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Abstract 

Recent emergence of data-driven and computation hungry algorithms has fuelled the 

demand for energy and processing power at an unprecedented rate. Semiconductor 

industry is, therefore, under constant pressure towards developing energy efficient 

devices. A Shift towards materials with higher figure-of-merit compared to Si, such as 

GaN for power conversion is one of the options currently being pursued. A minimisation 

in parasitic and static power losses in GaN can be brought about by realising on-chip 

CMOS based gate drivers for GaN power devices. At present, p-channel MOSHFETs in 

GaN show poor performance due to the low mobility and the severe trade-off between 

|𝐼𝑂𝑁| and |𝑉𝑡ℎ|. 

For the first time, it is shown that despite a poor hole mobility, it is possible to 

improve the on-current as well as minimise |𝐼𝑂𝑁| - |𝑉𝑡ℎ| trade-off, by adopting a 

combination of techniques: using an AlGaN cap, biased two-dimensional electron gas, 

and shrinking source-gate and gate-drain access region and channel lengths. As part of 

this work, a novel vertical p-channel heterojunction tunnel FET (TFET) utilising 

polarisation induced tunnel junction (PITJ) is also explored, which unlike common 

TFETs, shows non-ambipolar transfer characteristics and a better electrostatic control 

over the tunneling region via the gate. 

Meeting the ever-increasing demand for computation would require continuous 

scaling of transistor physical dimensions and supply voltage. While a further reduction 

in physical dimension is expected to come from adopting a vertical integration scheme, 

scaling in supply voltage would require achieving sub-60 𝑚𝑉/𝑑𝑒𝑐 of subthreshold 

swing. The two common approaches to achieve this are TFETs and negative capacitance 
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(NC) FETs, where the NC operation is commonly associated with ferroelectric materials. 

This work develops a model to explain sub-60 𝑚𝑉/𝑑𝑒𝑐, observed in 𝑇𝑎2𝑂5/𝑍𝑛𝑂 

thin-film-transistors, which is governed by the motion of oxygen ions inside 𝑇𝑎2𝑂5, 

leading to NC under dynamic gate bias sweep. 
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Chapter 1 Introduction 

1.1. OVERVIEW 

The international demand for energy is on a constant rise. This is in part due to the 

staggering growth of economy in developing nations such as India, China, and in Africa 

that is resulting in expansion of industrial, transportation, commercial sectors and human 

consumption. A recent explosion in data-driven and compute-hungry techniques, such as 

deep learning and cryptocurrency mining constitutes another major part of higher 

demand for energy. The aggregate energy consumption in mining bitcoins, a form of 

cryptocurrency, is currently at a whopping 73 TWh, surpassing the energy consumption 

of entire countries such as Czech Republic or Austria [1]. Owing to an increasing demand 

for data-driven services, energy consumption of data centres in U.S. alone is estimated 

to be 73 PWh by 2020 according to Lawrence Berkeley National Laboratory [2], thereby 

underscoring the urgent need for efficient energy systems. 

1.2. MAKING POWER CONVERSION ENERGY EFFICIENT 

Owing to a well-established manufacturing base, various forms of power converters, 

AC/AC, AC/DC, DC/AC, or DC/DC, have traditionally relied upon silicon as the basic 

semiconductor for power devices. However, it is apparent that more efficient 

semiconductors are required for sustainable development of society. Table 1.1 highlights 

the electronics and thermal properties along with different figure-of-merits (FOMs) of 

some of the promising semiconductor materials for power applications. 
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Table 1.1. Electronic properties of different materials, data obtained from [3]–[6], hole mobility 

values for GaN in bulk and 2DHG are from [7], [8], and FOM parameters are from [9], [10], 

respectively. 

 

Both the FOMs in the above table have been normalised with respect to Si. Here 

BFOM is equivalent to the inverse of the conduction loss with specific area, therefore is 

relevant to those cases where the switching loss is dominated by conduction loss. 

Whereas HMFOM, which is the inverse of total loss, also includes the switching losses 

during charging and discharging of the input capacitance of the power transistor. 

Among the materials listed in Table 1.1, GaN is particularly unique, because of its 

polarisation properties that lead to formation of two-dimensional electron and hole gases 

(2DEG and 2DHG) with high sheet density ~1013 𝑐𝑚−3 without applying any external 

bias. In addition, despite having a bulk electron mobility smaller than Si, the 2DEG in 

GaN exhibits an electron mobility of 2000 𝑐𝑚2/𝑉𝑠, ~50 % higher compared to Si. As 

observed by M. Shur et al. [11] in their theoretical analysis, a better suppression of the 

piezoelectric scattering, resulting from a high concentration of electron gas and a 

reduction of ionized impurity scattering in the absence of doping are responsible for the 

high mobility of the 2DEG. Mobility is therefore primarily limited by polar optical 
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phonon scattering. On the other hand, such a theoretical study of hole mobility of 2DHG 

in GaN is still non-existent. The values listed in Table 1.1 for the hole mobility in bulk 

and 2DHG are the best experimental values observed to date. As a result of this highly 

conducting 2DEG along with higher breakdown electric field and saturation velocity 

means that GaN devices can operate at higher voltages and frequency at a fraction of the 

size of silicon power devices. 

In high frequency power conversion, increasing the frequency reduces the size and 

volume of various other circuit elements in the system, such as transformers, filters and 

inductors. This helps to reduce the weight, bill of materials and thereby the cost of power 

systems. Increasing the frequency of operation in power MOSFETs, however leads to a 

rise in switching loss, as 

 𝐿𝑜𝑠𝑠 ∝
√𝑓

𝐹𝑂𝑀
 (1.1) 

Since FOM remains fixed for a given material, Eq. (1.1) indicates a material with 

higher FOM becomes necessary to suppress the increase in loss as the frequency of 

operation becomes higher. 

Fig. 1.1 elucidates device losses in Si and GaN with respect to frequency. Owing to 

the much higher BFOM in GaN compared to Si, GaN based devices facilitate smaller 

conduction losses. Moreover, the rise in device loss with frequency occurs at a smaller 

rate in GaN than Si, owing to a higher HMFOM. This makes GaN devices inherently 

advantageous in efficiency despite the higher frequency in comparison to silicon as 

indicated in this figure.  
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Fig. 1.1. Comparison of device losses, conduction and switching losses, for GaN and Si. 

Table 1.1 also shows that the material properties and FOM of diamond far exceed the 

properties of Si or GaN. However, owing to economic reasons and difficulty in achieving 

n-type doping in diamond, the commercialisation of diamond based power devices is not 

expected any time soon. 

One downside of GaN power devices is that currently the gates of these devices are 

driven by Si based CMOS, located discretely, though more recently GaN ICs based on 

n-type logic gate drivers have also come into the market [12]. This lack of integrated 

CMOS gate driver introduces chip-to-chip delay and parasitic inductance to the gate 

drive loop, resulting in slow operation with higher loss and instability. A further 

improvement is required by integrating power device and CMOS based gate driver on 

the common GaN chip to harness the full material benefits of GaN.  

However, the mobility of holes in GaN remains poor, 7.8 − 81 𝑐𝑚2/𝑉𝑠 in bulk [7] 

and 10 − 43 𝑐𝑚2/𝑉𝑠 for 2DHG [8] at room temperature, which severely degrades the 

performance of monolithic CMOS in GaN [13], thereby prohibiting applications of GaN 

based logic and CMOS for driving power converters. Novel solutions are therefore 
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required to improve hole mobility or realise a p-channel device with a higher hole 

mobility material heterogeneously integrated with GaN. 

1.3. SATISFYING GROWING DEMAND FOR COMPUTATION 

Besides electrical power conversion in all its forms, a large fraction of energy 

consumption accrues from the demand for computation. This has historically been made 

possible by Moore’s law, which states that the number of transistors on an integrated chip 

doubles approximately every 2 years [14]. Moore’s law has served both as a motivation 

and guide for semiconductor industry in setting targets for the next generation of 

transistors. As a result, the size of the transistors became smaller, which led to an increase 

in their performance, whilst reducing the cost of manufacture. 

The targets for feature size along with other physical and electrical characteristics for 

each of the technology nodes are dictated by the International Technology Roadmap for 

Semiconductors (ITRS), which has successfully predicted the evolution of transistor 

properties over the few decades. Figs. 1.2 (a) and (b) show the forecast for physical gate 

length 𝐿𝐺 , subthreshold swing (SS), the on-current 𝐼𝑂𝑁, and maximum power 

consumption (supply voltage 𝑉𝐷𝐷 × 𝐼𝑂𝑁), for each technology node up to 2030, 

according to ITRS Executive Reports, 2015 [15]. By the year 2021, 𝐿𝐺  is expected to 

shrink to 10 𝑛𝑚, at which point, a further scaling in 𝐿𝐺  will not be possible until the next 

decade due to adverse short-channel effects and higher channel leakage current. A further 

scaling of physical dimension is expected to come from adopting a vertical gate all 

around device structure. 
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Fig. 1.2. Targets for the (a) gate length, sub-threshold slope, (b) on-current and power over the 

next decade, as predicted by ITRS 2.0, Executive Summary 2015 [15]. 

Despite a higher on-current, a reduction in power is expected due to scaling of supply 

voltage and a reduction in subthreshold swing. After year 2021, two important 

technological shifts become necessary for ensuring high performance even at lower 𝑉𝐷𝐷: 

1. Employing tunneling or negative capacitance phenomena to bring SS below 

60 𝑚𝑉/𝑑𝑒𝑐 

2. Realising beyond von Neumann architectures at hardware level 

1.3.1. Achieving subthreshold swing below 𝟔𝟎 𝒎𝑽/𝒅𝒆𝒄 

In a conventional MOSFET, due to Boltzmann distribution of carriers, a change in 

the carrier density in a semiconductor channel is limited to ~ exp(𝑞𝛹𝑠/𝑘𝑇) with respect 

to the surface potential Ψ𝑠, which results in a drain current unable to change by more 

than an order of magnitude for a change in surface potential by 60 𝑚𝑉. This implies that 

for a given 𝐼𝑂𝑁 and at a fixed SS, a reduction in the supply voltage comes at a cost of a 

higher off-current 𝐼𝑂𝐹𝐹, leading to an off-state power consumption, as shown in Fig. 1.3. 

Therefore, reducing SS beyond this limit of 60 𝑚𝑉/𝑑𝑒𝑐 in conventional MOSFET 

becomes crucial for the continued scaling of supply voltage and power consumption. 

Tunnel FETs (TFETs), where the transport of carriers between source and drain is 

enabled by quantum mechanical band-to-band tunneling over a potential barrier, have 



7 

 

been demonstrated to overcome this limit. Nevertheless, the performance of these 

transistors has been historically poorer than their CMOS counterparts [16], which is due 

to tunneling that introduces additional series resistance in the source and drain path. To 

date, the best reported electrical characteristics have been achieved in a vertical nanowire 

InAs/GaAsSb/GaSb TFET, showing an on-current of 0.31 𝑚𝐴/𝑚𝑚 at 60 𝑚𝑉/𝑑𝑒𝑐 of 

SS [17]. In addition to poor on-current, TFETs also suffer from ambipolarity, which 

refers to their inability to remain in off-state for one of the polarities of the applied gate 

bias, further restricting their applicability in complementary logic [18]. 

 

Fig. 1.3. Schematic of transfer characteristics for a MOSFET showing that scaling of the supply 

voltage causes the off-current to become higher. 

Ferroelectric FETs (FE-FETs) and other negative-capacitance FETs provide an 

alternative approach to lower SS below 60 𝑚𝑉/𝑑𝑒𝑐. In these FETs, the gate dielectric in 

the transistor is replaced by a material with inherent instability, i.e. exhibiting a two-

valley energy profile rather than a parabolic energy profile, observed in ordinary 

dielectric. Owing to this instability, the resulting insulator capacitance becomes negative 

for a range of applied gate bias. This produces an amplification in the potential at the 
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surface of the semiconductor relative to the applied gate bias, leading to steeper drain-

current characteristics. 

1.3.2. Beyond Von Neumann Architecture 

The von Neumann framework, where the memory and processing units are physically 

separated from each other, has been the underlying architecture behind contemporary 

high level programming languages, where variables in the program represent memory 

locations, algebraic and logical operations describe a single or a set of instructions to be 

performed by the processing unit, control statements mimic jump instructions, and 

assignment statements are a representation of fetch and store operations. Despite its 

prevalent use, this architecture has many limitations, such as information is processed 

sequentially, the speed at which any logic or algebraic operation can be performed 

remains limited to the maximum speed at which the data can be transferred between 

memory and processing units, which also leads to a significant loss of power in data 

transfer, where a small operation needs to be performed over a large amount of data. The 

time delay caused by data transfer between the memory and processor introduces a 

bottleneck on the maximum speed in this architecture referred to as memory wall [19]. 

Many avenues have been proposed and developed to surpass the limitations of von 

Neumann computing. Fig. 1.4 shows a chart of approaches based upon how  information 

is processed, as reported by IRTS in [20]. These can be broadly divided into “Program-

Centric” and “Data-Centric”, which can be further decomposed depending upon whether 

the outcome of a calculation is deterministic or non-deterministic. “Program-Centric” 

refers to the processors which take a program as an input, which contains a set of 

instructions provided by a designer and execute these instruction on the available input 

to generate an output. As shown, a Program-Centric framework can be sub-divided into 

von Neumann architecture, where instructions are executed from a stored program in a 
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sequential order, and non-von Neumann architectures, where instructions can be 

executed in parallel, for instance in field-programmable gate array (FPGA) or the same 

device is utilised to carry out both processing and storage, such as in a memristor [21], 

which exhibits a state dependent resistance. 

 

Fig. 1.4. Different categories for computing architecture, as published by ITRS in [20]. 

On the other hand, a Data-Centric approach, also a non-von Neumann computing 

framework, uses available input data to learn and extract meaningful features that have 

proven to be useful in performing a variety of tasks, such as summarising news or reports, 

categorising documents, recognising objects in an image, performing semantic analysis, 

processing natural language or recognising speech, and generating responses. Brain 

inspired artificial neural networks (ANN) [22] have recently surpassed the limitation of 

other traditional approaches based on either von Neumann or non-von Neumann 

architectures. Deep neural networks with multiple stacked layers of neurons have 
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recently achieved significant improvements in the accuracy in these tasks, matching or 

even outperforming human-level accuracy in some of the complex world problems such 

as image and speech recognition [23], [24], autonomous driving [25], and medical 

diagnosis [26]. Further improvements in the accuracy, in deep networks require 

aggressively increasing the depth and size of these networks, demonstrating a need for 

ever-increasing computational capacity and large volume of memory required to store 

the analogue strength (weights) of a synapse connecting the neurons. 

In the state-of-the-art deep networks, the number of weight parameters are usually of 

the order of millions [27], However, Si based CMOS implementation of ANNs with 

SRAM as the synaptic memory places a severe limitation on the maximum available on-

chip memory. Moreover, this approach also consumes a large amount of power due to 

the continuous data transfer between memory and processing units during the operation.  

In an alternative hardware platform, non-volatile memory (NVM) with analog or 

multi-state memory capabilities have been proposed for providing weight storage [28]. 

NVM typically consists of a memristor, realised using different approaches such as: 

phase change materials [29], formation/rupture of a conducting filament/bridge [30], 

magnetic tunnel junction [31], ferroelectric materials [32] or ferroelectric tunnel junction 

[33]. Compared to six-transistor (6T) cell in a typical SRAM, the one-transistor-one-

resistor (1T1R) cell in NVM permits realisation of potentially higher density memory 

storage, removing the need for off-chip memory to store large number of weights. 

Currently, the research in this area has focused upon realising networks of synaptic 

devices, with connectivity and power consumption equivalent of a human brain, which 

consists of 1010 synapses yet only consumes ~10 𝑊 [34]. The following section 

introduces the fundamentals of such neural networks and discusses one of the widely 

used learning algorithms to train these networks. 
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1.4. OBJECTIVE OF THIS WORK 

The focus of this work is two-fold. First, assessing the limits of performance of a p-

channel device in GaN that is highly desired for the realisation of a complementary 

switch in GaN that can provide an integrated gate drivers for GaN power devices. Here 

we explore GaN heterostructures based lateral FET and a vertical tunnel FET, employing 

a polarisation induced tunnel junction. The second major contribution focuses on new 

physics of negative capacitance, beyond ferroelectric FETs. This is demonstrated by 

developing novel theory that explains steep switching in solid-electrolyte 𝑇𝑎2𝑂5/𝑍𝑛𝑂 

thin-film transistors (TFTs), as part of this work. 

1.5. OUTLINE OF THE THESIS 

The thesis is organised as follows: 

In this Chapter 1 the need for energy-efficient devices and a growing demand for 

processing speed is introduced. Currently available solutions to meet these demands 

beyond 2021 are discussed. Finally, the role of this work in addressing these challenges 

is presented. 

In the introductory Chapters 2 and 3, the operation of MOSFET and various 

techniques to overcome the 60 𝑚𝑉/𝑑𝑒𝑐 limit of SS, via band-to-band tunneling, negative 

capacitance, are presented to provide the reader a background on the theory of Tunnel 

FETs and negative capacitance FETs. In Chapter 3, the physics of GaN, operation of 

metal-oxide-semiconductor (MOS) in GaN heterostructures, and approaches to realise 

normally-off operation in n-channel GaN heterostructure devices are discussed. 

In Chapters 4 and 5 the limitations of conventional p-channel enhancement mode (E-

mode) GaN MOS heterostructure FET (MOSHFET) are discussed. A modified p-channel 

device with an AlGaN cap for overcoming and extending the performance of these 
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devices is proposed. It is revealed in Chapter 4 that the device with the AlGaN cap suffers 

from higher leakage current as the thickness of the channel increases. Utilisation of a 

biased 2DEG along with an AlGaN cap is demonstrated to resolve this issue. 

Chapter 6 introduces a novel p-channel vertical TFET in GaN that relies upon 

polarisation properties of GaN for its tunneling operation. From TCAD simulations, it is 

shown that this device, unlike conventional TFETs, does not suffer from ambipolarity in 

the transfer characteristics. The presented device also shows promise for achieving a 

much smaller tunnel distance with a better control than is possible in conventional 

TFETs. 

In Chapter 7, a novel physics based model that explains sub-60 𝑚𝑉/𝑑𝑒𝑐 of switching 

in a 𝑇𝑎2𝑂5/𝑍𝑛𝑂 solid-electrolyte FET is developed. It is shown that the motion of mobile 

oxygen ions inside 𝑇𝑎2𝑂5 ions under a dynamic gate bias sweep causes the capacitance 

across 𝑇𝑎2𝑂5 to become negative, leading to sub-60 𝑚𝑉/𝑑𝑒𝑐 of switching. 

In Chapter 8, concluding remarks are presented and future directions for this work 

are discussed. 
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Chapter 2 MOSFET and Steep-Switching Devices 

This introductory chapter is dedicated to device operation and evolution of the metal-

oxide-semiconductor (MOS) field effect transistor (FET) that forms a basis of discussion 

in subsequent chapters. Sections 2.1 & 2.2 introduce the physics of operation of a 

MOSFET and conditions for achieving sub-60 mV/dec switching. This leads on to 

properties of steep-switching devices, Tunnel FET (TFET), Ferroelectric FET  (FE-

FET), and Paraelectric FET (PE-FET) discussed in sections 2.3 – 2.6, which will serve 

as a basis for chapters 6 and 7. Finally, section 2.7 provides a summary of this chapter. 

2.1. OPERATION OF A METAL-OXIDE-SEMICONDUCTOR (MOS) FET 

Fig. 2.1 (a) presents a schematic of a conventional n-channel MOSFET with a device 

width of 𝑊 and channel or gate length 𝐿, fabricated on an acceptor-doped or p-type 

semiconductor. The two heavily donor-doped or n+-type regions define the source and 

drain, whereas the region in between forms the channel. Since the channel is p-type, it 

acts as a barrier between the n-doped source and drain. Hence applying a bias across 

drain and source 𝑉𝐷𝑆 does not produce a current through the device. An oxide separated 

gate is employed to electrostatically control the density of electrons within the channel. 

The band diagrams along the intercept 𝑍 − 𝑍′ are displayed in Figs. 2.1 (b)-(d) under 

various bias conditions of the gate. Fig. 2.1 (b) shows the band diagrams in flat band 

condition, where 𝜙𝑚 and 𝜙𝑆 indicate the work functions of metal and semiconductor, 

while 𝜙𝐹 is the energy of the Fermi level with respect to the valence band of the 

semiconductor. In the flat band condition, the electric field within the oxide and 

semiconductor becomes zero. A gate bias 𝑉𝐺𝑆 equal to the difference of work functions 

𝜙𝑚 − 𝜙𝑠 = 𝜙𝑚𝑠, also referred as flat band voltage 𝑉𝐹𝐵(= 𝜙𝑚𝑠), is required to achieve 

this condition. 



17 

 

 

Fig. 2.1. (a) Schematic of an n-channel metal-oxide-semiconductor FET (MOSFET). The energy 

band diagrams along 𝑍 − 𝑍′ directions in (b) flat band, (c) inversion, and (d) accumulation 

conditions, respectively. 

2.1.1. Body Factor of a MOS 

If a positive gate bias is applied, the energy of the Fermi level in the gate reduces by 

𝑒𝑉𝐺𝑆, leading to a reduction in the energy of the conduction and valence bands in oxide 

and semiconductor, with part of the applied bias dropping across the oxide 𝑉𝑜𝑥 and the 

remaining as surface potential Ψ𝑠 at the surface of the semiconductor, as shown in Fig. 

2.1 (c). This can be expressed as 

 𝑉𝐺𝑆 = 𝜙𝑚𝑠 + 𝑉𝑜𝑥 +Ψ𝑠 (2.1) 

If a positive 𝑉𝐺𝑆 is applied such that the energy difference between the conduction 

band and Fermi level at the surface remains larger than 𝜙𝐹, the energy difference between 

the valence band and Fermi level under flat band condition (see Fig. 2.1 (b)), the carriers 

in the channel remain depleted. This corresponds to the depletion condition. 

