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Abstract 

Outer membrane proteins (OMPs) of Gram-negative bacteria travel from their site of 

synthesis in the cytoplasm, across the inner membrane and through the periplasm to 

the outer membrane (OM) prior to their folding to a functional form. To protect 

OMPs from misfolding or aggregation while traversing the periplasm a network of 

chaperones are employed. The OMPs must then reach the essential β-barrel 

assembly machinery (BAM) complex, which is involved in inserting OMPs into the 

OM. This process occurs in the absence of chemical energy as the periplasm is devoid 

of ATP and in a highly dynamic environment as the ‘leaky’ OM allows small molecules 

(<600 Da) to enter from the extracellular milieu.  

 

The major periplasmic chaperone for OMPs, SurA, is known to interact with a number 

of substrates and has been crosslinked to the BAM complex in vivo. SurA is composed 

of four domains, an N-terminal domain, two peptidyl-prolyl isomerase (PPIase) 

domains and a short C-terminal helical domain. In this work wild-type E. coli SurA and 

SurA truncation variants lacking one (P2) or both (N-Ct) of the PPIase domains have 

been studied. Using microscale thermophoresis, light scattering, native mass 

spectrometry and other biophysical techniques how each domain is involved in OMP 

binding, chaperoning and delivery to BAM is investigated.  

 

The results demonstrate that SurA binds unfolded OMPs, tOmpA and OmpT with μM 

affinity, agreeing with previous findings. The core domain (SurA N-Ct) is sufficient for 

this interaction, but the addition of the PPIase domains leads to a tighter binding. 

Light scattering experiments shows that SurA WT can prevent aggregation of the two 

model OMPs, but the removal of the PPIase domains reduces the chaperoning ability 

for the larger, more aggregation-prone OMP, OmpT. These observations 

demonstrate that the acquisition of the PPIase domains is advantageous for both 

OMP binding and chaperoning. An interaction between SurA and the BAM complex 

is also observed for the first time in vitro. Overall, the results reveal new insights into 
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how SurA binds and chaperones OMPs before delivering them to the BAM complex 

for folding in the OM.  
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Chapter 1 Introduction  

1.1 Protein Folding and Proteostasis 

In the 1950’s Anfinsen discovered that small proteins can fold spontaneously upon 

dilution of denaturant, and that the only requirement to reach to correct folded state 

is the amino acid sequence 1. Since that seminal work, the importance of molecular 

chaperones in aiding the folding of proteins in the crowded cellular environment has 

become apparent 2-6. Chaperones are essential proteins found in all kingdoms of life 

which facilitate protein folding of nascent polypeptides, prevent self-association of 

aggregation-prone sequences and promote degradation of genetically mutated or 

irreversibly misfolded proteins 3,7,8.  

 

Although some nascent polypeptides can fold spontaneously 9, the majority of 

proteins require the aid of chaperones however the chaperone network can become 

overloaded in the case of various cellular stresses and this problem is exacerbated by 

the crowded cellular environment 10. Understanding the mechanisms of chaperones 

is critical to defining the proteostasis network and how this network can break down 

during cellular stress, genetic conditions and in ageing 7,11. Protein misfolding 

diseases disrupt cellular proteostasis and evade chaperone control to form 

amorphous aggregates or amyloid fibrils 12-14. Enhancing chaperone activity under 

these conditions may aid in slowing the progression of multiple human diseases such 

as Alzheimer’s and Parkinson’s 15,16 and targeting chaperones which are essential for 

oncoprotein activation is currently under investigation for new cancer therapeutics 

17-19.  

 

Controlling proteostasis of various cellular compartments is a challenge to both 

eukaryotic cells and Gram-negative bacteria 20-23. The sorting of proteins into their 

native cellular compartments and the ability of the targeted polypeptides to reach 

their functional state in these different cellular environments requires specific 
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chaperone networks 24-26. These networks often have homologous proteins between 

kingdoms, such as Hsp70 in the cytoplasm of eukaryotes and DnaK in cytoplasm of 

bacteria (Figure 1.1), and these pathways aid in the folding of most polypeptides 

which emerge from the ribosome. However, certain substrates or cellular 

compartments have evolved specialised chaperones such as those involved in 

disulphide bond formation 27. 

Figure 1.1 Cytoplasmic chaperone pathways in a) Bacteria b) Archaea c) Eukarya. Ribosome 
associated chaperones are found in all kingdoms of life Trigger factor (TF) in bacteria and 
nascent-chain-associated complex (NAC) in archaea and eukaryotes which bind to the 
nascent polypeptide and may lead to folding. For longer or more complex proteins, heat 
shock proteins (Hsp) Hsp70 in eukaryotes and DnaK in bacteria along with the Hsp40 family 
co-chaperones and nucleotide exchange factors aid in folding. Archaea which lack an Hsp 
system use prefoldin (PFD). Clients can then either be passed to Hsp90 in eukaryotes for 
proteins often found in signalling pathways or to a chaperonin system (TriC in eukaryotes, 
Thermosome in archaea and GroEL/ES in bacteria). Percentages represent average protein 
flux through each chaperone. Image reproduced from Kim et al. 2013 28.   

 

An example of specialised chaperones within cellular compartments is the periplasm 

of Gram-negative bacteria which is the space between the inner and the outer 

membranes of this class of bacteria. Proteins which require folding into the outer 

membrane for their function are synthesised in the cytoplasm then must be 

transferred across the inner membrane, across the periplasm and finally to the outer 

membrane all the while being protected from misfolding or aggregation by 

chaperones.  
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1.2 Gram-negative bacteria 

The binding, chaperoning and delivery of -barrel outer membrane proteins (OMPs) 

by chaperones in the periplasm of Gram-negative bacteria is investigated in this 

thesis. In 2017, the world health organisation published a list of twelve infectious 

bacteria for which new anti-biotic treatments are urgently needed (Table 1.1) 29. Nine 

of these strains were Gram-negative including all infections in the critical category. 

Gram-negative infections often are harder to treat as these bacteria are surrounded 

by two membranes forming a barrier to most current antibiotics which act within the 

cytoplasm or periplasm to disrupt essential processes and can cause cell death. 

Priority  Species  Gram positive of negative  

Critical Acinetobacter baumannii Gram-negative 

Critical Pseudomonas aeruginosa Gram-negative 

Critical Enterobacteriaceae Gram-negative 

High Enterococcus faecium Gram-positive 

High Staphylococcus aureus Gram-positive 

High Helicobacter pylori Gram-negative 

High Campylobacter spp. Gram-negative 

High Salmonellae Gram-negative 

High Neisseria gonorrhoeae Gram-negative 

Medium Streptococcus pneumoniae Gram-positive 

Medium Haemophilus influenza Gram-negative 

Medium Shigella spp. Gram-negative 

Table 1.1 List of bacterial infections which require new antibiotic treatment published by 
the world health organisation (WHO) 29. 

 

The inner most membrane, known as the inner membrane (IM) of Gram-negative 

surrounds the cytoplasm and is a symmetrical phospholipid bilayer in terms of the 

lipids it is comprised of, mainly comprised of phosphatidylethanolamine (PE) and 

phosphatidylglycerol (PG) lipids 30. As bacteria lack intracellular organelles, all of the 

membrane-associated functions which are homologous to the eukaryotic organelles, 

are performed in the IM. The outer membrane (OM), by contrast, is asymmetric with 

the inner leaflet comprising of PE, PG and cardiolipin (CL), whereas the outer leaflet 

is comprised of glycolipids, principally lipopolysaccharide (LPS) 31 (Figure 1.2). The 
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outer membrane is densely packed with membrane proteins with mass ratios of 5:1:1 

for protein: phospholipid: LPS.  

 

 

Figure 1.2 Schematic of the E. coli envelope. The main proteins involved in OMP biogenesis 
from the bacterial ribosome (dark green) via cytoplasmic chaperones Trigger Factor (TF) 
(orange) and the tetrameric SecB (yellow) OMPs are actively translocated through the Sec 
machinery (SecYEG) (purple) by the ATPase SecA (cyan). The signal sequence is cleaved by 
signal peptidase (SPase) (orange) and the nascent polypeptide bound by periplasmic 
chaperones Skp (blue), SurA (green) or DegP (purple) before being folded into the OM by the 
BAM complex (BamABCDE) as coloured in Figure 1.9. Schematic not to scale.   
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1.3 The Periplasm  

The periplasm or periplasmic space separates the inner and outer membranes of 

Gram-negative bacteria (Figure 1.3). The periplasm was discovered after studies 

showing Gram-negative bacteria, which have no defined membrane bound 

organelles, contain ribonucleases and phosphatases without these enzymes causing 

toxicity in the cell 32. Further extraction experiments led to the conclusion that these 

bacteria have a separate cellular compartment. This was then confirmed by electron 

microscopy imaging (Figure 1.3) 33,34. Since this time, the periplasm has been shown 

to be important in many functions such as protein oxidation, disulphide bond 

formation, cell division, osmoregulation, as well as holding enzymes which would 

disrupt cytoplasmic processes 33,35-37.  

 

Figure 1.3 E.coli section electron microscopy image. Plasma membrane (PM), Peptidoglycan 
layer (PG) and Outer membrane (OM) labelled on the image. Adapted from Matias et al. 38. 

 

The periplasm separates the inner and outer membranes and contains a layer of 

peptidoglycan necessary for cellular integrity, by maintaining cell shape and 

orchestrating division 36,39. The presence of this peptioglycan layer in the periplasm 

has led to some debate in the field as to how outer membrane and secreted proteins 

traverse it. However, research demonstrating that outer membrane lipoproteins can 

coordinate peptidoglycan synthesis through direct contact with the peptidoglycan, 

indicates that at least some proteins may fit through pores in this layer 40. The volume 
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of the periplasm was debated for many years but it has been shown to vary in size 

and can occupy up to 20% of the total cell volume under certain conditions 41. Recent 

studies have shown that, Braun’s lipoprotein which connects the OM to the 

peptidoglycan layer, is the ‘molecular ruler’ which determines periplasmic width 42 

which has been estimated in the range of ~165 Å 43,44 to ~210 Å 45. 

 

The OM allows free diffusion of molecules below 600 Da into the cell by transversing 

the lumen of non-specific porins 41,46. This causes the periplasm to be highly dynamic 

as its composition depends on the environment the bacteria are in. For example, 

enterobacteria which cause human infections by ingestion must survive the passage 

through the highly acidic stomach (pH 1.5-3.5) to colonise the intestines. The 

periplasm is also devoid of ATP 47 and is more viscous than the cytoplasm 48. These 

rapid changes and challenging environment within periplasm, may lead to unfolding 

or aggregation of soluble proteins or OMP during transport to the OM, and so 

periplasmic chaperones are essential to survival for Gram-negative bacteria 49,50. 

 

1.4 Outer Membrane Proteins (OMPs) 

Outer membrane proteins (OMPs) of Gram-negative bacteria are integral -barrel 

membrane proteins that are involved in numerous functions such as the uptake of 

nutrients, release of waste materials, secretion of virulence factors, and resistance to 

host defence systems 30,31. Membrane proteins in the outer membranes of 

mitochondria and chloroplasts are also mostly comprised of -barrels 51. 

Approximately 2-3% of genes in Gram-negative bacteria encode β-barrel OMPs 51 

which are grouped into six families: porins, passive transporters, active transporters, 

enzymes, defensins and structural proteins 52. Bacterial OMPs vary from 8-26 

antiparallel -strands and are always of an even number (Figure 1.4). An exception to 

this rule is the conserved eukaryotic protein voltage-dependent anion channel 

(VDAC), as the crystal structure of this barrel indicated 19 β-strands 53. OMPs can also 

oligomerise, often into trimers, to form large functional structures in the membrane. 
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Although the distinguishing feature of these proteins is the β-barrel, they can also 

contain large domains either in the periplasm, on the outer surface of the cell or held 

within the barrel acting as a ‘plug’ which are often required for their function 51. 

Although the importance of these OMPs is known, how they are translocated through 

the cell and inserted into the membrane remains to be fully elucidated.  
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Figure 1.4 Crystal structures of Gram-Negative OMPs between 8 and 26 strands showing 
diverse architectures.  OmpX (PDB: 2MO6)54, PagP (PDB:3GP6)55, tOmpA (PDB:1QJP)56, 
OmpW (PDB:2F1V)57, OmpT (PDB:1L78)58, EspP (PDB: 2QOM)59, OmpLA (PDB: 1QD5)60, OmpG 
(PDB: 2IWV)61, FadL (PDB:1T1L)62, OmpF trimer (PDB:1OPF)63, BamA (PDB:4K3B)64, LamB 
trimer (PDB:1MAL)65, FhuA (PDB:1BY3)66, FimB (PDB: 3OHN)67, (LptD PDB: 4Q35)68. Taken 
from Schiffrin et al. 201731. 
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1.5 Outer membrane protein translocation 

Outer membrane proteins (OMPs) are translated by the bacterial ribosomes within 

the cytoplasm and so face a long journey from their site of synthesis to their native 

environment in the outer membrane (Figure 1.2). This journey requires a network of 

various chaperones, along with the SecYEG transporter, and although the main 

proteins in this network have been identified, and their crystal structures solved 

(Figure 1.5 and Section 1.8) 69-73 the exact interactions and mechanisms of these 

chaperones that aid OMP assembly remain to be discovered.  

 
Figure 1.5 OMP transport across the pathway.  OMPs are actively transported into the 
periplasm by the SecYEG complex utilising  the ATP hydrolysis function of SecA (PDB: 3DL8)74. 
In the periplasm unfolded OMPs are bound by chaperones SurA (PDB: 1M5Y)69 or Skp (PDB: 
1U2M)70 before interaction with the BAM complex (PDB : 5LJO)71 for folding into the OM.  
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After the transcription and translation of OMP genes, the first contact with molecular 

chaperones occurs as the nascent protein emerges from the ribosome exit tunnel 

(Figure 1.2). Trigger factor (TF) has been shown to be an important OMP chaperone 

in the cytoplasm 24,75,76 and  known to interact with the L23 subunit of the bacterial 

ribosome 77. The crystal structure of trigger factor bound in a 1:1 stoichiometry to the 

50S bacterial ribosome reveals its mode of action as it was described as a ‘crouching 

dragon’ (Figure 1.6) 78 which sits over the exit tunnel allowing its C-terminal domain, 

known to contain the chaperone activity 79, to interact with nascent substrates. 

Recent studies have shown that TF exists in the cell in a monomer-dimer equilibrium 

in the absence of substrates, with a Kd of dimerisation of 2.5 M. The higher local 

affinity to substrates than to other TF monomers causes dimer dissociation 80,81. TF 

has multiple hydrophobic binding sites across its surface that have been shown to 

keep alkaline phosphatase A (PhoA) in an unfolded and extended conformation 82. 

This anti-aggregation mechanism is ubiquitous for the large range of substrates that 

TF is known to interact with, including OMPs which contain many hydrophobic 

residues and non-native interactions between these residues must be minimised to 

prevent protein misfolding.    

 

 

Figure 1.6 Structure of Trigger Factor guarding nascent polypeptides emerging from the 
Ribosome exit tunnel.  a) 50S ribosome (beige) slice to observe the exit tunnel and the 
position of the Trigger Factor (TF) molecule in relation to the ribosome and modelled nascent 
chain in magenta. b) Zoom of a) with domains of TF labelled; tail or ribosome binding domain 
(RBD) in red, head or PPIase domain in yellow and arms 1 and 2 make up the substrate 
binding domain (SBD) in green and blue. Adapted from Ferbitz et al. 200478. 
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Although TF has been implicated in OMP biogenesis, it also aids in the folding of many 

cytoplasmic proteins. By contrast, a second cytoplasmic chaperone SecB works solely 

on proteins which require export from the cytoplasm 83. SecB is a homo-tetrameric 

chaperone of 69 kDa which interacts with non-native precursor proteins 

(preproteins), which contain N-terminal signal peptides 83. All bacterial secretory and 

outer membrane proteins contain a signal peptide which is 20-30 amino acids in 

length and contains a N-terminal domain of 1-8 positively charged amino acids, 

followed by a 4-16 amino acid helical hydrophobic segment and a C-terminal signal 

peptidase 1 (SPase 1) cleavage site 84,85. SecB does not recognise the signal peptide 

86, instead recognising basic and aromatic motifs 87, but still selectively interacts with 

pre-proteins, preventing their aggregation 88,89. Like TF, SecB has also been shown to 

interact with substrates emerging from the ribosome but only to proteins of over 150 

amino acids 87,90. NMR studies showed that SecB binds substrates using hydrophobic 

grooves that run around the outer rim of the tetramer and can accommodate up to 

250 interacting residues with Kd’s of 0.05-0.5 M (Figure 1.7) 89. The SecB-substrate 

complex then interacts with SecA which is situated either in the cytoplasm or in 

association with the SecYEG complex. SecA is the ATPase motor which provides the 

energy for protein translocation through the inner membrane via the SecYEG 

translocon 74,84,91. SecB is not essential for E. coli viability 92 and so there must be 

another pathway for OMPs to reach SecYEG, most likely using another chaperone 

such as TF, however this has not been well studied.  
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Figure 1.7 PhoA wraps around the SecB structure which prevents its aggregation.  (PDB: 
5JTL)89 SecB in cartoon model, each monomer shown in light green, dark green, light blue 
and dark blue, PhoA in red. 

 

The SecYEG complex is conserved across all domains of life and is essential for protein 

transport 84. In Gram-negative bacteria the SecYEG complex is situated in the inner 

membrane and recognises the signal peptide of OMPs, periplasmic and secreted 

proteins 73,91. SecY is a channel comprised of 10 transmembrane helices and is 

associated with SecE, that is responsible for stabilising SecY, and SecG which aids the 

interaction between SecA and SecY (Figure 1.8a) 73. The current mechanism of 

translocation via SecYEG involves two-way communication between the two-helix 

finger of SecA that is held across the entrance of the SecY channel and the nucleotide 

binding region. As the unfolded protein is diffusing forward and backwards within the 

channel, bulky side chains cause structural perturbations of the two-helix finger 

which signals for nucleotide exchange and the binding of ATP. Binding of the ATP to 

SecA then causes conformational changes which are transduced through the 

structure causing an opening of the channel allowing the bulky side chain to pass. 

After ATP hydrolysis the channel constricts and the process is repeated (Figure 1.8b) 

93,94. This mechanism prevents the backsliding of proteins back into the cytoplasm 

while restricting the unwanted transport of water or ions across the inner membrane. 

Inner membrane proteins have an alternate signal sequence to that of OMPs which 
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directs SecY to laterally open to create an opening of its helical transmembrane 

domains and allow their folding into the membrane 95. Once OMPs are in the 

periplasm the signal sequence is cleaved by SPase 1 which contains a serine-lysine 

catalytic pair within its hydrophobic cleft and the mature protein must then navigate 

the periplasm with the use of ATP-independent periplasmic chaperones to reach the 

BAM complex for folding and insertion into the OM (Figure 1.2) 96,97.   

 

 

Figure 1.8 SecYEG structure and mechanism. a) Crystal structure of SecY (green) SecE 
(pruple) and SecG (blue) bound to SecA (purple) (PDB: 3DL8)74 black lines indicate the 
position of the membrane. b) Mechanistic cycle of SecYEG (red), SecA (blue) with 2 helix 
finger labelled and substrate (green). After initiation the substrates can diffuse forward and 
backward in the SecYEG lumen (i) until it is blocked by a bulky side chain (ii), this induces 
nucleotide exchange in SecA (iii) which leads to opening of the lumen (iv). ATP hydrolysis 
causes closure of the lumen (v) trapping the bulky side chain on the periplasmic side (vi) this 
cycle continues until the full chain emerges through the channel and the signal sequence 
cleaved. Adapted from Allen et al. 93. 

1.6 The BAM complex  

The -barrel assembly machinery (BAM) complex has been of much interest since 

BamA, the core component of the BAM complex, was shown to be involved in OMP 

biogenesis 96. It has been shown that OMPs can fold spontaneously into detergent 

micelles or certain synthetic lipid bilayers when diluted out of denaturant in vitro 98-

100, however in a complex cellular environment this process requires assistance by 

the BAM complex in vivo. The BAM complex is ubiquitous across all Gram-negative 

bacteria as well as having homologs in mitochondria and chloroplasts 51,101,102. 
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Bacterial strains lacking the BAM complex are non-viable, further demonstrating its 

importance 96.  

 

The BAM complex  from E. coli (Figure 1.9) comprises BamA which itself is a 16-

stranded -barrel within the OM that has five N-terminal polypeptide transport 

associated (POTRA) domains that protrude into the periplasm and are thought to 

interact with unfolded OMPs prior to their folding into the membrane 101,103. BamA 

has four associated lipoproteins, BamB-E, which are arranged around the periplasmic 

portion of BamA 71,104. Genetic knock-out studies have shown that BamA and BamD 

are the only essential components of the complex. Deletion of the other components 

however, display varying OMP assembly or growth defects 105.  

 

Figure 1.9 The BAM complex a) (PDB: 5LJO) 71 Cryo-EM structure of the full 5 domain BAM 
complex. BamA (β-barrel and POTRA domains) in blue, BamB in dark green, BamC in light 
pink, BamD in light green and BamE in dark pink b) BamA (PDB: 5D0O) 104 β1-β16 strands 
which form the lateral gate of the barrel in blue.  
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The mechanism of BAM complex associated OMP insertion is not fully understood, 

but through experimental evidence 64,97,105-107 multiple models have been proposed. 

Firstly, recent molecular dynamics simulations have shown a thinning of lipids on one 

side of the BamA barrel 64,97 and the rate enhancement of OMP folding by BamA was 

shown to be greater in thicker lipids of a carbon chain length of 14 compared to 12 

97. Destabilisation of the lipids by the BAM complex may reduce the energy barrier 

for OMP folding in the membrane, passively creating a localised area for easier 

insertion of OMPs into the membrane (Figure 1.10a). Secondly, the incomplete 

hydrogen bonding network of the first and last -strands of BamA (β1-β16) and the 

observation that cross-linking these strands is lethal in vivo 107, suggests a lateral 

opening of the BamA barrel and templating of the folding OMP onto the exposed -

strands of BamA before the OMP ‘buds’ of to complete its folding (Figure 1.10b). No 

direct evidence of either of these mechanisms has been found, however, further 

biochemical and structural evidence will be required to answer the questions that 

remain. 
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Figure 1.10 Proposed mechanisms of BAM mediated OMP folding and insertion into the 
OM.  a) BAM assisted, OMPs interact with the POTRA domains and BAM disrupts the local 
lipids forming an area of easier insertion for OMPs. b) BamA-budding, OMPs template on the 
β-strands of the BamA lateral gate before the barrel closure buds the OMP from BAM. c) 
Barrel-elongation. OMPs interact with the POTRA domains and can template on the β1 strand 
of BamA forming β-strands in the periplasm and the OMP is then inserted into the 
membrane.  Image adapted from Schiffrin et al. 201731. 

1.7 Protein Folding of Bacterial Proteins 

1.7.1 Cytoplasmic Protein Folding 

Soluble proteins within the cytoplasm of prokaryotic and eukaryotic cells fold via a 

network of chaperones conserved from bacteria to man (Figure 1.1) 108,109 that assist 

in the folding and prevention of aggregation throughout their lifetime. I will briefly 

discuss the folding of soluble proteins in the context of cytoplasmic bacterial proteins. 

TF interacting with the ribosome protects nascent chains from degradation or 

aggregation and once the polypeptide is translated either it will fold with the aid of 

TF alone 110 or it will be passed to DnaK (the bacterial homologue of Hsp70). DnaK 

has been observed to have redundancy with TF as bacterial strains lacking either of 

the chaperones alone show no apparent folding defects when cultured at 37 °C 76, 

suggesting that DnaK can also bind to nascent chains in the absence of TF. DnaK 
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classically, however, acts by binding and releasing its substrate via cycles of ATP 

hydrolysis 111,112. This is achieved by DnaK’s co-factor DnaJ (or Hsp40 in eukaryotes) 

which accelerates ATP-hydrolysis, while the nucleotide exchange factor GrpE induces 

ADP release and ATP binding for the cycle to begin anew (Figure 1.11) 113. DnaK binds 

sites on substrates that are approximately seven residues long and contain a 

hydrophobic central region with affinities of 5nM to 5μM 114. The substrate forms 

hydrogen bonds and hydrophobic packing interactions with the chaperone 28 Once a 

protein has reached its native state, affinity for the chaperone decreases, as the 

hydrophobic amino acids required for chaperone binding are buried upon folding and 

the substrate is released.  

 

Figure 1.11 Structures and chaperone cycle of Hsp70 (DnaK). Nucleotide binding domain 
(NBD) in blue and Substrate binding domain (SDB) in green with the lid in red. The yellow 
arrow highlights ATP-induced Lid dissociation from the SBD. Conformational changes 
observed upon ATP binding and hydrolysis allow binding and release of substrates. Adapted 
from Zhuraleva et al. 2015111  

 

If further assistance is needed for folding to the native state, proteins can be passed 

to chaperonins 12,115. These cage-like structures comprise two rings and can be split 

into two groups 116. In bacteria GroEL is a group 1 chaperonin which co-operates with 

GroES as its co-factor 117. The second group, is found in archaea and eukaryotes and 

do not require co-chaperones, since the functionality of the co-chaperone function is 

included within the protein sequence. When unbound to a substrate GroEL has 
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exposed hydrophobic patches within the central cavity of the chaperone which bind 

hydrophobic amino acids on the surface of non-native proteins. The substrate is then 

sequestered into the centre of the cage by multiple contacts within the cylinder 

(Figure 1.12) 118. Once the substrate is bound, ATP and the ‘lid’ co-chaperone, GroES, 

bind to form the cage structure which protects it from the crowded cellular 

environment 119. Recent studies have shown that GroEL can interact directly with 

substrate folding intermediates and allow them to explore extended conformations 

not observed for the substrate in free solution 120. With multiple rounds of ATP 

binding to the cis and trans rings and hydrolysis, GroEL/ES aids the folding and release 

of ~10% of all soluble bacterial protein in E. coli 12. 

 

 

Figure 1.12 Structure and mechanism of GroEL.  a) Crystal structure of GroEL-GroES complex 
(PDB: 1AON)121, rings labelled cis and trans, GroES in blue. b) Mechanism of GroEL 
chaperonin, proteins are transferred from DnaK/J (1) ATP-dependent domain movement of 
the apical GroEL domains (2), GroES is recruited and encapsulates the substrate (3). 
Substrates are then either folded (4) and released (5), or go through the cycle again (6). 
Adapted from Hartl 2010122. 

1.7.2 Protein Folding in the Bacterial Periplasm  

There are over 300 proteins present in the periplasm of Gram-negative bacteria 123. 

Chaperones are required to assist folding of periplasm resident soluble proteins, 

along with prevention of aggregation of OMPs 122. The chaperones which function in 

the periplasm must have  distinct mechanisms of action from the cytoplasmic 

chaperones which cycle ATP for binding and release of substrates to aid folding, as 

there is no ATP present in the periplasm 47.  
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Soluble periplasmic proteins undergo the same translocation as OMPs via SecYEG 

94and they also undergo signal peptide cleavage via SPase 1 85. The subsequent 

folding of water soluble periplasmic proteins however, has not been well studied. The 

main chaperones for such proteins in the periplasm are Spy 124 and HdeA/HdeB 125 

which are stress chaperones that are either at low concentrations under non-stressed 

conditions or are only activated under certain stresses. However, as the periplasm is 

so dynamic is it not known to what extent these chaperones are required.  

1.7.2.1 Spy 

Spy was first discovered as a molecular chaperone by an in vivo assay that linked 

protein stability to antibiotic resistance 124. When E .coli was challenged to stabilise 

the bacteria test protein, Immunity protein 7 (Im7), the bacteria massively 

overproduces Spy, which increases the steady-state levels of the unstable protein 

mutants up to 700-fold 124. Spy is a non-essential chaperone under both normal and 

stress conditions 126. The Spy chaperone itself is a tightly bound dimer of kinked 

hairpin-like monomers, each with four α-helices (Figure 1.13) 127. The dimer 

interface is of antiparallel orientation resulting in a novel cradle shape, not seen 

before in any class of chaperone 128. Since its discovery, Spy has been found to be 

implicated in protecting E .coli when challenged with a wide range of stresses such 

as tannin, ethanol, butanol or excess metal ions 127,129. Kwon et al. solved the crystal 

structure of Spy and subsequently proposed a model of its binding to an unfolded 

substrate 127. On the concave surface of the cradle structure of Spy there are 

hydrophobic patches which could bind the exposed hydrophobic residues on the 

surface of unfolded proteins, thereby protecting it from irreversible misfolding or 

binding to other unfolded proteins which may lead to aggregation 129. Further 

studies by Quan et al. support the hypothesis that the two hydrophobic patches in 

Spy are involved in client binding (Figure 1.13b) 127. Mutants of Spy with increased 

chaperone activity were found to mainly increase the hydrophobic nature of the 

concave surface near the proposed binding regions. These mutants were also found 

to be less thermodynamically stable and have increased flexibility, suggesting that 

more flexible chaperones have increased activity as they are able carry out their 
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function by undergoing conformational changes upon substrate binding 129. 

Structural analysis of the Spy-Im7 complex 130 demonstrated that Spy binds to 

locally frustrated regions of Im7. Frustration occurs when amino acids in a folded 

structure are in close proximity and are unable to minimise the free energy 

between them. Spy also destabilises partially folded states to aid in the search of 

the native client structure. 

   

 

Figure 1.13 The homodimeric concave structure of Spy . (PDB: 3OEO) a) Monomers coloured 
in blue and green. b) Hydrophobic residues in orange on grey SurA surface structure 
proposed binding sites from Quan et al. 129 labelled as P1 and P2 

 

Kinetic analysis of protein folding of Im7 in the presence of Spy demonstrated that 

Spy allows folding of the substrate while remaining bound to the chaperone 131 (See 

also Appendix where this publication is reproduced). These results propose a 

potentially widespread mechanism whereby ATP-independent chaperones can assist 

in protein refolding opposed to just buffering proteins against aggregation as has 

been shown previously for SecB and TF 82,89.  

