
 

 

 

 

 

 

 

 

 

 

 

Measuring Friction at an Interface Using 

Nonlinear Ultrasonic Response 

 

 

 

 

 

Xiangwei LI 

 

June 2018 

 

Supervisors: Prof. R. Dwyer-Joyce and Prof. M. Marshall 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree 

of Doctor of Philosophy 

 

Department 

Of 

Mechanical 

Engineering 



 

  



i 

 

 

ABSTRACT 

 

Contacts of rough surfaces are present in almost all machines and mechanical 

components. Friction at the rough interface cause energy dissipation, wear and 

damage of surfaces. Engineers are interested in knowing the frictional conditions at 

contact interfaces. Despite friction being such a fundamental phenomenon, it is 

surprisingly difficult to measure reliably as results depend on the test method 

measurement environment. Methods have been developed to measure the friction 

and sliding contact tribometers are devised mostly in a laboratory environment. 

Their applications in measuring friction in–situ in a real contact is a challenge. 

Therefore, the aim of this research is to develop an ultrasonic method to measure 

friction and friction coefficient in-situ in a contact interface. 

Ultrasonic methods developed for non-destructive testing have been used to 

measure tribological parameters, such as oil film thickness, viscosity and pressure, 

in-situ bearings and machines. In conventional ultrasonic techniques, pulses are low 

power and when they strike an interface they do not result in a change in the contact 

state. The process is linear and elastic. However, high power sound waves can cause 

opening or closing of an interface, or interfacial slip; this is non-linear. Recently 

Contact Acoustic Nonlinearity (CAN) has drawn interest due to its potential in the 

non-destructive evaluation. When high power bulk shear ultrasound propagates 

through a compressed rough contact interface, higher order frequency 

components, higher odd order harmonics (3𝑓, 5𝑓, etc.) are generated in both 

transmitted and reflected waves. The nonlinear nature of the stick-slip phenomenon 

in friction may be the source of nonlinearity.  

In this study, nonlinearity due to the interaction of a shear ultrasonic wave with a 

frictional interface has been initially investigated numerically. A one-dimensional 

numerical model has been employed to understand contact nonlinearity generation 

and its dependence on incident ultrasonic amplitude, contact pressure and friction 

coefficient. The third harmonic increases and then decreases when contact stress 

rises, which suggests that nonlinearity generation due to the ‘stick-slip’ motion 

occurs at low contact stress and is restricted at high contact pressure. Harmonic 

generation at the contact was secondly investigated experimentally using a high 

frequency nonlinear ultrasonic technique. Methods were developed to separate the 
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contact nonlinearity from the measured ultrasonic nonlinearity. Contact 

nonlinearity originating from a rough interface are assessed under various test 

conditions. Experimental measurement shows good agreement with the numerically 

computed nonlinearity. 

Two strategies were developed to estimate the friction coefficient using 

experimentally measured contact nonlinearity in conjunction with the numerical 

computation. The ultrasonically measured friction coefficient agrees reasonably 

with the sliding test results and published data. Using the contact nonlinearity, the 

ultrasonic method shows the usefulness in measuring the friction coefficient in-situ 

in a contact interface.   
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NOMENCLATURE 

 

Roman symbols 

𝐴0 Amplitude of incident wave  

𝐴1 Fundamental frequency amplitude  

𝐴3 Third order harmonic amplitude 

𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 Ultrasound displacement at interface (m) 

𝐴𝑖 Data A 

𝐵𝑖 Data B 

𝑐 Speed of sound (m/s) 

𝑐𝑙 Speed of sound of longitudinal wave (m/s) 

𝑐𝑠 Speed of sound of shear wave (m/s) 

𝐶𝑎 Coefficient a 

𝐶𝑏 Coefficient b 

𝑑 Wave travelling distance (m) 

𝐷 Effective dimension of piezo element (m) 

𝐸 Elastic modulus (Pa) 

𝐸𝑢 Energy of ultrasound (J) 

𝑓 Frequency (Hz) 

𝐹 Coulomb friction (N) 

𝐺 Shear modulus (Pa) 

ℎ Separation of contacting surfaces (m) 

𝐻 Hardness of material (Pa) 

𝑘 Wavenumber (rad/m) 

𝐾 Interfacial stiffness (Pa/m) 

𝑙 Specimen length (m) 

𝐿 Surface profile sampling length (m) 
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𝑀 Coefficient M 

𝑁 Nonlinearity coefficient 

𝑁𝑑 Near field distance (m) 

𝑁𝑓  Frequency constant of piezo element (Hz) 

𝑃𝑛𝑜𝑚 Nominal contact pressure (Pa) 

𝑟 Courant-Friedrichs-Lewy condition 

𝑅 Reflection coefficient 

𝑅𝑎 Arithmetic average roughness (m) 

𝑅𝑞 Root mean square roughness (m) 

𝑅𝐸 Power reflection coefficient 

𝑇 Transmission coefficient 

𝑇𝐸 Power transmission coefficient 

𝑢 Displacement of wave propagation (m) 

𝑉𝑝−𝑝 Peak to peak voltage (V) 

𝑉𝑟𝑚𝑠 Root mean square voltage (V) 

𝑊 Weight of mass (N) 

𝑧 Asperity height relative to mean line (m) 

𝑍 Acoustic impedance (Pas/m) 

Greek symbols 

𝛼 Attenuation coefficient (1/m) 

𝜃 Oblique angle of an incident wave 

𝜆 Wavelength (m) 

𝜇 Friction coefficient 

𝜇𝑘 Dynamic (kinetic) friction coefficient 

𝜇𝐴 Mean of Data A 

𝜇𝐵 Mean of Data B 

𝜉 Dimensionless stress  

𝜌 Density (kg/m3 ) 

𝜎 Normal stress at interface (Pa) 

𝜎𝑛 Normal stress component (Pa) 
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𝜎𝑢 Stress of ultrasound (Pa) 

𝜎𝐴 Standard deviation  

𝜎𝐵 Standard deviation  

𝜎𝑐𝑢𝑡−𝑜𝑓𝑓 Normal stress where slip stops (Pa) 

𝜎𝑝𝑒𝑎𝑘 Normal stress at peak of nonlinearity (Pa) 

𝜏 Shear stress induced by ultrasound (Pa) 

𝜐 Poisson’s ratio 

𝜔 Angular frequency (rad/s) 

Subscript 

𝐼 Material 𝐼 

𝐼𝐼 Material 𝐼𝐼 

𝑖 Numerical space index 

𝑗 Numerical time index 
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1 INTRODUCTION 

 

 

  Statement of the Problem 

Friction occurs in every machine and mechanical component. Energy waste caused 

by friction can account for a large fraction of energy consumption.  Sometimes 

friction is desired such as clutches and brakes. But also friction is unwanted because 

excessive friction not only leads to energy waste but also causes wear, damage and 

failure of mechanical components and machines. Engineers are interested in 

knowing the frictional force and friction coefficient to guide their mechanical design 

and practical machine operation.  

Despite friction being such a fundamental phenomenon, it is surprisingly difficult to 

measure reliably. Results depend on the test method, the test environment and 

critically on the surface preparation. Methods have been developed to measure the 

friction force and sliding contact tribometers are devised mostly in laboratory 

environment. Pin-on-disc is the common friction measurement rigs at the macro 

scale (Dunkin and Kim, 1996). Atomic force microscope is widely used in measuring 

frictional force at the microscale (Ruan and Bhushan, 1994). Although both 

measurement configurations have been widely implemented in laboratories, their 

application in measuring friction in–situ in a real contact is a challenge. In this work 

we investigate ultrasound to both cause the sliding motion and measure the 

resulting signal.  

Ultrasonic methods have recently been developed in a large body of work recently 

as they can be implemented in real industrial environments. Non-destructive testing 
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where ultrasound is applied in detecting defects and cracks has been extended to 

measure tribological parameters in-situ in bearings and machines such as contact 

stiffness (Drinkwater et al., 1996), oil film thickness (Dwyer-Joyce et al., 2004) and 

lubricant viscosity (Schirru et al., 2015a). In conventional ultrasonic techniques, 

pulses are low power and when they strike an interface they do not result in a 

change in the contact state. The process is linear and elastic. However, high power 

sound waves can cause opening or closing of an interface, or interfacial slip; this is 

non-linear.  

Recently Contact Acoustic Nonlinearity (CAN) has drawn interest due to its potential 

in non-destructive evaluation. Information undetectable using traditional acoustic 

techniques can be extracted when ultrasound interacts with a rough interface. 

When high power bulk shear ultrasound propagates through a compressed rough 

contact interface, higher order frequency components, higher odd order harmonics 

(3𝑓, 5𝑓, etc.) are generated in both transmitted and reflected waves (O’Neill et al., 

2001). The nonlinear nature of the stick-slip phenomenon in friction may be the 

source of nonlinearity. Previous studies(Hirose 1994; O’Neill et al., 2001; Pecorari 

2003; Meziane et al., 2011) have mainly focused on analytical and numerical study of 

ultrasonic nonlinearity at contact interface.  

In this study, nonlinearity due to the interaction of a shear ultrasonic wave with a 

frictional interface is investigated in three parts. Firstly, a simple numerical model is 

employed to investigate the harmonic generation due to the nonlinear stick-slip 

motion at a frictional contact interface under shear wave oscillations and the effects 

of incident wave amplitude, contact stress and friction coefficient are studied. In the 

second part, harmonic generation at the contact is investigated experimentally using 

a high frequency nonlinear ultrasonic technique. Nonlinearity generation originating 

from the rough contact interface is assessed under various test conditions. In the 

third part, the friction coefficient of the contact is estimated using the experimental 

contact nonlinearity. 

  

  Aims and Objectives 

The aim of this research is to develop an ultrasonic method to measure friction and 

friction coefficient in-situ in a contact interface. 

To achieve the aim, several objectives are set. 
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• Develop a numerical model to study the nonlinearity generation of the 

interaction of a high-power shear wave with a frictional contact interface. 

Investigate the effect of incident ultrasound amplitude, contact stress and 

friction coefficient on the nonlinearity generation. 

• Investigate experimental approaches to carry out the measurement of 

nonlinearity generation.  

• Apply the experimental approach to access the activation of stick-slip 

phenomenon experimentally and measure the nonlinearity generation at a rough 

contact interface. Investigate the effect of incident ultrasound amplitude and 

contact stress on the measured nonlinearity. 

• Develop a method to measure the friction coefficient using the ultrasonic 

nonlinearity. Apply the method to estimate the friction coefficient of a rough 

contact interface.  

 

  Layout of the Thesis 

In Chapter 2, the contact of engineering surfaces is briefly presented. Friction 

models and methods of measuring friction and friction coefficient are reported. 

In Chapter 3, the theory of ultrasound is presented. The fundamentals of ultrasound 

propagating within a host material are introduced. The interaction of ultrasound 

with a boundary is reported. Conventional linear ultrasonic technique to measure at 

a contact interface is described. Following the linear ultrasound, nonlinear 

ultrasound is also introduced. The non-classical nonlinear ultrasound, i.e. contact 

acoustic nonlinearity, is reported along with its applications of characterising the 

contact interface.  

In Chapter 4, the apparatus used in the ultrasonic technique is presented. The 

hardware used in the current research work for measuring ultrasonic nonlinearity 

is introduced, particularly including the means of generating the ultrasound wave, 

amplifying the wave and acquiring the ultrasonic signal.  

In Chapter 5, a numerical method is employed in conjunction with an analytical 

approach to understand the nonlinear interaction of high-power ultrasound 

meeting a frictional interface. Nonlinearity generation resulting from the stick-slip 

phenomenon at the frictional interface is investigated using a simple one-

dimensional numerical model.  Following investigations focus on the parameters 
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affecting the nonlinearity generation such as amplitude of incident ultrasound, 

contact stress and coefficient of friction. 

In Chapter 6, the experimental preparations to measure the nonlinearity generation 

from a rough interface is investigated. The high frequency nonlinear ultrasonic 

technique is introduced along with the signal processing procedures. Experimental 

variables influencing the measurement of nonlinearity generation are discussed. 

Incident stress of a shear polarised ultrasound is measured using laser vibrometer.  

In Chapter 7, the experimental measurement of nonlinearity generation at a rough 

interface is carried out. Practical test configuration is discussed and the method of 

removing the system inherent nonlinearity is followed.  Measurement of nonlinearity 

generation is carried out on various incident ultrasound amplitudes and contact 

stresses. Measurement of nonlinearity is also carried out using subsequent echoes. 

In Chapter 8, the contact nonlinearity generation detected experimentally is 

compared with the numerical model. Two strategies for estimating the coefficient 

of friction at a rough interface is investigated using the contact nonlinearity. The 

estimated friction coefficient is compared with published data. 

In Chapter 9, estimation of friction coefficient using ultrasonic nonlinearity is briefly 

discussed. The usefulness and limitation of the ultrasonic technique is discussed. 

This is followed by the evaluation of an alternative method of generating contact 

nonlinearity using an oblique incidence. Considerations of transferring the 

ultrasonic technique in practical applications are briefly presented.  

Chapter 10 contains general conclusions and recommendations for further work. 
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2  BACKGROUND ON CONTACT 

 

 

This chapter briefly presents the contact of engineering surfaces. Friction models, 

methods of measuring friction and friction coefficient of a metal-metal contact are 

introduced.  

 

 Rough Contact Interface 

In engineering circumstances, topographically smooth surfaces are extremely rare. 

Plastic deformation can hardly succeed in flattening an initially rough surface 

resulting in an ideal smooth surface (Johnson, 1985). A rough surface is 

characterised by several statistical parameters. These parameters can be measured 

by a surface profilometer where a stylus is drawn over a sample length on a surface 

and a magnified surface profile is reproduced. Two simplest parameters centre-

line-average, 𝑅𝑎 and root mean square, 𝑅𝑞 are most commonly applied in 

characterising surface height, defined as follows: 

 𝑅𝑎 =
1

𝐿
∫ |𝑧|

𝐿

0

𝑑𝑥, (2.1) 

 𝑅𝑞 = √
1

𝐿
∫ 𝑧2

𝐿

0

𝑑𝑥, (2.2) 
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where 𝐿 is the sampling length, 𝑥 is surface coordinate and 𝑧 is the height of the 

profile relative to the mean line along 𝑥 direction. 

 

 

Understanding the mechanism of contact of rough surfaces is important in better 

comprehension of friction, wear and other tribological problems. When two rough 

surfaces are brought together, initial contact occurs on several asperities. Asperity 

contact can be described by the Hertzian model (Johnson, 1985), where asperities 

are considered as elastic balls. The real contact area of two rough surfaces thence 

is the sum of contacting zones of the elastic balls in the Hertzian model. The contact 

is discontinuous within the apparent contact zone and is much smaller when 

compared to the nominal contact size (McCool, 1986). 

Many statistical models have been established to analyse rough contact and 

interface. One simple model was derived by Greenwood and Williamson, which uses 

statistical parameters to characterise surface roughness (Greenwood and 

Williamson, 1966). This model assumes a spherical summit with a fixed radius, 

Gaussian distribution of summit heights and elastic deformation of asperities. 

Another model for elastic contact of rough surface is derived by Bush, Gibson and 

Thomas (1975). Asperity summits are assumed to be elliptical, which introduces 

another curvature radius in defining the contacting summits. Random principle 

orientation, aspect ratio and distribution makes the calculation of contact area and 

average load complicated (McCool, 1986).  

 

 Friction Model 

When two rough surfaces are in contact and there is tangentially relative motion, 

friction is present as the resistance to prevent the relative motion. Energy 

dissipation is associated with friction in relative sliding motion. Therefore, extra 

work is required to overcome the dissipated energy. There have been many efforts 

to reduce or eliminate friction in machines. Numerous research has expressed great 

Figure 2.1 Profile of a rough surface (Johnson, 1985). 
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interest in investigating friction. Amontons stated the laws of friction quantitatively 

(Williams, 2005): 

• The friction force is proportional to the normal load in sliding; 

• The friction force is independent of the apparent contact area. 

The ratio of the tangential friction force to the normal load is defined as the 

coefficient of friction, denoted as 𝜇. This dimensionless quantity has been widely 

used as it characterises the sliding ease of a material over another.  

Two types of friction coefficient, static friction coefficient 𝜇𝑠 and kinetic friction 

coefficient 𝜇𝑘 (also known as dynamic friction coefficient) need to be distinguished. 

Static friction coefficient is associated with the resistance at the onset of the relative 

sliding motion. After the motion has started, friction opposing the continuance of 

relative motion is represented by kinetic friction coefficient. At the onset of relative 

tangential motion, the frictional force tends to be slightly greater than the frictional 

resistance in the sliding process, which is known as the third Amontons’ law of 

friction (Williams, 2005). 

To understand the frictional behaviour, many models have been established. Two 

categories have been specified, static and dynamic models. The Coulomb model is 

the simplest static model where frictional force is independent of velocity 

(Hutchings and Hutchings, 2017), described as: 

 𝐹 = 𝜇𝑃, (2.3) 

where 𝐹 is the Coulomb friction and 𝑃 the normal load. Coulomb model is ideal and 

friction at zero velocity is not specifically defined. A complicated nonlinear model 

can be derived, by taking viscous loss due to lubricants, static friction and Stribeck 

effect, where friction decreases with increasing velocity, that considers low 

velocities (Olsson et al., 1998). 

Dynamic friction models have also drawn interest for researchers for the purposes 

of friction simulation and compensation (Olsson et al., 1998). Dahl (1968) proposed 

a simple model which was derived from the stress-strain relationship. The rate-

independent model can depict the pre-sliding behaviour but lacks the ability to 

capture Stribeck effect and stick-slip phenomenon (Olsson et al., 1998). 
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 Friction Measurement 

Engineers primarily rely on knowledge of the frictional force and friction coefficient 

to guide their mechanical design and practical machine operation. Methods have 

been developed to measure the friction force and devices are developed mostly in 

laboratory environment. The fundamental feature of many friction measurement 

devices is to measure the tangential force in the case where a known normal force 

is applied simultaneously. Pin-on-disc setup and its variations are the most common  

configuration in tribology laboratories for macroscopic friction measurement 

(Dunkin and Kim, 1996). 

On microscope or atomic scope, frictional force can be measured by Atomic Force 

Microscope (AFM) or Friction Force Microscope (FFM) (Figure 2.3). AFM was 

developed from Scanning Tunnelling Microscope to measure small interactions at 

nanoscale between AFM tip and sample surfaces. Small frictional force is 

determined by measuring the motion of a cantilever beam with a tiny mass either 

electrically or optically. Due to its capability of measuring friction force and surface 

topography simultaneously, AFM and variations were used in the field of micro-

tribology which deals with friction at atomic scale (Ruan and Bhushan, 1994). One 

modified AFM that measures both normal and frictional forces, is known as Friction 

Force Microscope generally. The friction force is measured by determining the 

deflection of cantilever either mechanically or electrically. 

Figure 2.2 Examples of static friction models. (a) Coulomb friction. (b) Coulomb friction with viscous 
friction. (c) Friction discontinuous at zero velocity. (b) Friction with continuous velocity dependence, 

known as Stribeck effect (Olsson et al., 1998). 
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In both pin-on-disc configurations and AFMs/FFMs, the friction force determined is 

sliding phase and the friction coefficient is the kinetic one. Those setups can hardly 

be used in measuring static friction. Centrifugal Friction Apparatus (CFA) was 

developed to determine static friction forces (Dunkin and Kim, 1996).  

In reviewing the available approaches in friction measurement, problems and 

ambiguities remain unresolved although a large body of work has been focused to 

better understand the friction and friction coefficient. Measured stylus force may 

not accurately represent the true friction force with micro-tribological techniques 

(Blau, 2001). Friction coefficient is vulnerable to changes in system. Many factors can 

influence frictional behaviour and the friction coefficient. Thence pin-on-disc 

configurations in microscope and AFM or FFM at micro level, may succeed in 

measuring friction and friction coefficient in laboratory environment, however can 

hardly be modified in real operation-oriented tests. 

 

 

 

 Friction Coefficient of a Metal-Metal Contact 

The friction at a metal-metal contact has been previously investigated and several 

mechanisms have been used to explain and estimate the friction. The adhesion force 

developed at the real contact asperity junctions and the deformation force needed 

to plough the asperities on a softer surface by the harder one is considered as two 

Figure 2.3 Schematic diagram of FFM. Normal and friction forces are measured by cantilever deflection by 
optical interference (Ruan and Bhushan, 1994). 
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sources of friction. For adhesion force, the friction coefficient is estimated by the 

ratio of shear strength and hardness of the softer material (Bowden and Tabor, 

1964). Generally, the friction coefficient for metal-metal contact is approximately 

0.2. When ploughing is considered together with the adhesion, friction coefficient is 

approximately 0.2 to 0.3. The difference between theory and experimental work is 

explained using work-hardening and junction growth mechanisms (Hutchings and 

Hutchings, 2017).  

 

 Stick-Slip Phenomenon and Tangential Contact 

The phenomenon of stick-slip motion has interested many researchers (Rabinowicz 

1951; Dieterich 1978; Feeny et al., 1998). A simple mechanical system consisting of a 

mass and a spring models the stick-slip motion. When the mass is carried by an 

external force the spring is stretched, and spring force and friction force are in 

equilibrium. The mass and the counterface ‘stick’. Further displacement of the mass 

leads to a larger spring force which draws the mass back towards its origin and this 

is the ‘slip’ phase. The elastic force in spring decreases until it equals the kinetic 

friction. At this point, ‘slip’ stops and ‘stick’ continues. Other models have also been 

developed to describe the ‘stick-slip’ motion (Bengisu and Akay 1999; Kligerman and 

Varenberg 2014; Wang et al., 2017). The ‘stick-slip’ motion is discontinuous and 

nonlinear, which can result in unwanted oscillations and reduced stability of a 

system (Rusli and Okuma, 2007).  

‘Stick-slip’ phenomenon occurs at a tangential contact. Research on tangential 

contact of rough surfaces has also been developed recently. Mindlin developed a 

model to solve the tangential contact problem using Hertz elastic theory and 

Coulomb friction model (Etsion, 2010). ‘Stick-slip’ behaviour at the tangential 

contact was modelled. Based on Mindlin’s work, further research has extended the 

investigation to consider varying friction coefficient at elastic, elastic-plastic contact 

conditions (Eriten et al., 2010) and stick-slip behaviour under oscillating tangential 

force (Chaudhry and Kailas, 2013).  GW statistical model has also been applied 

(Wang et al., 2017) to study the tangential rough contact problem and the ‘stick-slip’ 

behaviour.  
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  Conclusion 

In this chapter, the background on engineering contact has briefly been presented. 

Asperity contact is described by the Hertzian model and statistical models, i.e. 

Greenwood and Williamson model is to characterise the actual asperity contact of 

rough surfaces. Various models have been developed to study the friction at a rough 

contact. Rigs and methods are designed to measure friction at different scales and 

they are mainly limited to laboratories. ‘Stick-slip’ phenomenon at a rough tangential 

contact has been recently investigated. The nonlinear nature of stick-slip motion 

provides a useful way to measure friction at a rough contact.   
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3 THEORY OF ULTRASOUND  

 

 

In this chapter, the background of the ultrasound technique used in this research is 

presented. This chapter provides the basic definition of the ultrasonic wave and the 

principles of ultrasound propagation. The principle behind the ultrasonic wave 

interacting with the contact interface is introduced. Following the conventional 

ultrasound theory, the nonlinear ultrasound and its application at a contacting 

interface, which is of the interest in this research work, is introduced. 

 

  Fundamentals of Ultrasound 

3.1.1 The Basic Principles of Ultrasound 

Sound is essentially the propagation of the mechanical oscillation of particles 

through a host medium. The host medium is in the form of solid, liquid and gases. 

When the mechanical oscillations occur at a frequency beyond the audible range of 

the human ear, generally greater than 20kHz, the sound is referred to as ultrasound.  

There are several modes of oscillation that sound wave can propagation in solids. 

Plane waves are the sound waves with constant frequency and the front of the waves 

travel as a parallel plane (Achenbach, 1973). Longitudinal and transverse waves are 

the two types of plane wave and their propagations are within the host medium, 

normally referred to as bulk wave.  
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The host medium is comprised of particles which are bonded together elastically. 

This structure can be analogous to a mass-spring system, as shown in Figure 3.1. 

When an external displacement or stress is applied to a group of particles, a sound 

wave is generated in the host material. Particles move forwards and the elastic 

bonds between the particles tend to resist the movement, make particles move 

backwards. Under the repeated excitation and resistance, particles oscillate about 

their initial positions and zones of expansion and compression are created. The 

expansion and compression transfers to the neighbouring particles. The 

propagation of particle oscillation through the host medium induces the sound 

wave.  

 

 

 

3.1.1.1 Longitudinal Wave 

For the longitudinal wave, particle oscillation is the same direction as the wave 

propagation direction, as shown in Figure 3.2. When a longitudinal wave is present 

in the solid, parts of the body in tension and parts in compression alternate. The 

wavelength, 𝜆 is defined as the distance between each cycle, e.g. from tension zone 

to the adjacent zone. The longitudinal wave is also known as dilatational wave or P-

wave (pressure wave or primary wave). The P-wave is supported in the solids, liquids 

and gases. 

Figure 3.1 Schematic diagram of particles ‘mass-spring’ analogy. 
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3.1.1.2 Transverse Wave 

In the transverse wave, the particle oscillation is perpendicular to the wave 

propagation direction, as illustrated in Figure 3.3. The wavelength, 𝜆 is defined as the 

distance between the adjacent oscillation peaks or valleys. Unlike the longitudinal 

wave, the transverse wave is mainly supported in solid materials and some very 

viscous liquids. The shear wave is also known as the rotational wave or S-wave (shear 

wave or secondary wave).  

 

 

Figure 3.2 Schematic diagram of the longitudinal wave. 

Oscillation direction Propagation direction 

Wavelength  

Oscillation 

direction 

Oscillation direction 

Wavelength  

Figure 3.3 Schematic diagram of transverse wave. 
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The transverse wave is in two forms. Generally, the displacement direction is in the 

plane normal to the propagation direction, the transverse wave is defined as 

‘vertically’ polarised transverse wave, or SV-wave (Figure 3.4 (a)); the oscillation 

direction is normal to the plane normal to the travelling direction, the transverse 

wave is called ‘horizontally’ polarised transverse wave, or SH-wave (Figure 3.4 (b)) 

(Achenbach, 1973).  

 

 

 

3.1.2 Ultrasound Propagation in Materials 

In different host materials, ultrasound propagation varies. The travelling rate, the 

ability to travel from one material to the other and the energy lost during wave 

propagation are the parameters which depend on the host medium properties. 

 

3.1.2.1 Speed of Sound 

In the ‘mass-spring’ analogy, the elastic strength of the ‘spring’ determines the rate 

of ultrasound propagation, commonly known as the speed of sound (sometimes 

phase velocity). The other velocity, namely the group velocity, is used in 

characterising the dispersive waves.  In this research work, only the non-dispersive 

wave is considered and the phase velocity is used.  

Propagation direction 

Oscillation direction 

Propagation plane 

Propagation direction 

Oscillation direction 

Propagation plane 

(a) 

(b) 

Figure 3.4 Schematic diagram of transverse waves: (a). Vertically polarised transverse wave; (b). Horizontally 
polarised transverse wave. 
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The speed of sound for various host media is calculated using the elastic constants, 

namely the elastic modulus, 𝐸, the Poisson’s ratio, 𝜐, and the density 𝜌. Speed of 

sound for longitudinal wave, 𝑐𝑙 is defined as follows: 

 𝑐𝑙 = √
𝐸

𝜌

(1 − 𝜐)

(1 + 𝜐)(1 − 2𝜐)
. (3.1) 

For transverse wave, the speed of sound, 𝑐𝑠 is defined as: 

 𝑐𝑠 = √
𝐸

𝜌

1

2(1 + 𝜐)
= √

𝐺

𝜌
, (3.2) 

where 𝐺 is the shear modulus of the host material.  

Speed of sound can also be linked with the particle oscillation frequency in the 

following relationship: 

 𝑐 = 𝜆𝑓. (3.3) 

 

It should be mentioned that generally the elastic constants are directionally 

dependent on crystalline materials. The speed of sound in these materials differs in 

various directions. The speed of sound also depends on the stress that applied to 

the material and the temperature. It is also noticed that in Equation (3.1) and (3.2), 

the speed of sound is independent of frequency, which indicates a non-dispersive 

wave.  

Speed of sound can be measured using a ‘time-of-flight’ technique experimentally. 

The time, 𝑡 taken for a sound wave travelling through a known distance, 𝑑 is 

measured and the speed of sound is given as: 

 𝑐 =
𝑑

𝑡
=

2𝑥

𝑡
, (3.4) 

where 𝑥 is the material thickness using the commonly applied pulse-echo 

configuration.  

Wavelength at a given frequency is then obtained by rearranging Equation (3.3):  

 𝜆 =
𝑐

𝑓
. (3.5) 
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3.1.2.2 Acoustic Impedance 

The ability of sound wave travelling from one material to the other is determined by 

acoustic impedance, 𝑍 is defined as the product of speed of sound and density: 

 𝑍 = 𝜌𝑐. (3.6) 

Acoustic properties of some materials are given in Table 3.1. 

 

Table 3.1 Physical properties of some materials (Kinsler et al., 2000). 

Material 
Density 𝝆 

(𝐤𝐠/𝐦𝟑) 

Speed of sound 

𝒄 (𝐦/𝐬) 

Acoustic Impedance 

𝒁 (𝐏𝐚𝐬/𝐦) 

Steel 7700 6100 47×106 

Aluminium 2700 6300 17×106 

Water 998 1481 1.48×106 

Castor oil 950 1540 1.45×106 
 

 

3.1.2.3 Attenuation  

A sound wave travels through a material, reduction of ultrasonic energy is known as 

attenuation and it occurs in several forms, namely radiation, absorption and 

scattering. Radiation describes the energy divergence. Absorption is the energy loss 

to overcome the internal friction and then converted as heat dissipation. Scattering 

describes a sound wave diverges from its original course when it meets defects, 

flaws, impurities or grain boundaries. The total attenuation in the material is 

determined using the following equation: 

 𝐴𝑑 = 𝐴0𝑒−𝛼𝑑, (3.7) 

where 𝐴0 is the initial ultrasound amplitude, 𝐴𝑑 the amplitude when sound wave 

travels for a distance 𝑑 and 𝛼 is known as the attenuation coefficient. In metallic 

materials, the attenuation is usually low compared to softer materials.  
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3.1.3 Ultrasound Propagation at Boundaries 

When a sound wave strikes to a boundary or an interface formed by two dissimilar 

materials, a portion of the incident wave will travel through and the rest will be 

reflected backwards if the boundary is perfectly bonded. The portion of the 

ultrasonic wave transmitted through or reflected from the boundary is determined 

by the two host material properties and the orientation of the incident wave relative 

to the boundary. 

 

3.1.3.1 Reflection and Transmission 

 

 

A simple case is that when a plane sound wave strikes at a boundary normally, as 

shown in Figure 3.5. At the boundary, the continuity of sound pressure and the 

continuity of the normal component of particle velocity must be satisfied. After a 

number of mathematical manipulation (Kinsler et al., 2000), the  pressure reflection 

coefficient, 𝑅, which is defined as: 

 𝑅 =
𝑍𝐼𝐼 − 𝑍𝐼

𝑍𝐼𝐼 + 𝑍𝐼
, (3.8) 

where 𝑍𝐼 and 𝑍𝐼𝐼 are the acoustic impedance of the Material 𝐼 and 𝐼𝐼 respectively. 

The pressure transmission coefficient,  𝑇 is derived in a similar form: 

 𝑇 =
2𝑍𝐼𝐼

𝑍𝐼𝐼 + 𝑍𝐼
, (3.9) 

Material 1 Material 2 

Incident wave 

Transmitted wave 

Reflected wave 

Figure 3.5 Reflection and transmission of a plane sound wave at a boundary. 
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 𝑇 = 1 + 𝑅. (3.10) 

When the power of a sound wave is considered, the power reflection coefficient, 𝑅𝐸 

are defined by: 

 𝑅𝐸 = 𝑅2 = (
𝑍𝐼𝐼 − 𝑍𝐼

𝑍𝐼𝐼 + 𝑍𝐼
)

2

. (3.11) 

As energy is conserved, the total power of reflected and transmitted sound wave 

must be equal to the power of the incident wave. The power transmission 

coefficient, 𝑇𝐸 are defined as: 

 𝑇𝐸 = 1 − 𝑅𝐸 =
4𝑍𝐼𝐼𝑍𝐼

(𝑍𝐼𝐼 + 𝑍𝐼)2
. (3.12) 

Based on the material properties given in Table 3.1, the pressure reflection 

coefficient is calculated, as shown in Table 3.1. A positive pressure reflection 

coefficient indicates a sound wave travels from an acoustically harder material to an 

acoustically softer material. 

 

 

3.1.3.2 Snell’s Law and Mode Conversion 

When a plane sound wave strikes an interface of two dissimilar materials obliquely, 

the amplitude and the propagation direction of both reflected and transmitted 

signal is determined by the Snell’s law, defined as: 

 
𝑐𝐼

𝑐𝐼𝐼
=

sin 𝜃𝐼

sin 𝜃𝐼𝐼
, (3.13) 

where 𝑐𝐼 and 𝑐𝐼𝐼 is the speed of sound of reflected or transmitted waves and 𝜃𝐼  and 

𝜃𝐼𝐼 is the angle between the propagation direction and the normal line of the 

boundary, as shown in Figure 3.6.  

Table 3.2 Reflection and transmission coefficient for some material pairs. 

Material 𝑰 Material 𝑰𝑰 𝑹 𝑻 𝑹𝑬 𝑻𝑬 

Steel Steel 0 1 0 1 

Steel Water -0.939 0.061 0.88 0.12 

Water Steel 0.939 1.939 0.88 0.12 
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In some cases, when an oblique wave strikes a boundary, other mode of sound wave 

is generated, i.e. transverse wave generated from longitudinal wave or vice versa, 

which is known as mode conversion. Snell’s law still holds true. 𝑐𝐼 and 𝑐𝐼𝐼 are the 

speed of sound of either longitudinal or transverse in the host material. Various 

cases of mode conversion can be found in references (Achenbach, 1973;  

Krautkramer and Krautkramer, 1990). 

 

  Using Ultrasound to Measure Contact Interface 

3.2.1 Interfacial Stiffness 

Contact of rough surfaces has drawn many researchers’ attention and various 

approaches have been implemented in investigation. Contact stiffness was 

developed in characterising contact interface with ultrasound (Tattersall, 1973). 

Spring model  (Schoenberg, 1980; Baik and Thompson, 1984;  Margetan et al., 1988) 

was proposed to define the boundary conditions when rough surfaces are in 

contact. The spring is used to represent the interaction at contact interface and its 

strength, known as interfacial stiffness 𝐾 is defined by: 

Figure 3.6 Schematic diagram of obliquely incident wave and its reflection and transmission. 

 

 

𝑐𝐼 

Material 𝐼 

Material 𝐼𝐼 

𝜃𝐼  𝑐𝐼 

Incident wave 

𝜃𝐼  

Reflected wave 

𝜃𝐼𝐼 
𝑐𝐼𝐼 

Transmitted wave 
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𝐾

=
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑑𝑗𝑎𝑐𝑛𝑒𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠

= −
𝑑𝑃𝑛𝑜𝑚

𝑑ℎ
, 

(3.14) 

where 𝑃𝑛𝑜𝑚 is nominal contact pressure and ℎ is the separation of contacting 

surfaces. It should be noted that interfacial stiffness is nonlinear. An infinite stiffness 

(𝐾 = ∞) represents perfect contact. According to the definition, contact interfacial 

stiffness in GW model and BGT model have been derived to further assess these 

rough contact models (McCool, 1986; Krolikowski and Szczepek, 1991). 