To determine the change in gate bias required to produce a unit change in the surface 

potential (𝑑𝑉𝐺𝑆/𝑑Ψ𝑠), also referred as body factor 𝑚, we differentiate both side of Eq. 
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(2.1) with respect to Ψ𝑠 

 
𝑚 =

𝑑𝑉𝐺𝑆
𝑑Ψs

= 1 +
𝑑𝑉𝑜𝑥
𝑑Ψ𝑠

=
1

1 −
𝑑𝑉𝑜𝑥
𝑑𝑉𝐺𝑆

 
(2.2) 

Where 𝑑𝜙𝑚𝑠/𝑑Ψ𝑠 = 0 since 𝜙𝑚𝑠 is a constant. As seen from Figs. 2.1 (c) and (d), 

since for a regular gate oxide both 𝑉𝑜𝑥 and Ψ𝑠 always change in the same direction, 

𝑑𝑉𝑜𝑥/𝑑Ψ𝑠 in the above equation always remains > 0, which leads to 𝑚 > 1, indicating 

that the change in Ψ𝑠 remains smaller than that in the gate bias. 

At a certain positive gate bias, the energy of the bands at the surface of the 

semiconductor drops such that the energy difference between the conduction band and 

Fermi level becomes less than 𝜙𝐹, causing this region to become n-type. Since the surface 

of the semiconductor transforms from p-type, consisting of holes, to an n-type with a 

layer of electrons, this condition is referred to as inversion. As shown in Fig. 2.1 (c), a 

further increase in positive gate bias leads to the conduction band at the surface of the 

semiconductor sinking below the Fermi level, which leads to the formation of an e- 

quantum well, resulting in a two-dimensional confinement of electrons. Since an equal 

but positive charge is also created at the gate, this makes the entire metal-oxide-

semiconductor stack to act as a capacitor, referred as MOS capacitor. 

At a certain positive gate bias, the conduction band at the surface of the 

semiconductor sinks below the Fermi level, causing the formation of an e- quantum well, 

leading to a two-dimensional confinement of electrons. Since the channel transforms 

from a p-type semiconductor, consisting of holes, to n-type with a sheet of electrons, this 

condition is referred to as inversion. Since an equal but positive charge is also created at 

the gate, this makes the entire metal-oxide-semiconductor stack to act as a capacitor, 

referred as MOS capacitor. 

In inversion, the sheet of electrons at the channel interface forms an electrical path 
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between n+ doped source and drain, thereby switching the device in the on-state. At this 

point, an application of 𝑉𝐷𝑆 results in 𝐼𝐷𝑆, depending upon the density of the carriers in 

the channel. On the other hand, an application of negative bias on the gate raises the 

energy of the valence band inside the channel, bringing it closer to Fermi level, as shown 

in Fig. 2.1 (d), which results in an accumulation of holes at the surface of the 

semiconductor. Since in this mode, the channel remains p or p+, it obstructs any flow of 

electrons between the n+-doped source and drain regions and the device continuous to 

remains in off-state. Further explanations on the physics of MOS can be found in 

textbooks [1], [2]. 

2.1.2. Boltzmann Limit and Subthreshold Operation of a MOSFET 

In the depletion and weak inversion conditions, since the electron concentration in 

the channel remains small, the carrier transport is dominated by the diffusion of electrons 

from source to drain region, which can be described as [2]  

 𝐼𝐷𝑆 ∝ −𝐷𝑛
𝑑𝑁

𝑑𝑡
∝
𝑁(0) − 𝑁(𝐿𝐺)

𝐿𝐺
 (2.3) 

 Where 𝐷𝑛 is the diffusion coefficient for the electrons, 𝑁(0) and 𝑁(𝐿𝐺) are the sheet 

carrier densities at source and drain edges of the gate. 𝑁(0) can be shown to have an 

exponential dependence upon the surface potential at the semiconductor, as 𝑁(0) ∝

exp⁡(𝑞Ψ𝑠/𝑘𝐵𝑇), where 𝑘𝐵 is Boltzmann constant, 𝑇 is the temperature, and 𝑞 is the 

elementary charge, while 𝑁(𝐿𝐺) is described as 𝑁(0)exp⁡(−𝑞𝑉𝐷𝑆/𝑘𝐵𝑇). Substituting the 

values for 𝑁(0) and 𝑁(𝐿𝐺) in Eq. (2.3), yields 

 𝐼𝐷𝑆 ∝ exp (
𝑞Ψ𝑠

𝑘𝐵𝑇
) (1 − exp (−

𝑞𝑉𝐷𝑆
𝑘𝐵𝑇

)) ≈ exp (
𝑞𝛹𝑠
𝑘𝐵𝑇

) (2.4) 

This exponential dependence upon the surface potential can also be interpreted from 

the band diagrams depicted in Figs. 2.2 (a) and (b) at zero and positive gate biases, 

respectively. At zero gate bias, the channel acts as a potential barrier for the carriers in 



20 

 

the source region and prevents their diffusion across the channel, as indicated in Fig. 2.2 

(a). However, as the gate bias is increased, a resulting increase in surface potential Ψ𝑠 in 

the channel reduces the energy of conduction and valence bands in the channel (see Fig. 

2.1 (c)), leading to a lowering of the barrier and a corresponding increase in the diffusion 

of the carriers, thus producing an exponential rise in the drain current, as shown in Fig. 

2.2 (b). 

 

Fig. 2.2. The band diagrams in source and channel regions of the semiconductor along the 

oxide/semiconductor interface for (a) zero and (b) positive gate bias. 

Taking the logarithm of both sides of Eq. (2.4) and differentiating with respect to Ψ𝑠, 

yields 

 
𝑑 log10 𝐼𝐷𝑆

𝑑Ψ𝑠
≈

𝑞

2.3⁡𝑘𝐵𝑇
 (2.5) 

Taking the reciprocal of the above equation  

  𝑛 =
𝑑Ψ𝑠

𝑑 log10 𝐼𝐷𝑆
≈
2.3⁡𝑘𝐵𝑇

𝑞
 (2.6) 

where 𝑛, which is a measure of the change in Ψ𝑠 required to produce a decade of 

change in 𝐼𝐷𝑆, is defined as the transport factor. From the above equation, the transport 

factor is approximately equal to 2.3⁡𝑘𝐵𝑇/𝑞, referred to as the Boltzmann limit, indicating 

that at room temperature 𝑛 cannot be smaller than 60⁡𝑚𝑉/𝑑𝑒𝑐. This suggests that in the 

case of a thermionic emission a change of 60⁡𝑚𝑉 in Ψ𝑠 is required to produce a decade 
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of change in the drain current. 

From a knowledge of the body factor and transport factor, the subthreshold swing 

(SS), which is defined as the change in the gate bias required to produce a decade of 

change in the drain current, 𝑑𝑉𝐺𝑆/𝑑𝑙𝑜𝑔10𝐼𝐷𝑆, can be expressed as [3] 

 𝑆𝑆 =
𝑑𝑉𝐺𝑆

𝑑 log10 𝐼𝐷𝑆
=
𝑑𝑉𝐺𝑆
𝑑Ψ𝑠

𝑑Ψ𝑠

𝑑 log10 𝐼𝐷𝑆
= 𝑚 × 𝑛 (2.7) 

As observed from Eqs. (2.2) and (2.6), 𝑚 > 1 and 𝑛 ≈ 60⁡𝑚𝑉/𝑑𝑒𝑐 at room 

temperature, therefore, it follows from Eq. (2.7) that 𝑆𝑆 always remains greater than 

60⁡𝑚𝑉/𝑑𝑒𝑐 in a conventional MOSFET. This places a fundamental limit upon the 

operation of a MOSFET and leads a higher drain leakage current as the supply voltage is 

reduced, as discussed in Fig. 1.3 of Chapter 1. 

2.2. SUB-60 MV/DEC SWITCHING, BODY FACTOR, AND NEGATIVE 

CAPACITANCE 

Overcoming the limit of 60⁡𝑚𝑉/𝑑𝑒𝑐 of subthreshold swing of a Metal–Oxide–

Semiconductor Field Effect Transistor (MOSFET) is accepted as the next evolution of 

CMOS scaling projected for future logic devices [3]–[5]. One of the two main approaches 

to achieve SS smaller than 60⁡𝑚𝑉/𝑑𝑒𝑐 is to reduce 𝑛 below 60⁡𝑚𝑉/𝑑𝑒𝑐. This can be 

obtained by adopting a fundamentally different transport mechanism, such as band-to-

band quantum mechanical tunneling in tunnel FETs (TFETs), instead of thermionic 

emission in a MOSFET as discussed in the next section. 

The second method to achieve 𝑆𝑆 < 60⁡𝑚𝑉/𝑑𝑒𝑐 is to enhance the coupling of the 

gate to the semiconductor such that the body factor m, becomes less than unity. Factors 

governing the value of the body factor can be understood from the relationship between 

the applied gate and channel surface potential, which in its simplest form is given as  
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 𝑉𝐺𝑆 = 𝜙𝑚𝑠 +
𝑄𝑐ℎ
𝐶𝑖𝑛𝑠

−
𝑄𝑜𝑥
𝐶𝑖𝑛𝑠

+Ψ𝑠 (2.8) 

where 𝜙𝑚𝑠 represents the work function difference between the gate and 

semiconductor, 𝐶𝑖𝑛𝑠 is the unit area capacitance of the gate insulator, 𝑄𝑜𝑥 is the sheet 

charge density at the interface of the oxide and the semiconductor, and 𝑄𝑐ℎ is the sheet 

charge density in the semiconductor. Taking the derivative of Eq. (2.8) with respect to 

Ψ𝑠 gives 

 
𝑑𝑉𝐺𝑆
𝑑Ψ𝑠

=
𝑑𝜙𝑚𝑠

𝑑Ψ𝑠
+

𝑑

𝑑Ψ𝑠
(
𝑄𝑐ℎ
𝐶𝑖𝑛𝑠

) −
𝑑

𝑑Ψ𝑠
(
𝑄𝑜𝑥
𝐶𝑖𝑛𝑠

) + 1 (2.9) 

In the case of a conventional MOSFET as 𝜙𝑚𝑠, 𝐶𝑖𝑛𝑠 and 𝑄𝑜𝑥 are constants, the above 

equation reduces to  

 𝑚 =
𝑑𝑉𝐺𝑆
𝑑Ψ𝑠

= 1 +⁡
1

𝐶𝑖𝑛𝑠

𝑑𝑄𝑐ℎ
𝑑Ψ𝑠

= 1 +
𝐶𝑑𝑒𝑝

𝐶𝑖𝑛𝑠
≥ 1 (2.10) 

where 𝑑𝑄𝑐ℎ/𝑑Ψ𝑠⁡in the subthreshold regime is the depletion capacitance 𝐶𝑑𝑒𝑝. In 

terms of voltage across the oxide, the body factor can be written as 

 
𝑚 =

1

𝑑𝛹𝑠
𝑑𝑉𝐺𝑆

⇒ 𝑚 =
1

𝑑(𝑉𝐺𝑆 − 𝜙𝑚𝑠 − 𝑉𝑜𝑥)
𝑑𝑉𝐺𝑆

⇒ 𝑚 =
1

1 −
𝑑𝑉𝑜𝑥
𝑑𝑉𝐺𝑆

 
(2.11) 

Since for a regular dielectric material as the gate insulator, 𝐶𝑖𝑛𝑠 and 𝐶𝑑𝑒𝑝 are always 

non-negative, body factor from Eq. (2.10) always remains greater than 1, leading to a 

subthreshold swing > 60⁡𝑚𝑉/𝑑𝑒𝑐. It follows from Eq. (2.11), an 𝑚 > 1 results in 0 <

𝑑𝑉𝑜𝑥 𝑑𝑉𝐺𝑆⁄ < 1 i.e. a change in the voltage across the dielectric is always smaller than 

the change in applied gate bias and remains in-phase with 𝑉𝐺𝑆. On the other hand, in a 

FE-FET, where a ferroelectric material is utilised as the gate dielectric, 𝐶𝑖𝑛𝑠 is replaced 

with 𝐶𝐹𝐸, which can become negative, as will be shown in section 2.4, resulting in 𝑚 <

1, or equivalently 𝑆𝑆 < 60⁡𝑚𝑉/𝑑𝑒𝑐 [6]. 
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2.3. OPERATION OF A TFET 

Unlike MOSFETs where the source to drain path consists of n-p-n or p-n-p doped 

semiconductor regions for n-type and p-type devices, TFETs employ a p-i-n or n-i-p 

doped semiconductor structure, where source and drain regions are doped degenerately 

of opposite polarity, as depicted in Fig. 2.3 (a). At zero gate bias, due to presence of the 

intrinsic channel, a bias across source and drain 𝑉𝐷𝑆 does not result in any drain-current 

and the device remains in the OFF-state, as seen from the band diagram in Fig. 2.3 (b). 

An application of a positive gate bias lowers the energy of valence and conduction bands 

in the channel region, which causes an overlap of the conduction band in the channel 

with the valence band in the source region across a small distance, typically less than 

10⁡𝑛𝑚. This enables the carriers in these regions to tunnel between these bands across 

the potential barrier introduced by the bandgap, via a band-to-band quantum mechanical 

tunneling (BBT), as indicated by the red arrow in Fig. 2.3 (c). Therefore, the device 

switches to the ON-state, and allows conduction, upon the application of 𝑉𝐷𝑆. Fig. 2.3 

(d) shows the band diagram for a negative gate bias that raises the energy level of bands 

in the channel region. As marked by a red arrow in this figure, a similar overlap between 

the valence band in the channel and conduction band in drain facilitates BBT between 

these regions, and causes the device to turn-on. Therefore, unlike MOSFETs which are 

non-ambipolar (i.e. turn-on either with positive or negative gate bias only) TFETs are 

ambipolar devices and can be turned on via non-zero gate bias in either direction of the 

bias. Ambipolarity is one of the main challenges with TFETs that leads to a higher 

leakage and makes their operation unreliable in CMOS logic applications. 
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Fig. 2.3. (a) Schematic of typical double gate TFET, and the typical band diagrams at (b) 𝑉𝐺𝑆 =

0, (c) 𝑉𝐺𝑆 > 0, and (d) 𝑉𝐺𝑆 < 0. 

Since the transport in a TFET is provided by BBT, fundamentally different from 

MOSFET, the device can potentially achieve a transport factor 𝑛 (Eq. (2.6)) below 

2.3𝑘𝐵𝑇/𝑞, bringing SS below 60⁡𝑚𝑉/𝑑𝑒𝑐. The tunneling probability 𝒯𝑊𝐾𝐵 across a 

potential barrier of height 𝒱(𝑥) can be described under a Wentzel-Kramers-Brillouin 

(WKB) approximation as [2]: 

 𝒯𝑊𝐾𝐵 ≈ exp(−2∫ |𝜅(𝑥)|𝑑𝑥
𝐷𝑇𝑢𝑛

0

) (2.12) 

where, 𝐷𝑇𝑢𝑛 is the band-to-band tunneling distance and |𝜅(𝑥)| = √2𝑚∗𝒱(𝑥) ⁄ ℏ is 

the absolute value of the wave vector of carriers of effective mass 𝑚∗ inside the tunnel 

barrier. It can be observed from Eq. (2.12) that the tunneling probability, responsible for 

the current in the device, decays exponentially with 𝐷𝑇𝑢𝑛. Consequently, the drain 

current in TFETs has been historically worse than in CMOS. Table 2.1 summarises the 
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reported experimental results for minimum SS and the corresponding ON-current 𝐼𝑂𝑁 for 

the TFETs achieving SS< 60⁡𝑚𝑉/𝑑𝑒𝑐. Whereas, the highest drain-current TFET with 

SS still below 60⁡𝑚𝑉/𝑑𝑒𝑐 has been reported to be in the range of 1 − 10⁡𝜇𝐴/𝑚𝑚 [7], 

orders of magnitude lower than the desired ~1⁡𝐴/𝑚𝑚. Therefore, attempts are being 

made to shrink 𝐷𝑇𝑢𝑛, by incorporation of a highly doped pocket in the channel, which 

increases the field at the point of tunneling [8]. In addition, semiconductor materials with 

dissimilar bandgaps, e.g. heterostructures of III-V compound semiconductors and their 

alloys, have been utilised to lower the barrier height, which have demonstrated a 

significant improvement in SS over Si-TFETs [9]. 

 

Table 2.1. Experimental results for TFETs with subthreshold swing below 𝟔𝟎⁡𝒎𝑽/𝒅𝒆𝒄. 

Reference Material System 
𝑺𝑺𝒎𝒊𝒏 

(mV/dec) 

𝑰𝑶𝑵 (mA/mm) 

with  𝑺𝑺𝒎𝒊𝒏 

J. Appenzeller et al. 2004 [10] Carbon-nanotube 40 0.01 

W. Y. Choi et al. 2007 [11] Silicon 53 ~10 

T. Krishnamohan et al. 2008 [12] Strained-Ge/Si 50 0.1 

K. Tomioka et al. 2012 [13] Si/InAs Nanowire 21 1 

L. Knoll et al. 2013 [14] Strained-Si Nanowire 30 10 

E. Memisevic et al. 2016 [9] InAs/GaAsSb/GaSb 48 ~20 

 

2.4. PHYSICS OF FERROELECTRIC MATERIALS 

The approach of including a layer of ferroelectric material between the gate and 

semiconductor channel is another potential way for reducing the operating voltage in 

CMOS, as discussed in chapter 1. The unique negative capacitance phenomenon in a 

ferroelectric can provide voltage amplification at the semiconductor channel that can lead 

to a body factor less than unity, resulting in the subthreshold swing of transfer 
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characteristics beyond that conceivable in conventional MOSFETs. In this section, we 

will review the properties of Ferroelectric materials, the two phases of these materials, 

namely ferroelectric (below Curie temperature) and paraelectric (above Curie 

temperature), describe the negative capacitance, R-C circuit equivalent models for these 

materials, and how they affect the operation of an FET, when employed as a  gate oxide. 

Ferroelectric materials consist of domains of electric dipoles, which can respond to 

and change their direction of polarisation according to the applied external bias. Unlike 

ordinary dielectrics where the free energy density 𝑈 follows a quadratic relationship with 

respect to the sheet charge density that appears across its terminals, the free-energy 

density in a typical ferroelectric material is described by a polynomial equation as [15] 

 𝑈 = 𝛼𝑃2 + 𝛽𝑃4 + 𝛾𝑃6 − 𝑃ℇ (2.13) 

Where ⁡𝛼(= 1/𝜀𝑟𝜀0) is equivalent to the inverse of the dielectric permittivity from 

the common relationship between electric field ℰ and polarisation, 𝛽 and 𝛾 are material 

dependent constants, ℇ is the electric field, and 𝑃 is the sheet charge density due to 

polarisation. In a ferroelectric, 𝛼 remains less than zero, which results in two local 

minima from Eq. (2.13), positive and negative spontaneous polarisation states [16], as 

shown in Fig. 2.4 (a) at ℰ = 0. Therefore, without an external electric field, a ferroelectric 

contains a remnant polarisation 𝑃𝑅, corresponding to one of the minima in 𝑈 − 𝑃 curve. 

𝛼 in a ferroelectric material exhibits temperature dependence, which following the Curie-

Weiss law (𝜖𝑟 = 𝐶/(𝑇 − 𝑇𝑝ℎ)), can be described as [16] 

 𝛼 =
𝑇 − 𝑇𝑝ℎ

𝜀0𝐶
 (2.14) 

𝐶 is the Curie constant, 𝑇𝑝ℎ is equal to or lower than the Curie temperature. While 

the temperature is less 𝑇𝑝ℎ, 𝛼 remains negative, and the material exhibits the ferroelectric 

phase. However, as the temperature exceeds 𝑇𝑝ℎ, the increase in thermal energy disrupts 
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the alignment of the electric domains in the material, leading to a loss of polarity in the 

absence of an external electric field, which corresponds to the paraelectric phase, with 𝛼 

greater than zero. 𝑈⁡vs.⁡𝑃 for a paraelectric material reduces to a single valley energy 

profile, with a minimum at 𝑃 = 0 when electric field is zero, as shown in Fig. 2.4 (b). 

Therefore, unlike ferroelectrics, paraelectrics do not contain any remnant polarisation in 

the absence of an electric field.  

In the presence of an electric field, however, these curves become tilted due to the 

dependence of 𝑈 upon ℰ in Eq. (2.13), as indicated by the brown arrows in Figs. 2.4 (a) 

& (b), resulting in one of the minima to become more favourable in the case of a 

ferroelectric, or causing the minimum to shift from the origin for the case of a 

paraelectric, leading to a development of finite polarisation. 

 

Fig. 2.4. Simulated energy profiles, 𝑈 for (a) the ferroelectric and (b) paraelectric phases as a 

function of polarisation, 𝑃 at different electric fields. (c) Comparison of 𝑃 vs. electric field for 
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FE and PE in steady state and under the dynamic sweep of the electric field with a frequency of 

50⁡𝑀𝐻𝑧, and (d) corresponding 𝑈 vs. 𝑃 for ferroelectric and paraelectric where the electric field 

changes as shown in (c). Here, 𝛼 = −3.2 × 1011𝑐𝑚/𝐹 for ferroelectric and 3.2 × 1011𝑐𝑚/𝐹 for 

paraelectric, while 𝛽 and 𝛾 of 6.8 × 1023𝑐𝑚5/𝐹𝐶2 and 0 for both ferro- and para- electrics are 

used. 

The dynamic behaviour of ferroelectric or paraelectric under continuously varying ℇ 

is described by the Landau-Khalatnikov (L-K) equation as [17] 

 𝜌
𝑑𝑃

𝑑𝑡
= −

𝑑𝑈

𝑑𝑃
 (2.15) 

Substituting 𝑈 from Eq. (2.13) leads to the desired relationship between ℰ and 𝑃 

 𝜌
𝑑𝑃

𝑑𝑡
= −2𝛼𝑃 − 4𝛽𝑃3 − 6𝛾𝑃5 + ℇ (2.16) 

where 𝜌 is a damping coefficient associated with the material, which determines the 

switching rate or a hysteresis in the dynamic behaviour of a ferroelectric material. 𝑃 vs. 

