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Abstract

The study of male infertility has become a priority for biologists and researchers in

the last decades as a consequence of the declining birth rates. This problem has also

become a major public health with economic and psychosocial consequences.

Analysis of human sperm cells, for instance, is widely used in investigations

related to male infertility and assisted conception. Sperm samples are usually anal-

ysed by health professionals using microscope devices following a manual process to

count and describe their morphology. Nevertheless, this practice is prone to errors

and time consuming.

This thesis proposes a novel framework based on image processing and machine

learning methods to automate the analysis of sperm cells. The proposed method

presented an average accuracy performance of 96.4% classify automatically sperm

cells in three classes: normal, abnormal and non sperm cell. Performance results

have been obtained in challenging conditions: presence of uneven illumination, un-

wanted noise and blurring caused by the focus drift and occlusion of objects as a

result of the overlapping of sperm cells, among others. The object of interest, sperm

cells, captured in the images used in this research did not receive any staining or

fixation treatment prior to their capture.

A novel and robust methodology based on deep neural learning is developed as

part of the automatic feature selection prior to the classification. Also, video and

image database of sperm samples was produced at the Andrology laboratory of the

University of Sheffield as part of this work. The database was used to validate the

proposed framework for the segmentation and classification of in-vitro cells.
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Chapter 1

Introduction

The analysis of morphological variation of microscopic cell images and their accu-

rate interpretation, especially in the biomedical field, is nowadays a demanding and

critical requirement. New technologies in optics and electronics and automated mi-

croscopy have made specialists able to visualise and record thousands of images,

resulting in the need of integration of computational tools to replace inaccurate and

usually monotonous manual inspection procedures.

Analysis and interpretation of images from in-vitro experiments are usually con-

ducted into laboratories and research groups where there are a limited image process-

ing hardware resources. Furthermore, their observations follow specific procedures

or guidelines involving interpretation based on experience, subjective personal cri-

teria and generally without the possibility of evaluation of the information obtained

from observations.

Analysis of microscopy images is usually carried out to find specific character-

istics within them. This process can be a time-consuming task depending on the

nature of the images and the features analysed. It is important to highlight that a

visual scoring can remain inconsistent and unverifiable even if the same professional

analyses the same image in a different time.

A wide range of research work has been developed in recent years to analyse

microscopic images. Features like shape [2]; size and texture [3]; special components

[4], [5]; translation movement [6],[7]; motility level [8]; migration behaviour [9];

concentration [10],[11]; among others features have been identified and evaluated as

1



2 Chapter 1. Introduction

part of an analysis report.

Most of the diagnosis procedures and treatment for healthcare are supported

by analysis of digital images using computers. Researchers from pathology fields

recognise the requirement of automatic tools helping to analyse samples, including

quantitative measures as a metric of assessment of samples image-based.

Two areas have been widely developed in recent years: digital cytology and

histopathological image analysis [12]. The first means isolated cell and cell clusters

with three-dimensional nature. This characteristic reduces the ability to focus [13]

as the three dimensions object is represented into a plane. As a result, feature

extraction is an even more challenging task requiring special approaches to handle

this loss of information.

In the case of histopathological images, tissues from a range of organs are scanned

and analysed, distinguishing features such a structure, colour, texture and morpho-

logical information. Here, the image for analysis is highly adaptable to single-plane

digital scanning without compromising the resolution or features observed by an

expert [13].

Recently, approaches using spatial analysis to evaluate histopathology and cells

images have been widely investigated [12]. For example, in [14] blood cells are

analysed, breast cancer tissues are studied in [15],[16] and [5], stem cells [17] and

brain tumor tissue is evaluated in [18],[19].

An important example in cytology image analysis is sperm cells for male infer-

tility and assisted reproduction techniques. In the UK, it is estimated that one in

seven couples have fertility problems and the male side is responsible for the 30%

[20]. Health professionals diagnose infertility in men following the World Health Or-

ganization guidelines, which evaluate motility grade, concentration and morphology

of sperm cells [1].

The intra-cytoplasmic sperm injection (ICSI) is an example of assisted conception

method where sperm morphology plays a crucial role, as the sperm has to be selected

manually and then used to fertilize the ovule. The sample of sperm has to be “fresh”

and have not to be previously stained or fixed [21]. The fixation procedure essentially

locks cellular structures in place increasing the mechanical strength and stability.



1.1. Analysis of in-vitro Cells Images 3

Despite multiples commercial computer systems have emerged, combining pow-

erful Graphical Processing Units (GPU) and algorithms for in-vitro image analysis

they represent a high-cost technology for most of the laboratories. Furthermore,

their optimal performance is usually reached under controlled conditions such as

illumination and with high-magnification, with pre-stained cells or pre-processed

images.

Computer-Aided Diagnosis (CAD) system for breast mass classification, for in-

stance, typically needs to be fed with images where the damaged tissue has been

previously segmented with precision [22], [23]. In some cases, the operator is re-

quired to select specific features to be analysed based on his experience [16]. More-

over, most of the previous classification approaches are built upon the extraction of

hand-crafted features, such as size, shape and texture.

This thesis addresses the limitations mentioned above by developing a method

to classify images of in-vitro cells without prior processing (stained or fixed). This

thesis presents an image processing method for morphology analysis and evalua-

tion of in-vitro cell without prior manual selection of features, using deep learning

convolutional neural networks.

1.1 Analysis of in-vitro Cells Images

Nowadays, improvements in computers to process information have let to automatic

computer systems being used to assist in the health diagnosis and medical treat-

ments. Modern imaging systems, for instance, are capable to visualise, record and

store thousands of datasets including microscope images.

On the other hand, analysis of organic components for in-vitro models has been

traditionally carried out by experts worldwide using manual procedures. The reasons

for this is the high cost of computer-based technologies and the lack of adaptability

the hardware and software to specific conditions. Laboratories can have light, hu-

midity, temperature, space available variations. The object to be analysed can be

deformable, rigid, static, three-dimensional, among others variables.

Analysis of sperm cells, for instance, can be defined as a subjective interpretation
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which can be influenced by multiple factors. Also, the analysis may be conducted

with a poor quality control. It is generated by omission about standards of quality

and safety for the donation, procurement, testing, processing, preservation, storage

and distribution of sperm samples published by the World Health Organization

(WHO) for this specific procedure.

Also, conditions in the area of examination (e.g. illumination), hardware proper-

ties of the imaging devices and properties of the material under examination such as

the movement of cells in the mean they are contained can affect the visual definition

of those wanted cells for their examination. An additional component affecting the

imprecision in visual inspection can be the experience of the operator, visual fatigue

and subjectiveness when interpreting datasets.

In order to minimise the subjectiveness and reduce the time to analyse datasets,

image processing techniques and computer systems have been used. However, previ-

ous approaches studied in this work have presented a low performance in accuracy,

precision and reliability, mainly because they do not follow established guidelines or

criteria [24]. Additionally, in some areas such as analysis of sperm cells, clinical and

technical definitions (e.g. sperm concentration, motility and morphology) remain,

to some extent, imprecise [25].

In sperm samples, cells can be presented at a range of size and shape. This

produces a subjective classification if the analysis of morphology is carried out man-

ually. Thus, sperm cell classification can vary from one observation to another even

though if the analysis is carried out by the same observer at different time, also

known as intra-observer variation.

There are three common procedures performed on sperm cells before the analysis:

fixation, using a specific chemical to keep rigid cellular structure; air-drying, reducing

humidity left to air dry; and staining, adding dye to enhance the component of the

cells. Although the main intention is to facilitate the observation, all of them can

induce human errors and alterations. This has been published by Maree et al. [26].

Although the ideal scenario is having a professional analyst properly trained,

and quality control performed regularly on laboratories, in the real practice it is not

always possible as means higher cost.
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Facing the problems detailed in the above paragraphs, there is a need for a com-

puter based solution. The system or framework should satisfy other requirements

such as listed below:

• Automate the classification and reduce the processing time. The

systems should be able to classify normal or abnormal morphology without

the intervention of a human. A reliable computer-based system has to be able

to distinguish cells from rest of the material found in a sperm sample.

• Be objective and verifiable. Based on the WHO (World Health Organiza-

tion) guidelines, sperm cells classification must meet formal criteria and results

should be verifiable.

• Be robust. Frequently the in-vitro cell images are affected by low resolution,

uneven illumination and low contrast. The systems should then, classifies

with good performance under this challenging conditions. As an important

condition, the systems should be able to analyse non-stained sperm cells.

Sperm cell classification based on morphology is a challenging task, especially

because sperm cells move following random trajectories and sperm cells are non-

stained. This introduces multiple occlusions when images are captured making their

detection more difficult.

In the Figure 1.1 an example of fixed and stained sperm cells from the Manual of

World Health Organization [1] is shown. Cells have been stained with the objective of

bold the shape and components and enhancing the contrast against the background.

Furthermore, the blur presented is minimum as the cells are static.

Definition and contrast are higher than non-stained cells, as the sample used on

this research. An example of the image extracted from the database created for this

research is shown in Figure 1.2.
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Figure 1.1: Fixed and stained sperm cells. Image taken from the WHO [1], Laboratory
manual for examination and processing of human semen.

Figure 1.2: Non-fixed and non-stained sperm cells. Example of images analysed on this
thesis

This thesis proposes a robust methodology—based on image processing and ma-

chine learning methods—addressed to detect and classify, non-fixed and non-stained,

sperm cells. There are different and complex scenarios to solve.

As an example in Figure 1.3 and Figure 1.4 there are two samples of frames
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extracted from two different sources. Figure 1.3 is part of the database from UK

NEQAS (https://ukneqas.org.uk) a charitable consortium of external quality as-

sessment laboratories . Figure 1.4 belong to the sequences recorded as part of the

database created for this thesis, which is more detailed on Section 3.2.

 

a) 

b) 

c) 

d) 

Figure 1.3: Frame extracted from UK NEQAS database. (a) Collision and occlusion
between sperm cells. (b) Well defined sperm’s head. (c) Blurred sperm’s
head. (d) Other component joint with sperm cell.

Although both are from the same type of cells, prepared following the same for-

mal guidelines prior to sperm cells analysis, they have significant differences related

with the grade of illumination, definition of the sperm head, tails, size, concentra-

tion. Definition, resolution, illumination and general conditions are problems to

cope with it. The methodology is developed along the next Chapters.

This thesis presents a novel method based on image processing offering an accu-

rate classification of sperm cells. The proposed approach is adaptable and generic, so

that it can be used alone or alongside traditional fluorescence single-cell processing

to perform objective and accurate morphology analysis for biological applications.



8 Chapter 1. Introduction

 

 

 

 

 

a) 

b) 

c) 

d) 

Figure 1.4: Frame extracted from database created for this thesis. (a) Occlusion between
sperm cells. (b) Well defined sperm’s head. (c) Non-defined-edges sperm’s
head. (d) Collision between two and more sperm cells.

1.2 Outline and Key Contributions

The structure of this thesis and main contribution is outlined below:

• Chapter 1. This Chapter presents an introduction, describing motivation,

purpose and challenges of this thesis.

• Chapter 2. Literature Review. A review of the current state-of-the-art,

newest research done in automatic analysis of in-vitro cells and an overview

of basics concepts and procedures required to understand next chapters. De-

scription of the guidelines for sperm analysis provided by the WHO.

• Chapter 3. Analysis and selection of features. This Chapter presents a

methodology for analysing shape, size and colour of non-stained sperm head

identifying characteristic features for normal or abnormal morphology labelling.



1.2. Outline and Key Contributions 9

The main contributions purposed for this chapter is a characteristic feature

vector able to represent each class for sperm cells.

Also as a contribution is a database with 1000 images per class, validated with

the WHO [1] recommendations for morphology analysis and a professional

from the Academic Unit of Reproductive and developmental medicine of The

University of Sheffield. This database can be used for validation and test in

further research in this field.