Contact interfacial stiffness has been a key parameter in many investigations where 

ultrasonic techniques were used because contact interfacial stiffness can be linked 

to ultrasonic reflection or transmission coefficient theoretically. Understanding of 

contact interface has been developed with the concept of interfacial stiffness and 

the aid of ultrasound. Baik and Thompson (1984) investigated the relationship of 

contact stiffness and interfacial topography for imperfect interface with a proposed 

quasi-static model. Królikowski and Szczepek attempted to evaluate the real contact 

area  (1991) and phase shift of reflection coefficient (1992). Tangential stiffness was 

also investigated (Nagy, 1992; Królikowski and Szczepek, 1993) and the ratio of 

tangential to normal stiffness was found useful in characterising various imperfect 

interfaces. Many efforts have also been spent on improving the knowledge of contact 

interface (Drinkwater et al., 1996; Lavrentyev et al., 1998; Dwyer-Joyce et al., 2001;  

Biwa et al., 2006; Gonzalez-Valadez et al., 2010). 

 

Figure 3.7 Representation of ultrasound at rough contact interfaces. (a) Incidence, reflection and transmission. 
(b) Loading and deflection; (c) The spring model representation (Gonzalez-Valadez et al., 2010). 

. 
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3.2.2 Tribological Parameters 

As a non-destructive testing tool, ultrasound has been extended to measure 

tribological parameters in-situ in bearings and machines such as contact oil film 

thickness (Dwyer-Joyce et al, 2004; Reddyhoff et al., 2005), lubricant viscosity 

(Schirru et al., 2015a) and contact pressure (Chen et al., 2015). These ultrasonic 

methods show the effectiveness and usefulness in the in-situ measurement at a 

contact, which provides more detailed and comprehensive information about 

tribological systems. 

 

  Nonlinear Ultrasound 

Ultrasound has been used as a non-destructive testing tool in various applications 

for several decades. Traditional ultrasonic NDE methods use phase velocity, group 

velocity, attenuation and coefficient of reflection and transmission to detect defects 

and determine material properties. Defects measured by traditional ultrasound 

technique are generally gross open cracks where ultrasound propagation 

discontinues. The frequency of the output ultrasonic signal is not affected by the 

presence of defects. However, the traditional linear ultrasonic methods can hardly 

detect microcracks and material degradation. The limitation leads to the 

development of nonlinear ultrasonic techniques.  

Nonlinear ultrasound techniques measure the frequency change which occurs when 

ultrasonic waves interact with defects. Frequency difference includes higher 

harmonic generation, sub-harmonic generation, shift of resonance and mixed 

frequency response (Jhang, 2009). The most common nonlinear phenomenon is the 

higher harmonic generation, which is considered by two mechanisms, the classical 

nonlinear elasticity and contact acoustic nonlinearity (CAN). 

Classical nonlinear ultrasound is related to the elastic behaviour of bulk materials. 

The normal linear elastic relationship described by Hooke’s Law is extended to 

account for higher-order elastic terms (Van Den Abeele and Breazeale, 1996). The 

nonlinearity generation due to material and has been applied in characterising 

fatigue (Cantrell, 2004) and degradation of materials (Jhang and Kim, 1999). In this 

research work, attention focuses on contact interfaces rather than the bulk 

materials and therefore the classical nonlinear ultrasound is not at the centre of the  

following research.  
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In this work, research focuses on the contact interfaces and the non-classical 

nonlinear ultrasound is pronounced. When an ultrasonic wave with a large 

amplitude interacts with an imperfect contact interface, higher order frequency 

components are generated, which is known as contact acoustic nonlinearity (CAN). 

The nonlinearity results from the repeated contact of two imperfect surfaces under 

oscillating tension and compression (Buck et al., 1978). Ultrasound can only 

propagate across the contact interface when the imperfect contact is closed under 

compressive load. When tension is applied, imperfect contact is in an open state and 

cannot allow any waves to penetrate. The nonlinearity is shown in the distorted 

ultrasound which can be detected by higher harmonic generation (Barnard et al., 

1997). The open and close status of the interface is known as the ‘clapping’ 

mechanism (Solodov, 1998).  

 

Many investigations have focused on the contact acoustic nonlinearity. Richardson 

(1979) proposed a one-dimensional continuum model to represent the unbounded 

interface. Though the model is somewhat over-idealised, it makes an analytical 

solution to the nonlinear problem available. The second harmonic generation was 

found to be most efficient at an intermediate level of the ratio of externally applied 

stress to stress amplitude of acoustic wave. Experiments have been carried out to 

evaluate the usefulness of CAN in non-destructive testing of imperfect interfaces 

and cracks (Zhou and Shui, 1992; Solodov et al., 1993; Solodov, 1998; Donskoy et al., 

2001; Chen et al., 2006). 

When the gap in contacting rough surfaces is much smaller than the ultrasound 

wavelength, interfacial stiffness is the dependent parameter. Researchers modified 

the quasi-static model and derived the expression for second order interfacial 

 

Figure 3.8 Concept of contact acoustic nonlinearity at micro crack (Jhang, 2009). 
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stiffness in solving nonlinear propagation problems (Pecorari, 2003; Kim et al., 

2006). A simple power-law relation between interfacial stiffness and contact 

pressure was proposed (Biwa et al., 2004) based on rough surface contact 

mechanics to predict the acoustic nonlinearity of interfaces. The nonlinearity 

parameter of the contact interface was investigated and it has been found that this 

parameter is an interfacial property, independent of amplitude of incident waves 

(Biwa et al., 2004; Biwa et al., 2006). The NDE application of the nonlinearity 

parameter has also drawn great interest, such as in determining the adhesive 

bonding strength (Yan et al., 2009). 

Many researchers have shown great interest in investigating the nonlinearity of 

ultrasound at contacting interface and they focus on the bulk longitudinal wave 

(Richardson, 1979; Biwa et al., 2004; Yan et al., 2009). Second order harmonics are 

generated due to the ‘clapping’ mechanism of the kissing bonds when ultrasound 

interacts with the contact interface normally, which has great potential in NDE 

applications. Contact acoustic nonlinearity of bulk shear wave (Mendelsohn and 

Doong, 1989; Hirose, 1994; Solodov, 1998; O’Neill et al., 2001; Pecorari, 2003) and 

surface acoustic wave (Solodov et al., 1993; Kawashima et al., 2002) has also been 

studied.  

Mendelsohn and Doong (1989) implemented the boundary element method to study 

the shear horizontal slip motion at an interface. Hirose (1994) applied two-

dimensional boundary integral equations to in-plane motion in solving the dynamic 

contact of rough surfaces problems. Later O’Neill (2001) adopted Richardson’s 

model to investigate the shear horizontal wave interaction with the contact 

interface. Nonlinear interaction of shear ultrasound was also studied using interface 

contact model derived from the GW model (Pecorari, 2003; Pecorari and Poznić, 

2005). The friction at contact interfaces is a possible source for the nonlinearity 

because of the stick-slip phase alternation under normal compressive load. It is 

shown that when bulk shear wave interacts with the contact interface, only odd 

higher order harmonics can be generated numerically. Although the amplitude of 

odd harmonics of shear incident wave is much smaller than the second harmonic of 

longitudinal waves, nonlinear interaction of shear ultrasound may be useful in 

determining friction and friction coefficient (Hirose, 1994; O’Neill et al., 2001). Energy 

dissipation during nonlinear interaction was also investigated under friction laws 

(Meziane et al., 2011).  

Recently, contact acoustic nonlinearity using an oblique incidence and harmonics 

generation at contact have been investigated (Blanloeuil et al., 2013; Blanloeuil et al., 

2014a; Blanloeuil et al., 2016). Harmonics generation strongly depends on the 
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incidence angle. When ultrasound interacts with a contact at certain angles, 

nonlinear ‘clapping’ and ‘slipping’ effects occurs even if a shear polarised wave is 

used. High order even and odd harmonics are coupled and generated. The evolution 

of harmonics helps to improve the understanding of a contact. Another ultrasound 

technique (non-collinear mixing technique) using two incidences have also been 

studied at an interface. The effectiveness of this method has shown its potential in 

understanding the nonlinear behaviour of a contact and also the non-invasive 

application in characterising a contact interface (Blanloeuil et al., 2014b; Blanloeuil 

et al., 2015; Pecorari, 2015; Zhang et al., 2016). 

In the previous research work, the contact acoustic nonlinearity has shown the 

potential in characterising a frictional interface. Previous work on the nonlinearity 

generation at a frictional interface primarily focused on the analytical and numerical 

study. Experimental work in this field, particularly on the interaction between a 

shear polarised ultrasound with a frictional contact is inadequate. The following 

research work mainly focuses on the experimental investigation on the contact 

acoustic nonlinearity originating at a frictional contact and its usefulness in 

measuring friction of a rough contact using a shear ultrasound. 

 

  Conclusion 

In this chapter, the basic definition of the ultrasonic wave, the principles of 

ultrasound propagation and the interaction between an ultrasonic wave and an 

interface has been introduced. The conventional ultrasound has shown the 

usefulness in characterising and measuring contact tribological parameters. The 

contact acoustic nonlinearity from the nonlinear interaction between an ultrasound 

and a contact has demonstrated its great potential in characterising a frictional 

interface. Experimental investigation on nonlinearity generation at a rough contact  

and its usefulness in measuring friction at the interface is needed. In the following 

research the non-classical nonlinear ultrasound and the contact acoustic 

nonlinearity is employed to study the nonlinear interaction of an ultrasound at a 

frictional interface.   
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4 ULTRASONIC TECHNIQUE 
APPARATUS 

 

 

The chapter aims to introduce the apparatus used in the ultrasonic technique, with 

a particular emphasis on the hardware used in this research work. In this chapter, 

the means of generating the ultrasound wave, amplifying the wave and acquiring the 

ultrasonic signal is introduced. 

 

 Ultrasonic Generation Using Ultrasonic Transducers 

As described in the previous chapter, propagation of the sound wave only occurs 

when there is an initial excitation, i.e. particle oscillation applied to the host material. 

A number of approaches are available for the initiation of the particle displacement, 

namely the piezoelectric method, mechanical method, thermal method, 

electrostatic method, electrodynamic method, magnetostrictive method and optical 

method (Krautkramer and Krautkramer, 1990). The piezoelectric method is used in 

this research. The ultrasonic transducer in this work refers to the device converting 

the electrical energy into the mechanical energy and vice-versa using the 

piezoelectric effect. 
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4.1.1 The Piezoelectric Effect 

The direct piezoelectric effect discovered in 1880 describes the phenomenon that 

when a material is pressurised mechanically, an electrical potential is generated 

across the material. When a potential is applied across the material electrically, 

deformation is generated, which is known as the inverse piezoelectric effect. The 

inverse piezoelectric effect is now commonly employed for generating ultrasound 

and the direct effect give premises for receiving ultrasound.  

 

4.1.2 Piezoelectric Element 

Materials with this property are known as piezoelectric materials. Quartz, lead 

meta-niobate, barium titanate and lead-zirconate-titanate (PZT) are common 

piezoelectric materials. The PZT materials are widely selected in ultrasonic 

examination and evaluations, as the piezo-ceramic materials can be fabricated into 

various shapes and function in different modes. 

When using a bare piezo-ceramic element as an ultrasound transmitter, the wave 

mode and the frequency of the sound wave is determined by the element size and 

polarisation direction. The fundamental frequency of a piezoelectric element is 

determined by the frequency constant, 𝑁𝑓 and the effective dimension of the piezo 

element, 𝐷 as: 

 𝑓 =
𝑁𝑓

𝐷
. (4.1) 

 

The effective dimension is the thickness of a longitudinal or shear mode plate, the 

diameter of a radial mode disc or the length of a longitudinal mode rod. Examples of 

longitudinal mode disc element and shear mode plate are given in Table 4.1. The 

oscillation mode at the fundamental frequency is dominant only when the dimension 

of the piezoelectric element meets some requirements. 
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Figure 4.1 shows an example of shear polarised piezoceramics elements. The notch 

on the element either in the centre of one edge or at a corner indicates the direction 

of polarisation. 

When exciting a piezoceramic element at the fundamental resonant frequency, the 

amplitude of oscillation is at its maximum. The element can also be forced to 

oscillate when the applied voltage alternates at a frequency different to the 

fundamental frequency. The amplitude of oscillation is generally less than the 

maximum at the fundamental resonant frequency. It is also found that when a 

piezoelectric element is excited, not only the fundamental resonance frequency 𝑓𝑟, 

but also the odd harmonics 3𝑓𝑟 , 5𝑓𝑟 , etc. are excited (Krautkramer and Krautkramer, 

1990). 

Table 4.1 Example of longitudinal and shear piezoelectric element. 

 Longitudinal disc Shear plate 

Element 

dimension 

  

 𝑂𝐷 ≫ 𝑇𝐻 𝐿 ≈ 𝑊 ≫ 𝑇𝐻 
 

 

Figure 4.1 Example of shear polarised piezoceramic elements. 
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4.1.3 Ultrasonic Transducers 

A variety of ultrasonic transducers are designed and widely used in numerous non-

destructive testing and evaluating applications utilising the piezoelectric elements. 

A schematic diagram of a commercial transducer is shown in Figure 4.2. Generally, 

the ultrasonic transducer consists of piezoelectric elements, damping material, 

front protective layer, shielding and housing and electrical system.  

The piezoceramic element functions at the desired frequency with the aid of an 

electrical system. The damping material is usually attenuative and dense so that the 

ultrasound originating from the top face of the piezoelectric element is dissipated. 

The undesired oscillation, such as reverberation is also suppressed. Additionally, it 

can mechanically protect the piezoelectric element from shocks. The protective 

layer provides wear and corrosion protection, which makes the piezoelectric 

element function in some harsh testing environments and conditions. It also bridges 

the difference between the acoustic impedance of the piezoelectric element and 

the test specimen. In such cases, normally a quarter wavelength thickness protective 

layer is selected.  

 

 

 

The design of commercial ultrasonic probe in Figure 4.2 is commonly seen in 

longitudinal wave transducers. To generate shear waves, two configurations of 

Electric System 

Damping Material 

Piezoceramic 
Element 

Protective Layer 

Electrode Coating 

Housing 

Inner Sleeve 

Connector 

Figure 4.2 Schematic diagram of commercial ultrasonic transducer. 
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commercial probes are available. The first configuration is the angle beam 

transducer, as shown in Figure 4.3, where a longitudinal probe is mounted on a 

wedge with a fixed angle. This type of transducer uses the Snell’s Law and mode 

conversion to convert the longitudinal wave into a shear wave at a specific angle. 

The second configuration is the normal incidence shear wave transducer, as shown 

in Figure 4.4. The schematic diagram in Figure 4.2 also applies to this type of shear 

wave transducer. The only difference is that the active element incorporated in the 

housing is shear polarised piezoelectric element instead of longitudinal. A shear 

wave emitted from such a probe propagates in the direction normal to the contact 

plane without other wave modes compared to an angle wedge transducer. When 

using this type of probe to generate a shear wave, attention must be paid to the 

following two aspects. As shear wave is not supported in liquid, high viscosity 

couplant, unlike the low viscous coupling gel used with longitudinal probe, must be 

applied at the contact interface between the probe and test specimens. As the 

oscillation direction of shear wave is normal to its propagation direction, the 

orientation of the shear wave probe needs to be carefully selected, especially in the 

pitch-catch and through-transmission measurement configuration, where two 

transducers are employed. Only when the polarisation direction of these two 

transducers are aligned or parallel can the shear wave signals be captured. 

 

 

Figure 4.3 (a) Schematic diagram of angle beam transducer; (b) Example of angle beam transducer. 

(a) 

(b) 

Refracted longitudinal wave 

refracted shear wave 

Incident longitudinal wave 

Wedge 

Contact plane 
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Examples of amplitudes from a shear wave piezoelectric element(PIC 255, 6mm 

element size, PI) and a transducer(V155, 6mm element size, Olympus) are shown in 

Figure 4.5. The piezo element and the transducer were bonded on an aluminium 

alloy specimens with a thickness of 31.84mm and a range of excitation voltages were 

used. The returning signals were received using a shear wave transducer (V155, 

12.7mm element size, Olympus). Smaller amplitudes were obtained from the 

transducer compared with the piezoelectric element. Damping material at the back 

of the piezo-element inside the transducer damped the oscillation of the piezo-

element and resulted in a reduced amplitude. 

 

 

Figure 4.4 (a) Schematic diagram of normal incidence shear wave transducer; (b) Example of normal 
incidence shear wave transducer. 

Incident 
Shear Wave 

Contact Plane 

Shear Wave 
Piezoelectric Element 

Normal Incidence 
Shear Transuducer 

(b) (a) 
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4.1.4 Near Field Effect 

When a sound wave is generated using either piezoelectric elements or commercial 

ultrasonic transducers, sound pressure is not uniformly distributed along the 

propagation direction. The interference between different oscillation points on the 

piezoelectric element is the cause of the sound field variation. As indicated in Figure 

4.6, the sound field is divided into the near field and the far field. The near field is the 

zone from the transducer or piezoelectric element to the last maximum of the sound 

pressure and in between there are several local maxima and minima. In this region, 

the fluctuation of sound pressure makes the ultrasonic measurement difficult. From 

the last maximum of the sound pressure starts the far field, where the sound 

pressure gradually decreases to zero. In the far field, the ultrasonic measurement is 

less problematic and more reliable. To utilise the maximum sound energy, 

measurement signal should be acquired close to the end of the near field.  

The length of the near field, 𝑁𝑑 of a shear oscillator is estimated using the following 

relationship(Krautkramer and Krautkramer, 1990): 

 𝑁𝑑 =
𝐷2𝑓

4𝑐
, (4.2) 

where 𝐷 is the active element diameter, 𝑓 the oscillation frequency and 𝑐 the speed 

of sound in the test material. The near field of the shear polarised piezoelectric 

  

Figure 4.5 Example of amplitude from a shear wave piezoelectric element (PIC255, PI) and shear wave 
transducer (V155, Olympus).  
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element in Figure 4.1 and the normal incidence shear wave probe in Figure 4.4 is 

listed in Table 4.2.  

 

 

Table 4.2 Near field length for different shear wave transmitter in Aluminium. 

Probe type 
Dimension 

(𝐦𝐦) 

Frequency 

(𝐌𝐇𝐳) 

Speed of sound in 

Aluminium (𝐦/𝐬) 

Near field 

length (𝐦𝐦) 

PIC255 6 1 3130 2.87 

V152 25.4 1 3130 51.5 

V153 12.7 1 3130 12.8 

V155 12.7 5 3130 64.4 
 

 

4.1.5 Ultrasonic Signal Characteristics 

An ultrasonic wave generated from a transducer is characterised by waveform 

duration, centre frequency and bandwidth. Waveform duration with the unit of 

microseconds is defined as the time between the lower and upper band of a certain 

amplitude level. As illustrated in Figure 4.7 (a), the −14dB level waveform duration 

is the time difference between the lower and upper time at 20% of the peak 

amplitude. The bandwidth (MHz) is the frequency difference at 50% of the peak 

frequency amplitude as shown in Figure 4.7 (b). Centre frequency is the mean 

frequency of lower and upper frequency at 50% of the signal amplitude. The 

bandwidth (%) therefore is defined in Equation (4.3). In this work of research, the 

spectrum parameters are more focused on.  

 
Near field Far field 

Figure 4.6 Sound field from a planar transducer or piezoelectric element. 
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 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(%) =
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝑀𝐻𝑧)

𝑐𝑒𝑛𝑡𝑟𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 × 100% (4.3) 

 

The characteristics of the normal incidence shear wave transducer is summarised 

in Table 4.3. It is noted that the peak frequency is different from the nominal and the 

centre frequency. The bandwidth of these probes is significant in the following 

research work, particularly for the V155 5MHz transducer as it is used as a wideband 

receiver.  

 

 

 

Peak frequency 

Lower frequency  

 Upper frequency  
Bandwidth  

-6dB or 50% 

-14dB or 20% 

Waveform duration 

(a) 

(b) 

Figure 4.7 Signal characteristics of a normal incidence shear wave transducer V153 (a) Time domain signal 
and waveform duration; (b) Frequency spectrum and bandwidth (Reproduced Olympus transducer test 

form).   
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Table 4.3 Characteristics of normal incidence shear wave transducers from Olympus transducer test forms. 

Characteristics V152 (1022255) V153 (1098151) V155 

-14dB waveform duration (𝛍𝐬) 1.327 1.171 0.390 

Nominal frequency (𝐌𝐇𝐳) 1 1 5 

Centre frequency (𝐌𝐇𝐳) 0.94 1.07 4.89 

Peak frequency (𝐌𝐇𝐳) 1.02 1.12 4.19 

Bandwidth (𝐌𝐇𝐳) 0.82 1.04 3.79 

Bandwidth (%) 86.79 97.05 77.44 
 

 

 Ultrasonic Function Generator 

A working piezoelectric element or transducer generates ultrasonic signals only 

when they are connected to an ultrasonic function generator or waveform 

generator. The ultrasonic function generator functions to trigger a transducer and 

force it to excite and generate a specific waveform. There are various types of 

ultrasonic function generator available for different applications. Figure 4.8 shows 

some examples of ultrasonic function generator. Some of the main features of an 

ultrasonic generator are briefly discussed. 

 

 

(a) (b) 

Figure 4.8 Examples of ultrasonic function generator. (a) TTi arbitrary function generator. (b) Function 
generator incorporated in a Picoscope. 
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4.2.1 Excitation Waveforms  

Numerous waveforms are available from an ultrasonic function generator to excite 

an ultrasonic transducer, including standard spike-shape pulse, square waveform, 

sine waveform and even arbitrary waveforms. A spike-shaped pulse is a commonly 

used excitation waveform and it is widely employed in non-destructive testing where 

a wide bandwidth is needed. The other widely applied excitation is a sinusoidal 

waveform. Using such excitation, not only efficiency is achieved but also the 

ultrasonic frequency precision is improved when the sine waveform frequency is 

aligned with the characteristic frequency. If the piezoelectric element in the 

transducer is broadband and well damped, a range of frequencies can be generated 

with a single transducer, by altering the sinusoidal waveform frequency. The shape 

of excitations from an ultrasonic function generator is less important than the 

received signal shape, as an excitation waveform transmits through the piezoelectric 

element, amplifier, host material and its features, such as material properties and 

reflecting features (Krautkramer and Krautkramer, 1990). Carefully selected 

excitation waveforms still facilitate the ultrasonic testing. In the following research 

work, sinusoidal waveform is used. 

 

4.2.2 Excitation Mode and Repetition Rate 

Various excitation modes are available to excite an ultrasonic probe. In the Burst 

mode, one burst of excitation waveform, consisting of a finite number of cycle, is 

produced at each trigger signal. In this mode, the waveform is only settable at a 

single frequency. In Sweep mode, a waveform with a range of continuous 

frequencies is produced. Using this mode, multi-frequency features can be used. 

Gated mode only allows waveform excitation excited when the gate signal is true. 

Continuous mode is also available where the waveform is continuously produced 

without pause. In the following experimental work, a burst of a number of cycles 

sinusoidal waveform is used as the excitation mode. 

The repetition rate determines the speed of the excitation triggering, i.e. the number 

of excitations per second. The repetition rate is generally selected depending on the 

test configuration. If the repetition rate is too high in a pulse-echo configuration, the 

reflection signal from the first trigger will interfere with the second or third 

excitations. In the following experimental work, the time for subsequent reflections 

to attenuate until no longer visible is less than a millisecond, which is the minimum 

delay between excitation pulses. The maximum pulse rate is therefore 
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approximately 1000Hz. Considering the safe operation of a gated amplifier, a 

repetition rate of 25Hz is selected.   

 

 Power Amplifier 

4.3.1 Excitation Amplitude 

The voltage output of the ultrasonic function generator shown in Figure 4.9 is 

maximum 10Vp−p for the arbitrary function generator and 4Vp−p for the Picoscope, 

which are generally low for some non-destructive testing applications. High voltage 

excitations can be achieved using power amplifier. Some amplifiers are 

incorporated with an ultrasonic function generator so the excitation waveform is 

directly amplified and then passed to excite an ultrasonic transducer.  

Attention must be paid to the voltage driving the transducer or piezoelectric 

element. The voltage applied across the piezoelectric element is limited to 

approximately 50V per millimetre of the piezo element thickness when the element 

is subject to a negative spike excitation. For a low-frequency transducer where the 

piezoelectric element is thick, the voltage applied across the element can be higher. 

A 600V short duration negative spike can be applied to transducers with 5MHz or 

lower frequencies (Olympus NDT Inc, 2006).  

In some cases where the burst mode of sinusoidal excitation is used, apart from the 

voltage, the average power dissipation to the transducer is also limited and it should 

be below 125mW. Exciting transducer beyond such limit tends to overheat the 

piezoelectric element and in a more severe case depolarise the element. The 

averaged power can be determined from the applied voltage, duty cycle and 

transducer impedance as follows: 

 𝑉𝑟𝑚𝑠 =
0.707 × 𝑉𝑝−𝑝

2
,  (4.4) 

 
𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 × 𝑉𝑟𝑚𝑠
2 × cos(𝑝ℎ𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒)

𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒
,  

(4.5) 

 
𝑁𝑜. 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑏𝑢𝑟𝑠𝑡 =

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
.  

(4.6) 
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4.3.2 Signal Amplification 

Numerous types of signal amplifier are available for various non-destructive testing 

applications. Signal amplification can be applied to the excitation waveforms before 

driving the ultrasonic transducer or to the returned signal from a test specimen. 

Most amplifiers can be used in both configurations. With an amplified ultrasonic 

signal, the measurement reproducibility is improved in testing of a non-ultrasonic-

favoured material, such as materials with high attenuation like composites or cast 

iron. An amplified ultrasonic signal increases the accuracy of measurement when 

great time resolution is required. Amplified excitation also facilitates and improves 

the efficiency of driven transducers. When the amplifier is applied on received 

ultrasonic signals, the amplified signal will make the most use of the vertical range 

of an ultrasonic receiver to increase the measurement accuracy.  

Features such as frequency bandwidth, gain level and power output are generally 

considered when selecting a signal amplifier. These features of two different 

ultrasonic amplifiers (shown in Figure 4.9) used in this research work are 

summarised in Table 4.4.  

 

 

 

(a) 

(b) 

Figure 4.9 Examples of signal amplifier. (a) AR low power amplifier. (b) RITEC high power amplifier.  
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Table 4.4 Key features of two difference ultrasonic signal amplifier. 

Key features AR low power amplifier RITEC high power amplifier 

Working mode Continuous-wave amplifier Gated amplifier 

Power output 100W 5kW 

Frequency range 10kHz − 250MHz 200kHz − 20MHz 

Gain level 49dB n/a 

Output pulse voltage n/a ~140V − ~1500V (peak-peak) 

Maximum duty cycle n/a 0.3% 
 

 

It is noticed that the RITEC high power amplifier sets a limit on the duty cycle, as the 

working mode of a gated amplifier is very different from a conventional continuous-

wave (CW) amplifier. A CW amplifier operates continuously when the switch is on 

while a gated amplifier only works for a limited duration of time when a gate signal 

is passed to the amplifier. If it receives no gate signal, then the gated amplifier is not 

operating. This feature of the gated amplifier is advantageous compared to a CW 

amplifier. The limited duty cycle enables a high burst power while keeping the 

averaged power very low. The duty cycle, peak burst power and averaged power can 

be determined using Equation (4.7)-(4.9). For example, when a burst of 10 cycles at 

1 MHz , repeated 50 times per second, is amplified to 500V signal into a 50Ω 

impedance, the RMS burst power is approximately 625W, the duty cycle is 0.05% 

and the averaged power is 0.31W.  

 
𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 = 𝐵𝑢𝑟𝑠𝑡 𝑤𝑖𝑑𝑡ℎ (𝑠)

× 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐻𝑧) × 100%  
(4.7) 

 
𝑃𝑟𝑚𝑠 =

(0.707 × 𝑉𝑝𝑒𝑎𝑘)2

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒
  (4.8) 

 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 ×   𝑃𝑟𝑚𝑠 (4.9) 

The other advantage of a gated amplifier over a CW amplifier is that the noise level 

is low. When the gate signal is off, the amplifier is not operating and thus the noise 

is not amplified, which ensures a good signal-to-noise ratio. 

The harmonic distortion is considered when using the amplifier. When a single 

frequency excitation signal is passed to an amplifier, higher order frequencies 

signals sometimes appear, especially when a carelessly designed amplifier or a faulty 
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amplifier is used, or if the amplifier is improperly operated. Example of harmonic 

distortion with a 5kW output burst is illustrated in Figure 4.10. Harmonics distortions 

are at least 20dB less than the main driving frequency content. Attention must be 

paid when the higher frequency content is considered using an amplifier.  

 

 

 

In the following research work, excitation signals need amplification to drive 

ultrasonic transducers and the higher order harmonic components are of particular 

interest. Therefore, the gated amplifier is selected due to its merits of efficiency of 

driving piezo-elements with high burst power, low noise level and low harmonic 

distortions.  

 

 Ultrasonic Digitiser 

When a returned ultrasonic signal is received by a transducer, it is converted to a 

digital form using a device called digitiser, which is also known as analogue-to-digital 

converter (ADC). Once the received waveform is digitised, it will be stored in 

memory or passed onto a processor for signal processing. The digitised signal is well 

maintained compared to an analogue signal which is subject to noise commonly in 

ultrasonic equipment. Examples of frequency used digitisers are shown in Figure 

4.11. Figure 4.11 (a) shows a digital storage oscilloscope, which primarily digitises 

 

 

Figure 4.10 Harmonic distortion of a 5kW output using a RITEC amplimer (Reproduced from Ritec Amplifier 
Specification). 



41 

 

received waveforms and displays them on the screen in real-time. The device in 

Figure 4.11 (b) is another type of modern designed compact digitiser. It digitises 

returned signals with a PC connected, which enables customised real-time 

processing via a control software.  

The main features of digitiser are the sampling rate, amplitude resolution, 

bandwidth and number of channels when selecting an appropriate digitiser. These 

characteristics of both digitisers shown in Figure 4.11 are listed in Table 4.5. 

 

 

Table 4.5 Key features of two difference ultrasonic digitiser. 

Key features 
GWInstek Oscilloscope 

GDS2104A 
PicoScope 5444B 

Number of channels 4 4 

Bandwidth (−𝟑𝒅𝑩) 200MHz 200MHz for 8 to 15 bits 

Vertical resolution 8 bits 8, 12, 14, 15 and 16 bits 

Maximum input 

range 
300Vrms ±20V 

Maximum sampling 

rate 

2GS/s for 1 channel 

 

500MS/s for 1 channel at 12 

bits 

 

Buffer memory n/a 256MS at 12 bits 
 

 

(a) (b) 

Figure 4.11 Examples of digitiser. (a) GWINSTEK Oscilloscope. (b) Digitiser incorporated in PicoScope. 
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4.4.1 Sampling Rate 

Sampling rate determines the number of samples in one second that the digitiser 

converts from analogue to digital signals and its unit is Hz or S/s (samples per 

second). In some applications, the waveform shape requires to be well maintained 

and, in such applications, and as a rule of thumb, the sampling rate generally is 10 

times higher than the target frequency used in tests (Brunskill, 2013). For example, 

a transducer operating at 1MHz requires a sampling rate at least 10MHz to preserve 

the waveform shape. An insufficiently high sampling rate will cause aliasing. In the 

following research work, the sampling frequency is 500MS/s, which is sufficiently 

higher than the high-order harmonic frequency 3MH to prevent aliasing.  

 

4.4.2 Amplitude Resolution and Range 

Amplitude resolution, sometimes known as vertical resolution, is the minimum 

voltage division size of a digitised signal. In applications where amplitude 

measurement is of importance, such as measuring tiny amplitude changes of a signal 

or a small flaw reflection signal next to a relatively large reflection, a sufficient fine 

voltage division enables these features to be detected accurately. Amplitude range 

is the maximum voltage of a digitised signal. The amplitude range should be just large 

enough to capture the target digitised signal.  

If a voltage range of 10V is digitised using an 8-bit digitiser, 28 = 256 divisions are 

obtained, and the minimum voltage resolution is 0.039V. However, for a 12-bit 

digitiser, the voltage range is divided into 4096 steps, with a minimum voltage of 

0.0024V, which improve the voltage measurement accuracy.  

Both digitisers in Figure 4.10 enables selectable amplitude range and voltage 

resolution. Various combinations of voltage range and resolution make the digitiser 

applicable in many ultrasonic testing applications.  

 

4.4.3 Bandwidth 

The bandwidth of a digitiser is the range of frequencies that the digitiser operates 

appropriately. Generally, the bandwidth is defined as the frequency range with a -

3dB amplitude. If the frequency of a waveform is out of the bandwidth of a digitiser, 

such waveform can still be digitised but the waveform is heavily distorted. In 



43 

 

practice, a digitiser with a bandwidth at least twice the highest frequency 

component should be utilised to preserve the waveform shape. 

 

4.4.4 Number of Channels 

The number of channels determines the number of different signals that can be 

captured simultaneously. A multi-channel digitiser enables the recording of multiple 

signals during testing. Once more channels are activated, the sampling rate of a 

digitiser is compromised.  

 

4.4.5 Filters 

A filter is a device that only allows a selected range of frequency contents to pass 

through. The filter can be incorporated in a signal amplifier, such as the RITEC 

amplifier in Figure 4.9 (b), integrated with a digitiser or a stand-alone hardware. 

Using a filter can effectively reduce the bandwidth of a returned signal. Low pass 

filter which allows low-frequency components and rejects high frequencies such as 

high frequency travelling electric signal, is applied to improve the signal to noise 

ratio. High pass filter rejects the low-frequency signals such as vibration signal and 

can be used to eliminate the large recovery trend due to a high-power excitation.  

 

 Ultrasonic Measurement Configurations 

Having discussed the apparatus commonly employed in measurement, a flow 

diagram illustrates the configuration of these pieces of hardware in ultrasonic tests 

in Figure 4.12. This work of research follows this process. 
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 Conclusion 

In this chapter, the apparatus used in the ultrasonic technique is introduced, 

including the means of generating the ultrasonic wave, amplifying the wave and 

acquiring the ultrasonic signals. In the current research work, the normal incidence 

shear wave transducer is used to transmit and receive the ultrasonic signals due to 

its good ultrasonic characteristics. The gated amplifier is selected due to its ability 

to produce a high-power ultrasonic signal with the least harmonic distortion. 

  

 

Excitation waveforms from 
a function generator 

Signal amplified via amplifier if necessary 

Ultrasonic transducer or 
piezoelectric element 

converting electrical signal 
to mechanical vibration 

Test system 

Ultrasonic transducer or 
piezoelectric element 
converting mechanical 

vibration to electrical signal 

Analogue signal converted to 
digital signal via digitiser 

Signal storage or process 

Figure 4.12 ultrasonic measurement process and configurations. 
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5 MODELLING OF ULTRASONIC 
NONLINEARITY AT A FRICTIONAL 
INTERFACE 

 

 

When a high-power ultrasound wave meets a frictional interface, the nonlinear 

nature of the stick-slip phenomenon distorts the high-power ultrasound wave. In 

this chapter, a numerical method is used in conjunction with an analytical approach 

to understand the nonlinearity generation of a distorted high-power shear polarised 

ultrasonic wave after the interaction with a frictional interface. Parameters affecting 

the nonlinearity generation such as amplitude of incident ultrasound, contact stress 

and coefficient of friction are investigated in detail.  

 

 Analytical Model 

5.1.1 Mathematical Model of Ultrasound at Interface 

The same approach used in (Richardson, 1979; O’Neill et al., 2001) is followed here. 

A schematic diagram of the interaction is depicted in Figure 5.1. Two identical 

homogeneous, isotropic elastic materials, 𝐼 and 𝐼𝐼 are defined at the left and right 

half space, respectively. Two half-space materials are brought to contact under a 

normal contact pressure, 𝜎. At the interface (𝑥 = 0), friction is characterised by 

Coulomb’s law with a constant friction coefficient, 𝜇 and the friction force is 

proportional to the applied normal contact pressure.  
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In Material 𝐼 (defined by 𝑥 < 0), the forward incident shear vertically polarised wave 

is described by 𝑓(𝑡 − 𝑥/𝑐) and the backward reflected wave is 𝑔(𝑡 + 𝑥/𝑐). The 

transmitted wave defined by  ℎ(𝑡 − 𝑥/𝑐) propagating in Material 𝐼𝐼. The propagation 

of incident, reflected and transmitted waves are governed by the wave equation: 

 𝑐2
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2
, (5.1) 

where 𝑢(𝑡, 𝑥) is the displacement of the shear wave along the direction 𝑦 and 𝑐 is 

the speed of sound in the both left and right half spaces. 

