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Abstract

Increasing global human population coupled with the climate change pose serious
threats on the basic needs of society. The coming decades will witness the chal-
lenges associated with the food security, land availability, clean water availability,
and energy security. These issues directly or indirectly affect the various com-
ponents of the Earth’s Critical Zone (ECZ). Our natural resources are finite and
hence a policy framework is urgently required to deal with the growing demand
in food, clean energy, and water in sustainable ways. This work characterises some
key components of the ECZ such as wetlands, through modelling and computa-
tional simulation approaches. A data-driven methodology known as the system
identification is used to devise a nonlinear dynamic model of the tropical wet-
lands. The dataset used in the study corresponds to a Global Inundation Extent
from Multi-Satellites. The model gives some useful insights about the dynamics
of tropical wetlands and the possible effects of climate change on wetlands. The
prediction power of this model is shown to be superior than the competing analyt-
ical models representing the inundation dynamics. This work also contributes to-
wards the theoretical advancements in the nonlinear system identification method
by proposing a new algorithm capable of performing the model structure selec-
tion in the NARMAX model class under the Approximate Bayesian Computa-
tion (ABC) framework. In addition to the data-driven approach, this thesis also
switches to analytical modelling framework for investigating the sustainable ways
of food production and climate change mitigation through a Negative Emission
Technology (NET) known as enhanced weathering. The recent reports of Intergov-
ernmental Panel on Climate Change have highlighted the need of an NET to meet
the ambitious targets of lowering the global temperature. A process-based model
representing the enhanced weathering of a mineral is developed and integrated
with standard soil, vegetation process models. The integrated model is termed as
the Integrated Enhanced Weathering Critical Zone Model, which is used to anal-
yse the potentials of enhanced weathering in the UK conditions. The simulation
results indicate that with the implementation of enhanced weathering in the UK
farmlands, we can reduce the atmospheric carbon through sequestration as well as
increase the crop yield substantially. In another words, food security and climate
change mitigation can be addressed simultaneously. In a nutshell, the simulation
results and analyses of this thesis can be used to design further experiments for
investigating the ECZ processes like inundation dynamics and enhanced weather-
ing. The results can also act as guidelines for framing the relevant policies towards

environmental and food sustainability.
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Chapter 1

Introduction

1.1 Background and motivation

The global human population is expected to cross 9 billion by 2050 [1]. This
projected figure depicts an increase of about 1.5 billion people in the next thirty
years, which will eventually increase the demand for food [2], clean water [3], and
energy [4] dramatically in the coming decades. The exploitation of the Earth’s
natural resources in various forms, such as, intense farming and unsustainable
land use [5] appears inevitable for catering these basic needs of people. The cli-
mate change [6] and its effects on the ecosystem services further complicates the
matter. Clearly, there is a need to adopt holistic approaches in dealing with these
imminent societal crisis. This thesis has touched the ‘holistic” criteria while ad-
dressing some crucial aspects of environmental and food sustainability issues. In
a nutshell, this work comprises of modelling and analysing some key nonlinear
dynamical processes pertinent to the biogeochemical cycles of the Earth’s Critical
Zone (ECZ).

The ECZ is a region between top of the vegetation canopy and the base of
drinking water aquifers. Formally, the ECZ can be defined as the "heterogeneous,
near-surface environment in which complex interactions involving rock, soil, wa-
ter, air, and living organisms regulate the natural habitat and determine the avail-
ability of life-sustaining resources" [7, 8]. Most of the world’s crucial problems
such as, growing population, food security, water security, energy security, cli-
mate change, and extreme poverty are interlinked in some ways [9] and lead to
the milking of the ECZ resources. In the purview of sustainable usage of the nat-
ural resources, the international organisations such as, the World Bank (WB) and
the United Nations (UN) have reformed their policy frameworks substantially in
the last two decades. The UN Sustainable Development Goals (SDGs) proposed in
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2015 is a set of seventeen goals to transform the world for a sustainable future. The
goals specified in the SDGs encapsulate all the major societal challenges as out-
lined in the beginning. The noteworthy point in the SDGs is the linkage among all
the goals. The message is loud and clear that an integrated approach is required
while dealing with most of the problems relevant to the domain of sustainability.
A holistic or integrated viewpoint should be embedded at all the levels, from the
scratch idea stage to the policy making and implementation stage.

From an engineering point of view, the ECZ can be perceived like a system
having several subsystems. The ECZ system can be represented with the chosen
level of abstraction. Which simply means that irrespective of the complexities pos-
sessed by the ECZ, it can be represented as a combination of some key subsystems.
The characteristics and significance of these subsystems will get unfolded in the
later parts of this section.

The motivation of this work relates to some sort of common solutions towards
the climate change mitigation and food security. The recent Intergovernmental
Panel on Climate Change (IPCC) reports have concluded that the ambitious tar-
gets of lowering the global mean temperature cannot be achieved solely by cutting
down the greenhouse gas emission. The additional techniques capable of seques-
tering the anthropogenic carbon, known as Negative Emission Technology (NET)
must come into play by the later half of this century [10]. One of such NETs
known as, Enhanced Weathering (EW) can potentially absorb the carbons and
also improve the crop production when applied in the farmland. The net effects
of the carbon sequestration on the ECZ can only be assessed properly when all
the biogeochemical cycles factors are taken into account. A wetland defined as an
inundated land surface plays major roles in the absorption of carbon and emission
of methane gas. Hence, wetlands are important factors in accounting the biogeo-
chemical cycles of the ECZ. The extent of wetland exhibits seasonal variations and
depend a lot upon the local climate. The analysis of wetland extent dynamics and
EW potentials emerged as the core areas of investigation in this thesis and their
significance in the ECZ system will be more apparent in the forthcoming chapters.

A mathematical model is a simple representation of some complex physical
processes. This thesis has analysed some key processes of the ECZ, such as, weath-
ering, vegetation, and inundation through modelling and computational simula-
tion techniques. The interlinking of the SDGs particularly ‘zero hunger’, and
‘climate action” has been at the heart of this thesis and therefore the modelling
and simulation analysis in this work are inspired from the ‘systems thinking” [11].
Herein, the system of interest encapsulates the models representing soil processes,

vegetation processes, weathering processes, and inundation process. The system
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approach in modelling supported the requirements collation and incorporation of
all the processes accordingly with the desired level of abstraction. Some of the
components such as, soil and vegetation processes [12-14] have previously been
modelled and these models demonstrate the reasonable amount of fidelities as
well. Therefore, these standard models have been adopted in this thesis. For the
remaining components of the system, either a data-driven or analytical types of
modelling take the centre stage. The nonlinear system identification methodol-
ogy forms the basis of wetland modelling in this thesis, whereas, the enhanced

weathering part is modelled using a process based modelling approach.

1.2 Aims and objectives

This thesis aims to model and perform the computational simulations of the es-
sential ECZ processes for evaluating the various scenarios relevant to environ-
mental sustainability and food security. During the course of modelling, the thesis
also aims to bring out some methodological advancements in the Model Struc-
ture Selection (MSS) step, mainly in a System Identification (SID) context. For the
sake clarity, the objectives corresponding to the aims of this thesis are placed un-
der three different categories: wetland modelling objectives, enhanced weathering

modelling objectives, and SID methodological advancement objectives.

1.2.1 Wetland modelling objectives

e Develop an Approximate Bayesian Computation (ABC) based identification

procedure for wetland dynamics.

e Devise a single model structure capable of explaining the dynamics of entire
tropical wetland sites.

e Estimation of model parameters across all the tropical wetlands sites and in
turn capture the site specific topographic details in model.

e Show spatial variability of tropical wetland dynamics through model simu-
lations.
1.2.2 Enhanced weathering modelling objectives

e Develop and implement a mathematical model representing the enhanced
weathering of a rock using a shrinking sphere modelling methodology.
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o Integrate the developed EW model with the existing ECZ process models.
The integrated model will be termed as the Integrated Enhanced Weathering
Critical Zone Model (IEWCZM).

o Calibrate and validate the IEWCZM using an actual field level experiment.

e Perform the sensitivity analyses to assess the sensitivity of weathering rate
on the variables like soil pore water pH, temperature, and mass of the weath-

ering mineral.
e Perform a case study for assessing the effects of EW on crop yield.

o Collect the key input data of a recent soil-vegetation process from the Uni-
versity of Leeds farm and parametrise the IEWCZM to represent all the key
ECZ processes of the farm through the IEWCZM.

e Design a simulation experiment for winter wheat farming on the Leeds farm
site. Thereafter, simulate the one off addition of basalt in Leeds farm for a
period of three years and compare the effects of basalt addition with the
baseline conditions for all the key soil-vegetation variables. Extend the sim-
ulation to the yearly addition of basalt in Leeds farm until the year 2099.

e Divide the entire UK land area into grid cells separated by 0.5 x 0.5 degree
geographically. Parameterise the IEWCZM for all the sites while keeping
the soil-vegetation parameters unchanged for the sake of simplicity. Which
means, only climatic parameters will vary among these sites. Calculate the
net CO, absorbed by the entire UK crop land by this century end.

1.2.3 SID methodological advancement

e Develop a novel algorithm known as the ABC-NARX-MSS using ABC and
inspired by the Sequential Importance Sampling (SIS).

e Compare the performance of the ABC-NARX-MSS with the Forward Regres-
sion Orthogonal Least Square (FROLS) using a known example system.

e Perform a full nonlinear SID steps using the ABC-NARX-MSS on an un-
known environmental system and eventually propose the ABC-NAR-MSS
as an efficient algorithm capable of selecting an optimal model structure in

a nonlinear SID.
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1.3 Overview of the thesis

In the purview of above discussions, this thesis has been organised into three
parts. The first part presents a novel algorithm for MSS in nonlinear SID. This
contribution chapter appears after the chapters on theory, applications and liter-
ature surveys in SID and ABC. The second part contains a novel contribution in
the form of a data-driven wetlands modelling. Similar to the previous part, a
chapter highlighting the significance of wetlands and the current states of wetland
models is placed in a preceding position. The final part of the thesis contains two
contributions, firstly the development of a calibrated EW model using analytical
approaches and the simulation analysis of EW in the UK conditions. Both of these
chapters are positioned after a literature survey on enhanced weathering theory,

its potentials and challenges.

1.3.1 Part I (System identification methodologies)

This part begins with the Chapter 2, titled as ‘System identification theory and
applications’. In this chapter, all the key steps in a typical SID are succinctly
presented. The second part as said above contains a data-driven modelling of
wetlands, a highly nonlinear system. Hence in the Chapter 2, nonlinear SID and
its model class are emphasised more than linear SID. The modelling of wetlands
comes under the ambit of applications of SID. So in this chapter, some recent
literatures on the applications of SID particularly beyond a typical control appli-
cation are provided. The first part of the thesis presents a novel algorithm on the
structure detection in SID, therefore some existing methods on MSS are critically
analysed here, to understand the research gaps as well as to highlight the thesis
contribution.

The Chapter 3 starts with the motivations and theories associated with the
ABC, which is a simulation based approach under the Bayesian framework. The
MSS algorithm devised in this thesis is under the umbrella of the ABC framework
as well as the parameter mapping of wetland sites in the next part is also guided
by the Sequential Monte Carlo (SMC) version of ABC. Therefore, the Chapter 3
reviews the popular inference algorithms under ABC. In addition, this chapter also
includes a survey about the theoretical advancements in ABC and the applications
of ABC methodology in a wide range of disciplines.

The Chapter 4 is a novel contribution in the form of an MSS algorithm under
the ABC framework. The SID methodology has surpassed the boundary of control
applications and domain experts from other fields typically prefer a simple algo-
rithm for SID steps. Existing algorithms on Nonlinear Autoregressive Exogenous
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(NARX) MSS under a probabilistic framework are mathematically and computa-
tionally very complex. The algorithm referred as the "ABC-NARX-MSS’ in this
chapter is a simple and easily adaptable in comparison to the competing methods.
This algorithm mimics the Sequential Importance Sampling (SIS) and exploits the
latest computing facilities under the umbrella of the ABC. The ABC-NARX-MSS
is tested with a numerical example and its performance is also compared with the
standard FROLS. A full cycle of the SID on an unknown environmental system
is included in this chapter to highlight the performance of the ABC-NARX-MSS
algorithm. This novel method of MSS was devised in the final phase of the project
and hence could not be applied in the Part II of the thesis. Nevertheless, the sim-
ulation results of an unknown environmental system suggests that this algorithm

would be very effective with such kind of systems.

1.3.2 Part II (Data driven modelling of wetlands)

This part mainly contains the modelling of wetlands using nonlinear SID methods
and starts with the Chapter 5. In this chapter, the definition, significance and
challenges of wetland modelling are presented. The popular wetland models are
reviewed to assess the gaps and the scope of improvement in the modelling of
wetlands. A data-driven approach known as the Data Based Mechanistic (DBM)
modelling relevant in hydrology is also discussed in this chapter. The idea behind
including a survey of DBM approach is to demonstrate the significance of data
availability in hydrology and a potential of data-driven modelling in a wetland
system where hydrology plays important roles.

The Chapter 6 is a novel contribution of the thesis and contains the model
development and simulations of the tropical wetlands. Existing literatures on wet-
land modelling suggest that so far only analytical modelling approaches have been
employed. However, all such modelling attempts fail to represent the wetland dis-
tribution fairly. In this chapter, a novel data-driven approach in the form of SID
is brought into picture. The dataset used in this project corresponds to a Global
Inundation Extent from Multi-Satellites (GIEMS) and a Single Input Single Out-
put (SISO) system approach has been employed. The project’s aim required the
selection of average temperature as an input and the wetland fraction as output
so that the model could be employed for evaluating the various scenarios of the
IPCC until the end of this century.

The entire tropical wetland modelling exercise is divided into two stages. In
the first stage, only three wetland sites are included and the FROLS is used for the
MSS as well as parameter estimation. In the next stage, all the available wetland
sites form the part of modelling and a single model representing the dynamics
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of the tropical wetlands is obtained. The model is parameterised for all the sites
separately so that the topographical details for each site gets captured in the form
of parameters. The analysis of parameters across all the tropical sites are in ac-
cordance with the expected characteristics of tropical wetlands. The simulation
results for all the available wetland sites are compared with the observed data to

ensure the fidelity of developed model.

1.3.3 Part III (Analytical modelling of enhanced weathering)

The Part III of this thesis is a shift towards the analytical modelling approach. It
starts with the Chapter 7, where some basic theories behind enhanced weathering
along with its potentials and challenges are elaborated. This chapter compares the
available weathering models and emphasises the need for integrating the weath-
ering processes with the soil-vegetation processes.

In the Chapter 8, a shrinking sphere type of weathering model is developed.
Some literatures containing the modelling of rock weathering processes do exist
but they do not consider all the essential ECZ processes relevant to weathering
mechanism. To some extents these models also ignore the effects of weathering
products on the ECZ processes. In reality, rock weathering is linked to the ECZ,
particularly the soil-vegetation processes. Therefore, this chapter also shows the
integration mechanism of weathering processes with the ECZ process models. The
integrated model is referred to as the IEWCZM.

A weathering reaction rate is largely governed by the rate constant. The ex-
isting literatures on weathering models use the rate constant values from some
standard sources, containing the theoretically or laboratory determined values.
However, at least one recent study [15] highlights the problems associated with
such kind of theoretical rate constant values in an olivine weathering reaction.
Therefore, in this chapter the IEWCZM is calibrated with a field result and a case
study has also been presented. The weathering process depends upon the vari-
ables like pH and temperature, hence sensitivity analyses have been included,
which can be helpful in choosing the optimum sites for the implementation of
enhanced weathering. The IEWCZM is passed through some validation tests by
reproducing an actual olivine weathering reaction results.

The Chapter 9 provides the analysis of EW in the UK condition. As briefed in
the previous section, EW is an NET which can sequester the anthropogenic carbon
and in parallel also improves the crop yield. The EW being in a concept phase has
not been implemented so far in a UK cropland. In the absence of a weathering
model capable of simulating weathering as well as all the key ECZ processes si-
multaneously, any simulation study of EW in the UK condition was not performed
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before this project. As a geo-engineering process, any actual implementation of
EW will have to pass through rigorous evaluations and therefore computational
simulation turns out to be a natural choice for analysing the various scenarios per-
taining to the implementation of enhanced weathering in a farmland. This chapter
simulates the one-off addition of silicate mineral as well as yearly addition of min-
eral until this century end is also provided. The amount of carbon sequestrated

and growth in the crop yield by 2099 are presented with necessary details.

1.4 Research outputs

The materials from the Chapter 6 have been adopted for the following paper (pub-
lished):

e A. Anupam, D.J. Wilton, S.R. Anderson, and V. Kadirkamanathan. A data-
driven framework for identifying tropical wetland model. In 2018 UKACC
12th International Conference on Control (CONTROL), pages 242-247. IEEE,
2018.

The extended version of the tropical wetland modelling under the ABC frame-
work will be presented in another paper (in preparation):

e A. Anupam, D.J. Wilton, S.R. Anderson, and V. Kadirkamanathan. Identifi-
cation and parameter mapping of tropical wetland model using the ABC.

The materials from the Chapter 4 are being adapted for a paper (in prepara-
tion):

e A. Anupam, S.R. Anderson, and V. Kadirkamanathan. An ABC based algo-

rithm for the model structure selection in nonlinear system identification.

1.5 Summary of contributions

In summary, the novel contributions of this thesis are documented in the following
chapters:

1. Chapter 4, NARX model structure detection under ABC framework
2. Chapter 6, Tropical wetlands modelling
3. Chapter 8, Integrated enhanced weathering critical zone model

4. Chapter 9, Enhanced weathering in the UK conditions



Part I

System identification
methodologies



Chapter 2

System identification theory and
applications

2.1 Introduction

System identification (SID) is a method of identifying the mathematical represen-
tation of a system on the basis of observed data of the system. The ‘system’ in
this definition can be any kind of system such as, power station, financial system,
environmental system, biological system etc. Any envisioned system can be repre-
sented by a mathematical model, which can facilitate the simulation and analysis
of the system prior to its implementation. Therefore, modelling is at the heart of
any system design.

Analytical modelling of a system is not so straightforward on numerous occa-
sions. The challenges associated with an analytical modelling are manifold and
any change incurred at a subsystem level might propagate through the entire sys-
tem and leave the model futile. SID deals with the input-output data and regards
the system as a blackbox. The generation of outputs corresponding to some input
is a relatively simple task for any process. The output data emerging out of a
system encapsulate the hidden dynamics of the system in some forms. The SID
follows a well structured methodology for retrieving those dynamics and presents
a dynamic model, consisting of the time lagged versions of system input and out-
puts. A system can be linear or nonlinear and ideally a SID algorithm should be
able to distinguish among these features. For instance, a nonlinear model for a
linear system will only haze the analysis of the system and the underlying science
may not divulge at all. A SID broadly consists of two main steps, model structure
detection and parameter estimation.

In this thesis, SID occupies a very prominent position and touches at least

10
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fifty percent portions of the entire thesis. As briefed in the introductory chapter,
wetlands play very crucial roles in the Earth’s Critical Zone. In the later part of
the thesis, a dynamical wetland model corresponding to the tropics of the earth
will be developed using SID. The forthcoming chapters will also highlight the
significance of a data-driven approach in wetland modelling and the limitations
of the process based models. Therefore, this chapter on SID will cover all the basic
elements used for devising a tropical wetland model in this thesis. This aspect of
the SID in the context of wetland modelling can be placed under the realm of SID
applications. This thesis also contains a chapter on the methodical advancement
in SID. The model structure detection is very crucial and often the most difficult
task in a SID. This research has added a novel method of structure detection in
SIDs. Therefore, it is imperative to discuss the gaps in the existing SID algorithms.
This chapter will attempt to provide all the facets of SID succinctly while keeping
the research contributions in view at the same time.

This chapter unfolds with a description about the model structures corre-
sponding to both linear and nonlinear class of systems. The choice of model
type is a key part because an inappropriate selection could make the identifica-
tion process very difficult. Thereafter, parameter estimation methods common in
SID will be covered. The model structure detection is the toughest step in a SID
and still open for wide research despite the establishment of this methodology for
more than three decades. This thesis will also address this aspect in the chapter
4 and hence a critical review of some popular methods in the model structure de-
tection will be presented in a dedicated section. The SID as a method has crossed
the boundary of a typical control theory application many years ago. In fact, this
thesis too shows a new application area of SID while modelling wetlands. The
application areas of SID therefore need to be reviewed in order to understand the
motivations of applying it in this particular research. Finally, the chapter will end

with some concluding remarks.

2.2 Model structure

A SID technique can be used to build up a ‘relevant’ model using the observed
data. The ‘relevant’ keyword is to emphasise that, a model must be in accordance
to the system type. For instance, discrete systems can be represented using the
difference equations, whereas, an ordinary differential equation should be able
to describe continuous-time system. All the models must also take into account
the linearity or nonlinearity of the system. In this section, some standard model

structures corresponding to linear and nonlinear models will be discussed. Nev-
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ertheless, all of the model types presented here are not pertinent in this study, as

the modelling in this thesis are mainly based around nonlinear systems.

2.2.1 Linear models

The general model class of finite order linear system is known as the Autoregres-
sive Moving Average with Exogenous Input (ARMAX) and can be represented as
[16-18]

A = 2t - S e 21
where
Az Y =14az + . Fauz™
Bz Y)=biz '+ ...+ bz ™
Clz =14z 4. Fepz ™ (2.2)
Dz Y =1+diz " +..+dyz ™
Fz ') =1+ fiz '+ .+ fuiz

In the above representation of an ARMAX model, u(k) and y(k) stand for the
system input and output respectively. The n,, ny, n., nz, and n  relate with the
model orders. The ¢(k) represents an independently and identically distributed
noise sequence. The z~! symbol acts as the backward shift operator in the expan-
sion of the above model structure.

The ARMAX is a generalised model structure for the linear systems and a full
ARMAX representation is not always essential. Sometimes, a linear model can be
explained with a shorter representation such as, AR (B=0, C=D=1), MA (A=1,
B=0, D=1), ARMA (B=0, D=1), and ARX (C=D=F=1).

2.2.2 Nonlinear models

Most of the real world systems exhibit some kind of nonlinearity. Sometimes, a
nonlinear system can be approximated as linear particularly at the operating re-
gions, but that comes at the loss of precision. A single model class encompassing a
broad range of nonlinearities is not so easy. The Nonlinear Autoregressive Moving
Average with Exogenous input (NARMAX) model, firstly introduced around three
decades ago has emerged as a popular choice in a nonlinear SID. In fact, the broad
features within a NARMAX model structure have shaped it like a philosophy of
the nonlinear SID [18, 19].

A typical nonlinear SID or NARMAX approach consists of the following steps:
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1. Nonlinear model structure detection
2. Parameter estimation

3. Model validation

4. Forecasting

5. System analysis

The formal definition of NARMAX model is [18]

y(k) =Fly(k —1),y(k = 2),.... y(k — ny),
ulk—d),ulk—d-1),..,ulk—d—mny), (2.3)
e(k—1),e(k—2),...e(k —n.)] +e(k)

where y(k) is system output, u(k) is system input, e(k) is noise sequences, n,
is maximum lag for system output, 1, is maximum lag for system input, n, is
maximum lag for noise, F is a nonlinear function, and 4 is time delay. The mov-
ing average (MA) part is not considered on most occasions and hence the above

NARMAX representation can be reduced to a simpler NARX model structure.

2.2.3 Miscellaneous models

In this section some miscellaneous model classes will be discussed briefly. Note-
worthy point is that most of these model structures have been tried as a substitute
of the standard NARMAX in past, but they have not been able to possess the
generality and robustness of a NARMAX model.

One of such models is known as Piecewise Linear Model (PLM). In a PLM
method, a nonlinear system is partitioned into the operating regions of interests.
The basic idea is to harness the available methods of linear modelling along these
operating regions and eventually glue these linear models together to somewhat
mimic like a nonlinear model of the system. The approximation of nonlinear
system by a chain of linear models can be performed in many ways. A few popular
methods for performing the PLM are available in [20]. Some other methods under
the ambit of PLM can also be accessed through [18].

The Volterra Series Models (VSM) is another popular model choice. A VSM
can represent a system dynamics through lagged inputs. In a way it acts like a
subset of NARMAX but the absence of lagged outputs make the VSM a clumsy
representation especially in nonlinear cases. The detailed survey and the applica-
tion areas of the VSM can be found in [18, 21].
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Block-Structured Models (BSM) or Cascade models is a prominent class of
nonlinear model. The simplistic representation of this model class has been ex-
ploited in many systems especially in Biology. Fundamentally it is built through a
cascading between linear dynamic blocks and static nonlinear blocks. Most com-
mon BSM types are Hammerstein and Wiener models. In Hammerstein models,
static nonlinearity, ¢(.), precedes the linear dynamics, H(z '), whereas, this order
gets reversed in a Wiener model. The BSM can be generalised by considering the
Hammerstein and Wiener models as special cases and loosely called as a sandwich
model because g(.) is sandwiched between two blocks of H(z~!) [18, 21-23].

In addition to the model types discussed above, neural networks, wavelet mod-
els, and state space models can also be employed in a SID context. Detailed infor-
mation about these model structures are available in [18]. The key point remains
the selection of an appropriate model type for the system under consideration.
Among all these structures, NARMAX model class appears to be the most effi-
cient model for this study. The dataset in this study has emerged from an envi-
ronmental system and should display nonlinear behaviours. If not then also the
NARMAX method should be able to reduce the representation into an ARMAX
model type.

2.3 Parameter estimation

In this section, a brief description about the parameter estimation in a SID will
be presented. A NARMAX model can be described as a linear-in-the-parameters

representation
M
y(k) =) 0ipi(k) +e(k) (2.4)
i=1

where y(k) is system output, ® are the regressors formed by combining the linear
and nonlinear time-lagged input-output sequence, e(k) is a noise sequence. The

equation 2.4 can be converted into matrix form,
y=>0+e (2.5)

, the parameter vector 0 can easily be calculated from the equation 2.5.

The parameter estimation in SID can also be performed using sophisticated
statistical approaches. Such as, the evaluation of maximum likelihood (ML) esti-
mate is one of the ways of parameter estimation. An ML method tries to maximise
the likelihood function, p(y|6), in order to obtain a parameter set fp;.. The Oyr

can therefore be regarded as a ‘true’ parameter which generates the data closely
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to the observed data. In practice, logarithmic likelihood functions are used to sim-
plify the evaluation process. The logarithmic conversion is in sync with the theory
as the natural log is a monotonically increasing function. The expectation maximi-
sation is an iterative algorithm which can result into an ML estimate through the
log-likelihood function. The SID under an EM framework is described in [24].

The statistical approach in parameter estimation also extends to the Bayesian
framework. In the recent years an approximate version of the Bayesian inference
known as Approximate Bayesian Computation (ABC) has come into limelight.
The Bayesian methods particularly the ABC provides quite a few algorithms on
parameter estimation. Many available literatures on these kind of algorithms have
refrained from using the term ‘SID” while presenting these parameter inference
algorithms mainly because a SID consists of lot more steps than just parameter
estimation. Nevertheless, one can easily extend these ideas and enhance the tool-
box of parameter estimation in a SID context. The next chapter is dedicated to the
ABC and contains some of these algorithms with necessary details.

2.4 Model structure selection

In this section various methods corresponding to the Model Structure Selection
(MSS) problem will be presented. One of the forthcoming chapters in this thesis is
about a novel contribution towards the MSS in a nonlinear SID. Therefore, some

key literatures related to the MSS will be critically reviewed in this section.

2.4.1 Model selection via information criteria

Information theory contains a meticulous framework for model selection mainly
through measurement of information loss between observed data and model sim-
ulated data. The Akaike Information Criterion (AIC) first introduced in [25] is
used to estimate the relative quality of models corresponding to a given set of
data. This takes into account goodness of fit across models as well as model com-
plexity. The AIC was adapted in [26] by including Bayes’ solution for selecting the
best models among a set of models. This adapted version of the AIC is known
as the Bayesian Information Criterion (BIC) [27]. Basic philosophy of the AIC is
retained by the BIC as both of them calculate the maximum likelihood and pe-
nalise an over-fitted model. So, both the AIC and BIC give a relative estimate of
information loss across several candidate models. Mathematically,

AIC = 2k —2In(L) (2.6)
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where k is equal to the independently adjusted parameters within the model and
L is equal to the maximum likelihood.

BIC = In(n)k — 2In(L) (2.7)

where k and L have similar meanings like the equation 2.6. An additional term 7 in
the equation 2.7 stands for the number of data points in an observed dataset. Typ-
ically, such an information criteria method works well for about 10 or less models
[28]. Dynamics of many real world systems are usually represented through a
nonlinear model structure. Often the number of candidate models in such cases
are so high that the AIC/BIC in its current form may not be even feasible to apply.
The simulation of each candidate model and the calculation of AIC/BIC scores
lead towards the computational intractability. However recently, a method came
into picture, where the direct computation of AIC/BIC scores are avoided by in-
tegrating sparse regression for nonlinear system identification using SINDy [29]
and information criteria based model selection [28].

