UNIVERSITY OF LEEDS

Polynomial Functors and W -Types

for Groupoids

Jakob Vidmar

University of Leeds

School of Mathematics

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

September 2018

http://www.leeds.ac.uk
https://physicalsciences.leeds.ac.uk/info/6/school_of_mathematics

Intellectual Property Statement

The candidate confirms that the work submitted is his own and that ap-
propriate credit has been given where reference has been made to the

work of others.

This copy has been supplied on the understanding that it is copyright
material and that no quotation from the thesis may be published without

proper acknowledgement.
The right of Jakob Vidmar to be identified as Author of this work has
been asserted by him in accordance with the Copyright, Designs and

Patents Act 1988.

© September, 2018 The University of Leeds and Jakob Vidmar.

Abstract

This thesis contributes to the semantics of Martin-Lof type theory and the theory of
polynomial functors. We do so by investigating polynomial functors on the category of
groupoids and their initial algebras, known as W -types. We consider several versions of
polynomial functors: both simple and dependent, associated to either split, cloven or gen-
eral fibrations. Our main results show the existence of W -types and their pullback stability
in a variety of situations. These results are obtained working constructively, i.e. avoiding
the use of excluded middle, the axiom of choice, power set axiom, ordinal iteration. We
also extend the theory of natural models, by defining a version of them for Martin-Lof type

theories where n-equality holds up to propositional, and not definitional equality.

Mojim starsem in sestri.

Hvala, ker mi vedno stojite ob strani.

iii

Acknowledgements

I would like to thank my supervisor, Nicola Gambino, for his willingness to share
his exhaustive knowledge on the subject, his guidance and seemingly unending patience,
especially when it came to writing up. I would also like to thank my co-supervisor, Michael
Rathjen, for early discussions on induction and keeping an eye on my project.

Next, I would like to thank the University of Leeds for providing the scholarship (110
Anniversary scholarship), that enabled me to pursue my studies. The School of Mathem-
atics additionally provided funds to extend the scholarship. To the staff of the school and
my fellow colleagues, thank you for making the school such a friendly environment.

Additionally, I need to mention Christian Sattler, who helped me with many fruitful
conversations. The idea for triangle graphs evolved during these.

A European Union’s CORCON grant enabled me to visit Carnegie Mellon University
in Pittsburgh, where I had the chance to meet and discuss with Steve Awodey and his
research group (Jonas Frey, Egbert Rijke and Clive Newstead in particular).

To my internal and external examiners, John Truss and Martin Hyland, thank you for
agreeing to examine my thesis and offering corrections that made it much better.

Finally, I would like to thank my friends, for making my stay in Leeds memorable and
pleasant — To Chris, David, John, Regan, Sofia, and Zenab, thank you, Leeds wouldn’t

have been the same without you.

Contents

[Abstractl i
[Dedication iii
[Acknowledgements| %
Conten vii
Introduction] 1
[The groupoid model of type theory| 1
[Polynomial functors on groupoids| 2
[W-types 1n groupoids| 4
[Natural models of type theory| 5
[Main contributions| 6
[Outline of the thesis| 6
|Chapter 1. Preliminaries|
(1.1. 2-categories|
(L.2. Fibrations in Catl 12
[1.3. Exponentiability of fibrations| 16
(1.4. Fibrations in Gpd)| 28
[1.5. Dependent products| 30
|Chapter 2. Polynomial Functors in Gpd| 35
[2.1. Polynomial Functors| 35
[2.2. Morphisms of Polynomial Functors| 41
[2.3. Algebras for endofunctors| 49
[2.4. Algebras for polynomial endofunctors| 51
IV -typ 53
[2.6. J-relative algebras| 59
|Chapter 3. W -types for split fibrations| 63
[3.1. Construction of W-types| 63

[3.2. The initial algebra structure of W] 71

vii

viii CONTENTS

[3.3. Examples of the construction|

3.4. An alternative construction|

|Chapter 4. W -types for split fibrations in slices|

{4.1. Polynomial functors 1n slices|
4.2. Construction of Wr|
{4.3. Pullback stability of W -types|

|[Chapter 5. Dependent W -types for split fibrations|

[5.1. Construction of dependent }1/'-types|
[5.2. Pullback stability of dependent IV -types|

[Chapter 6. W -types for cloven and general fibrations|

[6.1. W -types for cloven fibrations|

[6.2. W -types for general fibrations|

|Chapter 7. Natural models and n-equality|

73
76

85
86
86
88

91
91
94

99
99
102

111
111
115

121

Introduction

The groupoid model of type theory

Dependent type theories, like Martin-Lof type theories [37, 41] or the Calculus of
Constructions [16], are complex formal systems, the study of which can be performed by
either syntactic methods, as employed, for example, in standard normalisation proofs [38]
or semantic techniques, as employed, for example, to obtain realizability models [15].
Traditionally, semantic techniques have been particularly important to give mathematical
insight into deduction rules and to establish relative consistency and independence results.

Among all the semantic models of Martin-Lof type theory considered so far, it is dif-
ficult to overstate the importance of the groupoid model, discovered by Martin Hofmann
and Thomas Streicher in the *90s [27, 28]. In this model, types are interpreted as group-
oids (i.e. categories in which every morphism has an inverse), while dependent types are
interpreted as split fibrations (i.e. functors satisfying an appropriate version of the path-
lifting property defining fibrations of topological spacesﬂ First of all, the model provided
a long-awaited independence result, establishing that the so-called principle of Uniqueness
of Identity Proofs (UIP) cannot be proved in Martin-Lof type theory. Secondly, it provided
a precursor to the homotopy-theoretic models (such as the simplicial model [31] and the
cubical model [13]]) that have led to the development of Homotopy Type Theory in the last
decade [47].

The groupoid model is an example of a model given by a category with display
maps [29, 46], in which dependent types are interpreted using a distinguished class of
morphisms (called display maps). This is to be contrasted with models given by loc-
ally cartesian closed categories [43], in which dependent types are interpreted as arbitrary
morphisms. This is forced upon us since the category of groupoids is not locally cartesian
closed (as we briefly review in Chapter [T, but it is also essential to be able to make UIP
fail. This approach however requires additional work, since one needs to show that the dis-

play maps under consideration (i.e. the split fibrations between groupoids) satisfy enough

lStrictly speaking, in [27) 28], the dependent types are interpreted using the equivalent notion of a functor
from a small groupoid to the category of small groupoids.

1

2 INTRODUCTION

closure properties to give an interpretation of the type constructors of Martin-Lof type the-
ory. In particular, Hofmann and Streicher proved results showing that the groupoid model
supports the interpretation of identity types (Id-types), dependent sums (3-types), depend-
ent products (II-types), and a type universe. Furthermore, they considered some inductive
types, like the type of natural numbers and types of lists.

One of the goals of this thesis is to extend this work by showing that the groupoid
model supports also the interpretation of well-ordering types (W-types) [37]] and general
tree types (dependent W-types) [40,42]]. Both of these are very important forms of induct-
ive types, encompassing (up to equivalence) many well-known inductive types, including
the type of natural numbers and list types mentioned above [8, [18]]. Informally speaking,
W-types provide a type-theoretic counterpart of free algebras for signatures with opera-
tions with arities that are not necessarily finite. More specifically, for a type A, whose
elements are to be thought of as operations, and a dependent type B(x), for z: A, where
we think of the ‘cardinality’ of B(a) as the arity of the operation a: A, we can construct
a new type (Wz: A)B(x), whose elements are the terms freely generated by this signa-
ture. Alternatively, one can think of these terms as wellfounded trees. In this view, the
dependent type B is considered as the ‘branching data’ of the trees. Historically, W-types
have been very important, for example to interpret constructive set theories into type the-
ories [2]. Showing that the groupoid model supports W-types, as we shall do in this thesis,

is intended to fill a gap in our understanding of the semantics of Martin-L&f type theory.

Polynomial functors on groupoids

In order to achieve our goal, we will exploit the category-theoretic understanding of
W-types as initial algebras for a particular class of functors, known as polynomial functors,

originally due to Moerdijk and Palmgren [39]. For a morphism
f:B—>A

in a locally cartesian closed category &, the associated polynomial functor Py: £ — &£ can
be written in the internal language of £ [43]] as
Pyx) = Y0 xP0
acA
where B(a) = f~1(a), for a € A, which motivates the name ‘polynomial’. Initial algeb-
ras (which can be thought of as least fixpoints) of such functors are categorical counterparts

of W-types. More generally, one can consider diagrams of the form

I B4 J

POLYNOMIAL FUNCTORS ON GROUPOIDS 3

and consider the associated (dependent) polynomial functor Py: £,; — £, ; between slice
categories of £. When I = J, this becomes an endofunctor and its initial algebras are
counterparts of the dependent W-types [1,, 23].

Since the work of Moerdijk and Palmgren, the theory of polynomial functors has
been developed significantly [24) 49]] and found applications also outside mathematical
logic [48, 34]. However, much of the work on polynomial functors done to date has fo-
cused on polynomial functors on locally cartesian closed categories and hence cannot be
applied to the category of groupoids. An important exception is represented by the work
of Weber [49]], which focused on polynomial functors on categories with pullbacks and
can therefore be applied to the category of groupoids. However, while Weber was able to
generalize part of the theory, not all the results on polynomial functors in [23]] or [24] have

a counterpart in his setting. For this, we shall consider polynomials in groupoids

*) I B3 A J

in which the functor is a fibration, and their special case:

(+%) 1 B3 A 1

Indeed, fibrations in groupoids are exponentiable, thus allowing us to make the definition
of a polynomial functor work. Furthermore, Weber does not consider questions of the
existence of W -types.

We will improve on the existing theory by extending Weber’s results in the particular
case of the category of groupoids, exploiting the possibility of manipulating groupoids
directly. In particular, we shall give a diagrammatic characterization of general natural
transformations, not just cartesian ones, between polynomial functors. For this, we cannot
apply the results in [24], since the proof of this fact given therein is not only developed
in the context of locally cartesian closed, but is also incomplete (as it relies on global
elementsﬂ We will also give more direct proofs of various results on polynomial functors,
such as their closure under composition, adapting to the groupoid case the ideas in [24]
rather than following the abstract approach of [49].

Let us also mention that there are motivations for studying polynomial functors on
groupoids independent of the groupoid model of type theory. Finitary (discrete) polyno-
mial functors in groupoids were also considered by Kock in [34]. He applied his work to
trees of Feynman graphs, intersecting with the work of Baez and Dolan on stuff types [9].

Further, groupoids in general play a role in combinatorics [9} 34,50, |51]].

2A proof of the fact in locally cartesian categories can be obtained via the results in [33].

4 INTRODUCTION
W-types in groupoids

Our main results establish the existence of initial algebras for various kinds of polyno-
mial functors on groupoids. These results can be organized according to two parameters.
The first is whether the polynomial functor is ‘dependent’ or ‘simple’, i.e. whether it is
determined by a map as in (¥) or by a diagram as in (¥¥)), respectively. The second is the
hypothesis on the fibration F': B — A, namely whether it is split, cloven or arbitrary. We
can give an overview of the results in the thesis on W-types and of what remains to be done
in table[T

TABLE 1. W-types for various kinds of polynomial functors

Fsplit | F' cloven | F' general

Simple
Chapter 3 | Chapter 6 | Chapter 6
B—— A

1 1
Simple in slice

A—FE B

NS

Dependent

Chapter 4

Chapter 5
B2 A

VAN

I I

We prove these results working in a constructive metatheory, without assuming the law
of excluded middle, the axiom of choice, fully impredicative principles (like the Power Set
axiom), or the use of iteration along an ordinal. We essentially work in a constructive set
theory allowing ourselves the possibility of defining W-types of sets [3].

This is similar in spirit to the work of Moerdijk and Palmgren [39] where they work
in a suitably-defined ‘predicative topos’, equipped with W-types, and give a construction
of W-types in categories of internal presheaves and sheaves. In fact, we shall make use of
their work using W-types in categories of graphs, which are special cases of presheaf cat-
egories. This is in contrast with [[1], in which W-types are obtained by transfinite iteration

on ordinals, following the well-known approach [4]].

NATURAL MODELS OF TYPE THEORY 5

In general the proofs in this thesis, concerning the existence of W-types, share a sim-
ilar structure. We consider an inductively built set (or graph), and remove some of the
elements, until we obtain a set (or a graph) that admits the structure of a groupoid and of a
P-algebra. Then, we show initiality using additional facts about algebras for polynomial
functors, for example, existence of the smallest subalgebra of a given algebra. One of the
difficulties was avoiding the Power Set axiom, which we managed to accomplish using an
inductive definition of the smallest subalgebra.

It should be mentioned that our results do not seem to follow from the work of van
den Berg and Moerdijk in [10], where they constructed W -types in simplicial sets. There,
they considered polynomial functors associated to Kan fibrations between Kan complexes
and used ordinal iteration to define the appropriate initial algebras, and then showed that
these are again Kan complexes. While the category of groupoids can be embedded in the
category of simplicial sets via the nerve functor and the image under the nerve functor of a
fibration is a Kan fibration, it is not clear whether applying the construction of van den Berg
and Moerdijk to the image of a fibration of groupoids produces the nerve of a groupoid.
Furthermore, as mentioned above, we are interested here in constructing W-types working
a constructive metatheory.

Other related research includes the work of Emmenegger [20], where the author con-
structs WW-types in the category of type-theoretic setoids, and of Dybjer and Moenclaey [19]],
who give a construction of finitary 1- and 2-higher inductive types in the groupoid model.
We should also mention that Sozeau and Tabareau have begun a formalisation of the group-
oid model within the Coq system [44]], but without considering W-types yet. It would be
natural to extend their work by formalising the constructions in this thesis, a topic that we

leave for future work.

Natural models of type theory

The thesis also makes a contribution to the categorical semantics of type theory in
general. In particular, we focus on the notion of a natural model of dependent type theory
introduced by Awodey in [7]], which also appeared in unpublished work of Fiore [21].
Natural models are essentially an alternative presentation of Dybjer’s categories with fam-
ilies [17]], formulated using only category-theoretic structures and universal properties. In
this work, the key notion is that of a representable natural transformation, i.e. a transform-
ation between presheaves whose pullbacks along morphisms with representable domain

have representable domain.

INTRODUCTION

In Awodey’s work, natural models can be shown to model correctly a type theory with

Id-types, unit type, >-types and II-types. But, crucially, the approach taken forces the

model to validate the so-called n-rules for unit type, ¥-types and II-types as judgemental

equalities. Here, we modify Awodey’s approach and introduce a variant of his notion of

a natural model that allows us to validate n-rules as propositional, rather than definitional,

equalities. One motivation for this work derives from ongoing research by Nicola Gambino

and Simon Henry, building on [26], on variants of the simplicial model of type theory. In

their work, II-types are interpreted as cofibrant replacements of dependent products, and

therefore expected to validate the 7-rule only propositionally.

Main contributions

In summary, the main contributions of this thesis are the following.

(1

2)

3)

4)
®)

(6)

We extend Weber’s work on the theory of polynomials to include vertical morph-
isms of polynomials (Proposition [2.2.T). This result is specific to the category of
groupoids and the proof of the statement linking vertical natural transformations
and polynomial morphisms we produce differs from the incorrect one in [24].
We show that the category of J-relative F'-algebras is isomorphic to category of
F o K-algebras, as soon as we have an adjoint pair J - K (Proposition[2.6.7).
We produce a construction of W-types for split (Theorem [3.2.4)), cloven (The-
orem|6.1.4) and general fibrations (Theorem [6.2.16). The work is done in a con-
structive fashion, where we avoid the use of usual ordinal iteration, preferring to
work in a constructive meta-theory without powerset, with inductive sets.

We construct dependent W -types for split fibrations (Theorem [5.1.5).

We show pullback stability for WW-types in slices (Theorem |4.3.4)) and the de-

pendent W-types (Theorem[5.2.3).
We produce a refinement of natural models, where n-equality is propositionally

valid (Theorem[7.2.8).

Outline of the thesis

Chapter 1: This chapter reviews some background useful for the rest of the thesis.

We recall the basic definitions of 2-categories, 2-functors, 2-natural transform-
ations and 2-adjoints. Next, we discuss various forms of fibrations, recall the
definition of cloven and split fibrations. We introduce the notion of generalized
natural transformations and use them to define a 2-adjoint for cartesian product in

slices of Cat for Conduché fibrations. This is then transferred to the 2-category

OUTLINE OF THE THESIS 7

of groupoids. Finally, we recall the construction of dependent products from the
exponential objects.

Chapter 2: We recall the notion of polynomials and polynomial functors. We adapt
the theory of polynomial functors to the category of groupoids. This chapter also
recalls the concept of an endofunctor algebra and morphisms (both strict and
pseudo). We give an inductive definition of smallest subalgebras for polynomial
functors, avoiding the need for power set. We show that initiality implies 2-
initiality for polynomial functors in groupoids. Further, we show that strict 2-
initiality implies homotopy initiality. We conclude with a discussion of .J-relative
algebras and how they relate to endofunctor algebras.

Chapter 3: We construct W-types for split fibrations. This construction is then
performed on an example. We also provide an alternative construction using
W -types for presheaves given by Moerdijk and Palmgren.

Chapter 4: Using the previous chapter (Chapter 3), we construct W -types for split
fibrations in slices. We show pullback stability.

Chapter 5: We construct dependent W -types for split fibrations. Again, we show
pullback stability.

Chapter 6: We give a construction of W-types for cloven fibrations. Next we
define triangle graphs, and give a construction of W -types for general fibrations.

Chapter 7: We recall the notion of natural models, and refine the established defin-

ition in order to model type theory with propositional n-equalities.

CHAPTER 1

Preliminaries

In this chapter we review some basic facts about 2-categories and in particular the
2-category of small categories, Cat, and 2-category of groupoids, Gpd.

We recall the various notions of fibrations and how they relate. We then show that
despite the fact that Cat is not locally cartesian closed, we have exponentials in the slice
categories when the exponent is a Conduché fibration. This is done by explicit construc-
tion, with a view towards our development.

The chapter ends by reviewing the construction of dependent products from exponen-

tials, which will allow us to give an explicit definition of polynomial functors.

1.1. 2-categories

A 2-category is a category enriched over the category Cat. That is, the hom-objects
are categories and the composition morphisms are functors. We will unfold this definition
to fix notation, and expose some basic facts of the theory of 2-categories. The interested

reader is directed to consult the literature, in particular [12], [32] and [35].

Definition 1.1.1. A 2-category C consists of:

e A collection of objects, Cy. We denote its members by X, Y

e For each X,Y in Cp, a category C(X,Y’). We denote the objects of C(X,Y") by
f: X — Y. Morphisms in C(X,Y") are denoted by « : f = g.

e Composition functors oxy,z : C(Y,Z) x C(X,Y) = C(X,Y), for X, Y, Z €
Co.

e Unit functors idy : 1 — C(X, X), for X € Cy

This data is subject to additional conditions, namely that the composition functor is asso-

ciative and that the unit functors are indeed unital for composition.

Elements of Cy are usually called O-cells, and objects and morphisms of C(X,Y)
are called 1- and 2-cells, respectively. Suppose we have f,g,h : X — Y and 2-cells
a: f = gand 8 : g = h, we denote the vertical composition (that is composition in
C(X,Y)yasp-a:f=h

10 1. PRELIMINARIES

There is also horizontal composition. Suppose f,g: X = Y, hi:Y > Z, a: f =
gand B :h=i. Sinceoxyz :C(Y,Z) x C(X,Y) — C(X, Z) is a functor we have that
Boa:hof=1io0g.

Since C(X,Y) is a category, every 1-cell f of it comes equipped with an identity,
which we denote by 17 : f = f.

We define the operation of whiskering as the horizontal composition of a 2-cell with
the appropriate identity 2-cell. For f : X — Y, g,¢': Y — Zand ¢ : ¢ = ¢/, we have
pof:gof= g of,defined by

po f=qet poly.

Functoriality of composition further forces additional equalities to hold, e.g.

lgody=1jeg

and also the following (sometimes called the interchange law):

f g
m /1/,3\4
f/l g//

(8" B)o(a-a)=(f'od) (Boa)

These imply:
(a-B)oly=(acly)-(Boly)
lgo(a-) (lgoa)-(1g0p3)
foa=(lgoa)-(Boly)
=(Boly) (lgoa)

The functor idx : 1 — C(X, X) provides us with the identity 1-cell for X. We will
denote it with idx and 1iq, = lx, the identity 2-cell. One of the unital laws forces

foidy = fand @ o 1x = . The same holds when composing id x on the other side.

Example 1.1.2. The prototypical example of a 2-category is Cat, the category of (small)

categories, with functors as 1-cells and natural transformations as 2-cells.

1.1. 2-CATEGORIES 11

Example 1.1.3. A category is a groupoid if every morphism is an isomorphism. The
2-category of groupoids, Gpd, is the full sub-2-category of Cat, where the objects are
groupoids.

We briefly recall come constructions that will be used later.

Let C be a 2-category. We then have C°P, where we invert the directions of 1-cells.

Let C, D be two 2-categories. We denote with C x D the product 2-category. Its
objects are pairs (X, X’) for X € Cy and X' € Dy. The morphism categories C x
D((X,X"),(Y,Y")are C(X,Y) x D(X',Y") and the composition and unit functors are
products as well.

Let C be a 2-category and A € Cp, we define a strict slice category, C 4:

e Objects are morphisms f: B — A
e Morphisms between two objects f : B — A and g : C' — A are morphisms

u : B — C, making the following diagram commute:

A

o The 2-cells are 2-cells in C, such that:

That is, 7 : uw = v, such that g o = id;.

e All ways of composing 1 and 2-cells are inherited from C

2-functors, 2-natural transformations.

Definition 1.1.4. A 2-functor F' : C — D consists of a D object F'(A) for any A € Cy
and functor Fy g : C(A, B) — D(F'A, FB), for any pair A, B € Cy. The functor must
additionally respect the enrichment structure:
FA7A(idA) = idFA
Faclgof) = Fpc(g) o Fap(f)
Fac(Boa)=Fpco(B)o Fas(a)

For any 2-category C, we write id¢ : C — C for the identity 2-functor. Similarly, we
write home(—, —) : C°P x C — Cat for the hom 2-functor.

12 1. PRELIMINARIES

Definition 1.1.5. Given two 2-functors F, G : C — D, we can define a (strict) 2-natural
transformation n : F = @G, as a collection of 1-cells n4 : FA — GA in D for A € Co,
such that the following diagram commutes:
F
C(A,B) —=2 D(FA,FB)
GA,Bl l,D(FAJ]B)

This implies the usual naturality condition (for 1-cells),

FA —- GA
FA,B(f)l lGA,B(f)
FB —5 GB

neo Fap(f)=Gan(f)ona

and, additionally, for a 2-cell «:

Ff Gf
/:\’l nB nA /:\'l
FA Fle) FB——-3GB = FA——— GA G GB
g g

Lyp © FA,B(Q) = GA,B(O‘) oly,
The identity 2-natural transformation on a 2-functor F' is given by (1p)4 = idpa. The
whiskering operation on 2-natural transformations is formally defined identically as in the

usual case.

Definition 1.1.6. If L : C — D and R : D — C are 2-functors, then we say L is a (strict)

2-adjoint to R, if either of the two equivalent conditions hold:

e there exists a strict 2-natural isomorphism D(L(—), —) = C(—, R(—))
o there exists a pair of strict 2-natural transformations 7 : 10 = RL ande : LR =

1p, such that, the triangle laws are satisfied:

—— LRL R R, RLR

1.2. Fibrations in Cat

In topology and homotopy theory the notion of fibration is a continuous map satisfying
some lifting conditions. This idea can be presented in other settings. In this section we

recall the various notions of fibration between categories.

1.2. FIBRATIONS IN Cat 13

Definition 1.2.1. Let ' : B — A be a functor. A morphism u : X — Y is an F'-cartesian
morphism over f, if for any arrow v : Z — Y in B and any g : F'Z — F X, such that the

following commutes in A:

N

FX*>FY

there exists a unique w : Z — X in B over g, making the following diagram commute in
B:

|\

X*>Y

Put together we can visualize the situation in the following diagram:

B
F /\
A FX*>FY

A morphism v : X — Y is F-opcartesian over f, if it is cartesian for F°P : B°P — A°P.

Definition 1.2.2. We say F' : B — A is a Grothendieck fibration if forany f : A - FY

in A, there is an F'-cartesian morphism u with codomain Y over f.

Definition 1.2.3. Let F' : B — A and F’ : B’ — A be two fibrations. We say that a
functor in Cat/ between F' and F' is cartesian if it maps F'-cartesian arrows in B to

F'-cartesian arrows in B/.

Definition 1.2.4. A fibration F' : B — A is cloven, if it comes equipped with a choice of
cartesian lifts. That is, for any f : A — B and X over B, an object f*X and a cartesian
morphism fy : f*X — X over f:

I

A A1 s B-Fx

f*XLX

14 1. PRELIMINARIES
Remark 1.2.5. Similarly, we say that an opfibration is cloven, if it comes equipped with
a choice of cartesian morphisms f . : X — fi.X, forany f : A — B and X over A.