1.7.2.2 HdeA/HdeB 

HdeA and HdeB are general chaperones in the periplasm of E. coli that protect a range 

of substrates as shown using the model proteins rhodanese, malate dehydrogenase 

and alcohol dehydrogenase 132. However, these chaperones are only activated under 

acid-stress 133. Under non-stress conditions HdeA/ HdeB dimerises and is inactive as 
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a chaperone (Figure 1.14) 134. Once exposed to acid the complex dissociates into two 

active monomers that can bind to the exposed hydrophobic amino acids of unfolded 

periplasmic proteins 135,136. Although HdeA and HdeB are structural homologues, they 

contain only 17% sequence identity, differences in their amino acid sequences leads 

to their differing functions 135,137. HdeA monomerises and prevents aggregation of 

substrates between pH 1 and 3, whereas HdeB has only minimal activity at pH 3, with 

maximal acid-protective activity at pH 4 137. While both chaperones reversibly 

dissociate below pH 3, HdeB remains as a functional, flexible dimer that can bind a 

range of unfolded substrates at pH 4 137. HdeA and HdeB act synergistically in E. coli 

to protect the bacterium from a range of low pH’s (including during transit through 

the acidic human stomach for example) that could unfold periplasmic proteins and 

lead to cell death. 

 

Figure 1.14 HdeA homodimer.  (PDB: 1DJ8)135 The dimer is present under neutral conditions 
and when exposed to acid-stress dissociates to bind its substrates. 

 

Currently it is also not known whether the periplasmic water soluble proteins 

emerging from the Sec translocon need the assistance of chaperones to reach their 

native three-dimensional conformation and which chaperones, if any, are involved in 

folding specific clients. 
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1.8 Periplasmic Chaperones of Outer Membrane Proteins (OMPs)  

1.8.1 Skp 

Skp (Seventeen kilodalton protein) is a chaperone found within the periplasm of 

Gram-negative bacteria that has been shown to bind and prevent aggregation of 

OMPs 138,139. In addition to acting on OMPs Skp has also been shown to improve the 

yield of recombinant soluble proteins 140 and to prevent the aggregation of lysozyme 

independently of ATP 70. Genetic analysis has shown that in E. coli, Skp is non-

essential for cell growth and survival and a proteomic approach discovered that 

deletion of Skp has no significant impact on the levels of OMPs within the cell 141. This 

demonstrates the redundancy of the periplasmic chaperone network which has been 

suggested in multiple studies 142-144, as cellular conditions such as stress may 

determine which pathway is more prevalent. 

 

The crystal structure of Skp, determined in 2004 70, showed that the chaperone 

resembles a trimeric ‘jellyfish’, which is comprised of a core domain containing nine-

stranded β-barrel which mediates trimerisation and helical tentacles which extend 

unidirectionally from the core, forming the walls of a cavity (Figure 1.15). This 

architecture is very similar to that of prefoldin, an ATP-independent cytoplasmic 

chaperone found in eukaryotes and archaea 145. Although prefoldin is a hexamer 

containing 2 α and 4 β subunits, with the -sheets forming the core, when compared 

to Skp it appears to be a dimer of trimers.  
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Figure 1.15 Crystal structure of Skp (PDB: 1U2M)70. a) Each monomer is individually coloured. 
b) Skp electropositive and electronegative surfaces are highlighted in blue and red, 
respectively. Electrostatic surface representations (-2 kT/e to +2 kT/e) were generated using 
the APBS plugin for PyMOL146. 

 

The tips of the Skp helices are enriched in conserved positive lysine and arginine 

residues, making the chaperone highly basic (pI 9.5) (Figure 1.15b). The tips are 

thought to interact with unfolded OMPs, which have pI values commonly around 6 

and may also interact with BAM complex proteins or directly with the outer 

membrane (OM) which has an overall negative charge 44. Within the cavity of Skp 

there is an even distribution of hydrophobic residues along the inner face of the 

tentacles (Figure 1.15b) 70 and this surface has been crosslinked to OmpA in vitro 147. 

NMR studies have also suggested that unfolded OMP substrates are sequestered 

within the cavity 148,149 and that Skp holds the OMP in an unfolded ‘dynamic globule’ 

state to protect it from aggregation 149.  

 

Skp binds a broad range of OMP substrates 138,150 ranging from 8 to 22 β-strands, yet 

despite the size difference, the stoichiometry of binding originally proposed to be 1:1 

151. Schiffrin et al. observed using native mass spectrometry and fluorescence folding 

assays that for OMPs of  10 -stands a 2:1 Skp:OMP complex can be formed 98. As 

the extended OMPs cannot be contained within the cavity of a single Skp trimer, two 
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trimers were proposed to form a parallel side-by-side conformation to enlarge the 

cavity space in which to accommodate large unfolded OMPs (Figure 1.16). The affinity 

of Skp for OMPs has been measured in the nanomolar range 151 and equimolar Skp 

concentrations prevents OMP folding into liposomes in the absence of BAM 98. 

However, it is not yet understood if or how Skp releases OMPs for folding into the 

membrane; and if Skp has any interaction with the BAM complex or delivers OMPs 

directly to the OM instead.   
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Figure 1.16 Proposed models of Skp-OMP interaction. a) Skp interaction of OMPs below 10 
β-strands with a stoichiometry of 1:1. b) Skp binding larger OMPs with a 2:1 stoichiometry to 
encapsulate the larger substrate surface.  Adapted from B. Schiffrin et al. 2016 98.  

 

1.8.2 FkpA 

FkpA is a dual functional periplasmic chaperone as it also contains an active peptide 

prolyl isomerase (PPIase) domain 152. FkpA was originally discovered as a periplasmic 

homologue of the macrophage infectivity potentiator (MIP) protein which is a FK506-

binding protein 153. FK506-binding proteins (FKBP) are a structural family of proteins 

which exhibit PPIase activity, FK506 binds these proteins and inhibits the catalytic 

activity by mimicking the transition state of proline trans-cis isomerisation 152.  

 

FkpA is not essential and a deletion of the gene does not lead to an increase in σE 

stress response , which is caused by excess unfolded proteins in the periplasm (stress 

responses discussed in Section 1.9) 154. However, overexpression of FkpA can reduce 

σE levels in strains of bacteria that have defects in LPS production or protein 

disulphide isomerases 154. Although the chaperone activity of FkpA appears 

redundant to SurA at growth temperatures of 37 °C it appears to become more 

important during heat shock (44 °C) 142. Under heat shock ΔskpΔsurA strains are 

lethal, but overexpression of FkpA can rescue growth and yield similar levels of folded 

OMP levels as wild-type strains 142. FkpA is expressed at similar levels at 37 °C and 44 

°C however at the higher temperature it binds to OmpC with higher affinity (23.2  

3.5 M at 37 °C and 12.4  3.7 M at 44 °C) and also is more efficient at preventing 

a)                                                             b) 
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aggregation of OmpF 142. These data suggest that FkpA is involved in OMP biogenesis 

and mainly acts upon heat shock when proteins are more likely to aggregate and 

other chaperones may be saturated by folding defects in the proteome as a whole. 

Further analysis found that FkpA can also prevent protein aggregation of MalE31, a 

folding deficient mutant of maltose binding protein, showing FkpA can also 

chaperone water soluble periplasmic proteins 152. 

 

The crystal structure of FkpA (Figure 1.17) shows a symmetrical V-shaped homodimer 

with each 29 kDa monomer containing two domains. The N-terminal domain 

comprises of three -helices which are involved in dimerisation and the C-terminal 

domain contains the FKBP activity. Analysis of the domains in isolation shows that the 

N-terminal domain is in a monomer-dimer equilibrium and retains chaperone 

activity, whereas the C-terminal domain remains monomeric, retaining PPIase 

activity 152. This shows that the chaperone and catalytic activities reside in the N- and 

C- terminal domains, respectively. Multiple crystal structures show the C-terminus is 

different conformations 152 in accordance with NMR studies showing that the linker 

and C-terminal domain are highly dynamic 155. These dynamics are reduced upon 

binding of a substrate (RNase A S-protein) to the hydrophobic residues lining the 

inside of the V structure. This is likely to position the PPIase domain in the correct 

orientation for catalysis 155.  

 

Figure 1.17 Crystal structure of the symmetrical FkpA dimer  (PDB 1Q6U)152 N-terminal 
chaperone domain in green and C-terminal FKBP PPIase domains in blue. 
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1.8.3 DegP 

DegP is a periplasmic chaperone which also has serine protease function, that acts on 

unfolded proteins within the cellular envelope 156. DegP is upregulated in the 

presence of excess unfolded proteins in the periplasm during heat shock 41 and 

temperature provides the switch which determines whether DegP acts as a 

chaperone or protease 157. Above 37 °C DegP is required as a protease and is essential 

for bacterial survival at elevated temperatures 158,159. Below 28 °C DegP is found to 

prevent protein aggregation and no degradation activity is observed 157,160. 

 

Each monomer of DegP is 47 kDa and contains a protease domain and two PDZ 

domains which bind substrates (Figure 1.18a) 41. The PDZ domains which gain their 

name from the protein in which they were originally discovered (post synaptic density 

protein) and are often found in signalling proteins to interact with downstream 

partners. The monomers pack together by interactions between protease domains 

into trimers, shielding the active site from binding and degrading native proteins 

under non-stress conditions 161. The trimers can either remain in this state or go onto 

form hexamers by dimeristion of two trimeric units that involves a two-stranded β-

sheet from each monomer protruding out to form a ‘face-to-face’ interaction (Figure 

1.18b) 159. These proteolytically-inactive stable hexamers and trimers have the ability 

to bind unfolded substrates which is thought to trigger the assembly of active 

polyhedral 12 or 24-mer cage structures 156. It is thought that the disassembly of the 

stable hexamer occurs by a ‘proteinquake’ process, where a perturbation within one 

region causes the sequential unfolding of the β-sheets in the centre of the trimer-

trimer interface 159. The unfolded water soluble periplasmic protein or OMP can be 

degraded within the cage structures by the now inward facing protease domains, 

while restricting the access of native proteins, assisting cell survival. The formation of 

the polyhedral cage structures are seen at permissible temperatures as well as during 

heat shock 159, although they are most likely to remain inactive without a bound 

substrate to prevent wanton proteolysis 159. 
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Figure 1.18 DegP Protease Structure  a) DegP monomer (PDB: 1KY9)72, protease domain in 
blue, PDZ1 in yellow and PDZ2 in red. b) DegP hexamer (PDB: 3OTP)156 the hexamer structure 
(each monomer coloured individually) which binds to substrates before forming larger 
structures. 

 

1.8.4 SurA  

 

SurA was discovered due to its role in bacterial survival during stationary phase 162,163 

which gave rise to the name survival protein A or SurA. Sequence analysis of SurA 

from E. coli identified two domains with homology to the peptide prolyl isomerase 

(PPIase) parvulin, flanked by a long N-terminal region and short C-terminal region 69. 

Comparisons of the ability of SurA to aid in the folding of OMPs compared to soluble 

periplasmic proteins established SurA as specifically involved in OMP biogenesis 164 

although it can prevent the aggregation of water soluble proteins 165.  

 

In vivo, deletion of the SurA gene does not affect bacterial growth 166 but instead 

leads to: reduction of OM density 50, accumulation of unfolded proteins in the 

periplasm causing upregulation of the σE stress response 165, reduced antibiotic 

resistance 167 and increased sensitivity to hydrophobic agents (e.g. SDS/EDTA and 

rifampicin) 168. Although SurA is not essential, deletion of both SurA and Skp or SurA 

and DegP as double deletions are lethal. By contrast, deletion of Skp and DegP is not 
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lethal 50,169. This suggests the SurA is the major OMP chaperone within the periplasm 

and that Skp and DegP may function in an alternative redundant pathway. A recent 

single-molecule Förster resonance energy transfer (smFRET) study comparing the 

ability of SurA and Skp to disaggregate OmpC showed that Skp, but not SurA, could 

allow OmpC to reform monomeric species 144. As SurA is at a higher concentration 

within the cell than Skp (7.2 μM and 0.73 μM respectively) 144 the authors propose 

that SurA deals with the OMP biogenesis under non-stressed conditions, while Skp is 

required under stress conditions when it is known to be over-expressed 50.  

 

Although SurA is the major OMP chaperone in the periplasm, a proteomics study 

which examined the effect of SurA deletion, only eight proteins (out of 64 studied, 23 

of which were β-barrel OMPs) were found to display reduced folded levels 170. The 

proteins affected include porins OmpA, OmpF and LamB, as well as FadL, OmpX, FecA, 

FhuA and LptD.  However, of these protein with reduced expression, only FhuA and 

LptD cannot be explained by decreased mRNA levels 170. Depletion of SurA in a Skp 

null mutant strain diminished the levels of almost all OMPs measured 141, further 

implying that in the absence of a single periplasmic chaperone, redundant pathways 

can rescue any function required for OMP biogenesis.  

 

The crystal structure of SurA, determined in 2002 69, showed an asymmetrical 

dumbbell shape in which the N-terminal domain, the first PPIase domain (P1), and 

the C-terminal domain form the core of the molecule and the second PPIase domain 

(P2) is a satellite domain which is approximately 30 Å from the core (Figure 1.19). 

Although E. coli SurA contains two structural PPIase domains, only P2 displays PPIase 

activity 165 as P1 lacks the catalytic residues  found in P2 and other pavulin 

homologues (Section 1.10). Mutations in these catalytic residues within the P2 

domain prevent proline isomerisation but have no effect on SurA chaperone function 

165. Within the core of SurA an extended crevice was suggested to be a peptide 

binding channel and so an original hypothesis on the mechanism of SurA is that the 
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core domain is involved in binding OMPs and chaperone activity while the P2 domain 

is responsible for PPIase activity 165.  

 

The 33 residue C terminal domain is mainly helical with a short -strand (Figure 1.20) 

which forms an antiparallel -sheet with a hairpin in the N-terminal domain thought 

to stabilise the core of SurA 171. Deletion of between 2 and 20 residues from the C-

terminal domain showed that removing only four amino acids increased susceptibly 

of bacterial strains to novobicin and that removal of 20 amino acids had the same 

effect as a deletion of full length SurA 171. The sequence of the C-terminal domain 

however, appears to be less important as it can accommodate many varied mutations 

without compromising SurA function 172.  

 

The surface features of SurA show that hydrophobic and electrostatics are at multiple 

locations across SurA (Figure 1.19). This suggests that SurA interacts with substrates 

using many small binding regions opposed to a singular binding site. This has been 

shown for both TF and SecB previously, as long unfolded substrates wrap around the 

chaperones in order to prevent the aggregation 82,89 (Figure 1.19).  
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Figure 1.19 SurA physiological properties.  a) Cartoon of SurA domains coloured as in Figure 
1.20 (PDB: 1M5Y)69 b) Hydrophobic residues in orange and as spheres on grey SurA structure 
c) SurA electropositive and electronegative surfaces are highlighted in blue and red, 
respectively. Electrostatic surface representations (-2 kT/e to +2 kT/e) were generated using 
the APBS plugin for PyMOL146. 

 
To examine the roles of the different domains within SurA domain deletions were 

created of all combinations such as the removal of P1 (SurA P1), removal of P2 (SurA 

P2), removal of both PPIase domains (SurA N-Ct) (Figure 1.20b). These experiments 

showed that in strains lacking SurA, σE activity is reduced almost to WT levels by 

plasmids containing SurA P1, SurA P2 and SurA N-Ct, but not by the PPIase 

domains alone 165. In vitro assays have shown that SurA N-Ct is sufficient to prevent 

the aggregation of the thermally denatured water soluble protein citric synthase, and 

both SurA N-Ct and SurA P2 were shown to have greater chaperone activity than 

SurA WT towards this protein 165. It is interesting to note that SurA is highly conserved 

across protobacteria 173 and while the E. coli SurA contains two PPIase domains other 

homologues have been found with only one PPIase domain, often with higher 

sequence similarity to P2 than P1 (e.g. Haemophilus influenzae) or no PPIase domains 

(e.g. Brucella ceti) 174. So understanding the functions of these domains will thus 

elucidate the requirement or lack of PPIase domains observed across bacterial 

species. 
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Figure 1.20 ATP-independent periplasmic chaperone SurA a) Crystal structure (PDB: 1M5Y)69 
domains coloured N terminal domain in blue, PPIase domain 1 (P1) in green, PPIase domain 

2 (P2) in yellow and the C terminal domain in red. Boxed zoom of the C-terminus -strand. b) 
The constructs of SurA used in this study, domains coloured as in a and black crosses indicate 
domain deletions. 

 

SurA WT and SurA P2 were found to interact preferentially with peptides which 

contain multiple aromatic (Ar) residues, in particular those which contain an Ar-X-Ar 

motif 175,176, which is common at the C-terminus of OMP sequences 175. The affinities 

of SurA WT and SurA P2 binding to peptides is between 1-14 μM and between 0.4-

5.1 M for full length OMPs (OmpF and OmpG) 177, whereas binding to reduced 

carboxymethylated lactalbumin (RCMLA), a representative water soluble unfolded 

protein, had reduced binding (33 11 M and 38 11 M for Sura WT and SurA P2 

respectively) 177. Upon binding of SurA, OMPs are thought to be held in an extended 

and unfolded conformation as determined by FRET and NMR 144,149, which 
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presumably ensures that aggregation-prone regions of unfolded OMPs do not self-

associate. Crystal structures of either the SurA P2 variant, or of the P1 domain in 

complex with peptides, show binding to the P1 domain 178. By contrast, crosslinking 

of peptides or full length OMPs in solution suggested that the N-terminal domain of 

SurA is the main site of OMP binding 179,180. Similar crosslinking experiments 

suggested that mainly the N- and C-terminal residues of OMPs interact with SurA 180, 

consistent with the hypothesis that SurA recognises the Ar-X-Ar motif at the C-

terminus of OMPs 175. 

 

SurA’s ability to aid in the folding of OMPs was measured by atomic force microscopy 

(AFM) studies. FhuA which were folded into proteoliposomes and the 

proteoliposomes absorbed to a mica surface. The folded FhuA was pulled via its plug 

domain out of the liposomes and the success of refolding was quantified under 

different conditions 181. Without a chaperone present FhuA formed mainly non-

native or misfolded structures. However, in the presence of SurA, 40% of refolding 

was successful compared to 7% without chaperone 181. Skp was able to reduce the 

amount of misfolded species, but could not increase folding yield, further supporting 

the hypothesis that SurA is the main chaperone involved in OMP folding. SurA has 

also been shown to inhibit the aggregation of OmpF in vitro in a concentration-

dependent manner at 37 C, with a 20-fold excess of chaperone significantly reducing 

the amplitude of light scattering, however this inhibition is lost at 44 C 142.  

 

SurA is the only periplasmic chaperone which has been crosslinked to the BAM 

complex in vivo 50,180,182,183 and this interaction has been mapped to residue R64 of 

POTRA 1 182 and between residues 311 and 316 in the P2 domain of SurA 180. 

Disruption of this interaction by deletion of R64 causes an increase in antibiotic 

sensitivity, reduced OMP expression and is lethal in combination with the deletion of 

SurA 182. There is a current focus to reveal the structure of SurA-OMP-BAM complex 

to identify if and how OMP substrates are handed over from SurA to BAM, and also 

the mechanism of BAM-mediated OMP folding and insertion into the membrane.  
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In uropathogenic E. coli strains (which cause infections within the unitary tract) the 

removal of SurA decreases binding and invasion of host cells and it has been shown 

that SurA N-Ct domain variant is sufficient to recover this function of SurA 184. These 

results suggest the PPIase domains have no effect in bacterial virulence. SurA 

deletion strains have reduced pilus formation which is explained by the reduction in 

FimD pilus usher protein levels 166,184. SurA has also been implicated for full virulence 

of salmonella and shigella 174 signifying that targeting SurA may be a promising route 

to developing novel antibiotics.  

1.9 Periplasmic stress responses  

Chaperones within the periplasm aid in the folding of water soluble, periplasmic 

proteins and OMPs proteins under non-stressed conditions within the cell. Under 

stress conditions Gram-negative bacteria have mechanisms to increase the 

concentrations of folding factors within the periplasm to prevent protein unfolding 

and misfolding which may lead to the cell death, reviewed in 21,41,185,186.  

 

Three signal transduction pathways have been identified in E. coli which are activated 

in response to perturbations within the cellular envelope. Two of the responses are 

two-component systems (CpxAR and BeaSR) in which the first component (CpxA and 

BeaS) are membrane embedded histidine kinases which sense the stress  through a 

cascade of phosphorylation events (Figure 1.21) the second component (which is a 

transcription factor) is activated to upregulate target genes 185. Although these 

pathways function in the same way, they respond to different triggers and have 

different downstream effects 126,185,187. The CpxAR system responds to a highly 

alkaline pH in the periplasm, overexpression of certain lipoproteins and misfolded 

pilus subunits and induces the expression of DegP, PpiA, PpiD and the disulphide 

bond catalyst DsbA to cope with these stresses. BeaAR senses environmental stresses 

such as presence of antibiotics, bile salts and ethanol, and responds by expression of 

a multi-drug efflux pump and stress response chaperone, Spy, to protect misfolding 
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of soluble periplasmic proteins 185. These pathways are summarised schematically in 

Figure 1.21. 

 

The third pathway which is induced by stress in the periplasm is the σE responses 

which is specifically activated when OMP biogenesis is disrupted. This pathway 

involves the RseA membrane protein which acts as an anti-E factor by sequestering 

the transcription factor at the inner membrane. Upon the presence of excess 

unfolded OMPs in the periplasm 188 or incorrectly folded OMPs in the membrane 

RseA is cleaved allowing E to translocate and interact with and upregulates its target 

genes such as DegP, FkpA, SurA and Skp 189. These chaperones are known to prevent 

OMP aggregation, dissolve soluble OMP aggregates and degrade proteins in the 

periplasm which cannot fold correctly 72,142,165,181. The E response also reduces the 

translation of OMP genes via small RNAs 190 and also up-regulates BAM complex 

expression to reduces the pool of unfolded OMPs in the periplasm 189.  
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Figure 1.21 Stress response systems within the periplasm of Gram-negative bacteria. a) 
OMP misfolding in the periplasm initiates RseA digestion by proteases DegS, RseP and ClpXP 
which releases the sigma factor RpoE (σE) which upregulates required genes. b) CpxA-CpxR 
system initiated by unfolded proteins in the periplasm CpxP which inhibits CpxA is degraded 
by DegP, CpxA then initiates a phosphorylation cascade to the transcription factor, CpxR. 
Adapted from Chen et al.188  

1.10  Peptiylprolyl Isomerases (PPIases) in protein folding 

Peptidylprolyl isomerases (PPIases) are enzymes, found in prokaryotes and 

eukaryotes, that catalyse the conversion of cis to trans proline residues within protein 

sequences 191-193. Under physiological conditions prolines within unfolded proteins 

are in an equilibrium between cis or trans conformations however, the trans form 

generally is found in natively folded proteins as the most stable isomer 194. The 

interconversion of cis to trans isoforms as the rate-limiting step in protein folding has 

been observed to have a high energy barrier (84 kJ/mol) disfavouring spontaneous 

conversion 194. PPIase’s aid in cis-trans isomerisation by disruption of the partial 

double-bond character of the peptide bond 195.  

 

There are three families of PPIase’s: cyclophilins, FK506-binding proteins and 

parvulin-like domains 193, however there is currently no rationale for the structural 

diversity observed for this catalytic function. Parvulin is a 96 residue E. coli PPIase 

found in the cytoplasm and nucleus which has homologues in eukaryotes 196. Larger 

proteins contain domains which are homologous to parvulin and also convey PPIase 

activity 196. SurA for example, which in E. coli has two PPIase domains both with the 

32 parvulin fold, as found in all parvulin homologues 163. Analysis of the PPIase 

domains of E. coli SurA in isolation showed that only the second PPIase domain had 

catalytic activity. Isolated P2, however has only approximately half the activity of the 

two PPIase domains together or the full length SurA 165. The catalytic resides found 

in a eukaryotic homologue, Pin1, occurred in a hydrophobic pocket similar to that 

found in the second PPIase domain of SurA (His376 and Ile 378). Mutation of these 

residues in the context of the full length SurA led to little or no PPIase activity, 

demonstrating that these are the catalytic residues in SurA 165. The first PPIase 

domain of E. coli SurA lacks the catalytic residue at the second position required for 
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activity showing although it is structurally a parvulin domain, it is not an active PPIase 

(Figure 1.22). The function of this domain remains unknown.  

Figure 1.22 Alignment of PPIase domains P1 and P2 of SurA.  Alignment done using the 
Clustal Omega software 197, conserved residues are underlined in yellow and catalytic 
residues in P2 (His376 and Ile 378) highlight with a yellow star.   

 

The FK506-binding proteins (FKBP), such as FkpA, have no sequence or structural 

similarity to the other PPIase families (Figure 1.23) 198. FKBP domains are 110 amino 

acids in length and have a conserved tertiary structure which contains five anti-

parallel -sheets. The loop between sheets 4 and 5 contain a short helix which caps 

the concave surface of the -sheets allowing the hydrophobic residues to point into 

the centre of the protein forming the active site which binds polypeptides containing 

proline residues 192. 

 

Alongside SurA and FkpA, other PPIase’s found in the periplasm include PpiA and 

PpiD, which are members of the cyclophilin family of PPIases 199. Cyclophilins have 

been found in mammals, plants, insects, fungi, and bacteria. The structure is 

conserved throughout evolution and all have PPIase activity 200. The structure of 

proteins from this family have four -strands with two -helices on one side 201,202. 

Cyclophilins have also been found in almost all cellular compartments such as 

mitochondria, the ER and the nucleus as well as the periplasm 200. Many protein 

folding events depend on cylcophilins but they also have other functions such as a 

Cpy40 which form a complex with Hsp90, regulating its chaperone activity 19.  

 

Analysis of the four known PPIases in the periplasm of E. coli (Figure 1.23) 

demonstrated that a quadruple deletion surafkpappiappid strain had no more 
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phenotypic effects than sura single deletion, which is more sensitive to antibiotics 

and has reduced OmpA and LamB levels in the outer membrane 166. It is unknown 

what the functions of the different PPIase proteins in the periplasm are, however in 

vivo PpiD has been shown to have partially overlapping substrate specificity with SurA 

203 and also a similar structure (Figure 1.23). Furthermore, as the upregulation of PpiD 

and PpiA is caused by an alternative stress pathway to that of SurA and FkpA the 

enzymes may be more efficient under different conditions although this has not been 

tested.  

 

 

Figure 1.23 Peptidyl prolyl isomerase (PPIase) domains of proteins present in the periplasm 
of E.coli. a) PpiA (PDB: 1W74) 202. b) PpiD (PDB: 2KGJ) 201. c) P1 domain of SurA (PDB: 2VP2) 
178. d) C-terminal domain of FkpA (PDB: 1Q6U) 152.  
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1.11  Current Questions in the Field and Aims of this Thesis 

The role of periplasmic chaperones in OMP biogenesis has been studied over the past 

30 years 46,162 however, many important questions in the field still remain: 

 

1. How do ATP-independent periplasmic chaperones bind and transport OMPs? 

2. What are the roles of SurA and Skp in OMP biogenesis? Do they have 

preference for certain substrates and are they required under different 

cellular conditions? 

3. How does SurA interact with OMPs and the BAM complex and does it directly 

deliver OMPs to BAM for folding? 

 

The main aim of this research is to study all aspects of the molecular mechanisms of 

SurA and shed light on these questions in the context of this chaperone. As SurA is 

the major chaperone involved in OMP biogenesis, studying the mechanism of this 

chaperone will aid in understanding the OMP biogenesis pathway as a whole. The 

initial binding of SurA to substrate, prevention of OMP aggregation and SurA’s 

interaction with the BAM complex for OMP delivery is investigated here in order to 

better understand the journey of OMPs through the periplasm with the help of SurA. 

 

Many biochemical and structural assays have been employed to examine the 

interaction between SurA and two model OMP substrates in the first results chapter. 

The ability of SurA to prevent the aggregation of these OMPs is then investigated and 

compared to other chaperones known to bind OMPs in E. coli in the second results 

chapter. Finally, in chapter 5, the interactions of SurA and Skp with the BAM complex 

are tested in order to understand the roles of these chaperones in OMP delivery for 

folding via the BAM complex. In this study PPIase domain deletion variants of SurA 

have been created and utilized to further elucidate the roles of the PPIase domains 

in binding, chaperoning, and delivering OMPs to the BAM complex. The results 
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presented have confirmed work within the literature, offered novel findings to the 

field and have also informed further study.  
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Chapter 2 Methods 

2.1 Materials and Reagents 

2.1.1 General Chemicals 

Purite 18 MΩ water was used in all protocols. 30% (w/v) acrylamide and 10% (w/v) 

sodium dodecyl sulphate (SDS) was purchased from Severn Biotech Ltd., UK. Agar was 

purchased from Melford Laboratories, UK. Ready mixed LB-Broth (Miller) was 

purchased from Merck, Germany. Agarose, imidazole and 

ethylenediaminetetraacetic acid (EDTA) were purchased from Acros Organics, 

Belgium. Sodium chloride (NaCl), tris(hydroxymethyl)aminomethane (Tris), glycerol, 

glucose, sucrose, glacial acetic acid and hydrochloric acid (32% (w/v) HCl) were 

purchased from Fisher Scientific, UK. Carbenicillin, dithiothreitol (DTT) and isopropyl 

β-D-1-thiogalactopyranoside (IPTG) were purchased from Formedium, UK. Triton X-

100 (protein grade) was purchased from Merck Millipore, USA. Urea (>99% purity) 

was purchased from MP Biomedicals, UK or Sigma-Aldrich, USA. Ethidium bromide, 

magnesium sulphate (MgSO4), magnesium chloride (MgCl2), chloramphenicol, 

bromophenol blue, guanidine hydrochloride (Gdn-HCl), ammonium persulphate 

(APS), ammonium acetate, ammonium hydroxide, tetramethylethylenediamine 

(TEMED), dimethyl sulfoxide (DMSO), tris (2-carboxyethyl)phosphine (TCEP), and 

ethanol were purchased from Sigma-Aldrich, USA. 15N-labelled ammonium chloride 

and 13C D-glucose were purchased from Cambridge Isotope laboratories, Inc 

2.1.2 Molecular Biology Materials 

E. coli strains BL21(DE3), BL21(DE3)pLysS and DH5α were purchased from Stratagene, 

UK. Site-directed mutagenesis was performed with the Q5 site-directed mutagenesis 

kit (NEB), using primers designed using NEBasechanger. Genes encoding tOmpA, 

PagP, OmpA and BamA (not including signal sequences) were initially provided by 

Prof Karen Fleming (John Hopkins University, USA) which previous members of the 

lab subsequently sub-cloned into pET11a plasmids. Prof Sebastian Hiller (University 

of Basel, Switzerland), Prof Daniel Kahne (Harvard University, USA), and Prof Harris 
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Bernstein (NIH, USA) kindly provided the HT-Skp-pET 28b, HT-SurA-pet 28b and HT-

BamABCDE-pTrC 99a plasmids, respectively. OmpT was cloned by Lindsay M. 