In principle, a model selection method based upon information criteria can be
used in any data-driven discipline. A linear model fitting should be attempted
for any dataset in a first place and AIC/BIC can be very useful for obtaining
a parsimonious model structure. However, the limitations of this approach in

nonlinear modelling generally require other sophisticated methods.

2.4.2 Orthogonal forward regression framework

The Forward Regression Orthogonal Least Square (FROLS) is a model structure
detection method, driven by the iterative addition of terms based on their Error
Reduction Ratio (ERR) values. It is considered to be the most popular algorithm
since its emergence [30] mainly due to its computational simplicity. The FROLS
incorporates the orthogonalisation for decoupling the regressors which in turn
simplifies the evaluation of ERR for each candidate term. The contribution of each
term to the output variance is contained by the ERR and it is assessed by taking
into consideration the decrease in Mean Squared Prediction Error (MSPE) incurred
after adding the term to the existing model structure. The ERR index for all the
unselected terms are calculated at each iteration and the one with the highest ERR
is included in the current model structure.

In order to perform the orthogonal decomposition, firstly the equation 2.4 is

converted into matrix form (equation 2.5). The orthogonal decomposition leads to
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the equation 2.8 and subsequently to the the equation 2.9.

y=>A A0+ e (2.8)

y=Wg+te (2.9)

W=[w;,...,. wm] is a (N x M) orthogonal regression matrix, where columns are
orthogonal. A is a (M x M) unit upper triangular matrix, e is model residual
error vector, g is the parameter vector, ®=WA . The QR decomposition is achieved
by using modified Gram-Schmidt algorithm. The orthogonalisation enables the
uncoupling among the columns of W matrix. This also causes the corresponding
parameters in the g to exhibit uncoupled behaviour. Therefore, the individual
contribution of each regressor in W, while minimising the distance between one-
step-ahead (OSA) prediction and the observed output can be assessed [18].

The ERR assigns some degree of importance to each regressor which is even-
tually used for ranking of these regressors in model. The noteworthy point here
is that this assigned importance is not ‘absolute” in nature and largely depends on
the model under consideration. This could in fact pick up a term as a ‘significant’
term in the beginning, but after the detection of the complete structure, the chosen
term may not be very important [31]. There is no way to prune a poor term in the
original version of the FROLS. However, this issue has been addressed to a large
extent by the iterative Orthogonal Forward Regression (iOFR) method, in which
the FROLS is iterated with different initial regressors. This algorithm is able to
prune the redundant terms and return an optimal solution. This method tries to
exploit the computational simplicity of the FROLS while performing the search in
regressor space [32].

2.4.3 Model selection under Bayesian framework

The concept of model selection under the ABC framework was introduced re-
cently in [33]. This literature has adapted the standard Bayesian model selection
[34] guidance, especially the Bayes’ factor in its examples. The model selection
algorithm is very much similar to the ABC-Sequential Monte Carlo parameter
estimation. In this algorithm, an additional ‘model parameter” m¢c[1,...,1] is intro-
duced, which is discrete in nature. ¢ is the total number of models. Each model
has its own parameter set denoted by 6,, and unlike m, 6,, is not discrete in nature.

At each iteration, firstly a candidate model is sampled from the uniform dis-
tribution of models, 7t(m). Corresponding to the sampled model, a parameter set
is sampled from the prior distribution and perturbed using a perturbation kernel.



Chapter 2. System identification theory and applications 18

Model is simulated using the parameters obtained after perturbation. If the per-
formance of the model meets the threshold criteria of the population level then
the model is accepted as a particle and a resampling of model for the next par-
ticle takes place. If the performance of the model does not meet the threshold
criteria then the model is rejected and resampling of model for the current par-
ticle takes place. The number of particles in a population is a design choice and
directly relates to the computational effort of the algorithm. In an ABC-SMC pa-
rameter estimation method, final population is reached sequentially by reducing
the threshold values at each step. The same approach is followed here and the
algorithm stops when all the particles in the final population level is obtained.

On many occasions, the probability distribution of model parameter clearly
indicates the true model among the candidate models. However this is not always
guaranteed especially when the competing models are equally suitable to describe
the given data. Bayes’ factor is calculated from the model probability distribution
to figure out the best model. The interpretation of the various Bayes’ factor in a
tabular form is provided in [33]. The table suggests that, when more than one
model has similar probability value then even Bayes’ factor fails to infer the true
model.

The model selection algorithm presented in [33] opens up the ideas of model
selection problems solely through an ABC methodology. The algorithm presented
here can be very useful in cases where only few candidate models exist. In SID,
model structure detection is a bigger problem than parameter estimation. The
number of candidate models are 2" where n denotes the number of regressors.
For a system with maximum input-output lags equal to 2, the value of n reaches
34. So, the ABC-SMC model selection algorithm cannot be applied in a SID setting.

Another set of algorithms on the MSS under ABC framework was proposed
by the [35]. In this literature, model selection has been divided into one-stage and
two-stage categories. In the one-stage model structure detection, a quantile test
is performed to gauge the significance of a parameter inferred using ABC-SMC
parameter estimation algorithm. If a parameter fails this test then that gets labelled
as a ‘false’ parameter and pruned away from the model structure. Through a
numerical example this test is shown to be performing satisfactorily at least for
the terms having sensitive parameters. One major criticism about this one-stage
algorithm is that, it does not assess the performance of the model simulations.

In view of the above drawback, the two-stage model structure detection is also
presented in [35]. This algorithm uses the BIC to take into account the model
simulation performance. This algorithm has been proposed in continuation to the
one-stage algorithm and is not a stand-alone method. While using this algorithm,
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firstly one-stage term selection is used to prune away the ‘false” parameters based
upon the mentioned quantile test. Prior to quantile test, an initial sensitivity test
is also performed. The Cha-Srihari distance metric is then used to order the unse-
lected terms followed by the BIC test to order the terms based on their simulation
performance. ABC-SMC is used to estimate the parameters of the final model
structure obtained at the end of one-stage and two-stage term selection.

One of the criticisms about this method is that, prior to running the one-stage
term selection, one needs to estimate the parameters corresponding to all the pos-
sible terms which could go substantially high for real world scenario like wetland
system. The ABC-SMC in the current form does not work satisfactorily with very
high dimensional parameter estimation. Practical experiences suggest that more
than 10 parameters in a model would make the ABC-SMC code sluggish and may
even fail. So, the pre-condition of these one-stage and two-stage term selection
algorithms can be really difficult and sometimes impossible to satisfy. Another
criticism is about the search mechanism in this algorithm. The terms selection
algorithm in this paper [35] actually returns an ordering of the terms depending
upon their contribution in the model. For many situations in SID, such kind of
ordering is acceptable considering the fact that even the most popular algorithm
like FROLS does the similar kind of ordering based on OSA prediction error min-
imisation approach but ideally an MSS algorithm should exhibit the global search
for an optimal solution.

Another recent contribution in the model structure detection under the Bayesian
framework was based on the Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) methodology [36]. In this literature, both the parameter estimation and
model structure detection are performed using the extension of the Metropolis-
Hastings algorithm (MH). At each iteration, this method can perform birth move,
death move or update move. In the birth move, a new term is randomly selected
for the inclusion into the existing structure. Similarly in the death move, one of
the terms from the model structure is randomly chosen for pruning. In the update
move, parameter update takes place using a MH random walk. The extension
of MH algorithm enables the jump between different parameter dimensions. In
theory, this approach of simultaneous model structure selection and parameter
estimation appears to be exciting. However, the trans-dimensional jump in the

parameter space is a complex phenomena as reported in [37].

2.4.4 Model selection using randomised approach

Recently, a randomised algorithm for the model structure detection (RaMSS) was
present in [37]. In this method, regressors are randomly sampled in the first it-
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eration to constitute a certain number of candidate models. These models are
then passed through their respective parameter estimation steps and simulation.
The parameter estimation is suggested by the least square method for the com-
putational reasons. Following the models simulation, the performance of each
regressor is quantified using an index known as I;. The idea behind this indexing
is much similar to the ERR, nevertheless, the values of I; will keep updating with
iterations. The I; is calculated by comparing the models where the regressor j is
present and the models where the regressor j is not present. The value of I; is used
to update the Regressor Inclusion Probability (RIP) of the regressor j, and the re-
gressor sampling in the next iteration will be based upon the updated RIPs of all
the regressors. The algorithm is compared with the RIMCMC model structure de-
tection presented in [36] and has a better performance in terms of computational
requirements and consistency in selecting the ‘true” model.

Despite exhibiting a satisfactory performance, the RaMSS cannot be gener-
alised in other applications easily. The regressor performance index I; depends
upon the user-defined tuning parameters K and «. The RIP also depends upon a
design parameter, known as <. All these parameters induce the ad-hoc elements
in the algorithm and might be difficult to adapt this method in different problems.
The NARX model class is gaining popularity in wide disciplines. Hence a SID
method must exhibit the robustness, so that a practitioner can use the algorithm
without getting into the technical complications of tuning multiple parameters.
Another limitation of the RaMSS emerges during the initial selection of regres-
sors, which is random and without any benchmarking criteria. That means, if a
‘good’ regressor is left out in the 1 iteration, that will never be pickup up during

the entire MSS process.

2.5 Applications of SID

The SID as a dynamic system modelling methodology emerged in the context of
control theory. The shift from the classical control techniques to the model based
approaches necessitated innovations in the dynamic systems modelling. The in-
evitable complexities in modern systems such as in aerospace constrain the usage
of analytical modelling approaches for their controller design. The SID being a
data-driven method facilitates the blackbox modelling of dynamical systems. In
the last few decades, SID particularly nonlinear SID has crossed its core domain
and have been applied in a wide range of disciplines. A novel application of the
SID in wetland system will be covered in the forthcoming chapter of this thesis.
The rationale behind this section is to outline a few interesting applications of SID
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beyond control theory. Another motivation behind this section is to highlight the
practical difficulties in identifying a real system. A typical literature on a SID algo-
rithm considers a known numerical example to illustrate the underlying methods
and hence the intricacies of a real system do not get exposed from such litera-
tures. The structure in this section has has been adapted from the [18] and a more
detailed review of the SID applications can be accessed from the same source.

2.5.1 SID in space weather modelling

The relationship between relativistic electron fluxes and the solar wind parameters
are studied in the [38]. Although the results reported here are interesting but
the correlation approach does not guarantee the detection of all nonlinear effects.
The idea was extended to the NARMAX approach and ERR based ranking of
terms by [39, 40]. The ERR test enabled the selection of relevant terms signifying
the relation between solar wind parameters and relativistic electron fluxes at the
geostationary orbit. The energy range was kept similar to the one used by the [38].
The dataset used in this study had some missing data and therefore eight subsets
of the data were extracted to ensure that missing data points do not affect the
analysis. Averaging of the ERR corresponding to all the eight sets were performed.

At the energy level 1.8 — 3.5 MeV, n(t — 1) has the highest ERR value and
therefore, solar wind density is the most contributing term towards the electron
flux. The second terms is the squared form of the solar wind density and the first
two terms together accounts for about 75% in the variance of the electron fluxes.
The velocity V (t) factor comes into play as a third term and accounts for just 6.30%
in the output. The energy level 1.8 — 3.5 MeV is considered as a very high energy
range and the wind density n(t) controls the electron flux mostly in this range. As
the energy range is lowered like in KeV range, V() emerges as the main control

parameter.

2.5.2 SID in detection and tracking of iceberg calving

In this study [41], dependence of Greenland iceberg calving on the variables such
as surface mass balance of ice sheet and regional climate change is analysed using
the NARMAX modelling approach. The 148N is an International Ice Patrol for the
iceberg data which passes at 48 degree N as the name suggests. In this study; it is
considered as a dependent variable and the variability of the I48N under the influ-
ence of other variables are analysed. The input variables are, Surface Mass Balance
(SMB), Labrador Sea Surface Temperature (LSST), and North Atlantic Oscillations
(NAO).
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The nonlinear SID in this study was performed using a sliding window of
thirty years for understanding the evolving trends. According to the ERR value,
the SMB turns out to be the most dominant factor in explaining the variance in the
48N during the first half of the 20" century. This trend was somewhat changed
in the later half with increasing contributions from the NAO and LSST. The NAO
and LSST are climate related indices but their increased contribution towards the
[48N variation in the later half of the 20" century cannot be inferred as the effects
of climate change according to an ocean model, incorporated in this investigation.
The strong contribution of SMB made a comeback in the recent years leading to
a conclusion that I4BN variability is not much dependent upon the open ocean

iceberg melting.

2.5.3 SID in modelling of synthetic bio-parts

Synthetic biology can be categorised into phases starting from the molecular and
modular level and reaching up to the system level recently. Despite this area
going through a continuous research growth, most of the synthetic biological sys-
tems are devised on ad-hoc methods. This study has attempted to formalise the
characterisation of dynamics associated with synthetic bio-parts through the use
of NARMAX modelling [42].

The input signal in this SID is 3-ox-ohexanoyl-L-homoserine lactone (30C¢ HSL),
whereas, output is the rate of green fluorescence protein (GFP) expression. The
details about these input-output and their actual significance are provided in [42].
The NARMAX model is represented in the continuous time domain using a dif-
ferential equation form. There were total nine candidate terms in this case, which
is a relatively simple scenario in NARMAX model and so all the possible model
structures were assessed. Finally a continuous time NARMAX model structure
having three parameters denoted by a1, a5, and a3 were obtained. The same model
structure was retained for all the experimental data and the parameters ( a1, a,
and a3) for all the datasets were estimated. The variations among the parameters

are not so large, signifying the consistent dynamic behaviour.

2.5.4 SID in forecasting high tides in the Venice Lagoon

The Venice Lagoon is one of the most vulnerable ecosystem particularly after the
flooding of 1966. Low atmospheric pressure supported by severe winds affect the
tides near the northern Adriatic sea and can cause acute flooding in the region.
A flood warning system can be very helpful in such situations and may tranquil

the life of the local population. Such warning system based on a combination of
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statistical and analytical modelling approach is presented in [43].

An SID approach involving multi-resolution wavelet models, rooted on cardi-
nal B-spline (CBS) multi-resolution were proposed in the last one decade as a flood
warning system in the Venice Lagoon [44-47]. This kind of modelling has shown
a superior prediction performance as compared to the existing tools. The dataset
used in this SID is on hourly basis starting from January 1990 to December 1994.
These data were chopped into five sets, each set containing about 8760 observation
points. The data corresponding to each set was used for model training and the

next set of data was used for model evaluation purpose.

2.6 Conclusion

This chapter provides a brief description about the SID methodology. Different
kinds of model structures have been presented to spotlight the features of NAR-
MAX model class in comparison to the other competing structures. The rich fea-
tures of NARMAX have transformed it into a philosophy of the nonlinear SID.

Statistical approaches in the parameter estimation have widely been used in
this thesis. However, the same has not be detailed in this literature because the
next chapter on the ABC will engulf most of the popular estimation methods.
On the other hand, model structure detection has been critically reviewed here
mainly to establish the gaps in the existing literatures on structure detection. These
reviews will be more relevant in the Chapter 4, where a novel method for the
model structure detection in nonlinear SID will be presented.

The preceding section contained some applications of SID. Two of them, sec-
tion 2.5.2 and section 2.5.4 can be referred as the application of SID in environ-
mental systems. The Earth’s natural environment is at the receiving end in the
advent of the climate change. This is linked to food security, water security, and
energy security either directly or indirectly. The major portions of this thesis is
themed around the sustainability issues and the modelling is at the heart of sus-
tainable futures. Both sections (2.5.2 and 2.5.4) demonstrate the power of SID in
addressing the environmental issues. This idea will be extended to the modelling
of wetlands in Chapter 6.



Chapter 3

Approximate Bayesian

computation

3.1 Introduction

Bayesian data analysis is a popular statistical method for drawing inferences from
a given dataset using probability models. Such models also enable the quantifi-
cation of uncertainties in inferences. The entire Bayesian inference consists of the

following three major steps [34]:

1. Model formulation
2. Model fitting using the available data

3. Model evaluation

The first step is usually the hardest one especially in the cases where the number
of candidate models are very high. The required amount of proficiency for each
of these steps are quite subjective and vastly depends upon the domain of the ob-
served data. However, irrespective of the origin of dataset, second step typically
requires a lot of rigorousness. This statement will get clearer in the following sec-
tions of this chapter. In fact, the overall theme of this chapter is attributed to the
second step. Model evaluation or validation is a key step in any modelling exer-
cise because a model should exhibit a reasonable performance before any crucial
analysis is done through it. Depending upon the applications and significance of
a model, a goodness of fit criteria is usually adopted to assess the model perfor-
mance.

The Bayesian inference problem can formally be expressed as

p(oly) = Y2 U ;‘99();)1(9) (3.1)

24
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In the equation 3.1, p(y|6) is the likelihood function, 7(f) is the prior distribu-
tion, p(y) is the marginal likelihood, and p(f|y) is the posterior estimation. In
simple words, a likelihood function can be defined as the probability of obtaining
the observed data for a given parameter value. In the Bayesian inference expres-
sion, p(y) is actually a normalising factor and does not get updated like the other
components of the Bayes’ theorem.

In principle, posterior on the left hand side of the equation 3.1 can be computed
by evaluating the likelihood function but the marginal likelihood usually involves
a high dimensional integral, [ p(y|0)7(6)df, and hence likelihoods are intractable
on many occasions. A likelihood function can also be intractable when the model
has many latent states. Nevertheless, it is relatively simple to simulate the data
samples from such models for a particular parameter value. This idea acquired
momentum in the late nineties and a few years before it started getting referred
as approximate Bayesian computation (ABC).

In the remaining sections of the chapter, ABC will be discussed thoroughly
starting with meaning and significance of the ABC, followed by the current method-
ologies employed for implementing the ABC for inferring dataset pertaining to a
wide range of domains. ABC is a statistical framework and since the last two
decades lots of works have been done towards improving the efficiency and fi-
delity of the ABC, so that it can be trusted like a first principle method of cal-
culating the likelihood functions. The theoretical advancements are discussed in
section 3.3. Some prominent ABC applications will be covered in the section 3.4,
before concluding the chapter.

3.2 ABC methods

ABC as the name suggests is an approximate process of evaluating posterior dis-
tribution in a Bayesian inference problem. However, it is quite different from the
likelihood approximation [48] as here the likelihood calculation is entirely replaced
by a suitable simulation type procedure [49-51]. ABC emerged firstly in the popu-
lation genetics [49, 50] but in the last one decade, the methodology has evolved as
an efficient statistical technique for dealing with intractable likelihood problems in
many areas including systems biology, ecology, and agent based modelling [52].

3.2.1 ABC rejection algorithm

ABC rejection is the simplest form of ABC and apparently the most expensive,
computation wise. This kind of rejection sampling took a formal shape in [49] and

later on several improvements were made to enhance the convergence power of
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this algorithm. However, the key philosophy of the ABC-rejection is still the most
unbiased approach in a likelihood free method of Bayesian inference.

In this algorithm, a prior distribution of parameter, 7(f) is defined first of
all and the point of interest is the estimation of posterior parameter denoted by
p(0*|y) . The algorithm starts by sampling 6* from the prior distribution. Sampled
parameters are also referred as particles in many literatures. A data set y* is then
simulated according to the model choice. This step actually replaces the likelihood
evaluation by simulation of data through a chosen model and is the backbone
of any simulation based approach in Bayesian inference. Simulated data, y*, is
compared to the observed data, y, using a distance function, d, summary statistics,
S, and tolerance value, €. The particles are retained, if the threshold criteria are
satisfied, otherwise, the entire process repeats.

The total number of particles in an ABC-rejection algorithm is directly propor-
tional to the computational efforts. In general, larger particle size provides a better
approximation of the true posterior. The ABC-rejection algorithm can formally be
stated as,

1. Sample 0% ~ 7(0)
2. Simulate y* ~ p(y|0*)
3. If d(S(y*), S(y)) < e, accept 0%, otherwise reject

4. Go to step 1.

The literatures [33, 51] mention that very large number of particles were rejected in
the ABC-rejection process and computationally it does not turn out to be a plausi-
ble option while dealing with a real system data. The ABC-Markov Chain Monte
Carlo (ABC-MCMC) and the ABC-Sequential Monte Carlo (ABC-SMC) were de-
veloped in view of this drawback.

3.22 ABC-MCMC algorithm

In order to address the shortcomings of the ABC-rejection, ABC-MCMC was devel-
oped by [53]. All the notations such as 8, 4, y, S, and € carry the same meaning like
ABC rejection algorithm, as stated in the previous subsection. The ABC-MCMC

algorithm can formally be expressed as
1. Initialise 6;,i = 0
2. Propose 6* governed by a proposal distribution 4(6|6;)

3. Simulate y7 ~ p(y|6;)
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4. Ifd(S(y7), S(y)) < €, go to step 5, otherwise set 61 = 6; and go to step 6

5. Set ;11 = 0" with probability a = min(l,%)
and 6;1 = 0; with probability 1—«

6. Seti = i+1, go to step 2

The algorithm at its convergence results into a Markov chain with the station-
ary distribution (0 1d (S(y]’»‘), S(y)) < €) [53]. This guarantees the convergence of
the ABC-MCMC algorithm to the approximate posterior distribution in principle.
However, in this algorithm a very long chain is quite possible because of the corre-
lation among samples combined with low acceptance probability. This may cause

a chain to get trapped in low probability zones for very long time periods [33].

3.2.3 ABC-SMC algorithm

The ABC-SMC incorporates the Sequential Monte Carlo for sampling (SMC). The
SMC was introduced in [54]. The ABC-SMC technique was formally introduced
in the ABC-partial rejection control (ABC-PRC) form in [51]. The problem with
a SMC sampler is that it is not possible to use an optimal backward kernel and
choosing a good one is not easy. So in [33], ABC-SMC was derived from a Se-
quential Importance Sampling (SIS) algorithm of [55]. Arguably, this is the most
reasonable version of the ABC-SMC and has been employed in other works such
as [35, 56].

The ABC-SMC begins similar to the ABC-rejection where a prior distribution,
7t(6), tolerance value, €, distance function, d, summary statistics, S are chosen.
In the first iteration, the value of € is kept sufficiently high and this tolerance
value keeps decrementing sequentially as the number of iterations increase. In the
ABC-SMC intermediate distributions are generated for each iteration or popula-
tion level. After the first iteration, sampling are performed from the intermediate
distributions. In simple words, posterior generated at the end of an iteration be-
comes prior for the immediately next iteration and so on. The acceptance of a
parameter depends upon the threshold criteria specific to the population level.
After a parameter is sampled, it is perturbed using a defined perturbation kernel
and get accepted if the threshold criteria is satisfied otherwise rejected. In this
way, all the particles of a population level are generated by the algorithm. This
step also facilitates the parallel sampling for all the particles, which is not possible
in the ABC-MCMC. The algorithm converges at the end of final iteration, resulting
into an approximate posterior distribution of the parameters corresponding to the
chosen model.
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The ABC-SMC will be used for the parameter estimation of wetland system in
the later part of the thesis. A pseudo code of the ABC-SMC, as presented in [35],
proceeds as follows.

Input number of iterations K and number of parameter samples L
prior 7t(f) and error sequence €1>...>€k
Atk =1
forj=1:L
draw 9]7" ~ 71(0) and simulate y]’.‘ ~ p(y|9]7k)
until d(S(y]’-‘), S(y)) < e

end for

set each weight w]1 =1
fork=2:K

forj=1:L

sample 6 from 6% — 1 with probabilities w
perturb 67 to obtain 6% ~ ¢ (616%)
simulate y7 ~ p(y|9}‘*) until d(S(y]’.‘), S(y)) < e

k—1

end for
Set each 6}‘ = 9;‘*

(6%
Set each wk = (©) and normalise

b Rk w6
end for
QJK obtained at the end of this loop is an estimate of the posterior distribution
p(@]y), where { is a parameter perturbation kernel, which can be a uniform or

Gaussian random walk.

3.3 ABC theoretical advancements

ABC is a new framework and so lots of researches towards the theoretical ad-
vancements are underway. There are many areas in ABC where improvements are
needed. The most important issue is the limitation of ABC in dealing with high
dimensional parameter inference. An ABC algorithm in its standard form does
not exhibit satisfactory performance with the high dimensional parameter space.
On occasions like model selection using ABC, this problem can be harnessed in
a positive way by selecting a low dimensional and simple model among the can-
didates. However, this does not eliminates the need to make ABC functional in
inferring the parameters of a high dimensional problem.

Second issue in an ABC method is the choice of summary statistics. An ABC
replaces the need of likelihood calculation but at the cost of computational power

and an approximation in the form of summary statistics. There can be a wide
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range of summary statistics applicable for a given data, not all of them can as-
similate the necessary information and so a comparison of the summary statistics
between simulated and observed data may not provide correct result. Thus, a
protocol should exist for choosing an appropriate summary statistics.

Third problem with an ABC, particularly ABC-SMC is a choice of tolerance
value at each iteration. In ABC-SMC an € value is chosen at the beginning in a
mannet, such that the algorithm does not get stuck in low acceptance probability
region of the prior distribution. This ad-hoc choice of € does not guarantee an
unbiased parameter inference. The choice of threshold value gets further compli-
cated in the intermediate distributions. Ideally, the tolerance should be decreased
sequentially but an equal amount of decrease in € may cause the algorithm to
slow down substantially towards in the last iterations. Hence, a proper theoretical
guidelines must be made available for the practitioners.

The ABC framework emerged because of the likelihood complications. Gener-
ally a practitioner do not possess a high mathematical skills and so evaluating the
complex integrals can be cumbersome tasks for them. ABC provides the flexibility
to draw inferences solely from the data and computational facilities. All the above
mentioned theoretical challenges must be addressed properly in order to make
ABC acceptable in a wide range of applications. In the following paragraphs
many recent theoretical developments in ABC will be covered.

3.3.1 High dimensional issue

ABC is a powerful method especially when the likelihood is intractable but it suf-
fers from the curse of dimensionality. As the dimension of the parameter set
increases, it becomes difficult to estimate the posterior. The high dimension-
ality problems in ABC is addressed in [57]. In this work, a machine-learning
based method, for designing a functional relationship between generated sum-
mary statistics and the parameters are presented. This method seems to be a
solution of many high dimensional problems of ABC in ideal scenarios. In reality
the construction of such a function will only be an approximation and may not
estimate the posterior in all the conditions [57].

ABC method is made to work in high dimension using Gaussian copula in [58].
In this approach, firstly bivariate posterior of all the pairs of parameters are esti-
mated by using a two-dimensional Gaussian copula. Thereafter, these estimates
are merged together to estimate the joint posterior distribution of parameters. As
a by-product, this method provides an analytical expression of the joint posterior,
which acts as an approximation of the likelihood. The copula structure obtained in

this method will be more realistic with increase in sample size and as the true pos-
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terior tends to normality. This method assumes a Gaussian dependence structure
and may not give a reasonable approximation all the times.

These recent articles have provided some methods to make the ABC useful in
high dimensional problem but this area needs to be researched further to come up

with a robust theory for dealing with high dimension.

3.3.2 Summary statistics

A thorough review of summary statistics selection is articulated by [59]. Accord-
ing to this, the method of the best summary statistics selection falls into three cat-
egories: best subset selection, projection methods, and regularisation technique.
In the last few years, some interesting methods on the choice of summary
statistics have appeared. A particular method of the selection of the best sum-
mary statistics among the candidate summary statistics, based upon the method
of best subset selection is described in [60] . This literature uses the simulated
annealing algorithm to search the best summary statistics from a set. Composite
likelihood score function is used as a summary statistics to improve the accuracy of
the posterior estimation in [61]. The method is exemplified using an extreme rain-
fall dataset. A method known as ‘Maximum Mean Discrepancy (MMD)’, which
replaces the need of manual selection of summary statistics is discussed in [62].
The method has been named as K2-ABC by the authors and essentially it employs
the MMD to build up a dissimilarity measures between the simulated and the ac-
tual observed data. A functional relationship between optimal choice of summary
statistics and data is modelled using a kernel based distribution regression in [63].
Lately [64] has contributed towards optimising the weights of the distance func-
tions in the ABC. All the summary statistics do not contain the desired level of
information about the parameter of interest and so often it is not simple to weigh
their significance intuitively. In this method, summary statistics are effectively
combined in an automatically and adaptive manner using the optimum weights.
The accuracy of posterior distribution is very much dependent upon the choice
of summary statistics. Above discussed literatures substantially contribute to-
wards the optimum summary statistics choice but in order to cement the ABC

framework, more robust techniques should be devised in due course of time.

