C∗
L (1.2.21)

BC2: −D

(
dC

dz

)
z=0

= (1−k) C∗
L V (1.2.22)

So,

a = k V Gc

(1−k)V −D b
(1.2.23)

On the one hand, under the condition

φr = m

(
dC

dz

)
z=0

−G = m Gc

(
1− k V b ε

(1−k)V −D b
sin(ωy)

)
−G < 0 (1.2.24)

†The detailed deduction of this analytic solution is illutrated in Appendix C.1.
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the perturbed interface remains stable. Even if the fixedλ is initially introduced to the perturbation

the local interface along the direction of y at z = 0, the subsequent growth along the direction of

z tends to increase the scale of λ till its maximum as shown in Fig. 1.2.4. Moreover, when the

wavelength of the perturbed morphology λ→ ∞, Eq. (1.2.24) can be downgraded to Eq. (1.2.11)

with no capillarity, indicating the increase in λ raises the difficulty of diffusional mass transfer to

suppress interface instability.

On the other hand, the solute diffusion can scale down the tip of a perturbation, leading to the

outbreak of dendritic morphology underφr > 0, the tip of which will be introduced in Section 1.2.3.

Figure 1.2.4: distribution of iso-concentrates ahead of perturbed solid/liquid interface and liquid
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1.2.2 EUTECTIC

Eutectic morphology is characteristic of the simultaneous growth in two solid phases as shown in

Fig. 1.2.5, where lamellar α and β are solidified cooperatively from the melt.

Figure 1.2.5: Diffusion paths of component B ahead of eutectic interface [3]

For Ag−Cu binary system, both elements possessing the entropy of fusion less than 2 give rise

to a negligible kinetics of atomic attachment in the preferred direction due to Eq. (1.2.1). So the

isotropic solidification takes place in Ag−Cu system to exhibit a regular ( non-faceted/non-faceted

) eutectic morphology. Both fibrous structure and lamellar structures are the form of a regular

growth but is discriminated by volume fraction, that is, 0 ∼ 0.28%Cu for fibrous and 0.28 ∼ 0.5%Cu

for lamellar. Thus, the preferred growth form of Ag−28wt.%Cu alloy tends to form lamellar struc-

tures.

To analyse the growth performance of lamellar eutectic, one half of lamellae between α and β of

each phase within wavelengthλ/2 is selected in the following explanation due to periodic diffusion

field along the solid/liquid interface as shown in Fig. 1.2.5. In other word, λ/2 is the characteristic

diffusion distance between the constant concentration gradient C B
α −C B

β
of component B in melt.

DIFFUSION-COUPLED GROWTH

In the direction of growth, lamellar α rejects component B into the melt, while lamellar β accepts

component B from the melt. The situation that one component rejected by one phase is in favour

of the growth of the other phase is to believe the diffusive mass transport of eutectic growth prefers

lateral diffusion along the solid/liquid interface to a long-range diffusion ahead of both phases.

Thus, the use of Eq. (1.2.14) to express the solute distribution of lamellar α and β is still valid.

Firstly, the general solution of Eq. (1.2.14) to the distribution field of component B can consist of

Eq. (1.2.5) characterized by the solute distribution of either lamellae for the unperturbed interface,
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and Eq. (1.2.18) by the one for the perturbed interface, as

C (y, z) = B0 +B1 exp

(
−V

D
z

)
+

(
B2 cos(A1/2 y)+B3 sin(A1/2 y)

)
exp

{
−z

V

2D
− z

[(
V

2D

)2

+ A

]1/2}
(1.2.25)

In the steady-state growth, the mean composition of the alternative lamellae, α and β, must equal

to the composition of the melt, which is the eutectic composition Ce for Ag−28wt.%Cu alloy. So

the two exponential terms in RHS of Eq. (1.2.25) at z →∞ becomes zero to obtain

C (y, z)
∣∣∣

z→∞ = B0 =Ce (1.2.26)

Provided there would be no concentration gradient at the mid-point of each lamellar which is lo-

cated at y = 0 for lamellar α and at y =λ/2 for lamellar β in the y direction in Fig. 1.2.5, the deriva-

tive of Eq. (1.2.25) with respect to y at y =λ/2(
∂C

∂y

)
y=λ/2

= 0

leads to

B3 = 0 (1.2.27)

Because of the symmetry of circular function in the third RHS term in Eq. (1.2.25),

A1/2 = 2π

λ
⇒ A =

(
2π

λ

)2

(1.2.28)

When the eutectic interface advances slowly, the value of λ is much smaller than that of the con-

centration boundary layer δc in Eq. (1.2.10), giving rise to

V

2D
¿ 2π

λ
(1.2.29)

Thus the power of the second exponential function in Eq. (1.2.25) can be simplified to

− z
V

2D
− z

[(
V

2D

)2

+ A

]1/2

≈−z
2π

λ
(1.2.30)

By inserting Eq. (1.2.26), Eq. (1.2.27), Eq. (1.2.28) and Eq. (1.2.30), then Eq. (1.2.25) is simplified as

C (y, z) =Ce +B1 exp

(
−V

D
z

)
+B2 cos

(
2π

λ
y

)
exp

(
−2π

λ
z

)
(1.2.31)

Considering the quantity of solute rejected from the local interface concentration k C∗
L to the local

melt concentration C∗
L per unit time is balanced by the creation of a concentration gradient in the

melt, the flux boundary condition in Eq. (1.2.22) is applied, in which C∗
L ≈ Ce due to only a slight

deviation from the eutectic composition as

lamellar α: V
(
kα−1

)
Ce = D

(
∂C

∂z

)
z=0

(1.2.32a)

lamellar β: V
(
1−kβ

)(
1−Ce

)= D

(
∂C

∂z

)
z=0

(1.2.32b)
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Thus, the variant of solute removal at the same growth rate ( V ) via diffusion along the y direction is

approximated by the method of weighted residuals [3], since only the volume fraction f of lamellar

α is in the range of 0 and λ/2.

For lamellar α, ∫ λ
2 f

0
V

(
kα−1

)
Ce dy =

∫ λ
2 f

0
D

(
∂C

∂z

)
z=0

dy

∴ Ce f
(
1−kα

)
V λ= f V λB1 +2D sin( f π) B2 (1.2.33)

For lamellar β, ∫ λ
2

λ
2 f

V
(
1−kβ

)(
1−Ce

)= ∫ λ
2

λ
2 f

D

(
∂C

∂z

)
z=0

dy

∴
(
1−Ce

)(
1− f

)(
kβ−1

)
V λ= (

1− f
)

V λB1 −2D sin( f π) B2 (1.2.34)

The unknown constant B1 and B2 in a system of linear Eq. (1.2.33) and Eq. (1.2.34) can be solved by

simply using the linear combination method as

B1 =
(
1−Cα−Cβ

)
f − (

1−Ce −Cβ

)
(1.2.35)

B2 =
f
(
1− f

)
2D

V λ

sin( f π)

(
1−Cα−Cβ

)
(1.2.36)

Therefore, the exact solution of solute distribution ahead of solid/liquid interface is obtained by

substituting B1 and B2 in Eq. (1.2.31) with Eq. (1.2.35) and Eq. (1.2.36) respectively.

C (y, z) =Ce +
[(

1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]
exp

(
−V

D
z

)
+ f

(
1− f

)
2D

V λ

sin( f π)

(
1−Cα−Cβ

)
cos

(
2π

λ
y

)
exp

(
−2π

λ
z

)
(1.2.37)

UNDERCOOLING

For metals, the temperature of local undercooled eutectic interface T ∗
q due to high thermal con-

ductivity κ can be constant at any instant of time. As a result, the temperature difference between

the eutectic temperature Te and T ∗
q ( undercooling ∆T ) is also constant.

In general, the total undercooling gives rise to three contributions, heat flow ∆Tq , solute diffusion

∆Tc , and curvature ∆Tr as

∆T =∆Tq +∆Tc +∆Tr = Te −T ∗
q = constant (1.2.38)

where ∆Tq is safely neglected under the directional growth of lamellar eutectic.



CHAPTER 1. BACKGROUND 15

The solute undercooling ∆Tc is obtained by multiplying the liquidus slope m by the concentration

difference ∆C based on the binary phase diagram.

∆Tc = m∆C (1.2.39)

The curvature undercooling ∆Tr is attributed to the increase in the free enthalpy due to its curved

surface.

∆Tr = σ

∆SF
K (1.2.40)

where σ/∆SF is of order of 10−7 K ·m for most metals, such as 177×10−3/1.2×106 = 1.475×10−7

K ·m for copper, and the curvature K between two discrete points with a distance L is expressed

K = 1

L

∫ L

0

z ′′(
1+ z ′2)3/2

dy = 1

L
sin(arctan(z ′))

∣∣∣L

0
(1.2.41)

Solute Undercooling

In binary alloys, the liquidus slope mα and mβ can be obtained from the phase diagram. The

concentration difference of the melt ahead of eutectic interface is the average one ∆C = C −Ce

within its volume fraction. As shown in Fig. 1.2.5, lamellar α extends between 0 ∼ f λ/2, lamellar β

between f λ/2 ∼λ/2.

With the aid of Eq. (1.2.37), the solute undercooling ∆Tα
c for lamellar α and ∆T β

c for lamellar β is

∆Tα
c = |mα| 2

f λ

∫ λ
2 f

0
(C −Ce )z=0 dy

= |mα| 2

f λ

∫ λ
2 f

0

{[(
1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]+ f
(
1− f

)
2D

V λ

sin( f π)

(
1−Cα−Cβ

)
cos

(
2π

λ
y

)}
dy

= |mα|
{[(

1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]+ f
(
1− f

)
2D

V λ

sin( f π)

(
1−Cα−Cβ

) sin( f π)

f π

}

= |mα|
{[(

1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]+ 1− f

2Dπ

(
1−Cα−Cβ

)
V λ

}
(1.2.42)

∆T β
c =−|mβ|

2

(1− f )λ

∫ λ
2

λ
2 f

(C −Ce )z=0 dy

=−|mβ|
{[(

1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]− f

2Dπ

(
1−Cα−Cβ

)
V λ

}
(1.2.43)

Curvature Undercooling

According to the formula of curvature in Eq. (1.2.41), the curvature undercoolings of lamellar α

with Lα = f λ/2 and lamellar β with Lβ =λ/2− f λ/2 is

∆Tα
r =

(
σ

∆SF

)
α

Kα =
(
σ

∆SF

)
α

1

Lα
sin(arctan(z ′))

∣∣∣Lα

0
= 2

f λ

(
σ

∆SF

)
α

sin(θα) (1.2.44)

∆T β
r =

(
σ

∆SF

)
β

Kβ =
(
σ

∆SF

)
α

1

Lβ
sin(arctan(z ′))

∣∣∣Lβ

0
= 2

(1− f )λ

(
σ

∆SF

)
β

sin(θβ) (1.2.45)
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where z ′ = tanθ and θα+θβ ≈ 90 °.

Combining Eq. (1.2.42) or Eq. (1.2.43) with Eq. (1.2.44) or Eq. (1.2.45) gives

∆Tα =∆Tα
c +∆Tα

r

= |mα|
{[(

1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]+ 1− f

2Dπ

(
1−Cα−Cβ

)
V λ

}
+ 2

f λ

(
σ

∆SF

)
α

sin(θα)

(1.2.46a)

∆Tβ =∆T β
c +∆T β

r

=−|mβ|
{[(

1−Cα−Cβ

)
f − (

1−Ce −Cβ

)]− f

2Dπ

(
1−Cα−Cβ

)
V λ

}
+ 2

(1− f )λ

(
σ

∆SF

)
β

sin(θβ)

(1.2.46b)

Because ∆T =∆Tα =∆Tβ = constant due to Eq. (1.2.38) in the eutectic growth and the first term in

the RHS of Eq. (1.2.46a) and Eq. (1.2.46b) can be efficiently eliminated by

|mβ|∆Tα+|mα|∆Tβ =
(
|mα|+ |mβ|

)
∆T ⇒∆T = |mβ|∆Tα+|mα|∆Tβ

|mα|+ |mβ|
Thus, the relationship of ∆T with V and λ is

∆T = |mα| · |mβ|
|mα|+ |mβ|

1−Cα−Cβ

2Dπ︸ ︷︷ ︸
Kc

·V λ+ 1

|mα|+ |mβ|

{
2 |mβ|

f

(
σ

∆SF

)
α

sin(θα)+ 2 |mα|
(1− f )

(
σ

∆SF

)
β

sin(θβ)

}
︸ ︷︷ ︸

Kr

· 1

λ

(1.2.47)

where Kc and Kr are alloy-dependent physical constants.

The schematic graphs in Fig. 1.2.6 shows the relationship of the solute undercooling∆Tc in Eq. (1.2.42)

or Eq. (1.2.43), the curvature undercooling ∆Tr in Eq. (1.2.44) or Eq. (1.2.45), and the total under-

cooling ∆T in Eq. (1.2.46a) or Eq. (1.2.46b), with respect to λ. It can be seen that ∆T is controlled

by ∆Tr ( capillarity effect ) at λ<λe and by ∆Tc ( solute diffusion ) at λ>λe . Although the eutectic

lamellar can have a range of wavelengths, it is more likely that the lamellar with λe in Fig. 1.2.6

appears in the eutectic solidification due to the minimum undercooling ∆T required.

For regular lamellar eutectic, the extremum criterion of eutectic growth is

d

dλ

(
∆T

)= 0 (1.2.48)

Inserting Eq. (1.2.47) into Eq. (1.2.48),

d

dλ

(
Kc V λ+ Kr

λ

)
= Kc V − Kr

λ2 = 0 ⇒λ2 V = Kr

Kc
(1.2.49)

Multiplying Eq. (1.2.47) by λ and combining with Eq. (1.2.49),

λ∆T = Kc λ
2 V +Kr ⇒λ2 V = λ∆T −Kr

Kc
= Kr

Kc
⇒λ∆T = 2Kr (1.2.50)



CHAPTER 1. BACKGROUND 17

Since λ= 2Kr /∆T due to Eq. (1.2.50), Eq. (1.2.49) can be modified to(
2Kr

∆T

)2

V = Kr

Kc
⇒ ∆T

V 1/2
= 2

(
Kr Kc

)1/2 (1.2.51)

Jackson and Hunt [5] (HJ) are firstly analysed the growth of regular eutectic and derived the re-

lationship of undercooling ∆T with growth rate V and wavelength λ shown in Eq. (1.2.47). Later

experimental study of directional eutectic solidification in a model transparent organic system is

verified that λ2 V remains constant [6, 7], despite the stable range of eutectic spacings is much

smaller than that discussed by Jackson and Hunt.

Figure 1.2.6: Eutectic growth temperature with respect to λ at constant growth rate V
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1.2.3 DENDRITES

Under non-equilibrium thermodynamic condition, the morphology growth ( introduced in Sec-

tion 1.2.1 ) might reach or surpass its limitation of stability ( φ ≥ 0 ) to enhance the effect of per-

turbation along solid/liquid interface and consequently to form the tips of dendrites. Depending

on the direction of heat flow, these undercooled tips can develop either directional dendrites or

equiaxed dendrites.

In the directional solidification, the heat transfers from the melt into the solid, parallel and op-

posite to the growth direction. These tips are undercooled by constitutional undercooling due to

solute diffusion ( see in Fig. 1.2.1 ), and are controlled by the rate of advance of the isotherms.

In the equiaxed solidification, the heat transfers from the solid into the melt has the same direction

of the growth. Without the isothermal constraint ahead, the undercooled tips of dendrite are driven

by higher gradients and lead to an increased heat and solute flux, and a resultant increase in the

growth rate on those tips until they impinge upon other dendrites.

The growth of both types of dendrites adopts an orientation as close as possible to ( or opposite to

) the heat flow direction, but still follows the preferred crystal growth axe. For example, the cubic

crystal system, like Ag and Cu, has the six axes related to [100] which are preferred in the crystal

orientation of dendrites. Once trucks are develop in dendrite, the primary spacing between two

trucks allows branches to form in another four [100] directions which are perpendicular to the

trunk until these tips of secondary branches encounter the diffusion field of neighbouring den-

drites. Although tertiary or even higher-order arms might be formed further by consuming the

remaining inter-liquid between secondary branches, these highly-branched arms might change

with the solidification time into coarser, less branched and more widely-spaced ones in the ripen-

ing process.

DENDRITE TIP

A dendrite tip can be regarded as an isolated crystal in solidification. By analyzing the performance

of the tip with its heat and mass diffusion field ahead, the morphological parameters, such as the

growth rate V , supersaturationΩ, and undercooling ∆T , can be estimated in order of magnitude.

Although the tip shape can be successfully characteristic with a paraboloid of revolution in diffu-

sion problem, the hemispherical cap along the growth axis is a simple approximation, yet giving a

clear insight into the physical factors of dendrite.

The general solution of diffusion field around a growing sphere in steady-state condition‡

C (r ) = A+ B

r

‡The mathematical deduction of this diffusion problem shall refer Eq. (1.3.7) in Section 1.3.2, in which variable heat T (r )

should be substituted by mass C (r ).
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with subject to the boundary conditions

BC1: C =C∗
l r = δ

BC2: C =C0 r =∞

gives

C (r ) =C0 + δ

r

(
C∗

l −C0
)

(1.2.52)

The concentration gradient at the tip with radius r = δ can then be approximated to(
dC

dr

)
r=δ

=
(
− δ

r 2

(
C∗

l −C0
))

r=δ
=−C∗

l −C0

δ
(1.2.53)

Considering a hemispherical tip has a cylinder body with a cross-section A = πδ2, then the rejec-

tion of solute to form a new cylinder volume is assumed to be identical with the amount of radial

solute diffusion through the hemispherical cap with surface area Ah = 2πδ2 to the melt ahead of

the tip in any given time step dt and the corresponding growth rate V as

A V
(
C∗

l −C∗
S

)=−D Ah

(
dC

dr

)
r=δ

⇒ V C∗
l

(
1−k

)=−2D

(
dC

dr

)
δ

(1.2.54)

Combining Eq. (1.2.53) and Eq. (1.2.54) gives

V C∗
l

(
1−k

)= 2D
C∗

l −C0

δ
⇒ V δ

2D︸︷︷︸
Pc

= C∗
l −C0

C∗
l

(
1−k

)︸ ︷︷ ︸
Ω

(1.2.55)

where the solute Péclet number Pc stands for the ratio of a characteristic length δ to the concen-

tration boundary layer δc = 2D/V in Eq. (1.2.10) andΩ for the supersaturation.

For smallΩ in Eq. (1.2.55) and with aid of −m C0 (1−k) =∆T0 k, the supersaturation also can be

Ω= C∗
l −C0

C∗
l

(
1−k

) ⇒ C∗
l = C0

1−Ω (1−k)
(1.2.56)

∆Tc = m
(
C0 −C∗

l

)= m C0

(
1− 1

1−Ω (1−k)

)
≈−m C0Ω (1−k) ⇒∆T0 kΩ

∴ Ω= ∆Tc

∆T0 k
(1.2.57)

For a given Ω to Eq. (1.2.55), V δ remains constant and has a relationship as shown in the green

dashed diagonal line in Fig. 1.2.7. However the smaller tip radius δ might be unlikely to prevail in

the dendrite growth since the minimum radius r∗ ( critical nucleation radius in Eq. (1.1.10) ) must

be at least satisfied, as the grey dashed vertical line in Fig. 1.2.7 to cut off the diffusion limit.

In order to better define the relationship of the tip radius upon the the growth condition, both

solute diffusion and capillarity effects should be considered in the supersaturation formulaΩ(V ,δ)

in Eq. (1.2.55).



CHAPTER 1. BACKGROUND 20

Figure 1.2.7: Growth rate as a function of tip radius

SinceΩ tends to be ∞ at

δ= r∗ = 2
σ

∆SF ∆Tc
≈ 0 (1.2.58)

as the vertical dashed line in Fig. 1.2.7, the capillarity term inΩ(V ,δ) should be related to ∝ 1/δ.

Assumed the capillarity term is expressed as s/δ and Eq. (1.2.57) is applied inΩ at sufficient small

δ, (
Ω

)
δ→r ∗ = ∆Tc

∆T0 k
= s

r∗ = s
∆SF ∆Tc

2σ
⇒ s = 2σ

∆SF ∆Tc

∆Tc

∆T0 k
= 2

∆T0 k

σ

∆SF
(1.2.59)

Together with the diffusion term in Eq. (1.2.55) and the capillarity term in Eq. (1.2.59),

Ω= V

2D
δ+ 2

∆T0 k

σ

∆SF

1

δ
(1.2.60)

In Fig. 1.2.7, curves with different constant supersaturation (Ω3 >Ω2 >Ω1 ) are displayed by using

Eq. (1.2.60). The greater supersaturationΩ, the smaller extreme radius Re ( marked as a grey point )

and the higher corresponding growth rate. The reason of these changes gives rise to the concentra-

tion gradient inversely related to δ in Eq. (1.2.53), since a greater supersaturation permits a sharper

tip, which lead to rejecting solute more efficiently in a steeper gradient.

Under experimental observation [8] and later theoretical development of rapid solidification [9],

the radius of tip proves to be much closer to the least wavelength perturbation which is the limit of

stability for the outbreak of dendrite from the planar interface as red points shown in Fig. 1.2.7.
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1.3 CONVECTION HEAT TRANSFER IN FLOW

The forced convection heat transfer is complicated since fluid motion and heat conduction are

under consideration. The fluid motion enhances heat transfer though a fluid and effectively warms

the fluid temperature surrounding the hot solid. Then the warmer fluid rises the buoyancy effect

on the fluid motion and further changes the heat transfer around the solid.

Section 1.3.1 introduces the basic mechanism of heat transfer, including

(a) Conduction (b) Convection (c) Radiation

Section 1.3.2 explains the heat transfer coefficient and Nusselt number of fuild attached to the solid

surface. Also, the common solutions of average convection heat transfer coefficient past a sphere

surface are further explained.

1.3.1 MECHANISMS

For a given superheated melt in the process of solidification, heat is initially conducted through a

surface of every unit area normal to the direction of flow. Then, the loss of heat from the melt is

delivered to the surrounding gas by convection and radiation. Without external heat source to heat

up the melt, the temperature difference between the melt and the gas is reduced until none during

cooling solidification.

CONDUCTION

Heat Conduction is defined as a diffusion of thermal energy occurs through intervening matter

without bulk motion of the matter, i.e., the movement of thermal energy from a high temperature

region to a lower region via molecular vibrations.

In isotropic matter, the heat flux q̇ locally related to the temperature gradient ∇T is

q̇cond = Q̇cond

A
=−κ∇T (1.3.1)

When the interest of Fourier’s law of heat conduction in 1.3.1 is one-dimensional, the extent of

change in heat is analyzed by the thermal conductivity κ under the direction of the interest, normal

to the cross-sectional area A.

CONVECTION

Convection is defined as heat transfer of the fluid motion when the heated fluid carrying thermal

energy is caused to move away from the heat source. By using Newton’s law of cooling, the govern-
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ing rate for convection heat transfer is

q̇conv = Q̇conv

A
=−h

(
Ts −T f

)
(1.3.2)

where T f is the fluid temperature far from the sphere surface and the heat transfer coefficient h

strongly depends on the fluid properties, the roughness of the solid surface and the type of fluid

flow. Since the fluid-motion related h enhances heat transfer, the higher the velocity the higher the

heat flux of convection.

RADIATION

Radiation is defined as transmission of thermal energy between two objects through electromag-

netic wave, with no necessary presence of matter involved.

It is characteristic with the form of photons moving in a random direction, with random phase

and frequency. The behaviour of radiation incident impinging on a surface can be described by

absorptance, reflectance, and transmittance.

A basic fact of radiation is that heat flux by radiative heat transfer is proportional to the fourth

power of temperature of its source T∞, as shown in Eq. (1.3.3).

q̇r ad = Q̇r ad

A
= εσ (

T 4
s −T 4

∞
)

(1.3.3)

where the Stefan-Boltzmann constant σ= 5.670×10−8 W/m2 K4 and the emissivity ε ideally equals

to 1.

Nevertheless, the contribution of heat radiation can be safely neglected in consideration of heat

flux though the boundary surface, not only to simplify the heat transfer calculation, but also for

the fact that convection is dominant over radiation in cooling process of metallic solid [4, 10].

1.3.2 NUSSELT NUMBER AND HEAT TRANSFER COEFFICIENT

In Section 1.3.1, the heat transfer coefficient is characteristic with the efficiency of heat transfer by

the convection. In the common practice, the variables of the governing equations group together

into dimensionless numbers. The measure of heat transfer coefficient h in Eq. (1.3.4) is therefore

replaced with the corresponding non-dimensional number, Nusselt number ( Nu ).

Assumed there is the temperature difference between Ts and T f within the characteristic length δ

dT

dx
= Ts −T f

δ

then Nu is defined as

Nu = q̇conv

q̇cond
= h

(
Ts −T f

)
κ

Ts −T f

δ

= hδ

κ
(1.3.4)
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which represents the ratio of convective to conductive heat transfer through a fluid layer δ.

When the distance is away from the solid surface, greater than the thermal boundary layer δ, the

temperature remains unchanged as the constant fluid temperature T f .

MOTIONLESS FLOW

When the solid is placed in the steady static fluid, the fluid-motion dependent convection is absent

from the heat transfer. In other word, the velocity of the fluid is zero at the wall ( no-slip condition

), which leads to pure conduction from the solid surface to the fluid layer adjacent to the surface

when radiation is neglected. Thus, the heat flux at ξ+δ around spherical area ( 4πr 2 ) should be

equal to that at ξ

Q̇cond

∣∣∣
r+δ−Q̇cond

∣∣∣
r
= 0 (1.3.5)

Inserting Eq. (1.3.1), Eq. (1.3.5) becomes

4πr 2 q̇cond

∣∣∣
r+δ−4πr 2 q̇cond

∣∣∣
r
= 0 ⇒

4πr 2 q̇cond

∣∣∣
r+δ−4πr 2 q̇cond

∣∣∣
r

δ
= 0 ⇒ d

dr

(
r 2 dT

dr

)
= 0

(1.3.6)

The general solution of Eq. (1.3.6) should be expressed as

T (r ) =− A

r
+B (1.3.7)

Applying the boundary conditions,

BC1: T = Ts r = δ
BC2: T = T f r =∞

the temperature distribution with respect to r is

T (r ) = δ Ts −T f

r
+T f (1.3.8)

Combining with Eq. (1.3.8), the heat conduction in Eq. (1.3.1) at the characteristic length δ is

q̇cond =−κ dT (r )

dr

∣∣∣∣
r=δ

= κ δ Ts −T f

r 2

∣∣∣∣
δ

= κ Ts −T f

δ
(1.3.9)

Equating the conduction in Eq. (1.3.9) to the convection in Eq. (1.3.4) gives

q̇cond = q̇conv ⇒ κ
Ts −T f

δ
= h

(
Ts −T f

)
∴

hδ

κ
= 1 = Nu (1.3.10)

When the characteristic length δ stands for a diameter of sphere,

Nu = 2 (1.3.11)
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LAMINAR FLOW

When a hot sphere of radius R is immersed in stream of fluid, advective cooling of the surface of

the sphere to the cold air involves conduction and convection along the normal to the surface.

According to boundary layer theory, the rate of transfer is maximum on the front side of the drop

facing the oncoming air stream, gradually decrease to a minimum value near the separation point,

and then increase to another, but yet lower maximum rate on the trailing face which experiences

velocities in the reverse direction as shown in Fig. 1.3.1(a).

For a dimensionless steady incompressible inviscid fluid§, the convection-diffusion equation is

balanced between the advective term on the LHS of Eq. (1.3.12) which heat moves along with the

flow of matter and the RHS which heat streams down temperature gradient as for a fluid at rest.

Pe
(
~v ·∇)

Z =∇2Z (1.3.12)

where¶

Z = T −T∞
T0 −T∞

ξ= r

R
Pe = w R

α

Under the low Re Stokes flow ( creeping flow ), a falling sphere is subject to the velocity component

in Eq. (B.1.10a) and Eq. (B.1.10b) and the resulting boundary conditions as

Z = 1 at ξ= 1 (1.3.13a)

Z = 0 at ξ→∞ (1.3.13b)

In limit of small Péclet number Pe, the expansion of an asymptotic series with regards to Pe is

Z = Z0 +Pe Z1 +Pe2 Z2 + . . . (1.3.14)

which leads to the leading order of temperature distribution Z0 in the absence of convective effect

in Eq. (1.3.12) and the first-order correction to the temperature distribution Z1 due to convection

as below.

∇2Z0 = 0 (1.3.15)

vξ
∂Z0

∂ξ
+ vθ
ξ

∂Z0

∂θ
=∇2Z1 (1.3.16)

Also, the boundary conditions in Eq. (1.3.13a) and Eq. (1.3.13b) according to Eq. (1.3.14) are ad-

§The mathematical introduction of an incompressible forced-convective heat transfer is in Eq. (A.2.3) in Appendix A.2.
¶The deduction of dimensionless numbers and the definition of symbols in each dimensionless number for Eq. (1.3.12)

shall refer Eq. (3.2.3) in Section 3.2.1.
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justed for Eq. (1.3.15) and Eq. (1.3.16).

Z0 = 1 at ξ= 1 (1.3.17a)

Z0 = 0 at ξ→∞ (1.3.17b)

Z1 = 0 at ξ= 1 (1.3.17c)

Z1 = 0 at ξ→∞ (1.3.17d)

The leading order in Eq. (1.3.15) can be simplified to the problem in Eq. (1.3.6) since the spherically

symmetric heat transfer without fluid flow, which results in the general solution as Eq. (1.3.7). With

assistant of boundary conditions in Eq. (1.3.17a) and Eq. (1.3.17b), the approximation of Eq. (1.3.7)

to the temperature field Z0 is

Z0 = 1

ξ
(1.3.18)

Consequently, Nu should remain 2 as Eq. (1.3.11).

Inserting the solution of Z0 in Eq. (1.3.18) into the first-order correction in Eq. (1.3.16),

vξ

(
− 1

ξ2

)
+ vθ
ξ

0 = 1

ξ2

d

dξ

(
ξ2 dZ1

dξ

)
+ 1

ξ2 sinθ

d

dθ

(
sinθ

dZ1

dθ

)

−
[

1− 3

2

1

ξ
+ 1

2

(
1

ξ

)3]
cosθ

(
1

ξ2

)
= 1

ξ2

d

dξ

(
ξ2 dZ1

dξ

)
+ 1

ξ2 sinθ

d

dθ

(
sinθ

dZ1

dθ

)
(1.3.19)

Considering Eq. (1.3.19) is an inhomogenous linear differential equation with the inhomogenous

term on the LHS which is related to cosθ, the particular solution should be in the form of F (ξ)cosθ

which gives

Z1 =
(

A0 + B0

ξ

)
+

(
A1 ξ+ B1

ξ2

)
cosθ︸ ︷︷ ︸

general solution

+
(

1

2
− 3

4ξ
− 1

8ξ3

)
cosθ︸ ︷︷ ︸

particular solution

(1.3.20)

where the first term of the general solution on the RHS of Eq. (1.3.20) is actually the general solution

of Eq. (1.3.15) instead of Eq. (1.3.19). The reason to include A0 +B0/ξ in the general solution of

Eq. (1.3.19) is that A0 +B0/ξ is sufficient to satisfy the Laplace’s equation of Z1.

Because of the boundary conditions Eq. (1.3.17c) and Eq. (1.3.17d), the constants in Eq. (1.3.20) are

determined as

Z1

∣∣∣
ξ=1

= (
A0 +B0

)+(
A1 +B1 + 1

2
− 3

4
− 1

8

)
cosθ = 0 ⇒


A0 +B0 = 0

A1 +B1 = 3

8

(1.3.21)

lim
ξ→∞

Z1 = A1 = 0 (1.3.22)

Thus, the temperature field of different domains ξ is obtained by Eq. (1.3.14) which is combined

with the solution of Z0 in Eq. (1.3.18) and Z1 in Eq. (1.3.20).

Z = Z0 +Z1 = 1

ξ
+Pe

[
B0

(
1

ξ
−1

)
+

(
1

2
− 3

4ξ
+ 3

8ξ2 − 1

8ξ3

)
cosθ

]
(1.3.23)
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At last, B0 remains unknown in Eq. (1.3.23). In order to determine it, the diffusion problem of Z0

in Eq. (1.3.15) needs to be re-considered, since Eq. (1.3.15) is only valid at ξ ≤ 1. For ξÀ 1 such

as ξ→∞, the convective term in Eq. (1.3.12) can be no longer neglected in consideration of heat

transfer. The conservation equation in Eq. (1.3.12) for Z0 at ξ→∞ is more likely to be

Pe

(
cosθ

∂Z0

∂ξ
− sinθ

ξ

∂Z0

∂θ

)
=∇2Z0 (1.3.24)

as

lim
ξ→∞

vξ = lim
ξ→∞

(
1− 3

2ξ
+ 1

2ξ3

)
cosθ ≈ cosθ

lim
ξ→∞

vθ = lim
ξ→∞

−
(
1− 3

4ξ
+ 1

4ξ3

)
sinθ ≈−sinθ

Although the domain of Eq. (1.3.24) is mainly considered in ξÀ 1, consistency requires that the

spherical symmetry in Eq. (1.3.15) remains in Eq. (1.3.24), which is with regards to variable ξ. As a

result, a transformation form exp

(
Pe ξ

cosθ

2

)
Φ(Pe ξ) is introduced into Eq. (1.3.24) and gives the

solution as

Z0 = C

Peξ
exp

[
Peξ

2

(
cosθ−1

)]≈ C

Peξ
+ C

2

(
cosθ−1

)
(1.3.25)

Again, due to consistency for the same temperature field, Eq. (1.3.25) should be equivalent to

Eq. (1.3.23) at ξ→∞ as

Z
∣∣∣
ξ→∞ = Z0 + lim

ξ→∞
Z1 =1

ξ
+ Pe

2
(cosθ−2B0)

⇓ ⇓
C

Pe

1

ξ

C

2

(
cosθ−1

)
(1.3.26)

Based on Eq. (1.3.26), C = Pe and more importantly B0 = 1/2, which results in the exact solution of

temperature field as

Z = 1

ξ
+Pe

[
1

2

(
1

ξ
−1

)
+

(
1

2
− 3

4ξ
+ 3

8ξ2 − 1

8ξ3

)
cosθ

]
(1.3.27)

The average Nusselt number Nu due to temperature field in Eq. (1.3.27) can be obtained by using

the definition of Nu in Eq. (1.3.10).

Nu = 2ξ
h

κ

∣∣∣∣
ξ=1

= 2ξ

1

πξ

∂

∂ξ

∫ π

0
Z dθ

Z0 −Z∞

∣∣∣∣
ξ=1

= 2

(
1+ Pe

2

)
= 2+Re ·Pr (1.3.28)

where Preandtl number Pr is characteristic with the property of the flow and the Reynolds number
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Re is with the property of the fluid.

Re = inertial forces

viscous forces
= ρ f w f

µ
δ (1.3.29)

Pr = ν

α
=

µ

ρ f

κ

c f ρ f

= c f µ

κ
(1.3.30)

TURBULENCE FLOW

When a stream of higher velocity fluid is introduced on a spherical surface, a transition or turbulent

flow might be developed as shown in Fig. 1.3.1(b). Unlike the constant laminar flow, the interrupted

flow changes the separation line further to the rear of the sphere, reducing the size of the wake.

Although a set of dimensionless partial differential equations in the incompressible interrupted

flow for the sphere can be described by

Heat balance (~v ·∇) Z = 1

Re Pr
∇2Z

Navier-Stokes equation ~v ·∇~v =∇p + 1

Re
∇2~v

Equation of continuity ∇·~v = 0

(1.3.31)

a general analytical solution of Nu is impossible [11]. Therefore, various semi-empirical correla-

tions related to a sphere immersed in an infinite media are established in the form [10, 11, 12, 13]

Nu = 2+F
(
Re,Pr

)
(1.3.32)

which is Eq. (1.3.28) alike, but has different expressions in F
(
Re,Pr

)
due to the fluid chosen and the

flow geometry as

Ranz and Marshall [11] Nu = 2+0.6Re1/2 Pr 1/3

Whitaker [13] Nu = 2+ (
0.4Re1/2 +0.06Re2/3

)
Pr 0.4

(
µ f

µs

)1/4

In Eq. (1.3.32), the constant 2 in Eq. (1.3.11) represents the motionless term and F
(
Re,Pr

)
represents

the fluid motion term, in which Re is used to predict the flow pattern such as low Re for the laminar

flow and high Re for the turbulent flow. When Re → 0 in Eq. (1.3.32), F
(
Re,Pr

) → 0 and Nu → 2

again, indicating the theoretical minimum of the steady Nusselt number for a sphere in Eq. (1.3.11).
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Figure 1.3.1: Schematic diagram of the transition flow from laminar with broad wake ( flow

separation ∼ 80 ° ) at small Re (a) to turbulent flow with narrow wake ( flow separation ∼ 120 ° ) at

large Re (b)||

||Available at https://i.stack.imgur.com/FKoR9.png

https://i.stack.imgur.com/FKoR9.png


CHAPTER 2

LITERATURE REVIEW

2.1 AG-CU SYSTEM

In binary system, the equilibrium phases are present at a given temperature and composition when

the phase transformations occur at a fixed pressure of 1atm. To find this equilibrium at the fix pres-

sure, the change of Gibbs free energy is calculated with respect to temperature and composition.