In Material 𝐼 and 𝐼𝐼, the total displacement is given as:  

 𝑢𝐼(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑐
) + 𝑔 (𝑡 +

𝑥

𝑐
), (5.2) 

 𝑢𝐼𝐼(𝑥, 𝑡) = ℎ (𝑡 −
𝑥

𝑐
). (5.3) 

The corresponding shear stress induced by ultrasound in the material, 𝜏 is obtained 

as (Achenbach, 1973): 

 𝜏𝐼(𝑥, 𝑡) = 𝐺
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
=

𝐺

𝑐
[−𝑓′ (𝑡 −

𝑥

𝑐
) + 𝑔′ (𝑡 +

𝑥

𝑐
)], (5.4) 

  

Incident wave 
𝑓(𝑡 − 𝑥/𝑐) 

Transmitted wave 
ℎ(𝑡 − 𝑥/𝑐) 

Reflected wave 
𝑔(𝑡 + 𝑥/𝑐) 

𝑥 

Frictional interface  𝑥 = 0 

Material  𝐼 Material  𝐼𝐼 

Contact pressure 𝜎 

𝑦 

Figure 5.1 Simplified contacting interface and shear polarised ultrasound wave. 
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 𝜏𝐼𝐼(𝑥, 𝑡) =
𝐺

𝑐
[−ℎ′ (𝑡 −

𝑥

𝑐
)], (5.5) 

where 𝐺 is the shear modulus of the material and prime is the derivative with 

respect to its argument.  

 

Here the displacement amplitude of the normally incident shear polarised 

ultrasound is assumed to be sufficiently large. As shown in Figure 5.2, when the high-

power shear ultrasound strikes at the frictional interface, the contact state switches 

between ‘stick’ and ‘slip’ motion.  Due to the constant compressive contact pressure 

applied at the interface, the interface always remains closed even during the 

alternation of ‘stick’ and ‘slip’ state. The boundary conditions are defined as:  

 𝑢𝐼(𝑥, 𝑡) = 𝑢𝐼𝐼(𝑥, 𝑡) + ∆𝑢, (′𝑠𝑡𝑖𝑐𝑘′), (5.6) 

 𝜏𝐼(𝑥, 𝑡) = 𝜏𝐼𝐼(𝑥, 𝑡), (′𝑠𝑡𝑖𝑐𝑘′ 𝑎𝑛𝑑 ′𝑠𝑙𝑖𝑝′ ), (5.7) 

 𝜏𝐼(𝑥, 𝑡) = −𝑠𝑔𝑛 (
𝜕𝑢𝐼

𝜕𝑡
) 𝜇𝜎, (′𝑠𝑙𝑖𝑝′), (5.8) 

where ∆𝑢 is the displacement difference, ((𝜕𝑢𝐼)/𝜕𝑡) the total velocity left of the 

interface and 𝑠𝑔𝑛() the sign function. Equation (5.7) describes the stress continuity 

at the interface regardless of contact state. The friction force described in Equation 

(5.8) is in an opposite direction of the velocity left of the interface.  

At the interface (𝑥 = 0), the average displacement 𝛴(𝑡) and the relative 

displacement 𝛥(𝑡) are then given as:  

  

Compressive contact pressure 

High-power incident shear wave 

Shear stress of incident shear wave 

Figure 5.2 Contacting interface slips under high-power incident shear ultrasound and remains closed under 
compressive contact pressure. 
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 𝛴(𝑡) =
1

2
(𝑢𝐼(0, 𝑡) + 𝑢𝐼𝐼(0, 𝑡)) =

1

2
[𝑓(𝑡) + 𝑔(𝑡) + ℎ(𝑡)], (5.9) 

 𝛥(𝑡) =
1

2
(𝑢𝐼𝐼(0, 𝑡) − 𝑢𝐼(0, 𝑡)) =

1

2
[−𝑓(𝑡) − 𝑔(𝑡) + ℎ(𝑡)]. (5.10) 

The corresponding derivatives with respect to time are derived as: 

 𝛴̇(𝑡) =
𝜕𝛴(𝑡)

𝜕𝑡
=

1

2

𝑐

𝐺
[𝜏𝐼(𝑡) − 𝜏𝐼𝐼(𝑡)] + 𝑓′(𝑡), (5.11) 

 𝛥̇(𝑡) =
𝜕∆(𝑡)

𝜕𝑡
=

1

2

𝑐

𝐺
[−𝜏𝐼(𝑡) − 𝜏𝐼𝐼(𝑡)] − 𝑓′(𝑡). (5.12) 

The reflected wave and transmitted wave at the interface can be solved by 

substituting Equation (5.4)-(5.8) into the time derivative of the averaged and relative 

displacement in Equation (5.11) and (5.12) and then integrating over time, which is 

given as: 

  𝑔(𝑡) = −∆(𝑡) − 𝑓(0), (5.13) 

 ℎ(𝑡) = 𝑓(𝑡) − ∆(𝑡) − 𝑓(0), (5.14) 

where 𝑓(0) is the initial condition of incident wave at the interface and ∆(𝑡) is a 

piecewise function depending on the contact state, which is given in Equation (5.15): 

 ∆(𝑡) = {

∆(𝑡𝑐), (′𝑠𝑡𝑖𝑐𝑘′)  

∆(𝑡𝑐) +
𝑐

𝐺
[−𝑠𝑔𝑛 (

𝜕𝑢𝐼

𝜕𝑡
) 𝜇𝜎] (𝑡 − 𝑡𝑐) − [𝑓(𝑡) − 𝑓(𝑡𝑐)], (′𝑠𝑙𝑖𝑝′)

, (5.15) 

where 𝑡𝑐 is the critical time when the contact changes from ‘stick’ to ‘slip’ state.  

Nonlinearity generation of a high-power shear ultrasound interacting at a frictional 

interface can be solved by defining an incident wave function (e.g. an incident time- 

harmonic waveform in Section 5.1.2) and analysing the distortion of the waveform.  

 

5.1.2 Time-Harmonic Waveform 

In general, any incident waveform can be used to analyse the nonlinearity generation 

at an interface. A single frequency time-harmonic waveform is widely used in 

research (O’Neill et al., 2001; Blanloeuil et al., 2014c) due to its frequency feature. An 

incident time-harmonic waveform consists of only a single frequency component 

and any distortion on the reflected and transmitted waves after interacting with the 



49 

 

interface leads to the appearance of extra frequency components, which can be 

employed to examine the nonlinearity generation. 

A pure sinusoidal waveform is exploited here. A shear polarised incident ultrasound 

and its induced shear stress at the interface are defined as follows: 

 𝑓(𝑥, 𝑡) = 𝐴0 sin(𝜔𝑡 − 𝑘𝑥), (5.16) 

 𝜏(𝑥, 𝑡) = 𝐺𝑘𝐴0 cos(𝜔𝑡 − 𝑘𝑥), (5.17) 

where 𝜔 and 𝑘 are the angular frequency and wavenumber of the ultrasound wave, 

respectively. 

The frictional contact is assumed to be in ‘slip’ motion at 𝑡 = 0 and the shear stress 

of ultrasound is greater than the friction force at the interface. The critical time 𝑡𝑐 is 

when contact switches from ‘slip’ to ‘stick’ state once the shear stress of ultrasound 

is less than the friction, as shown in Equation(5.18). When the shear stress of 

ultrasound evolves greater than the friction force, contacting surfaces slip again. The 

shear stress of ultrasound periodically changes and the contact state alternates 

between ‘stick’ and ‘slip’, as illustrated in Figure 5.3. 

 𝐺𝑘𝐴0|cos(𝜔𝑡𝑐)| = 𝜇𝜎 (5.18) 

 𝑡𝑐 = cos−1
𝜇𝜎

𝐺𝑘𝐴0
 (5.19) 

 

Table 5.1 Critical time of contact state alternation. 

Contact state slip→stick stick→slip slip→stick stick→slip slip→stick 

Critical time 𝑡𝑐1 = 𝑡𝑐 𝑡𝑐2 =
𝜋

𝜔
− 𝑡𝑐 𝑡𝑐3 =

𝜋

𝜔
+ 𝑡𝑐 𝑡𝑐4 =

2𝜋

𝜔
− 𝑡𝑐 𝑡𝑐5 =

2𝜋

𝜔
+ 𝑡𝑐 
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5.1.3 Analytical solution 

The reflected and transmitted waves are solved following the steps in Section 5.1.1. 

The ‘stick’ and ‘slip’ state need to be treated separately. An example of incident, 

reflected and transmitted waves after interaction at the frictional contact are 

illustrated in Figure 5.4 and the parameters applied are listed in Table 5.2.  

It is noted that due to the interaction at the frictional interface, reflected and 

transmitted waves are distorted compared with the incident wave. The plateau 

feature observed on the reflected wave is due to that when the contact surfaces 

stick, the incident wave propagates through the interface with no wave reflected 

and the displacement remains unchanged. The ‘clipped’ feature is not shown on the 

transmitted waves in the ‘stick’ state in Figure 5.4 as in this state, the transmitted 

wave is not distorted. In the ‘slip’ state, transmitted wave is distorted, which is better 

illustrated in Figure 5.5. 

 

slip stick slip stick slip 

𝑡𝑐1 𝑡𝑐2 𝑡𝑐3 𝑡𝑐4 𝑡𝑐5 

Figure 5.3 At interface, shear stress of ultrasound, friction force, contact state alternation and critical time as 
in Table 5.1. The amplitude of incident shear wave is 5𝑛𝑚 and corresponding shear stress is 0.26𝑀𝑃𝑎 . 
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Table 5.2 Parameters used in time-harmonic signal study. 

Material property of Aluminium 

Shear modulus 𝑮 26.32GPa 

Ultrasound parameters 

Working mode Continous wave 

Frequency 𝒇 1MHz 

Speed of sound 𝒄 3122m/s 

Wavenumber 𝒌 2012.6rad · m−1 

Incident ultrasound amplitude 𝑨𝟎 5nm 

Shear stress of ultrasound 𝝉 0.264MPa 

Interface parameter 

Contact pressure 𝝈 0.3MPa 

Friction coefficient 𝝁 0.5 
 

slip stick slip stick slip stick 

Figure 5.4 At interface, displacement incident, reflected and transmitted waves after interacting with the 
frictional interface. 



52 

 

   

Figure 5.5 depicts the stress of incident, reflected and transmitted waves at the 

interface. In contrast to the displacement in Figure 5.4, transmitted waves also show 

the ‘clipped’ feature. When contact is in ‘slip’ state, the maximum shear stress 

supported at the contact is limited to the frictional force and transmitted stress 

remains unvaried during the ‘slip’ duration. As stress is continuous at the interface 

even during the ‘slip’ motion, the unsupported stress is then reflected, resulting in 

the reflected waveform shown in Figure 5.5. Similar results are also obtained in a 

previous study (Meziane et al., 2011).  

slip stick slip stick slip stick 

Figure 5.5 At interface, stress of incident, reflected and transmitted waves after interacting with the 
frictional interface. 



53 

 

Frequency spectra are obtained by taking Fast Fourier Transform (FFT) on 15 cycles 

of the incident, reflected and transmitted waves depicted in Figure 5.4 and are 

shown in Figure 5.6. Due to the limited data points used in FFT, i.e. 3000 points, the 

frequency resolution is approximately 66.7kHz. Despite this coarse frequency 

resolution, extra frequency components are still observed in the reflected and 

transmitted waves in contrast to the single frequency component of the incident 

wave. Three points are noted.  

• In both reflected and transmitted wave frequency spectrum, only the odd 

order harmonics, i.e. third, fifth, seventh order etc., are observed and this is 

mainly due to FFT of the ‘clipped’ features of the waveform (O’Neill et al., 2001; 

Meziane et al., 2011). No even harmonics are generated. 

• The amplitude of the third harmonic and the fifth harmonic are much smaller 

than the amplitude of their corresponding fundamental frequency 

component.  

• The third order harmonic amplitude of both reflected and transmitted waves 

are equal, so are the fifth and higher order harmonics as a result of energy 

conservation.  

 

Fundamental frequency 

Third harmonic frequency 

Fifth harmonic frequency 

Figure 5.6 Frequency spectrum of incident, reflected and transmitted waves after interacting with the 
frictional interface. 
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Such extra frequency generation is due to the distortion of the reflected and 

transmitted waves after the interaction with the frictional interface. The non-linear 

feature of the frictional interface is transferred to cause the ultrasound waves to be 

distorted and nonlinearity generated. Since no other nonlinearity source is 

considered in the analytical work, the frictional interface is the sole cause for the 

harmonic generation of the ultrasound waves. 

 

 Numerical Study 

The analytical study in Section 5.1 reveals the interaction of the ultrasound wave with 

a frictional interface and consequently the waveform distortion and harmonic 

generation of the ultrasound. The analytical work mainly focuses on the interaction 

at the interface. The propagation of ultrasound after striking the frictional interface, 

especially subject to varying contact conditions is studied using a simple finite 

difference method. Although other more advanced numerical methods and tools are 

available, the finite difference method is capable of capturing the physical 

phenomenon reasonably (Blanloeuil et al., 2014c).  

 

5.2.1 Numerical Model 

A simple one-dimensional model,  used in Blanloeuil and co-workers’ study 

(Blanloeuil et al., 2014c; Blanloeuil et al., 2017), is applied here as depicted in Figure 

5.7. To simplify the process, a half space material and a rigid wall are in contact at 

𝑥 = 0, under a normally applied compressive stress. The interface is defined as a 

frictional interface and characterised by classical Coulomb’s Law with a constant 

friction coefficient. Ultrasound wave is excited, propagates towards the interface, at 

the location 𝑥 = −𝐿, where a transparent boundary is also defined so that waves are 

not reflecting and only transmitting through towards 𝑥 = −∞. 
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Derivations given in Section 5.1 still apply here and the terms of Material 𝐼𝐼 vanishes 

as the rigid wall is used instead. The relative displacement is thus given by Equation 

(5.2) and the velocity of relative displacement is given as:  

 𝑢𝐼̇(𝑥, 𝑡) =
𝜕𝑢

𝜕𝑡
= 𝑓′ (𝑡 −

𝑥

𝑐
) + 𝑔′ (𝑡 +

𝑥

𝑐
). (5.20) 

Equation (5.20) and (5.4) are combined to obtain the expression for the derivative 

as follows: 

 𝑓′ (𝑡 −
𝑥

𝑐
) =

1

2
(𝑢𝐼̇(𝑥, 𝑡) −

𝑐

𝐺
𝜏𝐼(𝑥, 𝑡)), (5.21) 

 𝑔′ (𝑡 +
𝑥

𝑐
) =

1

2
(𝑢𝐼̇(𝑥, 𝑡) −

𝑐

𝐺
𝜏𝐼(𝑥, 𝑡)). (5.22) 

At the interface, Coulomb’s Law in Equation (5.6)-(5.8) is redefined as:  

 ′𝑠𝑡𝑖𝑐𝑘′: {
 |𝜏𝐼(0, 𝑡)| < 𝜇𝜎

𝑢𝐼̇(0, 𝑡) = 0
,  (5.23) 

 ′𝑠𝑙𝑖𝑝′: {
 |𝜏𝐼(0, 𝑡)| = 𝜇𝜎

𝜏𝐼(0, 𝑡)𝑢𝐼̇(0, 𝑡) ≤ 0
. (5.24) 

It is worth noticing that the static friction coefficient 𝜇 is applied here. When the 

dynamic friction coefficient 𝜇𝑘 is employed at the ‘slip’ state, it replaces the friction 

coefficient 𝜇 in Equation (5.24). 

 

𝑥 

Frictional interface  𝑥 = 0 

Material  𝐼 

Rigid wall 

Contact pressure 𝜎 

𝑦 

Transparent 
boundary  

𝑥 = −𝐿 

Source of incident 
shear wave  

Figure 5.7 Simplified one-dimensional model system. 
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5.2.2 Numerical Implementation 

The classic Euler scheme is applied to discretise the wave equation in Equation (5.1). 

The Material 𝐼 along 𝑦 = 0 is then discretised in space and time and the subscript 𝑖 

and 𝑗 denotes the space and time index, respectively, as illustrated in Figure 5.8.  

The discretised wave equation is thus given as:  

 𝑐2
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

𝛿𝑥2
=

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

𝛿𝑡2
, (5.25) 

where 𝛿𝑥 and 𝛿𝑡 are the space and time increment respectively. Generally, the next 

time step solution is thus obtained by rearranging Equation (5.25) as:  

 𝑢𝑖,𝑗+1 =
1

2
[𝑟2𝑢𝑖+1,𝑗 + (2 − 2𝑟2)𝑢𝑖,𝑗 + 𝑟2𝑢𝑖−1,𝑗], (5.26) 

 𝑟 =  𝑐
𝛿𝑡

𝛿𝑥
. (5.27) 

The term 𝑐 (𝛿𝑡/𝛿𝑥) is commonly known as Courant-Friedrichs-Lewy (CFL) condition 

and for stable numerical solutions, this term should be less than 1. 

 𝑓′ (𝑡 −
−𝐿

𝑐
) = 𝑠(𝑡) (5.28) 

The left boundary 𝑥 = −𝐿, in Figure 5.7 is defined in Equation (5.28). 𝑠(𝑡) is the 

excitation source and thus defining the incident wave. This equation also defines the 

transparent boundary condition. Using the expression in Equation (5.23), Equation 

(5.28) can be written in a form (Equation (5.29)) in which discretisation can be 

operated. The discretisation is thus obtained using the second order upwind 

 𝑖 − 1 2 1 3 𝑖 𝑖 + 1 

2 

𝑗 

1 

𝑗 + 1 

𝑗 − 1 

𝑡𝑖𝑚𝑒 

𝑠𝑝𝑎𝑐𝑒 

⋯ ⋯ 

⋯
⋯

 

Figure 5.8 Space and time discretisation for one-dimensional system. 
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scheme, as shown in Equation (5.30). The next time step solution is thus given in 

Equation (5.31). 

 
1

2
(

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
− 𝑐

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
) = 𝑠(𝑡) (5.29) 

 
1

2
(

𝑢1,𝑗+1 − 𝑢1,𝑗

𝛿𝑡
− 𝑐

−3𝑢1,𝑗 + 4𝑢2,𝑗 − 𝑢3,𝑗

2𝛿𝑥
) = 𝑠(𝑡) (5.30) 

 𝑢1,𝑗+1 = (1 −
3

2
𝑟) 𝑢1,𝑗 + 2𝑟𝑢2,𝑗 −

1

2
𝑟𝑢3,𝑗 + 2𝛿𝑡𝑠(𝑡) (5.31) 

The right boundary 𝑥 = 0, in Figure 5.7 is the frictional interface. The contacting 

interface is assumed to be in ‘stick’ mode initially and the shear stress is discretised 

using the second order upwind scheme. If the calculated shear stress is less than 

the frictional force at the interface, the contact is in ‘stick’ mode and boundary 

condition in Equation (5.32) applies. If the shear stress is greater than the friction, 

contact is in ‘slip‘ mode and the frictional force at the interface equals to the shear 

stress. Regardless of the contact state, the next time step solution at the boundary 

𝑥 = 0 is only determined after shear stress at the interface is computed. 

 

 ′𝑠𝑡𝑖𝑐𝑘′ = {𝜏𝑖,𝑗 = 𝐺
3𝑢𝑖,𝑗 − 4𝑢𝑖−1,𝑗 + 𝑢𝑖−2,𝑗

2𝛿𝑥
𝑢𝑖,𝑗 = 𝑢𝑖,𝑗−1

 (5.32) 

 ′𝑠𝑙𝑖𝑝′ = {

𝜏𝑖,𝑗 = ±𝜇𝜎

𝑢𝑖,𝑗 =
2𝛿𝑥𝜏𝑖,𝑗/𝐺 + 4𝑢𝑖−1,𝑗 − 𝑢𝑖−2,𝑗

3

 (5.33) 



58 

 

The entire procedure of computing the shear ultrasound wave interaction at the 

frictional interface is summarised in Figure 5.9. 

 

 

 

Material parameters 
Contact parameters 

Ultrasound parameters 
Initial conditions  

Assuming ‘stick’ mode 

Computing shear 
stress 𝜏𝑖,𝑗 

ห𝜏𝑖,𝑗ห > 𝜇𝜎0 

Computing next 
time step 𝑢𝑖,𝑗+1  

  

‘slip’ mode 

Next time step 

‘stick’ mode 

𝑢(𝑥, 𝑡) 

Figure 5.9 Numerical computation procedure. 
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5.2.3 Numerical Simulation Results 

5.2.3.1 Time Evolution 

An example of the numerical solution computed using parameters listed in Table 5.3 

is given in Figure 5.10. The incident wave starts from the left boundary and 

propagates towards the frictional interface. After interaction with the frictional 

boundary, distortion clearly occurs on the waveform. 

 

Table 5.3 Parameters used in numerical study. 

Material property of Aluminium 

Shear modulus 𝑮 26.92GPa 

Ultrasound parameters 

Working mode 5-cycle burst 

Frequency 𝒇 1MHz 

Speed of sound 𝒄 3122m/s 

Wavenumber 𝒌 2019rad · m−1 

Incident ultrasound amplitude 𝑨𝟎 2.5nm 

Shear stress of ultrasound 𝝉 0.135MPa 

Interface parameters 

Contact pressure 𝝈 0.3MPa 

Friction coefficient 𝝁 0.3 

Numerical setup parameters 

Space resolution 𝜹𝒕 4.5ns 

Time resolution  𝜹𝒙 20μm 

CFL condition (𝒄 𝜹𝒕/𝜹𝒙) 0.702 
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At 𝑥 = −𝐿 the displacement and shear stress evolution are given in Figure 5.11. 

Compared with the incident wave, the reflected waveform is distorted after 

interaction with the interface when ‘stick-slip’ occurs. The frequency spectrum of 

the incident wave and ‘reflected’ wave subject to ‘stick-slip’ motion is shown in 

Figure 5.12. It is noted that when ‘stick-slip’ motion occurs, the distortion on the 

‘reflected’ wave leads to the appearance of the harmonic frequency components. As 

mentioned in 5.1.3, only odd higher order harmonics, i.e. third, fifth, seventh order 

etc., appear in the frequency spectrum after FFT operations on a distorted 

waveform.  

 

 
Contacting interface 

t=2.2𝜇𝑠 

t=6.7𝜇𝑠 

t=11.2𝜇𝑠 

t=18𝜇𝑠 

t=22.5𝜇𝑠 

Contacting interface 

t=2.2𝜇𝑠 

t=6.7𝜇𝑠 

t=11.2𝜇𝑠 

t=18𝜇𝑠 

t=22.5𝜇𝑠 

Figure 5.10 Example of numerical solution of ultrasonic wave striking a frictional interface. 
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Compared with ‘clipped’ feature in the analytical study (Figure 5.4 and Figure 5.5), 

The ‘reflected’ wave in Figure 5.11 is computed as the true transmitted wave due to 

the algorithm used in Equation (5.32) and (5.33). The true reflected wave can be 

computed using the Equation (5.13) and (5.14). The displacement and stress of the 

 

 

Incident wave 

‘Reflected’ wave 

Fundamental frequency 

Harmonics 

Figure 5.11 Time evolution of displacement and shear stress at 𝑥 = −𝐿. 

Figure 5.12 Frequency spectrum of displacement at 𝑥 = −𝐿. 
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incident wave, the computed ‘reflected’ wave i.e. the true transmitted wave and the 

computed reflected wave are illustrated in Figure 5.13. Compared with the 

displacement and stress waveform shown in Figure 5.4 and Figure 5.5. the 

computation solution ensures the waveforms are preserved. Despite this, the 

numerical solution still shows good agreement with the analytical solution, shown in 

a later section. 

 

 

5.2.3.2 Dimensionless Stress 

To assess the dependence of the nonlinearity generation of a shear ultrasound at a 

frictional interface on the ultrasound and contact parameters (such as amplitude of 

incident wave, contact pressure and friction coefficient), a dimensionless 

parameter, 𝜉 is introduced(Hirose, 1994; O’Neill et al., 2001; Meziane et al., 2011; 

Blanloeuil et al., 2014c). It is defined as the ratio of the applied tangential stress to 

  

Figure 5.13 Incident wave, computed ‘reflected’ wave as the true transmitted wave and computed true 
reflected wave at 𝑥 = −𝐿. 
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the maximum shear stress at the interface. Equivalently, it is the ratio of the frictional 

force to the incident shear stress by ultrasound (Equation (5.34)). 

 𝜉 =
𝜇𝜎

𝐺𝑘𝐴0
 (5.34) 

 

This dimensionless stress indicates the contact state when a shear polarised 

ultrasound striking at the frictional interface, as illustrated by Equation (5.35).  𝜉 =

0 indicates a frictionless interface. When 𝜉 ≥ 1, ultrasonically induced shear stress 

is less than the applied tangential stress and consequently the contacting surfaces 

stick without any relative motion. Within the bounds of (0,1), shear stress exceeds 

the applied tangential stress and interfaces start to move relative to the other. The 

contacting interface switches between ‘stick’ and ‘slip’ mode depending on the 

frictional force and ultrasonically induced shear stress and the nonlinearity 

generation occur.  

 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = {

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝜉 = 0
𝑠𝑡𝑖𝑐𝑘 − 𝑠𝑙𝑖𝑝 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛, 0 < 𝜉 < 1

𝑠𝑡𝑖𝑐𝑘, 𝜉 ≥ 1
 (5.35) 

 

5.2.3.3 Comparison with Analytical Solutions 

Numerical solutions computed as shown in Figure 5.9 are compared with analytical 

solutions (Meziane et al., 2011). A 1MHz sinusoidal wave is computed as the incident 

wave. At the interface, various normal contact stresses are applied so that the ‘stick-

slip’ alternation occurs conditionally. The dimensionless stress, 𝜉 is computed using 

Equation (5.34). Amplitude of the fundamental frequency, the third and the fifth 

order harmonics are calculated from the frequency spectrum. The results are 

illustrated in Figure 5.14 and it is noted that numerical solutions agrees with the 

analytical solutions for the fundamental, the third and the fifth harmonics subject to 

various loading conditions, particularly when dimenionless parameter 𝜉 approaches 

unity. It should be noted that there is still differences between the numerically 

computated results and the analytical solution. The discrepency is mainly because 

continiuous sinusoidal wave is used in the anlytical model, which is free from 

envolope or window effect wheraes in the numerical study, a burst of 5 cycles 

sinusoidal wave is employed. Despite this, the fundamental frequency amplitude 

shares the same trend as the analytical solution for the reflected wave subject to 

various loading conditions. 
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The good agreement between the numerical and analytical solutions enables that 

various ultrasonic parameters and contact parameters can be employed to 

investigate the interaction of an ultrasound wave at a frictional interface and 

corresponding harmonic generation using this numerical tool.  

 

5.2.3.4 Energy Conservation Energy Dissipation 

The energy transported by ultrasound is considered here, especially for the 

presence of a frictional contact which is energy dissipative. The energy carried by 

 Figure 5.14 Numerical and analytical solutions comparison of ultrasound wave interaction with frictional 
interface, subject to varying contact stress.  

 



65 

 

ultrasound at a certain point over a time interval is determined using the following 

equation as: 

 𝐸𝑢 = ∫ 𝜏(𝑥, 𝑡)𝑢̇(𝑥, 𝑡)𝑑𝑡
𝑡_𝑠𝑡𝑎𝑟𝑡

𝑡_𝑒𝑛𝑑

. (5.36) 

At the interface, Equation (5.36) determines the energy dissipation at the interface.  

The energy transported by the incident, reflected, transmitted waves at the left 

boundary 𝑥 = −𝐿 and the energy dissipation at the frictional interface 𝑥 = 0 are 

computed and depicted in Figure 5.15. As defined in Section 5.2.3.2, dimensionless 

stress 𝜉 greater than unity indicates contact sticks and no relative motion occurs at 

the frictional interface. Energy of the incident wave transfers into the transmitted 

wave and no energy is dissipated at the interface. When ‘stick-slip’ motion occurs at 

the interface when ultrasound strikes the interface, initial energy carried by the 

incident wave splits into reflected and transmitted waves whereas the remainder is 

dissipated at the frictional interface. Maximum energy dissipation occurs at 𝜉 ≈ 0.4, 

which agrees well with literature (O’Neill et al., 2001; Meziane et al., 2011). The total 

energy of reflected wave, transmitted wave and the dissipated portion due to 

friction equals to the total energy of the incident wave, which indicates the 

numerical model is energy conservative.  
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5.2.3.5 Effect of Amplitude of Incident Ultrasound and Contact Stress 

The numerical method is employed to investigate the effect of the incident 

amplitude of ultrasound and the normally applied contact stress on the nonlinearity 

generation when a shear ultrasound wave strikes at a frictional interface. 

Parameters employed are listed in Table 5.4. Dimensionless stress 𝜉 is computed for 

each contact condition. The results are illustrated as follows. 

 

Table 5.4 Parameters used in numerical study. Varying amplitude of incident ultrasound and contact stress. 

Ultrasound parameters 

Working mode 5-cycle burst 

Frequency 𝒇 1MHz 

Incident ultrasound amplitude 𝑨𝟎 1.6, 2.4, 3.2, 4.8nm 

Shear stress of ultrasound 𝝉 0.08, 0.13, 0.17, 0.26MPa 

Interface parameters 

Contact pressure 𝝈 0.05 − 2MPa 

Friction coefficient 𝝁 0.3 
 

‘stick-slip’ ‘stick’ only 

Figure 5.15 Energy transported by incident, transmitted and reflected wave and energy dissipated at the friction 
interface, subject to various contact stress.  
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Figure 5.16 illustrates the transmitted wave amplitude of fundamental frequency 

(1MHz) 𝐴1, the third harmonic (3MHz) 𝐴3  and the ratio 𝐴3/𝐴1, subject to varying 

incident ultrasound amplitude and the normally applied contact stress. Regardless 

of the incident amplitude, large contact stress permits more ultrasound 

transmission through the interface, as shown for the fundamental frequency 𝐴1. 

When the transmitted wave reaches the maximum subject to even higher contact 

stress, the interface stick and all incident energy is transformed into transmitted 

waves. The third order harmonic amplitude 𝐴3, regardless of the incident amplitude, 

shows a ‘rise-drop’ dome shaped trend along the increasing contact stress. The 

rising trend is at the low normal stress region, where two surfaces are in contact 

and the ultrasound starts to interact with the frictional interface, initiating the ‘stick-

slip’ motion. Increasing the normal contact stress makes the ultrasound wave 

further entangled with the interface and consequently, nonlinearity is significantly 

generated. Further compressing the interface, however, start to make the contacted 

surfaces ‘bonded’ or ‘stuck’. The nonlinear interaction of the ultrasound with the 

interface by friction, i.e. ‘stick-slip’ alternation, is impeded and the harmonic 

generation begins to fall and leaves a peak. Any further increase in the contact stress, 

however, makes the contact fully ‘stick’ and no more nonlinear interaction is 

allowed. The ratio 𝐴3/𝐴1, then shows a combined result, increasing and decreasing 

with the applied normal stress.  

For the incident wave, larger amplitudes appear to permit the fundamental 

frequency component to continue over a wider applied normal stress range. It does 

the same to the third harmonic component and the nonlinearity generation can 

occur over a broader stress range with the peak observed at a higher stress. 
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Figure 5.17 depicts the fundamental frequency, the third harmonic and their ratio of 

the reflected wave under various contact stresses and amplitudes of incident wave. 

In contrast to that of the transmitted wave, the reflected wave fundamental 

frequency amplitude falls along the increasing normal stress for the reflected wave 

as the higher contact stress allows more wave transmission and less reflection. It is 

worth noting that the third harmonic amplitude 𝐴3 are identical to that of the 

transmitted wave in Figure 5.16, which demonstrates the nonlinearity generation 

occurs in both reflected and transmitted wave equally. Under the combined effects, 

the ratio 𝐴3/𝐴1 shows a ‘rise-drop’ shape as well.  

     

Figure 5.16 Fundamental and third harmonic amplitude of transmitted wave subject to varying amplitude of 
incident ultrasound and normally applied contact stress. 
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The fundamental frequency, the third harmonic and their ratio of both transmitted 

and reflected waves are replotted with respect to the dimensionless stress 𝜉, as 

shown in Figure 5.18. Any 𝜉 value less than unity indicates a ‘stick-slip’ region and 

nonlinearity can be generated. It is noted that regardless of the incident amplitude, 

the peak in the third harmonic 𝐴3 occurs at 𝜉 = 0.5. The ratio 𝐴3/𝐴1, similarly show 

a unique peak for both transmitted and reflected waves in regardless of the 

amplitude of incident wave. Any 𝜉 value greater than unity, contact sticks and no 

harmonic generation is initiated.  

 

    

Figure 5.17 Fundamental and third harmonic amplitude of reflected wave subject to varying amplitude of 
incident ultrasound and normally applied contact stress. 
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5.2.3.6 Effect of Friction Coefficient 

The effect of friction coefficient is investigated computationally using the numerical 

method. Various static friction coefficients are defined at the interface and other 

parameters employed are listed in Table 5.5. Dimensionless stress 𝜉 is computed for 

each contact conditions. The results are illustrated as follows. 

 

    

Figure 5.18 Fundamental and third harmonic amplitude of both transmitted and reflected waves vs 
dimensionless stress 𝜉. 
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For both reflected and transmitted waves, the fundamental frequency, the third 

harmonic and their ratio share a similar pattern in Figure 5.16 and Figure 5.17, 

respectively, as illustrated in Figure 5.19. It is noticed that increasing the static 

friction coefficient makes the dome-shape harmonic generation occur over a 

narrower stress range. At the interface with a lower static friction coefficient, the 

threshold for the ‘stick-slip’ switch, i.e. the friction force or the applied tangential 

stress, 𝜇𝜎𝑜 at the contact is less than the ultrasound induced shear stress τ, given an 

unchanged amplitude of incident wave. Under a higher contact stress, the tangential 

force is still less than the shear stress, so the ’stick-slip’ occurs. At the interface with 

a larger static friction coefficient, the allowance between the tangential force and 

the shear stress is reduced and then only a narrower range of contact stress permit 

the relative motion between contact surfaces. For the larger static friction 

coefficient, ‘stick-slip’ occurs only at lower stress region compared to a higher 

stress range for a lower static friction coefficient. The nonlinearity generation 

therefore reaches a maximum at a lower contact stress for the larger friction 

coefficient and peaks at higher stress for a low friction coefficient.  

Table 5.5 Parameters used in numerical study. Varying static coefficient of friction. 

Ultrasound parameters 

Working mode 5-cycle burst 

Frequency 𝒇 1MHz 

Incident ultrasound amplitude 𝑨𝟎 3.2nm 

Shear stress of ultrasound 𝝉 0.17MPa 

Interface parameters 

Contact pressure 𝝈 0.04 − 1.6MPa 

Friction coefficient 𝝁 0.2, 0.3, 0.4, 0.5 
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When the dimensionless stress is used, as shown in Figure 5.20, the fundamental 

frequency, the third harmonic and the ratio show identical trend for varying static 

friction coefficient. This is mainly because that the effect of friction coefficient 

counteracts that of the contact stress applied. It is demonstrated that the harmonic 

generation peaks at  𝜉 = 0.5 for the third harmonic 𝐴3. 

 

 
Figure 5.19 Fundamental and third harmonic amplitude of both transmitted and reflected waves subject to 

varying static friction coefficient. 
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The effect of the dynamic friction coefficient 𝜇𝑘 is also investigated computationally 

using the numerical method. When the dynamic friction coefficient is considered, it 

replaces the static friction coefficient 𝜇 previously employed in Equation (5.24). 

Various dynamic friction coefficients are defined at the interface and other 

parameters employed are listed in Table 5.6. Dimensionless stress 𝜉 is computed for 

each contact conditions. The results are illustrated as follows. 

 

 
Figure 5.20 Fundamental and third harmonic amplitude of both transmitted and reflected waves vs 

dimensionless stress 𝜉, subject to varying static friction coefficient. 
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For both reflected and transmitted wave, the fundamental frequency, the third 

harmonic and their ratio show the trend, as depicted in Figure 5.21. Given the same 

static friction coefficient at the interface, varying the dynamic friction coefficient 

does not affect the fundamental frequency, the third harmonic and their ratio 

significantly. At the interface, the static friction permits the same normally applied 

stress for the occurrence of ‘stick-slip’ motion and thus the harmonic generation. 