3.3.3 Goodness of fit

Model selection is often the most discussed research topic in the ABC, whereas,
goodness of fit is somewhat an ignored research area. In a situation, where all the

candidate models poorly fit data, model selection using the Bayes’ factor would
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fail to figure out the best model. Goodness of fit belongs to the third step (model
evaluation) of the Bayesian data analysis. In Bayesian framework, posterior predic-
tive checks are very popular for the evaluation of goodness of fit. In such checks,
fractions of times posterior predictive simulations differ from the observed sum-
mary statistics are calculated to obtain an index called the P-values [65].

It is quite reasonable to extend this idea to the ABC because summary statistics
are calculated as part of the parameter inference and extra computations would
not be required. The posterior predictive P-values are not calibrated well and
this might make this index less useful on many occasions. Classical hypothesis
testing framework is used to propose two types of GOF statistics in [66]. First GOF
statistics is Dyyjor, calculated by taking into account the average distance between
observed summary statistics and the simulated summary statistics, generated with
the prior distribution. While demonstrating the first GOF statistics, summary
statistics were calculated repeatedly for all the Monte Carlo samples in [66]. The P-
values were uniformly distributed in this case and indicates that this first statistics
is calibrated. Statistical power shows a great variations from 20 % to 100 % in
the simulation example. Second goodness of fit statistics is Dpest, which is similar
to the first one methodically except one difference, that here posterior is used
instead of prior. Statistical power improves in this case at the cost of increased
computational power.

3.3.4 Miscellaneous topics under ABC

In this sections some miscellaneous and recent theoretical advancements under
a wider realm of ABC will be discussed. Asymptotic properties and efficiency
of ABC are rigorously explored in [67, 68]. The posterior mean of an ABC is
asymptotically unbiased, when proposal distribution is chosen with suitable scale
and location [68]. Another necessary condition is the similarity in dimension of
summary statistics and parameter vectors.

The ABC-MCMC was introduced as an improvement over the ABC-rejection.
In section 3.2.2, the limitations of the ABC-MCMC were discussed. The ABC-SMC
appears to be more efficient and easy to implement than ABC-MCMC but in reality
it is prone to some unwanted bias during the weight assignments of the particles.
Theoretical statistics community is working continuously towards improving the
ABC-MCMC [69, 70]. The algorithm in [70] is primarily based upon the MCMC
with some modifications. In this algorithm, ideas from the subset-simulation [71],
a rare-event sampler and ABC are combined together for an improved conver-
gence. This algorithm is an improvement over the ABC-MCMC, as there is no

burn-in and difficulties of initialising the chain can be avoided. Despite these
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promising features the algorithm has not found many applications as compared
to the standard ABC algorithms.

An adaptive SMC for ABC [72] is an improvement over the other ABC-SMC
methods. The computational complexity of most of the ABC-SMC is quadratic
in the number of Monte Carlo samples. In this literature, an adaptive SMC is
proposed, which reduces the computational complexity from quadratic to linear
in the number of Monte Carlo samples and as the name suggests, the simulation
parameters are also determined adaptively as the algorithm runs. The algorithm
performance is demonstrated on a toy example and the software is made available
in the open source.

A regression adjustment method takes into account the frequently present lin-
ear relationship among the ABC-generated summary statistics and the model pa-
rameter in a neighbourhood of the observed summary statistics [50]. This kind
of adjustment allows a higher tolerance value without affecting the posterior esti-
mation much and hence the computational efficiency also increases. Similar idea
was extended in [73] to obtain a regression adjustment using a method called the
General Linear Model (GLM). The method was applied for selecting the models
describing the population of western chimpanzees (Pan troglodytes verus). This
method is not able to outperform regression adjustment methods but arguably it
fits naturally into a standard Bayesian framework. Hence the standard methodolo-
gies pertaining to the domain of the Bayesian framework such as model averaging,
model selection via Bayes’ factors can be applied in this method.

Choosing a right perturbation kernel is a key step in the ABC-SMC algorithm.
A locally adapted kernel is shown to enhance the overall performance of the ABC-

SMC by reducing the computational requirements in [74].

3.4 ABC applications

In the late nineties, the idea of the ABC-rejection was pitched [49] and since then,
ABC gained the momentum as a promising framework to deal with intractable
likelihood scenarios. Initially, ABC was deemed as a technique suitable for the
population genetics. Later on and particularly in the last ten years, ABC started
drawing attention among the practitioners from a wide range of fields. Ecology,
epidemiology, and systems biology dynamics show some resemblance at least
structure wise [33]. Many key features in these areas can be represented by dy-
namic models either stochastic or deterministic in nature. Systems of ordinary
and partial differential equations are typically used for explaining the dynamics
in deterministic scenario, whereas, stochastic differential equations are employed
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for stochastic models. Often a practitioner is interested in comparing various
candidate models so that the one explaining the dynamics fairly are figured out.
ABC plays significant roles in these application areas. The likelihood evaluation
for each candidate model in these areas are difficult and sometimes impossible

because of latent variables.

3.4.1 Population genetics

In population genetics, a dataset primarily comprises of haplotypes from popula-
tions and frequencies of alleles. The aim of modelling analysis is often to perceive
the demographic history of the populations. The parameters of interests are gen-
erally migration rates, variation in population size, frequencies of demographic
events like colonisations etc [52]. Some of the prominent literatures where ABC
is employed in population genetics are [49, 50, 75]. A thorough review of ABC in
population genetics can be found in [52].

3.4.2 Epidemiology

The aspects of ABC in drawing inferences from a stochastic epidemic model are
described in [76]. Recently, the application of ABC for spatial SEIR(S) epidemic
models is shown in [77]. The authors have developed an open-source software
known as the ABSEIR during this piece of research. ABC was used for estimating
the key TB transmission parameters such as, net transmission rate, doubling time
and reproductive value of the pathogen in [78]. The estimation results provide
the extent of the TB spread as an epidemic and are consistent with the observed

dataset.

3.4.3 Systems biology

One of the earliest application of ABC in systems biology is reported in [79]. Here
data on tumour mutations are used for parameter inference in a branching process
model using the rejection sampling version of the ABC. The meta-hydration data
from cancerous cells are used for estimating parameters linked to differentiation
of cells and tissues in [80]. Recently, under the domain of systems biology, ABC
is used to quantify cell-cell adhesion parameters in a cell migratory process [81].
A very useful software package in Python (ABC-SysBio) was introduced a few
years ago, which can be used for calibrating models in systems biology using the
ABC-SMC approach [82].
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3.4.4 Ecology

Compared to other prominent application areas of ABC, ecology has not witnessed
much use of ABC so far. The validation of agent based models in ecology appears
to be feasible through ABC mechanism [52, 83]. The ABC-MCMC is applied in in-
ferring species abundance data in [84]. A neutral ecological model was analysed to
the infer the parameters related to regional speciation rates and local immigration

of species in [85].

3.4.5 Other miscellaneous applications

ABC is used for the characterisation of mono-disperse and poly-disperse nanopar-
ticle aggregates using the observed scattered light in [86]. ABC enables the inte-
gration of Crop Growth Model (CGM) with the Whole Genome Prediction (WGP)
methods through the estimation of parameters using rejection sampling. The in-
corporation of CGM improves the prediction accuracy with the added biological
information in WGP and thus ABC can be very useful in genomics applications
[87]. ABC is applied in historical research under a new framework known as
‘model based history’. Such kind of modelling approaches in historical researches
can enable the historians to re-analyse the decades older hypotheses [88]. An ap-
plication of ABC in cosmology is shown in [89]. An open-source software known
as the astro-ABC is also described in this literature. In addition to the standard
ABC implementation, this package incorporates the MPI (massive parallelisation)
framework so that multiple nodes are harnessed for the simulation. The cosmo-
logical parameter inference involves non-Gaussian data, noise, multi-probe cor-
related datasets. The literature demonstrates that how ABC is more effective in
such cases compared to the MCMC approaches. Usage of ABC in archaeology is
demonstrated in [90, 91]. ABC can offer the best model selection as well as pa-
rameter estimation simultaneously. In a molecular dynamic application [92], ABC
subset-simulation [70] is used and the inference results indicate the potential of

ABC in many related fields such as material science.

3.4.6 Model selection

ABC has been employed in a few dynamical model selection algorithms. In gen-
eral ABC is capable of figuring out the best model depending upon how efficiently
a model describes the given data. This idea was formalised through an ABC-SMC
model selection algorithm in [33]. This algorithm is shown to be effective in se-

lecting the best model among candidate SIR models.
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The ABC-SMC model selection is prone to falter as the number of competing
models increase. Therefore, in its current form, this algorithm cannot be applied in
model structure detection problem under the system identification methodology.
In system identification, model structure detection is a considered as the toughest
part. ABC is employed in developing two types of model structure detection algo-
rithms, known as one-stage and two-stage model structure detection respectively
in [35] .

3.5 Conclusion

This chapter provides the principles and applications of the ABC methodology.
The various types of ABC algorithms starting from the basic rejection to a more
practical method known as the ABC-SMC are provided with necessary details. In
the forthcoming chapters, the ABC-SMC will be used for parameter inference in
wetland systems as well as calibration of weathering models. Therefore, a proper
pseudocode representation of the ABC-SMC is included in this chapter.

ABC method appears to be very promising as the difficulties of the likeli-
hood evaluation are replaced. However, in the mainstream statistical communi-
ties there are apprehensions about the accuracy of this approach particularly the
SMC version of the ABC. In addition, an ABC method fails to exhibit satisfactory
performance in high dimensional scenarios. The choice of threshold values and
summary statistics also need to be researched further. This chapter succinctly tries
to review the recent theoretical advancements in ABC.

In the last part of this chapter, important applications of ABC are discussed. A
wide range of applications clearly suggests that ABC is not constrained within a
particular discipline. In fact as a simulation based and likelihood free approach,
this is the preferred choice for many practitioners. In the forthcoming chapters,

ABC will be shown to be a powerful tool in environmental system class.



Chapter 4

NARX model structure detection
under ABC framework

4.1 Introduction

Nonlinear Autoregressive Exogenous (NARX) models are one of the most popular
model class in the System Identification (SID) methodology. In general, an SID in-
volves Model Structure Selection (MSS) and parameter estimation. The parameter
estimation part is a simple task and can satisfactorily be performed under a deter-
ministic framework. On the other hand, the task of MSS is not so straightforward
and requires additional rigour on most of the occasions.

In a linear system, an MSS is relatively simple and commonly based upon the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) kind of
indices. Essentially these indices map the model accuracy with the model size to
figure out the ‘true’ model. In nonlinear systems, these techniques fail to provide
the accurate result as regressors can be arranged differently in a NARX model to
return the same model size [37, 93]. A simpler model structure is always desired
and more often the underlying science of a system can be explained through a
concise model [18]. A regularisation criteria, such as, the Least Absolute Shrinkage
Selection Operator (LASSO) [94] can be used to shrink the model size through
penalising the model size but cannot be a precise solution for an appropriate MSS.

In a nonlinear system, the most popular method for MSS is based upon the
Error Reduction Ratio (ERR) index [18, 30]. In simple words, this method works
on the incremental model building principle. At each step, the importance of
all the candidate regressors are evaluated and the one having the potential to
improve the model performance is added in the model terms. A forward regres-

sion version of this method is known as the Forward Regression Orthogonal Least

36
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Square (FROLS) and there are plenty of literatures on MSS using the ERR principle
[32, 95, 96].

In this study, a novel algorithm, ABC-NARX-MSS, inspired from the Approx-
imate Bayesian Computation (ABC) for the MSS in a NARX model class will be
presented. In the previous chapter, ABC principle and its applications have been
discussed in detail. The ABC-NARX-MSS mimics the Sequential Importance Sam-
pling (SIS) feature from the ABC-SMC and randomly samples the model terms
from a regressor set. Instead of terms-ordering based upon their contribution in
the model performance, this method performs a global search in the pool of re-
gressors to find out the optimal model structure. The number of candidate mod-
els increases tremendously as the number of regressors are increased. For many
practical systems such as tropical wetlands, the maximum input-output lags can
go very high, subsequently increasing the candidate terms and models. Therefore,
a global search methodology in the NARX model class should be computationally
efficient as well. The proposed NARX structure selection algorithm fits into the
currently available computational budgets.

The chapter unrolls with basic principles of the ABC-NARX-MSS and a sim-
ple pseudocode representing the algorithm. Thereafter, the performance of this
algorithm on a known example system will be presented. A comparison between
the Orthogonal Forward Regression (OFR) and the ABC framework, based on the
same system will also be provided. An MSS algorithm generally performs satis-
factorily on a known system as the data generation takes place through the same
system. The situation gets more complicated when an unknown system comes
into play. Therefore, a complete SID cycle of a Canadian wetland is presented in
the subsequent section. The identification of this unknown system is carried out
under the ABC framework, in which the term selection part is governed by the
ABC-NARX-MSS. Finally, the chapter ends with some concluding remarks.

4.2 ABC-NARX-MSS algorithm

In order to address the issues surrounding the existing MSS methods, as discussed
in the Chapter 2, a novel ABC based method (Algorithm 4.1) for detecting the
optimum NARX structure will be presented here. This MSS method is a global
search procedure, where all the possible combinations of the regressors are within
the search space. Earlier usage of ABC in an SID context performed a type of
local search by ranking the regressor terms [35]. Another key feature of the ABC-
NARX-MSS algorithm is its simplicity. It actually mimics the traits of the ABC-SIS
by sequentially tightening the threshold criteria at each iteration and the sampling
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in an iteration is based upon the information generated at the previous iteration.
A global search method proposed using the Reversible Jump Markov Chain Monte
Carlo (RIMCMC) [36] suffers from a wide range of complexities, as discussed in
the Chapter 2. At the same time, the implementation and adaption is also not
simple for [36]. The ABC-NARX-MSS algorithm also passes the generalisation test
as compared to the Randomized Model Structure Selection (RaMSS) [37]. There
are no tuning parameters for assessing regressors performance in the Algorithm
41.

The Algorithm 4.1 is a pseudo code representation of the ABC-NARX-MSS
algorithm. Foremost step in this method is the normalisation of input-output
data. The code presented here is for the Single Input Single Output (SISO) system,
so the y and u are in vector form. In Multiple Input Multiple Output case (MIMO),
these vectors will be replaced by matrices. The number of samples L is directly
proportional to the computational requirements. Like any Monte Carlo sampling,
higher value of L is preferred as long as that fits into the available computational
budget. The threshold values €1 > ... > €, must be chosen very carefully. The
Chapter 3 highlights some of the important issues in the ABC framework and
the choice of threshold values is one of the open research problem in the ABC.
Practically, a very small value of €; would make the algorithm very slow and the
convergence time might tend to infinity. Too large value of €; would return the
redundant particles which could affect the further iterations. The regressor set
REG should take into account the maximum plausible time lags of the system.
Like any MSS algorithm, this is a crucial step here as well.

In the first iteration, number of terms (1) in a candidate model are sampled
from a uniform distribution of integers, ranging from 1 to the maximum number
of regressor terms possible for the assigned values of 1, (input lag), and 1, (out-
put lag). Corresponding to the number of terms in a candidate model, regressors
(reg) are sampled from their uniform priors. Regressor indices as presented in the
Table 4.1 forms the basis of regressor sampling. Thereafter, parameter estimation
step can be performed by either least square or ABC. A deterministic approach
like the least square method is a computationally efficient way. Another way is to
use a probabilistic method such as ABC rejection. In the numerical example and
case study performed in this chapter, the ABC rejection was used for parameter
estimation. The important point to be noted here is that, there must be a limit
to the maximum number of sampling steps while using ABC rejection. Other-
wise, the algorithm might get trapped in a poor model sampling and might never
converge. The distance function d(.) used for comparing the model performance

can be something similar to L, norm or Mean Squared Simulation Error (MSSE).



Chapter 4. NARX model structure detection under ABC framework 39

Because of a dynamical process under study, the datasets can be compared di-
rectly without using summary statistics [33]. The histograms corresponding to
the n (proby) and reg (probg.g) provide a distribution for these discrete variables.
These distributions contain the information about regressors performance and ac-
cordingly influence the sampling in the next iteration. In the upcoming sections,
the performance of this algorithm on a numerical example and an unknown real

system will be discussed.

4.3 Regressor set

A NARX model structure is composed of a combination of regressors. A regressor
is composed by a union of the lagged form of the system input-output variables.
The amount of lags are pre-determined, depending upon the nature of the system.
The total possible number of regressors in a full NARX model, is calculated by the
equation 4.1 [18], where v is the sum of maximum output lag, n,, and maximum
input lag, n,. The | stands for the degree of polynomial, which is typically set
to 3 for most of the practical purposes. The equation 4.1 suggests the amount of
increase in the regressors with increase in ny and n,,.

Generally, a NARX model does not contain the full set of regressors and a com-
bination of these terms serve as a parsimonious model structure. For M number
of regressors, there can be 2™ number of possible model structures. In this chap-
ter, two systems will be evaluated for the ABC-NARX-MSS algorithm and both
of these exhibit the same amount of input-output lag, equal to 2. The rationale
behind these lag values will be elaborated in the upcoming sections. For the mo-
ment, all the regressors corresponding to 1, and n, equal to 2 are presented in the
Table 4.1. The value of | is kept 3 in this expansion.

(v+1)!

4.4 Numerical example

The ABC-NARX-MSS algorithm was used to perform the MSS task on a known
system adopted from [36]. The system (equation 4.2) is dynamic in nature and can
be described as,

y(t) = 0.7y(t — Du(t — 1) — 0.5y(t — 2) +0.6u>(t —2) — 0.7y (t — 2)u?(t — 2) +e(t),
(4.2)
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Algorithm 4.1 NARX model structure detection (ABC-NARX-MSS)

counter; < 0
Initialise: Input data (), output data (i), no of iterations (K), no of samples (L),
full regressors set (REG), error sequence €1 > ... > €
Atk =1
while counter,<L
Randomly sample no of terms (1) from N; where N is a uniform
distribution of integers starting from 1 up till the maximum number of
regressors in the set REG.
Randomly sample the regressor indices from a uniform distribution of
REG, based upon the value of n. The regressors must be unique. This leads
to a regressor subset (reg), which combines to form a candidate model (M)
Estimate the parameter of M. This can be performed by either least square
or the rejection sampling (ABC rejection). In case of ABC, constrain the
maximum possible parameter sampling steps.
Simulate the candidate model M
ifd(.) <e
countery < counterq+1
else
reject the model.
end while loop
Generate the histogram (proby) for the ‘n” of all the ‘L’ models
Generate the histogram (probg.g) for the ‘reg” of all the ‘L” models
fork=2:K
countery < 0
while counter;<L
Randomly sample n from proby
Randomly sample the regressor indices from probge, depending upon
the n. The regressors must be unique. This leads to a regressor subset
(reg), which combines to form a candidate model (M)
Estimate the parameter of M
Simulate the candidate model M
if d () < €
countery <— counter,+1
else
reject the model.
end while loop
Generate the histogram (proby) for the the ‘n” of all the ‘L” models
Generate the histogram (probg.g) for the ‘reg” of all the ‘L” models
end for loop
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Index | 1 linear element | 2" linear element | 3" linear element

1 y(t—2)

2 u(t—2) u(t—2)

3 y(t—1) u(t—1)

4 y(t—2) u(t—2) u(t—2)
5 y(t=2) y(t=2) u(t —2)
6 y(t—1) y(t—1) u(t—1)
7 y(t—2) y(t=2)

8 u(t—2)

9 u(t—1) u(t—1) u(t—1)
10 y(t=1) y(t—2) y(t=2)
11 y(t—2) u(t—2)

12 y(t—1) u(t—1) u(t—1)
13 u(t—1) u(t—2) u(t—2)
14 y(t—2) y(t—2) y(t—2)
15 y(t—1) u(t—1) u(t—2)
16 y(t=1) y(t=2)

17 y(t—2) u(t—1) u(t—1)
18 y(t=1) y(t=1)

19 y(t—1) u(t—2) u(t—2)
20 y(t—1)

21 u(t—1) u(t—1) u(t—1)
22 y(t—2) u(t—1)

23 y(t—1) y(t—1) u(t—2)
24 u(t—1) u(t—1)

25 u(t—1) u(t—2)

26 y(t—1) y(t—2) u(t—1)
27 y(t=1) y(t=1) y(t=2)
28 y(t—1) y(t=1) y(t=1)
29 y(t—1) y(t—2) u(t—2)
30 u(t—1)

31 y(t—2) y(t—2) u(t—1)
32 y(t—1) u(t—2)

33 u(t—1) u(t—1) u(t—2)
34 y(t—2) u(t—1) u(t—2)

Table 4.1: Candidate regressor terms. Each term has a maximum polynomial
order of 3, which means at the most 3 linear terms in product form can constitute
a regressor term.

the input signal u(t) is assumed to be white noise, uniformly distributed in the
interval [-1, 1]. The e(t) is assumed to be white noise with a Gaussian distribution.
The mean and standard deviation for this Gaussian distribution are set to 0 and
0.01 respectively. The standard deviation for e(t) in [36] was kept at 0.004, which
has been purposely increased to 0.01 here to test the performance of the algorithm
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in an increased level of noise.

A brief description of the RIMCMC based MSS steps followed in [36] to recover
the model structure of this system has been presented in the Chapter 2. The same
system (equation 4.2) was also used in [37] to test the RaMSS algorithm. Here, the
Algorithm 4.1 is used to detect the model structure of the same system in a more
noisy situation.

The remotely sensed environmental data used in this thesis consists of 156
data points. Therefore, the performance of this algorithm in MSS was assessed
by constraining the total data points to 200. The rationale is very simple, that if
the algorithm works satisfactorily on a known system under the limited number
of data points then it should also work correctly for an unknown system having
similar number of observations.

The ABC-NARX-MSS is fundamentally a sampling method of inference hence
it should be run multiple times to gauge the uncertainty about the the sampling
process [97]. Hence this algorithm was executed 10 times on the same input-
output data. Out of 10 sequences, every time the algorithm converged to return
‘true’ model in the seven sequential steps. The L, norm was introduced as a dis-
tance measure d(.) to compare a model performance with the specified threshold
value, €;. The threshold values were set to, €1 = 3.5, ¢; = 3.0, e3 = 2.5, ¢4 = 2.0,
€5 =1.5,¢ =1.0, and €7 = 0.5.

The MSS steps for a trial are shown here step wise step. The iteration number
1 to 4 are shown in the figure 4.1, whereas, the iteration number 5 to 7 are shown
in the figure 4.2. The histograms corresponding to each iteration represent the
regressors distribution (probg.y) and number-of-terms distribution (proby) respec-
tively. Notations reg and n are exactly the same as used in the Algorithm 4.1. The
indices of regressors in these histograms refer to the regressor set presented in the
Table 4.1. The histograms corresponding to the iteration number 7 shows that all
the four terms have been recovered accurately by the algorithm. The application
of ABC-NARX-MSS on an unknown system will be discussed in the section 4.6.

4.5 Comparison between ABC-NARX-MSS and FROLS

This chapter presents a novel ABC-NARX-MSS algorithm, which is shown to be
working accurately on a numerical example. In this section the ABC-NARX-MSS
will be compared with the standard FROLS algorithm under the OFR framework
[18]. There are some criticisms about the OFR framework in an SID, as discussed
in the previous chapter, and the ABC-NARX-MSS or other similar works such as
[36, 37] have tried to address those issues. Despite some issues with the OFR
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Figure 4.1: MSS steps for a known system (Iteration 1 — 4).The histograms corre-
sponding to regressors on the left hand side are essentially probg., mentioned in
the Algorithm 4.1 , whereas, the histograms corresponding to number of terms on

the right hand side represent proby.
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Figure 4.2: MSS steps for a known system (Iteration 5 — 7). The histograms corre-
sponding to regressors on the left hand side are essentially probg., mentioned in
the Algorithm 4.1 , whereas, the histograms corresponding to number of terms on
the right hand side represent proby.
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framework, it is still the most popular approach especially in the control theory.
The prime reason behind this popularity is its computational efficiency. On most
of the occasions, the FROLS is able to identify the model correctly. Therefore, the
FROLS was applied on the example system (equation 4.2) to highlight the benefits
of the ABC-NARX-MSS algorithm.

The numerical example (equation 4.2) used in this chapter has previously been
chosen in the [36, 37] to demonstrate the performance of the respective MSS algo-
rithms. The data generation and the noise level were kept similar to the section
4.4. The FROLS algorithm was applied thrice on the equation 4.2. Firstly, the n,
and n, were set to 2, then to 3 and finally to 4. With increase in the maximum
lag values, the number of candidate regressors also increases. The total number of
terms for the Case 1 (n, = n, = 4) is 164, for the Case 2 (n, = n, = 3), the value
reduces to 83 and for the Case 3 (1, = n, = 2), the number of regressors in the
superset reaches to 34. The results of the FROLS algorithm for the Case 1 are sum-
marised in the Table 4.2, where, the linear components of each term are separated
by columns. The ‘ERR’ denotes the error reduction ratio, and the ‘Parameter” is

the estimated parameter. Similarly, the results for the Case 2 are summarised in

Term | 1% lin. element | 2 lin. element | 3" lin. element | ERR | Parameter
1 y(t—4) u(t—2) u(t—2) 0.4525 0.0171
2 y(t—2) 0.2458 -0.2040
3 y(t—1) u(t—1) 0.1822 0.7754
4 u(t—2) u(t—2) 0.0931 0.6007
5 y(t—2) u(t—2) u(t—2) 0.0258 -0.8104

Table 4.2: Summary of FROLS results corresponding to the Case 1.

the Table 4.3. The results of the most simplistic scenario, Case 3 are summarised

Term | 1% lin. element | 2 lin. element | 3" lin. element | ERR | Parameter
1 u(t—2) u(t—2) 0.4635 0.6047
2 y(t—2) u(t—2) u(t—2) 0.3274 -0.6960
3 y(t—2) 0.1041 -0.5075
4 y(t—1) u(t—1) 0.1036 0.7620

Table 4.3: Summary of FROLS results corresponding to the Case 2.

in the Table 4.4.

The ERR criteria based ranking corresponding to the existing structure can
lead to the inclusion of a redundant term in the beginning phase of the FROLS
algorithm. This clearly reflects in the Case 1 results as shown in the Table 4.2.
The first term picked by the FROLS is not a ‘true’ term and there is no way to
prune away that term in the original version of the algorithm. However the later
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Term | 15 lin. element | 2 lin. element | 3" lin. element | ERR | Parameter
1 y(t—2) 0.4747 | -0.4870
2 u(t—2) u(t—2) 0.3353 0.5998
3 y(t—1) u(t—1) 0.1460 0.6942
4 y(t—2) u(t—2) u(t—2) 0.0433 | -0.7118

Table 4.4: Summary of FROLS results corresponding to the Case 3.

modified versions of the FROLS such as [32] can sort out this issue with an itera-
tive mechanism. As the number of candidate regerssors decrease due to reduced
model order in the Case 2 and Case 3, the FROLS managed to pick up the correct
terms as shown in the Table 4.3 and 4.4 respectively.

The ABC-NARX-MSS algorithm in principle does not pick up a term unless
the model constituted from the term satisfies the threshold criteria of a particular
iteration. As the iteration level of the ABC-NARX-MSS increases, the threshold
criteria gets further narrowed and any redundant regressor will not be picked up.
Eventually, the exclusion of a poor regressor will get reflected into the regressor
inclusion probability at the next iteration. However, the ABC-NARX-MSS will
get slower if the maximum lag values are increased, but the underlying principle
of the algorithm suggests that at the convergence ‘true’ model will definitely be
chosen. One might have to increase the sequential step k, if a ‘spurious’ term is
masking a ‘true’ term from getting selected. In any sequential sampling procedure
under the ABC framework, ideally the final threshold value ex should be tending

to zero.

4.6 SID of a real system using ABC-NARX-MSS

In this section, a full cycle of SID will be demonstrated for an unknown Cana-
dian wetland under the ABC framework. A wetland is an inundated land sur-
face, where the fraction of inundation exhibits variations throughout a year. The
wetlands, their characteristics and modelling will be discussed in details in the
forthcoming chapters of the thesis. In the present context, the Canadian wetland
is simply an unknown dynamical system, which was identified using the ABC-
NARX-MSS. Following the structure detection, ABC-SMC was employed for the
parameter estimation of the Canadian wetland. The obtained model was simu-

lated using a fresh dataset, obtained from the same source.
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4.6.1 Model structure selection

The input and output of the wetland system are average temperature (Avg Tmp)
and wetland fraction (fw) respectively, and shown in the figure 4.3. The criteria
for input selection in a wetland will be discussed in the later chapters. Here, the
emphasis is on testing the method (Algorithm 4.1) rather than characterising the
Canadian wetland. The input-output data were transformed using the z-score
standardisation to cast them into similar range.