At a given temperature T , the composition-dependent Gibbs free energy is given [1]

G = X A G A +XB GB +∆Hmi x −T ∆Smi x︸ ︷︷ ︸
∆Gmi x

(2.1.1)

where the mole fraction of atom A and B represented by X A and XB has the relation X A +XB = 1.

In regular solution of binary system, ∆Hmi x and −T ∆Smi x in the change of Gibbs free energy due

to the mixing ∆Gmi x are displayed in Eq. (2.1.2a) and Eq. (2.1.2b).

∆Hmi x =ΩX A XB (2.1.2a)

−T ∆Smi x = R T
(
X A ln X A +XB ln XB

)
(2.1.2b)

Both endothermic ( ∆Hmi x < 0 ) and exothermic ( ∆Hmi x > 0 ) solution of high and low temper-

ature are shown in Fig. 2.1.1. At low T , the positive enthalpy of mixing ∆Hmi x with small nega-

tive −T ∆Smi x develops a negative curvature of ∆Gmi x in the middle. Combined with a baseline

X A G A + XB GB , G in Eq. (2.1.1) can also show a similar curvature in Fig. 2.1.2, in which there is a

stable region ( a miscibility gap ) for a mixing of two phases α1 and α2. For a larger ∆Hmi x , the

miscibility gap can extend into the liquid phase region and forms a eutectic phase diagram.

To define both stable and metastable equilibrium features of the eutectic Ag-Cu system, the central

concern is located at the values ∆Gmi x for the solid and the liquid in Eq. (2.1.1). In sub-regular

29
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Figure 2.1.1: The effect ofΩ and T on ∆Hmi x ( green solid line ), T ∆Smi x ( blue solid line ) and

∆Gmi x ( red solid line )

Figure 2.1.2: Molar free energy G in Eq. (2.1.1) at ∆Hmi x > 0 (red curve) with baseline for

X A G A +XB GB

solution model [14], Eq. (2.1.1) is modified as

G = X A G A +XB GB +R T
(
X A ln X A +XB ln XB

)+X A XB

n∑
i=0

(
ai +bi T

)(
X A −XB

)i

︸ ︷︷ ︸
∆Gex

(2.1.3)

where the interaction parameter between unlike components for Ag-Cu system is available in [15,



CHAPTER 2. LITERATURE REVIEW 31

16] and Eq. (2.1.1) equals to Eq. (2.1.3) when only i = 0 is considered.

Figure 2.1.3: Calculated metastable equilibria in the Ag-Cu system [16] where the solid lines are

the stable equilibria, the dotted lines are the metastable extension of the phase boundaries, and

the dashed line is the T0 curve

The most detail examination of binary Ag-Cu diagram according to Eq. (2.1.3) is performed by

Murray [16] as

Gl = R T
(
X Ag ln X Ag +XCu ln XCu

)
+ (

15171−2.537T
)

X Ag XCu + (−2425+0.946T
)

X Ag XCu
(
X Ag −XCu

)
(2.1.4a)

Gs =
(−11945+9.67T

)
X Ag +

(−13054+9.62T
)

XCu +R T
(
X Ag ln X Ag +XCu ln XCu

)
+ (

34532−9.178T
)

X Ag XCu + (−5996+1.725T
)

X Ag XCu
(
X Ag −XCu

)
(2.1.4b)

Although the reference in [16] yields rather poor agreement with the measured thermodynamic

excess quantities, the optimized Gibbs energy function ( Eq. (2.1.4a) and Eq. (2.1.4b) ) consist of a

least squrares ( the CALPHAD approach ) produces a Ag-Cu diagram with good agreement [17].

Fig. 2.1.3 shows the calculated stable and metastable equilibrium phase boundaries of Ag-Cu sys-

tem by using Eq. (2.1.4a) and Eq. (2.1.4b). Four selected free energy curves for the liquid Gl ( the red
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solid line ) and solid Gs ( the blue solid line ) corresponding to temperature 1234.93 K ( Ag melting

point ), 1150 K, 1053.1 K ( the eutectic temperature ) and 960 K ( the minimum T0 at Xcu ' 50% ) in

the Ag-Cu phase diagram Fig. 2.1.3 are also shown in Fig. 2.1.4.

Figure 2.1.4: Gibbs free energy of Ag-Cu alloy system versus atomic concentration at the selected

temperature

The equilibrium conditions can be reached when each component has the same chemical poten-

tial in the different phases ( common tangent rule ) as the green dashed line in Fig. 2.1.4 lying on

the tangent of Gl and Gs curve at the equilibrium compositions. With the decrease of temperature

in a Ag-Cu alloy, the phase changes from L, to L +β at 1234.93 K, to L +α and L +β at 1150 K, to

L +α+β at eutectic temperature 1053.1 K, to α+β. Combining with all those isothermal points of

Gibbs free energy curves at the range of temperatures from 300 K to 1400 K, the equilibrium phase

diagram can be plotted in the black solid line in Fig. 2.1.3.

2.1.1 METASTABLE PHASE DIAGRAM

In the area of rapid solidification, the metastable extensions of the solidus curves can be evaluated

experimentally, such as thermal analysis, X-ray diffraction, TEM, etc. [18, 19]. However, the diffi-

culty in the experimental determination gives way to the extrapolation of the free energy curves

as the orange dashed line in Fig. 2.1.4. The metastable extensions of the phase boundaries are

characterized by the common tangent construction of metastable solid miscibility gap above the
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eutectic temperature 1053.1 K and of a metastable solid solution permitting a supersaturation of

the alloying elements below 1053.1 K.

With the use of the X-ray analysis, Fredriksson et al [19] modify the excess free energy of the liquid

of [16] and argue the melting temperature of the rapidly solidified Ag-Cu alloy might be neither

constant nor near the equilibrium one.

2.1.2 T0 CURVES

The T0 curve is the locus of the compositions and temperatures where the free energies of two

phases are equals as the pink points in Fig. 2.1.4. The entire T0 line in Fig. 2.1.3 is extrapolated by

a smooth curve extending through the eutectic point and either pure component melting point,

in which the minimum T0 is located at the order of 960 K at 50 at .%Cu and T0 at the eutectic

composition of Ag-Cu system lies just ∼ 76 K below the eutectic point.

With the use of the T0 curve between the liquid and a solid phase, the minimum undercooling of

the liquid for the partitionless formation of the solid with the same composition is determined [16,

18, 20]. In the case of Ag-Cu system, T0 curve provides the minimum undercooling for the forma-

tion of the metastable phase γ′ [21]. Upon the cooling rate employed in Ag-Cu alloy, several other

metastable phase sequences, such as α′+β′ [22] and γ′′ [23], are possible to be detected experi-

mentally by either TEM or XRD evaluation.

Theoretically, Alloy Ag-Cu with slightly depressed T0 curve system below the stable liquidus in

Fig. 2.1.3 is unlikely to depress the solidification temperature towards the glass temperature [20].

By using vapour deposition technique, giving a high cooling rate of the order of ∼ 1010 K/s, it is

possible to obtain an amorphous phase in rapidly quenched alloys of Ag-40at.%Cu [24]. Neverthe-

less, the glass-forming ability of Ag-40at.%Cu is relative weaker than that of binary alloy with one

or two intermetallic compounds, such as Ni-76at.%Zr [25].
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2.2 CONTAINERLESS PROCESS

Metastable ( non-equilibrium ) states, such as metastable crystalline phases, supersaturated solid

solutions, and etc, are attained for rapid solidified alloys, when a sufficiently large driving force

accumulates at a substantial undercooling. Because of a certain activation energy preventing from

a stable-state transformation in the subsequent cooling process ( see Fig. 1.1.1 ), the state of an

undercooled melt gives access to solidification into solid states far from equilibrium.

Containerless processing is a way to obtain a deeply undercooled melt, by which a complete avoid-

ance of heterogeneous nucleation on container wall which otherwise dominates the solidification

behaviour of a melt [26]. In experimental techniques of containerless processing, the control of

nucleation catalysis preventing the establishment of equilibrium is based on two approaches, the

one is by a chemical treatment and the other is by a physical separation.

The chemical encasement is to deactivate possible catalytic sites around the sample surface and

gives rise to a deep undercooling even at slow cooling of bulk melt prior to nucleation. For exam-

ple, a melt is embedded in an inactive glass flux, such as B2O3, to avoid contact with the container

wall nor exposure to the atmosphere in melt fluxing technique [27, 7]. Increasing thermal cycles

allows impurities, such as the remaining composition of oxides, to be removed from the sample

and hence increasing the potential level of undercooling attainable [28]. In the study of Ag-Cu sys-

tem by melt-fluxing technique, the highest undercooling is reported in the order of ∼ 80 K after

30 thermal cycles [27] before the crucible broke. Although melt-fluxing processed samples are pro-

cessed under high vacuum with assistance of high thermal cycles to eliminate potential impurities,

the heterogeneous nucleation might still be operative for solidification of Ag-Cu alloy as more than

one nucleus are found on the surface of sample [27, 7, 29].

The physical separation is to restrict the catalytic effects of active nucleants into a small fraction of

the overall sample. By dispersing the liquid into a large number of small droplets within a suitable

medium, for example, by drop-tube technique [30], nucleant isolation in droplets becomes pos-

sible. Each droplet in flight experiences a high order of cooling rate, giving way to promote high

undercoolings by restricting its response time from nucleation.

Unlike the chemical encasement, detailed analysis of thermodynamics and kinetics of rapid so-

lidification with respect to nucleation and crystal growth of alternative and competing phases is

different or even impossible in the physical separation approach, since direct investigations of all

processes are unable [26].

2.2.1 DROP-TUBE TECHNIQUE

Drop-tube experiments are of two kinds, the one is long drop-tubes ( typically greater than 10 m

in height ) mainly in the study of micro-gravity ( in vacuo ) effect on solidification and only few

associated with space research institutions, and the other is short drop-tubes ( < 8 m as shown in
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Fig. 5.1.2 ) widely used in the investigation of drop-tube processed materials [26, 31].

A long drop-tube processed single droplet with diameter 3 ∼ 10 mm superheated by electromag-

netic levitation and solidified at in vacuo environment during the free fall loses its heat by purely

heat radiation in Eq. (1.3.3). Because of the fourth power of temperature T in Eq. (1.3.3), materials

with higher melting point Tm , such as refractory metals and alloys, can be more efficient to cool

down below a reduced undercooling ∆T /Tm of 0.2 in drop-tube of 50 long.

For materials with low entropies of fusion as Ag-Cu alloy, a greatly increased cooling rate by a back-

filling inert gas enables short drop-tube to be used to study the effects of undercooling on solid-

ification. Moreover, with the assistance of melt subdivision in a short drop-tube, a spray of fine

droplets ( having a range of diameters between 25µm and 2mm ) isolates nucleants in a fraction of

the droplets.

On the one hand, the inert gas introduced in those fine droplets largely increases their external heat

extraction rate, at the cost of the detection of thermal emission due to recalescence. On the other

hand, those high cooling rates ( 103 ∼ 106K/s ) employed on the droplets reduce temperature rise

during recalescence, giving way to preserving the initially as-solidified microstructure down to the

ambient temperature [32]. For this reason, studies of nucleation temperature or undercooling may

emphasize the microstructural information of droplets. Considering there is no other difference of

microstructural effect achieved in drop-tube processing from other high undercooling technique,

direct comparison of microstructure of these techniques, such as melt fluxing or electromagnetic

levitation, which permit measurement of undercooling, gives a good insight of the microstructural

characterization of drop-tube processed droplets [31].
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2.3 PHASE TRANSFORMATION IN AG-CU ALLOY

Binary Ag-Cu eutectic at equilibrium condition introduced in Section 1.2.2 has the cooperative

growth of the same face-centred cubic crystal structure (FCC) in both the Cu-rich ( α ) and Ag-rich

( β ) phase. The coupled planar solid-liquid interface can hold stable even with the existence of

temperature gradient ( undercooling in Eq. (1.2.38) ) ahead of it, as long as φr in Eq. (1.2.24) is less

than zero.

Because both Ag and Cu are low entropy, non-faceted, and regular elements having isotropic growth

characteristics at undercoolings, it is likely that the instability of both phase α and β is developed

simultaneously, leading to the outbreak of either eutectic cells or eutectic dendrites from lamellar

eutectic at intermediate undercoolings as shown in Fig. 2.3.1. At the eutectic composition of Ag-Cu

system, the formation of a primary single dendrite is unlikely due to the symmetrical coupled zone

as the eutectic dendrite would prevail at high undercoolings.

However, the difference of physical properties between Ag and Cu in Ag-Cu system, such as the

entropy of Cu relatively greater than that of Ag, may arise the establishment of a slightly skewed

zone towards phase β-Cu side as shown in Fig. 2.3.2. Either using Eq. (1.2.51) directly from the HJ

model or applying Kc (Pe) in Eq. (2.3.17) from the TMK model into Eq. (1.2.51) is highly suggestive

that ∆T ∝p
V and higher ∆T gives higher growth rate V . When the growth rate or undercooling

is sufficiently high, highly supersaturated single-phase dendrites can pass the coupled zone and

so decouple the growth of two solid phases, during which one phase grows faster than the other.

This skewed zone in the Ag-Cu phase diagram results in the primary single α-Ag dendrites at high

undercoolings, also experimentally examined and found in [27, 7, 33]. If there would be any liquid

in the post-recalescence, the lamellar interdendritic eutectic shall take place to finish the solidifi-

cation.

2.3.1 ∆T = 0 ∼ 60 K

At low growth velocities, lamellar spacing λ is much smaller than the solute diffusion distance δc

in Eq. (1.2.10), giving rise to the interface composition C∗
l with respect to the equilibrium eutectic

composition Ce as shown in Eq. (1.2.32a) and Eq. (1.2.32b). Based on this assumption, JH model [5]

establishes the first detailed analytical model for the growth of regular eutectics*, which has the

relationship of the undercooling ∆T in Eq. (1.2.47) as

∆T = Kc ·V λ+Kr · 1

λ

Using the extremum condition in Eq. (1.2.48), simple relationships, which are of use for obtain-

ing order of magnitude estimates from Eq. (1.2.47), are possible as Eq. (1.2.49), Eq. (1.2.50), and

Eq. (1.2.51). In the experimental investigation of directionally solidified Ag-Cu eutectic [35], an

*The detail of HJ model is introduced in Section 1.2.2.
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Figure 2.3.1: Sysmmetrical coupled zones of regular eutectic

Figure 2.3.2: Skewed coupled zones of regular eutectic [34]

average lamellar spacing of ∼ 95 nm for a growth rate upto 0.27 cm/s leads to

λ2 V = Kr

Kc
= 1.4×10−17 [m3/s] (2.3.1)
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For the eutectic Ag-Cu alloy, Walder and Ryder [27] use the formula 4σTe /LF to obtain

λ∆T = 2Kr ' 4σTe

LF
= 4.3×10−7 [Km] (2.3.2)

Combining with Eq. (2.3.1) and Eq. (2.3.2), Kr = 2.15×10−7 and Kc = 1.5357×1010 and thus

∆T 2

V
= 4Kr Kc = 13207.1 [K2 s/m] (2.3.3)

The parabolic relation between V and ∆T in Eq. (2.3.3) is only favourable to the near-equilibrium

condition, since the liquid diffusion coefficient De
l in Eq. (1.2.47) is commonly assumed to be tem-

perature dependent, e.g. 10−9 m2/s at the eutectic temperature of Ag-Cu alloy.

Boettinger et al. [36] use the temperature-dependent diffusion coefficient

Dl (T ) = 2.4×10−7 exp

(
−48886.3

RT

)
[m2/s] (2.3.4)

to make the calculated growth velocities of Ag-Cu eutectic well agree with the observed one under

the electron beam solidification. Wang et al. [37] also apply the temperature-dependent diffusion

coefficient in JH model to predict the drop-tube processed microstructure. Since Kc ∝ 1/D in

Eq. (1.2.47), the modification of Eq. (2.3.3) can be simply obtained as

∆T 2

V
= 4Kr

(De
l

Dl

)
·Kc = 55.0298 exp

(
48886.3

RT

)
[K2 s/m] (2.3.5)

where R is the gas constant = 8.314 J/mol ·K.

Further relaxing the JH assumption of λ¿ δc , Trivedi, Magnin and Kurz [38] ( TMK ) extend JH

model to the rapid solidification process, in which the metastable extensions of solidus and liq-

uidus lines outward to the metastable region ( see dashed lines in Fig. 2.1.3 ) are considered in

the calculation. Because the theoretical cigar-shape model is less meaningful to the Ag-Cu solidi-

fication on high velocity eutectic growth [38], the review of TMK model mainly concerns with the

second model which the distribution coefficient k is an arbitrary constant, but kα = kβ is assumed.

Under steady-state directional solidification conditions, the solute field in liquid governed by

∂2C

∂y2 + ∂2C

∂z2 + V

D

∂C

∂z
= 0 (2.3.6)

has a general solution in Eq. (1.2.25) as

C (y, z) =Ce +B1 exp

(
−V

D
z

)
+B2 exp(−b z) cos

(
2πy

λ

)
(2.3.7)

where

b = V

2D
+

√(
V

2D

)2

+
(

2π

λ

)2

(2.3.8)

The flux boundary condition in Eq. (1.2.32a) and Eq. (1.2.32b) which assumes the interface compo-

sition in the liquid close to the original eutectic one C∗
l ≈Ce is no longer valid. Two flux conditions
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for the eutectic phases α and β established by the method of weighted residuals, which are equiv-

alent to Eq. (1.2.33) and Eq. (1.2.34) are

lamellar α:
∫ λ

2 f

0
V

(
k −1

)
C∗

l dy =
∫ λ

2 f

0
D

(
∂C

∂z

)
z=0

dy (2.3.9a)

lamellar β:
∫ λ

2

λ
2 f

V
(
1−k

)(
1−C∗

l

)
dy =

∫ λ
2

λ
2 f

D

(
∂C

∂z

)
z=0

dy (2.3.9b)

where

C∗
l =C (y,0) =Ce +B1 +cos

(
2πy

λ

)
B2 (2.3.10)

(
∂C

∂z

)
z=0

=−V

D
B1 −b cos

(
2πy

λ

)
B2 (2.3.11)

The constans B1 and B2 can be determined by Eq. (2.3.9a) and Eq. (2.3.9b) as

B1 = 1−k

k

(
f Ce − (1− f ) (1−Ce )

)
(2.3.12)

B2 = Pe
f (1− f ) (1−k)

(
2π

Pe

)

sin( f π)

(√
1+

(
2π

Pe

)2

+2k −1

) (2.3.13)

where the Péclet number Pe =V λ/2D .

The average concentration differences ahead of phase α and β are expressed respectively

∆Cα = 2

f λ

∫ λ
2 f

0
C∗

l −Ce dy = 2

f λ

∫ λ
2 f

0
B1 +cos

(
2πy

λ
B2

)
dy = B1 +B2

sin( f π)

f π
(2.3.14a)

∆Cβ =
2

(1− f )λ

∫ λ
2

λ
2 f

C∗
l −Ce dy = 2

(1− f )λ

∫ λ
2

λ
2 f

B1 +cos

(
2πy

λ
B2

)
dy = B1 −B2

sin( f π)

(1− f )π
(2.3.14b)

According to Eq. (1.2.38), the contributions to the overall undercooling for eutectic growth as ∆Tc

in Eq. (1.2.39) and ∆Tr in Eq. (1.2.40) are

∆Tα = |mα| ·∆Cα+ΓαKα = |mα|
(
B1 +B2

sin( f π)

f π

)
+ΓαKα (2.3.15a)

∆Tβ =−|mβ| ·∆Cβ+ΓβKβ =−|mβ|
(
B1 −B2

sin( f π)

(1− f )π

)
+ΓβKβ (2.3.15b)

where Kα and Kβ are shown in Eq. (1.2.38).

Although the rapid solidification results in high growth velocity at the liquid/solid interface, the

planar interface of eutectic growth shall remain the relation of ∆T =∆Tα =∆Tβ = constant.

|mβ|∆Tα+|mα|∆Tβ =
(|mα|+ |mβ|

)
∆T ⇒ ∆T = |mβ|∆Tα+|mα|∆Tβ

|mα|+ |mβ|
(2.3.16)
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Inserting ∆Tα in Eq. (2.3.15a) and ∆Tβ in Eq. (2.3.15b) into Eq. (2.3.16) gives

∆T = |mα| |mβ

|mα|+ |mβ|


2π

Pe√
1+

(
2π

Pe

)2

+2k −1

1−k

2Dπ


︸ ︷︷ ︸

Kc

(
Pe

)
·V λ+2(1− f ) |mβ|Γα sin(θα)+2 f |mα|Γβ sin(θβ)

f (1− f )
(|mα|+ |mβ|

)
︸ ︷︷ ︸

Kr

· 1

λ

(2.3.17)

where Kc is no longer constant as Eq. (1.2.47) in JH mode, but is Péclet number dependent.

Figure 2.3.3: λ2 V of various equilibrium distribution coefficients deviate from the constant after

Pe > 1

Applying Kc (Pe) and Kr from Eq. (2.3.17) into Eq. (1.2.49) gives the relation of λ2 V and Pe in

Eq. (2.3.18), in which the value of λ2 V deviates from the constant at large Pe.

λ2 V = (1− f ) |mβ|Γα sin(θα)+ f |mα|Γβ sin(θβ)

|mα| |mβ|
4π

f (1− f )
·


−1+2k +

√
1+

(
2π

Pe

)2

2π

Pe

 D (2.3.18)

Similiarly, the expression of λ∆T and ∆T 2/V can also be obtained by substituting Kc and Kr in

Eq. (1.2.50) and Eq. (1.2.51) respectively. Fig. 2.3.4 gives an extensive evidence to show the value

of the distribution coefficient k affects undercooling ∆T greatly at the same Pe greater than 1.

Trivedi [3, 38] suggests that the deep undercooling in eutectic growth in Fig. 2.3.4 gives rise to

a glass transition temperature in which two-phase eutectic would be replaced by a single low-k

amorphous phase.



CHAPTER 2. LITERATURE REVIEW 41

Figure 2.3.4: Interface undercooling ∆T with various distribution coefficients k between 0.001

and 0.8 change differently after Pe > 1

Because of k, the nature of the metastable phase diagram strongly influences the eutectic growth.

For Ag-Cu alloys, the amorphous phase due to narrow T0 curve in Fig. 2.1.3 is unlikely in rapid

solidification, but metastable states [36, 39], as an extension of the rather limited solid solubilities

observed at equilibrium, and a range of equilibrium and non-equilibrium microstructures, includ-

ing eutectic [27, 36, 40], dendritic [27, 29], banded [36] and anomalous structures [7, 37, 41, 42], are

achieved. At low undercoolings, a mixture of eutectic and anomalous microstructures developed

from a single nucleation point, forming radially to zones of microstructure, in which the lamellar

eutectic takes the form of cells with anomalous eutectic at the cell boundaries [7, 41, 42].

The similar morphology consisting with anomalous and lamellar eutectic is also observed in drop-

tube processed samples [37, 43]. In many cases, a transition from regular lamellar to anomalous

eutectic structure is progressive with the volume fraction of anomalous eutectic increasing as the

level of undercooling rises. Wang et al. [37] suggests the anomalous eutectic is the product of rapid

solidification, since the lamellar eutectic preferentially grows from the anomalous eutectic in an

epitaxial and radiant way. Clopet at al. [7, 41] argue the mechanism of anomalous eutectic at

intermediate undercooling ( < 60 K ) gives rise to remelting of eutectic dendrites in analysis of

the brightness-time characteristics of spot regions within the continuous and spasmodic growth

zones. In spite of this, the primary eutectic lamellar yielded during recalescence can be disinte-

grated into anomalous eutectic in the subsequent solidification at high undercoolings, owning to

their being supersaturated with solute [44].

The direct observation and measurement of drop-tube formed particles is experimentally impos-

sible, which gives rise to the difficulty to establish the relationship between lamellar spacing and

undercooling as well as the relationship between undercooling and cooling rate. Therefore, the

theoretical calculations based on JH [5] and TMK [38] eutectic growth model are of practical use to
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understand the characteristic of eutectic growth of drop-tube processed Ag-Cu eutectic droplets,

i.e. [37], and the heat transfer model originally related to gas atomisation [4, 45] is also applied

in [43] to understand the thermal behaviour of metallic droplet cooling during the free falling

though the tube.

In [37], neither the detailed physical parameters nor the equations applied in theoretical calcula-

tions are provided. But it is possible to estimate the relation between eutectic growth velocity V

and undercooling ∆T by inserting the physical parameters available in [42] into Eq. (1.2.51) for HJ

model, or into Eq. (1.2.51) with Eq. (2.3.4) for HJ model with temperature-dependent diffusion co-

efficient Dl (T ), or into Eq. (1.2.51) with Kc (Pe) and Kr obtained in Eq. (2.3.17) for TMK model. The

calculated result of the relation is illustrated in Fig. 2.3.5.

HJ model is known to well predict the lamellar eutectic growth near the equilibrium, whereas TMK

model is more capable of eutectic growth during rapid solidification. The deviation of the ∆T −
V relationship appearing at the order of 10 K, which is close to the lower undercooling that the

anomalous eutectic is observed in [7], indicates the formation of rapidly solidified eutectic. The

dramatic rise of growth velocity V at ∆T ' 15 K can be reckoned as the outbreak of dendrites or

other non-space filling morphologies. In the case of Ag-Cu alloy, the two-phase ( eutectic ) cells or

dendrites is believed to be responsible for this sudden increase of V in Fig. 2.3.5.

Figure 2.3.5: Eutectic growth velocity versus undercooling of Ag-40at.%Cu alloy, where the dashed

black line, the solid blue line and the solid red line represent the result of JH model, JH model with

diffusion coefficient Dl (T ) in Eq. (2.3.4), and TMK model respectively

The drop-tube formed production of a fine spray of free falling droplets is believed to receive a
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sufficient cooling velocity to freeze the partially or fully formed anomalous microstructure into

ambient temperature [31]. The cooling rate at the range of 103 and 106 K/s is reported in [43]

by using a simple heat transfer model, similar to the one introduced in Section 3.1. The Ranz

and Marshall correlation [11] used in the heat extraction past a small sphere [43], however, might

overestimate Nusselt number and the cooling rate, which will be proved in Section 2.4. Moreover,

neither the temperature gradient inside droplet nor the heat transfer circumstance at the wake of

flow ( see Fig. 1.3.1 ) is concerned in this calculation.

2.3.2 ∆T > 60 K

At higher undercoolings, the morphology of lamellar eutectic mixed with anomalous eutectic could

be dramatically modified into that of lamellar eutectic coupled with single-phase dendrites. The

critical undercooling of the morphological change in Ag-40at.%Cu alloy is reported as occurring at

70 K [7, 46], 75 K [27], 76 K [47]. These critical undercoolings are believed to indicate the formation

of the supersaturation solid solution, phase γ′ in the case of Ag-Cu system, since they are close to

the calculated T0 temperature in Fig. 2.1.3.

Under non-equilibrium conditions, four contributions to the total undercooling ∆T at growth in-

terface are concerned in the classic theory of dendritic growth [3]

∆T =∆Tc +∆Tr +∆Tt +∆Tk (2.3.19)

where the undercooling due to solute diffusion ∆Tc , due to curvature ∆Tr , due to heat flow ∆Tt ,

and due to kinetics ∆Tk .

As introduced in Section 1.2.3, the assumption of a single dendrite tip being an isolated needle

in solidification, can be of use in the estimation of radius of curvature, supersaturations, under-

coolings. Since the kinetics of metals is negligible ( see Section 1.2.1 ) and the positive temperature

gradient of directional solidification has little impact on S/L interface, only the first two undercool-

ings (∆Tc +∆Tr ) in Eq. (2.3.19) are considered in the theoretical model presented in [48].

The simple version of the model can be understood by using a mathematical perturbation interface

introduced in Eq. (1.2.13) ( see Fig. 1.2.3 ) and assuming the temperature at tips of the interface Tt

is at y = 3λ/4 and the temperature at depressions of the interface Td is at y =λ/4, that is

T ∗
t = T f +m C∗

l ,t −ΓK ∗
t (2.3.20a)

T ∗
d = T f +m C∗

l ,d −ΓK ∗
d (2.3.20b)

The total undercooling due to Eq. (2.3.20a) and Eq. (2.3.20b) is

∆T = T ∗
t −T ∗

d = m
(
C∗

l ,t −C∗
l ,d

)︸ ︷︷ ︸
∆Tc

−Γ(
K ∗

t −K ∗
d

)︸ ︷︷ ︸
∆Tr

(2.3.21)
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where the liquid composition at tips of the interface C∗
l ,t and at depressions of the interface C∗

l ,d

can be obtained by Eq. (1.2.20) at z = 0 and λ→∞,

C (0, y)
∣∣∣
λ→∞ = C0

k
+ε sin

(
2π

λ
y

)
k V Gc

(1−k)V −D

(
V

2D +
√( V

2D

)2 +ω2

)
∣∣∣∣∣∣∣∣
λ→∞

≈ C0

k
−Gc ε sin

(
2π

λ
y

)
(2.3.22)

Because the concentration of the interface perturbation describes C∗
l ,t at y = 3λ/4 and C∗

l ,d at y =
λ/4 in Eq. (2.3.22),

C∗
l ,t −C∗

l ,d =C

(
0,

3λ

4

)
−C

(
0,
λ

4

)
=

(
C0

k
+εGc

)
−

(
C0

k
−εGc

)
= 2εGc (2.3.23)

Due to λ→∞ giving the first derivative of Eq. (1.2.13), z ′ ∝ cos
(
2π y/λ

)→ 0,

K = z ′′(
1+ z ′2)3/2

≈ z ′′ =−4π2

λ2 ε sin

(
2π

λ
y

)

K ∗
t −K ∗

d =−4π2

λ2 ε sin

(
2π

λ

3λ

4

)
+ 4π2

λ2 ε sin

(
2π

λ

λ

4

)
= 8π2

λ2 ε (2.3.24)

The temperature difference between the tips and depressions can be found by using the heat con-

duction in Eq. (1.3.1) as

− dT

dz
= T ∗

t −T ∗
d

ε sin

(
2π

λ

3λ

4

)
−ε sin

(
2π

λ

λ

4

) = T ∗
t −T ∗

d

−2ε
=−G ⇒ T ∗

t −T ∗
d = 2εG (2.3.25)

Inserting Eq. (2.3.23), Eq. (2.3.24) and Eq. (2.3.25) into Eq. (2.3.21) gives

2εG = 2m εGc −Γ 8π2

λ2 ε ⇒ G = m Gc −
(

2π

λ

)2

Γ⇒ λ= 2π

(
Γ

m Gc −G

)1/2

(2.3.26)

where the interface concentration gradient in liquid Gc is considered the steady-state one intro-

duced in Eq. (1.2.12),

Gc =−∆C0
V

D
=−C∗

l

(
1−k

)︸ ︷︷ ︸
p

V

D
=−C∗

l p
V

D
(2.3.27)

The only unknown variable in Eq. (2.3.26) is C∗
l in Eq. (2.3.27), which shall refer the definition of

the supersaturationΩ in Eq. (1.2.56) andΩ= I(Pc ),

C∗
l = C0

1−Ω (1−k)
=C0

1

1−p I(Pc )︸ ︷︷ ︸
A(Pc )

(2.3.28)

Langer and Müller-Krumbhaar [49] proved that dendrite tips R do grow closely to the minimum

wavelength of the perturbation interface as Eq. (2.3.26) shown. Thus, combining with Eq. (2.3.26),
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Eq. (2.3.27) and Eq. (2.3.28), and also with the definition of solute Pelect number Pc = R V /2D ,

R = 2D Pc

V
=λ= 2π

 Γ

−m C0 A(Pc ) p
V

D
−G


1/2

⇒
(
Γ

π2

P 2
c D2

)
︸ ︷︷ ︸

A′

V 2 +
(
m C0 p

A(Pc )

D

)
︸ ︷︷ ︸

B ′

V +G = 0

(2.3.29)

Figure 2.3.6: Tip radius R as a function of growth velocity V at directional growth of S/L interface

By using Eq. (2.3.29) with pre-setting the imposed temperature gradient G, such as 0, 0.1 and 10

K/mm, the approximated relationship of either tip radius R, or liquid concentration C∗
l , or tip

temperature T ∗ as a function of the growth rate V in directional growth for low Pc is shown in

Fig. 2.3.6, Fig. 2.3.7 and Fig. 2.3.8 respectively. Because of these relationships, the morphology

change from planar (p), to cellular (c) and to dendrites for either a given tip radius or a given liquid

concentration or a given tip temperature T ∗ with respect to a given growth rate becomes possible.

More importantly, the planar front is dominant to the S/L interface again at high growth rates, lead-

ing to an homogeneous solidification with the composition C0, as shown in Fig. 2.3.7 and Fig. 2.3.8.

And also the imposed temperature gradient G can be safely neglected at high growth rates, since

the divergence between Eq. (2.3.29) with G = 0 and Eq. (2.3.29) with G = 10 K/mm at high growth

rates reduces down to the order of 10−7 or even less.

To obtain the approximated relationship of the morphology change as a function of growth rate

for high Pc , ∆Tc is no longer equal to m Gc applied in Eq. (2.3.26). The solute stability parameter

ξc in Eq. (2.3.30) [48] is necessary in consideration of solute-dependent undercooling as ∆Tc =
m Gc ξc , by which a reasonable agreement of determining the morphological transition between
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Figure 2.3.7: Liquid concentration C∗
l as a function of growth velocity V at directional growth

Figure 2.3.8: Temperature of S/L interface T ∗ as a function of the growth velocity V in directional

growth

this theoretical model and the experimental data of Ag-Cu system from [36].

ξc = 1− 2k√
1+

(
4πD

λV

)2

−1+2k

= 1− 2k√
1+

(
2π

Pc

)2

−1+2k

(2.3.30)

In fact, the solute stability parameter ξc is necessary in calculation of ∆Tc at both low and high Pc .

When Pc is small, ξc in Eq. (2.3.30) can be approximated to unity and leads to ∆Tc ≈ m Gc .
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Later, Lipton, Kurz, and Trivedi (LKT) [50] extend the theory in [48] to further investigate the micro-

segregation-free structure in rapid solidification, in which four contributions to ∆T in Eq. (2.3.19),

that are due to solute diffusion∆Tc , due to curvature∆Tr , due to heat flow∆Tt , and due to kinetics

∆Tk respectively, are all taken in consideration in Eq. (2.3.31).

∆Tt = I(Pt ) ∆Tr = 2

R
∆Tk = V

µ0
∆Tc =

(
1−k0

)
I(Pc )

1− (
1−k0

)
I(Pc )

C0 (2.3.31)

where the dimensionless variable

V =
(
Γcp

∆H f

)
︸ ︷︷ ︸

d0

V

2αl
R =

(
∆H f

Γcp

)
︸ ︷︷ ︸

1/d0

R ∆T = cp

∆H f
∆T (2.3.32)

Pt = V R

2αl
=V R Pc = V R

2Dl
=

(
αl

Dl

)
︸ ︷︷ ︸
η

Pt (2.3.33)

µ0 = Γ

2αl
µ0 = Γ

2αl

(
V0∆H f M

Rg T 2
m

)
C0 =C0 |m| cp

∆H f
(2.3.34)

To determine dendrite growth velocity V explicitly in a given undercooling in Eq. (2.3.19), the

marginal stability criterion [3] is extended to large Péclet number in the LKT theory, giving

V R
2 = Pt R = 1

σ∗ ξt +2σ∗ηξc

(
(1−k0)

1− (1−k0) I(Pc )

) (2.3.35)

where σ∗ = 1/4π2 and

ξt = 1− 1√
1+ 1

σ∗ P 2
t

(2.3.36a)

ξc = 1+ 2k0

1−2k0

√
1+ 1

σ∗ P 2
c

(2.3.36b)

When Eq. (2.3.19) is applied in the undercooling of pure element, the equilibrium partition coef-

ficient k0 is equal to 1, leading to no undercooling due to solute diffusion as ∆Tc = 0 and Pet R =
1/σ∗ ξt at marginal stability in Eq. (2.3.35). Combining with Eq. (2.3.19) and Eq. (2.3.35), the rela-

tionship of∆T and V of pure Ag and Cu at k0 = 1, and Ag-87.5at.%Cu at k0 = 0.25 [29, 38] are shown

as the blue line, the red line and the pink line respectively in Fig. 2.3.9.