McMorran (University of Leeds). 

2.1.3 Protein Chemistry Materials 

Analytical Superdex 75 10/300 GL, Sephacryl 200 10/300, HiLoad Superdex 75 prep 

grad and 5 ml HisTrap columns were purchased from GE Healthcare, UK. All buffers 

used during protein purification were filtered by vacuum filtration through 0.22 μM 

filters from Millipore, UK. Vivaspin 20 concentrators (MWCO 5 kDa or 10 kDa) were 

purchased from Sartorius, UK. SnakeSkin dialysis tubing (3.5 kDa MWCO), 

bicinchoninic acid (BCA) assay kits, and Alexa Fluor 488 C5 maleimide were purchased 

from Thermo Fisher Scientic, UK. 

2.2 Molecular Biology 

2.2.1 Bacterial strains  

DH5α: 

fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17 

BL21(DE3) pLysS: 

F– ompT/tompA hsdSB (rB–, mB–) gal [dcm] [Ion] (DE3) 

2.2.2 Growth Media 

2.2.2.1 LB 

E. coli cells were cultured in autoclaved lysogengy broth (LB) (Miller) medium (Merck, 

Germany) at 25 g/l and supplemented with carbenicillin (100 μg/ml) or kanamycin 

(50 μg/ml). For preparation of agar plates 25 g/l of LB and 15 g/l of agar were 

autoclaved for 20 minutes at 120 °C. On cooling to approximately 50 °C, antibiotic 

was added and 20-25 ml poured into sterile Petri dishes. For growth of 

BL21(DE3)pLysS cells, chloramphenicol (25 μg/ml) was added to the medium in 

addition to antibiotic. 
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2.2.2.2 HCDM1 

To make 15N or 15N/ 13C labelled proteins cells were grown in HCDM1 minimal 

medium: 

- 10 g K2HPO4 

- 10 g KH2PO4 

- 7.5 g Na2HPO4 

- 1 g NH4Cl (15N if using) 

- 9 g K2SO4 

These regents were made up to 1 litre with water and the following filter sterilised 

supplements were added after the media was autoclaved: 

- 2 ml of 1 M MgCl2 

- 100 μl of 1 M CaCl2 

- 20 ml of 20 % (w/v) glucose (10 ml if 13C labelling) 

2.2.3 Preparation of competent cells 

Cells of the commercial strain were plated out on LB/agar not containing antibiotics 

and grown overnight at 37 °C. A single colony was picked to inoculate 10 ml of LB and 

incubated overnight at 37 °C with 200 rpm shaking. The following morning the 10 ml 

was added to 100 ml of fresh LB and incubated to an OD600 of 0.4-0.45. The cells were 

harvested by centrifugation at 4000 rpm at 4 °C for 10 minutes. Pelleted cells were 

resuspended in 10 ml of sterile 100 mM CaCl2 for 10 minutes and then centrifuged as 

before. The pellet was resuspended gently in 2 ml of pre-chilled 100 mM CaCl2 30% 

(v/v) glycerol.  Cells were aliquoted (50 μl) into 1.5 ml Eppendorf tubes pre-cooled on 

dry ice and stored at -80 °C. 

2.2.4 Transformation of E. coli strains 

2μl of plasmid DNA containing the desired gene sequence was taken from a stock of 

approximately 100 ng/μl and added to 50 μl competent cells and incubated on ice for 

30 minutes. The cells were then heat shocked at 42 °C for 45 seconds before being 

incubated on ice for 5 minutes. The 50 μl were then plated under sterile conditions 
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onto LB agar containing 100 μg/ml carbenicillin (or 50 μg/ml kanamycin for cells 

transformed with pET28b vectors), and incubated at 37 °C overnight. 

2.2.5 Polymerase Chain Reaction (PCR) and mutagenesis 

All PCR reactions for mutagenesis were carried out using the Q5 site-directed 

mutagenesis kit (NEB, E0554S). The following reagents were assembled in a thin wall 

PCR tube and place in the thermocycler: 

- 12.5 μl Q5 Hit Start High-Fidelity Master Mix 

- 1.25 μl forward primer (10 μM) 

- 1.25 μl reverse primer (10 μM)  

- 1 μl template DNA (1-25 ng/μl) 

- 9 μl nuclease free water  

Step Temperature Time 

Initial Denaturation  98 °C 30 seconds 

25 Cycles 98 °C 10 seconds 

50-72 °C* 10-30 seconds 

72 °C 20-30 seconds 

Final Extension 72 °C 2 minutes 

Hold 4 °C  

Table 2.1 PCR reaction for Q5 mutagenesis 

*The temperature during the cycling reaction is optimised depending on the primers  

After the PCR reaction the unmodified DNA was digested by KLD treatment using the 

Q5 kit reagents: 

- 1 μl PCR product 

- 5 μl KLD reaction buffer 

- 1 μl KLD enzyme mix  

- 3 μl nuclease-free water 

The reagents were mixed then incubated at 25 °C for 5 minutes before 5 μl was added 

to 50 μl NEB 5-α cells. The DNA was incubated with the cells for 30 minutes on ice 

then heat shocked at 42 °C for 30 seconds. The cells were then added to 950 μl of 
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SOC medium and incubated at 37 °C with 200rpm shaking for 60 minutes. 50 μl was 

spread onto LB/agar plates containing carbenicillin or kanamycin and incubated 

overnight at 37 °C. 

2.2.6 DNA Sequencing 

All DNA sequencing was carried out by Genewiz. The T7 promoter forward primer 

(TAA-TAC-GAC-TCA-CTA-TAG-GG) and the T7 terminator reverse primer (CTA-GTT-

ATT-GCT-CAG-CGG-TG) were used for sequencing of all pET vectors. 

 

2.3 General Protein Methods 

2.3.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

Tris-Tricine buffered SDS-PAGE gels were used to monitor protein purification and 

tOmpA folding kinetics. The components in Table 2.2 were mixed, adding the TEMED 

and APS just prior to pouring into gel plates. The gels were made by adding resolving 

gel to ¾ full then adding the stacking gel on top, the comb was inserted and the gels 

left to set for at least 20 minutes.  

 Resolving gel (mL) Stacking gel (mL) 

30% (w/v) acrylamide:0.8% (w/v) bis-

acrylamide  

7.5  0.83  

3 M Tris, 0.3% (w/v) SDS (pH 8.45)  5.0  1.55  

H2O  0.44  3.72  

glycerol  2.0   

10% (w/v) ammonium persulphate (APS)  0.1  0.2  

N,N,N’,N’-tetramethyl-ethylenediamine 

(TEMED)  

0.01  0.01  

Table 2.2 Tris-tricine buffered SDS-PAGE gel recipe 
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Sample solutions was added to an equal volume of 2x loading buffer (50 mM Tris-HCl 

pH 6.8, 100 mM DTT, 2 % (w/v) SDS, 0.1 % (w/v) bromophenol blue, 10 % (v/v) 

glycerol) and boiled for 5 minutes before loading approximately 15 μl of this solution 

to the gel. A protein molecular mass marker (Bio-Rad) was used to aid in 

identification. Anode (200 mM Tris-HCl, pH 8.9) and cathode buffers (100 mM Tris, 

100 mM tricine, 0.1% (w/v) SDS, pH 8.25) were placed in the tank and a voltage of 30 

mAmps for 30 minutes and 70 mAmps for a further hour was applied. The gels were 

stained with Instant blue stain (Expedeon, UK) for at least an hour then imaged with 

Syngene InGenius software. Densitometry quantification bands in kinetic assays or 

pelleting assays was performed using ImageJ.  

2.3.2 Determination of protein concentration 

The protein concentrations of all OMPs, BamA, SurA WT, SurA P2 and SurA N-Ct 

were determined using their absorbance at 280 nm measured on a Nanodrop 2000 

(Thermo Fisher). Theoretical molar extinction coefficients at 280 nm, calculated using 

the ExPASy protparam server were used to calculate the molar concentration of each 

protein. Skp and Spy have low molar extinction coefficients at 280 nm (1490 M-1 cm-

1) as their sequences contain no tryptophan residues, and only one tyrosine residue. 

For these proteins, concentrations were determined using a bicinchoninic acid (BCA) 

assay (Thermo Fisher Scientific, UK), according to the manufacturer’s instructions. 

 

2.4 Expression and purification of proteins in this study 

2.4.1 SurA (WT/ ΔP2 /N-Ct) and Skp 

The pET28b plasmid, containing the mature chaperone gene with an N-terminal hexa-

histidine-tag and thrombin cleavage site, was transformed into E. coli BL21(DE3)pLysS 

cells (Stratagene). Cells were grown in LB medium containing 50 μg/ml kanamycin at 

37 °C with shaking (200 r.p.m.) to an OD600 of ∼0.6. The temperature was then 

lowered to 20 °C and expression induced by addition of IPTG to a final concentration 

of 0.4 mM. Following overnight expression at 20 °C (∼18 h) cells were harvested by 

centrifugation (7000rpm, 4 °C, 30 minutes). The pelleted cells were resuspended in 
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25 mM Tris-HCl pH 7.2, 150 mM NaCl, 20 mM imidazole with EDTA-free protease 

inhibitor cocktail (Roche) for 1 hour then lysed using a cell disrupter (Constant Cell 

Disruption Systems, UK). Following centrifugation to remove cell debris (20 min, 4 °C, 

25,000 g), the lysate was filtered then applied to a 5 ml HisTrap column (GE 

Healthcare), equilibrated with 25 mM Tris-HCl pH 7.2, 150 mM NaCl and 20 mM 

imidazole. His-tagged SurA/Skp was denatured on-column, to prevent any 

aggregation caused by the high protein concentration, with 25 mM Tris-HCl, 6 M Gdn-

HCl, pH 7.2 and eluted with a gradient of 25 mM Tris-HCl, 6 M Gdn-HCl, pH 7.2 and 

500 mM imidazole. Fractions containing pure protein (judged by SDS-PAGE) were 

pooled and refolded overnight by dialysis against 25 mM Tris-HCl pH 7.2, 150 mM 

NaCl with two changes and then into 50 mM glycine-NaOH pH 9.5, which is the buffer 

OMP binding assays are carried out to prevent OMP aggregation. The protein was 

concentrated to ∼200 μM using Vivaspin 20 (5 kDa MWCO) concentrators (Sartorius, 

UK), aliquoted, snap-frozen in liquid nitrogen and stored at −80 °C. 

2.4.2 SecB 

E. coli BL21(DE3) cells (Stratagene, UK) were transformed with the plasmid containing 

the SecB gene. Cells were grown in TY (Tryptone Yeast) broth at 37 °C to an OD600 of 

0.6, protein expression was then induced with 1 mM IPTG and grown for a further 3 

hours before harvesting by centrifugation. The pellet was resuspended in 20 mM Tris-

HCl, 50 mM KCl, pH 7.5 then lysed using a cell disrupter (Constant Cell Disruption 

Systems, UK), the debris was cleared by centrifugation (20 min, 4 °C, 39,000 g). The 

supernatant was filtered (0.2 micron polyvinylidene difluoride syringe filter, 

Sartorius, UK) then applied to a pre-equilibrated HisTrap 5ml column (GE Healthcare), 

washed with resuspension buffer then eluted with 330 mM imidazole. Fractions 

containing protein were pooled and dialysed against 20 mM Tris-HCl, 50 mM KCl, pH 

7.5 overnight then bound to a 5ml HiTrap Q HP column (GE healthcare) pre-

equilibrated with dialysis buffer. Protein was eluted with a gradient of 1 M KCl, then 

concentrated using Vivaspin 20 (5 kDa MWCO) concentrators (Sartorius, UK), snap-

frozen in liquid nitrogen and stored at −80 °C. 
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2.4.3 Trigger Factor (TF) 

The expression vector pCA528 was used to fuse tig (encoding TF) to the Ulp1-

cleavable N-terminal (His)6-SUMO tag 77,204. BL21(DE3) cells were transformed and 

used for protein expression in LB supplemented with 40 μg/ml kanamycin at 30 °C.  

Gene expression was induced at an OD600 of 0.8 with 0.5 mM IPTG and cells were 

grown for 4 more hours. Harvested cell pellets were resuspended in lysis buffer (50 

mM HEPES-KOH, pH 7.5, 150 mM KCl, 1 mM phenylmethanesulfonyl fluoride (PMSF), 

5% v/v glycerol). Cell lysed by cell disruption and the lysate was cleared by 

centrifugation (30,000 g, 30 minutes, 4°C). Protein was purified using 5 ml HisTrap 

column (GE Healthcare) following standard procedures. The eluted material was 

supplemented with (His)6-Ulp1 protease (Sigma Aldrich) and dialyzed overnight at 4 

°C in storage buffer (25 mM HEPES-KOH, pH 7.5, 50 mM KCl, 5% glycerol). The next 

day, liberated (His)6-Sumo and (His)6-Ulp1 protease were removed by flowing over a 

HisTrap column. The flow through containing the desired protein was then bound to 

an anion-exchange column (5 ml ResourceQ, GE healthcare) and eluted with a linear 

gradient using storage buffer and high salt buffer (25 mM HEPES-KOH, pH 7.5, 500 

mM KCl, 5% v/v glycerol). Finally, pooled peak fractions were dialyzed overnight at 4 

°C in 50 mM HEPES-KOH, 150 mM KCl, pH 7.5 and snap frozen. 

 

2.4.4 Expression and purification of outer membrane proteins (OMPs) 

tOmpA and OmpT were purified using a method adapted from 143. E. coli BL21(DE3) 

cells (Stratagene, UK) transformed with a pET11a plasmid containing the mature 

OMP gene were grown in 500 ml LB medium containing 100 μg/ml carbenicillin at 

37 °C with shaking (200 r.p.m.). When the culture reached an OD600 of 0.6 protein 

expression was induced with 1 mM IPTG, cells were harvested by centrifugation 

(5,000 g, 15 min, 4 °C) after 4 hours of growth post induction. The pellet was 

resuspended in 50 mM Tris-HCl pH 8.0, 5 mM EDTA, 1 mM PMSF, 2 mM benzamidine 

for 1 hour then lysed by sonication (6 × 1 min bursts with 1 min cooling on ice 

between each sonication). The insoluble fraction was collected by centrifugation 

(25,000 g, 30 min, 4 °C), resuspended in 50 mM Tris-HCl pH 8.0, 2% (v/v) Triton X-100 
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and incubated for 1 hour at room temperature, with rocking. The insoluble fraction 

was again pelleted (25,000 g, 30 min, 4 °C) and the inclusion bodies washed twice by 

resuspension in 50 mM Tris-HCl pH 8.0, incubating for 1 hour at room temperature 

with rocking, followed by centrifugation (25,000 g, 30 min, 4 °C). The inclusion bodies 

were solubilized in 25 mM Tris-HCl, 6 M Gdn-HCl, pH 8.0 and centrifuged (20,000 g, 

20 min, 4 °C). The supernatant was filtered (0.2 micron polyvinylidene difluoride 

syringe filter, Sartorius, UK) and protein purified further by gel filtration using a 

Superdex 75 HiLoad 26/60 column (GE Healthcare) equilibrated with 25 mM Tris-HCl, 

6 M Gdn–HCl, pH 8.0. Peak fractions were concentrated to ∼500 μM using Vivaspin 

20 (5 kDa MWCO) concentrators (Sartorius, UK), and the protein solution then snap-

frozen in liquid nitrogen and stored at −80 °C. 

 

2.4.5 Expression and purification of the BAM complex in liposomes 

The BAM complex used in this work, used to test binding to periplasmic chaperones 

was purified and prepared by A.Higgins. The BamABCDE complex was expressed and 

purified using a protocol adapted from 205. Briefly, E. coli BL21(DE3) was transformed 

with plasmid pJH114 (provided by Harris Bernstein, NIH, USA) containing all five BAM 

genes (BamABCDE-(His)6) and grown overnight (37 °C, 200 rpm) in LB containing 

100 μg/ml carbenicillin. Cells were diluted 1:100 into 1 L TY broth and grown (37 °C, 

200 r.p.m.) to an OD600 of 0.5–0.6 before addition of 0.4 mM IPTG to induce BAM 

expression. After 1.5 h, cells were harvested by centrifugation (4,000 r.p.m., 15 min, 

4 °C) and the pellet resuspended and homogenized in 10 ml 20 mM Tris-HCl pH 8, 

lysed with a cell disruptor (Constant Cell Disruption Systems, UK), then centrifuged 

(6,000 g, 10 min, 4 °C). The membranes were pelleted by ultracentrifugation using a 

50.2Ti rotor (45,000 rpm 30 min, 4 °C). Pelleted membranes were incubated with 

10 ml cold 50 mM Tris-HCl pH 8, 150 mM NaCl, 1% (w/v) DDM at 4 °C for 2 h and the 

ultracentrifugation repeated to remove insoluble material. The BAM complex, which 

contains a (His)6 tag on BamB, was then applied to Ni-NTA beads washed with 50 mM 

Tris-HCl pH 8, 150 mM NaCl, 1% (w/v) DDM and eluted. The protein was concentrated 

and gel filtered on a Superdex200, 10/300 GL column running in TBS with 0.05% (w/v) 
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DDM. Fractions were collected and those containing complete BamABCDE complexes 

were identified by SDS–PAGE, pooled, concentrated and flash frozen in liquid 

nitrogen. To create BAM containing proteoliposomes, DDM-solubilized BamABCDE 

was mixed with E. coli polar lipid films solubilized in 200 μl of TBS+0.05% (w/v) DDM 

using a 1:0.5 (w/w) ratio of lipid to protein. This was dialysed into detergent-free 

buffer (20 mM Tris-HCl pH 8, 150 mM KCl, 0.01% (w/v) sodium azide (dialysis buffer)) 

at 21 °C for 7 days. Reconstitution was tested by running boiled and unboiled samples 

on SDS-PAGE to check for BamA folding and presence of all BAM components.  

2.4.6 Im7 purification  

N-terminal cysteine variants of Im7 created by Q5 mutagenesis (New England 

Biolabs) and BL21(DE3) cells were transformed with chosen plasmid (containing Im7-

WT, Im7-L53A I54A or Im7-L18A L19A L37A). Cells were cultured overnight in 150 ml 

LB 100 μg/ml carbenicillin at 37°C, 200 rpm. The overnight stocks were then used to 

inoculate 11 L of pre-warmed LB 100 μg/ml carbenicillin, 10 ml per litre. The cultures 

were grown to an OD600 of 0.6 and protein expression was induced by the addition of 

1 mM IPTG. Bacteria were then grown for 5 hours at 37 °C before harvesting by 

centrifugation at 6000 rpm (Rotor JLA 8.1). The pellets were collected and stored at -

20 °C. Lysis (50 mM Tris pH 8.0, 0.3 M NaCl, 10 mM imidazole) and elution (50 mM 

Tris pH 8.0, 0.3 M NaCl, 500 mM imidazole) buffers were prepared. Harvested cell 

pellets were thawed and re-suspended in 100 ml lysis buffer. PMSF and benzamidine 

proteinase inhibitors were then added to give a final concentration of 1 mM of each. 

The cells were then homogenised and lysed by cell disruption (Constant Cell 

Disruption Systems) and cell debris removed by centrifugation at 25000 rpm (JLA 

25.50 Rotor) for 1 hour. The supernatant was syringe filtered (0.22 μm membrane 

filter) and bound to a Ni Sepharose column (5ml volume) (GE Healthcare) that was 

washed and pre-equilibrated with 25 ml lysis buffer. The protein was eluted using a 

gradient of 0-85% elution buffer and 3 ml fractions were collected. Fractions 

containing the desired protein were pooled and dialysed into 50 mM sodium 

phosphate buffer pH 6.0 overnight. The sample was then filtered and injected onto 

pre-equilibrated a Source 15Q resin 7 ml column (GE Healthcare). The protein was 

eluted with a gradient of 0-65% elution buffer (50 mM sodium phosphate buffer, pH 
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6.0, 1 M NaCl) and 3ml fractions were collected. The purity of the fractions was 

monitored by SDS-PAGE analysis. If the protein appeared pure a sample was analysed 

by the mass spectrometry facility (University of Leeds). Pure protein was dialysed into 

H2O then freeze dried and stored at -20 C. 

 

2.5 CD spectra 

Data were collected on a Chirascan spectropolarimeter (Applied Photophysics). Far-

UV CD spectra were measured over a 190–260 nm range in 1 nm steps, in a 1 mm 

path-length cell and using a 2.5 nm bandwidth.  At least two scans were measured 

and averaged. SurA variants were measured at a protein concentration of 5 μM in 50 

mM glycine, pH 9.5 at 25 °C. 

 

2.6 Urea Equilibration Denaturation 

Equilibrium denaturation curves were measured using Photon Technology 

International (PTI) fluorimeter with a protein concentration of 0.2 mg/ml, in 50 mM 

glycine buffer pH 9.5 with 0-10 M urea in 0.2 M increments. Samples of SurA WT, 

SurA P2 and SurA N-Ct at 5 M were made up and incubated overnight at 25 °C to 

ensure the correct levels of denaturation for each urea concentration.  Slit widths 

were set between 1-2 nm with a path length of 1 cm, excitation at 280 nm and 

emission at 350 nm was monitored and averaged over 1 minute at 25 °C. The average 

signal as a function of denaturant was fitted to a two state transition in Igor Pro 6.0 

(Wavemetrics): 

Equation 2.1 Two state fitting equation for equilibrium denaturation curves 

Obs Signal =
[(𝑎[𝑢𝑟𝑒𝑎] + 𝑏) exp (𝛥𝐺𝑢𝑛 −

𝑚[𝑢𝑟𝑒𝑎]
𝑅𝑇 ) + (𝑐[𝑢𝑟𝑒𝑎] + 𝑑)]

(1 + exp (𝛥𝐺𝑢𝑛 −
𝑚[𝑢𝑟𝑒𝑎]

𝑅𝑇
)

 

where ΔGun (kJmol-1) is the equilibrium stability, and m is the equilibrium m-value, a 

and c represent the denaturant dependence of the folded and unfolded signal 

intensities respectively, and b and d are the signal intensities of the folded and 
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unfolded states, respectively, in the absence of denaturant. Data for the variants that 

could not be fitted to two-state equilibrium were fit to a three state equation. 

Equation 2.2 Three state fitting equation for equilibrium denaturation curves 

Obs Signal =
[(𝑎[𝑢𝑟𝑒𝑎] + 𝑏) exp (𝛥𝐺1𝑢𝑛 −

𝑚1[𝑢𝑟𝑒𝑎]
𝑅𝑇 ) + (𝑐[𝑢𝑟𝑒𝑎] + 𝑑)]

(1 + exp (𝛥𝐺1𝑢𝑛 −
𝑚1[𝑢𝑟𝑒𝑎]

𝑅𝑇
)

+
[(𝑐[𝑢𝑟𝑒𝑎] + 𝑑) exp (𝛥𝐺2𝑢𝑛 −

𝑚2[𝑢𝑟𝑒𝑎]
𝑅𝑇 ) + (𝑒[𝑢𝑟𝑒𝑎] + 𝑓)]

(1 + exp (𝛥𝐺2𝑢𝑛 −
𝑚2[𝑢𝑟𝑒𝑎]

𝑅𝑇
)

 

 

2.7 Native Mass Spectroscopy 

SurA–tOmpA complexes were prepared by rapid dilution of the denatured tOmpA (8 

M urea and 50 mM glycine-NaOH, pH 9.5) to a final concentration of 1 μM into a 

solution of SurA (1 μM in 200 mM ammonium acetate, pH 9.5). Im7-SurA complexes 

were prepared 1:1 at 10 M in 200 mM ammonium acetate buffer, pH 6.8. NanoESI–

IMS–MS spectra were acquired with a Synapt HDMS mass spectrometer (Waters) 

with platinum/gold-plated borosilicate capillaries prepared in-house. Typical 

instrument parameters were: capillary voltage, 1.2–1.6 kV; cone voltage, 40 V; trap 

collision voltage, 6 V; transfer collision voltage, 10 V; trap DC bias, 20 V; backing 

pressure, 4.5 mbar; IMS gas pressure, 0.5 mbar; travelling wave height, 7 V; and 

travelling wave velocity, 250 ms−1. Data were processed with MassLynx v4.1, 

Driftscope 2.5 (Waters) and Massign 206. 

 

2.8 Analytical Size Exclusion Chromatography (SEC) 

SurA WT/ P2/ N-Ct with tOmpA complexes were formed at a 1:1 ratio both at a final 

concentration 10 M in 50 mM glycine buffer, pH 9.5, 0.24 M urea. Size exclusion 

was performed using a Superdex 200 column on an ÄKTA pure system with a typical 

flow rate of 0.5 ml/min. The column was washed with 2 column volumes (CVs) of 2 

M NaOH then 2 CVs of filtered H2O to remove the 20 % ethanol in which it is stored 

and then equilibrated with 1.5 CVs of 50 mM glycine buffer, pH 9.5, 0.24 M urea. The 
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prepared sample is then loaded via injection. At the end of the analysis the column 

was washed with 2 CVs of water and 1.5 CVs of 20 % (v/v) ethanol and stored at 4 °C 

 

2.9 Surface Plasmon Resonance (SPR) 

SPR was used to monitor the kinetics of the association and dissociation of tOmpA 

with SurA variants. All proteins buffer exchanged into running buffer (50 mM glycine 

pH 9.5 0.24M urea) and the experiment was run at 5 μl/min. A CM5 chip (GE 

healthcare) which is a gold surface with covalently attached carboxymethylated 

dextran was loaded into a Biocore 3000 surface plasmon resonance system (GE 

healthcare). The chip was modified by 10 μl of a 1:1 EDC and NHS mixture both at 1 

mg/ml and then 20 μl of 80 mM PDEA in 50 mM sodium borate buffer pH 8.5 leaving 

a reactive disulphide group. A N-terminal cysteine variant of tOmpA was then flowed 

over the surface at 20 μM for 7 minutes. Addition to the chip can be monitored by a 

change in the response units and should give a change of >1000 units. Any unreacted 

groups on the surface were then capped with L-cysteine at 9 mg/ml in 100 mM 

sodium acetate, 100 mM sodium chloride pH 4.0. Another cell was used as a blank 

and was treated with NHS/EDC, PDEA and L-cysteine in the absence of the 

immobilised substrate. Increasing concentrations of SurA WT (0.2, 1, 1.8, 5, 10 and 

18 μM) was flowed over the chip, with a wash of 4 M urea between each 

concentration to denature the SurA, break the interaction and allow the SurA to be 

washed away. The titration was repeated at least twice for each concentration. The 

chip was then washed with urea and buffer before SurA ΔP2 / SurA N-Ct was applied 

at the same concentrations. The data was fit using the 1:1 Langmuir model (Equation 

2.3) within the control software and the ka, kd and Kd were extracted from the fit. 

 

𝐵𝑜𝑢𝑛𝑑 =  
𝐶𝐴𝑥 𝑀𝑎𝑥

𝐶𝐴 + 𝐾𝑑
 

Equation 2.3 Langmuir Equation.  Max is the maximum response (RUs). CA is the 
concentration of injected analyte and Kd is in the same units as CA (normally M) 
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2.10 Fluorescence Assay of OmpT folding 

BAM complex purification and reconstitution into proteoliposomes was performed 

as described in Methods 2.4.5 71. BAM proteoliposomes were diluted to a 

concentration of 5 μM in 50 mM glycine-NaOH pH 9.5 containing 2 mM of the 

fluoropeptide Abz-Ala-Arg-Arg-Ala-Tyr(NO2)-NH2 (Peptide Synthetics). OmpT and 

chaperone (SurA WT, ΔP2, N-Ct, Skp, SecB) were then mixed to form a solution with 

final concentrations of 10 μM OmpT, 70 μM chaperone in 50 mM glycine-NaOH pH 

9.5 and 0.8 M urea. This sample (chaperone-OmpT ‘subreaction’) was then 

immediately diluted 1:1 into the proteoliposome solutions to initiate the folding 

reaction. The final concentrations of the reaction components were 5 μM OmpT, 

35 μM SurA, 0.25 μM BAM complex and 1 mM fluorogenic peptide. All OmpT folding 

reactions were carried out in 30 μl final reaction volume. Fluorescence emission 

following excitation at 325 nm was monitored at 430 nm with readings every 10 s for 

up to 5 h using a Clariostar plate reader (BMG Labtech GmbH). The signal was 

normalized following subtraction of the average background signal produced at the 

zero time point. 