ℇ from Eq. (2.15) in the steady state i.e. (𝑑𝑃/𝑑𝑡 = 0) and under dynamic ℇ are plotted 

in Fig. 2.4 (c). In the steady state, the 𝑃⁡vs.⁡ℰ curve in ferroelectric exhibits an ‘S’ shaped 

characteristic with a negative-slope (𝑑𝑃 𝑑ℇ⁄ < 0) around the origin, which is an unstable 

region, and causes the polarisation to settle into one of two residual states at ℰ = 0, 

marked by ±𝑃𝑅 in Fig. 2.4 (c). 𝑃⁡vs.⁡ℰ in a paraelectric does not show such a region with 

negative slope. Therefore, 𝑃 remains zero at zero electric field. This dissimilarity 

however, vanishes under a dynamic sweep, where both ferro- and para- electrics show 

non-zero 𝑃 at ℇ = 0, giving rise to an anti-clockwise hysteresis. This hysteresis arises 

because the term 𝜌⁡𝑑𝑃/𝑑𝑡 in Eq. (2.16) slows down the maximum rate of change in 𝑃, 

introducing a delay in the change in 𝑃 with respect to a change in the electric field. This 

leads to a non-zero polarisation at zero electric field with an anti-clockwise hysteresis. 

Fig. 2.4 (d) compares the 𝑈 vs. 𝑃 characteristics of both materials in steady state and 

dynamic conditions, as electric field changes according to that shown in Fig. 2.4 (c). Fig. 
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2.4 (d) further confirms the similarity of the two materials under dynamic operation.  

2.4.1. Equivalent Series R-C Circuit Model 

Since the parallel plate capacitance of a layer of dielectric is related to its stored 

energy density as 𝐶 = (𝑡
𝑑2𝑈

𝑑𝑄2
)
−1

, where 𝑡 is the layer thickness or distance between the 

electrodes, we can apply the same procedure to obtain an expression for the unit-area 

capacitance of a ferroelectric or paraelectric 𝐶𝐹/𝑃, while substituting 𝑈 from Eq. (2.13) 

with ℇ equals to zero, which leads to 

 𝐶𝐹/𝑃
−1 = 𝑡(2𝛼 + 12𝛽𝑄2 + 24𝛾𝑄4) (2.17) 

where 𝑃 is expressed as the sheet charge density 𝑄 that appears across the terminals 

of insulator of thickness 𝑡. Since the double derivative of any given curve becomes 

negative wherever the curve becomes convex (a local maximum), 𝐶𝐹/𝑃 becomes 

negative, where 𝑈 vs. 𝑃 in Fig. 2.4 (a) shows a maximum (see black curve around origin). 

This also corresponds to the region of 𝑃 vs. ℰ plot in Fig. 2.4 (c), where its slope becomes 

negative. 

Utilising Eq. (2.17), it is possible to construct an equivalent non-linear RC circuit 

from Eq. (2.16) [15]. If 𝑉 is the bias applied across an insulator of thickness 𝑡, 

substituting ℰ = 𝑉/𝑡⁡, 𝑄 = 𝑃, and 𝐶𝐹/𝑃⁡ from Eq. (2.17) into Eq. (2.16) 

 

 𝑉 = 𝜌𝑡
𝑑𝑄

𝑑𝑡
+ ∫

𝑑𝑄

𝐶𝐹/𝑃
= 𝑅𝐼 + ∫

𝑑𝑄

𝐶𝐹/𝑃
 (2.18) 

 

Eq. (2.18) represents a series non-linear RC circuit with 𝑅 = 𝜌𝑡 with 𝐶𝐹/𝑃 described 

according to Eq. (2.17). Owing to the delay introduced by this series RC circuit, 

originating from the finite response of polarisation with respect to external electric field, 

we observe a remnant polarisation for a paraelectric in Fig. 2.4 (c) under dynamic electric 

field. However, an important distinction is that while in a paraelectric, the non-linear 
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capacitor, always remains positive, it can become negative for a ferroelectric in a certain 

range of operation, owing to 𝛼 < 0 for this material. 

2.5. OPERATION OF A FE-FET 

A flow diagram for simulating the dynamic characteristics for either FE- or PE- FET 

is illustrated in Fig. 2.5 (a). At a given gate bias, first a value of Ψ𝑠 is guessed, and the 

corresponding sheet charge density in the channel 𝑄𝑐ℎ is obtained by solving the one-

dimensional Poisson equation along with the density of carriers, which is determined by 

integrating the density of states in the channel together with the potential dependent 

Fermi-Dirac distribution of carriers within the channel. This procedure can be 

summarised as 𝑄𝑐ℎ = 𝑓(Ψ𝑠), as shown in Fig. 2.5 (a). The values for 𝑄𝑐ℎ and 𝑉𝑜𝑥(=

𝑉𝐺𝑆 − 𝜙𝑚𝑠 −Ψ𝑠) are substituted into L-K equation (Eq. (2.16)) to generate a new value 

for Ψ𝑠, which is used in the subsequent calculation of 𝑄𝑐ℎ. This process is repeated until 

the change in Ψ𝑠 becomes smaller than some desirable tolerance. For each of the applied 

gate bias point, the entire procedure is repeated to obtain the final value for 𝑄𝑐ℎ. From 

the converged values of 𝑄𝑐ℎ, the drain current 𝐼𝐷𝑆 is obtained simply as: 

 𝐼𝐷𝑆 = 𝜇
𝑊

𝐿
𝑄𝑐ℎ𝑉𝐷𝑆 (2.19) 

where 𝜇 is the mobility of carriers in the semiconducting channel, 𝑊 and 𝐿 are the 

width and length of the device, and 𝑉𝐷𝑆 is the drain to source bias. The results for 𝐼𝐷𝑆 

from Eq. (2.19) of an FE-FET at different scan frequencies of gate bias are plotted in Fig. 

2.5 (b). Owing to the instability in the FE, steep switching is observed during both the 

forward and backward sweeps of gate bias. It has been explained in the literature by a 

sudden change in the polarisation state of the FE that causes a change in the density of 

carriers in channel and results in amplification [18]. At low frequency, the slope 

𝑑𝑉𝑜𝑥/𝑑𝑉𝐺𝑆 becomes less than zero during both directions of the sweep of 𝑉𝐺𝑆, resulting 
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in a body factor 𝑚 < 1, according to Eq. (2.11). At higher frequency, the counter-

clockwise hysteresis in the transfer characteristics of the device follows from the 

ferroelectric properties, observed in Fig. 2.4 (c), following the L-K equation. The 

increase in the hysteresis with frequency arises from the finite time taken by the 

ferroelectric domains to respond to the changing electric field, controlled by 𝜌 in Eq. 

(2.16). A high remnant polarisation in the ferroelectric maintains the surface potential of 

the channel Ψ𝑠 during the reverse sweep, while the majority of the reduction in applied 

gate voltage is dropped across the ferroelectric, 𝑉𝑜𝑥, which thereby achieves a minimum 

in Fig. 2.5 (c). However, as the gate voltage is further reduced, a change in the state of 

polarisation leads to a depletion in the channel and a corresponding reduction in Ψ𝑠, while 

𝑉𝑜𝑥 increases to its initial value. This increase in 𝑉𝑜𝑥 during a reduction of 𝑉𝐺𝑆 leads to 

𝑑𝑉𝑜𝑥 𝑑𝑉𝐺𝑆⁄ < 0, thereby producing 𝑚 < 1 from Eq. (2.11). Fig. 2.5 (d) reveals a 𝑆𝑆 <

60⁡𝑚𝑉/𝑑𝑒𝑐 at low frequency in both the forward and backward directions of 𝑉𝐺𝑆. With 

an increase in frequency, the increase in the width of the hysteresis in the transfer 

characteristics becomes larger. As a result, 𝑆𝑆 during the forward sweep degrades, 

increasing above 60⁡𝑚𝑉/𝑑𝑒𝑐 at a frequency of ~3⁡𝑀𝐻𝑧, while in the backward sweep, 

it becomes as low as ~5⁡𝑚𝑉/𝑑𝑒𝑐. Employing a ferroelectric material to boost the SS 

does not always guarantee a sub-60⁡𝑚𝑉/𝑑𝑒𝑐 operation. Since a ferroelectric affects the 

body factor, the amplification depends upon the performance of the underlying MOSFET 

via the factor 𝑛(= 𝑑log 𝐼𝐷𝑆 /𝑑Ψ𝑠). Moreover, the observed SS in FE-FETs can fluctuate 

owing to non-idealities such as multi-domain ferroelectricity, diverse polarisation [19] 

or gate leakage [20]. 
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Fig. 2.5. (a) A flow diagram showing the self-consistent coupling of the L-K equation with the 

semiconductor channel for computing the drain current in FE- or PE- FET. (b) Simulated transfer 

characteristics, (c) voltage across the ferroelectric gate insulator 𝑉𝑜𝑥 vs. the applied gate bias 𝑉𝐺𝑆 

at different frequency of gate bias sweep. (d) SS vs. scan frequency in both directions of gate 

bias sweep for a ferroelectric FET (FE-FET). A sub-60⁡𝑚𝑉/𝑑𝑒𝑐 switching is present at low 

frequency (where hysteresis virtually disappears). At higher frequency, the width of the 

hysteresis increases and the switching becomes more gradual because of the finite rate of change 

in the polarisation controlled by the parameter 𝜌 in Eq. (2.16). where 𝛼, 𝛽, 𝛾, and 𝜌 of −3.2 ×

1011𝑐𝑚/𝐹, 6.8 × 1023𝑐𝑚5/𝐹𝐶2, 0, 3000⁡Ω⁡𝑐𝑚 are used.  

Fig. 2.6 highlights reported results in ferroelectric FETs meant for mainstream 

CMOS applications. Many of these are based on devices with long channel lengths, while 

the drain current does not exceed 6⁡𝑚𝐴/𝑚𝑚, at least 3 orders of magnitude lower than 

the accepted benchmark (~1⁡𝐴/𝑚𝑚). 
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Fig. 2.6. Recent experimental results of reported ferroelectric FETs for CMOS applications. [21]–

[27] 

2.6. OPERATION OF A PE-FET 

The operation of a paraelectric (PE) –FET can also be simulated in a similar fashion 

to a FE-FET by simply replacing the ferroelectric by a paraelectric (PE) material. The 

transfer characteristics of a PE-FET, plotted in Fig. 2.7 (a), show no steep-switching at 

low scan frequency of 𝑉𝐺𝑆, but the slope of the drain-current becomes steeper during the 

backward sweep as the frequency is increased. Further investigation of the 𝑉𝑜𝑥 vs. 𝑉𝐺𝑆 in 

Fig. 2.7 (b) reveals that at low frequency, the slope 𝑑𝑉𝑜𝑥/𝑑𝑉𝐺𝑆 remains positive, resulting 

in 𝑚 > 1. At higher frequency, 𝑑𝑉𝑜𝑥 𝑑𝑉𝐺𝑆⁄  turns negative only in the backward sweep, 

leading to 𝑚 < 1 (Eq. (2.11)). Fig. 2.7 (c) indicates that the 𝑆𝑆 remains greater than 

60⁡𝑚𝑉/𝑑𝑒𝑐 at low frequency in both forward and backward directions of 𝑉𝐺𝑆 sweep, but 

become less than 60⁡𝑚𝑉/𝑑𝑒𝑐 in the backward sweep as the frequency of gate bias 

sweeps exceeds 12⁡𝑀𝐻𝑧 (for this value of 𝜌). As we observed, the capacitance for a PE 

in Eq. (2.17) always remains greater than zero, implying that the observed sub-

60⁡𝑚𝑉/𝑑𝑒𝑐 of switching originates from a different mechanism. In fact, owing to the 

equivalent series R-C circuit representation of L-K equation in Eq. (2.18), the 
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paraelectric insulator introduces a delay in propagating the variations in 𝑉𝐺𝑆 to the surface 

of the semiconductor, causing a phase difference between 𝑉𝐺𝑆 and Ψ𝑠. Due to this phase 

difference, the change in Ψ𝑠 becomes greater than the corresponding change in 𝑉𝐺𝑆 at 

high frequency, that is 𝑑𝑉𝐺𝑆/𝑑Ψ𝑠 < 1, or equivalently 𝑑𝑉𝑜𝑥/𝑑𝑉𝐺𝑆 < 1, from Eq. (2.2) 

since Ψ𝑠 = 𝑉𝐺𝑆 − 𝜙𝑚𝑠 − 𝑉𝑜𝑥. Consequently, sub-60 𝑚𝑉/𝑑𝑒𝑐 switching in the dynamic 

characteristics of PE-FETs is possible via an equivalent R-C type behaviour represented 

by an equivalent circuit based on the L-K equation during the backward scan of the gate 

bias depending upon the frequency. 

 

Fig. 2.7. (a) Simulated transfer characteristics of a PE-FET with gate scan frequency (b) Voltage 

across the paraelectric gate insulator 𝑉𝑜𝑥 vs. the applied gate bias 𝑉𝐺𝑆, and (c) SS vs. frequency 

of gate bias sweep in forward and reverse directions for a PE-FET. No steep-switching at low 

frequency is present in either forward or backward direction of sweep. At a scan frequency >

15⁡𝑀𝐻𝑧, the device shows a 𝑆𝑆 < 60⁡𝑚𝑉/𝑑𝑒𝑐 in the backward sweep for chosen parameters, 

where 𝛼, 𝛽, 𝛾, and ⁡𝜌 of 3.2 × 1011𝑐𝑚/𝐹, 6.8 × 1023𝑐𝑚5/𝐹𝐶2, 0, and 3000⁡Ω⁡𝑐𝑚 are used. 

2.7. SUMMARY 

In this chapter, we have reviewed the operation of MOSFET, physics of steep 

switching devices such as a tunnel and ferroelectric FET (TFET and FE-FET) and their 

distinction from paraelectric FETs. We have demonstrated that under dynamic conditions 

the energy well profiles of FE-FETs and PE-FETs can be somewhat indistinguishable, 

but the frequency dependence of the SS is a useful method of identifying the physics of 

operation of these two FETs. These concepts will provide a foundation for the discussion 
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of this work in the subsequent chapters. 
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Chapter 3 Fundamentals of GaN and Heterostructure Devices 

This chapter introduces the material properties of GaN and describes the physics of 

devices based on GaN hetersotructures. This chapter is organised as follows. Sections 

3.1 – 3.4 are dedicated to an introduction to GaN, polarisation properties of GaN, and 

formation of polarisation induced two dimensional electron and hole gases (2DEG & 

2DHG). In sections 3.5 – 3.6, the operation of MOS in GaN heterostructures and n-

channel MOS heterostructure FETs (HFETs) are introduced that underlie the theory of 

p-channel MOSHFETs in chapters 4 and 5 of this work. 

3.1. WHY GAN? 

Si based MOSFET devices have greatly affected various aspects of our lives. 

MOSFETs have been used as signal amplifiers, low power or high power switches. 

However, the modest mobility (~1400 𝑐𝑚2/𝑉𝑠), low band gap (1.1 𝑒𝑉) and small 

breakdown voltage (~0.3 𝑀𝑉𝑐𝑚−1) of Si limit the performance of Si-based RF and 

power devices. Therefore, other materials with superior properties compared to Si are 

required for high efficiency power conversion. Unique features of GaN, such as wide 

band gap, high breakdown voltage, saturation velocity, and high polarisation properties, 

make it one of the most promising candidates among other options, such as SiC and 

diamond. 

GaN and other group III-nitrides, such as AlN, InN, and their alloys, are pyroelectric 

materials, exhibiting spontaneous and piezoelectric polarisation. The discontinuity in 

polarisation at a hetero-interface between pairs of these materials results naturally in a 

polarisation sheet charge at this interface, which can lead to formation of two 

dimensional electron or hole gas (2DEG or 2DHG) of carrier density ~1013 𝑐𝑚−2 

without requiring doping or application of external bias. Because of very high density of 
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electrons in 2DEG that has been found to suppress scattering [1], the mobility of electrons 

in the 2DEG (~2000 𝑐𝑚2/𝑉𝑠) is significantly higher than in bulk GaN (~1200 𝑐𝑚2/

𝑉𝑠) [2]. Heterostructure field effect transistors (HFETs) utilising 2DEG as channel have 

demonstrated a current gain cut-off frequency of over  300 𝐺𝐻𝑧 [3], [4]. The wide band 

gap (~3.4 𝑒𝑉), large breakdown (2 𝑀𝑉𝑐𝑚−1) and thermal conductivity (1.5 𝑊/𝑐𝑚 𝐾) 

of GaN make it a suitable material for high power applications. HFETs with a power 

density of up to ~40 𝑊/𝑚𝑚 have been demonstrated [5].  

3.2. POLARISATION AND POLARISATION SHEET CHARGE 

In order to understand the pyroelectric properties of wurtzite materials and their 

alloys, it is helpful to define relevant quantities and introduce basic concepts. In the case 

of a bulk homogeneous insulator placed in an electric displacement field 𝐷. The electric 

field ℰ and induced polarisation 𝑃 inside the insulator are related to the displacement 

field by the following relationship 

 𝐷 = 𝜖ℰ + 𝑃 (3.1) 

where 𝜖 is the dielectric constant of the medium. 𝐷 is related to the external charge 

density 𝜌 by Gauss’ Law as 

 𝛻. 𝐷 = 𝜌 (3.2) 

Solution of Eq. (3.2) requires a knowledge of the boundary conditions. If we consider 

the case of a finite solid, the boundary condition at the surface or at a heterointerface 

between two different materials plays an important role. In this case, Eq. (3.2) can be 

modified to represent a relationship between a change in the displacement vector (∆𝐷 =

𝐷2 − 𝐷1) normal to the surface or heterointerface and external sheet charge density 𝜎 at 

the surface or the heterointerface as follows 

 ∆𝐷 = 𝜎 (3.3) 

It should be noted here that 𝜎 is of external origin and does not include the 
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polarisation charges. The discontinuity in the polarisation ∆𝑃 at the heterointerface or 

the surface can be defined by the polarisation sheet charge density 𝜎𝑃 as 

 ∆𝑃 = −𝜎𝑃 (3.4) 

In the absence of an external sheet charge, i.e. ∆𝐷 = 0, changes in the electric field 

can be described from Eqs. (3.1) and (3.3) as 

 𝜖2ℰ2 − 𝜖1ℰ1 = −∆𝑃 (3.5) 

Substituting ∆𝑃 from Eq. (3.4) into Eq. (3.5), one obtains 

 𝜖2ℰ2 − 𝜖1ℰ1 = 𝜎𝑃 (3.6) 

Where 𝜖2 and 𝜖1 are dielectric constants of the two mediums at either side of the 

boundary. Eq. (3.6) is the desired relationship that relates the change in electric field to 

the polarisation sheet charge, owing to the discontinuity in the net polarisation in two 

mediums. 

3.3. POLARISATION EFFECTS IN ALN/GAN AND THEIR ALLOYS 

In contrast to GaAs, which crystallizes into zinc blende (cubic) phase, III-nitrides 

besides their equilibrium wurtzite phase, also exhibit two cubic polymorphs, a zinc-

blende phase and a high-pressure rocksalt phase. Figs. 3.1 (a) and (b) show the crystal 

structure for zinc blende GaAs and wurtzite GaN, respectively. Only the wurtzite phase 

of these nitrides is pyroelectric, that is in addition to a stress dependent piezoelectric 

polarisation 𝑃𝑝𝑧, these materials also contain a spontaneous polarisation 𝑃𝑠𝑝 along [0001] 

or c-axis of a hexagonal crystal structure. Therefore, the net polarisation in wurtzite phase 

of GaN or AlN can be described as the sum of two polarisations, as 

 𝑃 = 𝑃𝑠𝑝 + 𝑃𝑝𝑧 (3.7) 
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Fig. 3.1. Schematic diagrams of (a) zinc blende GaAs, and (b) wurtzite GaN crystal structures. 

To determine the spontaneous polarisation for GaN and AlN, Bernardini et al. [1], 

[2] used Berry-Phase approach, where Berry-Phase refers to the phase of the quantum 

mechanical wave function. In Berry-Phase (or geometric phase) technique, the system is 

adiabatically transformed from a non-polar zinc-blende structure to the polar wurtzite 

structure, the polarisation charge is calculated by integrating the total current that flows 

during this transformation, where the current itself is calculated from the phase evolution 

of the wave function [6]. On the other hand, Bechstedt et al. [3] used Density Functional 

Theory with local density approximation (DFT-LDA). DFT provides a computationally 

efficient way to solve Schrodinger equation for a many-body system, by mapping it to a 

one-body system, utilising Kohn-Sham approach. In DFT electron density is used as the 

fundamental property unlike other methods, e.g. Hartree-Fock method, which directly 

aim to solve the many-body wave function but are computationally inefficient. Whereas 

LDA in DFT provides a way to approximate exchange-correlation potential term in 

Kohn-Sham equation [7]. Based upon their studies the recommended values of 𝑃𝑠𝑝 for 

AlN, GaN and InN along with other parameters are summarised in Table 3.1. The value 
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of 𝑃𝑠𝑝, for a ternary alloy, such as AlxGa1-xN, obtains an intermediate value of the 

spontaneous polarisation of GaN and AlN. Prior to year 2000, 𝑃𝑠𝑝 of AlGaN was assumed 

to be a linear interpolation of 𝑃𝑠𝑝’s of component materials, depending upon the Al mole 

fraction 𝑥. Later a discrepancy between the predicted and experimental values of sheet 

charge at the interface of Al0.3Ga0.7N/GaN structures was observed [8]. Ambacher et al. 

[9] employed a Berry phase approach based upon the density functional theory with 

plane-wave ultrasoft pseudopotential method in order to obtain the polarisation values of 

AlxGa1-xN and InxGa1-xN alloys to the second order in 𝑥 as 

 𝑃𝑠𝑝
𝐴𝑙𝐺𝑎𝑁 = −𝑃𝑠𝑝

𝐴𝑙𝑁𝑥 − 𝑃𝑠𝑝
𝐺𝑎𝑁(1 − 𝑥) + 0.021𝑥(1 − 𝑥)

𝐶

𝑚2
 

(3.8) 

 𝑃𝑠𝑝
𝐼𝑛𝐺𝑎𝑁 = −𝑃𝑠𝑝

𝐼𝑛𝑁𝑥 − 𝑃𝑠𝑝
𝐺𝑎𝑁(1 − 𝑥) + 0.037𝑥(1 − 𝑥)

𝐶

𝑚2
 

Piezoelectric polarisation is a strain dependent quantity whose direction and 

magnitude depend upon the nature of strain, i.e. whether it is compressive or tensile. The 

strain could arise from an external mechanical stress or from the lattice mismatch when 

a layer of one material with different lattice constant is grown on top of the base material. 