Considering the partition coefficient k0 is dependent on the growth rate as suggested by [51], LKT

model is further extended in [52] by replacing k0 with

k(V ) = k0 +2ηεV

1+2ηεV
(2.3.37)
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Figure 2.3.9: Theoretically calculated results of dimensionless growth rate V with respect to

dimensionless undercooling ∆T , where ∆T = 0.2 and 0.3 correspond to the order of dimensional

undercooling 81 and 121 K

where ε= a0/d0 and the characteristic length a0 of Ag-87.5at.%Cu equals to 0.6 nm [29].

By using the dependence of the partition coefficient on the growth rate as Eq. (2.3.37) into Eq. (2.3.35),

a dramatic change of V with respect to ∆T can be obtained as the grey points in Fig. 2.3.9. With

the increase of V in Eq. (2.3.37), it is likely that k(V ) transfers from the original partition coefficient

k0 to ∼ 1 ( when 2ηεV À k0 ). This transition of k(V ) gives way to little or no partitioning of the

components, since the growth process initiates from the constant k0 dendrite growth by both so-

lute and heat diffusion, and eventually approaches to the dendrite growth of pure element by only

heat conduction in Fig. 2.3.9.

The relevant relationships of V with respect to k and ∆T with respect to k are both shown in

Fig. 2.3.10. When V increases upto a certain large quantity, the value of 2ηεV is dominant in

Eq. (2.3.37), giving rise to ∼ 1 as the blue line suggested in Fig. 2.3.10. Although the undercooling

range between 81 and 121 in Fig. 2.3.9 is in agreement with the critical undercooling related to T0,

resulting in the growth of the supersaturated solid solution, γ′, in undercooled Ag-Cu alloy, Walder

et al [27, 29] fail to detect the lattice parameters of γ′ by x-ray diffraction. They believe that the

temperature of the dendrite tip must fall below the T0 temperature in order that metastable γ′ may

grow, but the following crystallization rises up the temperature of undercooled liquid which makes

metastable γ′ impossible to retain. Other studies [53, 54] also demonstrate that metastable γ′ can-

not be remained at room temperature following rapid liquid quenching without a transformation

reaction resulting in a partial decomposition. Moreover, the calculated ∆T with regards to k(V )

shown in Fig. 2.3.10 agrees with those experimental investigation of metastable γ′ since the ∆T
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cannot hold the high extent ( no less than 0.2 ) with the increment of k after 0.52.

Figure 2.3.10: Calculated result of ∆T with regards to k(V ) ( red line ) and V with regards to k(V ) (

blue line ) corresponding to Fig. 2.3.9

Besides Ag-87.5at.%Cu, metastable γ′ can be produced in a wide range of compositions of Ag-Cu

system under optimum cooling condition [55]. Walder et al [29] also investigate a range of compo-

sitions of undercooled Ag-Cu alloy and find that the critical undercooling ( metastable γ′ ) is im-

possible to attain within the composition range 45 ∼ 66 at.%Cu due to the temperature of hetero-

geneous nucleation higher than the T0 temperature. In other word, the heterogeneous nucleation

prevails before achieving the critical undercooling ( metastable γ′ ) in this range of compositions.
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2.4 HEAT TRANSFER PAST A SMALL SPHERE

To simplify the complexity of heat transfer past a sphere during its free falling, the cooling rate of

a sphere surrounding a flow is often obtained based on the quasi-steady approach [11, 10, 56], by

which the Nusselt number Nu is assumed to be independent of time and thus equal to the steady-

state value at a fixed sphere and at time-averaged hydrodynamical conditions.

Due to this assumption, the minimum value of Nu at the steady-state heat transfer can only be

reduced by 2 as proved in Eq. (1.3.11), thereby various semi-empirical correlations for the force-

convective heat transfer include the motionless term Nu = 2 such as Eq. (1.3.32). The qualitative

imagination on this kind of heat transfer can be referred from Fig. 2.4.1 as the temperature profile (

red ) at time τ becomes the one ( green ) at τ+∆τwhen the heat source ( sphere ) is suddenly turned

off. However, such an efficient transfer is unlikely to take place in the realistic cooling process. So

the real temperature distribution can be safely replaced with the blue one at τ+∆τ, the propagation

of which is coincident with that at τ along the radial direction due to the thermal disturbance. As

a result, the region filled in the blue color in Fig. 2.4.1 is the reason that the heat transfer through

the fluid is less efficient than that at the quasi-steady situation, resulting in the time-dependent

Nu(τ) < 2.

Figure 2.4.1: Schematic diagram of quasi-steady thermal distribution from the surface of hot

sphere to the cold fluid at time τ (red) and (τ+∆τ) (green), and the actual distribution at (τ+∆τ)

(blue)

Another method to prove the possibility of Nu(τ) < 2 is given by Konopliv and Sparrow [56] who

presented an analytical solution for unsteady heat transfer of a highly conductive sphere at Pe = 0,

Z (r,τ) = 2γ

πr

∫ ∞

0
ξ exp(−ξ2τ)

ξ cos[(1− r )ξ]− (1−γξ2)sin[(1− r )ξ](
1−γξ2

)2 +ξ2
dξ (2.4.1)
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where γ= 1/3(c ρ) f s and the ratio of volume heat capacity of the fluid to that of sphere represents

(c ρ) f s .

According to Eq. (3.2.15), the instantaneous Nusselt number is obtained by

Nuθ =− 2

Zs

(
∂Z

∂ξ

)
ξ=1

In comparison with the calculated Nusselt number with selected (c ρ) f s from 0.1 to 10 by using

Eq. (2.4.1) with Eq. (3.2.15), the well-known dimensionless expression of Nusselt number with re-

spect to dimensionless time τ in Eq. (2.4.2) [57] is used and all results are generated in Fig. 2.4.2.

Nu = 2

(
1+ 1p

πτ

)
(2.4.2)

Except for the profile using Eq. (2.4.2), the classical minimal value of Nu = 2 which is proved in

Eq. (1.3.11) (motionless flow), Eq. (1.3.10) (laminar flow), and Eq. (1.3.32) (turbulence flow) under

the steady-state heat transfer is no longer valid in Fig. 2.4.2. In addition, the higher the ratio (c ρ) f s

is, the quicker the Nusselt number drops with the increment of dimensionless time τ.

Figure 2.4.2: Time-variation of the instantaneous Nusselt number by using Eq. (2.4.1) and

Eq. (3.2.15) when a sphere with different ratios of volume heat capacity to that of the fluid is

introduced into stagnant fluid

To explain the variation of Nu below 2 in Fig. 2.4.2, considering there would be a physical situation

that the heating source of sphere is suddenly turned off and the temperature of static fluid remains

unchanged in a sufficiently long period, e.g. ξ=∞ at time τ, the quasi-steady thermal profile at τ
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and τ+∆τ can be attained by Eq. (1.3.8)

T (r ) = δ Ts −T f

r
+T f

as shown by the red line and the green line respectively in Fig. 2.4.1. The minimum Nu of sphere

in motionless flow which is characteristic with 2 in Eq. (1.3.11) is assumed that the heat transfer in

fluid takes place at an infinite quasi-steady state at each time step ∆τ.

Based on this, a sphere under laminar or even turbulence flow experiences more coefficient force-

convective heat transfer surrounding its surface, leading to Nu greater than 2 as the semi-empirical

correlations (Eq. (1.3.32)) sum up the minimum value 2 and the additional function with respect

to Reynolds number and Preandtl number together. Provided the sphere is suddenly introduced

in the moving flow at τ, then the thermal profile at τ+∆τ should be within the green region in

Fig. 2.4.1.

However, the minimum value of Nu is argued in [10] since the changed sphere temperature pen-

etrates into the static fluid by the radial direction ∆ξ 'p(α f ∆τ) during the time interval ∆τ. De-

pending on the thermal diffusivity of fluid α f , the thermal distribution at τ+∆τ is more likely to

perform as the blue line in Fig. 2.4.1 by using Eq. (C.2.11), which is coincident with the thermal

distribution at τ at some point (magenta node). According to the definition of Nu in Section 1.3.2,

the value of Nu is affected by the efficiency of heat transfer through a fluid and consequently the

cooling rate from an object. Thus, by comparing the quasi-steady distribution (green line) with the

more realistic one (blue line), the less coefficient force-convective heat transfer might results in Nu

less than 2, which results in lower cooling rate of a sphere in flight.

As introduced in Section 1.3.2, Nu = 2 in Eq. (1.3.11) is the limiting condition for a sphere in still

fluid ( v = 0 ), of which the velocity boundary layer should be identical with the schematic diagram

in Fig. 2.4.3 ( left ). When the sphere is in flight, the fluid motion should enhance heat transfer

and consequently increase Nu greater than 2, giving rise to 2 as the base value in both Eq. (1.3.28)

for laminar flow and Eq. (1.3.32) for turbulence flow past through a single sphere. If there would

be a case of Nu < 2 by using the unsteady heat transfer formula in Eq. (2.4.1) ( see Fig. 2.4.2 ), the

direction of fluid velocity v at the wall is more likely to be the same as that of sphere flight, rather

than opposite to that of sphere flight, as shown in the velocity boundary layer ( orange ) in Fig. 2.4.3

( right ). Brauer [58] firstly found that the direction of mass transfer in some cases was reversed in

the vicinity of the rear stagnation point when he presented numerical results for the unsteady mass

transfer problem from a spherical particle in creeping flow. Later, Abramzon [10] examined tran-

sient heat transfer problems for a sphere suddenly inserted in a uniform velocity field numerically

and found that the asymptotic Nu appears to be considerably less than the corresponding steady-

state values or even 2 for the case of constant sphere temperature. The reason of this divergence

might be attributed to negative local Nu in the vicinity of the rear stagnation point of the sphere,

which is believed that a major portion of the heat transferred from the leading part of the sphere is

returned to the rear part as the schematic diagram shown in Fig. 2.4.3 ( right ).
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Figure 2.4.3: Force convection under different velocity boundary layers, where the fluid layer on

the left has zero velocity at the wall ( no-slip condition ) and the fluid layer on the right has

negative velocity at the wall.

Because the local Nu varies considerably from 0 to 180 ° in polar angle of spherical coordinates and

makes the sphere in flow experience the rate of heat transfer differently [10, 58], the assumption

that the temperature field inside the sphere remains spatially uniform at any instant of time due to

the high thermal conductance of metallic particles is unlikely to be valid.

The experimental investigation of this fact by using a gas-filled drop tube or a close-coupled gas

atomizer is impossible, mainly because the direct and accurate measurement of the solidification

temperature is impossible [26, 31]. In order to understand the thermal behaviour of spherical

droplet, i.e. the cooling rate, the solution is generally on the basis of theoretical models [4, 45] or

by examination of various as-solidified microstructures [40, 42, 59, 60].

Mullis [59] estimates cooling rates of various gas-atomized particles by using secondary dendrite

arm spacing measurement. Because these secondary arms appear as a sinusoidal perturbation

of the paraboloid, grow perpendicularly to the primary trunk, and then ripen into coarser, less

branched, and more widely-spaced arms, the secondary spacing λ2 is believed to be proportional

to the solidification time t f , that is λ2 ∝ t f [3]. Since the cooling rate Ṫ is reversely proportional to

t f , the relationship of the secondary arm spacing λ2 and Ṫ thus can be expressed as [61]

λ2 = A

(
1

Ṫ

)n

(2.4.3)

where both A and n are material-dependent constant, due to the different driving forces for the

ripening process. The unknown Ṫ in Eq. (2.4.3) can then be easily obtained by using λ2 that is

measured from the SE imaging, by which Ṫ is towards the low end of cooling rate that is made
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directly on the basis of theoretical model as†

dT

dt︸︷︷︸
Ṫ

[
cl (1− fs)+ cs fs −L

d fs

dT

]
= 6h

ρd

(
T −Tg

)+ 6εσ

ρd

(
T 4 −T 4

R

)
(2.4.4)

where the heat transfer coefficient h is with respect to Nu in Eq. (1.3.4) and Nu [11] is

Nu = 2.0+0.6

(
ρg d

µ
|v − vg |

)1/2 (
cg µ

κg

)1/3

(2.4.5)

The central argument in [59] is related to the definition of gas temperature Tg and TR in Eq. (2.4.4).

In most of numerical rate models [4, 43, 45], Tg is often assumed as being close to TR , which is

unlikely to be correct. Moreover, the biggest uncertainties by using Eq. (2.4.5) is attributed to the

relative velocity between the particle and the gas |v − vg | that is often calculated by Newton’s sec-

ond law and the decay axial gas velocity [62]. Since the secondary dendrite arm spacing gives some

indication of the local solidification condition and also be helpful when cooling curves are unavail-

able, the cooling rate dT / dt = Ṫ in Eq. (2.4.4) can be safely replaced by the results obtained from

Eq. (2.4.3). To simplify the difficulty of this calculation arising from the external heat source term,

L · d fs/ dt , the solid fraction fs is linear with temperature between the liquidus temperature Tl and

the solidus temperature Ts . By this approach, the relative velocity to match the measured cooling

rate by Eq. (2.4.3) as a function of particle diameter can be obtained as shown in Fig. 2.4.4. The

relatively flat profile of the differential velocity |v−vg | with respect to particle diameter in Fig. 2.4.4

might suggest the particles do co-move with more likely the much higher gas temperature than

the ambient one surrounding particles of a wide range of diameters, which could also explain the

reason of the low end of estimated cooling rates by using Eq. (2.4.3).

Although this 1D theoretical model is impossible to consider the variation of local Nu around the

spherical surface, the fact of higher gas temperature around particles of all diameters can highly

indicate that the application of semi-empirical correlation of Nu in Eq. (2.4.5) might only provide

an overestimated rate of the heat transfer for spherical materials in flight, which is in agreement

with Nu < 2 as shown in Fig. 2.4.2.

Later, Mullis, and et al. [63] investigate the density distribution of different phases in an as-solidified

150 ∼ 212 µm droplets through electron backscatter images. The distinct grey-scale values due to

density variation of each phase in these images make the ImageJ contour plotting plug-in possi-

ble to extract information on the location of the different phases within the particle, by which the

amount of phase composition is exposed as a function of dimensionless radial coordinate r /R0

from the surface at 1 to the origin at 0 in Fig. 2.4.5 ( red for high ∆T particle and blue for low ∆T

particle ). Because the relationship of the thickness of one phase β layer ∆ and the time τ in the

†The theoretical explanation of 2.4.4 shall refer from Eq. (3.1.1) to Eq. (3.1.6) in Section 3.1.1
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Figure 2.4.4: Calculated differential velocity between the particles and the gas required, as a

function of particle diameter, to achieve the measured cooling rates [59]

peritectic transformation is [64],

∆2 = 2Dβ

(
C l
β
−Cα

β

)(
Cβ

l −Cβ
α

)
(
Cβ

l −Cβ

)(
Cβ−Cβ

α

)
︸ ︷︷ ︸

constant

·τ (2.4.6)

it is possible to compare the amount of transformed phase composition with the time taken at the

peritectic temperature as ∆∝ p
τ. To avoid consideration of the inter-diffusion coefficient, etc.

in Eq. (2.4.6), both the dimensionless amount of transformed phase and the dimensionless time

taken to reach the peritectic temperature are used to set up the relationship of ∆ = p
τ/τ0 as a

function of the dimensionless radial coordinate r /R0. The cooling rate with respect to the radial

distance shown as the solid line in Fig. 2.4.5 can be obtained by modifying the right-hand side of

Eq. (2.4.4) as
dT

dt︸︷︷︸
Ṫ

[
cl (1− fs)+ cs fs −L

d fs

dT

]
= 1

r 2

∂

∂r

(
κr 2 ∂T

∂r

)
(2.4.7)

where the solid fraction fs with regard to T is given by [3, 4]

fs = 1− (1− fr )

(
Ts −Tr

Ts −T

)1/1−ke

(2.4.8)

The transformation profile in Fig. 2.4.5 shows the transformation rate stays almost constant near

the centre of the particle ( at r /R0 < 0.6 ) and declines sharply near the surface of the particle ( at
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Figure 2.4.5: Calculated cooling rate ( solid line ) shows the relative difference in time available for

the phase transformation and the amount of transformed phase composition as a function of the

radial coordinate r [63]

r /R0 > 0.6 ). The spherical particle experiencing unsteady heat transfer during flight that is be-

lieved the cooling rate is so high that there is no temperature gradient during the solidification at

any instant of time [4, 43, 45], is unlikely to be true. Although the high cooling rate Ṫ surrounding

the surface of one spherical metallic material with the high thermal conduction can certainly re-

duce the total amount of solidification time, it is still more likely that high Ṫ due to high Nu only

affects some extent of distance inside this particle. The nearly constant Ṫ near the centre of this

particle can give rise to similar heat extraction against the heat addition due to latent heat during

the solidification. Hence, the radial variation in phase composition observed in Fig. 2.4.5 within

one particle is highly suggestive of the variation in cooling rate with the radial coordinate r and

consequently the existence of temperature gradient in the local region.

Another experimental evidence in agreement with the heat transfer situation inside the particle in

Fig. 2.4.5 is found in the rapid solidification of undercooled Ni-Sn eutectic melt in [60], in which

the transient microstructures from the surface to the centre of the particle are formed as shown in

Fig. 2.4.6. There is a significant difference of cross-sectional microstructures from the surface ( fine

anomalous eutectics with lamellar eutectic in between ) to the centre ( coarse anomalous eutectic ).

Comparing with (a) in Fig. 2.4.6, the average size of anomalous eutectic increases slowly as the dis-

tance away from the surface to the centre increases further, i.e., (c) and (d) in Fig. 2.4.6. Moreover,

the primary α-Ni dendrites on the particle surface in (e) in Fig. 2.4.6 distinct from the morphology

of the cross-sectional microstructure highly indicates that the primary single dendrites are formed

initially and grow inward, followed by the rapid release of the heat of fusion due to heterogeneous

nucleations around the surface to warm up the undercooled melt and to melt back the arms of
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Figure 2.4.6: Transient microstructures of an undercooled Ni-Su eutectic particle section [60] are

taken from the region near the surface (a) to the one near the centre (d) and (e) is the surface

structure.

these directional dendrites which gives the potential sites for the formation of anomalous eutectic

from dendrite fragments left in the melt. During this process, the latent heat due to the phase for-

mation is constantly transferred from the centre to the surface. The efficient heat extraction near

the particle surface can lead to the average size of anomalous eutectic less dependent of later la-

tent heat as (a) and (b) in Fig. 2.4.6. The dramatic coarsened anomalous eutectic near the centre

however suggests that the heat extraction at this region fails to retain as high as that near the sur-

face. Because of this, the temperature gradient should prevail inside metallic materials with high

conduction.

Provided there would be a moving fluid of similar streamlines surrounding a rigid sphere as shown

in Fig. 2.4.7, the local temperature of fluid in the vicinity of the sphere surface should increase

gradually from t0 to t4. At t0, the local region has the largest heat transfer and the highest Nu since

the fresh fluid just encounters the hot sphere. Then the fluid past along the sphere surface receives

the heat from the hot sphere to warm up the local temperature of fluid, T f , with which the rate of

local heat loss becomes increasingly weaker and local Nu has the lower value but yet greater than 2.

Depending on the roughness of the sphere surface and the properties of fluid flow, the separation
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point of fluid in characteristic with Nu = 2 as shown in Fig. 2.4.3 (left) might take place at the region

between t1 and t4. At the remaining sphere surface, the local Nu still reduces and at some instant

of time, the local Nu might drop down close to 0 as Fig. 2.4.2 or even become negative at the region

around t4 as Fig. 2.4.3 (right) [10, 56].

Figure 2.4.7: Schematic diagram of motion field of fluid past the sphere surface

As a result, the variation of local Nu in the vicinity of the sphere surface not only enables the higher

gas temperature than the ambient temperature possible as [59] but also enhances the temperature

difference inside the hot sphere as [63]. More importantly, the heat transfer inside the sphere is

more likely to cause a temperature gradient, as Fig. 2.4.7 shows that the heat from the region t4

transfers reversely back to the region t0. In [59], the widely used 1D theoretical model illustrated

in Eq. (2.4.4) is proved to overestimate the cooling rate that the particles are experienced. When a

transient heat transfer from a spherical particle is considered, the overestimated cooling rate is yet

overestimated ( the details shall refer Section 3.2 ).
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HEAT TRANSFER MODELLING

3.1 MACROSCOPIC HEAT TRANSFER MODELLING

3.1.1 FORMULATION OF THE PROBLEM

Consider a spherical rigid melt heated over the melting point is subject to a space-variable surface

heat flux and a constant initial condition. When a sufficient small sphere, such as r0 < 500 µm, is

a solid of high thermal conductivity κs , heat conduction within the droplet can be ignored at any

instant of time during the entire cooling process[4].

With the definition of enthalpy,

H(T ) =
∫ T

0
c(θ) dθ+Ls (1− fs)

and
dH

dt
=∇ · (κ∇T )

the cooling and solidification behaviour of undercooled sphere, as shown in Eq. (3.2.8) in Sec-

tion 3.2.3, can be described by the change of sphere enthalpy Hs with respect to time t .

d Hs

d t
= cs

dTs

d t
−Ls

d fs

d t
(3.1.1)

The heat capacity of sphere cs is consist of the heat capacity of solid cS and liquid cL of interest

material and the latent heat of sphere Ls is generated by using Eq. (1.1.2a)

cs = cL − (cL − cS) fs (3.1.2a)

Ls = LF −
∫ TL

TS

∆c dT = LF − (cL − cS)(TL −Ts) (3.1.2b)

59
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Further expansion of Eq. (3.2.8) gives

ρs Vs

(
cs

dTs

d t
−Ls

d fs

d t

)
= As · q̇ f

cs
dTs

d t
−Ls

d fs

d t
= As

Vs

q̇ f

ρs
=− 3

r0

h (Ts −T f )

ρs

∴ cs
dTs

d t
=− 3

r0

h (Ts −T f )

ρs
+Ls

d fs

d t
(3.1.3)

To calculate the actual temperature of sphere Ts at any instant of time during continuous cooling,

the heat transfer coefficient h must be determined at first by the well-known Ranz and Marshall

correlation[65]

h = κ f

2r0

(
2.0+0.6Re1/2 Pr 1/3) (3.1.4)

Re in Eq. (1.3.29) and Pr in Eq. (1.3.30) are used

Re = 2r0
w ′ρ f

µ f
(3.1.5a)

Pr = c f µ f

κ f
(3.1.5b)

where η f is the dynamic viscosity of fluid and w ′ the relative velocity between sphere ws and fluid

w f .

w ′ =
∣∣∣ws −w f

∣∣∣ (3.1.6)

INITIAL AND BOUNDARY CONDITION

Both initial and boundary condition illustrated in Eq. (3.2.12) and Eq. (3.2.13) are satisfied in this

modelling. However, the reversed transformation from dimensionless conditions to dimensional

ones shall be made initially before applying Eq. (3.1.3) in calculation of cooling process of all times

(t > 0).

Ts(0) = T0 (3.1.7a)

Ts(t ) = T f (t ,r,θ) (3.1.7b)

3.1.2 NUCLEATION AND RECALESENCE

The nucleation event in the continuous cooling is

I (Ts) = Vs · Jv (Ts)

Ṫs
at Ṫs =− dTs

dt
(3.1.8)
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where the nucleation rate Jv in units of m−3 s−1 is referred from Eq. (1.1.22) with Eq. (1.1.7)

Jv = Kv exp

(
− 16π

3kB Ts
· T 2

L σ
3
SL fθ

ρ2
s L2

F (TL −Ts)2

)
(3.1.9)

The initialization of nucleation event might be considered under condition∫ TL

Tn

I (Ts) dTs ≈ 1 (3.1.10)

When the droplet temperature reaches the nucleation temperature Tn to meet with Eq. (3.1.10)

in continuous cooling, the recalesence giving rise to the subsequent release of latent heat is as-

sumed to instantly respond after the formation of one single nucleus of the undercooled droplet.

Because the nucleation rate Jv is extremely sensitive with temperature Ts , the small increase of Ts

can greatly decrease the value of Jv from the extent of 1012 to that of 10−11. The possibility of the

formation of external nucleus becomes very low during rapid heating of the undercooled droplet.

Therefore, it is safely to assume there would be only one nucleus to proceed the rest of solidifica-

tion.

Considering the nucleation event initiates at the droplet surface in the form of a twinned spherical

segment and also remains the same curvature in growth during recalescence,

fs = 3

2

( x

D

)2
− 1

2

( x

D

)3
(3.1.11)

The growth speed of interface between liquid and solid is approximated by

dx

dt
= MSL (TL −Ts) (3.1.12)

where x in Eq. (3.1.11) and Eq. (3.1.12) is the proceeding distance of solid in droplet.

The temperature change during recalesence is obtained by

cs
dTs

dt
+ 6h

D ρs
(Ts −T∞) = Ls

d fs

dx

dx

dt

= Ls MSL (TL −Ts)
d fs

dx
(3.1.13)

where MSL is the liquid/solid interface mobility and the derivative of Eq. (3.1.11) against x is ex-

pressed by
d fs

dx
= 3

D

{( x

D

)
− 1

2

( x

D

)2
}

(3.1.14)

Inserted Eq. (3.1.14) into Eq. (3.1.13), the formula is modified

cs
dTs

dt
=− 6h

D ρs
(Ts −T∞)+ 3

D

{( x

D

)
− 1

2

( x

D

)2
}

Ls MSL (TL −Ts) (3.1.15)

When the heat extraction rate through gas and the release rate of latent heat,

dTs

dt
= 0 ⇒ Ls

d fs

dt
= 6h

D ρs
(Ts −T∞) (3.1.16)

the recalesence approaches to the end and the subsequent eutectic solidification is ready to take

over the remaining solidification until the melt is fully solid.
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3.1.3 SEGREGATED SOILIFICATION AND EUTECTIC SOLIDIFICATION

When the segregated solidification takes place during the decrease in droplet temperature Ts , the

heat extraction equation in Eq. (3.1.3) has an unknown variable fs which is usually described by

Scheil’s equation [3, 4, 66] as

fs = 1− (
1− fr

) (
Ts −Tr

Ts −T

)1/1−kE

(3.1.17)

where fr is the solid fraction after recalescence and so

∂ fs

∂T
=− 1− fr(

1−kE
)(

Ts −Tr
) (

Ts −Tr

Ts −T

) 2−kE
1−kE

(3.1.18)

Combining Eq. (3.1.3) with Eq. (3.1.18) gives

− 3

r0

h (Ts −T f )

ρs
+Ls

d fs

dT

dT

d t
= cs

dTs

d t

− 3

r0

h (Ts −T f )

ρs
=

(
cs −Ls

d fs

dT

)
dTs

d t

− 3

r0

h (Ts −T f )

ρs
=

(
cs +Ls

1− fr(
1−kE

)(
Ts −Tr

) (
Ts −Tr

Ts −T

) 2−kE
1−kE

)
dTs

d t
(3.1.19)

When the droplet temperature is cooled down to the eutectic temperature TE , the coupled eutectic

growth takes place. The isothermal local interface proceeds to the remaining liquid phase until the

droplet is fully solidifed.

Considering the eutectic solidification grows slowly at constant equilibrium TE , Eq. (3.1.3) is mod-

ified

cs
dTs

d t
=− 3

r0

h (Ts −T f )

ρs
+Ls

d fs

d t
= 0

∴ Ls
d fs

d t
= 3

r0

h (Ts −T f )

ρs
(3.1.20)

After the melt is fully solid, substitution of fs = 1 into Eq. (3.1.3) should give the heat transfer of the

pure solid phase cooling with no extra heat source involved as

cS
dTs

dt
=− 6h

D ρs
(Ts −T∞) (3.1.21)

When the segregation solidification is also considered to take place prior to the eutectic solidifi-

cation, the thermal variation of different flight-in droplet size should be similar with Fig. 3.1.1, in

which liquid cooling, recalescence, segregated solidification, eutectic solidfication and lastly solid

cooling are calculated.
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Figure 3.1.1: Schematic illustration showing cooling and solidification behaviour of a droplet in

flight which is assumed to undergo five different thermal regions
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3.2 UNSTEADY CONVECTION HEAT TRANSFER MODELLING

3.2.1 FORMULATION OF THE PROBLEM

Consider a solid spherical body having an initially uniform temperature T0 at time t = 0 encoun-

ters a fluid with an initially uniform temperature T∞. The fluid free-stream temperature for all

subsequent times at r →∞ is also T∞.

The surface temperature is assumed to be identical to the spherical inner temperature Ti at any

instant of time when a metallic sphere of high thermal conductivity is selected.

∂T f

∂t
+ur

∂T f

∂r
+ uθ

r

∂T f

∂θ
=α f

[
1

r 2

∂

∂r

(
r 2 ∂T f

∂r

)
+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂T f

∂θ

)]
(3.2.1)

where T f (t ,r,θ) denotes the fluid temperature.

Provided the characteristic time of stabilization of velocity field near a sphere is sufficient small to

be neglected in the convection term in Eq. (3.2.1), the flow field u(r,θ) is time independent and

uniform far away from this sphere.

For such stokes flow around a sphere [67], the velocity components of ur and uθ ( Appendix B.1 )

are expressed as

ur =
w f

2

(
−2+3

r0

r
− r 3

0

r 3

)
cosθ (3.2.2a)

uθ =
w f

4

(
4−3

r0

r
− r 3

0

r 3

)
sinθ (3.2.2b)

where w f is a uniform free-stream fluid velocity along z-axis.

Upon introducing dimensionless variables and parameters

Z f =
T f −T∞
T0 −T∞

ξ= r

r0
τ= α f t

r 2
0

Pe = r0 w f

α f
(3.2.3)

Non-dimensional forms of the variation term, the convection term and the diffusion term in Eq. (3.2.1)

become
∂T f

∂t
= (T0 −T∞)

α f

r 2
0

∂Z f

∂τ

ur
∂T f

∂r
= (T0 −T∞)

vξw f

r0

∂Z f

∂ξ

uθ
r

∂T f

∂θ
= (T0 −T∞)

vθ w f

r0ξ

∂Z f

∂θ

α f

r 2

∂

∂r

(
r 2 ∂T f

∂r

)
= (T0 −T∞)

α f

r 2
0ξ

2

∂

∂ξ

(
ξ2 ∂Z f

∂ξ

)
α f

r 2 sinθ

∂

∂θ

(
sinθ

∂T f

∂θ

)
= (T0 −T∞)

α f

r 2
0ξ

2 sinθ

∂

∂θ

(
sinθ

∂Z f

∂θ

)
(3.2.4)
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Combined with Eq. (3.2.1) and Eq. (3.2.4), the dimensionless energy equation for the unsteady

convection flow is expressed by

∂Z f

∂τ
+Pe

[
vξ
∂Z f

∂ξ
+ vθ

1

ξ

∂Z f

∂θ

]
= 1

ξ2

∂

∂ξ

(
ξ2 ∂Z f

∂ξ

)
+ 1

ξ2 sinθ

∂

∂θ

(
sinθ

∂Z f

∂θ

)
(3.2.5)

where the non-dimensional velocity components are

vξ =
1

2

(
−2+ 3

ξ
− 1

ξ3

)
cosθ (3.2.6a)

vθ =
1

4

(
4− 3

ξ
− 1

ξ3

)
sinθ (3.2.6b)

3.2.2 INITIAL AND BOUNDARY CONDITION

Considering the dimensionless fluid temperature distribution Z f at τ= 0 is uniform as zero before

a hot sphere is suddenly introduced into this steady, axisymmetric fluid flow,

Z f (τ,ξ,θ)
∣∣
τ=0 = 0 (3.2.7a)

Z f (τ,ξ,θ)
∣∣
ξ=ξ∞ = 0 (3.2.7b)

∂Z f (τ,ξ,θ)

∂θ

∣∣∣∣
θ=0

= 0 (3.2.7c)

∂Z f (τ,ξ,θ)

∂θ

∣∣∣∣
θ=π

= 0 (3.2.7d)

Eq. (3.2.7a) indicates the initial condition which the local fluid temperature is uniform at τ = 0.

Eq. (3.2.7b) shows the fluid temperature far from the hot sphere is not disturbed. Eq. (3.2.7c) and

Eq. (3.2.7d) is developed due to θ axisymmetric temperature field of fluid along the stagnation lines

at 0 and π.

3.2.3 TIME-DEPENDENT SPHERE TEMPERATURE

Provided a sphere of radius r0 has a sufficiently high thermal conductivityκs , resulting in a spatially

uniform sphere temperature at any instant of time, time-piecewise variations of sphere tempera-

ture Ts are governed by the balance between the surface heat transfer to the surrounding fluid and

the change of internal energy within the solid

ρs Vs
dHs

dt
= As · q̇ f (3.2.8)

To simplify the problem of heat transfer through unsteady fluid flow, there would be only heat

convection happening on the sphere surface, at which the fluid velocity is assumed to remain zero
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at all times. In consequence, the overall heat transfer from the sphere surface to the nearest fluid

layer adjacent to the surface is by pure conduction instead (explained in Section 1.3.1).

ρs cs

(
4

3
πr 3

0

)
dTs

dt
= 2πr 2

0 κ f

∫ π

0
sinθ

(
∂T f

∂r

)
r0

dθ (3.2.9)

Because of unsteady fluid flow, the heat flux of fluid q̇ f varies with the location of θ and thus the

overall heat transfer is calculated by the integral of multiplication of unit sphere area to θ depen-

dent conduction at radius r0 in the right-hand side of Eq. (3.2.9).

Referring to the dimensionless variables illustrated in Eq. (3.2.3), the dimensionless counterpart of

Eq. (3.2.9) is

ρscs

(
4

3
πr 3

0

)
α f

r 2
0

dZs

dτ
= 2πr 2

0

∫ π

0
κ f

sinθ

r0

(
∂Z f

∂ξ

)
ξ=1

dθ

∴
dZs

dτ
= 3

2

ρ f c f

ρscs

∫ π

0

(
∂Z f

∂ξ

)
ξ=1

sinθ dθ (3.2.10)

where

Zs(τ) = Ts −T∞
T0 −T∞

(3.2.11)

3.2.4 INITIAL AND BOUNDARY CONDITION

The initial dimensionless temperature of sphere Zs is

Zs(τ)|τ=0 = 1 (3.2.12)

For particles with sufficient high conductivity, there might be less temperature gradient within the

sphere at each instant of time and consequently the temperature of sphere Zs(τ) is identical to that

of fluid at sphere wall (ξ= 1).

Zs(τ) = Z f (τ,ξ,θ)
∣∣
ξ=1 (3.2.13)

which is also the boundary condition of sphere temperature at all times τ> 0.

3.2.5 NUSSELT NUMBER

Nusselt number Nu is characteristic with the ratio of convection (in Section 1.3.1) to conduction (

in Section 1.3.1 ) in heat transfer across a boundary.

According to Eq. (1.3.1) and Eq. (1.3.4),

h f A (Ts −T∞) =−κ f A
∂

∂r

(
T f −Ts

)
∴ Nu = h f L

κ f
=− L

Ts −T∞
∂

∂r

(
T f −Ts

)
(3.2.14)
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where L is the characteristic length from Ts to the local point of interest T f and the expression of

heat transfer coefficient in Eq. (1.3.5) is also proved in Eq. (3.2.14).

For a sphere with radius r0, 2r0 is selected as L and the local instantaneous Nuθ is

Nuθ =− 2r0

Ts −T∞
∂

∂r

(
T f −Ts

)
In substitution of dimensionless variables from Eq. (3.2.3) and Eq. (3.2.11), Nuθ becomes

Nuθ =− 2r0

Zs (T0 −T∞)

∂

r0∂ξ
(Z f −Zs) (T0 −T∞)

∣∣∣∣
ξ=1

=− 2

Zs

(
∂Z f

∂ξ

)
ξ=1

(3.2.15)

where
∂Zs

∂ξ
= 0

since Zs is only time dependent.

By integrating Nuθ over sphere surface, the average Nusselt number Nu

Nu = 1

A

∫ π

0
2πξ2 sinθNuθ dθ

∣∣∣∣
ξ=1

=− 1

Zs

∫ π

0

(
∂Z f

∂ξ

)
ξ=1

sinθ dθ (3.2.16)

in combination with Eq. (3.2.10) gives

Nu =−2

3

ρs cs

ρ f c f

1

Zs

dZs

dτ
=−2

3

ρs cs

ρ f c f

d

dτ
ln Zs (3.2.17)
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NUMERICAL ESTIMATION

When a differential equation can not be solved analytically or the analytic solution is so involved

with non-linear parameters, numerical approximations, such as finite difference method and finite

volume method, are alternative approaches to the solution of the differential equation.

In finite difference method, the approximation is that the derivative at a given point is represente

by a derivative taken over a finite interval across the point. The values oof the unknown dependent

variable over the problem domain are considered at a finite number of nodal points instead. For ex-

ample, at a finite number of nodal points N , N algebraic equations were established by discretizing

the governing differential equation subjected with the boundary conditions for its problem. This

set of algebraic equations transformed from the partial differential equation are then solved by a

suitable algorithm and generate numerical results afterwards.