• Chapter 4. Speeded Up robust features in combination with Bag of Features

approach. This Chapter contribution is a new approach for feature selection

for our database. As a result of the extraction of SURF features, each class

can be represented as a vector.

This vector is invariant to rotation and translation to some extent. Also in this

chapter, a bag of feature approach is designed, creating a new representation

for each class.

• Chapter 5. Deep Neural Network. This Chapter presents an accurate and re-

liable classification model based on machine learning techniques. Also, transfer

learning is analysed and tested, demonstrated better performance.

As the main contribution in this chapter, the use of a pre-trained network,

AlexNet, is presented, improving the performance and reducing processing

time.

• Chapter 6. Classification of motile in-vitro cells. This Chapter presents a

novel approach with the combination of Convolutional Neural Network and

movement detection algorithm. The contribution is a robust method able to

classify sperm cells over video sequences.

• Chapter 7. Conclusions and future work

This thesis is motivated by the requirements for laboratories to perform sperm

morphology analysis following two main sources of validation: WHO guidelines [27]

and experience from professionals doing sperm cells analysis. As a result, a novel
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framework is presented, using reliable and robust techniques to analyse images,

contributing to standardization and automation with regard to sperm morphology

classification.

The main contribution of this research is the analysis of motile and non-stained

sperm cells based on their morphology using image processing and machine learn-

ing techniques, developing a new algorithm for automatic, reliable, repeatable and

accurate classification. As far as the author is aware, there is no published work

carried out analysing this kind of images.

As a general view of the framework developed in this thesis the diagram in Figure

1.5 shows the main fields studied and their results. There are five main stages, they

do not occur in that particular order.

In the framework presented on Figure 1.5 the main topics presented are:

• Capture of images and the creation of the database.

• Several image processing techniques implemented, tested and analyse.

• Analysis and selection of features.

• Analysis, training and test of machine learning models.

• Movement detection.

The contributions from each stage are summarised as results in the bottom of

Figure 1.5.

• A validated database with sperm cells images.

• Segmentation of object of interest, sperm cells.

• Characteristic vector for each class.

• Trained model for automatic classification based on morphology.

• Quantification of motile sperm cells.

Analysis of results are presented along this thesis.
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Figure 1.5: Framework developed in this thesis.
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1.3 Publications

Some results obtained in this thesis have been disseminated in the following papers:

Peer-reviewed conferences

• LEM Van Raemdonck, A. Ur-Rehman, ML Davila-Garcia, L. Mihaylova, R.

Harrison, A. Pacey, ”Human Sperm Morphology Analysis for Assisted Repro-

duction Technique” in Proceedings of the 10th Sensor Data Fusion: Trends,

Solutions, and Applications Conference, 6-8 October 2015, Bonn, Germany,

pp. 1-6.

• ML Davila Garcia; D.A. Paredes Soto; L.S. Mihaylova, ”A Bag of Features

Based Approach for Classification of Motile Sperm Cells” in Proceedings of the

International Conference on IEEE Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), 21-23 June 2017, Exeter, UK, pp. 104 -

109.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of the actual state of the art of the in-vitro sperm

cells analysis. Also, general definitions and algorithms as a theoretical fundamental

for the methodology developed in the following chapters. Then, a section describing

formal guidelines established by the World Health Organization about morphology,

motility and concentration of sperm cells.

2.2 Automatic Segmentation for in-vitro cells

Segmentation is an important part of image processing area. An image is divided

into regions or objects according to similar features defined for each class. The

objective is to isolate the object of interest.

This process has to be able to distinguish between the objects of interest from

the background and other objects.

For this thesis an image is defined as a two-dimensional function

I(x, y) (2.1)

where x and y are spacial (plane) coordinates, and the amplitude of I is called

intensity of the image in the coordinate (x, y).

13
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Three popular approaches are presented based on the features analysed are pre-

sented: threshold-based, edge-based and region-based.

Wide variety of segmentation methods were found in the literature reviewed

which was focused on in-vitro biological and medical image informatics. Their aim

is to improve the efficiency, accuracy, usability, and reliability of diagnostics and

treatments.

Segmentation has been one of the fundamental challenges on digital image pro-

cessing. Segmentation of in-vitro cells sperm images require isolate spermatozoa

from its background for cellular measurements. At a very low level, segmentation is

a partition of an image into connected groups of pixels that have semantic meaning

[28], in this case the object of interest is the sperm cell.

The paper published by Lupica et al. [29] proposes a multi-resolution-based

image fusion pre-processing step to extend the apparent depth of field in cell images

for robust automated identification of unstained cells using bright-field microscopy

and high magnification lenses. Nuclear features are detected with binary Support

Vector Classifiers (SVCs), other features detected include the edge and the intensity.

Bacjsy et al. [30] present an overview of an automated segmentation methodol-

ogy applied to optical imaging of mammalian cells. They presented a taxonomy of

image segmentation methods which is reproduced in Figure 2.1, presents a general

view of a wide range of techniques used for cell segmentation in images.

Most of the cases the noise affecting digital images makes difficult the segmen-

tation process. In order to improve segmentation performance, specific parameters

can be optimized, improving robustness to other variables.

This parameters are able to enhance regions or objects with similar features.

Intensity threshold, intensity distribution and geometric characteristics of the seg-

mented object are the most popular.

In Figure 2.2 a table with segmentation parameter optimization is shown, the

information presented is based on Bacjsy et al [30]. On this table specified the

parameter, the optimization approach for the specific parameters, the segmentation

workflow or procedure and the references to some related works published about

Otsu approach [31], [32]; intensity threshold [33], [34]; and intensity distribution [6].
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Figure 2.1: Taxonomy of image segmentation methods for mammalian cells presented
by Bajcsy et al.[30].
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Parameter Optimization
aproach

Procedure Ref

Intensity threshold, in-
tensity distribution

Otsu technique Thresholding, morphological
seeded, watershed.

[31]

DIC-based nonnegative-
constrained convex objective
function minimization, thresh-
olding

[32]

Intensity threshold,
intensity distribution,
geometric character-
istic of segmented
object

Threshold able to fit
expected size and geo-
metric characteristics

Gaussian filtering, exponen-
tial fit to intensity histogram,
thresholding, morphological
refinements.

[33]

Thresholding, morphological re-
finements

[34]

Intensity distribution,
geometric characteris-
tics of segmented ob-
jects

Hessian based filter-
ing and medial axis
transform for en-
hanced intensity-based
centroid detection

Iterative non-uniform correction,
Hessian based filtering, weighted
medial axis transform, intensity
based centroid detection.

[6]

Figure 2.2: Use of segmentation parameter optimization based on Bajcsy et al.[30].

Using image segmentation for medical applications can be a useful tool, especially

when huge data is generated making impossible analysis for human. A classification

system could have some false positives but this factor can be measured and modelled.

A false positive is when the object as been identified has an object of interest

but this detection is wrong because the fact is the object does not belong to the

class. This also know as false alarm and is part of the performance measure defined

as specificity.

Sperm morphology analysis has been conducted for decades, using wide range

of approaches for specifics image conditions. However, only few publications have

been found where the images have been capturing with motile and non-stained sperm

cells.

The work developed by Ghasemian et.al. 2015 presents a methodology for recog-

nition and analysis of each part of non-stained sperm cell. Nonetheless, the mea-

surements of accuracy is no presented [35].

2.2.1 Threshold-based

As a second step, after detection, segmentation is also widely investigated. Some

segmentation techniques can be considering as threshold-based if they are based on



2.2. Automatic Segmentation for in-vitro cells 17

local pixel intensity levels.

Each pixel value is compared with the background, and with a specific threshold

value, then is labelled. This technique is based on a parameter T or threshold

applied to the image I(i, j) as follows:

if I(i, j) ≥ T then I(i, j) = 1 is object,

but if I(i, j) ≤ T then I(i, j) = 0 is background.

Threshold-based segmentation is one of the simplest segmentation methods where

basically the pixels are classified depending on their intensity value.

Is possible define a variable threshold T along the image. The value of T may

depend of the values around (x, y) or neighbours or the value of T is a function of

(x, y) which is called adaptive threshold.

2.2.2 Edge-based

An edge can be defined as a set of connected pixels that are located in the limit

between two regions. The edge-based segmentation technique is done making a

distinction between the values of connected pixels in one region from pixels belonging

to other region. Making this differentiation segmentation can be done as the area

in between is labelled as an edge.

One basic technique for enhancement of the boundaries is highlighting the con-

trast of the image. Essentially, the edge is a step-change in the intensity levels of

pixels. Thus, edge can be defined as changes in the intensity of pixels. Edge is where

the first derivative of the intensity is larger in magnitude than some threshold or

where the second derivative of the intensity has a zero crossing [28].

The main problem using edge detection is the definition of what an edge might

be. Usually it is a discontinuity in the image signal. The localisation of this is the

same where is local maxima in the first derivative of the signal, or zero-crossings in

the second derivative of the signal [36].

Then, assuming that an edge occurs where there is a discontinuity in the in-

tensity function or a very steep intensity gradient in the image, see Figure 2.3, the

derivative is taken of the intensity values across the image and finding points where

the derivative is a maximum, is where an edges.
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(a) (b)

Figure 2.3: First-order derivative representation of a 1-D smoothed step edge: (a) Edge
profile (b) First-order derivative.

The gradient of the image function I is given by the vector

∆I =

( ∂I
∂x
∂I
∂y

)
(2.2)

The magnitude of this gradient is given by√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(2.3)

and its direction can by estimated as

θ = tan−1

(
∂I
∂y

∂I
∂x

)
(2.4)

The simplest gradient operator is the Robert’s Cross operator [37]. A 3x3 ap-

proximation to ∂I/∂x is given by the Prewitt [38] and Sobel [39] operator using a

mask in order to strengthen of the edge along the horizontal and vertical axes.

2.2.3 Region-based

Region-based techniques try to segment specific area called region formed by a closed

path [28].

A classical example for region based segmentation is K-means. K-means clus-

tering or Lloyd logarithm is an iterative, data-partitioning algorithm that assigns
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n observations to exactly one of k clusters defined by centroids, where k is chosen

before the algorithm starts [40].

Given a set of observations (x1, x2, ..., xn), where each observation is a d - dimen-

sional real vector, K-means minimizes the distance between each point to the K

centre of the cluster that it belongs to. The objective of K-means is to find to what

cluster belongs each observation, in a iterative procedure until cluster assignments

remain unchanged.

For all the observations (x1, x2, ..., xn), and all the centroids ck,k = 1, .., K com-

pute the distance dik between the observation vector xi and the centroid ck.

Assign each observation vector xi to the closest centroid ck (with minimal dik)

record the cluster membership and finally set each cluster centroid to the mean of

it is assigned cluster.

One disadvantage of this approach is the iterations can easily get stop in subop-

timal cluster formations.

2.3 Feature Vector

The measurement used for the automatic object classification are defined as a fea-

tures. Feature selection is crucial for object recognition problems. The general

definition is presented as a feature vector that represents uniquely a single object.

A feature vector is given by:

x = [x1, x2, ..., xl] (2.5)

where l is the number of features xi.

Features extracted are classified into two main groups: low level and high level

features. Typically features such as shape, size, colour are considered as high level.

Features extracted with computers systems and algorithms are considered as

low level features. For instance, pixel intensity, pixel gradient and orientation. The

following sections present a review of the feature selection and extraction techniques

for segmentation and later, classification.
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2.3.1 Histogram of Oriented Gradients

Initially used for human silhouette recognition from Dalal et.al. [41] the histogram

of Oriented Gradients (HOG) is now widely used in text and face recognition [42],

[43]. Both areas, have defined structure for their object of interest, characters and

face.

HOG is based on the distribution of the intensities of gradients Gx and Gy of a

given image. Gradient estimates at a pixel(i, j) are given by Equations (2.6) and

(2.7).