For example, when a layer of AlGaN with 0.26 Al mole fraction is pseudomorphically 

grown on relaxed GaN, it develops a biaxial tensile stress of 3GPa [8]. The piezoelectric 

polarisation of AlxGa1-xN, under a bi-axial tensile strength can be described by the 

following expression [10] 

 𝑃𝑝𝑧
𝐺𝑎𝑁 = 2

𝑎 − 𝑎0

𝑎0
(𝑒31 − 𝑒33

𝐶13

𝐶33
) (3.9) 

where 
𝑎−𝑎0

𝑎0
 refers to the in-plane strain, 𝑒31 and 𝑒33 are piezoelectric coefficients, and 

𝐶13 and 𝐶33 are elastic constants. Table 3.1 summarizes reported values of different 

parameters required for the calculations of the net polarisation for AlN, GaN and InN.  
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Table 3.1. Lattice Constants, spontaneous, piezoelectric polarisation and dielectric 

constants of AlN, GaN, and InN. 

Wurtzite AlN GaN InN 

𝑎0 3.112 h i 

3.083, 3.122 o p 

3.189 h i 

3.144, 3.207 o p 

3.548 h i 

𝑐0 4.982 5.185 5.7505 

𝑐0 𝑎0⁄  1.601 

1.619 a 

1.6015, 1.6041 o p 

1.627 

1.634 a 

1.6302, 1.6297 o p 

1.612 

1.627 a 

𝑢 0.380 a 0.376 a 0.377 a 

    

𝑃𝑠𝑝 -0.081 a i 

-0.090 h 

-0.097, -0.090 o p 

-0.029 a i 

-0.034 h 

-0.031, -0.033 o p 

-0.032 a i 

-0.042 h 

    

𝑒33 1.46 a k 

1.55 b 

1.29 e 

1.5 h 

1.79 i 

0.73 a k 

1 c 

0.65 d 

0.63 e 

0.67 h 

1.27 i 

0.97 a k 

0.81 h 

0.97 i 

    

𝑒31 -0.60 a k 

-0.58 b 

-0.38 e 

-0.53 h 

-0.5 i 

-0.49 a k 

-0.36 c 

-0.33 d 

-0.32 e 

-0.34 h 

-0.35 i 

-0.57 a k 

-0.41 h 

    

𝐶13 108 l 

127 h 

120  j 

112, 97 n 

103 l 

100 h 

158 j 

98, 79 n 

 

94 h 

92 j 

95, 78 n 

    

𝐶33 373 l i 

382 h 

395 j 

372, 337 n 

405 l 

392 h 

398 i 

267 j 

403, 354 n 

 

200 h 

224 I j l 

234, 210 n 

    

𝜖11 9.0 9.5  

𝜖31 10.7 10.4 14.6 
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aRef. [11] bRef. [12]  cRef. [13]  dRef. [14]  
eRefs. [15] and [16] fRef. [17] gRef. [18]  hRef. [19]  
iRef. [20] jRef. [21] kRef. [22] lRef. [23]  

mRef. [24] n(LDA, GGA) Ref. [25] o(LDA, GGA) Ref. [26] p(LDA, GGA) Ref. [27] 

 

The linear interpolation of piezoelectric coefficients and elastic constants produces 

piezoelectric polarisation which is a non-linear function of 𝐴𝑙-mole contents, 𝑥, and can 

be described as [9] 

 𝑃𝑝𝑧
𝐴𝑙𝐺𝑎𝑁/𝐺𝑎𝑁

= [−0.0525𝑥 + 0.0282𝑥(1 − 𝑥)]
𝐶

𝑚2
 (3.10) 

3.4. POLARISATION INDUCED TWO DIMENSIONAL CARRIER GASES 

When a thin film of AlGaN is grown on GaN along [0001] direction, because of a 

change in polarisation at the heterojunction, a positive bound sheet charge is created at 

the interface. Electrons begin to accumulate at the interface to compensate for the bound 

charge, even without any doping or application of the external voltage. Consequently, a 

two dimension electron gas (2DEG) forms at the interface 

 

Fig. 3.2. (a) Schematic diagram of typical AlGaN/GaN heterostructures, and (b) the 

corresponding band diagrams, the polarisation charge density 𝜎𝑃 and 2DEG density 𝑛𝑠 have been 

marked at the AlGaN/GaN heterointerface. 
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Fig. 3.2 (a) shows a typical AlGaN/GaN heterostructure, and the corresponding 

schematic band diagrams are shown in Fig. 3.2 (b). For sufficient thickness of the AlGaN 

barrier, a conduction band quantum well (QW) forms at the heterointerface. In order to 

predict the density of electrons in a 2DEG and determine the spatial distribution of 

electrons within the QW, coupled Schrodinger and Poisson equations are solved 

numerically, taking into account the polarisation effects [28]. For the electrons in the 

conduction band of GaN, an effective mass based Schrodinger in one dimension along 

𝑧-direction, can be described as follows [28]–[30] 

 
−

ħ2

2

𝑑

𝑑𝑧
(

1

𝑚(𝑧)
⋅

𝑑

𝑑𝑧
) 𝜓𝑖(𝑧) 

+(𝑒𝑉(𝑧) + 𝛥𝐸𝐶(𝑧))𝜓𝑖(𝑧) = 𝐸𝜓𝑖(𝑧) 

(3.11) 

where  

𝑚(𝑧) position dependent effective mass;  

𝑉(𝑧) electrostatic potential;  

𝛥𝐸𝐶(𝑧) conduction band discontinuity;  

𝜑(𝑧) electron wave function;  

𝐸 electron energy.  

The presence of polarisation effects implies that the Poisson equation has to be solved 

for the displacement field 𝐷(𝑧) following Eqs. (3.1) & (3.2), leading to  

 

𝑑

𝑑𝑧
𝐷(𝑧) =

𝑑

𝑑𝑧
(−𝜖(𝑧)

𝑑

𝑑𝑧
𝑉(𝑧) + 𝑃(𝑧))

= 𝑒 ⋅ (𝑝(𝑧) − 𝑛(𝑧) + 𝑁𝐷
+ − 𝑁𝐴

−) 

(3.12) 

where  

𝜖(𝑧) position-dependent dielectric constant;  

𝑃(= 𝑃𝑠𝑝 + 𝑃𝑝𝑧) total polarisation;  

𝑛(𝑝) electron (hole) charge concentration;  
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𝑁𝐷
+(𝑁𝐴

−) ionized donor (acceptor) density.  

Eqs. (3.11) and (3.12) are solved iteratively with the relevant boundary conditions, 

where in the first step potential 𝑉(𝑧) is obtained using Eq. (3.12) from an initial guess of 

the mobile charge concentration and then inserted into Eq. (3.11) to obtain the energy 

levels and electron wave functions of the systems. The new electron density is calculated 

by integrating density of states with Fermi function for each location 𝑧. The final value 

of electron density in 2DEG as a function of location 𝑛2𝐷𝐸𝐺(𝑧) can be obtained from the 

electron density 𝑛𝑖(𝑧) corresponding to a wave functions 𝜓𝑖
∗ for the 𝑖𝑡ℎ quantum energy 

level, as 

 𝑛2𝐷𝐸𝐺(𝑧) = ∑ 𝑛𝑖

𝑖

(𝑧)𝜓𝑖
∗(𝑧)𝜓𝑖(𝑧) (3.13) 

For performing self-consistent solution of Schrodinger and Poisson equations, 1D 

Poisson tools, developed by G. Snider [31], has been used. Fig. 3.3 (a) shows the impact 

of spontaneous and piezoelectric polarisation on the conduction band edge at the 

AlGaN/GaN heterointerface. Without any polarisation charges, the conduction band 

remains above the Fermi level, however, as the piezoelectric and spontaneous 

polarisation effects are introduced, the conduction band sinks below the Fermi level and 

a degenerate 2DEG forms to compensate for the positive polarisation sheet charge at the 

heterointerface. 

Fig. 3.3 (b) shows the effect of increasing the Al mole fraction into AlGaN layer on 

the density of the 2DEG. Increasing the Al mole fraction raises the density of sheet 

charge due a larger difference between the polarisation properties of AlGaN and GaN. 
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Fig. 3.3. (a) Impact of introducing polarisation effects upon the conduction band of AlGaN/GaN 

heterostructures. (b) Effect of increasing the Al mole concentration 𝑥 upon the density of 2DEG 

at the heterointerface (Simulated using 1D Schrodinger Poisson tool [31]). 

A similar analysis can be applied to obtain the density and shape of the 2DHG, arising 

as a result of negative polarisation at the GaN/AlGaN heterointerface. Yet an effective 

mass based Schrodinger equation is insufficient for holes because of the presence of three 

closely spaced valence bands, heavy-hole, light-hole, and crystal-hole, near the zone 

centre (𝛤). A more accurate approach consists of the solution of six-band 𝑘 ⋅ 𝑝 method 

that considers contribution of three valence bands closest to the Fermi level, each with 

+1/2 and -1/2 spins [32] or 8 bands 𝑘 ∙ 𝑝 method that also includes the contribution from 

the nearest conduction band [33]. The contribution of the other remote bands is included 

as a perturbation term in the model.  

3.5. OPERATION OF MOS IN GAN HETEROSTRUCTURES 

The oxide separated gated heterostructure in GaN is equivalent to the MOS in Si-

based MOSFETs. Unlike a MOS structure in Si however, a 2DEG exists even at zero 

gate bias, owing to the presence of polarisation sheet charge at the interface between 

AlGaN and GaN. Fig. 3.4 (a) shows the schematic of a gated MOS heterostructure, where 

an oxide or insulator, typically Al2O3 or SiN, separated gate is used to modulate the 

density of the 2DEG and suppress the leakage current through the gate, which helps lower 
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the energy losses during switching. The corresponding band diagrams plotted in Fig. 3.4 

(b) show that an application of gate bias 𝑉𝐺 lowers the energy of conduction and valence 

bands with respect to the Fermi level in the device by 𝑒𝑉𝐺. 

 

Fig. 3.4. (a) Schematic diagram of a metal-oxide semiconductor (MOS) in GaN heterostructure, 

and (b) the corresponding band diagrams, the polarisation charge density 𝜎𝑃 and 2DEG density 

𝑛𝑠 have been marked at the AlGaN/GaN heterointerface. 

3.5.1. Threshold Voltage Expression and C-V Characteristics 

Due to the presence of 2DEG at zero gate bias, the n-channel HFETs utilising 2DEG 

in a MOS exhibit normally-on or depletion mode (D-mode) behaviour. Therefore, in 

order to turn these devices off, negative gate bias needs to be applied, which raises the 

energy of the bands in Fig. 3.4 (b) such that the conduction band at AlGaN/GaN 

heterointerface no longer crosses the Fermi level, i.e. the height of electron quantum well 

Δ𝑛 becomes zero. 

To derive an expression for the threshold voltage 𝑉𝑡ℎ, 𝑉𝐺 at Δ𝑛 = 0, we begin from 

the gate towards the AlGaN/GaN interface and note down the changes in the conduction 

band relative to the Fermi level, as 

 𝜙𝑛 − 𝑒𝑉𝐺 − 𝑡𝑜𝑥ℰ𝑜𝑥 − Δ𝐸𝑜𝑐 − 𝑡𝑏ℰ𝑏 − Δ𝐸𝑐 + Δ𝑛 = 0 (3.14) 

Applying Gauss’ law at interfaces marked as (1) and (2) in Fig. 3.4 (b) results in 
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 𝜀𝑜𝑥ℰ𝑜𝑥 = 𝜀𝑏ℰ𝑏 (3.15) 

 𝜀𝑏ℰ𝑏 + 𝜀𝑐ℎℰ𝑐ℎ = 𝜎𝑃 − 𝑒𝑛𝑠 (3.16) 

Where 𝜀𝑜𝑥, 𝜀𝑏, and 𝜀𝑐ℎ are the relative permittivities in the oxide, AlGaN barrier and 

GaN channel. To simplify the solution, we assume the thickness of the GaN channel to 

be large enough such that ℰ𝑐ℎ ≈ 0. Substituting this in Eq. (3.16) leads to 

 𝜀𝑏ℰ𝑏 ≈ 𝜎𝑃 − 𝑒𝑛𝑠 (3.17) 

At 𝑉𝐺 = 𝑉𝑡ℎ, we have Δ𝑛 = 0, which in turn indicates density of 2DEG is also zero, 

i.e. 𝑒𝑛𝑠 ≈ 0. Solving Eqs. (3.14), (3.15) & (3.17), with these substitutions yields the 

desired expression for 𝑉𝑡ℎ 

 𝑉𝑡ℎ = −
𝜎𝑃

𝑒
(

1

𝐶𝑜𝑥
+

1

𝐶𝑏
) −

Δ𝐸𝑜𝑐𝑐

𝑒
+

𝜙𝑛

𝑒
 (3.18) 

Where 𝐶𝑜𝑥 (= 𝜀𝑜𝑥/𝑡𝑜𝑥) and 𝐶𝑏 (= 𝜀𝑏/𝑡𝑏) are the unit-area capacitances in the oxide 

and AlGaN layers, Δ𝐸𝑜𝑐𝑐(= Δ𝐸𝑜𝑐 + Δ𝐸𝑐) is the total band-offset in the conduction band, 

from oxide to GaN. Eq. (3.18) indicates that 𝑉𝑡ℎ becomes smaller as the polarisation 

charge density 𝜎𝑃 introduced by AlGaN layer increases. The simulated capacitance-

voltage characteristics of this heterostructure, as shown in Fig. 3.5, confirm this 

behaviour predicted by Eq. (3.18). The bias point at which the capacitance shows a 

decrease corresponds to the required threshold bias to deplete the 2DEG. As can be 

observed, a higher 𝜎𝑃, resulting from an increase in Al mole fraction in the barrier layer 

𝑥𝑏, reduces the voltage point at which the 2DEG is depleted. 
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Fig. 3.5. Capacitance-voltage characteristics of the MOS heterostructure in Fig. 3.4 (a) at 

different Al mole fraction 𝑥𝑏 in the barrier layer, where 𝑡𝑜𝑥 and 𝑡𝑏 represent the thicknesses of 

the oxide and barrier layers (Simulated using 1D Schrodinger Poisson tool [31]). 

 

3.6. ACHIEVING NORMALLY-OFF OPERATION IN N-CHANNEL MOSHFET 

Polarisation properties of GaN are beneficial for obtaining a high density 2DEG 

without a bias, resulting in D-mode operation. However, in some power applications, 

such as automotives, where the devices are subjected to a substantially high 

electromagnetic inference (EMI) normally-off or enhancement mode (E-mode) power 

devices with positive threshold voltage are preferred. Moreover, a higher on-off current 

ratio is achieved in E-mode devices compared to their D-mode counterparts. 

One of the three main techniques below are adopted to enable E-mode operation in 

GaN: 

1) Recessed Gate – In this technique, first a recess through AlGaN barrier is created 

by selectively removing part of AlGaN via etching. Subsequently, an oxide layer is 
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grown followed by a deposition of gate metal stack, as shown in Fig. 3.6 (a). In this 

device either none or only a thin layer of AlGaN exists under the gate. The 2DEG under 

the gate remains depleted, thereby facilitating normally-off operation. 

2) Ion Implantation – In this method, negative ions, for instance 𝐹− ions, are 

implanted into the AlGaN barrier or oxide layers, as illustrated in Fig. 3.6 (b). The 

negative charge in the AlGaN repels the electrons along the interface of AlGaN and GaN 

channel, leading to the depletion of 2DEG. 

 

Fig. 3.6. Techniques to realise E-mode operation in n-channel MOSHFETs in GaN. (a) Recessed 

gate, (b) 𝐹− ion or negative charge implantation, and (c) thin AlN or AlGaN cap layer (< 5 𝑛𝑚). 

(d) Reported results for maximum on-current and corresponding threshold voltage for each of 

these techniques. [34], [35], [44], [36]–[43] 

3) Thin AlN/AlGaN layer – This device geometry is shown in Fig. 3.6 (c). Here a 

heterostructure with a barrier layer of AlN or AlGaN of thickness ≤ 5 𝑛𝑚 is used. The 

small thickness of AlGaN does not provide sufficient band bending to enable the 

formation of e- QW along the interface of AlGaN/GaN channel, necessary for the 
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formation of the 2DEG. Hence, the 2DEG remains depleted. In the source and drain 

regions, layers of AlGaN or donor-doped GaN are regrown followed by the deposition 

of source and drain contact to realise ohmic contact to the GaN channel. 

Fig. 3.6 (d) provides a summary of reported results for n-channel E-mode 

MOSHFETs in GaN, where normally-off operation is achieved using one of the 

techniques described above. It can be observed that the maximum drain current 𝐼𝑂𝑁,𝑚𝑎𝑥 

tends to reduce as the threshold voltage 𝑉𝑡ℎ becomes larger, as indicated by the arrow. 

This is because a higher 𝑉𝑡ℎ requires the energy of the conduction band in the channel to 

be sufficiently greater than the energy of the Fermi level when the gate bias is kept zero. 

This however, makes it difficult for the gate bias to bring the energy of the conduction 

band down to form an e- QW (see Fig. 3.4 (b)). 

3.7. SUMMARY 

In this chapter, we have reviewed the material properties of GaN, AlN and InN and 

their alloys. The operation of MOS in GaN heterostructures, corresponding 𝐶 − 𝑉 

characteristics, and a derivation of threshold voltage are described. The techniques to 

achieve normally-off operation in n-channel MOSHFETs in GaN have also been 

discussed. 
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Chapter 4 Modelling the Threshold Voltage for p-channel E-

mode GaN HFETs 

As described in chapter 3, spontaneous polarisation and piezoelectric strain along the 

[0001] orientation are main contributors to the high density two dimensional electron gas 

(2DEG) of density (>1013𝑐𝑚−2) at an interface of AlGaN/GaN in GaN High Electron 

Mobility Transistors (HEMTs). This high mobility, naturally occurring, conducting 

channel lends itself more easily to high performance depletion mode (D-mode) devices 

that find applications in high frequency and power [1]–[3], that have contributed to GaN 

being considered as one of the fastest growing semiconductors today [4]. Similarly, a 

negative polarisation charge at the GaN/AlGaN heterointerface can generate a two 

dimensional hole gas (2DHG), which behaves as a semiconducting field plate for 

effective control of electric field crowding at the gate edge of power devices [5]. 

The 2DHG has more recently, sparked interest towards realisation of p-channel GaN 

heterosturcture field effect transistors (p-HFETs). A high performance E-mode p-HFET 

is desirable to enable complimentary logic in III-nitrides [6], [7], for monolithic 

integration of power convertor system for power applications [8], [9].  

Despite a low mobility of holes in wurtzite GaN, ~16 𝑐𝑚2/𝑉𝑠 at room temperature 

[10]–[13], because of a high density 2DHG of  ~5 × 1013 𝑐𝑚−2, p-channel HFETs with 

a maximum on-current |𝐼𝑂𝑁| of 150 𝑚𝐴/𝑚𝑚 in depletion mode (D-mode) were 

demonstrated by Li et al. in [6]. Nevertheless, it is precisely this high density that makes 

it difficult to deplete, and results in an on-off current ratio of ~1 order in magnitude. For 

realising an enhancement mode (E-mode) p-channel HFET with a high |𝑉𝑡ℎ|, a low 

density of the 2DHG of ~6 × 1011 𝑐𝑚−2 led to degradation in the on-current by two 

orders of magnitude [14]. The maximum on-current of an enhancement-mode (E-mode) 
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p-channel HFETs reported experimentally to date, lies in the range of 0.3 − 9 𝑚𝐴/𝑚𝑚 

[6], [9], [14], [15], with a maximum reported |𝑉𝑡ℎ| of |−2.5| 𝑉 [6], as shown in Fig. 4.1. 

Akin to the 𝐼𝑂𝑁 vs. 𝑉𝑡ℎ behaviour in normally-off n-channel MOSHFET, described in 

Fig. 3.6 (d) of chapter 3, |𝐼𝑂𝑁| in p-channel MOSHFET also shows degradation, as the 

device behaviour is shifted towards E-mode with large |𝑉𝑡ℎ|. One of the widely 

understood reasons for this behaviour is that conditions for increased polarisation charge, 

required to increase |𝐼𝑂𝑁|, leads to difficulty in depleting the charge in E-mode, to give 

low |𝐼𝑂𝐹𝐹|, hence leading to poor 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 and a low |𝑉𝑡ℎ|. Nevertheless, an E-mode p-

channel HFET with a |𝑉𝑡ℎ| of |−1| 𝑉 to |−2| 𝑉 and low off-current |𝐼𝑂𝐹𝐹| is desirable to 

reduce static power consumption, simplify the circuit complexity, and enable fail-safe 

operation [16]. 

 

Fig. 4.1. The electrical characteristics of the state-of-the-art normally-off p-channel HFETs 

reported to date. 

The current work consolidates our understanding of the mechanisms of achieving 

effective high |𝑉𝑡ℎ| in p-channel HFETs in GaN on a polarisation superjunction platform 

that is fully compatible with power device fabrication [5]. An analytical expression for 

the |𝑉𝑡ℎ| in terms of material parameters and geometry is demonstrated for two potential 
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candidate structures for p-channel E-mode operation, described as (i) a conventional 

heterostructure without an AlGaN cap and (ii) an alternate heterostructure with an AlGaN 

cap, that has been shown to provide additional flexibility for addressing the trade-off 

between the |𝑉𝑡ℎ| and on-current by us in [17]. The expressions proposed in this work 

may be easily used in back-of-envelope calculations to design the 𝑉𝑡ℎ by adjusting the 

Al mole fraction in the AlGaN cap layer. Subsequently, it is demonstrated that in GaN, 

achieving a low negative threshold voltage, i.e. high |𝑉𝑡ℎ| requires a reduction of the 

thickness of oxide and GaN channel layers (contrary to well-known behaviour of 

MOSFETs in silicon), which can lead to a significant gate leakage and degradation in the 

reliability. Furthermore, we present an analysis of an alternate heterostructure to facilitate 

normally-off operation in p-channel MOSHFETs in GaN. This structure incorporates an 

AlGaN cap layer beneath the gate to deplete the 2DHG underneath the gate. This concept 

was first introduced by F. J Kub et al. [18]. For the first time, we demonstrate that the 

device incorporating an AlGaN cap presents the possibility to “break” the trade-off 

between |𝐼𝑂𝑁|, |𝑉𝑡ℎ|, and 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 in E-mode p-channel MOSHFETs, that exists even in 

this modified structure. An analytic model of the 𝑉𝑡ℎ in terms of thickness of oxide and 

channel layers (𝑡𝑜𝑥 & 𝑡𝑐ℎ), and polarisation charge 𝜎𝑃 that gives a rule of thumb 

prediction of the 𝑉𝑡ℎ is presented. 