Let F' : B — A be a functor. For any A € A, we denote with B 4 the fibre over A, as
defined by the following pullback:

Ba
1

If F' is cloven, then given a morphism f : A — B in A, the cleavage data gives rise to a

— B
©

F
*>AA

functor f* : Bg — B 4. f* maps objects X € Bp to f*X and morphisms v : X — Y, to

the unique morphism making the following diagram commute:

px I, x

A

Y — Y
Iy
For any automorphism f : A — A, the cleavage provides a natural transformation
(1.1) f:ff=idg,

(or f :idp, = fi, for the case of opfibrations).
Suppose f: A — B, g: B — C and X over C, we find ourselves with the following

picture:

(go f)*X (9of) x

&

ForX) 5 xS x

AT p_9 .0

>

Since f, g, and, g o f are cartesian (since the composition of cartesian morphisms is
again a cartesian morphism), there is a unique morphism (g o f)*X — f*(¢g*X) making
the diagram commute and the same holds for the other direction. This gives us a (unique)

natural isomorphism (g o f)* = f* o g*, which we will call intermediating morphism.

Definition 1.2.6. A cloven fibration F' : B — A is called split, if for all a € A and all
b € B over a:

idap = idy

1.2. FIBRATIONS IN Cat 15
Further, forall f : a — d/,g: a’ — a” and b € B over a:
grpofo=90fs

Definition 1.2.7. A functor F' : B — A is an isofibration, if for any Y € B and any
isomorphism f : A — FY, there exists an isomorphism u : X — Y, such that Fu = f.

In [14] Conduché classified the functors in Cat that are exponentiable in slices.

Definition 1.2.8. A functor F' : B — A is Conduché fibration, if for any morphism
u : X — Z and any factorization of F'u, FFX i> B FZ, there is:

e afactorization X — Y % Z of u, with Fv = f and Fw = g, and,
e any two such factorizations are connected via a zig-zag of morphisms ¢ over the

identity id 5 and make the triangles in the following diagram commute:

T~

! y! w

Lemma 1.2.9. Any Grothendieck fibration in Cat is an isofibration.

Proof. We will show that a cartesian arrow over an isomorphism is again an isomorphism.
Let I : B — A be a Grothendieck fibration and let f : A — FY be an isomorphism in
A. We have a cartesian v : X — Y over f. This cartesian property gives us a section of

u, which we will call w : Y — X, since the following diagram commutes:

FY
f—ll \Fidy
FX — FY
Fu
That is, v o w = idy. Uniqueness of lifts will guarantee that w o v = id x, observe:
FX
ios| 2
FX — FY
Fu

The unique lift of id px is idx, but we also have that the following commutes (and F'(w o

u) = idFy)i

16 1. PRELIMINARIES

i\
lw

XT>Y

Lemma 1.2.10. Any Grothendieck fibration in Cat is a Conduché fibration.

Proof. Let ' : B — A be a Grothendieck fibration, and suppose that we have a factorisa-
tion of Fu, FF.X i> B % FZ. The first step is to construct a factorisation of u. Since, F'
is a fibration, we have a cartesian w : Y — Z, over g. This means that B = F'Y’, which in
turn allows us to obtain a cartesian lift of f, say q : X’ — Y over it. We have two arrows
Fu:FX — FZand F(wogq) : FX' — FZ, with w o ¢ cartesian (since the composition
of cartesian arrows is cartesian), that are mapped to the same morphism by F'. As such
we have a unique arrow over idpyx, say ¢’ : X — X'. Thus the factorisation of u in the
domain is g o ¢’ followed by w.

Suppose now, we have another factorisation, X E) Y % Z. We first obtain a unique
arrow over idp, [: Y — Y, such that w o [= @. This will be our connecting morphism.
In order to see that, consider the unique arrow over id z x obtained by the lifting problem
assigned to F'(Il o q) and F'q. Note that this same morphism also links » and w o ¢, so
by uniqueness we have ¢’ = v, and as such [is the linking morphism between the two

factorisations. O

1.3. Exponentiability of fibrations

This part recalls exponentiability of functors in strict slices of Cat.

Definition 1.3.1. A category C is locally cartesian closed, if it has a terminal object and

for all X € C, the slice category C,x is cartesian closed.

Remark 1.3.2. There are several other equivalent ways of defining the property of being
locally cartesian closed. Another common definition, is to demand existence of a terminal
object and left and right adjoint to the pullback functor Ay : C,4 — C, g for all morphisms
f: B — AinC. This will be reviewed in the last section of this chapter.

The first thing to note is that Cat is not locally cartesian closed (adapted from [30,
page 48])

1.3. EXPONENTIABILITY OF FIBRATIONS 17

Lemma 1.3.3. Cat is not locally cartesian closed.

Proof. Consider [n] = {0,1,...,n — 1}, a groupoid with a unique arrow between each
pair of objects and let f : [2] — [3], such that f(0 — 1) =0 — 1 and g : [2] — [3], with
g(0 = 1) =1— 2. Then f + h : [2] 4+ [2] — [3] is a regular epi. Take i : [2] — [3], with
i(0 — 1) = 0 — 2. The pullback of f + h along i is no longer an epi, which should be
the case if Cat is locally cartesian closed. (The pullback is jo + ji : [1] + [1] — [2], with
J: mapping 0 to i.). U

Although, Cat is not locally cartesian closed, we have existence of exponentials in

certain cases.

Definition 1.3.4. Let F' : B — A be a Conduché fibration, G : C — A a functor,
f:A— A amorphismin A, T :B4 — C,T" : By — C,suchthat GoT = F |g, and
GoT' = F |g,,. A generalized natural transformationn) : T~ T" over f : A — A’,isa
collection of arrows, 7, : TX — T'Y in C, forall w : X — Y over f, such that whenever
X —“=Y
)
X —— Y
commutes in B (with ¢ being over id 4, j over id 4+), we have that the following diagram
commutes, as well:
TX s TY
Tzi lT/j
X' —— 1Y
This definition is similar to the definitions in [25] and to the modules viewpoint
provided in [45]. The definition we provide is stated in more basic terms.
Note that the above definition says that for y : T ~» T”, and u over f : A — B, i over
id4, j over idp

T'jomn = Njou
T © T = Nuoi
Remark 1.3.5. Given a choice of a cleavage, we can see that any generalized natural

transformation 7 : T'~» T, defines a natural transformation € : 7' o f* = T’. We need a

collection of morphisms ex : Tf*X — T"X. Let

€EX =17

X

We need the following to commute:

18 1. PRELIMINARIES

TrX —X5 17X

Tf*ul l 'y

rryYy —/— 1Y
By the definition of generalized natural transformation, this commutes if the next diagram

does:
px I, x

f *Ul lf

Y — Y
Iy
But this commutes, since it is exactly the definition of f*.

Remark 1.3.6. We have a notion of whiskering for generalized natural transformations.
Suppose n : T'~» T”, and G : C — D, we define G : GT ~ GT" by letting

(Gn)u —def Gnu

The required squares commute because of the functoriality of G.

Proposition 1.3.7. Given T, T' : By — C, generalized natural transformations T ~ T’

defined over id 4 are in one-to-one correspondence to natural transformations T — T".

Proof. (=) Given n) : T ~» T’, then we define ex = nq, (since idx is over id4). We

need the following to commute for v : X — Y:

TX X5 T'X

Tul lT’u

This commutes, since the following does:

x Mx, x

ui u

Y — Y
idy

(<) Given e : T = T’, define 1, = ey o T'(u). Then suppose:

X Y5 Y

1l lj

W —— Z

The desired property (that of, 17 being a generalized natural transformation) is verified by:

1.3. EXPONENTIABILITY OF FIBRATIONS 19

TX -y Py -5 Ty

T{ lTj lTj

!
TW —— TZ —— T’z

The left square commutes by functoriality of Y, the right commutes because of naturality
of e.

Given n : T ~ T, mapping it to a natural transformation and back, we obtain 1), =
Tidy © T'u, but we know that 7;q,, o T'u = 7,. Similarly, givene : T' = T ', we obtain

€’y = ex o T'idx, which equals ex. O

Proposition 1.3.8. Let (f : A — B,n) : T' ~ T?and (g : B — C,¢) : T? ~ T3,
We can define a generalized natural transformation (g o f,eon) : T* ~» T3, called the

composite of (f,n) and (g, €). Furthermore, this operation is associative and unital.

Proof. Given (f,n) and (g, €) as in the proposition statement, we first define the compos-
itioneon : T' ~» T3 over g o f. Let u over (g o f). Since F is a Grothendieck fibration,
we have that it satisfies the Conduché criterion. Then g o f is a factorization of F'u in
A, we have w o v, a factorization of u in B. Set (€ 0 1), = €, © 7,. This assignment is
essentially unique, by the second condition of the Conduché criteria. Suppose we had a
different factorization w’ o v'. We then have a zig-zag of morphisms connecting the two
factorisations. Suppose for the moment, that the zig-zag is of length 1, thatis, i : Y — Y’

over id g, connecting the two factorization:

By the definition of generalized natural transformations, the following commutes:

T'x T2y v, T3y
o |

T'X —— T%' —— T%Z

id

737

Thus, €, 0 1y = €1 © Ny
In case the zig-zag of intermediary morphisms was longer, we can see that we only
need to repeat the argument for each morphism along the path.

To see that this really defines a generalized natural transformation, suppose

20 1. PRELIMINARIES

X Y57z

i £

X’T>Z’

Again, by Conduché criterion, we have w o v = u and w’ o v' = u/. Further, the factoriza-
tions (j ow) ov = w o (v 0 7) are connected by a zig-zag of morphisms. As before, let us
suppose the path of intermediary morphisms is of length 1. This allows us to propose the

following diagram (where [is the previously mentioned intermediary morphism):

X vy I, g
idXH lz i
X —Y — 7
v 01 w

Since both € and 7 are generalized natural transformations, the following commutes:

€jow

T1X L TQY —_— T3Z’

e idxH JTQZ

Ty id),

TlX ﬁ TQY’ T> TgZ/

S0, €jow © My = €y © Nyroi, but from the discussion before this means that 735 o €,, 07, =
€w' © Ny © 111, As in the previous argument, if the zig-zag of the intermediary morphisms
is longer, we simply repeat the argument along each step.

Suppose) : 11 ~» T, € : To ~» T3 and x : T3 ~ Ty (over f, g, and h, respectively).
Take u over (ho go f). Observe ((x o€)on)y, = (x©€)won = (xs 0 €)omn, and
(xo(eon))y = xs © (€4 0myr). Shifting things around a bit, we get (xs c€y) oy = (x o
€)s/otr © 1y We showed before that composition of natural transformation isn’t sensitive
to any particular factorization, as such (x 0 €) g0 © 7y = (X © €)y © 7),. Thus composition
of generalized natural transformations is associative.

Finally, let (f : A — B,n) : T' ~ T2, we define the identity arrow (idg,id) :
T~ T as

(idg1)y = Tl
Then, we have that (f,n) o (idg,idp1) = (f,noidp1). Letu : X — Y, be over f. By

definition of composition, we have:
(noidg)y = Ny o (id71)iy
=1y 0 Tt (idx)

:nu

1.3. EXPONENTIABILITY OF FIBRATIONS 21
Composing with the identity on the left side is analogous. (]

It is a well known result that the product functor (—) x F' : Cat/, — Cat/, has
a right adjoint in Cat, if and only if F' is a Conduché fibration. We give the proof of

one of the implications, by explicitly constructing the exponential object using generalized

natural transformations.

Theorem 1.3.9 ([14]]). Let F : B — A. If F is a Conduché fibration, then (—) x B :
Cat,, — Cat has a right 2-adjoint.

Proof. Let F' : B — A be a Conduché fibration and G : C — A. We define C®B 5 A, the

exponential object, as follows:
e objects are pairs (A,T : B4 — C),suchthat Go T = F"

e morphisms between (A, T") and (A’, T’) are pairs (f,n), where f : A — A’ in A
and 1) : T ~» T’ defined over f, with composition defined as above,

e CB L, A, projects on the first component.

(—)® in fact defines a 2-functor Cat/, — Cat /. Suppose amap [: C — D

Then I® maps (A, T) to (A, I o T) and morphism (f,7) to (f,I on). See that
(I oidy), = ITu
= (idfor)u
Further,
(To€)wo(Ion)y=IlewoIn,
= I(€y 0 ny)
=To(eon)y,

As such, I® is well defined. Further observe that J® o I® = (I o J)B. Now, suppose
n:I=J:

22 1. PRELIMINARIES

(7)) is settobe (ida, (noT)’), where (noT)’ is the generalized natural transformation
assigned to natural transformation n o T, that is (np, o F'Tu),. All of the 2-functoriality
conditions are straightforward verifications (as above).

For G : C — A and H : D — A we exhibit an isomorphism of categories:
®g, @ Cat/y (C x B, D) — Cat . (C,D")

which will be 2-natural in G and H. We define ®¢ p to act as follows:

e Given I : C x B — D, we construct a functor ®; : C — DB:
X = (GX,I(X,-))
[X =Y = (Gf,(I(f,9))g)

The functoriality of the above amounts a bunch of trivial verifications (similar to

the one done before).

e Given 77 : I = .J, we construct a natural transformation n® : ®; = &, by
setting:
(n®)x = (idax, (nx,z o I(idx, u))y)
Where v : Y — Z € F~'(idgx). Again, the required checks are skipped as

they are very similar to the ones already performed.

® is bijective on objects. Given a T : C — DB, its preimage is T:CxB—D:
(X,Y) = (mTX)Y
(u,v) = (maTu),

It is also bijective on morphisms. Given n : T' = T”, its preimage is 7] : T = T,
where 7)x y = (m2nx)id, (it can be shown that eta is natural). Thus, ® is an isomorphism

of categories.

1.3. EXPONENTIABILITY OF FIBRATIONS 23

We show that ®_ _ is natural. Let G’ = Gol:C' - Aand H = Ho J: D' — A.
Then, for T': C x B — D, we get the following by simply unfolding the definitions:

(Cat (I, J%) 0 ®g,u(T))(X) = (J¥ 0 Py o I)(X)
= (GIX,JT(IX,—))
= (G'X,JT(IX,-))

(Cat s (I,J%) 0 ¢ 5 (T))(u) = (G'u, JT(Tu,—))

(Pcr 0 Cat u (I x B, J)(T))(X) = P jororxn(X)
= (G'X,JT(IX,-))
(Per e o Catyy (I x B, J)(T))(u) = (G'u, JT(Iu, —))
Further, forn : T = T' : C x B — D):

(Catyu (1, J%) 0 ®g r(n)x = J°(n®)1x
= (iderx, (J(nx,—) o T(idrx, —))))
(@gr o Cat p (I x B, J)(n))x = (dgrx, (Jonol xB)x_yo(JoT ol xB)(idx,—))
= (idarx, J(nx,—y o T(idrx, —)))

In order to prove 2-naturality, further assume that we have p : I = I’ : C' — C and
e:J=J :D— D'. We would like that:

Cat , (1,J%)

/H\
Cat/A((C X B,]D) % Cat/A((C, DB) Cat /, (n,€%) Cat/A((C’,]D),B)
\i/

Cat , (I',J'®)
equals to:

Cat , (IxB,J)

/H\

Doy
Cat/,(C x B,D) Cat/u(yxBe) Cat)y(C' x B,D') —" Cat,(C',D'P)

\U/

Cat (I’ xB,J)

24 1. PRELIMINARIES

We can see that this is indeed the case (unfolding the natural transformation defined by the

first diagram):
((Catu(n,€%) 0 ®g u)r)x = (¥ 0 D om)x
= JE(Prix) 0 €4,
e (GT]X7 J/<T(7]X7 —)) (@] (ldG/X7 (6 o T(1d1X7 _))/)

Letu:Y — Zoveridgrx, then ep(rx,z)0 JT (idrx,u) = J'T(idrx, u) o ep(rx,y). Also
keep in mind that Gnx = idg x.

(Gnx, J(T(nx, —)) o (iderx, (e 0 T(idrx, —))) = (iderx, J' (T(nx, —)) o €)
Unfolding the natural transformation, given by the second diagram:
= (Perm(nxBoToe))x
(iderx, (n x BoT oe€)(x,z)0 JT(idrx,u))u)
(idarx, (J(T(nx,idz)) o ep(rx,z) 0 JT(idrx, u))u)
(

iderx, J'(T(nx, —)) o €)

((®gr pr o Cat i (n x B, e))r)x

So, ¢ as defined, is a 2-natural isomorphism. O

Let £ : B — A be a cloven opfibration and G : C — A be a functor. Using the
additional data from the cleavage we can define a simpler version of exponential object
C®. The objects remain the same as in the general case. The morphisms between (a1, F})
and (ag, Fy) are now defined to be pairs (u : a; — ag2,n : F1 = Fyoay), with composition
defined to be:

(UQJIQ) o (Ulvﬁ) —def (u ou' (]-Fg oD u2) (772 o 1u]1) ’ 771)
where (u', ") : (ai, Fi) = (aiy1, Fi11). The identities are of the form (ida, (F (ida,))s)-

Lemma 1.3.10. CB with composition, as defined above, is a category.

Proof. We begin, by showing that the composition is associative. Suppose we have (u’, ") :

(ai, F;) — (aiy1, Fi41) for i = 1,2, 3, then using the cleavage and associated properties

1.3. EXPONENTIABILITY OF FIBRATIONS 25

of cartesian morphism and intermediating morphisms:

(u?,n*) o (U, n?) o (u',n")) =

= (W, %) o (u”ou', (g, 0 Pyr2) - (n* 0 1,1) - 1')
— (WP 0w oul, (15, 0 Byaont 3) - (150 Lszenty) - (L, 0 Bn o) - (17 0 1y 1)
= (WP ouPoul, (1p, 0 Py2oyr y3) - (N30 Byt 2) - (W70 L,0) - ')

Composing the other way, we see:
((w®,n*) o (u?,n*)) o (u',n') =
=’ ou®, (L, 0 Pyzs) - (17 0 1,2) %) o (u', 1)
= (w0’ oul, (1p, 0 Pyt ysouz) - ((Lry 0 @z o) - (1% 0 L2) - 0?) 0 1) - ')
= (WP ou? oul, (1p, 0 Pyt yson2) - (L © Pyz s 0 Lyt) - (1 0 Lz 0 11) - (77 0 1,1) - 17')
= (u’ ou? o ul, (15, 0 (®y1 y0y2 - (‘1> woly) (P olzoly)- (P ol,y)-n')
= (((Lg 0 Py12))) - (1P 012 0 1y0) - (1 0 1,1) - n')
= (((0% 0 @1 y2) - (n* 0 1,1) - 1')

udou?oul, (1p, o (® w2oul u *
udou?oul, (15, 0 ®y2g, ud)
Composing with an identity:
(u,n) o (iday,id(ay 1)) = (s (LE, - Pidyy u) - (7 Lid,,) + id(ay, 1))
((Lry - Pidgyu) - (7 Lidyy) ~id(ar,71))b = idpup 0F2(Pid,, u)b © Mid,, b © Fi(idia, ,b) © Fi(iday,)
= F5(Pid,, ,u)b © Mid,, b © Fi((ida,)b)
= Fo((Pid,,)b © wi(iday,) o
=
(iday, id(ag,) © (usm) = (U, (15, - Pujid,,) - (1d(ag,) 1) = 1)
Note that the following hold
(17, © Puida,)b © (id(az,) 0w)b = F2((Puidy, b © 1day)

- inguge

As such we can conclude:

(1F2 : (I)U,idag) : (id(az,Fz) '1U!) : n)b ="M

26 1. PRELIMINARIES

Proposition 1.3.11. The exponential object defined for fibrations equipped with a cleav-
age (as in Lemma |l.5.10) is isomorphic to the exponential object for general fibrations

(where we forget the additional cleavage structure).

Proof. To see this, we construct a mapping in both directions:

(u,n = Fy~ Fo) % (u, (1,)s)

v
(UJ? t P = F2u!) — (uv (F2(I)11 © nbl)v:b1—>b2€p*1(u))

Where @, is the inverse of the unique arrow defined by the cartesian arrow w,, in the

following diagram:
bo
/
b1 Tbl> U[bl
A long string of calculations ensures that these really are functors. Suppose (u,7 :

Fy ~ Fy), then 1) as defined by ¥ is a natural transformation F} = Fhuy, since this

diagram commutes:

b%u:e

lf lu! s

’*>uue

Asn : F} ~ Iy is a generalized natural equivalence, the following diagram also

commutes:

Fib —2 Fyub

lFlf lFQU!f

Flb/ — FQU!b/

Notice that the following diagram commutes:

2

1 ufu,lb
p— u,lb : u, Uy Ly
H l@“l w2)b
20 1
b = (u? oul)b
We know that (n? o n) Joul, = 02, Lo nzlﬂb’ hence the following rectangle com-

mutes:

1.3. EXPONENTIABILITY OF FIBRATIONS 27

2
nil nﬁuylb
‘ l&((@uw)b)
(1on") 20,1
b b F3(u?ou)b

This means that W respects composition. Lastly, identities: W (id(, r)) = (ida, (F'(u))s),
which is the identity in gP.
To check that U is a well defined functor, suppose that we have a commuting square

of the form:

b1L>bg

/
/ v /
by —— b
where v, v’ are over u and ¢; are in B, .

Since u,,, Wy, are cartesian, we have that the right square in the following diagram

commutes:

b1 urby ba
J/(Sl lungl l52
Yyt D,
[— wb) A

This in turn implies that the following diagram commutes:

F1b1 L FQU]bl & F2b2

lFl(Sl lFlw(sl lFQ&Q

T]’L}, 2 ’Ul
Flbll —_— Fgu!bll — FQb/2

So U maps natural transformations to generalized natural transformations.
Suppose we have (u’,n"), fori = 1,2. We can see that @, 0 u?(®y) = Pyoy © Puuy s>

for any factorization w o v = [over ug o u;. This implies that:
2 1_ 2 2 1
F3(®y) oy, 0 Fo(®y) o, = F3(Py o uf ®y) o Muly © Ty
= F3(®1) 0 F3(Puyus) © 7y, © M,y

Thus, ¥ respects composition. Again, \T/(id(a,p)) = (ida, (F'(®y 0 ida,))s), but this is by
definition equal to (ida, (F(v)),). Hence, ¥ is a functor.
Since ®,,, = idy,;, we have that ¥ o ((u,n)) = (u,n)

28 1. PRELIMINARIES

On the other hand the following square commutes:

Upy
bl —_— u!bl
I

bl#bg

for any v over w. This means that for any generalized natural transformation 7 over u:

M = F2(Py) 0 Ny,
Hence, U o U((u, 7)) = (u,n). 0

Let I : B — A be a split opfibration, and G : C — D a functor. Then the above con-
struction for cloven fibrations reduces even further, since the intermediating isomorphism

is the identity:

Corollary 1.3.12. The exponential object, C® for a split fibration is defined as follows:
the objects remain the same as in the general case and the morphisms between (a1, Fy)
and (ag, F3) are now defined to be pairs (u : a1 — ag, ¢ : F1 = Fyowy). Composition is
defined to be:

(v,m) © (u,) =det (vou, (11 0 w) -)
The identities are of the form (id,, (F(idp,))s)-

1.4. Fibrations in Gpd

We recall some basic facts about fibrations in the context of Gpd. Note that any
natural transformation 77 : F' = G in Gpd, is necessarily a natural isomorphism (thus
we can see Gpd as enriched over itself). Gpd inherits various constructions from Cat:

terminal object, products, equalizers, exponential object, pullbacks, pushouts.

Lemma 1.4.1. Any isofibration F : B — A in Gpd is Conduché fibration.

Proof. Suppose there is a factorization of F'u in A:

a
V X
Fu
pPr ——— pz

Then, since F is an isofibration we have w : — y over g. Set v to be w™! o u (and note

1 1

opu = f). Thus we have obtained a factorization w o v = w o w™* o u of v in

pv=g
B.

Suppose now, that there exist two such factorizations:

1.4. FIBRATIONS IN Gpd 29

We can define i : y — 1/, by setting it to v’ o v—!. This links the two factorizations,
and further F(v' ov™!) = F(v') o F(v)~! = id, O

Lemma 1.4.2. Any isofibration F' : B — A in Gpd is a Grothendieck fibration.