Gx(i,j) = f (i+ 1, j)− f (i− 1, j) , (2.6)

Gy(i,j) = f (i, j + 1)− f (i, j − 1) (2.7)

where f (i, j) is the intensity value at pixel location (i, j). Gradients can be used to

estimate the local orientation θ and magnitude H of the gradient:

θ (i, j) = arctan(Gx(i,j)/Gy(i,j)), (2.8)

H (i, j) =
√
G2

x(i,j) +G2
y(i,j) (2.9)

An image is segmented into cells or sections and the orientation of gradients

are calculated. Different kernels can be used to calculate gradient, for example a

Sobel-based kernel Dx = [−1 0 1] and Dy = [−1 0 1]T .

2.3.2 Speeded-Up Robust Features

Speeded-Up Robust Features (SURF)—based on the Scale-Invariant Feature Trans-

form (SIFT) [44]—was introduced by Bay et al. [45] and has been shown to be

successful in object recognition approaches [46]. Mehrotra et al. [47], for instance,

use an adaptive SURF descriptor for human iris recognition; Feulner et al. [48] em-

ploy SURF for human-body region detection in Computed Tomography (CT) data;

and, Han et al. [49] use SURF for traffic sign recognition in colour images.

Similarly to SIFT [50], SURF analyses the spatial distribution of gradients. In

addition, SURF divides the image in sub-regions that make the method faster and



2.4. Classification 21

less noise-sensitive [45].

SURF is based on the Hessian matrix and rely on its determinant to select the

best response across a range of scales. Hence, it integrates the scale-space theory

introduced by Lindeberg [51]. The Hessian matrix H (x, σ) at a location x = (x, y)

and scale σ in an image I is given by Equation (2.10).

H (x, σ) =

Lxx (x, σ) Lxy (x, σ)

Lxy (x, σ) Lyy (x, σ)

 (2.10)

where Lxx (x, σ) is the second-order partial derivative of the image I at point x and

can be estimated by the convolution of I with a second-order derivative of a Gaussian

kernel, also known as Laplacian of Gaussian (LoG); Lyy (x, σ) and Lxy (x, σ) can be

estimated similarly.

Unlike SIFT, SURF estimates the second-order Gaussian derivatives using box

filters based on integral images, as is shown in Figure 2.4.

Figure 2.4: Approximation gaussians derivatives with box filters: a)Lxx b)Lyy c)Lxy

2.4 Classification

The main goal of object recognition is classifying the object into a specific category,

assigning a label.
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Object recognition techniques can be divided in two: decision-theoretic, objects

described using quantitative descriptors (area, size, length); and structural, objects

represented by symbolic information, and described by the properties and relations

between this symbolic information.

Next section describes basic concepts from techniques used in the next chapters:

Bag of Features, Support Vector Machines and Convolutional Neural Networks.

2.4.1 Bag of features

Bag of Features (BoF) has been used typically for natural language processing and

text-mining. Initially named as Bag-of-Words (BoW) [52], this technique uses a his-

togram to represent the extracted features from images. It has been used previously

for cell classification [53] in biomedical images and for scene classification [54], [55],

with good results.

The BoF model is summarised in the following steps:

1. Selection of features. For each task it is important the selection of the charac-

teristic features.For example: SURF, HOG. A small region (patch) surround-

ing every key point is used to extract the features of the image.

2. Learning vocabulary—also termed visual codebook. In this step, the extracted

features are divided into groups (clusters). The clustering process can be

carried out by using the K -means approach, where the centroid of a cluster

represents a visual word of the codebook [56].

3. Feature quantisation. The final step in the BoF model is the mapping process

of every feature (patch) into a specific codeword by using a distance metric

(e.g. Manhattan or Euclidean). Eventually, quantisation of features yields to

the histogram representation of the codewords.

2.4.2 Support Vector Machine

This classification method involves separating data into two sets: one set for training,

one set for testing. Each element for training is related to one class-label and several
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features. The aim is get a model after a training process able to predict target values

of the test data using only features.

Given a training set of instances-label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn

and y ∈ (1,−1)l being x features and y labels with value of l 1 or -1.

Let’s assume that data is linearly separable then, it is possible to draw a line

separating the two classes when n = 2 and a hyperplane on graphs of x1, x2, ..., xn

when n > 2. This hyperplane can be described by w · x+ b = 0 where

• w is normal to the hyperplane

• b

‖w‖ is the perpendicular distance from the hyperplane to the origin

The aim of the SVM is to orient the hyperplane maximising the distance between

the nearest elements of each class [57], as shown in Figure 2.5 where SVM are circled.

Origin

Margin

W

H1

H2

−b
|w|

Figure 2.5: Hyperplane through two linearly separable classes

Support vector machines [58], [59] require the solution of the following optimiza-

tion problem:

min
w,b,ε

1

2
wTw + C

l∑
i=1

εi (2.11)

where w and b allows us to explicitly treat the intercept term b separately from

the other parameters. w is the with of the margin.
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This equation is subject to yi(w
Tφ(xi) + b) ≥ 1− ξi ,

where ξi ≥ 0.

Using Equation (2.11) cases where data are not fully linearity separable are cover

with the positive slack variable ξi, i = 1, ..., l.

Using kernel functions it is possible to transform the data into a higher dimen-

sional feature space to make it possible to perform the linear separation.

Figure 2.6 shows how data points on the wrong side have a penalty that increase

with the distance from the margin and where ξi is.

W

−b
|w|

−ξ
|w|

Figure 2.6: Hyperplane through two non-linearly separable classes

Where the training vector xi are mapped into a higher dimensional space by the

function φ.

The constant C is the penalty parameter of the error term. This parameter tells

the SVM optimization how much wants avoid misclassifying each training example.

For large values of C, the optimization will choose a smaller-margin hyperplane, if

this yields into training points classified correctly.

When the value of C is small the optimizer will find for a larger-margin separating

hyperplane, although this could means higher misclassification rates.

The generic Kernel function, is defined by Equation 2.12 as follow.
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K(xi, xj) = φ(xTi )φ(xj) (2.12)

There are multiples kernels, the most used are defined as:

• Linear: K(xi, xj) = xTi xj

• Polinomial: K(xi, xj) = (γxTi xj + r)d, γ > 0

• Radial Basic Function (RBF): K(xi, xj) = exp(−γ ‖ xixj ‖2), γ > 0

• Sigmoid: K(xi, xj) = tanh(γxTi xj + r)

Where γ is a parameter specified by the user, called the functional margin. A

large functional margin represents a high confident and correct prediction.

2.4.3 Deep Neural Networks

Convolutional Neural Networks (CNN) have been used for medical image analysis

since 1990s [60], [61]. From the last decade, with the development of graphics

processing unit (GPU), the number of areas where CNN is applied has been impacted

positively as the training and classification of CNNs can be done in shortest time.

A new approach for CNN is nowadays widely applied: Deep Neural Network.

Although the principle is the same as CNN, the deep concept means two o more

hidden layers.

Also, the single input deep Convolutional Neural Networks is an image itself.

Meanwhile, for the traditional neural network, the input is a set of manually or

automatically selected features computed from the images.

The lower layer of the deep neural networks learn and extract the image features.

The higher layer classifies images into the different classes using the extracted feature

patterns.

New publications have been using CNN as a tool for diagnosis, detection, vali-

dation and treatment for health issues. Some of applications are: detection polyp



26 Chapter 2. Literature Review

in colonoscopy videos [62]; detection of mitotic cells in histopathology images [63];

segmentation of pancreas on CT images [64]; brain tumor on magnetic resonance

imaging (MRI) scans [65] and nuclei segmentation [5], among others.

Machine learning has been changed radically with neural networks. Neural Net-

works are algorithms successfully applied to problems about learning.

Neural Networks is one kind of implementation of machine learning, tries to

simulate the natural mechanism of communication between neurons in the human

brain.

Machine learning techniques are used to learn a model from the data. There

are three types of machine learning: supervised, unsupervised and reinforcement

learning.

The general representation of a neuron is illustrated on Figure 2.7.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

1

Figure 2.7: Basic model of artificial neuron

Circle and arrow denote node and signal flow, respectively,x1, x2, and x3 are

input signals and their weights w1, w2, w3. And b or bias is a factor for the storage

information. Input signal is multiplied by the weights before reaches the node.

The weighted sum of this example is expressed by Equation (2.13) :

v = (w1 × x1) + (w2 × x2) + (w3 × x3) + b (2.13)

Finally the node enters the weighted sum into the activation function f which
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determines the behaviour of the node. This model usually have more than one node,

have layers of multiples nodes, called hidden layers. This kind of model are used for

learning. Key concepts are given below [66]:

• Learning process means change the model in order to reduce the differences

between correct output and model’s output.

• Learning rule is the systematic approach to update the weights according to

the given information.

• Training of the network is precisely based on how after input it new informa-

tions and adjusts weight.

• Delta rule adjusts the weight following the next statement: if an input node

contributes to the error of the output node, the weight between the two nodes

is adjusted proportionally to the input value, x1 and the output error, ei. As

is indicated in Equation (2.14)

wij ← wij + αeixj (2.14)

where

xj = output from the input node j, (j = 1, 2, 3)

ei = error of the output node i

wij = weight between the output node i and input node j

α = Learning rate (0 < α ≤ 1)

• Learning rate α determines how much the weight is changed per unit of

time.

• Epoch the number of times the neural network goes through the repeated

training processing with the same dataset.

• Stochastic gradient descent (SGD) calculates the error for each training

data and adjust the weights immediately. Calculates the weights updates as
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is expressed in the Equation (2.15):

∆wij = αδixj (2.15)

• Batch is a method where each updated weight is calculated for all errors of

the training data. This method uses all of the training data and updates only

once.

• Minibatch select a part of the training dataset and then the same is used

for training in the batch method. The number of training cycles of the neural

network equals an epoch, this is because this method uses all the dataset for

one training process.

• Momentum m term that is added to the delta rule (Equation 2.14) for

adjusting the weight to a certain direction in some extent rather than produce

an instant change.

• Non-linear activation function is a function applied after each Convolution

(CONV) or Fully Connected (FC) layer to introduce non-linearity and reduce

the vanishing gradient. The representative solution is the Rectified Linear

Unit (ReLU) but can be sigmoid or hyperbolic tangent. The Figure 2.8 shown

how this function transform the input value.

Figure 2.8: Activations functions: a) Tanh, b) ReLU, c) Sigmoid

A basic operation is related to Convolutional neural networks, the convolution.

Convolution is a mathematical operation, combines the input and a pre-defined
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filter or kernel. The objective is keep the relationship between pixels by learn-

ing image features. The Figure 2.9 shown how convolution transforms the

input image.

Figure 2.9: Convolution

• Stride is the number of pixels shifts over the input matrix. This means if

stride is 1 then the filters moves 1 pixel at a time.

• Pooling are computations to reduce the dimensionality of a feature map.

Typically is done overlapping blocks, when stride is equal to the pooling size.

Figure 2.10 shown how pooling is executed.
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The backpropagation algorithm solves the problem of training a multilayer neural

network. But then, training a network with multiple hidden layers is difficult and

slow because the error at the output needs to be propagated back to update the

weights in all the preceding layers, and there is interference when there are many

parameters.

This was solved in the 1980 when deep learning was introduced. The use of

deeper neural networks improve the performance significantly. In the Figure 2.11 a

general structure of the Deep Neural Network is show.

Figure 2.11: General structure of a Deep Neural Network

Deep Neural Networks (DNN) are able to extract high-level features from raw

data and capable to manage large amount of data to obtain an accurate represen-

tation of an input space. However, this superior performance and accuracy means

the cost of high computational complexity.
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2.5 World Health Organization guidelines

This section presents an overview of the formal guidelines for sperm assessments. Is

important highlight that despite the WHO [1], [67] and ESHRE (European Society

of Human Reproduction and Embriology)[68] guidelines, nowadays there is not a

world wide accepted protocol for this procedure performance, specially those for

sperm morphology due to the use of different techniques and interpretations [69].