With varying dynamic friction coefficient, the critical time for the interface switch 

from ‘slip’ to ‘stick’ is affected and thus the resultant stress and displacement 

waveforms are further distorted. It is noted that a larger difference between static 

and dynamic friction coefficient tends to skew the harmonic generation and peaks 

shifts towards high stresses.  

Table 5.6 Parameters used in numerical study. Varying dynamic friction coefficient. 

Ultrasound parameters 

Working mode 5-cycle burst 

Frequency 𝒇 1MHz 

Incident ultrasound amplitude 𝑨𝟎 3.2nm 

Shear stress of ultrasound 𝝉 0.17MPa 

Interface parameters 

Contact pressure 𝝈 0.04 − 1.6MPa 

Static friction coefficient 𝝁 0.4 

dynamic friction coefficient 𝝁𝒌 0.4, 0.37, 0.34, 0.31 
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When the dimensionless stress is employed in Figure 5.22, fundamental frequency, 

the third harmonic and their ratio show an identical trend as in Figure 5.21. The effect 

of varying dynamic friction coefficient is still discernible. The nonlinearity generation 

peaks from 𝜉 = 0.5 and shift to a high value when the dynamic friction coefficient 

decreases. 

 

 
Figure 5.21 Fundamental and third harmonic amplitude of both transmitted and reflected waves subject to 

varying dynamic friction coefficient. 
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 Conclusions 

The interaction of a shear polarised wave interacting with a frictional interface was 

investigated using both analytical and numerical methods. Nonlinearity generation 

occurs at the interface when a shear ultrasound wave strikes the interface and 

forces ‘stick-slip’ motion take place. Such interaction imposes distortion on the 

reflected and transmitted ultrasound wave and results in the extra frequency 

components being generated. Compared to the previous work using numerical 

 

Figure 5.22 Fundamental and third harmonic amplitude of both transmitted and reflected waves vs 
dimensionless stress 𝜉, subject to varying dynamic friction coefficient. 
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models, in this research work the numerical computation was extended to 

harmonics generation of the distorted reflected wave, which is particularly linked 

with the following experimental pitch-catch reflection configuration. 

The effects of the normally applied contact stress, the amplitude of incident shear 

wave and friction coefficient at the interface were investigated numerically and are 

summarised as follows. 

• Nonlinearity generation is due to the ‘stick-slip’ motion at the interface. 

• ‘stick-slip’ motion only occurs at a relatively low contact stress range. High 

contact stress can prevent the ‘slip’ motion and does not result in nonlinearity 

generation.  

• Large incident amplitude of ultrasound broadens the contact stress range 

which allows ‘stick-slip’ to take place. 

• Large static friction coefficient reduces the contact stress range where 

‘stick-slip’ occurs. 

• Regardless of ultrasound incident amplitude and the static friction 

coefficient, harmonic generation is maximised when the dimensionless stress  

𝜉 = 0.5.  

• A dynamic friction coefficient different from the static friction coefficient can 

skew the peak location of harmonic generation.   

Both analytical and numerical models employed in this section are simplified. 

However, it still provides an insight into the physical phenomenon of the interaction 

of a shear polarised ultrasound at a frictional interface. The results from the 

numerical study can be used as guidance in the experimental work for detecting 

nonlinearity generation in later sections.  
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6 EXPERIMENTAL CONFIGURATION 
FOR MEASURING ULTRASONIC 
NONLINEARITY AT ROUGH 
CONTACTS 

 

 

In this chapter, the nonlinearity generation due to shear polarised ultrasound 

interacting with a rough contact interface is experimentally investigated, following 

the analytical and numerical work in the previous chapter. The test configurations 

are shown in detail, including measurement technique and signal processing 

method. Experimental variables which could influence the measurement of 

harmonic generation are considered. Optical measurement of the shear wave 

amplitude is also carried out as test preparation.  

 

 Introduction  

Researches on nonlinear ultrasound at a contact interface have mainly focused on 

longitudinal incidence and its harmonics (Buck et al., 1978; Barnard et al., 1997; Biwa, 

et al., 2006; Yan et al., 2009; Blanloeuil et al., 2017). Studies on harmonic generation 

of shear ultrasound are mainly at analytical and numerical analysis stages (O’Neill et 

al., 2001; Meziane et al., 2011; Delrue et al., 2018) and experimental investigation using 

shear wave, however, is inadequate (Solodov, 1998; Blanloeuil et al., 2014c). In this 
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experimental work, the appropriate method to measure the nonlinearity generation 

due to an ultrasonic wave interacting with rough contact surfaces is investigated.  

 

 Experimental Configurations 

The experimental approach used in the previous research can be adopted. Details 

of the experimental configuration are given as follows. 

 

6.2.1 High Frequency Nonlinear Ultrasonic Technique 

It is worth pointing out that when detecting or measuring the nonlinearity 

generation from a contact interface experimentally, the frequency of both ultrasonic 

transmitter and receiver need to be carefully selected based on the featured 

frequency. Nonlinearity generation, or more precisely referred in this work, the 

harmonic generation, means that high order frequency components are considered. 

In terms of measuring harmonic generation of a longitudinal wave, the second order 

harmonic is mainly the target (Barnard et al., 1997; Biwa et al., 2006; Yan et al., 2009; 

Yuan et al., 2015; Jiao et al., 2014; Liu et al., 2011). In cases of a shear wave, the third 

order harmonic is the primary target frequency (Solodov, 1998; Blanloeuil et al., 

2014c).  

A specific experimental method for detecting the harmonic generation applied in 

these researches is adopted here. This method utilises a frequency ultrasonic 

transmitter, primarily working at the fundamental frequency, and a wideband 

ultrasonic transducer as the receiver. The bandwidth of the receiver should be wide 

enough to cover both the fundamental frequency and the third order harmonic 

components. This technique is known as high frequency nonlinear ultrasonic 

technique. This is unlike the conventional ultrasonic measurement techniques 

where a single probe is employed for the pulse-echo configuration and two probes 

with the same frequency bandwidth for the pitch-catch method. A schematic 

diagram of the technique is given in Figure 6.1. 



80 

 

 

6.2.2 Ultrasonic Apparatus  

The ultrasonic apparatus employed in this experiment work is described in detail 

separately in Chapter 4. The summary of key features of the main ultrasonic 

apparatus is listed in Table 6.1. A tone burst of a number of cycles of sinusoidal wave 

was excited and amplified using a RITEC gated amplifier to drive a  

1MHz ultrasonic transducer V153 or V152. Returning signals were received using a 

5MHz broadband transducer V155 and digitised using a PicoScope. A 1MHz 

ultrasonic transducer (V153 or V152, Olympus) was used as the transmitter and it 

was driven at its nominal frequency 1MHz. The harmonic of interest was the third 

order, i.e. 3MHz. Therefore, a broadband transducer (5MHz V155, Olympus) with the 

bandwidth (−6dB) from 3MHz to 6.79MHz was used as the receiver in the high 

frequency nonlinear ultrasonic technique.  

 

 

Arbitrary Function Generator 

Amplifier 

Ultrasonic transducer 
transmitting frequency 𝑓 

Test specimen  

Broadband ultrasonic transducer 
receiving 𝑓 𝑎𝑛𝑑 3𝑓 

DAQ  

PC 

Figure 6.1 Schematic diagram of the high frequency nonlinearity ultrasonic technique applied in this work.   
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6.2.3 Loading Equipment 

In the experimental work, test specimens were placed in a loading frame, as 

depicted in Figure 6.2. A hydraulic cylinder was placed between the test specimen 

and the loading frame to generate a compressive normal load at the contact 

interface. The valve on the hydraulic cylinder was closed to ensure a constant load 

was applied. A load cell was placed on top of the upper test specimen to monitor the 

load during tests.  

The load cell used in the research work, was calibrated using a pre-calibrated 

loading machine to ensure accuracy in the force measurement. The load cell 

measures the force applied to it and gives a voltage reading as output. The 

calibration data is given in Figure 6.3. 

Table 6.1 Summary of the ultrasonic apparatus applied in this experiment work. 

Ultrasonic function generator: RITEC RAM 5000 

Working mode N-cycle burst 

Waveform Sinusoidal 

Frequency 1MHz 

High power amplifier: RITEC RAM 5000 

Working mode Gated amplifier 

Power output up to 5kW 

Voltage output 140V to 1500V (peak-peak) 

Duty cycles 0.3% 

Burst width Max. 60 cycles for 1MHz 

Ultrasonic transmitter: Panametrics V153 (V152) 

Nominal frequency 1MHz (1MHz) 

Bandwidth 1.04MHz (0.82MHz) 

Ultrasonic receiver:  Panametrics V155 

Nominal frequency 5MHz 

Bandwidth 3.79MHz 

Ultrasonic digitiser: PicoScope 5444B 

Sampling rate 200MHz 

Vertical resolution 12 bits 
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6.2.4 Test Specimens 

Aluminium alloy 6082 is a commonly used engineering material so it was used as the 

test material. The material was machined to several sets of cylinders with different 

dimensions, as shown in Figure 6.4. After the specimens were machined, the contact 

surfaces were polished on a grinding machine using polishing papers with various 
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Figure 6.2 Schematic diagram of the loading configuration.  

Figure 6.3 (a) NOVATECH loadcell and amplifier. (b) Loadcell calibration relationship.  
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grades. The surface roughness of contacting faces was measured using an optical 

profilometer (ALICONA).  

 

Dimensions and surface roughness of test specimens are listed in Table 6.2. The 

surface roughness of test specimens used in nonlinear acoustic response from 

imperfect interfaces was less than 1μm (Pecorari, 2003; Pecorari and Poznić 2005; 

Biwa et al., 2006; Blanloeuil et al., 2014c). Therefore roughness of test specimens 

used in the following research work was measured from 0.3μm to 1μm. Test 

specimens with different diameters were used to achieve various normal 

compressive stresses at the contacting interface in the following experimental work 

in Section 7. Various thicknesses of specimens were used in the experimental 

configuration investigations in Section 7.1. 

 

 

 

 

Figure 6.4 Aluminium alloy test specimens with various dimensions.  
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 Extra Experimental Considerations 

To measure the nonlinearity generation experimentally, extra care must be paid as 

many experimental variables can affect the true measurement and also may 

introduce unwanted nonlinearity (Liu et al., 2011). Some factors influencing the 

detection of nonlinearity generation from the contact interface are investigated 

here.  

 

6.3.1 Piezoelectric Element or Ultrasonic Probe 

In the nonlinearity generation measurement using the high frequency nonlinear 

ultrasonic technique with the longitudinal waves (Buck et al., 1978; Yan, et al., 2009; 

Liu et al., 2011; Liu et al., 2012), the piezoelectric element was employed as the 

transmitter. As previously discussed, when a piezoelectric element is excited, not 

only the fundamental natural frequency (1𝑓) but also the odd harmonics 

(3𝑓, 5𝑓, 𝑒𝑡𝑐.) are excited and normally these harmonics are undesired in the actual 

measurement. This feature has little influence on the detection of harmonic 

Table 6.2 Aluminium alloy specimens dimension and surface roughness. 

Aluminium alloy test 
specimen 

Dimensions (𝐦𝐦) 
(diameter, 
thickness) 

Surface roughness of selected 
area  𝐑𝐪 (𝛍𝐦) 

S1 74, 28.5 0.373 

S2 74, 28.5 0.586 

S3 74, 28.5 0.874 

S4 74, 28.5 0.483 

L1 74, 57 0.453 

L2 74, 57 0.847 

L3 74, 57 0.954 

Al1 50, 32 0.469 

Al2 50, 32 0.728 

AL3 50, 32 0.530 

Al4 50, 32 0.620 

H1 74, 82 N/A 
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generation from a longitudinal wave as the nonlinearity generation of a longitudinal 

wave at an interface is an even order harmonic (2𝑓, 4𝑓, 𝑒𝑡𝑐.). However, for the 

nonlinearity generation of a shear wave interacting at a contacting interface, the 

piezoelectric element introduced high order frequency components that imposed 

side effects on the measurement as the harmonic generation from the interaction 

of a shear wave and the interface is also an odd order (3𝑓, 5𝑓, 𝑒𝑡𝑐.). 

Responses of shear polarised piezoelectric elements are demonstrated in Figure 6.5 

and Figure 6.6. Piezoelectric elements were bonded on a test specimen and the 

pulse-echo configuration was used where the piezoelectric element was working as 

a transmitter and a receiver alternatively. A short duration pulse was triggered to 

excite piezoelectric elements using a Film Measurement System (FMS, Tribosonics) 

(Howard, 2016)and the reflected signal was digitised and recorded using FMS as 

well. The first reflected signal was extracted and Fast Fourier Transform (FFT) was 

applied to yield the frequency response. In Figure 6.6, the nominal fundamental 

frequency as well as high order harmonics were excited regardless of the nominal 

natural frequency of the piezoelectric element. It is also noticed that the harmonic 

frequency amplitudes are comparable to that of the fundamental frequency 

component for some shear polarised piezoelectric elements.   

Several reasons may cause this high order harmonic generation from the 

piezoelectric element. The dimension of a shear polarised piezoelectric element 

plays a role. The thickness of the piezo element should be much less than the length 

or width so that the natural resonant frequency of the shear element is dominant. It 

is critical for the low-frequency elements because to have dominant fundamental 

frequency, the length or width of the shear element is large. The shear element with 

nominal frequency of 3MHz and 5MHz in Figure 6.6 (c) and (d) are in an appropriate 

dimension and the fundamental frequency shows a dominant amplitude. The 

dominant harmonic amplitude from 1MHz and 2MHz piezo elements are due to their 

inappropriate dimensions. Damping of the piezoelectric element and the pulsing 

method also affect the harmonic generation from the element. A heavy damped 

piezoelectric element with an N-cycle burst excitation waveform can suppress the 

high order harmonics. 

Although undamped piezoelectric element gives larger amplitude, as mentioned in 

Section 4.1.3, using the shear polarised piezoelectric element in the high frequency 

nonlinear ultrasonic technique is practically challenging. Despite that ultrasonic 

probes still produce undesired harmonics when driven by high power, which is 

discussed in the following Section 6.3.2, the ultrasonic probes help in reducing the 

piezoelectric element introduced harmonics and it is widely adopted in the 



86 

 

measurement of nonlinearity generation from both longitudinal and shear waves 

(Biwa et al., 2006; Blanloeuil et al., 2014c; Jiao et al., 2014; Yuan et al., 2015). Therefore, 

normal incidence shear probes were employed in the research.  
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Figure 6.6 Frequency response of shear polarised piezoelectric element subject: (a) nominal 1𝑀𝐻𝑧; (b) 
nominal 2𝑀𝐻𝑧; (c) nominal 3𝑀𝐻𝑧 and (d) nominal 5𝑀𝐻𝑧. Elements were excited with short-duration pulse 

and the first reflected signal were selected for FFT operation. 

Figure 6.5 Aluminium alloy test specimen with shear polarised piezoelectric element  
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6.3.2 Amplifier and Amplification Level 

Regardless of using longitudinal wave or shear wave as the incident wave, a high-

power amplifier is critical to the nonlinearity generation measurement. The 

amplitude from the ultrasonic probe needs to be considerable so that either the 

normal stress induced from a longitudinal wave or the shear stress induced by a 

shear ultrasound is sufficiently large enough to open the closed interface or activate 

the ‘slip-stick’ motion of the interface. This normally requires high voltage to excite 

either the piezoelectric element or ultrasonic probe.  

When high voltage is applied, the undesired harmonics are also generated and it is 

even worse when an improperly damped piezoelectric element is excited, providing 

that the element are prone to these odd harmonics generation. The voltage across 

a piezoelectric element is also limited. For a 1MHz shear polarised element, the safe 

excitation voltage is approximately smaller than 100V, which is not practically 

sufficient in some tests. 

For an ultrasonic probe, the excitation voltage can be potentially around 600V 

(Olympus NDT Inc, 2006). Such excitation voltage range is more practically feasible 

to activate the contact interface ‘slip-stick’ motion. When subject to such high 

power, the probe also shows undesired high order frequency components. With 

careful configuration, the harmonic amplitudes can be maintained at a minimum 

level.  

Example of the harmonic generation subject to various amplification level is shown 

in Figure 6.7. A 1MHz ultrasonic probe (V153, Olympus) and a 5MHz transducer (V155, 

Olympus) was mounted on a test specimen S1 and were used as the transmitter and 

receiver, respectively. A tone burst of 15-cycle sinusoidal wave was excited to drive 

the transmitter. Various excitation voltages were applied. The first received signal 

was selected for FFT operation. 

In Figure 6.7 (a), when a low excitation voltage, i.e. 4V(peak-peak) is applied to a 

normal incidence shear wave probe, the third order harmonic is excited as well, but 

the amplitude is relatively low compared to its neighbouring frequencies. When a 

high excitation voltage is applied using an amplifier, i.e. 280V(peak-peak), both 

fundamental and the third order harmonic are amplified. Compared with its 

adjacent frequencies, the third order harmonic are discernible. The ratio of the 

third order harmonic to its fundamental frequency under varying excitation voltage 

is illustrated in Figure 6.7 (b). The third order harmonic generation is generally 

increasing with rising excitation voltage. The amplitude of 𝐴3/𝐴1 is still reasonably 

low (less than 0.15%, i.e. -56dB) even at the high excitation voltage. Such third order 
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harmonics are not easily suppressed practically so extra care should be paid when 

considering the harmonic generation from the contacting interface. 

 

6.3.3 Shear Wave Couplant  

The measurement of nonlinearity generation at a rough interface uses the normal 

incidence shear wave probes as the transmitter and receiver. Care is required when 

mounting the probe on test specimens. Unlike a shear polarised piezoelectric 

element being bonded on a test specimen or angle beam transducer using the mode 

conversion method and coupled with test specimens using a general gel, high 

viscosity shear wave couplant must be applied between the probe and the test 

specimen. 

 

 

Fundamental frequency 

3rd order harmonic 

Figure 6.7 (a) Frequency response of a normal incidence shear wave transducer subject to 4𝑉𝑝−𝑝, 90𝑉𝑝−𝑝and 

280𝑉𝑝−𝑝 excitations. (b) 3rd order harmonic relative to fundamental frequency amplitude subject to various 

excitation voltages (100 repetitions). 
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Several points were noticed practically when applying the shear couplant in tests. 

The amount of shear couplant applied was just sufficient to cover the contacting 

face of the transducer and any excessive couplant applied potentially reduced the 

amplitude of transmitted through the coupling layer as shear wave also attenuates 

in the couplant. After the couplant was used between the contact probe and test 

specimen, a gentle force was applied to the specimen for a decent spell to allow a 

minimum coupling layer to form. During this period, tests were not taken as the 

optimal coupling layer was in formation and the shear wave amplitude was gradually 

increasing. Pulse-echo method was employed to check the shear wave amplitude 

intermittently to ensure a stabilised amplitude reading was reached.  

The high viscosity shear wave couplant plays a vital role in harmonic generation 

detection. A normal incidence shear wave probe mounted with shear wave couplant 

enables the maximised shear wave component with the minimised longitudinal 

component in the measurement. A shear ultrasound probe was mounted using a 

general ultrasound gel and a shear wave couplant (SWC-2, Olympus), respectively. 

A tone burst of 10-cycle sinusoidal wave was excited at 20V. Time domain responses 

are shown in Figure 6.8. An improperly mounted shear wave transducer cannot give 

a clear reflection signal. The shear component only shows a comparable amplitude 

to the longitudinal component Figure 6.8 (a). While the reflected signals are clearly 

observed from a properly mounted probe, in Figure 6.8 (b). The shear component 

is at least 30 times larger than the longitudinal component.  
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6.3.4 Transducer Alignment 

When the high frequency nonlinear ultrasonic technique is carried out using two 

ultrasonic transducers, locations of the probes affect the nonlinearity measurement 

in the harmonic generation detection using longitudinal probes (Liu et al., 2011). It 

holds true for the harmonic generation detection using shear waves. Shear wave 

polarisation being perpendicular to its propagation direction, the alignment of two 

normal incidence shear transducers must be taken into considerations. 

As depicted in Figure 6.9 the alignment of two normal incidence shear wave 

ultrasonic probes is considered. Two probes (V153 and V155, 12.7mm diameter, 

Olympus) were placed on the top and bottom of a test specimen and a tone burst 

of sine wave was excited at 90V. The polarisation direction was changed from aligned 

condition (0°difference) to 90° difference, clockwise and anti-clockwise. When both 

probes were aligned with 0° difference, locations were varied in two directions, one 

along the polarisation direction (i.e. ‘vertical offset’) and the other normal to the 

polarisation direction (i.e. ‘horizontal offset’). Pitch-catch configuration, where 

 

(b) 

 

(a) 

 

Clear reflection signals 

 

Unclear reflection signals 

 
Longitudinal components 

 

Figure 6.8 Comparison of couplant effect in shear wave signal measurement. Shear transducer mounted (a) 
with improperly couplant and (b) with proper couplant, subject to 20𝑉𝑝−𝑝 excitation of a 10-cycle tone burst 

(100 repetitions). 
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ultrasound signal was transmitted from one probe and received from a separate 

receiver, as illustrated in Figure 6.9, was employed.  

 

 

 

 

Receiver probe 

Polarisation direction 

Transmitter probe 

Receiver probe 

Polarisation direction 

Transmitter probe 

‘Horizontal’ offset 

‘Vertical’ offset 

(a) 

(b) 

Figure 6.9 Schematic diagram of alignment of normal incidence shear wave ultrasonic sensors.  

Figure 6.10 (a) Schematic diagram of locations of normal incidence shear wave ultrasonic sensors. (b) 
Measurement of fundamental 𝐴1, third order harmonic frequency 𝐴3 and the ratio 𝐴3/𝐴1 (50 repetitions). 
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When two normal incidence shear wave probes are offset in both ‘horizontal’ and 

‘vertical’ directions, as illustrated in Figure 6.10 (a) and (b), both fundamental 

frequency 𝐴1 and the third harmonic component 𝐴3 drop dramatically. Their ratio 

𝐴3 𝐴1⁄  also shows the similar dependence on the location. 

When the angle of these two shear wave transducers are misaligned from −90° to 

0° and to +90° (Figure 6.11 (b)) strong dependence of fundamental frequency, 𝐴1 

and the third order harmonic 𝐴3 on the alignment angle. Their ratio, 𝐴3 𝐴1⁄  however, 

remains reasonably constant over the angle range from −20° to −20°.  

Both sets of the transducer alignment investigation indicate that the alignment of 

the transducers is critical in the high frequency nonlinear ultrasonic technique. 

Ideally two normal incidence shear wave probes are perfectly aligned, without 

‘horizontal’ and ‘vertical’ offset and angle misalignment of polarisation direction of 

the transducers. The ‘perfect’ alignment arrangement is practically difficult to 

achieve. To ensure the minimum side effect from the transducer alignments, the 

same alignment conditions are kept throughout the measurement.  

 

Receiver probe 

Polarisation direction 

Transmitter probe 

(b) 

(a) 

Figure 6.11 (a) Schematic diagram of angle alignment of normal incidence shear wave ultrasonic sensors. (b) 
Measurement of fundamental 𝐴1, 3rd order harmonic frequency 𝐴3 and their ratio 𝐴3/𝐴1 (50 repetitions). 
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6.3.5 Data Acquisition  

In the high frequency nonlinear ultrasonic technique, the primary signal is the higher 

order frequency components (3𝑓, 5𝑓 etc.) rather than the fundamental frequency 

(1𝑓). Therefore, when the returning signal is received and digitised, extra care is 

needed and two aspects are taken into account, the number of captures recorded 

in the test and the digitiser voltage scale or sensitivity, respectively.  

Tests were carried out using two normal incidence shear transducers (V153 and 

V155, 12.7mm diameter, Olympus) mounted on the same side of an aluminium test 

specimen S1 (as in Table 6.2), as shown in Figure 6.12. The specimen only made 

contact with air to ensure that the received signal was free from the effect due to 

the actually solid-solid contact. A tone busrt of 90V 15-cycle sine wave was applied 

to excited the transmitter. The first reflection signal from the solid-air interface was 

received and used in the following analysis. 

 

6.3.5.1 Number of Captures (Repetition) 

In the test, the measurement of harmonics may be affected by random noise. A 

number of captures or repetitions are therefore required to reduce such noise. 

Various number of captures were used in the received signal acquisition subject to 

the same test conditions. The averaged frequency domain signal is illustrated in 

Figure 6.13. The averaged fundamental frequency amplitude 𝐴1 shows little variation 

when various number of captures are applied while larger variations are observed 

for the third order harmonic 𝐴3 with various number of captures.  

 

 

Receiver probe 

Polarisation direction 

Transmitter probe 

Air 

Figure 6.12 Schematic diagram of signal acquisition.  
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The mean and standard deviation of both the fundamental and the 3rd order 

harmonic are depicted in Figure 6.14 (a) and (b), respectively. The fundamental 

frequency remains constant for different number of captures with standard 

variation of less than 1% due to its high signal strength. For the 3rd order harmonic 

frequency, it remains reasonably constant with the increasing number of captures, 

although with some slight variations. The standard variation is approximately 20% 

and such high value is mainly due to that in the solid-air arrangement, the third order 

harmonic is mainly the inherent nonlinearity noise in the system, including amplifier, 

couplant, transducer and test specimen.  

Although results illustrated in Figure 6.14 demonstrate that the fundamental 

frequency and the third order harmonic remains reasonably constant at various 

number of captures, in the actual tests, a sufficient number of captures should still 

be employed to reduce the random noise occurred in the experiment. 

 

Figure 6.13 Averaged frequency spectra subject to various number of captures (repetitions). A tone burst of 
15-cycle sine wave sent to test specimen S1 and the reflected signal received. 
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6.3.5.2 Digitising Voltage Scale and Sensitivity 

Various digitising voltage scales were used on the received signal from the solid-air 

contact interface subject to the same test condition alterations. A 12-bit digitisation 

was used, as discussed in Section 4.4. The time domain signals received are depicted 

in Figure 6.15. When a sufficient voltage scale is used in digitising (Figure 6.15(a) and 

(c)), the corresponding third order harmonic is not affected (Figure 6.15(b) and 

(d)). However, if the digitising voltage scale is not adequate (Figure 6.15(e), (g) and 

(i)), the target signal, e.g. the first reflection signal, cannot be fully captured and 

digitised, leaving a ‘clipped’ signal. Such clipped feature causes the odd harmonic 

components to emerge (Figure 6.15(f), (h) and (j)).  

The amplitude of both fundamental frequency and the 3rd order harmonic is shown 

in Figure 6.16(a) and (b), respectively. Due to the digitising voltage scale limit, the 

fundamental frequency, 𝐴1 is capped. For the voltage scale sufficiently covers the 

target signal, the amplitude reasonably agrees. However, the third order harmonic 

  

(a) 

 

(b) 

 

Figure 6.14 (a) Mean and standard deviation of fundamental 𝐴1. (b) Mean and standard deviation of the 3rd 
order harmonic frequency 𝐴3.  
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amplitude, 𝐴3 is at least two orders of magnitude greater digitised using insufficient 

voltage scales, compared to those using an adequate scale.  

 

 

 
3rd order harmonic 𝐴3 Fundamental frequency 𝐴1 First reflection signal  

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 6.15 Effect of various digitising voltage scale on harmonics measurement (12-bit digitisation). (a) Time 
domain using 5𝑉 scale. (b) Frequency spectrum of the first reflection signal captured using 5𝑉 scale. (c) Time 
domain using 2𝑉 scale. (d) Frequency spectrum of the first reflection signal captured using 2𝑉 scale. (e) Time 
domain using 1𝑉 scale. (f) Frequency spectrum of the first reflection signal captured using 1𝑉 scale. (g) Time 
domain using 500𝑚𝑉 scale. (h) Frequency spectrum of the first reflection signal captured using 500𝑚𝑉 scale. 

(i) Time domain using 200𝑚𝑉 scale. (j) Frequency spectrum of the first reflection signal captured using 200𝑚𝑉 
scale. 
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It is illustrated that the inadequate digitising voltage scale produces significant 

nonlinearities which could potentially overwhelm the target nonlinearity generated 

at the contact interface.  

The sufficient digitising voltage scale does not indicate that the larger voltage is 

better. A tone burst of 4V 15-cycle sinusoidal wave was applied to excited the 

transmitter. A range of adequate digitising voltage scales was used on the same 

reflected signal subject to the same condition alterations. The averaged frequency 

spectrum of the first reflection signal is given in Figure 6.17.  Due to the sufficient 

digitising voltage scales that are applied, time domain signals are not clipped off. The 

fundamental frequency 𝐴1 overlaps when different digitising scales are used and 

while the 3rd order harmonic 𝐴3 shows variations.  

  

(a) 

 

(b) 

 

Figure 6.16 (a) Mean and standard deviation of fundamental 𝐴1 subject to various digitising voltage scales. 
(b) Mean and standard deviation of the 3rd order harmonic frequency 𝐴3 subject to various digitising voltage 

scales.  
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(a) 

 

(b) 

 

Figure 6.17 (a) Averaged time domain signal subject to various digitising voltage scales (b)Averaged 
frequency spectra. A tone burst of 15-cycle sine wave sent to test specimen S1 and reflected signal received 

and digitised (50 repetitions). 

Figure 6.18 (a) Mean and standard deviation of fundamental 𝐴1 subject to various digitising voltage scales. 
(b) Mean and standard deviation of the 3rd order harmonic frequency 𝐴3 subject to various digitising voltage 

scales.  

Fundamental frequency 𝐴1 

Third harmonic 𝐴3 

(a) 

 

(b) 

 

Target signal 
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The mean fundamental frequency and the third harmonic component are shown in 

Figure 6.18 (a) and (b), respectively. The fundamental frequency amplitude remains 

constant regardless of the voltage scales. The third harmonic amplitude shows an 

increasing trend when a larger voltage scale is used with yet a tenfold difference. 

The large enough digitising voltage scale loses the sensitivity due to its coarse 

digitisation resolution, resulting in the false nonlinearity detection.  

It is clear that the digitising voltage scale plays a significant role in the high frequency 

nonlinear ultrasonic technique as either insufficient or excessive voltage scales 

cause a false nonlinearity in the signal, which would influence the detection of the 

true harmonic generation at the frictional contact interface. 

 

 Signal Processing Method  

The post-processing method, compared with the experimental factors considered 

in Section 6.3, may not crucially affect the detection of the higher order harmonics. 

However, it still plays a significant role in proper measurement of the nonlinearities 

as these high order frequency components are generally at least 40dB less than the 

fundamental frequency amplitude (Liu et al., 2011).  

 

6.4.1 Method of Extracting Frequency Amplitude  

Practical routines of extracting the high order harmonics are employed for 

longitudinal waves (Yan et al., 2009) and for shear waves (Blanloeuil et al., 2014c). A 

similar routine is adopted in this research work, as shown in Figure 6.19. Figure 6.20 

(a) illustrates an example of time domain signal received. Shear wave transducers 

were placed on the top and bottom face of the test specimen H1 (as in Table 6.2) so 

that only the system inherent nonlinearity was considered. A tone burst of 90V 15-

cycle sine wave was applied to excite the transmitter. The target signal was of the 

interest so that it was extracted from the received signal and a window function was 

applied to the extracted signal, as shown in Figure 6.20 (b).  

Different operations are applied to the windowed signal to obtain both the 

fundamental frequency and the third harmonic frequency information. The most 

applied method is the Fast Fourier Transform (FFT). The windowed truncated signal 

is converted from time domain to frequency domain (Figure 6.21 (a)). Both 

fundamental frequency and high order harmonics are discernible in this frequency 
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spectrum and their amplitude can be obtained. In the second method, bandpass 

filters with passband around 1MHz and 3MHz, respectively are applied to the 

truncated time domain signal, which provides the time domain waveform of the 

passband only. The blue line indicates the time domain waveform around 1MHz and 

the red is for the time domain of the 3rd harmonic, as shown in Figure 6.21 (b). The 

envelope amplitude of these time domain signals is taken as the fundamental and 

the 3rd harmonic amplitude. The third method to extract the frequency information 

is the total harmonic distortion analysis, as depicted in Figure 6.21 (c). This MATLAB 

built-in function enables measurement of nonlinearity of a time domain signal 

providing that the fundamental frequency is dominant. 

 

 

 

 

Receiving time domain signals 

Extracting target signal and windowing 

Method 1 

• Fast Fourier 
Transform 
(FFT) 

Fundamental frequency amplitude 𝐴1 and 3rd order harmonic 𝐴3 

 

Method 2 

• Bandpass filter 
• Time domain waveform 

of fundamental and 
higher order harmonic 

Method 3 

• Harmonic 
distortion 
analysis 

Figure 6.19 Schematic diagram of the signal processing method to extract high order harmonics.  
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(a) 

(b) 

Target signal 

Fundamental frequency 

3rd harmonic 

Fundamental frequency 

Harmonics 

(a) 

(b) 

(c) 

Figure 6.20 (a) Original time domain signal (b) Extracted target signal with and without windowing. A tone 
burst of 15-cycle sine wave propagating through test specimen H1 (50 repetitions). 

Figure 6.21 (a) Frequency spectrum using FFT. (b) Time domain signal using bandpass filter. (c) Total 
harmonic distortion analysis. . A tone burst of 15-cycle sine wave propagating through test specimen H1 (50 

repetitions). 
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The comparison of these three methods to extract the harmonic amplitudes is 

illustrated in Figure 6.22. A range of normal loads was applied to the test specimen. 

In Figure 6.22 (a) the fundamental frequency 𝐴1 extracted using the three method 

shows similar decreasing trend despite that amplitudes does not agree. The third 

harmonic amplitude 𝐴3 follows the same trend although the absolute amplitude is 

not alike. However, for the amplitude ratio 𝐴3 𝐴1⁄  overlaps regardless of the method 

applied.  

All three methods can detect the information of harmonics. Although the amplitudes 

of the harmonics may not be identical using these three methods, the trend subject 

to change in test parameters, e.g. various normal loads, is still discernible regardless 

of the method employed.  

 

 

(a) 

(b) 

(c) 

Figure 6.22 (a) Fundamental frequency amplitude, 𝐴1 (b) The 3rd harmonic amplitude, 𝐴3 (c) The ratio 
𝐴3 𝐴1⁄  subject to various normal loads and extracted using three methods. A tone burst of 15-cycle sine wave 

propagating through test specimen H1 (50 repetitions). 
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6.4.2 Effect of Signal Truncation and Windowing 

Regardless of methods of extracting the harmonic amplitude, the truncated signal 

plays an important role. For the actual measurement data, the length of the 

truncated target time domain signal and the window function applied to the 

truncated signal would potentially influence the high order harmonics 

measurement. The effect of truncation and windowing is investigated for harmonic 

generation with longitudinal waves (Liu et al., 2011). Such effect on the nonlinearity 

generation of shear waves is discussed here.  

 

 

As shown in Figure 6.23 (a) the target signal is separated using various truncation 

lengths and the corresponding frequency spectrum is illustrated in Figure 6.23 (b). 

At both fundamental frequency and the third order harmonic, the peak appears 

overlapping for various truncation length while at other frequency components, 

smaller truncation length shows a smoother frequency spectrum. Large truncation 

tends to cover not only the target signal but also the other reverberations or echoes, 

 

(a) 

(b) 

Fundamental frequency 

3rd harmonic 

Figure 6.23 (a) Original time domain signal and truncated signal with various length. (b) Frequency 
spectrum of the various truncated length. A tone burst of 15-cycle sine wave propagating through test 

specimen H1 (50 repetitions). 
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which result in spikes in the frequency spectrum. In Figure 6.24, the fundamental 

amplitude 𝐴1 decreases with the increasing truncation window length as large 

truncation also contains more portion of signal without little ultrasonic energy and 

lows the ‘averaged’ amplitude. The third order harmonic amplitude  𝐴3 remains 

reasonably unaffected when the truncation length becomes several cycles wider 

than the actual target signal. It decreases as well as the fundamental frequency when 

the truncation length is more than sufficient.  