Proof. This proof boils down to the fact that any isomorphism over an isomorphism is
cartesian, which we will now show. Let f : @ — Fy and since f isiso, we have u : © — y

over it. Assume v : z — y and g : F'z — F'y, such that:

e

F:U*>py

1

Notice that g = (Fu)_1 o F'v,soletus seti = v~ owv, which implies F'i = g. Further,

this makes the following diagram commute:

X‘
T>y

(2

B

Further, assume i’ : z — x, such that F'(i') = g and making the above commute. Then

wo1i = wuoi,and since u is iso, i’ = 7. Thus w is cartesian. O

Lemma 1.4.3. Any Conduché functor F' : B — A in Gpd is an isofibration

Proof. Let F' be Conduché and consider f : x — Fy. f gives us a factorization of F'id,,
namely f o f~!, and by the Conduché property we have a factorization of id, in B, v o u,

with u over f. Since B is a groupoid, v is an isomorphism. O

Since all notions coincide when domain and codomain are groupoids, we will refer to
them collectively as just fibrations.
We define Fib(I) to be the subcategory of Gpd ;; where the objects are fibrations and

morphisms are cartesian functors.

Proposition 1.4.4. Any map in Gpd /, between two fibrations is cartesian.

Proof. Let F : B — Aand F’ : B’ — A, be two fibrations and G : B — B’ be a morphism
inGpd . Letu: b — b’ in B be a F-cartesian map. We claim that Gu is a F’-cartesian

map.

30 1. PRELIMINARIES

Suppose we have v : ¢ — Gb' in B’ and h : F'c — F'Gb in A such that the following

diagram commutes in A:

F'c
| w

F'Gb —— F'GY
F'Gu

Since all of these maps are isomorphisms, we can set ¢ = (Gu) ! o v, obtaining a map in
A’ over h, making the required triangle commute. Since these are all isomorphisms, it is

the unique such map. (Il

Corollary 1.4.5. Fib(I) is a full sub-category Gpd . O

We can define the cobase change in terms of base change uy = (u~1)*, so the same

holds for it. This isomorphism will be denoted by @, ,, : v1ow = (vowu); and u, = u1y.

Uniqueness of ®,, ,, gives us the following:

q)u,wov : (q)v,w o 1ur) = (I)vou,w . (1wg o q)u,v)

Exponentiability. Given a fibration F' : B — A, and a functor G : C — A in Gpd,

we consider the exponential object C® in Cat /A

Proposition 1.4.6. The category C®, as defined in Theorem is a groupoid.

Proof. We produce the inverse of a generalized natural transformation. Letn : T ~» T’
(over f) be one such. We begin by setting (1), = 7];_11, defined over f~!. Let v over

id,. Observe:

—lo v
by Th o0

ol

V——1V Ft —— FY
(n~ton)ia,,

Note that idy factorizes as u™!ou forany u : ¥’ — x inB. Then (™1 on)ia,, = 1, on, =

idy, and hence, (= o 7)), = T'v. Composition on the other side is similar. O

Corollary 1.4.7. Let F : B — A. If I is a fibration, then (—) x B : Gpd, — Cat
has a right 2-adjoint. (I

1.5. Dependent products

Given a functor B — A, we define the pullback functor Ap : Cat/, — Cat p as

follows:

1.5. DEPENDENT PRODUCTS 31

e For G : C — A, ArC is the category with:
— objects are pairs (b, ¢), where ¢ € C and b € B, such that F'b = Gc
- given two (b,c) and (V/,¢’) € ApC, morphisms between them are pairs
(u,v), where u : b — b/ and v : ¢ — ¢, such that Fu = Gv
— composition is inherited from C and B
ApCis seen as an object in Cat /p, by projecting on the first component.
e Given s : G — G"in Cat , the map Ars : ApC — ApC', simply applies s

to the second component:
Ars(z,y) = (z,sy)
e Given a natural transformation ¢ : s = s’ in Cat /a» We define App as:
(Arp)p,e) = (idp, ¢c)

Proposition 1.5.1. Let F' : B — A. If I is a Conduché fibration, then the pullback functor
Ap : Cat gy — Cat y has a right adjoint.

Proof. We adapt the proof in [6]. Suppose F' : B — A is a Conduché fibration, and let s
be the canonical isomorphism 1 x B = B. Using the adjunction from before, we obtain

5:1 — B®. Unfolding the definition we see that 5, work in the following way: :

a— (a,tq)

u = (u, (v)y)

(we denote with ¢ the inclusion functor B, <— B).
Then, we define the dependent product functor I : Cat g — Cat 4 as the pullback
in the following diagram for G : C — B:

NpG —— (FoG)F

I

B— 5 FF

Since representable functors Cat 4 (Q — A, —) preserves limits (in particular conical

limits), we get the following pullback diagram (in Cat):
Cat /4 (Q 4, A TIpG) —— Cat/, (Q A, (Fo)F)

I l

1 Cat/(Q &5 A, FF)

32 1. PRELIMINARIES

Applying the natural isomorphism from above:

Cat/,(Q 25 A, TIpG) —— Cat u(H x F,(F o G))

1 Cat,,(H x F, F)

However, Cat /B(A rH,G) is also a pullback of this diagram. Thus we obtain an iso-
morphism Cat jg(ArH,G) = Cat/(H, IIxG) (which is natural). O

Remark 1.5.2. The same proof can be performed in Gpd.

We can spell out the concrete definition of the strict dependent product functor. Given
a Conduché fibration F' : B — A, we define a strict dependent product functor IIx :
Cat g — Cat, by:

e for G : C — B, IIpG is a category with objects (a,T : B, — C), where
GoT =4

and morphisms (f, ¢ : T ~» T") such that G - ¢ = (v),,
o fors: G — H:
Ip(s)(a,T)=(a,soT)
r(s)(f,) = (£ (s(#0))o)

o forn:s=t, (Ilrn)) = (ida, (n-T)").
This definition can be simplified when F' is a cloven (or split) fibration. We show this in
Section[2.1] when giving an explicit description of polynomial functors.

Suppose that the following diagram is a pullback in Cat

B— A

ul - l
D——C
The Beck-Chevalley (BC) condition states that:
LAy =AY
A, = Al

1.5. DEPENDENT PRODUCTS 33

Proposition 1.5.3. The Beck-Chevalley condition holds if g in the above diagram is a
fibration.

Proof. Suppose we have a diagram like the one above. The first BC condition holds due
to uniqueness of pullbacks. Let us focus on the second one. Since g is a fibration, and the
square is a pullback, f is one as well. Letw : Y — A, ¢ : Z — D and consider an arrow
w — A,Ilgq. Then:

h — A Ilyq
AgYyh — q
EuAfh — q

h — 1II fAuq
The Yoneda lemma now guarantees that IT; A, = A 11, Ol

CHAPTER 2

Polynomial Functors in Gpd

In this chapter we recall the definition of polynomials and polynomial functors, adapt
the theory of polynomial functors to the category of groupoids (following the work of [24,
49])), and exhibit some examples.

Next, we define endofunctor algebras, show some facts about the category of algebras
and define W-types, along with some examples of them. This is relaxed to obtain the
definition of homotopy initial algebras, before showing that strict initiality implies homo-
topy initiality.

Finally, we define J-relative algebras for a functor /' : C — D in the sense of [5]].
We show that in some cases, J-relative algebras can be seen as usual endofunctor algebras

where we modify the functor F'.

2.1. Polynomial Functors
Definition 2.1.1. A polynomial in Gpd is a diagram of the form:
B —— A
© 7 N
I J
where F' and R are fibrations. We say that a polynomial is cloven (split) if ' and R are

cloven (split) fibrations. Note that all groupoids are fibrant, that is, for A a groupoid, the

unique map A — 1 is a fibration.

To a polynomial as in (*) we assign a polynomial functor, Pr, which is defined as the

composition of:
As Mg SR
Gpd;; —— Gpd g, —— Gpd)y, —— Gpd/;

The exponentiability of fibrations is used to obtain IIr. In general a functor is called a
polynomial functor, if it is 2-naturally isomorphic to the polynomial functor assigned to a
polynomial.

Unfolding the definition above, we can provide an explicit description of Pr.

35

36 2. POLYNOMIAL FUNCTORS IN Gpd
e Let G : X — [, then Pp(X) is an object in Gpd
T R
PrX = A=]

where:
— the objects of PpX are pairs (a,T), where a € A and T : B, — AgX, such

that:
B, - r AgX

A

Using type theoretic notation, we Would write T : 1.3, Xgp, that is every
b € B, maps to the G-fibre above Sb.

- for (a,T), (a/,T") € PpX, amorphism (f,¢) : (a,T) — (a’,T"), consists
of f : a — d in A and a generalized natural transformation ¢ : T~ T”,
such that (7 -), = vforv:b— b € Bgover f. Thatis, ¢ is the identity
on the first component

— given two morphisms (f, ¢) and (f’, ¢'), their composition is:

(f'of, ¢ o)

o fors: X — X'in Gpd, we get Pps : PrX — PrX’, which is defined as

follows:
(Pps)(a,T) = (a,soT)
(Prs)(f,0) = (f.s-¢)

e for a natural transformation 1) : s = s’, we get a natural transformation Pr1) :

Prs = Pps':

(Pr) () = (ida, (Y 0 sTU) bty

We now adapt this definition for the case where ' : B — A is a cloven fibration. If
G : X — 1, the groupoid Pp(X) is defined by:

e objects are pairs (a,T') as before,

e given (a,T), (a/,T") € PpX, the morphisms are pairs (f,) : (a,T) — (a’,T"),
where f:a — a’and ¢ : T = T fi, where (Gn), = f, forb € By,

e given two morphisms (f, ¢), (f/,¢) the composition is defined by:

(f@) o (fr) = (fof,(Apno@ppr) - (@ 01p) - @)

2.1. POLYNOMIAL FUNCTORS 37

The same holds if F' is split, but the composition simplifies since the intermediating iso-

morphism, ® ¢/, is the identity.

Given a diagram as in (¥). Suppose F is split and further assume I = J and RoF' = S

A\‘—/>IB3

Let G : X — I be an object of Gpd . We focus on the objects of PpX first. Since

T : B, — AgX, needs to make the following triangle commute:

B, \\N//;mx

we see that 7" is identity on B,. Further since its codomain is a pullback, it has to be the
case that Gm1Tb = SmTh, but SToTb = RFnTb = Ra. This means, that the above
functor encodes the same data as a functor of the form 7" : B, — X;, where : = Ra. We

prefer to represent the above set as:
(PX)o={(t,a,T) |i € a e A;,T : B, — X;}

Next, let us turn our attention to morphisms. Let (f,¢) : (a,T) — (a’,T’), that is,

b = (pp : b — b, p? : x — 2'). Observe that n? : = — 2/, has to be over Rf = g, since
Gng = Sn}:

2 1:f
X T b— 0 Ly —fb B
al
G “— 5 A s
|
. , g
I P 1)) I

We can then represent the morphisms in PrX as:
(g:i—i',fra—d,p:T=Tou)

where f is over g and components of ¢ are over g as well.
Alternatively, for the reader familiar with lax slices, we can present the above condi-

tion as a 2-cell in the lax slice Gpd /1 between:

38 2. POLYNOMIAL FUNCTORS IN Gpd

B, ' By, L X
— and =5
S G S G
I I
where (go)p =def ¢- That is the following pasting condition holds:
B,
By —Is B, —I X V"W\TJ
\P’@’:>/ "By 7 X
S G
I \ = /
S G
I
Let F' : B — A be a fibration. Further simplifications can be made in the case when

I = J = 1. Then the objects of PrX are pairs (a,T), wherea € Aand T : B, — X. We

can see that this is the same as just applying the dependent product functor.

Examples of polynomial functors.

Example 2.1.2. Let A be a discrete groupoid (i.e. a set) and set A to be Zy + A, where Zo
is a groupoid with one object, o, and one non-trivial, involutive arrow 7. Additionally, let
B be J, the walking isomorphism groupoid, that is, a groupoid with two objects 0, 1, and
two non-trivial arrows 0 — 1, and 1 — 0, that are inverses of each other.

We define F' : B — A, which maps objects of B to e and the non-trivial arrows 01,
and 10 to 7. Obviously this is a split fibration. For X a groupoid, we see that PrX consists
of two types of objects:

(a,0 — X)

for any a € A, and:
(0,141 —X)

The only interesting morphisms appear over the objects marked with e:
o (ide,) : (8,7) — (e, T"), where
o :TO—T'0
01:T1—T'1
o (1,0): (o,T) — (o, T"), where
0o :T0 —T'1
01:T1—=T'0

2.1. POLYNOMIAL FUNCTORS 39

Since, the domain of 7', and of 7" is discrete, there are no additional conditions.

The examples given in this section have discrete fibers, but this is not necessary. For
example, if we were to add an additional isomorphism in the first example, this would
amount to adding a requirement that the two branches at every point must be isomorphic.

We can generalize the above example:

Example 2.1.3. Let X be a set and consider G a subgroup of the symmetric group S(X),
then for A € Set, we define A to be G + A. Define B as follows:

Byg=X
B(z,2') ={r € G| mz =2}

We set f to essentially act as a projection, mapping all objects of B to e and morphisms

z =5 2/ to @ =5 e. This is again a split fibration.

Using groupoids we can construct the symmetric list monad:

Example 2.1.4. Let A be 1 4+ ¥,,cnS,, and B be ¥,,en[n], where [n]o = {0,...,n — 1}
and [n](i,j) = {m € Sy | mi = j}. F : B — A acts as a projection.

Then PrX is the groupoid of lists consisting of objects of X. Between lists that are
equal modulo some permutation we have isomorphisms.

If we take inspiration from the previous example and limit ourselves to some sub-
groups of S,,, we can obtain cyclic lists, etc.

This polynomial monad is sometimes denoted by S, and its Cat monad algebras cor-

respond to symmetric (strict) monoidal categories [11]].

Example 2.1.5. In [48] Weber gives a construction assigning to each symmetric collection
T over I apolynomial Cat,; — Cat; and further a cartesian morphism into S. Given an
operad structure on a collection, he further gives a monad structure to a polynomial functor
assigned to the collection. An inspection of his construction shows that the polynomial

obtained is actually a polynomial in groupoids.

Composition of polynomial functors. The next result establishes the type-theoretic

counterpart to the so-called axiom of choice.

Proposition 2.1.6 (Weber [49]). Let F' : B — A be an object in Fib(A) and further let
U : C — B. Consider the diagram:

40 2. POLYNOMIAL FUNCTORS IN Gpd

— Y M

W=Ap(V V=II;(U)

B——=2

e
T

Then 1Yy = SyIlg A

—F A

Proof. Weber shows ([49]) that (P,), R) is a distributivity pullback around (F, U) if and
onlyif 0pg r : YrllgAp — Xy is an isomorphism. Further, he shows that the above

is a distributive pullback (even more, the initial such). O

We can compose polynomials. This composition is defined in [24] and further exten-
ded to categories with pullbacks in [49]]. We recall their construction. Suppose we have

two polynomials, F':

and G

N P) AN
% /
B R A w
M H
B—F"—— D —%5C
s U
I J K

Where the squares are pullbacks, and the pentagon is the distributivity diagram from be-
fore. Since F' was a fibration, both R and P are as well, further since G was one, () is
one. Similarly, 7" being a fibration makes K one, as well. Pushforward of a fibration is a
fibration, hence W is a fibration. Composing two fibrations gives a fibration and we obtain

a properly defined polynomial.

2.2. MORPHISMS OF POLYNOMIAL FUNCTORS 41

Thanks to Beck-Chevalley (Proposition [1.5.3)), distributivity and pseudo-functoriality

of the 2, IT and A functors, we can produce the following calculations:

Pgo Pp = SyllaApSrllpAg
~ N MeS g ApllpAg
~ Yy Sy ToAA T pAg
~ Yy Sy TloIpANAyAg

=Zovwmlligr)Aismn)

:PGOF

We will see later in this chapter that this operation is associative and unital up to

coherence and gives rise to a bicategory, exactly as in [24,49].

2.2. Morphisms of Polynomial Functors

We essentially follow [24]. The proof of Proposition 2.8 therein contains an error,
which we fix in the case of Gpdﬂ In their proof the state that one can without loss of
generality consider the case where A = 1, which was later pointed out to not be the case.
We instead manually construct the required morphism and show that the assignment is
unique by looking at specific objects in Gpd ;, which fully determine the action of the
vertical natural transformation.

Recall that a natural transformation ¢ : F' = G : B — A is cartesian, if the naturality
square is a pullback. Thatis, forall f: X — Y € B:

FX 25 6x
o e
FY —— GY
is a pullback.

Define PolyFun(Gpd /1. Gpd /J) to be the category of polynomial functors and 2-
natural transformations between them.

Let F : PolyFun(Gpd 1, Gpd ;) — Fib,j (or SFib y), that acts in the following

way:

As mentioned in the introduction, a correction can be made in case of locally closed cartesian categories
using [33]]

42 2. POLYNOMIAL FUNCTORS IN Gpd

Then F is a Grothendieck fibration, where the cartesian arrows are exactly cartesian nat-
ural transformations and vertical arrows are those with 7 = id.

Let ¢ : P = (@, be vertical and cartesian. Then ¢ is an isomorphism. Let s be an
object in the domain of P. Since the domain also contains a terminal object 1, we have an

arrow ! : s — 1. The following diagram is a pullback:

PSLQS

P!l B lQ!
Q1

Pl =——=

Since (; is a pulllback of the identity, it is an isomorphism.

Let us now consider the diagram of the following shape:
AR
2.1 3

As shown in [24]], such a diagram induces a cartesian natural transformation ¢ : Ppr =

Pr, defined as the following composite:

SrllpAg 2 Y pllpAzAg (by S" = SB)
2 Y rAJIrAg (by Beck-Chevalley)
= XRrYAJIFAg (by R = Ra)
= YgllpAg (compose with the counit)

The composition cartesian is because individual components are. Explicitly at the point
X:

@X(ala T) = (Oéa,, To ﬁa/)

SOX(f/a Q;Z)) = (aflv (Q;Z)Bf/v)v)

Where 5, : Boy — B, (and Bp : Bop — IB%’f,) are isomorphisms determined by the
pullback square:

2.2. MORPHISMS OF POLYNOMIAL FUNCTORS 43

Bow =B, — 1

. l“’
Ii’ — W

b

B——— A

Turning our attention to diagrams of the form:

B 4

v N

2.2) I W J

N S

BT>A

We can see, that diagrams of this shape give us a vertical natural transformation ¢ : Ppr =

Pr. For X, we have that px is as follows:
ox(a,T) = (a,\x : By.(z, TWx))
SOX(Q,W = (gv Au F_l(g)(u?qu»

Technically T'x (and %,) are elements of Ag X, however for ease of reading we omit
writing the projection.
We can see that ¢ is natural. Suppose h : X — Y in Gpd , :

(¢x o Pri(h))(a,T) = (a, \z.(z, K\TWz))
(Pr(h)opy)(a,T) = (a, \x.(x, \TWx))

and similarly for morphisms.

Now suppose « : h = h/, we can see that ¢ is in fact 2-natural:
oy (Ppra)gr = (idg, M(u : b — b).arwy o TWu)
(PFO‘)@X(CL,T) = (ida,)\(u b — b’).aTWb/ o TWU)

We see that o1 = id 4, so it is vertical for F.

As noted before, the proof of the next statement is quite different from the one in [24].

Proposition 2.2.1. Every vertical 2-natural transformation ¢ : Prp = Pp can be as-

signed a commuting diagram of the shape (2.2):

44 2. POLYNOMIAL FUNCTORS IN Gpd

B 4
I w J

N i

BT>A

Proof. Let ¢ : Pr» = Pr be a vertical natural transformation. The first thing to notice is

that for any such, the following commutes (for any X € Gpd /):

PrX —Z 4 PpX
| |
A= Ppl —= Prl=A

Meaning that for any (a,T) € PpX, we have that ¢x(a,T) = (a, f) (and similarly for
morphisms). That is, ¢ is the identity on the first component.

If a € A, we can see B/, over I, and define ¢, : B/, — B’ x B/, as the diagonal functor.
Notice that (a,d,) is an object of Pr/B),. Applying ¢pg to it we obtain an element of
PrB, of type (a,6, : B, — B x1 B.).

We define W : B — B’ on objects first:

W(b:B,) = mda(b)

We will omit writing the projection in the next part.

Since for b € B,, d, maps it to an element of the form (b, t') € B x; B.:
Sb=S"v
Further since B/, is over a € A, we have:
Fb=F'V
Since ¢ is natural, the following commutes:

, Pt ’
PF’Ba E— PF/B

S

Meaning that (a,d, : B, — B’ x;B’) gets mapped (via ¢p/) to (a, B, LNy x1 B!, =

B x B'). This will allow us to define W on morphisms as well.

2.2. MORPHISMS OF POLYNOMIAL FUNCTORS 45
Letg:a — a' € A, and define (g,dy) : (a,0a) — (d’, da/), by setting:
dg = Au.(u, u)

Then for u : b — o over g : a — a/, we set:

We now proceed to show that W is a functor.

Given idy, over id,, then diq, is actually the identity natural generalized natural trans-
formation. Since g is a functor, we have that g (idg, dig,) = (idg, &;) = id, and
W (idp) = idws.

Suppose u : b — b, v : b/ — V" over g, ¢’ respectively. Then first notice that:

a,0a)’

5; 00g = dgog

Since g is a functor:

—

5y 069 = 5755, =
Then:

o~ o~

W(v) o W(u) = dgy(v) o dg(u)
= (3 0 dg)(v o u)

= dgr0g(v o u)

=W(vou)

Define IB%’g to be the pullback in the following square:

IB%’g*>J

Lol

B — A

Then (a, d,) is also an object of Pr/Bj, and (id,, d,) is a morphism (a,ds) — (a’,) in

PrBy, so we get that:

SWu=S8Wu
FWu=FWu

as before.

46 2. POLYNOMIAL FUNCTORS IN Gpd

We now wish to show that ¢ is fully determined by V. Let X € Gpd , and suppose
(a,T : B, = AgX) € PpX. Note that T' can be seen as a map in Gpd ;, then we get
the following:

, PpT
PF’IBCL Em— PF/X

¥BY, l wa

Further we have that (PgT')(a, d4) = (a,T), so:
px(a,T) = (a, AsT 0 d,)
That is:
T(x) = (z, TW=z)
A similar trick can be performed with morphisms. Given (g, %) : (a,T) — (a’,T") in
Pr:X. We can see that ¢ defines a functor of the type
1/) : B; — AS/X

v acts as T' over By, — By, (and 7" over B, respectively), and like 1 (and 1) for u over

g. Further we have that the following commutes:

Py
PpB, % PpX

¥By, l J@x

As before, we get that (Prs1)(g,0,) = (g,%) and tracing the above diagram, we can

conclude:
ex(9,%) = (Pr)(g,8,)
Expanding this we get:
Yy =

Hence we can see that ¢ : Prr = P is fully determined by W : B — B'.]

Proposition 2.2.2. Let ¢ : Prr = Pr be a cartesian 2-natural transformation. Then it is

uniquely represented by a diagram of the shape (2.1)):

2.2. MORPHISMS OF POLYNOMIAL FUNCTORS 47

B —— A’
R I
I B o J
N i

IBT>A

Proof. To start with, suppose ¢ is both vertical and cartesian. From the previous proposi-
tion, we get 3 : B — B’. Note that we have already shown that ¢ must be an isomorphism,
so we can also obtain 3’ for ¢ 1. Uniqueness gives us that 5 and 3’ must be inverses of

each other. This gives us the diagram of the required form:
B X3 A

SRR

B J

RN g

B’ — A
Now, we relax the constraint and allow ¢ to only be cartesian. We get
a:A'%PplgpplgA
Consider the following pullback:

B, A/

:

The above defines a new polynomial, one that is also above A’ for the Grothendieck fibra-

[0}

—
|
*>FA

tion F, which we will call Pr,,. We now have a cartesian arrow ¢ : Prr = Pr and another
cartesian arrow v : Pr, = Pp. This means that there exists a cartesian and vertical arrow

& . Ppr = P, such that ¢ = v o . Applying the previous consideration we obtain:

B — A

s H\

B, —— A/

NI kA

IB%*>A

48 2. POLYNOMIAL FUNCTORS IN Gpd

Consider now a diagram of the shape:

1<% p_S,0c V.,

|

(2.3) B0
[
I+ B—>A——J

Diagrams of this shape will be called morphisms between polynomials G and F'. Applying
what we know, we get a 2-natural transformation Pz = Pr. We can also show that the

converse holds:

Proposition 2.2.3. Every 2-natural transformation between polynomial functors is rep-
resented in an essentially unique way by a diagram above (2.3)):
1+%-p-S.0- Yy

|

B ——C
|
[
[¢4 B—sA—r]

Proof. Given a natural transformation ¢ : P; = Pp, we can factor it as a cartesian natural
transformation followed by a vertical one (thanks to F being a fibration). Applying the

two propositions we just showed, we obtain a diagram of the desired shape. U

We define a new category Poly(I, J) where the objects are polynomials and morph-
isms are diagrams as described above (2.3). Given two such diagrams, stacked on top of
each other, we see that we have a cartesian followed by a vertical natural transformation.
Looking at the natural transformations assigned to them, we use the fibration property of
F to transform it into vertical followed by cartesian, and take the diagram assigned to the

newly obtained natural transformation. The last step is to simply compose the squares.
Proposition 2.2.4. For I and J, the functor:
Ext : Poly(L, J) — PolyFun(Gpd ;, Gpd j)

is an equvalence of categories

Proof. This is a consequence of the previous proposition. O

Theorem 2.2.5. There exists a bicategory Polygpq, called the bicategory of polynomials

in groupoids, having small groupoids as objects, polynomials as 1-cells and polynomial

2.3. ALGEBRAS FOR ENDOFUNCTORS 49
morphisms as 2-cells, such that the functors
Ext : Poly(I,J) — PolyFun(Gpd , Gpd j)
extend to a biequivalence:
Ext : Polygpq — PolyFun

Proof. See the construction of Poly, in section 2.16 of [24]. O

2.3. Algebras for endofunctors

The main topic of this thesis is discussing the so-called W-types for groupoids. We
begin by reviewing some definitions and facts about endofunctors on a category and then

move to 2-categorical aspects. Let us first recall what endofunctor algebras are:

Definition 2.3.1. Let C be a category and F' : C — C an endofunctor. An F'-algebra is a
pair (X, supy), where X € Candsupy : FX — X.