Section 4.1 introduces the first and the second central difference approximation as the fundamen-

tal contributions in Finite Difference Method. Also the first non-central finite difference approxi-

mation of high-order accuracy is introduced to achieve the same accuracy of grids on the boundary

numerically as that in the interior grids. Based on the finite difference schemes introduced in Sec-

tion 4.1, the numerical schemes for heat conduction equation is then illustrated in Section 4.2.

In this work, the physical problem involves solving parabolic-type equation on spherical domains.

Both the two-dimensional heat transfer of solid sphere for spherical polar coordinates system and

the treatment of the geometrical singularity happening on the origin ( r = 0 ) and the north and

south poles ( θ = 0, π ) of the spherical domain are explained in development of the Alternating

Direction Implicit ( ADI ) method in Section 4.2.2.

Nevertheless, considering the ADI scheme of hollow sphere is identical with that of solid sphere,

the application of ADI scheme in spherical polar coordinates for hollow sphere is presented in

Appendix D.2.

68
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4.1 DISCRETIZATION

The derivation of the finite difference approximations for the derivatives of a function f (x) are

based on forward and backward Taylor series expansions of f (x) about x.

f (x +δ) = f (x)+δ f ′(x)+ δ2

2!
f ′′(x)+ δ3

3!
f ′′′(x)+·· · (4.1.1a)

f (x −δ) = f (x)−δ f ′(x)+ δ2

2!
f ′′(x)− δ3

3!
f ′′′(x)+·· · (4.1.1b)

For first central difference approximations,

f (x +δ)− f (x +δ) = 2δ f ′(x)+ δ3

3
f ′′′(x)+·· ·

∴ f ′(x) = f (x +δ)− f (x −δ)

2δ
− δ2

6
f ′′′(x)−·· · (4.1.2)

where O (δ2) is the truncation error in Eq. (4.1.2)

O (δ2) = δ2

6
f ′′′(x) (4.1.3)

For second central difference approximations,

f ′′(x) = f (x +δ)−2 f (x)+ f (x −δ)

δ2 + δ2

12
f (4)(x)+·· · (4.1.4)

where the truncation error

O (δ2) = δ2

12
f (4)(x) (4.1.5)

Besides central difference approximations, non-central finite approximations are widely used to

compute the derivatives at a node on the boundary.

The forward finite difference approximations are shown in Eq. (4.1.6a) for two-point formulae,

Eq. (4.1.6b) for three-point formulae.

f ′(x) = f (x +δ)− f (x)

δ
+O (δ) (4.1.6a)

f ′(x) = − f (x +2δ)+4 f (x +δ)−3 f (x)

2δ
+O (δ2) (4.1.6b)

The backward finite difference approximations are

f ′(x) = f (x)− f (x −δ)

δ
+O (δ) (4.1.7a)

f ′(x) = 3 f (x)−4 f (x −δ)+3 f (x −2δ)

2δ
+O (δ2) (4.1.7b)

When there are more than two grid points on one side of the boundary, the accuracy of approxima-

tions can be improved, for example, Eq. (4.1.6b) and Eq. (4.1.7b) from first-order to second-order

accuracy [68].
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4.2 HEAT CONDUCTION EQUATION

The form of partial differential equation is widely used to describe a family of problems, such as

heat, mass, momentum transport with a time variable.

A simplest one-dimensional problem governed by the linear parabolic differential equation

∂T (x, t )

∂t
=α ∂

2T (x, t )

∂x2 (4.2.1)

subjected to appropriate boundary condition will be demonstrated in Section 4.2.1 by the com-

bined method.

Then the multidimensional parabolic system illustrated in Eq. (A.2.4) ( see Appendix A.2 )

∂T (x, t )

∂t
=α∇2T (4.2.2)

will be further discussed by the Alternating Direct Implicit ( ADI ) method in Section 4.2.2, which is

also the fundamental algorithm applied in the modelling in Section 3.2.1.

The computational advantage of the parabolic system lies in the fact that significant reduction

in computer time and computer storage can be realized. In the case of finite-difference solution

of heat diffusion in Eq. (4.2.1), the temperature field at any time is only related with that at the

previous times. Once the initial temperature field is set up, the afterwards temperature field is

computered at successive time step.

Figure 4.2.1: The finite-difference molecules for the combined scheme



CHAPTER 4. NUMERICAL ESTIMATION 71

4.2.1 COMBINED SCHEME

The differential equation in Eq. (4.2.1) can be discretized directly by using the second-order accu-

rate finite-difference formula in Eq. (4.1.2) and Eq. (4.1.4) as

T n+1
i −T n

i

∆t
=α

[
θ

T n+1
i−1 −2T n+1

i +T n+1
i+1

∆x2 + (1−θ)
T n

i−1 −2T n
i +T n

i+1

∆x2

]
∴

−r θT n+1
i−1 + (1+2r θ) T n+1

i − r θT n+1
i+1 = r (1−θ) T n

i−1 + [1−2r (1−θ)] T n
i + r (1−θ)T n

i+1 (4.2.3)

where the constant θ is the weight factor between 0 and 1 and

r = α∆t

∆x2

Also, Fig. 4.2.1 schematically illustrates the combined scheme of finite-difference approximation of

Eq. (4.2.3). In general,
1

2
≤ θ ≤ 1 makes Eq. (4.2.3) unconditionally stable for all values of r , whereas

0 ≤ θ < 1

2
is conditionally stable if and only if

0 ≤ r ≤ 1

2−4θ

For certain specific values of θ, the discretization of Eq. (4.2.3) reduces to one of three well-known

schemes for parabolic differential equations.

θ = 0.0 leads to the explicit scheme

θ = 0.5 leads to the Crank-Nicolson scheme

θ = 1.0 leads to the fully implicit scheme

Finite difference methods shown above can be efficiently extended to handle derivative terms in

more than one dimension. The detail of both the explicit method and the fully implicit method in

two-dimensional stencils is displayed in Appendix D.1.1 and Appendix D.1.2.

4.2.2 ALTERNATING DIRECTION IMPLICIT SCHEME

Although the fully implicit method ( Eq. (4.2.3) at θ = 1.0 ) introduced in Section 4.2.1 is uncondi-

tionally stable at all values of r , the computation problems become enormous for multi-dimensional

situation*.

In brief, a two-dimensional problem with N interior nodes in each direction contains N 2 nodes.

There would be N 2 × N 2 nodes in matrix to be solved at each time step by using fully implicit

scheme, which certainly becomes impractical for large node setting in calculation.

*The tri-diagonal matrix algorithm (TDMA) of 2D finite-difference implicit scheme is illustrated in Appendix D.1.2.
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To minimize the number of calculation without loosing accuracy, convergence and stability, the

alternating direction implicit (ADI†) method is invented to split the finite difference equation into

two, the one with the implicit scheme ( Eq. (4.2.3) at θ = 1.0 ) in the x-direction and the explicit

scheme in the y-direction ( Eq. (4.2.3) at θ = 0.0 ) at the first half time step, and the other with the

implicit scheme in the y-direction and the explicit scheme in x-direction at the second half-time

step [68].

In the following subsection, the ADI scheme for spherical polar coordinates system in the applica-

tion of heat conduction equation is emphasized.

SPHERICAL POLAR COORDINATES

The general heat conduction equation assumed with constant physical properties and no external

source term in Eq. (4.2.2) for spherical polar coordinates system is expressed by using the chain

rule
1

α

∂T

∂t
= ∂2T

∂r 2 + 2

r

∂T

∂r
+ 1

r 2

∂2T

∂θ2 + cosθ

r 2 sinθ

∂T

∂θ
(4.2.4)

Figure 4.2.2: The mapping of the spherical region for computational calculation

Fig. 4.2.2 shows the grid arrangement for numerical calculation of heat transfer in the polar spher-

ical coordinates. The singularities at r = 0, θ = 0 and π need the extra care which is carefully de-

duced below.
†The details of grid construction and ADI stencils involved with Dirichlet boundary and Neumann boundary in Carte-

sian coordinates system shall refer to Appendix D.1.3.
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SINGULARITIES

In the radial direction term of Eq. (4.2.4), the origin of sphere ( r = 0 ) is singular. The problem at

r approaching to zero is easily reduced by using L’Hôpital’s rule when there is neither latitudinal

variation θ nor longitudinal variation φ in heat flux around the singular node [69].

1

α

∂T

∂t
= lim

r→0

(
∂2T

∂r 2 + 2

r

∂T

∂r
+ 1

r 2

∂2T

∂θ2 + cosθ

r 2 sinθ

∂T

∂θ

)

= lim
r→0

(
∂2T

∂r 2 + 2

r

∂T

∂r

)
= ∂2T

∂r 2 +2
∂2T

∂r 2 = 3
∂2T

∂r 2 (4.2.5)

If this symmetry conditions do not prevail in the heat flux around the the singular node, the sim-

plest numerical approximation is to replace the spherical polar coordinate form of ∇2T (r,θ,φ, t )

with its Cartesian equivalent counterpart ∇2T (x, y, z, t ).

1

α

∂T

∂t
= lim

r→0

(
∂2T

∂r 2 + 2

r

∂T

∂r
+ 1

r 2

∂2T

∂θ2 + cosθ

r 2 sinθ

∂T

∂θ

)
= lim

(x,y,z)→0

(
∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

)

≈ T1 +T2 +T3 +T4 +T5 +T6 −6T0

∆r 2 +O {∆r 2} = 6
T −T0

∆r 2 (4.2.6)

where T is a mean value of nearest T s around T0 at r = 0.

The latitudinal direction term in the right-hand side of Eq. (4.2.4) at θ = 0 and π is also singular. If

the symmetry prevails at θ = 0 and π due to the zero heat flux between each side of stagnant lines,

the Singularities can be resolved again by uisng L’Hôpital’s rule.

1

α

∂T

∂t
= lim
θ→0,π

(
∂2T

∂r 2 + 2

r

∂T

∂r
+ 1

r 2

∂2T

∂θ2 + cosθ

r 2 sinθ

∂T

∂θ

)

= ∂2T

∂r 2 + 2

r

∂T

∂r
+ 1

r 2

∂2T

∂θ2 + cosθ

r 2 lim
θ→0,π

(
1

sinθ

∂T

∂θ

)

= ∂2T

∂r 2 + 2

r

∂T

∂r
+ 2

r 2

∂2T

∂θ2 (4.2.7)

ADI STENCILS

The ADI algorithms of interior mesh in Eq. (4.2.4) are given by

T n+0.5
i , j −T n

i , j

0.5α∆t
=

T n+0.5
i+1, j −2T n+0.5

i , j +T n+0.5
i−1, j

∆r 2 + 2

(i −1)∆r

T n+0.5
i+1, j −T n+0.5

i−1, j

2∆r
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Both the explicit terms of θ-direction in Eq. (4.2.8a) and those of r -direction in Eq. (4.2.8b) are

known such that the solution follows a simple TDMA matrix at each half time step 0.5∆t . Hence

ADI method offers an alternative solution in deal with N × N for N times at each half time level

0.5∆t , rather than calculating N 2 ×N 2 for each time level by the fully implicit scheme.

Further rearranging Eq. (4.2.8a) and Eq. (4.2.8b) for computational purpose gives

− sr

2

i
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where Eq. (4.2.9a) and Eq. (4.2.9b) are applied only for interior mesh points (2 ≤ i ≤ Nr −1 2 ≤ j ≤
Nθ−1) and

sr = α∆t

∆r 2 sθ =
α∆t

∆r 2∆θ2

For stagnant lines along θ = 0 and π, the ADI arrangement of Eq. (4.2.7) is

− sr

2

i

i −1
T n+0.5

i+1, j + (1+ sr )T n+0.5
i , j − sr

2

i −2

i −1
T n+0.5

i−1, j = sθ
(i −1)2 T n

i , j+1 +
(
1− 2sθ

(i −1)2

)
T n

i , j +
sθ

(i −1)2 T n
i , j−1

(4.2.10a)

− sθ
(i −1)2 T n+1

i , j+1 +
(
1+ 2sθ

(i −1)2

)
T n+1

i , j − sθ
(i −1)2 T n+1

i , j−1 =
sr

2

i

i −1
T n+0.5

i+1, j + (1− sr )T n+0.5
i , j + sr

2

i −2

i −1
T n+0.5

i−1, j

(4.2.10b)

Because the symmetry conditions of Eq. (4.2.7) do not include the singular node at r = 0 along

the stagnant lines, Eq. (4.2.10a) and Eq. (4.2.10b) are to exclude latitudinal contributions along the

radius position r = 0 by introducing a heat conduction in a hollow sphere which is one unit step

∆r away from the origin, followed by applying Eq. (4.2.6) to obtain the grids at r = 0.
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4.3 STABILITY, ACCURACY, CONVERGENCE AND EFFICIENCY

4.3.1 STABILITY

The schemes of the explicit, implicit and Crank-Nicolson method have different stability properties

as shown in Section 4.2.1. For the ADI method, the intermediate time point n +0.5 is introduced

to reduce two-dimensional problems to a succession of many one-dimensional problems ( see

Section 4.2.2 for spherical polar coordinate system and Appendix D.1.3 for Cartesian coordinate

system ). Because the ADI method in both coordinates shares the same stability. For simplicity, the

ADI scheme in Cartesian coordinates is selected in stability analysis and also assumes∆x =∆y = h

in both Eq. (D.1.11a) and Eq. (D.1.11b) as

U n+0.5
i , j =U n

i , j +
α∆t

2h2

(
U n+0.5
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)
(4.3.1a)
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)
(4.3.1b)

Replacing U n
i , j by εn exp(i kx) exp(i my), Eq. (4.3.1a) becomes

εn+0.5 exp(i k · i∆x) exp(i m · j∆y)−εn exp(i k · i∆x) exp(i m · j∆y)
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(4.3.2)

According to Euler’s formula between analysis and trigonometry

cos x = exp(i x)+exp(−i x)

2

and the trigonometric identities of the double-angle formulae

cos x = 1−2 sin2 x

2

Eq. (4.3.2) can be simplified as
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(4.3.3)



CHAPTER 4. NUMERICAL ESTIMATION 76

Similarly, Eq. (4.3.1b) becomes
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α∆t

h2 sin2 mh
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Combining Eq. (4.3.3) and Eq. (4.3.4),
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For arbitrary ∆t , Eq. (4.3.5) satisfies

max

∣∣∣∣εn+1

εn

∣∣∣∣< 1 (4.3.6)

Therefore, the ADI scheme is unconditionally stable.

4.3.2 ACCURACY

The accuracy of the ADI schemes is determined to the accuracy of approximation of each partial

derivative in
∂U

∂t
=α∇2U

The local truncation error of α∇2U for the second central difference approximation as shown in

Eq. (4.1.5) has the order of O (∆x2) and O (∆y2). The accuracy of the time derivative can also be

obtained with the help of a Taylor expansion ( Eq. (4.1.1a) and Eq. (4.1.1b) ).

Considering Taylor series around U n+0.5
i , j on both forward and backward direction,
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Subtracting Eq. (4.3.8) from Eq. (4.3.7),
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Therefore the ADI method has second order accuracy with a truncation error of O
(
∆t 2,∆x2,∆y2

)
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4.3.3 CONVERGENCE AND EFFICIENCY

Even though the ADI scheme is theoretically unconditionally stable (see Section 4.3.1 ) and second-

order accurate in both time and space derivative ( see Section 4.3.2 ) regardless of the choice of the

size of time step and space step, ensuring those properties in PDE subjected with various bound-

ary conditions tends to an increase in iterations for producing more accurate numerical results in

a finer discretization. This approach however significantly decreases the computational perfor-

mance in convergence with exact analytic solutions ( Eq. (C.1.14) for solid sphere and Eq. (C.2.11)

for hollow sphere ) shown below
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∞∑
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The reason to make use of 1D analytic solutions in Eq. (4.3.10) and Eq. (4.3.11) to test 2D numerical

solutions is that Eq. (4.2.4) with a constant initial and fixed Dirichlet boundary condition reduces

its numerical results to a function of the radial coordinate alone [70].

In order to find the fast convergence but yet very little change in each local value of U (t ,r,θ) in a

selected region, the space size 51×26, 101×51, 201×101, 1001×1001 with time step ( ∆t ) 0.0001,

0.01, 0.1 are tested.

HOLLOW SPHERE

The reason to separate the test of convergence between Eq. (4.3.11) and the ADI solution of Eq. (3.2.5)

( see Appendix D.2.2 ) in hollow sphere from that in solid sphere is due to the natural bound to the

domain ( refer Dirichlet boundary condition in Eq. (3.2.7b) ) at any change of time. The narrow

space domain might generate an incorrect estimation in Eq. (4.3.11) at large elapsed time, whereas

the wider domain might significantly increase unnecessary numerical calculation. Thus, restrain-

ing the domain without influencing the quality of numerical estimation at reasonable elapsed time

for droplet flight through the drop tube is required.



CHAPTER 5

METHODOLOGY

5.1 EXPERIMENTAL METHOD

In this project, the undercooled droplet of various sizes are generated by the drop tube equipment.

The further investigation of non-equilibrium morphologies of those undercooled droplets is by

means of Scanning Electron Microscopy ( SEM ) and Differential Thermal Analysis ( DTA ). The

detail of sample preparation and the introduction of characterization techniques ( SEM and DTA )

are described below.

5.1.1 CHOICE AND PREPARATION OF ALLOY

Ag-Cu binary system is widely investigated under the equilibrium and non-equilibrium condition

by various means in years. Because both element Ag and Cu have the same face-centered cubic (

FCC ) crystal structure and share similar physical properties, such as low entropy and high conduc-

tivity, the liquidus, solidus, and solid solubilities as well as the extensive curves characteristic with

metastable phase boundary and having identical Gibbs free energies between two phases in the bi-

nary phase diagram in Fig. 2.1.3, are all accurately determined. Those extensions give a theoretical

insight in the estimation of other physical properties, including possible minimum undercoolings

in the range of binary composition at non-equilibrium condition.

More importantly, the physical parameters of different weight percentages ( wt.% ) from liquid tem-

perature to ambient temperature can be well measured in Ag-Cu system, and the empirical formu-

las with respect to temperature to estimate those parameters are also available else where [14, 16,

47], which is of use in later calculation of heat transfer when those parameters are required.

All starting materials are purchased from Alfa Aesar and are of 99.9999% purity metallic ( silver

and copper ) shot. The eutectic composition ( Ag-28wt.%Cu ) ingot was weighed and sealed in

quartz tubing before being arc-melted under a protective argon atmosphere. The ingot after the

78
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arc-melting process were weighed again to ensure no weight loss throughout the preparation pro-

cess. During the arc-melting process, melting below the solidus temperature is repeated several

times with aim of improving the composition distribution and alleviating potential significant res-

ident stress inside ingot.

Although the whole homogenization is under the noble gas atmosphere, it is unlikely that the ingot

surface is oxide free. Once those high temperature-resistant oxides ( Tm > 2000 K ) are generated,

the elimination of them through superheating up to ∼ 850 K is impossible. Therefore the heteroge-

neous nucleation can take place on those sites.

5.1.2 DROP TUBE

The 6.5 m drop tube technique ( see Fig. 5.1.2 ) is chosen to study the free-falling rapid solidifica-

tion. With lack of potential container wall along 6.5 m stainless steel tube to hinder new hetero-

geneous nucleations, the rapid in-flight cooling largely can constrain the nucleation solidification

in response, so as to attain high undercooling [31]. Those metal oxides obtained during the ingot

preparation, however, are more likely to be isolated in a fraction of small droplets in the in-flight

dispersion of the melt, as shown in Fig. 5.1.1. Thus this subdivision increases the possibility of

homogeneous nucleation in individual sphere and potentially further enlarges the amount of un-

dercooling.

Figure 5.1.1: Principle of isolation of heterogeneous nucleation motes in the volume of a

macroscopic melt and formed by different sizes of subdivision into many small particles [71]

Besides this 6.5 m tube, there are three main built-in systems in drop tube, which is

(a) Heating system (b) Vacuum and gas supply system (c) Water-cooling system

HEATING SYSTEM

The prepared Ag-28wt.%Cu ingot placed in an alumina crucible with 3 laser drilled holes ( 300 µm

) in the base is located inside the graphite susceptor. The radio-frequency ( RF ) coil surround the

graphite susceptor on the top of drop tube in Fig. 5.1.2 superheats the ingot up to ∼ 1095 K ( higher
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Figure 5.1.2: Schematic view of the 6.5 m drop tube

than Ag-28wt.%Cu melting point 1052.25 K ) by means of no-contact electromagnetic induction to

ensure the fully molten ingot in the crucible. The R-type thermocouple is set on the top steel lid of

drop tube and penetrated inside the crucible to detect the local temperature change of ingot. The

digital detector connecting with the other side of thermocouple on the lid accepts the signal from

the thermocouple and transfers it into the temperature output on the monitor.
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WATER-COOLING SYSTEM

The RF induction furnace on the top of drop tube consists of a 5 mm diameter tube of water-cooled

cooper rings surrounding a container of refractory material ( the graphite susceptor ).

On the one hand, a radio-frequency alternating current generated by 3 kW RF power supply is

passed through the copper coil of wires to transfer energy from electromagnetic induction to the

conducting object ( Ag-28wt.%Cu ingot ). On the other hand, the induction takes control of the

intensity in heating action. Although the energy transfer efficiency is largely dependent on the

operating frequency acted on the working coil, the chilled water supply running through the coil

continually removes waste heat and so guarantees a consistent heating cycle.

VACUUM AND GAS SUPPLY SYSTEM

The vacuum and gas system is equipped to avoid oxidization in the process of induction heating

and consequently for a catalytic free atmosphere.

The experimental procedure to obtain such a clean environment is complex, which requires a few

steps as following. The presence of air pressure inside drop tube needs to be vacuumed down

∼ 10−4 Pa by the mechanical rotaryvane pump and further down ∼ 10−7 Pa by the turbo-molecular

pump. Then the subsequent backfilling of 40 kPa nitrogen gas ( N2 ) keep the drop-tube environ-

ment clean and insert.

EXPERIMENTAL PROCEDURE

Firstly, the ingot is loaded in the RF induction system before the top lid was sealed and then the ex-

tended thermocouple was connected with the digital detector by an electrical wire. Subsequently,

the inner air pressure wa pumped down ∼ 10−7 Pa with the assistance of the oil-sealed rotaryvane

and turbo-molecular pump, followed by backfilling 40 kPa protective N2 gas. When the clean en-

vironment is ready, the ingot located in RF induction furnace starts to be heated continuously and

slowly till ∼ 1095 K is reached. Then the external 3×105 Pa N2 gas is filled in the crucible to force

the molten liquid to spray throughout 3 laser drilled holes. After the solidified droplets cool down

the ambient temperature, they are collected from the bottom of drop tube.

5.1.3 DIFFERENTIAL THERMAL ANALYSIS

Differential thermal analysis (DTA) is a thermo-analytic technique in determination of sample

properties. As shown in Fig. 5.1.3, the sample under study and an inert reference are symmetrically

placed in the separate pan in DTA, to ensure each is subjected to identical thermal conditions. The

thermocouple beneath each pan is made to track the temperature calibration between the sample
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and the reference. The temperature change ∆T = Ts −Tr at a fixed time step is recorded to gen-

erate thermogram which is the differential temperature against temperature, either exothermic or

endothermic. In Fig. 5.1.4, the endothermic reaction is shown downwards as a function of temper-

Figure 5.1.3: Schematic diagram of a DTA cell

ature on the abscissa. Firstly, there is only baseline between point A and B, denoting no reaction in

between. At point B, the curve starts to deviate from the baseline (the dash line BD) and the con-

jectural point G by interpretation of the curve AB and CG represents the onset temperature of the

endothermic reaction. The temperature difference arises greatly up to the maximum rate of heat

evolution at point C, indicating either phase or melting transition take place. Once the tempera-

ture past point C, the endothermic change reduces down to point D and turns back the baseline

DE. The baseline of pre- and post-reaction is extrapolated under the BCD peak, giving two sepa-

rate baselines AB and DE due to distinct heat capacity of the sample relative to the reference. Also,

it should be noted that one of temperatures at a range between point G and D can be the onset

one of phase change or the first-order transition, depending on the pre-defined thermal program

in run. For no or a small temperature gradient in the first-order transition, it is more like to the

extrapolated onset (G) which is intersected with a tangent line through the greatest sharp slop of

the leading edge of the peak (CG) and the extrapolated baseline (AB), whereas the peak (C) is more

favorable for a broad melting range or a large temperature gradient [72].

In the case of drop-tube processed Ag-40at.%Cu droplet, the cooling process shall pass the eutectic

point where three phases exist in equilibrium so that only small temperature gradient exists in

this transformation. Thus the onset temperature (G) can be regarded as the eutectic temperature.

Because the main theory behind phase diagrams is based around the latent heat that is evolved

when a mixture is cooled, changes caused by exothermic reactions are more useful in examination

of an onset temperature of transformation than that by endothermic ones.
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Figure 5.1.4: Thermogram of endothermic change in the sample relative to the inert reference

EXPERIMENTAL PROCEDURE

The undercooled Ag-Cu droplet and the reference were embraced by Al2O3 in each pan to avoid

the potential contamination from the molten liquid during heating process, followed by moving

into each holder in DTA cell. The reason to choose Al2O3 as the experimental reference is that

Al2O3 has similar physical properties such as conductivity and heat capacity to the specimen Ag-

40at.%Cu but yet no thermal event nor reaction in the operating temperature range. Moreover,

the sharp peak of exothermic reaction in thermogram is highly sensitive to the cooling rate, since

the temperature range under this peak might be too small to be detected at the large thermal rate.

Therefore, each pan was then subjected to the identical pre-set thermal cycles ( from 950 to 1100

K with the rate of 5 K/min) in desired constant Nitrogen atmosphere (0.4 MPa). The output of the

detected temperature difference was transferred into the signal form of a thermal analysis curve

(DTA curve) against temperature as shown in Fig. 5.1.5.

The interpretation of the onset temperature in exothermic reactions is similar with that in en-

dothermic reactions. So the extrapolated onset of melting G in Fig. 5.1.5 is likely to occur the eutec-

tic reaction. The temperature at G close to but not exactly at TE can be attributed to many issues,

including thermal rate, sample size and thermocouple position by using the SAT-8000 simultane-

ous thermal analyser. Under the endothermic reaction, however, there are two peaks instead of

only one for the specimen at the exact eutectic composition. The possible interpretation of this

change might give rise to the Ag-rich lamella with lower melting point starting to melt prior to the

Cu-rich one. As a result, a larger amount of Ag-rich phases is molten to generate higher negative

peak due to the lever rule, followed by smaller negative peak in response to melting of Cu-rich

phases.
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Figure 5.1.5: Thermogram of Ag-40at.%Cu droplet ingot

5.1.4 SCANNING ELECTRON MICROSCOPE

A scanning electron microscope ( SEM ) schematically shown in Fig. 5.1.6 employs a beam of elec-

trons directed at a specimen, with which produces and magnifies images by the surface, or near

surface structure of the specimen. The accelerated electrons supplied by the electron gun interact

with atoms of specimen and encourage various secondary emissions backscattered out of sample

to form the interaction volume as shown in Fig. 5.1.7. Those selected portions of electrons, such as

secondary electron ( SE ), backscattered electron ( BSE ), characteristic X-ray ( EDX ) are collected

by various detectors and transformed into the resulting signals that contain information of surface

feature and composition. Depending on the type of detectors selected in SEM, those amplified

signals combined with the position of electron beam produce an SEM image.

IMAGE FORMATION

The electron gun shown in Fig. 5.1.6 initially generates free electrons and accelerates them up to

energies ranging from 1 ∼ 40 keV. The electron beam of a current I0 passes through two electro-

*Available at https://en.wikipedia.org/wiki/Scanning_electron_microscope
†Available at https://myscope.training/images/SEM-module/figure_26.gif

https://en.wikipedia.org/wiki/Scanning_electron_microscope
https://myscope.training/images/SEM-module/figure_26.gif
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Figure 5.1.6: Schematic diagram of scanning electron microscope ( SEM )*

magnetic condenser lenses and corresponding lens apertures to de-magnify the electron-beam

crossover diameter, and then through pairs of scanning coils to deflect the beam in x− and y− axis

for scanning a raster pattern on the specimen surface, followed by through the final lens aperture

to minimize spherical aberration and control the current before entering the specimen [73]. The

vacuum environment better than ∼ 10−5 Pa is necessary for all the optical paths in the specimen

chamber of SEM to avoid scattering of the electron beam before reaching the specimen and so a

reduction in image resolution by a larger probe size. And the liquid nitrogen filled in SEM opera-

tion chamber guarantees that the additional amount of heat generated during the demagnification

of high current through multiple lenses can be cooled down.

When the primary electron beam penetrates the specimen, the interaction between accelerated

primary electrons and the atoms of the specimen elastically and inelastically, generates the inter-

action volume in a form of hemisphere ( Fig. 5.1.7 ) for intermediate and high atomic number Z,

from which various radiations including SE, BSE, EDX and light or heat are generated. An ana-

logue signal intensity from each radiation is measured by specialized detectors and amplified by

electronic amplifiers before being digitally saved in response to the position of the beam scanning

on the specimen surface.

Fig. 5.1.8 is one of SEM images that is obtained by detecting elastically BSE that remains unchanged
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Figure 5.1.7: Signals emitted from different parts of the interaction volume, where secondary

electron stands for SE, backscattered electron for BSE, and X-ray consists of both Bremsstrahlung

and Characteristic X-ray†

kinetic energy and velocity of primary electron but come back out of the sample after the primary

trajectory circle around the positive nucleus due to its attraction.

RESOLUTION

Technically, SEM magnification can surpass ∼ 100,000× in a scanning mode, but such high mag-

nification in practical SEM examination only makes the detail bigger and more obscure. Because

there is a limitation of SEM to distinguish two closest entities apart, which is also known as the

resolution.

In SEM, the spatial resolution r depends on the electron probe size d ( ≈ 2r ) and the theoretical

minimum probe size is calculated by only considering diffraction at the aperture as

dd = 1.22λ

µ sinα
≈ 1.22

λ

µα
(5.1.1)

where the refractive index µ is assumed to be unity and the semi-angle of the beam is sufficiently

small to have sinα= tanα=α. When using reasonable values ofλ= 0.0037 nm andα= 0.1 radians,

the SEM resolution is about 1.22×0.0037/0.1 ≈ 0.046 nm. Such small size of probe is impossible to
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Figure 5.1.8: Cross-section SEM image generated by backscattered electron ( BSE ) in which the

silver ( Ag ) rich region is characteristic with light grey, the copper ( Cu ) rich region is with dark

grey and the eutectic region is with the greyscale in between

achieve, because the spherical aberration ( monochromatic aberration ) due to the different path

lengths of different beams restricts the probe size from disc of least confusion by

ds = 2Cs α
3 (5.1.2)

where Cs is the coefficient of spherical aberration of the lens.

It seems that decrease of the aperture sizeα can reduce the impact of spherical aberration on ds . In

fact, the SEM resolution becomes worse since dd increase greatly in the range ofα ∈ [0,0.1] radians

( Eq. (5.1.1) ) and the beam current might decrease too low to generate a usable signal from the

interaction volume ( ?? ).

Without considering the de-magnified diameter of the beam ( d1 ), the real value of probe size may

be expressed as

d =
√

d 2
s +d 2

d =
√(

1.22λ

α

)2

+
(
2Cs α3

)2
(5.1.3)

Guessing the optimum size of aperture value αopt for the minimum probe size might be expressed

as

αopt = Aλ1/4 C−1/4
s (5.1.4)
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then

d =
(

1.4884

A2 +4 A6
)1/2

λ3/4 C 1/4
s (5.1.5)

When the electrons are accelerated to a velocity which is a significant fraction of the velocity of

light at the accelerating voltages λ, the approximation of electron wavelength is [73]

λ=
(

1.5

V +10−6V 2

)1/2

[nm] (5.1.6)

As Fig. 5.1.9 shows, the probe size approaches the minimum value at A = 0.77 as

dopt = 1.83λ3/4 C 1/4
s [nm] (5.1.7)

αopt = 0.77λ1/4 C−1/4
s [radian] (5.1.8)

In SEM operated with an objective lens of Cs = 20 mm, change of convergence angle and probe size

with respect to energy difference can be obtained by applying sem-mag-08 into both Eq. (5.1.7) and

Eq. (5.1.8). The calculated relationships are both shown in Fig. 5.1.10 respectively.

On the one hand, increase of volts applied in SEM electron gun reduces the size of probe and con-

sequently improves the resolution of imaging. On the other hand, the beam current I is sensitive

with the change of the convergence angle of beam α. Only a portion of current within 2α can pass

through this objective aperture, leading to more noises rather than useful information of surface

properties being generated from the detected signals.

In general, the resolution is largely restricted from the size of interaction volume. The greater the

kV, the greater the power of penetration by the beam into the sample, the higher the possibility

of specimen damage due to the external heat, and the larger the interaction volume, which leads

to a reduction in the spatial resolution created from those signals. Although the SEM resolution

can ideally achieve the half size of probe diameter d/2 as 2 ∼ 3 nm which is in the range of 5 ∼ 10

kV ( Fig. 5.1.10 ), it is impossible for BSE to have the resolution below ∼ 0.1 µm [73] due to the

limitations of the interaction volume as shown in Fig. 5.1.11.

DEPTH OF FIELD

The depth of field is defined as a range of positions for an object without change in the sharpness

of the image. In SEM, the depth of field h is approximated when the minimum size of specimen

pixel ( ∼ 0.1/M mm ) on a cathode ray tube ( CRT ) is equal to the electron beam diameter as

0.1

M
= hα ⇐⇒ h = 0.1

αM
(5.1.9)

The probe convergence angle α after the final lens aperture shown in Fig. 5.1.7 is determined by

the diameter of the final lens aperture D and the working distance WD.

α= D

2WD
(5.1.10)
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Figure 5.1.9: Relationship between the probe size and the constant A in Eq. (5.1.5)

Figure 5.1.10: Curves of convergence angle αopt and probe size dopt against energy difference

Combining with Eq. (5.1.9) with Eq. (5.1.10),

h = 0.2

D M
·WD [mm] (5.1.11)

Provided for typical value of D = 0.1 mm and WD = 30 mm at magnification 300×, the depth of

field should be obtained by Eq. (5.1.11), which is at the order of 200 µm. Because of this, the inter-

pretation of SEM image of three-dimensional ( 3D ) objects at low magnifications is intuitive and

no prior knowledge of image formation in this apparatus is required as shown in Fig. 5.1.12.

5.1.5 MICROSTRUCTURAL AND COMPOSITIONAL CHARACTERIZATION

SAMPLE PREPARATION

The droplets are initially classified into different size groups by the sieves of sizes among 38 ∼ 53,

53 ∼ 75, 75 ∼ 106, 106 ∼ 150, 150 ∼ 212, 212 ∼ 300, 300 ∼ 500, 500 ∼ 850, 850 ∼ 1000 and > 1000 µm.
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Figure 5.1.11: SEM image of droplet cross-section generated by BSE at magnification ×60.0 K

For examination of topographic image in SEM, each group of droplets only need to be fixed firmly

on one conductive specimen holder.

For examination of compositional image and quantitative analysis in SEM, each group of droplets

needs to be prepared in one hot mounting resin by the conductive powders with carbon filler. The

mounted specimens are then ground down using a series of progressively finer SiC grinding papers

from 400, 800 to 1200 grit and are polished with diamond compounds using 3, 1, 0.25 µm polishing

cloths on a semi-automatic polishing machine. In process of sample preparation, the additional

care is necessary, not only for the surface quality check, but also for the diameter measurement of

ground droplets in each resin, by means of optical microscopy. Because an Axiocam MRC5 Zeiss

digital camera installed on its top of the selected Nikon Optishot optical microscope is connected

with computer and operated by built-in AxioVision software, the scratch check and the grinding

size measurement are accomplished together on computer screen with aid of the scale bar func-

tion.

Both the mounted specimens and the fine droplets demand external carbon coatings to improve

the imaging by using a turbo-pumped thermal evaporator, in which the carbon source is settled

between two high-current electrical terminals in a vacuum system and then is heated up to its

evaporation temperature to produce a stream of carbon finely deposited on the their surface.
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Figure 5.1.12: SEM image of droplet surface ( in the range of diameter 212 ∼ 300 µm ) generated by

backscattered electron ( BSE ) displays 3D semi-sphere macro-structure

COMPOSITIONAL IMAGE

The compositional information from sample surface can be yielded by detecting BSE signals. Fig. 5.1.8

generated by BSE provides information about the distribution of different phases, which can be in-

terpreted following.

First of all, the monochromatically gray-scale SEM image ( with no external color ) gives rise to

electron wavelengths of detected signal having much smaller than the smallest wavelength of vis-

ible light. Secondly, the amount and direction of BSE coming out of sample surface is sensitive to

the surface condition and electronic structure of the material. According to those, the polished flat

specimens are prerequisite under sample preparation prior to SEM examination and the unique

physical property of each material such as atomic number Z and density makes the grey-scale

value different and forms compositional contrast when multiple materials exist in a specimen.