 

 

 

(a) 

(b) 

(c) 

Figure 6.24 (a) Fundamental frequency amplitude, 𝐴1 (b) The 3rd harmonic amplitude, 𝐴3 (c) The ratio 
𝐴3 𝐴1⁄  subject to various truncation length. A tone burst of 15-cycle sine wave propagating through test 

specimen H1 (50 repetitions) 
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(a) 

(b) 

Fundamental frequency 

3rd harmonic 

(a) 

(b) 

(c) 

Figure 6.25 (a) Averaged target signal of 15-cycle sinusoidal wave. (b) Frequency spectrum of the target 
signal in (a) subject to different window functions. A tone burst of 15-cycle sine wave propagating through 

test specimen H1 (50 repetitions). 

Figure 6.26 (a) Fundamental frequency amplitude, 𝐴1 (b) The 3rd harmonic amplitude, 𝐴3 (c) The 
ratio 𝐴3 𝐴1⁄  subject to various truncation length and window functions. A tone burst of 15-cycle 

sine wave propagating through test specimen H1 (50 repetitions). 
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Window function also influences the measurement of the higher order harmonics. 

With all other factors unaltered, the effect of window function is depicted in Figure 

6.25 and Figure 6.26. It is noticed that when rectangular window is applied, the 

higher order frequency component is less discernible compared with other window 

functions (Figure 6.25 (b)). The amplitude of fundamental frequency 𝐴1, the third 

order harmonic 𝐴3 and their ratio 𝐴3/𝐴1 measured using rectangular window is also 

greater than those of other window functions, regardless of the truncation length 

(Figure 6.26 (a)). Results from Hann, Hamming and Gaussian window show little 

discrepancy. The Hann window function is adopted as it gives the least false 

nonlinearity (Liu et al. 2011) and the rectangular window should not be applied. 

It should be noted that zeros are often padded on the time domain signal before 

time domain signal is converted to frequency spectrum using FFT operation, 

particular for a time domain signal with insufficient data points. However, zero-

padding only works as interpolation in the frequency domain and improves merely  

the appearance of the frequency spectrum (Shin and Hammond, 1993). The true 

resolution in frequency domain is not improved. In this research work,  a 15-cycle 

target signal with 2ns time domain resolution results in typically 10000 data points 

and a frequency resolution of  50kHz. With such resolution, the fundamental and 

harmonic components are resolvable. Therefore, in the following work, zero-

padding is not applied with FFT operation. 

The signal process method, despite insignificant, still affect the true nonlinearity 

measurement. Such influence could be compensated to yield the true nonlinearity. 

In a more practical approach, the same signal processing should be applied to all the 

tests, regardless of the harmonic amplitude method, truncation length and window 

function, so that the harmonics of interest due to test conditions can be revealed.  

 

  Laser Vibrometer Measurement  

To understand the nonlinearity generation from the frictional contact interface, 

knowledge of the ultrasonically induced shear stress is of significance. Only 

sufficiently large shear stress can activate the ‘stick-slip’ mode at the pre-

compressed contact interface and results in measurable nonlinearity. Inadequate 

ultrasonically induced shear stress is unable to trigger the slip motion at the contact 

interfaces. Although large stress can be obtained using an amplifier to output an 

enlarged incident wave, the stress level is still unavailable from either the amplifier 

settings or the measured ultrasound signal. Therefore, direct measurement of the 
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shear stress is critical and such measurement is carried out using a laser vibrometer 

and then measured displacement is converted to the stress (Liu et al., 2011; 

Blanloeuil et al., 2014c). 

 

6.5.1 Laser Measurement Equipment 

POLYTEC laser sensor head (OFV 354) was employed in conjunction with the 

vibrometer controller (OFV 2500), as shown in Figure 6.27. As the primary frequency 

used in this research work is 1MHz, the velocity decoder was employed as this 

configuration enabled the measurable frequency up to 3MHz. 

 

 

6.5.2 Laser Measurement Configurations 

Generally using laser vibrometer to measure the displacement of longitudinal 

ultrasound can be carried out at the contact face without too much difficulty. As 

longitudinal wave produces an out-of-plane displacement, positioning the laser 

vibrometer in a way that the laser beam is perpendicular to the contacting face and 

parallel to ultrasonic propagation direction enables the longitudinal displacement 

measurement. However, it is challenging to measure the displacement of a shear 

polarised ultrasound at a contact face as the displacement direction is parallel to 

the contact face. Three approaches were attempted here. 

 

Figure 6.27 Polytec laser sensor head and vibrometer controller (Reproduced from Polytec datasheet). 
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The first measurement configuration attempted is shown in Figure 6.28. A normal 

incidence shear wave transducer was placed close to the edge of the specimen and 

the laser measurement was carried out at the top end on the circumferential face. 

In this configuration, the displacement measured on the edge of specimen was 

assumed to be the same as the ultrasound displacement at the contact face of the 

specimen. However, as the size of transducer was finite and during propagation the 

ultrasound beam spread the measured ultrasound on the edge was far more 

complex. The displacement measured using this configuration did not represent the 

true displacement at the centre of the specimen. 

The second approach attempted is illustrated in Figure 6.29. A small reflective prism 

was bonded at the centre of the contact face. The normal incidence shear wave 

probe was placed in the centre. The displacement at the bottom of the reflective 

prism was assumed the same as the displacement at the contact face as the in-place 

shear motion was converted to the out-of-plane motion of the reflective prism. 

Using this arrangement, the true displacement at the specimen was measured as 

the ultrasound propagation was not affected by the confined geometry as in the first 

configuration (Figure 6.28). However, practically the laser measurement was still 

influenced by the dimension, location and the bonding of the reflective prism.  

 

Normal incidence shear wave probe 

polarisation 

Laser vibrometer 

Measurement point (a) (b) 

‘Edge’ method 

Figure 6.28 (a) Schematic diagram of displacement amplitude measurement using laser vibrometer: 
transducer on the edge of specimen (‘Edge’ method). (b) Measurement arrangement. 
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The approach used in literature (Blanloeuil et al., 2014c) was adopted as the third 

configuration of measuring the displacement of shear polarised ultrasound (Figure 

6.30). The normal incidence shear wave probe was mounted in the centre of a test 

specimen and the specimen was placed at 45° angle to the laser beam. A removable 

reflective prism was positioned close to the contact face where the measurement 

was taken. The displacement along the tangential direction was decomposed in x 

and y directions as shown in Figure 6.30 (c). The x-direction component of the 

displacement can be detected by the laser vibrometer. The main advantage of this 

approach was that the ultrasound displacement at the contact face was not affected 

by the confined geometry and the target measurement surface was free from other 

factors, such as the bonded reflective prism. 

 

Normal incidence shear wave probe 
polarisation 

Reflective prism 

Laser vibrometer 

Measurement point 

‘Mirror’ method 

(a) 

(b) 

Figure 6.29 (a) Schematic diagram of displacement amplitude measurement using laser vibrometer: reflective 
prism bonded at the centre of specimen (‘Mirror’ method). (b)Reflective prism bonded on the specimen. 
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The displacement measurement using laser vibrometer was carried out in the 

arrangement as shown in Table 6.3. A tone burst of 5-cycle sinusoidal wave was used 

to excite the transmitter (V153, Olympus) at various excitation levels. The ultrasonic 

signal was also recorded using the pulse-echo method simultaneously.  

 

 

 

Table 6.3 Summary of the displacement measurement arrangement using laser vibrometer. 

Test Specimen Arrangement 

V152 (𝟏𝐌𝐇𝐳, Olympus) V153 (1MHz, Olympus) 

Specimen S Specimen L Specimen S Specimen L 

Amplifier(RITEC) excitation voltage (peak-peak) (𝐕): 90, 140, 280, 420, 560, 700, 840 
 

Normal incidence shear wave probe 

polarisation 

Laser vibrometer 

Reflective prism 

‘45-degree angle’ method 

(a) (b) 

Normal direction 

Tangential direction 

Y  

X  

Displacement direction 

Displacement X-component 

Displacement Y-component 

(c) 

Figure 6.30 (a) Schematic diagram of displacement amplitude measurement using laser vibrometer: 45° 
oriented reflective prism. (b) Adjustable reflective prism at the centre of specimen (45-degree angle 

method). (c) Displacement decomposition in x and y directions. 
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6.5.3 Laser Measurement Results 

An example of laser measurement is demonstrated in Figure 6.31. The shear wave 

was triggered from the ultrasonic transducer and when it struck the target contact 

face, the out-of-plane shear component was detected by the laser vibrometer Figure 

6.31 (b). After another same time duration, the reflected signal was captured by the 

transducer Figure 6.31 (a). Due to relationship of time-of-flight, the signal captured 

by the laser vibrometer was the shear polarisation introduced motion. It is noted 

that in Figure 6.31 (b) there was no apparent signal detected before the shear wave 

arrived at the target contact face. This means that longitudinal wave with faster 

travelling speed was unable to cause any significant out-of-plane motion and the 

normal incidence shear wave transducers functioned properly under high excitation 

amplitudes, propagating primarily the shear polarised ultrasound.  

 

The signal encircled in Figure 6.31 (b) was converted into velocity as the velocity 

decoder was employed, as depicted in Figure 6.32 (a). Integration operation was 

 

1st reflection signal 

Corresponding laser signal 

(a) 

(b) 

Figure 6.31 (a) Ultrasonic measurement using pulse-echo method for test specimen S with probe V153, subject 
to varying excitations. (b) Corresponding simultaneous laser vibrometer measurement. Signal encircled 

received first by laser vibrometer and then by ultrasound digitiser. (75 repetitions). 
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performed to obtain the displacement (Figure 6.32 (b)). The maximum of the 

displacement was taken and the amplitude of the displacement at the target contact 

face was worked out using the following trigonometrical rule. 

 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡45° 𝑐𝑜𝑠 (45°)⁄   (6.1) 

 

 

For various test specimens, the displacement at the contact face measured using 

laser vibrometer is illustrated in Figure 6.33. Results from all three measurement 

configurations show an increasing trend with the increasing excitation amplitude. 

The ‘45° angle’ method gives the largest shear polarised displacement and the ‘Edge’ 

method gives the least displacement. 

As mentioned previously in Section 6.5.2, in the ‘Edge’ method configuration, the 

transducer was placed close to the edge of the test specimen and shear wave 

propagation was influenced by the confined geometry of the test specimen. The 

displacement measured using this method was not as same as the wave travelling 

through the centre of the specimen. In the ‘Mirror’ method, displacement measured 

was affected by the geometry of the reflective prism and the bonding, which 

 

(a) 

(b) 

Figure 6.32 (a) Laser measured velocity and (b) laser measured displacement of test specimen S with probe 
V153, subject to varying excitations. (75 repetitions). 
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resulted in smaller measured displacement. The displacement measured using 

these two methods were not used. 

In the ‘45° angle’ method, the target contact face was not influenced by bonding of 

extra materials and measurement using laser vibrometer was at the centre of the 

contact face. The displacement measured using this method was therefore adopted 

in the following research work. 

 

 

It is also worth looking at the displacement measured using laser vibrometer 

compared with the ultrasonic measurement using the pulse-echo method (Figure 

6.34). The displacement dependence on the excitation levels resembles that of the 

ultrasonic pulse-echo amplitude. It is reasonable that within the possible maximum 

excitations (840V peak-peak due to the amplifier and transducer specification), 

such dependence is linear. For different transducer and specimen combinations, the 

linear trends between the ultrasound pulse-echo amplitude and the displacement 

are shown in Figure 6.35.  

  

(c) (d) 

(a) (b) 

Figure 6.33 Shear polarised ultrasound displacement measurement using different laser vibrometer 
configurations subject to amplification levels. (a) Probe V153 on Specimen S. (b) Probe V153 on Specimen L. 

(c) Probe V152 on Specimen S. (d) Probe V152 on Specimen L. (75 repetitions).  
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Figure 6.34 Shear polarised ultrasound displacement measurement using 45° angle subject to excitations 
versus the pulse-echo ultrasonic measurement. (a) Probe V153 on Specimen S. (b) Probe V153 on Specimen 

L. (c) Probe V152 on Specimen S. (d) Probe V152 on Specimen L. (75 repetitions). 

 

Figure 6.35 Shear wave ultrasound displacement and its corresponding ultrasonic pulse-echo amplitude for 
transducer V153 and V152 and test specimen S and L. (75 repetitions). 

(c) (d) 

(a) (b) 
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The ultrasound introduced shear stress at the target contact face is calculated using 

the Equation (6.2): 

 𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 = 𝐺𝑘𝐴 𝑐𝑜𝑛𝑡𝑎𝑐𝑡, (6.2) 

where 𝐺 is the shear modulus of the test specimen, 𝑘 the wave number and 𝐴 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 

the displacement of shear wave at the interface. Given that 1MHz shear wave 

employed, the possibly maximum shear stress introduced by ultrasound is obtained 

for each transducer and test specimen combination, as illustrated in Figure 6.36. It 

is noticed that he maximum shear stress is less than 5MPa for transdcuer V153 on 

specimen S and less than 2MPa for specimen L, 2.5MPa for V152-S and less than 

2MPa for V152-L.  

 

 

Results in Figure 6.36 provides sufficient information on the shear stress introduced 

by the shear polarised ultrasound at the target contact face. Although the 

displacement (or shear stress) measurement are of limited accuracy due to the 

experiment setup and configurations, it still enables a reasonable knowledge of the 

shear stress arising from ultrasound, which was unavailable previously. The unique 

‘excitation amplitude-ultrasonic pulse echo amplitude-shear stress’ relationship of 

each transducer and specimen (Figure 6.36) enables the stress level under a certain 

excitation and the corresponding ultrasonic pulse-echo amplitude to be estimated, 

within the practical limit of amplification level (e.g. 840V of RITEC amplifier). 

    
Figure 6.36 Shear polarised ultrasound introduced shears stress and its corresponding ultrasonic pulse-

echo amplitude for transducer V153 and V152 and test specimen S and L. (75 repetitions). 
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 Conclusion 

In this chapter, experimental configurations for measuring harmonics at the rough 

contacts are investigated. High frequency nonlinear ultrasonic technique is 

employed throughout the investigation. Considerations also focus on the 

experimental variables, including transducer alignment, coupling, amplification and 

data acquisition sensitivity, which affect either the test implementation or the true 

measurement of the nonlinearity. The system inherent nonlinearity may cause false 

harmonics being detected if experiments are not carefully conducted. A practical 

approach to ensure the true measurement of harmonic generation from the rough 

contacts is to keep test configuration, data acquisition and signal processing 

consistent so that even the system inherent or false nonlinearity cannot be 

compensated or minimised, it remains at a reasonably unaltered. 

The incident shear stress is critical in the activation of the nonlinear ‘stick-slip’ 

motion at a rough interface but it is difficult to measure. Measurement of the shear 

stress is carried out using a laser vibrometer and an angle test configuration. Using 

proper amplification setup, the displacement of the incident shear wave at the 

interface is approximately tens of nanometres and the shear stress is less than 

5MPa. Despite the limited accuracy, the shear stress measured with laser 

vibrometer provides guidance on the following detection of contact nonlinearity in 

experiments.  
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7 MEASUREMENT OF ULTRASONIC 
NONLINEARITY AT ROUGH 
CONTACTS 

 

 

In this chapter, experimental configurations discussed in the previous section are 

adopted in the measurement of nonlinearity generation due to shear polarised 

ultrasound interacting with a rough contact interface. Transmission test 

configuration and a novel reflection test configuration are first discussed and a 

method of removing the system inherent nonlinearity is followed. The experimental 

results show that the contact, nonlinearity is generated and is detectable. Influence 

of several factors affecting the nonlinear interaction at the contact interface is 

investigated including the ultrasonic incident amplitude and the normal stress. The 

contact nonlinearity measurement using subsequent echoes is also discussed. 

 

 Normally Incident Shear Wave Experiment 

Configuration 

As mentioned previously, most researches on the nonlinearity generation of the 

interaction between a shear wave and a rough interface focus on numerical study 

and experimental investigation is lacking. The experimental configurations used in 

the nonlinearity generation when a longitudinal wave strikes the contact interface 

can be applied here. The most applied experimental configuration is the pitch-catch 
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approach where the transmission signal is used. In this work, an alternative novel 

approach is studied where the reflection signal is employed. Details of both 

arrangements are shown as follows. 

 

7.1.1 Pitch-Catch Transmission Configuration 

The test configuration using pitch-catch transmission arrangement is illustrated in  

Figure 7.1. Two normal incidence shear wave transducers were employed. The 

transducer with the centre frequency of the fundamental frequency 1𝑓 mounted on 

the top test specimen was working as the transmitter. The probe with the centre 

frequency at the 3rd order harmonic 3𝑓 was clamped on a second test specimen and 

works as the receiver. Two test specimens were brought to contact under the 

normally applied load by the hydraulic cylinder. The ultrasonic signal travelled from 

the transmitter, through the top test specimen, interacting at the interface, 

transmitted through the second test specimen and received by the second shear 

wave probe.  

 

 

 

 

Load cell 

Test specimen 

Loading frame 

Hydraulic cylinder 

Ultrasonic probes 

Loading block 

Figure 7.1 Schematic diagram of the test configuration: pitch-catch transmission arrangement.  
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Comparison tests were carried out using the pitch-catch transmission arrangement 

as illustrated in Figure 7.2. Two test specimens with short length were brought to 

contact under the normally applied force and a solid-solid contact interface formed 

(Figure 7.2 (a)). In Figure 7.2 (b) a single specimen with a length equal to the total 

length of the two separate short test specimens was loaded. Transducers were 

placed on top and bottom faces of the long test specimen. In this arrangement, the 

contact interface was excluded, and the ultrasound travelled directly from the 

transmitter to the receiver through the material without any interaction with the 

contact interface. Test conditions for both arrangements are summarised in Table 

7.1.  

 

Ultrasonic transmitters 

Ultrasonic receivers 

Two separate test specimens A single test specimen 

(a) (b) 

Figure 7.2  Pitch-catch transmission arrangement comparison. (a) two separate test specimens with 
contact interface. (b) a single test specimen without contact interface.  
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The time domain signals of both two-specimen and a single specimen are depicted 

in Figure 7.3 and Figure 7.4, respectively. Due to the existence of the contact 

interface in the two-specimen arrangement, several echoes are received by the 

wideband transducer. The first signal is the transmitted ultrasound through the 

contact interface. The second and third signals are the reflections within the bottom 

test specimen.  For the single test specimen without the contact interface, the time 

domain signal is clearer. The first signal is the transmission and the second signal is 

the reflection from the top face of the test specimen. Due to the significant 

amplitude, the first transmitted signal is used for the following analysis. The same 

signal processing method is applied to both test data to ensure the consistency. 

 

 

Table 7.1 Test conditions in pitch-catch transmission arrangement.  

 With contact interface Without contact interface 

Test specimen Al Alloy 6082 L1-S4 Al Alloy 6082 H1 

Transmitter V152 1MHz V152 1MHz 

Receiver V155 5MHz V155 5MHz 

Waveform 15-cycle 1MHz sine wave 15-cycle 1MHz sine wave 

Excitation voltage 90V, 280V 90V, 280V 

Normal force 0 − 40 kN 0 − 40 kN 
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Ultrasonic transmitter 

Ultrasonic receiver 

Two separate test specimens 

(b) (a) 

1st transmitted signal 2nd echo 

3rd echo 

Ultrasonic transmitter 

Ultrasonic receiver 

A single test specimen 

(b) (a) 

1st transmitted signal 

2nd echo 

Figure 7.3  (a)Time domain signal in the test with contact interface (L1-S4, excitation 90𝑉, normal stress 
0.12𝑀𝑃𝑎,  100 repetitions). (b)Schematic diagram of two separate test specimens with contact interface.  

Figure 7.4  (a) Time domain signal in the test without contact interface (H1, excitation 90𝑉, normal stress 
0.12𝑀𝑃𝑎, 100 repetitions). (b)Schematic diagram of a single test specimen without contact interface. 
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The fundamental frequency amplitude 𝐴1, the third harmonic 𝐴3 and the ratio 𝐴3 𝐴1⁄  

of the test with contact interface formed by two separate test specimens are 

illustrated in Figure 7.5, subject to different incident amplitudes (90V and 280V 

excitation) and a range of normal stress. The fundamental frequency amplitude, 𝐴1 

rises when the normally applied stress starts to increase and reaches and remains 

approximately constant when the normal stress is high. When two separate test 

specimens are brought to contact under the increasing loads, a higher portion of 

ultrasound is transmitted through the contact interface. Most of the ultrasonic 

energy transmitted is through when the contact interface is compressed at higher 

loads.  

As discussed in Chapter 5, only odd harmonics (3rd and 5th, etc.) are generated from 

a rough contact and in this work the third harmonic is considered. The third order 

harmonic amplitude 𝐴3, shows a different trend over the increasing load. As the 

normal stress starts to increase, the shear wave can interact with the contact 

interface nonlinearly. The shear wave introduced tangential stress, which begins to 

overcome the frictional force at the contact interface and initiates slip of the contact 

faces, resulting in the distortion of the waveform transmitted through, in the form 

of odd order harmonics, as shown in Figure 7.6 (a). When normal stress applied to 

 

Nonlinear interactions 

(a) 

(b) 

(c) 

Figure 7.5 (a) Fundamental frequency amplitude 𝐴1, (b)The third order harmonic 𝐴3, (c) The ratio 𝐴3 𝐴1⁄  
subject to various normal stresses and incident amplitudes of the two separate test specimens with contact 

interface (L1-S4, 100 repetitions). 
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the contact interface is further increasing, the friction force becomes difficult to 

overcome by the ultrasound introduced shear stress, so the slips occur but with 

reduced extent and consequently the odd order harmonic amplitude drops. Further 

compressing the interface restricts the occurrence of the slip motions as the 

frictional force is sufficiently large for the incident shear stress to overcome. As a 

result, the transmitted waveform is least distorted, and the third order harmonics 

remains at the minimum values at high stresses, as illustrated in Figure 7.6 (b). 

 

 

The amplitude ratio 𝐴3 𝐴1⁄  shows a similar dependence as the third order harmonic, 

increasing to a peak and falling along with rising normal stress applied at the contact.  

For the comparison test without the contact interface, the fundamental frequency 

amplitude 𝐴1, the third harmonic 𝐴3 and the ratio 𝐴3 𝐴1⁄ , show a distinct trend over 

the varying normal stress, as demonstrated in Figure 7.7. As there is no interface, the 

ultrasound travel directly from one face of the specimen to the other face. The 

varying loads applied normally have no influence on the fundamental frequency 

amplitude. It is not surprising that the third order harmonic amplitude remains 

reasonably constant, indicating little variation over the normal stress. Even 

increasing the incident amplitude of shear wave to a higher excitation, the third 

harmonic amplitudes still shows independence over the applied normal load. This 

 

Normal load 

Fundamental frequency  

High order harmonics 

Frictional force 

(a) (b) 

Figure 7.6  (a) Two separate test specimens with contact interface under low normal load. (b) Two separate 
test specimens with contact interface under high normal load.  

 



124 

 

third harmonic 𝐴3 mainly from the test system itself (transducer, couplant and test 

specimen) as no contact interface is invovled. It is noticed that compared to Figure 

7.5,  ampliutdes of 𝐴1 and 𝐴3 in Figure 7.7 are smaller subject to the same excitation 

level and it is possibly caused by mounting the transducers on test specimens. 

Despite this amplitude difference, test resutls still show that the higher order 

frequency component merely comes from the system (previously discussed in 

Chapter 6) and no more extra nonlinearity is generated inside the test specimen. 

 

7.1.2 Pitch-Catch Reflection Configuration 

In this work, a novel reflection measurement configuration is investigated in the 

measurement of the nonlinearity generated from the contact interface. As shown in 

Figure 7.8, the low-frequency transmitter and the high-frequency receiver were 

placed side by side on the top face of a test specimen. A second test specimen was 

brought to contact with the top specimen under normally applied load. Shear 

polarised ultrasound travelled from the transmitter and after striking the contact 

interface, received by the wideband receiver.  

    

No sign of nonlinear interactions 

(a) 

(b) 

(c) 

Figure 7.7 (a) Fundamental frequency amplitude 𝐴1, (b)The third order harmonic 𝐴3, (c) The ratio 𝐴3 𝐴1⁄  
subject to various normal stresses and incident amplitudes of a single test specimen without contact interface 

(H1, 100 repetitions). 
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Comparison tests were also carried out using the reflection configuration as 

depicted in Figure 7.9. In Figure 7.9 (a), two specimens were brought to contact and 

a solid-solid contact interface forms. In Figure 7.9 (b) only the top single specimen 

was loaded which formed a solid-air contact interface. In this arrangement, the 

solid-solid contact interface was ruled out and no interaction of the ultrasound 

occurs at the contact interface. Table 7.2 summarises the test conditions for these 

two comparison tests. 

 

 

 

Load cell 

Test specimen 

Loading frame 

Hydraulic cylinder 

Ultrasonic probes 

Loading block 

Figure 7.8 Schematic diagram of the test configuration: pitch-catch reflection arrangement. 
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The time domain signal using the pitch-catch reflection configuration is shown in 

Figure 7.10. In both solid-solid contact interface test and the solid-air contact 

interface, the same top test specimen with ultrasonic transducers is used and the 

reflected signals (first, second and third reflections) shows the same time of flight 

in both arrangements. Due to the relatively large amplitude, the first reflection signal 

is truncated for the further frequency analysis.  

 

 

Table 7.2 Test conditions in pitch-catch reflection arrangement.  

 Solid-solid interface Solid-air interface 

Test specimen Al Alloy 6082 S1-S4 Al Alloy 6082 S1 

Transmitter V153 1MHz V153 1MHz 

Receiver V155 5MHz V155 5MHz 

Waveform 15-cycle 1MHz sine wave 15-cycle 1MHz sine wave 

Excitation voltage 90, 280, 560V 90, 280, 560V 

Normal force 0 − 45 kN 0 − 45 kN 
 

Ultrasonic transmitters 

Solid-solid contact interface 

Solid-air contact interface  

Ultrasonic receivers 

(a) (b) 

Figure 7.9  Pitch-catch reflection arrangement comparison. (a) Two separate test specimens with solid-solid 
contact interface. (b) A single test specimen with solid-air contact interface.  
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The fundamental frequency amplitude 𝐴1, the third harmonic 𝐴3 and the amplitude 

ratio 𝐴3 𝐴1⁄  of the reflection arrangement with the solid-solid contact interface are 

depicted in Figure 7.11. The fundamental frequency amplitude, 𝐴1 drops when the 

normally applied stress starts to increase and reaches and remains approximately 

constant when the normal stress is high Figure 7.11 (a). When two separate test 

specimens are brought to contact under the increasing force, more ultrasound 

transmitted through the contact interface and less is reflected. When the contact 

interface is compressed at higher load, minimum level of ultrasound is reflected. 

 

    

Ultrasonic transducers 

(a) (b) 

1st reflected signal 
2nd echo 

3rd echo 

Figure 7.10  (a) Time domain signal in the test using reflection configuration (S1-Air, excitation 90𝑉, 100 
repetitions). (b)Schematic diagram of pitch-catch reflection test with solid-solid or solid-air contact interface. 
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The third order harmonic amplitude 𝐴3, however, rises and falls with the increasing 

loads, as in Figure 7.11 (b). As the normal stress starts to increase, shear wave can 

overcome the frictional force at the interface, activating the ‘slip-stick’ motion. Such 

nonlinear interaction of the ultrasound wave with the interface causes the distortion 

of the waveform reflected backwards. Further compressing the interface, the 

incident shear stress becomes gradually unable to overcome the friction force, 

which leads to a reduced extent of ‘slip-stick’ motion and falling odd order harmonic. 

When the contact interface is heavily compressed, the nonlinear interaction 

between shear wave and frictional contact faces are impeded under the high friction 

force and the high order harmonics are suppressed. The amplitude ratio 𝐴3 𝐴1⁄  also 

shows a ‘rise-fall’ trend with increasing normal stress applied at the contact 

interface Figure 7.11 (c).  

For the comparison test with the solid-air interface, the fundamental frequency 

amplitude 𝐴1, the third harmonic 𝐴3 and the ratio 𝐴3 𝐴1⁄  all show little change with 

     

Nonlinear interactions 

(a) 

(b) 

(c) 

Figure 7.11  (a) Fundamental frequency amplitude 𝐴1, (b)The third order harmonic 𝐴3, (c) The ratio 𝐴3 𝐴1⁄  
subject to various normal stresses and incident amplitudes of the test with solid-solid contact interface (S1-

S4, 100 repetitions). 
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varying normal stress, as demonstrated in Figure 7.12. Due to the non-existence of 

the solid-solid interface, the ultrasound reflects without any interaction at the solid-

air interface. The normally applied loads have no influence on the fundamental 

frequency and the third harmonic, regardless of the incident amplitude of shear 

wave. The measured high order frequency component is only the systems built-in 

nonlinearity. 

 

 

7.1.3  Comparison of Pitch-Catch Transmission and Reflection 

Configurations 

Combining the pitch-catch transmission test with contact interface and without 

contact interface, as shown in Figure 7.13, it is reasonable to conclude that the third 

harmonic generation originates from the interface and the interaction of the shear 

wave with the frictional interface, e.g. the ‘slip-stick’ motion, is the source of the 

   

No sign of nonlinear interactions 

(a) 

(b) 

(c) 

Figure 7.12 (a) Fundamental frequency amplitude 𝐴1, (b)The third order harmonic 𝐴3, (c) The ratio 𝐴3 𝐴1⁄  
subject to various normal stresses and incident amplitudes of test with solid-air contact interface (S1-Air, 100 

repetitions). 
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nonlinearity. Although some systems inherent nonlinearity is measured in the single 

test specimen, the amplitude is much less than that from the interface. In the pitch-

catch transmission configuration, the nonlinearity originates from the interface is 

detectable.  

 

 

For the pitch-catch reflection test with solid-solid and solid-air interface, (Figure 

7.14) it also concludes that the third harmonic generation occurs due to the 

interaction of the shear wave with the frictional contact interface, e.g. the ‘slip-stick’ 

motion. In the pitch-catch reflection configuration, that nonlinearity originates from 

the interface is detectable.  

   
Figure 7.13 The third harmonic amplitude 𝐴3 of test with contact interface (L1-S4) and without contact 

interface (H1) using pitch-catch transmisstion configurations (100 repetitions). 
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Both pitch-catch transmission and reflection configurations are applicable to the 

measurement of the harmonic generation originating from a rough interface. Such 

results also agree with the finding from previous theoretical and numerical study, 

that higher order harmonics appear in both transmission and reflection (O’Neill et 

al., 2001). Both test arrangements following the high frequency nonlinear ultrasonic 

technique prove their usefulness in measuring the contact nonlinearity due to 

interaction of a shear wave and a frictional interface.  

However, practically that the pitch-catch transmission configuration is more 

challenging to achieve test results, compared to the reflection configuration. In both 

transmission arrangement (Figure 7.13) and reflection configuration (Figure 7.14), 

the peak of the third order harmonic occurs at low contact stress region. At such 

regions, conformal contact is not fully developed as the asperities still deform and 

yield, which result in an increased transmission and reflection decrease. Figure 7.15 

schematically shows how the gaps between the contact asperities hinder the 

transmission of ultrasound. Although an ultrasonic wave with distortion can travel 

through the interface, the transmitted wave fails to carry much information of the 

nonlinear interaction at the interface. When the normal stress is large, and the 

contact is developed, where the transmission and reflection remain stabilised, the 

harmonic generation, however, is impeded to occur because the likelihood of slip is 

reduced. 

   

Figure 7.14 The third harmonic amplitude 𝐴3 of test with solid-solid interface (S1-S4) and solid-air interface 
(S1-Air) using pitch-catch reflection configuration (100 repetitions). 

.  
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An example of such case is illustrated in Figure 7.16. In the sensitive region of the 

contact nonlinearity generation (low normal stress), both first and third harmonic 

frequency amplitudes are hardly noticeable. The third harmonic amplitude 𝐴3 does 

not show apparent ‘rise-fall’ trend. Even though the nonlinear interaction of the 

shear polarised ultrasound with the rough interface occurs, the transmitted signal 

is weak, and the harmonic generation is missed unintentionally (Figure 7.17 (a)).  

 

 

Normal load 

Incident wave 

Reflected wave 

Transmitted wave 

(a) (b) 

Nonlinearity 
generation 

Contact stress 

‘Stick-slip’ activation region 
Contact nonlinearity generation  

‘Stick’ region 
No contact nonlinearity generation  

(c) 

Figure 7.15  (a) Two test specimens with contact interface under low normal loads. (b) Two test specimens 
with contact interface under high normal loads. (c) Contact nonlinearity generation region for (a) and (b). 
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Sensitive region for contact 
nonlinearity generation 

Insensitive region for contact 
nonlinearity generation 

(a) 

(b) 

(c) 

Figure 7.16 (a) Fundamental frequency amplitude 𝐴1, (b)The third order harmonic 𝐴3, (c) The ratio 𝐴3 𝐴1⁄  
subject to various normal stresses and incident amplitudes of the pitch-catch transmission arrangement (L1-

S4, 100 repetitions).  
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Figure 7.17 Contact nonlinearity measurable zone. (a) Limited measurable zone for transmission configuration. 
(b) Measurable zone for reflection configuration.  
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With the novel reflection arrangement, although it is decreasing when normal stress 

is increasingly applied, the ‘always’-noticeable reflected signal ensures the detection 

of the contact-generated harmonics (Figure 7.17 (b)). 

The other practical advantage of the pitch-catch reflection configuration over the 

transmission is that it provides the feasibility of taking measurement from one side 

of the contact interface. In the laboratory condition, access to the contact interface 

from both sides by placing one transducer on each side can be achieved without 

much difficulty. However, in most mechanical components only one-side access is 

practically possible. In such cases, the transmission configuration is not useful at all 

while the reflection arrangement shows its flexibility of placing ultrasonic 

transducers on the same side of a contact interface.  

Due to the practical benefits of the g.ood contact harmonics generation detection 

and flexibility of instrumentation, the novel pitch-catch reflection configuration is 

therefore applied for all the following tests. 

 

 Method of Removing Nonlinearity from Other 

Sources 

From previous test results it is noticed that the third order harmonic amplitude is 

non-zero for both the single test specimen in the transmission arrangement and the 

solid-air contact interface in the reflection configuration, where no solid-solid 

interface is formed. Clearly the measurement harmonic cannot be generated from 

the contact interface because there isn’t one. The only source of such nonlinearity 

is the measurement system. It is of significance to understand the influence of the 

system built-in harmonics to the nonlinearity originated at the rough interface. As 

discussed previously, the pitch-catch reflection configuration is employed in the 

following tests.  
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7.2.1 Solid-Air Contact Interface 

 

 

In the pitch-catch reflection arrangement, it is straightforward to use the solid-air 

contact interface to account for the system built-in nonlinearity. Figure 7.18 

indicates several possible sources of the system built-in nonlinearity, which are 

listed in Table 7.3. The effect of each source cannot easily be investigated individually 

 

Table 7.3 Possible source of nonlinearity in the solid-air contact interface using pitch-catch reflection 
arrangement.  

Ultrasonic 

transducer 

Higher order harmonics are also generated even when it is 

driven at its main resonant frequency, e.g. the 

fundamental frequency. 

High power 

amplifier 

When the fundamental frequency is amplified, the higher order 

odd harmonics are also amplified to some extent. 

Coupling layer 
Coupling material may behave nonlinearly due to the internal 

structure, when subject to high stress. 

Test specimen 
Test specimen may behave nonlinearly due to the internal 

structure, when subject to high stress. 

Loadings 
Load may change the material behaviour from linear to 

nonlinear. 
 

Applied normal load  

Test specimen subject to loading 

Coupling layer (‘Exaggerated’) 

Solid-air contact interface  

Ultrasonic receivers 

 
High power excitation signal 

Figure 7.18  Possible source of system built-in nonlinearity from in the solid-air contact interface test 
using pitch-catch arrangement.  
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as they are coupled. It is reasonable to treat these sources as a single source of 

harmonic generation.  

 

 

 

Table 7.4 Test conditions in solid-air contact interface.  