 

2.11 tOmpA folding kinetics gels 

Outer membrane proteins migrate differently on SDS-PAGE gels depending if they 

are folded or unfolded. On Tris-tricine gels tOmpA in the folded state migrates faster 

than the unfolded state and the amount of folded vs unfolded can be monitored over 

time to measure the rate of folding. A sub-reaction of 20 µM SurA (or SurA variants) 

and 4 µM tOmpA is prepared in 20 mM Tris-HCl pH 8.0 150 mM NaCl 1.6 M urea. The 

sub-reaction is then mixed 1:1 to BAM complex in proteoliposomes (see 2.4.5). To 

give final concentrations of 1 µM BAM complex, 10 µM SurA and 2 µM tOmpA with a 

final urea concentration of 0.8 M. The reaction is measured at 25 °C and time-points 

are taken at defined intervals and mixed with 6x SDS-PAGE loading buffer then run 

un-boiled on  tris-tricine gels (see 2.3.1) and the fraction folded over total protein is 

analysed by densitometry using ImageJ 207 and fit to a single exponential equation in 

Igor pro (Wavemetircs). 
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2.12 Isothermal Titration Calorimetry 

Calorimetry measurements were performed with an ITC200 microcalorimeter 

(MicroCal Inc.). For each titration experiments, 350 μl WEYIPNV peptide solution at 

20 μM in 20 mM sodium phosphate, pH 7.0 was added to the sample cell. SurA 

variants, dialysed into the same buffer as the peptide, was added to the injection 

syringe at a concentration 200 μM. An initial injection of 0.5 μl was made, followed 

by 19 injections of 2 μl every 4 seconds at 25 °C. The equilibration interval was 120 s 

between injections, and the stirring speed was 750 rpm. Binding isotherms were 

plotted and analysed using Origin Software (MicroCal Inc.). 

 

2.13 Thioflavin T Aβ40 aggregation assay 

ThT plates were set up with 20 mM sodium phosphate, 0.2 mM EDTA, 10 M ThT, 

0.02% NaN3, pH 7.4 either in the presence or absence of SurA WT, Skp or Spy at 10, 

20 and 40 M. Aβ40 was dissolved from freeze dried stocks and added to the prepared 

wells at a final concentration of 20 M. The assay was performed quiescently at 37 

°C and the sample was excited at 450 nM wavelength and fluorescence at 482 nM 208 

and measured over 4 days.  

 

2.14 Microscale Thermophoresis  

2.14.1 Labelling protein with Alexa fluor 488 

Microscale thermophoresis is a technique based on the movement of molecules in a 

temperature gradient and the observation that this movement is altered by the 

interaction with a binding partner. The movement is monitored by fluorescently 

tagging one of the proteins which is then added to a titration of the unlabelled 

binding partner, the sample is heated to create the temperature gradient with an IR 

laser and the fluorescence excited with a LED, and the change in fluorescence in the 

heated area is measured. The change in fluorescence at each given binding partner 
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concentration can be plotted to give a binding curve in order to obtain the affinity of 

the interaction (Figure 3.11).  

N-terminal cysteine mutants of tOmpA, OmpT, SurA WT, SurA ΔP2 and SurA N-Ct 

were created using Q5 mutagenesis (New England Biolabs) and purified as described 

for the wild-type proteins. Proteins were buffer exchanged into 6 M Gdn-HCl, 50 mM 

Tris pH 7.2 using 7 kDa MWCO Zeba spin desalting columns (Thermo Scientific) and 

diluted to a final protein concentration of 50 μM with a sample volume of 350 μl. A 

ten-fold molar excess of Alexa Fluor-488 C5 malemide (Thermo Scientific) dissolved 

in DMSO was added to the samples and incubated overnight at 4 °C. Following 

incubation, the reaction was quenched with excess β-mercaptoethanol. Then protein 

was separated from unbound dye using size exclusion chromatography on a Superdex 

200 10/300 GL column (GE healthcare) and fractions containing labelled protein, 

determined by A280 and A488 on the AKTA prime (GE Healthcare) and Nanodrop 2000 

(Thermo Fisher Scientific) were concentrated using Vivaspin 20 (5 kDa MWCO) 

concentrators (Sartorius, UK). 

2.14.2 MST Protocol 

From a 200 µM SurA stock solution in 50 mM glycine-NaOH, pH 9.5, a series of two-

fold serial dilutions were performed to obtain sixteen 10 µl samples (100 μM- 3 nM). 

AlexaFlour 488 labelled tOmpA or OmpT buffer (buffer exchanged into 8 M urea 50 

mM glycine pH 9.5 and then diluted to 200 nM in 0.48 M urea), was added 1:1 to give 

a final concentration of 100 nM OMP, 0.24 M urea in 50mM glycine pH 9.5 in all 

samples, 20 μl total volume. 

 

In the case of SurA or Skp binding to the BAM complex, N-terminal cysteine mutants 

of the chaperone were labelled as in the same way as the OMPs. The BAM complex 

either in 50 mM TBS, 150 mM NaCl, pH 7, 0.05% DDM or within proteoliposomes 

(Methods 2.4.5). 50 mM TBS, 150 mM NaCl, pH 7 is used to create the dilution 

concentration series in 10 l (1.2 nM-40 M in DDM and 1.5 nM-50 M in 

proteoliposomes). The labelled SurA or Skp is then added 1:1 to the dilution series to 

a final concentration of 100 nM in a volume of 20 l. 
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 The samples were loaded by capillary action into premium coated capillaries 

(NanoTemper Technologies GmbH) and measured using Monolith NT.115 

(Nanotemper Tech.). Data were fitted to a Hill equation in Igor Pro (Wavemetircs). 

𝑆𝑜𝑏𝑠 =  𝑆𝑈 + (𝑆𝐵 −  𝑆𝑈). ( 

[𝐿]𝑛

𝐾𝐷 + [𝐿]𝑛
 ) 

Equation 2.4 Hill equation for MST fitting 

Where Sobs is the observed signal, SU and SB are the signal of the unbound and bound 

state respectively, L is the ligand concentration which in these experiments is the 

OMP and n is the hill coefficient. 

 

2.15 Nephelometry 

2.15.1 Aggregation light scattering assay of OMPs 

Nephelometry is a light scattering technique in which only light with is scattered up 

to 80 degrees is detected and light which passes directly through the sample is not 

measured. This leads to data which is less noisy than turbidity light scattering 

measurements which detects the amount of light scattered by detecting the loss of 

light passing directly through the sample. Nephelometry can detect particles of a 

certain size and number and so multiple small aggregates or larger aggregates can 

both be monitored (Figure 4.3).   

 

Optimisation experiments were carried out in 25 mM Tris-HCl, pH 8.0. Stocks of 

tOmpA and OmpT were diluted to give the correct final concentration in 25 mM Tris-

HCl, 0.24 M Gd-HCl, pH 8.0. 2 M OMP concentration was chosen and under these 

conditions SurA WT, P2 or N-Ct were added with 10-fold molar excess (20 M) to 

tOmpA and 100-fold molar excess (200 M) to OmpT. 
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Rapid dilution of unfolded OMPs from 8 M urea to 0.24 M urea containing 0.24 M 

NaCl causes aggregation monitored by an increase in light scattering. The OMP was 

buffer-exchanged into 8 M urea, 50 mM glycine buffer pH 9.5. A stock of 67 μM OMP 

in 8 M urea was diluted into 0 M urea buffer (50 mM glycine buffer pH 9.5) to give a 

final concentration of 2 μM protein in 0.24 M urea in 50 μl within the 96-well half 

area plate (Corning Product #3881). tOmpA and OmpT aggregation was monitored in 

buffer containing 0, 4, 10, 20, 40, 100 and 200 M SurA WT, SurA ΔP2 or SurA N-Ct. 

The samples were read by a Nephelostar (BMG Labtech GmbH), at 635 ± 10 nm with 

a gain of 90, over 30 minutes at 25 °C. Values were processed by buffer blank 

subtraction and the minimum value in each data set was set as zero. Data were 

plotted in Origin Pro (OriginLab).  

 

2.15.2 Aggregation assay of GAPDH 

Freeze dried GAPDH (Sigma-Aldrich, USA) was solubilised to a stock of 250 M in 20 

mM potassium phosphate buffer pH 7.0, 100 mM KCl, 6 M Gdn-HCl. Rapid 100 fold 

dilution was carried out into 20 mM potassium phosphate buffer pH 7.0, 100 mM KCl 

in the presence or absence of 1.25 – 25 M TF, SurA WT, SurA P2 or SurA N-Ct with 

a final concentration of 0.06 M Gdn-HCl. Upon GAPDH addition, light scattering was 

measured at 635 ± 10 nm over 30 minutes at 25 °C. Values were processed by buffer 

blank subtraction and the minimum value in each data set was set as zero. Data were 

plotted in Origin Pro (OriginLab).  

 

2.15.3 End point measurements of chaperone action on tOmpA/OmpT 

aggregation 

End point analysis was also carried out to monitor the final light scattering values 

after the addition of 10- fold molar excess (20 M) or 20-fold molar excess (40 M) 

SurA WT, SurA P2, SurA N-Ct, TF, SecB, Skp, Spy and BSA. These samples were 

incubated at 25 °C for 30 minutes and the light scattering was measured for 10 

seconds and averaged. Data is presented from three replicates measured on the 
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same plate from the same protein stocks and standard deviation of the replicates is 

plotted as error.  

2.15.4 Aggregation pelleting assay  

After 30 minutes of kinetic aggregation analysis by nephelometry, the plate was 

removed and the samples containing tOmpA alone or tOmpA in the presence of SurA 

variants were transferred to an Eppendorph and centrifuged at 13,000 g on a 

benchtop centrifuge for 1 hour. 10 μl of the soluble fraction was taken and added to 

2x SDS loading dye and the remaining 40 μl was discarded. 40 μl fresh buffer was 

used to resuspend to the pellet and 10 μl of this sample was added to 2x SDS loading 

dye. The samples were run on a Tris-glycine SDS-PAGE gel. The bands were then 

quantified by densitometry in image J (NIH) and normalised to soluble tOmpA alone.   

2.15.5 Transmission electron microscopy of aggregate samples 

tOmpA or OmpT samples, after 30 minutes of monitoring by nephelometry, were 

diluted to between 0.2 and 2 mg/mL then deposited onto carbon-coated EM grids for 

45 seconds at room temperature. Excess sample was blotted onto filter paper and 

the grid washed three times with 20 μL H2O, followed by staining in 10 μL of 2 % (w/v) 

uranyl acetate solution. Excess stain was removed by blotting and the grid allowed to 

air-dry. The grids were imaged using a JEOL JEM1400® transmission electron 

microscope at 120 kV. Images were recorded at 1000× and 10,000× magnification for 

each specimen using the AMT Image Capture Engine software Version 6.02 supplied 

with the instrument. 

 

2.16 Nuclear Magnetic Resonance (NMR) experiments 

2.16.1 Preparation of isotope-labelled SurA variants 

For 2D NMR experiments, SurA variants were labelled with the heavy isotope of 

nitrogen (15N) and, for 3D assignment experiments, both 15N and carbon 13C labelled 

protein. This was achieved by growing the bacteria in minimal HCDM1 medium (see 
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2.2.2.2) in the presence of the nitrogen and/or carbon isotope and in D2O in the case 

of 3D experiments. Proteins were purified as detailed in section 2.4.1.  

2.16.2 Acquiring 1H-15N spectra 

2D NMR experiments were carried out at 25 °C on the 950 MHz Bruker Ascend 

Aeon™. SurA WT, SurA ΔP2 and SurA N-Ct were measured at 100 µM in 25 mM MES, 

50 mM NaCl, pH 6.5 5% (v/v) D2O. 300 µl was loaded into a Shigemi 3 mm symmetrical 

NMR microtube and placed in the spectrometer. BEST-TROSY 2D H1- N 15 HSQC 

spectra were generally acquired using 256 complex points in the indirect dimension, 

1622 points in the direct dimension and 64 scans per increment with spectral widths 

of 11432 Hz and 3466 Hz in the 1H and 15N dimensions, respectively. For SurA ΔP2 in 

complex with tOmpA or OmpT, N15 SurA ΔP2 was diluted to 30 µM and tOmpA and 

OmpT were added at 5 or 2 µM respectively to achieve at least 5% binding, while 

avoiding aggregation, in order to observe any changes in chemical shift upon OMP 

binding.  Watergate solvent suppression was used in all experiments and all NMR 

data were processed using NMRPipe and analysed in NMRview and CCPN analysis 209-

211. 

2.16.3 Assignment experiments 

3D experiments are based on through-bond J-coupling effects and are designed to 

allow selective transfer of magnetisation between nuclei within the protein 

backbone. Measuring the resonances of different residues using a combination of the 

different experiments allows sequential residue assignment. Assignments are made 

by knowledge of distinct position for each residue in the CA, CB and CO dimensions 

and the connectivity of resonances in the protein sequence. Assignment of the 

backbone atoms of SurA ΔP2 were performed using uniformly labelled (N15 and 13C) 

protein samples at 140 μM in 25 mM MES, 50 mM NaCl, pH 6.5 5% (v/v) D2O. 3D 

experiments in the hydrogen, nitrogen and carbon dimensions were recorded at 35 

°C on a 750 MHz Oxford NMR magnet equipped with TCI-cryoprobe. HNCO, 

HN(CA)CO, HNCA, HN(CO)CA, HN(COCA)CB and HN(CA)CB were measured to achieve 

good assignment for this large protein. The 3D NMR experiments preformed are 
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shown in Table 2.3. The data was processed in NMR pipe and then aligned and 

analysed in CCPN analysis 209,210. 

 

Experiment Correlations observed 

HNCO 1HNi-15Ni-13COi-1 

HN(CA)CO 1HNi-15Ni-13Cαi-13COi 

1HNi-15Ni-13Cαi-1-13COi-1 

HNCA 1HNi-15Ni-13Cαi 

1HNi-15Ni-13Cαi-1 

HN(CO)CA 1HNi-15Ni-13Cαi-1 

HN(COCA)CB 1HNi+1-15Ni+1-(13Cαi)-13Cβi 

HN(CA)CB 1HNi-15Ni-(13Cαi)/13Cβi 

1HNi-15Ni-(13Cαi-1)/13Cβi-1 

Table 2.3 Triple-resonance experiments used for sequential resonance assignments 
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Chapter 3 The role of the PPIase domains within SurA on outer 

membrane protein binding 

3.1 Introduction 

Outer membrane proteins (OMPs) are synthesised on the cytoplasmic ribosomes and 

must be transported from their site of synthesis to the OM via the periplasm in order 

to correctly fold and carry out their various functions. The periplasm is highly dynamic 

as it mirrors the extracellular conditions due to the ‘leaky’ OM, which can lead to an 

unstable environment for proteins. As OMPs are highly aggregation prone they 

require assistance to prevent them from inter- and intra- molecular interactions 

which can lead to aggregation, particularly in the unstable periplasmic compartment. 

The importance of chaperones within the periplasm is well known, as removal of SurA 

along with another chaperone (either Skp or DegP) is lethal to the cell 50 and a SurA 

deletion in a Skp depleted background leads to minimal levels of almost all OMPs 

folded into the OM 141. Modelling of interactions of OMP chaperones with an 

unfolded substrate on route to the OM suggests that OMPs make hundreds of short 

lived interactions with various chaperones during their transport across the 

periplasm 212. The kinetic control of chaperone interactions and the synthesis and 

degradation rates of these essential proteins must be tightly regulated to allow 

productive flux of OMP folding and OM homeostasis.  

 

SurA, which is the major OMP chaperone, has been studied for a number of years 

leading to insights into how SurA binds OMPs in order to prevent their aggregation 

178,180. The crystal structure of SurA 69 which elucidated the positions of each domain 

in relation to each other, suggested a binding site for OMPs in the N-terminal domain, 

due to crystal packing of adjacent molecules, however it does not give many clues on 

SurA’s mechanism. The ‘asymmetrical dumbbell’ structure of SurA appears to have a 

cavity within the concave surface between the core of SurA and the P2 domain 

(Figure 3.1). In addition, the crystal structure of the P2 variant of SurA lacking the 

P2 domain in complex with a binding peptide obtained by scanning a peptide library 
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178 showed the P1 domain dissociating from the N- and C- terminal domains that may 

be to compensate the loss the cavity upon the deletion of the P2 domain (Figure 

3.1b). The concave surface of SurA may provide an extended binding region for OMP 

interactions, similar to the mechanism of the ATP-independent periplasmic 

chaperone, Spy, which is a homodimer that binds to substrates using a hydrophobic 

and charged surface 129-131. Contradicting this hypothesis, crosslinking data has 

suggested that only the N-terminal domain of SurA is responsible for binding OMPs 

179,180. However, for unfolded OMP substrates the N-terminal domain of SurA alone 

may not provide a large enough binding surface to prevent OMP self-association. As 

the N-terminal domain within the crystal structure is in contact with the P1 domain 

and the C terminal domain it seems unlikely that only the N-terminal domain contacts 

the OMP, however there may be dynamics between the domains within the 

chaperone that cannot be observed in the crystal structure. 

 

Figure 3.1 Crystal Structures of SurA WT and SurA P2  a) SurA WT (PDB: 15MY) 69 N-terminal 

domain in blue, PPIase1 in green, PPIase2 in yellow and C-terminal domain in red b) SurA P2 
(PDB: 2PV3) 178. Analysed in Pymol 213 to calculate the distances between atoms, colours as 
in a. 

 

Although the regions of SurA that interact with OMPs are still to be discovered the 

affinities of SurA binding to peptides and a small number of OMPs have been 

documented (Table 3.1). The affinities of SurA WT and SurA P2 binding OMPs are 
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not significantly different, suggesting that the P2 domain of SurA is not involved in 

binding OMPs or that the rearrangement of domains can compensate for the loss of 

P2 without a reduction in affinity. This poses several questions; if the P2 domain is 

not involved in binding of substrates and there are other PPIase’s within the 

periplasm, does the P2 domain have any other role in chaperone activity? What are 

the roles of the P1 domain which does not have PPIase activity? In this chapter, 

experiments are described which address these questions using a range of 

techniques including MST, ITC, CD and SPR.  

 

 
Kd (μM) 

Substrate SurA WT SurA P2 

WEYIPNV 3.58 ±0.08 2.23 ±0.07 

NFTLKFWDIFRK 6.62 ±1.03 5.57 ±0.64 

OmpG 0.44 ±0.09 0.4 ±0.3 

OmpF 5.2 ± 1.7 2.6 ±0.5 

RCMLA 33 ± 11 38 ±11 

 

Table 3.1 Table of known Kd’s of SurA Interactions.  SurA WT and SurA P2 binding positive 
aromatic peptides, OMPs and a model soluble protein reduced carboxymethylated alpha-
lactalbumin (RCMLA). Measured by competition ELISA assay in 20 mM phosphate buffer, pH 
7.3 at 25 °C for WEYIPNV peptide, the OMPs and reduced carboxymethylated α-lactalbumin 
(RCMLA) 177 and in 50mM sodium acetate buffer, pH 5.0 at 25 °C for the NFTLKFWDIFRK 178. 

 

The previously documented variants of SurA, P2 and SurA N-Ct (Figure 1.20) 165 and 

SurA WT a used to compare their ability to bind two model unfolded OMPs. tOmpA 

is the 19 kDa 8-stranded transmembrane domain of the well-studied model OMP 

OmpA 56,97,214,215 and OmpT is a 33 kDa 10-stranded protease 58,216 (Figure 3.2). 

Comparing the binding ability of the SurA variants to these OMPs which are different 

sizes and have been shown to have different aggregation propensities 217 should help 

elucidate the roles of each of the domains within SurA. To this end, microscale 

thermophoresis (MST), was used to determine affinity. This technique has the 

advantage that it can be performed using low OMP concentrations (nM), and thus 

can be performed under conditions where OMPs remain in an unfolded, soluble form 
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in the absence of detergent or lipid and on time-scales in which OMP aggregation 

does not occur. The binding of SurA to OMPs was also tested by analytical size 

exclusion chromatography (SEC), native mass spectrometry (MS), circular dichroism 

(CD), surface plasma resonance (SPR) and NMR experiments, all of which were 

carried out under conditions which disfavoured OMP aggregation such as low protein 

concentration and the presence of denaturant.  

 
Figure 3.2 Crystal Structures of model OMPs. tOmpA (PDB: 1BXW)218 and OmpT (PDB: 1I78)58 

 

3.2 Expression and purification of SurA variants 

All SurA variants used in this work (SurA WT, SurA P2 and SurA N-Ct) (Figure 1.20) 

were created in Pet28b vectors containing a his tag and expressed and purified from 

the E. coli sequence lacking the N-terminal signal sequence. Proteins were expressed 

in the soluble fraction and purified by nickel affinity in its denatured state (6 M GdHCl, 

25 mM Tris-HCl, pH 7.2) and refolded by dialysis (Methods 2.4.1). A typical A280 trace 

from SurA nickel affinity chromatography is shown in Figure 3.3a.  The purity of each 

protein was determined by SDS-PAGE as shown in Figure 3.3b. 
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Figure 3.3 Purification of SurA variants  a) Nickel affinity chromatography trace of the 

purification of SurA WT b) SDS-PAGE gel of pure SurA WT, SurA P2 and SurA N-Ct.  

 

3.3 Characterising SurA variants 

3.3.1 Purified SurA variants are correctly folded and monomeric 

To verify that the SurA variants, which were purified in a denatured state, were 

correctly folded and to investigate their structure, far UV-CD, native ESI-MS and 

analytical SEC were employed. All the experiments in this chapter are carried out in 

50 mM glycine buffer pH 9.5. Unless stated otherwise, this buffer is used for many 

OMP experiments as the high pH aids in the retaining OMPs in a soluble conformation 

as their average pI is approximately 6 219,220. From the crystal structures of SurA the 

secondary structure was calculated to have 48% helical and 17% -sheet content 

using standard methods 221. The secondary structure of the purified SurA WT 

measured by CD and analysed by the CDSSTR algorithm using the Dichroweb software 

222, suggests that the purified protein contains 46% helical and 19% beta sheet 

content (Figure 3.4a), showing the purified protein has the same secondary structure 

content as the crystal structure. The other purified SurA variants contained 50% and 

46% helical content for SurA P2 and SurA N-Ct, respectively, as determined by the 

same method as for SurA WT, suggesting there is no major conformational 
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rearrangements in the remaining domains when the PPIase domains are removed, 

consistent with the SurA P2 crystal structure (Figure 3.1) 178.  

 

Utilising native mass spectrometry (MS) at low protein concentration (1 μM) it was 

confirmed that these samples were folded, as they gave a characteristic distribution 

of charge state peaks at the correct mass to charge (m/z) ratio.  

 

 
Figure 3.4 SurA variants are folded and monomeric a) Far UV Circular dichroism (CD) spectra 

of 5 μM SurA WT (green), SurA P2 (blue), SurA N-Ct (red). b) Native ESI mass spectrometry 

(MS) of 1 μM SurA WT, P2, N-Ct (colours as in a). c) Analytical SEC of 100 μM SurA WT, P2 
and N-Ct (colours as in a) d) SurA variants constructs. 

 

Although the ESI-MS data show that, at low concentrations, the SurA variants are 

monomeric, binding assays for SurA interacting with OMPs require higher 

concentrations of chaperone, so analytical SEC of each variants was carried out at 
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100 μM, which is the highest concentration of SurA used in the MST experiments. The 

SEC traces show that SurA WT, SurA P2 and SurA N-Ct elute as a mainly monomeric 

species at 47, 35 and 24 kDa respectively, with a small amount of a higher molecular 

weight species, presumably dimer (Figure 3.4c).  The dimerisation affinity of SurA WT 

has been measured previously by AUC titration experiments which have Kd of 1160 

± 60 μM (1.1 mM) 223 which agrees that at the concentrations used in our experiments 

SurA should remain monomeric.  

 

To confirm if the proteins were folded 1H-15N HSQC spectra is very powerful as it 

reports on the state of each residue, so the proteins were 15N labelled (Methods 

2.16.2) to obtain a spectrum. The 1H-15N HSQC spectra of each SurA variant showed 

they all have a well dispersed sets of peaks which again confirms that they are folded 

(Figure 3.5). There are a number of peaks for each protein which overlay with peaks 

in the spectra of another variant. However, as the spectra of these proteins have not 

been assigned further analysis is not possible here. 
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Figure 3.5 H1-N15 TROSY NMR of SurA variants a) SurA WT (green) b) SurA P2 (blue) c) SurA 
N-Ct (red) all variants were measured at 100 µM in 25 mM MES, 50 mM NaCl, pH 6.5 5% (v/v) 
D2O 

 

3.3.2 The PPIase variants of SurA fold and unfold uncooperatively   

The structural information described above show that the SurA domain variants are 

all folded and monomeric under the conditions examined. The stability of the 

proteins was also analysed by urea denaturation equilibrium curves to investigate 

how the presence of absence of PPIase domains influence the folding and unfolding 

propensities of the different variants.  

 

Fluorescence emission spectra were measured for each variant after equilibration in 

0-10 M urea overnight to determine the % folded under these conditions, as the 

folded and unfolded species have distinct fluorescence emission spectra. Amino acids 
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with intrinsic fluorescence (Tryptophan and Tyrosine) in folded proteins are often in 

a hydrophobic environment (buried within the core of the protein) and in this 

environment they have a high quantum yield and therefore a high fluorescence 

intensity, compared to a low fluorescence when exposed to the solvent 224.  

 

The results of the urea denaturation experiments show that each of the SurA variants 

are folded up to 3.4 M urea (Figure 3.6). However, the variants have distinct 

denaturation profiles. These complex profiles shows that SurA does not unfold 

cooperatively. SurA N-Ct, the variant lacking both PPIase domains, undergoes a single 

transition and it fully unfolded by approximately 6 M urea, suggesting is it unfolding 

as a single unit with a GUN of 26.4 kJ.mol-1 and m-value of 6.1 kJ.mol-1.M-1 (Figure 

3.6c and Table 3.2). This supports the hypothesis that the C-terminal helix is involved 

in stabilising the larger N-terminal domain 171.  

Figure 3.6 Equilibrium denaturation curves of SurA variants  a) SurA WT (green) b) SurA P2 

(blue) c) SurA N-Ct (red) d) SurA WT, SurA P2, and SurA N-Ct overlay. All proteins were 
measured at 5 μM at 25°C in 50 mM glycine, pH 9.5, 0-10 M urea and the data was fit to a 

two (SurA WT and SurA N-Ct) or three (SurA P2) state transition in Igor Pro 6.0 .  
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SurA G°UN1 (kJ.mol-1) m (kJ.mol-1) G°UN2 (kJ.mol-1) m (kJ.mol-1) 

WT 16.9 ± 0.9 2.5 ± 0.2   

P2 24.3 ± 1.8 5.8 ± 0.5 37.9 ± 3.9 4.7 ± 0.5 

N-Ct 26.5 ± 1.1 6.2 ± 0.2   

 

Table 3.2 G° and m-values determined from the fits of each curve in Figure 3.6 

 

The addition of a single PPIase domain (P1) in SurA P2 alters the unfolding profile 

and shows two transitions that can be fit independently. These data have been 

modelled previously in a two domain protein 225 and shown that it is due to 

independent folding of the domains with a similar m-value and different [D]50 values. 

[D]50 is the urea value at which the protein is 50% unfolded. Fitting these data to a 

three state unfolding equation (Methods 2.6) gives two G values and m-values, the 

first of which (GUN1) is similar to that of SurA N-Ct unfolding alone, suggesting that 

this is reporting on the unfolding of the core domain in the SurA P2 construct. These 

data suggest that the P1 domain unfolding is reported by the second transition 

(GUN2), and more stable than the N-Ct domain with a GUN of 37.9 kJ.mol-1.  

 

The picture becomes more complicated for the full length SurA WT, as this protein 

has three domains with the potential to unfold independently. If there are three 

separate transitions for each domain, they are not resolved, but result instead as a 

single transition with a shallow slope, suggestive of uncooperative unfolding. The 

stability of the P2 domain in the context of the full protein cannot be identified by 

these data however, as the structure is the same as the P1 domain it is likely that it 

has a similar G°UN. Fitting of the SurA WT data report a G°UN of 16.8 kJ.mol-1 and a 

m-value of 2.4 kJ/mol-1. M-1, which is much lower than expected. Published analysis 

of the two domain proteins (R1516 of spectrin) also has reported lower m-values than 

the individual domains and a single unfolding transition 226. The independent folding 

and unfolding of the variants are in accord with the suggestion that the PPIase 

domains have been acquired during evolution of proteobacteria and they have been 

added to the ancestral core domain of SurA. The results show that the three 
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constructs all contain folded domains consistent with the CD and NMR analysis 

presented above. 

  

3.4 Expression and Purification of tOmpA and OmpT 

Unfolded tOmpA and OmpT are used in this study as model OMPs to examine the 

role of different domains of SurA in OMP binding as well as prevention of OMP 

aggregation and delivering OMPs to the BAM complex for folding. OMPs lacking their 

N-terminal signal sequence were expressed as insoluble inclusion bodies, which were 

isolated, solubilised in denaturant, then further purified by gel filtration in their 

denatured state (6 M GuHCl, 25 mM Tris-HCl, pH 8.0) (Methods 2.4.4) 143. Typical A280 

traces from tOmpA and OmpT gel filtration are shown in Figure 3.7a and b, with SDS-

PAGE of peak fractions indicating pure protein Figure 3.7c.  

 

Figure 3.7 Purification of tOmpA and OmpT  a) A280 elution of gel filtered tOmpA b) A280 

elution of gel filtered OmpT 6 M Gdn-HCl, 25 mM Tris-HCl, pH 8.0. c) SDS-PAGE gel of pooled 
peak fractions from gel filtration of solubilised tOmpA and OmpT inclusion bodies. See 
Methods 2.4.4 

3.5 Binding of SurA variants to tOmpA and OmpT 

3.5.1 SurA variants interact with positive binding peptides  

To verify that the SurA constructs are correctly folded and functional their ability to 

interact with peptides which were previously identified as positive binding peptides 

for SurA and SurA P2, by an ELISA screening assay, was determined using ITC to 

reproduce the published data 178 (Methods 2.12). The experiments were carried out 
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with 20 μM peptide (WEYIPNV) and a titration of SurA variants upto 200 μM in 50 

mM sodium phosphate buffer, pH 7.0, 25 °C.  