We collect F-algebras into a category F'-alg,, where:

e the objects are F-algebras, that is pairs (X,supy : FX — X),
e the morphisms between (X, supy) and (Y, supy) are morphisms f : X — Y of
C, such that:

fosupy = Ffosupy
rx 2, py

supxl lsupy

X — Y
e composition and identities are inherited from C

The following is a well-established lemma in the theory of endofunctor algebras (cf. [11]]):
Lemma 2.3.2. The forgetful functor U : F-alg, — C creates limits. O

Definition 2.3.3. An initial algebra for F’ is an initial object in F-alg,.

One of the most important theorems about endofunctor algebras is Lambek’s Lemma

[36]], stating that if (X,supy) is initial algebra for F’, then X is isomorphic to F'X via

Sup x.

2-categories of algebras. Let F' : C — C, now be a 2-endofunctor. We collect F'-

algebras into a 2-category F'-alg,, where:

o the objects and morphisms are the same as in the 1-categorical version,

50 2. POLYNOMIAL FUNCTORS IN Gpd

e 2-cells between two morphisms f and g, are those 2-cells of C, o : f = g, such
that:

Tsupy, © Fao = o lgyp,

Pf f

PX 4raPY ™57 = PX —5 X _val Y
- sup x \E),
Pg

e composition and identities are inherited from C

We can extend the previous proposition about limits to 2-limits as well.
Lemma 2.3.4. F-alg, has all strict 2-limits that C has.. |

Definition 2.3.5. An algebra (W, supyy) is strictly 2-initial, if the hom-category hom(W, X))
(for any other algebra) is isomorphic to the terminal category 1. That is, for any other al-
gebra (X, supy), there exists a unique algebra morphism f : W — X and the only 2-cell
a: f = fis the identity.

We can relax the definition of F-alg, to define the category of algebras and pseudo-

morphisms, which we will denote with F'-alg:

e objects are pairs (X, supy : FX — X),
e morphisms are pairs (f, f) : (X,supy) — (Y, supy), consisting of a map f :
X — Y anda2-cell f:supy oF f = fosupy:

rx 2 py

x| |7 [y

XﬁY

e 2-cells between (f, f) = (g,g) are 2-cells ¢ : f — g, satisfying the following

equation:
Ff
— A Ff
FX Fe FY PX —— PY
~_ 7 ra
Supxl 111 9 lsupy = Supxl l}f lSUPY
g
X ——Y X wlYy
g ~_
g

Remark 2.3.6. Traditionally algebra pseudomaps means that the 2-cells are isomorph-
isms. In our case this is automatic, since any natural transformation in Gpd is an iso-

morphism.

We propose the following definition, for what it means to be a homotopy initial algebra

(this is inspired by type-theoretic notions in [8]):

2.4. ALGEBRAS FOR POLYNOMIAL ENDOFUNCTORS 51

Definition 2.3.7. An algebra (W, supyy) is homotopy initial, if the hom-category F-alg(W, X)
(for any other algebra X) is equivalent to the terminal category 1. That is, for any other
algebra (X, supy), there exists a pseudomorphism f : W — X and, for any other pseudo-

morphism g, there exists a unique algebra 2-cell a : f = g¢.

2.4. Algebras for polynomial endofunctors

We now specialize the definitions from the previous section to the case where the
endofunctor is Pr : Gpd; — Gpd,, a polynomial functor.

A subalgebra of X is an algebra U, with an inclusion map f : U — X, which is an
algebra map. It is known that every algebra has a unique smallest subalgebra. In general,
this fact relies on powerset. For polynomial functors we can give an inductive construction

of the smallest subalgebra. So let Pr, be the polynomial endofunctor associated to

1«2 B ,a_F g

and consider an algebra (X — I, supyx : PpX — X). We will show that X has a unique
smallest subalgebra. To that end, we inductively define a graph, which we then show can
be made into a groupoid over I and further equipped with an algebra structure, that makes
it into a subalgebra.

Let GG, be the smallest graph X, such that the following holds

(1) If (a,T) € PrX, and for every b € B, Th € X and forevery u : b — b’ € B,
Tu € X(Th,TV"), we have that supx(a,T) € Xo

Q) If (f,) : (a,T) — (', T") € PpX, supx(a,T) € Xo, supx(a’,T") € X,
and for every u : b — b over f, o(u) € X(Tb,T'V), then supx(f,¢) €
X (supx(a,T),supx(a’,T"))

B)Ifu:xz — 2’ and v : ' — 2" are two edges in X, then their X-composition

vou € X.

Remark 2.4.1. We would like to provide some justification as to why the above inductive
definition is valid. As we will see in Chapter [3| we can construct an inductive set, and then
equip it with a graph structure. Alternatively, we can consider the inductive definitions in
presheaf categories, as described in [39].

To illustrate how a set satisfying these inductive constraints is built, we suppose that

we are operating with only discrete groupoids. We define
B={((a,T),b,70) | (a,T) € PrX,b € Ba}

Consider the polynomial:

52 2. POLYNOMIAL FUNCTORS IN Gpd
s = s su
X« BT, pex 2P X

Then the initial algebra for the above polynomial in Set, satisfies the first constraint in the

inductive definition. Finally, one considers a quotient of this initial algebra.

Lemma 2.4.2. G admits the structure of a groupoid.

Proof. By definition of (G, we have the operation of composition, inherited from X (and
is as such associative). Suppose z € G, then there exists (a,T) € Pr(X) such that
supx(a,T) = x. By the definition of G, we have that Tu € G for all w : b — b in
B,. Note that the identity arrow for (a,7’) in PrpX is defined to be (id,, (T'u),), hence
supx (id, (T'w),,) is in G. Further supy is functor, hence id, is in G.

We would like to show that X is a groupoid. If h : # — 2’ € X, we will show that
there is an inverse by induction. We have two cases corresponding to (2) and (3).

In the first case we have that there exist (f,¢) € PpX such that u = supx(f, @)
and p(u) € X. By induction, we have that ¢(u)~! are edges in X. Since the inverse

1 we have that

of a generalized natural transformation is defined as ¢~ !(u) = p(u=1)~
supg (f~1, ¢~!) € X. Since supy is a functor, h~! € X.

The other case gives us a pair of morphisms v, u such that A~ = v o u. By induction,
we have that v~! and v ! are in X. Then we have that u=! o v~ € X and h again has an

inverse. O

Proposition 2.4.3. Every Pr-algebra has a unique smallest subalgebra.

Proof. Let (X — I,supy : PpX — X), be a Pp-algebra. By Lemma [2.4.2] we have a
subgroupoid of X. We can equip GG with an algebra structure — the restriction of supx to
(. This makes G into a subalgebra.

Let Y be another subalgebra of X. Then underlying graph of Y satisfies the conditions
in the definition of G. Suppose (a,T") € PpX. If Th and T'u are members of Y, we have
that (a,T) € PrY. Since supy must be a restriction of supyx we have that supy-(a,T") =
supx(a,T) € Y. Similar reasoning applies to morphisms. Since G is the smallest graph
satisfying these constraints we get an inclusion map G — Y, which is also an algebra

morphism. U

Proposition 2.4.4. The structure map of the smallest subalgebra of X is epimorphism.

Proof. We know that a functor £' : C — D is epimorphism, if it is surjective on objects

and the closure under composition of graph im(F') equals D.

2.5. W-TYPES 53

Let GG be the smallest subalgebra of X. We see that sup; is surjective on objects, since
if g € G, we have (a,T") € Pr(X), such that supx(a,T") = g. Further, any morphism in

G is a composition of morphisms given by sup. (]

2.5. W-types

Definition 2.5.1. A W -type is the initial object in the category of algebras for a polyno-

mial functor.

For the case of polynomial functors for groupoids, we can show that the seemingly
weaker formulation of initiality implies 2-initiality as well. We begin by considering the

interval category, I:
0 — 1.

One of the basic results for groupoids states that 2-cells in Gpd(Y, X) are in 1-to-1 cor-
respondence to 1-cells in Gpd(Y,X!). Given a : f = g, we produce @ : Y — XI, by

setting:

Ql

(y) =y : fly) = 9(y)
(u) = (fu, gu)

o

Likewise, given a morphism 7' : Y — XI, we obtain a pair of functors (9p, 0 are the

domain/codomain fibrations):

T%(y) = 8o(Ty) T'(y) = & (Ty)
T (u) = m(Tw) T (u) = 71 (Tu)

and a natural transformation p? : T° = T by letting, for y € Y, gog : T% — Ty to be:
of =T(y)

Lemma 2.5.2. Let (X, supy) be a Pr-algebra. Then X! can be equipped with an algebra

structure as well.
Proof. Let X be an algebra as in the statement. Define supyr : PpX! — XI:
supgr(a, T : By — XT) = supg(id,, ¢7)
supxi (f, @) = (supx(f, a’),supx(f, at))

A series of trivial calculations show that supxz is a functor. g

54 2. POLYNOMIAL FUNCTORS IN Gpd

Lemma 2.5.3. Given two algebra morphisms f,g : (X,supx) — (Y,supy) and an

algebra 2-cell a : f = g in Pp-alg,, the associated morphism & :

(Y!, supy:) is an algebra morphism.

Proof. If (a,T") € PrX, then:

a(SupX(a’ T)) = Qsupy(a,T) * f(SUPX(aa T)) - g(SupX(a7 T))
supyr(a, @0 T) = supy(idy, a - T) : supy(a, f o T) = supy(a, o T)

Note that since f and g are algebra morphisms and « is an algebra 2-cell:

Qsupy (a,T) = Squ(ida’ Q- T)

Let (u,) be a morphism in PpX:

a(supx (u,) = (f supx (u, @), g supx (u, ¢))

= (supy(u, f -), supy(u, g - ¢))

= supyrs (u, @ - @)

Theorem 2.5.4. If (W, supyy) is initial, then it is strictly 2-initial.

(Xv SupX) -

Proof. We claim that for every Pp algebra (X, supx) there is an isomorphism of categor-

ies:
PF'algs((Wa SupW)7 (X> SupX)) =1

By initiality of W, we know there exists a unique algebra morphism f : W — X. So

it only remains to show that the only algebra 2-cell a : f = f is the identity. We have

already shown that any algebra 2-cell:

corresponds to an algebra morphism

oW x!

But, by initiality of W, there exists a unique algebra morphism W — X/, and we know

that fid exists. So we must have fi4 = f® and hence a = idy.

Let P be a polynomial endofunctor assigned to a polynomial:

O

2.5. W-TYPES 55

Proposition 2.5.5. The following is equivalent.
(1) (W, supyy) is homotopy initial for P.
(2) For any split fibration p : & — W, which is a strict algebra morphism, there
exists a section s : W — K, with an algebra pseudomap structure, s. Further,
for any other section with algebra pseudomap structure (g,g), there exists a

unique algebra 2-cell o : f — g.

Proof.

(1) = (2) Suppose (W, supyy) is a homotopy-initial algebra. Further suppose we have a
split fibration p : E — W, which is a strict algebra map. By homotopy initiality
we get an algebra pseudomorphism (s, 5) : W — E. We can compose this map
with p, and thus obtain a map (po s,p-5) : W — W. Again, by homotopy
initiality we get an algebra 2-cell 6 : 1yy = p o s.

We now define s’ : W — [, which will be the section of p. Since p is a split

fibration we have:
Ow
(0%)(sw) —=— sw
1’3
911}
w ———— (ps)(w)

Let u : w — w'. The interesting diagram now is:

Ug* ;8w

e ——— 0F(sw)
Ip

Since 0 is a natural transformation, the following commutes:

w —— w' = p(6%,(sw'))

O
w — psw

ul Jpo

w ——— psuw’
0,

and additionally, p is split. Hence ¢’ = 67 (sw). Set s’ as follows:

s'(w) = (6;,) (sw)

Sl(u) = %9;, (sw’)

56 2. POLYNOMIAL FUNCTORS IN Gpd

This definition is functorial, since p is split. We thus obtain a section of p.

Define ¢ : s’ = s, a natural transformation, by setting:
Yw ¢ (0,)(sw) — sw

ww:%

SW

Note that, ¢ is not only natural, but also a 1-cell in Gpd JT- Using it, we define

an algebra pseudomap structure for s':

Ps’
/\
PW Py PE
—

Ps
supy s supg

/Sm
W W

o

Suppose now, that we have another section with pseudomap structure (¢,¢) :
W — E. Since W is homotopy initial, we get a unique 2-cell s’ =.

(2) = (1) Let (X, supyg) be an algebra, by Lemma W x X is an algebra and ; are
strict algebra morphisms. Further, they are split. By (2) we get a section, with a
pseudomap structure (s,5) : W — W x X,

We now have an algebra pseudomap (72 o s,m3 - §) : W — X. Suppose
(9,9) : W — X is another such. We can use it to produce another section to 7,
((idw, g, (1,9)) : W — W x X. By our assumption we get an algebra 2-cell
¢ : s = (idy, g), which in turn gives a 2-cell 9 - s : 25 = g.

Suppose ¢ : mos = g is another algebra 2-cell. Since 715 = idy, we have
that (idyy, v) is a 2-cell between two sections. By uniqueness, (idyy, 1)) = ¢ and

¥ = o, SO M2 is unique.

O

Blackwell, Kelly, Power [11] produced several results regarding 2-limits in F-alg,
where F'is a 2-monad. We adapt them for the case of P-alg, where P is a polynomial

2-functor:

Proposition 2.5.6. Let f, g : X — Y be a pair of parallel algebra pseudomorphisms. The
inserter of these two arrows (V,p: V — X\ : fp = gp), computed in Gpd/ﬂ, is again

an algebra. Further, p is a strict algebra morphism, and)\ is an algebra 2-cell.

Proof. Let (i : X — I, supx) and (5 : Y — I, supy) be two algebras and f, g be algebra

pseudo morphisms as in the above statement of the proposition. We compute the inserter

2.5. W-TYPES 57
in Gpdy, that is:
V={(h: fr— gx)[j(h) = idiz}
V((x,h), (', 1)) = {k € X(2,2') | fk o/ = hogh}

p(z,h) =x
p(k) =k
Aeh=h

To make PV into an algebra we will use the universal property of the inserter in Gpd ;.
To that end, take PV,supy oPp. We need to produce a natural transformation ¢ : f o

supx oPp = g o supx oPp. Consider the following 2-cell:

Supyx PY Supx
//fi K h g N
X supy X
\) /
Y

That is, out v is defined to be:

F1.p PA g-P
f osupy oPp L2 qupy oPf o Pp 22T qupy oPg o Pp L% g o supy oPp

By the universal property of inserters in Gpd , we have a unique morphism, which we
denote by supy : PV — V, such that p o supy = supx oPp, and A - supy = ¢. Hence,

(V,supy) is an algebra, and p is a strict morphism. All of these conditions ensure that we

58 2. POLYNOMIAL FUNCTORS IN Gpd

have the following equality:

PX PX
y Y V Pf
N
PV supx PY PV P PY
_z Pp ll Py
é f
Supy X Supy Supy PX Supy
P f = X -
/ I \ I
\Y A Y \Y supx Y
e b oS Nl
X X
And hence, A is an algebra 2-cell. U

Proposition 2.5.7. Let o, 3 : f = g be a pair of parallel algebra 2-cells. The equifier
of these two arrows (E, e : E — X)), computed in Gpd /1 is again an algebra, and e is a

strict algebra morphism.

Proof. Let o, 8 : f = g : X — Y, be a pair of parallel algebra 2-cells. Consider E, the
full subcategory of X, such that

E()Z{%EXo‘ae:ﬂe}

This is an equifier of @ and § in Gpd ;. Let e : E — X be the inclusion map. We
would like that o and 8 whiskered by supx o Pe are equal. We can produce the following

equations:
(a - supy Pe) o (f - Pe) = (g - Pe) o (supy -Pa - Pe)
Since ae = Pe, we have:
= (g - Pe) o (supy -Pf - Pe)
And, again, since [is a 2-cell:
= (B -supx Pe) o (f - Pe)
Because f - Pe is an isomorphism, we obtain:

(- supy Pe) = (B - supx Pe)

2.6. J-RELATIVE ALGEBRAS 59

By the universal property of equifiers, we get a map supp : PE — E, such that supy oPe =

e o supg, that is, e is a strict algebra morphism. U

Theorem 2.5.8. The strict initial algebra W for a polynomial functor P is homotopy-

initial as well.

Proof. Let W be the strict initial algebra and let (X, supyx) be another algebra. We get a
strict algebra morphism W — X. Suppose now, that we have two algebra pseudo morph-
isms f,g: W — X.

Applying the previous proposition, we get an inserter V 2, W and an algebra 2-cell
A : fp — gp. Since V is again an algebra, we get a map W 2 V. This map, must be a
section to p, since idyy is the unique strict algebra map W — W. Hence A - w is an algebra
2-cell f — g.

Let o : f = g, be another such 2-cell and consider the equifier of o and A - u. As
we saw in the proof of the previous proposition, we define it as a full subcategory of W,
where the objects are:

Ey={we Wy |ay=A\ u)w}

with the equifier map, being a simple inclusion. We know that as W has no non-trivial

algebras, it must be the case that E = W and hence, v = (\ -). O

2.6. J-relative algebras

In [S] and [22] the authors explore the concept of relative monads. We adapt their

work to define a simpler notion of J-relative F'-algebras.

Definition 2.6.1. Let /' : C — D and J : C — D be two functors. Then a J-relative
F-algebra is a pair (X, x), where X € D and y is a natural transformation of type
D(J—,X) = D(F-, X).

Given (X, x) and (Y,), we say that f : X — Y is a J-relative F'-algebra morphism,

ifforall Z € Cand all h : JZ — X, the following commutes:
x(h
4 —

F)y x
\ |7
Y(foh) Y

We arrange .J-relative algebras into a category F-alg”, where the objects are algebras,

the morphisms are algebra morphisms and composition is inherited from D.

Remark 2.6.2. If F' is an endofunctor and J is the identity functor, we recover the usual

definition of F'-algebras.

60 2. POLYNOMIAL FUNCTORS IN Gpd

Consider the polynomial functor P, assigned to the following polynomial:

Further, suppose we have a morphism o : T — J. Let P’ : Gpd,; — Gpd/j, be defined
as the composite:
Ay P

which is again a polynomial functor.

We will explore X, -relative P-algebras, in terms of more familiar P’-algebras. We
will construct a mapping taking (X, x : Gpd ;(3,—,X) = Gpd ;(P—,X)) a %,-
relative P-algebra to ®(X, y), a P’-algebra. Since ¥, 4 A,, we have a counit € :
¥sA, = 1, in particular an arrow of the type ex : X,A,X — X. Then yxa,x :
Gpd/J(ZUAC,X, X) — Gpd/;(PALX, X)) provides us with a P’-algebra structure morph-
ism:

x(ex) : PA,X — X

That is, we define ®(X y) as:
(X, x) = (X, x(ex))

Proposition 2.6.3. The mapping ® extends to a functor ® : P-alg™ — P’ -alg,.

Proof. We will show that the 3, -relative algebra morphism f : (X, x) — (Y,), is also a
P’-algebra morphism ®(X, x) — ®(Y,). Since f is a ¥, -relative morphism, we know
the following:

fosupx = fo&(ex)
= Y(foex)

Further, we have that ¢ is natural, so the following commutes:

Gpd 5(5,A,Y,Y) — Gpd,;(PrA,Y,Y)

l_OEJAo'f l—OPFAO—f
Gpd ;(,0,X,Y) —= Gpd,;(PrA,X,Y)

2.6. J-RELATIVE ALGEBRAS 61

That is, we have the following:

Supy OPFAUf = @/}(Q() (e] PFAUf
= P(ey 0 XgAs f)
=Y(f oex) since € is a natural transformation

Since the morphisms remain unchanged and composition in both categories is inherited

from Gpd ; we get a functor P-alg¥s — P -alg, ([l

Further, we can construct a mapping ®~! taking a P’-algebra to a ¥,-relative P-
algebra. Let (X, supy : P’X — X) be a P’-algebra. We have a natural isomorphism 1) :
Gpd (35—, —) = Gpd 1(—, A,—), using it we can define x : Gpd j(¥,—,X) =
Gpd/J(P—,X)):

Xy (u) = supx oP(¢y x(u))
We now set &1 to be:
-1 (X, supy) = (X, x)

Proposition 2.6.4. The mapping ®~! extends to a functor ® : P'-alg, — P-alg™e.

Proof. Given a P’-algebra morphism f : (X,supx) — (Y, supy), we can see that f is
also a ¥, -relative P-algebra morphism ® ! (X, supx) — (Y, supy). Let (X, supx) =
(X, x) and @~ (Y, supy) = (Y,¢). If Z € Gpd gy and h : £,Z — X, then:
fox(h) = fosupxoP(¢zx(h))
= supy oPA, f o P(¢z,x(h))
= supy oP(¢z,y(f o h))
=¢(foh)

Thus, ®~! is a functor, as morphisms remain unchanged and composition in both domain

and codomain is inherited from Gpd /3 ([l
Proposition 2.6.5. The functor ® : P-alg™ — P’-alg, is an isomorphism.
Proof. We have shown that we have two functors going back and forth in between the two

categories. It now suffices to show that these two are inverses of each other on objects

(since they are identical on morphisms).

62 2. POLYNOMIAL FUNCTORS IN Gpd

Let (X, x) be a ¥,-relative algebra. Then, as before we get ®(X, x) = (X, x(ex)), a
P'-algebra. Going back around, we get ®~1(®(X, x)) = (X, ¥), then:

Xx(u)

x(ex) o P(¥x,yu)
(ex 0 Xo(Yy x(u)))
(ex 0 Bg(Aguony)
(u)

To show that the mappings are inverse in the other direction as well assume (X, supy)

[
>< = X

is a P’-algebra. Then we get ®~!(X, supy) = (X, x) a X,-relative algebra. Applying ®
to it we get ®(®1(X, supy)) = (X, x(ex)). We can show that x(ex) = supx:

x(ex) = supx oP(¥a,x x(€x))
= supy oP(ida,x)

= SUPpx

Corollary 2.6.6. The initial P’-algebra is also the initial X, -relative P-algebra.

The above can be generalized to any pair of adjoint functors J 4 K.

Proposition 2.6.7. Given a functor F' : C — D, and a pair of adjoint functors J : C — D
and K : D — C, the category of J-relative F-algebras, F-alg”’, is isomorphic to the
category (F o K)-alg,.

Proof. The proofs of the previous propositions use no particular properties of either poly-

nomials or groupoids. 0

Corollary 2.6.8. Suppose we have the following polynomial:

B A

v N
I J
Let P be the polynomial functor assigned to it. Further suppose we have a fibration
o:J — 1L Then:
(P oTl,)-alg, = P-alg™”

Note that P o Il is again a polynomial functor (thanks to the Beck-Chevalley condi-
tion), of type Gpd /5 — Gpd, ;.

CHAPTER 3

W -types for split fibrations

The goal of this chapter is to give a construction of W-types for a simple polynomial

functor on groupoids, associated to a polynomial of the form:

1 B, A 1

where F' is a split fibration. The main result is the construction of such a groupoid and
showing that the algebra structure defined on it is initial (Theorem [3.2.3)). The particular
steps of the construction are illustrated by an example.

We do our work in a constructive fashion, as opposed to the classical fixpoint con-
struction, which requires the use of ordinals.

In the last section (Section [3.4)), we show an alternative construction using the work of
Moerdijk and Palmgren.

The construction and techniques presented in this chapter will be used throughout the
rest of the thesis, in particular when showing the existence of W -types for polynomials

defined in slices and dependent polynomials.