 Solid-air contact interface 

Test specimen Al Alloy 6082 S1 

Transducer V153-V155 

Waveform 15-cycle 1MHz sine wave 

Excitation voltage 1V −  420V (peak-peak) 

Normal force 0 − 45 kN 
 

   

Slight change over 
normal stress 

(a) (b) 

Figure 7.19 (a) The fundamental frequency amplitude 𝐴1, (b) The third harmonic amplitude 𝐴3 of solid-air 
contact interface (S1-Air) subject to various amplification levels and normally applied loads (100 

repetitions).  
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Test conditions are summarised in Table 7.4. Figure 7.19 shows the fundamental 

frequency 𝐴1 and the third harmonic amplitude 𝐴3 of the solid-air contact interface 

subject to various normal stresses and excitation levels. It is noticed that the 

fundamental frequency amplitude 𝐴1 drops slightly with the increasing normal 

stress, although the test specimen contacts only with air. The third harmonic 

amplitude  𝐴3, although showing slight fluctuations, is reasonably constant over the 

normal stress, even under the high amplification is applied. Relatively lareg 

deviations (10%) for the third harmonics are shown in Figure 7.19 (b) for solid-air 

interface as there is no extra harmonic from the contact and it measures the system 

inherent nonlineairty. 

 As the fundamental frequency 𝐴1 is still affected by the normal stress, the third 

harmonic 𝐴3 can be treated as independent of the normal stress (Equation (7.1)) 

and the fundamental frequency 𝐴1 (Equation (7.2)). It is only influenced by the 

excitation levels used, i.e. the amplitude of the incidence wave (Equation (7.3)).  

 

 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

≠ 𝑓(𝜎)  (7.1)  

 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

≠ 𝑓(𝐴1)  (7.2)  

 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

= 𝑓(𝐴𝑖𝑛𝑐) = 𝑓(𝑉𝑜𝑙𝑡𝑎𝑔𝑒) (7.3)  

 

     

Figure 7.20 The third harmonic amplitude 𝐴3 of solid-air contact interface (S1-Air) subject to various 
excitation voltages (100 repetitions). 
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The dependence of averaged third harmonic amplitudes 𝐴3 on the excitation voltage 

is clearly depicted in Figure 7.20. At low excitation voltage, the third harmonic 

increases reasonably linearly with the rising voltage. When high excitation voltage is 

applied (greater than 100V), the harmonic amplitude rises dramatically. This may be 

due to the high excitations used. The third harmonic amplitude increases with 

excitation voltages approximately quadratically as the quadratic fitting function 

shown in Figure 7.20. High voltage excitation not only triggers the higher order 

frequency of an ultrasonic transducer, the resulted high amplitude ultrasound wave 

also increasing the likelihood of occurrence of some intrinsic material nonlinearities.  

From the solid-air interface test, the system built-in nonlinearity shows 

independence of the normal load applied and it is heavily affected by the excitation 

voltage or the amplitude of the incidence wave.   

 

7.2.2 Solid-Solid Contact Interface with Low Power Input 

 

A more practically case to consider the source of nonlinearity generation is the solid-

solid interface subject to low power input, as shown in Figure 7.21. The possible 

sources are listed in Table 7.5. The rough interface is taken into account so the effect 

 
Applied normal load  

Test specimen subject to loading 

Coupling layer (‘Exaggerated’) 

Solid-solid contact interface 
subject to loading 

Ultrasonic receivers 

 

Low power excitation signal 

Figure 7.21  Possible source of system built-in nonlinearity from in the solid-solid contact interface 
test using pitch-catch arrangement subject to low power input. 
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of normal applied stress can be better understood. The low excitation voltage is 

applied to ensure that with such low power input, the nonlinear interaction of the 

shear wave with the frictional contact interface, e.g. ‘stick-slip’ motion is highly 

unlikely to occur. 

 

 

Table 7.5 Possible source of nonlinearity in the solid-solid contact interface under low power input using pitch-
catch reflection arrangement.  

Ultrasonic 

transducer 

Higher order harmonics are also generated even when it is 

driven at its main resonant frequency e.g. the fundamental 

frequency. 

Coupling layer 
Coupling material may behave nonlinearly due to the internal 

structure, when subject to high stress. 

Test specimen 
Test specimen may behave nonlinearly due to the internal 

structure, when subject to high stress. 

Loadings 
Load may change the material behaviour from linear to 

nonlinear. 

Solid-solid contact 

interface 

Potentially source of harmonic generation when subject to 

stresses. 
 

Table 7.6 Test conditions in solid-air contact interface.  

 Solid-solid contact interface 

Test specimen Al Alloy 6082 S1-S2, S3 and S4 

Transducer V153-V155 

Waveform 15-cycle 1MHz sine wave 

Excitation voltage 2V (peak-peak) 

Normal force 0 − 45 kN 
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Test conditions of the solid-solid interface are listed in Table 7.6. The fundamental 

frequency 𝐴1 and the third harmonic 𝐴3 are depicted in Figure 7.22 with the low 

power input. The effect of loadings at the interface is significant even the amplitude 

is low. Due to the presence of the interface and the increasing of the normally 

applied stress, less ultrasound is reflected, which result in the drop of both 

fundamental and the third harmonic amplitude. The third harmonic amplitude falls 

quickly when the contact stress starts to increase. At higher contact loadings, both 

signal reaches the minimum and stabilise. The amplitude ratio 𝐴3 𝐴1⁄  also shows 

increasing trend with the applied normal stress. 

As a comparison, the solid-air interface is also plotted in Figure 7.22 and 

fundamental, the third order frequency and their ratio remain unchanged when 

subject to the same range of normal contact stresses.  

Due to the existence of the contact interface, the harmonic amplitude contains both 

the system built-in nonlinearity and the nonlinearity due to the contact at low power 

   

(a) 

(b) 

(c) 

Figure 7.22 (a) The fundamental frequency amplitude 𝐴1, (b) The third harmonic amplitude 𝐴3 , (c) The ratio 
𝐴3/𝐴1 of reflected signal from solid-solid contact interface subject to low amplification (2𝑉 peak-peak) and 

normally applied loads (100 repetitions). 
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input. The relationship previously shown in Equation (7.1)-(7.3) can be modified as 

follows: 

 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

+ 𝐴3
𝑙𝑜𝑤−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑓(𝜎) = 𝑓(𝐴1),  (7.4) 

 (𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

+ 𝐴3
𝑙𝑜𝑤−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡) 𝐴1⁄ = 𝑓(𝜎). (7.5) 

 

7.2.3 Input Power Evolution  

It is worth looking into the solid-solid interface when the input power gradually 

increases. The test conditions are listed in Table 7.7. The fundamental frequency 𝐴1 

decreases with the increased normal contact stress, as shown in Figure 7.23, 

regardless of input powers or the excitation voltages. The third harmonic amplitude 

𝐴3 and the amplitude ratio 𝐴3/𝐴1 demonstrates distinct behaviour under different 

input excitation voltages, as depicted in Figure 7.24. 

 

 

 

Table 7.7 Test conditions in solid-solid contact interface: power evolution. 

 Solid-solid contact interface 

Test specimen Al Alloy 6082 S1- S4 

Transducer V153-V155 

Waveform 15-cycle 1MHz sine wave 

Excitation voltage 2, 5, 9, 45V (peak-peak) 

Normal force 0 − 45 kN 
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(a) 

(h) (g) 

(f) (e) 

(d) (c) 

(b) 

Figure 7.24  The third harmonic amplitude 𝐴3 and the ratio 𝐴3/𝐴1 of reflected signal from solid-solid 
contact interface (S1-S4) subject to various normally applied loads at excitation voltage (a) and (b); 2𝑉; 

(c) and (d): 5𝑉; (e) and (f) 9𝑉; (g) and (h): 45𝑉. (100 repetitions). 

 

Figure 7.23 The normalised fundamental frequency amplitude 𝐴1 of reflected signal from solid-solid contact 
interface (S1-S4) subject to various amplification and normally applied loads (100 repetitions)  
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When the input power is low (Figure 7.24 (a)), the third harmonic still follows a 

similar trend as the fundamental frequency illustrated in Figure 7.23. When 

increasing the excitation slightly (Figure 7.24 (c) and (e)), the third harmonic 𝐴3 

shows no reduction when the contact interface starts to compress. The amplitude 

ratio when such relatively low excitation voltage is applied shares a resembling 

linearly increasing tendency. When a higher amplification is used, the third order 

harmonics, however, exhibit a ‘rise-fall’ pattern with the increasing normal contact 

stress. In such case, the power is large enough to activate the nonlinear interaction 

of the shear ultrasound and the rough interface. 

In the input power evolution test, nonlinearity from two origins, the system built-in 

nonlinearity and the contact interface introduced nonlinearity involve in the 

harmonic generation. At the low excitation voltage, the system inherent nonlinearity 

dominates. When the input power is increased, more system built-in nonlinearity is 

also generated. The contact nonlinearity gradually becomes significant rises and 

outpaces the system intrinsic nonlinearity. When high power is used, nonlinearity 

originates from the contact interface dominates the total nonlinearity generated.  

 

7.2.4 Reference Consideration and Contact Harmonic Estimation 

As shown in the previous section, when high power ultrasound is used, both system 

inherent nonlinearity and the harmonic originating from rough contacts are 

measured. Although the amplitude is insignificant, compared to the nonlinearity 

generation due to contact, the system built-in harmonic still needs to be separated 

and eliminated. The harmonic amplitudes obtained at high normal contact stress 

and the low power input is treated as the nonlinearity arisen inside the system 

( Blanloeuil et al., 2014c) as under such conditions, the nonlinear ‘slip-stick’ motion 

is not activated as the frictional force is considered significant than the ultrasound 

introduced shear stress. 

 

7.2.4.1 Estimation Using Low Power Solid-Solid Contact  

As shown in Section 7.2.2 the system inherent nonlinearity in the solid-solid contact 

interface at low power shows the dependence on the normal applied load, it is 

reasonable to make the assumption that at high ultrasonic input amplitude which 

allows the activation of ‘slip-stick’ motion, the system built-in nonlinearity follows 

the same trend as in the low power case where the ‘slip’ motion is not triggered. A 

scaling factor, 𝐶𝑎 is defined in Equation (7.6).  
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𝐶𝑎 = (𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

+ 𝐴3
𝑙𝑜𝑤−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡) 𝐴1⁄

=
𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐴1
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑙𝑜𝑤−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑎𝑐𝑡

 
(7.6) 

 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

= 𝐶𝑎 × 𝐴1|ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 (7.7) 

 𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

− 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

 (7.8) 

 

The system built-in nonlinearity is estimated by multiplying the scaling factors 𝑎 with 

the measurement fundamental frequency amplitude 𝐴1 (Equation (7.7)) and it is 

then subtracted from the measured third harmonic 𝐴3, which leads to the contact 

nonlinearity.  

 

 

(c) 

(a) 

(b) 

Figure 7.25 The measured third harmonic of a reflected signal, the system harmonic and the contact 
harmonic subject to various loads at (a) 2𝑉, (b) 140𝑉 and (c) 420𝑉. (S1-S4,  100 repetitions). 
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The measured third harmonic, 𝐴3
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 the system built-in harmonic,  𝐴3

𝑠𝑦𝑠𝑡𝑒𝑚
 and 

the contact harmonic, 𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 are depicted in Figure 7.25. When low input power is 

applied, the harmonic generation is assumed inactivated and the contact harmonic 

is approximately zero Figure 7.25 (a). In Figure 7.25 (b) and (c), higher power 

ultrasound is applied to the solid-solid contact interface and the nonlinear ‘’slip-

stick’ interaction is enabled. The contact harmonic still able to show the typical ‘rise-

fall’ shaped trend.  

Although the contact harmonic, 𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is estimated at various input ultrasonic 

power, the effect of the input ultrasonic amplitude is not accounted properly. At 

‘zero’ stress condition, the contact is intentionally configured as solid-air interface 

and the contact harmonic should be zero, while it is non-zero in Figure 7.25 (b) and 

(c).  

 

7.2.4.2 Estimation Using Solid-Air Contact  

In this approach the effect of incident amplitude is considered using the solid-air 

contact interface measurement, as shown in Section 7.2.1. The scaling factor, 𝐶𝑏 and 

contact harmonic estimation is shown in Equation (7.9)-(7.11): 

 

 𝐶𝑏 =
𝐴3

𝑠𝑦𝑠𝑡𝑒𝑚
ห

ℎ𝑖𝑔ℎ 𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟

𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
𝑙𝑜𝑤 𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟

=
𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห
ℎ𝑖𝑔ℎ 𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟

𝐴3
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห

𝑙𝑜𝑤 𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟

, (7.9) 

 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

= 𝐶𝑏 × 𝐴3|𝑙𝑜𝑤−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡, (7.10) 

 

𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

− 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

. 
(7.11) 
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The measured third harmonic, 𝐴3
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 the system built-in harmonic,  𝐴3

𝑠𝑦𝑠𝑡𝑒𝑚
 and 

the contact harmonic, 𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 using the revised equations are illustrated in Figure 

7.26. Similar information as demonstrated in Figure 7.25 is obtained. It is worth 

noticing that at ‘zero’ stress condition where the contact is in solid-air status, the 

contact harmonic, is approaching zero compared with that estimated using previous 

approach. The system harmonic also accounts more in the measured third 

harmonic. 

 

7.2.4.3  Estimation Using Solid-Air Contact with Low Power Solid-Solid 

Contact 

It is reasonable to combine the previous two approaches to estimate the 

nonlinearity from the contact interface. Scaling factor 𝐶𝑎 and 𝐶𝑏 are then applied to 

the measured third harmonic in the meantime. Equations for estimating both 

system and contact nonlinearity are modified as follows: 

 

(c) 

(a) 

(b) 

Figure 7.26 The measured third harmonic of a reflected signal, the system harmonic and the contact 
harmonic subject to various loads at (a) 2𝑉, (b) 140𝑉 and (c) 420𝑉. (S1-S4, 100 repetitions). 

 



148 

 

 

𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

= 𝐶𝑎 × 𝐶𝑏 × 𝐴1|ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

=
𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐴1
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑙𝑜𝑤−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑎𝑐𝑡

×
𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห
ℎ𝑖𝑔ℎ 𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟

𝐴3
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห

𝑙𝑜𝑤 𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟

× 𝐴1|ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡, 

(7.12) 

 

𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐴3

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

− 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚

ห
ℎ𝑖𝑔ℎ−𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑐𝑡

. 
(7.13) 

 

 

Using the revised approach, at higher ultrasonic input amplitudes, the harmonic 

follows the same trend as the measured third harmonic (Figure 7.27). At the ‘zero’ 

stress condition (solid-air interface), the third harmonic approaches zero, 

  

(c) 

(a) 

(b) 

Figure 7.27 The measured third harmonic of a reflected signal, the system harmonic and the contact 
harmonic subject to various loads at (a) 2𝑉, (b) 140𝑉 and (c) 420𝑉. (S1-S4, 100 repetitions). 
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indicating no system harmonic is considered. When the contact is gradually 

compressed, the third harmonic only indicates the nonlinearity originating from the 

rough interface. 

 

 

The weight of the contact harmonic to the total measured third harmonic amplitude 

is depicted in Figure 7.28. When high input power is used, i.e. above 90V, as the 

interface is compressed, the contact nonlinearity increases to approximately 90% 

of the total measured harmonics and then falls to 80% when the normal contact 

stress is high. For the low input power, i.e. 2V, the low amplitude incident shear wave 

is unable to trigger the ‘stick-slip’ motion the contact and no harmonic is generated 

from the contact. Therefore contact nonlinearity remains 0% for low input power. 

The approach of estimating contact harmonic using the solid-air interface and the 

low-power solid-solid interface enables the separation of the system built-in 

nonlinearity from the nonlinearity arising from the rough interface. This approach is 

used in the following tests.  

 

 Normally Incident Shear Wave Results 

Using the pitch-catch reflection arrangement and the contact harmonic estimation 

method described in previous sections, the effect of the amplitude of incident 

 

Figure 7.28 Percentage of contact harmonic in the total measured third harmonic amplitude of test 
specimen S1-S4. 
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ultrasound and the normally applied contact stress on the ultrasonic nonlinearity 

generation at a rough interface is studied.  

 

7.3.1 Varying Incident Amplitude 

As discussed in Section 7.2.3, when the incidence ultrasound amplitude is increased 

gradually from a low-power condition where the nonlinear interaction is inactivated, 

to a high incident amplitude where ‘stick-slip’ motion is triggered, the third 

harmonic amplitude 𝐴3 starts to show the ‘rise-fall’ feature along with the applied 

normal contact stress. The contact harmonic is depicted in Figure 7.29. The at low 

incidence amplitude, e.g. 1Vp−p and 5Vp−p, the contact harmonic is approximately 

zero (Figure 7.29 (a)) and the corresponding normalised amplitudes fluctuate 

without a clear trend (Figure 7.29 (b)). With the higher input power where the ‘stick-

slip’ occurrence is enabled, the typical ‘rise-fall’ tendency clearly shows (45Vp−p and 

90Vp−p in Figure 7.29). 

 

 

 

(b) 

(a) 

Figure 7.29 (a) Contact harmonic amplitude; (b) normalised contact harmonic amplitude subject to lower 
power inputs. 
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It is worth looking at the effect of the incidence amplitude when the higher power 

ultrasound is employed to strike the interface and in such case the source of the 

contact nonlinearity - ‘stick-slip’ motion activation is always enabled, as illustrated in 

Figure 7.29. Shear wave ultrasound was triggered with higher excitation voltages, 

from 90Vp−p to 450Vp−p and the representative ‘rise-drop’ pattern is observed on 

the contact nonlinearity for all incidence amplitudes.  
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(a) 
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Figure 7.30 (a) Contact harmonic amplitude; (b)Normalised contact harmonic amplitude subject to higher 
power inputs. (c) Measurable zone for increasing incidence amplitude. 
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Larger contact nonlinearity is generated when a higher incident amplitude is applied 

and the interface is compressed at that same stress. Larger incidence amplitudes 

appear to allow the nonlinearity originated over a wider stress range in Figure 7.30 

(a), as the higher input power would potentially trigger the ‘slip’ motion when the 

frictional force is larger at the interface. In Figure 7.30 (b) the dependence of the 

activation stress range on the input power is unclear and for different incidence 

amplitudes, the normalised contact harmonic overlap. The peak of the contact 

nonlinearity under varying incident amplitudes are shown in Figure 7.31. Larger 

incident amplitude results in the contact nonlinearity generation over a wider stress 

range. The contact nonlinearity peaks at a larger normal stress. 

 

 

7.3.2 Varying Contact Stress 

The effect of varying normal contact stress has been discussed in the previous 

sections. As shown in Figure 7.32 (b), when a sufficiently large incident amplitude is 

applied and ‘slip-stick’ occurs, the contact nonlinearity shows the ‘rise-fall’ trend 

with the applied normal stress. At low contact stress (Figure 7.32 (a)), a contact 

interface is just formed between the two test specimens, and only a few asperity 

contacts occur. The nonlinear ‘slip-stick’ motion may only be triggered at a low 

 

Peak location 

Stress  range 

Figure 7.31 Normalised contact harmonic amplitude and fitting curve subject to higher power inputs (Test 
specimen S1-S4, 100 repetitions). 

. 
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extent. When the contact is increasingly compressed, more asperities are brought 

to contact which is in favour of the nonlinearity generation at the contact interface 

(Figure 7.32 (b)). In this development, the contact nonlinearity generation reaches a 

peak where the interaction of the high-power shear wave with the rough contact is 

maximum (Figure 7.32 (b)). Further higher normal stress applied to the contact 

results in more asperities sticking and the resulting frictional force is too high for 

the shear wave introduced shear stress to overcome. Then, the ‘slip-stick’ motion is 

suppressed, which leads to a decreasing contact harmonic at high normal stress.  

 

 

 

Nonlinearity 
generation 

Contact stress 

‘Stick-slip’ activation region 
Contact nonlinearity generation  

‘Stick’ region 

No contact nonlinearity generation  

1𝑓 1𝑓 

𝜏 

1𝑓 1𝑓, 3𝑓 

𝜏 

1𝑓 

𝜏 

Few asperity contact 
𝜏 > 𝜇𝜎 

Several asperity contact 
𝜏 > 𝜇𝜎 

More contact 
𝜏 < 𝜇𝜎 

1𝑓 

𝜎 𝜎 𝜎 

Figure 7.32  Two test specimens with contact interface under (a) low normal stress; (b) higher normal stress 
and (c) high normal stress.  
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The reflection coefficient is dependent on the stiffness of the interface (Baik and 

Thompson, 1984). This is a method that has widely been used to study rough surface 

contacts (Dwyer-Joyce et al., 2001). The relationship between stiffness and the 

reflection is given by the so-called spring model (Nagy, 1992; Królikowski and 

Szczepek, 1993; Drinkwater et al., 1996): 

 
𝜋𝑓𝐺

𝑐𝑠

√
1

𝑅2
− 1, (7.14) 

 𝑅 =
𝐴1

𝑠𝑜𝑙𝑖𝑑−𝑠𝑜𝑙𝑖𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝐴1
𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

. (7.15) 

 where 𝑓 is the fundamental frequency of the received ultrasound, 𝐺 the shear 

modulus of the specimen, 𝑐𝑠 the speed of shear wave in the specimen and 𝑅 the 

 

‘slip-stick’  
(b) 

(a) 

(c) ‘slip-stick’  

Figure 7.33 (a) Contact stiffness (b) contact harmonic 𝐴3 amplitude subject to higher power inputs and 
varying normal contact stresses. (c) Contact stiffness and contact harmonic 𝐴3 amplitude subject to higher 

power inputs.(Test specimen S1-S4, 100 repetitions). 
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reflection coefficient. Stiffness varies from zero for no contact to infinity for an 

interface that is fully in contact (no air gaps). 

The interfacial shear stiffness is depicted in Figure 7.33 (a). For varying incidence 

amplitudes, the contact interfacial stiffness shares a common trend over the rising 

contact stress. Larger stiffness indicates that contacting surfaces are more 

conformal and more ultrasound transmitted through the contact interface. It is 

noticed that over the normal contact stress range applied, the interfacial stiffness 

increases and the conformity increases. The contact nonlinearity peaks only at 

relatively low contact stiffness (Figure 7.33 (a)), which indicates that the nonlinear 

interaction of a shear ultrasound wave and a rough interface only occurs when 

relatively low normal stress is applied where contact is still less conformal. 

 

7.3.3 Experimental Results 

Test results using the pitch-catch reflection arrangement subject to varying incident 

amplitude and normal contact stress are illustrated in Figure 7.34 (a), (b), (c) and 

(d) for test specimen S1-S4 , S1-S2, S1-L1, S1-L3 respectively. For all test specimens, 

contact nonlinearity is preferably generated in the region of low contact stress and 

high incident shear stress (converted from displacement, as measured with laser 

vibrometer in Chapter 6), The ‘stick-slip’ activation region is encircled by the dashed 

line and contact nonlinearity generation is preferably measured in this region.  

Although the contact nonlinearity generation is activated in low normal stress and 

high incident shear stress region, for different test specimens, the shape of the peak 

nonlinearity generation (in red in Figure 7.34 (a)-(d)) differs even the same normal 

stress and incident shear stress is applied. It may indicate the difference of 

contacting interface of test specimens and the friction of each contacting pair. 

Contacting face dimension are the same for test specimens S4, S2, L1 and L3. These 

contacting faces are prepared to various surface roughness and when in contact 

with specimen S1, friction at the contact varies. A same incident shear wave strikes 

various contacting faces, the interaction and the contact nonlinearity generation 

differs. This nonlinearity generation region is useful in contact friction estimation 

and it is discussed in Chapter 8. 
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Figure 7.34 Contact nonlinearity amplitude (the third harmonic 𝐴3) subject to varying incident voltage and 
contact stress: (a) Test specimen S1-S4. (b) Test specimen S1-S2. (c) Test specimen S1-L1. (d) Test specimen 

S1-L3. (e) Contact nonlinearity measurable zone. 
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  Measurement of Ultrasonic Nonlinearity at Rough 

Interface - Subsequent Echoes 

In previous sections measurement focuses on the first reflection signal which 

directly scattered backwards from the contact interface after the nonlinear 

interaction with the rough interface. Previous numerical work also used the first 

echo, either the first reflection signal or transmission signal, in the contact 

harmonics generation analysis (O’Neill et al., 2001; Meziane et al., 2011). In the 

experiment, contact nonlinearity is also detected in subsequent echoes, i.e. the 

second and third reflection signals. Details are shown as follows.  

 

7.4.1 Experimental Configuration 

The pitch-catch reflection configuration was adopted. Two sets of test specimens 

were employed. In the first set, two test specimens were with the same length 

(Figure 7.35 (a)) while for the second set, one specimen was twice the length than 

the other (Figure 7.35 (b)). The test conditions are listed in Table 7.8.  

 

 

 

Ultrasonic transmitters 

Solid-solid contact interface 

Ultrasonic receivers 

𝑙 

𝑙 
2𝑙 

Figure 7.35  Pitch-catch reflection arrangement. (a) two test specimens with same length 𝑙. (b) two test 
specimens with length 𝑙 and 2𝑙. 
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The time domain for the first set test specimens (both length 𝑙) are illustrated in 

Figure 7.36. The first echo is the reflected signal and the ultrasound interacts at the 

rough contact interface only once. After this interaction, some portion of the 

ultrasound transmits through the contact interface and reflects at the bottom 

boundary of the lower specimen. This ultrasonic wave propagates upwards, striking 

the interface, transmitting through to the upper specimen and travelling towards 

the ultrasonic receiver (dash blue line in Figure 7.36 (b)). After the first ultrasound-

contact-interface interaction, some part of the ultrasound bounces within the upper 

specimen, striking the interface for a second time and received by the transducer 

(solid blue line in Figure 7.36 (b)). As the upper and lower specimens are the same 

length, the time-of-flight for both reflected and transmitted ultrasound are equal so 

that both signals reach the receiver at the same time. So the second echo consists 

of both reflection and transmission. Similar processes repeat again within the upper 

and lower test specimens and the third echo contains both reflected signal (dash 

orange line in Figure 7.36 (b)) and transmitted ultrasound (dash blue line in Figure 

7.36 (b)). 

The time domain for the second pair of test specimens (upper specimen length 𝑙 

and lower specimen length 2𝑙) are depicted in Figure 7.37. Due to the lower 

specimen is of length of 2𝑙, the first signal received by the ultrasonic transducer is 

the reflected ultrasound. The second echo received is the twice-reflected wave 

(solid blue line in Figure 7.37 (b)). The third echo consists of the three-time-

reflected wave (solid orange line in Figure 7.37 (b)) and transmitted ultrasound 

(dash orange line in Figure 7.37 (b)).  

 

Table 7.8 Test conditions in pitch-catch reflection arrangement.  

 Test Set 1 Test Set 2 

Test specimen Al Alloy 6082 S1-S4 Al Alloy 6082 S1-L1 

Specimen length 𝑙, 𝑙 𝑙, 2𝑙 

Transducer V153-V155 V153-V155 

Waveform 15-cycle 1MHz sine wave 15-cycle 1MHz sine wave 

Amplification 90, 140, 280, 420V 90, 140, 280, 420V 

Normal force 0 − 45 kN 0 − 45 kN 
 



159 

 

 

 

   

  

Ultrasonic transducers 

𝑙 

𝑙 

1st reflected signal 
2nd echo 3rd echo 

(a) (b) 

Ultrasonic transducers 

𝑙 

2𝑙 

1st reflected signal 2nd echo 3rd echo 

(a) (b) 

Figure 7.36  Time domain signal in the test specimens (S1-S4, both length 𝑙) subject to varied normal force 
(excitation 420𝑉, 100 repetitions). (b) Schematic diagram of reflected and transmitted signal inside 

specimens. 

 

Figure 7.37  Time domain signal in the test specimens (S1-L1, length 𝑙 and 2𝑙) subject to varied normal force 
(excitation 420V, 100 repetitions). (b) Schematic diagram of reflected and transmitted signal inside 

specimens. 
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7.4.2 Ultrasonic Nonlinearity in Subsequent Echoes 

For the test specimens of length 𝑙, the fundamental frequency amplitude 𝐴1 and the 

third harmonic 𝐴3 in each echo subject to varying normal contact stress are 

illustrated in Figure 7.38. In Figure 7.38 (a), the fundamental frequency amplitude 𝐴1 

decreases when the applied normal stress increases as only reflection signal is 

received. The behaviour of the third harmonic 𝐴3 follows what has been discussed 

in previous sections. The ‘rise-fall’ trend shows occurrence of the nonlinear 

interaction of high-power ultrasound with a rough interface. 

For the second echo, the fundamental frequency amplitude 𝐴1 drops and followed 

by monotonically increasing trend when the contact interface is further pressed. 

The fundamental frequency amplitude 𝐴1 in the second echo indicates the transition 

from reflected wave to the transmitted wave of the captured signal. As the applied 

normal stress increases, more ultrasound wave transmits through the interface and 

less reflected ultrasound is received by the transducer. Further compressing the 

interface makes more ultrasound transmitted through and bouncing back at the 

bottom boundary of the lower specimen. Consequently, more reflected 

transmission wave propagates through the interface again with a reversed direction 

and reaches the receiver. The third harmonic 𝐴3, however, does not show this ‘fall-

rise’ trend along the increased normal stress. It displays the similar behaviour to the 

third harmonic in Echo 1, showing the ‘rise-drop’ pattern when the contact stress is 

enlarged.  

For the third echo, the fundamental frequency amplitude shows a complex trend 

over the contact stress as mixed multiple reflections and transmissions are detected 

by the receiving transducer. The third harmonic 𝐴3, shows the similar trend as in the 

first and second echoes.  

Similar results are achieved in the test specimens with length of 𝑙 and 2𝑙, as depicted 

in Figure 7.39. The fundamental frequency amplitude 𝐴1 indicates that the first and 

the second echoes are reflected signals and the transmission signal forms the third 

echo. The third harmonic 𝐴3 in all three echoes increases with the normal contact 

stress, followed by a decrease tendency when the interface in compressed heavily, 

indicating the occurrence of the nonlinear interaction of ultrasound with the contact 

interface.  
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Echo 3: mainly transmission 

Nonlinear 
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Nonlinear 
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Figure 7.38  Test specimens (length 𝑙 and 𝑙) subject to varying normal stress (Excitation 420𝑉, 100 
repetitions). (a) Fundamental frequency amplitude 𝐴1 and the third order harmonic 𝐴3 in Echo 1. (b) 

Schematic diagram of Echo 1. (c) Fundamental frequency amplitude 𝐴1 and the third order harmonic 𝐴3 in 
Echo 2. (d) Schematic diagram of Echo 2. (e) Fundamental frequency amplitude 𝐴1 and the third order 

harmonic 𝐴3 in Echo 3. (f) Schematic diagram of Echo 3. 

. 
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Figure 7.39  Test specimens (length 𝑙 and 2𝑙) subject to varying normal stress (Excitation 420𝑉, 100 
repetitions). (a) Fundamental frequency amplitude 𝐴1 and the third order harmonic 𝐴3 in Echo 1. (b) 

Schematic diagram of Echo 1. (c) Fundamental frequency amplitude 𝐴1 and the third order harmonic 𝐴3 in 
Echo 2. (d) Schematic diagram of Echo 2. (e) Fundamental frequency amplitude 𝐴1 and the third order 

harmonic 𝐴3 in Echo 3. (f) Schematic diagram of Echo 3. 
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In both pairs of test specimens, the third harmonic 𝐴3 for the first three echoes all 

indicates the generation of the nonlinearity at the rough contact interface when the 

high-power ultrasound interacts with the interface. It is worth noting that the 

amplitude of the third harmonic 𝐴3 in the first three echoes. As illustrated in Figure 

7.40, in both set of test specimens, the third harmonic 𝐴3 in the subsequent echoes 

are greater than that in the preceding echoes.  It may indicate that the nonlinearity 

generation not only occurs when the ultrasound strikes the rough contact interface 

for the first time, but also originates in the subsequent interactions.  

 

 

As depicted in Figure 7.41 (a) and (b), in the experiment, the contact face of the test 

specimen is rough and consists of asperities with various heights and sizes. After the 

nonlinear interaction at the rough contact interface, both reflected and transmitted 

ultrasound is distorted due to the ‘stick-slip’ motion at the interface. Because of the 

presence of the asperities, the nonlinear ‘stick-slip’ motion is activated primarily at 

the asperities which are in contact, rather than the entire contact interface. Then 

the ultrasound wave is partially distorted. When the reflected and transmitted wave 

bounces back at the specimen boundary and strikes the contact interface for a 

second time, the previously partially distorted ultrasound still enables the nonlinear 

‘stick-slip’ activation at some asperities. The partially contorted ultrasound is further 

distorted and consequently results in the greater third harmonic 𝐴3.  When the 

 

Nonlinear 
interactions 

Nonlinear 
interactions 

(a) (b) 

Figure 7.40  The third harmonic 𝐴3 originated at contact interface in all echoes subject to varying normal 
stress. (a) Test specimens S1-S4 (length 𝑙 and 𝑙, 100 repetitions). (b) Test specimens S1-L1 (length 𝑙 and 2𝑙, 

100 repetitions). 
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reflected and transmitted wave meets the contact interface for a third time, more 

distortion on the ultrasound takes place and even more nonlinearity generation is 

activated at the rough contact interface.  

 

 

The ultrasonic nonlinearity originating at the rough contact interface in subsequent 

echoes is not observed in the numerical model in Chapter 5. A frictional but flat 

contact interface is used in the numerical model, as illustrated in Figure 7.41 (c). In 

the numerical study, the ultrasonic wave is clipped when the high-power wave 

strikes at the flat contact interface at the first-time interaction. The resulted 

reflected wave or transmitted wave are not sufficiently powerful to activate the 

‘stick-slip’ motion when it strikes the contact interface for a second time. Therefore, 

no further distortion is exerted on the ultrasound.  

 

 

 

 

Figure 7.41  (a) Schematic diagram of nonlinear interaction of ultrasound at rough contact interface for 
multiple echoes. (b) Rough contact interface with asperities in the experiment. (c) Flat contact interface 

in the numerical work. 
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  Conclusion 

In this chapter, the experimental arrangement is investigated using the high 

frequency nonlinear ultrasonic technique. The pitch-catch reflection configuration 

is employed in the measurement. The measured third harmonic amplitude is split 

into two parts, the system built-in nonlinearity and the contact nonlinearity. 

Methods are investigated to separate the targeted contact nonlinearity from the 

measured third harmonic signal. Two major factors affecting the contact harmonic 

generation is studied, namely the incidence amplitude and the applied normal 

contact stress. Experimental results suggest that activation the ‘slip-stick’ motion 

and the subsequent contact harmonic generation can occur at the rough interface 

when the incident amplitude is sufficiently large and the contact stress is relatively 

low.  

The ultrasonic nonlinearity at a rough interface in the subsequent echoes has been 

studied. Nonlinearity in the subsequent echoes shows the similar ‘rise-drop’ trend 

over the applied contact stress. The stronger amplitude of the third harmonic in 

subsequent echoes indicates that nonlinearity originating from a rough contact 

interface accumulates and suggests that nonlinear interaction between ultrasound 

and a rough contact continues in these subsequent echoes. 
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8 ESTIMATION COEFFICIENT OF 
FRICTION USING ULTRASONIC 
NONLINEARITY 

 

 

In this chapter, the measurement of nonlinearity generation due to shear polarised 

ultrasound interacting with a rough contact interface using subsequent echoes is 

discussed first. The contact nonlinearity generation detected experimentally is then 

compared with the numerical model. Lastly, the two strategies of estimating the 

coefficient of friction at a rough contact interface are investigated using the contact 

nonlinearity generation.  

 

  Comparison Experimental Work with Numerical 

Study 

In the numerical study (Section 5.2.3), the contact nonlinearity generation was 

modelled computationally when a high-power ultrasound strikes a frictional contact 

interface. The contact nonlinearity was also determined experimentally (Section 

7.3) when two rough faces were brought to contact. Before using the ultrasonic 

nonlinearity generation to estimate the coefficient of friction at the contact, 

comparison between the numerical and experimental results are first discussed as 

follows. 
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8.1.1 Dimensionless Stress 

In Section 5.2.3.2, a dimensionless parameter, 𝜉 was introduced to characterise the 

status of the contact interface under ultrasonic oscillations and is defined by 

Equation (8.1). It describes the ratio of the frictional stress to the tangential 

oscillating stress introduced by shear polarised ultrasound at the contact interface. 