According to surveys conducted by the World Health Organization (WHO), near

45% of couples cannot get pregnant because of male infertility. Specific assessment

in morphology, sperm concentration and motility values suggests that probability of

pregnancy is affected [1].

Sperm analysis has been an essential test in identifying male infertility for more

than 50 years. The achievement of pregnancy is directly related with the proportion

of sperm with normal morphology [70] and motility grade [25].

The biological nature of sperm makes analysis liable to produce wrong assess-

ments. Other cells like bacteria, leukocytes or epithelial cells can be present in the

sample, making difficult the analysis. Figure 2.12 shown an image of the whole

sample where this others components are rounded in red.

Also, Figure 2.13 shown image of this kind of elements segmented and scaled,

they have a round shape or are smallest than sperm cell.

Figure 2.12: Frame extracted from video sequence showing sample’s components.



32 Chapter 2. Literature Review

Figure 2.13: Example of elements found in samples: epithelial cells and leukocytes.

The particular characteristic of sperm such as spermatozoa with filamentous

structure, dynamic behaviour, microscopic size, visual occlusion as a consequence of

constant movement, short period of life and grade of motility, increases complexity.

Also, different material or method to prepare the sample before observation could

influence in results [71].

According to the World Health Organization (WHO) there are specific recom-

mendations for preparing the samples when semen analysis is performed using a

computer system [1].

However, conditions like sperm concentration due dilution techniques, counting

chambers, time since sample collection or room temperature can generate different

behaviour in sperm [72] and consequently wrong classification.

The analysis of sperm is traditionally carried out using a microscope as follows:

• First a sperm droplet smear is spread on a slide and left to dry.

• The sperm is stained adding one or more dyes to enhance sperm structure.

• Magnification and focus are adjusted, to get a close look at the fixed stained

sperm [1].

• Spermatozoa is analysed and using a manual counter, a number of normal and

progressive motile sperm is registered.

Usually, this procedure is done twice. Manual method results can be influenced

mainly by observer skills. Furthermore, different staining techniques change the

morphology dimensions of the human sperm head [26]. It is one of the main reasons

why this research is over fresh sperm, non-stained and non-fixed.
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The WHO published specific reference limits in order to define ranges for normal

or reference value sperm, see Table 2.1. However, these values are generated by

expert consensus rather from clinical trials.

Table 2.1: Lower references limits (5th centiles and their 95% confidence intervals) for
semen characteristics, WHO 2010

Semen Volume (ml) 1.5(1.4-1.7)
Concentration (106 sperm/ml) 15(12-16)
Total sperm number (106/ ejaculated) 39(33-46)
Total Motility (%) 40(38-42)
Forward progression (%) 32(31-34)
Sperm Morphology (% normal) 4(3-4)
Viability/Vitality (% alive) 58(55-63)
White blood cells (106 sperm/ml) <1.0

2.5.1 Sperm Morphology

A spermatozoa has basic form, consisting of head and flagellum or tail. The head

is usually represented by an ellipse, this diagram is shown in Figure 2.14.

Figure 2.14: Spermatozoa anatomy.

Based on WHO’s manual using computational techniques allows classifies sper-

matozoa in normal or abnormal [1]. At least 200 individual cells should be assessed

and counted to get an accurate estimate of the percent normal morphology in the

whole sample.

The form of the sperm has major importance than its dimensions. Figure 2.15

shown schematic drawings of head defects of human spermatozoa.

Morphology classification as a normal or abnormal specified by WHO [1] is based

on Kruger Strict analysis and is valid using the specific Papanicolaou stained pro-

cedure [1]. According to this, the head length for normal spermatozoa may vary
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Figure 2.15: Abnormal sperm head morphology examples.

between 4.0±4.5µm, with a mean length of 4.07±0.19 µm and a mean width of

2.98±0.14 µm.

Usually, the sperm head can be measured helped by an eye-piece micrometer to

be placed in the microscope tube, however doing analysis by eye is time-consuming

and tiring process.

Different approaches to solve sperm morphology classification have been pub-

lished, not only for human sperm but for different species [73],[74].

Morphology evaluation can be developed analysing shape and measurement of

sperm head dimensions. Severa et al. [75] assessed and evaluated sperm head length

to width ratio, position of the centre of gravity, curvature, and degree of roundness

using elliptic Fourier descriptors and inverse Fourier transformation. They con-

cluded that for sperm head the predominant parameter is length to width ratio.

Morphological filters are usually applied over sperm images in order to segment

from others particles usually present in semen. Example of this is Ravanfar and

Moradi [76] by using proper structure element the image were filtered based on

Top-Hat operator to separate sperm cells from other debris. An adaptive temporal

median filter was used to remove background.

Segmentation of sperm cells into their components is an approach also studied.

Khachane et al.[77], implemented fuzzy logic for classification, head area and ec-

centricity are taken. In this work they removed noise using median filtering and

segmented head, mid-piece and tail using morphological opening-close operator.
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Pattern recognition is another technique used to identified spermatozoa with tools

like Principal component analysis (PCA) and K-nearest neighbour algorithm [78].

Few laboratories have the capacity to acquire microscope with high power of

magnification technology in order to get better resolution images. Berkovitz et

al. [79] developed a method for the detailed morphological evaluation of motile

sperm called MSOME (motile sperm organelle morphology examination) which is

performed with an inverted light microscope equipped with high-power Normarski

optic enhanced by digital imaging to achieve a magnification of 6400x able to observe

the sperm nucleus.

The development of new techniques to evaluate spermatozoa normality grade in

variety of species using image processing techniques is an actual trend. Sanchez et

al. [80] analyses images of boar spermatozoa heads to describe and classify them by

means of their intracellular distribution.

An expert veterinary identified normal heads and extract a model distribution

of this training group. For each head image they defined a measure of the deviation

from the model intensity distribution.

Biehl et al. [81] classified board sperm heads onto normal and non-normal based

on grey-scale microscopic images only and assess the quality of semen using Learning

Vector Quantization (LVQ).

Information obtained by visual inspection and manual morphology analysis is

not reliable and hardly verifiable. Analysis of sperm morphology is a challenging

task, particularly when images are low resolution and noising conditions.

morphology analysis, overtaking noise, low resolution and high computational

are published nowadays looking for an efficient solution. This goal is still being a

challenge with image processing methods.

2.5.2 Sperm Motility

Sperm motility assessment is one of the most important parameters for semen quality

evaluation, according to WHO [1], for natural or assisted conception. Classified

sperm based only on their morphology is no enough evidence to determinate problem

related with sperm low quality. Sperm quality assessment can be more accurate and



36 Chapter 2. Literature Review

objective if an estimation of sperm motility is developed [82].

In laboratories worldwide, sperm motility is evaluated by visualisation via a

microscope with phase contrast optics [74]. Along the video sequence the movement

of the sperm cells is recorded marking on an acetate film stick to a monitor.

Yang et al. [83] purposed a quantitative assessment of sperm motility providing

head trajectories and flagellum beat patterns.

Several algorithms have been reported for tracking and movement analysis. Tem-

plate matching is published by Nafisi et al. [84] using images acquired by normal

light microscope instead of phase contrast configuration and doing a manual selec-

tion of the initial point of the sperm trajectory.

Lui et al. [85] proposed motion history image to estimate the position of each

head along frames, also use motion template method to detect and track sperm head

and tail.

Block matching method was published by Yang et al. [83] used for detect head

sperm and register position. Also, purpose a flagellum tracking algorithm, based on

a Markov chain Monte Carlo (MCMC) sampling method, to obtain the flagellum

beat pattern.

Sperm cells are difficult to recognize when are alive due to the fast movement

and partial or full occlusion in some moments. Furthermore, using hardware to

capture images with different configuration and resolutions yield different results.

In order to get an accurate description about motility of sperm cells Hu et al. [86]

recommend a frame rate higher of 30-60 Hz. Severe agglutination can affect the

assessment of sperm motility and concentration [1].

The newest version of WHO for assessment of sperm motility recommend cat-

egorizing spermatozoa movement as progressively motile, non-progressively motile

and inmotile [1].

• Progressive motility (PR) Actively movement, could be linearly or in a large

circle, despite the speed.

• Non-progressive motility (NP) Absence of progression, may be moving in small

circles or having only flagellum beat.
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• Immotility (IM) No movement, neither head or tail.

There is some standard terminology for motility variables measured (Figure 2.16)

(figure based on [1]).

Figure 2.16: Characterization of standard terms used in CASA systems [1].

According to WHO, parameters are defined as follow:

1. VCL (µm/s) Curvilinear Velocity of a sperm head along the actual curvilinear

path, as perceived in two dimensions in the microscope.

2. VSL (µm/s) Rectilinear Velocity velocity of a sperm head following the tra-

jectory from the first point detected to the last one.

3. VAP (µm/s) Velocity of a sperm head along the path computed by smoothing

the curvilinear trajectory. Different algorithms can be used for estimation.

4. ALH (µm) Amplitude of lateral head displacement compared with its average

path.
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5. LIN Linearity of a curvilinear path.

LIN =
V SL

V CL
(2.16)

6. STR Linearity of an average path.

STR =
V SL

V AP
(2.17)

All the measurements are calculated based in a two dimensional plane, as per-

ceived by the microscope. Authors like Kathiravan et al. [74] and Castellini [87]

studied sperm motility in bull,rabbit and ram. Sorensen et al. [88] published they

work related to multi-object tracking of human spermatozoa using particle filter

and Kalman filters. Also, they purposed The Hungarian algorithm on a rectangular

cost matrix to solve the problem of linear assignment and hidden Markov models

to calculate the cost. It reports difficulties distinguishing between round cells and

non-motile spermatozoa.

2.5.3 Concentration

There is a direct relation between the total number of spermatozoa per ejaculate and

the sperm concentration with time to pregnancy [89] and pregnancy rates [90]. Man-

ually, cells can be counted using Haemocytometer. It is an instrument with gridded

area in a thick glass slide, has a counter chamber with specific depth created by

a rectangular indentation. WHO [1] recommend the improved Neubauer haemocy-

tometer (Paul Marienfeld GmbH and Co.KG, Lauda-Knigshofen, Germany) shown

in Figure 2.17.

Sperm concentration ..“refers to the number of spermatozoa per unit volume of

semen and is a function of the number of spermatozoa emitted and the volume of

fluid diluting them. Total sperm number refers to the total number of spermatozoa

in the entire ejaculate and is obtained by multiplying the sperm concentration by

the semen volume” according to WHO [1].

Concentration of motile sperm using automatic systems can be estimated with
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Figure 2.17: Improved Neubauer counting chamber.

stained head using fluorescent DNA stains, however must follow the technique

strictly [91]. Preparation of the sample and calculate procedures to determinate

sperm concentration are establ ished in WHO manual [1].

2.6 Computer Assisted Sperm Analysis Systems

Computer assisted sperm analysis (CASA) systems have been developed for the

beginning of the 1980s reducing time due process frames automatically from video

recording. CASA system is usually a microscope attached to a video camera, sperm

images are captured and digitalized. Different techniques of image processing, seg-

mentation, classification have been used by a computer.

Using computer algorithms each component of the image (pixel) is analysed.

However, there is a lack of reliability to CASA systems because is not possible to

make a validation since algorithms applied are not fully exposed [74].

CASA systems are usually expensive and needs pre-configured parameters for

quality control before the analysis. It is recommended to have a priori knowledge

of standard operating procedure, considering: temperature, dilution factor, mixing

method, chamber depth, and technicians with experience using CASA systems[92].

Using CASA systems can reduces human error due to automation of observation

and enable the repetition of analysis.

Analysis of sperm using computer systems allows measures like stain content,
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length, width, perimeter, area, and arithmetically derived combinations had been

considered in order to classified spermatozoa.