3.1. Construction of W -types

Background. Let F': B — A be a split fibration of groupoids. This will remain fixed
for the rest of the section. If f : @ — a’ in A, we have a collection of arrows of the form

£, = b— fib, indexed by b € B,, obtained from the splitting data:

f
B h —=> fib
lF
A a % a'
We call this set Fp:
G.1) Fr =det {ib:b%f!b\beIB%a}

We also need graphs. Here, we use graph to denote what is usually called a directed
graph in category theory, i.e. a reflexive directed multigraph. Correspondingly, when we
when we say subgraphs, we mean reflexive directed submultigraphs. We need to establish

63

64 3. W-TYPES FOR SPLIT FIBRATIONS

some notation. For a graph (Xo, X1), where X is the set of vertices, X is the set of

edges, we write o, T, p, for the source, target and reflexivity maps:

o
N
X() — P — X1 .
~_
T

When we talk about edges between two vertices, we will use categorical notation and

f :a — d todenote an edge f with o(f) = aand 7(f) = d'.

Construction of /. Consider the polynomial functor Pr : Gpd — Gpd defined by the
composition
Ap Mg 4
Gpd — Gpd)y — Gpd;, — Gpd

For X € Gpd, we have:

e The objects of PrX consist of pairs (a,T"), where a € A and T is a functor of
the form 7T : B, — X,
e For (a,T),(a’,T") € PrX, the morphisms consist of pairs (f,p) : (a,T) —
(a/,T"), where f : a — a’ and ¢ : T = T fi.
We will construct an initial algebra for P in the following steps.
(1) Define sets A, B and a function:
F:B— A
Then we take the initial algebra 1 (%) of the polynomial functor Pg : Set — Set
and define a graph structure on it.
(2) Define a subgraph W of W) and equip it with a groupoid structure.
(3) Using the groupoid structure of W, define a sub-groupoid . We will then show

that W admits a Pp-algebra structure and that it is the initial algebra.
Step 1. Now, following the above plan, we begin by defining the two sets:
A =ger Ao U Ay

that is, A is the set of objects and arrows of A. Next, for a € A define Byg:

Bo=aet {b€By | Fb=a}U{u € By | Fu=id,}

i.e. it is the set of objects over a and vertical morphism. For f : a — a’ in A, we define
the set B ¥

Pf =def B, |_|§a/ U Fr.

3.1. CONSTRUCTION OF W-TYPES 65

This is the disjoint union of objects over a and a/, the vertical morphisms over both, and

the morphisms over f obtained from the splitting data of Using these, we define B:

Beus | || Ba|ul || B
a€hg fehr
Finally we define a function F' : B — A, that maps all elements of B, to a, and
elements of B s to f.
Let () be the initial algebra of Pg : Set — Set. This is the collection of elements
of the form sup(z,T'), where x is in A and T is a function B, — W), The algebra
structure map sup : PzW) — W) maps a pair (z,T : B, — W) to sup(a, T).

Lemma 3.1.1. W) admits the structure of a graph.

Proof. We wish to consider W (%) as a reflexive graph. First we define the set of vertices,
(W))g, which consists of the elements of the form sup(a, T), fora € A and T : B, —
W), The edges, (W(®)),, are the elements of the form sup(f, ¢), where f : a — @’ in
Aand ¢ : Ef — W), We will now define graph structure maps. Take an element of the
edges set, sup(f : a — d/, ¢ : Ef — W(S)). The source and target maps are defined as

follows:

o(sup(f, »)) =det sup(a, ¢|z,)
T(sup(f,¢)) =daet sup(d’, ¢lz ,)

Since B, C B #» When we restrict ¢ to it, we obtain a function of the form B, — W(S),
and thus an element of (TW(%)),. The same holds for the target map.

Given a vertex sup(a, T : B, — W), we define the reflexive arrow sup(a,T’) —
sup(a, T), by constructing a map p*T : Biq, — W®). Bjq, is defined to be B, U B, U
Fid,» and we can see that all of its components are either equal to B,, or a subset of it, so
we set:

(9"T)() =qet T(x)
Given the above, we define the reflexivity structure map of the graph, that takes a vertex

and returns an edge, as:

p(sup(a,T)) =qef sup(ida, (p*T))

Both target and source maps are sections of this. We will denote p(sup(a, T')) by idgup(a,1)-
O

66 3. W-TYPES FOR SPLIT FIBRATIONS

Step 2. Note that for + € A (either a vertex or an edge), B, can be equipped with
a reflexive graph structure as well. We consider the elements that are objects in B, to
be vertices, and the elements that are morphisms in B, are considered to be the edges.

Reflexive edges are the identity morphisms.

Definition 3.1.2. Letz € A and sup(z, T) € W (). We say that sup(z, T) is a hereditary
graph morphism (hg-morphism), if:

e T : B, — W) is a graph morphism, and,
e forall z € B,, T(x) is a hereditary graph morphism.

Denote by W, the subset of W (%), consisting of hereditary graph morphisms.

Lemma3.1.3. Wisa subgraph of W).

Proof. We need to show that the structure maps of W () preserve the property of being
an hg-morphism. Let sup(f,) be an edge that is an hg-morphism. The actions of o
and 7 restrict the domain of ¢ to a subgraph. Therefore, if the original arrow was an
hg-morphism, so is the resulting arrow.

If sup(a,T) is a vertex and an hg-morphism, then the edge sup(id,, p*T') is an hg-

morphism as well:

e T is a graph morphism of type B, — W), If we unfold the definition of
Eida = B, U B, U Fid,, we see that p*T" is a graph morphism for the B,
components. An arrow of the form id,, : b — b, is mapped to idzy, by p*T', since
T is a graph morphism, which is an arrow of the appropriate source and target.
Hence, p*T is a graph morphism.

e Forall z € Biq,, p*T(x) = T(x) and we know that Tz is hg-morphism.

Proposition 3.1.4. W is isomorphic, as a graph, to the smallest graph X, such that:

e ifac Aand T : B, — X is a graph morphism, then (a,T), is a vertex in X,
e ifa,a €A f:a—d, (a,T),(d,T") € Xo, and ¢ is a collection of arrows in
X of the form:

o= (pp:Tb— T fib|beB,)

then (f,) is an edge from (a,T) to (a',T").

3.1. CONSTRUCTION OF W-TYPES 67

Proof. Let X be such a graph. Then we define a map H : W= X by recursion on the

elements of /V[v/:
H(sup(a,T)) =qet (a, HT)

Since (f,) : Tb — T’ fib, H again just acts on components:

H(sup(f, ¢ : By = W) =qet (f, (H(2(f,))|b € Ba))

By unfolding the relevant definitions one can easily show [is a graph morphism. Next,
we define the inverse for H, H™! : X — W:

H Y((a,T)) =sup(a, H 1 o T)
H™Y((f,)) = sup(f, %) for (f,¢) sup(a, T) — sup(a’, T")

where:
H! oT(x) ifze€ B,

Bx)= H ' oT'(z) ifx € By
H™ 1y, ifx = f, for f, € Fy

By induction, one can prove that H~! is a graph morphism, and also that H and H ! are

inverses to each other. |

We will denote the inductively defined graph by w' , which will be used further on in
this chapter.

By recursion we can define the operation of composition on the edges of W. Let
sup(f, ¢) : sup(a,T) — sup(a’,T") and sup(f’, ') : sup(a’, T") — sup(a”’,T"). We
define sup(f’, ¢') o sup(f,) : sup(a,T) — sup(a”’, T"), by letting:

sup(f’, ") o sup(f,) =det sup(f' o f, (¢’ 0 ¢))
where:
(@' o9)|g, =det ¢lz,
(¢ o <p)}§a” =def Spl‘ga,,
(" o) ([o f)) =aet ¢'(f';,) 0 0(f,)

The last line of the definition of ¢ o ¢ is well defined, since F' is a split fibration. In
particular for any f" o f,, we have f, : b — fiband L’ﬁb : fib — flfib=(f" o f)ib, such
that f/ o f = ! b ° f ,- Further, since ¢ and ¢’ are hg-morphisms, the edges match up.

68 3. W-TYPES FOR SPLIT FIBRATIONS

Lemma 3.1.5. W admits the structure of a category.

Proof. We will show that the operation of composition as defined above is:

o well defined,
e associative, and

e unital with respect to reflexivity arrows.

As such, Wisa category.

In order for the operation of composition to be well defined, we need to check that it
preserves the hereditary graph morphism property. Let sup(f, ¢) : sup(a, T) — sup(a’, T")
and sup(f’,¢') : sup(a/, T') — sup(a”,T") be two edges in W. We proceed by induc-
tion, and suppose that (@' o ¢)(z) is an hg-morphism for all z € Bjyos. Then what
remains to be shown is that ¢’ o ¢ is a graph morphism. It is clear that ¢’ o ¢ is a graph
morphism when restricted to B, and B, since both of components were. Now, take an
arrow from Fyoy, say f' o f ,- By the above definition, o op(fof b) is assigned to be
(p/(ilf!b) o ¢(f,), thatis, an arrow Tb — T"(f" o f)ib.

To show that o is associative, let sup(f,) : sup(a,T) — sup(a’,T), sup(f’,¢’) :
sup(a’, T") — sup(a”,T") and sup(f”, ") : sup(a,T") — sup(a”, 7). Then, by

induction assume:

L rop) @ (L5 0 0(L,)) = (" oy) © &' (F) 0 0(f)

Thanks to the fact that F' is a split fibration we have:

("o (o) ("o f 0 f,) =" (1" 11opp) 0 (& 00)([0 f)))
= L ragy) © L) 0 0lf,)
(" o) o) (f o f o f) = (" o) f" o f) owlf,)
= (U popy) o)) 0 (S,

Again, let sup(f,) : sup(a, T) — sup(a’,¢') and by induction assume (/) o
idyy = (f,) for all b. By unrolling the definition of composition we have that sup(f, ¢) o
idgup(a.ry = sup(f, (¢ 0 p*T)). Then, since F is split:

(por™T)(f,) = ¢(f,) o p*T(ida,)
=(f,) o p T(idp) = ¢(f,) oidry

Similar steps allow us to conclude that id,p(q/, 77 Will be a right identity for sup(f, ¢).
]

3.1. CONSTRUCTION OF W-TYPES 69

Proposition 3.1.6. W admits the structure of a groupoid.

Proof. We also define inverses for arrows. If sup(f,) is an arrow, we define its inverse

recursively by setting:

(sup(f,¢)) " =sup(f o)
(Pil(fiilb) = ((P(ifrlb))il

Let sup(f,¢) : sup(a,T) — sup(a’,T") and assume, by induction, that go(fb)_l o

¢(f,) = idry, then, by the fact that F is split: B
(¢~ op)(ida,) = @M (f1,,) 0 0(fy)
= (gp(ff!—lf!b))_l © Sp(fb)

=o(f,) "t op(f,) = idr

So, (sup(f,¢)) ™" o sup(f,¢) = idsyp(a,r). and similarly sup(f,¢) o (sup(f,¢))~' =

idsup(ar 77)- O

Similarly, we can define a composition operation on W’. Take (f, ¢) and (f,¢'), then

define (f’,¢") o (f,) using recursion:
(@) o (fip) = ("o f¥'0p)

where (¢’ 0), = ¢, 0 @b
Step 2. 'To obtain a groupoid, which will be an initial algebra for Pr, we define additional

predicates on the objects and morphisms of w.

Definition 3.1.7.

e For an object sup(a,T") of W, we say that it is functorial, if:
—foru:b— b andv:¥b — b in By:

T(wou)=TvoTu

- forb € B,, This functorial and
— forwu:b— b in B,, Tu is natural.
e For a morphism sup(f,) : sup(a,T) — sup(a’, T"), we say that it is natural
if,

— forwu: b — b in B,, we have that:

T fuo o(f,) = ¢(f,) 0 Tu

70 3. W-TYPES FOR SPLIT FIBRATIONS

b P, T’f.

S

TY — T'fiYf
o(f,) 7

and
- for f, : b — fibin By, ¢(f,) is natural

Let W be the subgraph of W consisting of functorial vertices and natural edges.
Proposition 3.1.8. W admits the structure of a subgroupoid of w.

Proof. Let us begin by showing that composition is well-defined, that is, it preserves nat-

urality. This is clear, by the following reasoning:

T'(f o o (¢ o) 0 £,) = T" () o S (F') 0 o(f,)
"(f') o T fruoo(f,)
(f') 0 9(fy) 0 Tu

= (¢ op)(f o f,)oTu

/

¥
'

The identity idgyp (4,7 1s natural:
T(idg)iwo (r*T)(idg,) = Tu o T'idy,
=Tu=Tidy oTu
— (r*T)(idy,) o T

If sup(f,) is natural, then we have:

T’f o go(ifflb) = So(if;%,) [} Tf!_l'LL

If we multply by inverses, we get:

@(ifrlb/)_l oT'u = Tfrlu o so(ifflb)_l
e () e Tu=Tf uop(f, ")
Hence, inverses of natural arrows are natural. |
We can transfer the properties of functoriality and naturality to w'. Functoriality
remains the same, but naturality nominally changes:

e for a morphism (f, ¢) : (a,T) — (a/,T") in W', we say that it is natural if,

— for b € B, p is natural, and

3.2. THE INITIAL ALGEBRA STRUCTURE OF W 71
- foru : b — V' in B,, we have that:
T' fiuo op = @p © Tu

Again, inductive reasoning allows us to conclude that H and H' preserve these prop-
erties.
Define W' as the subgroupoid w’ consisting of functorial objects and natural morph-

isms. This new groupoid is isomorphic to .

3.2. The initial algebra structure of W/

We will show that W is the initial algebra for Pr : Gpd — Gpd.
Proposition 3.2.1. W admits the structure of a Pr-algebra.
Proof. We will define supyy : PpW — W using sup : PEIW () — W)
supy (a,T) = sup(a,T)
supy (f,) = sup(f, p) where f:a —d,o: T = Tf

and ¢ is defined to be:

T(z) ifze B,
=3 T(x) ifzc Bu
©b if x = ib S ff

If (a,T) is an object of PpWV, it appears also as an element of PfW(s). Further, T}, are all
functorial, T'u are all natural and 7" is a functor, sup(a, T") is a functorial object, and so is
an object in W.

If (f,) is a morphism in PrW, we get that ¢(f,) is natural and T fiu o o, =

T'fruoo(f,) = @(f,) o Tu = ¢y o Tu. sup(f,p) is thus a natural arrow and a
morphism in W.
Simply unfolding the definition of supyy,, identities, and composition shows that supy;

is a functor. U
Proposition 3.2.2. Every subalgebra of W is equal to W.

Proof. Take U — W, the smallest subalgebra of W (which exists by Proposition [2.4.3)).
Let supyy (x, H) be an element of W (either an object or a morphism) and suppose by

induction that for any element y € B, Hx isin U. Thus H can be seen as amap B, — U

72 3. W-TYPES FOR SPLIT FIBRATIONS

and an element of PrU. Since the inclusion is an algebra morphism supy, (z, H) € U.
This means that it is a bijection and U = W.]

The proof of the next statement (initiality of W) adapts the argument in [30, Section
A2.5].

Theorem 3.2.3. W is a initial algebra for the polynomial functor P : Gpd — Gpd.

Proof. Let X be a Pr-algebra and let (P, Q) : G — W x X be the smallest subalgebra
of W x X. Assume, by induction, that for any sup(z, T'), for any y € §$ and g,¢ € G,
if Pg = Pg’ = Ty then g = ¢'. That is, we would like to show that P is injective.

Suppose now that we have two g, ¢’ in G such that Pg = P¢' = supy,(a,T) € W.
Since supg; is surjective on objects, we have a collection of objects in PrG that map to
either g or ¢’. For any two (a, H), (a/, H') € supg'(g) Usupg'(¢'), supyy (a, PH) =
supy (a, PH') = supy(a,T), by virtue of P being an algebra morphism. In turn, this
means PHy = PH'y = Ty, and by our induction hypothesis Hy = H'y, which by
extensionality means, g = ¢'.

Let supy (f, ») be a morphism, and suppose we have g,g' € @G, such that Pg =
Pg' = sup(f,¢). Since im(supy) = G, we have in PpG a sequence of morphisms
(f™ "), ..., (f1, @b, such that, sups(f™, ¢") o - - - o supge(f*, ¢!) = g (and the same
for ¢').

As it turns out we can show that in this case, we actually have that the sequence
of morphisms is already composable in PrG. Suppose (f,) : (a',T') — (a? T?),
(f',¢") : (a3, T3) — (a*, T*), such that sup (a2, T?) = supg(a®, T3). Thatis, sups(f*, ')

and supg (f2,n?) are composable in G. Since P is an algebra morphism:

Pu = P(supa(f',¢') osupa(f, ¢))
= supy, (f, P - ¢") osupy (f, P - ¢)

Since supyy is a bijection, we see that az = a3 and PT? = PT?, by the previous argument
we get T2 = T3, Thus morphisms are composable in PrG.

Due to this, we only need to consider preimages of the form (f, ¢) for g and ¢’. Let
(f,0), (f',¢") € supg'(g) Usupg'(g'). As before, we get Py, = P = ¢(f,) and we
see that ¢ = ¢’ by our induction hypothesis.

P is injective and G is a subalgebra of W. By the previous proposition P must be a

bijection. This gives us a morphism W — W x X — X.

3.3. EXAMPLES OF THE CONSTRUCTION 73

Suppose now we had two morphisms f,g : W — X. Then by taking an equalizer of
them, we would obtain a subalgebra of W, but this subalgebra is equal to W by Proposi-

tion [3.2.2] which implies that f = g. O
We can conclude that W is 2-initial.
Theorem 3.2.4. W is strictly 2-initial.

Proof. This is an application of Theorem [2.5.4]and Theorem [3.2.3] O

3.3. Examples of the construction

In this section we will work out our construction on an example, justifying the steps
made.

Consider the data from Example which we quickly recall here. Given a discrete
groupoid A, we define a split fibration F' : J — Zs + A, which maps objects of J to
e € 75 and the two maps 0 — 1 and 1 — 0 to 7 (the involutive arrow of Zs). To fit with
the style of the presentation, we will refer to the domain as B (and the codomain as A).

In the first step of the construction we defined sets A, B and a set function F : B — A.

In this case:

A= AU{e,id,, 7}

Be = {0,1,idy,id; }

B, =10

B, =B,UB,U{0—1,1—-0}

Eid, = E, L E, L {ido, ldl}
Biq, =0

«UB,UBiq, U(| | BaUBid,)
acA

os]
o]

B =

F(x:By) =y

The set W () associated to the function F is then equipped with a graph structure. For
example given a function ¢ : B, — W (), we have it as a vertex of the form sup(e, t). To
it we have the associated reflexive arrow sup(ide, t'), where ¢’ is essentially the same as ¢.

In the next step we consider the above sets as graphs, for example B, would be visu-

alized as:

idg & 0 1 Didy

74 3. W-TYPES FOR SPLIT FIBRATIONS

We can quickly see that W (%) contains elements that are not useful for our purposes. For

example, consider the function 7" : Be — ws).
T(xz) = sup(a,d — W(S))

Then sup(e,T') is a vertex in our graph, but 7" is not a graph morphism (in fact it sends
arrows in B, to vertices). We defined the property of hereditary graph morphism, in order
to get rid of elements like this. We then obtain a groupoid W. In this particular case, W
is the initial algebra. This is due to the fact that the individual fibers of F' over objects
x € A are discrete groupoids. We can visualize W as a set of binary well-founded trees

with leaves labeled in A. For example:

a a\./a a \./a a
VANV N/

a ®

The morphisms marked with 7 provide us with isomorphisms that swap branches at a
particular level. This means that the last two trees in the above drawing are isomorphic.
Further, if A is not just a set, but some general groupoid, we preserve isomorphisms on the
leaves.

In order to show the usefulness of the last step, we need to consider a fibration F’,
whose fibers are not discrete. Let Z be the groupoid with one object associated to the

additive group on integers. We now define the following fibration:
F:Z—-1+7%

which maps Z to 1. W associated to this fibration contains elements which behave in
unexpected ways. We will denote the elements in the codomain with ~ to distinguish the
two instances of Z.

Consider the following. We have an object in W of the following form sup(e, () EN W)

and for every 1 € Z, we have a morphism:
sup(n, () EN W) : sup(s,!) — sup(s,!)
Composing two morphisms of this form looks like:

—

sup(n,!) o sup(m,!) = sup(n + m,!)

3.3. EXAMPLES OF THE CONSTRUCTION 75

Now, define the following function T" : By — W

T (®) =gef sup(e,!)
sup(0,!) if n=0
1!

T(n) =det

sup(1,!) otherwise

While 7" is a graph morphism, we can quickly see that it isn’t a functor, since for n, m # 0:
T(n+m) =sup(l,!)
T(n) o T(m) =sup(l,!) osup(1l,!) = sup(2,!)

Hence sup(1,T') is a member of W, but (1,T) does not appear in PpW and sup cannot
be a bijection.

To show why the naturality condition is necessary, let n # m and define:
T(e LA ®) =4of sup(e,!) wh, sup(e,!)

T/(. ﬁ) .) =def Sup(/.\, ') m—k> Sup(;\, ')

sup(1,T) and sup(1,T") are functorial. We will exhibit an arrow sup(idy, ¢) : sup(1,7T) —
sup(1,T”) which is a member of w. Biq, is in this case B Ul By U {ide}, let [€ Z and
define ¢ : Eidl — W, to be:
elg,=T the first copy of B
¢lg, = T’ the other copy of B
p(ide) = sup(l,!)
This is a graph morphism, so it is in W. In order for (id1,®) to appear in PW, the

following needs to commute (for all k € Z):

Te —L 5 Te

e e

Te —L s Tle

but this is only true in the case n = m. Thus (id;,), does not appear in PW.
In this case, it is only after we remove non-functorial objects and non-natural arrows,

that we obtain an initial algebra.

76 3. W-TYPES FOR SPLIT FIBRATIONS
3.4. An alternative construction

Moerdijk and Palmgren constructed W -types in category of internal presheaves [39],
working in a suitably-defined ‘predicative topos’. Since graphs can be seen as presheaves,
we will present an alternative construction, where we start by constructing an initial al-
gebra for a polynomial functor on graphs. We then proceed similarly, by first defining a
binary operation on edges and carving out particular elements, thus obtaining a groupoid.
Finally, we show that what we obtain is an initial algebra for the polynomial functor on
the groupoids we started with.

In this section, we follow Moerdijk and Palmgren’s notation to facilitate comparison.
Let R be the following category (with the identity arrows omitted):

s
0 21
\t/f

where s and ¢ are sections of . We can see that a reflexive graph can be represented as
a presheaf X : R°® — Set and graph morphisms as natural transformations between
such presheaves. Let RGraph = [R°P Set| and y : R — RGraph be the Yoneda
embedding. We will consider a split fibration ' : B — A as a natural transformation
F : B = A, between the presheaves (the underlying reflexive graphs of the groupoids A
and B).

Let I € Rand z € A(I). Then we define By, to be the following pullback in the
presheaf category:

B[’x — B
_I
L> b
Unfolding this definition:

e for I = 0 and x = a where a € A, we obtain a graph with vertices b € B, and
edges u : b — b, such that Fb = a and F'u = id,,
e for/ =1andz = f : a — a/, we obtain a graph with vertices (s, b) and (¢,1),
with F'b = a and F/ = a’. The edges are:
- (sor,u):(s,b) = (s,0), withwu : b — b, such that Fu = id,,
- (tor,u): (t,b) = (t,b'), such that Fu = id,/, and
- (idy,u) : (s,b) — (¢, V'), such that Fu = f.

Remark 3.4.1. In the case of By, the graph inherits the composition from B. For By f,

the composition is somewhat reminiscent of the collage of a profunctor:

3.4. AN ALTERNATIVE CONSTRUCTION 77

e for two compatible edges (sor,v), (sor,u) (and analogously for arrows of type
tor):
(sor,v)o(sor,u) =qef (SOT,v0U)

]

e for compatible (s o r, u), (idy, v):

(id1,v) o (sor,u) =qef (idy, v o u)
e for compatible (idy, v), (t o r,v):

(tor,v)o (idy,u) =ger (id1,v 0o u)

Let W9 be a W-type for F, as defined by the Moerdijk-Palmgren presheaf construc-

tion. Unfolding the definition, we obtain:

e The vertices of W9 are of the form sup(a,T’), where a € A(0) and T is a
natural transformation of the form By , = w9

e The edges are of the form sup(f,), where f € A(1) and ¢ : By = W)

e The source action does the following. let sup(f : a — o/, ¢) € W (1), then

sup(f,) - s = sup(a, s*¢), where:

and analogously for the target action.
e The reflexivity action takes sup(a,T) € W) (0) and returns sup(a,T) - r =
sup(idg, 7*T). r*T : By;q, = W ignores the first component of the argu-

ment, that is, it acts” as 7" on all elements:
r*T(z,y) =Ty

Given the above, we can define an operation of composition on edges. Let sup(f, ¢) :
sup(a,T) — sup(a’,T") and sup(f’, ¢') : sup(a’, T") — sup(a”, T") be two arrows. We
define sup(f’, ¢') o sup(f, ¢), to be

sup(f’, ") o sup(f, ¢) =det sup(f’ o f,¢" 0)

78 3. W-TYPES FOR SPLIT FIBRATIONS

where ¢’ o ¢ is defined recursively in the following way:

(SO/ © (p)(ldla —def (P/(idlaﬁ © L/f!b) o (P(ldl,ib)

=det ¢(5,D)

u)
(" 0 p)(s,b)

b) =aet ¢ (t,b)
)
)

(¢ o p)(t,
(¢' 0 p)(sor,u) =qef @(s0r,u)
(¢ o@)(tor,u) =gt ¢ (tor,u)

Induction and a few calculations show that this edge satisfies the constraints (of being a
natural transformation), and is in the /WRGraph,

We have that composition is associative. We show this by induction. Let sup(f,) :
sup(a,T) — sup(a’,T"), sup(f’, ') : sup(a’,T") — sup(a”,T") and sup(f”,¢") :
sup(a”, T") — sup(a”, T"). Looking at the definition of composition the only interest-

ing case is of the form (idy, u) € By frofrof:

(¢" o (¢ 0 @))(idi,u) = " (idi,wo f7) o (¢ 0 @) (ids, 1o f)
= ¢(idiuo f7, 0) 0 (P(idi, f)) 0 p(idi, £))
((¢" o @) op)(idi, u) = (¢" o @)(idi,wo fo f') o p(idy, £,)
= (¢"idi,uo f7,) 0@ (idi, £))) 0 p(idy, f)

The fact that the arguments to ¢, ¢’ and ¢” are the same in both cases, comes from the
fact that we are dealing with split fibrations and cartesian morphisms.