4.1. SIMULATION MODEL AND HETEROSTRUCTURES 

The two devices based upon conventional and alternate heterostructures (HS1 and 

HS2), examined in this work, are shown in Figs. 4.2 (a) and (b), respectively. Both the 

devices from bottom to the top, consist of a GaN buffer, AlGaN barrier, and GaN channel 

layers along the [0001] direction with the GaN buffer in a relaxed state. Due to the lattice 

mismatch between AlGaN and GaN, a strain is developed within AlGaN barrier layer, 

during its pseudomorphic growth upon the buffer. The lattice constant 𝑎0 for AlGaN, 
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with an Al mole fraction 𝑥 is estimated by linearly interpolating between the lattice 

constants for GaN and AlN, which are typically 3.189 Å and 3.112 Å [19]. Thus the 

strain in AlGaN can be described as (𝑎0,𝐴𝑙𝐺𝑎𝑁 − 𝑎0,𝐺𝑎𝑁) 𝑎0,𝐺𝑎𝑁⁄ ≈ 2.4𝑥 %. 

Since AlGaN is lattice matched to the GaN buffer, the GaN channel layer above the 

AlGaN remains relaxed. Owing to strain induced piezoelectric polarisation and the 

difference in spontaneous polarisation, a polarisation sheet charge density 𝜎𝑏 is created 

at the bottom and top interfaces of AlGaN barrier. In the alternate heterostructure an 

additional strain is developed within the AlGaN cap on top of the relaxed GaN channel, 

which depends upon the Al mole fraction in the cap layer. As a result of the polarisation 

difference between the AlGaN cap and channel layer, an additional polarisation sheet 

charge density 𝜎𝑐𝑎𝑝 is created along the cap/channel interface in Fig. 4.2 (b). By adjusting 

the Al mole fraction in the cap layer, 𝜎𝑐𝑎𝑝 can be modified, providing an additional 

handle in either controlling or depleting the 2DHG in the GaN channel under the gate.  

 

Fig. 4.2. p-channel GaN MOSHFETs on (a) conventional heterostructure (HS1) and (b) alternate 

heterostructure (HS2). 

The approach of utilising an AlGaN cap layer is similar to the one  introduced in 

[18] for achieving normally-off p-channel GaN HFET, where the polarisation charge 

introduced by AlGaN cap layer counterbalances the polarisation introduced by AlGaN 

barrier. As opposed to the devices presented in [18], the source contact in our devices is 

split into a top contact to the p-GaN and a bottom contact to the underlying 2DEG. This 
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ensures that the underlying 2DEG always remains grounded with source, since non-

saturating 𝐼𝐷𝑆 − 𝑉𝐷𝑆 charactersitics were observed in the device with conventional 

heterostructure when the 2DEG was left floating, as reported by Nakajima et al. [20], 

and shown here in the reproduced Fig. 4.3. Therefore the mechanism of depleting the 

2DHG and electrostatics with respect to the potential value of the underlying 2DEG in 

these devices are expected to differ substantially as will be demonstrated in the 

subsequent chapter. 

 

Fig. 4.3. Reported measurement of 𝐼𝐷𝑆 − 𝑉𝐷𝑆 characterstics for different 𝑉𝐺𝑆, for fabricated p-

channel MOSHFET in conventional heterostructure, where dashed lines for the device with 

floating 2DEG, while the plots in blue curves and squares represent the case where 2DEG is kept 

grounded (Reproduced Fig. 7 (a) with the permission from [20] Copyright (2018) by the 

Institution of Engineering and Technology (IET)). 

The two devices are simulated using Silvaco TCAD [21], where Poisson equation is 

self-consistently solved with carrier continuity equation. Shockley-Read-Hall and Augur 

recombination are employed to model trap kinetics. The low field mobility is described 
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by the Albrecht model [22], whereas a nitride specific field dependent model is used 

under high field [23]. The maximum hole mobility at room temperature is limited to 

16 𝑐𝑚2/𝑉𝑠 [10]. At the interface of oxide with GaN or AlGaN, the charge and trap 

densities of 2.8 × 1012𝑐𝑚−2 and 2 × 1012𝑐𝑚−2, respectively, are considered. 

Owing to a difficulty in achieving a good ohmic contact to p-GaN, the reported results 

of resistivity of contacts to p-GaN, differ by 4 orders of magnitude for different metals, 

alloys and metal stacks, as presented in Fig. 4.4. Moreover, due to the progress in GaN 

based optoelectronics devices, ohmic p-GaN contacts with good thermal stability and 

optical properties such as high transparency or reflectivity are also desired. As indicated 

in this figure, these contacts are categorised into three different classes, metallic, 

transparent, and reflective, which are suitable for electronics, solar or LED applications, 

respectively.  

 

Fig. 4.4. The reported results for specific contact resistivity for different kinds of ohmic contacts 

to p-GaN. [24]–[40] 
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Without additional requirements of transparency or reflectivity, metallic contacts, in 

general achieve lowest specific resistivity, with an average value ~10−5Ω 𝑐𝑚2. To the 

best of our knoweldge, the lowest ohmic p-GaN contact of ~10−6Ω 𝑐𝑚2 is reported for 

Pd/Ag/Au/Ti/Au metal stack annealed at 800 °𝐶 in 𝑁2 [33], where it was suggested that 

after the annealing Au and Ag formed an alloy that reacted with the surface of p-GaN to 

form a p+ region at the interface. Since the average contact resistivity of p-GaN contacts 

is reported to be ~10−4 Ω 𝑐𝑚2[41], this value of contact resistivity is used for both 

source and drain contacts to p-GaN in our simulations. A comparison of our simulation 

model with experimental results reported in [42] for the device with conventional 

heterostructure is presented in Fig. 4.5, showing a good agreement. 

 

Fig. 4.5. Verification of our simulation model for conventional heterostructure with the 𝐼𝐷𝑆 −

𝑉𝐺𝑆 experiment data reported in [42] (reused with the permission from the author of [42]). 

The heterostructure stacks for the two devices under the gated regions and the 

corresponding schematic band diagrams based on simulations are displayed in Figs. 4.6 

(a) – (d), which emphasize the distinct features, such as conduction and valence band 
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offsets at the interfaces of oxide/GaN and AlGaN/GaN heterointerfaces, and the electron 

and hole quantum wells. 

 

Fig. 4.6. Schematic cross-sections beneath the gate of the conventional and alternate 

heterostructures (without and with AlGaN cap respectively) and corresponding band diagrams. 

(a) Conventional heterostructure from top to bottom consisting of oxide/insulator, undoped GaN 

channel, AlGaN barrier, and GaN buffer layers, (b) Alternate heterostructure from top to bottom 

consisting of oxide/insulator, AlGaN cap layer, undoped GaN channel, AlGaN barrier, and GaN 

buffer layers, (c) Energy band diagrams of the conventional heterostructure, (d) Energy band 

diagrams of the alternate heterostructure 

In deriving an expression for 𝑉𝑡ℎ, a procedure similar to that employed by H. Hahn 

et al. in [43] is adopted. In this approach, first the charge densities at various interfaces 

are evaluated by the application of Gauss’ Law under the electrostatic constraints 

introduced by the heterostructure. Threshold voltage is defined as the gate bias at which 
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the electron or hole density for a n-channel or p-channel device, respectively, becomes 

zero. Moreover, the thicknesses of GaN channel and AlGaN cap layers are kept 

sufficiently small to prevent formation of any undesirable electron or hole quantum wells 

at any of the interfaces between the oxide, GaN channel, and the AlGaN cap layers in the 

initial results presented in this chapter. 

4.2. DERIVATION OF THRESHOLD VOLTAGE EXPRESSION 

4.2.1. Conventional Heterostructure 

Following the valence band in Fig. 4.6 (c) and moving from the gated surface of the 

oxide on the left to the interface of the GaN channel/AlGaN barrier, marked as (B), on 

the right, the energy relative to the Fermi level 𝐸𝑓 can be written as 

−
𝛷1,𝑝

𝑒
− 𝑉𝐺𝑆 + 𝑡𝑜𝑥ℰ𝑜𝑥 +

𝛥𝐸𝑂𝑉

𝑒
+ 𝑡𝑐ℎℰ𝑐ℎ =

𝛥𝑝

𝑒
 (4.1) 

where Φ1,𝑝 is the barrier height of the valence band at the gate/oxide interface, 𝛥𝐸𝑂𝑉 is 

the valence band offset between the oxide and GaN channel, 𝑡𝑜𝑥 and 𝑡𝑐ℎ are thicknesses 

of the oxide and GaN channel respectively, ℰ𝑜𝑥 and ℇ𝑐ℎ represent the electric field within 

the oxide and GaN channel layers, respectively, and Δ𝑝 is the height of the hole quantum 

well (QW). Applying Gauss’ law at interfaces (A) and (B), respectively, leads to 

𝜖𝑐ℎℰ𝑐ℎ − 𝜖𝑜𝑥ℰ𝑜𝑥 = 𝜎𝑜𝑥 (4.2) 

𝜖𝑐ℎℰ𝑐ℎ + 𝜖𝑏ℰ𝑏 = 𝜎𝑏 − 𝑒 ⋅ 𝑝𝑠 (4.3) 

where 𝜖𝑜𝑥, 𝜖𝑐ℎ, and 𝜖𝑏 are the permittivities of oxide, GaN channel, and AlGaN barrier 

layers, ℇ𝑏 is the electric field within the barrier layer, 𝜎𝑜𝑥 is the unpassivated sheet charge 

or net sheet charge density along the oxide and channel interface, 𝜎𝑏 is the net 

polarisation sheet charge density between the GaN channel and AlGaN barriers at 

interface (B), and 𝑝𝑠 represents the density of 2DHG. It can be inferred from Fig. 4.6 (c), 

that for both hole and electron quantum wells (QWs) (Δ𝑛 & Δ𝑝) to simultaneously exist, 
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the electric field within the AlGaN barrier must be large enough to provide a band 

bending equivalent to the energy of the bandgap of GaN (𝐸𝐺
𝐺𝑎𝑁) over the thickness of the 

barrier 𝑡𝑏, which can be expressed as 

𝑡𝑏ℰ𝑏 ≈
𝐸𝐺

𝐺𝑎𝑁

e
 (4.4) 

In order to eliminate the explicit electric field dependence in Eqs. (4.2) and (4.3), first ℇ𝑏 

is substituted from Eq. (4.4) into Eq. (4.3) 

𝜖𝑐ℎℰ𝑐ℎ = 𝜎𝑏 − 𝑒 ⋅ 𝑝𝑠 − 𝐶𝑏

𝐸𝐺
𝐺𝑎𝑁

𝑒
 (4.5) 

where 𝐶𝑏 = 𝜖𝑏 𝑡𝑏⁄  is the unit area capacitance associated with the barrier layer. Rewriting 

Eq. (4.2) by substituting 𝜖𝑐ℎℇ𝑐ℎ from Eq. (4.5) gives 

𝜖𝑜𝑥ℰ𝑜𝑥 = 𝜎𝑏 − 𝜎𝑜𝑥 − 𝑒 ⋅ 𝑝𝑠 − 𝐶𝑏

𝐸𝐺
𝐺𝑎𝑁

𝑒
 (4.6) 

Finally, the dependence of the electric field in Eq. (4.1) can be eliminated by substituting 

ℇ𝑐ℎ from Eq. (4.5) and ℇ𝑜𝑥 from Eq. (4.6), which results in 

𝑉𝐺𝑆 = (𝜎𝑏 − 𝑒 ⋅ 𝑝𝑠 − 𝐶𝑏
𝐸𝐺

𝐺𝑎𝑁

𝑒
) (

1

𝐶𝑜𝑥
+

1

𝐶𝑐ℎ
) −

𝜎𝑜𝑥

𝐶𝑜𝑥
−

𝛷1,𝑝

𝑒
+

𝛥𝐸𝑂𝑉

𝑒
−

𝛥𝑝

𝑒
  

(4.7) 

Where 𝐶𝑜𝑥(= 𝜖𝑜𝑥/𝑡𝑜𝑥) and 𝐶𝑐ℎ(= 𝜖𝑐ℎ/𝑡𝑐ℎ) are the unit area capacitances in the oxide 

and channel layers. Defining 𝐶𝑜𝑐 = (1 𝐶𝑜𝑥⁄ + 1 𝐶𝑐ℎ⁄ )−1 as the equivalent unit area 

capacitance offered by the oxide and channel layers, and following the definition of 

threshold voltage as the gate bias at which the height of the hole QW Δ𝑝 must be zero 

and 𝑒 ⋅ 𝑝𝑠 should be negligibly small compared to 𝜎𝑏 [43], Eq. (4.7) can be expressed as  

𝑉𝑡ℎ =
𝜎𝑏

𝐶𝑜𝑐
−

𝐶𝑏

𝐶𝑜𝑐

𝐸𝐺
𝐺𝑎𝑁

𝑒
−

𝜎𝑜𝑥

𝐶𝑜𝑥
−

𝛷1,𝑝

𝑒
+

𝛥𝐸𝑂𝑉

𝑒
 (4.8) 

From Eq. (4.8), it can be inferred that a higher polarisation charge at the GaN channel 

and AlGaN barrier heterointerface drives the threshold voltage upwards, i.e. into a D-

mode regime. Moreover, an increase in barrier thickness (i.e. reduction of 𝐶𝑏) means a 



67 

 

relatively smaller band bending across the barrier required for the formation of both 

electron and hole quantum wells simultaneously, driving the device towards a D-mode 

regime. A detailed description of the impact of the other parameters is presented in the 

subsequent section. 

4.2.2. Alternate Heterostructure with an AlGaN Cap 

A similar procedure can be followed to obtain an expression of the 𝑉𝑡ℎ in the 

heterostructure with the AlGaN cap layer (Fig. 4.6 (b)). Here we present only the key 

steps while highlighting important differences. Considering the band diagram in Fig. 4.6 

(d), the variations of energy of the valence band, as before, can be represented as 

−
𝛷1,𝑝

𝑒
− 𝑉𝐺𝑆 − 𝑡𝑜𝑥ℰ𝑜𝑥 +

𝛥𝐸𝑉1

𝑒
− 𝑡𝑐𝑎𝑝ℰ𝑐𝑎𝑝 +

𝛥𝐸𝑉2

𝑒
+ 𝑡𝑐ℎℰ𝑐ℎ =

𝛥𝑝

𝑒
 (4.9) 

Where 𝑡𝑐𝑎𝑝 is the thickness of the AlGaN cap layer,ℇ𝑐𝑎𝑝 is the electric field within this 

layer, Δ𝐸𝑉1 and Δ𝐸𝑉2 are valence band offsets at the interfaces of oxide/cap and 

cap/channel, respectively, Δ𝐸𝑉1 + Δ𝐸𝑉2 = Δ𝐸𝑂𝑉, the net valence band offset between the 

oxide and GaN channel, as in the conventional structure. Moreover, as opposed to Eq. 

(4.1), the term 𝑡𝑜𝑥ℇ𝑜𝑥 in Eq. (4.9) bears a negative sign. This is owing to the fact that in 

this heterostructure, there is an additional polarisation sheet charge density 𝜎𝑐𝑎𝑝, 

introduced by the AlGaN cap layer, which is responsible for a change in the direction of 

electric field in the oxide layer [17]. An application of Gauss’ law at the interfaces (A), 

(B), and (C) gives 

𝜖𝑜𝑥ℰ𝑜𝑥 − 𝜖𝑐𝑎𝑝ℰ𝑐𝑎𝑝 = 𝜎𝑜𝑥 (4.10) 

𝜖𝑐𝑎𝑝ℰ𝑐𝑎𝑝 + 𝜖𝑐ℎℰ𝑐ℎ = 𝜎𝑐𝑎𝑝 (4.11) 

𝜖𝑐ℎℰ𝑐ℎ + 𝜖𝑏ℰ𝑏 = 𝜎𝑏 − 𝑒 ⋅ 𝑝𝑠 (4.12) 

Where 𝜖𝑐𝑎𝑝 is the dielectric constant of the AlGaN cap layer. Equation (4.4) is still 

applicable in the barrier layer, as long as the band bending is sufficient to form both 
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electron and hole QWs simultaneously. Employing Eqs. (4.4) and (4.10)-(4.12) to 

remove the electric field dependence in Eq. (4.9), leads to 

𝑉𝐺𝑆 = (𝜎𝑏 − 𝑒 ⋅ 𝑝𝑠 − 𝐶𝑏

𝐸𝐺
𝐺𝑎𝑁

𝑒
) (

1

𝐶𝑜𝑥
+

1

𝐶𝑐𝑎𝑝
+

1

𝐶𝑐ℎ
)

− 𝜎𝑐𝑎𝑝 (
1

𝐶𝑜𝑥
+

1

𝐶𝑐𝑎𝑝
) −

𝜎𝑜𝑥

𝐶𝑜𝑥
−

𝛷1,𝑝

𝑒
+

𝛥𝐸𝑂𝑉

𝑒
−

𝛥𝑝

𝑒
 

(4.13) 

Where 𝐶𝑐𝑎𝑝(= 𝜖𝑐𝑎𝑝/𝑡𝑐𝑎𝑝) is the unit area capacitance offered by the AlGaN cap layer. 

Defining 𝐶𝑜𝑐𝑐 = (1 𝐶𝑜𝑥⁄ + 1 𝐶𝑐𝑎𝑝⁄ + 1 𝐶𝑐ℎ⁄ )
−1

, 𝐶𝑜𝑐𝑝 = (1 𝐶𝑜𝑥⁄ + 1 𝐶𝑐𝑎𝑝⁄ )
−1

, and at 

𝑉𝐺𝑆 = 𝑉𝑡ℎ substituting, Δ𝑝 as zero as well as assuming 𝑒 ⋅ 𝑝𝑠 to be negligible in 

comparison with 𝜎𝑏, Eq. (4.13) reduces to the desired expression as 

𝑉𝑡ℎ =
𝜎𝑏

𝐶𝑜𝑐𝑐
−

𝐶𝑏

𝐶𝑜𝑐𝑐

𝐸𝐺
𝐺𝑎𝑁

𝑒
−

𝜎𝑐𝑎𝑝

𝐶𝑜𝑐𝑝
−

𝜎𝑜𝑥

𝐶𝑜𝑥
−

𝛷1,𝑝

𝑒
+

𝛥𝐸𝑂𝑉

𝑒
 (4.14) 

Eq. (4.14) is similar to Eq. (4.8) except for the additional term −𝜎𝑐𝑎𝑝/𝐶𝑜𝑐𝑝 which results 

from the additional polarisation sheet charge introduced by the AlGaN cap layer that 

helps bring 𝑉𝑡ℎ down to the desired negative levels for an E-mode p-channel device. In 

order to compare the predicted threshold voltage from Eqs. (4.8) and (4.14) with 

simulated results, all the parameters in the equations are kept same as mentioned in the 

user manual of the TCAD [44]. These parameters along with the polarisation charge 

model are summarised in Table 4.1. 
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Table 4.1. Parameters used in the calculation of the threshold voltage from Eqs. (4.8) and 

(4.14) for the two heterostructures examined in this work. 

Parameters Values 

𝛷1,𝑝 (𝑒𝑉) 4.9 

Δ𝐸𝑂𝑉  (𝑒𝑉) 2.15 

𝐸𝐺
𝐺𝑎𝑁  (𝑒𝑉) 3.43 

𝜖𝑜𝑥 (𝐴𝑙2𝑂3) 9.3𝜖0 

𝜖𝑐ℎ 8.9𝜖0 

𝜖𝑏 or 𝜖𝑐𝑎𝑝 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) 8.5𝑥𝜖0 + 8.9(1 − 𝑥)𝜖0 

𝜎𝑜𝑥 (𝑜𝑥𝑖𝑑𝑒/𝐺𝑎𝑁) 0.1𝜎𝑏 

𝜎𝑜𝑥 (𝑜𝑥𝑖𝑑𝑒/𝐴𝑙𝐺𝑎𝑁) 0.1𝜎𝑐𝑎𝑝 

𝜎𝑏 or 𝜎𝑐𝑎𝑝 = |Δ𝑃𝑠𝑝| + |Δ𝑃𝑝𝑧| 

𝑃𝑠𝑝 (𝐺𝑎𝑁) (𝐶/𝑚2) −0.034 

𝑃𝑠𝑝 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) (𝐶/𝑚2) −0.09𝑥 − 0.034(1 − 𝑥) 

           𝑃𝑝𝑧 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) = 2
𝑎(𝑥)−𝑎0

𝑎0
(𝑒31 −

𝐶13

𝐶33
𝑒33) 

𝑎0 (Å) (𝐺𝑎𝑁) 3.189 

𝑎 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) (Å) 3.112𝑥 + 3.189(1 − 𝑥) 

𝑒33 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) (𝐶/𝑚2) 1.5𝑥 + 0.67(1 − 𝑥) 

𝑒31 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) (𝐶/𝑚2) −0.53𝑥 − 0.34(1 − 𝑥) 

𝐶13 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) (𝐺𝑃𝑎) 127𝑥 + 100(1 − 𝑥) 

𝐶33 (𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) (𝐺𝑃𝑎) 382𝑥 + 392(1 − 𝑥) 

 

4.3. ANALYSIS OF THE CONVENTIONAL HETEROSTRUCTURE P-CHANNEL 

MOSHFET 

A common approach to improve |𝐼𝑂𝑁| in the conventional heterostructure in Fig. 4.5 

(a) is to increase the Al mole fraction within the barrier layer 𝑥𝑏. Fig. 4.7 (a) compares 

the transfer characteristics of the device at different 𝑥𝑏. An increase in 𝑥𝑏, results in an 

increase in polarisation charge at both the top and bottom AlGaN interfaces, allowing a 

higher band bending across the AlGaN barrier, as shown in Fig. 4.7 (b). As a result, the 

energy of the valence band at the top GaN/AlGaN interface rises, thus facilitating the 

formation of the hole quantum well, which results in low |𝑉𝑡ℎ| and high off-current |𝐼𝑂𝐹𝐹| 

(defined as the absolute drain to source current at 𝑉𝐷𝑆 = −5 𝑉 and 𝑉𝐺𝑆 = 0). As shown 

in shown in Fig. 4.7 (c), a fourfold increase in |𝐼𝑂𝑁| (defined as the absolute drain to 

source current at −5 𝑉 of 𝑉𝐺𝑆 and 𝑉𝐷𝑆) is observed at higher 𝑥𝑏, owing to a higher density 
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of the 2DHG, shown in Fig. 4.7 (d). 