 

Figure 3.8 ITC of SurA WT, P2 and N-Ct bind the WEYIPNV peptide.  a) SurA WT, b) SurA 

P2, c) SurA N-Ct. Raw ITC data (top) and binding isotherms created by plotting the 
integrated heat peaks against the molar ratio of the protein added (bottom). 
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SurA Kd (M) N 

WT 0.85 ± 0.3 1.02 ± 0.1 

P2 0.47 ± 0.3 0.77 ± 0.1 

N-Ct n/a n/a 

 
Table 3.3 ITC values of SurA binding to peptides. Kd and number of sites (N) from the fits of 
Figure 3.8 

 

The ITC data (Figure 3.8 and Table 3.3) show that the peptide can bind to all three 

variants of SurA as revealed measured by a change in enthalpy over the concentration 

series, however the binding of SurA N-Ct to the peptide is reduced to the extent that 

a full binding curve could not be obtained (Figure 3.8c). The results show that SurA 

WT binds to the peptide with an affinity which is slightly tighter than the binding 

reported previously (0.85 ± 0.3 μM versus 3.58 ± 0.08 μM), however as the data sets 

were measured by a different method (competition ELISA) (Figure 3.8) and they are 

both low μM affinity binding the data are considered consistent.  The same trend is 

seen for SurA P2 as it is for SurA WT. The number of binding sites determined from 

the fit showed a binding stoichiometry of 1:1 which also agrees with the published 

data 177,178. The binding of SurA N-Ct to peptides has not previously been measured 

and although there is a change in enthalpy at the high chaperone titration 

concentrations used, a full binding curve could not be fit to the data suggesting a 

reduced affinity compared to that of SurA WT or SurA P2. This is consistent with the 

crystal structure of the NFTLKFWDIFRK peptide binding to SurA P2 178, as the 

interaction is observed to the P1 domain of the chaperone (Figure 3.9) and as the P1 

is removed in the SurA N-Ct variant the higher affinity binding site is not available to 

interact with the peptide. These data suggest that when binding aromatic peptide 

sequences, the P1 domain is important for a high affinity interaction. However, 

removal of the P2 domain makes little difference to the interaction. Nevertheless, in 

the context of an unfolded OMP the binding surface of the P1 domain may not be 

sufficient and so model OMPs were next tested for binding to these SurA variants.  
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Figure 3.9 Positive binding peptides interact with the P1 domain of SurA.  a) Crystal 

structure of SurA P2 (N domain in blue, P1 in green and C in red) bound to the 
NFTLKFWDIFRK (magenta) (PDB: 2PV3) 178. B) Crystal structure of the isolated P1 domain 
(green) in complex with WEYIPNV (magenta) (PDB: 2PV1) 178. 

 

3.5.2 SurA PPIase domain variants interact differently with tOmpA and OmpT 

 

Microscale thermophoresis (MST) was used to measure the affinity of each of the 

SurA variants for tOmpA and OmpT (Methods 2.14). In this technique one of the 

binding partners is fluorescently labelled and kept at a constant low (nM) 

concentration, and its movement in a temperature gradient is monitored in the 

presence of different concentrations of its potential binding partner 227. N-terminal 

cysteine variants of tOmpA and OmpT were produced (Methods 2.4.4) and labelled 

via maleimide chemistry with AlexaFluor 488 dye (Methods 2.14.1) for use in the MST 

assay. Analytical size-exclusion chromatography indicated that all SurA variants were 

predominantly monomeric at the highest concentration used in the MST serial 

dilution (100 μM) (Figure 3.4). Aggregation assays were also carried out at 2 M OMP 

under the same buffer conditions as MST, this concentration is higher than that in 

the MST assay (100 nM) but is required to test for aggregation. As no aggregation is 

visible at this higher concentration (Figure 3.10), it is implied there is none in the 

lower concentration.  
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Figure 3.10 OMPs do not aggregate under MST conditions. Nephelometry light scattering 
assay of tOmpA and OmpT. OMPs were diluted to 2 μM in 50 mM glycine-NaOH, pH 9.5, 0.24 
M urea (from 8 M urea) and light scattering measured immediately at 25 °C over 30 minutes. 

 

In these experiments, all three SurA variants bind to tOmpA with similar low μM 

affinities (Figure 3.11, Table 3.4) in agreement with previous studies of binding of 

other OMPs (OmpG and OmpF) to SurA WT and SurA P2 97,177 (Table 3.1), although 

SurA N-Ct binding is slightly weaker. A different scenario is observed for binding of 

the SurA variants to OmpT. SurA WT binds to OmpT with low μM affinity, whereas 

SurA P2 and SurA N-Ct, while still able to bind substrate OMP (shown by a change 

in the normalised fluorescence), have a weak affinity to OmpT, as a full binding 

transition could not be seen under these conditions (Figure 3.11). The data were 

fitted to a Hill coefficient and positive cooperativity 228 was observed for the 

interactions between all SurA variants and tOmpA, as well as SurA WT and OmpT. 

This suggests that multiple copies of SurA are interacting with a single unfolded OMP 

chain. These data demonstrate that the core region of SurA (SurA N-Ct) is sufficient 

for OMP binding, consistent with the observation that many SurA homologues in 

early proteobacteria lack PPIase domains 174,179. However, SurA’s affinity for the 

larger more aggregation-prone OMP substrate, OmpT, is dramatically increased by 

the presence of two PPIase domains, suggesting that the presence of the PPIase 

domains are involved in the interaction of some OMPs, perhaps especially OMP 

greater in size than the 8-stranded OmpA. 



77 
 

 

 
Figure 3.11 Binding curves of SurA variants for OMPs. Microscale thermophoresis binding 

curves of tOmpA binding to a) SurA WT (green), b) SurA P2 (blue), and c) SurA N-Ct (red). d) 

OmpT binding to SurA WT (green), e) SurA P2 (blue), f) SurA N-Ct (red). Data were fitted to 
a Hill equation (shown as a solid line) (Methods 2.14.2). Samples contained 100 nM Alexa 
Fluor 488-labelled OMP, 0.3 nm – 100 μM SurA variant, 0.24 M urea, 50 mM glycine-NaOH, 
pH 9.5, at 25 °C. Three replicates were recorded and averaged prior to fitting and the error 
of the fit plotted as error bars. Data in d-f were not able to be fitted (see main text). 
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Table 3.4 MST fitting data of SurA variants binding to tOmpA and OmpT. Each binding 
interaction was measured in triplicate and the data averaged prior to fitting. Data were fitted 
to the Hill equation (Methods 2.14.2) in Igor Pro. N/A: not applicable (data could not be fitted 
adequately) 

 

3.5.3 The model bacterial protein Im7 does not bind SurA  

As a test to investigate whether SurA can interact with water soluble proteins, Im7 

was used to test its binding to SurA. Im7, or immunity protein 7, found in Gram-

negative bacteria binds and inactivates the endonuclease domain of collicin toxin 

(ColE7) 229. Im7 (an 87 amino acids, four α-helical protein) has been used for many 

years to investigate protein folding 230,231 and also to determine the effects of 

chaperones on protein folding 130,131. Im7 folds via an intermediate state and 

mutations have been used to generate Im7 variants which are either fully unfolded 

(Im7 L18A L19A L37A) 232 or trapped in the intermediate structure (Im7 L53A I54A) 

232,233.   

  SurA WT SurA P2 SurA N-Ct 

Kd (μM) Hill coef. Kd (μM) Hill coef. Kd (μM) Hill coef. 

tOmpA 1.76 ± 0.1 1.4 ± 0.1 1.73 ± 0.1 1.9 ± 0.2 5.13 ± 0.7 2.1 ±0.5 

OmpT 9.30 ± 0.5 1.3 ± 0.1 N/A N/A N/A N/A 
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Figure 3.12 Im7 folding variants. a) Reversible folding pathway of Im7 from the unfolded 
chain via a partially folded intermediate (BMRD: 7316)234 to the native folded protein (PDB: 
1AYI) 235. b) Sequence of wild type Im7, residues mutated to Ala in L18A L19A L37A (purple) 
and L53A I54A (orange). 

 

The three N-terminally cysteine Im7 variants were purified (Methods 2.4.6) were 

labelled with with malemide AlexaFlour 488 (Methods 2.14.1) and used to investigate 

whether they bind to SurA WT or SurA P2. The results (Figure 3.13) demonstrate 

that there is no detectable binding of any of the variants by MST with the 

concentrations of SurA used (3 nM – 100 μM). These mixtures of proteins were also 

analysed by native ESI-mass spectrometry (Methods 2.7) to determine whether 

complexes were observable by this method (Figure 3.14). SurA WT was tested with 

all the Im7 variants and only the unfolded variant (Im7 L18A L19S L37A) formed a 

complex with SurA WT, and ion from this complex were low intensity compared with 

the individual proteins in the mixture (Figure 3.14). These data suggest that SurA 

preferentially binds OMPs, with only a weak interaction with the water soluble 

protein (Im7), in an unfolded state, which agrees with previous data 177.  
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Figure 3.13 SurA does not bind Im7 in the unfolded, intermediate or native state. a) SurA 

WT (green) and SurA P2 (blue) testing binding with native Im7 WT. b) SurA WT (green) and 

SurA P2 (blue) testing binding with the variant Im7 L53A L54A. c) SurA WT (green) and SurA 

P2 (blue) testing binding with variant Im7 L18A L19A L37A. All MST experiments were 
carried out in 50 mM sodium phosphate buffer pH 7.0 with 100 nM Im7-AF488 and 3 nM – 

100 μM SurA variant (WT or P2), any changes in fluorescence intensity is due to the % 
labelling of the Im7 variant. (AF488: Alexafluor 488 labelled). 
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Figure 3.14 Native ESI-MS of SurA WT and Im7 variants.  a) SurA WT alone (10 μM), single 
green dots indicate monomer and double green dots indicate dimer. b) Im7 WT (10 μM) c) 
SurA WT 1:1 Im7 WT (10 μM) d) Im7 L53A I54A 10 μM e) SurA WT 1:1 Im7 DM f) Im7 L18A 
L19A L37A 10 μM g) SurA WT 1:1 Im7 TM. All Im7 monomers represented by blue dots and 
SurA-Im7 complex peaks are denoted with a yellow star. The complexes were formed by 1:1 



82 
 

mixture of the proteins to a final concentration of 10 M in 200 mM ammonium acceate 6.8 
(Methods 2.7). 

 

3.5.4 SPR of SurA binding to tOmpA 

Surface plasmon resonance (SPR) is another technique that can determine affinity 

but it also can measure the kinetics of the binding interaction 236. The N-terminal 

cysteine variant of tOmpA was immobilised on the SPR chip as described in Methods 

2.9. SurA variants were titrated and flowed over the surface and the change in 

reflectance on the chip surface was monitored by response units (Figure 3.15).  

 

Figure 3.15 SPR response curves of tOmpA binding SurA WT/ P2/ N-Ct.  a) SurA WT analyte 

interacting with tOmpA on the surface at 0.2, 1.0, 1.8, 5, 10 and 18 μM. b) SurA P2 
interacting with tOmpA at the same concentrations c) SurA N-Ct interacting with tOmpA at 
the same concentrations. All experiments carried out in 50 mM glycine buffer, 0.24 M urea 
pH 9.5. 
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kon (M-1 s-1) koff (s-1) Kd (μM) 

SurA WT + tOmpA 6.17 x 10
3
  0.0231  3.74 

SurA ΔP2 + tOmpA 4.6 x 10
3
  0.004  0.87 

SurA N-Ct + tOmpA 1.34 x 10
3
  0.117  8.81 

 
Table 3.5 Fitting data from SPR curves.  The titration data were fitted to a 1:1 Langmuir 
model using BIAevaluation software to extract the kon, koff and Kd (Equation shown in 2.9).  

 

Together the results presented above show that the Kds of SurA WT/ P2/ N-Ct for 

tOmpA can be measured by SPR and MST and all are low μM and show the same 

trend that SurA N-Ct has slightly weaker binding than SurA WT and SurA P2 to 

tOmpA. The kinetics of these interactions suggest a slow on rate and a slow off rate 

which may suggests conformational changes occur upon binding and release (given 

typical diffusion limited values of kon are 106 -108 M-1 s-1) 237. These data contrast with 

the findings of Costello et al. 212 who reported rapid association and dissociation of 

chaperones to OMPs traversing the periplasm by simulation, with calculated on and 

off rates from FRET experiments. However, the results presented here are the first 

direct measurement of association and dissociation rates of SurA with an OMP. 

Further investigation into the conformational changes occurring on OMP binding and 

how this changes for different OMPs is now required.  

3.5.5 Analytical SEC of SurA WT/ P2/ N-Ct tOmpA complexes 

After the binding affinities of SurA WT/ P2/ N-Ct for tOmpA were determined, 

analytical SEC was used next to analyse complexes formed. SurA-tOmpA complexes 

were formed at a 1:1 molar ratio (10 μM) and the samples analysed on an analytical 

Superdex 200 column (Methods 2.8).  
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Figure 3.16 Analytical SEC of SurA WT/ P2/ N-Ct bound to tOmpA. a) SurA WT 5 μM (green) 

and in 1:1 complex with tOmpA (10 M) (orange). b) SurA P2 5 μM (blue) and in 1:1 complex 
with tOmpA (10 μM). c) SurA N-Ct 5 μM (red) and in 1:1 complex with tOmpA (10 μM) 
(orange). d) SDS-PAGE of SurA-tOmpA complex peaks from a, d and c 

 

The addition of tOmpA shows a clear peak shift in all SurA variants, which is expected 

as, at these concentrations, SurA and tOmpA should be approximately 50-60% bound 

for all variants (Figure 3.16). The peaks from the SurA-tOmpA samples were analysed 

by SDS-PAGE to confirm the presence of both proteins in the complex peaks (Figure 

3.16d). The small amount of dimeric population seen in Figure 3.4 at 100 M is not 

observed under these conditions, so only the monomeric interactions with tOmpA 

are observed. 
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3.5.6 SurA can form 1:1 and 2:1 complexes with tOmpA 

The experiments above show that SurA binds to OMPs with low μM affinity and that 

this affinity is reduced for certain OMPs by the removal of the PPIase domains. To 

better understand the stoichiometries of these complexes, native ESI-MS was 

employed as it gives a more detailed picture of the masses of the complexes 

(Methods 2.7). SurA WT/ P2/ N-Ct complexes with tOmpA were prepared by diluting 

tOmpA from 8 M urea to 1 μM tOmpA in 200 mM ammonium acetate pH 9.5 

containing SurA at 1 μM at a final urea concentration of 0.24 M urea (Figure 3.17).  
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Figure 3.17 ESI mass spectra of tOmpA (1 μM) in the presence of 1 μM SurA WT a) tOmpA 

alone and in complex with b) SurA N-Ct d) SurA P2 f) SurA WT. The spectra of SurA variants 

alone at 1 μM alone are shown c) SurA N-Ct e) SurA P2, and g) SurA WT. For ease all SurA 
species including variants are shown in magenta, any dimeric SurA species (e.g. SurA WT2) 
are shown in light pink and tOmpA alone is in blue. SurA 1:1 tOmpA complexes are in green 
and SurA 2:1 tOmpA complexes in orange. Experiments were performed in 200 mM 
ammonium acetate, pH 9.5. Expected and observed masses are shown in Table 3.6. 

 

 



87 
 

Native MS of SurA WT was measured as an observed mass of 47255.3 ± 1.0 (Da) 

compared to the expected mass of 47372.53 Da from the protein sequence there is 

a loss of 117 Da that can be accounted for by the loss of the N-terminal methionine 

and glycine located prior to the hexa-histidine tag on the SurA constructs. The SurA 

P2 and SurA N-Ct variants also showed the loss of the N-terminal methionine. The 

reported, observed and expected masses are reported in Table 3.6 and all the 

measured masses are consistent with expected given the proteins are measured 

under native conditions. 

 

The results revealed that a 1:1 complex was observed as the predominant complex 

species for all variants binding to tOmpA, Aggregation of OmpT unfortunately 

precluded analysis by ESI-MS. Interestingly, the charge state distribution for the SurA 

N-Ct:tOmpA complex has a lower intensity than the 1:1 complexes of SurA WT and 

ΔP2 (Figure 3.14), which is consistent with SurA N-Ct having a lower affinity for 

tOmpA, as shown by MST (Table 3.4). SurA WT and SurA ΔP2 both show 1:1 and 2:1 

SurA to tOmpA complexes (Figure 3.17) suggesting that more than one SurA molecule 

is able to interact with a single non-native OMP. This is consistent with the Hill 

coefficients of >1 measured by MST (Figure 3.11). Mass spectrometry however does 

have the limitation that in the gas phase certain conformations are favoured and 

complexes with a higher stoichiometry and weak binding that may exist in solution 

may not be detected by mass spectrometry. It may be the case that 2:1 SurA to OMP 

complexes can be formed for each of the SurA variants however under these 

conditions using this technique that are not observed.  
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Protein or complex Expected mass (Da) Observed mass (Da) 

SurA 47241.3  47255.3 ± 1.0 

SurA2 94745.0 94951.6 ± 6.4 

tOmpA 18743.7 18746.5 ± 1.0 

1:1 SurA-tOmpA 65985.0 66146 ± 2.0 

2:1 SurA-tOmpA 113226.3 113397.0 ± 6.5 

SurA ΔP2 35317.9 35394.5 ± 1.0 

SurA ΔP2 2 70635.8 70794.3 ± 1.2 

1:1 SurA ΔP2 - tOmpA 54061.6 54088.5 ± 3.0 

1:1 SurA ΔP2 - tOmpA 89379.5 89526.1 ± 6.9 

SurA N-CT 23741.9 23804.2 ± 0.8 

1:1 SurA N-CT-tOmpA 42485.6 42567.0 ± 3.3 

 
Table 3.6 Observed and expected masses of SurA-tOmpA complexes.  The masses shown 
are for the proteins without the initiator methionine (and for SurA WT, the subsequent Gly 
as this was removed proteotypically during the preparation). 

 

3.5.7 SurA does not induce secondary structure of OMPs upon binding  

To investigate whether SurA alters the conformation of OMPs in the chaperone-

substrate complex, far-UV circular dichroism (CD) was used to analyse the secondary 

structure of the proteins within the complex (Methods 2.5). As seen in Figure 3.4, 

SurA alone is approximately 50% helical as is observed in Figure 3.18. The spectra of 

the OMPs alone were also measured in 8 M urea, showing that, as expected these 

proteins are fully unfolded with no secondary structure persisting. Spectra of tOmpA 

and OmpT were also measured in 0.24 M urea in 50 mM glycine pH 9.5. As previously 
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measured (Figure 3.10) under these conditions the OMPs do not aggregate over 30 

minutes. The far-UV CD spectra were recorded within 5 minutes of the dilution of 

OMPs out of 8 M urea to avoid any possibility of aggregation in the samples. tOmpA 

in 0.24 M urea remains as a random coil, however OmpT under these conditions 

contains some secondary structure. This agrees with previously published data which 

observed a change in tryptophan fluorescence when OmpT is diluted from 8 M to 

0.24 M urea in the absence of lipids or detergent 98. Together these data suggest that 

OmpT in low concentrations of urea has some structure, which is likely formed by the 

portion of the protein which is not contained in the membrane in the final folded 

structure (Figure 3.18).  

 

Figure 3.18 Differential CD of SurA tOmpA/OmpT complexes. a) tOmpA alone in 8 M and 
0.24 M urea (light and dark orange), tOmpA 1:1 SurA (yellow), SurA alone (dark green), the 
addition of tOmpA and SurA individual spectra (light green) and the spectra of SurA alone 
from the tOmpA 1:1 SurA complex spectra (grey). b) OmpT alone in 8 M (purple) and 0.24 M 
urea (pink), OmpT 1:1 SurA (red), SurA alone (dark green), the addition of tOmpA and SurA 
individual spectra (light green) All experiments were done at 5 μM protein in 50 mM glycine 
pH 9.5 on a Chirascan circular dichroism spectrometer (Methods 2.5) 

 

Upon 1:1 addition of SurA WT to tOmpA or OmpT, the spectra remain helical which 

is to be expected as the helical contribution of SurA will outweigh the random coil of 

the OMP (Figure 3.18). However, this complex has less helical content than SurA 

alone suggesting that SurA must undergo a change in secondary structure upon 

substrate binding. Addition of the individual spectra of tOmpA or OmpT with SurA 

alone, compared with the spectra of the SurA-OMP complex spectra, show that the 

summed spectra contains more secondary structure (as seen by a more negative MRE 

value). This suggests that there are conformational changes in one or both of the 
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proteins that are not observed in the proteins in solution on their own. As previous 

reports have documented, OMPs bind to SurA in an extended conformation. The data 

suggest that in complex with SurA the OMPs remain unfolded but there may be 

conformational changes in the SurA chaperone upon substrate binding.  

 

3.5.8 2D NMR spectra of SurA P2 interaction with tOmpA and OmpT  

Binding of SurA to OMPs has been observed by a plethora of methods discussed in 

this chapter, however these techniques could not determine the regions on SurA 

involved in the interaction. NMR is a powerful tool, which can be used to monitor 

binding at a residue-specific level and to observe conformational changes, as well as 

many other features of proteins 211,238. In this study we aimed to monitor the binding 

of SurA P2 to tOmpA and OmpT. SurA P2 is more amenable to NMR studies as it is 

smaller than SurA WT but can still interact with OMPs as determined by MST and MS. 

As the crystal structure of SurA P2 shows that the remaining domains are similarly  

structured to SurA WT, assignments for these residues could be transferred from 

SurA P2 to the spectrum of SurA WT. TROSY-NMR was used as it allows the study of 

larger proteins (above 25 kDa), as larger proteins have broad line widths in typical 

HSQC spectra, whereas TROSY-HSQC selectively detects only the narrowest 

component 238. 

 

30 μM SurA was 15N labelled, purified and then buffer exchanged into 50 mM glycine, 

pH 7.5 5% (v/v) D2O which contained 5 μM tOmpA. Glycine buffer was used to keep 

the conditions consistent with previous binding experiments (Figure 3.11, Figure 

3.15) however the pH was lowered to 7.5 as high pH leads to difficulty in observing 

exchangeable amide protons using 1H-detected NMR methods. Under these 

conditions, SurA is 16% bound to tOmpA (assuming a Kd of 1.7 M, Figure 3.11, Table 

3.4) which should be sufficient to see if there are chemical shifts in the presence of 

OMP, a higher concentration of OMP lead to precipitation. Once the tOmpA was 

added, the spectra was acquired as soon as possible to prevent aggregation, with a 
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dead time of approximately 5 minutes, then a TROSY-HSQC acquired for 1 hour. 

Figure 3.19 shows that although many of the peaks of SurA P2 are not observed in 

this experiment of the residues which are observed many undergo chemical shifts. 

However, some are not altered in the presence of tOmpA.  

 

Figure 3.19 TROSY-1H-15N HSQC spectra of SurA P2 in the presence and absence of tOmpA.  

Overlay of 30 μM 15N SurA P2 alone (black) and 30 μM 15N SurA P2 + 5 μM tOmpA (pink) 
both measured in 50 mM glycine pH 7.5 5% (v/v) D2O, 950 MHz (Methods 2.16.2). 

 

 

1H- 15N TROSY-HSQC spectra of SurA P2 was also monitored in the presence of OmpT 

(Figure 3.20). However, as this OMP has been shown to be more aggregation-prone 

than tOmpA 217, it is more liable to precipitate during the experiment. A lower 

concentration of OmpT (2 μM) was added than was present in the tOmpA 

experiment. As the Kd of SurA P2 and OmpT could not be determined (Figure 3.11), 

the % of SurA bound under these conditions cannot be calculated. Chemical shifts are 

observed in the complex spectra compared to the apo protein in spite of a low % 

bound and again some peaks move while others are not affected. These data show 
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that multiple residues of SurA P2 are involved in binding tOmpA and OmpT opposed 

to a small binding motif and that these residues are likely spread throughout the 

protein.  

 

 

Figure 3.20 TROSY-1H-15N HSQC spectra of SurA P2 in the presence and absence of OmpT.  

Overlay of 30 μM 15N SurA P2 alone (black) and 30 μM 15N SurA P2 + 2 μM OmpT (blue) 
both measured in 50 mM glycine pH 7.5 5% (v/v) D2O, 950 MHz (Methods 2.16.2). 

 

A comparison of the spectra of SurA P2 alone and in complex with either tOmpA 

(pink) or OmpT (blue) (Figure 3.21) shows that although some peaks remain the same 

in all three conditions, peaks which do move do not do so uniformly in the presence 

of OMPs. This suggests that different OMPs cause different environments for the 

residues in SurA involved in binding. Assignment of these spectra would allow 

determination of which regions of SurA are involved in binding to OMPs. As many of 

the peaks appear to move, it also suggests there may be global conformational 

changes in the chaperone upon substrate binding. 
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Figure 3.21 tOmpA and OmpT cause different effects upon binding to SurA P2. Overlay of 

the 1H-15N TROSY-HSQC spectra of 30 μM 15N SurA P2 alone (black) and 15N SurA P2 + 

OmpT (blue) and 15N SurA P2 + tOmpA (pink). All measured in 50 mM glycine pH 7.5 5% 
(v/v) D2O, 950 MHz. 

 

3.5.9 Preliminary Assignment of N15 C13 SurA P2 

After preliminary data showing that the addition of OMPs cause chemical shifts in 

SurA P2, this spectrum was optimised in order to give clean enough spectra for good 

assignments. The TROSY-HSQC spectra of the 35 kDa SurA P2 at 100 μM (Figure 3.5) 

1H 

15N 
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was well dispersed indicative of folded protein and did not have many overlapping 

peaks however some of peaks were quite broad and some peaks were not observed. 

From the initial test the protein concentration was reduced to 70 μM to prevent any 

dimer interaction which could occur at high concentrations and the temperature was 

increased from 25°C to 35°C which does alter the peaks chemical shift but also 

increases the resolution (Figure 3.22).   
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Figure 3.22 Partial assignment of SurA P2.  TROSY-HSQC spectra of N15 and C13 SurA P2 in 
25 mM MES, 50 mM NaCl, pH 6.5 5% (v/v) D2O at 35°C, 750 mHz bruker NMR spectrometer 
and analysed using CCPN analysis. Inset is a schematic of regions in which the residues have 
been assigned, coloured as in Figure 3.4d. 

 

After optimisation of the NMR conditions 238 peaks were observed of the 320 

residues expected for the SurA P2 construct, so there are still 82 peaks which cannot 

be observed. These peaks may be in highly dynamic unstructured regions within the 

protein which have linewidths too broad to detect. Triple resonance spectra (HNCO, 

HN(CA)CO, HNCA, HN(CO)CA, HN(COCA)CB and HN(CA)CB) of N15 and C13 labelled 

SurA P2 as described in Methods 2.16.3 were measured to give i and i-1 peaks for 

the Cα, Cβ and Co of each residue allowing backbone chemical shift assignment. Due 

to the size of the protein leading to many peaks in the triple resonance spectra 

15N 

1H 
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overlapping and limited time, 73 of the peaks in the TROSY were assigned, however 

these residues are well distributed throughout the protein with assigned regions in 

all domains of SurA P2 as shown by the inset of Figure 3.22. 

 

As the tests of SurA P2 interacting with OMPs were carried out in a different buffer 

and at a different temperature, unfortunately the assignments cannot be used to 

determine which peaks shift upon the addition of OMPs. However, residue specific 

information on SurA’s binding regions is possible to obtain by 2D-NMR and further 

study will soon elucidate the regions of SurA that interact with OMPs.  

 

3.6 Discussion 

Previous studies have determined the importance of SurA in OMP biogenesis 164,170, 

demonstrating its preference to interact with aromatic sequences 175 and its higher 

affinity for OMPs than unfolded model proteins 177. In this chapter, multiple 

biochemical assays were employed to analyse SurA binding to OMPs in their unfolded 

state as they would be in the periplasm. This was achieved by tailoring the 

experimental conditions such as OMP concentration and urea concentration to 

ensure that aggregation was prevented. Light scattering was used to investigate 

aggregation of tOmpA and OmpT alone and no siginificant increase in light scatering 

was observed sugesting that the OMPs remain soluble and do not form large 

aggregates under these binding conditions.  

 

Native ESI-MS, analytical SEC, SPR and MST revealed that the core of SurA (the N and 

C terminal domains lacking the PPIase domains) is sufficient for interacting with 

OMPs. Interestingly, studies of SurA homologues in different Gram-negative bacteria 

have determined that some bacterial species only contain a single PPIase domain 

(often with higher sequence similarity to the P2 domain of the E. coli SurA) or no 

PPIase domains 174. These data suggest that in cases of SurA homologues which do 

not contain PPIase domains, the chaperone retains the ability to interact with OMPs. 



97 
 

Further bioinformatics analysis (B.Schiffrin unpublished) of the domains within SurA 

homologues across different proteobacteria has been carried out from a dataset of 

1176 genes from 1160 unique species. Results suggest that the core domain of SurA 

(N-Ct) is the ancestoral protein as it is more common to find a single or no PPIase 

domains in the older bacterial classes. It also suggests that the PPIase domains have 

been aquired and retained over the evolution of proteobacteria as the later bacterial 

classes mostly contain two PPIase domains (Figure 3.23). Overall it appears that there 

is an adventageous role for the PPIase domains which has been selected for, however 

this role is not yet fully understood. The binding data from the SurA domain variants 

presented here gives insights into the functions of the PPIase domains and 

suggestions as to their importance. 

 

 
Figure 3.23 Bioinformatics analysis of presence of PPIase domains in SurA homologues.  

Proteins homologous to E. coli SurA in --, -- and -proteobacteria were analysed for 
the presence or absence, of PPIase domains. Sequences were obtained from the PFAM 
database and belong to the SurA_N PFAM family (PF09312). 