Any dimensionless stress greater than unity value (𝜉 ≥ 1) indicates the contact is 

‘bonded’ without any relative motion at the interface. Any value less than unity 

represents the case that there is relative motion at the contact and the interface 

alternates between ‘stick’ mode and ‘slip’ mode (Equation (8.2)). 

 𝜉 =
𝜇𝜎

𝐺𝑘𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡
 (8.1) 

 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = {
𝑠𝑡𝑖𝑐𝑘 − 𝑠𝑙𝑖𝑝 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛, 0 < 𝜉 < 1

𝑠𝑡𝑖𝑐𝑘, 𝜉 ≥ 1
 (8.2) 

 

In the comparison between the numerical and experimental results, the 

dimensionless stress is used and Equation (8.1) is employed to compute the 

nondimensional stress 𝜉 for both numerical and experimental results.  

 

8.1.1.1 Coefficient of Friction Measurement Using Sliding Test 

To use the dimensionless stress in the comparison between the numerical and 

experimental results, the coefficient of friction for all contact pairs are required. 

Due to the size of the test specimens, conventional tribometers are not applicable 

to determine the static friction coefficient of each contact pair. Alternatively, the 

primitive sliding test can be employed to determine the static friction coefficient 

(Blanloeuil et al., 2014c).  

The sliding test was adopted in the experiment. As depicted in Figure 8.1 (a), a pair 

of test specimens were placed the on the supporting frame and the lower test 

specimen was mounted on the supporting block to prevent its movement. An 

adjustable screw was used to control the inclination of the tilted base. At the start 

of the test, the tilted base was set to minimum tilt angle. At this angle, the upper test 

specimen rested on the lower test specimen. An adjustable screw was then used to 

gradually increase the tilt angle. When the upper test specimen started to slide over 

the lower one, the inclination was read from the digital angle gauge. Measurement 

was repeated a number of times to ensure consistency. It was noted that when the 
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same pair of test specimens slide repeatedly a number of times, scratches were 

observed on the contacting faces. Friction coefficient measurement was made prior 

to the occurrence of these scratches.  

 

 

 𝜇 =
𝑊 sin 𝜃

𝑊 cos 𝜃
= tan 𝜃 (8.3) 

 

The static friction coefficient was determined using Equation (8.3). For each pair of 

contact specimens used, the static friction coefficient is listed in Table 8.1.  

 

Supporting frame Adjustable screw 

Supporting block 

Digital angle gauge Test specimens 

Tilted base 

Tangential force Wsin 𝜃 

Normal force Wcos 𝜃 

Weight W 

Tilt angle 𝜃 

(a) 

(b) 

Figure 8.1 (a) Schematic diagram of sliding test for friction coefficient measurement. (b) Measuring friction 
coefficient using the sliding test. 
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The friction coefficient measured using the sliding test for different specimens are 

approximately 0.4 and the variation of each contact pair is approximately 10%. 

Although it is crude, the sliding test still provides the information on the friction of a 

rough contact.  

 

8.1.1.2 Shear Stress Introduced by Ultrasound at Contact Interface 

The shear stress introduced by ultrasound at the interface 𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑, is determined 

using Equation (8.4). The displacement amplitude of shear polarised ultrasound at 

the contact interface 𝐴 𝑐𝑜𝑛𝑡𝑎𝑐𝑡, was determined using the laser vibrometer, as shown 

in Section 6.5.3. The shear stress introduced by ultrasound in the experiment is 

listed in Table 8.2. 

 𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 = 𝐺𝑘𝐴 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (8.4) 

 

Table 8.1 Friction coefficient measurement using sliding test.  

Contact 

pair 

Friction coefficient: mean value ± standard 

deviation (repeated for 30 times) 

Surface 

roughness (𝛍𝐦) 

S1-S2 0.423±0.0529 0.586 

S1-S3 0.443±0.0746 0.874 

S1-S4 0.485±0.0592 0.483 

S1-L1 0.385±0.0472 0.453 

S1-L2 0.411±0.0302 0.847 

S1-L3 0.420±0.0323 0.954 

S1-Al1 0.341±0.0428 0.469 

S1-Al2 0.464±0.0814 0.728 

S1-Al4 0.409±0.0856 0.620 
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The maximum achieved shear stress is approximately 2.3MPa, which is sufficient to 

activate the nonlinear interaction (‘stick-slip’) at the interface, compared with the 

normal stress applied in the experiment. It is noticed that the shear stress was 

measured at a solid-air interface. The shear stress at the solid-solid interface is not 

known and difficult to measure. Therefore, it is reasonable to use the measured 

shear stress as the shear stress at a contact interface.  

 

8.1.1.3 Computation of Dimensionless Stress 

The dimensionless stress 𝜉, for each contact pair used in the experiment can be 

computed using the Equation (8.1). An example of the dimensionless stress for all 

experiment conditions of contact pair S1-S4 is illustrated in Figure 8.2 (𝜇 = 0.48 

from Table 8.1). It is noticed that the dimensionless stress falls within the range of 0 

to 1 for higher shear stress and lower normal stress. Under these test conditions, 

the nonlinear ‘stick-slip’ motion is activated and contact nonlinearity generation take 

places. 

Table 8.2 Shear stress by ultrasound at contact interface.  

Voltage input of RITEC 

amplifier (𝐕) 

Displacement 

amplitude (𝐧𝐦) 

Shear stress 

(𝐌𝐏𝐚) 

90 9.13 0.496 

140 14.52 0.789 

280 21.97 1.194 

420 31.37 1.705 

560 42.35 2.302 
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8.1.2 Comparison Experimental Work with Numerical Study 

The test conditions employed in the experiment, such as the applied normal stress, 

amplitude of displacement of shear ultrasound and the measured coefficient of 

friction, were applied in the numerical study as the input parameter. This is to 

ensure that the comparison of the ultrasonic nonlinearity generation at contact 

interface in both numerical computation and experiment is reasonable and valid.  

 

𝜉 > 1 
‘Stick’ region 

0 < 𝜉 < 1 
‘Stick-slip’ region 

𝜏 = 0.48𝜎  
𝜏 > 𝜇𝜎 : ‘stick-slip’ active region 
0 < 𝜉 < 1 
Contact nonlinearity generation 
 

𝜏 < 𝜇𝜎 : ‘stick’ only region 
𝜉 > 1 
No nonlinearity generation 
 

(a) 

(b) 

Figure 8.2 (a) Dimensionless stress 𝜉 for all test conditions for test specimen S1-S4. (b) Contact nonlinearity 
measurable zone for S1-S4. 
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Test specimens S1-S4 are used as an example in this section. For the experimental 

results, the third harmonic 𝐴3 was treated using the method previously mentioned 

in Section 7.2. The system inherent nonlinearity was removed from the measured 

third harmonic and the reminder was the contact nonlinearity. Because the 

magnitude and the unit of the third harmonic in the numerical computation was 

different from that of the experiment, the normalised values were employed to 

facilitate comparison.  

The normalised third harmonic 𝐴3 for both numerical and experimental subject to 

varying normal and shear stress is illustrated in Figure 8.3. For both numerical and 

experimental results, the ultrasonic nonlinearity shows similar trend over the 

increasing dimensionless stress (Figure 8.3 (a)) or normal stress Figure 8.3 (b)), i.e. 

rising to a peak at lower stress region and then followed by a drop when the normal 

stress is higher. The peak locations numerically computed and experimentally 

measured are also close and the ‘rise-drop’ trend falls approximately within the 

range from 0 to 1 in Figure 8.3 (a) when plotted against the dimensionless stress.  

Overall the numerical model shows agreement with the experiment.  
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Several differences are noticed between the numerical and experimental results. In 

Figure 8.3 (a), although the peak of the third harmonic is in the range of 0 to 1, 

numerical study always predicts the maximum harmonic generation occurs at 𝜉 =

0.5, while the experimental results shows a shift of the peak when various shear 

stress is applied at the interface by ultrasound wave. As indicated with black dash 

line in Figure 8.11 (a), higher shear stress is prone to result in a peak at a lower 

dimensionless stress. One likely reason is that during ultrasonic displacement 

 

Cut-off stress ‘Stick’ region ‘Stick-slip’ 
region 

(b) (a) 

Figure 8.3  Comparison of the third harmonic 𝐴3 originated at contact interface subject to varying normal 
stress and excitations (90𝑉, 280𝑉 and 560𝑉) vs (a) Dimensionless stress 𝜉. (b) Normal stress 𝜎. (Test 

specimen S1-S4, 100 repetitions). 
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amplitude measurement, at high voltage input, the ultrasonic displacement may be 

over-estimated whereas under-estimation occurs at low gain level.  

It is also noticed that in the numerical study (Figure 8.3 (a)), the harmonic 

generation occurs only when the dimensionless stress is less than unity. Any 

nondimensional stress greater than unity cannot activate the ‘stick-slip’ motion. This 

defines the ‘cut-off’ stress where harmonic amplitude stops abruptly and it remains 

zero above this cut-off stress. However, for experimental results, the third harmonic 

measured in the experiment fades away gradually and disappears when the contact 

is compressed sufficiently. It leaves significant difference above the cut-off stress, 

as encircled in black dash circle in Figure 8.3 (b). In practice, the slow decay of the 

third harmonic implies that nonlinear interaction (i.e. slip) between a rough 

interface and ultrasound is still taking place even when the normal stress is greater 

than the cut-off stress. Asperities on a rough surface play a significant role here 

because ultrasound wave can only interact with some asperities when it strikes the 

contact interface. Above the cut-off stress, the partially distorted ultrasound is still 

able to activate the nonlinear ‘stick-slip’ movement at the asperity contacts. 

The cut-off stress is also observed in the fundamental frequency amplitude, as 

shown in Figure 8.4. As the contact is gradually compressed, the fundamental 

frequency amplitude decreases slowly in the experiment while it declines quickly in 

numerical study to a cut-off stress and remains zero after this stress. As the asperity 

contact is not realised in the numerical model, the numerical study only works when 

the nonlinear ‘stick-slip’ motion is activated at the interface. 
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Figure 8.5 illustrates the third harmonic 𝐴3 generation at the rough interface under 

all the test conditions (for all incident shear and normal stress applied in 

experiments) in both numerical and experimental study. The colour bar indicates 

the amplitude of the ultrasonic nonlinearity 𝐴3. The numerical and experimental 

results agree qualitatively. Both numerical and experimental work shows a similar 

region of nonlinear interaction. In Figure 8.6, the results are plotted against the 

dimensionless stress. The numerical results show that the nonlinear ‘stick-slip’ takes 

place only when the dimensionless stress is less than unity. In the experiment, the 

contact nonlinearity generation takes place in a wider range of dimensionless stress. 

The comparison results suggest that the numerical model is capable as a fair 

approximation of predicting the nonlinearity generation when ultrasound strikes at 

the frictional contact interface and agrees reasonably well with the experimental 

results. The numerical model only works when the nonlinear ‘stick-slip’ 

phenomenon takes place. Where the nonlinear interaction between the high-power 

shear wave and the frictional contact interface does not occur, the numerical results 

show significant difference with the experimental work.  

 

 

(b) (a) 

Figure 8.4  Comparison of the fundamental frequency 𝐴1 subject to varying normal stress and excitations 
(90𝑉, 280𝑉 and 560𝑉) vs (a) Dimensionless stress 𝜉. (b) Normal stress 𝜎. (Test specimen S1-S4, 100 

repetitions). 
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Nonlinear interactions ‘Stick-slip’ activation region 

(b) (a) 

(b) (a) 

Nonlinear interactions  
0 < 𝜉 < 1 ‘Stick-slip’ activation region 

Figure 8.5  Comparison of the third harmonic 𝐴3 vs normal stress. (a) Numerical computation. (b) 
Experimental result. (Test specimen S1-S4, excitations 90 − 560𝑉). 

Figure 8.6  Comparison of the third harmonic 𝐴3 vs dimensionless stress. (a) Numerical computation. (b) 
Experimental result. (Test specimen S1-S4, excitations 90 − 560𝑉). 
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8.1.3 Ultrasonic Nonlinearity at Rough Contact Interface: From 

Numerical Model to Experimental Work 

As discussed in Section 8.2.2, the numerical results show good agreement with the 

experiment results in terms of contact ultrasonic nonlinearity generation. The 

difference between the numerical results and the experimental works shows the 

drawback of the numerical model used in this research work. The numerical model 

is simplified, and some assumptions were made to facilitate numerical computation. 

The main differences between the numerical study and the experimental work are 

listed in Table 8.3.  

The numerical model used here cannot realise the asperities contact and the elastic-

plastic deformation at the load-bearing asperities. Since the contact faces are 

assumed flat but frictional, when the host medium is brought to contact, the entire 

flat face is in contact with its contact pair and this is illustrated in Figure 8.7 (a). The 

apparent area is the true contact area and the normal contact stress equal the 

nominal stress. Assuming the host medium is elastic, no elastic-plastic deformation 

occurs at the contact interface.  

In the experiment, rough contacting faces are taken into account. The real 

contacting faces consist of numerous asperities with various dimensions are 

demonstrated in Figure 8.7 (b) and (c). When two test specimens are compressed 

together, contacts are made on the load-bearing asperities. Contact nonlinearity is 

generated on these contacts as shown in Figure 8.7 (b). Contact area is much less 

than the apparent contact area. The contact stress is extremely high at some contact 

points. When test specimens are compressed further, the load-bearing asperities 

deform elastically and then yield to plastic deformation. The ‘old’ contacts stick and 

no contact nonlinearity generation takes place. Meanwhile, more asperities are 

newly brought to contact. Therefore, more contact nonlinearity is still generated 

from the newly developed contacts Figure 8.7 (c).  

It is worth noting that because the contact is made on the load-bearing asperities, 

at lightly loaded condition, the true contact area is very small. Further compressing 

the contact makes the load-bearing asperities yield plastically and the true contact 

area develops. In the experiment, the maximum applied normal stress is 

approximately 12MPa. The true contact area is estimated using the relationship 

defined in Equation (8.5), as 2% (Kendall and Tabor, 1971).  
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 𝐴𝑟𝑒𝑎% =
𝜎

𝐻
=

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 (8.5) 

 

 

‘Smooth’ case Contact stress 𝜎 

Shear stress 𝜏 
Friction coefficient 𝜇 

Contact on flat plane, slip when 𝜏 > 𝜇𝜎, contact nonlinearity generated 
All plane stick when 𝜏 < 𝜇𝜎, no more nonlinearity generated  

‘Rough’ case 
Low contact stress 𝜎 

Contact on load-bearing asperities 
Asperities slip when 𝜏 > 𝜇𝜎 
Contact nonlinearity generated 

‘Rough’ case 

Large contact stress 𝜎 

‘Old’ load-bearing asperities stick 
No contact nonlinearity generated as 𝜏 < 𝜇𝜎 

More contact developed on ‘new’ load-bearing asperities 
‘New’ asperities slip when 𝜏 > 𝜇𝜎 
Contact nonlinearity still generated 
 

(c) 

(b) 

(a) 

Figure 8.7 Contact nonlinearity generation in different cases. (a) Contact made on smooth plate plane. (b) 
Rough surfaces under low normal stress, contact on load-bearing asperities. (c) Rough surfaces under high 

normal stress, contact developed on new load-bearing asperities. 
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 Estimation of the Coefficient of Friction 

Regardless of the over-simplification, the numerical model still captures the nature 

of the nonlinearity generation when a high-power ultrasound strikes a rough contact 

interface, i.e. the ultrasonic nonlinearity originating from the ‘stick-slip’ motion at 

the interface. The coefficient of friction plays a significant role in this nonlinear 

process, as discussed in Section 5.2.3. The experimental results show that the 

nonlinearity generation at a frictional interface is measurable and the third 

harmonic 𝐴3 is sensitive to the nonlinear ‘stick-slip’ phenomenon at the rough 

interface. The friction coefficient of the statically compressed contact pairs can be 

estimated using the ultrasonic nonlinearity.  

In the previous study on the contact nonlinearity generation, Hirose (1994), O’Neill 

and his colleagues (2001) and Blanloeuil and his colleagues (2014c) suggest that 

using the nonlinearity generation at a frictional contact enables the friction 

coefficient to be estimated but no attempts have been carried out. The work of 

estimating friction coefficient using the ultrasonic nonlinearity is carried out in the 

following sections.  

8.2.1 Contact Nonlinearity Coefficient 

In the measurement of contact stiffness (Gonzalez-Valadez et al., 2010), lubricant 

film thickness (Dwyer-Joyce et al., 2003; Dwyer-Joyce et al., 2004) and viscosity 

Table 8.3 Difference between numerical and experimental work.  

1D Numerical model Experiment  

• Contacting plane is flat with frictional 

coefficient. 

• Contacting faces are rough and 

consist of numerous asperities. 

• Single value contact stress applies to 

the entire contact interface. 

• Single value nominal contact stress 

applies to the entire contact 

interface. 

• Due to the contact on asperities, 

normal stress varies locally. 

• Host medium is elastic. • Test specimen is assumed elastic. At 

contact interface, elastic-plastic 

deformation takes places because the 

contact is made on load-bearing 

asperities.  
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(Schirru et al., 2015b) using ultrasonic method, a dimensionless parameter 

reflection coefficient, 𝑅 is defined as ratio of measured amplitude (fundamental 

frequency amplitude 𝐴1) of solid-air interface to that of solid-solid or solid-liquid 

interface, as described in Equation (8.6): 

 

 𝑅 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=

𝐴1
𝑠𝑜𝑙𝑖𝑑−𝑠𝑜𝑙𝑖𝑑/𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑦𝑠𝑡𝑒𝑚

𝐴1
𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟 𝑠𝑦𝑠𝑡𝑒𝑚

. (8.6) 

The similar concept can be adopted here. A dimensionless parameter nonlinearity 

coefficient, 𝑁, is defined as in Equation (8.7). This is the ratio of the harmonic 

generation 𝐴3 at solid-solid contact interface to that of the solid-air system in the 

pitch-catch reflection configuration. The solid-air contact interface is taken as the 

reference as it contains only the system inherent nonlinearity without any 

nonlinearity from the contact interface (Equation (8.8). The measured nonlinearity 

in a solid-solid contact interface consists of both the system inherent nonlinearity 

and contact nonlinearity (Equation (8.9)).  

 

 𝑁 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=

𝐴3
𝑠𝑜𝑙𝑖𝑑−𝑠𝑜𝑙𝑖𝑑 𝑠𝑦𝑠𝑡𝑒𝑚

𝐴3
𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟 𝑠𝑦𝑠𝑡𝑒𝑚

 (8.7) 

 𝐴3
𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟 𝑠𝑦𝑠𝑡𝑒𝑚

= 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡

 (8.8) 

 𝐴3
𝑠𝑜𝑙𝑖𝑑−𝑠𝑜𝑙𝑖𝑑 𝑠𝑦𝑠𝑡𝑒𝑚

= 𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡

+ 𝐴3
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

 (8.9) 

 

𝑁 =
𝐴3

𝑠𝑜𝑙𝑖𝑑−𝑠𝑜𝑙𝑖𝑑 𝑠𝑦𝑠𝑡𝑒𝑚

𝐴3
𝑠𝑜𝑙𝑖𝑑−𝑎𝑖𝑟 𝑠𝑦𝑠𝑡𝑒𝑚

=
𝐴3

𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡
+ 𝐴3

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡

= 1 +
𝐴3

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝐴3
𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡

 

 

(8.10) 

 

The nonlinearity coefficient ranges from unity. When 𝑁 = 1, it means that there is 

no contact nonlinearity generated at the contact interface. Any nonlinearity 

coefficient above unity indicates nonlinearity generation takes places. 

The nonlinearity coefficient facilitates the post-processing of the measured third 

harmonic 𝐴3. Hence the experiment. Only a reference is required before the actual 
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measurement and there is no necessity to carry out the solid-air contact experiment 

over the entire loading ranges and to compute the absolute value of the nonlinearity 

only from the contact. In the following friction coefficient estimation, the 

nonlinearity coefficient is applied. 

 

8.2.2 Friction Coefficient Estimation Using ‘Cut-Off’ Stress 

The first strategy to estimate the friction coefficient is by using the cut-off normal 

stress.  In the numerical computation, the cut-off stress is where the normal stress 

applied at the contact interface is just able to prevent the ‘stick-slip’ motion and the 

ultrasonic introduced shear stress is just unable to overcome the friction at the 

contact interface, as illustrated in Figure 8.8.  

 

 

 

Peak 
Cut-off normal stress 

‘Stick’ region 

‘Stick’ region ‘Stick-slip’ region 

‘Stick-slip’  
region 

(a) 

(b) 

Figure 8.8  Estimation friction coefficient using cut-off stress. Normalised contact nonlinearity 𝐴3 vs 
Dimensionless stress 𝜉 and (b) Normal stress 𝜎. (Test specimen S1-S4, excitation 280𝑉, 100 repetitions). 
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8.2.2.1 Normal Stress at The Peak of Ultrasonic Nonlinearity 

It is noticed that in Figure 8.8, numerical determination of the cut-off friction is less 

challenging. However, for the experimental data, to locate the cut-off stress proves 

difficult. One way to estimate the cut-off stress experimentally is to use the peak 

location of the harmonic generation. 

The peak location (i.e. the contact normal stress) of the experimentally measured 

and numerically predicted ultrasonic nonlinearity illustrated in Figure 8.3 are listed 

in Table 8.4. At various test conditions, the normal stress where the harmonic 

generation reaches the peak, in both numerical and experimental work shows some 

reasonable agreement. The differences may arise from the practical measurement 

of the contact normal stress and the ultrasound introduced shear stress.  

 

 

8.2.2.2 From Normal Stress at The Peak to The Cut-Off Stress 

After determination of the contact normal stress where the ultrasonic nonlinearity 

peaks, the cut-off stress can then be estimated using a coefficient as defined in 

Equation (8.11): 

 𝑀 =
𝜎𝑝𝑒𝑎𝑘

𝜎𝑐𝑢𝑡−𝑜𝑓𝑓
=

𝜉𝑝𝑒𝑎𝑘

𝜉𝑐𝑢𝑡−𝑜𝑓𝑓
. (8.11) 

The coefficient 𝑀 describes the relationship of the peak of the ultrasonic 

nonlinearity and the stop point of the harmonic generation. The coefficient is 

normally determined using the dimensionless stress 𝜉, as depicted in Figure 8.9. In 

this numerical study, the peak occurs when dimensionless stress is 0.5 and the cut-

off point is always unity. 

 

Table 8.4 Estimated normal stress at the peak position in numerical and experimental work, from Figure 8.3. 

Test conditions: 

shear stress 

Normal stress at 

peak location in 

numerical study 

Normal stress at 

peak location in 

experimental study 

𝟎. 𝟒𝟗𝟔𝐌𝐏𝐚 0.527MPa 0.527MPa 

𝟏. 𝟏𝟗𝟒𝐌𝐏𝐚 1.234MPa 1.089MPa 

𝟐. 𝟑𝟎𝟐𝐌𝐏𝐚 2.391MPa 1.563MPa 
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It is worth mentioning that in other research, different peak point values are 

obtained and these are listed in Table 8.5. Although the peak of the ultrasonic 

nonlinearity is computed as various dimensionless stresses, the variation is 

insignificant, varying from 0.4 to 0.5. The peak value obtained in this research work 

𝜉 = 0.5 (Chapter 5) is reasonably applied in the following friction coefficient 

estimation.  

 

 

The coefficient 𝑀 is thus determined to be 0.5 and therefore the cut-off stress is 

calculated using Equation (8.12): 

 

Table 8.5 Various peak point of ultrasonic nonlinearity. 

Previous work 
Peak 

point 

2-D numerical study (Hirose 1994) 𝜉 ≈ 0.5 

1-D numerical study with time harmonic sine incidence (O’Neill et al., 2001) 𝜉 ≈ 0.5 

1-D analytical study with time harmonic sine incidence (Meziane et al., 2011) 𝜉 = 0.5 

1-D analytical study with narrow band pulse incidence (Meziane et al., 2011) 𝜉 ≈ 0.4 

2-D numerical study with non-plane incidence (Meziane et al., 2011) 𝜉 ≈ 0.4 

1-D numerical study with 5-cyc sine incidence (Blanloeuil et al., 2014c) 𝜉 ≈ 0.45 
 

Cut-off point 𝜉 = 1 

Peak point 𝜉 = 0.5 

Figure 8.9  Estimation cut-off point using the peak point in numerical study. 
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 𝜎𝑐𝑢𝑡−𝑜𝑓𝑓 =
𝜎𝑝𝑒𝑎𝑘

𝑀
= 2𝜎𝑝𝑒𝑎𝑘 . (8.12) 

 

8.2.2.3 Estimation of Friction Coefficient Using Cut-Off Stress Strategy 

With the cut-off stress strategy estimated using the peak of the nonlinearity 

generation, the friction coefficient in the experiment can be estimated using 

Equation (8.13). The estimation process is summarised in Figure 8.10. The shear 

stress 𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 is previously defined in Equation (8.4). 

 

To locate the peak point of measured third harmonic 𝐴3 and to remove the 

fluctuation during experiment, a parabolic function is employed to fit the test results 

around the peak of the measured nonlinearity. One advantage of using the quadratic 

curve is that it offers a good agreement with both numerical and analytical solution 

 𝜇 =
𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑

𝜎𝑐𝑢𝑡−𝑜𝑓𝑓
=

𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑

𝜎𝑝𝑒𝑎𝑘

𝑀

= 𝑀
𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑

𝜎𝑝𝑒𝑎𝑘
= 0.5

𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑

𝜎𝑝𝑒𝑎𝑘
 (8.13) 

 

Measuring third harmonic 𝐴3 over a 
range of normal stress 

Locating the peak position of the third 
harmonic 𝐴3 and finding the corresponding 

normal stress 𝜎𝑝𝑒𝑎𝑘  

Cut-off stress estimation using 
𝜎𝑐𝑢𝑡−𝑜𝑓𝑓 = 2𝜎𝑝𝑒𝑎𝑘  

Friction coefficient estimation using  

  𝜇 =
𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑

𝜎𝑐𝑢𝑡−𝑜𝑓𝑓
= 0.5

𝜏𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑

𝜎𝑝𝑒𝑎𝑘
 

Figure 8.10  Procedure of estimation friction coefficient using cut-off stress strategy.  
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of the third harmonic (as previously discussed in Chapter 5), as depicted in Figure 

8.11. The peak feature is preserved when the quadratic function is used to smooth 

the experimental data.  

 

An example of using this strategy is illustrated in Figure 8.12. For test contact pair S1-

S4, the friction coefficient is estimated at approximately 0.50 under the shear stress 

of 1.70MPa and 0.59 under the shear stress of 2.30MPa. The difference as previously 

discussed may arise from the measurement of the shear stress introduced by 

ultrasound. 

 

Figure 8.11  Numerical and analytical solution of harmonic generation (from Chapter 5) fitted with quadratic 
function. 
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This approach is also applicable to all test conditions for various shear and normal 

stress, as shown in Figure 8.13. The peaks at various conditions are determined using 

a threshold value, i.e. 0.95, as the ‘x’ markers in Figure 8.13. The friction coefficient is 

computed at each peak which satisfies the threshold requirement and the 

arithmetic average value is calculated as the friction coefficient.  

 

 

(a) 

(b) 

Figure 8.12  Estimation friction coefficient using cut-off stress for test specimens S1-S4. (a) Shear stress by 
ultrasound 1.70𝑀𝑃𝑎 (excitation 420𝑉) (b) Shear stress by ultrasound 2.30𝑀𝑃𝑎 (excitation 560𝑉). 
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For the test contact pair S1-S4, the averaged friction coefficient is approximately 

0.67, which a is in reasonable agreement with sliding test value (0.48). It is noticed 

that the measurement points (‘x‘) in Figure 8.13 (b), shows a linear relationship 

between the shear stress and normal stress, which agree with the Amontons’ Law 

that frictional force is proportional to the normal force (Hutchings and Hutchings, 

2017). 

 

8.2.3 Correlation Experiment with Numerical Model 

The second strategy to estimate the friction coefficient is using numerical 

computation to fit the experimental data. One simple approach is to use the 

correlation of the experimental data with the numerical data subject to the same 

test conditions. Other more advanced statistical tools are available to estimate the 

friction coefficient from the experimental data, such as Markov Chain, however, they 

are out of the scope of current research. In this work, the simple correlation strategy 

is used. 

 

(b) (a) 

Figure 8.13  Estimation friction coefficient using cut-off stress strategy for test specimens S1-S4. (a) Shear 
stress by ultrasound vs normal stress at interface (excitations 90 − 560𝑉). (b) Peak points used in friction 

coefficient estimation. 
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The same test conditions experimentally applied are set as the input in the 

numerical computation. The friction coefficient ranges from 0 to 1 is used in the 

numerical calculation. For each friction coefficient, the nonlinearity computed 

numerically is compared with the experimental data and the correlation coefficient 

is calculated for each friction coefficient input. The most correlated friction 

coefficient is the estimated friction coefficient for the experimental data.  

The correlation coefficient is as defined in Equation (8.14): 

 𝑟 =
1

𝑛
∑ (

𝐴𝑖 − 𝜇𝐴

𝜎𝐴
)

𝑛

𝑖=1

(
𝐵𝑖 − 𝜇𝐵

𝜎𝐵
). (8.14) 

where 𝐴 and 𝐵 are the contact nonlinearity (i.e. the third harmonic amplitude 𝐴3) in 

the numerical study and experimental work, respectively, 𝑛 the length of each data, 

𝐴𝑖 the element, 𝜇𝐴 the mean and 𝜎𝐴 the standard deviation of 𝐴, 𝐵𝑖 the element, 𝜇𝐵 

the mean and 𝜎𝐵 the standard deviation of 𝐵. The frequently used correlation 

coefficient measures the linear dependence of the data 𝐴 and 𝐵. 

The procedure of estimating friction coefficient using the correlation of 

experimental data with the numerical computation are summarised in Figure 8.14. 

Examples using this strategy are depicted in Figure 8.15 and Figure 8.16.  
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Experimental test conditions 

Numerically computing 
nonlinearity  

Comparing experimental and numerical data using correlation 

Estimated friction coefficient  

Set friction coefficient 𝜇 = 0 

Experimentally measured 
nonlinearity 

Record friction coefficient and correlation coefficient 

𝜇 = 𝜇 + 0.01 

If 𝜇 < 1 

If 𝜇 = 1 

Extract maximum correlation 
coefficient and the corresponding 

friction coefficient  

Figure 8.14  Procedure of estimation friction coefficient using correlation strategy: correlation of 
experimental data with numerical computation.  
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It is observed that in Figure 8.15, at the vicinity of the maximum correlation 

coefficient, several friction coefficients also yield similar correlation coefficient so 

that the several numerically computed results satisfy the experimental data. It may 

indicate that friction coefficient of a small localised contact region differs others and 

the shear wave ultrasound may detect the total resultant friction coefficient in the 

contact area. Therefore several friction coefficients satisfy the experiments. 

The friction coefficient with the peak correlation coefficient is used as the 

estimation and friction coefficient within the 95% peak bounds (red dashed line in 

Figure 8.15) are used as discrepancies. For the contact pair S1-S4, the friction 

coefficient is approximately 0.49 (0.49-0.54 as 95% bounds) for a shear stress of 

1.70MPa and 0.59 (0.49-0.67 as 95% bounds) for a shear stress of 2.30MPa. The 

measured incidence shear stress may be the reason for the difference of estimated 

friction coefficient.  

In Figure 8.16 the computation of correlation coefficient is carried out for all the test 

conditions. When the numerical computation aligns most with the experimental 

study, the friction coefficient is approximately 0.42  with several similar values (0.34-

0.51 95% bounds) also in agreement with experimental work in this vicinity.  

 

 

(a) 

(b) 

95% bounds 

Peak: 𝜇 = 0.49 

Peak: 𝜇 = 0.59 

95% bounds 

Figure 8.15  Estimation friction coefficient using correlation strategy for test specimens S1-S4. (a) Shear 
stress by ultrasound 1.70𝑀𝑃𝑎 (excitation 420𝑉). (b) Shear stress by ultrasound 2.30𝑀𝑃𝑎 (excitation 560𝑉). 
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(c) 

(b) (a) 

95% bounds 
Peak: 𝜇 = 0.43 

Figure 8.16  Estimation friction coefficient using correlation strategy for test specimens S1-S4. (a) 
Numerically computed nonlinearity and (b) experimentally measured nonlinearity subject to various 

excitations (2 − 560𝑉) and normal stress. (c) Friction coefficient estimation. 
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8.2.4 Coefficient of Friction Estimation Using Ultrasound 

8.2.4.1 Estimation Friction Coefficient 

For all test specimens and contact pairs employed in this research work, the friction 

coefficient has been estimated using both strategies previously discussed in Section 

8.2.2 and 8.2.3.  

The friction coefficient estimated using the cut-off stress strategy is shown in Figure 

8.17 and compared with the friction coefficient measured using the sliding test. The 

black dash lines indicate the maximum and minimum friction coefficients measured 

in the sliding test. With the cut-off stress strategy, the friction coefficient is shown 

in blue circles (Figure 8.17 (a)). For all specimens, the magnitude order is the same 

as that of the sliding test measurement and for some specimens the estimated 

friction coefficients are within the sliding test bounds (4 out of 9 specimens, 44%). 

A perfect agreement line (black solid line in Figure 8.17 (b)) is used to check the 

agreement of friction coefficient measured using ultrasound with sliding test. 

Although some ultrasound estimated values are distributed in the vicinity of the 

perfect agreement line, the rest scatter away. These friction coefficient using 

ultrasound and sliding tests are not well aligned. When all test condition are 

employed in the estimation, although fewer friction coefficient estimated using 

ultrasound falls within the bound (3 out of 9 specimens, 33%) (Figure 8.17 (c)), it 

still yields same magnitude order. Alignment of friction coefficient estimated using 

ultrasound and sliding test are not improved (Figure 8.17 (d)).  
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The friction coefficient estimated using correlation strategy is shown in Figure 8.18. 

Like the cut-off stress strategy, the estimation of friction coefficient using a single 

test condition shows some agreement (5 out of 9 specimens in the sliding test 

bounds, 55%) (Figure 8.18 (a) and (b)). The estimated friction coefficient shows the 

same magnitude with the measured values used in the sliding test. Improvement in 

estimation is achieved when all the test conditions are used (7 out of 9 specimens in 

the sliding test bounds, 77%). The ultrasonically estimated friction coefficient shows 

slightly improved agreement with the sliding test in Figure 8.18 (c) and (d). 

 

(a) 

(c) (d) 

(b) 

Figure 8.17  Estimation friction coefficient using cut-off stress strategy. (a) Test specimen No. vs friction 
coefficient. (b) Comparison between friction measurement using sliding test and ultrasound. (c) Test 

specimen No. vs friction coefficient for all the test conditions. (d) Comparison between friction measurement 
using sliding test and ultrasound for all the test conditions. 
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8.2.4.2 Friction Coefficient Comparison 

The friction coefficient is estimated using an ultrasonic method on aluminium alloy 

test specimens. The friction coefficient of aluminium on aluminium or similar 

materials has been previously investigated. For aluminium on aluminium metal 

contact, the friction coefficient is approximately 1.2 while it decreases to 0.8 if the 

contact is made of an oxide film (Bowden and Tabor, 1964). With a simple model 

considering plastic deformation, the friction coefficient is estimated as 0.2 generally 

for metals (Tabor, 1981). With a centrifugal friction apparatus, the static friction of 

 

(a) 

(c) (d) 

(b) 

Figure 8.18  Estimation friction coefficient using correlation strategy. (a) Test specimen No. vs friction 
coefficient. (b) Comparison between friction measurement using sliding test and ultrasound. (c) Test 

specimen No. vs friction coefficient for all the test conditions. (d) Comparison between friction 
measurement using sliding and ultrasound for all the test conditions. 
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aluminium to aluminium contact is approximately 0.5 (Dunkin and Kim, 1996). The 

comparison of the published friction coefficient with that estimated using ultrasonic 

method is illustrated in Figure 8.19 (a).  