 

Fig. 4.7. (a) Comparison of simulated transfer characteristics of conventional heterostructure at 

different Al mole fraction in the barrier layer 𝑥𝑏, (b) Change in the energy band diagram in 

conventional heterostructure beneath the gate with 𝑥𝑏, (c) on-current |𝐼𝑂𝑁| vs. 𝑥𝑏 at different 

oxide (Al2O3) thicknesses 𝑡𝑜𝑥, (d) the density of 2DHG vs. 𝑥𝑏 for conventional heterostructure. 

An increase in |𝑉𝑡ℎ| can be achieved by recessing the GaN layer [15]. In Fig. 4.8, we 

examine the dependence of |𝑉𝑡ℎ| upon 𝑡𝑜𝑥 and 𝑡𝑐ℎ. From the simulated transfer 

characteristics, 𝑉𝑡ℎ is extracted by drawing a tangent to the drain current corresponding 

to a maximum transconductance 𝑔𝑚𝑎𝑥 in the transfer characteristics on a linear scale and 

checking its intercept at the axis of the gate bias (𝑔𝑚𝑎𝑥 method). A decrease in 𝑡𝑜𝑥 leads 

to an improvement in both the 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 and |𝑉𝑡ℎ|, as shown Fig. 4.8 (a). This is because 

a smaller 𝑡𝑜𝑥 lowers the valence band energy relative to the Fermi level at the GaN 

channel/AlGaN barrier interface, as shown in Fig. 4.8 (b). Therefore, a higher |𝑉𝐺𝑆| is 
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now required to increase the valence band energy level for the formation of the 2DHG at 

this interface. For the simulation of the electrical properties in Silvaco TCAD, the entire 

device structure is divided into non-uniform meshes, as shown in Fig. 4.8 (c), where the 

mesh spacing is selected such that the changes in the drain current become nominal for 

a further reduction in mesh spacing. This is confirmed in Fig. 4.8 (d), which shows the 

drain current behaviour as the mesh spacing is scaled by various scaling factors. As 

observed, for a further reduction in the mesh spacing via a scaling factor of less than 

unity the variation in drain current remains small (~1 𝑚𝐴/𝑚𝑚). However, as the mesh 

spacing is increased with a scaling factor of greater than 1, the maximum value of 𝐼𝐷𝑆 

drops significantly, thus justifying the employed mesh spacing. 

Since the electric field in both oxide and channel layers is pointed along the same 

direction, as marked by the green arrow, pointing from left to right in Fig. 4.8 (b), a 

reduction in 𝑡𝑐ℎ also produces an increase in |𝑉𝑡ℎ|, identical to 𝑡𝑜𝑥, as shown in Fig. 4.8 

(e). Fig. 4.8 (e) also indicates that both 𝑡𝑐ℎ and 𝑡𝑜𝑥 are required to be smaller than 5 nm 

to achieve a |𝑉𝑡ℎ| of more than |−1.5| 𝑉 at an Al composition of 18%, for example. 

Due to the formation of hole quantum well, the quantum confinement effects, which 

are ignored in the present analysis, could displace the centroid of hole gas away from the 

interface between GaN channel and AlGaN barrier. If this displacement is large, it could 

effectively change the distance between the gate and 2DHG, producing a shift in 𝑉𝑡ℎ. 

The sensitivity of 𝑉𝑡ℎ towards these effects is studied in Fig. 4.8 (f), where 𝑉𝑡ℎ values for 

different thicknesses of oxide obtained by ignoring and considering the quantum 

confinement effects are plotted. As confirmed in this figure, for the range of thicknesses 

of oxide and channel layers of our interest, the variation in 𝑉𝑡ℎ owing to these effects 

remains trivial. Therefore, it is safe to ignore quantum confinement effects in the present 

study. 
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Fig. 4.8. (a) Comparison of simulated transfer characteristics and (b) energy band diagrams 

beneath the gate at different oxide (Al2O3) thicknesses 𝑡𝑜𝑥 in conventional heterostructure. (c) 

The placement of non-uniform mesh used in the simulation of this device. (d) Sensitivity of drain 

current to different mesh spacing. (e) Comparison of the threshold voltage 𝑉𝑡ℎ vs. 𝑡𝑜𝑥 at different 

channel thicknesses 𝑡𝑐ℎ. (f) The behaviour of 𝑉𝑡ℎ obtained without and with quantum 

confinement effects and by reading 𝑉𝐺𝑆 for which the energy of the valence band along GaN 

channel/AlGaN barrier interface becomes equal to the Fermi level i.e. Δ𝑝 becomes zero. 
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Fig. 4.8 (f) also shows the plot of the 𝑉𝑡ℎ obtained from the 𝑉𝐺𝑆 at which the energy 

of the valence band along the interface between GaN channel and AlGaN barrier 

approaches the energy of Fermi level, that is the value of 𝑉𝐺𝑆 for which the height of hole 

QW Δ𝑝 becomes zero. Due to a high-energy tail of Fermi-Dirac distribution at high 

temperature, holes begin to accumulate in the valence band even before its energy 

matches with the Fermi level, thus the device is driven in the on-state. Therefore, as noted 

in this figure, the value of |𝑉𝑡ℎ| obtained from reading 𝑉𝐺𝑆 at Δ𝑝 = 0 remains ~|0.2| 𝑉 

larger than the one obtained using 𝑔𝑚𝑎𝑥 method. 

The derived threshold voltage in Eq. (4.8) for the conventional heterostructure is 

verified with the threshold voltage extracted from the simulated transfer characteristics 

in Figs. 4.9 (a) and (b). 𝑉𝑡ℎ predicted from Eq. (4.8) shows a good agreement with the 

simulated 𝑉𝑡ℎ for all range of 𝑡𝑐ℎ and 𝑥𝑏 in Figs. 4.9 (a) and (b). As opposed to the p-

channel MOSFET in Si, |𝑉𝑡ℎ| of this device improves as the thickness of the channel or 

oxide is reduced. This contrasting behaviour is a result of the direction of the electric 

field between the gate and the 2DHG, as marked by the arrows in Fig. 4.6 (c), which is 

opposite in GaN to that of a p-channel MOSFET in Si. A reduction in the Al mole fraction 

in the barrier lowers the polarisation sheet charge density, which in turn leads to a 

reduction in the density of 2DHG. Hence, an improvement in |𝑉𝑡ℎ| is observed with a 

reduction in 𝑥𝑏. This behaviour of |𝑉𝑡ℎ| with a change in either 𝑡𝑐ℎ or 𝑥𝑏 has also been 

demonstrated experimentally in p-channel HFETs [14], [15]. The deviation between the 

prediction from Eq. (4.8) and the simulation at higher 𝑥𝑏 results from a change in the 

ionized trap density, which has been ignored in Eq. (4.8) for simplicity. 

A plot of 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 against 𝑉𝑡ℎ, as 𝑥𝑏 is varied (Fig. 4.9 (c)), shows a reduction from 

over 6 orders of magnitude to less than 1, with a reduction in |𝑉𝑡ℎ|, indicating the trade-

off that exists as the device moves from E- to D- mode as explained earlier. Furthermore, 
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|𝐼𝑂𝑁| also reduces to less than half as the device turns from D-mode to E-mode 

irrespective of 𝑡𝑜𝑥 (Fig. 4.9 (d)), demonstrating the severity of the trade-off between |𝐼𝑂𝑁| 

and |𝑉𝑡ℎ| which places a limit upon the conventional heterostructure in achieving E-mode 

behaviour with large |𝐼𝑂𝑁| and high |𝑉𝑡ℎ| in p-channel GaN MOSHFETs. 

 

Fig. 4.9. Comparison of (a) 𝑉𝑡ℎ vs. 𝑡𝑐ℎ for the conventional heterostructure at different Al mole 

fractions in the barrier 𝑥𝑏 and (b) 𝑉𝑡ℎ vs. Al mole fraction 𝑥𝑏 at different oxide (Al2O3) 

thicknesses 𝑡𝑜𝑥, from simulation and Eq. (4.8). On-off current ratio 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 is plotted against 

𝑉𝑡ℎ for conventional heterostructure (HS) in (c), and |𝐼𝑂𝑁| is plotted against 𝑉𝑡ℎ in (d) as 𝑥𝑏 is 

varied at different values of 𝑡𝑜𝑥. 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 improves with a reduction in 𝑉𝑡ℎ, however the on-

current also reduces as the device turns from D-mode to E-mode. 

4.4. ANALYSIS OF THE ALTERNATE HETEROSTRUCTURE P-CHANNEL 

MOSHFET  

The above limitations are addressed here via the alternate heterostructure (Fig. 4.6 

(b)), which employs an additional AlGaN cap layer, sandwiched between the insulator 
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and the GaN channel layer. The AlGaN cap introduces a positive polarisation charge 

(𝜎𝑐𝑎𝑝) between cap/channel layer to modulate the electric field within the oxide and the 

AlGaN cap, as displayed in the corresponding band diagrams in Fig. 4.10 (a). If 𝜎𝑐𝑎𝑝 

exceeds a certain value (𝜎𝑐𝑟𝑖𝑡), the electric field within the oxide and AlGaN cap layers 

reverses its direction, which, unlike in conventional heterostructure, causes the |𝑉𝑡ℎ| to 

rise with an increase in 𝑡𝑜𝑥, as shown in Fig. 4.10 (b). 

 

Fig. 4.10. (a) Variation in the energy band diagram for alternate heterostructure under the gate 

with a change in Al mole fractions in AlGaN cap. (b) 𝑉𝑡ℎ vs. 𝑡𝑜𝑥 (Al2O3) at different Al mole 

fraction in cap layer 𝑥𝑐𝑎𝑝. With a rise in 𝑥𝑐𝑎𝑝, behavior of 𝑉𝑡ℎ with 𝑡𝑜𝑥 becomes opposite to that 

in conventional heterostructure. 

An increase in 𝑥𝑐𝑎𝑝 also lowers the valence band energy in the GaN channel (Fig. 

4.10 (a)), leading to an increase in |𝑉𝑡ℎ|, irrespective of the 𝑡𝑜𝑥, as shown in Fig. 4.11 (a). 

The simulation results for 𝑉𝑡ℎ are in close agreement with those predicted by Eq. (4.14), 

as shown by the solid lines in Figs. 4.1 (a) and (b). Fig. 4.11 (b) shows clear evidence 

that increasing the Al mole fraction in the cap attempts to compensate the higher 

polarisation charge introduced by increasing the Al mole fraction in AlGaN barrier layer. 
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Fig. 4.11. (a) Comparison of 𝑉𝑡ℎ vs. 𝑥𝑐𝑎𝑝 in the alternate heterostructure with a channel thickness 

of 10 𝑛𝑚 and an AlGaN cap at different oxide thicknesses 𝑡𝑜𝑥 from simulation and Eq. (4.14). 

(b) Comparison of 𝑉𝑡ℎ vs. Al mole fraction in barrier 𝑥𝑏 at different Al mole fraction in cap 𝑥𝑐𝑎𝑝. 

Fig. 4.11 (a) also shows an intersection or cross-over point between the curves at 

different 𝑡𝑜𝑥, which corresponds to 𝑥𝑐𝑎𝑝 in the range of 10 − 14% , below which the 

device behaves similar to a conventional structure i.e. a smaller |𝑉𝑡ℎ| at higher 𝑡𝑜𝑥. An 

increase in 𝑥𝑐𝑎𝑝 beyond the cross-over point leads to an increase in the polarisation sheet 

charge at the interface of the AlGaN cap/GaN channel which causes the electric field in 

the oxide and the cap layers to now point towards the gate (Fig. 4.6 (d)), resulting in an 

increased |𝑉𝑡ℎ| at higher 𝑡𝑜𝑥. To find out the polarisation sheet charge density in the cap 

layer corresponding to this cross-over 𝜎𝑐𝑎𝑝,𝑐𝑜, we can solve for 𝜖𝑜𝑥ℇ𝑜𝑥 utilising Eqs. (4.4) 

and (4.10) – (4.12) while assuming a negligible density of hole gas, which leads to 

𝜖𝑜𝑥ℰ𝑜𝑥 = 𝜎𝑜𝑥 + 𝜎𝑐𝑎𝑝 − 𝜎𝑏 + 𝐶𝑏

𝐸𝐺
𝐺𝑎𝑁

𝑒
 (4.15) 

The electric field within the oxide at the cross-over value of 𝜎𝑐𝑎𝑝 must vanish. Hence 

substituting ℇ𝑜𝑥 in Eq. (4.15) to zero, yields 

𝜎𝑐𝑎𝑝,𝑐𝑜 = 𝜎𝑏 − 𝜎𝑜𝑥 − 𝐶𝑏

𝐸𝐺
𝐺𝑎𝑁

𝑒
 (4.16) 

This change in the behaviour of threshold voltage with the oxide thickness at higher 

𝑥𝑐𝑎𝑝 is also apparent in Fig. 4.10 (b), at small 𝑥𝑐𝑎𝑝 the device shows a decrease in |𝑉𝑡ℎ| 
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as 𝑡𝑜𝑥 becomes larger. However, as 𝑥𝑐𝑎𝑝 increases beyond the cross-over value of 

polarisation charge density in the cap 𝜎𝑐𝑎𝑝,𝑐𝑜, as defined in Eq. (4.16), the behaviour of 

|𝑉𝑡ℎ| vs. 𝑡𝑜𝑥 in the alternate structure becomes opposite to that observed in the 

conventional one, where |𝑉𝑡ℎ| always reduces with an increase in 𝑡𝑜𝑥 (see Fig. 4.8 (e)). 

This work is the first to provide this insight into the reversal of 𝑉𝑡ℎ vs. 𝑡𝑜𝑥 behaviour at 

different Al mole fractions in AlGaN cap. 

Results from Figs. 4.8 (e) and 4.9 (a) for the conventional structure indicate that a 

reasonable level of 𝑉𝑡ℎ (~ − 1.5 𝑉) can be obtained either by reducing the thicknesses of 

oxide and channel layers to < 8 𝑛𝑚 and 𝑥𝑏 (~18 %), which can put considerable strain 

on manufacturing processes particularly due to the control of Mg doping required. A 

reduction in 𝑡𝑐ℎ and 𝑡𝑜𝑥 increases the electrical field along the vertical direction and 

causes a higher gate leakage current, while a reduction in 𝑥𝑏 lowers the polarisation 

charge, necessary for producing a high density of 2DHG, thus resulting in a degradation 

in the on-current. In contrast, the threshold voltage in the alternate structure is not 

restricted by these limitations. By adjusting the 𝑥𝑐𝑎𝑝 in the AlGaN cap layer, the term 

𝜎𝑐𝑎𝑝 𝐶𝑜𝑐𝑝⁄  in Eq. (4.14), can be altered to produce a sufficiently large 𝑉𝑡ℎ. Moreover, 

once 𝜎𝑐𝑎𝑝 is higher than its cross-over value in Eq. (4.16), a thicker oxide layer can be 

used to further increase the |𝑉𝑡ℎ|. An increase in 𝑥𝑐𝑎𝑝, however, also suppresses |𝐼𝑂𝑁| 

(Fig. 4.12 (a)), due to an overall reduction in negative polarisation charge beneath the 

gate, leading to a reduction in 2DHG density under the gate. An increase in 𝜎𝑐𝑎𝑝 at higher 

𝑥𝑐𝑎𝑝 can effectively deplete the 2DHG under the gate leading to an improvement in the 

𝐼𝑂𝑁/𝐼𝑂𝐹𝐹, by 14 orders of magnitude, as shown in Fig. 4.12 (b). 
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Fig. 4.12. (a) On-current vs. 𝑥𝑐𝑎𝑝 at different Al mole fraction in AlGaN barrier layer 𝑥𝑏, and (b) 

on-off current ratio with respect to 𝑥𝑐𝑎𝑝 at different 𝑥𝑏 in alternate heterostructure. 

Fig. 4.13 (a) shows |𝐼𝑂𝑁| vs. 𝑉𝑡ℎ as 𝑥𝑏 varies from 14 to 24 % for different values of 

𝑥𝑐𝑎𝑝. It can be seen that the trade-off between |𝐼𝑂𝑁| and |𝑉𝑡ℎ|, observed in the 

conventional heterostructure (Fig. 4.9 (d)) is also present in this heterostructure. 

However, if 𝑥𝑏 varies for different values of 𝑥𝑐𝑎𝑝, in Fig. 4.13 (a), as indicated by the 

green arrows, both |𝐼𝑂𝑁| and |𝑉𝑡ℎ| can be made to increase simultaneously, thus 

overcoming the trade-off. Fig. 4.13 (b) shows one such example where 𝑥𝑐𝑎𝑝 varies with 

𝑥𝑏 as 1.8𝑥𝑏 − 0.25. In contrast to Fig. 4.9 (d), |𝐼𝑂𝑁| increases with |𝑉𝑡ℎ|, reaching a 

maximum of |−60| 𝑚𝐴/𝑚𝑚 at |𝑉𝑡ℎ| of |−2.4| 𝑉, at an oxide thickness of 6 𝑛𝑚 used in 

these settings. This result is one of the most important findings of this thesis. 
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Fig. 4.13. (a) |𝐼𝑂𝑁| vs. 𝑉𝑡ℎ as 𝑥𝑏 is varied at different 𝑥𝑐𝑎𝑝 in alternate heterostructure, green 

arrows mark the directions along which both |𝐼𝑂𝑁| and |𝑉𝑡ℎ| show an increase, (b) |𝐼𝑂𝑁| vs. 𝑉𝑡ℎ 

along one of such directions, where 𝑥𝑐𝑎𝑝 is varied as 1.8𝑥𝑏 − 0.25, at different Al2O3 thicknesses 

𝑡𝑜𝑥 in alternate heterostructure. 

In Fig. 4.14 (a), the transfer characteristics obtained from the p-channel MOSHFETs 

with HS1 and HS2 are compared for two different 𝑉𝑡ℎ. In both of these cases, the turn-

on for HS1 occurs at smaller 𝑉𝐺𝑆 than for HS2 with a steeper slope. This is because 

without the additional AlGaN cap layer in HS1, the gate, which is now closer to the 

channel, can effectively modulate the hole gas density within the GaN channel across the 

oxide layer. However, due to the trade-off between |𝐼𝑂𝑁| and |𝑉𝑡ℎ| in HS1, the |𝐼𝑂𝑁| 

drops sharply to 20 mA/mm from 42 mA/mm as |𝑉𝑡ℎ| increases form |−1.4| 𝑉 to 

|−2.3| 𝑉. Moreover, since comparatively smaller 𝑥𝑏 is used in HS1 to obtain a large 

|𝑉𝑡ℎ|, |𝐼𝑂𝑁| shows a saturation at higher 𝑉𝐺𝑆 due to the limited density of the 2DHG 

arising from a small polarization charge. Whereas an |𝐼𝑂𝑁| of ~50 𝑚𝐴/𝑚𝑚 is achieved 

at 𝑉𝑡ℎ of |−2.3| 𝑉 for HS2 which is more than double compared with HS1, demonstrating 

its superior performance over conventional heterostructure at higher |𝑉𝑡ℎ|. The drain 

current characteristics in log scale at 𝑉𝑡ℎ = −2.3 𝑉 for HS2 are plotted in Fig. 4.14 (b), 

showing a potential for achieving high on-off current ratio of 1014, and a subthreshold 
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swing (SS) of 85 𝑚𝑉/𝑑𝑒𝑐. Despite a high polarisation charge, a good SS is achieved in 

these devices. Since the polarisation charge, which is only dependent upon the lattice 

mismatch between AlGaN and GaN and does not change with a change in bias, i.e. 

𝑑𝜎𝑃 𝑑Ψ𝑠⁄ = 0, it does not contribute to SS. 

 

Fig. 4.14. (a) Comparison of transfer characteristics between two p-channel MOSHFETs 

employing heterostructure 1 (HS1) and heterostructure 2 (HS2). (b) Transfer characteristics in 

log scale for HS2 at 𝑉𝑡ℎ = −2.3 𝑉. 

Figs. 4.15 (a) & (b) show the on-current and on-off current ratio with respect to 

change in the threshold voltage for p-channel MOSHFETs with both structures (𝐿𝐺 =

1 𝜇𝑚) at the same oxide, channel, and barrier thicknesses. In the case of the conventional 

structure, the threshold voltage is varied by changing the Al mole fraction in the AlGaN 

barrier layer, while in the AlGaN cap structure, the 𝑉𝑡ℎ is controlled by adjusting the Al 

mole fraction in AlGaN cap with 𝑥𝑏 kept fixed at ~23%, as shown. 
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Fig. 4.15. Comparison of electrical performance of p-channel MOSHFETs with and without the 

AlGaN cap layer as a function of threshold voltage. (a) On-current |𝐼𝑂𝑁| vs. threshold voltage 

𝑉𝑡ℎ, (b) On-Off current ratio 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 vs. threshold voltage 𝑉𝑡ℎ. 

With an increase in |𝑉𝑡ℎ| in Fig. 4.15 (a), the on-current reduces, as expected in a 

conventional device, due to the overall reduction in the density of 2DHG in all regions 

including the access regions. For the alternate structure, an increase in 𝑥𝑐𝑎𝑝 depletes the 

2DHG only under the gate, thus not affecting the series resistance of the access regions 

of the contacts. Thus, |𝐼𝑂𝑁| drops more sharply with the increase in |𝑉𝑡ℎ| for the 

conventional device.  