 

As an initial test of binding, a small aromatic peptide which has previously been 

shown to interact with SurA by an ELISA assay was analysed by ITC for binding to the 

SurA variants to observe any change caused by the presence of absence of the PPIase 

domains. The crystal structure of SurA domains in contact with aromatic peptides 

show they interact with the P1 domain. In agreement with this, the ITC shows that 
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removing the P1 domain significantly reduces SurA affinity for the peptide (Figure 

3.8). The role of the P1 domain in binding OMPs is less dramatic. For tOmpA, removal 

of P2 or both PPIase domains does not prevent SurA’s interaction with this OMP. 

However, in the absence of P1, the SurA N-Ct variant shows a reduction in affinity 

(Figure 3.11, Table 3.4), suggesting that a region of SurA involved in the interaction 

has been lost. Taken together these data suggest that the P1 domain of SurA may be 

an important point of contact for substrates. It also appears that the P1 domain can 

recognise aromatic residues which are common in OMP sequences 175 and hence 

conveys specificity for OMPs over other unfolded proteins.  

 

The role of the PPIase domains was also analysed in the interaction of SurA with 

OmpT. For this OMP, the PPIase domains are required for an efficient interaction. 

SurA P2 and SurA N-Ct has a change in fluorescence with OmpT over the titration 

showing that there is binding occuring. However, as a full binding curve cannot be 

measured these interactions appear to have very low affinity (Figure 3.11, Table 3.4). 

Another explanation for the change in fluorescence could be aggregation of OmpT 

which is changing the thermophesis properties, however this is unlikely as the final 

conentration of OmpT in this assay in 100 nM. OmpT has been shown to contain some 

amount of secondary structure under these conditions demonstrated by CD (Figure 

3.18) and so the binding of this substrate may not be as simple as that of the unfolded 

chain of tOmpA. However, OmpT and SurA WT do interact with low M afffinity 

suggesting that SurA has the ability to chaperone this more complex substrate.  

 

The MST of tOmpA and OmpT binding the SurA variants showed that, for interactions 

where a full binding curve could be obtained, using a hill equation rather than a 

quadratic equation allowed a better fit to the data (Figure 3.24). Fitting the data by 

the two different methods gave a very similar kD, however using the hill equation 

showed that all the interactions that could be fitted have a hill coefficient of >1 (Table 

3.4) indicative of positive cooperativity. It appears that there is a complex binding 

mechanism of SurA to OMPs and the MST suggests that this is substrate dependent. 
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From this data, two hypotheses may be formed, either the binding of a single SurA 

molecule to a unfolded OMP polypeptide chain causes an increase in the affinity for 

a second SurA molecule to bind elsewhere, in a ‘beads on a sting’ mechanism. The 

other posibility is that an initial contact of a small region of SurA with the OMP 

increases the affinity for further binding regions on the same SurA molecule, causing 

the OMP to wrap around the chaperone and interact with multiple sites on the 

chaperone surface, as has been previously shown for PhoA interacting with trigger 

factor 82. This second mechanism is mostly supported by the mass spectrometry data 

suggesting mostly a 1:1 interaction, however the limitaions of this technique in 

monitoring large complexes is discussed in section 3.5.6. Either of these mechanisms 

would be able to prevent aggregation prone regions of the OMP chain self-associating 

and therefor prevent aggregation and it may be the case that this chaperone can 

interact using both mechanisms depending on the conditions within the cell however 

more detailed structural analysis of this complex would be required to determine if 

this is the case.  

 

Figure 3.24 Comparison of quadratic and Hill equation fitting.  SurA ΔP2 binding tOmpA (50 
mM glycine pH 9.5 0.24M urea) fit to a Hill (solid line) or quadratic (dotted line) equation.  

 

Analysis of the secondary structure of SurA WT on the binding of tOmpA or OmpT 

shows that SurA appears to have altered secondary structure when in complex with 

a substrate, as determined by CD (Figure 3.18). The NMR analysis of the complex 

shows that in the presence of OMPs many residues in SurA have an altered chemical 
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environment (Figure 3.21), which suggests that multiple regions of SurA are 

interacting with the OMP, or that the chaperone is undergoing conformational 

chages or a combination of the two effects. These data together suggest that there 

are extensive conformational changes occuring in SurA upon substrate binding which 

may be required for the chaperones mechanism of action.  Structural determination 

of this complex by NMR will determine the extent of this change and help elucidate 

the role of structural movements in the mechanism of SurA.  

 

In summary the data presented here show that the the core domain of SurA is 

sufficient for OMP interaction, however the PPIase domains play a role in the 

interation with more complex substrates such as OmpT. SurA preferentially binds 

OMPs over water soluble proteins. SurA is able to bind OMPs of different sizes and 

aggregation propensities and how it then prevents the self-association or aberrant 

interactions during the transport of these OMPs through the periplasm is a critical 

factor in OMP biogenesis and is the focus of the next chapter. 
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Chapter 4 SurA PPIase domain variants and other OMP 

chaperones have varying abilities to prevent OMP 

aggregation  

4.1 Introduction 

The periplasm is highly dynamic with rapidly changing conditions such as pH and 

viscosity. The presence of these stresses can lead to protein unfolding and 

aggregation 33. In addition to this challenging environment, OMPs traversing the 

periplasm are in an unfolded or partially folded state and, as they are amphipathic 

molecules with stretches of hydrophobic residues, this makes them prone to self-

association and aggregation 239. Chaperones interact with OMPs and have been 

shown to hold them in an unfolded and extended conformation 149 which prevents 

intramolecular interactions of the OMP chain. It has also been observed that these 

chaperones have a very diverse range of substrates as SurA has been shown to 

interact with OMPs of between 8 and 26 strands 170. The mechanism by which SurA 

and other periplasmic chaperones can prevent the aggregation of OMPs of different 

sizes, sequences and aggregation propensities remains to be understood.  

 

The aggregation propensity of eight OMPs has been studied using sedimentation 

velocity analytical ultra-centrifugation (AUC) and demonstrated that unfolded OMPs 

have differing propensities to self-associate and form higher order oligomers 217. A 

pH titration showed that an increase in pH led to the OMPs forming lower weight 

oligomers and at pH 9, all OMPs except OmpT have average weights of less than 

tetrameric species. The addition of KCl induced OMP aggregation, however OmpA 

and OmpX (the 8-stranded OMPs tested) remained monomeric to a higher salt 

concentration (200 mM) in comparison to the other OMPs. Urea was also monitored, 

which showed that, at 4 M urea, all OMPs were monomeric, with the exception of 

PagP. Below 4 M urea however, the OMPs had varying amounts of self-association. 

Armed with this knowledge, during the development of the aggregation assay in this 
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chapter, pH, urea and salt concentration were carefully monitored to find conditions 

in which reproducible aggregation kinetics could be monitored.  

 

Monitoring the inhibition of protein aggregation by chaperones in vitro is common in 

the study of ATP-dependent chaperones that interact with soluble proteins to test 

chaperone activity 15,82,118,240. Thermal denaturation or rapid dilution from high 

denaturant conditions can induce aggregation of test proteins, a titration of 

chaperone is then used to observe the concentration of chaperone required to 

prevent aggregation. In the case of GroEL, a 1:1 ratio of chaperone to rhodanese is 

sufficient to prevent aggregation 117 while trigger factor (TF) can prevent 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) aggregation with a 0.5:1 

chaperone to substrate ratio 82. Only a limited number or studies have monitored 

OMP aggregation. 

 

A study which investigated the ability of FkpA to chaperone OMPs at high 

temperature showed that FkpA can reduce the aggregation of OmpF in a 

concentration dependent manner and that this chaperone is more active at 44 °C 

than 37 °C 142. The titration of FkpA to 20-fold excess over the substrate could not 

inhibit aggregation but showed a significant decrease in light scattering amplitude 142.  

In comparison, a 20-fold molar excess of SurA WT could reduce but not eliminate 

aggregation at 37 ° C and had little effect at 44 °C. Skp showed a only a slight reduction 

in OmpF aggregation at both temperatures 142. A separate study which monitored 

unfolded OmpC aggregation in the presence of periplasmic chaperones showed that 

2x, 5x and 20x molar excess of DegP, Skp and SurA, respectively, caused inhibition of 

OmpC aggregation as monitored by light scattering 241. SurA has also been tested for 

chaperone activity against a 49 kDa water soluble protein, citrate synthase 165. 

Although a 1:1 mixture had some effect on the aggregation, a 64x excess of SurA was 

required to fully inhibit the aggregation of this non-native substrate 165. These data 

suggest that periplasmic chaperones are required in a higher excess to prevent the 

aggregation of their substrates than cytoplasmic chaperones. This could be due to 
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their substrates having a higher aggregation propensity or simply for the reason that 

periplasmic chaperones have a distinct mechanism of action to cytoplasmic 

chaperones.  

 

Light scattering is often used to monitor protein aggregation as it is sensitive to an 

increase in particle size and number in solution and so self-association and 

precipitation of large OMP aggregates causes an increase in light scattering 242. This 

increase in light scattering by aggregation can be prevented by the formation of a 

soluble complex between the molecular chaperones and the substrates. Typically, 

light scattering is monitored by turbidity, which monitors the loss of transferred light 

in a straight path caused by particles in the solution deflecting the light. Another 

technique to monitor aggregation is nephelometry which measures only the light that 

is scattered within the sample up to 80° and traps light that passes directly through 

the sample 243. Nephelometry is more sensitive than turbidity and also often leads to 

data with a better signal to noise 244. To this end a nephelometry assay was developed 

to monitor aggregation of OMPs and to determine the roles of the PPIase domains of 

SurA in chaperoning OMPs. In this chapter the domain variants of SurA (SurA P2 and 

SurA N-Ct) (Figure 1.20) along with SurA WT were tested to determine their effects 

on tOmpA and OmpT aggregation. To complement this detailed analysis, a 

comparison of multiple E. coli chaperones which have been shown to interact with 

OMPs during their biogenesis was also carried out by an end point analysis. The end 

point analysis allows direct comparison of different chaperones to determine their 

ability to prevent OMP aggregation and to identify whether the chaperones have 

specificities for certain substrates.  

 

4.2 OMP aggregation assay development using Nephelometry 

A small number of previous studies have monitored OMP aggregation by light 

scattering 142,241, however this was performed either as a control to determine if 

aggregates will be formed in other experiments or under only limited conditions. 

Here, I have determined conditions under which tOmpA and OmpT reproducibly 
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aggregate and carried out chaperone titrations to pick apart the effects that different 

chaperones have on OMP self-association. 

 

4.2.1 tOmpA and OmpT aggregate upon dilution from 6 M Gdn-HCl 

 

tOmpA and OmpT were expressed, purified and snap frozen in 6 M Gdn-HCl, 25 mM 

Tris-HCl, pH 7.2 as detailed in Methods 2.4.4. As an initial test to monitor whether 

the aggregation of the OMPs can be monitored by nephelometry, a concentration 

series of 2-8 μM OMP was tested by dilution from 6M Gdn-HCl at different stock 

concentrations so the final concentration of Gdn-HCl was held at 0.24 M.  

 
Figure 4.1 Concentration dependence of tOmpA and OmpT aggregation measured by 
nephelometry.  a) tOmpA and b) OmpT at 2 μM (red), 4 μM (blue), 6 μM (yellow) and 8 μM 
(green). Both proteins were diluted from 6 M Gdn-HCl to a final concentration of 0.24 M Gdn-
HCl in 50 mM glycine buffer pH 9.5. Nephelometry was measured at 635 ± 10 nm with a gain 
set to 50. 

 

When measured under the same conditions (50 mM glycine buffer pH 9.5, 0.24 M 

Gdn-HCl) tOmpA and OmpT both aggregate at 2 μM, however tOmpA has a longer 

lag time before sufficient and large enough species are formed that scatter light and 

a lower final amplitude than OmpT (Figure 4.1). This suggests that tOmpA aggregates 

to a lesser extent than OmpT under these conditions, which is in agreement with 

previous reports that OmpT is more aggregation prone as measured by AUC 217. An 
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increase in OMP concentration causes a decrease in lag time and an increase in 

amplitude for both tOmpA and OmpT, as expected for a multi-molecular reaction. As 

aggregation can be monitored at 2 μM OMP and a lower concentration of OMP allows 

a higher relative molar excess of chaperone to be added, 2 M OMP was chosen to 

carry out all nephelometry experiments.  

 

4.2.2 SurA WT can inhibit the aggregation of tOmpA and OmpT however 

removal of the PPIase domains reduces chaperone activity  

 

SurA WT, P2 or N-Ct were then added to the buffer prior to the dilution of the OMP 

to initiate aggregation. If the chaperone can bind to the OMP and prevent self-

association, it should reduce the light scattering output. SurA WT was titrated into 

each OMP to determine the concentration which was able to prevent aggregation. 

For tOmpA this requires a 10x molar excess of SurA WT, however for OmpT complete 

inhibition over a 25 minute time-scale requires 100x excess of chaperone (Figure 4.2). 

The difference in SurA excess required to prevent the two OMP substrates suggests 

that the chaperone mechanism is not simply monomer sequestration, where a single 

SurA interacts with an unfolded OMP to prevent it for self-association, but there is a 

more complex mechanism of chaperoning these aggregation prone substrates. This 

agrees with the binding data that SurA may interact by different mechanisms to 

different substrates which may affect the substrates aggregation.  The PPIase domain 

variants, SurA P2 and SurA N-Ct, were then tested at the same concentration of 

SurA WT that could prevent aggregation to determine whether the removal of the 

PPIase domains affected SurA’s ability to chaperone OMPs. Under these conditions 

SurA P2 is slightly less effective than SurA WT in preventing the aggregation of 

tOmpA and SurA N-Ct is worse again although N-Ct still reduces aggregation slightly 

(Figure 4.2). The results suggest that sequential removal of the PPIase domains leads 

to constructs that are progressively less effective at preventing aggregation, although 

they have similar Kds at least for binding tOmpA (Figure 3.11). Removal of the PPIase 

domains has a dramatic effect on the aggregation of OmpT as SurA P2 and SurA N-

Ct slow the aggregation of OmpT, but result in a higher final light scattering 
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amplitude, suggesting that the chaperones may be pulled into the aggregates. These 

data show that the PPIase domains play an important role in preventing self-

association of OMPs, in particular the larger more aggregation prone OMPs, such as 

OmpT.  

 

Figure 4.2 SurA variants have differing effects on OMP aggregation. Aggregation of a) 
tOmpA (orange) and b) OmpT (orange) alone and in the presence of SurA WT (green), SurA 

P2 (blue) and SurA N-Ct (red). a) 10x excess of chaperone is added to tOmpA and b) a 100x 
of SurA variants excess added to OmpT to inhibit. All samples contained 50 mM glycine buffer 

pH 9.5, 0.24 M, Gdn-HCl at 25 C.  

 

4.2.3 Aggregation of OMPs in urea requires NaCl  

 

After the preliminary experiments carried out in a final concentration of 0.24 M Gdn-

HCl, the conditions were next altered to determine whether aggregation could be 

carried out to monitor OMP aggregation from denaturation in urea to remain 

consistent with the binding data that were carried out in 50 mM glycine buffer, pH 

9.5, 0.24 M urea (Methods 2.15.1). The OMPs were buffer exchanged into 8 M urea 

from 6 M Gdn-HCl to keep them in an unfolded state, they were then diluted to a 

stock concentration of 66.7 M OMP in 8 M urea before rapid 33x dilution to give a 

final concentration of 2 M protein in 50 l final volume. 
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Interestingly, little or no aggregation was observed upon dilution of the OMPs from 

urea, as was seen under conditions used for MST experiments, 50 mM glycine buffer 

pH 9.5, 0.24 M urea (Figure 3.9). However the addition of 0.24 M NaCl to the buffer 

to create an ionic strength identical to that measured above (0.24 Gdn-HCl) (Figure 

4.2) can induce aggregation of tOmpA and OmpT, by pelleting assay, it was also 

observed that there was no soluble tOmpA or OmpT in solution after 30 minutes of 

aggregation (Figure 4.3b). It is interesting to note that under these conditions, OmpT 

has a longer lag time and a lower final amplitude than tOmpA, which is the opposite 

of the previous observation following dilution from Gdn-HCl (Figure 4.2). This may be 

due the denaturants having different effects on the conformation of the OMP or if 

OmpT is significantly more aggregation prone it may have formed insoluble 

aggregates which have fallen out of solution to the bottom of the well and so are not 

observed in the kinetics analysis. Despite the differences dependent on the 

denaturant used, the change in the light scattering for both OMPs alone is 

reproducible and allows further analysis to test the effects of the presence of 

chaperone.  

 

 

Figure 4.3 tOmpA and OmpT require NaCl to induce aggregation in urea. a) tOmpA and 

OmpT at 2 M (final urea concentration 0.24 M) in the presence or absence of 0.24 M NaCl 
in 50 mM glycine buffer pH 9.5. tOmpA without NaCl (yellow) and with NaCl (orange) and 
OmpT without NaCl (pink) and with (purple). b) Pelleting assay of tOmpA and OmpT (50 mM 
glycine buffer pH 9.5, 0.24 M urea, 0.24 M NaCl) after 30 minutes, soluble (sol) and pelleted 
(pel) material separated by centrifugation and run on SDS-PAGE gel. 
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4.3 PPIase domains of SurA increase the ability to prevent aggregation 

Once conditions were optimised to reproducibly analyse OMP aggregation following 

dilution from 8 M urea the ability of the chaperones to inhibit tOmpA or OmpT 

aggregation was tested again. The buffer (50 mM glycine buffer pH 9.5, 0.24 M NaCl) 

was prepared in the presence or absence of a SurA variant (SurA WT, SurA P2, SurA 

N-Ct) at concentrations in excess of the substrate OMP (2x-100x) with a final volume 

of 50 l (Methods 2.15.1). Rapid dilution of tOmpA or OmpT to a final concentration 

of 2 M in 0.24 M urea was carried out and the measurements which monitor the 

increase in light scattering associated with aggregation using nephelometry were 

started immediately. The experiment was allowed to proceed for 30 minutes, at 

which time aggregation was complete as judged by the plateau in light scattering 

signal and the fact that the OMPs are fully insoluble in the pelleting assay (Figure 4.3). 

The data were analysed using both the light scattering kinetics which shows changes 

in lag time and apparent rate of aggregation and also were presented as end-point 

analysis where the final amplitude over three replicates are to allow easy comparison 

between conditions (Figure 4.4). 

 

The results show that the presence of SurA WT inhibits both tOmpA and OmpT 

aggregation in a dose-dependent manner (Figure 4.4, Figure 4.5). A 50-fold molar 

excess of SurA WT prevents aggregation of tOmpA, demonstrated by no significant 

increase in light scattering over 30 min. By contrast, a 50-fold molar excess of SurA 

WT is insufficient to fully prevent OmpT aggregation, which requires a 100-fold 

chaperone excess as was seen upon dilution from Gdn-HCl (Figure 4.2). The 

requirement for higher SurA WT concentrations to prevent the aggregation of OmpT 

compared with tOmpA may be due to the larger size of OmpT, its higher aggregation 

propensity 217, a lower affinity of SurA WT for OmpT compared to tOmpA (Figure 

3.11), the kinetics of the binding reaction, or a combination of these effects. 
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tOmpA aggregation was also inhibited by a 50 fold molar excess of SurA P2 and SurA 

N-Ct (Figure 4.4) suggesting that removal of the PPIase domains has no effect on 

SurA’s ability to chaperone this OMP and that again the N-Ct, the core module of SurA 

is a functional chaperone. The end point analysis of the effect of the SurA variants on 

tOmpA aggregation allows subtle differences to be detected, and reveals that at a 10-

fold excess SurA WT and SurA P2 both reduce the end point amplitude by 

approximately 50%, whereas SurA N-Ct has only a small effect at this concentration. 

This improvement of aggregation inhibition with the addition of the PPIase domain 

also correlates with the slight reduction in affinity for SurA N-Ct for tOmpA compared 

to the other PPIase variants (Figure 3.11). 

 

Removal of the P2 domain alone, or both PPIase domains from SurA has a dramatic 

effect on the ability of SurA to prevent OmpT aggregation. Not only is aggregation of 

OmpT not prevented by addition of SurA P2 or SurA N-Ct, but the addition of either 

variant increased both the rate and final amplitude of the OmpT aggregation reaction 

in a dose-dependent manner, reflecting an increase in the number and/or size of the 

aggregates formed. This also correlates with the binding data for these variants for 

OmpT, as the affinity is significantly reduced compared with SurA WT (Figure 3.10).  
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Figure 4.4 SurA variants inhibit tOmpA aggregation.  (a,b,c) Aggregation of tOmpA alone 
(orange), and in the presence of (a) 2-100x  molar excess of SurA WT (dark to light green), (b) 

SurA P2 2-100x (dark to light blue) and (c) SurA N-Ct 2-100x (dark to light red). (d,e,f) Bar 
charts showing light scattering value after 30 minutes of at least three replicates of the 
conditions monitored in a,b and c respectively, errors are standard deviation of the 

replicates. Samples contained 2 μM tOmpA, 0-200 M SurA variant, 0.24 M urea, 0.24 M 
NaCl, 50 mM glycine-NaOH, pH 9.5, at 25 °C. 
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Figure 4.5 SurA WT inhibits OmpT aggregation but SurA P2 and N-Ct do not.  (a,b,c) 
Aggregation of OmpT alone (orange), and in the presence of (a) 2-100x molar excess of SurA 

WT (dark to light green), (b) SurA P2 2-100x (dark to light blue) and (c) SurA N-Ct 2-100x 
(dark to light red). (d,e,f) Bar charts showing the light scattering value after 30 minutes of at 
least three replicates of the conditions monitored in a, b and c respectively. Errors are 
standard deviation of the replicates. Samples contained 2 μM OmpT/0-200 μM SurA variant, 
0.24 M urea, 0.24 M NaCl, 50 mM glycine-NaOH, pH 9.5, at 25 °C. 
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Lag time analysis of the aggregation data sets in Figure 4.4 and Figure 4.5 was also 

carried out to better understand the effect of the SurA variants on OMP aggregation. 

A threshold of 300 light scattering units was chosen, above which the aggregation 

was determined to be in the exponential phase. The lag times demonstrate that the 

time taken to reach exponential phase is related to the concentration of chaperone 

added and therefor shows the same trend as the endpoint analysis.  

 

For tOmpA the lag times increase with the a larger excess of SurA (Figure 4.6 a-c) 

which suggests that the SurA variants can bind to monomeric OMPs or small 

oligomers which are not observed in the Nephelometry assay and can slow the 

progression of larger or more numerous OMP aggregates forming, as well as reducing 

the final amplitude. OmpT with the addition of SurA WT also has a general trend of 

increasing lag time with increasing excess of chaperone agreeing with the final 

amplitude analysis. SurA P2 and SurA N-Ct which were observed to increase the final 

amplitudes (Figure 4.5) also increased the rate of large enough aggregates to be 

observed in the assay. This suggests that the SurA variants which increase the rate of 

aggregation do so by interacting with small oligomers or monomeric OMPs to 

promote aggregation perhaps by being incorporated into the aggregates to drive the 

aggregate size. The lag time analysis has demonstrated that the SurA variants which 

interact with OMPs to either prevent or promote aggregation do so by altering the 

rate at which the enter the exponential phase, suggesting that SurA is not interacting 

with multimeric OMPs to disassemble aggregates but instead with monomeric or 

small aggregates at early time points in the reaction.  
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Figure 4.6 Effect of SurA variants on the lag times of tOmpA and OmpT aggregation. 
 (a-c) Lag time values for aggregation assays in Figure 4.4 of tOmpA alone (orange) or in 

the presence of 2-100 molar excess of (a) SurA WT (dark to light green), (b) SurA P2 
(dark to light blue), or (c) SurA N-Ct (dark to light red). (d-f) Lag time values for aggregation 
assays in Figure 4.5 of OmpT alone (orange) or in the presence of 2-100 molar excess of 

(a) SurA WT (dark to light green), (b) SurA P2 (dark to light blue), or (c) SurA N-Ct (dark 
to light red). Conditions highlighted by a star symbol indicate those in which no 
aggregation was detected over the experimental timescale (30 min). Lag time was 
measured where a light scattering value >300 was measured. Samples contained 2 μM 
tOmpA/OmpT, 4-200 μM SurA variant, 0.24 M urea, 0.24 M NaCl, 50 mM glycine-NaOH, 
pH 9.5, at 25 °C, quiescent. 
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4.3.1 Light scattering is caused by aggregation and the addition of SurA 

variants to tOmpA can prevent insoluble OMP aggregate formation  

 

In order to determine whether the aggregation of OMPs is complete after 30 minutes 

and to test the extent to which the addition of chaperone prevents the formation of 

insoluble material, pelleting assays were carried out on tOmpA alone and in the 

presence of SurA WT, P2 or N-Ct. The samples were prepared in the same way as is 

described for the nephelometry assay (Methods 2.15.1) and incubated at 25 °C for 30 

minutes before centrifugation at 13,000 g for 1 hour to separate soluble protein from 

protein which has formed insoluble aggregates. The soluble and pelleted material 

was then run on a SDS-PAGE gel and quantified by densitometry to identify the 

percentage of protein in each fraction. OmpT was unfortunately not able to be 

monitored by this technique as it has the same molecular weight as SurA P2 and the 

higher excess of SurA required to have an effect on OmpT aggregation causes the gel 

to be overloaded with SurA which prevented accurate densitometry analysis.  

 

The results of these experiments showed that tOmpA alone after 30 minutes is mostly 

in the pellet as was observed in (Figure 4.3). However densitometry reveals that a 

small amount of soluble tOmpA is detected which cannot be observed without 

computational analysis (Figure 4.7 a,b). The addition of SurA at 10-fold molar excess 

of chaperone to tOmpA reduces the amplitude of aggregation for SurA WT and P2 

but N-Ct has little effect (Figure 4.4) so this concentration was used to monitor the 

aggregation with a pelleting assay. The amount of tOmpA in the pelleted fraction in 

the presence of a 10-fold molar excess of SurA WT reduced compared to pelleted 

tOmpA alone and the majority of tOmpA remains soluble (Figure 4.7 a,b). SurA P2 

appears slightly less effective than SurA WT at reducing the amount of pelleted 

tOmpA. However, this may be due to variability in the experiment and repeating the 

experiment may show that these data are actually more similar. SurA N-Ct can retain 

tOmpA mostly in the soluble fraction but is not as good at preventing tOmpA 

aggregation as SurA WT or P2, consistent with the nephelometry assay (Figure 4.4). 
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To monitor the morphology of the aggregates formed at the end of a nephelomerty 

assay negative-stain transmission electron microscopy (TEM) was used as it was 

previously observed that thioflavin T (Tht) interacted with OmpA aggregates 215, 

suggesting that the aggregates formed are fibrillar in structure. tOmpA and OmpT 

were sampled after 30 minutes’ incubation at 25 °C, deposited on a carbon-coated 

EM grids and stained with uranyl acetate (Methods 2.15.3). Both tOmpA and OmpT 

form amorphous aggregates under these conditions (Figure 4.7 c,d) which is 

inconsistent with the previous reports 215. It may be the case however that there is β-

structure within the amorphous aggregates, which may lead to ThT fluorescence. The 

pelleting assay and EM data taken together show that the light scattering output 

observed in the nephelometry assay is caused by OMP aggregation and that SurA can 

inhibit aggregation by maintaining OMP solubility.   
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Figure 4.7 tOmpA and OmpT form amorphous aggregates  a) At 30 minutes of aggregation 
the samples were pelleted and soluble and pelleted fractions run on an SDS PAGE gel, tOmpA 
band indicated by the asterisk. b) The bands were quantified by densitometry and normalised 

to soluble tOmpA alone (orange) to monitor the effect of 10x SurA WT (green), SurA P2 

(blue) and SurA N-Ct (red). b) Transmission electron microscopy (TEM) images of 2 M 

tOmpA and OmpT after 30 minutes aggregation at 25 C 50 mM glycine buffer pH 9.5, 0.24 
M urea, 0.24 M NaCl. 
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4.4 Comparison of SurA variants with E. coli ATP-independent 

chaperones in preventing OMP aggregation 

The finding that the PPIase domain variants have differing effects in preventing the 

aggregation on the two OMP substrates monitored here suggested that SurA may 

have specificity for certain OMPs. In order to test whether other chaperones that 

interact with OMPs can prevent tOmpA and OmpT aggregation, a panel of 

chaperones were investigated using aggregation of these two OMPs as measured by 

nephelometry. Here, Skp, Trigger Factor (TF), SecB, Spy and BSA as a non-chaperone 

control were compared to SurA WT for chaperone ability. As above, aggregation 

assays were performed by rapid dilution of tOmpA or OmpT stock solutions, into 

buffer alone or containing a 10-fold molar excess of each chaperone for tOmpA or a 

20-fold molar excess of chaperone for OmpT. The solutions were incubated at 25 °C 

for 30 minutes and then an end-point light scattering value was measured. 

Importantly the chaperones do not aggregate alone under these conditions (Figure 

4.8) and so any effects caused are due to the interaction of the OMP with the 

chaperone.  

Figure 4.8 Chaperones alone do not aggregate. SurA WT (green), SurA P2 (blue), SurA N-Ct 

(red), Skp (cyan), Spy (dark purple), SecB (light purple) and TF (pink) all at 200 M in 50 mM 
glycine buffer pH 9.5, 0.24 M urea, 0.24 M NaCl.  
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The results for tOmpA aggregation show that a 10-fold molar excess of SurA WT 

considerably reduces the aggregation of tOmpA, as shown in Figure 4.4. Skp also 

significantly reduces tOmpA aggregation to a similar extent to SurA WT , as expected 

given its well-established role as an OMP chaperone 98 and nM affinity for OMP 

substrates 151. SecB and TF, both of which interact with OMPs in the cytoplasm 75,245, 

can also significantly inhibit tOmpA aggregation, though to a lesser extent than SurA 

WT or Skp (Figure 4.9). Interestingly, the periplasmic chaperone Spy, which is known 

to be important under stress conditions 131 but had not been reported to interact 

with OMPs, has no significant effect on tOmpA aggregation. No reduction in 

scattering is seen by the addition of BSA for either tOmpA or OmpT showing that the 

effects caused by the chaperones are not due to the presence of any protein in 

solution (Figure 4.9). 