Some common deficiencies detected in current CASA systems:

1. Low reliability due to different results even if is the same CASA systems with

same sample and identical settings.

2. CASA systems, in some cases, are unable to discriminate between immobility

spermatozoa and another kind of components or cells part of the sample.

3. Number frames per second (fps) makes a difference because when rate fps is

low, sperm concentration is more accurate; when fps is high, motility features

are more realistic. However, in this case loosing information about quantitative

features is common [93].

4. Is highly recommendable have a priori specification of standard operating pro-

cedure and technician’s training with computer assisted semen analysis [92].

5. Most of the commercial CASA systems are expensive.

6. The test cannot be repeated to verifies results.

Some common commercial CASA systems are: IVOS Integrated Visual Optic

System (Hamilton-Thorne Biosciences, Beverly, MA, USA) able to measures head

area and elongation; SCA Sperm Class Analyzer (Microptics, Barcelona, Spain) re-

ports information from head, mid-piece and tail anomalies and MedeaLAB (Medical

Technology MTG, Altdorf, Germany) offer length of the sperm tail but with very

specific requirements of microscope and camera [94].

2.7 Summary

This Chapter presented a background review of image processing techniques used in

in-vitro cell analysis. Three main tasks are involved in this process: segmentation,

feature selection and classification, a brief introduction of this is given in this chapter.
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Also, the official guidelines from WHO for sperm morphology evaluation are

summarised. After this review the necessity of an automatic and efficient computer-

based technique is justified. Based on evidence and recommendations from the WHO

this thesis is focused on the head’s sperm morphology.

After the background review, this research is taking image processing techniques

as a fundamental principle. One of the objectives of this thesis is to find the best

feature vector for each class, which needs to be invariant to translation and rotation.

The image of the sperm in movement is affected for shrinking, collision with

other cells, illumination and have to be correctly classified even when is the image

is captured in a different place along the video sequence.





Chapter 3

Analysis and Selection of Features

3.1 Introduction

This Chapter presents a first evaluation and analysis of in-vitro sperm cells. In this

chapter an automatic method able to achieve an accurate classification extracting

features from multiple template of non-stained sperm cells is presented.

Features extracted are used to train a multi-class model for Support Vector

Machine (SVM) and finally used to classify new cell images. The main purposed of

this chapter is finding a suitable feature vector able to represent each class of sperm

cells. Features are extracted from pre-selected templates from 3 classes: normal cell,

abnormal cell and others. Also, is presented the dataset created for this thesis is

presented.

43
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Database

Otsu threshold
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Figure 3.1: Morphology classification with SVM

3.2 Database

Images from sperm cells non-stained and non- fixed are difficult to access, for confi-

dentiality issues and because the laboratories do not have technologies for recording

and storing this kind of images.

In order to get images from sperm cells, 7 video sequences of fresh and unstained

sperm were recorded. The videos were 30 seconds in length, rate of 10 frames per

second (fps) and 2040x1086 resolution.

The recording process was taken at the Academic Unit of Reproductive and De-
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velopmental Medicine (University of Sheffield) using a camera Basler model acA2000-

50gc (Gholographic Company, Rajasthan, India) mounted over microscope Zeiss

Axioskop 40 (Carl Zeiss Microscopy, LLC, United States). Sperm samples were ob-

tained from six volunteers, with previous consent. All of the procedures had been

approved by the University Research Ethics Committee (Ref: SMBRER293).

Since the obtained videos are compressed in .avi format, they can be decom-

posed into a sequence of images for their analysis. The images are coded into

de RGB colour space, so they are formed by three individual monochromatic im-

ages representing each of the colour space components. This allowed pixels being

parametrized by their (x,y) location, intensity and time in the video sequences.

3.3 Preprocessing

The objective is dividing the content of the image into wanted and unwanted objects

where sperm cells as regarded an wanted objects and the rest of the pixels are taken

as background or unwanted objects. Three main approaches were implemented:

segmentation based on threshold, based on edges and region-based. The theoretical

background of this techniques have been presented on Section 2.2.1, 2.2.2 and 2.2.3.

Based on the morphology of sperm cells, they can be classified according to WHO

(World Health Organization), defects in the sperm’s head mean -to some extent- a

degree of abnormality producing less ability to fertilise. Also, after literature review,

it concluded that the shape of sperm’s head is a determinate variable (see Section

2.7)

Thus, the initial stage of the process is detecting and isolating sperm’s head. In

Digital Image processing, segmentation can be obtained by analysing pixels by their

intensities, to detect shapes, textures, discontinues. In the next sections, some of

the work completed approaching segmentation of sperm head is detailed.

As a previous step to segmentation, the technique of histogram equalization [28]

has been applied to images from database created. The objective is adjusts image

intensities to enhance contrast and enhance differences between object of interest

and background.
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Figure 3.2 shows the result of this processing over original image extracted.

Figure 3.2: Histogram equalization applied in original image.

3.3.1 Segmentation with Otsu

Digital images are usually corrupted by noise. Changes in illumination of the en-

vironment and hardware are some of the most common responsible of introducing

noise to captured images. As part of the preprocessing stage, noise reduction with

the least loss of essential data has been carried out.

The Otsu thresholding [95] method aims to find a deep valley between two peaks

in a histogram distribution, in a two class segmentation one peak represents back-

ground, and other represents the distribution of the pixels of interest.

The segmentation method using automatic Otsu threshold was applied, using

images from two sources: first, the database created from non-fixed and non-stained

sperm cells, and the second, images from WHO’s manual for sperm cells analysis

[1], with fixed and stained sperm cells.

First, the image was changed from RGB colour space to grayscale, as is shown

in Figure 3.3. Red crosses are showing centroids of cells detected.

The histogram distribution with the position of the peak calculated by Otsu

automatic threshold applied to the image presented on Figure Figure 3.3 is shown

in Figure 3.4.
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Figure 3.3: Grayscale image from the WHO’s manual database, red crosses are centroids
detected.

Figure 3.4: Histogram distribution and threshold for image from the WHO manual.

Background and sperm are separated with high accuracy, as shown in Figure 3.5.

Using an image from the database created, where sperm cells are non-fixed and

non-stained, the grayscale image is shown in Figure 3.6. Also, red crosses are showing

centroids. Centroids have been calculated based on the extraction of features from

blob detected, explained in the next paragraphs.

Figure 3.7 shows the histogram distribution for the image in Figure 3.6.

Applying the same method, automatic Otsu threshold, onto images from the

database created, there are sperm cells correctly segmented. However, the segmen-

tation cuts some area belonging to the sperm’s head. Furthermore, there are many
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Figure 3.5: Sperm cells and background separated, the image is from WHO.

Figure 3.6: Original image from the database created, converted to grayscale.

cells missed. This is shown in Figure 3.8.

Afterwards, a binary image can be obtained by applying the Equation (3.1) to

every single pixel to evaluate its grey level.

g(x, y) =

1 f(x, y) > T

0 f(x, y) ≤ T

(3.1)

where f(x,y) is the grey-level at the point (x,y) of the processed image and T is the

threshold. An object is defined as 1 and the background as 0.



3.3. Preprocessing 49

Figure 3.7: Histogram distribution and threshold for image from the database created.

Figure 3.8: Background extracted, image from the database created.
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The binary image can have “holes” (a set of background pixels that are out of

reach by filling in the background from the edge of the image). Some morphological

operations are applied to get a better definition of the sperm cells shape extracted

from the background.

After subtracting the background and filling holes, connected pixels are seg-

mented as blobs. A set of properties for each detected blob in the image was esti-

mated:

• Area: (A) defined as number of pixels forming the blob.

• Major Axis Length: (MaAx) length of the major axis of the ellipse around the

blob.

• Minor Axis Length: (MinAx) length of the minor axis of the ellipse around

the blob.

• Eccentricity : (E) ratio of the distance between the focal point of the ellipse

and its major axis length. The value is between 0 and , 0 is actually a circle.

• Convex Area: (CArea) numbers of pixels in the smallest convex polygon that

can contain the blob.

• Filled area: (FArea) number of pixels correspond to the blob, with all holes

filled.

• Extent : (Ext) scalar that specifies the ratio of pixels in the region to pixels

in the total bounding box. Computed as the Area divided by the area of the

bounding box.

• Solidity : (Sol) scalar specifying the proportion of the pixels in the convex hull

that are also in the region. Computed as Area/ConvexArea.

• Entropy : (Entr) statistical measure of randomness that can be used to char-

acterize the texture of the blob segmented.

The list of intensity for each pixel belonging to each blob and their mean of this

list (Mean Intensity, MeanInt), are also extracted as part of the values to analyse.



3.3. Preprocessing 51

The Otsu thresholding and blobs segmentations methods were applied to 30

frames of a video sequence from the video captured. This process was repeated

using 5 different video sequences.

The distribution of the values extracted from the properties of blobs detailed

above is summarized in the Figure 3.9.

Figure 3.9: Correlation between values of features

Along the x axis is the numerical value after being normalized. The y axis is the

description of each feature calculated.

The objective of this graph is identified how the variables are correlated, and

how the values for each feature is distributed. Area, convex area and filled area

have similar distribution.

The rest of the features are related between their as the values are in a similar

range. Thus, any of these features can be used to distinguish sperm’ heads from

other components based on the properties of extracted blobs.



52 Chapter 3. Analysis and Selection of Features

3.3.2 Edge detection

In Figure 3.10 the original image RGB and the edge detection using Prewitt [38]

and Canny [96] are shown. Although Roberts [37] and Sobel [28] were also tested,

the results does not improve the segmentation. Within the image, head’s sperm can

be defined as an elliptical shape with lighter colour inside.

Edge detection alone does not provide enough information to enhancement and

further detection of the head of sperm cells.

3.3.3 Segmentation based on K-means

The K-means algorithm was used to segment using clustering approach to detect

sperm’s heads. Theoretical background about this technique is detailed on Section

2.2.3.

In this test images were converted from RGB to to the HSI (hue saturation

intensity) colour spaces. HSI decouples the intensity component from the colour

carrying information (hue and saturation) in to a colour image [28]. Sperm head

has highest intensity in sperm sample image.

Cityblock -defined as the shortest distance in unit steps along each axis between

two points- and square euclidean distance were evaluated. The initial position of

cluster centroid were set using three different methods:

• Sample: randomly selection of K observations from data

• Uniform: selecting K points uniformly from the range of data

• Cluster: performing a preliminary clustering phase using a random sub-sample,

usually 10% of data.

The K-means clustering algorithm was used to separate of the sperm’s head cells

from the background based on the intensity of pixels at the HSI colour space. Some

results obtained using K=3 are shown in Figure 3.11.

K-means for clustering segmentation give us good information from sperm’s head,

however this is part of pre-processing process aims to get accurate measurements.
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(a)

(b)

(c)

Figure 3.10: Edge detection of sperm cells using methods based on derivatives and noise
reduction: (a) Original image; (b) Prewitt; and, (c) Canny.
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Figure 3.11: Results varying the K-means distance and seeds location, (a) Original
Frame; (b) City block distance, sample; (c) City block distance, uniform;
(d) Frame using HSI colour space; (e) Square Euclidean distance, plus and
(f) Sperm head segmented

3.3.4 Principal Component Analysis

The use of PCA in this research can contribute to reduce computational cost as can

reduce dimensionality and remove redundant data.

A prior feature selection and feature extraction are crucial to get better classi-

fication. In feature selection, a set of the original measurements is selected making

the Feature Space.

On the other way, feature extraction is just the combination of measurements to

have a new reduced dimensionality of a measurement space[97]. Principal Compo-

nents Analysis is a common example of feature extraction method.

The Principal Components Analysis (PCA) aims to reduce the excessive dimen-

sionality of data by combining features. This approach seeks a projection that best

represents the data in a least-square sense [98]. The information is no redundant

because, spatially, each principal component is orthogonal to each other in the space

of the data.
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Given a set of data onn dimensions, PCA aims to find a linear subspace of

dimension d lower than n such that the data points lie mainly on this linear subspace.