Since heavy atoms with a high atomic number can scatter stronger than those with a low one,

the silver-rich region ( ZAg = 47 ) is characteristic with brighter grey scale and the copper-rich re-

gion ( ZCu = 29 ) is with dark one. Either anomalous or regular eutectic is assumed as the evenly

cooperative growth so its grey scale is in between.

Lastly, those small electrons captured by the detector can have unlimited magnification, but the

resolution of SEM degrades the practical range and is limited to ∼ 0.1 µm in the area of composi-
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tional interest.

TOPOGRAPHIC IMAGE

In SEM, both SE and BSE are widely used to study the surface features of a specimen, topography.

SE has very low energies due to the smallest sampling interaction volume on specimen, so its sig-

nal provides particularly good detail of the shape and morphology of specimen surface. Although

the compositional image is sufficient good for phase identification in this experimental work, the

polished surface can be well checked by means of SE topogrphic image as shown in Fig. 5.1.13. At

most of cases, the dark region can be easily identified as Cu-rich region whereas others might be

suspected as internal imperfections, i.e. shrink holes and porosities, due to isolated pools of liquid

during rapid solidification. Then the SE image in Fig. 5.1.13a can be helpful to distingish those

internal defects from microstructure. Moreover, the assistance of SE topography can easily deter-

mine else imperfection such as dirt and scratch on sample surface which might form unknown

phases on BSE images.

(a) SE image (b) BSE image

Figure 5.1.13: Both SE and BSE image taken at the same selected location

BSE can also provides a good insight to not only compositional identification but also under-

standing of topography and morphology on examined specimens. As shown in Fig. 5.1.14a and

Fig. 5.1.14b, there are two different topographies taking place on the surface of rapid-solidified

droplet. The characterization of surface topography shown in Fig. 5.1.14 will be related to the so-

lidification circumstance to further explain in Section 6.1.

EDS X-RAY MICROANALYSIS

When the primary electrons spread out in the sample to form the interaction volume, X-rays are

also produced by interaction of the electron beam with the sample ( Fig. 5.1.7 ), which consist
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(a) (b)

Figure 5.1.14: Topography of droplet surface obtained by BSE

of both Bremsstrahlung and Characteristic X-ray. The characteristic peak superimposed on the

Bremsstrahlung background forms X-ray spectrum shown in Fig. 5.1.15a.

Bremsstrahlung X-rays, known as Bremsstrahlung background, are produced by slowing down of

the primary beam electrons due to the electric field surrounding the nuclei of the atoms within the

sample. Because of the Duane-Hunt limit, the energy of Bremsstrahlung X-rays cannot be greater

than that of the primary electrons ( E0 ). In the case of Fig. 5.1.15a, X-ray spectra is in the range

of energies from 0 to 9 keV. Also, a ’whale-like’ shape in the X-Ray spectrum diagram can be ex-

plained that the chance to lose all of primary energy in one single interaction between the primary

electron and the sample is very rare. It is more likely to have a number of interactions in which

small proportions of the initial energy are lost and an equivalent number of low-energy X-rays is

produced continuously until no more energy is left in the primary electron. Because of this, the

intensity of X-ray increases gradually from E0 to lower energies. However the fact that the X-ray in-

tensity at energies towards 0 eV reduces to zero gives a reason for a large number of very low-energy

Bremsstrahlung X-ray absorbed by either the sample or the X-ray detector before being detected.

Characteristic X-rays, known as characteristic peaks, are produced by electron transitions between

the outer electron and inner shell vacancy. The electrons of each shell and sub-shell have specific

ionization energies in response to every element. Because of this, the difference between the en-

ergies of the two excited states in different shells thus is used to characterize the particular atomic

species. In order to excite characteristic X-rays, the primary electron ( E0 ) controlled by the acceler-

ating voltage must have enough energy to overcome the critical ionization energy so that localized

inner-shell electrons can be knocked out of an atom. The simple estimation of those energies can

be given by

En =−13.57
(Z −1)2

n2 (5.1.12)

where Z is the atomic number and n is the principal quantum number such as K-shell for 1 and L-
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shell for 2. For the transition of a single electron of Cu from M-shell to K-shell, the potential energy

difference can thus be estimated as

∆E = E3 −E1 =−13.57
29−1

3
+13.57

29−1

1
=−1182.1+10638.9 ≈ 9 keV (5.1.13)

In SEM, the keV range of X-ray spectrum is controlled by the accelerating voltage ( kV ). The max-

imum keV can not surpass the accelerating voltage applied in SEM, i.e., 9 keV spectrum will range

from approximately 0 to 9 keV when 9 kV is applied. Although Kb1 ≈ 9 keV calculated in Eq. (5.1.13)

is the critical energy for Cu to excite a characteristic peak, Fig. 5.1.15a fails to show a discrete peak

out of Bremsstrahlung background. The reason can be explained that an efficient generation of

x-rays in the spectrum diagram not only requires the critical excitation energy inside the range of

keV energies but also satisfies the ratio of E0 to En ( the over-voltage ratio ) under 2.7. For a beam

at 9 keV applied in Fig. 5.1.15a, an average x-ray enrgy due to the over-voltage ratio is around 3 keV,

which gives a sufficient energy to knock out the L shell of Cu ( refer Table 5.1.1 ) and so generates

a discrete peak around 0.9 keV. For Ag, both sub-shell La and Lb as listed in Table 5.1.2 are excited

and generate two separate overlapping peaks in Fig. 5.1.15a in qualitative EDX microanalysis using

SEM.

The advantage of using low energy such as 9 keV to excite L-shell of both Cu and Ag instead of K-

shell is that the lower number keV has a narrower peak and so requires the shorter process time to

yet achieve a high resolution peak. As a result, the dead time is shorter and potentially the sample

is damage free in EDX analysis. Moreover, the short dead time can reduce a fixed counting time of

each point during elemental X-ray map and thus largely improve the efficiency of X-ray mapping

for the distribution of particular elements.

Elemental X-ray maps are produced by recording a number of X-ray photons over a selected rect-

angular area as shown in Fig. 5.1.16. When the electron beam is rastered over this area, the X-ray

detector collects this number of X-ray photons at each point which is transferred into a grey-scale

value ( 0 ∼ 255 ) for a pixel on the screen. Then the built-in software, AZtec, can automatically de-

termine the particular element at each pixel and provides a function to assign a selected color to a

single grey scale. In Fig. 5.1.16b, Cu and Ag are assigned into red and green respectively and also

combined together to form a false colorful image. Combining Fig. 5.1.16a with Fig. 5.1.16b, the

EDX map can reveal more information related to variations of composition over the selected area.

Table 5.1.1: K and L shell emission lines ( eV ) of Cu‡

Ka1 Ka2 Kb1 La1 La2 Lb1

8047,78 8027.83 8905.29 927.7 929.7 949.8

‡Available at http://xdb.lbl.gov/Section1/Periodic_Table/Cu_Web_data.htm.
§Available at http://xdb.lbl.gov/Section1/Periodic_Table/Ag_Web_data.htm.

http://xdb.lbl.gov/Section1/Periodic_Table/Cu_Web_data.htm
http://xdb.lbl.gov/Section1/Periodic_Table/Ag_Web_data.htm
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(a)

(b)

Figure 5.1.15: (a) X-ray spectrum excited from the interaction volume by a beam of 9 keV and (b)

location of EDX point analysis

Table 5.1.2: K and L shell emission lines ( eV ) of Ag§

Ka1 Ka2 Kb1 La1 La2 Lb1 Lb2

22162.9 21990.3 24942.4 2984.3 2978.2 3150.9 3347.8

(a) (b)

Figure 5.1.16: BSE image (a) and X-ray distribution map (b) for eutectic Ag-Cu sample where red (

Cu ) and green ( Ag ) are combined together
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5.2 QUANTITATIVE IMAGE ANALYSIS

Although SEM enable a quantitative analysis by taking the Characteristic X-rays in comparison

with data measured from standard reference materials to obtain the weight percent of the elements

present either at a spot ( Fig. 5.1.15b ) or over an area ( Fig. 5.1.16b ), the quantitative measurement

of anomalous eutectic ( introduced in Section 2.3 ) over a selected area is impossible to achieve by

the EDS micro-analysis. In [63], the ImageJ contour plotting is used to identify three distinct phases

successfully owning to each phase having a distinct range of grey-scale values. Firstly the threshold

for the phase with the middling greyscale values is carefully set to separate it from the other two

phases. Then the remaining phases can be identified as the greyscale values either below or above

this threshold respectively as shown in Fig. 5.2.1.

For the eutectic morphology, the simultaneous growth of two phases ( Fig. 1.2.5 ) leads to distinct

compositions in each phase since one component rejected by one phase is in favour of the growth

of the other. As a result, each phase has different average atomic mass and gives rise to different

greyscale value in BSE image in Fig. 5.1.16a. Those two separate greyscale values increase the dif-

ficulty of ImageJ contour plotting to automatically recognize the eutectic region. However, it is

interesting to note that the darkest regions in Fig. 5.2.1 are the eutectic phases. Either low magni-

fication applied in SEM or fine eutectic spacing contributes to low resolution over these eutectic

regions and consequently density variation inside eutectic resolves as an average density to appear

nearly uniform greyscale value in BSE image. Therefore, it is possible to recognize the lamellar eu-

tectic by ImageJ when the greyscale values of both phases are merged towards a uniform one.

Figure 5.2.1: Use of the ImageJ contour plotting add-on to establish density ranges for each

phase [63]

When different gaussian blurs are applied in Fig. 5.2.2a, Fig. 5.2.2b and Fig. 5.2.2c, the correspond-

ing change of plot profiles due to the change of greyscale values can be noticed as Fig. 5.2.3a,
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Fig. 5.2.3b, and Fig. 5.2.3c respectively. In the original image Fig. 5.2.2a, the anomalous eutectic

is located in the left side of image and surrounded by lamellar eutectic, in which the plot profile in

Fig. 5.2.3a shows the greyscale value changes from 0 to 255. When the gaussian blur increases from

0 to 1 to 2, the plot profile gradually reveals the lamellar eutectic on the right side of Fig. 5.2.3c ( red

circle marked ).

(a) (b) (c)

Figure 5.2.2: BSE image that is applied with gaussian blur = 0 (a), = 1 (b), = 2 (c)

(a) (b)

(c)

Figure 5.2.3: Plot profile measured from BSE image that is applied with gaussian blur = 0 (a), = 1

(b), = 2 (c)

Combining the filter function with the binary function, then anomalous eutectic region can be

identified by ImageJ as Fig. 5.2.4 shows. At last, a macro program is written within ImageJ to ex-

tract image density data from a series of ellipses of decreasing size. Through the mask as shown
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in Fig. 5.2.5, density data for each ellipse was subtracted from the preceding ellipse in order to

produce density data for a series of annuli. The processing result will be illustrated in Section 6.2.1.

Figure 5.2.4: Comparison of marked anomalous eutectic region with BSE anomalous eutectic

region

Figure 5.2.5: Positions of the annuli used in the quantitative image analysis
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5.3 NUMERICAL METHOD

The objective of the 2D forced convection heat transfer modelling in Section 3.2 is to simulate the

local change of fluid temperature surround the spherical solid by Eq. (3.2.1) and the corresponding

change of local Nussult number Nuθ by Eq. (3.2.15).

Although the local heat transfer coefficient Nuθ can be obtained by refering Eq. (3.2.15) and then

applied as the boundary condition in calculation of temperature distribution inside the spherical

droplet numerically by ADI scheme ( Section 4.2.2 ), the overall thermal change of solidification

might be impossible to achieve by a means of Eq. (4.2.4) with external heat source term. Since

neither the estimation of nucleation site nor the prediction of the interface growth between liquid

and solid is possible under the rapid heat transfer. The macroscopic heat transfer modelling ( see

Section 3.1 ) is then used to analyze the time-dependent temperature change of droplet of different

sizes under cooling process before the droplets touch down the bottom of drop-tube.

In the macroscopic heat transfer modelling, the metallic sphere is assumed to have a sufficiently

high heat conductivity κs for a droplet with sufficiently small size, such that the temperature gra-

dient inside droplet is safely neglected at any instant of time in a liquid or gaseous environment.

However, this assumption might only be suitable for droplets at small size range 38 ∼ 100 µm. For

the droplet size between 100 and 8500 µm, the temperature gradience inside droplet during solid-

ification would be existed to generate different local Nuθ at any instant of time.

The average temperature of each size of droplets determined by averaging the local temperatures

over the entire sphere volume will be compared with that obtained by Eq. (3.1.3) under the constant

Stokes flow velocity w f .

On the other hand, the convection heat transfer coefficient h introduced in Section 1.3.2 strongly

depends on the type of the fluid flow, either laminar or turbulent. For a creeping flow, the fluid

velocity is expressed by Eq. (3.2.2a) and Eq. (3.2.2b) in Section 3.2.1, in which the flow around the

sphere is steady at r → ∞. For a turbulent circular free jet emerging from an orifice into a fluid

at rest, the gas velocity decay profile u f (z) along the centerline of the incompressible free jet with

distance ( z ) is expressed

u f (z)

u0
=

{
1+

( z

λ

)20
}−0.05

and λ= 10.5
√

Ae (5.3.1)

where the initial velocity of the atomizing gas

u0 = 0.03973
p f

ρ f ·
p

T0
(5.3.2)

To estimate a realistic forced flow over the sphere surface, both Eq. (3.2.2a) and Eq. (3.2.2b) for the

creeping flow and Eq. (5.3.1) for the turbulent flow will be applied in the heat transfer modelling in

Section 3.1.



CHAPTER 6

RESULT

6.1 EXPERIMENTAL RESULT

6.1.1 RAW MATERIAL FOR DROP-TUBE PROCESS

A commercial Ag-Cu eutectic ingot was chosen as the experimental material for the drop-tube pro-

cessing, by which droplets of various sizes were generated in flight ( as introduced in Section 5.1.2 ).

The main reason for using this alloy rather than else alloy in the experimental investigation of drop

tube processing is its thermo-physical data are comparatively well known and also various con-

trainerless processing techniques, such as gas atomisation [4, 45], drop tube processing [33, 43],

electromagnetic levitation [19] and melt fluxing [7, 41, 42] have been carried out on it.

In Fig. 6.1.1, lamellar Ag-Cu eutectic is clearly observed from the cross section of this commercial

ingot, despite there are a few regions of coarse eutectic isolated from those fine lamellar eutectic. As

the response to the distinct difference between the atomic mass of Ag (47) and Cu (29), the location

of different phases in the sectioned sample can be clearly revealed by the different greyscale levels

in BSE image ( introduced in Section 5.1.5 ). Thus, the Ag-rich phase ( β ) scatters electrons more

strongly than the Cu-rich phase ( α ) does, so β-phase appears lighter than α-phase in Fig. 6.1.1.

Because of greyscale changes via density variation in BSE images, it is possible to use the built-in

ImageJ function, line profile, to measure the interlamellar space λ of lamellar eutectic. Depending

on the response from the backscatter detector, the greyscale values of α phase and β phase along

the selected white line in Fig. 6.1.1 are 90 ∼ 110 and 160 ∼ 190 respectively as shown in Fig. 6.1.2.

As a result, the interlamellar space is around 0.1 µm.

100
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Figure 6.1.1: BSE image showing mircrostructure of Ag-Cu eutectic ingot

Figure 6.1.2: Line profile characteristic with a selected line across a section of lamellar eutectic in

Fig. 6.1.1
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6.1.2 SEM / EDS VALIDATION OF PHASES

(a) Anomalous eutectic formed inside the droplet

(b) Anomalous eutectic formed from the surface

Figure 6.1.3: Microstructure of anomalous eutectic in the sectioned samples
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The selected commercial Ag-Cu ingot ( Fig. 6.1.1 ) was superheating up to ∼ 860 K in the crucible

before being ejected to form various droplets during the free falling. Depending on the cooling con-

ditions such as undercoolings and cooling rates, subjected to the spray, either anomalous eutectic

or single-phase dendrite coming with lamellar eutectic can be observed from the microstructure

as BSE images in Fig. 6.1.3 at size range 500 ∼ 850 µm and Fig. 6.1.4 at 212 ∼ 300 µm respectively.

The contract of BSE images is attributed to the average density of each phase. Thus, Ag-rich phases

have a brighter greyscale than Cu-rich ones, which is broadly in agreement with the extensive EDX

analysis in Fig. 6.1.7. It is cleary observed that a few anomalous eutectic regions are either isolated

among lamellar eutectic in Fig. 6.1.3a or grow radiantly through the heterogeneous nucleation on

the outer surface in Fig. 6.1.3b. For some finest lamellar, BES images featuring poor resolutions

might fail to show the distinctive contract of these two phases such that only an average greyscale

is shown in some regions in Fig. 6.1.3b.

Figure 6.1.4: Microstructure of single phase dendrite in the sectioned samples

Also, there is the drop-tube formed morphologies of the partially melted ingot prior to ejection in

Fig. 6.1.8 in comparison with those of the fully melted ingot prior to ejection in Fig. 6.1.3. The dark

Cu-rich spot located at the centre of equi-axed grains of anomalous eutectic in Fig. 6.1.8 indicates

that Cu-rich inclusions having the higher melting temperature than either the eutectic one or the

Ag-rich one are more likely to stay at the molten melt and perform as the origins of anomalous

eutectic radiating to the surround undercooled melt. This morphology, however, is not the case
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for the fully molten melt prior to ejection, by which the as-solidified microstructure has more Ag-

rich inclusions that tend to cluster at colony boundaries of anomalous eutectic in Fig. 6.1.3a and

Fig. 6.1.7.

Additionally, there is few regions of single-phase dendrite in presence of sectioned samples in

Fig. 6.1.4. By means of other containerless solidification techniques, the morphological transition

from lamellar eutectic with anomalous eutectic to that coupled with single-phase dendrites at Ag-

Cu eutectic composition gives rise to the molten melt experiencing the critical undercooling which

is reported as 70 K [7], 75 K [27], and 76 K [47]. Also, for the reason that the drop-tube processed

microstructure is no case unique in the study of rapid solidification and is often similar to those

formed in rapid quenching and the emulsion technique [31], the single-phase dendrite in Fig. 6.1.4

is believed as the microstructure of high undercoolings, despite the direct measurement of under-

coolings under process of the experiment is impossible. The detailed illustration of morphology of

various droplet sizes to show the microstructural evolution will be in Section 6.1.3.

The back-filling inert gas introduced in drop tube process in Section 2.2.1 and Section 5.1.2 in-

creases the cooling rate of a spray of fine Ag-Cu droplets, leading to the destabilisation of initial

planar interface between liquid and solid. The low heat extraction rate for Ag-Cu alloy at the eutec-

tic point can stimulate the planar couple eutectic overgrowth simultaneously to form two-phase

cells or dendrites ( see Fig. 2.3.1 ). With increasing this rate, the diffusion from the L/S interface be-

comes inefficient, resulting in the heavily constitutional undercooling along the long-range bound-

ary layer built up ahead of the interface. Thus, the high undercooling is likely to achieve due to

solute diffusion, curvature and heat flow ( introduced in Section 2.3.2 ). Because of the effect of the

slightly skewed zone towards phase β-Cu side in the Ag-Cu phase diagram, the off-eutectic single

α-Ag dendrites is yet possible to form at the eutectic point. Given the significant phase structure at

different cooling rates, the mechanisms of anomalous structure must be accordingly different. In

the previous studies of rapid solidified Ag-Cu samples, the formation of anomalous Ag-Cu eutectic

can be attributed to the remelting of eutectic dendrites during rapid recalescense at low undercool-

ings ( < 60 K ) [27, 7, 44], and the decomposition or fragmentation of highly supersaturated single-

phase dendrites at high undercoolings ( > 60 K ) [47]. The schematic illustration of the mechanism

by which the anomalous eutectic forms from eutectic dendrites at low undercoolings is shown in

Fig. 6.1.5a and that of the mechanism by which the anomalous eutectic forms from single-phase

dendrites at high undercoolings is shown in Fig. 6.1.5b. The mechanism by which drop-tube pro-

cessed anomalous eutectic forms shall refer to Section 6.1.3, in which microstructures of all sizes

are illustrated.
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(a) Anomalous eutectic formation from primary eutectic dendrites

(b) Anomalous eutectic formation from primary single-phase dendrites

Figure 6.1.5: Schematic diagram of the mechanism by which anomalous eutectic forms [74]

The drop-tube processed microstructure in Fig. 6.1.3b appears clearly that the development of the

anomalous structure from the outer surface radiantly to the inner droplet is nearly aligned with

the direction of heat transfer and takes the form of branched ‘fingers’. This anomalous eutectic

in dendritic form propagating through the sample is highly suggestive that the initially formed

two-phase ( eutectic ) dendritic is remelted or disintegrated as the origin of anomalous eutectic

during the recalescence, followed by the planar front growth of lamellar eutectic filling in the inter-

dendritic region.

Likewise, those fine-grained anomalous eutectic located inside the droplet in Fig. 6.1.3a result from

the remelting of eutectic dendrite, despite the loss of dendrite shape. Yang et al. [75] suggest that

the grained anomalous eutectic can also be formed by the small fragmentation of supersaturated

single-phase dendrites at high undercoolings. However, this is not the case for Ag-Cu alloy at the

eutectic point. Even though the undercooled liquid can be warmed up to more rapidly during

recalescence by the formation of single-phase dendrite than that of eutectic dendrite due to the

faster growth velocity, the temperature according to Ag-Cu phase diagram in Fig. 2.1.3 can never

rise beyond the eutectic temperature and is not high enough to partially remelt the off-eutectic

composition of primary single-phase dendrite. In other words, the lowest melting temperature

at the eutectic point cannot break down the single-phase dendrite into fragmentations where the

heterogeneous nucleation of anomalous eutectic begin. Accordingly, these primary single-phase

dendrites remain unchanged as the morphology shown in Fig. 6.1.4 once being solidified, and the
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following recalescense re-warms the undercooled liquid ahead of dendrite interface, giving rise to

the origin of lamellar eutectic.

Although different microstructures are detected in Fig. 6.1.3 and Fig. 6.1.4, the composition of

droplet with 300 ∼ 800 µm are further confirmed by DTA analysis. In Fig. 6.1.6, the onset tem-

peratures for droplet of 300 ∼ 800 µm in exothermic reaction are nearly equal to the eutectic tem-

perature (the vertical red line). This excess evidence further proves the droplet composition did

not occur any departure from the eutectic one during rapid solidification.

Figure 6.1.6: DTA result in thermal cycle between 950 to 1100 K at the rate of 5 K/min

Moreover, either the metastable phase γ′ or the amorphous phase fails to be found in this spray of

fine Ag-Cu droplets. As introduced in Section 2.1.2, T0 temperature that is only 76 K below the eu-

tectic point is not low enough to attain either phase. When those droplets experience high cooling

rate in flight along the drop tube, the morphology of either eutectic dendrite or single-phase den-

drite under lower undercooling than 76 K would prevail before the sufficient high undercooling is

achieved for the partitionless solidification. This is also the reason that the undercooling of Ag-Cu

alloy higher than 76 K by means of containerless solidification techniques has not been reported

in elsewhere yet.

Fig. 6.1.3a at high magnification shows both Ag-rich and Cu-rich inclusions, besides anomalous

eutectic coupled with lamellar eutectic. The EDX map scan in Fig. 5.1.16b and the EDX line scan
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Figure 6.1.7: EDX line scan of anomalous eutectic region

in Fig. 6.1.7 conforms that the inclusion composition is indeed Cu-rich and Ag-rich respectively.

Unlike those Cu-rich inclusions in the drop-tube formed microstructure from the partially melted

ingot acting as the places for heterogeneous nucleation ( see Fig. 6.1.8 ), both inclusions are located

at or near the boundaries of the eutectic colonies. With reference to the Ag-Cu phase diagram in

Fig. 2.1.3, the metastable extension ( dotted line ) of Ag solidus line has the large slope towards the

couple zone than that of Cu solidus line in the other side of phase diagram. In consequence, for

the lamellar eutectic in dendrite shape formed from the undercooled parent melt initially, the Ag-

rich phase is supersaturated in larger atomic percentages of Cu than the Cu-rich phase is in atomic

percentages of Ag. In other words, the separation between the metastable solidus and the solvus

lines would lead to greater supersaturation of the Ag-rich phase in Cu than of the Cu-rich phase

in Ag. With the subsequent formation of lamellar eutectic along the interface of eutectic dendrite,

the remaining liquid is Ag-rich in comparison with the eutectic composition, which is plausibly at-

tributed to the Ag-rich inclusions at the grain boundaries of anomalous eutectic. Meanwhile, upon

reheating to the eutectic temperature during the recalescence, the supersaturated Ag-rich phase
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Figure 6.1.8: Microstructure of anomalous eutectic formed through un-melted Cu-rich fragments

would disintegrate or partially remelt. Because of rapid heat extraction rate surround individual

droplets, the recalescence has a limited influence on the local regions such that the short-range

diffusion would be activated to diffuse Cu out of Ag-rich phases to the nearby residual liquid, giving

rise to the observed Cu-rich inclusions embraced by Ag-rich phases rather than lamellar eutectic

growing outwards.

Based on the above explanation, the order of drop-tube processed microstructure is from the eu-

tectic dendrite, to anomalous eutectic due to remelting of former phase, to lamellar eutectic by

heterogeneous nucleations along the interface of anomalous eutectic, to eventually either Ag- or

Cu-rich inclusions relative to the eutectic composition. The extensive evidence to highly support

those inclusions were the last solidified microstructure in droplet is by observing the change of the

lamellar eutectic spacing. Considering the strong heat extraction gives insufficient time for inter-

diffusion to separate two phases clearly in the growth of lamellar eutectic, the fine interlamellar

spacing is hardly identified by low-resolution BSE image in Fig. 6.1.3b, whereas the coarser eu-

tectic spacings nearby those inclusions reducing gradually into the nano scale indicate that the

inclusions are the last feature to solidify after the formation of both anomalous and lamellar eutec-

tic.

However, the roughly spherical form of the inclusions can imply that the equi-axed spots experi-

enced the restricted growth to the undercooled melts. Otherwise, the last remaining liquid should

be solidified into various forms by filling in any spacious gap within the regions of anomalous and

lamellar eutectic. The reasonable explanation for this issue can be given that the interaction be-

tween the free falling droplets and the back-filling inert gas results in the random rotation through
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either azimuth or zenith angle, by which the near spherical Cu-rich inclusions were in contact with

the Ag-rich liquid and spherodized due to surface tension.

As a result, the remaining liquid with small radius of curvature plausibly gives way to that with

larger radius of curvature.

Figure 6.1.9: Morphology of anomalous eutectic processed by melt fluxing [41]

Additionally, the existence of self-rotation in every droplet due to residual electromagnetic stirring

from the RF heating field might give rise to the samples processed by drop tube technique forms

the microstructure in Fig. 6.1.3 and Fig. 6.1.4 slightly different from those processed by melt fluxing

in Fig. 6.1.9. The microstructure of flux undercooled Ag-Cu sample placed at the static crucibles

with no external force involved in the entire solidification is generally cellular, with a typical cell

consisting of lamellar eutectic in the body of the cell with anomalous eutectic occurring at the cell

boundaries [7, 41]. In contrast, the anomalous eutectic formed in drop tube processed samples

has a less clear distinction between these morphologies due to the interruption of the inner force.

Therefore the cellular microstructure in drop-tube formed sample cannot last in the final formed

morphology, since the ’bridges’ connected with individual colonies of anomalous eutectic has the

small radius of curvature, giving way to isolated colonies of anomalous eutectic that have the aver-

age larger radius of curvature around the eutectic boundaries as shown in Fig. 6.1.3a.
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6.1.3 DROP-TUBE FORMED PHASE TRANSITION

The investigation of undercooled droplets by using short drop-tube technique gives a good insight

in phase transitions of drop-tube processed solidification. The drop-tube technique is featured in

melt subdivision and high cooling rate, which give rise to isolation of the exiting nucleants in a

faction of one spray and a range of undercoolings prior to nucleation.

Depending on the composition and the growth kinetics of chosen alloy at the given solidification

condition, two-phase eutectic structures tend to have different mechanisms to form anomalous

eutectic. Based on Section 6.1.2, there are three types of morphologies in drop-tube processed

Ag–39.9at.%Cu droplet, which can be briefly explained as following.

Type I For those droplets experiencing cooling rates that can attain low undercoolings ( 10 ∼ 60 K )

in Fig. 6.1.3, the initial supersaturated eutectic grows as branches, to dissipate the latent heat

into the undercooled liquid efficiently. The subsequent growth of lamellar eutectic surround

the primary eutectic dendrite not only warms up the remaining liquid, but also develops the

remelted zones inside eutectic dendrite. The disintegration of the primary phase takes place

in those zones, giving way to the formation of anomalous eutectic. After the large volume

fraction of phase growing to impinge on each other, the isolated melts are solidified as single

phase-rich inclusions at or near the colony boundaries.

Type II For those droplets experiencing cooling rates that can attain high undercoolings ( > 60 K

) in Fig. 6.1.16b, the primary single phase grows dendritically into the undercooled melt,

followed by the rapid recalescence due to the high growth kinetic of primary phases rises the

undercooled melts up to or near the eutectic temperature for the growth of lamellar eutectic

surround until the last liquid is finished. Those off-eutectic single dendrites featuring higher

melting point than the eutectic one is impossible to be remelted into the fragments for the

origins of anomalous eutectic as mentioned in Section 6.1.1. But its formation and growth

release massive heat into the undercooled liquid up to the eutectic temperature. Thus the

microstructure in this type consists of the single-phase dendrite and the lamellar eutectic.

Type III For those droplets consisting of single-phase dendrite, anomalous eutectic and lamellar eu-

tectic as shown in Fig. 6.1.4, it is believed that the droplets should still experience high un-

dercoolings ∼ 60 K to initiate the primary single-phase dendrites. Although the latent heat

released in the subsequent phase growth can continuously increase the undercooled melt,

it is unlikely that the undercooled melt is re-warmed up to the eutectic temperature when

the rapid heat extraction is surround the droplet. Moreover, the highest recalescence tem-

perature can be gradually reduced with the increase of undercooling [27]. As a result, the

melt in the following phase growth might yet exist a certain extent of undercooling, by which

the lamellar eutectic grows in the dendritic form. Those eutectic dendrites would be then

remelted as the origin of anomalous eutectic, whereas the heterogeneous nucleations of

lamellar eutectic take place around the region boundary of eutectic dendrite.
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On the basis of theoretical models [4, 45, 59], which are established by the balance of heat fluxes for

a given droplet, the estimate of cooling rates taking place during the in-flight is believed to affect

the solidification process in a number of aspects, such as with the decrease in droplet size,

• The increase in the cooling rate to induce larger undercooling

• The decrease in the latent heat of fusion

• The increase in the amount of anomalous eutectic transformed from the primary phase

This hypothesis about the drop-tube processed solidification highly indicates the critical under-

cooling of Ag-Cu eutectic alloy ( 70 K [7, 74] ) would be achieved at smaller sizes of droplet. Thereby

the transitive microstructures from anomalous eutectic embraced with lamellar eutectic, to both

anomalous eutectic and single-phase dendrite embraced with lamellar eutectic, to eventually single-

phase dendrite embraced with lamellar eutectic is expected in the range of droplet size from 38 to

850 µm.

In the presented experimental result, three types of microstructure are found in SEM. But the mi-

crostructural evolution with the variation of droplet diameter is unclear. The microstructures of all

ranges are illustrated in the following as 500 ∼ 850 µm in Fig. 6.1.10, 300 ∼ 500 µm in Fig. 6.1.11,

212 ∼ 300 µm in Fig. 6.1.12, 150 ∼ 212 µm in Fig. 6.1.13, 106 ∼ 150 µm in Fig. 6.1.14, 75 ∼ 106 µm in

Fig. 6.1.15, 53 ∼ 75 µm in Fig. 6.1.16, and 38 ∼ 53 µm in Fig. 6.1.17.

500 ∼ 850 µm

The overview of structure at the range of 500 ∼ 850 µm shows that numerous regions of anomalous

eutectic are approximately equiaxed and distributed in the surround lamellar eutectic randomly

in Fig. 6.1.10a. It is believed that the Type I mechanism takes place inside this as-solidified mi-

crostructure, despite lack of its primary eutectic dendrites in the final structure.

Those primary two-phase structures grow rapidly to the undercooled melt to warm up the liquid

temperature close to eutectic temperature and then are remelted into fragments for the subsequent

formation of anomalous eutectic. At the short period of time, i.e. recalescence, those fragments

are free to float in the remelting liquid due to the droplet rotation during in-flight and thereby the

distribution of anomalous eutectic regions observed in Fig. 6.1.10a has no particular order. For

a spherical droplet, the droplet–gas interaction in the spray, delivering the internal heat contents

to the surrounding gas by convection and radiation, can expect that the coolest place appears on

the outer layer, at which the primary phase is more likely to attain in the final microstructure.

Careful examination of the region near and away from droplet surface can find that the colonies

of anomalous eutectic remain roughly unchanged in the approximate size within 15 ∼ 30 µm as

shown in Fig. 6.1.10b and Fig. 6.1.10c respectively. The microstructure in Fig. 6.1.10b therefore

indicates the thermal conduction inside droplet efficiently transfers the external latent heat to the
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outer layer and keeps any inner temperature gradient minimal. At a result, the microstructure of

corresponding outer structure can only detect re-formed eutectic colonies in Fig. 5.1.14a, since the

primary phases formed from the outer layer to the undercooled melt are completely melted back.

(a)

(b) (c)

Figure 6.1.10: ( a ) Macrostructure of the sample section in the range of 500 ∼ 850 µm, ( b )

Microstructure of the selected region in Fig. 6.1.10a, ( c ) Microstructure of the selected region in

Fig. 6.1.10b
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300 ∼ 500 µm

The smaller range of droplets due to the balance of heat flux tends to process relatively faster

cooling rates and consequently to freeze the molten droplet higher undercooled than the larger

range does. With the increase of undercooling, the volume faction of anomalous eutectic in the

microstructure should rise.

Comparing Fig. 6.1.11a with Fig. 6.1.10a, the microstructure of droplets at the range of 300 ∼ 500

µm has the exactly same morphology as that at the range of 500 ∼ 850 µm, giving rise to the Type I

mechanism for the formation of anomalous eutectic. However the increase in the volume fraction

of anomalous eutectic between these two ranges is less clear. Neither the direct counting nor the

area measurement of those regions can give a good insight of the variation in the volume of anoma-

lous eutectic. Consequently, the image processing by means of ImageJ introduced in Section 5.2,

will quantitatively analyse the volume fraction of anomalous eutectic in every range of droplets (

see Section 6.2.1 ).

Careful examination of the region near droplet surface in Fig. 6.1.11b and Fig. 6.1.11c can find that

the colonies of anomalous eutectic are more loosely located at or near the droplet surface so that

the margins amongst those colonies filled in lamellar eutectic are more obvious than those at the

larger range in Fig. 6.1.10b.

(a)
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(b) (c)

Figure 6.1.11: ( a ) Macrostructure of the sample section in the range of 300 ∼ 500 µm, ( b ) and ( c )

Microstructure of the selected regions in Fig. 6.1.11a

212 ∼ 300 µm

With the decrease of droplet range down to 212 ∼ 300 µm, the macrostructure in Fig. 6.1.12a shows

a greater amount of anomalous eutectic regions crowded together. The high-resolution images

indeed shows those regions are crowded and increasingly equiaxed with the diameter around 10

µm in Fig. 6.1.12e.

The high-resolution images indeed shows those regions are crowded and increasingly equiaxed

with the rough diameter around 10 µm in Fig. 6.1.12e. Careful examination of microstructure

around the outer layer in Fig. 6.1.12b, Fig. 6.1.12c, and Fig. 6.1.12d, also find that the morphology

consisting of anomalous eutectic and lamellar one has no difference from elsewhere inside and

is independent on the direction of droplet in-flight. Under observation of Fig. 6.1.12, it is highly

suggestive that the free-falling droplet is rotated along the gas stream to receive an average cooling

rate around the outer layer. And, to some extent, a higher cooling rate can attain not only a higher

undercooling, but also a higher average recalescence temperature. The reasonable explanation

for this is that the greater volume fraction of eutectic dendrites outbreak initially at this order of

undercoolings, which gives more spacious remelted zones for the formation of anomalous eutec-

tic during the recalescence. In other words, higher undercooling has given rise to a finer lamellar

structure leading to an easier remelting. Therefore, with the increase of undercooling, the primary

phases not only degenerate quickly, but also are continuously refined to more crowded eutectic

colonies with the great volume fraction.

In Section 6.1.2, either Ag- or Cu-rich inclusions proves its formation followed by anomalous eu-

tectic since they tend to cluster at boundaries of eutectic colony. Such segregated solidification can

be easily found in Fig. 6.1.10c for 500 ∼ 850 µm, Fig. 6.1.11c for 300 ∼ 500 µm, and Fig. 6.1.12e for
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212 ∼ 300 µm. This observation then indicates that the solute supersaturation takes place in the

primary eutectic dendrite and so the remaining undercooled melt which provides the condition

for the formation of those inclusions.