The values of n, and n, were set to 2, similar to the numerical example (equa-
tion 4.2) and hence the regressors indices of the Table 4.1 are applicable here as
well. The ABC-NARX-MSS steps are shown in the figure 4.4 and 4.5. All the no-
tations such as, n and reg have the same meaning as mentioned in the Algorithm
4.1. The MSS algorithm nearly converged at the end of 19 iterations, which is
comparatively higher than the numerical example demonstrated in the above sec-
tion. This clearly indicates that detecting an unknown system is not simple and
the number of iterations could go substantially high. For the sake of simplicity, n,
and n, were constrained to 2. Incidentally, the choice of input-output lag matched
with the model structure in this case and the Algorithm 4.1 converged. In cases,
where the system can only be represented with higher lag values, the MSS algo-
rithm might never converge and the initial choice of n, and 7, would have to be
tuned accordingly.

The model structure of the Canadian wetland can be formed by combining
the regressor indices, 1, 21, 26 and 30, in any order. This results into a NARX
representation of the system

y(t) = 01u(t —1) + 0y (t —2) + 0303 (t — 1) + 04y (t — 1)y (t —2)u(t — 1) +e(t) (4.3)

4.6.2 Parameter estimation

The estimation of parameters corresponding to the obtained model structure is the
next main step after the structure detection in an SID. Keeping in view the ABC
framework, ABC-SMC was used for estimating the Canadian wetland parameters.
The detailed features of the ABC-SMC have been presented in the previous chap-
ter. The selection choice of the SMC version over the other variants of the ABC
can also be deduced from the discussions of the previous chapter.

ABC-SMC generates the intermediate distributions, however, here only the
posterior distribution corresponding to the final population level are presented

in the figure 4.6. Instead of maximum a posteriori (MAP), mean value of these
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data from January 2000 until December 2012 — Canadian wetland.
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Figure 4.4: MSS steps for an unknown wetland system (Iteration 1 —9). The his-
tograms corresponding to regressors on the left hand side are essentially probg,q
mentioned in the Algorithm 4.1 , whereas, the histograms corresponding to num-
ber of terms on the right hand side represent proby.
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Figure 4.6: Posterior parameter distribution of Canadian wetland.

parameter distributions were plugged into the model simulation process.

4.6.3 Simulation results

In the beginning of this section, a NARX structure of the Canadian wetland was
determined. The same model was then passed through the parameter estimation

process and finally the averaging of parameter distributions provided a robust set

of Canadian wetland parameters. These values were plugged into the model to
obtain model predicted output. The full simulation result is shown in the figure
4.7. Approximately 50 % of the data (until 80") month was used for training the
model, whereas, the remaining data from 81%! month onwards is a fresh testing

data from the same source.
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Figure 4.7: Model predicted output (MPO) simulation results for Canadian site.
The simulation results are shown for the standardised data (top) and the data in
its actual range (bottom), obtained after inverse transformation.

4.7 Conclusion

This chapter presents a novel algorithm for the terms selection in a NARX model
class, based upon the ABC framework. The previous chapters on the reviews of
SID have highlighted the possible issues associated with the MSS tasks in a local
search method such as the FROLS. A local search typically involves the ranking
of the regressors in order of their significance and ignores all the possible combi-
nation of those regressors. The criticism associated with a local search mechanism
has mostly been addressed under probabilistic frameworks.

The ABC-NARX-MSS is another addition in a series of algorithms performing
the global search in the regressors space. The algorithm mimics the SIS sampler
and reduces code complexity by a straightforward sampling procedure. The se-
quential decrease in the threshold value € ensures that the initial iterations do
not get sluggish because of a poor prior choice. The significance of a regressor
at each iteration is updated depending upon the number of times the regressor
was picked up in the performing models. The algorithm was implemented using
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a MATLAB script in this study but the provided pseudocode can be utilised eas-
ily for extension to any other platforms such as Python. The algorithm can also
be adapted to include the models apart from NARX, nevertheless, the sampling
procedure would remain the same and in accordance to the ABC.

The performance of the ABC-NARX-MSS was tested upon a known example
system as well as an unknown Canadian wetland system. The sequential steps
demonstrated through the histograms exhibit the convergence power of the al-
gorithm in a limited computational budget. This MSS algorithm picked up the
correct terms for both the systems. A thorough SID cycle for a Canadian wetland,
solely under the ABC framework and the associated simulation results, embolden
the acceptability of a probabilistic approach in an identification process. The ex-
ample system was also passed through the FROLS algorithm with varying lag
values. As the maximum lag of input-output increases to 4, the FROLS picks
up a ‘false’” term in the beginning. The advantages with the ABC-NARX-MSS in
such situations, towards selecting only the ‘true’ terms have been discussed in this
chapter.

Within probabilistic framework also, the ABC-NARX-MSS has en edge over
the other competing methods. For instance, in the RaMSS algorithm [37], one
has to tune some parameters depending upon the dataset and the system. The
ABC-NARX-MSS is free from any such ad-hoc tuning of algorithm’s parameters.
The presented algorithm is also a much simpler method as compared to the [36].
In principle, the RIMCMC approach performs the MSS and parameter estimation
simultaneously but that comes at the cost of heavy computational requirement.
The method no doubt offers a sound theoretical basis for the MSS in a stochastic
framework but that also makes it less adaptable and difficult to implement.

The ABC-NARX-MSS algorithm has mainly been motivated by the critical is-
sues corresponding to OFR framework. Despite some criticism, OFR framework
is considered to be an efficient algorithm mainly due to its low computational
requirements. The Chapter 2 has already demonstrated the usage of SID in a
wide range of fields and most of these application areas have relied upon the OFR
technique. The SID has its origin in the control theory and practitioners in this
field still regard the forward regression method as the best way of term selection.
Therefore, this chapter does not negate the importance of the OFR framework in
SID. However, a parallel probabilistic approach is an attempt to expand the SID as

a complete package for the identification in a data driven scenario.
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Data driven modelling of
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Chapter 5

Wetlands and their modelling
challenges

5.1 Introduction

A wetland is a land area that is inundated with water (figure 5.1) and displays sea-
sonal variations because of soil properties, climatic condition and orography of the
site. Wetlands are considered to be a major source of methane emission. Besides
positive emissions of greenhouse gases like methane, wetlands proffer various
types of vegetations allowing the sequestration of organic carbon and regulating
the carbon cycle. Evapotranspiration resulting due to wetlands have substantial
effects on the energy exchange between atmosphere and land surface. This com-
plex phenomena links the climatic variables with the wetland extent of a region
[98, 99].

The exhaustive mapping of the global wetlands are recorded by the Ramsar
Convention, an intergovernmental treaty providing the framework for wetland
conservation. According to the Ramsar Convention’s formal definition, wetlands
include a wide variety of habitats such as marshes, peatlands, floodplains, rivers
and lakes, and coastal areas such as saltmarshes, mangroves, and seagrass beds,
but also coral reefs and other marine areas no deeper than six metres at low tide,
as well as human-made wetlands such as waste-water treatment ponds and reser-
voirs [100].

The wetlands being a significant player in the greenhouse gas exchange should
be included in the climate models for analysing the different scenarios of the In-
tergovernmental Panel on Climate Change (IPCC). The influence of wetlands in
the environmental processes and local climate encouraged the collation of global

wetland datasets in eighties [101]. These datasets are static in nature and cannot
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explain the seasonal variations of wetlands. In the last decade, remote sensing
techniques came into action for capturing the dynamics of wetlands. The wet-
land fraction of a site cannot be measured directly and there are some well struc-
tured methodologies for deriving the extent of wetland from the remotely sensed
primary-variables. Essentially a remote sensing method provides the wetland dis-
tribution in a time series, typically on the monthly basis. Recently, these time
series datasets are being used to develop the models representing the inunda-
tion of a site as well as calibrating some process based existing wetland models
[102, 103].

In this chapter, some popular wetland models will be critically reviewed. These
models are mostly analytical in nature and have been embedded by the approxi-
mations of several complex processes governing the wetland extent of a site. The
next chapter is a novel contribution towards wetland modelling based on a data-
driven framework. This chapter will be utilised in pointing out the requirements
of a data-driven approach in wetland models and the limitations of the existing

process based modelling methodologies.

Figure 5.1: A typical wetland picture (courtesy of pexels.com).
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5.2 State-of-the-art of wetland models

5.2.1 Wetland extent and peatland accumulation using TOPMODEL ap-
proach

Peatlands constitute a significant portion of wetlands on the earth surface and have
substantial roles in the global carbon cycle. Typically a peatland can sequester a
large amount of carbon and a recent study [104] tries to analyse the effects of peat
accumulation on carbon cycle through a dynamic modelling approach. In this
modelling analysis, a dynamic global vegetation model known as the LP] (Lund-
Postdam-Jana) was linked with a wetland model and a module representing the
accumulation and decay of peat. The point of interest in this review study is the
wetland model part which is based on the TOPMODEL framework. The TOP-
MODEL is a topography based hydrological model, which is in relevance since
the last forty years and has been applied in a broad range of catchments [105].
The wetland model in [104] is dynamic in nature and determine the water table
and inundation fraction.

The TOPMODEL, being a topography based model requires the topographic
parameters. It works on the Compound Topographic Index (CTI), which is equal
to In(a;/tan(B;)), where «; is a dimensionless index representing the area draining
at the point i and tan(p;) signifies the slope at the point i. The governing equation
5.1 in the TOPMODEL evaluates the local water table (z;) at the point i using the
mean water table (Z), the CTI denoted by x;, grid cell mean CTI index (%), and a
parameter f explaining the exponential decline of transmissivity with depth. The
equation 5.1 is used to determine the inundation fraction corresponding to a grid
cell in the model. The TOPMODEL approach is quite appealing in principle but
it consists of several pitfalls mainly arising due to the approximations associated
with the CTI parameters. The approach has also been criticised by the developers
of this approach [105]. Wetland extents are underestimated in flat terrains because
of the limitations of the TOPMODEL approach in [104]. High resolution CTI
parameters are provided in [106], which can be used to determine the inundation

at a much finer scale.
zZi =2Z+ *(Xi — X) (5.1)

5.2.2 LPJ-wsl model using TOPMODEL approach

The TOPMODEL approach has been implemented to assess the wetland distri-
butions at the global level but has overestimated the wetland distributions and
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the duration of inundation on many occasions. The availability of time series
data [102, 103] and surveys on inundation fraction have helped in assessing the
anomalies associated with a typical TOPMODEL based model. Some improve-
ments in wetland modelling under the TOPMODEL framework were presented in
[107]. In this study, constraints were proposed to bridge the difference between
model predicted wetland extent and the satellite datasets. The CTI parameters
were also revised to take into account the seasonal cycles of wetlands using up-
dated topographic data. In order to formalise these updates a new form of the
Dynamic Global Vegetation Model , known as the LPJ-wsl (Lund-Postdam-Jana
WaldSchneeundLandschaft) has been proposed. Technically speaking, the LPJ-wsl
also includes the TOPMODEL approach but soil thermal dynamics are included
as well. A soil water freeze and thaw (FT) cycle and snow ageing factors have
also been included in this updated model in the view of boreal regions. In a nut-
shell, this scheme is an improvement over the previously discussed TOPMODEL
methods and currently in practice for the large scale modelling.

5.2.3 Wetland Extent Dynamics (WEED) model

The WEED model [108] is based on the hydrology model of the Max Planck In-
stitute for Metrology (MPI-M) and describes the wetland extent dynamics. The
model displays a good performance for the high northern latitudes when com-
pared to the observed data. The seasonal variation of the wetland extent associ-
ated with the snow-melt process in the northern region is fairly represented by
this model. In addition, the precipitation cycles of the tropical regions are also sat-
isfactorily explained by the WEED. Potential evapotranspiration (PET) plays very
important roles in such kind of analytical modelling approaches. In MPI-M the
PET part is in very simplified form and the calculation is not sufficiently rigor-
ous. This is a plausible reason behind the overestimation of wetland extents in the
tropical zones under the WEED scheme. Further details about this methodology
is not available at the moment but like any process based approach, this model is

also prone to the uncertainties resulting from the topographical variations.

5.3 Wetland models inter-comparison

The significance of wetlands in methane emission and regulation of biogeochem-
ical cycle entails the quantification of variations in wetland distribution. The US
Climate Change Science Program (CCSP, 2008) also suggests the similar approach
including the assessments of climate change effects on wetlands. Recently, a
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project known as the WETCHIMP [109, 110] involved in total ten models for simu-
lating the wetland extents across the globe. At least eight models in this project are
global models. The modelling results were compared with the observed data. The
observational datasets can be divided into two categories: satellite based obser-
vation [102, 103] and wetland mapping product [111]. A satellite based observed
wetland dataset is also referred as Global Inundation Extent from Multi-Satellites
(GIEMS), whereas, Kaplan 2007/K07 is a static mapping product from [111]. A
GIEMS set is a more updated form as compared to a static mapping product.
Nevertheless, in the WETCHIMP project both categories of data are used for the
comparison purpose.

Among all the models in this project, SDGVM and UVic-ESCM were not been
fed with any observed data in the course of parameterisation and their simulation
(from 1993 to 2004) are directly compared with the K07 and GIEMS. The model
outputs are very much different from the observed data, particularly the SDGVM
is overestimating the inundation across all the sites on the shown choropleth map.
The inter-comparison of models also demonstrates a high level of uncertainties.
They are in somewhat agreement near the northern latitudes but fail to show
any similarities near the equatorial regions.The cyclic patterns of the inundation
also show a high degree of mismatch among the models. There is a scope of
improvement in the observed dataset as well, mainly the data resolutions should
be in sync with the model outputs [110].

5.4 Data-driven modelling in hydrology

All the existing literatures on wetlands modelling rely upon some sorts of ana-
lytical approaches. Some of the important studies on wetlands modelling and
the WETCHIMP project, as discussed in the previous sections support this fact.
A data-driven modelling method often serves as an alternative to an analytical
method, like in a hydrological process, where are the dynamics are too complex.
Physically, a wetland system encompasses at least some aspects of hydrological
processes. Therefore in this section, a very popular data-driven modelling frame-
work in hydrology, known as, Data Based Mechanistic (DBM) modelling will be
discussed.

In a DBM modelling approach, firstly the model structure is identified through
objective statistical inference of the available data based on a linear transfer func-
tion (TF) model. The parameters of the TF model can vary over time and are es-
timated using a recursive estimation method. Any nonlinear and non-stationary

system behaviour are reflected through the time or state dependent variation in
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the parameters. Sometimes a simple input-output transfer function model can
possess a reasonable predictive power but may not pass a mechanistic interpreta-
tion related to the underlying science of the system. The DBM approach of mod-
elling ensures that the model terms are able to relate with the physical, biological,
ecological or chemical terms [112, 113].

The relationship between rainfall and river flow is of great interest among the
hydrology community. A DBM has been employed in [112] for the model struc-
ture detection and parameter estimation for explaining the nonlinear relationship
between rainfall and flow. Essentially, this paper involved the estimation of trans-
fer function model representing a rainfall-flow dynamical process by employing
recursive estimation approach. The DBM approach as used herein [112] can turn
out to be a useful tool for modelling other interesting environmental processes.
Recursive estimation also allows the usage of the DBM in designing real-time,
self-adaptive management system.

A stochastic DBM approach to modelling of rainfall-flow at the catchment scale
is compared with a deterministic alternative top-down modelling approach [114]
in [115]. The data in this comparative study is collected from the River Hodder
in the UK and hourly-sampled for a total period of 20 days. This study [115]
demonstrates that a DBM can identify the nonlinear models corresponding to
the dynamics exhibited by rainfall-flow processes even under a limited length of
observation dataset.

A toolbox compatible with the MATLAB software, known as, CAPTAIN emerged
in parallel to the DBM modelling research [116]. This toolbox is developed around
a transfer function and state space framework and extends the functionality of
MATLAB for the identification and estimation of a broad range of models. Both
state dependent and time variable parameters are considered in the CAPTAIN
toolbox. This MATLAB extension tool contains various model structures par-
ticularly useful for data-driven modelling of the processes in an environmental

system.

5.5 Conclusion

This chapter begins with the definition and significance of wetlands in the ecosys-
tem. As an important component of the Earth’s Critical Zone, wetland modelling
is a crucial contribution in the next chapter of this thesis. The reason of interests
in the wetland patterns is mainly linked to the associated carbon cycle and the
spectrum of biodiversity supported by wetlands.

This chapter succinctly presents a survey of the existing state-of-the-art models
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related to the inundation of a land surface. The mathematical details of the analyt-
ical approaches have been avoided. The broader theoretical basis of such models
are more relevant in this thesis as at no point an analytical modelling of wetlands
will be attempted herein. A recent project on the comparison of various models,
called the WETCHIMP, has been discussed in the end to emphasis the limitations
of the existing wetland models. The WETCHIMP project has a clear message that
neither the existing models are capable to explain the wetland extents fairly nor
the available observed datasets are detailed enough to perform the modelling at
the multiple scale. This thesis will try to address the accuracy problems in wet-
land dynamics using a data-driven framework in the next chapter. However, the
observed data will still be similar to the GIEMS employed in the WETCHIMP.



Chapter 6

Tropical wetlands modelling

6.1 Introduction

A wetland is a land area that is saturated with water. Most of the wetlands exhibit
seasonal variations because of soil characteristics, vegetations, climate variables
and orography of a site. Wetlands play major roles in the greenhouse gas exchange
especially methane, support certain kinds of vegetations such as paddy, control
the climate of a region through energy exchange and support a wide range of
biodiversity on earth. The wetland extent of a region is usually quantified by the
wetland fraction, which is the fraction of inundated land area at a time.

In the environmental modelling community, wetlands have remained a note-
worthy issue because of the dependence of many environmental variables on wet-
land extents. The relationship among these variables are too complex to be simpli-
fied using mathematical expressions. All the major climate models at the moment
have not been able to incorporate the wetland dynamics convincingly [108, 117].
In the last chapter, state-of-the-art of wetland models available so far had been
discussed. All those models essentially follow a process based approach and are
derived upon several assumptions. The last chapter critically analysed the pros
and cons of all such models.

In a nutshell, there is a consensus on at least two points regarding wetlands -
(a) wetland distribution can only be described correctly through a dynamic mod-
elling approach (b) wetland fraction exhibits high amount of nonlinearity with en-
vironmental variables. In this study, the System Identification (SID) methodology
is used for the identification of a nonlinear dynamic model structure of tropical
wetlands across the globe, using the remotely sensed data. The chosen nonlinear
model is Nonlinear Autoregressive Exogenous (NARX), a widely popular model

class in control theory and other application area such as, biomedical engineering,
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econometrics, mechanical systems, synthetic biology, space weather modelling etc
[18].

The wetland fraction data using a remote sensing technique are available for
multiple tropical sites [118]. In this study, a single model structure has been devel-
oped using the Forward Regression Orthogonal Least Square (FROLS) algorithm
of the SID, representing the common underlying processes, governing the wet-
land extents of all the tropical regions across the globe. This is the first novelty of
this chapter. Following the model structure detection, the Approximate Bayesian
Computation (ABC) is used for estimating the parameters of sites from Amazon,
Africa and Asia regions. This resulted into a parameter mapping corresponding to
the developed wetland distribution model and can be used to simulate the model
for a specific site pertaining to the tropics of the globe. This is the second novel
contribution of the chapter. Forecasting of wetland distribution for a site could be
key in the future land management practices. The model is validated against a
fresh data set, derived using the similar remote sensing technique.

This chapter begins with a simplistic case, where just three tropical sites have
been chosen to obtain an integrated wetland model. In this stage, the model struc-
ture detection and parameter estimation have been carried out using the FROLS
approach. In the next stage, the Bayesian inference in the form of ABC has come
into action for mapping the parameters of all the available tropical sites. The
model performance corresponding to all the sites are shown using the choropleth
maps. The contributions of this chapter along with some proposed future works
towards the wetland distribution modelling are discussed in the concluding re-

marks.

6.2 Wetland modelling: a system identification problem

The wetland modelling in this study follows a data-driven approach, using a
dataset obtained through remote sensing technique [118]. The available data con-
tains the environmental and vegetation variables such as average temperature,
soil water content, leaf area index, evapotranspiration, transpiration, and wetland
fraction. All the data points form a monthly time series and are available from Jan-
uary 2000 to December 2012. The wetland fraction (fw), which is also the system
output can be defined as a fraction of site that is an inundated-wetland. In total,
the input-output data are available from 94 tropical sites, separated by 0.5 x 0.5
degree geographically (figure 6.1).

A wetland model could be used for the forecasting purpose only if all the

future inputs are available. This constrains the choice of input and the average
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temperature becomes a natural choice mainly because of its availability from the
CMIP5 models [117]. The output of interest is wetland fraction, and hence the
whole modelling can be perceived as a Single Input Single Output (SISO) system
identification.

In this SISO system, we have a blackbox having a function of lagged inputs and
outputs and the aim is to determine this blackbox fairly. This function essentially
describes the dynamics of the system, which in this case is the wetland system.
As mentioned in the introduction, this function is expected to be a nonlinear dy-
namic function of input-output. In SID terminology, the underlying function in
the blackbox can be referred as the model structure. In this study, a parametric
form of the SID is considered hence the underlying function will be parameterised
appropriately. The actual significance of these parameters will be apparent in the
coming sections.

In summary, the posing of wetland modelling as an SID problem provides an
opportunity to exploit many robust and popular methodologies of SID and extend
those techniques in an environmental system. These methods have the potential
to overcome the challenges being faced in a typical process based modelling of

such class of environmental systems.
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Figure 6.1: Tropical sites having spatial resolution of 0.5 x 0.5 degree. Remotely
sensed data of all the dotted sites are available.
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Site | Region | Latitude (in deg.) | Longitude (in deg.)
1 | Amazon -2.75 -57.25
2 Africa 13.75 19.25
3 Africa 10.25 23.25

Table 6.1: Geographical coordinates of tropical wetlands sites used for modelling
in Stage 1.

6.3 Stage 1: Least square method

In this study, modelling of wetland distribution commenced with the standard
least square methodology for both the model structure detection and parameter
estimation. The FROLS algorithm, described in the last chapter was employed in
this stage of identification. Here the number of sites were limited to just three. The
modelling was performed for individual sites firstly and thereafter an integration
was carried out to obtain a tropical wetland model. The results of this stage
have been reported in [119]. The following subsections describe the detailed steps
followed in this stage.

6.3.1 Input-output characteristics

As mentioned earlier, the SISO system approach was chosen in order to make the
model capable of predicting the future scenarios. In addition to this feature, single
input system also helps in avoiding the modelling complications incurred because
of multiple variables. In this stage, three wetland sites across the tropics formed
the part of Orthogonal Least Square (OLS) type modelling.The geographical coor-
dinates of all these sites are presented in the Table 6.1. The figure 6.2, 6.3 and 6.4
represent the input-output data of the sitel, site2 and site3 respectively. The raw
data of each site is transformed using z-score standardisation, in order to constrain
the input-output into similar range.

All the sites falls into the tropical zones of the globe and therefore, the range of
average temperature exhibited by these sites are nearly same. The wetland fraction
corresponding to the site 1 (Amazon) is on higher side as compared to the other
two African sites. The wetland distribution depends upon many factors including
the local topography. So, even the sites belonging to a similar climate might show

large variations in their inundation fraction.

6.3.2 Model structure detection - Individual wetland sites

In this study, NARX modelling approach was used for identifying the dynamics of

a wetland system. The regressors matrix ¢ is built up by including all the possible
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Term no. | Parameter | ERR
1 -0.2172 0.7636
2 0.8230 0.0715
3 -0.4045 0.0648
4 -0.1616 0.0104
5 0.1236 0.0085
6 0.1080 0.0044

Table 6.2: NARX model parameters and Error Reduction Ratio (ERR) correspond-
ing to the site 1. Model terms are ranked according to their ERR values.

terms corresponding to the maximum input lags (7,), maximum output lags(n,)
and polynomial order(,).
The ¢; matrix corresponding to each tropical site j,

j €3]

was formulated by assigning n, = 6, n, = 6 and n, = 3. The seasonal cycle
of input-output data was used as a rough guideline to choose the maximum lag
values in this stage. To obtain a model structure explaining the dynamics of Site;,
the ¢; regression matrix was arranged using the lagged input-output variables, as
explained in the Chapter 2. Following this step, the FROLS was applied on the ¢;
to obtain a parsimonious model structure for each site. The model derived for the

site 1 is shown in the equation 6.1.

§() = 009t —6) + 62 9(t 1) + 63 9(t — 3)
05 u(t—1)+65-9(t—1) - 9(t —2) - (¢t — 3) 6.1)
- 9(t—1)-§(t—1) - 9(t —6)

Similarly, model structures for the site 2 and site 3 are shown in equation 6.2 and

6.3 respectively.

]?(t)zel- ( 6>—|—92 y >—|—93 u(t—5)
Oyt —1) - u(t—3) 62

05 g(E—5) - u(t—2) - u(t—3)

+06-9(t—1) - 9(t —1) - 9(t — 6)
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Term no. | Parameter | ERR
1 0.2926 0.3171
0.4650 0.1063
-0.2160 0.0734
-0.3652 0.0569
-0.3423 0.0352
0.2271 0.0282

N Ul = WD

Table 6.3: NARX model parameters and Error Reduction Ratio (ERR) correspond-
ing to the site 2. Model terms are ranked according to their ERR values.

Term no. | Parameter | ERR
1 -0.0171 0.5023
-0.7727 0.1263
-0.2100 0.0641
0.5359 0.0346
0.3345 0.0280
0.1421 0.0264

N Ul = W IN

Table 6.4: NARX model parameters and Error Reduction Ratio (ERR) correspond-
ing to the site 3. Model terms are ranked according to their ERR values.

g(t) =61 -9(t —6) + 62 - u(t —5)

+05-9(t—5) - u(t—2)-u(t—3)+04-5(t—1)
(6.3)

+65-9(t—1)-9(t—1)-u(t—5)

+06-u(t—3)-u(t—3) u(t—6)

The obtained model structure for each site is parameterised by the six param-
eters namely, 61, 6>, 03, 04, 65 and 6. Models corresponding to the site 1 (equation
6.1) and site 3 (equation 6.3) are mainly driven by output, whereas the model rep-
resenting the site 2 (equation 6.2) is a input driven model. The parameter values
and the Error Reduction Ratio (ERR) corresponding to the site 1, site 2 and site 3
are presented in the Table 6.2, 6.3, and 6.4 respectively.

The prediction of wetland extent for a site can be made using such site specific
models. Nevertheless, most often the purpose of a modelling exercise is to un-
derstand the science behind the process. The wetland dynamics of all these sites
should be characterised using a simple and common model structure because all
of them lie between the Tropic of Cancer and Tropic of Capricorn. In order to vali-
date this hypothesis, an integrated model structure for all three sites were obtained
and is explained in the next subsection.
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91 92 93 94 95 96
1.1981 | -0.0326 | 0.2509 | -0.1961 | -0.0262 | -0.0265

Table 6.5: Estimated parameters of the NARX model corresponding to the inte-
grated tropical wetland model developed in Stage 1.

6.3.3 Integrated tropical wetland model

For deriving a single model structure, explaining the dynamics of the tropics, the ¢
matrix of the three tropical sites (¢1, ¢, and ¢3) were arranged in vertical order to
form a combined ® matrix of the tropics. Following this merging step, the FROLS
was applied on the @ in similar ways, as explained in the previous subsection.
This resulted into a parsimonious model structure containing six terms, shown in

the equation 6.4.

§(1) = 009t —1) + 02§t —2) - §(t —3) - 9(t —4)
1) 9t~ 6) + 64§t —1)-9(t —3) - §(t — 6) (64)
(b= 3) + 8- 9(t 1) 9t~ 1) -9t — 1)

The obtained model structure (equation 6.4) has six parameters namely, 61, 65, 03,
04, 05 and 6. The parameter vector 8 = [0y, 02,..., 8] was calculated using the
steps described in the section 2.3 and 2.4 of the Chapter 2. The parameters values
are listed in the Table 6.5. This integrated version of wetland model exhibits sub-
stantial difference from the site specific models obtained earlier. The terms in the
equation 6.4 follow the ERR ranking, which means the first term is contributing
the most towards output variance. The most significant term in this model con-
tains the output like site 1 and site 3 models but unlike those models, here the lag

value is 1 for the first term.

6.3.4 Simulation results

The tropical wetland model structure shown in the equation 6.4 shows the re-
lationship among the current output y, past inputs u(t — n,), and past outputs
y(t —ny). The model terms are ranked according to their ERR values. Clearly,
the term y(t — 1) is having the highest ERR, which means the wetland fraction in
a month depends mostly on the wetland fraction of the previous month. All the
terms except the fifth one contains the lagged outputs, which means the model is
mainly driven by its previous outputs. The fifth term accounts for the average tem-
perature but interestingly the u(t — 3) - u(t — 3) term signifies that a temperature
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Site | Region | Std. deviation (fw) | Mean (fw)
1 | Amazon 0.1332 0.4507
2 Africa 0.0332 0.0364
3 Africa 0.0419 0.0458

Table 6.6: Basic statistical information of the wetland fraction data (output) corre-
sponding to all three sites used for modelling in Stagel.

value influences the wetland distributions after 3 months.