The right identitiy for sup(a, T') is sup(id,, 7*7T'), that is, the arrow obtained from the
reflexivity map. To show that this is a right identity we use induction and simply unfold
the definition of composition. We denote this arrow by idgyp(a,7)-

In order to get an initial algebra for Pr : Gpd — Gpd, we will define a hereditary
predicate, similar to the one in Section[3.1] This predicate will allow us to equip a subgraph

of W(9) with a groupoid structure.

Definition 3.4.2. We say that an element sup(z, H) is functorial if:

e for all composable u, v in By, H(vou) = Hvo Hu

e for all objects b in B, Hb is functorial, and

Let WR denote the subgraph of W (9) consisting of functorial vertices and edges.

Proposition 3.4.3. W® admits the structure of a groupoid.

3.4. AN ALTERNATIVE CONSTRUCTION 79

Proof. The first thing to note is that, composition preserves the property of functorial-
ity. To show that, let sup(f,¢) : sup(a,T) — sup(a’,T"), sup(f,¢) : sup(d’,T") —
sup(a”,T") be two composable functorial edges. First, sup(f’, ¢') o sup(f,) satisfies
the hereditary condition of functoriality, since both components of the composition do.
The only interesting cases are where one of the composable arrows is marked with id;. If
(sor,u):(s,b) = (s,b), (id1,v) : (s,0') = (¢,b") over f' o f, then:
("o @)(idi,vou) = ¢/(id,vouoc [/,)op(idy, f),
(¢ o @)(id1,v) o (¢ o p)(somu) = ¢(idi,vo /) o lidy, fiy) o p(s o u)
= ¢'(idy,v 0 L’ﬁb,) o ¢(idy, fiuo f,) since ¢ is functorial

Composition in By ; gives us that (idy, fiuo f,) = (tor, fiu) o (idy, f,). Using this, we

get the next line:

(P/(idl,yoﬂf!b,)O(P(idl,f!uoib) :@/(idl,yoﬂﬁb)O@(tOT’,f!U)OQO(idl,ib)

Since ¢ and ¢’ are composable arrows, we have ¢'(s o 7, fiu) = (t o r, fiu). Further ¢’

is functorial:

'(idr, o f') op(tor, fiu) o p(idy, f,) = ¢'(idi,uo £/ o f) o p(idy, f))

= ¢'(id1,vouo L’f!b) op(idy, f,) since F is split
In order to finish with functoriality one last case remains. Suppose that (idi,) : (s,b) —
(t,b') and (tor,v): (t,0) — (t,V"):
(¢'op)(torv)o (¢ op)(idi,u) = ¢ (tor,v) o (idi,uo f ;) o p(idy, f,)
= ¢'(idy,vouo iﬂb) o p(id, f,) ¢’ is functorial
= ¢/(idy,vouo L’f!b) o p(idy, f,) since F is split

Next, we need to check that idg,p(q,7v) becomes the identity when composing with it

on the left as well. Let sup(f,) be a functorial arrow, and let (idq,u) : (s,b) — (¢,b):

(idsup(a/,T’) 090) (idh u) = T/(@ © idJﬁ@) © (p(idbib)
= Sﬁ(t or, @) © SO(ldl, fb)

= ¢(idy, u)

80 3. W-TYPES FOR SPLIT FIBRATIONS

Using recursion, we define inverse arrows. Let sup(f, ¢) : sup(a,T) — sup(da’,T"),

be a functorial arrow. Recursively define sup(f, ¢) ! as sup(f !, o), where:

This can be shown to be a natural transformation, so it is an element of W),

We first show that this is indeed an inverse for functorial arrows, by induction. Let
sup(f,) be such an arrow. Then sup(f, p)~! o sup(f, ¢), is clearly equal to idgup(a,1)
on all elements of Biq, of the form (s,b), (t,b), (s or,u), (t o r,u). Let’s take a look at

how =1 o o behaves on the elements of the form (idy,u : b — V'):

(¢ o) (idi, u) = ¢~ ' (idy, uo ﬁf!b) o p(ids, f,) definition of composition
=p(sor,uo i};;) o go(idhif!—lf!b)_l o go(idl,ib) definition of ¢!
= @(soru)op(idy, f,) 7" o p(id, f,) since F is split
=p(soru)

= idsup(a,T) (idb u)

Composition with the inverse on the other side gives us:

(o M) (idi, u) = p(idy,uo ifflb) o 1(idy, ﬁb) definition of composition
= p(idy,uo if!flb) op(sor, ;11)) o cp(id1,if!71b)f1 definition of <p*1
= p(idy,uo if!—lb) op(sor, idfflb) o <p(id1,if!71b)71 since F is split
=p(tor,u)o @(idlyiﬁlb) ° @(id1,if;1b)fl since ¢ is functorial
=p(tor,u) by induction

= idsup(a’,T’) (idy, u)

We can check that the inverse as defined is functorial, when the original arrow is such.

Again, the only interesting case is when one of the arrows is tagged with id;. First, let

3.4. AN ALTERNATIVE CONSTRUCTION 81

(sor,u):(s,b) = (s,0), (id1,v) : (s,0") = (¢,0"):

1

e 1(d,v) 0o p Hsoru) = @(sorv)o (idl,if_lb,)_l op(tor,u) definition of ¢~

(idq, if'_lb,)_l op(toru)=t is functorial

sor,v)o 90(1d1>if—1b o(fitu)y™t)! since F is split

)
)
sor,v)o (p(idy,u oif!_lb,))_l
)
) 1

sor,vo flu)o ‘P(idl’if,‘lb)_l

“L(idy, v o u)
Now, let us consider (¢t o 7, v), (idy,u):
o Htor,v)op t(idy,u) = p(sor,v)op(idy,u) o So(idl’if,—lb)_l

=p(sor,vou)o ‘P(idhif,_lb)_l

— o (id1,vou)

Since we now have a groupoid structure on W® it makes sense to compare it to W
constructed in the previous chapter. As it turns out, these two objects are isomorphic,

which allows us to conclude that we have another description of initial algebras for P

Proposition 3.4.4. W is isomorphic to W

Proof. We construct a pair of graph morphisms (—)* : W@ — W and (=), : W —
W), These two graph morphisms will turn out to be groupoid isomorphisms, when

restricted to WW® and . The functions are defined recursively on the set of well founded

82 3. W-TYPES FOR SPLIT FIBRATIONS

trees :
(Sup(av T))* =def Sup(aa T*)
(sup(f,)" =det sup(f, ¢™)

(sup(a, T'))« =def sup(a, 1) Ti(2) =det (T7)s
(sup(f, ¥))+ =det sup(f, px) ©x(8,0) =daet T'(b)+
P(t,b) =det T' (D)
ws(sor,u) =ger T(u)
ou(tor,u) =qer T' (u)«

These two functions obviously preserve the source and targets, and using induction can be
shown to preserve the identity arrows as well.
Using induction we can also see that (—)* preserves composition:
((70/* © @*)(f/ o fb) = @(idlaﬂﬁb)* © So(ldlaib)*
(SOI © @)*(f/ © fb) = (QO(ldl,L/f'b) © @(ldlvib))*
Further, we see that (—)* maps functorial objects to functorial objects. To see that a

functorial arrow sup(f, ¢) maps to a natural arrow, consider the following:

" (f,) o T u = p(idy, f,)" o (T'(u))"
= (¢(idy, f,) o p(soru))"
= (p(tor, fiu) o p(idy, f})"
=T"(fiw) o ©*(f,)

(—)« preserves composition when restricted to 1. In order to show that, we actually
need to assume a stronger induction hypothesis, that is, (—). preserves composition, maps

functorial objects to functorial objects and natural arrows to functorial arrows.
Most of the checks are trivial and amount to simply unfolding the various definitions

and applying the induction hypothesis. We spell the details of some of them here. We

3.4. AN ALTERNATIVE CONSTRUCTION 83

start by showing that natural arrows are mapped to functorial arrows. Let sup(f,) :
sup(a,T) — sup(a’,T") € W be a natural arrow, and let (s o 7,u) : (s,b) — (s,V),
(idi,v) : (s,0) — (¢,b") be arrows in By ¢, then:
pu(id,0) 0 pu(5 07, w) = T' (). 0 9(f,) 0 T(w)e

=T (v)s 0 (¢(f,)oT(u))x by induction

=T'(v)s o (T'(fru) o ¢(f,))« ¢ is natural

= (T'(v) o T(fiu))s o ¢(f,))= by induction

=T'(vou)o o(f,) since F is split = ¢, (idy, v o u)

Now consider (idy,u) : (s,b) — (£,V'), (tor,v) : (t,0") — (t,b") arrows in By y:

pultor,0) 0 puids, u) = T'(v). o T'(w). 0 plids. £,)
(T'(v) o T'(w))x 0 p(idy, £,)« by induction

(T'(vou))«op(idi, f,)« since T is functorial and F is split

= @« (idy, v o u)

The main concern of the induction statement was to show that (—)* preserves composition.
Let sup(f,) : sup(a,T) — sup(a’,T"), sup(f’,¢') : sup(a’,T") — sup(a”,T") be

two arrows in W and (idq,) : (s,b) — (¢,V’) be an arrow in By g/ ¢. Then:

(¢ o) (idr,u) = @l (idi,wo f 1)) 0 pu(idy, f) definition of composition in W&
=T"(u)« 0 o(f,)« 0 T(idsp)s 0 0(f))
=T"(u)s 0 e(fy)x o p(f)) by induction
(@' o p)(idy,u) = T"(u)x 0 (e(f) 0 0(f,)) definition of composition in W and of (—),
=T"(u)s 0 @(if!b)* ° @(ib)* by induction

Other checks are even more trivial.
We can show that these two groupoid morphisms are inverses, again by induction. We

will only sketch out the details for the arrows. Let sup(f,¢) : sup(a,T) — sup(a’,T")

84 3. W-TYPES FOR SPLIT FIBRATIONS

be a functorial arrow in W and (idy, u) : (s,b) — (¢,b) in By

(")« (id1, u) = T*(w)« 0 ©*(f,)x
= ((T"(u) o p(idy, f,))7)ssince composition is preserved

= (p(idy, u)*)« since (matches T’
= (idy, u) by induction.
Similarly, let sup(f, ¢) : sup(a,T') — sup(a’,T") be an arrow in .
(p)"(f,) = pe(ida, f})"
= ((T"(idp) © ¢(f,))«)"since composition is preserved and F is split
= (¢ ib)*)* since 7' is functorial

=o(f,) by induction.

CHAPTER 4

W -types for split fibrations in slices

In type theory W-types are types that are defined inductively in a well-founded man-
ner. We start this chapter by looking at type-theoretic rules for W-types and comparing
them to the categorical version of WW-types. The results in the previous chapter do not yet
provide a semantic counterpart to type-theoretic rules, as we only consider polynomials
over 1, that is, the empty context.

As is the tradition in type theory, we begin with the formation rule:

Ix: AF B(z) : type
' (Wzx: A)B(x) : type

Categorically, we would interpret the rule in the following way: the premises say we have

a commutative diagram of the form (where all morphisms are split fibrations):

e

The conclusion asserts that we have an split fibration over I':
Wgp—T

The introduction rule is:
'Fa:A I'Ft:B(a) > (Wx: A)B(z)
I'Fsup(a,t): Wz : A)B(x)
Interpreting this in category theory means that Wy is an algebra for Pp : Gpd,p —
Gpdr:

PFWF —> WF

N7

The elimination rule for W-types corresponds to initiality.

In this chapter we construct initial algebras for polynomials functors assigned to morph-
ism in slices, using the initial algebras from the previous chapter. Further we show that
these are stable under pullback.

85

86 4. W-TYPES FOR SPLIT FIBRATIONS IN SLICES
4.1. Polynomial functors in slices

Let I € Gpd, to remain fixed throughout this section and the next. Further suppose

F : B — A is a split fibration in Gpd /I that is, we have a commutative diagram:

A\7>B

Note that we assume the triangle commutes strictly.

Define PL : Gpd ;1 = Gpd j to be the composite:
Ag Ip Sr

When both super- and subscripts are obvious, we will omit them. We will show that the
polynomial functor P : Gpd ;; — Gpd j in the slice category has an initial algebra, and
further, that this initial algebra is stable under pullback (in a precise sense specified in the
section).

To start with, we will first begin by recalling the action of the polynomial functor P.
Let X 25 Tbe an object of Gpd ;. Then, the set of objects of P(X) has elements of the
form (i,a,T), where i € [, a € A;and T : B, — X;:

PX={(,a,T)|i€l,ac A;,T:B, — X;}

By X; (and A;), we mean the pullback of X g (A &,) along 1 N)
We can represent the morphisms (v, u,) : (i,a,T) — (i',a’,T") in PX:

(wii—=iura—ad,n:T=Tou:B, = X)

where v is over v and components of 77 are over v as well.

4.2. Construction of W7,

Let us observe what happens when P is applied twice. The objects of P2X are
(i,a AT B, — (PX)Z)

Given two objects (i,a,T), (i',a’,T") a morphism in (v,u,n) : (i,a,T) — (i',a’,T") in

P?X between them is
(wii—iura—ad,n:T=Tou)

with » and 7 over v.

4.2. CONSTRUCTION OF W', 87

This gives the idea of considering the simple polynomial Pr : Gpd — Gpd defined
as the composite ¥4 IIxAp and defining a hereditary predicate on W (the initial algebra
for Pr), carving out a subgroupoid and thus obtaining an initial algebra for Pgﬂ. A similar
idea appears in [39] in the context of pretoposes with dependent products. First we define

amap p : Wp — I, which is simply the composition Wz — A KNy |

Definition 4.2.1. We say that sup(a,T) € W is I-constant, if

e forall b € B, p(T'(b)) = Ra, and,
e forall z € B, T'(z) is I-constant

And sup(f,) : sup(a,T) — sup(a’, T") is I-constant, if:

e forall b € B,, p(¢(y)) = Rf, and,
e forall x € By, p(x) is I-constant.

Let W}; be the subgraph of Wy, consisting of I-constant vertices and arrows. As
before, we will omit the super- and subscript, when they are obvious. As a matter of
convenience we equip the objects and morphisms with indices from I, that is we will write

sup(i, a,T) for i = ra (and similarly for morphisms).

Proposition 4.2.2. W} can be equipped with a groupoid structure, making it a subgroup-
oid of Wg.

Proof.

(1) Suppose sup(u, v, @) : sup(i,a,T) — sup(i’,a’, T") and sup(v’, V', ') : sup(¢/, @', T") —
sup(i”,a”,T") are I-constant, then sup(u’,v’, ¢’) o sup(u, v, ¢) is I-constant.
We know that sup(u’,v', ¢") o sup(u,v,p) = sup(u’ o u,v’ o v, ¢ o @),

where (¢’ 0 @) (v’ o vy) = ¢'(v,,5) © p(v;,). Now since p is a functor:

p(@' (W) 0 0(y) = p(¢' (V) © pl(13)) = 1’ 0 u

The second condition follows from the fact that the two components of the com-
position are [-constant.
(2) idgup(i,a,r) 18 I-constant, for an I-constant sup(i, a, T')
We need to check that p(r*T'(id,)) = id;. Since m*T'(id,) = T'(idp) =
id7 () and T'is I-constant, we have that p(7'(b)) = 7 and hence p(idr()) = id;.
Further since (r*7T")(x) = T'(z), we have that (r*T)(z) is [-constant for all x.

1

(3) If sup(u, v, ¢) is I-constant, then sup(u, v,)" is also I-constant

First sup(u, v,)"t = sup(u~!, v, ¢~ 1), where o~} (v=1,) = go(gul_lb)_l.

Then:

88 4. W-TYPES FOR SPLIT FIBRATIONS IN SLICES
-1 -1 -1
plp(,1p) ") = plp(u, 1)) = u
Again, the second condition follows from the fact that sup(u, v, ¢) was I-constant.

O

Proposition 4.2.3. WIH; admits the structure of a P}I,—algebra.

Proof. Take (i,a : A;,T : B, — (W');) € P'W'. First, we notice that T'(z) are all
I-constant and p(7'(b)) = i. Hence, there is a sup(i,a,T) in W'. A similar argument
applies to morphisms. We denote this morphism by sup : PW — W. O

Proposition 4.2.4. sup : P'W!' — W' is an isomorphism.

Proof. By induction, we show that sup is bijective. U

Proposition 4.2.5. Every subalgebra of W is equal to W.

Proof. Let G < W be the smallest subalgebra (by Proposition [2.4.3). Take sup(i,a,T’)
and suppose, by induction, that 7'(x) has a preimage in G, that is, T(x) € G, for all
x € B,. Then (i,a,T7" : B, — G;) € PG, where T'(z) = T(x), since sup(i,a,T) is

I-constant. Hence sup(i, a, T') € G. The same reasoning applies for arrows as well. [

Note that the above proof is the essentially the same as in the case of Wr (Proposi-

tion [3.2.2), except for the extra consideration of I-constancy.
Theorem 4.2.6. W' is initial for P : Gpd;; — Gpd.
Proof. The content of the proof is essentially the same as in Theorem [3.2.3] O

4.3. Pullback stability of W/ -types

Let F' : B — A be a split fibration in Gpd ; as before, and additionally, consider a
functor o : J — L. Consider the following diagram, obtained by pulling back along o:
B — B
J — 1
/ r /
A ——— A
It is well known if F' is split, that A, F is also split, so it makes sense asking how do

A F

(initial) algebras of Pﬂa » and Pl relate. In this section we will show that A, W7 is, in

fact, the initial algebra for Pga.

4.3. PULLBACK STABILITY OF W-TYPES 89
Proposition 4.3.1. There exists a natural isomorphism A, Pp = Pa_pA,.

Proof. We begin by noticing that the following squares are all pullbacks:

AGF Agr
Asol lATU Arol la

By Beck-Chevalley (Proposition [I.5.3]) we get the following (where the squares commute

up to a natural isomorphism):

Ag II P
Gpd; —~ Gpd;; —"— Gpd;, —— Gpdy

Ao—l lAASU lAAro' lAg
A

AAO—S oF EAO-’I‘
Gpd/J E— Gpd/AUIB E— Gpd/AaA E— Gpd/J

The composition of these natural isomorphisms give the desired natural isomorphism
AJPF = PAUFAO"]

Proposition 4.3.2. A, : Gpd; — Gpd ; lifts to a functor Ph-alg, — P _p-alg,:

PL-alg, AN PgUF-algs

J |

Ao
Proof. If Xis a P}p—algebra, we begin by pulling it back:

APLX — 5 PIX

NN
%

AsX X

I

But by the previous proposition, AUP}I;X > Pid A, X. Composing it with A, supy we

get an algebra structure for A, X:

P pAsX = AgPEX — AX
The naturality of A, Pr = Pa_pr/A, allows us to transfer algebra morphisms as well. [
Proposition 4.3.3. AUVV}IJ admits the structure of a Pig p-algebra, and further

P pAWE = AW

90 4. W-TYPES FOR SPLIT FIBRATIONS IN SLICES

Proof. A pullback preserves isomorphisms, and given the previous previous proposition,

we know that AJW}; isa Pi,, p-algebra.]

Theorem 4.3.4. Wia p is isomorphic as a Pga p-algebra to AUW}I;,.

Proof. Let H : Wid — AUWJ%, be the unique algebra morphism, given by the initiality
of Wig - We propose the following induction statement, which will be used to construct

the isomorphism (and similarly for the morphisms):

V(sup?'(i,a,T) € WE).¥(j €).(j, (sup®'(i,a,T)) € AgWE =
Isup?oF(j,a,U) € WiaF.H(supAf’F(j,a,U)) = (4, (sup” (i, a, T)).

Let (j,sup’(i,a,T)) be in AUWI]&, then the first thing to notice is that for all b € B, and
forallu: b — b’ € By, both (4, 7(b)) and (id;, T'(u)) are in A, W7, since T is [-constant.
Define U : B, — Wia by setting:

U(b) =gef sup™e¥'(j,a',U?)

U(u) =gef SupAUF(idj, v, U")

where U” is the unique element of Wga, assigned to T'(z). By uniqueness imposed in
the induction statement, we get that U is a functor. Further it is J-constant, by definition.
Since H is an algebra morphism we have sup®2%'(j, a, U), that maps to (4, sup'(i,a, T)).
Suppose U is another such, and that H (sup®<%'(j,a,U’)) = (j,sup’ (i,a,T)). Then,
we also have that HU'x = (j, T'z). However our induction hypothesis claims that U (x)
is the only such, therefore U’z = Ux and U is unique.
The argument for morphisms is similar, except that the uniqueness condition in the

inductive hypothesis provides us with the naturality condition. O

CHAPTER 5

Dependent 1V -types for split fibrations

Dependent polynomial functors as described in Section [2.1] and the initial algebras
associated to them are supposed to model general trees as in [40]:
[i:ITFA(Q): type
Iyi:I,a:A(i)F B(i,a) : type
Ii:I,a:A(i),b: B(i,a) - s(i,a,b) : I
Lyi:I1+-W(I,A, B)(s) : type
Interpreting the above rule categorically means that, given the following diagram

(where F' and R are split fibrations):
F

B—— A
v N
I I
We have an split fibration over I:

WF—>]I

While it’s true that R o I’ does not necessarily equal S, we have that the following

commutes:

B 5 A

/ N
I I
r
In this chapter we will construct initial algebra for dependent polynomial functors and

show that these are stable under pullback.

5.1. Construction of dependent W -types

Let I € Gpd. This will remain fixed throughout this chapter. Further suppose, we are

given the following polynomial:

H% \RJ]I

91

92 5. DEPENDENT W-TYPES FOR SPLIT FIBRATIONS

where F' is a split fibration. Note that we do not assume that R o F' = S. We denote by

Pr the polynomial functor assigned to the above polynomial:
AS HF ER

To investigate how a potential initial algebra of Pr will behave, assume we have one. That
is, if Wr =25 Tis the initial algebra of Py, then the objects of PrWp are triples (i, a,T),
wherei € [, a € A; and T : B, — AgWp, such that:

B, — L AW

If we examine T : B — AgWpr a bit closer we see that:
Ty = (b, w) where Sb = Tw
Abusing type theoretic notation, this means:

T e H Wg(b)
beB,

Let W be the initial algebra for P : Gpd — Gpd, defined as the composition:
Ap g YA
Gpd — Gpd)y — Gpd,, — Gpd

Inspired by the previous chapter, we define a hereditary predicate. We define p : W — 1

as the composite =5 A 25 .
Definition 5.1.1. We say that sup(a,T) € W is I-coherent if:

o forall b € B,, p(1p) = Sb, and,

e forall x € B,, T}, is I-coherent
Further, sup(u,) : sup(a,T) — sup(a’,T") is I-coherent if:

o forall b € B,, p(¢(y)) = Suy, and,
e forall x € By, ¢(x) is I-coherent.

Let Wr be the subgraph of W consisting of I-coherent vertices and arrows.

Proposition 5.1.2. W can be equipped with a groupoid structure, that makes it a sub-

groupoid of W.

Proof.

5.1. CONSTRUCTION OF DEPENDENT W-TYPES 93

(1) Let sup(u,p) : sup(a,T) — sup(a’,T7") and sup(v’,¢’) : sup(a/,T") —
sup(a”,T") be composable and I-coherent. Then the composition is again I-
coherent.

Since p is a functor:

p((¢" o p) (W o)) = p(¢' () © p(up))
= p(¢' (Wp)) © p(p(uy)) p is a functor
= S(uyp) 0 S(uy) @, ¢ are I-coherent
= S(u ouy)

(2) If sup(a,T') is I-coherent, then the identity morphism idg,p (o, 7) = sup(ida, ¢)
is also [-coherent.
Take b € B,. Note that p(T}) = Sb, by assumption and hence p(p(id;)) =
p(idr,) = S(idp). Thus the identity morphisms are I-coherent.