In Figure 3.12 an example of a two-dimensional projection found by PCA is shown.

Such a reduced subspace attempts to maintain most of the variability of the data.

Figure 3.12: PCA applied to dataset, two dimensional projection

The linear subspace can be specified by d orthogonal vectors that form a new

coordinate system, called the ‘principal components’. The principal components are

orthogonal, linear transformations of the original data points, so there can be no

more than n of them.

The objective is to find a vector x0 such that the sum of the square distance

between x0 and the various xk is as small as possible. Data obtained from blobs’

measurements (from an single frame) are processed using PCA. Their concept was

defined in section 3.3.1

The vector of features extracted from each blob is defined by the value of:
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1. Area (A)

2. Majoraxis (MaAx)

3. Minoraxis (MinAx)

4. Eccentricity (E)

5. ConvexArea (CArea)

6. FilledArea (FArea)

7. Extend (E)

8. Solidity (Sol)

9. Entropy (Entr)

10. Mean Intensity (MeanInt)

The initial step, prior to PCA is standardizing the data, subtracting the sample

mean from each observation, then dividing by the sample standard deviation. This

centers and scales the data.

Then, finding the eigenfunctions of the sample covariance matrix calculating the

coefficients of the PCA and their respective variances [99]. The proportion of each

Principal Component represents of the total variance can be observed in Figure 3.13.

This figure shows the first four components forming 98% of the total variance

(area , majoraxis, minoraxis and eccentricity). There is a clear difference between

the first and the second component. The first component by itself covers more

than 50% of the variance, so that might be a reasonable way to reduce number of

components used for the classification process.

Figure 3.14 shows a view of the data and the original variables (blobs properties)

in the space of the first three principal components.

Component 1 (Area) has a wide distribution than the others components.
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Figure 3.13: Percent of variability of the first four principal component. Line light blue
is variance

Figure 3.14: First three principal components and features distribution



58 Chapter 3. Analysis and Selection of Features

3.4 Support Vector Machine

The SVM has been identified as a useful tool for sperm morphology. Based on the

theory presented on 2.4.2 is presented as solution for classification.

Images taken from the WHO [1] manual were used as a ground truth. The reason

for this is having images validated as normal and abnormal morphology.

The process for the SVM classification was carried out as follows:

• Re-scale and centre data, training and testing.

• Select a different kernel function: linear, polynomial, gaussian (radial basis

function), RBF sigma.

• Experiment with different method to find the separating hyperplane: quadratic

programming and least square.

• Train and predict with 10 features per instance.

• Train and predict using only Area and Eccentricity (based on result obtained

from PCA analysis).

• Train and predict using only Area and Entropy.

The training process was performed using a sample of 400 detected blobs,to be

classified into two classes: normal and abnormal. The “normal” class set 1 and

“abnormal”, 2. For the prediction process a new data set of 100 samples was used.

The proportion was 80% for training and 20% test. The sample has 500 images

of sperm cells.

Results of the classification using Area and Eccentricity shown better perfor-

mance. The samples wrongly classified are circled in red. Classification using a

linear kernel can be shown in Figure 3.15.

Results obtained using a polynomial kernel, gaussian (RBF) kernel and sigmoid

can be shown in Figure 3.16, Figure 3.17 and Figure 3.18 respectively.
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Figure 3.15: Prediction using linear kernel.

Figure 3.16: Prediction using SVM polynomial kernel.
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Figure 3.17: Prediction using SVM gaussian kernel.

Figure 3.18: Prediction using SVM with sigmoid kernel.
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3.5 Performance Evaluation

After training SVM with 4 different kernels, 100 new sperm cells were classified.

Performance obtained is based on predicted labels and true labels. Precision (Press)

is the proportion of cases correctly identified as belonging to class 1 among all cases

of which the classifier claims that they belong to class 1. Recall is the proportion of

cases correctly identified as belonging to class 1 among all cases that truly belong

to class 1. And Accuracy is a measure to know overall, how often is the classifier

correct.

Base on the number of blobs classified as True Positives (TP), True Negative

(TN), False Positive (FP) and False Negative (FN), Press, Recall and Accuracy are

obtained as follow:

• Precision = TP / (TP+FP)

• Recall = TP / (TP+FN)

• Accuracy = (TP + TN) / (TP + TN + FP + FN)

Results analysing 10 features are shown in Figure 3.19. Performance analysing

just Area and Eccentricity are shown in Figure 3.20. And performance analysing

Area and Entropy are shown at Figure 3.21. Results obtained have good perfor-

mance, however number of elements used for the training process is limited, thus

prediction have low accuracy.

3.6 Summary

This Chapter presents an initial approach to the problem of analysis and classifi-

cation of sperm cells. The image processing technique allows separate background

from the sperm cells (equalization, Otsu thresholding, filling holes, extraction of

blobs). However, there is a high grade of missed information as some sperm cells

cannot be segmented under this approach.

Then, the analysis of features with PCA allows identified the best combination

of features. Finally, the SVM model was trained and tested with new samples given
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Figure 3.19: Precision (Press), Recall and accuracy (Acc) obtained analysing 10 features

Figure 3.20: Precision (Press), Recall and accuracy (Acc) considering Area and Eccen-
tricity
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Figure 3.21: Precision (Press), Recall and accuracy (Acc) analysing Area and Entropy

an acceptable accuracy of %90 classification for normal or abnormal morphology.

This performance is obtained using the features: area and eccentricity with linear

kernel and Gaussian kernel.

However the parameters and techniques can be optimized to get better results.

Particularly, the use of SVM for classification is a bit uncertain as there are several

kernels, threshold and function customizable depending of the nature of the input

data.

In this Chapter the features selected using PCA demonstrated to be robust and

stables, however the cost factor C when SVM is trained impact directly into the

accuracy of classification.





Chapter 4

Speeded-up Robust Features and

Bag of Features

4.1 Introduction

This chapter presents a new approach for classification of in-vitro sperm cells. The

framework proposed is based on Speeded-Up Robust Features (SURF) combined

with Bag-of-Features (BoF) models to quantise and simplify the large amount of

low-level features computed by SURF.

The objective of the framework presented is first, identify non-sperm cells (see

Figures 2.12 and 2.13 in Section 2.5 for examples), sperm cells with normal mor-

phology and sperm cells with abnormal morphology.

Support Vector Machines (SVMs) are used to classify the simplified feature vec-

tors, extracted from sperm cells images, into normal, abnormal and non-cell cate-

gories. The performance of this framework is compared to a similar model where

Histogram of Oriented Gradients (HOG) is used to extract features and SVMs is

used for their classification.

After the analysis of classification results from Chapter 3, has been detected

an apparent change on the shape of the same sperm cell along the video, as a

consequence the same sperm cell has been wrongly classified with different label.

Figure 4.1 shown how two sperm cells, one in the circle other into the square, are

changing their size, shape and intensity along 5 consecutive frames. This variations

65
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are consequence of movement, as the sperm cells are alive, swimming in a water-

based medium, their visual characteristics are affected.

 
a) Frame 33 

 

 
b) Frame 34 

 
c) Frame 35 

 

 
d) Frame 36 

 
e)Frame 37 

 
Figure 4.1: Apparent change in shape, size and intensity of two sperm cells along 5

consecutive frames

After the analysis of previous results, has been possible detect that the appear-

ance of sperm cells in video sequences can change due to the conditions at every

scene captured. Variation of illumination resulting from the flow of the seminal

fluid, for instance, can produce shades in the background.

A specific visual phenomenon knowing as ‘halo” surrounding sperms head can

be observed in some images making heads edge more or less distinguishable. For the

class normal-h, the letter -h means the presence of ‘halo”. In order to overcome this

visual effect, the classes defined to classify sperm cells based on their morphology

are:
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• Normal. Normal morphology criteria and with to some extentsharp heads

edge.

• Normal-h. Normal sperm cell with a blurred heads edge.

• Abnormal. Does not meet the normal morphology definition.

• Other.Non sperm cells.

The proposed solution is show in Figure 4.2

Video sequence

Selection of frames
containing sperm-cells and other

elements in the background

Extract image samples for each class

Normal Normal-h Abnormal Non sperm-cell

Feature extraction

Key-point detection
(SURF)

Feature extraction
(SURF)

Training

Bag-of-Features +
Support-Vector-Machine (SVM)

Selection of the
strongest features

Visual word vocabulary,
clustering with K -means

(Codebook)

. . .

BoF histogram
representation per class

Training of classifier

(SVM)

Test

BoF histogram
representation

Similarity evaluation

Outcome

{Normal, Normal-h,

Abnormal, Non sperm-cell}

Figure 4.2: The classification method based on SURF, BoF and SVMs.
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4.2 Histogram of Oriented Gradients

HOG can solve the apparently variation of motile sperm cells because are image

descriptors invariant to 2D rotation as take localized portions of the binary image

and counts occurrences of gradient orientation. This method is computed on a dense

grid of uniformly spaced cells and uses overlapping local contrast normalization for

improved accuracy.

To compute the HOG of a given image, it is divided into small regions termed

cells. Then the orientation of gradients are computed and the histogram of the

gradients is calculated. Gradient can be performed by filtering the image using a

Sobel-based kernel Dx = [−1 0 1] and Dy = [−1 0 1]T . The concatenation of

all histograms produces the feature vector of the image.

A visualization of HOG features extracted from a normal sperm cells, using size

cells 4x4 and 8x8 are shown in Figures 4.4 and 4.5 respectively. The original image

is shown in Figure 4.3.

Figure 4.3: Original image, sperm cell with normal morphology

Figure 4.5: HOG features with cell 8X8 Prediction using linear function
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Figure 4.4: HOG features with size cell 4X4

4.3 Feature Extraction

The SURF [45] method is used to detect key points from the images. SURF se-

lects the most representative pixels based in low-level features—using the Hessian

matrix. Even though SURF is invariant to rotation, sperm cell samples at different

orientations are used to consider the pixellation effect when capturing the images.

For every key point, the SURF features are computed using a region of m × n
pixels encompassing the key point location yielding to the initial feature vector.

More details about the theorical funtament of SURF has been presented in Section

2.3.2

The number of features is reduced by selecting the minimal number of features n

found across the four classes. The SURF method is used to choose the n− strongest

features from each image. Thus, the same number of features for each image across

all classes can be transferred to the training process of a classifier.

4.3.1 Bag-of-features (BoF)

Processing large SURF vectors can represents a high computational cost. Therefore,

the BoF model is employed to reduce the feature representation of the images.

More about Bag of features approach has been presented on 2.4.1. The aim of

BoF is creating a codebook—also termed Visual Word Vocabulary—by transforming

feature vectors into visual words. In order to do so, the SURF feature vectors are

clustered by using K -means. The number of clusters K defines the codebook size
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and the centroids of clusters define the words.

Therefore, each feature of the SURF vectors is assigned to one word. This can

be represented by a histogram where the x−axis represents the words and y−axis

the number of features mapped to the words (see Figure 4.6). The BoF method is

repeated to produce the histogram of BoF for each of the four classes defined. The

resulting BoF model is used to train the classifier.

 

Figure 4.6: Template for normal cell and the distribution of the ratings data. The x−axis
represents the words and y−axis the number of features mapped to the words

4.4 Training a Support Vector Machine (SVM)

It is important to highlight our objective: classifying non-stained, non-fixed sperm

cells extracted from a video sequence suffering from occlusion, collision, uneven

illumination and presence of debris. Aiming to fulfill this requirement, a dictionary



4.5. Performance Evaluation 71

of templates has been defined as the source of the ground truth for this framework.

The dictionary of images is generated after the selection and extraction of multi-

ples templates for normal, abnormal and other components wide enough to include

all the variations of each class.

Selection of templates is done manually from original frames. The bank of images

defined as template are for the training stage in the form of Bag of Features (BoF).