 

OmpT was also tested with the chaperones at a 1:20 molar ratio of OMP to chaperone 

and the end-point analysis shows that SurA WT at this concentration does not 

significantly inhibit OmpT aggregation, agreeing with the kinetic analysis (Figure 4.5). 

Skp also cannot inhibit aggregation of OmpT under these conditions which may be 

due to the pH of this experiment as it is close to that of Skp (pI 9.7), which may 

prevent Skp’s interaction with certain substrates. The cytoplasmic chaperones TF and 

SecB can significantly prevent OmpT aggregation than SurA WT. Interestingly, 

although they are carried out at different molecular excess of chaperone, TF and SecB 

can prevent both tOmpA and OmpT aggregation by approximately 50 % (Figure 4.9). 

This may be due to the cytoplasmic chaperones having a wide specificity that includes 

both water soluble and membrane proteins. Spy again reduced OmpT aggregation, 

but less well than SecB and TF, as it did for tOmpA. These data suggest that as well as 

chaperoning soluble proteins the excess of Spy which is observed under stress 

conditions 124, can also aid in the inhibition of OMP self-association, likely by 

interaction with hydrophobic stretches on the unfolded OMP 129-131.  Taken together 

these data highlight that E. coli chaperones have differential effects on OMP 
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substrates and that specificity in periplasmic chaperones plays a role in preventing 

the aggregation of OMPs in this dynamic environment.  

 

Figure 4.9 E. coli ATP-independent chaperones have varied effects on tOmpA and OmpT 
aggregation. Samples contained 2 μM tOmpA/OmpT (orange), 20 μM chaperone/BSA for 
tOmpA and 40 µM chaperone/BSA for OmpT 50 mM glycine buffer pH 9.5, 0.24 M urea, 0.24 
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M NaCl. Concentrations of Spy, Skp and SecB, are of the dimeric, trimeric and tetrameric 
species, respectively. Light scattering was monitored by nephelometry at 635 nm, and values 
were taken following 30 minutes’ incubation at 25° C. Light scattering values are normalised 
to OMP alone normalised to 1 and horizontal dotted line to compare. * Indicate statistical 
difference (P-value <0.05) as tested by two sample unequal variance T-test. TF: Trigger 
Factor. 

4.4.1 SecB can bind and prevent the aggregation of tOmpA and OmpT 

 

The data presented above demonstrated that the cytoplasmic chaperones SecB and 

TF can inhibit the aggregation of both tOmpA and OmpT which has not been 

previously demonstrated. The binding affinities are already determined for SurA and 

the PPIase variants (Figure 3.11), Skp’s interaction with OMPs has been documented 

in the nM range 151,246 and Spy has been shown to bind unfolded soluble substrates 

(Im7 L18A L19A L37A) with a Kd of 10.4 ± 0.1 μM 131. However, how SecB and TF binds 

a range of unfolded OMPs has not been studied. Through their mechanism of binding 

water soluble proteins, it would appear that substrates wrap around the chaperone 

and bind to hydrophobic patches on the chaperone surface 82,89. MST was used along 

with kinetic nephelometry assays to observe the binding and chaperoning of these 

chaperones for tOmpA and OmpT.  

 

The results obtained using MST show that SecB binds to tOmpA with a Kd similar to 

that of SurA WT (Kd = 2.05 ±0.08 μM compared to 1.76 ±0.1 μM for SecB and SurA 

WT, respectively) (Figure 4.10) and these chaperones can both significantly reduce 

the aggregation of this OMP (Figure 4.9). SecB binds to OmpT, however, with a Kd of 

0.6 ± 0.04 μM which is a significantly higher affinity than SurA WT binding OmpT (9.30 

± 0.5 μM) showing that SecB can tightly interact with this larger more aggregation-

prone OMP. Interestingly when fitting uaing a Hill equation, both interactions have a 

Hill coefficient of >1, suggesting it may bind in a mechanism similar to that of SurA to 

interact with unfolded OMPs.  

 

The inhibition of OmpT aggregation by SecB demonstrated that a 12.5- fold molar 

excess of tetrameric SecB could almost fully inhibit OmpT aggregation (Figure 4.10) 
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however a 100x excess of SurA WT is required to reduce the light scattering output 

to a similar level (Figure 4.5). The addition of a higher excess of SecB (25-fold molar 

excess) did not the increase the inhibition. This may be due to SecB having a rapid off 

rate for OMPs allowing a period of time in which the OMPs can aggregate before 

being rebound to the chaperone. This is the first evidence that SecB can interact with 

OMPs which have a range of sizes and that this chaperone can efficiently inhibit the 

aggregation of OmpT. 

 

Figure 4.10 SecB can bind tOmpA and OmpT and inhibits OmpT aggregation.  a) MST of 
tOmpA-488 with a concentration series of SecB. b) MST of OmpT-488 with a concentration 
series of SecB both in 50 mM glycine buffer pH 9.5, 0.24 M urea. c) Nephelometry of OmpT 
alone (orange) and in the presence of 7.5x (brown), 12.5x (pink) and 25x molar excess (red) 
SecB 50 mM glycine buffer, pH 9.5, 0.24 M urea, 0.24 M NaCl, 25 °C. All SecB concentrations 
are of the tetrameric species. 
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4.4.2 Trigger Factor can bind and prevent the aggregation of tOmpA and 

OmpT  

 

SecB is thought to act specifically on proteins which are exported through the IM via 

the SecYEG complex 245,247. However, TF can also interact with the ribosome and bind 

substrates during translation 78,82 so is likely to have a broader set of clients than SecB. 

Trigger factor binds both tOmpA and OmpT (Figure 4.11a,b) with a similar affinity (Kd 

= 4.8 ±0.2 μM and 4.2 ±0.4 μM respectively). The affinities measured for TF binding 

OMPs are similar to those of SurA WT, suggesting that TF may be a general chaperone 

in the cytoplasm which can interact with water soluble and membrane proteins. As 

seen for SecB, the binding of TF to tOmpA and OmpT also has positive cooperativity 

observed by a Hill coefficient of >1. The addition of TF to tOmpA inhibits aggregation 

in a concentration-dependent manner (Figure 4.11c) and at 10-fold molar excess can 

significantly reduce aggregation as seen in Figure 4.9. Trigger factor can bind both 

OMPs tested here despite them having different properties, suggesting that TF does 

not distinguish between OMPs.   
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Figure 4.11 TF can bind tOmpA and OmpT. a) MST of tOmpA-488 with a concentration series 
of TF. b) MST of OmpT-488 with a concentration series of TF both in 50 mM glycine buffer pH 
9.5, 0.24 M urea. c) Nephelometry of tOmpA alone (orange) and in the presence of 1x ,2x, 
5x, 10x molar excess (dark to light pink) TF 50 mM glycine buffer pH 9.5, 0.24 M urea, 0.24 M 
NaCl, 25 °C.  

 

To compare directly the effect of TF on OMPs and soluble proteins, its ability to inhibit 

the aggregation of tOmpA was compared to inhibition of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) aggregation. GAPDH is a soluble 36 kDa protein 

which has previously been shown to aggregate upon dilution from 3 M Gdn-HCl into 

20 mM Potassium phosphate (KPi), 100 mM KCl, 0.06 M Gdn-HCl, pH 7.0 , where a 

0.5-fold TF can inhibit this aggregation 82. A titration of 0.5-10-fold molar excess of TF 

over GAPDH was carried out and the concentration of chaperone required to prevent 

aggregation measured. The results (Figure 4.12) showed that a 5-fold molar excess 

prevented any significant increase in light scattering. As TF at 10x excess cannot fully 

inhibit the aggregation of tOmpA but can fully prevent aggregation of this soluble 
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substrate, it does appear that TF is more efficient at preventing soluble protein 

aggregation. 

 

The SurA PPIase domain variants were also tested on GAPDH aggregation to observe 

if these chaperones are specialised for OMP substrates or can act as general 

chaperones to prevent water soluble protein aggregation. SurA variants were added 

to the buffer in which GAPDH was then diluted to observe any changes in light 

scattering. SurA WT increased the rate and final amplitude of GAPDH aggregation in 

a dose-dependent manner (Figure 4.12) showing that it does not prevent the 

aggregation of this soluble protein and even exaggerates aggregation, as was 

observed for SurA P2 and N-Ct for OmpT (Figure 4.5). The addition of SurA P2 and 

N-Ct also cannot prevent the aggregation of GAPDH although at certain 

concentrations (0.5-fold molar excess), can slightly lower the final amplitude of 

aggregation although it does not appear to be a significant change. 
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Figure 4.12 The effect of SurA WT, SurA P2, SurA N-Ct and TF on GAPDH aggregation.  
GAPDH aggregation alone at 2 μM (purple) with the addition of 0.5 to 10-fold molar excess 

a) SurA WT (dark to light green), b) SurA P2 (dark to light blue), c) SurA N-Ct (dark to light 
red) and d) TF (dark to light pink). All experiments carried out in 20mM potassium phosphate 
buffer pH 7.0, 100mM KCl 0.06M Gdn-HCl and light scattering measured by nephelometry at 
365 nm.  

 

4.4.3 SurA can prevent the fibril formation of A40 but Skp and Spy cannot  

 

Multiple chaperones have been observed to prevent the aggregation of disease-

related amyloid-forming proteins such as Hsp40 family proteins 248, Hsp70, Hsp90 

15,249 BRICHOS domains 250 and others. Here we use Amyloid-β 40 (Aβ40) as a test 

protein as it is intrinsically disordered and is highly aggregation prone and so may 

mimic the collapsed state of an OMP in the periplasm, which is the state that these 

chaperone will encounter and must prevent from self-association. Amyloid formation 
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and the inhibition thereof is often monitored by ThT fluorescence assays 208. ThT is a 

small molecule that gives a strong fluorescence signal upon binding to beta-sheet 

amyloid fibrils 208 and so a change in lag time or a reduction in final amplitude of 

fluorescence can indicate that the chaperones are having an effect on amyloid 

formation 251,252. Aβ40 has been well studied 251,253 and it gives reproducible 

aggregation kinetics 254. SurA WT, Skp and Spy were added to Aβ40 at a 2:1, 1:1 and 

1:2 chaperone to substrate molar ratio to observe any changes in aggregation. The 

results show that SurA can prevent Aβ40 aggregation even at sub-stoichiometric 

concentrations over 60 hours whereas, at a 2-fold molar excess, Spy and Skp increase 

the aggregation lag time, but do not inhibit the aggregation (Figure 4.13). This 

demonstrates that these ATP-independent periplasmic chaperones have differing 

effects on amyloid forming non-native substrates and may suggest that they equally 

do not have the same mechanism on unfolded OMP substrates. 

 

 

Figure 4.13 ATP-independent periplasmic chaperones SurA WT, Skp and Spy have differing 
effects on Aβ40 amyloid formation. Aβ40 alone in red and the addition of a) SurA WT, b) Skp 
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and c) Spy at 2:1, 1:1 and 1:2 chaperone: substrate molar ratios. Final concentration of Aβ40 
is 20 μM in 20 mM monobasic sodium phosphate, 0.2 mM EDTA, 0.02% NaN3, pH 7.4.  

4.5 Discussion  

The role of SurA in OMP biogenesis is well documented through in vivo studies as the 

removal of SurA causes membrane defects and reduced levels of OMPs folded into 

the OM 50,167,168. However, how SurA can hold its substrates in an extended 

conformation and prevent aberrant inter- and intra-molecular interaction has not 

been well studied. This is the first detailed analysis of SurA’s function in preventing 

the aggregation of native OMP substrates, looking at the role of the PPIase domains 

and comparing SurA to other ATP-independent E. coli chaperones.  

 

An interesting finding from the development of the nephelometry assay is that the 

OMPs (tOmpA and OmpT) have different aggregation propensities when diluted from 

high concentrations of Gdn-HCl or urea. OmpT alone, in particular, aggregates rapidly 

with a lag time of 2.5 minutes and has plateaued after 10 minutes suggesting that all 

the OmpT is insoluble by this time in Gdn-HCl (Figure 4.2). OmpT has a higher final 

light scattering signal than tOmpA suggesting that it forms larger or more numerous 

aggregates than tOmpA which agrees with previous studies 217. Dilution of OmpT 

from 8 M urea, however, results in a lower final signal than tOmpA (Figure 4.3) 

suggesting that the denaturant and salt concentration plays a role in the ability of 

certain OMPs to form aggregates.  

 

The titration of SurA domain variants allows detailed analysis of the role of PPIase 

domains in chaperoning. Removal of one or both PPIase domains slightly reduced 

SurA’s ability to prevent the aggregation of tOmpA however all three variants have 

some effect (Figure 4.4), consistent with in vivo findings that bacterial strains lacking 

SurA WT and containing SurA homologues lacking PPIase domains are viable 165. 

Along with the binding data which showed that SurA N-Ct binds tOmpA with a similar 

affinity to SurA WT (Figure 3.11), these data show that SurA N-Ct is a functional 

chaperone however appears to work best on smaller OMPs such as tOmpA.  
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SurA WT can reduce the light scattering amplitude of tOmpA by approximately 50% 

with a 10-fold molar excess and 50-fold molar excess fully preventing aggregation 

(Figure 4.4), however even at a 50-fold molar excess of SurA WT the aggregation of 

OmpT is only reduced by around 30%, with 100-fold molar excess being required to 

inhibit OmpT aggregation (Figure 4.5). The difference in the excess of SurA WT 

required to retain different OMPs in a soluble form may be linked to the OMP 

molecular weight as OmpT is almost twice the size of tOmpA (37 kDa compared to 19 

kDa). However, a larger sample size will be needed to reveal other features that may 

also play a role, such as the presence of soluble domains, the binding affinity of 

chaperone to OMP and the aggregation propensity of the OMP sequence. The large 

excess of chaperone required may also be due to a small amount of the chaperone 

getting incorporated into the aggregates as observed in (Figure 4.7) for SurA WT, P2 

and N-Ct during tOmpA aggregation. The finding that the excess of chaperone 

required to prevent OMP aggregation is much larger than the Kd measured for these 

interactions which suggests that the interaction is more complex than a 1:1 

sequestration in order to prevent self-association and there is a more complex 

mechanism of the chaperone. These findings alongside the demonstration that this 

interaction is positively cooperative, as suggested by the hill coefficient, suggest that 

multiple chaperone molecules are binding along an unfolded OMP chain, akin to the 

‘beads on a sting’ model which has proposed for other chaperones. Many chaperone 

molecules binding likely to the exposed hydrophobic patches along the OMP could 

efficiently prevent self-association and aggregation, and further structural analysis, 

such as cryo-EM, would be needed to test this hypothesis.  

 

The removal of one or both PPIase domains has a strikingly different effect on OmpT 

aggregation compared with its effect on tOmpA. Addition of either SurA P2 or SurA 

N-Ct to the OmpT aggregation mixture increases the rate and final amplitude of 

aggregation (Figure 4.5). The increase in final amplitude suggests that larger 

aggregates are formed and it may be that these chaperone variants are incorporated 

into the OmpT aggregates. The ability of SurA WT to inhibit OmpT aggregation while 
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SurA P2 and N-Ct cannot suggests one explanation for the acquisition and retention 

of the PPIase domains through the evolution of bacterial classes (Figure 3.23). SurA 

homologues with two PPIase domains may be able to chaperone a more diverse 

range of substrates which may also be larger in size and also more aggregation-prone 

in sequence. As it has previously been shown that SurA N-Ct is more effective than 

SurA WT at preventing the aggregation of citrate synthase 165 it may be that the 

addition of the PPIase domains have increased the range of OMPs that SurA can bind 

at the expense of chaperoning soluble proteins. However, the findings presented 

here suggest that SurA N-Ct is not effective at preventing the aggregation of GAPDH. 

Bacterial strains with SurA homologues that lack these domains may have a smaller 

set of substrates which they can chaperone or larger OMPs such as OmpT may not 

interact with SurA but instead rely on different periplasmic chaperones. Further 

studies will be needed in vivo to test this hypothesis.  

 

Previous studies have suggested that the periplasmic chaperones SurA, Skp and DegP 

act in a redundant pathway 143,169. Although SurA has been identified as the major 

OMP chaperone, it is not known if all OMPs are chaperoned by SurA under normal 

conditions and other chaperones are employed under stress conditions, or whether 

certain OMPs have specificity for certain chaperones. To test this, the nephelometry 

assay was used to compare E. coli chaperones from the periplasm (SurA, Skp and Spy) 

with cytoplasmic OMP chaperones (TF and SecB) and BSA as a non-chaperone 

control. A 10-fold molar excess of all chaperones was used to monitor changes in 

tOmpA aggregation and a 20-fold molar excess was used for OmpT as differences can 

be identified between the SurA domain variants at these concentrations. Under these 

conditions, Skp was shown to be as effective as SurA WT at preventing tOmpA 

aggregation, however Skp has no effect on OmpT (Figure 4.9). Skp is also not as 

effective as SurA WT at preventing the fibrillation of A40 (Figure 4.13). Taken 

together, these data suggest that Skp specifically can prevent the aggregation of 

certain substrates. SurA WT, however, is effective at preventing the aggregation of a 

range of OMPs and also the amyloid forming A40 suggesting that it has evolved to 
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chaperone many substrates and is not as specialised as Skp, at least for the range of 

outer membrane protein substrates studied here. 

 

TF and SecB, the cytoplasmic chaperones tested, are effective at preventing the 

aggregation of both tOmpA and OmpT, demonstrating that they may be better 

general chaperones of aggregation-prone clients. SecB binds to the larger OMP, 

OmpT with higher affinity than for tOmpA and also is very effective at preventing 

OmpT aggregation (Figure 4.10) providing evidence that SecB may have evolved to 

interact with larger or more aggregation-prone substrates. A lower excess of TF is 

required to prevent aggregation of the soluble protein, GAPDH, (Figure 4.12) than is 

needed to prevent aggregation of tOmpA (Figure 4.11), suggesting that for this 

chaperone is better at chaperoning soluble substrates than OMPs while maintaining 

its ability to prevent aggregation of very different substrates. It has been noted that 

structurally similar elements are observed in the core domain of SurA and the 

substrate binding domain of TF (Figure 4.14) 255. As this work has shown that the N- 

and C-terminal domains of SurA can bind and chaperone substrates, it is likely that 

TF and SurA may interact with clients in a similar manner and may have evolved from 

a common ancestral chaperone. However, they now reside in different cellular 

compartments. If this is the case the E. coli TF and SurA will have evolved specialised 

functions as TF interacts with the ribosome 78,81 and SurA interacts with the BAM 

complex 180,182.   
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Figure 4.14 Comparison of ‘clamp domains’ of SurA and trigger factor. a) Crystal structure 
of SurA (PDB: 1M5Y) 69. N-terminal domain in blue, P1 in green, P2 in yellow and the C-
terminal domain in red. b) Crystal structure of trigger factor (TF) (PDB: 1W26) 33,78. N-terminal 
ribosome binding domain (RBD) in blue, PPIase domain in orange and C-terminal substrate 
binding domain (SBD) in magenta. Boxes indicate the region of structural similarity between 
the core domain of SurA and the substrate binding domain of TF 

 

Overall, the comparison between the E. coli chaperones show that their interactions 

with OMPs all show positive cooperativity and that if they do have the ability to 

inhibit OMP aggregation this requires a molar excess of chaperone, of at least 10-fold 

excess. The results thus suggest a new model for a general mechanism of ATP-

independent chaperones, in which multiple chaperones interact with an unfolded 

OMP chain in order to prevent aggregation by multiple rounds of substrate binding 

and release. 
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Chapter 5 Investigating the mechanism by which SurA interacts 

with and delivers OMPs to the BAM complex 

5.1 Introduction 

The previous chapters have investigated how SurA interacts with OMPs and prevent 

their aggregation. Here, the interaction of SurA with the BAM complex is tested. 

OMPs require chaperones for their transport to the inner membrane 92,256 and then 

across the periplasm 6,212, however how they are the delivered to the BAM complex 

and inserted into the membrane is currently not known. The hypothesis that 

periplasmic OMP chaperones directly interact with the BAM complex, delivering 

OMPs for folding has been proposed as SurA has been crosslinked to BAM in vivo 

50,180,182,183 and mutations within SurA alter the levels of OMPs folded into the 

membrane 257. However, whether this is solely due to proximity of the chaperone to 

the OM remains unsolved. In this chapter, MST is used to detect whether there is an 

interaction of SurA or Skp with the BAM complex folded into detergent micelles and 

to determine the role of the SurA PPIase domain variants in delivering tOmpA and 

OmpT to BAM for folding. 

 

Many studies have reported the spontaneous folding of OMPs into lipid bilayers 

99,220,258 however the kinetics is too slow to be biologically relevant 97. As removal of 

the BAM complex is lethal in vivo 96 and in vitro assays have demonstrated that this 

complex increases the rate of folding of OMPs into membranes 97, it is thought that 

the BAM complex must catalyse folding of OMPs. The mechanism by which BAM aids 

in the folding and insertion of OMPs into the outer membrane is currently unknown, 

however multiple methods have been proposed based on several studies 64,259,260. 

Destabilising of the lipids in close proximity to BAM may reduce the energy barrier 

for folding in the membrane, passively creating a localised area for easier insertion of 

OMPs 64,97. Alternatively, the incomplete hydrogen bonding network between 1 and 

16 strands of the BamA barrel may present a surface on which new -strands may 

template 71. Otherwise, BAM may function by a combination of these along with 
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other features to catalyse OMP insertion (Figure 1.9). Further structural analysis of 

BAM in contact with a folding substrate will elucidate which of these hypothesis are 

correct.  

 

The method by which OMPs reach the BAM complex also remains enigmatic. SurA 

has been crosslinked to the BamA subunit POTRA domain 1 as determined by SDS-

PAGE pull down analysis 50,183 however a complex of SurA and BamA could not be co-

purified suggesting that this interaction is weak or transient 50. Deletion of the N-

terminal POTRA 1 domain from BamA , showed OMP folding defects 182 and it was 

thought to be caused by an interruption of SurA binding BamA. Single site mutations 

of POTRA 1 suggested that SurA not only interacts with the POTRA 1 domain of BamA, 

but it interacts in close vicinity to the R64 residue of the α2 helix 182 (Figure 5.1a). An 

independent study then observed that the residues between 311 and 316 of the P2 

domain of SurA could be crosslinked to the BAM complex 180 (Figure 5.1b). Sucrose 

density gradient analysis of cells showed that under non-stressed conditions SurA is 

found in both the inner and outer membrane fractions however in BamA-depleted 

cells, SurA is no longer found at the outer membrane 180. Taken together, it appears 

that SurA interacts with the BAM complex in vivo. Whether this interaction is on the 

OMP folding pathway and if this interaction can occur in the presence of an unfolded 

OMP substrate is not known.   
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Figure 5.1 Regions of POTRA 1 and SurA found to interact by crosslinking. a) POTRA 1 (PDB: 
5LJO)71 and R64 in the α2 helix highlighted in red b) SurA (PDB: 1M5Y)69 residues 311-316 in 
the P2 domain (yellow) highlighted in pink. 

 

The presence of parallel redundant pathways that utilise different periplasmic 

chaperones have been proposed by genetic studies 50,169. As SurA was observed to 

crosslink to BAM yet under the same conditions no interaction between Skp or DegP 

and BAM could be observed, it was suggested that the chaperones may have some 

substrate specificity with a handover to SurA which can then interact with BAM 52 for 

OMPs folding This was tested by mass spectrometry analysis of these complexes in 

vitro 98 however, no handover events were observed when tOmpA-loaded Skp was 

added to SurA 97. The tight binding of Skp to OMPs in the nM range 151,241,246 and the 

encapsulation of OMPs in the cavity of Skp 98,149 make it unlikely that Skp can 

spontaneously release OMPs to another chaperone or into solution for folding. 

However, other mechanisms by which Skp substrates interact with the BAM complex 

have not been proposed. An alternative pathway in which Skp delivers substrates 

directly to the OM and bypasses BAM, is supported by in vitro data which have shown 

that the highly positively charged ‘tentacle’ tips of Skp can deliver OMPs directly to 

negatively charged bilayers 143. Indeed, recent data which suggest that Skp can deliver 

substrates into membranes in vivo 261. 
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The choreogrpahy of OMP release from chaperones and subsequent interaction with 

the BAM complex is an important step for OMP folding. Depending on the mechanism 

by which OMPs are incorporated into the membrane via BAM, large portions of the 

unfolded OMP chain may remain in the periplasm which must be protected from 

aggregation or degredation. The role of chaperones in the delivery of OMPs to BAM 

is studied in this chapter. 

 

In the work presented in this chapter, Anna Higgins (University of Leeds) prepared 

the BAM complex in DDM and proteoliposomes as described in 71 and carried out the 

OmpT folding assay. The tOmpA folding assay was carried out with Dr Bob Schiffrin 

(University of Leeds). 

 

5.2 SurA directly interacts with the BAM complex and the interaction is 

mediated by the P2 domain of SurA 

The interaction of SurA with the BAM complex has been detected using an in vivo 

crosslinking approach 180,182. This result could however be down to a non-specific 

interaction due to proximity of the proteins within the crowded periplasm. To 

determine whether there is a direct binding event between SurA and the BAM 

complex, MST was employed. The BAM complex was purified in DDM detergent 

(Methods 2.4.5) and confirmed to be folded. N-terminal cysteine variants were 

created in SurA WT, SurA P2 and SurA N-Ct and were labelled with Alexafluor 488 

dye (Methods 2.14.1). Labelled SurA was then mixed with a titration of BAM complex 

folded in DDM.  

 

The results of these experiments showed that, SurA WT binds to the BAM complex 

folded into DDM with a Kd of 0.09 ± 0.01 M (90 nM) (Figure 5.2). This is the first 

direct evidence of SurA’s interaction with the BAM complex in vitro. The binding 

curve was fitted to a 1:1 binding model as this fit the data well, suggesting that 

multiple SurA molecules do not bind to BAM. Replacing SurA WT with either of the 
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domain variants (SurA P2 or SurA N-Ct) in this assay showed that although there is 

some binding shown by a change in fluorescence intensity, the affinity of SurA lacking 

a single or both PPIase domains for BAM is significantly reduced. Neither of the 

binding curves of SurA P2 or SurA N-Ct binding to BAM can be fitted as there is no 

post transition baseline making it difficult to estimate a Kd. However, a change in 

fluorescence is only observed above 1000 nM (1 M) concentration of BAM where a 

significantly lower concentration of BAM (~20 nM) is required to initiate a transition 

upon binding to SurA WT.   

 

As an interaction is still observed for SurA N-Ct binding to the BAM complex (Figure 

5.2 c) this suggests that multiple regions of SurA are involved in the interaction and 

that these regions are spread across the whole of the SurA molecule, including the 

core domain. The main region of interaction of SurA appears to be in the P2 PPIase 

domain as removal of this domain alters the affinity dramatically, in accord with in 

vivo binding studies (Figure 5.1b) 180.  
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Figure 5.2 Removal of the P2 domain reduces SurA’s ability to bind the BAM complex.  

Microscale thermophoresis binding curves of a) SurA WT-AF488, b) SurA P2-AF488, c) SurA N-
Ct-AF488, binding to BAM folded in DDM. Samples contained 100 nM SurA-AF488, 1.2 nM -40 

M BAM complex, 50 mM TBS, 150 mM NaCl, pH 7 at 25 °C. Three replicates were recorded 
and averaged prior to fitting and the error of the fit plotted as error bars. AF488 : AlexaFluor 
488 dye 

 

The binding of SurA WT to BAM was then quantified in liposomes. The BAM complex 

was reconstituted into E. coli polar lipid extract using dialysis (Methods 2.4.5) and 

concentrated to a stock of 100 M allowing a titration of 50 M- 1.5 nM of BAM 

against labelled SurA WT (100 nM).  

 

Interestingly, the tight interaction observed between SurA WT and BAM in DDM is 

not replicated in proteoliposomes formed from E.coli polar lipids. Again a change in 

fluorescence is observed indicating that there is an interaction, but under these 
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conditions the binding has a weak affinity. Labelled SurA WT was also tested against 

a titration of empty liposomes to observe if this change in fluorescence is due to the 

chaperone interacting with the increasing concentration of lipids and not directly 

with BAM. When empty liposomes are added no change in fluorescence is observed 

over these concentrations (Figure 5.3b), suggesting that the interaction seen in Figure 

5.3a is reporting on a direct interaction between SurA and BAM and that SurA does 

not simply interact with lipids.  

    

 

Figure 5.3 SurA WT has reduced binding of BAM in proteoliposomes compared to 
detergent.  Microscale thermophoresis binding curves of SurA-AF488 binding to a) BAM folded 
in proteoliposomes, b) empty liposomes. Samples contained 100 nM SurA-AF488, 1.5 nM -50 

M BAM complex, 50 mM TBS, 150 mM NaCl, pH 7 at 25 °C. Three replicates were recorded 
and averaged. AF488 : AlexaFluor 488 dye 

 

The binding of SurA with BAM was also tested by 2D-TROSY NMR as described in 

Methods 2.16.2. 15N labelled SurA was buffer exchanged into 25 mM MES, 150 mM 

NaCl, 0.05% (w/v) DDM, pH 6.5 at 70 M and measured alone to observe the apo 

state of the chaperone in detergent (Figure 5.4a). Although only a few residues are 

observed, any major changes induced by the addition of BAM should still be detected. 

The low abundance of peaks is likely caused by the size of SurA WT, production and 

purification of the sample in deuterium would result in a better spectrum 262. The 

BAM complex in the same buffer was added to a final concentration of 35 M, so the 

SurA is 50% bound under these conditions, given the Kd. 
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The spectrum of 15N SurA in the presence of BAM has fewer peaks than SurA alone 

and the peaks which remain are less intense (Figure 5.4). The loss of peaks occurs as 

a result of line broadening, and suggests that the residues that give rise to them are 

involved in the interaction with BAM. Another explanation could be that there is a 

conformation change upon binding which alters the environment of these residues. 