The performance evaluation of obtained wetland model was done using a new
dataset of all the sites. The raw data were processed through z-scored standardi-
sation during the model structure detection and parameter estimation. Therefore,
the model output (fw) was passed through inverse transformation process for
scrutinising the wetland fraction in its actual range. The mean and the standard
deviation values of the raw data corresponding to all the three sites are given in
Table 6.6. The simulation results of the site 1, site 2, and site 3 are shown in the
figure 6.5, 6.6, and 6.7 respectively. The data until August 2006 (80" month) was
employed for the estimation, whereas, the data from September 2006 (815" month)
onward is the new data, used entirely for the model evaluation task. The One Step
Ahead (OSA) prediction results match very closely with the observed values for
all the sites. This indicates that, the derived model shown in the equation 6.4 sat-
isfactorily represents the wetland dynamics of all the three tropical wetland sites.
The same idea could be extended for obtaining a global tropical wetland model.

The purpose of such kind of environmental modelling is also to predict the
future scenarios. For instance climate change is expected to increase the average
global temperature substantially by the end of this century. The Intergovernmen-
tal Panel on Climate Change (IPCC) scenario RCP 8.5 [6] describes the change
in climate variables under the ‘business-as-usual” scenario. One of the main mo-
tivations behind modelling the tropical wetlands distribution is to analyse the
effects of climate change under the RCP 8.5 on wetlands. Therefore, Model Pre-
dicted Output (MPO) of the model must explain the wetland fraction fairly. The
OSA prediction results generated from the obtained model are showing satisfac-
tory performance (figure 6.5, 6.6, and 6.7). However, the model is prone to fail
in producing a reasonable MPO, mainly because it ignores the intricacies of to-
pographies corresponding to various sites. A single parameter set is insufficient
to explain the topographical variations exhibited by these sites despite following
a similar dynamic. In reality, all the sites differ a lot in topographic details such
as orography. The detailed explanation of the factors affecting wetlands and their

incorporation into the process based models are explained in the previous chapter.
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Figure 6.5: One Step Ahead (OSA) simulation results for site 1. The simulation
results are shown for the standardised data (top) and the data in its actual range
(bottom), obtained after inverse transformation.

The model obtained in this stage considers just three sites. Once all the tropical
sites are taken into account, the topographical complexities will further increase.
To address these issues the modelling was switched to the next level known as
stage 2. In the next stage, Bayesian framework will be used for estimating the

parameters of all the sites separately.

6.4 Stage 2: ABC method

In this stage of modelling, all the available data corresponding to the tropics were
used for obtaining a common global tropical model. The model structure detection
steps are similar to the stage 1, but here the topographical variations of the sites are
addressed by estimating their parameters separately using an ABC method. ABC
is considered to be a likelihood free method, where the intricacies of likelihood
functions are replaced by exploiting the enhanced computational power. The the-
oretical details surrounding the Bayesian inference and particularly the ABC are
discussed in the Chapter 3. In this section emphasis would be to demonstrate the
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Figure 6.7: One Step Ahead (OSA) simulation results for site 3. The simulation
results are shown for the standardised data (top) and the data in its actual range
(bottom), obtained after inverse transformation.
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practical application of the framework for developing a robust tropical model.

6.4.1 Data analysis

The data characteristics of all the tropical sites are not shown in this chapter, as
that would make the whole document clumsy. This is why, one sample site from
each region - Amazon, Africa, and Asia will be discussed throughout this chap-
ter. The sites within a particular region do exhibit some topographical variations,
as described earlier, but are still driven by similar climates. Hence, the input-
output characteristics of a sample site from each region will be assumed to be the
characteristics of the entire region. The geographical coordinates of these sample
sites are contained in the Table 6.7. Like the stage 1, z-score standardisation was
performed on raw data for all the sites (figure 6.8, 6.9, and 6.10).

Prior to the actual modelling steps, some basic analyses such as correlation of
output (fw) with input (AvgTmp) (figure 6.11a, 6.12a, and 6.13a) and autocorrela-
tion of output (fw) (figure 6.11b, 6.12b, and 6.13b) were performed. The seasonal
behaviour of wetland distributions for all three regions, as shown in the figure 6.8,
6.9, and 6.10 also reflect from their autocorrelation plots. The values of autocorre-
lation decreases up till 6/ or 7' lag terms, then increases again, but finally at the
18" or 19" lag terms, the autocorrelation measures reach to their minimum. The
autocorrelation plots in these figures are shown until 20" lag terms. The correla-
tion measures as shown on the vertical axes will keep shrinking as the number of
lags increases further.

Correlation between AvgTmp and fw for all the three regions reveal that ex-
cept Amazon no region exhibits a good amount correlation between these vari-
ables. The average magnitude of fw in Amazon is very high compared to Asia
and Africa. This could be a possible explanation for a better correlation of fw with
AvgTmp compared to other regions. The lower values of fw might have been in-
ducing a lesser dependence on climate inputs. In such cases, where the fw is not
correlated nicely with temperature, other input variables, depending mostly upon
the land characteristic such as soil water content could be used as input. The cor-
relation analysis between fw and other variables were not performed because the
prime aim of this modelling exercise is to obtain a robust model capable of making
reliable predictions to understand the effects of increasing global temperature and
climate change on wetlands. In order to predict the future scenarios, the future
inputs must be available while simulating the model. This requirement acts like a
major constraint and there is no other option except using a weather variable like
average temperature as the input. SID is a data-driven method so undoubtedly,

inclusion of sites such as Africa and Asia, where the inputs and outputs are not
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Site | Region | Latitude (in deg.) | Longitude (in deg.)
1 | Amazon -3.75 -63.75
2 Africa 10.75 18.25
3 Asia 18.75 82.25

Table 6.7: Geographical coordinates of sample sites from each tropical region -
Amazon, Africa, and Asia.

correlated well, posed some modelling challenges.

Selection of maximum time lags for input (1,) and output (1) is a key step
in a NARX modelling method. The maximum lag values is directly proportional
to the computational time required for the model development. In this modelling
step, first of all time series plots for all the three regions were inspected. It is
interesting to note the seasonality in the data. The values of fw starts increasing
from January up till June/July and then starts decreasing until December /Januray.
In this study, the values of maximum time lags for both inputs and outputs were
set in an iterative manner, starting from n,, n, equals to 1 until n,, n, equals to 12.
The model performance in terms of data fitting started improving consistently up
till n,,, ny equals to 6, whereas, the performance declined for the higher lag values.
After careful consideration, both the 1, and n, were set to 6.

6.4.2 Model structure detection: Global tropical wetland model

A simple NARX model, capable of describing the dynamics of the global tropical
wetlands was obtained in this study. The model structure detection was carried
out similar to the stage 1. The ¢; matrix corresponding to each tropical site j,

j€[1,94]

was constructed by setting n, = 6, ny, = 6 and n, = 3. Eventually, the ¢; regres-
sion matrix was arranged using the lagged input-output variables, as explained in
the Chapter 2. For deriving a single model structure, explaining the dynamics of
the tropics, the ¢ matrix of all the tropical sites (¢1,..., ¢os) were arranged in ver-
tical order to form a combined ® matrix of the global tropics. After this merging
process, the FROLS was applied on the ®, as explained in the previous section.
This resulted into ranking of terms based on their ERR values. Finally a parsi-
monious model structure representing the global tropical wetland dynamics was

obtained (equation 6.5). The model contains total six terms and is quite compact
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Figure 6.11: Data analysis of Amazon region. (a) Correlation between average
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Figure 6.12: Data analysis of African region. (a) Correlation between average
temperature and wetland fraction, (b) Autocorrelation of wetland fraction.
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Figure 6.13: Data analysis of Asian region. (a) Correlation between average tem-

perature and wetland fraction, (b) Autocorrelation of wetland fraction.
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as compared to some analytical models discussed in the last chapter.

glt) = 601-9(t =1) +62-9(t —2) - §(t —2) - 9(t - 6)
+03-u(t—1) - u(t—6)+04-9(t—1) - u(t—1)-u(t—06) (6.5)
+65-u(t—5) - u(t—6)+66-7(t—5)

6.4.3 ABC based parameter estimation

The ABC-SMC was used for the parameter estimation of all the available tropical
sites across the globe. In the Chapter 3, the ABC-SMC algorithm had been pre-
sented in a purely theoretical sense. In this section, the algorithm steps will be
presented again but with the exact values of threshold, population steps, particle
size etc. This is the ABC-SMC algorithm as presented in [35] and the same was
implemented in this study. Tropical wetland model parameter estimation steps
according to the ABC-SMC are as follows,

e Number of iterations was set to K = 11 and number of parameter samples
L = 1000.

e Prior distribution of parameters is denoted by 77(f) and error sequence as,
€1>...>€K.

e ¢; was set to 2d,,;, and ex was kept at d,,;,, where the d,,;, was determined
by running the basic version of ABC for L samples. d;, is actually the least
value among all the L distance measure.

e L, norm was used for the distance function d(.) in the following steps.
e Parameter perturbation kernel { was chosen to be uniform random walk.

These listed information were used to parameterise the ABC-SMC algorithm,
stated below.
Input number of iterations K and number of parameter samples L
prior 71(f) and error sequence €1>...>€xk
Atk =1
forj=1:L
draw 07 ~ 71(9) and simulate yi ~ p(y\@}‘)
until d(S(y]’f), S(y)) < e
end for
set each weight w]l =1
fork=2:K
forj=1:L
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sample 6 from 0% — 1 with probabilities w1

perturb 9]?* to obtain 9;‘* ~ {(6]6%)

simulate y7 ~ p(y](%]’-‘*) until d(S(y;‘), S(y)) < e
end for
Set each 9;‘ = 9]7‘*

ko _ @)
Set each w; = T @ 12T

and normalise

end for

GJK obtained at the end of this loop is an estimate of the posterior distribution
p(@ly), where { is a parameter perturbation kernel, which can be a uniform or

Gaussian random walk.

6.4.4 Parameter distribution

Bayesian statistical inference provides a probability distribution of parameters in-
stead of point estimates of parameter values. An optimisation method such as
least square in the stage 1 returned an optimal set of parameters. That does not
provide any information about the sensitivity of model to the different parameters.
In real world situation, the data is often noisy and hence an unbiased parameter
can not be estimated easily. The NARMAX model structure however tries to ad-
dress this issue with ‘moving average’ part, which is essentially a noise modelling.
In practice, obtaining a NARMAX model structure is very difficult and hence this
study was based on NARX model class.

As mentioned in the beginning of this section, parameter estimation for all the
sites became imperative after the first stage of modelling. In addition to the current
method (ABC), there are also some other potential deterministic approaches for
estimating the parameters of all the sites. The Bayesian inference, particularly
the ABC appears to be a better choice mainly because the ABC returns the shape
of all the intermediate distributions without any additional computational effort.
These distributions could be employed for analysing the sensitivity of model to
different parameters. A model exhibits higher sensitivity towards the parameters,
which got inferred in earlier population and have a very small interval in the
subsequent distributions. If there is not much changes in a parameter distribution,
as the iteration progresses and the distribution remains nearly same like the first
population then the particular parameter may not be inferred through the current
data [33].

In this study the ABC comprised of 11 iterations, which generated 11 popu-
lations of parameter distributions. At the beginning of the algorithm, parameters

were sampled from the uniform distribution. In a Bayesian inference, we can in-
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duce our knowledge about the system. In this case, informed prior distribution
in the beginning was based on the least square estimates. Nevertheless, the prior
was uniformly distributed with a reasonable range as shown in the figure 6.14,
6.16, and 6.18. These scatter plots incorporate the intermediate distributions of
all the parameters for all the regions under study and can be regarded as a sum-
mary of all the steps followed by the ABC-SMC algorithm. First iteration, which
is essentially an ABC rejection step generated the first set of posterior distribu-
tion (population 1). For the second iteration, parameters were sampled from the
population 1. Which means posterior at the population 1 serves as a prior for the
population 2. The posterior distributions for all the iterations till the K iteration
were estimated in a similar fashion.

The posterior parameter distribution is shown using the histograms in the fig-
ure 6.15, 6.17, and 6.19 for the Amazon, African and Asian regions. According to
these distributions the tropical wetland model appears to have higher sensitivity
towards the parameters 61, 05, and 6¢. All these parameters exhibit very narrow
interval in the their posterior distribution. Joint probability shown using the scat-
ter plots of the intermediate distributions (figure 6.14, 6.16, and 6.18) indicate that
61 and 0 are cancelling out each other. The exact interpretation of this phenomena
especially in the context of their effects on the wetland fraction will be discussed
in later part of this section.

6.4.5 Model characteristics

A NARX model representing the dynamics of the tropics was developed in this
study. In the previous subsections, modelling steps have been discussed. Unlike
an optimisation approach, the Bayesian inference generated a distribution of pa-
rameters instead of a unique set of parameter values. The model characteristics
can not be teased apart thoroughly unless a set of parameter values are extracted
from the available distribution. Averaging of parameter values in a distribution
provides a robust set of parameter. The remote sensing data used for the param-
eter estimation in this study is susceptible to be affected by noise present in the
satellite measurement setup. Therefore, averaging seems to be a better choice than
a more popular choice known as maximum a posterior (MAP) estimate. In simple
words, MAP is the mode of a parameter distribution. The averaged parameter sets
of all the sample sites, calculated as ‘true parameters” are presented in the Table
6.8.

The model structure gives a general impression that, it is an output driven
model as the first term contains a lagged output term. First term and its posi-
tive parameter values for all the regions signify that, the wetland distribution in
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Region 91 92 93 94 95 96
Amazon | 0.592 | 0.022 | 0.036 | -0.265 | 0.102 | -0.511
Africa | 0.577 | -0.022 | 0.048 | -0.001 | 0.026 | -0.546
Asia 0.628 | -0.020 | -0.511 | 0.063 | -0.232 | -0.311

Table 6.8: Parameter Sets (calculated by averaging the corresponding posterior
distribution).

the previous month contributes mostly towards the fraction of wetland in the cur-
rent month. This also fits perfectly with the physical characteristics of wetlands.
Change in wetland distribution is not a very fast process, so the current extent of
inundation should not vary much from the last month. Second most contributing
term also contains the time lagged wetland fractions but up to lag 6. This means,
the chosen output lag value at the beginning of the modelling was a right decision.
Third and fifth term contain only the time lagged input variable. This means, even
though model is mostly output driven, temperature plays some roles towards the
inundation of a land area in tropics. The last term is entirely based on output like
the first term, but the parameter values are approximately equal and opposite to
the first term. At first, it gives an impression that both these terms are sort of can-
celing each other but that is not the case here. The wetland fraction is following
a cycle, where crests and troughs are separated at around 6 months interval. So,
the wetland fraction values do not repeat in 6 months time, in fact an approximate
repetition can be noticed after an interval of 12 months. To ensure that the last
term is not redundant, the term was eliminated on a trial basis to obtain a model
containing just the first five terms. In that case, model performance deteriorated
dramatically.

6.4.6 Simulation results

The global tropical wetland model developed in this section is supposed to be an
improved version of the model developed solely using the least square technique
in the last section. Firstly, the present model incorporates all the available tropical
sites in the modelling steps. Secondly, the parameter of all the sites are estimated
separately so that the topographical details are captured in the form of parame-
ter. Nevertheless, a single model structure of the tropics manifests the common
dynamics of all the tropical sites.

In the last section, model simulation was evaluated using their OSA. Obviously,
the OSA prediction does not guarantee a robust predictive capability of the model.
Here, MPO will be used for demonstrating the performance of the model across
three regions of the tropics - Amazon, Africa, and Asia. In this case also, model
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Site | Region | Std. deviation (fw) | Mean (fw)
1 | Amazon 0.0862 0.4394
2 Africa 0.0286 0.0323
3 Asia 0.0236 0.0285

Table 6.9: Basic statistical information of the wetland fraction data (output), cor-
responding to all three sample sites from Amazon, Africa, and Asia regions.

structure detection and parameter estimation was performed using the z-scored
data. Therefore, the wetland fraction (fw) was passed through inverse transforma-
tion process to demonstrate the fw in its actual range, which lies between 0 and 1.
The mean and the standard deviation of the raw data corresponding to all three
regions are presented in the Table 6.9.

The simulation results of the Amazon, African, and Asian regions are shown in
the figure 6.20, 6.21, and 6.22 respectively. The data until August 2006 (80" month)
was used for the estimation, whereas, the data from September 2006 (81% month )
onward is the fresh data, used solely for the model evaluation purpose. The MPO
prediction results are in sync with the observed data for all the regions. Thus the
NARX wetlands model (equation 6.5) fairly represents the wetland dynamics of
the tropical regions across the globe. A satisfactory performance of the MPO also
emboldens the predictive power of this model.

6.5 Parameter mapping

The parameter mapping all the three regions - Amazon, Africa, and Asia are
shown in the figure 6.23, 6.24, and 6.25.

This modelling approach is considering a climatic variable (average tempera-
ture) as the key driver for calculating the inundation of a land area. In reality,
wetland distribution depends upon a wide range of topographical factors such
as, vegetation type, soil porosity, orography etc. For instance, a site having more
paddy fields will naturally have more inundation than the sites having other kind
of crops. Similarly, a site having high amount of soil organic matter would result
into an enhanced level of soil porosity and a highly porous condition might limit
the inundation. All the sites falling between the Tropics of Cancer and Tropics
of Capricorn are exhibiting similar types of climates, especially the temperature
range do not vary much. This feature was utilised in the current modelling process
for obtaining a common model structure of all the tropical wetlands.

Topographical variations of the wetland sites are incorporated using the CTIs
in the TOPMODEL approach of wetland modelling [105-107]. In the last chap-
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ter, this methodology was discussed in detail. In this study, separate parameter
sets for each site takes into account such kind of topographical variations. The
third and fifth terms in this model contain only the input variables, which is tem-
perature. All the regions - Amazon, Africa, and Asia show very little variations
among the two parameters 63 and 65 corresponding to these two terms. This goes
perfectly with the underlying logic that climate inputs do not vary much among
the tropical sites. First and the last term contain only the output variable, which
is wetland fraction. The parameters corresponding to these two terms 6; and
6 exhibit a large variations. Again this fits perfectly with the above argument
that, wetland distribution can vary significantly as the topography varies. The
current NARX model does not incorporate the topographical factors directly but
the lagged versions of wetland fraction (output) in the model do compensate for

several complex topographical processes affecting the inundation.

6.6 Model performance

The developed wetland model was simulated for all the available sites. The mean
fw (figure 6.26), mean annual maximum fw (figure 6.27) and mean annual mini-
mum fw (figure 6.28) of both the simulation results and the actual observed data
were compared. A similar kind of comparison has been made in the WETCHIMP
project [109, 110]. In the previous chapter, results reported in the WETCHIMP
project were critically analysed. In summary, the NARX model developed in this
study is a much simpler description than the process based models used in the
WETCHIMP. The comparison of basic statistics between the simulated results and
the observed values place this NARX model in a higher fidelity zone, especially in
terms of the prediction power exhibited by this model.

Only the tropical sites were available in this study compared to a truly global
range of sites in the WETCHIMP. So one might argue that the NARX model is still
not a true global model. However, the structured methodologies and a rigorous
parameter inference based upon the Bayesian framework could certainly be em-
ployed to extend the current model to a global wetlands model. Obviously, the
dynamics shown by a temperate region or other regions like Siberia would differ
from the dynamics shown by the tropical region. In that case, maybe more than
one model structure could be developed representing each climate region of the
globe.

Another criticism which might come into play is that, the WETCHIMP project
do not use any observed data in their model and try to predict the inundation
based on the processes governing the water table and water flow in a site. On the
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other hand, prior information about a site in form of data is fed into the NARX
modelling approach. But that can strongly be countered with the very fact that,
process based modelling and data-driven modelling are distinctly two different
frameworks. Each of these frameworks has its own advantages and disadvan-
tages. If the prime purpose is to predict the extent of wetland distribution at the
century end under the effects of climate change, then a NARX model exhibiting
a good prediction efficiency would serve the purpose. However, if the purpose
is to analyse the various actual factors governing the inundation in a month then

obviously one would prefer a process based model, which is not yet available.

6.7 Conclusion

This chapter describes the modelling of tropical wetlands using the system iden-
tification methodology. The dataset used in the modelling exercise was generated
and processed using the remote sensing technology. Wetland distribution is quan-
tified here as wetland fraction, which is actually the fraction of land area showing
the characteristics of wetlands. The characteristics of wetlands and the official
benchmark for classifying them are based upon the criteria of the Ramsar Con-
vention. The available dataset contains the environmental variables such as, evap-
otranspiration, soil water content, average temperature, and wetland fractions as
monthly time series. Among these variables, wetland fraction naturally becomes
the output of interest for the modelling purpose whereas the average tempera-
ture is considered as the input of the system. So, from systems perspective the
whole problem of wetland modelling was posed as a SISO system identification.
Input and outputs have a very different range so the data were standardised us-
ing the z-score normalisation, prior to any modelling steps. The entire study was
categorised into two stages.

In the first stage, only three tropical sites were used for obtaining a parsimo-
nious NARX wetland model. The model structure detection and the parameter
estimation were carried out solely under a deterministic framework. This en-
abled a simple model demonstrating satisfactory OSA performance but that was
not enough, as the prime purpose was to obtain a model useful for making ro-
bust predictions of wetland distribution under the future climate change scenar-
ios.Therefore, the entire modelling was shifted to the next stage where the parame-
ter estimation was carried out under a probabilistic framework known as the ABC.
This enabled a mapping of model parameters corresponding to the sites scattered
through the tropics of the globe. The MPO in this stage showed satisfactory perfor-
mance. In addition to a satisfactory prediction power, this approach also generated
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Figure 6.28: Mean annual minimum wetland fraction (from 2008 to 2012) compar-
ison between the model output and observed output.
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the probability distribution of estimated parameters. Through these distributions,
sensitivity of model to the various parameters could also be analysed.

Climate change is expected to change many environment variables especially
the average global temperatures. IPCC scenarios RCP 8.5 (business as usual) sug-
gests that under the current level of green house gas emission the average tem-
perature is set to increase substantially by the century-end. The wetland model
developed in this study can be used to evaluate the distribution of tropical wet-
lands in the advent of climate change. A similar approach could be used to model
the wetlands of the entire globe. Wetland dynamics do show variations among
different climate regions. So, a global wetland model might include a suite of
models corresponding to each climatic zone.

The currently available sites show a spatial resolution of 0.5 x 0.5 degree. In
some situations, one might want to analyse the wetlands situated between two
different sites. So in future, a methodology for approximating the parameter sets
of a zoomed-in site could be developed. Some of these modifications could enable
a proper global wetland model, which could be integrated with existing climate
modelling suites for a more accurate representation of greenhouse gas and energy
exchange with atmosphere.
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Chapter 7

Enhanced weathering: potentials
and challenges

7.1 Introduction

Natural chemical weathering of rocks is a geological process through which the
atmospheric carbon dioxide on the earth is sequestered. Approximately 0.25 Pg
of carbon per year is absorbed naturally [120] and this is an important factor by
which the temperature of this planet is maintained in a range suitable for the
existence of life. Enhanced weathering (EW) is an accelerated form of such kind
of rock weathering, which is expected to escalate the carbon absorption process
while rendering some other essential ecosystem services in parallel.

A tremendous increase in the greenhouse gas emission, particularly after the
industrial revolution has affected the climate negatively. The climate change has
already perturbed the food cycle in the last few decades and is expected to get
further aggravated in the coming years [121]. An increasing global population
which is expected to cross 11 billion by the year 2100 [2], greenhouse gas emission
because of the intense agricultural practices, depletion of fertile top soil [122],
and finite resources of inorganic fertilisers add further complications in dealing
with the food security and climate change simultaneously. Enhanced weathering
appears to be a plausible option to tackle the challenges of food security and
climate change while restoring the soil essential functions [123-125].

In the UNFCCC COP 21 (Paris agreement), all the parties agreed to make ef-
forts for keeping the average global temperature to below 2 degree Celsius above
the pre-industrial levels. In addition, they also agreed to bring measures for lim-
iting the temperature increase to 1.5 degree Celsius. However, the global mean

temperature has already crossed the 1 degree Celsius mark and with the current
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warming rate it is set to cross the 1.5 degree Celsius in the next thirty years of time
[126]. The Intended Nationally Determined Contribution (INDC) is a new inter-
national agreement resulting from the COP21, which outlines the proposed action
steps by each party towards meeting the targets of the Paris agreement. The de-
veloping economies as per their INDC cannot phase out the fossil fuels rapidly as
that would hamper the pace of their economic development. These factors suggest
that the ambitious targets of the COP 21 is not possible unless the CO, mitigation
policy incorporates a combination of Negative Emission Technologies (NETs) ac-
tively by the mid of this century [127, 128]. An NET is supposed to capture the
atmospheric carbon to cause the reverse of positive emission, as suggested by its
name.

Enhanced weathering is a type of NET, which involves the application of
crushed form of calcium and magnesium containing rocks. This chapter will pro-
vide the basic mechanism of enhanced weathering and its potential in tackling
the climate change issues, food security, ocean acidity etc. In addition, several
logistics issues, policy issues and other implementation challenges will also be
discussed. Currently, enhanced weathering is in a concept phase and computer
modelling of the process is the most effective way to analyse its effects on climate
and soil-vegetation systems. Therefore a comprehensive survey of the state-of-
the-art models representing the weathering processes will also be presented in
this chapter. Finally the feasibility of this NET based upon several pros and cons
will be discussed in the concluding section.

7.2 Basic mechanism of enhanced weathering

The basic weathering reactions of a carbonate and silicate minerals will be dis-
cussed in this section. A mineral usually exists in the rock form where typically
other minerals are also present. The enhanced weathering of a rock thus involves
the weathering of more than one mineral simultaneously. Irrespective of a min-
eral, the weathering reaction involves the reaction of mineral with the atmospheric
carbon dioxide in presence of weathering agent such as water and carbonic acid.
This step leads to the formation of bicarbonate anions and metallic cations. Even-
tually, the bicarbonates combine with metallic cations to form the carbonates. The
bicarbonates, as the intermediate phase of the weathering reaction, sequester the
carbon in the aqueous form or get locked in the form of carbonates [129].
Calcium carbonate is a commonly found carbonate mineral. As explained
above, it reacts with the carbonic acid to release Ca?* cations and HCOj anions.
Interestingly, the CaCO3 weathering do not act as a net sink of the atmospheric
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CO; as the same amount of CO is released bak to the atmosphere upon the forma-
tion of carbonate on the product side. So obviously the use of CaCOj3 in enhanced
weathering is ruled out. At the same time, its usage as a liming agent in the in-
tense farming scenarios should also be evaluated carefully because although the
soil acidity can be reduced by the application of crushed calcium carbonate in the
farmland, it will also emit CO; on the other hand [130]. The weathering reaction
of calcium carbonate can be expressed as [125]

CaCO; + CO, 4+ HO — Ca?t 4+ 2HCO; — CaCO;3 | +CO; + +H,0

Olivine (Mg>5i0Oy), a silicate mineral is considered to be suitable for enhanced
weathering. One of the prime reasons for its suitability is its easy availability
in the form of basalt rock. Precisely saying, olivine contains iron in addition to
magnesium. The magnesium rich form of olivine as discussed in this section is
actually known as forsterite. In many literatures the term olivine and forsterite
are overlapped, in fact the iron rich version of olivine known as fayalite is ex-
pressed explicitly in order to avoid any confusion. Like the CaCO; weathering,
Mg»SiO4 also reacts with carbonic acid to release M gZJr and bicarbonate anion as
intermediate products but here only 50% of the absorbed CO; is released back to
the atmosphere. Therefore, the weathering of olivine acts as a net sink for the
sequestered carbon dioxide. Olivine weathering also produces silicon, which is
mostly positive for the local soil system. The alkalinity of the soil is enhanced in
both the weathering reactions but the net absorption of CO, makes the olivine a
good replacement for the calcium carbonate as a liming agent. The weathering
reaction of olivine can be described as [125]

Mg»5i0O4 4+ 4CO; + 4H,0 — 2Mg*T + 4HCO; + HySiO4 — 2MgCO3 | +SiO; |
+2CO, T +4H,0

7.3 Basalt as an optimum silicate weathering rock

The choice of rock for enhanced weathering depends upon many factors but the
availability of rocks is the prime constraint. All the silicate rocks are finite re-
sources on the earth surface and hence a rigorous mineralogical survey is a pre-
requisite to select the optimum rock. A simulation study of enhanced weathering
was performed using three kinds of rocks namely, basalt, dunite, and harzburgite
in [131]. This literature provides the total available resources of all three rocks and
compared to other two rocks dunite is the most scarce rock. However, a dunite
rock contains about 80% forsterite by weight and exhibits the most efficient weath-

ering.
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Mineral | Weight frac.
Augite 0.208
Fayalite 0.05
Forsterite 0.115
K-feldspar 0.061
Labradorite 0.43
IImenite 0.05

Table 7.1: Weight fractions of available minerals in a basalt rock sample.