(a)

(b) (c)
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(d) (e)

Figure 6.1.12: ( a ) Macrostructure of the sample section in the range of 212 ∼ 300 µm, ( b ), ( c ), ( d

) and ( e ) Microstructure of the selected regions in Fig. 6.1.12a

150 ∼ 212 µm

The distribution of anomalous eutectic at the range of 150 ∼ 212 µm is quite distinct from that at

the larger ranges. The colonies of anomalous eutectic shown in Fig. 6.1.13a, tend to form near the

outer layer where the local heat extraction rate is high, while those at the larger ranges have no

preferred location. Careful examination of microstructure near the outer layer in Fig. 6.1.13b and

Fig. 6.1.13c, can find that the morphology of this range is still attributed to the remelting of eutectic

dendrites ( Type I mechanism ), since the anomalous eutectic still form in the dendritic skeleton.

Moreover, comparing Fig. 6.1.12a with Fig. 6.1.13a, the volume faction of anomalous eutectic with

the cooling rate does not increase monotonically. The most likely reason for this is that the cooling

rate at this range can efficiently extract the heat that is released from the heat of fusion during

the growth of primary phase, so that the undercooled liquid ahead of the growth front takes more

heat to partially remelt the primary phase after recalescence. As a result, the small ‘remelted zone’

cannot allow the re-formed pieces floating freely.

Yu, et al., [33] investigated the rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing

and drop-tube techniques and found that the anomalous eutectic in flux-undercooled samples

preferentially forms at cell boundaries around the lamellar eutectic in the cell body ( see Fig. 6.1.9

), whereas in drop-tube processed samples it tends to distribute randomly inside the droplets and

at much smaller volume fractions. The conclusion is quite right for the morphology observed at

the certain ranges of droplets, i.e., 212 ∼ 850 µm. For samples at this range, the anomalous eutectic

tends to form more like cell boundaries surrounding the lamellar eutectic as shown in Fig. 6.1.13d

and Fig. 6.1.13e. The former figure clearly shows two lamellar eutectic regions are separated by

the boundary-like anomalous eutectic region and the latter figure shows there are several long and

thin ’hair-like’ anomalous eutectic regions around lamellar eutectic.
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More importantly, the smaller lamellar spacing in Fig. 6.1.13e than that in Fig. 6.1.12d is highly

suggestive that the equilibrium planar growth takes place under the undercooling less than 12 K (

introduced in Section 2.3.1 ). Because of the solidus of Ag and Cu at small undercooling extended

inside the couple-growth zone, each phase of lamellar eutectic is supersaturated with solute. Addi-

tionally, the small undercooling in assistance with high heat extraction rate, can efficiently trap the

solute inside the solidified phase and give less time to diffuse into the left liquid. Therefore, there

is few inclusions solidified at last during the segregated solidification.

(a)

(b) (c)
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(d) (e)

Figure 6.1.13: ( a ) Macrostructure of the sample section in the range of 150 ∼ 212 µm, ( b ), ( c ), ( d

) and ( e ) Microstructure of the selected regions in Fig. 6.1.13a

106 ∼ 150 µm

The microstructure at the range of 106 ∼ 150µm in Fig. 6.1.14a shows no much difference from that

at the range of 150 ∼ 212 µm in Fig. 6.1.13a, expect for less heterogeneous nucleation sites around

the outer layer.

The initial non-equilibrium solidification at the undercooled melt still leaves a sort of ‘footprint’ in

the final microstructure in Fig. 6.1.14b, in which is the dendritic skeleton filled in anomalous eu-

tectic propagating from the outer layer through the entire sample. Such heterogeneous nucleation

in the sectioned sample can be also revealed in the corresponding spherical surface structure in

Fig. 5.1.14b. At the other end of outer layer, however, the microstructure in Fig. 6.1.14c shows more

lamellar eutectic cooperatively growing towards the droplet surface.

The microstructural distribution thereby suggests that:

• The inner temperature gradient shall exist on the small range of droplets that are yet sub-

jected with high cooling rate due to the outbreak of primary two-phase structure mainly at

the outer layer. At a result, the relatively larger volume fraction of lamellar eutectic as the pro-

duction of either equilibrium solidification or solidification with undercooling lower than 10

K, tends to grow in the inner droplet.

• The heat extraction inside the droplet shall transfer the inner heat in its preferred direction.

Clearly, there is the growth direction from the nucleation site in Fig. 6.1.14b towords the

other end, in which the volume fraction of anomalous eutectic gradually reduces in favour

of lamellar eutectic. Such a structural variation in Fig. 6.1.14 is highly indicative that the nu-

cleation site receives higher cooling rate to have insufficient time for solidification, whereas
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the microstructure at the other end receives much lower cooling rate to keep the coopera-

tive lamellar growth. In other words, the nucleation site might be more likely the location of

upwind direction during the droplet in-flight, despite the fast rotation coming along.

(a)

(b) (c)

Figure 6.1.14: ( a ) Macrostructure of the sample section in the range of 106 ∼ 150 µm, ( b ) and ( c )

Microstructure of the selected regions in Fig. 6.1.14a

75 ∼ 106 µm

With decreasing droplet size it is much more likely that individual droplets will achieve higher un-

dercooling during drop-tube processing due to the melt sub-division effect. Although the mor-
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phology at the range of 75 ∼ 106 µm in Fig. 6.1.15a is close to that at the range of 212 ∼ 300 µm in

Fig. 6.1.12a, the segregated solidification might be more likely to occur at the onset of solidifica-

tion as the primary off-eutectic single phase. Unlike those inclusions clustering near the eutectic

colony boundary in the larger ranges ( 212 ∼ 850 µm ), these single phases not only have a sort of

dendritic structure, but also tend to stay at the centre of lamellar eutectic regions. Therefore, the

mechanism should belong to Type III.

When the high cooling rate delays the onset of solidification, the critical undercooling ( ∼ 70 K )

might achieve to stimulate these single phases. For a planar phase growth, rapid release of the heat

of fusion into the undercooled recalescence melt then leads to the increase of liquid temperature

and so the decline of primary phase growth. Based on the microstructure shown in Fig. 6.1.15, it

is more likely that the eutectic grows first, then becomes unstable and so a single phase dendrite

emerges beyond the eutectic front. Because the volume of interdendritic liquid is sufficient to act

as a sink for the latent heat, the second or third arms of single phases having the richer solute

receive the latent heat greatly and so be partially remelted back to the primary trucks in the final

microstructure as shown in Fig. 6.1.15b and Fig. 6.1.15c. The subsequent eutectic solidification can

easily initiate the heterogeneous nucleation on those tip fragments.

(a)
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(b) (c)

Figure 6.1.15: ( a ) Macrostructure of the sample section in the range of 75 ∼ 106 µm, ( b ) and ( c )

Microstructure of the selected regions in Fig. 6.1.15a

53 ∼ 75 µm

For droplets at the range of 53 ∼ 75 µm, the higher undercooling can be successfully achieved, so

that the morphology consisting of single phase dendrite and lamellar eutectic is found in Fig. 6.1.16a.

The anomalous eutectic however fails to observe in this final microstructure, which might be at-

tributed to the recalescence rate. Walder, et al., [27] measured the thermal variation of melt-fluxing

processed sample by means of a radiation pyrometer and found, when the single phase dendrite

is formed, the maximum recalescence rate can reach higher than 104 Ks−1 for about 0.6 ∼ 1.0 s. At

such high recalescence rate, the undercooled melt can be warmed up to the eutectic temperature

roughly at the onset of recalescence, lasting for 0.6 s. By using Eq. (2.3.3) which is basic on the JH

model [5], the growth velocity of lamellar eutectic is

V = 1

4

∆T 2

Kr Kc
≈ 702

13207
= 0.37 ms−1 (6.1.1)

Provided the predicted velocity of lamellar eutectic is 0.37 ms−1, lasting for 0.6 s, then the total

proceeded distance is approximately equal to 2 m, which is sufficiently fast to fill in the rest of

liquid during the recalescence indeed. Nevertheless, the velocity obtained in Eq. (6.1.1) shall be

seriously underestimated since the velocity predicted by TMK model has a clear departure from

that predicted by JH model, as shown in Eq. (2.3.4).

However, there is a greater number of droplets with the microstructure in Fig. 6.1.16b than the

microstructure in Fig. 6.1.16a. The reason to cause the former microstructure will be further ex-

plained in the following sub-section, since at the smallest range only the latter microstructure is

found.
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(a)

(b)

Figure 6.1.16: ( a ) and ( b ) Macrostructure of the sample section in the range of 53 ∼ 75 µm,

38 ∼ 53 µm

The droplets at the smallest range ( 38 ∼ 53 µm ) should experience the highest cooling rate due to

the balance of heat flux, to freeze the nucleation down to the lowest temperature. Thereby it should

be seen that the formation of single-phase dendrites becomes increasingly intense with decreasing



CHAPTER 6. RESULT 123

droplet size. In contrast, both Fig. 6.1.17a and Fig. 6.1.17b reveal the morphology for microstruc-

ture formation return to Type I mechanism, by which the anomalous eutectic colonies are sur-

rounded with lamellar eutectic. Moreover, the normally accepted tendency that volume fraction

of anomalous eutectic is a monotonically increasing function of the undercooling in bulk under-

cooled alloys, is not the case for drop-tube processed samples either. Comparing with Fig. 6.1.13

at 150 ∼ 212 µm, there is a clear reduction on the volume fraction of anomalous eutectic with de-

creasing droplet size.

The possible reasons to not have a clear transitive microstructures from anomalous eutectic with

lamellar eutectic, to single-phase dendrite with lamellar eutectic can be explained as:

• The numerical estimation of the cooling process for a metal droplet in an environment sim-

ilar to gas atomisation ( introduced in Section 3.1 ) exists many uncertainties, giving rise to

using the average thermal properties in calculation and lack of understanding of the momen-

tum transfer between the gas and the free-falling droplets. As a result of those uncertainties,

the calculated cooling rate should be towards the high end or even overestimated.

• Even though the low heat input to the system from the molten metal can achieve the cooling

rate as high as the order of 104 Ks−1 and melt sub-division can restrict the catalytic effect of

active nuclei from solidification at higher undercoolings in the drop-tube study [59, 33], a

potent nucleation site to cause the heterogeneous nucleation can reduce the undercooling

significantly. As shown in Fig. 6.1.14, Fig. 6.1.15, Fig. 6.1.16 and Fig. 6.1.17, the initial nu-

cleation begins at the outer layer of spherical droplet, which requires a much smaller barrier

towards the phase transition ( see Fig. 1.1.1 ). Before a higher undercooling would be reached

at such a high cooling rate, the heterogeneous nucleation already begin to form the eutectic

dendrites around the droplet surface towards the undercooled melt, followed by the growth

of lamellar eutectic after recalescence.

• There would be a temperature gradient inside the molten metals subjected with high cooling

rates. Mullis, et al. [63], investigated the peritectic transformation Ni2Al3 +L → NiAl3 of gas-

atomised Al-Ni powders at the range of 150 ∼ 212 µm and found that there are more Ni2Al3

and less NiAl3 at the surface than in the centre. This observation highly suggest that the high

heat extraction of in-flight droplet can only intensively influence the part of region near the

droplet surface while the central region remain unchanged as shown in Fig. 2.4.5. Moreover,

the propagation of primary eutectic dendrite interface relies upon either continued heat ex-

traction through the solid to the surface or the undercooled liquid ahead of the front acting

as a sink for the latent heat, which might keep any gradient minimal in the centre. The less

or no undercooled melt in the centre at the onset of recalescence, then prevents the primary

phase from branching through the centre of droplet and so provides the limited space for the

formation of anomalous eutectic.

Because the images with higher resolution up to ( 6K ) fails to observe the finest lamellar structure
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in Fig. 6.1.17, it is possible for these fine ’lamellar’ eutectic regions to be truly featureless. As intro-

duced in Section 3.1, the smallest droplet size would reach the highest cooling rate, which could

not only leads to high undercooling but also increase the heat extraction rate to possibly neglect

the release of latent heat during solidification. As a result of this, the partitionless solidification

might take place in these ’lamellar’ eutectic regions.

(a)

(b)

Figure 6.1.17: ( a ) and ( b ) Macrostructure of the sample section in the range of 38 ∼ 53 µm,
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6.2 IMAGE PROCESSING RESULT

6.2.1 IMAGEJ MASK

The anomalous eutectic within droplets is characterised with reference to the undercooled solidi-

fication, wherein the density of anomalous eutectic is the most reliable indicator of the level of un-

dercooling. The distribution of anomalous eutectic can be clearly identified by BSE images in Sec-

tion 6.1.2, but the quantitative analysis of those regions by X-ray and neutron diffraction is almost

impossible. Since both anomalous eutectic and lamellar eutectic share the face centered cubic (

FCC ) structure and are formed by solid solution and solid solution. Even by means of Electron

backscatter diffraction ( EBSD ) to identify the microstructural feature of both phases, neither of

these two eutectic phases shows a strong preferred orientation in such a structure [74]. Therefore,

the image processing of BSE images introduced in Section 5.2 might become the most efficient ap-

proach to the quantitative analysis of volume fraction of anomalous eutectic as a function of radial

co-ordinate.

The mask in Fig. 6.2.1a is well in conjunction with the greyscale macrostructure in Fig. 6.1.17a,

making the quantitative analysis of volume fraction for a series of annuli possible. More impor-

tantly, ImageJ masks not only show the anomalous eutectic in dendritic form in Fig. 6.1.17a, but

also reveal the anomalous eutectic in equal-axe form in Fig. 6.1.17b.

In [63], the width of each annulus was fixed at 15 µm and so, with the procedure of reducing the

ellipse axes 30 µm at a time being repeated until the centre of the particle was reached. Because

the size of particles varies slightly from 150 to 212 µm, the fixed reducing step can only make the

central annulus different. For the size range changing from 38 to 850 µm in this study, it is difficult

of the fixed step to generate a comparative phase density at each annulus for all ranges.

Owing to this, the width of annulus resulting in six annular regions per droplet can be obtained by

Annulus Width = Droplet Diameter

6
(6.2.1)

The positions of the annuli at lower limit of size range and those at the upper limit of size range

by using Eq. (6.2.1) are shown in Fig. 6.2.1a and Fig. 6.2.1b respectively. Thereby, except for their

outer surfaces that were formed by disrupting the melt stream during the drop-tube process, the

inner annuli have similar shapes but comparatively different size scales. The volume fraction of

anomalous eutectic in a series of annuli from the origin ( Label I ) to the surface ( Label VI ) at

one size range becomes comparable with that at counterparts. Also the masks from the selected

droplets of other size ranges between 53 and 500 µm are illustrated in Fig. 6.2.2 respectively.

Combining Fig. 6.2.1 with Fig. 6.2.2, the overall volume fraction of anomalous eutectic for all ranges

can be categorised into two typical particles, that is, the one at higher ranges ( 300 ∼ 850 µm )

has the anomalous eutectic all-over and the other at lower ranges ( 38 ∼ 300 µm ) is favourable

to clustering around the surface. The quantitative analysis of variation on the volume fraction of
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anomalous eutectic as a function of radial co-ordinate will be proceeded in Section 6.2.2.

(a) 38 ∼ 53 µm (b) 500 ∼ 850 µm

Figure 6.2.1: Comparison of the positions of the annuli of droplet ( 38 ∼ 53 µm ) and those of

droplet ( 500 ∼ 850 µm ) used in the quantitative analysis introduced in Section 5.2

(a) 300 ∼ 500 µm (b) 212 ∼ 300 µm
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(c) 150 ∼ 212 µm (d) 106 ∼ 150 µm

(e) 75 ∼ 106 µm (f) 53 ∼ 75 µm

Figure 6.2.2: ImageJ mask of selected droplets in each size range from 53 ∼ 500 µm showing the

distribution of anomalous eutectic respectively
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6.2.2 QUANTITATIVE MICROSTRUCTURAL ANALYSIS

Figure 6.2.3: Apparent size distribution of the droplets investigated ( upper and lower limit if size

range in µm )

A total of 41 different droplets from 38 to 850 µm were analysed by the image processing method

as each cross-section mask of characteristic size range is shown in Fig. 6.2.1 and Fig. 6.2.2. The

number and the distribution of the apparent diameters of the droplets under investigation is as

shown in Fig. 6.2.3.

Although the volume fraction of anomalous eutectic for each ellipse was subtracted from the pre-

ceding ellipse in order to produce volume fraction for a series of annuli, the automatic phase iden-

tification by the ImageJ macro script is heavily upon the built-in blur feature, which is mainly de-

pendent on the image resolution, the brightness and the greyscale contrast. In consequence, the

recorded fraction at one range might not be used to compare with that at another range quanti-

tatively. This is kind of true since one mask would underestimate the area of anomalous eutectic

region ( see Fig. 6.2.2e ) whereas another can overestimate this area ( see Fig. 6.2.2a )

To overcome this drawback, the volume fraction obtained by area of anomalous eutectic against

area of lamellar eutectic at each annulus, is re-calculated by

Volume Fraction =
(

Annulus Area of Anomalous Eutectic

Annulus Area

)(
Droplet Area

Droplet Area of Anomalous Eutectic

)
(6.2.2)

As the macrostructure shown in Fig. 6.1.10, Fig. 6.1.11, Fig. 6.1.12, Fig. 6.1.13, Fig. 6.1.14, Fig. 6.1.15,

Fig. 6.1.16, and Fig. 6.1.17, the individual BSE image was taken under the same photographic con-

dition which should result in the detected anomalous region under the relatively same fraction by

ImageJ. At the cost of real volume fraction of anomalous eutectic, either underestimated or overes-

timated data should be transferred to the comparable data for all ranges by using Eq. (6.2.2).
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The example bar chart representative with the mask in Fig. 6.2.2a is shown in Fig. 6.2.4. Each bar is

characteristic with the volume fraction at the corresponding annulus within droplet. Because the

anomalous eutectic at the range 300 ∼ 500 µm grows through the entire droplet, there is less clear

tendency based on the radial variation on volume fraction from the centre ( Label I ) to the surface

( Label VI ).

Figure 6.2.4: Volume fraction of anomalous eutectic as a function of radius for a single droplet

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.5: Volume fraction of anomalous eutectic as a function of radius for droplets with

500 ∼ 850 µm

The selected droplets illustrated in Fig. 6.2.3 are analysed by the same fashion as shown in Fig. 6.2.4.

But the multiple volume fraction of selected droplets at the corresponding size range are combined

together in one bar chart, for example, as shown in Fig. 6.2.5a which consists of 3 different colour

bar for 3 different selected droplets. In order to have a better overview of volume variation on
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anomalous eutectic inside the droplet, the volume fractions illustrated in Fig. 6.2.5a are used to

generate the mean and the standard deviation of the mean at each annular region as shown in

Fig. 6.2.5b.

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.6: Volume fraction of anomalous eutectic as a function of radius for droplets with

300 ∼ 500 µm

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.7: Volume fraction of anomalous eutectic as a function of radius for droplets with

212 ∼ 300 µm

According to Fig. 6.2.5, Fig. 6.2.6, Fig. 6.2.7, Fig. 6.2.8, Fig. 6.2.9, Fig. 6.2.10, Fig. 6.2.11, and Fig. 6.2.12,

the anomalous eutectic formed by Type I mechanism at all size ranges can indeed have two differ-

ent phase distribution as a function of the radial distance from the centre of the droplet, which

is consistent with the mask observation in Section 6.2.1. On the one hand, droplets in the higher

size range between 150 and 850 µm are subject with average phase transformation on anomalous

eutectic from the centre to the surface. The larger the droplet size, the more likely the anoma-
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lous eutectic is attained at the inner annular regions. On the other hand, droplets in the lower size

range between 38 and 150 µm have more anomalous eutectic in dendritic form growing radiantly

towards inside. As a result, there is an obvious positive change of volume fraction with the increase

in radical coordinate.

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.8: Volume fraction of anomalous eutectic as a function of radius for droplets with

150 ∼ 212 µm

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.9: Volume fraction of anomalous eutectic as a function of radius for droplets with

106 ∼ 150 µm

Also it is interesting to find that the volume fraction between the annulus region V and VI has

the negative variation at lower size ranges as shown in Fig. 6.2.9b, Fig. 6.2.11b, and Fig. 6.2.12b,

which is consistent with lamellar eutectic in BSE images in Fig. 6.1.14b, Fig. 6.1.16b and Fig. 6.1.17a.

This variation might give rise to the recalescence during the growth of primary eutectic dendrite.

Although the heat extraction could take place through both the undercooled melt and the solid, the

high conductivity of Ag-Cu alloy could minimize the potential temperature gradient within such a
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small spacious droplet during the recalescence. Therefore the direction of heat transfer should

be eventually towards the outer surface from the centre such that the remaining liquid near the

surface should continuously warm up to the temperature < 10 K below the eutectic temperature to

form the finer, but yet lamellar eutectic as shown clearly in Fig. 6.1.16b and Fig. 6.1.17a.

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.10: Volume fraction of anomalous eutectic as a function of radius for droplets with

75 ∼ 106 µm

(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.11: Volume fraction of anomalous eutectic as a function of radius for droplets with

53 ∼ 75 µm
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(a) Volume fraction of every chosen droplets (b) Average volume fraction

Figure 6.2.12: Volume fraction of anomalous eutectic as a function of radius for droplets with

38 ∼ 53 µm
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6.2.3 MICROSTRUCTURAL EVOLUTION

The average phase density at every annulus region is shown in Fig. 6.2.13, which is combined with

the average volume fraction of anomalous eutectic for all size ranges in Section 6.2.2. It is clearly

shown that the distribution of anomalous eutectic neither changes randomly at different annulus

position, nor can be well described by a single linear relationship regarding the radial phase varia-

tion across the entire droplet for all size ranges. For small size ranges ( 38 ∼ 150 µm, the trend of the

population of anomalous eutectic appears to have a relatively sharp rise in the amount of anoma-

lous eutectic near the surface of the droplet, whereas an approximately low constant amount of

anomalous eutectic near the centre. In contrast, for larger size range ( 150 ∼ 850µm ), either slightly

less or approximately identical amount of anomalous eutectic is presented at the annulus VI, com-

paring with three annulus nearest the centre ( I, II, III ).

Figure 6.2.13: Variation on anomalous eutectic as a function of radial coordinate for all size ranges

The above observation might be highly suggestive as following:

• The temperature gradient should exist in the entire rapid solidification at any instant of time,

due to the phase variation across different annulus positions.

• The morphology of anomalous eutectic is largely determined by the local heat transfer situ-

ation.

Based on the experimental BSE images shown in Section 6.1.3 and the phase volume fraction il-

lustrated in Fig. 6.2.13, the overall population of anomalous eutectic at the smaller size ranges of

droplets becomes gradually less intensive than that at the higher size ranges, despite such small
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droplets potentially subjected with the high cooling rates up to 105 K/s. The reason, as mentioned

in Section 6.1.3, could be attributed to the rapid recalescence preventing the primary phase from

branching and so giving rise to the subsequent equilibrium solidification at the annulus regions

near the centre. Moreover, the phase variation profile in Fig. 6.2.13 with a shape rise of volume

fraction from the region IV can also suggestive the so-called high cooling rate around an individual

droplet could be highly overestimated, since only two of six annulus regions might experience the

high heat extraction to prompt the solidification of primary phase. Even for a 150-µm droplet, the

region on which the heat extraction has the most influence, is approximately (2/6)×150 = 50 µm

away from the outer surface.

Given the large size of droplets, especially greater than 212µm, the overall high population with the

small extent of the radial variation within droplets becomes increasingly obvious. Such a different

trend in Fig. 6.2.13 can indicate that the undercooled melt ahead of the tip of primary phase at

larger ranges of droplet, acting as a heat, sink is more spacious than that at smaller ones. As a result,

the propagation of primary dendritic phase might be more likely throughout the entire droplet

prior to the onset of remelting during the recalescence.

Figure 6.2.14: Difference of anomalous eutectic at annulus region VI and I for all size ranges

To have a better insight of two different distributions of anomalous eutectic within the droplets, the

variation is characterised by the difference of anomalous eutectic between the centre and outer

most annulus as shown in Fig. 6.2.14. The negative difference in the bar chart indicates more

anomalous eutectic retained in the centre of droplet. Also the difference of two typical droplets

become more recognisable as the size range ( 150 ∼ 212 µm ) is kind of threshold size to transfer

one morphology to the other.
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6.3 NUMERICAL RESULT

6.3.1 RESULT OF MACROSCOPIC HEAT TRANSFER MODELLING

The macro heat transfer model introduced in Section 3.1, is good to identify quantitatively how

the variables, such as, undercooling, cooling rate, solid fraction, and the ratio of gas flow and melt

flow, affect dynamic and thermal behaviour of various size ranges. However, the droplet veloc-

ity behaviours are far from being well understood and thereby prevents from the essential under-

standing of the heat transfer between the droplets and the gas stream. Ignored the droplet breakup

in the initial stage of drop-tube processing, a turbulent circular free jet emerging from an orifice

into a static fluid is used as illustrated in Eq. (5.3.1), in which the initial gas velocity is assumed as

4 m/s due to 0.4 MPa gas pressure used to force the superheated melt out of the crucible base. The

gas stream resulting from 0.4 MPa gas pressure should have highest velocity at the onset of ejection

and gradually decay down to minimum as shown in Fig. 6.3.1.

Figure 6.3.1: Fluid stream profile against flight distance

The forces due to drag, gravity, and inertia during the droplet in-flight are balanced by

ρVs
dws

dt
=Vs (ρs −ρ f ) g − 1

2
ρ f As CD |ws −w f | (ws −w f ) (6.3.1)

Combining Eq. (6.3.1) with Eq. (5.3.1), the velocity of various droplets can be obtained as
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Figure 6.3.2: Droplet velocity profile against time

Figure 6.3.3: Thermal profile against time for various droplet sizes

Because the smaller the droplet, the stronger the drag force. After efficiently accelerated by the gas

stream up to the maximum velocity, the smaller droplets are affected by the drag fore significantly
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and so keep some extent of low flight velocity after decelerating by the drag force as shown in

Fig. 6.3.2.

Considering the high conductivity of metallic material can efficiently transfer the inner heat to

the environment, a Newtonian heat transfer formulation is used here to predict the variation on

droplet temperature during its flight, the formulation of which was well introduced in Section 3.1.1.

For eutectic Ag-Cu alloy, the cooling and solidification process should undergo four basic thermal

regions, that is, liquid phase cooling, recalescence, eutectic solidification and solid phase cooling

as shown in Fig. 6.3.3.

However, droplet subjected with high undercooling can surpass the eutectic point to solidify the

primary single phase in the skewed zone of phase diagram as Fig. 2.3.2. Moreover, the solute su-

persaturation might take place at high undercooled melt during the initial solidification, giving rise

to the single rich-element phase solidified from the last remaining liquid. Thus, the segregated so-

lidification might still take place either before or after eutectic solidification at the exact eutectic

composition as the experimental result shown in Section 6.1.3. In order to predict the thermal be-

haviour of drop-tube processed droplet quantitatively, such solidification can be safely neglected.

By using the macroscopic modelling, droplets of different sizes experience similar cooling process

as shown in Fig. 6.3.3. Depending on the liquid cooling rate, the heat is efficiently extracted out

of droplet to reduce the droplet temperature pass the eutectic point TE but yet remain at liquid

cooling. This process leads to the temperature prior to nucleation TN far below the eutectic tem-

perature TE . Thus, the undercooling ∆T of various droplets can be obtained by TE −TN as shown

in Fig. 6.3.4.

Figure 6.3.4: Undercooling for various droplet sizes
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Figure 6.3.5: Cooling rate for various droplet sizes

Figure 6.3.6: Nucleation temperature against the contact angle θ

At the recalescence region, the thermal profile rises up rapidly due to the assistance of the exter-

nal latent heat during the solidification. Subsequently, the eutectic solidification occurs when the

melt temperature rise up to the temperature near the eutectic temperature, followed by the solid
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cooling. The heat extraction rate in the entire cooling process can be clearly seen in Fig. 6.3.5. The

smaller droplet size has the greater range of cooling rates, such as the 38-µm droplet can achieve

the cooling rate up to 106 K/s in the first thermal region.

Taking a close look at nucleation temperature, there is small variation as the undercooling increase

lightly with the decrease of droplet size in Fig. 6.3.4. Although the cooling rates change dramati-

cally from < 103 K/s at 850 µm up to ∼ 106 K/s at 38 µm in Fig. 6.3.5, the variation on undercooling

is highly suggestive that the high cooling rate might not be the key factor to affect on the under-

cooling. The undercooling that can be attained prior to the nucleation is significantly sensitive

with the wetting angle θ as seen in Fig. 6.3.6. With the decrease of the wetting angle, the nucleation

temperature would start at the higher possible temperature. When θ becomes 180 ° in calculation

of nucleation event, the nucleation should have no contact site and become the homogeneous

nucleation, which indeed requires highest undercooling to overcome the energy barrier for phase

transformation ( see Fig. 1.1.1 ). However the undercooling surpasses 77 K to have the partitionless

solidification is highly unlikely at Ag-Cu system as explained in Section 2.1.2. Hence the wetting

angle should be no greater than 60 °. In this study, 40 ° is selected since this value is widely used for

the heterogeneous nucleation in else publication [4, 45].

Figure 6.3.7: Nucleation event against time for various droplet sizes

At the fixed contact angle, the nucleation event is highly sensitive with the temperature change.

With further cooling, the nucleation Event increase rapidly to a maximum value before the onset

of recalescence. Although there would be 2 ∼ 3 nucleation events within individual droplets, this

calculation is assumed that only a single heterogeneous nucleation takes place at the outer surface
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and to grow throughout the entire droplet. The growth of solid / liquid interface during the recales-

cence is calculated by considering a twinned sphereical segement. Thus, the liquid-solid interface

mobility in Eq. (3.1.11) becomes the key variable to affect the recalescence mostly. In order to have

a related value of this mobility, the approximated value is obtained by using HJ and TMK model in

Fig. 2.3.5, that is ≈ (0.5−0.1)/(16−8) = 0.05 m/sK.

Figure 6.3.8: Nusselt number against time for various droplet sizes

At last, Nusselt number ( Nu ) which is related to the heat transfer coefficient will be illustrated

here, mainly because the efficiency of heat transfer is largely determined by this dimensionless

valuable. As shown in Fig. 6.3.8, there is the general tendency that the Nusselt number increase

with increasing the droplet size under the low initial gas velocity. This anomalous profile of Nu

can be explained that, when the droplets are away from the orifice, the relative velocity between

the gas and the droplet is reduced to none, followed by the increasing droplet velocity is gradually

dominant in the slip velocity such that the Nu increase with the rest of free falling.
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6.3.2 RESULT OF UNSTEADY HEAT TRANSFER MODELLING

In the previous macroscopic heat transfer modelling, the entire cooling process of drop-tube formed

droplets is based on quasi-steady approach which assumes the heat transfer coefficients are inde-

pendent of time. However the quasi-steady approach can be valid when the processes of stabilisa-

tion of fluid dynamical and thermal fields near the surface of the sphere are of much shorter dura-

tion than the characteristic time of cooling during the solidification. In the drop-tube processing,

the interaction between the fluid and the droplets is too complex to simply assume those assump-

tions are valid in the realistic cooling process*. Consequently, neither the time for stabilisation of

thermal field nor that for stabilisation of fluid velocity field near the droplet surface can be safely

neglected. The unsteady heat transfer modelling introduced in Section 3.2, therefore, is applied in

predicting more realistic heat transfer coefficient and Nusselt number, etc., for this research.

Figure 6.3.9: Overview of fluid temperature distribution with the streamlines of fluid velocity

around a spherical droplet

By using the dimensionless energy equation in Eq. (3.2.5), the contour plot of fluid temperature

distribution is shown in Fig. 6.3.9. When the droplet passes through the upwind fluid, the fluid

would be bended to give way of the droplet as the streamlines show. As a result, the local tem-

perature around the droplet surface should vary with the angle θ based on the direction of droplet

velocity. In Fig. 6.3.10, there is an uneven temperature distribution developed in the cold fluid with

the elapsed time as different colours represent different temperatures. The normalized tempera-

ture at the forward region ( θ = 0 ) is more intensive than that at the rear region ( θ = π ). Also, an

attached thermal wake is clearly appeared behind the sphere in the last two elapsed times.

*The potential issue of applying the macroscopic modelling was explained in Section 2.4.
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Figure 6.3.10: Variation on the fluid temperature with the elapsed time

The distinction of thermal field between the forward stagnation point and the rear stagnation point

in Fig. 6.3.10 can be clearly seen from the thermal profile in Fig. 6.3.11 at θ = 0 and in Fig. 6.3.12

at θ = π along the radial coordinate respectively. In general, the temperature change in Fig. 6.3.11

is more rapid than that in Fig. 6.3.12 at each time step. More importantly, tt dimensionless time

τ = 0.04, the temperature profile at θ = π has the maximum value at dimensionless radius ξ =
1.13, which is not the nearest position to the droplet surface. Nevertheless, the overall variation on

droplet temperature at ξ= 1 is also shown in Fig. 6.3.13.

This anomalous change in the thermal profile at θ = π can be attributed to the variation on local

Nu in Fig. 6.3.14. Unlike the average Nu applied by Ranz and Marshall correction in Eq. (3.1.4) as

shown in Fig. 6.3.8, the smallest droplet size ( ∼ 38 µm ) subjected with highest heat extraction rate

( ∼ 106 K/s ) cannot reduce Nu less than 2 with the increase of time. By using the unsteady heat

transfer modelling„ the local Nu obtained can indeed be reduced down the negative value at the

rear stagnation at θ = π and also be increased up to the highest local Nu at the forward stagnation

point at θ = 0 at time ( τ> 0.03 )†. Such a variation on local Nu along the droplet surface gives the

extensive evidence of the variation on thermal field in Fig. 6.3.11.

†The basic background of force convection due to different velocity boundary layers was introduced in Fig. 2.4.3.
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Figure 6.3.11: Variation on temperature along the radius coordinate at θ = 0

Figure 6.3.12: Variation on temperature along the radius coordinate at θ =π
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Figure 6.3.13: Variation on droplet temperature along the polor angle θ at ξ= 1

Figure 6.3.14: Variation on local Nu along the polar angle θ at ξ= 1
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When the cold fluid encounters the superheat spherical melt at the forward stagnation point and

so passes around the spherical surface to approach the separation point, the temperature of fluid

gradually increases, meanwhile, the temperature of droplet decreases due to certain amount of

heat carried by the fluid during the interaction. With the time elapsed, the fluid shifts through the

separation point of droplet surface to rise up the temperature of fluid probably higher than that of

hot droplet, which is shown in Fig. 6.3.12. As a result, the reversal heat transfer would take place

since the local Nu is negative.

With the increase of τ, the asymptotic behaviour of heat transfer is possible as the steady tem-

perature distribution is established in the thermal field of fluid around the droplet. In the case of

Fig. 6.3.14, the asymptotic Ni is attained at τ≈ 0.06. Based on the reference in [57], the asymptotic

local Nu is approximated by

Nu = 1

(ρc) f s τ
(6.3.2)

where (ρc) f s = (ρ f c f )/(ρs cs) and the critical time for this asymptotic thermal behaviour is by

τ≈ 1

Pe2/3
(6.3.3)

Combining Eq. (6.3.2) with eq:ht2d-02, the local Nu at time for stabilisation of thermal field should

have the relationship as below:

Nu ∝ 1

(ρc) f s
∝ Pe (6.3.4)

Figure 6.3.15: Variation on local Nu by using different (ρc) f s along the polar angle θ at ξ= 1
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In Fig. 6.3.15, the asymptotic local Nu at the fixed Pe = 200 decreases with the increase of (pc) f s

and the separation point that the local Nu = 0 moves from the point at θ ≈π to that at θ ≈ 3π/4. In

Fig. 6.3.16, the asymptotic local Nu at the fixed (pc) f s = 2.0 decreases with the decrease of Pe and

so the separation point moves from the point at θ ≈π to that at θ ≈ 5π/8.

Figure 6.3.16: Variation on local Nu by using different Pe along the polar angle θ at ξ= 1

Figure 6.3.17: Variation on local Nu at small Pe and large (ρc) f s along the polar angle θ at ξ= 1
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Therefore, the tendency of local Nu along θ in Fig. 6.3.15 and Fig. 6.3.16 is well predicted by the

relationship in Eq. (6.3.4) and the most likely situation to have a reversal heat transfer at the rear

stagnation points should combine a larger (ρc) f s with a low limit end of Pe. At Pe = 20.0, not only

the local Nu at θ greater than π/2 is highly possible to be negative, but also the average Nu reduces

down below 2‡is possible after τ greater than 0.045 as shown in Fig. 6.3.17.