On-off current ratio, which we have defined as the ratio of the currents in the on-

state (𝑉𝐺𝑆 = −5 𝑉) and off-state (𝑉𝐺𝑆 = 0 𝑉) of a normally-off p-channel device, shows 

a rise by orders of magnitude with an increase in |𝑉𝑡ℎ| in Fig. 4.15 (b).  Since the devices 

do not turn-off completely when 𝑉𝑡ℎ is close to 0 𝑉, hence a poor on-off current ratio of 

~1 is observed. As |𝑉𝑡ℎ| increases, a higher on-off current ratio in the conventional 

structure arises from a smaller off-current or leakage current due to a low density of 

2DHG. Additionally, the gate retains better electrostatic control in modulating the charge 

density in the channel giving an  𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 ~3 order of magnitude higher compared to 

the AlGaN cap device for 𝑉𝑡ℎ in the range of [−0.75, −1.5] 𝑉. However, at even higher 

|𝑉𝑡ℎ|, > |−2.0| 𝑉, a higher polarisation charge introduced by the AlGaN cap layer 
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effectively depletes the 2DHG under the gate, thus suppressing the off-current, which 

results in both the devices showing a similar on-off current ratio. 

4.5. SUMMARY 

The threshold voltage characteristics of two candidate GaN heterostructures for p-

type devices in GaN are examined with the help of analytical threshold voltage 

expressions derived in this work and TCAD simulations. We have demonstrated that in 

p-channel GaN MOSHFETs based upon the conventional heterostructure, a high 

|𝑉𝑡ℎ| comes at the expense of ultrathin oxide and channel layers while reducing Al mole 

fraction in the AlGaN barrier layer. These methods however can increase the leakage and 

degrade the device performance. Moreover, the on-current of the device drops to less 

than 50% as the device turns from D-mode to E-mode, creating a trade-off between on-

current level and threshold voltage. An alternate heterostructure, consisting of an AlGaN 

cap layer on top of GaN channel with an underlying grounded 2DEG is explored here 

that shows potential to completely eliminate the trade-off highlighted in the devices on 

the conventional heterostructures, for a range of the mole fraction in the AlGaN cap. This 

approach is similar to the negative ion implantation technique for enabling normally-off 

operation in n-channel MOSHFETs. However, in the present case the positive charge to 

deplete in 2DHG under the gate originates from the polarisation difference between 

AlGaN cap and GaN channel. 

The derived threshold voltage equation for this geometry proves that this 

heterostructure can potentially achieve a higher |𝑉𝑡ℎ| by adjusting the Al mole fraction 

in the AlGaN cap layer. It is demonstrated that by suitably adjusting the Al mole fraction 

in cap AlGaN layer the dependence of 𝑉𝑡ℎ upon oxide thickness can be reversed, and by 

appropriately adjusting mole fractions in both cap and barrier layers the trade-off 

observed in conventional heterostructure can also be minimized, which should no doubt 
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lead to higher performance than any E-mode p-channel GaN HFETs reported to date. A 

comparison between the two structures indicates that the trade-off in the alternate 

structure is much weaker even when mole fraction in AlGaN barrier is kept fixed. Hence, 

the alternate heterostructure shows a promising on-current of ~30 𝑚𝐴/𝑚𝑚 at |𝑉𝑡ℎ| of 

|−2| 𝑉, which is more than double than that achievable in the device without the AlGaN 

cap layer. While the on-off current ratio for the AlGaN cap structure remains lower at 

threshold voltage below |−2| 𝑉, it shows an improvement with an increase in the |𝑉𝑡ℎ|, 

becoming equivalent to the one achieved for a conventional heterostructure without 

AlGaN cap, ~1012, at |𝑉𝑡ℎ| of greater than |−2| 𝑉.
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Chapter 5 An E-Mode P-Channel GaN MOSHFET for a 

CMOS Compatible PMIC 

In the previous chapter, introduction of positive polarisation charge by utilising an 

AlGaN cap layer between the gate oxide and channel with an underlying grounded 2DEG 

is shown to be one of the promising techniques to deplete a two-dimensional hole gas 

(2DHG) to achieve an E-mode p-channel GaN MOSHFET. Here, we analyse the impact 

of gate length and channel thickness upon the operation of a low power E-mode p-

channel GaN MOSHFET utilising AlGaN cap via TCAD simulations. The challenges of 

achieving negative threshold voltage with the scaling of gate length are addressed by 

adjusting the mole fraction of an AlGaN cap layer beneath the gate. An inverter 

consisting of the proposed p-channel GaN MOSHFET with a gate length of 0.25 𝜇𝑚 

shows promise of a CMOS compatible Power Management IC in the MHz range. 

However, a key issue with a device employing an AlGaN cap is the off-state leakage 

in this device increases by orders of magnitude for channel layers thicker than 20 nm, 

which cannot be controlled by adjusting the Al mole fraction in cap layer alone. Biasing 

the two-dimensional electron gas (2DEG) beneath the 2DHG, as employed by A. 

Nakajima et al. [1]  helps alleviate this limitation at the cost of a reduction in on-current. 

Scaling the access regions and combining the two techniques, AlGaN cap and biased 

2DEG, allows maximum benefit in terms of on-state current, negative threshold voltage 

and on/off current ratio. 

5.1. INTRODUCTION 

Among the various techniques for overcoming the trade-off between the on-

resistance and breakdown voltage in a high power device in GaN, polarisation 

superjunction (PSJ) technology [2], [3] is considered as the equivalent of CoolMOS in 
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silicon [4]. The presence of a polarisation induced 2DHG above the 2DEG across the 

barrier layer forms a superjunction, where the charge compensation provided by 2DHG 

facilitates a nearly constant electric field in the region between these gases [3]. This 

approach can effectively prevent current collapse by suppressing the non-linear 

distribution of the electric field around the drain-side gate edge, thus improving 

reliability. GaN HFETs utilising PSJ with the breakdown voltage exceeding 2 𝑘𝑉 along 

with an on-resistance of 31.5 𝛺 𝑚𝑚 have already been demonstrated [5]. 

The next challenge for GaN power devices is integration of the gate driver and power 

device, to reduce the parasitic loop inductance and facilitate high frequency switching in 

converters [6], [7]. Additionally, complementary logic with normally-off (E-mode) 

operation is preferred to reduce static power consumption, simplify circuitry and for fail-

safe operation [8]. Therefore, a p-channel E-mode GaN MOSHFET is desirable. 

The inherent use of the 2DHG in a PSJ heterostructure (GaN/AlGaN/GaN or 

GaN/AlInGaN/GaN) makes it an option for a platform for such integration. The operation 

of both p-channel and n-channel devices has been attempted on this platform [6], [9]. 

Achieving E-mode operation in GaN is challenging because the polarisation induced 

2DEG or 2DHG first needs to be depleted at zero gate voltage. In n-channel GaN HFETs 

or MOSHFETs, among the various techniques to implement E-mode behaviour, as 

introduced in chapter 3, the recessed gate [10]–[12], or ion implantation [13]–[15] 

methods can be employed on a PSJ platform. E-mode operation of p-channel HFETs has 

been attempted via recessed gate  [7], [16], [17], which is also compatible with PSJ 

platform. However, as shown in the previous chapter achieving a |𝑉𝑡ℎ| > |−2 𝑉| (for 

example in fail-safe applications such as automotive), via recessed gate alone, requires 

the thickness of the oxide and GaN channel layers to be reduced to ~5 𝑛𝑚 for an AlGaN 

barrier with Al mole fraction of 18 %, leading to challenges in manufacturing and 
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reliability. In an alternate approach, the polarisation charge introduced by the AlInGaN 

(or AlGaN) barrier layer can be reduced by adjusting the mole fraction of the component 

materials [18]. This approach has been shown to yield a high on-off current ratio of ~108, 

with an on-current density of ~0.3 𝑚𝐴 𝑚𝑚⁄  and a 𝑉𝑡ℎ of ~ − 1.5 𝑉. Nevertheless, a 

reduction in the polarisation charge also leads to a reduction in the density of 2DEG, thus 

affecting the performance of other n-channel devices on the platform. In the approach 

from R. Chu et al. [7], the GaN layer beneath the AlGaN barrier that contains the 2DEG 

is etched away, and AlGaN/GaN layers regrown to generate a 2DHG layer for p-type 

conduction. On the other hand, A. Nakajima et al. [19] use a bias voltage on the 

underlying 2DEG to modulate the threshold voltage of a p-channel device. This helps to 

obtain saturated 𝐼𝐷𝑆 − 𝑉𝐷𝑆, since non-saturated 𝐼𝐷𝑆 − 𝑉𝐷𝑆 characteristics are observed 

with a floating 2DEG. In chapter 4, we have examined an alternative heterostructure that 

utilises an AlGaN cap [20] beneath the gate for implementing a high performance 

normally-off p-channel MOSHFET [21], [22]. In this work, the dependence of the 

electrical characteristics of a p-channel GaN MOSHFET on gate length and switching 

speed of the inverter utilising this device are investigated on a platform that is fully 

compatible with a power device in PSJ technology. The substrate parameters are closely 

aligned to those reported in [7], [16]. Subsequently, we evaluate the limits of capability 

of such a p-channel MOSHFET in GaN when integrated with power devices for power 

converter on a chip. We use simulations to analyse the benefits of a combination of 

techniques to achieve an optimum device performance, despite limitations of the poor 

mobility of holes. A modified AlGaN cap device with a biased 2DEG is proposed in this 

work, to aid the operation of the AlGaN cap in depleting the 2DHG under the gate and 

thus resolving one of the important problems that prohibit manufacture of the AlGaN cap 

structure as proposed in [20]. 
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5.2. METHODOLOGY AND SETTINGS 

Fig. 5.1 highlights a schematic of an integration platform consisting of a low power 

CMOS device and a high power PSJ MOSHFET. In comparison to the previous chapter, 

we consider a p-GaN/GaN/AlGaN/GaN heterostructure with layer specifications 

consisting of, from top to bottom, 30 𝑛𝑚 Mg-doped p-GaN, 20 nm undoped GaN, ~47 −

48 𝑛𝑚 AlGaN barrier with Al mole fraction of 23%, and a 1.5 𝜇𝑚 GaN buffer on a 

substrate [23]. Additionally, following the work of A. Nakajima et al. [19], the 2DEG is 

kept grounded. All simulations are carried out using the TCAD model, introduced in the 

previous chapter. 

 

Fig. 5.1. Schematic of a common GaN/AlGaN/GaN platform consisting of low power CMOS 

and High Power PSJ MOSHFET. The 2DEG is connected to ground. A combination of the 

2DHG, AlGaN barrier, and 2DEG forms a diode that remains reverse biased. 

5.3. IMPACT OF GATE LENGTH ON PERFORMANCE 

E-mode operation in a conventional heterostructure without an AlGaN cap is 

examined by comparing the band diagrams at two different thicknesses of the oxide and 
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channel layers (𝑡𝑜𝑥 & 𝑡𝑐ℎ) in Fig. 5.2 (a). Thinner oxide and GaN channel are required so 

that, sharp band bending in these layers can prevent the valence band at the GaN/AlGaN 

heterointerface from crossing the Fermi level, thus giving E-mode behaviour.  

 

Fig. 5.2. (a) Comparison of the band diagram at two thicknesses of oxide and channel in a 

structure without an AlGaN cap, (b) Comparison of the band diagram with and without an AlGaN 

cap, (c) Simulated 𝐼𝐷𝑆 − 𝑉𝐺𝑆 characteristics showing the dependence on thickness of the oxide 

and channel layers, with and without the AlGaN cap layer, (d) Simulated impact of trap charge 

density at the interface of the oxide and AlGaN cap. 

In contrast, inclusion of an AlGaN cap introduces a positive polarisation charge at 

the heterointerface between the AlGaN cap and the GaN channel, 𝜎𝑐𝑎𝑝, which can be 

controlled by changing the Al mole fraction in the cap layer 𝑥𝑐𝑎𝑝. A comparison of the 

band diagrams with and without the AlGaN cap in Fig. 5.2 (b), illustrates that a presence 

of the polarisation charge 𝜎𝑐𝑎𝑝 increases band bending in the GaN channel, leading to 

elimination of the hole quantum well at the GaN/AlGaN interface. This consequently 
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leads to E-mode operation for thicker layers of the channel and oxide in comparison to 

that in the conventional structure. It can also be noted in Fig. 5.2 (b) that the introduction 

of 𝜎𝑐𝑎𝑝 alters the direction of the electric field in the oxide. This is of crucial benefit that 

reverses the behaviour of |𝑉𝑡ℎ| with respect to 𝑡𝑜𝑥 as opposed to that in the conventional 

device, discussed in previous chapter. 

The transfer characteristics of devices in Fig. 5.2 (c) reveal that without the presence 

of the AlGaN cap, the thicknesses of the oxide and GaN channel layers (𝑡𝑜𝑥 & 𝑡𝑐ℎ) need 

to be reduced to ~5 𝑛𝑚 to increase the |𝑉𝑡ℎ| to |−1.4| 𝑉. Such low values introduce 

considerable constraints on the manufacturability of the conventional structure (without 

an AlGaN cap). Owing to the trade-off between |𝑉𝑡ℎ| and |𝐼𝑂𝑁|, the maximum drain 

current |𝐼𝑂𝑁|, for the structure with AlGaN cap, at a higher |𝑉𝑡ℎ| of |−2 𝑉| remains 

smaller (25 𝑚𝐴/𝑚𝑚) than that of the structure without an AlGaN cap at a smaller |𝑉𝑡ℎ| 

of |−1.4 𝑉| (62 𝑚𝐴/𝑚𝑚).  The trap charge at the interface of the oxide and AlGaN cap 

could vary due to processing or during device switching. Fig. 5.2 (d) compares the 

transfer characteristics with the change in the net trap density at the interface of the 

oxide/AlGaN cap 𝜎𝑜𝑥, showing that a large variation in 𝜎𝑜𝑥 (> 7 × 1011𝑐𝑚−2) can 

significantly affect the 𝑉𝑡ℎ and on-off current ratio of the device. 

As shown in Fig. 5.1, a combination of the 2DHG, AlGaN barrier, and 2DEG acts as 

a p-n diode, where the AlGaN barrier of 47 𝑛𝑚 acts as a depletion region between the 

2DEG and 2DHG. With negative voltage on the drain and gate, this diode remains 

reverse biased, and leakage current through the 2DEG in this condition has been 

experimentally shown to be ~10 𝑛𝐴/𝑚𝑚 through the AlGaN barrier [24]. This agrees 

with negligible values in the simulations. 

The behaviour of the threshold voltage with the Al mole fraction 𝑥𝑐𝑎𝑝, in Fig. 5.3 (a), 

depicts a rise in |𝑉𝑡ℎ| with 𝑥𝑐𝑎𝑝. At higher 𝑥𝑐𝑎𝑝, the band bending in the GaN channel 
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becomes more pronounced due to an increase in polarisation 𝜎𝑐𝑎𝑝, leading to a lowering 

of the valence band at the GaN channel/AlGaN barrier interface. A |𝑉𝑡ℎ| of |−3.0 𝑉| is 

achievable for an 𝑥𝑐𝑎𝑝 of 23%. 

 

Fig. 5.3. (a) Threshold voltage 𝑉𝑡ℎ vs. Al mole fraction in the AlGaN cap layer 𝑥𝑐𝑎𝑝. (b) 𝑥𝑐𝑎𝑝 vs. 

gate length 𝐿𝐺 to maintain a fixed 𝑉𝑡ℎ of −2 𝑉. (c) and (d) are the contour plots of the hole density 

in devices with gate lengths of 0.25 𝜇𝑚 and 8 𝜇𝑚, respectively. 

In comparison to silicon, the 𝑉𝑡ℎ of the current heterostructure is not just dependent 

upon the vertical thicknesses but also severely upon the gate length 𝐿𝐺 . It is seen in Fig. 

5.3 (b) that with reduction of 𝐿𝐺 , a higher 𝑥𝑐𝑎𝑝 is required to maintain the |𝑉𝑡ℎ| at |−2 𝑉|. 

To understand this behaviour, the contour plots of the device cross section under zero 

gate bias are presented in Figs. 5.3 (c) & 5.3 (d) for two different gate lengths (0.25 𝜇𝑚 

and 8 𝜇𝑚). The dependency between 𝑉𝑡ℎ and 𝐿𝐺  arises from the fact that a 2DHG forms 
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at the bottom interface of the GaN channel which is farther from the gate rather than at 

the top interface. Hence, even though holes in the vicinity of the top interface in the GaN 

channel are depleted irrespective of the gate length, as shown in Figs. 5.3 (c) & 5.3 (d), 

there is a finite penetration of holes under the gate at the bottom interface of the channel. 

It is observed from Figs. 5.3 (c) & 5.3 (d) that at smaller 𝐿𝐺 , the relative penetration of 

holes at the bottom interface of the GaN channel under the AlGaN cap is higher, leading 

to a degradation in |𝑉𝑡ℎ|. Hence, 𝑥𝑐𝑎𝑝 needs to be raised from 16.4 % to 26.2 % as the 

gate length is reduced from 8 𝜇𝑚 to 0.10 𝜇𝑚 to maintain 𝑉𝑡ℎ at a fixed value of −2.0 𝑉 

(Fig. 5.3 (b)). 

As shown in Fig. 5.4, utilising a smaller channel length not only increases |𝐼𝑂𝑁| 

(defined as |𝐼𝐷𝑆| at 𝑉𝐺𝑆 = 𝑉𝐷𝑆 = −5 𝑉) but also leads to an improvement in on-off 

current ratio 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 for devices with identical 𝑉𝑡ℎ. With smaller 𝐿𝐺 , the length of the 

region depleted of 2DHG in the GaN channel also becomes smaller, leading to a 

reduction in the total sheet resistance between the drain and source. Therefore, |𝐼𝑂𝑁| of 

the device improves at smaller 𝐿𝐺 , achieving a maximum of 37 𝑚𝐴/𝑚𝑚 at 𝐿𝐺  of 

0.10 𝜇𝑚. The improvement in 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 emerges from a higher 𝑥𝑐𝑎𝑝 at smaller 𝐿𝐺  to 

maintain the threshold voltage. The rise in 𝜎𝑐𝑎𝑝 with higher 𝑥𝑐𝑎𝑝 suppresses the relative 

penetration of holes under the gate thereby minimizing the leakage current. Hence, the 

ratio of 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 shows an improvement from ~2 to ~12 orders of magnitude as 𝐿𝐺  

shrinks from 8 𝜇𝑚 to 0.25 𝜇𝑚. However, at the shorter gate length (0.10 𝜇𝑚), a higher 

𝜎𝑐𝑎𝑝, necessary to maintain the same 𝑉𝑡ℎ no longer suffices to suppress the relative 

penetration of holes under the gate. This increases the off-current of the device, resulting 

in a degradation in the on-off current ratio by an order of magnitude. Hence a gate length 

of 0.25 𝜇𝑚 can be considered optimal. 
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Fig. 5.4. Behaviour of the on-current |𝐼𝑂𝑁| and 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 with gate length 𝐿𝐺 as 𝑥𝑐𝑎𝑝 is changed 

to keep a fixed threshold voltage 𝑉𝑡ℎ of −2.0 𝑉. 

The circuit diagram for calculating the rise time and switching speed of an inverter, 

using mixed mode simulations is shown in Fig. 5.5 (a). The rise time for a load capacitor 

𝐶𝐿 is calculated as 𝑡𝑅𝑖𝑠𝑒 = ∫ 𝑑𝑉 ⋅ 𝐶𝐿 𝐼𝐷𝑆⁄
0.9×𝑉𝐷𝐷

0
. The total load capacitance for a fan-out 

of 5 at the output is estimated as: 

𝐶𝐿 ≈ 5 (1 +
𝑊𝑛

𝑊𝑝
) 𝐶𝐺𝑆,𝑚𝑎𝑥 + (1 +

𝑊𝑛

𝑊𝑝
) 𝐶𝐷𝑆,𝑚𝑎𝑥 (1) 

where 𝐶𝐺𝑆,𝑚𝑎𝑥 and 𝐶𝐷𝑆,𝑚𝑎𝑥 are the maximum values of the gate and drain 

capacitances for the p-channel GaN MOSHFET, and the factor (1 + 𝑊𝑛 𝑊𝑝⁄ ) accounts 

for n- and p-channel devices with 𝑊𝑛 and 𝑊𝑝 widths. With 𝑊𝑛/𝑊𝑝 of 1/10, the rise time 

𝑡𝑅𝑖𝑠𝑒 of devices, with and without the AlGaN cap, are extracted from the transient 

simulations of output voltage 𝑉𝑂𝑈𝑇 with time in Fig. 5.5 (b) at a gate length of 0.25 𝜇𝑚. 

A 3 times higher 𝑡𝑅𝑖𝑠𝑒 for the device without the AlGaN cap is the result of thinner oxide 

and channel layers, which leads to much higher 𝐶𝐺𝑆,𝑚𝑎𝑥, 2.0 𝑝𝐹/𝑚𝑚, compared to 

0.3 𝑝𝐹/𝑚𝑚 for the device with AlGaN cap. 𝐶𝐷𝑆,𝑚𝑎𝑥 for the two devices remains 

~1.5 𝑝𝐹/𝑚𝑚, higher than 𝐶𝐺𝑆,𝑚𝑎𝑥 in the device with AlGaN cap, owing to the parasitic 
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capacitance introduced by the underlying 2DEG, which is estimated to be 

~1.23 𝑝𝐹/𝑚𝑚 from the simulation of 𝐶𝐷𝑆 at different thickness of AlGaN barrier 𝑡𝑏, as 

illustrated in Fig. 5.5 (c). Assuming both p-channel and n-channel have similar rise and 

fall times at 𝑊𝑛/𝑊𝑝 of 1/10, the switching speed 𝑓𝑠𝑤 of the inverter described as: 

𝑓𝑠𝑤 = (𝑡𝑅𝑖𝑠𝑒 + 𝑡𝐹𝑎𝑙𝑙)−1 ≈ (2 ⋅ 𝑡𝑅𝑖𝑠𝑒)−1 (2) 

yields a value of ~625 𝑀𝐻𝑧 for a 𝐶𝐿 corresponding to a fanout of 5. 