Each element for training is related to one class-label and several features. The

aim is get a model after a training process able to predict target values of the test

data using only features.

A multi-class Support Vector Machine (SVM) classifier is trained with the BoF

model obtained. SVMs are inherently binary classifiers. Thus, an approach is set-

up to define the class for a new entry. A ‘one-to-one’ model is used to define the

outcome based on the most voted class by the binary classifiers. Eventually, the

trained SVM model is used to process BoF histograms instances from the training

dataset.

4.5 Performance Evaluation

A collection of video frames showing sperm cells and other objects were selected to

create two datasets: training using 70% and testing with the 30% of the samples.

The dictionary of templates is generated after the selection and extraction of

multiples templates from image patches.

Image patches contain a single sperm cell with one unique label. The patches

were manually selected to include the possible variates that can be found in prac-

tice (e.g. orientation and morphology of sperm cells and other objects in the back-

ground). Figure 4.7 shown how templates have been selected from extracted frames.
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Figure 4.7: Selection of multiples templates for normal class

The testing dataset was used to validate and measure the performance of the

method proposed. For each image in the testing dataset, the BoF histogram is

computed as follows: Using the BoF model—codebook, a histogram is computed by

mapping every SURF feature to a word in the codebook. The distance l2 − norm
is used to estimate the closest distance between a feature and the words in the

codebook. The resulting histogram is normalised and classified by the SVM model

which eventually measures the similarity to the class models obtained in the training

process.

The database is the presents before on Section 3.2. Sperm cell samples for both,

training and testing, were extracted from frames which were selected by using a

random function. A full dataset—images of all classes—was formed by: 235 images

labelled as Normal ; 145 Normal-h; 105 Abnormal ; and, 172 images containing other

objects considered as Non-cell objects. The labelling process was based on the WHO

guidelines and the visual appearance. The images ranged from 60 × 60 to 70 × 85

pixels in size and were compressed into JPEG (Joint Photographic Experts Group)

format.

105 images were used for each class since it is the smallest number of samples for

one class in the full dataset. This process aims to make a fair comparison between
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the number of features for each class in the training process. The full dataset was

divided into two datasets: 70% of the images were used for training and 30% for

testing.

Parameters of the implemented methods were hand-crafted to obtain the perfor-

mance described in this section. 95% of the strongest SURF features were used to

choose a reduced number features which eventually were used by the BoF method.

A K =2325 was used in the K -means clustering process to create a BoF model which

was passed to an SVM classifier—based on a K(K1)/2 kernel—for training. This

K was calculated automatically based on the general K-means algorithm presented

on Section 2.2.3.

The performance obtained with the framework proposed reached a 90% in aver-

age accuracy. Other performance measures are summarised in Figure 4.8.

Figure 4.8: Performance of the proposed classification method based on SURF and BoF.

The performance of the framework proposed was compared to an approach based

on HOG combined with SVM, were HOG was used to extract feature vectors directly

from images with an average accuracy 78%.
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4.6 Summary

In this Chapter a fast and efficient method for sperm cells classification combining

Bag of Features model where, using K-means, SURF features have been clustered

into visual words. The best performance was obtained when we defined a vocabulary

size equal to 2300 keeping 95 percent of strongest features for codebook. We aimed

at achieving a good classification rate with an average of 90% percent in accuracy.

After some experimentation, it is possible conclude that size of vocabulary and width

of the patch have a direct impact on the classification results. The method proposed

showed better performance and accuracy against classification using HOG features.



Chapter 5

Deep Neural Networks for

Morphology Analysis

5.1 Introduction

This Chapter presents a novel approach for analysis of non-stained and non-fixed

sperm cells. As far as the author is aware, there is no published work carried out

analysing of this kind of images using deep convolutional neural networks.

There are important challenges to solve :the resolution offers by images of sperm

cells are affected by noise and uneven illumination. Moreover, the layer of pooling

in convolutional neural networks reduce resolution even more, as has been explained

before in Section 2.4.3. In the other hand, CNN is a technique could be overffiting

easily.

The challenge of accuracy on classification is incremented by the nature of liv-

ing cells affected by movement causing effects like cell elongation, expansion and

shrinkage [100].

In Figure 5.1, for instance, a set of two normal sperm cells along a sequence of

five consecutive frames is shown. Variation in size and brightness can be observed

as sperm cell swims.
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a)

b)

Figure 5.1: Appearance variation of two sperm cells (upper and lower row) along con-
secutive video frames t ∈ [0, 1, ..., 4].

The hand-crafted features representations such the presented in Chapter 4 and

Chapter 5 (HOG, SURF, SIFT, Bag of Features) represent lower accuracy rates for

classification; the reason: deep learned features are automatically learned from the

images or videos. Furthermore, CNN can be invariant to translation, viewpoint,

size,illumination or a combination of all of them.

Each layer in the architecture of CNN extract features at a different level. An

image of sperm cells, for example, is initially represented like an array of pixel values,

and the first layer of representation give information about edges their orientation

and location.

In Figure 5.2 a visualization of the weights networks filters from first convolu-

tional layers, is shown. This visualization gives a clue about how the CNN extract

features and how this technique “sees” hidden characteristics.

The second layer can detect changes on the edges positions if they have particular

distributions. Usually the existence of edges, blobs and basic image features, with

location and orientation is information extracted from the first layer. The second

layer also, can identifies a particular arrangement from the edges.

The third, could combine repeated patterns to form larger combinations. The

layers of features are learned from data using a learning procedure without inter-

vention of human [101].
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Figure 5.2: First Convolutional layer weights from sperm cell image

Table 5.1: Details of data augmentation

Class Original
Size

Operations Final Size

1. Normal morphology 470 Mirror vertical =470 1410
Rotation 90◦ =470

2. Abnormal morphology 173 Rotate 90◦ =173 1038
Rotate −45◦ =173
Gaussian blur 3x3 =173
Mirror Hrztl. =173
Rotate 180◦ =173

3. Non-sperm 235 Mirror Hrztl = 235 1175
Deskew image = 235
Mirror vertical = 235
Rotate 180◦ = 235

5.2 Dataset

Training a deep CNN requires a large amount of pre-labelled data. Also, computa-

tional and memory resources. Microscopy video sequences were recorded at a rate

of 10 frames per second producing 8-bit colour images of 2040 x 1086 pixels in size.

Patches with a single sperm cell have been extracted manually from a video sequence

where debris, complex background and other components are present.

The original dataset created for Chapter 4 has been augmented in order to reduce

over-fitting. Details are shown in Table 5.1.
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Sperm cell samples for both, training and testing, were extracted from frames

which were selected by using a random function. A full datasetimages of all class-

eswas formed by: 1410 images labelled as Normal; 1038 as abnormal cell; and, 1175

images containing other objects considered as Non-cell objects.

The labelling process was based on the WHO guidelines and the visual appear-

ance. The images ranged from 60×60 to 70×85 pixels in size and were compressed

into JPEG (Joint Photographic Experts Group) format. In this chapter, 1038 im-

ages were used for each class since it is the smallest number of samples for one class

in the full dataset, making a fair comparison between the number of features for

each class in the training process. A sample of the cropped images used for training

is show in 5.3.

Figure 5.3: Original images used for training

The full dataset was divided into two datasets: 70 % of the images were used for

training and 30% for testing. The same dataset is the input for the two approach

presented: a new deep convolutional neural network and a pre-trained deep neural

network.
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5.3 Training a new model

The first approach presented is the construction of an own DNN and training of a

new model, from the beginning. The architecture implies multiples linear and non-

linear transformations changing the data representation into something more useful

and abstract. The objective is creating a learning network able to extract features,

train the networks and then use it for new data prediction.

For training and classification using DNN the hardware used in this thesis is:

iMac, processor 2.7.Ghz, Intel Core i5, Memory 8GB 1600 Mhz, Graphics NVIDIA

GeForce GT 640M, 512 MB.

Training a deep CNN is often complicated by over-fitting and convergence is-

sues, whose resolution frequently requires repetitive adjustments in the architecture

or learning parameters of the network to ensure that all layers are learning with

comparable speed. The architecture of the DNN is shown in Figure 5.4.

Figure 5.4: The proposed architecture for DNN

The training and has been monitored to stop early the learning by the model and

evaluate how accurate and quick is the model in each batch. Figure 5.5 shown how

the training status per epoch. For fine-tuning, the network has to be changed step

by step. As part of the experimentations different learning rates have been tested.

The learning rate concept has been already presents in Section 2.4.3.

The architecture found with better performance, with training and learning from

scratch is shown is Figure 5.6.

Different combinations of convolutional layer, filter, pooling layer and finally

classification has been tested. The best performance reached are summarised on
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Figure 5.5: Monitoring the learning process and validation accuracy of the model

1 1× 1 ImageInputLayer
2 1× 1 Convolution2DLayer
3 1× 1 ReLULayer
4 1× 1 MaxPooling2DLayer
5 1× 1 Convolution2DLayer
6 1× 1 BatchNormalizationLayer
7 1× 1 ReLULayer
8 1× 1 MaxPooling2DLayer
9 1× 1 Convolution2DLayer
10 1× 1 BatchNormalizationLayer
11 1× 1 ReLULayer
12 1× 1 MaxPooling2DLayer
13 1× 1 Convolution2DLayer
14 1× 1 BatchNormalizationLayer
15 1× 1 ReLULayer
16 1× 1 Convolution2DLayer
17 1× 1 BatchNormalizationLayer
18 1× 1 ReLULayer
19 1× 1 FullyConnectedLayer
20 1× 1 SoftmaxLayer
21 1× 1 ClassificationOutputLayer

Figure 5.6: Structure for one new model of DNN
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Table 5.2: Parameters and Accuracy with DNN created from scratch

Layers Epochs m Initial l.r. MBatch Accuracy
N A O

3(conv+norm+relu+pool)
+conv+norm+relu+fully+

s oftmax+class
4 0.9 1e-4 10 90.03 97.11 94.86

2(conv+norm+relu)+fully+
sofmax+class

30 0.9 1e-2 128 76.02 84.02 92.01

transfer+fully+softmax+class 6 0.9 1e-4 40 91 91.20 88.3
4(conv+norm+relu+pool)+fully+

softmax+class
7 0.9 1e-4 10 82.86 94.29 87.14

Table 5.2 where parameters (epochs, momentum, initial learning rate, miniBatch

size) defined in Section 2.4.3 have been adjusted by test and error.

The mean accuracy for each class is showed (N=normal morphology; A=abnormal

morphology; O= others). The combination of the layers specified in the table in the

first row trained using 10 epochs with a mini-batch size of 10 reach the average

accuracy of 94%.

5.4 Evaluation of pre-trained model

A different approach is presented in this section, known as transfer learning. Transfer

learning is defined as exporting knowledge from previously learned source to a target

task [34].

The solution presented is shown in the Figure 5.7. The CNN model is not going

to be used for the original classification task. It is going to be re-purposed to solve

a different classification task on the sperm cells dataset.

As is shown in the Figure 5.7 the steps followed for training and testing using

transfer learning are:

1. Pre-process input images, have to be RGB images with size 227-by-227 pixels.

2. Divide data into training 70% and testing sets 30%

3. Load the pre-training network, in this case AlexNet. The last three layers

must be fine-tuned for the new classification problem, then all layers have

been extracted, except the last three from AlexNet.
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Figure 5.7: Transfer learning process

4. Transfer the layers to the new classification task by replacing the last three

layers with a fully connected layer, a softmax layer, and a classification output

layer.

5. Specify the options of the new fully connected layer according to the new data.

6. Set the fully connected layer to have the same size as the number of classes

in the new data. In this case, there are 3 classes: normal cells, abnormal and

non cell.

7. To learn faster in the new layers than in the transferred layers, increase the

learn rate factor and the bias of the fully connected layer.