Comparing Fig. 6.3.17 with Fig. 6.3.8, the cooling rate of every droplet size might be highly overes-

timated. When the time τ increases up to the critical time for the asymptotic thermal behaviour,

the fluid temperature might be likely to have the maximum temperature within this wake ( see

in Fig. 6.3.12 ), giving rise to a reversal heat transfer in the vicinity of the rear stagnation points

of the sphere and so more time for the first thermal region ( liquid cooling ) prior to the onset of

nucleation.

‡Nu = 2 is the minimum value for the steady-state heat transfer around a sphere, which was well introduced in Sec-

tion 1.3.2
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DISCUSSION

The experimental result in Section 6.1 and the numerical result in Section 6.3 will be combined

together to discuss the thermal change in the drop-tube proceed solidification. In brief, the in-

flight Ag-Cu droplet should undergo the following thermal regions as:

• The Ag-Cu melt is superheated in the coil furnace before being ejected through the orifice at

the bottom of a quartz tube by Nitrogen overpressure (0.4 mPa).

• The sub-division and the gas atomisation occur on the melt to form various fine droplets.

• Depending on the local cooling rate, the droplets might be undercooled before the nucle-

ation temperature is attained.

• The rapid release of latent heat of fusion due to the kinetics of primary phase might increase

the droplet temperature near the eutectic point.

• The formation of lamellar eutectic then takes place at the temperature near the eutectic one.

• The segregated solidification, including inclusions introduced in Section 6.1.3, might yet

come for the eutectic Ag-Cu alloy since rapid solidification leads to the composition of pri-

mary phase departing from the equilibrium phase diagram.

149
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7.1 SUPERHEAT

First of all, melt superheat plays a crucible role in the quality of final as-solidified droplets in the

drop-tube technique. On the one hand, when the superheat is too low, small unmelted inclusions

might be attained in the melt before the ejection of the liquid out of crucible. As a result, a high

order of undercooling would be impossible to achieve in as-solidified droplets since the hetero-

geneous nucleation could take place easily on those small amount of undercooling as shown in

Fig. 6.1.8. On the other hand, when the superheat is too high, the ejected superheat melt might

take more time to release this external heat in the liquid cooling process, resulting in low under-

cooled droplet too.

Even though the superheat is selected to apply in the drop-tube processing well, the solid frac-

tion within the spherical droplet might be excessive in the initial solidification so that the surface

layer is no longer interconnected for lack of liquid to fill pores and voids. As shown in Fig. 7.1.1,

the increase in the solid fraction curves is indeed rapid as result of the rapid solidification during

recalescence once high undercooling or low nucleation temperature is attained. The smaller the

droplet, the more rapid the solid fraction increases

Figure 7.1.1: Variation on solid fraction against time for different droplet sizes

The extensive experimental images are shown in Fig. 7.1.2. It is clearly seen there are the pore in

Fig. 7.1.2a opened on the droplet surface and the internal void in Fig. 7.1.2b inside the droplet.

Both solidification defeats can give rise to the gas filled in or occupied on these regions prior to the
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liquid, thereby having the poor atomization during rapid solidification.

(a) 106 ∼ 150 µm

(b) 53 ∼ 75 µm

Figure 7.1.2: Solidification defects attained in the smaller droplet size
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7.2 LIQUID COOLING

Assumed the various sizes of droplet atomized from the melt immediately after the ejection, then

the widely used starting point for modelling the cooling process is the balance of heat fluxes as also

used in Section 3.1. The difficulty of predicting the temperature change by this modelling in this

cooling process is related to the definition of the gas velocity and the interaction between the gas

and the spherical melt. To simplify the calculation of this theoretical model, the well-known Ranz

and Marshall correlation is then used to interpret the incompressible fluid flow past the droplet,

which might become the largest uncertainty of calculated result. In [59], estimates of the cool-

ing rate by measuring secondary dendrite arm spacing (SDAS) in the resulting powder product

is adopted, which indicates the macroscopic heat transfer modelling with the Ranz and Marshall

correlation can only overestimate the cooling rate that droplets are subject with.

In order to justify the heat extraction on the drop-tube processed sample, the second modelling

is introduced in Section 3.2 and the relevant local Nu number is calculated in Section 6.3.2. This

numerical result in Fig. 6.3.16 and Fig. 6.3.17 is highly suggestive that, at low Pe number, the cooling

process might be reduced significantly due to the reverse heat transfer at the rear stagnation point.

According to Eq. (3.2.3) with the diameter-determined uniform free-stream fluid velocity along z-

axis in Table B.2.1, Pe can be obtained as shown in Table 7.2.1 The Pe number at size range 38 ∼ 75

µm seems to be small enough for reducing the heat extraction rate of in-flight droplet. It should

be also noted that Pe number at 500 ∼ 850 µm is too large to apply in the unsteady heat transfer

modelling. Therefore the calculation is only conducted at the range between 38 and 300 µm.

The local Nu shown in Fig. 7.2.1 at ξ→ ∞, however fails to reduce down below 0 for the reverse

heat transfer from the fluid to the droplet. The reason for small Pe of all polar angles greater than

1 could be resulted from the small ratio between c f ρ f and cs ρs , which is approximately equal to

0.00034.

Considering a heat conduction equation in Eq. (4.2.4) to describe the heat conductivity inside the

Ag-Cu alloy with the Neumann boundary condition as

κ f
dT

dn
= h (T −T∞) (7.2.1)

where the left-hand side of Eq. (7.2.1) is for the rate of flow across the spherical surface and the

heat transfer coefficient is calculated by

h = Nuθκ f

2r0
(7.2.2)

Although there would be a temperature gradient, for example ( Fig. 7.2.1 ), inside a 300-µm droplet

at any instant of time by using Eq. (7.2.1), the reverse heat transfer might be unlikely to take place

even at the rear part of droplet to slow the cooling process.
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Table 7.2.1: Pe number of different droplet sizes

Diameter (µm) Pe

38 0.70

53 1.89

75 5.37

106 15.16

150 42.95

212 121.25

300 343.59

500 1590.69

850 7815.07

Figure 7.2.1: Variation on local ıNu along the polar angle θ for different size ranges at ξ→∞
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Figure 7.2.2: Temperature gradient inside a 300-µm droplet at different times

Moreover, the average cooling rate generated by the macroscopic heat transfer modelling is smaller

than that by the unsteady convective heat transfer modelling as shown in Fig. 7.2.3. The possible

reason for this estimation by the unsteady convective heat transfer modelling can be explained by

high average Nu number at the beginning of drop-tube processing, whereas the asymptotic distri-

bution of Nu along θ coordinate in Fig. 7.2.1 could only take place at the last stage of solidification.

In the case of 38-µm droplet, average Nu at ξ→∞ which is stabilization of the thermal field around

the droplet is nearly equal to 2 but actually close to 18.3 at the onset of cooling process. Neverthe-

less, average Nu is around 3 in the beginning of cooling process in Fig. 6.3.8, which is yet far below

18.33.

Because the calculated cooling rates by both modelling share the same change tendency, the smaller

the size range, the more likely the droplets are subject with the higher cooling rate Such a small

heat input to the system from the molten metal in the drop-tube processing should achieve the

high limit end of cooling rate, the value of which might be largely determined by the differential

velocity between the gas and the melt due to the overpressure to force the melt out of the orifice.
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Figure 7.2.3: Cooling rate of all size ranges generated by the macroscopic heat transfer modelling (

green ) and the unsteady convective heat transfer modelling ( pink )

Figure 7.2.4: Variation on local ıNu along the polar angle θ for different size ranges in liquid

cooling process
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7.3 NUCLEATION

The nucleation event is of importance to understand the subsequent solidification. Lack of di-

rectly thermal measurement in drop-tube processing however causes the difficulty to interpret

the morphology of as-solidified droplet. In order to estimate a possible nucleation temperature

( undercooling ), the classical heterogeneous nucleation theory in [3] with calculated cooling rate

is applied in Section 3.1.2 in the macroscopic heat transfer modelling. The result was shown in

Fig. 6.3.4.

In order to compare with the cooling rate by the unsteady heat transfer modelling, different cooling

rates are applied in Eq. (3.1.9) for the same size of droplet as shown in Fig. 7.3.1. The cooling rates

from 102 to 105 are chosen in this calculation since the 300-µm droplet has the order of 2×103 K/s

in the macroscopic modelling and the order of 1×104 K/s in the unsteady one. Hence, the possi-

ble nucleation temperature should be attained within the range of temperatures in Fig. 7.3.1. As

can be seen, the variation on nucleation temperatures in response to the range of cooling rates is

around 5 K. Because of such a small change from the large range of cooling rates, we conjecture

that, according to Fig. 6.3.4 ,the undercooling of smallest size range of droplet ( 38 ∼ 53 K ) may not

be greater than 60 K. More importantly, the nucleation change by the contact angle in Fig. 6.3.6 is

indicative that the order of undercooling is less dependent on the gas interruption, but more de-

pendent on the nucleation condition. Therefore, small contamination inclusions or outer surface

could catalyse nucleation at low undercoolings.

Figure 7.3.1: Undercooling of 300-µm droplet achieved by different cooling rates
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7.4 RECALESCENCE

The thermal profile at recalescence is possible to be calculated by Eq. (3.1.13) as the temperature

rapidly rises up to or near the eutectic temperature within 5 ms in Fig. 6.3.3. However this estimated

thermal profile might be unlikely valid in the drop-tube processed Ag-Cu sample.

Once the nucleation event initiates, the heating rate due to the recalescence is mainly dependent

on the kinetics of the primary phase or the ratio of releasing latent heat to the undercooled melt.

In [27, 7], a simple radiation pyrometer is used to determine the nucleation temperature of Ag-Cu

alloy in the glass fluxing processing. For glass-fluxing Ag-Cu morphology having anomalous eutec-

tic embraced with lamellar eutectic at the undercooling between 10 and 70 K, the recalescence rate

detected by the pyrometer showed no greater than 100 K/s. More importantly, the glass-fluxing

sample is subjected with the cooling rate less than 50 K/s. If this is the case with an accuracy of

±3 K as mentioned in [27], then the drop-tube processed sample initiated with the same primary

phase should have the recalescence rate less than 100 K/s since the sample is subjected with much

higher cooling rate in the drop-tube processing.

Therefore, the drop-tube processed sample experiencing high cooling rate initiates the surface nu-

cleation as shown in the experimental result in Section 6.1 due to the possible temperature gradi-

ent in Fig. 7.2.2. The undercooled melt ahead of branched interface act as a heat sink to absorb the

external releasing heat during the primary solidification in the drop-tube processing. Because of

such a low recalescence rate against high cooling rate around spherical droplet, the primary phase

might grow all over the droplet, especially with the larger size ranges prior to the lamellar eutectic

in the remaining melt. In Fig. 6.2.14, the image processing also reveals the other distribution in

which anomalous eutectic is more retained at outer surface of the droplet. The possible reason is

that the primary phase branching into undercooled melt ahead, was stopped by the subsequent

recalescence of lamellar eutectic attached on the larger surface area of the primary phase. With

the decrease of droplet size, the space of undercooled melt ahead acting as a heat sink decreases,

giving no place for coarsening of anomalous region at the smaller size ranges. As a result, more

equilibrium eutectic develops in the inner region of droplet as shown in Fig. 6.2.9b, Fig. 6.2.10b,

Fig. 6.2.11b, and Fig. 6.2.12b.

Based on the previous discussion, the morphology of Ag-Cu microstructure has two main factors,

that is, undercooling and cooling rate. The order of undercoolings determines the formation of

primary phase, including eutectic dendrite at 10 ∼ 70 K and single-phase dendrite at > 70 K, which

results in different final microstructures. The order of cooling rates, on the one hand, has less

influence on the level of undercoolings as shown in Fig. 7.3.1. On the other hand, the more efficient

heat extraction on the smaller size ranges of droplet takes place at the upwind surface region than

the inner droplet region as shown in Fig. 7.2.2. Because of this, the more intensive non-equilibrium

eutectic populated at the surface gives more rapid release of latent heat to warm up small spacial

undercooled melt ahead of primary phase interface during recalescence, which eventually leads to
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more lamellar eutectic in the centre of droplet.

In [7], before the critical undercooling (70 K) is attained, the volume fraction of anomalous eutectic

is believed to increase monotonically with the undercooling in glass fluxing technique. However

this is partially true in the drop-tube processed samples in Section 6.2, since the droplets ranging

from 38 to 106 have lower volume fraction of anomalous eutectic than those at larger size. The

reason can be explained that undercooing prompts the formation of anomalous eutectic whereas

cooling rate hinders from the growth of anomalous eutectic. Due to their joint action, the max-

imum fraction at size might be more likely to occur at the 106 ∼ 212 µm droplets as shown in

Fig. 6.2.13.
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7.5 EUTECTIC SOLIDIFICATION

When the release rate of the latent heat is compatible with the heat extraction rate to the envi-

ronment, the subsequent eutectic solidification occurs. In Section 6.1.3, microstructure of all size

ranges are investigated and the lamellar eutectic is growing as a result of the subsequent solidifi-

cation after the primary phase. To understand the thermal variation at this stage, each data range

of lamellar spacings are obtained by measuring unique locations on the droplet of the same size

range, except for the first column of data that represents the spacing of raw material. Because the

raw material was made under no undercooling, its lamellar spacing formed during equilibrium so-

lidification thereby provides a good reference in comparison with the lamellar spacing of drop-tube

processed samples. As can seen in Fig. 7.5.1, the spacing of lamellar eutectic is changed, even for

the one solidified under the equilibrium condition, despite the general tendency that the smaller

droplet size has smaller lamellar spacing.

Figure 7.5.1: Lamellar spacing range for equilibrium solidification and for different size ranges of

droplet

According to HJ and TMK theoretical model in Section 2.3.1, the eutectic growth can take place un-

der low undercoolings. For Ag-Cu eutectic alloy, it is possible to have the local undercooling ahead

of the eutectic interface and the higher undercooling ahead of the local interface could cause the

smaller spacing of lamellar eutectic as shown in Fig. 2.3.3 and Fig. 2.3.4 respectively. The variation

of the spacing is somehow consistent with Fig. 6.3.4 that smaller droplet size range subjected with
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higher cooling rate in general give rise to higher undercooling in the melt. Although the undercool-

ing during the eutectic growth is not as significant as that prior to the nucleation event, the high

heat extraction effect on individual droplets constantly during their free falling down to the bottom

of tube thereby affects on the eutectic solidification stage.

To interpret the recalescence kinetics in the subsequent solidification, the theoretical model of

Jackson and Hunt is adapted to estimate the growth velocity of the eutectic. Although the eu-

tectic growth under high undercooling departs from that under low undercooling [38], the out-

comes of HJ model in Eq. (2.3.3) with HJ model with temperature dependent diffusion coefficient

in Eq. (2.3.5) as well as TMK model in Eq. (2.3.17), shown in Fig. 2.3.5, are approximately the same

at the order of undercooling below 10 K. Therefore, the scaling laws developed by JH model illus-

trated in Eq. (2.3.1) and Eq. (2.3.2) are used here.

Because each size range has a specific spacing range of lamellar eutectic in Fig. 7.5.1 and every

spacing range can produce a undercooling range due to the relationship between the undercooling

and the lamellar spacing. In Fig. 7.5.2, only the smallest spacing of each size range of droplets is

selected in calculation of the possible undercooling locally since the smallest spacing of lamellar

eutectic is more likely to occur at the final stage of eutectic solidification as no or less latent heat

released during this transformation keep warming up the remaining undercooled liquid. For this

reason, undercooling of each size range in Fig. 7.5.2 could indicate the possible undercooling ahead

of eutectic interface and be compared with each other.

Figure 7.5.2: Undercooling for equilibrium solidification and for different size ranges of droplet
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In [27, 7], the lamellar spacings measured from the fluxing melt sample under different undercool-

ing remain roughly unchanged in comparison with that from the reference sample with notionally

no undercooling. The drop-tube processed samples of different size ranges, on the other hand,

show different undercooling in Fig. 7.5.2. The difference of these two can be attributed to the cool-

ing rate introduced on each samples. Typically the cooling rate less than 50 K/s by using fluxing

technique reported in the previous publication [27]. At such a low cooling rate, once the under-

cooled melt warmed up to the eutectic temperature, the remaining liquid is more likely to remain

this temperature until the melt being fully solid. In contrast, drop-tube processed samples have

various cooling rates from 2000 to 106 K/s shown in Fig. 7.2.3. At such a high cooling rate, the

temperature increased at recalescence is possible to reduce again in the following solidification,

especially at the smaller size range of droplets. As a result, apart from 500 ∼ 850-µm droplet which

keeps the similar order of undercooling as the raw material formed under equilibrium condition,

the undercooling generally increases with the decrease of droplet size. Clearly the higher under-

cooling applied in the eutectic growth takes place at the smaller size range from 38 ∼ 53 to 75 ∼ 106

µm, which is in agreement with the finer lamellar eutectic populated in the centre of those droplets

in Fig. 6.1.16 and Fig. 6.1.17.

Figure 7.5.3: Growth velocity of lamellar eutectic against different lamellar spacing

Furthermore, those measured lamellar spacings in Fig. 7.5.1 are also applied to estimate of the

growth velocity as shown in Fig. 7.5.3. The slowest value of growth velocity (∼ 0.16 mm ) is obtained

by using the lamellar spacing of raw material. Based on the profile of growth velocity against lamel-
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lar spacing, it is clearly that the smaller the droplet, the faster the growth speed, which is consistent

with the changes of solid fraction in Fig. 7.1.1.

At last, there are certain regions believed as finest lamellar eutectic in the smallest size range 38 ∼ 53

since the BSE image shows the mixed grey level between the Ag-rich region and the Cu-rich region

inside the white cycle in Fig. 7.5.4. However further investigation might be required to identify this

planar, space-filling phase. As indicated by Fig. 7.5.2 and Fig. 7.5.3, the smaller the lamellar space,

the higher the undercooling and the faster the growth velocity. Once the undercooling exceeds

the critical undercooling ∆T0 [16], the undercooled melt has too low temperature to perform the

diffusion during the eutectic solidification and leads to partitionless planar growth instead.

Figure 7.5.4: Lamellar eutectic in the smallest size range of droplet
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7.6 SEGREGATED SOLIDIFICATION

In the microstructure of size ranges shown in Section 6.1.3, it is clearly seen that the Ag-rich inclu-

sions are randomly distributed within the larger droplets ( 212 ∼ 850 µm ). In contrast, there is no

such inclusions in smaller ranges, such as 38 ∼ 53 µm in Fig. 6.1.17, 53 ∼ 75 µm in Fig. 6.1.16, and

75 ∼ 106 µm in Fig. 6.1.15.

In order to predict the amount of micro-segregation, the amount of eutectic must be known at

first. The lever rule is widely used in estimation of the amount of eutectic in the equilibrium solid-

ification, but is impossible to do so for non-equilibrium eutectic since the local conditions, such

as cooling rate and subsequently recalescence rate, largely determine the morphology of final mi-

crostructure. For a larger size ranges, these observed inclusions can be explained by Scheil’s model

wherein only diffusion of the liquid is taken into account. Using equilibrium partitioning at the

solid-liquid interface, the anomalous eutectic formed at the composition departing from the equi-

librium eutectic composition leads to an enrichment of solute in the liquid, such that the final

solidification ends at the Ag-rich inclusions.

However, the original Scheil’s model fails to explain the rather homogeneous microstructure in

smaller size ranges. The possible explanation for this morphology change can be attributed to

back diffusion in the solid, which directly influences, not only on the evolution of type, amount,

and composition of the interdendritic phases and the formation of non-equilibrium eutectic in

the final eutectic fraction [76]. In the previous study of hypoeutectic Al-Cu alloys, Sarreal and Ab-

baschian [77], who found that the amount of non-equilibrium eutectic increases monotonically up

to a cooling rate of 190 K/s, followed by a strongly reduced fraction of non-equilibrium eutectic at

1700 K/s. They believed that with increasing cooling rate, the increase of volumetric back diffusion

rate could restrain non-equilibrium eutectic from growth. Therefore, at large cooling rates, back

diffusion becomes an important factor to interrupt the final morphology.

As a result, the homogeneous microstructures in a smaller size ranges of droplets subjected with

higher cooling rates could be attributed to larger amount of volumetric back diffusion taking place

in the eutectic dendrite, and leads to the composition of eutectic dendrite close to that of equilib-

rium eutectic. With less or no enrichment of solute left in liquid, the distinct Ag-rich inclusions

are impossible to form in the end of solidification. Higher undercooling attained in smaller droplet

however is of no help to explain the microsegregation free at smaller size range of droplets.

According to above discussion, two different morphologies in the drop-tube proceeded samples

can give rise to different reasons. The larger size range is essentially undercooling controlled whereas

the smalller one is more cooling rate controlled.



CHAPTER 8

CONCLUSION

1. At the fixed superheat temperature, a size range of droplet formed from one spray, might

have solidification defects attained as discussed in Section 7.1. Depending on cooling rates,

the solid fraction might be excessive in the initial solidification so that the surface layer is no

longer interconnected due to lack of liquid to fill pores.

2. The local Nu number around sphere is proved to change from the forward stagnation points

to the rear stagnation points as shown in Fig. 6.3.14. The assumption of minimum Nu at

2 under motionless flow is invalid for stoke flow as the local Nu can become negative. For

Ag−40at%Cu alloy, the reverse heat transfer due to Nu < 0, however, is only possible to take

place at the smallest size range 38 ∼ 53 µm due to the low ratio of specific heat between fluid

and solid at the end of solidification.

3. The morphology by which anomalous eutectic is embraced with lamellar eutectic occurs at

all size ranges ( 38 ∼ 850 µm ). Although droplets at the smaller size range are subjected with

higher cooling rates, the undercooling or the temperature prior to nucleation is more contact

angle dependent than cooling rate dependent. At fixed contact angle π/4, the undercooling

value raises with the decrease of droplet size. The undercooling greater than 60 K might only

take place upon the smallest droplet at 38 ∼ 53 µm. As a result, there is no clearly transitive

primary phase from anomalous eutectic to single-phase dendrite in drop-tube processed

Ag-Cu samples.

4. There are two different distributions of anomalous eutectic within the droplets found by us-

ing ImageJ macro scripting to identify the number of anomalous eutectic in series of annuli.

The anomalous eutectic is distributed evenly in every annulus region at larger size ranges

212 ∼ 850 µm, , whereas the anomalous eutectic is retained more in the annulus nearest the

surface at smaller size ranges 38 ∼ 212µm. It is believed that the primary phases was stopped

by the recalescence when they branch into undercooled melt, followed by the nucleation of

lamellar eutectic attached on the larger surface area of the primary phase gives no place act-
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ing as the heat sink for further coarsening anomalous region, especially at the smaller size of

droplets.

5. The higher the cooling rate is achieved in smaller droplet size, the higher possibility the high

undercooling could be attained prior to solidification. At the smallest size range 38 ∼ 53

µm, it is likely that the heat extraction rate up to ( 105 K/s ) can neglect the influence of

recalescence and the subsequent latent heat released during solidification. Under this cir-

cumstance, once the high undercooling is attained, the undercooled melt would keep un-

dercooled till the end of solidification, which provides a necessary condition to have parti-

tionless solidification at size 38 ∼ 53 µm.

6. At the high cooling rate, the primary phases are not only subjected to a kind of heat treat-

ment, but also receive back diffusion during the subsequent eutectic formation. As a result,

the droplet with smaller size experiences higher cooling rate to be micro-segregation free. On

the other hand, the type of droplet morphologies in Section 6.1.3 is largely dependent on the

level of undercooling. Therefore, the larger size range is essentially undercooling controlled

whereas the smalller one is more cooling rate controlled.
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CONSERVATION EQUATIONS

Consider an arbitrary inertial frame in space of finite volume Ω enclosed by its bounding surface

∂Ω, the Reynolds Transport theorem is used to assume that the amount of the changes Φ over a

control volume Ω is equal to what is fluxed through the surface ∂Ω and what is created within the

volume. Thus Φ is assumed to be constant on a scale to Ω and the average value of Φ is a good

approximation toΦ anywhere overΩ.

d

dt

∫
Ω
Φ dV =−

∫
∂Ω

F ·~n dS −
∫
∂Ω
Φ~u ·~n dS −

∫
Ω

Q dV (A.0.1)

where F is the flux of Φ in the absence of fluid transport, Φ~u is the flux across the layer due to the

fluid transport and Q is a external source or sink ofΦ.

According to the Divergence Therorem, the flux term of Eq. (A.0.1) is allowed to express a volume

integal as

−
∫
∂Ω

F ·~n dS −
∫
∂Ω
Φ~u ·~n dS =−

∫
Ω
∇· (F +Φ~u) dV (A.0.2)

Because the surface and volume are fixed in an inertial frame, the Leibniz’s Rule is applied to the

left-hand side of Eq. (A.0.1)
d

dt

∫
Ω
Φ dV =

∫
Ω

dΦ

dt
dV (A.0.3)

Combining Eq. (A.0.1) with Eq. (A.0.2) and Eq. (A.0.3),∫
Ω

(
dΦ

dt
+∇· (F +Φ~u)+Q

)
dV = 0

This relation applies to an arbitrary control volumeΩ. In order to remain valid for all volumes, the

integrand should be zero
dΦ

dt
+∇· (F +Φ~u)+Q = 0 (A.0.4)

This basic continuity equation is used to describe the change of an intensive property Φ in con-

tinuum mechanics. Three main intensive quantities, mass ρ, heat ρ c T , and force balance ~u,

are further discussed in the following sections based on the general form of continity equation

in Eq. (A.0.4).
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A.1 CONSERVATION OF MASS

With no source or sink of mass Q = 0 to create or destroy mass, the mass per unit volume ( mass

densityΦ= ρ ) is put in Eq. (A.0.4)
∂ρ

∂t
+∇· (ρ~u)= 0 (A.1.1)

where the flux F term is not involved since mass flux only attributes to the transport change.

In the case of an incompressible fluid, the density along the path of a fluid is constant

dρ

dt
= 0

Eq. (A.1.1) can reduce to

∇· (ρ~u)= 0 ⇐⇒∇·~u = 0 (A.1.2)

A.2 CONSERVATION OF HEAT

For a single phase material, heat per unit volumeΦ= ρ c T

∂ρ c T

∂t
+∇· (ρ c T ~u

)=∇·F +Q (A.2.1)

where heat flux is consist of two components, the one due to conduction F and the other ρ c T ~u

due to transport as well as heat source Q may give rise to radioactive decay or viscous dissipation

and shear heating.

The heat flux of conduction raised by a temperature gradient within a control volume can be ex-

pressed

F =−κ∇T (A.2.2)

Inserting Eq. (A.2.2) in Eq. (A.2.1), the general conservation of heat is

∂ρ c T

∂t
+∇· (ρ c T ~u

)=∇· (κ∇T
)+Q (A.2.3)

For a material with constant c and κ being the hotest source and in the absence of fluid transport,

Eq. (A.2.3) becomes

ρ c
∂T

∂t
= κ∇2 T (A.2.4)

A.3 CONSERVATION OF MOMENTUM

In general, conservation of momentum ( force balance ) can be derived in the same way as shown in

Appendix A.1 and Appendix A.2, but the amount of momentum per unit volume ρ~u is substituted

intoΦ in Eq. (A.0.4).
∂ρ~u

∂t
+∇· (ρ~u~u)=∇·σ+ρ~g (A.3.1)
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where the flux of force ( the Cauchy stress tensor ) F =−σ acts on the surface of the control volume

Ω and the source Q = ρ~g is the net external force.

Unlike heat and mass as scalar field in Eq. (A.1.1) and Eq. (A.2.3) respectively, mementum is a vector

field due to fluid flow velocity ~u = (
u, v, w

)
. To solve a dyad ~u~u in Eq. (A.3.1), the divergence of a

second rank tensor is applied

~u
∂ρ

∂t
+ρ ∂~u

∂t
+~u~u ·∇ρ+ρ~u ·∇~u +ρ~u∇·~u =∇·σ+ρ~g

~u

(
∂ρ

∂t
+~u ·∇ρ+ρ∇·~u

)
+ρ

(
∂~u

∂t
+~u ·∇~u

)
=∇·σ+ρ~g (A.3.2)

Because of mass continuity in Eq. (A.1.1), the first term in the right-hand side of Eq. (A.3.2) is

~u

(
∂ρ

∂t
+~u ·∇ρ+ρ∇·~u

)
⇐⇒~u

(
∂ρ

∂t
+∇· (ρ~u))=~u 0 = 0

Therefore, Eq. (A.3.1) can be written as

∂~u

∂t
+~u ·∇~u = 1

ρ
∇·σ+~g (A.3.3)

For completion, the stress tensorσ ( see Fig. A.3.1 ) must be evaluated and is often divided into two

terms, the volumetric stress tensor and the stress deviator tensor.

Figure A.3.1: components of Cauchy stress tensor in three dimensions

The volumetric stress tensor tends to change the volume of the body, such as the pressure force.

The stress deviator tensor on the other hand represents the tendency of the body deformation and

movement.
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Thus, σ in the Cartesian coordinates can be broken down into

σ=



σxx τx y τxz

τy x σy y τy z

τzx τz y σzz



=−



p 0 0

0 p 0

0 0 p


+



σxx +p τx y τxz

τy x σy y +p τy z

τzx τz y σzz +p


=−p I +τ (A.3.4)

Combining with Eq. (A.3.3) and Eq. (A.3.4), the general form of the Navier-Stokes equation is

∂~u

∂t
+~u ·∇~u =− 1

ρ
∇p + 1

ρ
∇·τ+~g (A.3.5)

In the right-hand side of Eq. (A.3.5), −∇p is the pressure term for preventing from volume motion

due to normal stresses and ∇ ·τ is the stress ( viscous ) term giving rise to surface motion in the

direction of the flow due to horizontal friction and shear stresses. In practice, a specific fluid and

its associated mass continuity are required to determine the pressure p and the stress deviator

tensor τ in Eq. (A.3.5),

A.3.1 INCOMPRESSIBLE NEWTONIAN FLUID

For an isotropic incompressible fluids, the stress tensor τ in Eq. (A.3.4) is proportional to the rate

of deformation in the direction of fluid velocity ~u = (u, v, w)

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
⇐⇒ τ=µ(∇~u + (∇~u)T )=µ



2
∂u

∂x

∂u

∂y
+ ∂v

∂x

∂u

∂z
+ ∂w

∂x

∂u

∂y
+ ∂v

∂x
2
∂v

∂y

∂v

∂z
+ ∂w

∂y

∂u

∂z
+ ∂w

∂x

∂v

∂z
+ ∂w

∂y
2
∂w

∂z


(A.3.6)

where the viscosity of the fluidµ defines the resistance to gradual deformation by shear stress when

the fluid flows is subjected to body forces.
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The stress term of the x momentum equation with a constant viscosity µ in Eq. (A.3.5) is derived

by considering with the incompressible mass continuity in Eq. (A.1.2)

(∇·τ)i =µ
(
∂

∂x

(
2
∂u

∂x

)
+ ∂

∂y

(∂u

∂y
+ ∂v

∂x

)
+ ∂

∂z

(∂u

∂z
+ ∂w

∂x

))

=µ
(
∂2 u

∂x2 + ∂2 u

∂y2 + ∂2 u

∂z2

)
+µ

(
∂2 u

∂x2 + ∂2 u

∂x ∂y
+ ∂2 u

∂x ∂z

)

=µ∇2 u +µ ∂

∂x

(∇·~u)
=µ∇2 u +0 =µ∇2 u

Similarly for the y and z term of the divergence,(∇·τ) j =µ∇2 v
(∇·τ)k =µ∇2 w

Thus, the divergence of the stress tensor

∇·τ= (∇·τ)i +
(∇·τ) j +

(∇·τ)k =µ∇2~u (A.3.7)

Substituting Eq. (A.3.7) into Eq. (A.3.5), the Navier-Stokes equation is obtained to describe an in-

compressible Newtonian fluid [67] as

∂~u

∂t
+~u ·∇~u =− 1

ρ
∇p + µ

ρ
∇2~u +~g (A.3.8)
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STOKES FLOW PAST A SPHERE

For an incompressible Stokes flow with no concern to external body force, the general dimensional

form of the Navier-Stokes equation for a Newtonian viscous fluid of constant density ρ f and con-

stant viscosity ν can be derived from Eq. (A.3.8) as

∂~u

∂t
+ (~u ·∇) ~u −ν∇2~u =− 1

ρ f
∇p (B.0.1)

where the kinematic viscosity

ν= µ

ρ f
(B.0.2)

At the small Reynolds number Re, the inertia terms as the first two terms in the left-hand side of

Eq. (B.0.1) are neglected.

−ν∇2~u =− 1

ρ f
∇p (B.0.3)

Because Eq. (B.0.1) is assumed to have a Newtonian viscous fluid of constant ρ f and constant ν,

dρ

dt
= 0

The continuity equation is derived from the conservation of mass in Eq. (A.1.2) as

∇·~u = 0 (B.0.4)

Therefore, the steady incompressible Stokes flow is characteristic with

−ν∇2~u =− 1

ρ f
∇p (B.0.5a)

∇·~u = 0 (B.0.5b)
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B.1 STOKES’ SOLUTION FOR A SPHERE

Considering melt sphere moving in axisymmetric steady Stokes flow for the spherical polar coor-

dinates system (r,θ,φ) satisfies Eq. (B.0.5b)

∇·~u = 1

r 2

∂r 2 ur

∂r
+ 1

r sinθ

∂sinθuθ
∂θ

+ 1

r sinθ

∂uφ
∂φ

= 0

then the flow velocity components, ur , uθ and uφ related to the stream functionΨ have the general

solution as

ur = 1

r 2 sinθ

∂Ψ

∂θ
(B.1.1a)

uθ =− 1

r sinθ

∂Ψ

∂r
(B.1.1b)

uφ = 0; (B.1.1c)

According to the vector identity, any vector ~G has

∇× (∇× ~G) =∇ (∇· ~G)−∇2 ~G (B.1.2a)

∇× (∇~G) ≡ 0 (B.1.2b)

∇2 (∇× ~G) =∇× (∇2~G) =−∇× (∇× (∇× ~G)
)

(B.1.2c)

Because of Eq. (B.0.5b),

∇(∇·~u) =∇(0) = 0

Then

∇× (∇×~u) =∇ (∇·~u)−∇2~u =−∇2~u =− 1

νρ f
∇p (B.1.3)

Due to Eq. (B.1.2b) and

∇×
(

Ψ

r sinθ
~eφ

)
= 1

r 2 sinθ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~er r~eθ r sinθ~eφ

∂

∂r

∂

∂θ

∂

∂φ

0 0 r sinθ
Ψ

r sinθ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ur~er +uθ~eθ+0~eφ

Eq. (B.1.3) becomes

∇×∇× (∇×~u) =∇×∇×
(
∇×

(
∇× Ψ

r sinθ
~eφ

))
=∇×

(
− 1

νρ f
∇p

)
≡ 0

(
∂2

∂r 2 + sinθ

r 2

∂

∂θ

(
1

sinθ

∂

∂θ

))2

Ψ= 0 (B.1.4)
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BOUNDARY CONDITION

In the case of steady Stokes flow in the spherical polar coordinates (r,θ,φ), the fluid velocity is

assumed to be constant , say w f along z axis, at r →∞. The radial and polar components of w f

are

ur = w f cosθ = 1

r 2 sinθ

∂Ψ

∂θ
uθ = w f sinθ =− 1

r sinθ

∂Ψ

∂r
at r →∞

Integration of either velocity components above can obtain the stream function

Ψ= w f

2
r 2 sin2θ at r →∞ (B.1.5)

Moreover, the flow adjacent to the sphere surface ( sphere radius a ) is assumed to be motionless

ur = 0 uθ = 0 at r = a (B.1.6)

Provided there is a solution of Eq. (B.1.4) in the form

Ψ= sin2θ f (r ) (B.1.7)

then (
∂2

∂r 2 − 2

r 2

)2

f (r ) = 0 (B.1.8)

Putting f (r ) = rλ in Eq. (B.1.8), (λ2 −1)(λ−2)(λ−4) = 0 suggests the general solution is

f (r ) = A

r
+B r +C r 2 +D r 4

Combining with boundary condition of Eq. (B.1.5) and Eq. (B.1.6)

A = 1

4
w f a3 B =−3

4
w f a C = 1

2
w f D = 0

With Eq. (B.1.7), the Stokes steam function is written

Ψ(r,θ) = 1

2
w f sin2θ

(
r 2 + a3

2r
− 3 a r

2

)
(B.1.9)

Therefore, the resulting flow in spherical polar coordinates ( Eq. (B.1.1a) and Eq. (B.1.1b) ) is given

by

ur = w f cosθ

(
1+ a3

2r 3 − 3 a

2r

)
(B.1.10a)

uθ =−w f sinθ

(
1− a3

4r 3 − 3 a

4r

)
(B.1.10b)
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B.2 PHYSICAL DEDUCTIONS

In spherical coordinates, the vector laplacian is

∇2~G =



1

r

∂2(r Gr )

∂r 2 + 1

r 2

∂2Gr

∂θ2 + 1

r 2 sin2θ

∂2Gr

∂φ2 + cotθ

r 2

∂Gr

∂θ
− 2

r 2

∂Gθ

∂θ
− 2

r 2 sinθ

∂Gφ

∂φ
− 2Gr

r 2 − 2 cotθGθ

r 2

1

r

∂2(r Gθ)

∂r 2 + 1

r 2

∂2Gθ

∂θ2 + 1

r 2 sin2θ

∂2Gθ

∂φ2 + cotθ

r 2

∂Gθ

∂θ
− 2

r 2

cotθ

sinθ

∂Gφ

∂φ
+ 2

r 2

∂Gr

∂θ
− Gθ

r 2 sin2θ

1

r

∂2(r Gφ)

∂r 2 + 1

r 2

∂2Gφ

∂θ2 + 1

r 2 sin2θ

∂2Gφ

∂φ2 + cotθ

r 2

∂Gφ

∂θ
+ 2

r 2 sinθ

∂Gr

∂φ
+ 2

r 2

cotθ

sinθ

∂Gθ

∂φ
− Gφ

r 2 sin2θ


(B.2.1)

For the flow velocity components (ur ,uθ,0), Eq. (B.1.3) combined with Eq. (B.2.1) is
1

µ

∂p

∂r

1

µr

∂p

∂θ

=


1

r

∂2(r ur )

∂r 2 + 1

r 2

∂2ur

∂θ2 + cotθ

r 2

∂ur

∂θ
− 2

r 2

∂uθ
∂θ

− 2ur

r 2 − 2 cotθuθ
r 2

1

r

∂2(r uθ)

∂r 2 + 1

r 2

∂2uθ
∂θ2 + cotθ

r 2

∂uθ
∂θ

+ 2

r 2

∂ur

∂θ
− uθ

r 2 sin2θ

 (B.2.2)

B.2.1 PRESSURE

The pressure p is determined by Eq. (B.2.2) with Eq. (B.1.10a) and Eq. (B.1.10b).

p = p∞− 3

2
µw f

a

r 2 cosθ (B.2.3)

where p∞ is the constant pressure far away from the sphere.