(3) Suppose sup(u, @) is I-coherent. Then the inverse is as well:
)

U1y
(Qurlb)>_l since p is a functor

ple~ (u™ly)) = p(e(u,
p(p

= (S(x,

u r1b))*1 since ¢ is a [-coherent
S(uhy)

Since W is a subgroupoid of W, we can see it over I via p:
Wre W 5 A ST
Proposition 5.1.3. Wy admits a Pr-algebra structure.

Proof. Let (a,T) € PrWp. We wish to show that sup(a,T’) € W is [-coherent and lies
in Wg. Since T' : B, — A;Wr, we have that p(T,) = Sb. Further for any = € B, is T,

is I-coherent. The same reasoning applies to morphisms. ([

Proposition 5.1.4. Every subalgebra of W is equal to W7.

Proof. Let G — Wy be the smallest subalgebra (by Proposition [2.4.3)). Take sup(a,T")
and suppose, by induction, that 7'(x) has a preimage in G, that is, T'(x) € G, for all
z € B,. Then (a,7" : B, — As;G) € PG, where T"(x) = T(x), since sup(a,T) is

I-coherent. Hence sup(a,T") € G. The same reasoning applies for arrows as well. (]

94 5. DEPENDENT W-TYPES FOR SPLIT FIBRATIONS

The above proposition allows us to conclude the following:

Theorem 5.1.5. W is the initial algebra for Pr.

Proof. This proof is similar to that of Theorem[3.2.3] O

Another way of defining W is as a particular equalizer, as in [23]. Let W and Wg
be the initial algebras for F': B — Aand F X idj : Bx 1 — A x L. Let : W — Wpyr
be defined recursively as follows:

§(sup(a,T)) = sup(Ra,a,§ o T)

§(sup(u,) = sup(Ru, u,§ o @)
While defining ¢ above, we should make sure that it is well defined, that is, £ o T" and
& o ¢ need to be functors. We take Wget, as in the chapter where we first constructed the
W -types for split fibrations and define £ on those sets. Then we can show £ is a reflexive

graph morphism and further preserves the properties of functoriality and naturality.

Further we define o : Wy X B — Wgyp, and ¢ :— Wpyg —— Wer

a(sup(i,a,T), p(Sb,a, (Az : By).a(Tz, x))

Sh,u, (ABy,).a(pz, x))
= sup(i, a, (Az : By).a(Tx, x))

u, (ABu).a(pz, r))

Then & : W — W1, where the other morphism appearing in the equalizer is defined to

Y(sup(i,a,T)

b)
a(sup(v,u, @), h) = sup
)
Y(sup(v,u, ¢))

be ¢ o €. Unrolling the definitions we see that the equalizer exactly satisfies the condition

of being I-coherent.

5.2. Pullback stability of dependent 1V -types

As before we assume the following data:

5.2. PULLBACK STABILITY OF DEPENDENT W-TYPES 95
where F' is a split fibration. As mentioned at the beginning, the following commutes:

B 5 A

]:/ le]I
N

Suppose now that we have an arrow ¢ : A — I'. Then pulling back diagram [+ along

()

o gives us:
U

N =
A U\F

F’T ; A {

IB%’\H,‘J/]B%\S) /

v J

While operating over I" links up well with type theoretic interpretation of dependent

W -types, we will work with a slightly more general description. We will assume that we
have an arrow u : J — I, and the following commutative diagram (where all the squares
are pullbacks):

TS g L a Ry

o 7 gﬁ |v

I

S F

We will denote the polynomial J < B £ A & Jby U*F.
Proposition 5.2.1. There is a natural isomorphism Ay Pr = Py«pAy.
Proof. This is simply a chain of Beck-Chevalley (cf. Proposition isomorphisms:
AuXpllpAg 2 S AyllpAg
= Y pllmAw Ay
&Y pllmAg Ay
= Py-rAy
O

Corollary 5.2.2. Ay : Gpd,; — Gpd ; lifts to a functor Pp-alg — Py«p-alg. Further,

since pullbacks preserve isomorphisms, AUWI]; is a fixpoint for Py+p.

96 5. DEPENDENT W-TYPES FOR SPLIT FIBRATIONS

Let us prepare the terrain for the final theorem of this section. For a’ € A’, we begin
by noticing that B/, is isomorphic to Byy
B, —— 1
[l
a
B L ! A
ot w

Observe that By is the pullback of W o d, that is, the outer square. We will denote this
isomorphism by X“’ : Bywo — BY,. Note that the same observation holds for B, = By,

Unfolding the definition of the algebra structure map sup ApWL Py« FAUW}I; —
Ay W7} obtained in Corollary we get for (j,a’,T), where j € J, ' € A} and
T:B, — AS/AUW}I,:

SupAUW% (.]7 ala T) = (]7 SupWIHE‘ (Uj’ Wa,) T Bya — AUW}H«“))
where T” is defined as the composite:
By o i} B;/ Z) AS/AUW}Ir — AUW}

Suppose we have (j,sup(i,a,T)) € AyWr. Since the algebra structure map is an
isomorphism, we have (j,a’, T"), that maps to it. Further we have that:

T(/x“')*lb = (7, Th)

Theorem 5.2.3. AUW% is isomorphic to W, r as a Py« algebra.

Proof. This proof is quite similar to the proof of the analogous statement in the previous
chapter. However, there are some steps that require a bit more careful consideration. Let
H: W(“]}* r— AUW}IF be the unique algebra morphism, given by initiality of Wg* - By

induction on WIH; we assume the following induction hypothesis (and similarly for arrows):

Vsulenw (i,a,T) € W};.Vj e J.(j, SupyyL (i,a,T)) € AUW}, =
ElsuthJ]*F(j7 a,T') e WJ*F.H(supr*F(j, a,T")) = (4, supwlnw(i,a, T))

Let (j,sup(i,a,T)) € AyWr. By previous considerations we have a series of (j,, T},) €
AyWE and our induction hypothesis gives a unique Supyy (jib, a}, T") for each b € By,
that maps to (jp, 1p) via H.

Let ¢’ be such that Wa' = a. We define 7" : B/, — Wg*F, by setting T'(z) =

a/ - . . .
') e, Uniqueness of smaller trees guarantees that 7" is functorial.

5.2. PULLBACK STABILITY OF DEPENDENT W-TYPES 97

Let ¥ € B/,. We know that S'0' = S'((x*)~ ') = J(xe")-1y» Which allows us
to conclude that 7” is J-coherent and hence (j,a’,T") is in Py~ W - This maps to
(j,sup(i,a,T)) via H by construction.

Since all 7" are unique, we get that 7" is unique as well.

The argument for morphisms is similar, except that uniqueness also provides us with
the naturality condition.

This means that H is bijective and hence AUWI][I7 and Wg* 7 are isomorphic. (]

CHAPTER 6

W -types for cloven and general fibrations

In this chapter we first construct WW-types for simple polynomials, where the fibration
is equipped with a cleavage, which is not necessarily split. We do this in a similar fashion
to the case when the fibration is split (Chapter [3).

Next, we consider the case of a general fibration. In order to construct the W-type
for this case we introduce the notion of triangle graphs, which is another presentation of
2-truncated simplicial sets. Since we have W-types for presheaves [39], we propose an
inductively defined triangle graph, which we show admits the structure of a groupoid and

is the initial algebra for the simple polynomial functor.

6.1. W -types for cloven fibrations

Let F' : B — A be a cloven fibration, not necessarily split. Our goal is to construct a

W -type for the polynomial associated to it, defined as the composition:
Ap 153 Ty
Gpd — Gpd/;y — Gpd,, — Gpd

(Section 2.1 describes the action of this functor explicitly). In order to do so, we make use
of similar techniques as in chapter [3] We will omit the construction of the graph from a
Set-valued W-type, and instead define an inductive graph in the style of W', In the proofs
in chapter[3|we use the fact that F' is a split fibration, but in the present case we need to take
additional care when defining the composition operation. Let X be the smallest inductive
graph:

e ifa € Aand T : B, — X is a graph morphism, then (a,T), is a vertex in X,

e ifa,d €A, f:a—d,(a,T),(a,T") € X, and ¢ is a collection of arrows in

X of the form:

¢=(pp:Tb—T'fib| b€ By,)

then (f, ¢) is an edge from (a,T') to (a’,T").
We will denote this graph by WF.
Unfolding the definition of W -types for reflexive graphs, we can see what the reflex-
ivity map does. To each vertex (a,T’) we associate a reflexive arrow, which we write

99

100 6. W-TYPES FOR CLOVEN AND GENERAL FIBRATIONS
id(, 1) : (a,T) = (a,T). The arrow is defined as
(idas (T(ida,) : Tb — T(ida)ib | b € By))

We define a binary operation on the edges of Wp, which will become associative after
we remove some of the elements of the graph. The operation is defined recursively. Sup-
pose we have sup(f,y) : sup(a,T) — sup(a’,T’) and sup(f’,¢’) : sup(d/,T") —

sup(a”,T"). We assume that we have defined a composition operation on
(=) o (=) : Wp(T'b, T'V) x Wp(T'V, T"V") — Wp(Tb, T"b")
Then we define:
(fs @) o (f,0) =aet (f' 0 f,¢ 0 9)
(@ o@)o =det (T"®y,p1 0 ©hp) 0 01

The reflexivity arrows, will become identities for this operation, once we restrict the
structure.

As said, the composition operation is not necessarily associative for all arrows. Notice
however that the definition matches the one for the exponential object in the slices. Using
this definition we can define a predicate that will allow us to obtain a subgraph which turns

out to be a groupoid with this composition operation.
Definition 6.1.1. Let sup(a,T’) be a vertex in Wr. We say that sup(a, T') is functorial if:

o if T: B, — WF preserves the composition operation and identity arrows, that

is:
T(vou)=T(u)oT(v)
T'(idp) = idpy
e forall b € B,, T is again functorial.

Further, let sup(f,) : sup(a,T’) — sup(a’, 7") be an edge in We. We say that sup(f,p)

is natural if:
o forallu:b— b € B,:
oy o Tu =T fruo gy

e for all b € B,, we have that ¢, is natural.

Let W be the smallest subgraph of WF consisting of functorial vertices and natural edges.

6.1. W-TYPES FOR CLOVEN FIBRATIONS 101
Proposition 6.1.2. W admits the structure of a groupoid.

Proof. Let sup(f?, ¢*) : sup(a?, T%) — sup(a*t1, T for 1 < i < 3. We would like to
show that
(P 0p?) ool = pP(op? 0)
Unfolding the definition of composition, we get:
(¢ (00 0 @) = (TH(Ry20f1) © P20 pr)p) © (T°(R g1 g2) 0 PTy) 0)
(970 (%00) = (T (®y1 gsop2) o (TH(Dy2,p2) © Ppory) © PFy)) © 0
Suppose, by induction, that composition is associative for arrows of the form W (Tb, T'b')

(for any T, T", b, b’). We can then show that the next diagram commutes:

1 2 i 3 w:;ef!lb 40352015 L (2 SN AT 3)b TA(£3 o £2), £l
T0 —— Tf.b—>Tf.fb TR ———— T*(f3 o f2)fb
lTB(‘pfl f2)€ lT f! (<1>f1 f2)b lT4(¢f1,f3of2)b
T3(f? f)'bHTélfs fZo fz,ﬁ)HTll(f‘gonOfl)!b
P20 2051 p3)0

The left-hand square commutes since we assumed ¢° are natural, and the right-hand
square commutes since we assumed 7" to be functorial. The upper path is equal to ((¢3 o
©?) o '), and the bottom path is equal to (¢? o (2 o ¢));. Hence composition in Wi is
associative.

The proofs for the left and right unit laws and inverses are similar to the computa-

tions performed in the previous chapter when discussing the exponential object for cloven
fibrations (cf. Lemma [I.3.10). O

Proposition 6.1.3. W can be equipped with an algebra structure sup : PpWp — Wp.

Further sup is an isomorphism.

Proof. Applying Pr to Wp, as defined above, produces an isomorphic object. Given
(a,T) € PrWp, observe that T : B, — W satisfies the constraints of being a functorial
graph morphism and hence sup(a, T') is a already present in Wr. Similarly for morphisms.

Thus we define sup : PeWr — Wpg:
(a,T) ~ sup(b,t)
(f,¢) = sup(f,¢)

Note that this has an immediate inverse. O

102 6. W-TYPES FOR CLOVEN AND GENERAL FIBRATIONS
Theorem 6.1.4. (W, sup) is the initial algebra for P.

Proof. The content of this proof is very similar to the one for split fibrations (Theorem[3.2.3)),

so we omit the details. O

6.2. WW-types for general fibrations

To construct the initial algebra for a general fibration, we first introduce the notion of
a triangle graph. Let Ag be the 2-truncated simplex category:
—
0—1—2
H %
Similarly to the reflexive graphs before, we now consider reflexive triangle graphs, as

presheaves [A5P, Set]. Unfolding this, we have the following definition.

Definition 6.2.1. A triangle graph GG consists of:

e a set of vertices (G,
e forevery z,y € Gy, a set of edges G1(x,y),
e for every f € Gi(z,y), g € Gi1(y,z) and h € Gi(z,z), a set of triangles

G2(hvga f)

A triangle graph is reflexive, if it comes equipped with functions:
To: Hac:G’oGl(xa .%')
701 : Hm,y:GOHf:G1(:v,y)G2(f’ fa 7“033‘)
719 : Hx’y;GOHfzgl(x,y)Gz(f, 70y, f)

Definition 6.2.2. A triangle graph morphism ¢ : G — H consists of:

e a function g : Gy — Hy,
e forevery z,y € Gy, afunction ¢, : Gi(z,y) = Hi(px,py)
o forevery f € Gi(z,y), g € Gi(y,2) and h € G1(x, z), a function ¢y, 4 5 :

Ga(h, g, f) = Ga(ph, pg,¢f)

A morphism of reflexive triangle graphs has the same data, but must additionally commute

with the reflexivity functions, e.g.:

H G
To %0 = Pz °To

1,Gy(z,2) —— I.H(z,)

6.2. W-TYPES FOR GENERAL FIBRATIONS 103

Example 6.2.3. We can view any small category C as a reflexive triangle graph, by con-
sidering the objects as vertices, morphisms as edges, identities as the reflexive edges and

a single triangle whenever h = g o f.

Suppose F' : B — A is a fibration. In the case of F’ split or cloven we had the option
of using the cleavage data to specify the composition operation. Unfortunately, we are
unable to do so in general, as it requires axiom of choice. However, using triangle graphs,
we can encode the composition directly into the graph.

Using [39] we can obtain W -types for presheaves. This allows us to consider W-types

for triangle graphs.

Proposition 6.2.4. The reflexive triangle graph W is the smallest reflexive triangle graph
X, such that:

(1) Ifa € Agand T : B, — X a reflexive triangle graph morphism, then sup(a,T') €
Xo
(2) If sup(a,T), sup(a’,T") are vertices in X, f : a — a' € A(a,d’) and further

we have

o [T xu(@v,1%)
wb—b eF—1(f)

along with:

€: H Xo(p(uod),p(u),Td)

wb—b' €F~L(f)
db—beF~1(idy)

[Xeleldou).T'd o)

wb—b €F~L(f)
d:b' = eF~1(id,/)

ol

then sup(f, p,€,€) € Xq(sup(a,T),sup(a’, T")).
(3) If we have
sup(f, o, €,€) € X1(sup(a, T),sup(a’, T"))
sup(f’, ¢, €, €) € Xi(sup(a’, T"),sup(a”, T"))
sup(f'o f,¢", ", €") € X1(sup(a,T),sup(a”, T"))

and:

£: 11 Xo(¢"(vou), ¢’ (v), p(u))
ub—b €F=1(f)
vt/ =" eFTL(f)

104 6. W-TYPES FOR CLOVEN AND GENERAL FIBRATIONS
then Sup(&) € X2(Sup(f/ o fa 4)0”7 6//3 ?)7 Sup(f/7 SO,a €/>g)7 Sllp(f, ¥ € E))

Remark 6.2.5. Unfolding the construction in [39]], we can see what the reflexivity actions
do:

(1) Let sup(a,T) € Wy, then its reflexive arrow is set to be:
ro(sup(a, 7)) = sup(ida, ¢, €, €)
where

ou:b—=b)=Tu

DK

That is ro(sup(a,T')) = sup(id,, T, T, T).
(2) Letsup(f,p,€,€) € Wi(sup(a,T),sup(a’, ")), then:
ro1(sup(f, ¢, €,€)) = sup(e)
ri2(sup(f, ¢, €,€)) = sup(e)
Proposition 6.2.6. Let
sup(f, ¢, €,€) : sup(a, T) — sup(a’, T")
sup(f', ¢, €, &) :sup(a’, T") — sup(a”, T")
be two arrows in W. If
Wa(sup(f'o f,¢" " "), sup(f', ¢, €, €), sup(f, ¢, €, €))
is inhabited, then it has a unique member.

Proof. We prove the above claim by induction, so suppose that for any u : b — b/,
u b — b over f, f, Wa(¢" (v o u) o(u'), o(u)) has a unique member, if inhabited.
Suppose A, A’ € Wa(sup(f' o f,¢",€",€"),sup(f', ¢, €, €),sup(f, ¢, €, €)), then
Wa(" (v ou), p(u'), ¢(u)) is inhabited, namely we have A(u/,u) and A’(u/, u). By our
!/

induction hypothesis, A(u/,u) = A’(u/,u). Hence A = A’ O

In the light of this proposition, we will omit € and €, that is we will write sup(f, ¢)

instead of sup(f, ¢, €, €).

6.2. W-TYPES FOR GENERAL FIBRATIONS 105

Proposition 6.2.7. Suppose we find ourselves in the following situation:

sup(f1%,0'%)

A2 sup(a’®, T°)

sup(fQSV

12
sup(at, T1) sl e, sup(a?,T?) A2 sup(f3,%)

sup(f4,0%4)
~

sup(a’, T*)

sup(f1*,¢

And further, we have the following:
A2 Wy (sup(£13, 013), sup(£2, ¢®3), sup(f12, p12))
AP Wa(sup(f14, '), sup(£2,), sup(f12, %))
AP Wy (sup(f2,), sup(£71, 0*), sup(f2%, %))
Then there exists A% : W (sup(f14, p'4), sup(f34, ©>4), sup(f13, '3)).
Proof. Suppose, by induction, that the above holds for diagrams of the form:

41013 (UIS)

T3
12(12

<p23(u23/
e (u'?)

T'h! ———— T2p? ®

%(uﬂ)

Lp14 (u14) T4b4

34(u34)

where

with triangles A3 (4?3, u!2), A124 (424 4'?) and A?34(u34, u?3). This allows us to ob-

tain a candidate
A}giu%,uw . WQ((,O14(’LL34 o U23 o u12)7 9034(u34)7 (}013(u23 o u12))

for each w12, 423, and u>* over f 12, f 23 f 34 respectively. Further this is the unique such,

due to the previous proposition (Proposition [6.2.6).

106 6. W-TYPES FOR CLOVEN AND GENERAL FIBRATIONS

Let u'2 and v be over f'3, f34. By the Conduché property, we have a factorisation

23

of ul3 = u?3 o4, for some u , w3, Suppose we have another factorisation 023 112, but

note that:
W2(¢14(u34 o u23 o u12)’ @34(u34)’ S013(u23 o u12))
:W2(¢14(u34 ° u13>7 (,034(7134), ()013(u13))

:W2(¢14(u34 o U23 o 1}12), S034(34)7 9013(023 o U12))

IS

And by uniqueness of triangles (Proposition [6.2.6) we get:
134 1
Au§4,u237u12 = Au§4,v237v12
Hence we can define A134(u34 u13) = A3 ., for any factorisation of uls, O
’ u* ucc

Remark 6.2.8. We can extend the above to say that if we instead have the outer triangle

(A'3%), but are missing A'?4, we can obtain it as well. The proof is analogous.

Remark 6.2.9. This proposition states that W satisfies the inner horn filling condition, if

we see it as a simplicial set.

We now show that we have existence of composition.

Proposition 6.2.10. [fwe have two arrows of the form sup(f,) : sup(a,T) — sup(a’,T")
and sup(f', ') : sup(a’,T") — sup(a”,T"), then there exists a unique ", such that

sup(f'of, ") : sup(a, T) — sup(a”, T") and Wa(sup(f'of, "), sup(f’, ¢),sup(f, ¢))
is inhabited.

Proof. Assume by induction, that the statement holds for the diagrams of the form:

Tb e(u) Ty e(u') Ty

Let u be over f’ o f. By the Conduché property, we have a factorisation v = «’ o u, and
. "
the induction hypothesis then gives us a candidate Ot e
Given another factorisation u = w’ o w, the Conduché property gives us a morphism
d:bv — U linking the two factorizations. Hence we find ourselves in the following

situation:

6.2. W-TYPES FOR GENERAL FIBRATIONS 107

o(w) ~
'Y
T'd
(u) 11/ 1l
T —————— T"b ¥’ (w')
XJ(U’)
90;1/7“ Ty

The upper triangle is €#(d, u), the rightmost triangle is €¥(w’, d) and the lower comes
from the inductive hypothesis. By Proposition we have existence of the outer tri-
angle. Since by induction hypothesis, there exists a unique arrow, such that Wa (¢!, ¢’ (w'), p(w))
is inhabited, we get ¢, ,, = ¢y, We set 9" (u) = ¢, , for any factorisation u = v’ o v.

In order for sup(f’o f, ¢") to be an arrow in T, we need to construct its €, €. Suppose

d : b — b and consider:

¢ (u)

T
¢’ V

QO((U) T/ b/ T"d

Xﬂ‘dov’

" (dou) T

Th

The upper and bottom triangles exist by our induction hypothesis and the right triangle is
E‘Pl(d, v'). By Proposition , we have existence of the outer triangle, which we set to
be our €(d, u).

Suppose now that we have d : b — b and consider:

p(vod)
TV
®(v)
Tb/ Td Th 4,0’(1)/)
\W‘(U)
@' (uod) %

The upper triangle is €?(v, d), the right and the outer triangle are given by the induction
hypothesis. We obtain the lower triangle by Remark which we set to be our €(u, d).

Suppose we have another sup(f’ o f,v) : sup(a,T) — sup(a”,T"), such that
Wa(sup(f' o f,7),sup(f’,¢’),sup(f, ¢)) is inhabited. Call that member A’. Let u over
f'of,and u = v'ov for some v', v. We have then that A’(v', v) € Wa(vy(u), ¢’ (u), p(u)),

but by our induction hypothesis), , is the unique such, which means v(u) = ¢”(u) O

108 6. W-TYPES FOR CLOVEN AND GENERAL FIBRATIONS

Proposition 6.2.11. W admits the structure of a category.

Proof. Using Proposition|6.2.10|we can define the operation of composition. If sup(f, ¢) :
sup(a,T) — sup(a’, T") and sup(f’, ¢’) : sup(a’, T") — sup(a”,T"), we define:

sup(f',¢") osup(f,) = sup(f’ o f,¢")

where ¢ is the unique arrow obtained from Proposition [6.2.10L Suppose now we have
sup(a?, T%) : sup(a;, T;) — sup(a;y1, Tiy1) fori = 1,2, 3, then we find ourselves in the

following situation:

sup(f2,0?)osup(f1,o1)

sup(a®, T?)
sup(fy
1 1 Sup(flﬁal) 2 2 3 3
sup(a*, T") —————= sup(a®,T7) sup(f?,¢%)
sup(f3,w3)osup(f%

sup(at, T?)

sup(f3,¢%)o(sup(f2,0%)osup(f1,o!))

The upper, right and outer triangles exist by our definition of composition. The existence of
the lower triangle is given by Remark[6.2.8] But Proposition[6.2.10]says the the composite

is unique, hence:

sup(f2, %) o (sup(f?,¢%) o sup(f', ")) = (sup(f?, ¥?) o sup(f?,¢°)) o sup(f', ")

The identities are given by ro. We write idgp(q,7) = ro(sup(a,T)). Then we can

see that for any sup(f, ¢) : sup(a,T) — sup(a’, T'), sup(f, ¥) © idsup(a,7) = sup(f, ¢),

since we have
6(“7 d) : WQ(@(U o d)a QO(U), Sp(d))
and composition is unique. The same reasoning applies to the other identity, except we

use €. |

Proposition 6.2.12. Let sup(a,T') be a vertex in Wy. Then T : B, — W is a functor.

Proof. This follows from the fact that 7" is a reflexive graph morphism and the fact that

W has unique triangles. That is, we have:

T(idy) = idry

6.2. W-TYPES FOR GENERAL FIBRATIONS 109

Further, 72

VOU,V,U

now have that:

: B(vowu,v,u) — W2(T(vowu), Tv, Tu) and by Proposition we

T(wou)=TvoTu

Proposition 6.2.13. The category W is a groupoid.