 

 

The friction coefficient measured using sliding test for all contact specimens ranges 

from approximately around 0.38-0.48 (10% errors). Using ultrasound contact 

nonlinearity, friction coefficient is estimated from 0.3-1 (20% error for correlation 

strategy 95% bounds; 30% for cut-off stress strategy) for various Aluminium Alloy 

contact pairs. The friction estimated using ultrasound method show some 

agreement with the primitive sliding test (approximately 40% for cut-off stress 

 

𝜇 = 1.2 metal on metal  
𝜇 = 1.0 metal with oxide film  
𝜇 = 0.5 centrifugal test  
𝜇 = 0.2 plastic deformation  
 

(a) 

(b) 

Figure 8.19  (a) Comparison between friction coefficient measured using ultrasonic strategies with sliding 
test and other published values for aluminium contacts. (b) Surface roughness of test specimens. 
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strategy, 67% for correlation strategy; 54% in total). The estimated friction 

coefficients also fall within the bounds (0.2-1.2) in previous research work. Friction 

coefficient measurement is affected heavily by test methods, environment 

conditions and contacting surface conditions. The test method and test conditions 

used in the ultrasound method differs from those in previous research work, this 

may result in the variations of the friction coefficient measurement using the 

ultrasonic methods.   

The surface roughness is also depicted in Figure 8.19 (b). It is shown that the friction 

coefficient measured using ultrasound methods or sliding test is independent on the 

surface roughness of test specimens.  

The accurate measurement of coefficient of friction is quite difficult. The results 

strongly depend on the test method and environmental conditions. Nevertheless, 

the friction coefficient measured by in-situ ultrasonic method is comparable with 

the published values. It is suggested that the ultrasonic method be used as a tool to 

determine the friction coefficient of a contact interface in-situ. 

 

  Conclusion 

In this chapter, the contact nonlinearity generation from experiments was 

compared with the numerical computation. The experimental work shows 

reasonably good agreement with the numerical study. The difference between the 

numerical and experimental work is mainly because that the frictional interface in 

the numerical investigation is somehow over-simplified and is unable to realise the 

practical case that the real rough contact is made on asperities.  

Two strategies are proposed to estimate the friction coefficient using the ultrasonic 

nonlinearity. The first strategy used the peak of the harmonic generation to estimate 

the cut-off stress where the contact is just unable to have ‘stick-slip’ motion under 

a certain shear stress introduced by ultrasound. The ratio of these stresses yields 

the friction coefficient. The second approach compares the numerical computation 

with experimental data for a range of friction coefficients. The most correlated value 

is the estimated friction coefficient. Coefficient of friction estimated ultrasonically 

is compared with the sliding test measurement and published data and reasonably 

good agreement is achieved, which suggests that the ultrasonic nonlinearity can be 

used to estimate the friction coefficient.  
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9 GENERAL DISCUSSION 

 

 

This chapter presents discussions of the use of the ultrasonic method to estimate 

the friction coefficient. In addition, a pilot study for an alternative method to 

generate the contact nonlinearity. The use of oblique incident ultrasound is 

evaluated, and the usefulness of this alternative method is discussed as well.  

 

  Limitation of Experimental Approach 

An ultrasonic technique to estimate the friction coefficient at a contact has been 

developed experimentally using the contact nonlinearity. There are some limitations 

with experimental approach.  

In the experimental work, contact nonlinearity was coupled with the system 

inherent nonlinearity and it was difficult to isolate the true contact nonlinearity from 

the system inbuilt nonlinearity. Although methods were used to remove the system 

inbuilt nonlinearity, it only gave an approximate estimation of the true contact 

nonlinearity. Shear stress at a contact is critical in estimating friction coefficient and 

it is difficult to measure. A laser vibrometer was used to measure the displacement 

and the stress of an incident shear wave to calibration the ultrasound transmitter 

on a test specimen (Chapter 6). This was carried out under the assumption that the 

measured shear stress (from a solid-air interface) was equal to the true shear stress 

at a contact. With the current measurement configuration (Chapter 6 & 7), only low 

shear stress was achieved and the active normal stress range for the nonlinear 

‘stick-slip’ motion was limited (approximately less than 5MPa). Contact nonlinearity 
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originating from the nonlinear ‘stick-slip’ motion at a contact was measured 

experimentally (Chapter 7). What happens microscopically, however, is still not 

clearly understood, especially very small asperity slips (in order of nanometres) 

occurring repeatedly. Possible signs of fretting were observed on the contacting 

surface of test specimen S1, in Figure 9.1, (the other end of the specimen where the 

ultrasonic transducers were placed) after the contact surface was exposed to 

numerous repeated ultrasonic oscillations and ‘stick-slip’ motions.  

 

 

 Limitation of Numerical Study 

9.2.1 Numerical Implementation 

In the numerical study, a simple one-dimensional model was employed to study the 

harmonic generation from a rough interface when interacting with a high-power 

ultrasound. Comparison between the numerical and the experimental results 

(Chapter 8) showed that the simplified 1-D model was able to capture the key 

phenomenon (‘stick-slip’) and the nonlinearity generation on the ultrasound. With 

several assumptions, this over-simplified 1-D numerical model proved its usefulness 

in computing the nonlinearity from a rough contact (Blanloeuil et al., 2014c). Due to 

the assumptions made in the 1-D model, the numerical computation showed some 

differences between the experimental results, as discussed in Chapter 8. 

 

Possible signs of fretting  

Figure 9.1  Possible signs of fretting on the contacting surface of test specimen S1. 
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The nonlinear interaction of a high-power shear polarised ultrasound with a 

frictional interface has mainly been investigated numerically and various numerical 

models have been implemented. From a simple 1-D numerical model  (Blanloeuil et 

al., 2014c) to more advanced and complicated 2-D numerical study (Hirose 1994; 

Meziane et al., 2011), the numerical computation yields good agreement. The 1-D 

model used in this research work, although unable to compute the real propagation 

of ultrasound, is sufficient in revealing the nonlinearity originating at a contact.  

 

9.2.2 Contact Mechanics  

In the previous 1-D or 2-D numerical study, the contact interface is assumed to be a 

flat but frictional plane (Hirose, 1994; Meziane et al., 2011; Blanloeuil et al., 2014c). 

This assumption consequently results in the main difference between the numerical 

study and the experimental work, as discussed in Chapter 8. The real contact on the 

asperities is not taken into consideration in the numerical study in this research 

work.  

The contact of rough surface has been studied for several decades and various 

models have been developed to explain the real contact at rough surfaces. 

Incorporating the contact mechanics with the linear ultrasound has been 

investigated at an interface (Kendall and Tabor, 1971; Królikowski and Szczepek, 

1993; Dwyer-Joyce et al., 2001; Baltazar et al., 2002). The nonlinear interaction (‘stick-

slip’) at a rough contact has also been investigated with micromechanical models 

(Pecorari, 2003). The Greenwood-Williamson approach was employed with a 

Hertzian model accounting for the contact under normal compression and Mindlin’s 

work for the tangential oscillation under shear polarised ultrasound. A quasistatic 

spring model was also employed to relate the measured nonlinearity to the 

interfacial stiffness. The odd order harmonics were generated and the third 

harmonic showed a peak at low contact stresses. The contact model was also taken 

into account in a 2-D computational study (Delrue et al., 2018; Aleshin et al., 2018). 

Harmonic generation due to friction was also detected.  

With the contact mechanics considered in the numerical model, the nonlinear 

interaction at the rough contact interface helps to achieve better understanding as 

the practical contact is properly modelled. An area for further study is the use of 

nonlinear ultrasound to study higher order interfacial stiffness. 
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  Limitation of Prediction of Friction Coefficient 

The numerical study used in this research work applies the classic Coulomb friction 

model. The effect of both static and kinetic friction coefficient on the ultrasonic 

nonlinearity generation was discussed in the numerical study in Chapter 5. In 

estimating the friction coefficient with ultrasound in Chapter 8, only the static 

friction coefficient was calculated and the kinetic friction coefficient was assumed 

equal to the static friction coefficient. This may lead to some errors in the estimation 

of friction coefficient.  

In the experimental work, slipping takes places when the incident shear stress 

generated by ultrasound overcomes the static friction at the interface. During the 

slipping process, the contact interface is characterised by a kinetic friction 

coefficient rather than the static friction coefficient. The numerical computation 

employed to estimate friction coefficient used static friction coefficient and 

therefore the estimation presents an ‘averaged’ friction coefficient at the contact 

rather than the true static friction coefficient.  

In the experimental work, the contact specimens remained macroscopically static. 

The amplitude of ultrasound incidence was of the order of nanometres. In this case, 

the rough surfaces slip several nanometres under the shear ultrasound oscillation. 

However, it is still negligible with respect to the globally static contact. Therefore, 

the friction coefficient estimated using ultrasound is reasonably treated as the static 

friction coefficient.  

Other friction laws could be investigated in the numerical study to account for the 

non-constant friction coefficient during the ‘stick-slip’ process. The results may be 

helpful in the estimation of both static and kinetic friction coefficient using 

ultrasound. 

 

  Pilot Study of an Alternative Method 

In previous chapters, ultrasonic nonlinearity generation at a rough interface using a 

normal incident high-power ultrasound has been investigated. ‘Stick-slip’ motion is 

activated at the interface and contact nonlinearity is generated. The nonlinearity is 

measurable and useful in estimating the friction coefficient of two contact 

specimens.  
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Recently, contact nonlinearity generation using oblique incidence has also been 

studied by numerical and computational methods (Hirose, 1994; Pecorari, 2003; 

Blanloeuil et al., 2013; Blanloeuil et al., 2014a; Blanloeuil et al., 2016). The effect of the 

incident angle and the incidence amplitude on the nonlinearity generation were 

investigated. Research results suggest that the oblique incidence approach is useful 

in understanding the contact states (‘open’ or ‘close’, ’stick or ’slip’). 

Using oblique incidence provides more feasibility in practical applications 

(especially where the normal incidence is not applicable). In this section, a short 

pilot study has been performed to evaluate the usefulness of this approach.  

 

9.4.1 Test Configuration and Preparation 

In the experimental investigation, the test configuration and preparation discussed 

in Chapter 6 has been adopted here. Details are given as follows.  

 

9.4.1.1 Test Rig  

When the incidence ultrasound changes from 0 to a non-zero angle, at the contact 

interface, the incidence shear wave results in two components, as shown in Figure 

9.2.  

 

 

 

Incidence shear wave 

Stress of the wave 𝜎0 

Contact interface 

Incidence angle 

Normal stress component 𝜎𝑛 Tangential stress component 𝜏 

𝜃 

Figure 9.2  Oblique shear incident wave meeting at a contact interface. Normal and tangential stress 
components at the interface. 
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The normal stress component 𝜎𝑛 and the tangential stress component 𝜏 at the 

interface are calculated using Equations (9.1) and (9.2), respectively (Blanloeuil et 

al., 2013, Blanloeuil et al., 2014a). 𝜎𝑢 denotes the stress of the ultrasound within the 

host material.  

 𝜎𝑛 = 𝜎𝑢 sin 2𝜃 (9.1) 

 𝜏 = 𝜎𝑢 cos 2𝜃 (9.2) 

 

It is noticed that when the incidence angle is 0, only shear stress exists at the 

interface and the normal stress component is zero. When the angle is 45°, the 

tangential stress components vanishes while the normal stress researches the 

maximum. At this angle, the incident ultrasound can only trigger clapping motion at 

the contact interface and permits no slipping (Blanloeuil et al., 2013; Blanloeuil et al., 

2014a). For this work, an incidence angle of 25° was selected in the experiment to 

ensure that the slipping motion can take place at the contact under the ultrasonic 

oscillations.  

An aluminium alloy wedge with two inclined angles at 25°, as shown in Figure 9.3, was 

used in the experimental study. 

 

 

 

Al alloy wedge with 25° inclination 

Positions to place sensor 

Sensor clamping fixture 

Figure 9.3  Al alloy wedge with 25° inclination in the experimental work. 
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9.4.1.2 Experimental Parameters 

Knowing the shear stress at the contact interface is critical for the determination of 

friction coefficient, as shown in previous experiments with normal incidence. A laser 

vibrometer measurement was employed to measure the displacement at the 

contact face of the wedge. The displacement component normal to the contact face 

was measured. The stress was calculated using Equations (9.1) and (9.2). The laser 

vibrometer measurement and the stress components at the contact face are listed 

in Table 9.1. 

 

 

The displacement measured with the laser vibrometer increased with the 

amplification applied as well as the normal and tangential stress at the contact face. 

The normal stress component and the tangential stress component were similar in 

magnitude.  

Due to the non-zero normal stress component, the externally applied normal stress 

needs to be sufficient so that the contact remains in the ‘closed’ state. In the 

experiment, the externally applied normal stress ranged from 0 to 12 MPa to ensure 

the contact was closed and ‘stick-slip’ motion was activated.  

Two sensor configurations were employed in the experimental investigations, as 

shown in  Figure 9.4. Configuration I (Figure 9.4 (a)) has been discussed in 9.4.1.1. 

and illustrated in Figure 9.2. With this configuration, the incident ultrasound results 

in the normal and tangential stress components. In the second configuration (Figure 

9.4 (b)), the incident shear stress is in plane with the contact face and therefore 

there is no normal stress component. 

Table 9.1 Laser vibrometer measurement with 25° wedge at varying input levels. 

Input 

excitation 

Displacement measured 

with laser vibrometer 

Normal stress at 

contact face 

Tangential stress 

at contact face 

𝟒𝟓𝐕 8.57nm 0.468MPa 0.393MPa 

𝟗𝟎𝐕 14.88nm 0.814MPa 0.683MPa 

𝟏𝟒𝟎𝐕 24.67nm 1.35MPa 1.132MPa 

𝟐𝟖𝟎𝐕 35.82nm 1.96MPa 1.644MPa 
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9.4.2 Experimental Results 

The pitch-catch reflection arrangement was applied in the experiment. The 

reflected signals were captured and analysed. The experimental results using 

oblique incident shear ultrasound are shown as follows.  

 

9.4.2.1 Sensor Configuration I 

The harmonic generation of the nonlinear interaction between an oblique incident 

shear ultrasound and a frictional interface is illustrated in Figure 9.5.  

 
Al alloy wedge with 25° inclination 

Sensor polarisation direction I  Sensor polarisation direction II  

(a) (b) 

Figure 9.4  (a) Sensor configuration I. (b) Sensor configuration II. 
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In Figure 9.5 (a), it is noticed that both the second harmonic 𝐴2 and the third 

harmonic 𝐴3 are dependent on the externally applied normal contact stress. The 

third harmonic, 𝐴3 shows a ‘rise-drop’ trend over the normal stress, which 

 

‘Stick-slip’ region 

(a) 

(b) 

(c) (d) 

Figure 9.5  Harmonic generation at rough contact interface (Wedge-S4) using Configuration I. (a) Second and 
third harmonic generation subject to varying normal stress and excitation (a) 140𝑉 and (b) 280𝑉 (100 

repetitions). (c) The second harmonic 𝐴2 generation and (d) The third harmonic 𝐴3 generation subject to 
varying normal stress and excitations (45 − 280𝑉).  
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resembles the experimental results found in Chapter 7. The ‘rise-drop’ pattern 

indicates the activation of the ‘stick-slip’ motion at the contact.  

It is worth noting that the second harmonic 𝐴2 shows a greater value than that of 

the third harmonic 𝐴3. For a normal incident shear wave, only the third harmonic 

was generated after the nonlinear interaction (‘stick-slip’) at a rough interface (as 

discussed in Chapter 5 and Chapter 7). With an oblique incidence (Configuration I), 

the second harmonic, 𝐴2, however, was also generated. Nonlinearity in the form of 

the second harmonic 𝐴2 has been found even if the contact remains closed and only 

pure ‘slipping’ occurs without any ‘clapping’ effect (Blanloeuil et al., 2013; Blanloeuil 

et al., 2014a).  

The nonlinearity generation at a rough interface in the form of second harmonic 𝐴2 

and the third harmonic 𝐴3 under all the test conditions are given in Figure 9.4 (b) 

and (c), respectively. The region in red (encircled by dashed line) indicates the 

active region of the nonlinearity generation from a rough interface.  

 

9.4.2.2 Sensor Configuration II 

The contact nonlinearity generation using the second configuration is illustrated in 

Figure 9.6.  

In the second configuration, the sensor polarisation is in the plane of the contact 

face therefore only tangential stress actively functions at the contact interface. As 

illustrated in Figure 9.6 (a), only the third harmonic 𝐴3 shows a dominant 

relationship over the applied contact stress, while the second harmonic 𝐴2 varies 

slightly over stress. The ‘rise-drop’ trend of the third harmonic agrees with the 

findings in Chapter 7 where normal incidence ultrasound is applied. With this 

configuration, the contact remains closed and only ‘stick-slip’ motion is triggered, 

which is the origin of the measured nonlinearity.  
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For all the test conditions, the second and the third harmonic is shown in Figure 9.6 

(b) and (c). As encircled in the dashed line, the red region indicates the most 

nonlinear interaction of a high-power ultrasound with a rough interface, which 

agrees with the experimental findings in Chapter 7. 

 

‘Stick-slip’ region 

(a) 

(b) 

(c) (d) 

Figure 9.6  Harmonic generation at rough contact interface (Wedge-S4) using Configuration II. (a) Second and 
third harmonic generation subject to varying normal stress and excitation (a) 140𝑉 and (b) 280𝑉, (100 

repetitions). (c) The second harmonic 𝐴2 generation and (d) The third harmonic 𝐴3 generation subject to 
varying normal stress and excitations (45 − 280𝑉). 
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Measurement of nonlinearity generation due to the interaction of a high-power 

ultrasound with a rough contact interface has been investigated experimentally 

using an oblique incident shear wave. Two sensor configurations were employed and 

both results show that the ultrasonic nonlinearity was generated at a frictional 

interface and the nonlinearity was measurable. In the first configuration, both 

second and third harmonics were detected and show strong relationship with the 

applied contact stress. When the sensor was placed in the second configuration, the 

third harmonic showed a ‘rise-drop’ trend over the normal stress which agrees 

reasonably with the normal incident experiment.  

In both configurations, the ultrasonic nonlinearity from a frictional contact interface 

is detectable using oblique incidence. Experimental results demonstrate the 

usefulness of the method. It provides more viability of measuring the contact 

ultrasonic nonlinearity and is potentially an alternative tool in the estimation of 

friction coefficient.   

With Configuration I, the contact stress at the interface is modulated by the normal 

stress component of the incident ultrasound. The contact nonlinearity originating at 

the interface in the form of second and third harmonic, contains more information 

about the rough interface. The presence of the normal stress component, however, 

can lead to the open state of a contact (‘clapping’ effect), which makes the 

measurement of harmonic generation due to ‘stick-slip’ motion more difficult. With 

Configuration II, the nonlinearity in the measured ultrasound mainly comes from the 

nonlinear ‘stick-slip’ motion. Before using the oblique incidence as an alternative tool 

to estimate the friction coefficient, further investigation is required to understand 

the role of the friction coefficient and the optimum incident angle of measurement.  

 

  From Lab measurement to Practical Application 

9.5.1 Practical Estimation Friction Coefficient  

The static friction coefficient was estimated using ultrasonic nonlinearity. The 

potential usefulness of this approach is significant. It provides a non-invasive 

approach to measure the friction coefficient at a rough contact interface. It also 

makes the in-situ measurement of friction coefficient feasible. Compared with the 

conventional methods of measuring the friction coefficient, no duplicated 

specimens are required such as those required in the pin-on-disc configuration.  
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Before this ultrasonic method can be applied to the practical friction coefficient 

measurement, several limitations are worth noting.  

The ultrasonic method uses contact harmonic generation, i.e. the third order 

harmonic generation when a powerful ultrasound wave activates ‘stick-slip’ at the 

contact interface, to estimate the friction coefficient. In the current research work, 

the ‘stick-slip’ effect takes places only at a low-stress region, generally less than 

5MPa subject to input voltage of 200~300V. Such stress is considerably low 

compared to the typical stresses in the practical engineering applications. For 

example, wheel-rail contact pressure is of 1500MPa (Marshall et al., 2006) and 

rolling bearings up to 2GPa (Quinn et al., 2002). Currently the ability to generate only 

low shear stress represents a serious limitation of the work.  At the high contact 

stress, the activation of ‘stick-slip’ may be possible when the incident shear stress is 

sufficiently large, which is generally associated with large voltage input.  

In the current work the ultrasonic probes are used as the transmitter. The damping 

material inside the probe reduces the amplitude of signal heavily. Undamped 

piezoelectric materials may also be useful in yielding higher signal amplitude 

compared to the damped transducers, which may be a possible approach to obtain 

higher incident shear stress. Other methods of generating incident shear waves may 

also be used instead of using a normal shear wave probe or piezo element. Mode 

conversion with longitudinal piezo elements can be used to generate the incident 

shear wave at boundaries. The larger amplitude from a longitudinal piezo element 

may yield larger shear stress after mode conversion.   

 In the current work, the applied ultrasound is at 1 MHz. The frequency does not play 

a significant role. Other frequencies may also be employed in this method. High- 

frequency transducers are available in a small size so the ultrasound wave can be 

targeted to a limited area. However, the incident amplitude from a high-frequency 

transducer does not permit high incidence shear stress. An even higher frequency 

transducer is also required for receiving the signal. When selecting a frequency, 

compromise needs to be made to ensure the optimum incident shear stress. 

The materials of the contact specimens in the current research work were 

aluminium alloys. Other materials can be used in a similar way. If two dissimilar 

materials are employed, the numerical model needs to be modified to take account 

for the material difference before it is used to estimate the friction coefficient. 

Estimation of friction coefficient for a dissimilar contact pair is out of the scope the 

current research work.  
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In the current work, contact nonlinearity generation was only carried out for dry 

contacts and these were investigated by both numerical and experimental methods. 

Contact nonlinearity generation has not been studied for a lubricated contact. At a 

lubricated interface, contact is made on asperities as well as the lubricant. High-

power shear ultrasound may behave differently and the contact nonlinearity 

generation then becomes complicated. This is an area that requires further work. 

Further investigations on the optimum stress region, optimum shear wave 

generation method, optimum frequency and dissimilar materials can be carried out 

in the estimation of friction coefficient using ultrasound.  

 

9.5.2 From Lab Measurement to Practical Application 

In the current work, estimation of friction coefficient is carried out in a laboratory 

environment. It is noticed that the friction coefficient is estimated when a range of 

test data is available, i.e. a range of contact stress subject to a contact incident stress. 

The reason for this is that the ultrasonic method uses the peak of the harmonic 

generation and a range of the test data to produce such peak. The peak in the 

harmonic generation can be obtained in two ways, i.e. constant incident shear stress 

but varying contact stress, and constant contact stress but varying incident shear 

stress. Practically varying the incidence shear stress is more viable than varying the 

contact stress.  

Several ways are available to transfer the current lab-based method to a practically 

useful tool to estimate the friction coefficient.  

• Sweeping input power. The input power is programmable so that a range of 

the input power is swept, resulting in a range of incident shear stress. At 

constant contact stress, the sweeping input power enables the measurement 

of the peak of the harmonic. 

• Multiple echoes. As previously discussed in Chapter 7, the subsequent echoes 

contain nonlinearity information. Due to the multiple interactions with the 

rough contact interface, the nonlinearity information is amplified. In such a 

way, with a lower power input, i.e. lowered incident shear stress, harmonic 

generation may still take place and can be used to estimation friction.  

• Oblique incidence. As previously discussed in this chapter, harmonic 

generation also occurs under oblique incidence. At an optimum inclination 

angle, the incident shear stress activates the nonlinear interaction, i.e. 
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‘slipping’ motion. The resultant nonlinearity generation is useful in the 

estimation friction coefficient.  
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10 CONCLUSIONS 

 

 

This thesis presents the work of developing an ultrasonic method to measure 

friction coefficient in-situ at an interface. Conclusions drawn from this study are 

summarised in this chapter, including the development of numerical model to 

investigate the nonlinear interaction between a shear ultrasound and a frictional 

interface, developing experimental technique to measure the contact nonlinearity 

and using the ultrasonic technique to measure the friction coefficient. 

 

 Modelling Nonlinearity Generation from a Frictional 

Interface 

A simple one-dimensional numerical model has been developed to investigate the 

nonlinear interaction between a high-power shear polarised ultrasound and a 

frictional interface along with an analytical approach. When conventional low-power 

ultrasound meets an interface, the contact remains unchanged and no distortion is 

observed on the reflected and transmitted ultrasound. Whereas a high-power shear 

wave strikes at a frictional interface, ultrasonic oscillations change the contact state 

and activate ‘stick-slip’ motion at the interface. The nonlinear nature of the stick-slip 

motion distorts both the reflected and transmitted ultrasound and high odd order 

harmonics are generated.  

With the one-dimensional finite difference model, nonlinearity generation at the 

frictional interface was studied. The numerical model was compared with the 

analytical method and good agreement between the analytical and numerical 
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solutions proved the validity and usefulness of the numerical model in investigating 

the nonlinearity generation from the interaction between a shear ultrasound and a 

frictional interface.  

Parameters influencing the nonlinear interaction at the interface, i.e. ‘stick-slip’ 

motion, were investigated numerically. Activation ‘stick-slip’ motion and consequent 

nonlinearity generation at the interface was affected by the incident ultrasound 

amplitude, the normal contact stress and the friction coefficient at the interface. 

Contact nonlinearity was preferably generated at large incident amplitude, low 

contact stress and low friction coefficient. A dimensionless stress 𝜉 was employed 

as the ratio of the frictional stress at the interface to the ultrasonic induced shear 

stress. Nonlinearity generation reached the maximum (𝜉 = 0.5) regardless of the 

incident ultrasound amplitude, contact stress and friction coefficient.  

The numerical model employed in this work has been simplified, but nevertheless, 

the solution captures the physical phenomenon of the nonlinear interaction 

between a high-power shear ultrasound and a frictional interface. The numerical 

study provides guidance for the following experimental work.  

 

 Developing an Ultrasonic Method in Measuring 

Contact Nonlinearity  

Measuring the contact nonlinearity at a rough interface using an ultrasonic method 

was investigated experimentally. Apparatus that meets the requirement has been 

selected in the experimental detection of the contact nonlinearity. A high frequency 

nonlinear ultrasonic technique was employed. Experimental variables were found to 

have a significant influence on the measurement of the contact nonlinearity. In 

practice, accurate and reliable measurement of the contact nonlinearity requires 

consistent test configuration, data acquisition and signal processing methods.  

Experimental detection of contact nonlinearity was carried out using both pitch-

catch transmission and pitch-catch reflection arrangement. Both arrangements 

were applicable in measuring the contact nonlinearity as the third harmonic were 

observed in both transmitted and reflected signals. Reflection arrangement was 

selected due to its practical benefits.  

Practically measured ultrasonic nonlinearity consists of the system inherent 

nonlinearity (mainly from the test specimen and instruments) and the contact 

nonlinearity (only from the frictional interface). Methods have been developed to 
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separate the contact nonlinearity from the measured ultrasonic nonlinearity. 

Measurement results show that the nonlinear interaction, i.e. ‘stick-slip’ motion 

between a high-power shear wave and a rough interface can be experimentally 

measured. Nonlinearity generation increases with and then decreases with the 

contact stress. Larger incident amplitude introduces more nonlinearity being 

generated at the rough interface. In the subsequent echoes, nonlinearity is also 

observed.  

 

 Developing an Ultrasonic Method to Measure 

Friction Coefficient at an Interface 

The contact nonlinearity measured experimentally were compared to the numerical 

computation solution. The difference between the numerical computation and 

experimental measurement was mainly because that the numerical model treats the 

contact between two rough surfaces as simplified flat smooth plane contact 

whereas practically contact of two rough surfaces are made on the asperities. 

Despite the difference, the agreement between the numerical and experimental 

nonlinearity generation allows the friction coefficient to be estimated.  

Two strategies were developed to estimate the friction coefficient using 

ultrasonically measured contact nonlinearity. The first strategy used cut-off stress 

where the nonlinear ‘stick-slip’ stops occurring. The ratio of the incident shear 

stress and the cut-off stress gave the friction coefficient. The second strategy used 

the numerical model to compute the contact nonlinearity with the experimental test 

conditions and various friction coefficients. The friction coefficient that yielded the 

most correlated contact nonlinearity between the numerical and experimental 

solutions was the friction coefficient.  

With the developed method, the ultrasonically measured friction coefficient agreed 

with the sliding test results (in total 54%) and published data. Despite limitations, 

the ultrasonic method using experimentally measured contact nonlinearity shows 

the usefulness in measure the friction coefficient in-situ in a contact interface.   

 

 Future Works 

Further development and investigation directions are listed as follows. 
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• Improve the numerical model. In the current research work, the contact 

model representing what happens at a rough interface is not considered. 

Various contact models can be integrated with the numerical model to 

investigate the contact nonlinearity generation in a more realistic way. 

Advanced numerical techniques can be also applied. 

• Extend the friction coefficient estimation application. The ultrasonic method 

estimating the friction coefficient in-situ is currently focused at similar-

material contact pair. Friction coefficient estimation needs to be extended to 

dissimilar material pairs. 

• Extend friction coefficient estimation in a high-stress contact. Practically, 

contacts are subject to high stress. To apply the ultrasonic method under this 

condition, further investigation is needed to increase the practically 

achievable shear stress.  

• Extend the friction coefficient estimation in lubricated contact. Nonlinearity 

generation at a lubricated contact needs to study because the role of 

lubricant in the contact nonlinearity generation is unknown. Different 

mechanisms may be involved when high-power ultrasound interacts with 

liquid.  

• Facilitate the practical implementation. Currently a high-power ultrasound is 

used to trigger the ‘stick-slip’ motion. The measurement is also carried out 

over a range of contact stress. Sweeping power method, multi-echoes 

method and oblique incidence method need to be investigated to evaluate 

the effectiveness and usefulness in practical implementations. 

• Estimate friction coefficient in dry contacts. Friction coefficient estimation at 

a dry contact can be tried out and wheel-rail contact, machine tool joints and 

brakes are where dry contact occurs. Implementation of the ultrasonic 

method to estimate friction coefficient potentially provides real-time 

information at these dry contacts. 

• Estimation friction coefficient in tribometers. The ultrasonic method can be 

implemented on a frictional test machine or tribometers. Friction measured 

simultaneously by tribometer and ultrasound can be investigated.  
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APPENDIX A 

One-dimensional wave propagation finite difference MATLAB script 

 
clear all 

clc 

%% material properties - Al 

E=70E9; % young's modulus 

nu=0.3; % poisson's ratio 

rho=2700; % density 

G=E/(2*(1+nu)); 

c=sqrt(G/rho); 

Z=rho*c; % acoustic impedance 

f1w=1E6; % fundamental frequency 1MHz 

p1w=1/f1w; % period of fundamental wave 

sigma=1E6; % applied normal stress 

mu=0.5; % coefficient of friction 

lamda=c/f1w; % wavelength 

awvn=2*pi/lamda; % angular wavenumber 

stresscoef=G*awvn; 

%% numerical  

L=3E-2; % length of specimen 

T=24E-6; % total time 

dx=2E-5; % space increment 

dt=4.5E-9; % time increment 

nx=round(L/dx); % number of space divisions, integer 

nt=round(T/dt); % number of time divisions, integer 

  

% stability check 

CFL=c*dt/dx; % cfl condition  

if CFL >= 1  

    fprintf('CFL Stability is not met. Make sure CFL less than Unity') 

else 

    s=CFL; 

    r=CFL^2; % coefficient 

end 

  

%% space discretisation and initial boundary condition 

for k=1:nx+1 

    x(k)=(k-1)*dx; 

    u(k,1)=0; 

    % du/dt=0 at t=0 

end 

  

%% time discretisation and boundary condition 

f=zeros(nt+1,1); % initialise source term 

js=round(5*p1w/dt+1); 

  

for j=1:nt+1 

    t(j)=(j-1)*dt; 

end 

f(1:js)=50E-3*sin(2*pi*f1w*t(1:js)); % modulated source, apply gaussian window 

w=gausswin(js); 

f(1:js)=f(1:js).*w; 

  

%% implement explicit scheme 

for j=1:nt 

    if j==1  

        % particle velocity v at i=nx+1,j=1 
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        v(j)=0; 

        % assume sticking u(j+1)=u(j) at nx+1 

        u(nx+1,j+1)=u(nx+1,j); 

        % compute shear stress 

        tau(2:nx,j)=G*(u(3:nx+1,j)-u(1:nx-1,j))/(2*dx); 

        tau(nx+1,j)=G*(3*u(nx+1,j)-4*u(nx,j)+u(nx-1,j))/(2*dx); 

        tau(1,j)=G*(-3*u(1,j)+4*u(2,j)-u(3,j))/(2*dx); 

        % update left BC 

        u(1,j+1)=(1-3/2*s)*u(1,j)+2*s*u(2,j)-s/2*u(3,j)-2*f(j)*dt; % TBC+source 

        % check contact state, sticking or slipping 

        if abs(tau(nx+1,j)) >= mu*sigma % sliding 

            % compute shear stress at boudary i=nx+1 

            tau(nx+1,j)=sign(tau(nx+1,j))*mu*sigma;  

            % update u(nx+1,j+1) for slipping 

            u(nx+1,j+1)=((2*dx/G)*tau(nx+1,j)+4*u(nx,j)-u(nx-1,j))/3; 

            % compute u for next time 

            u(2:nx,j+1)=0.5*(r*u(3:nx+1,j)+(2-2*r)*u(2:nx,j)+r*u(1:nx-1,j)); 

            v(j+1)=(u(nx+1,j+1)-u(nx+1,j))/dt; 

        else 

            % compute u for next time 

            u(2:nx,j+1)=0.5*(r*u(3:nx+1,j)+(2-2*r)*u(2:nx,j)+r*u(1:nx-1,j)); 

            v(j+1)=(u(nx+1,j+1)-u(nx+1,j))/dt; 

        end 

    else 

        % assume sticking u(j+1)=u(j) at nx+1 

        u(nx+1,j+1)=u(nx+1,j); 

        % compute shear stress  

        tau(2:nx,j)=G*(u(3:nx+1,j)-u(1:nx-1,j))/(2*dx); 

        tau(nx+1,j)=G*(3*u(nx+1,j)-4*u(nx,j)+u(nx-1,j))/(2*dx); 

        tau(1,j)=G*(-3*u(1,j)+4*u(2,j)-u(3,j))/(2*dx); 

        % compute u for next time at i=1 

        u(1,j+1)=(1-3/2*s)*u(1,j)+2*s*u(2,j)-s/2*u(3,j)-2*f(j)*dt; 

        % check contact state, sticking or slipping 

        if abs(tau(nx+1,j)) >= mu*sigma % sliding 

            % compute shear stress at boudary i=nx+1 

            tau(nx+1,j)=sign(tau(nx+1,j))*mu*sigma; %!!! sign(v) or sign (u_dot) 

            % update u(nx+1,j+1) for slipping 

            u(nx+1,j+1)=((2*dx/G)*tau(nx+1,j)+4*u(nx,j)-u(nx-1,j))/3; 

            % compute u for next time 

            u(2:nx,j+1)=r*u(3:nx+1,j)+(2-2*r)*u(2:nx,j)+r*u(1:nx-1,j)-u(2:nx,j-

1); 

            v(j+1)=(u(nx+1,j+1)-u(nx+1,j))/dt; 

        else % sticking 

            u(2:nx,j+1)=r*u(3:nx+1,j)+(2-2*r)*u(2:nx,j)+r*u(1:nx-1,j)-u(2:nx,j-

1); 

            v(j+1)=(u(nx+1,j+1)-u(nx+1,j))/dt; 

        end 

    end 

             

     % plot the graph after every 10th frame 

    if mod(j,10)==0 

        subplot(2,1,1) 

        plot(x,u(:,j)) 

        axis([0 L -1.2E-8 1.2E-8]) 

        title('displacement') 

        ylabel('Amplitude (m)') 

        xlabel('x (m)') 

        subplot(2,1,2) 

        plot(x,tau(:,j)) 

        axis([0 L -0.8E6 0.8E6]) 

        title('shear stress') 

        ylabel('Amplitude (MPa)') 

        xlabel('x (m)') 

        pause(0.001) 

    end 

end 