B.2.2 SURFACE STRESSES

The expression of the normal and shear stress tensor components

σi j =−p δi j +µ
(∇i u j +∇ j ui

)
(B.2.4)

can find the radial stress σr r and the shear stress σθr as

σr r =−p +2µ
∂ur

∂r
=−p∞+ 3

2
µ

a

r 2

(
3−2

a2

r 2

)
w f cosθ (B.2.5a)

σθr =µ
(
r
∂

∂r

(uθ
r

)
+ 1

r

∂ur

∂θ

)
=−3

2
µ

a3

r 4 w f sinθ (B.2.5b)

The stress components on the sphere surface at r = a,

σr r |r=a =−p∞+ 3

2a
µw f cosθ (B.2.6a)

σθr |r=a =− 3

2a
µw f sinθ (B.2.6b)
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B.2.3 DRAG FORCE

The force of drag is generated by the interaction and contact of a solid with a fluid. For a large

Reynolds number Re to produce turbulence behind the sphere, the celebrated drag equation is

used to estimate the drag force by a moving object through a fully enclosing fluid.

FD = 1

2
ρ f w2

f CD A (B.2.7)

where the reference area A is characteristic with the cross-sectional area, πa2, in the case of a

sphere with radius a and CD is the Drag coefficient.

At the Stokes flow, the net drag force exerted by the sphere on the fluid is

FD =
∫

S

(
σr r cosθ−σθr sinθ

)
dS (B.2.8)

In substitution of the parallel resultant stress to the z-axis on the sphere r = a from Eq. (B.2.6a) and

Eq. (B.2.6b), Eq. (B.2.8) becomes

FD =
∫ π

0
2πa2

(
σr r cosθ−σθr sinθ

)
r=a

sinθ dθ

= 2πa2
∫ π

0
−p∞ cosθ sinθ+ 3

2a
µw f sinθ dθ

= 6πµa w f (B.2.9)

B.2.4 DRAG COEFFICIENT

Connecting Eq. (B.2.7) with Eq. (B.2.9),

1

2
ρ f w2

f CD πa2 = 6πµa w f

∴

CD = 12πµa w f

ρ f w2
f πa2

= 12µ

ρ f w f a
= 24
ρ f w f (2 a)

µ

= 24

Re
(B.2.10)

a drag coefficient CD is obtained, which is a dimensionaless quantity to quantify the resistance of

an object in a fluid environment.

B.2.5 FALLING VELOCITY

In the assumption of Stokes flow, the ambient velocity w f is constant passing the rest system of the

sphere. However, it is also valid for a sphere falling with the constant velocity ws to the rest system

of the asymptotic fluid.
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Equating the Stokes drag with the force of gravity minus buoyancy weight of the sphere r = a, the

terminal velocity of a falling sphere is (
ρs −ρ f

)
Vs g = 6πµa ws

ws =
ρs −ρ f

6πµa

4

3
πa3 g = 2

9
g a2 ρs −ρ f

µ
(B.2.11)

B.2.6 STOKES’ SOLUTION FOR A AG-CU SPHERE

Considering the rigid sphere of Ag-Cu alloy experiences Stokes’ flow in flight at Nitrogen gas,

Table B.2.1: Fall velocity of a particle through a fluid

Diameter (µm) Velocity (m/s) Drag Coefficient (-) Drag (N)

38 0.41 24.0596 2.60×10−9

53 0.79 8.8677 7.05×10−9

75 1.58 3.1294 19.97×10−9

106 3.15 1.1085 56.36×10−9

150 6.31 0.3912 159.72×10−9

212 12.61 0.1386 450.92×10−9

300 25.25 0.0489 1277.77×10−9

500 70.13 0.0106 5915.62×10−9

850 202.68 0.0021 29063.4×10−9



APPENDIX C

ANALYTIC SOLUTION OF

ONE-DIMENSIONAL HEAT TRANSFER

C.1 SOLID SPHERE

Consider the heat transfer problem where a sphere with radius r = b, initially at a uniform temper-

ature T (r,0) = T0,
1

r 2

∂

∂r

(
r 2 ∂T

∂r

)
= 1

κ

∂T

∂t
(C.1.1)

subject to

∂T (0, t )

∂r
= 0 (C.1.2a)

T (b, t ) = T1 (C.1.2b)

In order to apply the method of separation of variables, the non-homogeneous boundary condition

in Eq. (C.1.2b) is transformed into,

T ∗ = T (r, t )−T1 (C.1.3)

Substituting T with T ∗ in Eq. (C.1.1), Eq. (C.1.2a) and Eq. (C.1.2b), the problem is modified

1

κ

∂T ∗

∂t
= 1

r 2

∂

∂r

(
r 2 ∂T ∗

∂r

)
(C.1.4)

∂T ∗(0, t )

∂r
= 0 (C.1.5a)

T ∗(b, t ) = 0 (C.1.5b)

Assumed there would be a solution in the form of the product,

T ∗(r, t ) = R(r )Γ(t )
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Eq. (C.1.4) becomes
1

r 2 R

d

dr

(
r 2 dR

dr

)
= 1

κΓ

dΓ

dt
(C.1.6)

Since R(t ) and Γ(t ) are independent of each other, the derivative of R equal to the derivative of Γ

gives rise to a fixed constant, such as −λ2, in each side of Eq. (C.1.6).

dΓ

dt
=−λ2κΓ

Γ(t ) =C exp
(−κλ2 t

)
(C.1.7)

1

r 2

d

dr

(
r 2 dR

dr

)
=−λ2 R

R(r ) = A
sin λr

r
+B

cos λr

r
(C.1.8)

To satisify with boundary condition Eq. (C.1.5a), B must be equal to 0 in Eq. (C.1.8). Because R(0)

at t = 0 would be a constant after B = 0 as

lim
r→0

A
sin λr

r
= Aλ

Also, to satisfy with boundary condition Eq. (C.1.5b), Eq. (C.1.8) at r = b should be

A
sin λb

b
= 0

λ= nπ

b
(C.1.9)

The product of Eq. (C.1.7) and Eq. (C.1.8) with constant A, B , C ,

T ∗(r, t ) = A

r
sin

(nπ

b
r
)

exp

{
−κ

(nπ

b

)2
t

}
(C.1.10)

where constant A is the multiplication of A and C

Applying the initial condition

T ∗(r,0) = T (r,0)−T1 = T0 −T1 = A

r
si n

(nπ

b
r
)

(C.1.11)

According to the property of orthogonality,

∫ L

0
sin

(
mπ

x

L

)
sin

(
nπ

x

L

)
dx =


0 m 6= n

L

2
m = n

(C.1.12)

Multiplying with an integration of ∫ b

0
sin

(mπ

b
r
)

dr
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Eq. (C.1.11) is

(T0 −T1)
∫ b

0
r sin

(mπ

b
r
)

dr = A
∫ b

0
si n

(nπ

b
r
)

sin
(mπ

b
r
)

dr

b

2
A = (T0 −T1)

∫ b

0
r sin

(nπ

b
r
)

dr

A =2
T0 −T1

b

∫ b

0
r sin

(nπ

b
r
)

dr

=2b
T0 −T1

n2π2 (−πn cos nπ+ sin nπ)

∴ A =− (−1)n 2b
T0 −T1

nπ
n = 1,2, . . . (C.1.13)

The general solution of the sphere, therefore, initially at a uniform temperature T0 and the surface

temperature T1 at r = b is

T (r, t ) = T ∗+T1 = T1 − (T0 −T1)
2b

πr

∞∑
n=1

(−1)n

n
sin

(nπ

b
r
)

exp

{
−κ

(nπ

b

)2
t

}
(C.1.14)

C.2 HOLLOW SPHERE

Consider the heat transfer where a hollow sphere with the surface r = a maintained at a constant

temperature U1 and r = b at U2, when the initial temperature remains U0 in the region a ≤ r ≤ b.

On putting

V (r, t ) = r U (r, t ) (C.2.1)

Eq. (C.1.1) with its initial and boundary conditions becomes

1

κ

∂V

∂t
= ∂2V

∂r 2 (C.2.2a)

V (r,0) = r U0 (C.2.2b)

V (a, t ) = aU1 (C.2.2c)

V (b, t ) = bU2 (C.2.2d)

In order to apply Eq. (C.2.2a) by separation of variables, the non-homogeneous boundary is re-

quired to be transferred into a new homogeneous one by concerning with a steady-state solution

that only varies linearly along the change of r between the boundary temperatures aU1 and bU2

when t =∞ as shown in Eq. (C.2.3).

v(r, t ) = aU1 + bU2 −aU1

b −a
(r −a) (C.2.3)
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Combining Eq. (C.2.3) with Eq. (C.2.2a), Eq. (C.2.2b), Eq. (C.2.2c) and Eq. (C.2.2d), the transient

Z (r, t ) =V (r, t )− v(r, t )

is used to obtain

1

κ

∂Z

∂t
= ∂2Z

∂r 2 (C.2.4a)

Z (r,0) =V (r,0)− v(r,0)

= r U0 −
(

aU1 + bU2 −aU1

b −a
(r −a)

)
(C.2.4b)

Z (a, t ) = 0; (C.2.4c)

Z (b, t ) = 0; (C.2.4d)

Provided there is a solution of the form

Z (r, t ) = R(r )Γ(t )

substituting this into Eq. (C.2.4a) yields

1

R

d2R

dr 2 = 1

κΓ

dΓ

dt
(C.2.5)

Again, Eq. (C.2.5) shows there would be a fixed constant to make both sides equivalent as Ap-

pendix C.1. Eq. (C.2.2a) becomes two seperated ordinary differential equations, which have the

general solution as same as those in Appendix C.1.

Γ(t ) =C exp(−κλ2
n t ) (C.2.6a)

R(r ) = An sinλn (r −a)+Bn cosλn (r −a) (C.2.6b)

By a good observation of the boundary condition Eq. (C.2.4c) and Eq. (C.2.4d), Bn in Eq. (C.2.6b) is

equal to zero and

λn = nπ

b −a
n = 1, 2, 3, . . . (C.2.7)

Thus, the general solution of Z (r, t ) consists of an infinite number of functions

Zn(x, t ) = An sin
(
nπ

r −a

b −a

)
exp

{
−κ

( nπ

b −a

)2
t

}
n = 1, 2, 3, . . . (C.2.8)

To determine An , the given initial condition in Eq. (C.2.4d) is applied in Eq. (C.2.8)

r U0 −
(

aU1 + bU2 −aU1

b −a
(r −a)

)
=

∞∑
n=1

An sin
(
nπ

r −a

b −a

)
By multiplying both sides by

sin
(
mπ

r −a

b −a

)
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and integrating from r = a to b to vanish the sin term when m = n, due to orthogonality∫ b

a

(
r U0 −aU1 − bU2 −aU1

b −a
(r −a)

)
sin

(
nπ

r −a

b −a

)
dr =

∞∑
m=1

An

∫ b

a
sin

(
nπ

r −a

b −a

)
sin

(
mπ

r −a

b −a

)
dr

∫ b

a

(
r U0 −aU1 − bU2 −aU1

b −a
(r −a)

)
sin

(
nπ

r −a

b −a

)
dr = An

b −a

2

An = 2

b −a

∫ b

a

(
r U0 −aU1 − bU2 −aU1

b −a
(r −a)

)
sin

(
nπ

r −a

b −a

)
dr

An = 2

(
a (U0 −U1)−b (U0 −U2) cos(nπ)

nπ

)
(C.2.9)

The finial solution of Z (r, t ) is therefore

Z (r, t ) = 2
∞∑

n=1

(
a (U0 −U1)−b (U0 −U2) cos(nπ)

nπ

)
sin

(
nπ

r −a

b −a

)
exp

{
−κ

( nπ

b −a

)2
t

}
(C.2.10)

Considering with the previous substitution in Eq. (C.2.1) and Eq. (C.2.3), the original problem is

equivalent to

U (r, t ) = Z (r, t )+ v(r, t )

r

Thus

U (r, t ) =1

r

(
aU1 + bU2 −aU1

b −a
(r −a)

)

+ 2

πr

∞∑
n=1

(
a (U0 −U1)−b (U0 −U2) cos(nπ)

n

)
sin

(
nπ

r −a

b −a

)
exp

{
−κ

( nπ

b −a

)2
t

}
(C.2.11)

In the special case of a constant initial temperature, U0 and when U1 =U2, the solution [78] is

U (r, t ) =U1 + (U0 −U1)
2

πr

∞∑
n=1

a −b cos(nπ)

n
sin

(
nπ

r −a

b −a

)
exp

{
−κ

( nπ

b −a

)2
t

}
(C.2.12)



APPENDIX D

NUMERICAL SOLUTION OF

TWO-DIMENSIONAL HEAT TRANSFER

When temperature gradients within a body are concerned with spatially varying boundary con-

ditions or boundary layer flow, the multidimensional effects in finite sized bodies become more

important than the effect in one direction of interest. For bodies with simple boundary condi-

tion, multidimensional, linear heat transfer problems can be solved by analytical methods, such

as laplace transform or Fourier series transform, which are introduced in elsewhere. In the case of

either complicated boundary conditions, or temperature dependent properties in irregular body

shapes, the numerical computation of multidimensional parabolic systems is preferred.

The explicit, the fully implicit, and the ADI stencils introduced in Section 4.2.1 now is extended into

the two-dimensional problems in Appendix D.1. Also the brief introduction about the solution of

two-dimensional unsteady heat transfer modelling in Section 3.2.1 is given in Appendix D.2.

D.1 CARTESIAN COORDINATES

Provided two-dimensional (2D), linear heat transfer in isotropic solids, the temperature fields in-

side the medium is governed by the partial differential equation, as introduced in Eq. (A.2.4) for

cartesian coordinates system
∂U

∂t
=α

(
∂2U

∂x2 + ∂2U

∂y2

)
(D.1.1)

subject to Dirichlet boundary condition on the right and left sides and Neumann boundary condi-

tion on the top and bottom sides.

182
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D.1.1 EXPLICIT SCHEME

The use of explicit method is to discretize U (x, y, t ) in Eq. (D.1.1) as an explicit discretization scheme

U n+1
i , j −U n

i , j

∆t
=α

(
U n

i−1, j −2U n
i , j +U n

i+1, j

∆x2 +
U n

i , j−1 −2U n
i , j +U n

i , j+1

∆y2

)
(D.1.2)

U (i∆x, j∆y,n∆t ) in Eq. (D.1.2) is rearranged in the form

U n+1
i , j =U n

i , j + rx
(
U n

i−1, j −2U n
i , j +U n

i+1, j

)+ ry
(
U n

i , j−1 −2U n
i , j +U n

i , j+1

)
(D.1.3a)

rx =α ∆t

∆x2 ry =α ∆t

∆y2 (D.1.3b)

for the internal nodes i = 1,2, . . . , M −1 and j = 1,2, . . . , N −1.

Eq. (D.1.3a) provides M and N relations to x and y direction but yet exists unknown node potential

0 and M +1 (0 and N +1) for T n
i , j at the time level n. Thus, an additional relationship at boundaries

is required to develop a full discretization scheme in numerical computation.

Both prescribed surface temperature and heat flux are considered at the left outer surface x = 0,

which is i = 0 in Eq. (D.1.3a).

U n+1
0, j =U n

0, j + rx
(
U n

−1, j −2U n
0, j +U n

1, j

)+ ry
(
U n

0, j−1 −2U n
0, j +U n

0, j+1

)
(D.1.4)

where U n
−1, j is a fictitious node in the central difference representation.

Dirichlet Boundary Condition

The left side surface temperature at i = 0 for j = 1,2, . . . , N −1 at all time levels is

U n
0, j =Ub (D.1.5)

Neumann Boundary Condition
U n

1, j −U n
−1, j

2∆x
= c1 (D.1.6)

where c1 represents an arbitrary constant heat flux.

Combined with Eq. (D.1.4) and Eq. (D.1.6), the fictitious node can be eliminated for the node at

i = 0

U n+1
0, j =U n

0, j +2rx
(−U n

0, j +U n
1, j − c1∆x

)+ ry
(
U n

0, j−1 −2U n
0, j +U n

0, j+1

)
(D.1.7)

The stability is concerned in order to obtain meaningful results from the solution of Eq. (D.1.4) with

related boundary conditions (
rx + ry

)≤ 1

2
(D.1.8)

The explicit method is applied at the cost of severe restrictions imposed on the size of the marching

step∆x and∆y for its conditional stability, but it is nevertheless the best choice for the general heat

transfer equations.
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D.1.2 IMPLICIT SCHEME

The fully implicit discretization scheme of Eq. (D.1.1) is

U n+1
i , j −U n

i , j

∆t
=α

(
U n+1

i−1, j −2U n+1
i , j +U n+1

i+1, j

∆x2 +
U n+1

i , j−1 −2U n+1
i , j +U n+1

i , j+1

∆y2

)
(D.1.9)

Rearranging crefeq:appdx-sph-08 gives U (i∆x, j∆y,n∆t ) of next time level n +1 on the left side of

equation and those of current time level n on the right side

U n+1
i , j − rx

(
U n+1

i−1, j −2U n+1
i , j +U n+1

i+1, j

)− ry
(
U n+1

i , j−1 −2U n+1
i , j +U n+1

i , j+1

)=U n
i , j

−rxU n+1
i−1, j − ryU n+1

i , j−1 +
(
1+2rx +2ry

)
U n+1

i , j − ryU n+1
i , j+1 − rxU n+1

i+1, j =U n
i , j (D.1.10a)

rx =α ∆t

∆x2 ry =α ∆t

∆y2 (D.1.10b)

for the internal nodes i = 1,2, . . . , M −1 and j = 1,2, . . . , N −1.

2D implicit scheme with N interior nodes in each direction involves a total N 2 interior points such

that N 2 ×N 2 matrix is involved at each time step of calculation. For example, 7×5 interior nodes

need to deal with 35×35 matrix A as

1 0 · · · 0 0 0 0 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 0 0 0 0 · · · 0 0

...
. . .

...
...

...
...

. . .
...

0 0 · · · −ry · · · −rx 1+2rx +2y −rx · · · −ry 0 · · · 0 0

0 0 · · · 0 −ry · · · −rx 1+2rx +2y −rx · · · −ry · · · 0 0

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 0 0 0 0 0 · · · 1 0

0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 1


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The vector x and b in Aẋ = b are given by temperature Ui , j of time level n and n +1 respectively.

x =



U n+1
1

U n+1
2

...

U n+1
18

U n+1
19

...

U n+1
34

U n+1
35



b =



U n
1

U n
2

...

U n
18

U n
19

...

U n
34

U n
35



⇒ bottom

⇒ center

⇒ top

D.1.3 ADI SCHEME

With the modification of Eq. (D.1.1),

U n+0.5
i , j −U n

i , j

0.5∆t
=α

(
U n+0.5

i−1, j −2U n+0.5
i , j +U n+0.5

i+1, j

∆x2 +
U n

i , j−1 −2U n
i , j +U n

i , j+1

∆y2

)
(D.1.11a)

U n+1
i , j −U n+0.5

i , j

0.5∆t
=α

(
U n+0.5

i−1, j −2U n+0.5
i , j +U n+0.5

i+1, j

∆x2 +
U n+1

i , j−1 −2U n+1
i , j +U n+1

i , j+1

∆y2

)
(D.1.11b)

Rearranging Eq. (D.1.11a) and Eq. (D.1.11b),

−rx

2
U n+0.5

i−1, j + (
1+ rx

)
U n+0.5

i , j − rx

2
U n+0.5

i+1, j = ry

2
U n

i , j−1 +
(
1− ry

)
U n

i , j +
ry

2
U n

i , j+1 (D.1.12a)

−ry

2
U n+1

i , j−1 +
(
1+ ry

)
U n+1

i , j − ry

2
U n+1

i , j+1 =
rx

2
U n+0.5

i−1, j + (
1− rx

)
U n+0.5

i , j + rx

2
U n+0.5

i+1, j (D.1.12b)

rx = α∆t

∆x2 ry = α∆t

∆y2 (D.1.12c)

To advance from the time level n to n+1, Eq. (D.1.12a) is used to solve in Ny times and Eq. (D.1.12b)

in Nx times.

Therefore, ADI method only requires to solve Nx×Ny matrix twice instead of to solve Nx ·Ny×Ny ·Nx

matrix once at the same level of time. Comparing with the explicit and the fully implicit scheme,
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the computation of ADI scheme is efficient but yet accurate by using Thomas algorithm, due to the

symmetric and tri-diagonal system in both Eq. (D.1.12a) and Eq. (D.1.12b).

ADI SCHEME IN THE X-DIRECTION

To obtain unknown U n+0.5
i , j in Eq. (D.1.12a), the tri-diagonal matrix Nx × Nx with relevant known

U n
i , j for i = 0,1, . . . , Nx − 1 is solved at fixed j = 0,1, . . . , Ny − 1. The entries at row 0 and Nx − 1 in

tri-diagonal matrix may vary, depending on the left-side and the right-side boundary condition.

To simplify Eq. (D.1.12a) in compact matrix notation,r a horizontal slice from left to right through

2D temperature gradient is defined as vector

Un+0.5
Nx−1, j =

(
U n+0.5

0, j , U n+0.5
1, j , . . . , U n+0.5

Nx−1, j

)
The ADI linear system in the x-direction can be obtained as

ANx×Nx ·
(
Un+0.5

Nx−1, j

)′ = b j j = 0, 1, . . . , Ny −1 (D.1.13)

where

ANx×Nx =



1 0 0 0 0 · · · 0 0 0 0

−rx

2
1+ rx −rx

2
0 0 · · · 0 0 0 0

0 −rx

2
1+ rx −rx

2
0 · · · 0 0 0 0

...
. . .

0 0 0 0 0 · · · 0 −rx

2
1+ rx −rx

2

0 0 0 0 0 · · · 0 0 0 1


A0,0 = 1 and ANx−1,Ny−1 = 1 because Dirichlet boundary conditions happen on the far left and

right with i = 0 and Nx −1 as the description of heat transfer problem above. Neumann boundary

conditions on the top and the bottom side of temperature gradient also requires
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b j =



ry

2
U n

0, j−1 +
(
1− ry

)
U n

0, j +
ry

2
U n

0, j+1

ry

2
U n

1, j−1 +
(
1− ry

)
U n

1, j +
ry

2
U n

1, j+1

...

ry

2
U n

Nx−2, j−1 +
(
1− ry

)
U n

Nx−2, j +
ry

2
U n

Nx−2, j+1

ry

2
U n

Nx−1, j−1 +
(
1− ry

)
U n

Nx−1, j +
ry

2
U n

Nx−1, j+1


Further modification at j = 0 and Ny −1,

b0 =



ry

2
U n

0,−1 +
(
1− ry

)
U n

0,0 +
ry

2
U n

0,1 = U n
0,0

ry

2
U n

1,−1 +
(
1− ry

)
U n

1,0 +
ry

2
U n

1,1 = (
1− ry

)
U1,0 + ry U1,1

... = ...

ry

2
U n

Nx−2,−1 +
(
1− ry

)
U n

Nx−2,0 +
ry

2
U n

Nx−2,1 = (
1− ry

)
U n

Nx−2,0 + ry U n
Nx−2,1

ry

2
U n

Nx−1,−1 +
(
1− ry

)
U n

Nx−1,0 +
ry

2
U n

Nx−1,1 = U n
Nx−1,0



bNy−1 =



ry

2
U n

0,Ny−2 +
(
1− ry

)
U n

0,Ny−1 +
ry

2
U n

0,Ny
= U n

0,Ny−1

ry

2
U n

1,Ny−2 +
(
1− ry

)
U n

1,Ny−1 +
ry

2
U n

1,Ny
= ry U n

1,Ny−2 +
(
1− ry

)
U n

1,Ny−1

... = ...

ry

2
U n

Nx−2,Ny−2 +
(
1− ry

)
U n

Nx−2,Ny−1 +
ry

2
U n

Nx−2,Ny
= ry U n

Nx−2,Ny−2 +
(
1− ry

)
U n

Nx−2,Ny−1

ry

2
U n

Nx−1,Ny−2 +
(
1− ry

)
U n

Nx−1,Ny−1 +
ry

2
U n

Nx−1,Ny
= U n

Nx−1,Ny−1


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ADI SCHEME IN THE Y-DIRECTION

To obtain unknown U n+1
i , j in Eq. (D.1.12b), the tri-diagonal matrix Ny × Ny r with relevant known

U n+0.5
i , j for j = 0,1, . . . , Ny −1 is solved at fixed i = 0,1, . . . , Nx −1. The entries at row 0 and Ny −1 in

tri-diagonal matrix may vary, depending on the bottom-side and the top-side boundary condition.

Again, a simplified vertical vector from bottom to top through two-dimensional temperature gra-

dient is

Un+1
i ,Ny−1 =

(
U n+1

i ,0 , U n+1
i ,1 , . . . , U n+1

i ,Ny−1

)
The ADI linear system in the y-direction can be obtained as

ANy×Ny ·Un+1
i ,Ny−1 = bi i = 0, 1, . . . , Nx −1 (D.1.14)

Because Neumann boundary conditions happen on the bottom and the top side, Eq. (D.1.12b) at

j = 0 and Ny −1 is written in Eq. (D.1.15) and Eq. (D.1.16) respectively.

−ry

2
U n+1

i ,−1 +
(
1+ ry

)
U n+1

i ,0 − ry

2
U n+1

i ,1 = rx

2
U n+0.5

i−1,0 + (
1− rx

)
U n+0.5

i ,0 + rx

2
U n+0.5

i+1,0(
1+ ry

)
U n+1

i ,0 − ry U n+1
i ,1 = rx

2
U n+0.5

i−1,0 + (
1− rx

)
U n+0.5

i ,0 + rx

2
U n+0.5

i+1,0 (D.1.15)

−ry

2
U n+1

i ,Ny−2 +
(
1+ ry

)
U n+1

i ,Ny−1 −
ry

2
U n+1

i ,Ny
= rx

2
U n+0.5

i−1,Ny−1 +
(
1− rx

)
U n+0.5

i ,Ny−1 +
rx

2
U n+0.5

i+1,Ny−1

−ry U n+1
i ,Ny−2 +

(
1+ ry

)
U n+1

i ,Ny−1 =
rx

2
U n+0.5

i−1,Ny−1 +
(
1− rx

)
U n+0.5

i ,Ny−1 +
rx

2
U n+0.5

i+1,Ny−1 (D.1.16)

Combining Eq. (D.1.12b) with Eq. (D.1.15) and Eq. (D.1.16),

ANy×Ny =



1+ ry −ry 0 0 0 . . . 0 0 0 0

−ry

2
1+ ry −ry

2
0 0 . . . 0 0 0 0

0 −ry

2
1+ ry −ry

2
0 . . . 0 0 0 0

...
. . .

0 0 0 0 0 . . . 0 −ry

2
1+ ry −ry

2

0 0 0 0 0 . . . 0 0 −ry 1+ ry


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where ANy×Ny can only be satisfied with i = 1, 2, . . . , Nx −2, due to the Dirichlet boundary condi-

tions on the right and left side of temperature plane. At both i = 0 and Nx −1,

ANy×Ny =



1 0 0 · · · 0 0

0 1 0 · · · 0 0

...
. . .

0 0 0 · · · 0 1


The form of vector bi in Eq. (D.1.14) with i = 1, 2, . . . , Nx −2 is

bi =



rx

2
U n+0.5

i−1,0 + (
1− rx

)
U n+0.5

i ,0 + rx

2
U n+0.5

i+1,0

rx

2
U n+0.5

i−1,1 + (
1− rx

)
U n+0.5

i ,1 + rx

2
U n+0.5

i+1,1

...

rx

2
U n+0.5

i−1,Ny−1 +
(
1− rx

)
U n+0.5

i ,Ny−1 +
rx

2
U n+0.5

i+1,Ny−1


At i = 0 and Nx −1, vector bi is written as the same form of vector with different subscript i , de-

pending on its location.

b0 =



U n+0.5
0,0

U n+0.5
0,1

...

U n+0.5
0,Ny−1



bNx−1 =



U n+0.5
Nx−1,0

U n+0.5
Nx−1,1

...

U n+0.5
Nx−1,Ny−1



D.2 SPHERICAL POLAR COORDINATES

The expansion of governing dimensionless equation Z f (τ,ξ,θ) in Eq. (3.2.5) by chain rule is

∂Z f

∂τ
+Pe

(
vξ
∂Z f

∂ξ
+ vθ
ξ

∂Z f

∂θ

)
= ∂2Z f

∂ξ2 + 2

ξ

∂Z f

∂ξ
+ 1

ξ2

∂2Z f

∂θ2 + cotθ

ξ2

∂Z f

∂θ
(D.2.1)
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Also, the singularities along the stagnation Line at θ = 0 and π are solved by using L’Hôpital’s rule

∂Z f

∂τ
+Pe

(
vξ
∂Z f

∂ξ
+ vθ
ξ

∂Z f

∂θ

)
= ∂2Z f

∂ξ2 + 2

ξ

∂Z f

∂ξ
+ 2

ξ2

∂2Z f

∂θ2 (D.2.2)

D.2.1 GRID CONSTRUCTION

To construct a mesh grid (τ,ξ,θ) for Eq. (D.2.1),

τn = n∆τ n = 0, . . . , Nτ (D.2.3a)

ξi = 1+ i ∆ξ i = 0, . . . , Nξ (D.2.3b)

θ j = j ∆θ j = 0, . . . , Nθ (D.2.3c)

where ∆τ, ∆ξ, and ∆θ are defined as

∆τ= τ

Nτ
∆ξ= ξbd y −1

Nξ
∆θ = π

Nθ

The numerical approximations of Z f (τ,ξ,θ) is

Z f (τ,ξ,θ) ≈ Z f (n∆τ,1+ i ∆ξ, j ∆θ) = Z f
n
i , j (D.2.4)

D.2.2 THE ALTERNATING DIRECTION IMPLICIT STENCILS

The construction of the ADI method is to split the time step ∆τ into two parts. In each half time

step, two different stencils are applied, such as computing Z n+0.5
f and then Z n+1

f to form one in-

crement time step between n and n +1.

Eq. (D.2.1) is represented

Z n+0.5
i , j −Z n

i , j

0.5∆τ
+Pe vξi , j

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+Pe

vθi , j

ξi

Z n
i , j+1 −Z n

i , j−1

2∆θ

=
Z n+0.5

i+1, j −2 Z n+0.5
i , j +Z n+0.5

i−1, j

∆ξ2 + 2

ξi

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+ 1

ξ2
i

Z n
i , j+1 −2 Z n

i , j +Z n
i , j−1

∆θ2 + cotθ j

ξ2
i

Z n
i , j+1 −Z n

i , j−1

2∆θ

(D.2.5a)

Z n+1
i , j −Z n+0.5

i , j

0.5∆τ
+Pe vξi , j

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+Pe

vθi , j

ξi

Z n+1
i , j+1 −Z n+1

i , j−1

2∆θ

=
Z n+0.5

i+1, j −2 Z n+0.5
i , j +Z n+0.5

i−1, j

∆ξ2 + 2

ξi

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+ 1

ξ2
i

Z n+1
i , j+1 −2 Z n+1

i , j +Z n+1
i , j−1

∆θ2 + cotθ j

ξ2
i

Z n+1
i , j+1 −Z n+1

i , j−1

2∆θ

(D.2.5b)

Stagnation Lines
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Eq. (D.2.2) is

Z n+0.5
i , j −Z n

i , j

0.5∆τ
+Pe vξi , j

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+Pe

vθi , j

ξi

Z n
i , j+1 −Z n

i , j−1

2∆θ

=
Z n+0.5

i+1, j −2 Z n+0.5
i , j +Z n+0.5

i−1, j

∆ξ2 + 2

ξi

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+ 2

ξ2
i

Z n
i , j+1 −2 Z n

i , j +Z n
i , j−1

∆θ2

(D.2.6a)

Z n+1
i , j −Z n+0.5

i , j

0.5∆τ
+Pe vξi , j

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+Pe

vθi , j

ξi

Z n+1
i , j+1 −Z n+1

i , j−1

2∆θ

=
Z n+0.5

i+1, j −2 Z n+0.5
i , j +Z n+0.5

i−1, j

∆ξ2 + 2

ξi

Z n+0.5
i+1, j −Z n+0.5

i−1, j

2∆ξ
+ 2

ξ2
i

Z n+1
i , j+1 −2 Z n+1

i , j +Z n+1
i , j−1

∆θ2

(D.2.6b)

Referring to Eq. (3.2.7c) and Eq. (3.2.7d), Eq. (D.2.6a) and Eq. (D.2.6b) have an excess relationship

Zi , j+1 = Zi , j−1 (D.2.7)

D.2.3 THE ALTERNATING DIRECTION IMPLICIT LINEAR SYSTEM

Define

cvdri , j = Pe

4

∆τ

∆ξ
vξi , j (D.2.8a)

cvd thi , j = Pe

4

∆τ

∆θ

vθi , j

ξi
(D.2.8b)

c1dri = 1

2

∆τ

∆ξ

1

ξi
(D.2.8c)

c2dr = 1

2

∆τ

∆ξ2 (D.2.8d)

c1d thi , j = 1

4

∆τ

∆θ

cotθ j

ξ2
i

(D.2.8e)

c2d thi = 1

2

∆τ

∆θ2

1

ξ2
i

(D.2.8f)

Linear Systems in the ξ−Direction

(cvdri , j − c1dri − c2dr ) Z n+0.5
i+1, j + (1+2c2dr ) Z n+0.5

i , j + (c1dri − c2dr − cvdri , j ) Z n+0.5
i−1, j

=
(c1d thi , j + c2d thi − cvd thi , j ) Z n

i , j+1 + (1−2c2d thi ) Z n
i , j + (cvd thi , j − c1d thi , j + c2d thi ) Z n

i , j−1

(D.2.9)
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Linear Systems in the θ−Direction

(cvd thi , j − c1d thi , j − c2d thi ) Z n+1
i , j+1 + (1+2c2d thi ) Z n+1

i , j + (c1d thi , j − c2d thi − cvd thi , j ) Z n+1
i , j−1

=
(c1dri + c2dr − cvdri , j ) Z n+0.5

i+1, j + (1−2c2dr ) Z n+0.5
i , j + (cvdri , j − c1dri + c2dr ) Z n+0.5

i−1, j

(D.2.10)

Along the stagnation lines, Eq. (D.2.6a) and Eq. (D.2.6b) are

(cvdri , j − c1dri − c2dr ) Z n+0.5
i+1, j + (1+2c2dr ) Z n+0.5

i , j + (c1dri − c2dr − cvdri , j ) Z n+0.5
i−1, j

=
4c2d thi Z n

i , j+1 + (1−4c2d thi ) Z n
i , j (D.2.11)

−4c2d thi Z n+1
i , j+1 + (1+4c2d th) Z n+1

i , j

=
(c1dri + c2dr − cvdri , j ) Z n+0.5

i+1, j + (1−2c2dr ) Z n+0.5
i , j + (cvdri , j − c1dri + c2dr ) Z n+0.5

i−1, j (D.2.12)
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