The harzburgite and basalt are available in abundance and even with century
long application, these resources will not deplete [131]. Despite containing higher
fraction of forsterite, harzburgite does not result into a good choice because of
lower fraction of augite. The augite releases a a wide range of cations such as Na™,
Ca®*, Mg?>", and AI**. So the basalt emerges as the optimum choice, considering
its availability and minerals ratios. The weight fractions of minerals in basalt are
provided in the Table 7.1. The augite is present in a large amount compared to
other minerals, whereas, forsterite with 0.115 weight fraction put the basalt into
a reasonable choice for enhanced weathering applications. A snapshot of basalt
with some weathering patches is shown in the figure 7.1.

7.4 Potentials of enhanced weathering

7.4.1 Atmospheric carbon sequestration

The carbonate and silicate weathering reactions in the above sections suggest the
amount of CO; sequestration in principle. Nevertheless, the actual absorption of
the atmospheric carbon by enhanced weathering can follow broadly two path-
ways. The first way is the passage of bicarbonate anions and cations to the ocean
through runoff. This route of carbon absorption also helps in reducing the ocean
acidification and in turn protecting the coral reefs. An ocean is a natural sink of
the carbon and store a lot more quantity of carbon than total atmospheric carbon
dioxide [124]. Another way is the sequestration of carbon in the form of carbon-
ate formation, as a result of the secondary products in a silicate/carbonate rock
weathering reaction. The reactions of CaCO3 and Mg»SiO4 weathering, shown in
the above section validate this mechanism appropriately.

7.4.2 Negative emission technologies review

An NET removes the greenhouse gas from the atmosphere. The necessity of NET
towards meeting the ambitious objectives have been discussed in the introduction
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Figure 7.1: A snapshot of basalt rock, showing the fraction of weathered part on
the surface (courtesy of pixabay.com).
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of this chapter. In this section, all the popular NETs will be reviewed briefly. A
more detailed review on the NETs covering all the facets of these technologies is
presented in [10].

Some of the popular NETs are — Bioenergy with Carbon Capture and Stor-
age (BECCS), Direct Air Capture of CO, (DAC), Enhanced Weathering (EW), Af-
forestation and Reforestation (AR). The BECCS technique though promising re-
quires high amount of infrastructure and the land usage can also conflict with the
food security criteria. The DAC is also constrained by the energy requirements
and the associated costs. The AR techniques require lower investments as com-
pared to the BECCS and DAC but the quantification of CO, capture is not simple
here. On the other hand, the EW may offer many impetus in addition to carbon
capture, such as improved crop yield, rejuvenation of soil etc. However, the EW
faces challenges in terms of other logistic issues such as mining and transportation

of silicate rocks, policy level challenges etc.

7.4.3 Enhanced weathering on cropland

Currently, EW is mostly in a concept phase and the practical implementation is
very limited. In this section some examples of the catchments scale deployment
of mineral rich rocks and theoretical assessments of the silicate dissolution will
be provided. Many of these studies have been carried out to quantify the effects
of silicate rock dissolution. About 10—15 Mkm? of the croplands can be used
for the deployment of basalt weathering resulting into the sequestration of about
200—800 kg of CO, per tonne of basalt applied [132]. The usage of inorganic
fertilisers for a prolonged period fills up the farmland with excessive amount of
protons during the cation exchange processes. This causes the acidification of soil
in an intense farming practice leading to the reduced nutrient uptake by plants
and subsequently lower yield. Liming of the farmland with CaCOj3 is the most
common technique to maintain the soil pH. However, this method actually emits
substantial amount of carbon, back into the atmosphere. The weathering of silicate
rock can maintain the soil pH without contributing towards the greenhouse gas
emission.

The weathering of silicate rocks in a farmland can also benefit the crop growth
through the release of essential nutrients. An increased level of soil pH can en-
hance the nutrients uptake [133]. Basalt weathering do release a wide range of
macronutrients and micronutrients and these can positively contribute towards
the crop yield [134]. An increased level of biomass production also raises the level
of soil organic carbon. The rate of mineral weathering depends a lot upon soil

water, a weathering agent. An increased level of soil organic carbon can actually
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improve the soil water retention and thus the weathering rate of basalt will also
increase [135]. So in summary, amendment of farmland with basalt powder has
many positive impacts on the soil-vegetation system and these processes actually
complement each other. The release of trace element like nickel in large quantities
is definitely undesired in a food chain. The enhanced weathering of silicate rocks
come up with this drawback and therefore, a rigorous research in this direction
must be made.

A theoretical assessment [133] suggests that the application rate of 10—50
t-ha~lyr—! of basalt in the North American arable land, having soya or corn as
the major crop, could sequester 0.2 — 1.1 Pg of CO; in the long run. The total
area considered in this calculation is 70 x 10°, and the diameters of particle lie
in the 10 — 30 um range. Such kind of theoretical calculations embolden the idea
behind enhanced weathering but few catchment level assessments are required to
understand the practical efficiency and limitations of accelerated weathering. One
of the earliest experiment was performed by [136], where woallastonite, a silicate
rock powder was deployed only once at the rate of 3.5 ¢ - ha~! on the 11.8 ha land
area for about 24 months. This experiment resulted into the decrease of acidity
as well as an increase in Ca*" cation. Similarly, a field trial in Mauritius was car-
ried on sugarcane, in which basalt at the rate of 20 t - ha~! was added in addition
to the standard dosage of NPK fertilisers. The results of the basalt treatments
showed about 30% increase in total yield over the five growing cycles of sugarcane
[124, 137].

7.5 Survey of existing weathering models

Enhanced weathering as an NET is considered to be an emerging technology.
From the above sections, the uncertainties surrounding the implementations and
effects of enhanced weathering can easily be understood. The associated costs and
policy complications add up to these uncertainties. In view of all these factors,
presently a rigorous computational simulation analysis of enhanced weathering
occupies the driving seat. In this section, some existing models, representing the
weathering processes will be discussed. Many of these models can be adapted to
incorporate the enhanced weathering of minerals. This review will also help to
figure out the optimum model for the simulation analysis of enhanced weathering

in the coming chapters of the thesis.
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7.5.1 Sheffield Weathering Model

The Sheffield Weathering Model (SWM) [131] is a recent addition to the the suit of
weathering models. This is a global dynamic model driven by a Dynamic Global
Vegetation Model (DGVM). In this model, soil hydrology is represented by a water
balance equation and it calculates the necessary soil chemistry as well. However,
soil dynamics are not calculated in the SWM. It includes the CO; consumption
and being recently developed, it also contains the enhanced weathering features.
On the down side, it does not include the Green House Gas (GHG) production
and crop growth processes.

7.5.2 WITCH

The WITCH numerical model [138] represents the weathering processes at the
catchment scale. Like SWM, this is also a dynamic model driven by the DGVM
outputs. Soil hydrology in this case is inputted for each layer, whereas, soil chem-
istry is calculated similar to the SWM. CO, consumption is explained in this model
but enhanced weathering cannot be simulated by the WITCH. Like the SWM,

GHG production and crop growth processes are not incorporated in this model.

7.5.3 PROFILE

The PROFILE [139, 140] is a non-dynamic catchment scale model. Instead of
DGVM output, this model is driven by site specific data. Soil hydrology and
soil chemistry calculation is similar to the WITCH in this case. Apart from these
features, the PROFILE does not represent anything about the GHG production,
crop growth processes and the enhanced weathering.

7.5.4 SAFE and MAGIC

The SAFE [141] model is a dynamic catchment scale model. Like the WITCH, it is
mainly driven by the site specific data. Soil hydrology and soil chemistry calcula-
tions are also described in a similar fashion within this model. GHG production,
crop growth cycles and the artificial weathering cannot be simulated using the
SAFE. Another model known as the MAGIC [142] represents the same level of

processes but with limited number of soil layers as compared to the SAFE.

7.5.5 APSIM and DayCent-Chem

The APSIM [143] is a dynamic site level model. In this case, soil hydrology is
represented by the Richard’s equation. Unlike the above discussed models, it



Chapter 7. Enhanced weathering: potentials and challenges 116

incorporates the emission of N,O and CO, gases. Crop growth processes are also
represented by this model. Despite all the key features, it lacks a module for
describing the enhanced weathering and hence it can only be used to assess the
linkage between natural weathering with the vegetation processes. The DayCent-
Chem is another model, representing the processes similar to the APSIM but on
contrary this model can be extend to a catchment scale.

From the above survey, APSIM and DayCent-Chem appears to be the reason-
able choices for the inclusion of enhanced weathering module. The integration of
an additional model would also require the easy availability of source codes as
well as the fidelity of model in representing the specific processes. The deploy-
ment of enhanced weathering in a farmland might necessitate the consideration
of several processes within the ECZ. Therefore, it is not so straightforward to pick
up the best model for the simulation of enhanced weathering at this stage. In the
forthcoming chapters a further analysis about the model choice will be presented
along with some additional details.

7.6 Sustainable sources for enhanced weathering

The amount of silicate powders required for enhanced weathering at a large catch-
ment scale can be very high. The quantity of rock powder also depends upon the
application rate and the local field and climatic conditions. Technically, mining
of basalt can meet the requirements but there are some costs associated with the
mining, including the effects of mining on local climates. Therefore, enhanced
weathering as an answer for sustainable futures must be driven by sustainable
mineral sources, at least partly. In this section some possible sustainable sources
of silicate minerals will be discussed. Like the very idea of enhanced weathering,
most of these methods are also in concept phase and requires a thorough research.

The industrial and silicate mining waste contains about 7 — 17 PgYr~! of
reusable silicates and these can be used to supplement the requirements of sili-
cate powder in weathering. A cement production plant also generates some waste
materials, which could be employed for enhanced weathering needs. A substan-
tial amount of demolition and civil construction wastes are typically used for the
landfill purposes. These can also be routed for the enhanced weathering applica-
tion. A steel manufacturing plant produces a huge amount of slag containing rich
amount of calcium silicate. Some of these recycled slags have already been used
for the liming of acidic soil for enhancing the crop productivity. Steel making is a
continuous process as it is linked with several infrastructure developments. There-

fore, a proper recycling framework in steel industries could drive the sustainable
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enhanced weathering. Mill ash and silicon containing residue in sugarcane indus-
tries could also be used in weathering [124, 132, 144].

7.7 Challenges of enhanced weathering

Weathering of basalt releases some amount of trace elements such as nickel and
chromium. In an accelerated weathering settings, these elements can increase
tremendously in the soil system. The presence of these metals in large quantities
could harm the food chain. A research framework in this direction must be devel-
oped soon, as the proposed implementation of enhanced weathering in farmland
will not be allowed by policy makers unless the idea of ‘food security” is supported
by a a secured ‘food chain’.

The mining of rocks, grinding and distributing over the farmlands/forestlands
require a tremendous amount of energy. The presently employed technologies
in mining and grinding could reduce the efficiency of carbon capture by about
10 — 30 % [145]. Clearly, the usage of renewable energy in producing the rock
powder could revamp the entire preparatory phase of enhanced weathering. A
cost analysis of enhanced weathering is prone to lots of uncertainties but a very
crucial step to bring all the stakeholders on board. Initial estimates suggest that,
per tonne of CO; absorption might cost USD 52 — 480, in which the grinding and
transportation of rock powder contribute the most [132].

The intense mining and grinding of rocks for the weathering would also af-
fect the environment, local flora and fauna negatively. The grinding of mineral
particles would involve the dust particles in micro-metre range and can easily be
inhaled by the workers at the site. The presence of high amount of silica could
cause silicosis in the nearby population. Deposition of unweathered basalt parti-
cles in the ocean bed could induce sedimentation in the long run. Other effects of

unweathered basalt in the soil pores and ocean bed are yet to be explored [146].

7.8 Conclusion

This chapter presents the basic theories associated with the silicate and carbonate
weathering reactions. From the stoichiometric analysis, silicate rocks are the best
bet for enhanced weathering purposes. The COP 21 (Paris agreement) presents a
very ambitious target of reducing the green house gas emission for limiting the
average global temperature to 1.5 degree Celsius from the pre-industrial time. The
recent Intergovernmental Panel on Climate Change (IPCC) reports have acknowl-
edged the need of an effective NET in the CO, mitigation framework. The choice
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of an NET is a debatable issue currently. This chapter has reviewed some existing
NETs and the cost associated with them. Among all the competing NETs, en-
hanced weathering appears to be a reasonable choice. The enhanced weathering
technique provides other incentives in the form of improved crop productivity,
soil rejuvenation, maintaining soil pH etc.

This chapter also explores the candidate silicate rocks. The availability of basalt
and minerals ratio makes it as a reasonable choice for the enhanced weathering
purposes. Nevertheless, the mining, grinding, and transportation of basalt re-
quires lots of energy. In order to justify the usage of enhanced weathering for
sustainable futures, the energy requirements should also come from some sus-
tainable sources. In addition, the mining of fresh basalt should be replaced by
the recycling of silica containing industrial wastes. The side effects of enhanced
weathering on environment, if any, should also be explored. So far, some negative
impacts of enhanced weathering on food chain, in the form of deposition of excess
nickel and chromium are reported. Undoubtedly, these facets must be researched
rigorously before the implementation of enhanced weathering at the catchment
scale.

Geo-engineering processes as the name suggests ‘engineer’ the Earth’s surface.
In the short terms, these amendments might not be a matter of concern as long as
some economical, environmental and social values are garnered but a ‘sustainable’
policy decisions are not short-sighted. This applies to the enhanced weathering
as well. Actual implementation of such accelerated weathering, particularly in the
farmlands would have to pass through the policy makers of a state. The global
impact of enhanced weathering will also require a consensus among all the parties,
something similar to the UNFCCC COPs.

Overall, enhanced weathering as an NET appears to be a plausible choice for
curtailing the global temperature while improving the soil health and crop yield.
This fits in sync with some of the goals outlined in the United Nations Sustainable
Development Goals (UN SDGs).
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Integrated enhanced weathering

critical zone model

8.1 Introduction

Enhanced weathering is a geo-engineering process under which, the weathering of
naturally occurring silicate and carbonate rocks are accelerated through crushing
them into fine particles by artificial means and subsequently distributing the pow-
dered rocks on the land surfaces. In the previous chapter, motivation behind en-
hanced weathering, basic theories associated with the weathering processes, prac-
tical limitations and challenges surrounding such kind of accelerated weathering
were discussed. The last chapter also contained some recent trends in modelling
of enhanced weathering and the gaps in the existing modelling literatures.

In this chapter, a novel calibrated version of enhanced weathering process
model will be presented. Here, the modelling approach is mainly analytical, gov-
erned by a shrinking sphere methodology. Enhanced weathering belongs to a
wider domain of the Earth’s Critical Zone (ECZ) processes, and hence in reality,
it is dynamically linked with the complex soil-vegetation processes of the land
surface. As elaborated in the last chapter, majority of the weathering literatures
oversimplify such complex interactions, especially the vegetation and bioturbation
processes are mostly ignored, while analysing the rock weathering. In this study;,
the enhanced weathering model is thus integrated with all the key soil-vegetation
processes. This is the second novel contribution of this chapter. The naturally
occurring minerals weather continuously and very slowly in all the conditions.
Hence, the natural weathering processes had been kept intact, while integrating
the enhanced weathering features in the soil system.

The theoretical weathering rate parameters (k), prescribed for modelling pur-

119



Chapter 8. Integrated enhanced weathering critical zone model 120

poses are often higher than the actual weathering. All the enhanced weathering
modelling literatures prior to this study have considered the theoretical rate con-
stants in their models resulting into a higher rate of weathering. In scenarios,
where the effects of enhanced weathering on CO, sequestration is of prime inter-
est, even a slightly high weathering rate would result into an erroneous prediction.
Unfortunately, very few literatures on the quantification of field level weathering
exist presently. In this study, the calibration of enhanced weathering model is
based on [15]. The same literature was also referred for validating and compar-
ing the key solutes concentrations under the effects of olivine weathering. Post
model validation, a case study was performed on a Greek Critical Zone Observa-
tory (CZO), known as Koiliaris. This particular site was chosen for the case study
mainly due to the availability of input parameters corresponding to this site.

The chapter unfurls with a brief description of soil-vegetation processes and
the associated models used in this study. Thereafter, a mathematical derivation
of a shrinking sphere process will be presented followed by an algorithm using
that process for representing the enhanced weathering of a mineral. As discussed
earlier, the integration of all the key processes pertaining to the ECZ is essential for
analysing the weathering thoroughly. So, an integration mechanism of enhanced
weathering with other process models will be described schematically. The model
calibration, validation and case study will precede the concluding remark of this
chapter.

8.2 Earth’s Critical Zone process models

An European Commission funded research project, Soil Transformation in Euro-
pean Catchments (SoilTrEC), involving many universities and researchers across
the European Union, provided an integration framework of a set of soil-vegetation
process models. The overarching aim of this project was to quantify the processes
relevant to the soil ecosystem services in the ECZ [7].

A majority of these process models, except the one explaining the soil struc-
ture and C/N/P dynamics were adapted from their respective sources in the Soil-
TrEC project. These models have gone through rigorous calibration and validation
across a wide range of CZOs in Europe and thus satisfy most of the benchmarking
criteria. The collaboration of this PhD project with the Soil TrEC project group en-
abled an easy access of the source codes and default input parameters. These ECZ
models were subsequently integrated with the developed enhanced weathering
model hence the underlying processes corresponding to each model are outlined

in the following subsections for a clearer understanding.
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8.2.1 Water-flow, heat-flow and solute-transport model

The flow of water, heat and transport of solutes are among the key dynamic pro-
cesses taking place within the soil layers. The Hydrus-1D [12], an open source
software, incorporates all these processes categorically [14]. In this model, water

flow within the soil layers is described by the Richard’s equation,

20 9(k%)
ot 0z

+5 (8.1)

where 6 represents the volumetric water content, t stands for time, z is the vertical
coordinate in a soil profile, k stands for the unsaturated hydraulic conductivity, i
is the pressure head and S is the source/sink of water. k and h are proportional to
6 in the Richard’s equation.
The heat transfer within the soil layers is represented by the convection-diffusion
equation in the Hydrus-1D,
9C,(0)T _ 9(A(0)%)
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where C, () denotes the volumetric heat capacity of the porous medium, T stands
for the temperature, A(6) is a measure of the thermal conductivity of the soil, C,
represents the volumetric heat capacity of water, g stands for the water flux derived
by the Darcy’s Law.

In this model, solute transport for each solute k is explained by the advection-
dispersion equation,

b, A(ODF%) ~9qex

5 > 5+ Sc — 1+ pi (8.3)

where c; denotes the concentration of component k, D“ stands for the diffu-
sion/dispersion coefficient corresponding to the liquid phase, ¢} denotes the con-
centration at the source/sink, r represents the nutrient uptake by plants, and p is
the solute production rate.

8.2.2 Soil C/N/P dynamics and structure model

This model is known as the Carbon, Aggregation, and Structure Turnover (CAST).
The CAST was developed recently [13], as an improvement over the ROTH-C
[147]. In this model, four kinds of carbon pools are assigned for the Soil Organic
Matter (SOM), known as, Decomposable Material Fractions of Plant Litter (DPM),
Resistant Material Fractions of Plant Litter (RPM), microorganisms pool (BIO) and
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Humus (HUM). The model is mainly driven by the plant litter as input, which
accounts for the Plant Organic Matter (POM). The formation of macro-aggregates
around the POM and subsequent disintegration into micro-aggregates are simu-
lated by the model. The CAST also simulates the depolymerisation of the available
HUM into Low Molecular Weight Nitrogen (LMWN) and Low Molecular Weight
Phosphorus (LMWP). Following the depolymerisation, mineralisation of LMWN
and LMWP into inorganic N and P take place. C/N and C/P ratio of each pool
is used for calculating the amount of organic N and P.

Soil aggregates are divided into three categories — AC1, AC2, and AC3. The
ACl represents the silt-clay sized aggregates, AC2 is referred as micro-aggregates,
and AC3 is regarded as macro-aggregates. A healthy soil condition is directly
proportional to the amount of AC3 available in a soil profile. The soil macro-
aggregates have a better water retention capacity and provides the right condition
for plant growth. Water Stable Aggregate (WSA) is commonly used for the cate-
gorisation of aggregates based on their stability factors .

In summary, the CAST incorporates most of the steps of the N and P cycles.
For N, the model simulation includes mineralisation, nitrification, denitrification,
ammonium adsorption and ammonium volatilisation. The reactions for the P are
also carried out in the similar fashion. These processes are very significant for a
plant growth as N and P are among the major macronutrients. A plant can uptake
LMWN and LMWP in addition to the inorganic N and P available in the system.
The process of organic matter transformation in the CAST model results into the
release of base cations such as Ca**, Mg?", and K. Soil pH is also varied because

of organic mater transformation.

8.2.3 Vegetation process model

The carbon and nutrients dynamics in a plant-soil system need to be analysed
for understanding the ECZ processes thoroughly. The PROSUM model was de-
vised recently [14], where the plant-growth, nutrient uptake, water uptake and
litter productions can be simulated simultaneously. The model explains the key
vegetation processes for the available amount of light, nutrients, water, CO, and
temperature. A wide range of vegetation types including herbaceous and woody
plants can be described through this model.

Essential plant nutrients are categorised as macronutrients and micronutrients.
Nitrogen, phosphorus , potassium, calcium, sulphur, magnesium, carbon, oxygen,
and hydrogen fall under the category of plant macronutrients. Among these nutri-
ents, hydrogen, oxygen, and nitrogen contribute towards 95% of biomass or yield
value. The micronutrients catalyse the photosynthesis process and some other es-
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sential functions in the plant systems. Often, micronutrients are required in very
limited quantity. All the plant nutrients need to be present in appropriate quan-
tity and ratio for a proper growth of plant. Cation exchange is the main process
through which cations like Mg?* are taken up by a plant. Such kinds of exchange
is triggered by pumping H" in the root system, which then displace the cations
attached to the negatively charged soil particle for plant uptake. Therefore, pro-
longed farming cycles often witness an increased level of H' or acidity in the soil
system [148].

All the above mentioned processes including many other complex interactions
between plant system and environment are satisfactorily captured in the PROSUM
model. The prime purpose of this model development was to link the effects
of plant litter on soil structure changes, as explained in the above subsection.
The model does not incorporate the precise information such as long term effects
of pH change on nutrient uptakes. Nevertheless, the calculation of maximum
C/nutrient ratio, maximum nutrient uptake, actual nutrient uptake, derivation of

the underground and aboveground biomass are fairly represented by this model.

8.2.4 Bioturbation process model

In geology, bioturbation is defined as the perturbation of sedimentary deposits
by fauna. In a soil system, bioturbation plays many important roles and hence
methodology in [149] was adapted by [14] to come up with a bioturbation model.
In this model, essentially a fraction of water, specified by the modeller and solid
chemical components are mixed and passed over all the soil layers. The mixing
process is representative of the real bioturbation process, in the presence of soil
fauna.

8.2.5 Chemical equilibrium and natural weathering model

A chemical equilibrium in the context of soil system refers to the water saturation
and solid exchange with the gas phases. The method reported in [150] was used
to develop this chemical equilibrium model by [14].

A model called SAFE [14] was formulated for describing the natural weath-
ering of major minerals, mainly adapted from [151]. The SAFE model assumes
that naturally occuring minerals are available in abundance and will never de-
plete. This is why, an artificial weathering, where the surface area of rock changes

eventually, cannot be represented by the SAFE.
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8.3 Enhanced weathering model development

8.3.1 Weathering rate expression

In this modelling study, the weathering rate of a mineral is governed by the equa-
tion 8.4 adopted from [152]. This rate expression has previously been applied in
several modelling exercises, as reported by [152]. The formulation of this expres-
sion has a vivid experimental foundation, which is out of scope to discuss in this
thesis. In the equation 8.4, Rate,, on the left hand side refers to the weathering
rate (mol/s). The surface area normalised unit of the weathering rate is given by
mol s~1 m~2. SA denotes the mineral surface area (m?). i refers to the individual
weathering agent, which in this study can be either H T, OH~, or H,O. m refers
to the individual mineral corresponding to the silicate rock. In this study basalt
rock is considered, so m can be a mineral corresponding to the basalt composi-
tion. k; (m~2 s71) refers to the weathering rate constant corresponding to the ith
weathering agent and m'" mineral. Similarly, E; ,, (k] mol~!) refers to the appar-
ent activation energy, R (k] mol ~1 K1) is the universal gas constant. T (K) is the
temperature. a; (mol I71) is the molar activity of the i" weathering agent. #;,,
refers to the reaction order corresponding to the m" mineral for the i weathering
agent. Qu=[I; a;j refers to the ion activity product of the soil pore water, where
aj denotes the activity of j solute, s; relates to the stoichiometry on the product
side of the m'" mineral weathering equation. Ksp,, accounts for the solubility of

the m!" mineral.

o 2L 64

Rate,; = SA,, Z[ki,mexp[ R (? - m)]a?tm( _ [Kspm

8.3.2 Enhanced weathering algorithm formulation

The weathering rate expression discussed in the above subsection was adopted
in this study for developing a shrinking sphere type analytical model, describing
the weathering of a mineral. In the equation 8.4, mineral surface area denoted
by SA will decrease as the weathering reaction progresses. The SAFE model ex-
plaining the natural weathering does not consider this factor mainly because the
natural weathering is very slow in general and the abundant minerals will not
deplete substantially during the simulation time period. However, in enhanced
weathering, mineral surface area will have tremendous effects on the weathering
rate. Therefore in this study, a mineral particle is assumed to be perfectly sphere
in shape, which will shrink with the rock dissolution.

The area of a single mineral particle, 4, is given by 47172, where r denotes the
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3
radius of the particle. The mass of this particle, m, can be expressed as 40 73” ,
where p denotes the density of mineral. The ratio % therefore simplifies to &,

which means at any time step, ¢, in the model ’;1—: can be expressed as %. By
substituting a; with 47T1’t2, r¢ relates to m; through the expression

"= (ZZZ)“ (8.5)

Some more assumptions were made to simplify the modelling task without
compromising with the desired level of precision in the output of interest. The
assumptions are similar to [131], which is a recent literature on the analysis of
enhanced weathering for stabilising the global temperature. According to the first
assumption, rock particles are considered as perfect mono-mineralogical spheres.
In reality, a rock particle contains several minerals and their spatial configuration
within the rock particle is not certain. The diameter of a particle was kept in
the micrometer range. The total mineral surface area would increase sharply as
the diameter is further reduced but considering the current grinding facilities, 10
um as the initial diameter is an optimum choice [124]. According to the second
assumption, all the distributed rock particles are supposed to weather, without any
loss due to runoff or flooding. In reality, rocks in the powdered form are set to be
eroded away in the event of heavy rainfall or wind. The mineral particles in reality
can also get aggregated with the passage of time under several external factors, but
in this modelling procedure they are assumed to maintain their original structure.

A basic version of the enhanced weathering pseudocode, based on the above
mentioned shrinking sphere approach is provided in the Algorithm 8.1. This pseu-
docode represents the weathering of a single mineral and can easily be customised
to include more than one mineral as per the first assumption. The weathering rate
expression given in the equation 8.4 is valid for one mineral, and hence for multi-
ple minerals, the weathering rate corresponding to each mineral will be evaluated
separately. These mineral specific rates will be taken into account for calculating
the consumptions or productions of ions. In situations where a silicate rock is
supposed to be added repeatedly instead of one-off addition, the Algorithm 8.1
will have to be run for each periodic addition of rock. The rate expression in the
equation 8.4 is driven by mineral surface area, which in turn is driven by the mass
of mineral in a time step. So, the freshly added rock will have higher surface
area than those added in the preceding intervals. In that case, at a time step, the
Algorithm 8.1 will run for all the ‘periods’ of rocks-addition separately and in

parallel. At the end of the time step, the production or consumption of ions will
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Algorithm 8.1 Enhanced weathering

counter <— 1
Initialise: Total mass (M), radius (r), reaction order (1), density (p), molar mass,
apparent activation energy (E), solubility constant (Ksp), universal gas constant
(R), weathering rate constant (k), total tweathering period (tweathering)
Import: molar activity (2;) and T corresponding to this time step.
Evaluate: total number (N) of olivine particles using the M and p, total mineral
surface area (SA) using N and r, weathering rate (Rate) using the equation
8.4.{Q,,=0 at this stage}
while counter<tweathering
Update: number of moles of olivine (c) {Rate at the previous time step is used
to update the current c}, total mass of olivine (M), mass of single particle (m),
radius (r), surface area (SA).
Import: molar activity (4;) and T corresponding to this time step.
Evaluate: ion activity product (Q) of the soil solution and weathering rate
(Rate). {this step results into release/absorption of ions on the soil surface.
In reality, this change in ionic concentration are passed into soil layers through
the soil pore water. This must be taken into account while integrating this
code with ECZ model}
counter < counter+1
end while loop

be calculated by the algebraic summation of released or consumed ions due to the
weathering of rock particles, exhibiting variation in their masses and surface area

in accordance to the timing of their addition.