8. Specifies the layer to extract features, in this case experimentation which the

layers: Conv3, Conv5, Fc6, Fc7 and Fc8. Usually the layer right before the

classification layer is recommended.
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Learning from sperm cells images from scratch is often not the most practical

strategy due to its computational cost and the convergence problem [32]. The tech-

nique success of knowledge transfer embedded in the pre-training CNN, is affected

directly for the measure of dissimilarity, between the database selected for train the

CNN and the database to which the knowledge is to be transferred.

For this thesis the pre-trained AlexNet has been selected. AlexNet [102] is a

public pre-trained deep network. Has been trained using 1.2 million images and is

able to assign till 1000 labels. In the Figure 5.8 the structure of AlexNet is showed,

begins with L1 and L2 two pairs of convolutional and pooling layers with 6×6

kernels, mapping the 227×227 input images to 13×13 feature maps. Then there are

3 convolutional layers (L3,L4,L5) that efficiently implement a convolutional layer

with 9×9 kernels, yet with a larger degree of non-linearity. After this, there is a

pooling layer and 3 fully connected layers (L6 and L7).
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Figure 5.8: Structure of CNN AlexNet

Although in this case a model already trained has been used, some fine-tuning

process have been adopted. The learning rates of the original layers are actually

small so are keep in the same value. But, the learning rates on the new layers added

has been boosted, so they can change faster than the rest of the network and learn

is shortest time the weights of the newer layer.

In this case the knowledge of a rich set of features, provided by a pre-trained

network AlexNet, is used to learn new patterns in images of sperm cells.
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Is important to evaluate the model trained calculating the classification accuracy

on the validation set. This value is giving the accuracy, the fraction of labels that

the network predicts correctly.

5.5 Performance Evaluation

We trained our models using stochastic gradient descent with a batch size of 128

examples, momentum of 0.9, and weight decay of 0.0005. We found that this small

amount of weight decay was important for the model to learn. In other words,

weight decay here is not merely a regularize: it reduces the models training error.

Multiples combination of parameters have been experimented, the results are showed

on Figure 5.9.

Mini-batch Learning Classification (%)
size Layer rate Abnormal No-cell Normal Accuracy

6 Conv3 0.01 77.580 95.600 93.670 88.950
10 Conv3 0.01 79.230 96.420 95.870 90.507
60 Conv3 0.01 78.400 97.250 93.810 89.820
10 Conv5 0.01 88.310 94.910 94.770 92.663
10 Conv5 0.01 90.920 92.160 94.360 92.480
10 Conv5 0.01 51.310 92.570 99.040 80.973
40 Conv5 0.01 83.080 93.540 96.700 91.107
60 Conv5 0.01 92.600 97.440 99.290 96.443
16 Fc6 0.01 81.020 92.710 97.110 90.280
32 Fc6 0.01 76.200 96.010 92.300 88.170
40 Fc6 0.01 86.240 91.610 95.320 91.057
20 Fc7 0.01 95.050 82.670 89.680 89.133
20 Fc7 0.01 93.540 86.660 86.380 88.860
25 Fc7 0.01 83.610 88.550 96.510 89.557
32 Fc7 0.01 95.460 88.860 85.690 90.003
40 Fc7 0.01 89.680 84.320 93.950 89.317
50 Fc7 0.01 80.610 92.430 95.460 89.500
20 Fc8 0.01 87.900 94.770 70.700 84.457

Figure 5.9: Accuracy of classification with Transfer Learning

To evaluate the performance of the deep neural network designed , the features

extracted from the training images are used as predictor variables and fit a multiclass

support vector machine (SVM), using a fast linear solver, as a classifier. The results

of classification using SVM are shown in Figure 5.10.
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Figure 5.10: Classification with SVM based on the deep Neural Network trained

The SVM classifier reaches an accuracy of 96% with a quadratic kernel using a

multiclass method one-vs-one, which is a good performance.
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5.6 Summary

A solution for accurate and reliable classification of sperm cells based on deep neural

network is presented is this Chapter. Design, training and evaluation of multiples

architectures for Deep Neural Networks made from scratch are presented. After

fine-tuning, the best performance with an average accuracy of 94% was achieved.

However, the time for training to reach this percent was almost 50 hours.

Using transfer learning has demonstrated better average accuracy with 96.44%.

Using a pre-trained network (AlexNet) improving performance and reducing pro-

cessing time to 30 hours. The trained deep convolutional neural network is able to

classify with high accuracy images of sperm cells without previous stained or fixed

procedures.



Chapter 6

Classification of Motile in-vitro

Cells

6.1 Introduction

This Chapter presents an initial approach for a robust and complete methodology for

motile grade quantification for future works. The present approach is a combination

of the classification proposed on Chapter 5 and a classic approach for movement

detection.

There are several algorithms related with cell motility detection published with

different focus: human sperm [88], neural stem cells [103], [32], stem cells [9]. They

usually applied a specific procedure to enhance the edges and definition of cells, for

sperm cells the use of fluorescent DNA stains is recommended by the WHO.

However, for this research non-stained sperm cells have been analysed. The

challenges about identifying and classifying sperm cells in these conditions have

been exposed before in Section 1.1 and, for the movement detection the complexity

is bigger.

The WHO recommend the use of CASA systems to obtain movement parameters.

Also, specified 200 as the minimum number of sperm cells to be analysed from the

same specimen [1]. There is no formal agreement about for how long the sperm has

to be tracked in order to calculate their motility grade, but the recommendation is

at least 1 second [104].
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This Chapter presents a combination between two frameworks that have been

successfully used in the Chapter 5 and Chapter 3: deep neural network for classifi-

cation; and features analysis for movement detection.

This approach has also the advantage of being computationally efficient because

the deep convolutions neural network has been trained beforehand. Secondly, the

model to detect first the area with movement and then classify the element found

in this specific area. The framework developed is shown in Figure 6.1.

6.2 Movement Detection

Detection of live sperm cells is performed in this thesis based on detection, local-

ization and evaluation of movement in the sample. After while the live sperm is

classified based on morphology. This Chapter is not aiming to calculate the motility

level as has been formally defined by WHO in section 2.5.2, the objective of this

work is classify live cells to determinate their morphology.

Movement detection is still a challenging task because of situations already ex-

plained in Section 1.1: illumination, hardware properties, movement of cells and the

viscosity of the smear among others can generate false positives.

6.2.1 Optical Flow

Background subtraction and optical flow methods have been tested. Optical flow is

a popular technique in image processing, particularly on analysis of motion. There

is a relative motion between the observed and the scene, this motion generates some

patterns along the scenario. Optical flow is the distribution of observed velocities

of object in a image.

Optical flow represents describes a sparse vector field, where a particular pixel

from the image I have a position (x, y), in this position, there is a displacement

vector where that pixel can be found in another image.

Some pre-processing steps have been applied to the original image before using

optical flow estimation on frames:
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Figure 6.1: Movement detection and classification

• The image format is converted from RGB to grayscale because intensity have

a good performance on grayscale frames.

• The median filter is performed to reduce noise corruptions.
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• Optical flow is estimated.

Optical flow estimation regardless of mobility, results in high contrast spots which

are focused on, over this patches the detection and classification of sperm cells is

executed.

The algorithm developed is based on the presented by Farneback on [105]. A

sample of a frame where motile sperm has been successfully detected is show in

Figure 6.2 the area where there is movement are showed in blue. The analysis have

been done in a 10 seconds sequence.

Figure 6.2: Detection of ROI with movement

The results of optical flow for movement detection is usually affected by the im-

age brightness and velocity of objects detected. Sometimes a motion smoothness

constraint is included to improve the detection accuracy and stability of the estima-

tion. However issues like uneven illumination, noise and occlusion are still unsolved

with this approach.

6.3 Performance Evaluation

After the implementation using Matlab R2015b [106] the detection of movement

allows to find where exactly the live cells are along the video sequence, this is the
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ROI (region of interest). After this, the algorithm is analysing each ROI and using

the image as input for the pre-trained deep convolutional neural network, presented

in Section 5.4.

The algorithm proposed has been tested along 5 short sequences. Figure 6.3

shown how the results of classification is displayed along the video. Experiments

evaluating until 3 ROI simultaneously were executed.

Figure 6.3: Detection of motile sperm and classification

Along a the video sequence with 5 frames and 2 seconds long has been detected

objects belongs to the three pre-defined classes: normal, abnormal and no sperm cell.

After the classification of cells with movement, along 5 video sequences, detecting

700 ROI, results obtained are show in Figure 6.4.
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Figure 6.4: Confusion matrix for classification of cells with progressive movement

6.4 Summary

This Chapter presents a combination of optical flow for motion detection and deep

neural network technique based as a solution for the need of identify morphology on

motile sperm. The classification of motile sperm was done successfully, first detection

of ROI and then the analysis of the object in the ROI. The results are obtained after

counting analysis along 5 video sequences and summarizing the classification rates

for each video.



Chapter 7

Conclusions

Analysis of microscopic images is common in medical diagnosis and treatment. How-

ever, in the majority of laboratories this analysis is done manually, meaning time

consuming and with a low level of accuracy. This thesis presents a novel method-

ology based on image processing for automatic in-vitro cells analysis. Unlike many

others works, this approach is able to classify non-stained and non-fixed sperm cells,

with an average accuracy of 96%.

7.1 Contributions

The key contributions of this thesis are detailed below:

• In Chapter 3 is presented the contribution of the files recorded at the An-

drology Lab of The University of Sheffield, following high standard procedures

to manually analyse sperm samples using a microscope. Therefore, the im-

age sequences show real challenges, e.g. illumination is not controlled and

sperm-cells remain in movement during the recording for their analysis.

As an important contribution also, is the construction of a dataset with 1038

samples for normal morphology, abnormal morphology and others component.

This dataset can be used for further analysis and research.

• Identification of common problems when analysing in-vitro images. Phe-

nomenons found in this analysis have common characteristic in other studios
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(occlusion, collusion, shades, lack of focus). The procedures presented in this

thesis can be applied for other areas, especially related with analysis of in-vitro

biological images.

• The analysis of features, their selection and combination with Support Vec-

tor Machine, presented on Chapter 4 offers a new approach of two popular

techniques.

• A novel and efficient method is proposed to deal with the illumination vari-

ability effect to a certain extent. The use of transfer learning is presented

in Chapter 5 as a solution for extracting the right features when there is a

variation in them along the time.

• As a contribution, the ability to use the proposed framework to reduce the

processing time, since currently, manual analysis is a highly time consuming

task and health professionals can be overloaded of work. A framework like

the proposed can be used to verify the estimated measures done by a health

professional.

• The proposed framework provides an objective analysis of a dataset. Thus,

the analysis of a sperm sample can be repeated to verify the same output.

• Also, the proposed framework is written using a programming language provid-

ing the ability to extend the current range of methods to make the framework

more robust.

7.2 Future Work

The analysis of in-vitro images still faces many challenges and there are wide oppor-

tunities to expand. Two particular trends are mentioned as a future works: Bayesian

convolutional neural networks and Cloud computing.
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7.2.1 Bayesian Convolutional Neural Networks

Bayesian Convolutional Neural Network has been presented as a trusted classifica-

tion approach as a future work for this research.

Bayesian networks and neural networks are not mutually exclusive. In fact, it

is recommended to make predictions when the level of uncertainty is high. For this

case, sperm cells have a random and unpredictable movement being the tracking

precess an adequate area of application. Therefore, the morphology of the cells

seems change along the video sequences.

7.2.2 Collaborative analysis with Cloud Computing

As a general limitation for analysis of in-vitro images in medical area is the lack of

direct communications with other professionals. The objective of sharing experience

with the use of Cloud computing is a great technological opportunity to improve re-

sults and formal guidelines combining with different levels experience of professional

doing this kind of assessment.

Cloud computing is a model to enable the convenient access to the same images

and resources in multiples location. Then the diagnosis or evaluation of in-vitro cells

could be then a collaborative experience.
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