As the peaks which do remain do not undergo a significant change in chemical shift, 

a major shift in the structure of SurA upon binding to the BAM complex is unlikely. As 

many of the peaks are lost, it suggests that multiple regions of SurA are involved in 

the interaction with BAM which agrees with the binding data (Figure 5.2).  
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Figure 5.4 Multiple regions of SurA are involved in the interaction with the BAM complex. 

2D-TROSY 15N-1H NMR spectrum of a) 15N SurA WT (70 M), b) 15N SurA WT + BAM complex 

(35 M), c) overlay of a and b. All spectra measured in 25 mM MES, 150 mM NaCl, 0.05% 
(w/v) DDM, pH 6.5 at 950 mHz. 

 

5.3 Removal of the P1 domain slows the delivery of OmpT to BAM  

A previously established fluorescence assay that monitors OmpT folding into 

liposomes via the BAM complex requires SurA to observe efficient folding of OmpT 
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71,216,263. This assay has been used to observe changes in the efficiency of BAM 

assisted OMP folding 71 and is adapted here to monitor the effects of SurA domain 

variants on this process. In the assay, a sub-mixture of unfolded OmpT and SurA is 

added to BAM-containing liposomes at concentrations of 0.25 μM BAM 

proteoliposomes, 5 μM OmpT, 1 mM fluorogenic peptide and 35 μM SurA. OmpT 

folding is then monitored by fluorescence, as upon correct folding, the enzymatic site 

of OmpT is formed and can cleave a fluorescently quenched peptide (Abz-Ala-Arg-

Arg-Ala-Tyr(NO2)-NH2) which becomes fluorescent. The fluorescence output is used 

as an indirect measure of OmpT folding via BAM. No fluorescence output is observed 

in the absence of any single component including SurA (Figure 5.5) which suggests 

SurA is required to maintain OmpT in a soluble state and delivers OMPs to the BAM 

complex for insertion into the liposomes 71. 

 

The results of these experiments showed that SurA WT can efficiently deliver OmpT 

to BAM (Figure 5.5), consistent with previous findings 71,263. Replacing SurA WT with 

SurA ΔP2 does not greatly affect OmpT delivery. This result was unexpected as SurA 

P2 has a significantly reduced binding affinity to OmpT compared to SurA WT (Figure 

3.11) and also the P2 domain of SurA is required to maintain high affinity interaction 

of SurA to BAM at least in DDM. To ensure that OmpT was not aggregating in the 

presence of SurA PPIase domain variants a nephelometry assay was carried out under 

the same conditions as the OmpT folding assay. No significant increase in light 

scattering was observed for OmpT alone or in the presence of SurA variants (Figure 

5.5b), these data are consistent with other aggregation assays carried out in the 

absence of NaCl (Figure 4.3). As there is no aggregation of the OMP, it appears that 

SurA P2 can compensate for the reduced affinity of OMP and of BAM and retain the 

ability to efficiently deliver OmpT to BAM for folding. The SurA N-Ct variant however, 

is substantially slower than SurA WT at aiding OmpT insertion (Figure 5.5). As 

aggregation cannot account for a reduced folding rate this suggests that the P1 

domain of SurA is not essential, but is involved, in delivery of OmpT to BAM.  
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Figure 5.5 SurA N-Ct is less efficient at delivering OmpT to BAM than SurA WT or SurA ΔP2.  
a) Kinetic traces of OmpT folding measured by fluorescence quantification following 
proteolytic cleavage of the peptide (Abz-Ala-Arg-Arg-Ala-Tyr(NO2)-NH2) in the presence of 
SurA WT (green), SurA ΔP2 (blue), SurA N-Ct (red) or no SurA (black). All experiments were 
performed with final concentrations of 0.25 μM BAM proteoliposomes, 5 μM OmpT, 1 mM 
fluorogenic peptide, 35 μM SurA and performed in 50 mM glycine-NaOH pH 9.5, 25 °C. b) 
Nephelometry light scattering assay to test for OmpT aggregation under the conditions of 
the OmpT folding assay in (a) (5 μM OmpT, 35 μM SurA in 50 mM glycine-NaOH pH 9.5, 25 °C). 

 

5.4 Removal of P2 domain slows the delivery of tOmpA to BAM 

As the OmpT folding assay can only monitor the effects of BAM and SurA on one 

substrate, a second method to monitor OMP folding was developed. OMPs are highly 

stable and are SDS resistant upon folding 97,264. This feature causes the unfolded and 

folded species of OMPs to run at different apparent molecular weights on a SDS-PAGE 

gel. A folding assay was developed in which aliquots of the reaction (unfolded tOmpA 

into liposomes via the BAM complex) are taken at given time points and the folding 

quenched by the addition of 6x SDS loading buffer to disrupt the liposomes and 

prevent further folding (Methods 2.11, Figure 5.6a). After optimisation by Dr B. 

Schiffrin, reproducible tOmpA folding kinetics were obtained which showed a 

decrease in the unfolded band and an increase in the folded band over time (Figure 

5.6a). The fraction folded is then calculated by the density of the folded band 

compared to the sum of the folded and unfolded bands. 
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This band shift assay was next used to determine the effect of SurA domain variants 

on BAM-dependent folding of tOmpA. The results showed that if no SurA is added to 

the folding mixture, the folding of tOmpA is very slow (Figure 5.6b). However, the 

addition of SurA WT increases the delivery of tOmpA to BAM for folding, such that 

tOmpA is fully folded after 1 hour (3600 seconds). This agrees with the OmpT folding 

data which showed no folding in the absence of SurA (Figure 5.5) and confirms that 

SurA is required in these assays to deliver OMPs to the BAM complex for folding.  

 

Replacing SurA WT in this assay with SurA P2 or SurA N-Ct reduces the rate of 

tOmpA folding (Figure 5.6). This suggests that for the substrate tOmpA at least, the 

P2 domain is important for delivery to BAM and that further removal of P1 has no 

effect. Again an aggregation assay confirmed that, under these conditions, there is a 

small amount of tOmpA aggregation alone but the addition of SurA WT, SurA P2, 

SurA N-Ct prevents any detectable aggregation (Figure 5.6c). Thus, the differences 

observed between SurA variants is not caused by the depletion of soluble tOmpA. 

The effect of removal of the P2 domain on tOmpA folding is not consistent with the 

results seen for OmpT which showed that removal of the P2 domain had no effect on  

the apparent rate of folding. Here removal of the P2 or both P1 and P2 have the same 

effect of a reduced rate of folding.  
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Figure 5.6 Delivery of tOmpA by SurA PPIase domain variants to the BAM complex.  a) 
tOmpA folding assay, tOmpA is added to a SurA variant which is then added to the BAM 
complex in lipososomes and the extent of folding is measured over time. (Final 

concentrations 1 M BAM complex, 10 M SurA and 2 M tOmpA, 0.8 M urea, in 20 mM 
Tris-HCl, pH 8.0, 150 mM NaCl 25 °C.) b) Comparison of tOmpA folding assays for SurA WT 

(green). SurA P2, SurA N-Ct (red) and no SurA (black) over 8000 seconds (2.2 hours). c) 
Nephelometry light scattering assay to test for aggregation under conditions of tOmpA 

folding assay (2 μM tOmpA, 10 M SurA  in in 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 25 °C) 

 

5.5 Skp can interact with BAM but with a lower affinity than SurA WT 

SurA is the only chaperone within the periplasm to have been observed to bind the 

BAM complex 50,182,183. Furthermore, no crosslinks of Skp or DegP has been detected 

50. However, deletion of SurA in bacterial strains is non-lethal 170. This suggests that 

there may be another chaperone which is able to interact with BAM in the absence 

of SurA to deliver OMPs which rely on the BAM complex for folding. Consequently, 

Skp was used therefore in the MST assay to determine whether this chaperone which 

is known to bind OMPs can interact with BAM in vitro.  
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The same experimental setup was used as described for SurA binding to BAM in DDM 

(Methods 2.14.2). The results of these experiments (Figure 5.7) showed that under 

these conditions Skp binds to BAM with a Kd of 0.49 ±0.04 M (500 ±40 nM) (Figure 

5.7a), and this is the first evidence that Skp can bind BAM in vitro, and hence may do 

so in vivo. It is also interesting that this binding has a Hill coefficient of 2.4 which 

suggests positive cooperativity and that multiple Skp trimer molecules can interact 

with the BAM complex at once.  

 

As the binding of Skp to OMPs is higher affinity (in the nM range) 151 than the 

interaction between Skp and BAM measured here it is unclear if Skp can deliver OMPs 

to BAM. The OmpT folding assay was used to determine whether Skp can release 

OmpT for folding via BAM to test this. The results show that Skp can deliver OmpT to 

BAM which agrees with previous findings that demonstrate that prefolded BamA can 

release tOmpA from Skp and allow tOmpA folding which is not observed in the 

absence of BamA 97. Compared to SurA WT, Skp is slower at delivery of OmpT to BAM 

(Figure 5.7b) which may be due to the difference in the binding affinities as SurA binds 

tighter than Skp to the BAM complex 0.09 ±0.01 M and 0.49 ±0.04M respectively, 

or could be due to the mechanism by which the chaperones deliver OMPs to BAM.  
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Figure 5.7 Skp can bind the BAM complex. Microscale thermophoresis binding curves of Skp-
AF488 binding to BAM folded in DDM. Data were fitted to a Hill equation (shown as solid line). 

Samples contained 100 nM Skp-AF488, 1.2 nM -40 M BAM complex, 50 mM TBS, 150 mM 
NaCl, pH 7 at 25 °C. Three replicates were recorded and averaged prior to fitting and the 
error of the fit plotted as error bars. b) Kinetic traces of OmpT folding measured by 
fluorescence quantification following its proteolytic cleavage of the peptide (Abz-Ala-Arg-
Arg-Ala-Tyr(NO2)-NH2) in the presence of SurA WT (green), Skp (cyan). All experiments were 
performed with final concentrations of 0.25 μM BAM proteoliposomes, 5 μM OmpT, 1 mM 
fluorogenic peptide, 35 μM SurA/Skp and performed in 50 mM glycine-NaOH pH 9.5, 25 °C. 

 

5.6 Discussion   

This study shows the first direct evidence that SurA interacts with the BAM complex 

and this binding is altered depending on the membrane environment surrounding 

the complex. Published structures of the BAM complex as determined by cryo-EM 

and X-ray crystallography show two conformations of the barrel of BamA. In the 

‘lateral open’ conformation 71 the BamA β-barrel is distorted leading to the 

separation of the β1 and β16 strands and an opening of the barrel to the lipids (Figure 

1.9). Conversely, the ‘lateral closed’ conformation 104 has the β-strands 1-16 

hydrogen bonded. This observation suggests that the barrel domain of BamA may 

undergo conformational changes between an open and closed state as part of its 

function. The POTRA domains also undergo a conformational shift and when the 

BamA barrel is in the open conformation, the POTRAS are extended ~20Å away from 

the membrane compared to the lateral closed structure 104,106. These changes in 

conformation of the β1-β16 strands appear to depend on the membrane mimic that 

the structure is solved in. In accord with this notion, the structure of the BAM 

complex in nanodiscs containing the same E.coli polar lipid extract used in this study 
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for the MST experiment of SurA biding to BAM  appears to be highly dynamic and can 

convert between multiple different conformations (unpublished Dr M. Iadanza). A 

recent study by Hartmann et al. demonstrated that in both detergent micelles and in 

nanodiscs, the BamA barrel populates multiple conformational states which are 

modulated by changes in the gate region 265.   

 

From the cryo-EM structure it appears that BAM in DDM is held in a single 

conformation which has allowed structural characterisation. This structure reveals 

that the BamA barrel is laterally open with extended POTRA domains 71. Previous 

findings have shown that SurA binds to POTRA 1 of BamA 182 (Figure 5.1). This 

conformation of the BamA barrel may place in a POTRA 1 conformation preferential 

for binding. Taken together the MST alongside the structural data it suggests that 

SurA WT binds to the BAM complex in a laterally open conformation with high affinity 

(Figure 5.2). 

 

The difference in binding of SurA WT, SurA P2 and SurA N-Ct  to BAM suggests that 

that binding occurs primarily via the P2 domain of SurA. It could also be interesting 

to investigate the binding of SurA PPIase domain variants to the BAM complex of 

different bacterial species as SurA homologues which lack PPIase domains may have 

an altered mode of binding or differences in the BAM complex to allow binding. The 

unpublished nanodisc data and recent NMR data 265 suggests that in proteoliposomes 

the BAM complex is more dynamic and the binding of SurA under these conditions is 

reduced compared to that in detergent micelles (Figure 5.3) this suggests that there 

is a preferred conformation of BAM which SurA can bind and a highly dynamic BAM 

complex causes a reduction in the ability of SurA to bind.  

 

The results described(Figure 3.11 and Figure 5.2) demonstrate that SurA binds to 

BAM in DDM more tightly than it does to OMP substrates, in agreement with other 

studies 97,177. This may allow efficient handover of substrates from SurA to the BAM 



 

148 
 

complex for folding. The observation that SurA preferentially binds to BAM in the 

open conformation presents a hypothesis that SurA delivers OMPs to BAM and the 

OMPs can template onto the unbound -strands of the BAM complex to initiate OMP 

folding.  

 

Chaperone Kd binding to BAM Hill coefficient  

SurA WT 0.09 ± 0.01 M 1 

Skp 0.49 ± 0.04 M 2.4 ± 0.5 

 
Table 5.1 Affinities of SurA WT and Skp binding the BAM complex in DDM. 100 nM 

Skp/SurA-AF488, 1.2 nM -40 M BAM complex, 50 mM TBS, 150 mM NaCl, pH 7 at 25 °C. 

 

Comparing the folding of tOmpA and OmpT via the BAM complex showed that the 

PPIase domains appear to play different roles in the delivery of different substrates. 

OmpT was efficiently delivered by both SurA WT and SurA P2 whereas SurA P2 has 

reduced ability to deliver tOmpA to BAM and SurA N-Ct could deliver both OMPs but 

had reduced ability compared to SurA WT (Figure 5.5, Figure 5.6). The chaperoning 

data suggests that the P2 domain of SurA is required to prevent aggregation of OmpT 

(Figure 4.5). The P2 region of SurA is also shown here to be primarily used for BAM 

complex interaction, suggesting a duel role of the P2 domain. Firstly, P2 is needed to 

chaperone certain substrates and secondly, it is involved in the interaction with the 

BAM complex for delivery of OMPs for folding. 

 

Using MST, Skp has been shown here to interact with the BAM complex in DDM 

detergent (Figure 5.7, Table 5.1), which has not previously been reported. This finding 

suggests that OMPs can be chaperoned and delivered to BAM via Skp which provides 

an explanation as to why deletion of SurA is not lethal to cells 50,169,170. Studies found 

that deletion of SurA only caused a reduction in a small number of OMPs 170 and it 

may be that Skp and SurA have overlapping substrates and Skp can largely 

compensate for the absence of SurA. SurA, however, still binds to the BAM complex 
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with a 5x higher affinity than Skp (0.09 ±0.01M and 0.49 ±0.04M) (Table 5.1) under 

the same conditions, supporting findings that SurA is the major chaperone that 

interacts with the BAM complex and may explain why crosslinks have not been 

observed between Skp and BAM in vivo.  

 

In summary, the data presented here show for the first time in vitro that SurA directly 

binds to the BAM complex and suggest that this interaction is preferable when the 

BamA barrel is in the open confirmation and the POTRA domains are extended. It 

appears that the P2 domain is not essential but highly important in the binding of 

SurA to BAM. However, the P2 domain appears less significant for delivery when SurA 

is bound to OmpT, which required P2 to prevent its aggregation. In this case, the P2 

domain may not be free to bind BAM. Skp has also been observed to bind to BAM for 

the first time, however with a lower affinity than SurA WT. Together, these data have 

revealed some new aspects of the roles of SurA, the SurA PPIase domain variants and 

Skp and their contact with the BAM complex. 
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Chapter 6 Conclusions and Discussion 

OMPs require chaperones to prevent their self-association and aggregation 41,174,212 

and for efficient folding into the OM 50,170. After translation on cytoplasmic 

ribosomes, OMPs are bound by chaperones such as TF and SecB 75,92. They are then 

trafficked to the SecYEG complex in the IM 94 for active translocation into the 

periplasm, facilitated by ATP-hydrolysis by SecA 91. As the environment within the 

periplasm is highly variable 33, chaperones such as SurA, Skp and DegP bind OMPs to 

prevent their aggregation in this cellular compartment 21. The OMPs then must reach 

the BAM complex which aids their folding and insertion to the OM 96 allowing them 

to carry out their various functions.  

 

SurA has been shown to be the major OMP chaperone within the periplasm of E. coli 

through genetic analysis in vivo 141,169,170. Previous studies have shown that SurA 

interacts with OMPs with Kd’s in the M range 177,178 and that SurA can halt the 

aggregation of the water soluble protein citrate synthase 165. SurA is also the only 

periplasmic chaperone for which crosslinks to the BAM complex have been detected 

50,180,182,183. Bioinformatic analysis of SurA homologues in various classes of 

proteobacteria (Figure 3.23) showed that the PPIase domains have been acquired 

and conserved through evolution, suggesting that these domains convey some 

advantage to the function of SurA.  

 

The aims of this project were to analyse the binding of SurA to OMPs, determine the 

mechanism by which SurA prevents aggregation of substrates and investigate 

whether SurA directly binds the BAM complex for delivery of OMPs. In addition, the 

roles of the PPIase domains in these functions was also adressed. To achieve these 

aims, variants of SurA from E. coli lacking either the P2 domain (SurA P2) or both 

PPIase domains (SurA N-Ct) (Figure 1.20) were designed, based on previous 

publications 165,178 to observe the function of these domains in the context of the full 

length chaperone.  
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The binding of SurA to two model OMPs (tOmpA and OmpT) was measured using 

multiple different biochemical assays. Native ESI-MS, analytical SEC, SPR and MST 

demonstrated that the core domain of SurA, the N- and C-terminal domains lacking 

both PPIase domains, retains the ability to bind the OMPs tested. Demonstrating that 

SurA homologues which do not contain PPIase domains can interact with OMP 

substrates. The addition of the PPIase domains increased the affinity of binding to 

both OMPs. However, as SurA N-Ct retained a low M Kd for binding to tOmpA, the 

enhancement in affinity is minimal for the binding to this 8-stranded OMP substrate 

(Figure 3.11). On the other hand, the presence of the PPIase domains are required 

for SurA to bind OmpT with low M affinity (Figure 3.10). These data suggest that the 

acquisition of the PPIase domains has increased the ability of SurA to bind large, 

aggregation-prone OMPs such as OmpT.  

 

Measurement of the binding affinity between SurA and OMPs using MST showed that 

the Kd’s obtained agreed with previous findings 178, and also showed that the 

interaction has positive co-operativity (Figure 3.11, Table 3.4). Native ESI-MS also 

demonstrated that SurA WT and SurA P2 form both 1:1 and 2:1 chaperone to 

tOmpA complexes, which has not been observed previously. This proposes a new 

model of SurA binding in which multiple SurA molecules bind to several sites along 

the unfolded OMP chain. This ‘beads on a string model’ has been proposed previously 

for Trigger Factor 82 and SecB 266, in which the substrates interact with hydrophobic 

patches on the surface of the chaperone and for long chains multiple chaperones are 

required to interact with various hydrophobic regions along the length of the 

substrate. Another hypothesis is that two SurA molecules can come together to form 

a cage like structure around a collapsed OMP chain such as been observed for Skp 

98,149.  

 

Evidence of which of these models of the mechanism of SurA is correct was tested 

further by studying the interaction between SurA and water soluble proteins. Im7 

wild-type and Im7 folding variants which are either fully unfolded or trapped in an 
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intermediate state, were tested for binding to SurA. Although, no interaction could 

be observed using MST (Figure 3.13), a small population of 1:1 complex of SurA WT 

and Im7 L18A L19A L37A was detected by native MS (Figure 3.14). Aggregation data 

of the water-soluble GAPDH shows that addition of any of the SurA variants has no 

effect on the aggregation of this 37 kDa protein which has a complex final fold (Figure 

4.12). However, SurA WT could prevent amyloid formation of the intrinsically 

disordered A40 with sub-stoichiometric concentrations of chaperone to monomer 

(Figure 4.13). Taken together these data suggest that SurA is also able to interact with 

water soluble proteins which do not contain any secondary structural elements  such 

as  the unfolded Im7 L18A L19A L37A 232 and the intrinsically disordered A40 
267, while 

retaining a preference for binding OMP substrates. This provides evidence that SurA 

binds its substrates in an extended conformation opposed to in a collapsed state and 

that the interaction is likely to occur via the ‘beads on a string’ model.  

 

Investigating the ability of SurA and the PPIase domain variants to prevent the 

aggregation of tOmpA and OmpT revealed that a higher excess of SurA WT is required 

for OmpT (100-fold excess) than for tOmpA (50-fold excess) (Figure 4.4,Figure 4.5). 

OmpT is both more aggregation prone 217 and is larger in size than tOmpA, the results 

suggest that properties of the OMP dictate the excess of chaperone required to keep 

the substrate soluble. If the concentration of SurA required is related to the chain 

length of the OMP which this observation supports the ‘beads on a string model’ of 

SurA interaction. This model would allow efficient chaperoning as it prevents 

aberrant interactions but would require high concentrations of chaperone in vivo. In 

accord with this hypothesis, recent studies, documented that the cellular 

concentration of SurA is between 2.07-7.2 M 144,268 in E. coli and unfolded OMP 

concentrations are approximately 94.7 nM 212 under non stressed conditions 

suggesting that there is an excess of SurA over unfolded OMP substrates in the 

periplasm in order to prevent OMP aggregation.    
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The difference in ability of the SurA PPIase variants to chaperone the model OMPs 

was striking, SurA P2 and SurA N-Ct, as well as SurA WT could prevent the 

aggregation of tOmpA with 50-fold molar excess (Figure 4.4). By contrast, only SurA 

WT could prevent the aggregation of OmpT, with the SurA variants increasing both 

the rate and final amplitude of aggregation (Figure 4.5). This reflects the binding data 

which showed that all SurA variants could bind tOmpA with low M affinity, but had 

significantly reduced binding affinity for OmpT compared to SurA WT (Figure 3.11). 

Together, these data support the hypothesis that the PPIase domains of SurA have 

been acquired and conserved to aid in both binding and chaperoning of larger, more 

aggregation-prone substrates. Genetic studies analysing the change in OMP levels in 

vivo showed that the concentration of OmpA (the full length form of tOmpA including 

the periplasmic domain) and OmpT were reduced upon SurA depletion in a skp 

strain lacking SurA 141. By contrast, removal of SurA with normal levels of Skp showed 

that OmpA levels were reduced, but those of OmpT were not 170. This suggests that 

OmpT may not rely on SurA but instead is bound by Skp, or another chaperone, in 

the periplasm, indicating OMP specificity of chaperones which has not been proposed 

previously. These findings also provide a rationale as to why the domain variants of 

SurA have no effect on preventing the aggregation of OmpT, whereas other 

chaperones may be more effective in preventing OmpT aggregation. 

 

In this study the first observation that Skp interacts with the BAM complex is 

measured by MST (Figure 5.7). As shown in Figure 5.7b, Skp allows OmpT folding via 

BAM and no folding is observed in the absence of a chaperone. Together with 

previous studies which showed that there is no hand-over events between Skp and  

SurA 98. The results suggest that Skp can bind substrates in the periplasm and directly 

deliver them to BAM. Although the removal of Skp from bacterial strains shows no 

change in the levels of OMP monitored in the OM 141, these data demonstrate that in 

the absence of SurA, Skp is an effective chaperone which can carry out the same 

functions in a redundant pathway. On the other hand, there may be substrates which 

are preferentially chaperoned by Skp under non-stress conditions, but can also be 

bound by SurA and vice versa.   



 

154 
 

Comparison of the ability of E.coli OMP chaperones to prevent substrate aggregation 

revealed that TF and SecB appear to be general chaperones for both water soluble 

and OMP substrates (Figure 4.9). A closer look at TF showed that a lower 

concentration of TF was required to prevent the aggregation of GAPDH than is 

required to prevent the aggregation of tOmpA (Figure 4.11). The opposite is seen for 

SurA, as it has no effect on GAPDH but can chaperone OMPs (Figure 4.12). SurA and 

TF have similar structures in the domains which are responsible for binding 

substrates, the N- and C-terminal core domain or SurA and the substrate binding 

domain (SBD) in the centre of the TF structure (Figure 4.14). These findings suggest 

that TF and SurA may have evolved from a common ancestor however now reside in 

different cellular compartments and so have acquired different abilities such 

ribosome binding for TF and the ability of SurA to interact with the BAM complex.  

Both of these chaperones contain at least a single PPIase domain which are 

dispensable to the chaperone activity 165,269. As the domains are from different PPIase 

families (SurA contains parvulin domains and TF has a FK506-binding protein 

homology) (Section 1.10), it is likely that they have also been acquired independently.  

 

SecB binds to nascent polypeptide chains in the cytoplasm which are targeted to the 

periplasm, OM, or for secretion out of the bacterium 266. SecB then interacts with 

SecA with high affinity (0.6 nM) 270 before SecA interacts with the SecYEG complex in 

the inner membrane 93. From this study it appears that SecB preferentially binds 

OmpT over tOmpA, given the Kd’s of 0.6 ± 0.04 M and 2.05 ± 0.08 M, respectively 

(Figure 4.10) but it can inhibit the aggregation of both substrates (Figure 4.9). Genetic 

analysis of SecB null strains of E. coli showed 12 substrates which are reduced and 

therefore appear to be dependent on SecB 92, one of which was OmpT. This suggests 

that the reason that SecB binds with such high affinity to OmpT (Figure 4.10) is that 

OmpT requires SecB in vivo in order to reach the SecYEG complex, and their 

interaction may be driven by specialised recognition regions.  
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SurA is the only periplasmic chaperone that has been crosslinked with the BAM 

complex in vivo 50,180,182,183, however this observation may have been due to the high 

concentration of SurA in the periplasm 144,212. In this thesis, SurA WT is observed to 

bind the BAM complex in vitro with a Kd of 0.09 ± 0.01 M (Figure 5.2). The affinity of 

this interaction is dependent on the membrane environment in which the BAM 

complex is folded. From structural analysis it appears that the membrane 

environment alters the conformation of the BamA barrel and POTRA domains 71,104. 

Together with the data collected here, the results suggests that SurA preferentially 

interacts with certain conformations of the BAM complex. This mechanism may 

prevent chaperone binding while BAM is in the process of inserting a substrate as 

binding may inhibit necessary conformational changes. Biochemical assays have 

aided in forming this hypothesis and further structural analysis of the SurA-OMP-BAM 

complex at different time points of OMP folding determined by cryo-EM or X-ray 

crystallography will help to answer the questions regarding precisely how SurA 

interacts with the BAM complex.  

 

A comparison of the ability of different of SurA PPIase domain variants to bind the 

BAM complex shows that, while the P2 domain is not essential, it plays an important 

role in the interaction, as removal of this domain reduces the affinity (Figure 5.2). 

Further deletion of the P1 domain appears to have no additional effect on the affinity 

suggesting that the P1 domain may not be involved in BAM binding. The PPIase 

domains also play a role in the delivery of OMPs to BAM, although this appears to be 

OMP dependent. For OmpT, removal of the P2 domain does not alter the delivery to 

BAM but the additional deletion of P1 slows delivery rate, compared to SurA WT 

(Figure 5.5), suggesting that the P1 domain is involved in OmpT delivery. Conversely, 

for tOmpA removal of the P2 domain reduces folding via BAM, compared to SurA WT 

(Figure 5.6), and removal of P1 has no further effect. This provides a rationale for the 

acquisition of two PPIase domains in SurA as it appears that these domains may aid 

in the delivery of certain substrates to the BAM complex depending on the properties 

of the substrate.  
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Figure 6.1 Main findings of this study.  PDB ID of structures TF (1W26)78, SecB (1OZB)271, 

SecYEG-SecA (3DL8)74, Skp (12UM)70, SurA (1M5Y)69, BAM complex (5LJO)71.  
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In addition to understanding OMP biogenesis, this work may also aid in the 

development of new therapeutics. The outer membrane of gram-negative bacteria is 

a major defence as it is a potent permeability barrier against toxic molecules such as 

antibiotics. As the majority of antibiotics exert their effect in the cytoplasm, these 

drugs must first permeate the cell. As well as chaperoning OMPs, SurA has been 

implicated in pathogenicity, with roles in the correct assembly of virulence factors 

such as pili and adhesins 166,272. The essential and conserved BAM complex within the 

OM may also be a promising target for therapeutics and a recent study developed a 

monoclonal antibody which antagonises BamA function and is therefore bactericidal 

273. In the urgent search for novel antibiotics to treat Gram-negative bacterial 

infections, disruption of the OMP biogenesis pathway may provide targets both on 

the surface of and within the cell.   

 

This work has provided valuable insights into the mechanism of SurA and its roles in 

OMP binding, OMP chaperoning and delivery of OMPs to BAM, with the major 

findings summarised in Figure 6.1. The results have elucidated that the core domain 

of SurA is sufficient for binding however, new functions of the PPIase domains of SurA 

in binding and chaperoning have rationalised the acquisition and conservation of 

these domains during proteobacterial evolution. Investigating the interaction 

between periplasmic chaperones and the BAM complex has demonstrated that SurA 

binds BAM with nM affinity, however the affinity is dependent on the membrane 

environment. It has also shown that Skp is able to interact with BAM, which has not 

been previously shown. Comparison of cytoplasmic OMP chaperones showed that TF 

and SecB appear to be good general chaperones for OMPs, but SecB has preferential 

substrates with which to interact. Together the data both answers questions in the 

field of OMP biogenesis and provides new hypotheses which can be tested and 

should go on to inform further discoveries.  
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