8.4 Integration of enhanced weathering model

In this study, an enhanced weathering (EW) process model using the Algorithm
8.1 was implemented using the Fortran 90 programming language. The ECZ pro-
cess models explained in the section 8.2 were also coded in the Fortran language
and the source codes of all the models were made available through the SoilTrEC
project.

The standalone version of the enhanced weathering do not demonstrate the
effects of weathering on soil-vegetation process and vice-versa. In addition, the
Algorithm 8.1 also requires the temperature and pH values at each time step,
which can be made available easily once the model is linked with a dynamic
process model like the Hydrus. The overarching aim of this modelling exercise
was to analyse the effects of enhanced weathering on the critical zone processes
under the various climatic condition, so a code level integration was performed to
link the developed EW model with the existing ECZ models.
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8.4.1 Integration mechanism

During the SoilTrEC project, a program known as the Integrated Critical Zone
Model (ICZM) was developed which essentially linked all the key ECZ models.
As explained in the section 8.2, natural weathering was also conceptualised using
the SAFE model. In the ICZM, the released cations from the natural weathering
module are passed into the Hydrus, where they are combined with cations from
all other sources in the soil system. The concentration of a solute in the ICZM is
interpreted through pore water concentration in the model outputs. As a first step
towards the integration of the EW with the ICZM, the ionic concentration change
resulting due to the EW at a time step was clubbed with the ionic concentra-
tion change because of natural weathering. So essentially, the ions-concentration-
change effects passed on to the Hydrus is an amalgam of all sorts of weathering in
the soil system. As a prerequisite, the time step of both the natural and enhanced
weathering models were kept same. This step ensured the correct linking of out-
puts emerging from the EW. In the next step, input requirements of the EW, such
as temperature and pH were taken care off through passing these inputs dynam-
ically from the ICZM at each time step. All the intermediate complexities such
as maintaining the charge balance, calculating the biomass production from the
plant nutrient uptake was automatically sorted out by the well calibrated ICZM
structure.

The integrated version of the EW will be referred as the Integrated-Enhanced
Weathering-Critical Zone Model (IEWCZM) throughout the remaining portions of
the thesis. The novelty of this model comes from the incorporation of phenomena
like bioturbation and the linkage of vegetation processes with the EW. As dis-
cussed in the previous chapter, none of the weathering process model takes into
account all these factors simultaneously.

8.4.2 Coupling of IEWCZM modules

The IEWCZM’s main program steers the Hydrus, weathering, chemical equilib-
rium, CAST, PROSUM, and bioturbation modules. The modules are processed
sequentially using a time step algorithm, once the inputs are made available. The
CAST, weathering, PROSUM and bioturbation models have a time step of one
month, on the other hand Hydrus is governed by smaller time steps.

The tigure 8.1, describes the integration of all the modules within the IEWCZM
and the time steps associated with these sub-models. The coupling of sub-models
in the original ICZM has been explained in [14] and the idea is very similar in this
case, except for an additional component in the weathering module. The starting
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point in the main program is Hydrus, where the amount of solutes and water
corresponding to each soil layer are calculated. These nutrients are ideally avail-
able for plant uptake but there are many masking effects on the uptake process
and the actual uptake will be corrected by the PROSUM model subsequently. The
PROSUM is supposed to be the consumer of major nutrients whereas, CAST and
weathering modules are responsible for the production of solutes. The IEWCZM
therefore calculates the consumption and production rate corresponding to these
modules. The nutrients released by the CAST and weathering are flagged as ‘avail-
able’ nutrients for the plant uptake in PROSUM module. The PROSUM then
performs its own calculation to calculate the actual uptake depending upon the
maximum possible uptake and many other parameters. Nevertheless, the CAST
is mainly driven by the plant litters generated by the PROSUM, so that factor is
carefully considered, while linking the modules with the IEWCZM. In the next
step, several calculations in the Hydrus are repeated until the time steps add up
to 1 month. In order to update the solute concentration and water content emerg-
ing out of the Hydrus module, production and consumption rates related to the
CAST, PROSUM and weathering are multiplied by the variable time steps of the
Hydrus. As explained in the description of chemical equilibrium model, the prime
purpose of this module is to ensure that mobile and immobile phases are equili-
brated. Hence, the chemical equilibrium sub-model is run after each time step of
the Hydrus. The bioturbation module comes into action at the end of month for
redistributing water and solute concentrations. In the last, chemical equilibrium
module is processed again and in this way the calculations within the IEWCZM
continues till the end of simulation.

The key input parameters of the IEWCZM are shown in the [153]. Detailed
parameter types can also be accessed through the respective models websites and
the cited sources.

8.5 IEWCZM calibration

The rate of weathering, as stated in the equation 8.4 is governed by the weath-
ering rate constant, k;,, where i denotes the weathering agent and m stands for
the mineral type. The rate of weathering is very sensitive to this parameter as
evident from the rate expression. A comprehensive compilation of the theoretical
rate constants are available in the [152] and this source has been referred for the
weathering rate constants in many available literatures. A theoretically derived
rate constant in laboratory is usually several order of magnitude higher than the
catchment scale investigation [15]. Therefore, the weathering rate calculated using
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Figure 8.1: IEWCZM integration mechanism. The blocks represent the sub-models
linked together to form the IEWCZM.
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the parameters from [152] is not accurate on most occasions.

A column of soil containing the samples from the Oxfordshire region was
returned to the laboratory for calculating the dissolution rate of olivine in [15].
In this study, the material surface area normalised dissolution rate was between
107164 t0 107152 molem—2s~1. This is the first literature, which takes into account
the field level conditions while calculating the weathering rate of olivine. The pur-
pose of the IEWCZM is to analyse the EW in the actual field type conditions, so a
calibration process of the weathering rate constant, k; ,, was performed by keeping
the [15] as reference.

The calibration was executed using the rejection algorithm under the Bayesian
framework. Ideally, the k; ,, for both the weathering agents, H* and H,0O, should
have been considered but in the [15], just HT is taken as the weathering agent. This
factor constrained the rate expression to just ky+, which will be simply denoted
as k in this section. The k was converted into logarithmic scale and the prior for
k varied from —logl5 to —log5. The total number of particles in the rejection
algorithm was kept at 5000, which is a reasonably high value in the Monte Carlo
sampling. Since the total number of observed data point was limited to just one,
so computationally, the whole calibration was a simple job. The calibration result
with the posterior distribution of k is shown in the figure 8.2. The simulated data
were compared directly with the observed data and the number of data point
was also limited to just one. This resulted into a very narrow range for posterior.
The near-uniform distribution of the posterior can also be justified using the same
argument. The logarithmic scale also limits the posterior range to a narrow band
compared to the values in their actual scale. The mean of this posterior will be
accepted as the ‘true” parameter while plugging in the value of k in the IEWCZM.

8.6 IEWCZM sensitivity analysis

According to the rate expression (equation 8.4), the rate of weathering depends
upon the three external variables , pH, temperature (T), and mineral surface area
(SA). The Q,; term in the rate expression, known as the ion activity product, is an
internal variable and cannot be controlled during the weathering process. During
an artificially induced weathering, the rate of weathering is of prime importance.
An optimum rage of weathering rate can be achieved by providing the appropriate
combination of pH, T, and SA. The T and pH depend upon the local climate and
soil characteristics, which suggest that the enhanced weathering rate will vary
spatially and the site of application should be chosen carefully. However, SA



Chapter 8. Integrated enhanced weathering critical zone model 131

300 T T T

250 -

200 -

Frequency
@
[==]
T

100 -

50 -

-10.7 -10.65 -10.6 -10.55 -10.5
Weathering rate constant (log k)

Figure 8.2: Weathering rate constant (k) estimation using the rejection sampling
under the Bayesian framework.

depends largely on the mass of olivine and can be tuned as per the availability of
olivine and the desired rate of weathering. In view of these factors, sensitivity of
weathering rate on all three key variables are discussed in this section.

8.6.1 Sensitivity on mineral mass

The SA acts as a rate deciding parameter in the rate expression. The shrinking
sphere methodology explained in this chapter came into picture precisely for in-
corporating the SA variation in the rate calculation. The derivation performed
in the section 8.3 clearly reflects the dependence of SA on mass of mineral (M).
The figure 8.3 shows the sensitivity of the weathering rate on mineral mass while
keeping the other parameters constant. Clearly, the rate increases very sharply by
increasing the mass of olivine. Nevertheless, there would be a fixed budget for the
mineral mass during the actual implementation of the enhanced weathering and
hence the M may not be increased beyond a certain limit. The conversion of M
into SA is also noteworthy at this stage, as this largely depends upon the radius

of mineral particle. Currently, the minimum feasible radius of a mineral particle
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Figure 8.3: Sensitivity of weathering rate on mineral mass (M). All the other
parameters such as T, pH etc. are kept fixed.

8.6.2 Sensitivity on pH and temperature

The fixed budget of silicate rocks definitely makes choice of weathering site an
important factor during the implementation of enhanced weathering. The pH of
soil and temperature depend largely upon the climatic conditions of a region. The
pH also depends greatly upon the land management practice of a site. Hence in
this study, the sensitivity of weathering on temperature and pH was simultane-
ously analysed (figure 8.4). For a clearer description the same result was teased
apart in two dimensional views (figure 8.5). According to these analyses, the
weathering rate increases with increase in temperature while a decrease in the
rate is noticeable with increasing pH values. The entire sensitivity analyses is
based upon the parameterisation of the IEWCZM as per the experimental set up
in the literature [15]. However, the chosen range of both the pH and temperature
provides a glimpse of the weathering, even outside of a typical temperate climatic
regions. Based upon these analyses, the enhanced weathering appears to be more
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effective in a tropical region. The sensitivity with respect to the pH suggests that,
this kind of accelerated weathering would be positively catalysed in the acidic soil

conditions.
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Figure 8.4: Sensitivity of weathering rate on temperature (T), and soil pore water
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8.7 IEWCZM validation

The integration of the EW model with the ECZ models resulted into the IEWCZM,
which was calibrated according to a recently published experimental results [15].
In principle, the IEWCZM should be able to represent the EW and its linked pro-
cesses. The simulation of the IEWCZM for analysing the future scenarios needed
some more fidelity test and hence the results from the same literature [15] were
used for the model validation purpose. The initial concentration of the solutes
were maintained similar to the reference literature and the simulation was per-
formed for the 133 days. The simulated concentration of Mg?* and Si are shown
in the figure 8.6. The experimental data are not shared by the [15], so its exact
comparison with the results reproduced by the IEWCZM could not be made. In
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addition to solutes initial concentration, the IEWCZM needed to be parameterised
with several other kind of inputs. These parameters are specific to the soil pro-
file and the experimental conditions. In absence of these details, default values
were used for the IEWCZM parameterisation. Therefore, in the simulation results,
solute concentrations show some deviations from [15]. Nevertheless, the over-
all trend and the effects of olivine treatment on a solute concentration are nearly
same. In reality, an increase in Mg?" and Si concentration due to weathering will

reflect in the soil and vegetation system.

8.8 IEWCZM case study

Enhanced weathering of silicate rocks have multiple benefits in a vegetation pro-
cess. In the previous chapter, the potential of enhanced weathering for increasing
the crop yield while reducing the soil acidity have been discussed. The process of
weathering is not something new but the effects of artificially accelerated weath-
ering in the farmland are not very clear at the moment. The modelling analysis
is the only way to assess the effects of enhanced weathering on a crop cycle. This
method will have to exhibit at least some of the hypothesised effects on plant
growth, before a thorough simulation analysis or the actual implementation is
made. The reference literature [15] used for the calibration and validation of the
IEWCZM does not consider any vegetation in its experimental setup. Therefore,
a case study was performed on a published results [154] of the ICZM simulation.
In this literature, tomato and weeds are considered as plants and their growth is
simulated using the ICZM for the various treatments. The ICZM does not contain
the enhanced weathering module so these results will be labelled as ‘control” sce-
narios. The parameter values and the initial conditions used during the simulation
of the ICZM in [154] was made available for this research.

In this case study, two treatments of the [154], namely, Inorganic Fertilisa-
tion (IF) and Municipal Solid Waste Compost (MSWC) were considered. The EW
part of the IEWCZM was parameterised for the olivine treatment, at the rate of
10kgm 2, whereas all the other parameters relevant to the soil-vegetation pro-
cesses were inherited from the [154]. This enabled a precise comparison between
the olivine treatment and control scenarios for both the treatments. The IF treat-
ment is shown in the figure 8.7a. The accumulated carbon refers to the above
ground biomass and is directly linked to the total yield. The higher peaks refer to
the tomato growth whereas, lower peaks are representing the weeds between the
harvesting and sowing of tomato. The literature [154] compares the field experi-
ment results of tomato growth with the ICZM simulation and hence in a way it
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also emboldens the predictive power of the vegetation processes in the IEWCZM.
Clearly, the olivine treatment has caused an increase in the net tomato production
and suggests the applicability of the enhanced weathering in food security. Nev-
ertheless, a more rigorous simulation analysis will be required before making this
argument stronger. The figure 8.7b provides a similar comparison for the MSWC
treatment. However, for analysing the cereal crops, MSWC might not be very

useful as compared to the IF treatment.

8.9 Conclusion

Enhanced weathering being a geo-engineering technique would have profound
effects across the ECZ. A rigorous analysis of those effects is a prerequisite for
the actual implementation of such kind of artificial weathering. Like any nega-
tive emission technology, enhanced weathering comes up with its own pros and
cons. The advocates of this method are trying to collate the evidences in sup-
port of enhanced weathering but the official regulations and logistic issues pose
some constraints for the evaluation of this method in an actual field settings. The
simulation analysis thus become imperative in the purview of these challenges.

In this study, an analytical framework for the development of enhanced weath-
ering process model is presented. The algorithm is applicable for a single mineral
but an extension scheme to incorporate multiple minerals is also provided sub-
sequently. The algorithm was implemented in the Fortran in order to make it
compatible with the similar kind of process models coded in the same language.
The ECZ processes are interlinked, so the developed weathering model was in-
tegrated with some existing models representing the critical zone processes. The
integrated model is known as the IEWCZM.

The enhanced weathering as a methodology is in its early stage, so not many
results are available to benchmark the model performance. The calibration and
validation of the IEWCZM was performed using a near-field type experimental
results from the Oxfordshire region of England. The IEWCZM is supposed to be
used as a tool for analysing the effects of enhanced weathering on the atmospheric
carbon sequestration as well as for predicting the change in soil-vegetation vari-
ables. A published result corresponding to the Koiliaris region in Greece was used
as a case study to demonstrate the potential of enhanced weathering in increasing
the crop yield. The sensitivity of the weathering rate on the key variables such
as temperature, soil acidity and mineral was also performed and the results are
systematically presented in this chapter.

The enhanced weathering model algorithm presented in this chapter can be
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used to develop a customised weathering model and the same can be integrated
with any standard soil-vegetation process models. In simple words, the model
proposed here is not tied up with a particular software platform or the choice
of particular ECZ models. The model verification tests results in this chapter
are quite encouraging and the IEWCZM can be used for performing the scenario
evaluations of any site as long as minimum level of model parameterisation is

ensured.



Chapter 9

Enhanced weathering in the UK

conditions

9.1 Introduction

The global population is expected to cross 9 billion by the year 2050 [1]. This will
substantially have repercussions upon the food security, clean water, and energy
needs of the future and current generations. All these issues are set to get further
aggravated because of climate change and its effects on almost all the natural
resources of the earth.

According to the World Bank (WB) report climate change is one of the great-
est societal challenge and has a potential to push additional 100 million people
into poverty by the year 2030 [9]. All the international organisations such as, the
United Nations (UN), the WB and their sister wings have carried out tremendous
amount of researches in the last two decades for figuring out the sustainable ways
to counter the problems of growing population, food security, water security, en-
ergy security, climate change, extreme poverty etc. Most of their surveys and
researches have concluded that these issues cannot be solved through de-coupled
approaches, as they are interlinked, and can only be tackled through an integrated
viewpoint.

In the year 2015, the UN repackaged their flagship programme known as the
Millennium Development Goals (MDG) into the Sustainable Development Goals
(SDG). Altogether, seventeen SDGs have been proposed to transform the world
towards a better and sustainable future. The research outcomes of this chapter are
centred around two prime SDGs namely — ‘Climate Action” and ‘Zero Hunger’.

Enhanced weathering of silicate rocks is a geo-engineering tool for the seques-

tration of atmospheric carbon dioxide. A shrinking-sphere type analytical model,

140
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representing the enhanced weathering process was developed in this project. The
previous chapter contains the details about the enhanced weathering model devel-
opment, integration with existing soil-vegetation process models, calibration and
validation. This integrated version of enhanced weathering model is known as the
IEWCZM.

In this chapter, the IEWCZM is employed to evaluate the scenarios relevant to
the accelerated weathering of a silicate rock, in the UK climatic conditions. This
is the first novel contribution of the chapter. The simulation analysis is firstly per-
formed for the West Yorkshire region and then extended to the entire UK, under
some reasonable assumptions. The CO, absorption due to enhanced weathering
is calculated for all the UK arable lands, until the end of the century. This is the
second novel contribution of the chapter.

The remaining portions of the chapter unfold by presenting the soil and climate
characteristics of the base site (Leeds farm) situated in the West Yorkshire region of
England. Subsequently, experimental design, scenarios categorisation, simulation
results of each scenario and the net CO, sequestration steps are presented. In the
concluding remark, potential of such kind of accelerated weathering, as observed

through this study and the limitations of this simulation analysis are discussed.

9.2 Leeds farm

The Leeds farm refers to the University of Leeds facility at Bramham, located in
the West Yorkshire region. The University of Leeds has three farms with automatic
weather monitoring systems, dedicated for the research and innovation purposes.
The experimental designs for analysing the effects of enhanced weathering require
the parameterisation of the IEWCZM. The next section will elaborate on the pa-
rameters required for the IEWCZM simulation and hence those details are avoided
herein.

In this study, the analysis is constrained to the UK climatic condition. The en-
tire UK land area were divided into 104 grid cells separated by the 0.5 degree x 0.5
degree geographically. Ideally, the simulation of the IEWCZM for the whole UK
should incorporate the details of all the grid cells in the form of parameters. Prac-
tically, it was impossible to collect the input data for all the grids. Therefore, the
Leeds farm was used for collecting the soil profile input data. The collected data
was used for parameterising the soil inputs such as ionic concentration, fertilisers
rate etc. In the following subsections, the data types and their characteristics will

be discussed.
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Serial no. | Solute | Conc. (mol/I)
1 Mg>* 7.7 x107*
Ca** 1.0 x 1073
Na* 1.1 x 1074
H,Si0y4 24 x107%
HCO; | 19x107°
H* 2.18 x 1078

N U1 = Wi

Table 9.1: Solutes initial concentration in the soil pore water.

9.2.1 Soil characteristics

The Leeds farm supports a variety of crops including wheat and barley for the uni-
versity research studies. So in a general sense, the soil at the site can be regarded
in good health or at least continuously monitored for better conditions. The pore
water concentration of the major solutes, as recorded in 2016 are presented in
Table 9.1.

9.2.2 Leeds climate

Climate inputs play important roles in soil reactive transport models such as the
Hydrus [12] and all the linked models like the IEWCZM, where the transport of
solutes and water in the soil profile are thoroughly represented. A solute’s concen-
tration at a time instant is primarily dependent upon the amount of precipitation
at the previous few time steps. The climate characteristics of the Leeds farm can
be observed from the past precipitation (figure 9.1a) and temperature data (figure
9.1b). These data are available in the open source from the archive of the UK Met
Office. Because of some unknown reasons, this dataset does not contain the mea-
sured temperature values from January 1929 to September 1929. This has caused a
gap in the time series plot (figure 9.1b) of temperature. Both, average rainfall and
temperature have not changed much in the last 100 years but this trend is expected
to show some deviations in the next 100 years because of climate change effects.
In this study, the future projections of weather inputs (precipitation and tempera-
ture) using a CMIP5 model [117] are used for parameterising the IEWCZM. These
projected data will be shown in the following sections.

9.3 IEWCZM setup and experimental design

The full parameterisation of the IEWCZM may require hundreds of parameters
and variables. The full list of these parameters are available in the ICZM user man-
ual [153], available on request at the http://www.herslab.tuc.gr/downloads/1d-
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Figure 9.1: Historical climate data (Leeds farm).
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icz-model. The default values of many such parameters are also available in the
manual. A parameter needs to be tuned according to the modelling requirements.
For the present study, major inputs are — time series weather data, evapotran-
spiration (calculated within Hydrus), solutes initial concentration, fertiliser input
rates, tillage rate, and harvest rate. The details about these inputs are explained
using graphs/tables in the appropriate sections.

The effects of enhanced weathering in the UK climatic condition were cate-
gorised into two phases. In the first phase, simulation was performed for Leeds
farm. In the second phase, simulation was extended to the 104 sites across the UK.
The first phase considers just one site and hence the effects of enhanced weath-
ering on ionic concentrations, plant-nutrient uptake and crop yield are analysed
rigorously in this phase. This phase was further divided into two scenarios. In the
first scenario, basalt was added only once at the beginning of the model simulation
and the total period of simulation was limited to three years. The second scenario
takes into account the yearly addition of basalt and the simulation was carried
till this century end. Both the scenarios were compared to the baseline scenario,
where no basalt was added at all. The baseline scenario will also be referred as
‘control” throughout this chapter.

9.4 Baseline condtion

The baseline parameterisation of the IEWCZM was performed using the available
field data from Leeds farm. The initial concentration of the major solutes are pre-
sented in the Table 9.1. Winter wheat was considered as the crop type, mainly
because the UK climate offers the suitable conditions for wheat production. One
of the motivations of analysing the enhanced weathering as an NET is due to the
added benefits it provides in improving soil fertility by increasing the plant nu-
trients availability. Therefore, wheat as a crop can be used to gauge the efficiency
of the enhanced weathering in addressing the CO, sequestration as well as food
security.

An inorganic fertiliser such as NPK mixture is a standard practice for the wheat
farming across the UK. In this study, 10 — 20 — 20 mixture of the NPK was used
as a fertiliser. The NPK fertiliser mixtures are denoted by the ratio of N, P, and
K in the mixture. So, 10 — 20 — 20 NPK means, 10% nitrogen, 20% phosphorus
and 20% potassium are present in the mixture. The nitrogen application rate was
limited to 200kg/ha. Ideally, the fertilisers are applied using the irrigation water.
However, in this simulation study water input is limited only to precipitation. The
sowing, tillage, harvesting, and fertiliser dosage are represented in the Table 9.2.
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Month Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
Plant type | Wt'| Wt | Wt | Wt | Wt | Wt | Wt | Wt | Wd?| Wd | Wt | Wt
Waterinput | R¥*| R | R R R | R|R| R|R|R]J|R R R
Tillage No | No | No | No | No | No | No| No | No | Yes | No | No
Fertlisation | No | No | No | No | No | No | No | No | No | No | Yes | No
Harvest No | No | No | No | No | No | No | Yes | No | Yes | No | No

Iwheat; 2weed; rain

Table 9.2: EWICZM baseline set-up.

9.5 Scenario 1: One-off basalt addition

In this scenario, basalt was added only once at the rate of 5kg/m? in the begin-
ning of the simulation. The simulation period lasts from January 2017 to December
2019. The weather input projections such as precipitation (figure 9.2a) and temper-
ature (figure 9.2b) were simulated through a CMIP5, corresponding to the RCP 8.5
(business-as-usual) scenarios of the Intergovernmental Panel on Climate Change
(IPCQC).

The basalt dissolution reaction from the previous chapter clearly suggests that
the addition of powdered basalt in a soil profile will release cations (Mg>", Ca?*,
Nat, KT etc.), while absorbing the H" ions. The theory also suggests that increase
in availability of these nutrients should also increase the biomass or grain yield.
In the following subsections, the simulation results pertaining to this scenario and

its comparison with the baseline conditions are shown.

9.5.1 Mg cation concentration

The forsterite (Mg>SiO4) forms about 11.5% of basalt by mass. The dissolution of
basalt raised the level of Mg*" concentration in the soil pore water. The figure 9.3a
shows the change in Mg?" concentration with respect to the baseline. Three years
simulation period is converted into days (1095 days) to clearly interpret the con-
centration change. The basalt application rate of 5kg/m? is not sufficient enough
to induce enormous change in soil pore water concentration. The same result
is zoomed in (figure 9.3b) to support the hypothesis that such kind of artificial
weathering could actually result an increase in cations.

9.5.2 Na cation concentration

Similar to forsterite, basalt also contains other minerals including labradorite and
augite. The labradorite and augite forms about 43% and 20.8% of basalt by mass

respectively. These are complex minerals containing Na, Ca, Al, Si, Mg, Fe, Ti,
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Figure 9.2: Weather projection data from the CMIP5 (Leeds farm).
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and O. The effects of basalt addition on Na' concentration is essentially caused
because of these two minerals (figure 9.4a). A zoomed in (figure 9.4b) version like
Mg>" emboldens the idea behind enhanced weathering.

9.5.3 Si concentration

Silicon in the form of H4SiO4 is a major product of all the silicate minerals present
in the basalt. Silicon in general is considered to have positive implications upon
the soil fertility [124]. The weathering mechanism of basalt generates substantial
amount of silicon and hence the concentration of Si in pore water is increased
(figure 9.5a, 9.5b).

9.5.4 Ca cation concentration

Labradorite and augite in a basalt also contribute to the addition of Ca cations
as the weathering progresses. The pattern is similar to the other ions concen-
trations (figure 9.6a, 9.6b). The Ca?" concentration may not show an increase in
concentration, if the precipitate formation in the form of carbonates are taken into
account. In reality, HCO; tends to combine with available cations for the car-
bonate formation. However, the carbonate precipitates are not considered in this
model simulation mainly due to the limitation of the IEWCZM.

9.55 pH

pH is a logarithmic representation of the hydrogen ion concentration. It plays
several important roles in the plant-soil system. pH and its significance especially
in the context of plant nutrient uptake have been discussed in the previous two
chapters. In summary, pH of a neutral solution is 7, pH lower than 7 means the
solution is acidic and the pH more than 7 means the solution is basic. The reaction
mechanism of basalt involves the reduction of H ion concentration and hence the
pH of soil pore water becomes higher than the baseline (figure 9.7a, 9.7b).

9.5.6 Plant nutrients uptake

Plant nutrients are categorised into macronutrients and micronutrients. Major
macronutrients include, nitrogen, phosphorus, potassium, magnesium, calcium,
sulphur, carbon, oxygen, and hydrogen. The roles played by these macronutri-
ents and micronutrients have been discussed in the previous chapters. Among the
macronutrients, plant uptake of nitrogen, phosphorus, and potassium are anal-

ysed in this subsection.
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Nitrogen and phosphorus do not constitute the part of basalt whereas, potas-
sium is present in mineral K-feldspar. The mass contribution of K-feldspar is only
6.1% of basalt and the weathering rate constant corresponding to this mineral is
lower than other major minerals present in basalt. Hence, weathering of basalt
does not release potassium in large quantity. In reality, change in pH should also
have some effects on plant macronutrients uptake, including nitrogen and phos-
phorus, but the IEWCZM is not able to incorporate those effects. Therefore in this
simulation study, only potassium uptake will be highlighted (figure 9.8). Potas-
sium uptake comparison between baseline and enhanced weathering indicates that

an increased application rate of basalt should increase potassium uptake as well.

9.5.7 Biomass and grain yield

Biomass is directly linked with the total yield. Approximately 95% of the total
biomass is related to the macronutrients carbon, hydrogen, oxygen, and nitrogen
[148]. In this scenario, among these nutrients, potassium, magnesium, and calcium
exhibit an increased concentration level. The simulation result shows a slight
enhancement (0.5%) in the biomass with the current application rate of basalt.The
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total biomass was converted into grain yield by using the harvest index [155] equal
to 0.47.

9.5.8 Remark: Scenario 1

The simulation results under this scenario clearly suggests that enhanced weath-
ering of silicate rock like basalt causes some increase in the major ionic concentra-
tion including pH. The raised level of few essential plant nutrients also results into
slight increase in crop yield. The idea behind enhanced weathering is to absorb
atmospheric CO; while increasing the crop yield. However, at the current applica-
tion rate (5kg/m?, one-off), the technique can not be leveraged fully. Therefore, the
simulation analysis was shifted to the next scenario, where the basalt application

rate was tuned to match the desired objectives.

9.6 Scenario 2: Yearly basalt addition

In this scenario, the IEWCZM was parameterised for the same site (Leeds farm)
like the scenario 1. The simulation period starts from year 2017 and lasts until
the century end. Basalt was applied at the rate 5kg/m?, on yearly basis. The
model incorporates the shrinking sphere approach for modelling the change in
basalt particle as weathering progresses. This means that mineral particle size
would decrease as the weathering progresses. Nevertheless, the addition of fresh
basalt every year increases the net particles almost exponentially. The particle was
considered as 10 um, based on the recommendations from [131].