Proof. Let sup(f,») : sup(a,T) — sup(a’,7”) be a morphism. Suppose by induc-

1

tion that for all u over f, there exists o(u)~!. We can define sup(f—1, ¢!, ¢ :

sup(a’, T") — sup(a, T), which will be the inverse of sup(f, ¢). Set o1 (u) = (p(u=1))~L.
To show that € exists, we use the categorical structure. Note that if we have f o g = h, this
actually means we have a triangle between h, g and f. Suppose d : Y — b over id, and

w:b — bover f~1, and we would like to show that:
¢ H(uod) =~ (u) o T'(d)
Unfolding the definition of ¢!, this means that we would like to show:
p(d ™ ou™) T = p(u™) o T'(d)
Since 7" is a functor and d is iso, this is the same as showing:
pld " ou) ™ = p(u) o T (d)
= (T'(d) op(u)™

This is necessarily true, since ¢ is a morphism in W.
Similarly for €. To show that sup(f~!, 1) is indeed the inverse, simply amounts to

unfolding the definition of composition.]

Proposition 6.2.14. Let sup(f,) : sup(a,T) — sup(a’,T") in W. Then ¢ is a general-

ized natural transformation T ~ T'.

Proof. Suppose that, the following commutes in B

/

(o

_u

S

dl

Y
) —

/

)
Sy

(2

Where u and v are over f, and d, d’ over id,, id, respectively. We know that ¢(v)oT'(d) =
(v o d), but since the diagram just above commutes, we have p(v o d) = p(d ou) =

T'(d") o p(u). So the following diagram commutes in W:

110 6. W-TYPES FOR CLOVEN AND GENERAL FIBRATIONS

Tb 2 Ty

le J/T’ d

T —— TV
»(v)

]

Proposition 6.2.15. Let F' : B — A be a fibration, and Pr : Gpd — Gpd be the

polynomial functor associated to F'. Then the map PrW — W is an isomorphism.

Proof. We can see that objects and morphisms in PrW match the requirements made in

the inductive definition of W, hence they are present there already. (Il

Theorem 6.2.16. W is a strictly 2-initial algebra for Pr.

Proof. Asinthe case for split fibrations (Theorem @D we first show that WV is initial, by
considering the smallest subalgebra G ﬂ W x X, for any other P algebra (X, supy).
By induction we show that P must be injective. Finally, Theorem[2.5.4gives us 2-initiality.

The key difference with respect to the proof for Theorem is that morphisms
(f,) are not defined for just the cleavage data (since we do not necessarily have one), but

for all u over f. Note however, that does not play an essential role in the proof. (Il

CHAPTER 7

Natural models and n-equality

In [7] Awodey defines the concept of natural models. This chapter briefly recalls the
results from that paper, after which we propose some refinements to the original defini-
tions in order to model types where n-equalities for II and ¥ are propositional and not
definitional.

An example of why modeling type theory with propositional n-equality is interesting
is given by homotopy type theory. In [26] Simon Henry constructs a weak model structure
on simplicial sets. In ongoing joint work with Nicola Gambino, they give a construc-
tion where II-types are interpreted as a cofibrant replacement of the right adjoint to the

pullback, obtaining only propositional n-equality.

7.1. Review of natural models

Natural models of dependent type theory were first established by Awodey in [7]. In
this section we briefly recall the definitions and results he obtained. We fix a category C

and write y : C — C for the Yoneda embedding.

Definition 7.1.1. A natural transformation between two presheaves, I/ and U e, P
U — Uis representable, if for every I' € C and A € U(T"), we are given an object
NAecC,amappy : I'A —>T,andagy € a(F.A), such that the following square is a

pullback:

yA —2 Uy
|
ypa P
A

7] A S—

Definition 7.1.2. A small category C, possesses a natural model structure if it comes
equipped with two presheaves, U/ and U, and a natural transformation, p: U — U, which
is representable.

111

112 7. NATURAL MODELS AND 7n-EQUALITY

One way of modeling type theory is via so-called categories with families, first defined
by Peter Dybjer in [17]. Awodey observed that natural models immediately give a CwF
structure (Proposition 1.2 in [7]).

We consider C to be a category of contexts, then given p : U — U, we have U (T") as
the set of types and u (T") as the set of terms, with p as the typing of those terms. Thus
thanks to the Yoneda Lemma, given A € U(T') and ¢t € py'(A), we have the following
typing diagram:

] 7

Naturality of p gives us substitution. Given o : A — I', we have that

I'A:TYPES = AF Ao : TYPES
I'Fa: A= AkFao: Ao

Representability matches the notion of context extension. Given a I' € C and a type

A € UT', by the definition of representability, we get the following pullback:

rA—*» -y
J

pa p

r—4——u

From now on we assume the reader to be familiar with locally cartesian closed cat-

egories, as we use the internal language of C

Definition 7.1.3. A natural model p supports unit types, if we are given:

making the following diagram a pullback:
11—
|-

11

7.1. REVIEW OF NATURAL MODELS 113

Definition 7.1.4. A natural model p supports dependent products, if we are given the
following maps:
D7 Ny}
AU
S ut s u,
AU
making the following diagram a pullback:

ZA:MZ/N’A % u

|

(71) ZA:Z/{ pA p

ZA:L{UA % U

Definition 7.1.5. A natural model p supports dependent sums, as soon as we are given the
following maps:
pair : Z Z ZB(a) — U,
AU B:UA a:A
Sy Ut =,
AU

making the following diagram a pullback:

Do AU 2oBuUA 2ua:a Bla) L

u
—I h
™ p
g U? 2 u

Definition 7.1.6. A natural model p supports extensional equality, if we are given the

following maps:
1d:UxyuUd —U

making the following diagram a pullback:

114 7. NATURAL MODELS AND 7n-EQUALITY

U———u
-

Uxyd —4— u
Natural models can also model intensional equality. However in order to do so, we
first need to introduce the notion of left-lifting structure — i.e. a refined notion of left lifting

property, where the filler is given in a functorial manner.

Definition 7.1.7. A left-lifting structure s for f with respect to g, is a section of the com-
parison map (g2, CT) : CB — DB x pa C4:

S

B B A
C —><gB,Cf> D X pA C

Equivalently, we could demand that we have a choice (natural in X') of diagonal fillers

¢(a, b) in the following diagram:

XxA—25C

A
Xx fl c(a,b) lg
e
X x B - D

Definition 7.1.8. A natural model p models intensional equality, as soon as there exist the
two following maps:
Id: Z/~{ Xy Z/~{ —U
making the following diagram commute:
i i
(6,2)
5 I ——U
_I
! Jr
Z;{v Xu Z;{V L> Uu
We also require that the canonical map (0, ¢) has a left-lifting structure j with respect to p,

when we consider them as maps over U, (6,7) th; U*p.

Type theory distinguishes two notions of equality, that is definitional and propositional

equality. If we say two terms ¢,t' : A are propositionally equal, we take it to mean, that

7.2. REFINEMENT OF NATURAL MODELS 115

Id A(t,t') is inhabited. These two notions do not necessarily coincide, unless we assume
extensionality for Id types.

In the particular case of 3 and IT types, we have the following options:

t:(Xx: A)B(x) t:(Xz: A)B(x)
2 it = 1 (r: ABla) o d((mtmthf) P T
t:(Ilz : A)B(x) t:(Ilz : A)B(z) Prop I —

7 (Az.tz) =t : (llz : A)B(x) N Id((Az.tx), t)
In what follows, we refine Definition and Definition to allow for IT and X
types with propositional n-equality.

7.2. Refinement of Natural Models

We take inspiration from the definition of intensional Id-types (in [7]]), where the au-
thor relaxes the constraint of having a pullback square, but instead demands that we posses
a certain class of fillers.

We will model both 3 and II types in a way that makes the -rule (i.e. computational
rule) valid judgmentally and the n-rule valid propositionally. To start with, we provide the

rules for Y -types with a split operator.

'~ A:TyYPES lz: Al B(x) : TYPES
'+ (Xz: A)B(x) : TYPES

NFa:A Fz:AkFb: B(x)
F{a,b) : (Xz: A)B(x)

Y-intro

Y -form

z:(Xz: A)B(x)F E(2): U Fx:Ay:Bx)tFe(x,y): E({x,y)) FFu: (Xz: A)B(x)

>-elim [+ split(e,u) : E(u
v)

)
I split(e, (u,v)) : E({u,v))
't split(e, (u, v)) = e(u,v) : E((u,v))

Y-comp

TABLE 1. Rules for X with split

Given this version of X, we can define projections as:

mt = split((z,y)z, t)

mol = Spht((.fC, y)y7 t)

116 7. NATURAL MODELS AND 7n-EQUALITY

Definition 7.2.1. We say that a natural model structure supports dependent sums with
propositional n-equality, if we are given:
pair : Z Z ZB(&) —U
AU BUA a:A
P ZU AU,
AU

such that the following diagram commutes:
ZA:M ZB:MA Za:A B(CL) > U

(71) 7r p

ZA:Z/{ uA = u

and with a diagonal filler in the following diagram:

eval
Do AU 2LBUA Dop(SHB Deilly allyn B((wy) 2a:A B(@) Uu

split

(7.2)

S val
Do AU DBUA 2o pySAB Dol aTlyp B((og)) (BA) B ————— U

where the top eval works as follows: (A, B, F, e, a,b) — e(a,b), the bottom eval maps
(A, B, E,e,u) — E(u) and the left vertical morphism maps (A, B, F, e, a,b) — (A, B, E, e, (a,b)).

Proposition 7.2.2. A natural model with the structure in Definition models the rules
for X-types of Section

Proof.

Introduction Rule We have two morphisms A : I' — U, and B : I'.A — U, allowing us to define
(A,B) : T — > ,,,U*. This morphism post-composed with S gets us the
typing morphism required.

Formation Rule Wehave A: ' - U,B: T'A—-U,a:T — ﬁ, andb:I'.B — H such that the
necessary triangles commute. Then, it follows that we have (A, B, a,b) : I’ —
Yoau 2oBuA 2aa Bla). Post-composed with pair we obtain a morphism, cor-

responding to the term (a, b) defined above of the required type.

7.2. REFINEMENT OF NATURAL MODELS 117

Elimination Rule On the model side we have the following morphism (making certain typing tri-

angles commute):

' —=U
T A—-U

& ™

T.(SA)B—=U
e:T.AB—=U
u:F—)Zj

Which implies that there is a tuple morphism:

(A,B,E,e,uy:T =Y Y Y > (ZA)B

AU BUA By(2A)B edly. ally. g E((x,y))

We then interpret split(e, u) as split o(A, B, F, e, u):

WG S DS S SaB I

AU BUA By (EA)B elly Tl g E((z,y))
Computation Rule Since we have that split commutes with the evaluation maps in the compu-

tation rule holds.

O

Remark 7.2.3. We can show that Definition[/.2.1|models propositional n-equality. Let

A: T —=U
B:T'A—-U

Then forany a : A, b : B(a)
(mi{a,b), m2{a, b)) = (a,b)
from the computation rule. Thus
a:Ab: B(a)lrefl({(a,b)) : Id({a, b), (m1{a, b), m2(a,b))).
Applying the 3 elimination rule, we obtain:

c: (XA)B F split((z)(y) refl({x, y)), ¢) : Id(e, (m1¢, mac)).

118 7. NATURAL MODELS AND 7n-EQUALITY

Similar steps are taken in the model (where we assume the existence of Id types a
la Awodey). First, observe that given I'.A.B we have a morphism (a,b) : 'A.B — u
(using the pair morphism from the definition before). Taking pair in the place of e in the
above schema, we obtain split(pair, (a,b)). Further we see that the following diagram
commutes:

I AB split(pair,(a,b)) Z;{v

(a,b) P
U—>">"——u
Thus we have Id(split(pair, (a,b)), (a,b)) : T"A.B — U and refl({a,b)) : T'"A.B —
U. Taking refl({a,b)) as the e in the above schema, and Id({m u, mou),) in place of
E (and supposing the existence of u : I' —), we get split(refl((z,y)),u), of type
Id((mu, mou), u).

Next we define [1-types with funsplit operator.

'~ A:TYPES Ix:AF B(z): TYPES
'+ (Ilzx : A)B(z) : TYPES
Fz:AFb: B(x)
L' Az.b: (Ilx : A)B(x)

II-intro

II-form

' f:(Ilz: A)B(z) Fz:(Ilz: A)B(z)-C: U Iz :Ay(x): B(x) Fd(y) : C(Az.y)

II-elim I - funsplit(f,d) : C(f)

Fz:AFb: B(x) IFz:(Mz:A)Bx)-C: U Iz:Ay(x): B(z)Fd(y): C(Az.y)
I - funsplit(Az.b, d) = d(b) : C'(Ax.b)

[I-comp

TABLE 2. Rules for II with funsplit

Definition 7.2.4. We say that a natural model structure supports dependent products with
funsplit and propositional 7-rule, if we are given:
A0 S
AU
TS ud s u,
A:U

7.2. REFINEMENT OF NATURAL MODELS 119

such that the following diagram commutes:

ZA:Z/IZ/N{A % u

(7.3) p

ZA:Z/IMA # U

We demand existence of the diagonal filler in the following diagram:

3 eval
doau 2pus cydans Db, 5y, . 8C(AY)) U

funsplit

(7.4)

= eval
doAu 2 Bus cgyias(IIA)B Uu

Proposition 7.2.5. A natural model with the structure in Definition models the rules
for Il-types of table

Proof. The rules get transcribed in a similar way as they do in the case of X-types. ([

Remark 7.2.6. Definition models the propositional n-rule.
Since we have funsplit we can define apply in the following way:

apply(f, a) = funsplit(f, Azz(a))

Thanks to how funsplit is defined, regular S-equality holds for the above apply operator.
Hence:
a:Ab:BbF Ayapply(Aab,a) = Ayb

By Id-introduction:
a:Ab: BFrefidb) : Id(Ag apply (Aeb, a), Aeb)
Now applying, II-elimination:
a: A, f:T4BF funsplit(f, Ay refi(Azb(2))) : Id(Aq apply(f, a), f)

The proof is written in a type theoretic way, and a translation to diagrammatic form is
tedious, but not difficult. The reader should pay attention to the fact that certain construct-
ors have a hat (ex. 5\) above them, these constructors are in fact the constructors inside the

model.

120 7. NATURAL MODELS AND 7n-EQUALITY

Remark 7.2.7. The apply version of the II-types is the way the dependent functions are
more commonly defined. This is the way the author of [7] chooses to model it. The
application for II types is given by composition in the category, rather than by additional
structure. This makes it difficult to have a version of II-types without the definitional
n-rule.

Awodey proposes a weakening of Definition (Corollary 2.5, of the same paper
[7]), where the square in Diagram[/.1] is assumed to be a weak-pullback square and fur-
ther we are given a section of the canonical map 3 ., U4 = (3 4 U™) Xy U. This
additional structure gives the S-rule, but not the n-rule. In particular, assuming the n-rule

as well, gives us that the square in Diagram [7.1]is a pullback.

Combining the definitions in this section with the unit and intensional equality types

given by [7]], we can summarize the results as follows:

Theorem 7.2.8. Assume C has a natural model structure D U — U and additionally

(1) models unit types as in Definition

(2) models 1d types as in Definition

(3) models X types as in Definition[7.2.1]

(4) models 11 types as in Definition
Then C is a model of Martin-Lif type theory with 1, ¥, 11, Id, with ¥ and 11 types satisfying
propositional n-equality.

Bibliography

. Michael Abbott, Thorsten Altenkirch, and Neil Ghani, Categories of containers, International Conference

on Foundations of Software Science and Computation Structures, Springer, 2003, pp. 23-38.

. Peter Aczel, The type theoretic interpretation of constructive set theory, Logic Colloquium, Elsevier,

1978, pp. 55-66.

. Peter Aczel and Michael Rathjen, CST book draft, 2010, https://wwwl.maths.leeds.ac.uk/

~rathjen/book.pdf, 2010, [Online; accessed 18-Sep-2018].

. Jin Adamek and Stefan Milius, ESSLLI 2010 CHP, https://www.tu-braunschweig.de/

Medien-DB/iti/survey_full.pdf, 2010, [Online; accessed 30-Aug-2018].

. Thorsten Altenkirch, James Chapman, and Tarmo Uustalu, Monads need not be endofunctors, Logical

Methods in Computer Science 11 (2015), 1—40.

6. Steve Awodey, Category theory, 2nd ed., Oxford University Press, Inc., New York, NY, USA, 2010.

10.

11.

12.

13.

14.

15.

16.

17.

, Natural models of homotopy type theory, Mathematical Structures in Computer Science (2016),
1-46.

. Steve Awodey, Nicola Gambino, and Kristina Sojakova, Homotopy-initial algebras in type theory, Journal

of the ACM (JACM) 63 (2017), no. 6, 51.

. John C Baez and James Dolan, From finite sets to Feynman diagrams, Mathematics unlimited—2001 and

beyond, Springer, 2001, pp. 29-50.

Benno van den Berg and Ieke Moerdijk, W-types in homotopy type theory, Mathematical Structures in
Computer Science 25 (2015), no. 5, 1100-1115.

Robert Blackwell, Gregory M Kelly, and A John Power, Two-dimensional monad theory, Journal of pure
and applied algebra 59 (1989), no. 1, 1-41.

Francis Borceux, Handbook of categorical algebra, Encyclopedia of Mathematics and its Applications,
vol. 1, Cambridge University Press, 1994.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg, Cubical type theory: a constructive
interpretation of the univalence axiom, 21st International Conference on Types for Proofs and Programs,
no. 69, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015, p. 262.

Francgois Conduché, Au sujet de I’existence d’adjointsa droite aux foncteurs “image réciproque” dans la
catégorie des catégories, CR Acad. Sci. Paris 275 (1972), A891-894.

Catarina Coquand, A realizability interpretation of Martin-Lof’s type theory, Twenty-Five Years of Con-
structive Type Theory (1998), 73—-82.

Thierry Coquand and Gérard Huet, The calculus of constructions, Information and Computation 76
(1988), no. 2, 95 — 120.

Peter Dybjer, Internal type theory, International Workshop on Types for Proofs and Programs, Springer,
1995, pp. 120-134.

121

https://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf

122

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.
36.

37.
38.

39.

BIBLIOGRAPHY

, Representing inductively defined sets by wellorderings in Martin-Ldf’s type theory, Theoretical
Computer Science 176 (1997), no. 1-2, 329-335.

Peter Dybjer and Hugo Moeneclaey, Finitary higher inductive types in the groupoid model., Electr. Notes
Theor. Comput. Sci. 336 (2018), 119-134.

Jacopo Emmenegger, W-types in setoids, ArXiv e-prints (2018).

Marcelo Fiore, Discrete generalised polynomial functors, https://www.cl.cam.ac.uk/
~mpf23/talks/ICALP2012.pdf, 2012, [Online; accessed 18-Sep-2018; slides for the talk at 39th
International Colloquium on Automata, Languages and Programming (ICALP 2012)].

Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel, Relative pseudomonads, Kleisli
bicategories, and substitution monoidal structures, Selecta Mathematica 24 (2018), no. 3, 2791-2830.
Nicola Gambino and Martin Hyland, Wellfounded trees and dependent polynomial functors, International
Workshop on Types for Proofs and Programs, Springer, 2003, pp. 210-225.

Nicola Gambino and Joachim Kock, Polynomial functors and polynomial monads, Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 154, Cambridge University Press, 2013, pp. 153-192.
Philip R Heath and Klaus Heiner Kamps, Lifting colimits of (topological) groupoids and (topological)
categories, Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988)’,
World Sci. Publ., Teaneck, NJ (1989), 54-88.

Simon Henry, Weak model categories in classical and constructive mathematics, ArXiv e-prints (2018).
Martin Hofmann and Thomas Streicher, The groupoid model refutes uniqueness of identity proofs, Logic
in Computer Science, 1994. LICS’94. Proceedings., Symposium on, IEEE, 1994, pp. 208-212.

, The groupoid interpretation of type theory, Twenty-five years of constructive type theory
(Venice, 1995) 36 (1998), 83—111.

J Martin E Hyland and Andrew M Pitts, The theory of constructions: categorical semantics and topos-

theoretic models, Contemporary Mathematics 92 (1989), 137-199.

Peter T Johnstone, Sketches of an elephant: A topos theory compendium, Oxford University Press, 2002.
Chris Kapulkin and Peter LeFanu Lumsdaine, The simplicial model of univalent foundations (after Voe-
vodsky), arXiv preprint arXiv:1211.2851 (2012).

Gregory M. Kelly and Ross Street, Review of the elements of 2-categories, Category Seminar (Berlin,
Heidelberg) (Gregory M. Kelly, ed.), Springer Berlin Heidelberg, 1974, pp. 75-103.

Anders Kock and Joachim Kock, Local fibred right adjoints are polynomial, Mathematical Structures in
Computer Science 23 (2013), no. 1, 131-141.

Joachim Kock, Data types with symmetries and polynomial functors over groupoids, Electronic Notes in
Theoretical Computer Science 286 (2012), 351-365.

Stephen Lack, A 2-categories companion, Towards higher categories, Springer, 2010, pp. 105-191.
Joachim Lambek, A fixpoint theorem for complete categories, Mathematische Zeitschrift 103 (1968),
no. 2, 151-161.

Per Martin-Lof, Intuitionistic type theory, vol. 9, Bibliopolis Naples, 1984, Notes by Giovanni Sambin.

, An intuitionistic theory of types, Twenty-five years of constructive type theory 36 (1998), 127—
172.

Ieke Moerdijk and Erik Palmgren, Wellfounded trees in categories, Annals of Pure and Applied Logic
104 (2000), no. 1-3, 189-218.

https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf

40.

41.
42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

BIBLIOGRAPHY 123

Bengt Nordstrom, Kent Petersson, and Jan M Smith, Programming in Martin-L0f’s type theory, vol. 200,
Oxford University Press Oxford, 1990.
, Martin-Lof’s type theory, Handbook of logic in computer science 5 (2000), 1-37.

Kent Petersson and Dan Synek, A set constructor for inductive sets in Martin-Lof’s type theory, Category
Theory and Computer Science, Springer, 1989, pp. 128-140.

Robert A. G. Seely, Locally cartesian closed categories and type theory, Mathematical proceedings of
the Cambridge philosophical society, vol. 95, Cambridge University Press, 1984, pp. 33-48.

Matthieu Sozeau and Nicolas Tabareau, Towards an internalization of the groupoid model of type theory,
Types for Proofs and Programs 20th Meething (TYPES 2014), Book of Abstracts (2014).

Ross Street, Powerful functors, http://web.science.mg.edu.au/~street/Pow.fun.pdf,
2001, [Online; accessed 30-Aug-2018].

Paul Taylor, Practical foundations of mathematics, Cambridge University Press, 1999.

The Univalent Foundations Program, Homotopy type theory: Univalent foundations of mathematics,
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

Mark Weber, Operads as polynomial 2-monads, Theory Appl. Categ 30 (2015), 1659-1712.

, Polynomials in categories with pullbacks, Theory Appl. Categ 30 (2015), 533-598.

R.T. Zivaljevié, Groupoids in combinatorics — applications of a theory of local symmetries, ArXiv Math-
ematics e-prints (2006).

, Combinatorial groupoids, cubical complexes, and the Lovdsz conjecture, Discrete & Computa-
tional Geometry 41 (2009), no. 1, 135-161.

http://web.science.mq.edu.au/~street/Pow.fun.pdf
https://homotopytypetheory.org/book

	Abstract
	Dedication
	Acknowledgements
	Contents
	Introduction
	The groupoid model of type theory
	Polynomial functors on groupoids
	W-types in groupoids
	Natural models of type theory
	Main contributions
	Outline of the thesis

	Chapter 1. Preliminaries
	1.1. 2-categories
	1.2. Fibrations in Cat
	1.3. Exponentiability of fibrations
	1.4. Fibrations in Gpd
	1.5. Dependent products

	Chapter 2. Polynomial Functors in Gpd
	2.1. Polynomial Functors
	2.2. Morphisms of Polynomial Functors
	2.3. Algebras for endofunctors
	2.4. Algebras for polynomial endofunctors
	2.5. W-types
	2.6. J-relative algebras

	Chapter 3. W-types for split fibrations
	3.1. Construction of W-types
	3.2. The initial algebra structure of W
	3.3. Examples of the construction
	3.4. An alternative construction

	Chapter 4. W-types for split fibrations in slices
	4.1. Polynomial functors in slices
	4.2. Construction of WIF
	4.3. Pullback stability of W-types

	Chapter 5. Dependent W-types for split fibrations
	5.1. Construction of dependent W-types
	5.2. Pullback stability of dependent W-types

	Chapter 6. W-types for cloven and general fibrations
	6.1. W-types for cloven fibrations
	6.2. W-types for general fibrations

	Chapter 7. Natural models and -equality
	7.1. Review of natural models
	7.2. Refinement of Natural Models

	Bibliography