The IEWCZM requires the precipitation and temperature inputs in time series.
Similar to the scenario 1, a CMIP5 model was used to obtain the weather inputs
projection till the century end (figure 9.9a, 9.9b). All the projected data are based
on the RCP 8.5 scenario of the IPCC.

9.6.1 Mg cation concentration

Mg** cation shows an increase of 114.9% in the pore water concentration (figure
9.10) at the century-end. Unlike scenario 1, the concentration level pertaining to
the enhanced weathering shows an exponential kind of change, especially towards
the century-end. This is mainly attributed to the yearly addition of basalt at the
constant rate. Sudden spikes in the Mg?" concentration are triggered by the sud-
den changes in precipitation, few time steps prior to the spikes. Solute transport
in the IEWCZM is governed by the Hydrus module, as discussed in the previ-
ous chapter. Whenever, there is a sudden change in the precipitation, the solutes
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Figure 9.10: Mg?" concentration in four different layers of the soil profile.

presents in the top layers of the soil are flushed towards the bottom of the soil pro-
file through the soil pore water. The concentration of solutes are observed through
the soil pore water in the IEWCZM. Therefore, a sudden change in precipitation

results into a sudden increase in solute concentration, visible in the form of spikes.

9.6.2 Na cation concentration

The mineral sources of Na'cations in a basalt rock are discussed in the previous

scenario. In this scenario, concentration of Na* increases by about 266.4% in 2099

(figure 9.11) .

Na is also a plant macronutrient and therefore such an increased

level emboldens the motivations behind enhanced weathering. All the major char-

acteristics of the Na*, such as exponential feature and spikes are similar to Mg>*

and can be interpreted in similar ways.
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Figure 9.12: Si concentration in four different layers of the soil profile.

9.6.3 Si concentration

The concentration of silicon increases with enhanced weathering. According to
this simulation study, the concentration of silicon is expected to increase by 585%
by the century-end (figure 9.12). The potential benefits of such an enhanced level
of silicon in the soil system are not analysed in this study. However, the available
literatures [156, 157] strongly indicate the advantages associated with increased
amount of silicon in the soil system.

9.6.4 Ca cation concentration

Ca®*concentration increases by about 118.7% towards the end of year 2099 (figure
9.13). The carbonate formation was not assumed in the model, because of the
model limitation as well as for demonstrating the effects of enhanced weathering
in terms of increased level of major cations. In reality, bicarbonates will combine
with calcium to form calcium carbonates. Similarly, the formation of carbonates is
also applicable for other cations.
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Figure 9.13: Ca?" concentration in four different layers of the soil profile.
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Figure 9.14: Soil pore water pH in four different layers of the soil profile.

9.6.5 pH

The weathering reaction of basalt consumes the H" ions and this increases al-
most exponentially, when the basalt is entered into the soil system on yearly basis
(figure 9.14). pH is a standard way to represent the H' concentration and the sim-
ulation results show an increase of about 9% in the pH by the end of this century,
under the current scenario of enhanced weathering. One of the shortcomings of
the IEWCZM is that, the effects of pH is not transferred into plant nutrient up-
take. Improving this shortcoming was not within the scope of this research. Due
to intense farming, ion exchange on the soil sites increases rapidly. A nutrient is
typically passed into plant system by replacing cations with H*. This exchange
mechanism increases the soil acidity after some farming cycles. An increased level
of acidity in soil reduces the fertility of the soil. Traditionally, liming is being used
to increase the pH of agricultural soil. Enhanced weathering has a potential to
replace the liming process through powdered basalt. The underlying theory and
simulation results suggests that silicate rocks provide many other benefits than a

mere liming process.
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9.6.6 Summary of soil pore water concentrations

All the key solute concentrations including pH in the soil pore water under the
Scenario 2 (yearly basalt addition) have been presented above. In this subsection,
those results will be summarised in a tabular form (Table 9.3) for the ease of
understanding the effects of yearly basalt addition on the solutes — Mg?**, Na™,
Si, Ca*t,and HT.

Sr. No. Solute Conc. T(in %)
1 Mg>* 114.9
2 Na* 266.4
3 Si 585.0
4 Ca®t 118.7
5 H™ (as pH) 9.0

Table 9.3: Percentage increase in concentration of key solutes until the century
end (2099). Increase in concentration of these solutes are attributed to the effects
of enhanced weathering of basalt causing the release of cations and the absorption
of hydrogen ions.

9.6.7 Plant nutrients uptake

Types of plant nutrients and their significance have already been discussed in
the previous section and previous chapters. In this subsection, the simulation
results corresponding to the N, P, and K uptake, quantitative figures and their
implications will be discussed.

Nitrogen is available in the soil system through natural weathering processes
and NPK fertiliser mixture. Enhanced weathering of basalt in principle does not
provide additional nitrogen containing ions. Change in pH due to weathering
should have affected the nitrogen uptake but the IEWCZM is not able to con-
vert those changes into nutrient uptake. Similar to nitrogen, phosphorus is also
available in the soil system mainly due to natural weathering of rocks and NPK
fertiliser, added in each growing season. Basalt weathering does not contribute to-
wards phosphorus addition in the soil systems and its uptake remains unchanged
from the baseline.

Unlike nitrogen and phosphorus, potassium has an extra source in the form of
K-feldspar present in basalt. However, an excess amount of potassium in the soil
system causes the ‘luxury’ uptake eventually leading to reduction in magnesium
uptake. This situation is not desired as magnesium too plays important roles in
a plant growth. Hence, the vegetation module in the IEWCZM takes this factor

into consideration and a continuous increase in the potassium level because of
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basalt weathering does not reflect at all the times during simulation. Therefore
despite an overall increase in potassium uptake due to weathering, at various
instants, a drop in the uptake is also noticed. In year 2060, the simulation shows
an increase of 4.1% in the potassium uptake, whereas, by the century-end this
figure increases to about 15.7%. The weathering rate constants of K-feldspar is
not high like forsterite, therefore effects on the plant uptake is also not very high.
Nevertheless, an enhanced level of potassium, magnesium, and calcium should

play some positive roles in the net crop yield.

9.6.8 Biomass and grain yield

Total biomass production is directly linked with the crop yield, provided the har-
vest index is correctly figured out. The calculation steps for converting the biomass
into grain yield is same as described in the Scenario 1. In this scenario, the avail-
ability of Mg, Ca, and K increase rapidly, as the weathering of basalt proceeds.
These effects are transferred into an increased amount of total biomass.The wheat
yield is obtained from the total biomass using the harvest index equal to 0.47.
The simulation results corresponding to yield shows exactly the same trend like
biomass.

In year 2060, this simulation predicts an increase of 2.9 % in wheat yield, which
will further increase to about 9.4 % by the end of this century. The difference
between yield corresponding to enhanced weathering and natural weathering is
shown in the figure 9.15. The yield difference plot shows some negative values too.
These are attributed to the weeds. In control scenario, after each harvest period,
weeds grow naturally on the land. In enhanced weathering scenario, the excessive
amount of basalt rock powder on the top surface hinders the growth of weeds.

Hence, there is a reduced growth in weeds and that reflects on the difference plot.

9.6.9 Remark: Scenario 2

The Scenario 2 was designed on the basis of the observations of the previous
scenario. One-off addition of basalt was not able to provide the desired function-
alities of enhanced weathering process. Under the current scenario, basalt in the
powdered form was applied every year starting from 2017 until 2099. The dose
of basalt was kept fixed at the rate 5kg/m?. The simulation results show an ex-
ponential increase in the concentration of all the major ions except hydrogen. The
weathering process consumes hydrogen ion and hence there is a decrease in its
concentration resulting into an increased level of pH in the soil pore water.

The nitrogen and phosphorus uptake by plants do not show much change
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Figure 9.15: Difference between grain yield in enhanced weathering and control
scenario.

under the enhanced weathering conditions but in general, the potassium uptake
increases as the weathering progresses. Overall, these changes were transferred
into the total biomass and subsequently into the grain yield. About 9.4 % in-
crease in the wheat production, while reducing the soil acidity and absorbing the
anthropogenic carbon appears to be a good proposition.

The motivation garnered from this scenario led to the extension of the IEWCZM
throughout the UK regions. In the next section, UK wide simulation analysis are
discussed.

9.7 UK wide simulation

The parameterisation of the IEWCZM requires data from the soil profile, vegeta-
tion, and local climate. The entire UK land area can be divided into approximately
104 grid cells, separated by 0.5 degree x 0.5 degree geographically. Ideally, one
should parameterise the IEWCZM with data from all these sites, which was not
possible in this project. Therefore, the soil condition and vegetation types for all
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the sites were assumed to be the same like the Leeds farm. However, climate data
like precipitation and average temperature are relatively easy to obtain for all these
sites. Hence, the UK wide simulation was carried out by keeping the soil condi-
tions similar but varying the weather data according to the CMIP5 projections.
Like the Leeds farm, RCP 8.5 was considered for all these sites as well.

The plant nutrient uptake, ions concentration, pH, and biomass changes have
been analysed in the previous sections under both the scenarios. Since the soil
and vegetation conditions are kept constant for all the sites, so these variables do
not show any substantial variations.

The prime objective of the enhanced weathering is to absorb the anthropogenic
carbons from the atmosphere. The CO; absorption is directly linked with the Dis-
solved Inorganic Carbons (DIC) absorbed during the weathering process. The
correct calculation of CO, sequestration, throughout the UK can only be achieved
by taking into account the net DIC absorbed by all the grid cells. In the follow-
ing subsections, the detailed steps for calculating the absorptions of atmospheric
carbon, occurred because of accelerated weathering will be discussed.

9.7.1 CO, calculation steps

CO; absorbed for a particular site is calculated through the DIC content in the
pore water. In this study, only HCO, was considered as DIC. The CO, calculation

was carried using the following algorithm:

1. Concentration of HCO; at the end of a time-step is given in mol/litre. Using
the water content (in litre), the concentration was converted into number of
moles of HCOj; .

2. The above steps were performed for both the baseline condition as well as

enhanced weathering scenario.

3. At the end of the model simulation, total number of moles of HCO; col-

lected in baseline as well as enhanced weathering scenarios were calculated.

4. Number of moles of HCO; collected in baseline was subtracted from the
number of moles of HCO; collected in enhanced weathering scenario. This
took into account the carbon absorbed naturally such as due to rainfall. The
interest was in calculating the CO, absorbed due to enhanced weathering

only.

5. Number of moles of absorbed CO, was calculated from the number of moles

of HCOy, using the stoichiometry from [125] .
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6. Number of moles of CO, was converted into mass unit such as gram or

kilogram.
7. Arable land area in each grid cell was calculated using the crop fractions.

8. CO; absorbed per metre square was multiplied by the arable land area for
each grid. This gave the total amount of CO, sequestrated in each cell.

9. Finally the amount of CO; absorbed in each grid was added to obtain the
net CO, absorbed across the UK.

The results obtained by following the above steps are shown in the Table 9.4. The
amount of CO; sequestrated by the Leeds region (Site 66) by 2060 is 6.92 kg per
metre square, which increases to 26.28 kg per metre square by the century end.
The CO; absorption shows an exponential nature (figure 9.16). The above calcu-
lation is based entirely on the stoichiometric properties shown by the weathering
reactions and the available amount of soil pore water. A more detailed analysis
by considering the carbon emitted during the mining and crushing of basalt and
transportation to the site of application will decrease the net carbon sequestrated.
In future works, such studies involving all the logistics can be coupled with the
IEWCZM simulation results to get a more accurate picture of the carbon absorp-

tion under enhanced weathering.

Site no. | Lat. | Lon. | Crop frac. | COm2(kg) | Tot. CO; (g)
1 54.75 | -7.75 0.006 26.54 451 x 101
2 54.25 | -7.75 0.001 26.57 1.21 x 10!
3 54.75 | -7.25 0.005 25.24 3.55 x 1011
4 54.25 | -7.25 0.014 25.27 8.97 x 1011
5 54.75 | -6.75 0.037 26.51 2.45 x 1012
6 54.25 | -6.75 0.017 25.28 1.13 x 1012
7 55.75 | -6.25 0.003 26.55 2.46 x 101
8 54.75 | -6.25 0.014 25.31 9.22 x 1011
9 54.25 | -6.25 0.028 25.31 1.77 x 1012
10 50.25 | -5.25 0.052 24.78 3.27 x 1012
11 55.75 | -4.75 0.048 26.52 3.20 x 1012
12 55.25 | -4.75 0.056 26.58 3.77 x 1012
13 51.75 | -4.75 0.013 24.27 8.26 x 1011
14 57.75 | -4.25 0.056 24.16 3.44 x 1012
15 56.25 | -4.25 0.046 25.27 2.93 x 1012
16 55.75 | -4.25 0.060 25.28 3.82 x 1012
17 55.25 | -4.25 0.016 24.77 1.04 x 10'2
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

53.25
51.75
50.75
55.75
55.25
53.25
52.75
52.25
51.75
50.75
56.75
56.25
55.75
55.25
54.75
53.25
52.75
52.25
51.75
50.75
57.25
56.75
55.75
55.25
54.75
54.25
53.75
53.25
52.75
52.25
51.75
51.25
50.75
57.25
55.75
55.25
54.75
54.25

-4.25
-4.25
-4.25
-3.75
-3.75
-3.75
-3.75
-3.75
-3.75
-3.75
-3.25
-3.25
-3.25
-3.25
-3.25
-3.25
-3.25
-3.25
-3.25
-3.25
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.75
-2.25
-2.25
-2.25
-2.25
-2.25

0.013
0.022
0.043
0.082
0.069
0.0002
0.012
0.002
0.005
0.056
0.034
0.076
0.037
0.020
0.027
0.006
0.021
0.011
0.035
0.039
0.054
0.166
0.088
0.010
0.036
0.031
0.037
0.037
0.079
0.098
0.018
0.045
0.045
0.020
0.181
0.017
0.004
0.002

24.10
24.27
24.14
24.78
26.58
24.03
25.27
24.75
24.79
2415
25.28
2412
24.26
24.77
2416
24.05
24.80
24.74
24.77
24.14
24.07
24.07
2416
24.77
24.81
24.09
24.09
24.06
24.06
24.06
2414
2410
2415
24.04
24.09
24.05
2410
24.26

7.88 x 1011
1.33 x 1012
2.60 x 1012
5.10 x 10'2
4.60 x 10'?
1.67 x 1010
8.17 x 101
1.82 x 101!
3.37 x 101
3.42 x 10'2
2.19 x 1012
4.62 x 1012
2.24 x 1012
1.29 x 1012
1.64 x 1012
3.86 x 101
1.36 x 1012
7.17 x 1011
2.19 x 1012
2.39 x 1012
3.29 x 1012
1.00 x 1013
5.35 x 10'2
6.36 x 101
2.27 x 10'2
1.87 x 1012
2.28 x 10'2
2.26 x 1012
4.76 x 1012
5.89 x 1012
1.14 x 1012
2.71 x 1012
2.76 x 10'2
1.21 x 10'2
1.09 x 1013
1.03 x 10!
2.88 x 1011
1.75 x 10!
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

53.75
53.25
52.75
52.25
51.75
51.25
50.75
55.25
54.75
54.25
53.75
53.25
52.75
52.25
51.75
51.25
60.25
54.25
53.75
53.25
52.75
52.25
51.75
51.25
50.75
54.25
53.75
53.25
52.75
52.25
51.75
51.25
53.75
53.25
52.75
52.25
51.75
51.25

-2.25
-2.25
-2.25
-2.25
-2.25
-2.25
-2.25
-1.75
-1.75
-1.75
-1.75
-1.75
-1.75
-1.75
-1.75
-1.75
-1.25
-1.25
-1.25
-1.25
-1.25
-1.25
-1.25
-1.25
-1.25
-0.75
-0.75
-0.75
-0.75
-0.75
-0.75
-0.75
-0.25
-0.25
-0.25
-0.25
-0.25
-0.25

0.037
0.020
0.121
0.062
0.081
0.086
0.059
0.122
0.069
0.052
0.073
0.058
0.165
0.149
0.150
0.090
0.007
0.145
0.136
0.083
0.111
0.159
0.122
0.140
0.062
0.170
0.121
0.188
0.145
0.167
0.031
0.015
0.093
0.176
0.185
0.167
0.008
0.009

24.14
24.30
24.04
24.05
24.09
2417
2416
24.05
24.02
24.76
26.28
2415
24.05
24.04
24.09
2413
2414
24.05
25.27
24.03
24.05
24.03
2413
24.12
24.08
24.06
24.05
24.08
24.02
24.05
24.02
2416
24.06
24.04
24.05
24.04
24.05
24.04

2.26 x 1012
1.25 x 1012
7.29 x 10'2
3.73 x 10'2
491 x 10'?
5.25 x 10'2
3.59 x 1012
7.38 x 1012
4.19 x 10'?
3.27 x 10'2
4.79 x 10'?
3.55 x 10'2
9.96 x 1012
8.98 x 10'2
9.06 x 1012
5.44 x 10'2
4.42 x 101
8.72 x 1012
8.62 x 1012
5.03 x 1012
6.73 x 1012
9.60 x 1012
7.39 x 1012
8.47 x 1012
3.75 x 10'2
1.02 x 1013
7.29 x 1012
1.13 x 1013
8.71 x 10'2
1.00 x 1013
1.88 x 1012
9.36 x 101
5.60 x 1012
1.06 x 1013
1.11 x 10%3
1.00 x 1013
5.12 x 101
5.62 x 101
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94 53.25 | 0.25 0.139 24.05 8.39 x 1012
95 52.75 | 0.25 0.215 24.05 1.29 x 1013
96 52.25 | 0.25 0.194 24.07 1.71 x 1013
97 51.75 | 0.25 0.022 24.04 1.37 x 1012
98 51.25 | 0.25 0.016 24.10 1.01 x 10'2
99 52.75 | 0.75 0.239 24.04 1.44 x 1013
100 52.25 | 0.75 0.230 24.09 1.38 x 1013
101 | 51.25 | 0.75 0.041 24.08 2.49 x 1012
102 | 52.75 | 1.25 0.187 24.08 1.12 x 1013
103 | 5225 | 1.25 0.230 24.06 1.38 x 1013
104 | 51.25| 1.25 0.052 24.06 3.18 x 10'2

Table 9.4: CO, absorbed across the UK sites. Crop fraction denotes the fraction of
arable land in a grid cell. CO, per metre square is calculated by the IEWCZM for
each grid cell. Total CO, for each grid cell is calculated using the total land area
in a cell, crop fraction and CO, per metre square.

The above calculation is performed under the Scenario 2, where basalt is added
at the rate of 5kg/m? on yearly basis. Using the information from the Table 9.4, the
net sequestrated CO, across the entire UK by the century end is 4.55 x 10'* gram.
The CO; absorption data from the Table 9.4 is shown in a choropleth map (figure
9.17) for a clearer visualisation. In future work, the figure 9.17 can be compared
with the climate inputs of all the points on the choropleth map. A correlation
between the weathering rate and variables like temperature and precipitation can

guide the selection of sites for an efficient enhanced weathering process.

9.8 Conclusion

Enhanced weathering, a geo-engineering technique for the sequestration of an-
thropogenic carbon dioxide from the atmosphere was analysed in this study. The
IPCC report suggests that the objectives of the COP 21 (Paris Agreement) cannot
be achieved merely by cutting down the emission. There is a strong need to im-
plement an NET in parallel. Among few other options, enhanced weathering as
an NET offers some extra advantages like reducing the soil acidity and increas-
ing the soil fertility in addition to capturing the atmospheric carbon. Until now,
these theoretical possibilities surrounding the enhanced weathering have not been
verified thoroughly. This study performs the simulation analysis of the enhanced
weathering in the UK climatic condition.

The entire simulation study was performed in two phases. In the first phase,
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Figure 9.17: CO, absorbed across the UK.

Leeds farm conditions were employed for evaluating the two scenarios of the en-
hanced weathering and comparing them with the baseline conditions. First sce-
nario incorporated the addition of basalt only once at the rate of 5kg/ m? whereas,
in the second scenario basalt application was carried out on yearly basis at the
same rate. In the second phase, the Scenario 2 was extended to the entire UK
regions for calculating the net CO; absorbed till the century-end.

The weathering of silicate rock is heavily influenced by the weather inputs
especially precipitation. Most of the UK regions receive a good amount of pre-
cipitation. Therefore, this country appears to be a plausible option for the imple-
mentation of enhanced weathering. High temperature is another key factor for the
fast weathering. The UK cannot match with the temperature range of the tropi-
cal regions but the RCP 8.5 projection shows that the climate change would push
the average temperature of this country on a bit higher side. This could escalate
the weathering process at least till the mid of century. So, it turns out to be an
interesting area for further research.

The simulation results strongly suggests that, the enhanced weathering as an
NET, has a potential to curb the atmospheric carbon and bring down the global
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temperature substantially. In parallel, it can also enhance the soil-fertility and
wheat production to some extent. The inorganic fertilisers are currently employed
during the production of all major crops. The simulation in this chapter shows
that, silicate rock addition do not interfere with the positive effects of fertilisers.
In fact, a slight increase in crop yield suggests that basalt powder can be applied in
parallel to fertilisers. So the question is, can we eliminate the use of NPK fertilisers
completely by replacing with basalt powder? The answer is ‘No’, because basalt
does not contain the minerals rich in nitrogen and phosphorus. Among NPK only
potassium is available in basalt and that too in very small quantity.

The soil acidity reduces substantially due to weathering and in principle it
should improve the overall nutrient uptake. However, this effect was not apparent
in this simulation study, mainly because of some limitations of the model. The
effects of trace elements like deposition of nickel as a byproduct of prolonged
weathering was also not covered under this research.

This study is a simulation analysis of the theoretical hypotheses surrounding
the enhanced weathering and is based on some reasonable assumptions. The
actual implementation of the enhanced weathering at the farm level would require
a lot more rigorous simulations and field experiments. In addition to the scientific
and technological challenges, engaging with other stake holders such as farmers
and policy makers would also be essential for the implementation of this NET.
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Conclusion

10.1 Concluding remarks

This thesis demonstrates the potential of interdisciplinary research methods in
analysing the systems related to environmental and food sustainability. In addi-
tion to the contributions in form of weathering and wetland systems modelling, an
investigation towards the theoretical advancement in System Identification (SID)
method also forms the part of this thesis.

The concluding remarks of this project are summarised here:

1. A novel algorithm (ABC-NARX-MSS) for the model structure selection in
nonlinear system identification was developed. The ABC-NARX-MSS is
placed under the probabilistic framework and Approximate Bayesian Com-
putation (ABC) is at the heart of this method. It carries out the global search
in the regressor space and returns an optimal solution. The ABC-NARX-MSS
is tested on an example system and correctly recovers all the ‘true’ terms in

a fairly noisy condition.

2. The identification of an unknown system has always been a challenging job
and any new method in SID should ideally pass through this challenge.
Therefore, a full cycle of the SID was performed on a Canadian wetland
using the ABC-NARX-MSS for model selection and the Sequential Monte
Carlo (SMC) version of the ABC for parameter estimation. The simulation
results suggest that all the relevant terms were correctly picked up by the
newly developed algorithm. The ABC-NARX-MSS is computationally more
efficient than the other competing methods under probabilistic framework.
It is easy to extend for incorporating more model classes, at the same time it

is also very simple to implement on any platform.

172
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3. A compact nonlinear model of the tropical wetlands containing just the six
terms was devised in this project. The application of nonlinear SID in wet-
land modelling as well as obtaining a parsimonious model structure explain-
ing the wetland dynamics of the tropics are novel additions in the wider do-
main of environmental systems. The parameter set of all the available sites
were estimated using the ABC-SMC technique and the estimation process
is relatively straightforward and transparent as compared to the Compound
Topographic Index (CTI) parameters of the TOPMODEL based models.

4. In reality, the dynamics of a wetland depends upon lot many environmental
variables as well as topography of the site. The obtained tropical wetland
model is based upon a Single Input Single Output (SISO) system, where
the input is average temperature. The temperature of all the tropical sites
are nearly in similar range and this feature also reflects from the parameter
mapping, where the parameters of input based terms do not exhibit much
variations. On the other hand, parameters corresponding to the lagged out-
puts terms diverge the most, signifying the topographical variations.

5. A calibrated Enhanced Weathering (EW) model using an analytical method
was obtained. The weathering rate constants in most of the theoretical eval-
uations are based on laboratory results. Recently, it has been shown that
weathering is relatively slower in field conditions hence the rate constants
following the laboratory experiments are not accurate. The calibration part
in this modelling takes this factor into account. Another novelty comes from
the integration of the weathering model with the other process models of the
Earth’s Critical Zone (ECZ) leading to the development of the IEWCZM. The
integrated model shows the positive effects of EW on the biomass production
in Koiliaris, a Critical Zone Observatory (CZO) in Greece.

6. The potential of EW in sequestering the anthropogenic carbon and increas-
ing the wheat yield across the entire UK is simulated using the IEWCZM.
The EW process, when the crushed basalt powder is applied at the rate of 5
kgm~2yr~1, can absorb approximately 0.455 Pg of carbon until the century
end with some reasonable improvement in the wheat yield as well. The EW
as a Negative Emission Technology (NET) clearly demonstrates the potential
of addressing the climate change mitigation and food security in parallel.
However, the actual implementation of the EW depends upon a more rig-
orous research where all the facets of this NET on the ecosystem could be

analysed.
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10.2 Future works

1. The ABC-NARX-MSS in thesis searches the regressor space where the maxi-
mum lags for input-output were constrained to two. The algorithm demon-
strates a good computational efficiency with the limited lag values. However,
for generalising the ABC-NARX-MSS and establishing this algorithm over
the other competing methods under probabilistic framework, it needs to be
tested on larger lag values. The algorithm is expected to converge even with
high amount of maximum lags but the computational requirements will be

the key factor to observe.

2. The dynamics of wetlands vary with climatic zones. That means, wetlands in
boreal and temperate climate zones exhibit different dynamics than a tropi-
cal wetland. The wetland model developed in this thesis accounts for tropical
regions. The similar approach can be extended to devise the models explain-
ing the dynamics of other climate zones. In this way, a global wetland model
could come into existence and the same could be coupled with the existing
climate models for a more accurate calculations of the biogeochemical cycles

and the effects of climate change.

3. The current sites in the available dataset are separated by 0.5 degree x 0.5
degree geographically. The climate models often operate at a finer resolution,
so a mechanism for interpolating the parameters between the sites could
be formulated. A Global Inundation Extent from Multi-Satellites (GIEMS)
dataset provides the dynamic variations in the wetland fraction but at the
cost of precision. A precise parameterisation of the model can overcome this

shortcoming of remote sensing technique in studying wetland dynamics.

4. The climate change effects are categorised into different scenarios, Repre-
sentative Concentration Pathways (RCP), by the Intergovernmental Panel on
Climate Change (IPCC), such as RCP 8.5, RCP 6.0, RCP 4.5, and RCP 2.6. The
developed wetland model can be simulated for all the scenarios to assess the

impact of climate change on wetland extents.

5. The enhanced weathering (EW) model developed in this thesis considers all
the minerals in a rock to be a uniform sphere for the sake of simplicity.
In reality, mineral do exhibit variations in their shape and that could have
significant effects on weathering rate as well. Hence, the same algorithm
can be extended to incorporate the detailed mineralogical information. The
IEWCZM model works at the soil profile scale because the original ICZM is

basically a profile scale model. Therefore, the simulations performed using
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the IEWCZM assumes the uniform soil profile. In reality a catchment can
have numerous types of soil profile and thus a catchment scale model will

be more accurate in simulating the effects of EW on a farmland.

6. In this thesis, EW simulation in the UK condition has been presented. The
method appears to be a promising way for addressing the climate change
mitigation and food security simultaneously. However, only single crop in
the form of winter wheat is considered in this simulation analysis. Other
major crops of the UK such as sugar beet and barley can be simulated to
present a more realistic picture. This simulation study assumes that the soil
characteristics of the entire UK are same and only the climatic inputs are
varied. For a more accurate analysis, the IEWCZM can be parameterised
with the site specific soil details.

7. The entire modelling studies of this thesis, which include the wetland dy-
namics and EW can be glued together at some level of abstraction under
the systems engineering framework. A code level integration of different
models often constrain the addition/removal of modules. Being parts of the
Earth’s Critical Zone, both the wetland and weathering dynamics depend
upon many common variables such as evapotranspiration and temperature.
So a unification mechanism of these dynamics at some acceptable level of
abstraction could be very useful for the domain experts.

The innovations in the field of data inference particularly devising methods where
the modern computational facilities are fully utilised will serve many goals of
the UN SDGs. This also requires the ease of data availability by international
organisations for the research and innovation purposes.
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