 

Fig. 5.5. (a) Circuit diagram for calculating the rise time, (b) Output voltage or variation of the 

load voltage in devices without and with AlGaN cap vs. time as the input voltage is switched 

from 5 𝑉 to 0 𝑉 at 𝑡 = 0, (c) drain-to-source capacitance (𝐶𝐷𝑆) vs. inverse of the AlGaN barrier 

thickness (𝑡𝑏
−1) for the extraction of the capacitance contributed by the 2DEG (𝐶2𝐷𝐸𝐺) to the 𝐶𝐷𝑆. 

Compared to a 𝑡𝑅𝑖𝑠𝑒 of 670 𝑛𝑠,  reported by R. Chu et al. [7] for their fabricated p-

channel device, a significantly smaller 𝑡𝑅𝑖𝑠𝑒 is the result of much smaller on-resistance 

(𝑅𝑜𝑛) and load capacitor of 143 Ω ⋅ 𝑚𝑚 and 3.3 𝑝𝐹/𝑚𝑚 compared to their values of 

1314 Ω ⋅ 𝑚𝑚 and 𝐶𝐿 estimated  ≈ 𝑇𝑅𝑖𝑠𝑒 2.2𝑅𝑜𝑛⁄ = 231 𝑝𝐹/𝑚𝑚, respectively from their 

work. Our smaller on-resistance is the result of higher on-current facilitated by lower 

access resistances and depletion beneath the channel, facilitated by the AlGaN cap. If 

their value of 𝐶𝐿 of 231 𝑝𝐹/𝑚𝑚 were employed, the corresponding rise time is predicted 

to be 56 𝑛𝑠, an improvement of at least a factor of 10 in switching speed. 
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5.4. IMPACT OF CHANNEL THICKNESS ON THE PERFORMANCE OF AN E-

MODE P-CHANNEL MOSHFET IN GAN 

The transfer characteristics of a p-channel device with grounded 2DEG, at different 

channel thicknesses, 𝑡𝑐ℎ, are displayed in Fig. 5.6 (a). Here, 𝑥𝑐𝑎𝑝 is adjusted such that 

the threshold voltage remains at −2 𝑉 irrespective of 𝑡𝑐ℎ, as shown in the inset. An 

increase in 𝑥𝑐𝑎𝑝 is required at higher 𝑡𝑐ℎ, which reduces the density of 2DHG under the 

gate and leads to reduction in the on-state current |𝐼𝑂𝑁| from its maximum value of 

35 𝑚𝐴/𝑚𝑚, as shown in the inset (Fig. 5.6 (a)). Moreover, the off-state current |𝐼𝑂𝐹𝐹| 

(|𝐼𝐷𝑆| at 𝑉𝐺𝑆 = 0, 𝑉𝐷𝑆 = −5 𝑉) at zero gate bias in the transfer characteristics shows an 

increase by orders of magnitude with increase in 𝑡𝑐ℎ. 

 

Fig. 5.6. (a) Comparison of the simulated transfer characteristics with a variation in thickness of 

the GaN channel at a fixed threshold voltage of −2 𝑉 for a p-channel AlGaN capped device with 

grounded 2DEG. The inset shows the Al mole fraction in the AlGaN cap layer 𝑥𝑐𝑎𝑝 required to 

maintain the 𝑉𝑡ℎ at −2 𝑉 for different 𝑡𝑐ℎ and the corresponding on-current. (b) Simulated Band 

diagrams at two different thicknesses of GaN channel. 

This behaviour can be understood by analysing the band diagrams at two different 

thicknesses of channel layer, as shown in Fig. 5.6 (b). For a thinner channel (14 𝑛𝑚), the 

band bending introduced by 𝜎𝑐𝑎𝑝 adequately maintains the valence band at the interface 

of the GaN channel and AlGaN barrier layer sufficiently below the Fermi level, resulting 

in a depletion of holes along this interface. However, for a thicker channel, an additional 
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𝑒− 𝑄𝑊 develops at the top interface of the GaN channel, where an increase in 𝑥𝑐𝑎𝑝 no 

longer has any impact in further lowering the valence band in the channel. Thus as the 

channel layer becomes thicker, the valence band at the GaN and AlGaN barrier interface 

comes close to the Fermi level as shown in the figure for 𝑡𝑐ℎ = 20 𝑛𝑚. This leads to a 

finite density of holes at this interface, responsible for an increase in the off-state current. 

A channel thickness of ≤ 20𝑛𝑚 is also reported by F. J Kub et al. [20] for preventing 

the simultaneous formation of both hole and 𝑒− 𝑄𝑊, providing a further validation of 

our model. Owing to this mechanism, the device produces an ideal on/off ratio of 1011 

for thicknesses of the channel layer < 18 𝑛𝑚. This channel thickness sets a limit upon 

its manufacturability, arising from the difficulty in controlling the diffusion of Mg ions 

[25] from the doped p-GaN layer that is required to form the ohmic contacts to the source 

and drain. The presence of the diffused Mg ions in the GaN channel layer would 

contribute to an increase in leakage current and mobility degradation from Coulomb 

scattering that are not accounted in these simulations, but would, in practise, make the 

device difficult to realise. Moreover, achieving a precise channel thickness via etching is 

also not preferable due to the difficulty in reliably reproducing etching depth with 

uniform surface [26], [27]. 

As a solution to the increasing leakage current with the thicker channel, we modify 

the present device geometry following the work of Nakajima et al. [1], as shown in Fig. 

5.7, which features an additional contact for applying a suitable bias over the 2DEG. A 

biased 2DEG assists the AlGaN cap to effectively suppress the 2DHG under the gate, 

thereby reducing the off-state leakage in E-mode operation. As before, we consider a p-

GaN/GaN/AlGaN/GaN stack as the baseline heterostructure that, from top to bottom 

(along [0001̅]), consists of 20 𝑛𝑚 Mg-doped p-GaN, 20 𝑛𝑚 undoped GaN, 

47 𝑛𝑚 AlGaN barrier with Al mole fraction of 23%, and a 1.5 𝜇𝑚 GaN buffer on a 
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substrate. 𝐴𝑙2𝑂3 is used as a gate oxide with a thickness of 20 𝑛𝑚, while the gate length 

𝐿𝐺  is kept fixed at 0.25 𝜇𝑚. The lengths of the access regions between source and gate 

𝐿𝑆𝐺  and gate and drain 𝐿𝐺𝐷 are initially kept at 1 𝜇𝑚, unless specified otherwise. 

 

Fig. 5.7. Schematic of the modified p-channel E-mode device with AlGaN cap, where the 2DEG 

is biased via an additional base contact (marked B). 

Our modified device with an additional base contact to the 2DEG overcomes the 

restrictions imposed by channel thickness. In the modified device, an application of a 

suitable potential to the underlying 2DEG, 𝑉𝐵 can be used as an additional handle in 

modulating the density of the 2DHG in the channel across the AlGaN barrier. Since the 

technology to contact the 2DEG is already well established in commercial n-channel 

GaN devices, the present device is more favourable in terms of manufacturability. It 

clearly avoids the problems associated with the manufacturing of undoped GaN channel 

layers with overlying Mg doped contact regions to problematically small values (<

18 𝑛𝑚). The transfer characteristics of this device as plotted in Fig. 5.8 reveal that |𝐼𝑂𝐹𝐹| 

can be suppressed with an increase in 𝑉𝐵, even with a thicker channel (≈ 30 𝑛𝑚) and a 

lower 𝑥𝑐𝑎𝑝 (10 %). An increase in 𝑉𝐵 helps lower the threshold voltage below zero, 

driving the device towards E-mode. However, the on-current of the device shows a sharp 
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decrease with 𝑉𝐵, dropping to ~15 𝑚𝐴/𝑚𝑚, half of its original value, as 𝑉𝑡ℎ changes 

from 0 𝑉 to −2 𝑉, as shown in the inset. 

 

Fig. 5.8. Simulated transfer characteristics at different base to source bias 𝑉𝐵 applied to the 2DEG 

in the modified device in Fig. 5.7 for 30 𝑛𝑚 of channel thickness and 10 % of Al mole fraction 

in the AlGaN cap. The inset shows the corresponding on-current and threshold voltage behaviour 

with respect to 𝑉𝐵. 

The high sensitivity of the on-current to 𝑉𝐵 arises from a distinction in the way in 

which the density of the hole gas is affected by the biased 2DEG in comparison to the 

AlGaN cap. Figs. 5.9 (a) and (b) reveal the behaviour of the density of the 2DHG with 

respect to 𝑥𝑐𝑎𝑝 and 𝑉𝐵 in different regions of the device. Since the AlGaN cap layer only 

resides under the gate, a change in 𝑥𝑐𝑎𝑝 only affects the density in the gate region, 

whereas the density in the access regions remains unaffected, as seen from Fig. 5.9 (a). 

A biased 2DEG behaves as a secondary gate for the 2DHG, which acts across the AlGaN 

barrier, thereby affecting the density of 2DHG in both channel and access regions, as 

observed in Fig. 5.9 (b). This reduction in the density of the 2DHG in the access region 

increases the resistance of the source to drain path, which results in the observed decrease 

in |𝐼𝑂𝑁| with 𝑉𝐵. 
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Fig. 5.9. The simulated density of 2DHG in the gate and access regions with respect to a change 

in (a) Al mole fraction in AlGaN cap 𝑥𝑐𝑎𝑝 and (b) base voltage 𝑉𝐵. 

One way to reduce the sensitivity of |𝐼𝑂𝑁| with 𝑉𝐵 and lower the impact of resistance 

introduced by the access regions is to minimise the lengths of the access regions. Fig. 

5.10 shows the transfer characteristics of an optimum device, where the lengths of both 

the access regions between the source and gate and gate and drain are kept at 300 𝑛𝑚.The 

inset shows a comparison of the transfer characteristics of this device with a change in 

trap charge density 𝜎𝑐𝑎𝑝/𝐺𝑎𝑁 at the interface between the AlGaN cap and GaN channel. 

Owing to a reduction in the resistance of the access regions, the present device shows a 

maximum drain current of 28 𝑚𝐴/𝑚𝑚 at a 𝑉𝑡ℎ = −2 𝑉, which is almost double that 

achieved for a device with longer access regions (𝐿𝑆𝐺 = 𝐿𝐺𝐷 = 1 𝜇𝑚) in Fig. 5.8. Despite 

a thicker channel of 30 𝑛𝑚, the on-off current ratio of the device is maintained at 108 

(black curve with square symbols in the inset), a 4 order of magnitude gain over a device 

utilising only an AlGaN cap and a thinner channel of 20 𝑛𝑚 (see Fig. 5.6). A higher on-

state current is also the result of a higher 𝑥𝑐𝑎𝑝 and a lower 𝑉𝐵 in contrast with the device 

in Fig. 5.8, where an 𝑥𝑐𝑎𝑝 of 10 % and 𝑉𝐵 of 5.5 𝑉 is used for the same threshold voltage. 

A higher 𝑥𝑐𝑎𝑝 coupled with smaller 𝑉𝐵 tends to favour the localised depletion of 2DHG 

under the gate rather than in the entire source to drain path. As shown in the inset, the 

trap density at the AlGaN cap/GaN channel needs to be kept at minimum such that the 
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variation in 𝜎𝑐𝑎𝑝/𝐺𝑎𝑁 owing to the presence of traps is maintained well below 7 ×

1011𝑐𝑚−2 to not significantly affect the device characteristics.  

 

Fig. 5.10. The simulated transfer characteristics of an optimum device with a threshold voltage 

of −2 𝑉, featuring an AlGaN cap with Al mole fraction of 18 % at a potential of 3.45 𝑉 applied 

to the 2DEG. The inset shows the change in transfer characteristics due to a variation in trap 

charge at the interface between the regrown AlGaN cap and GaN channel. 

5.5. SUMMARY 

A low voltage p-channel E-mode GaN MOSHFET on a GaN/AlGaN/GaN platform 

suitable for integration with PSJ Power devices is investigated. The E-mode operation is 

realised using a thin AlGaN cap layer between the GaN channel with an underlying 

grounded or biased 2DEG and gate dielectric that suppresses the penetration of holes 

beneath the gate. The technique not only improves the on-current but also suppresses the 

leakage current, leading to orders of magnitude improvement in on-off ratio at short gate 

lengths. The simulated inverter offers promise of CMOS integrated gate drivers for MHz 
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switching of power conversion circuits in GaN.  

In conclusion, we have discussed potential solutions for achieving an E-mode p-

channel device in GaN, necessary for a CMOS based power convertor in a Power 

Management Integrated Circuit (PMIC). Our analysis reveals that the technology 

employing an AlGaN cap is best suited for realising E-mode operation with highest on-

current, yet it suffers from a high off-state current as the thickness of the channel is 

increased to 20 𝑛𝑚. Introducing an additional contact bias to the 2DEG acts as a 

secondary gate for controlling the density of 2DHG in the channel and allows saturated 

characteristics of the device. This mechanism coupled with the AlGaN cap effectively 

eliminates the problem of higher off-state current observed at a thicker channel layer 

while still promising a higher on-current. 
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Chapter 6 A Non-ambipolar p-channel GaN Heterostructure 

Tunnel FET with high on/off ratio 

An alternate mechanism to achieve a non-ambipolar Tunnel FET (TFET) is proposed 

in this chapter. The method relies on polarisation charge induced in semiconductors, such 

as group III nitrides, to enhance the electric field across the junction and facilitate 

unidirectional tunneling based on polarity of applied gate bias. This also enables 

enhanced control over the tunneling distance, reducing it significantly in comparison to 

a conventional tunnel FET. 

6.1. INTRODUCTION 

Increasing attention is being divested currently  in  low resistance tunnel junctions in 

III-nitrides in order to improve the efficiency of visible and ultraviolet light-emitting 

diodes (LEDs) [1]–[3] by elimination of p-type contacts in GaN [4]–[6]. Forming a 

tunnel junction in GaN with a low tunnel resistance is challenging, in part due to the large 

band gap that increases the tunneling barrier height and electric field required to produce 

sharp band bending. An increasing diffusion of Mg ions at high temperature [7] and a 

large activation energy of 174 𝑚𝑒𝑉 [8] also make it difficult to obtain degenerately 

doped p-type GaN, necessary to form a tunnel junction with abrupt band bending. 

Therefore, a thin layer of either AlN [9], [10], InGaN [11]–[13] or InN [14] is sandwiched 

between p- and n- type GaN regions to introduce additional polarisation charge at each 

of its interfaces to raise the electric field between the p- and n- type regions, thereby 

facilitating tunneling. This type of tunnel junction which is aided by the polarisation 

charge is referred as polarisation-induced tunneling junction (PITJ) [10]. 

PITJ with a thin InN in a novel n-channel tunnel FET (TFET) in GaN, has shown 

promise of an on-current of 60 𝑚𝐴/𝑚𝑚 in the simulated fin geometry and a SS of 
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~20 𝑚𝑉/𝑑𝑒𝑐 with an ON/OFF current ratio ~5 orders of magnitude in a sidewall-gated 

cylindrical geometry [14]. In another TCAD based simulation study an inline-gated 

rectangular TFET with InN based PITJ demonstrated an on-current of 73 𝑚𝐴/𝑚𝑚 with 

a SS of 15 𝑚𝑉/𝑑𝑒𝑐, and an ON/OFF ratio of 5 orders of magnitude [15]. 

Recent progress in p-type doping in excess of 1020𝑐𝑚−3 facilitated by low 

temperature MBE growth has led to demonstration of a direct tunnel junction between 

degenerately doped p- and n-type GaN [6], [16]. This device achieved a differential 

resistivity of 1 × 10−5Ω 𝑐𝑚2 [16], an order of magnitude lower than the lowest reported 

resistivity in a PITJ using In0.25Ga0.75N [13]. Based on this study the realisation of GaN 

based TFETs without PITJs, can also be envisioned. In this chapter however, we focus 

solely upon analysis of TFETs utilising PITJ for facilitating transport, and highlight its 

unique characteristics compared to conventional TFETs. 

Conventional TFETs suffer from poor on-current, because the tunneling mechanism 

introduces an additional resistance in the source-drain path relative to a MOSFET. To 

date, no one has yet demonstrated a TFET of comparable current level to a MOSFET 

with subthreshold slope (SS) below 60 𝑚𝑉/𝑑𝑒𝑐 [17]. The best reported electrical 

characteristics were achieved in a vertical nanowire InAs/GaAsSb/GaSb TFET, which 

showed an ON-current of 0.31 𝑚𝐴/𝑚𝑚 at 60 𝑚𝑉/𝑑𝑒𝑐 of SS [18]. At a minimum SS of 

48 𝑚𝑉/𝑑𝑒𝑐 the maximum current degraded to 67 𝑛𝐴/𝜇𝑚 in this device. It is well known 

that conventional TFETs suffer from ambipolarity which results in high off-current [19] 

and limits their applicability in complementary circuits [20]. To address ambipolarity, 

short-gated TFET [21], asymmetric doping, and band gap engineering [22], have been 

proposed. 

In this chapter, a p-channel heterostructure tunnel FET (HTFET), utilising a thin layer 

of AlN as a PITJ, is introduced. Despite the larger band gap of AlN which results in 
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higher tunneling resistance in comparison to InGaN or InN, a thin layer of AlN is adopted 

in this work [5]. A significant lattice mismatch between GaN and InN > 10% [23] results 

in strain that can introduce challenges to the growth of InN or InGaN on GaN. In 

comparison, a lattice mismatch < 2.5 % between GaN and AlN [23] implies that up to 

5 𝑛𝑚 of fully strained AlN can be grown on GaN without the introduction of microcracks 

[24]. 

6.2. MODELLING TUNNELING TRANSPORT 

All results are obtained using Silvaco TCAD [25], where the inbuilt non-local band-

to-band tunneling (BBT) model along with III-nitride specific field dependent mobility 

model [26], [27], Shockley-Read-Hall, and Augur recombination are selected for the 

tunneling current and device electrical characteristics. Unlike the local tunneling models, 

where the tunneling rate at each point is calculated from the localised value of electric 

field, a non-local BBT model that includes a local variation of energy bands is employed 

in the interests of accuracy [27]. In all simulations, the maximum hole mobility is limited 

to 16 𝑐𝑚2/𝑉𝑠 [28], while an activation energy of 174 𝑚𝑒𝑉 is used for acceptor dopants, 

consistent with the reported activation energy of Mg in GaN. 

In conventional tunneling devices, such as Zener diodes in Si, high band bending is 

achieved via two degenerately doped regions located adjacently, facilitating carrier 

tunneling through the energy band gap. Fig. 6.1 (a) and the inset therein show the 

simulated energy band diagrams for a degenerately doped p-n junction in GaN. The 

depletion width at the junction in this case, is more than 10 𝑛𝑚, which greatly suppresses 

band to band tunneling of carriers on either side. To overcome this, a thin layer of AlN 

is sandwiched between the p- and n- type regions (inset Fig. 6.1 (b)), which introduces 

polarisation charge 𝜎𝑃 at each of its interfaces with GaN. This results in a high electric 

field across AlN (~12 𝑀𝑉/𝑐𝑚 [10]), thereby providing a sharp band bending to enable 
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band-to-band tunneling, as observed in the band diagram Fig. 6.1 (b). This mechanism 

has been utilized to implement tunnel diodes and light emitting diodes [9]–[11]. 

 

Fig. 6.1. Simulated energy band diagram of (a) a vertical p-n junction in GaN (inset) and (b) p-n 

junction with AlN barrier (inset). The polarisation charge at the AlN/GaN interface helps reduce 

the depletion width to facilitate tunneling. 

The tunneling rate via the non-local BBT model is benchmarked by adjusting the 

effective electron tunnel mass 𝑚𝑒 and hole tunnel mass 𝑚ℎ, using reported I-V data for 

a 56 × 56 𝜇𝑚2 GaN tunnel diode with a 2.8 nm AlN barrier and 𝑁𝑖/𝐴𝑢 and 𝑇𝑖/𝐴𝑢 

ohmic contacts for p- and n- GaN, shown in Fig. 6.2 (a) from [10]. This device showed 

a total specific resistivity (including the tunnel resistance) of ~0.14 Ω 𝑐𝑚2. The effective 

masses for this set of simulations is 𝑚𝑒 = 0.2 and 𝑚ℎ = 1.0 for GaN and 𝑚𝑒 = 0.314 

and  𝑚ℎ = 0.69 for AlN, in agreement with reported values for wurtzite GaN and AlN 

[23], [29]. Fig. 6.2 (b) shows the simulated I-V results for different contact resistivity 

values of the p-GaN contact. A good match between the model and experimental results 

is achieved with a contact resistivity anywhere between 10−2 − 10−1Ω 𝑐𝑚2, which 

agree with contact resistivities in the range of 10−4 − 10−1Ω 𝑐𝑚2 for 𝑁𝑖/𝐴𝑢 [30], [31]. 

Since contacts to p-GaN, with 𝜌𝑐 as low as 10−6Ω ⋅ 𝑐𝑚2 have been realised with a proper 

choice of metal stack, as shown in Fig. 4.4 of Chapter 4, we optimistically employ 

10−6 Ω 𝑐𝑚2 as the contact resistance in all the simulations of p-channel HTFET. 
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Fig. 6.2. (a) Schematic of a 56 × 56 𝜇𝑚2 GaN Zener diode with a 2.8 nm AlN barrier layer 

sandwiched between p-GaN and n-GaN. (b) Comparison of our simulation model with the 

reported experiment data reported from [10] (Reused data from Fig. 3 (a) with permission from 

[10] Copyright (2009) by the American Physical Society). 

6.3. NON-AMBIPOLAR OPERATION OF P-CHANNEL GAN HTFET  

Fig. 6.3 (a) shows a schematic diagram of the p-channel GaN heterostructure tunnel 

FET (HTFET), with its vertical direction along [0001]. From the bottom, the structure 

consists of a 56 𝑛𝑚 n-GaN source, 2 𝑛𝑚 AlN tunneling barrier, 15 𝑛𝑚 undoped GaN 

(u-GaN) channel and 27 𝑛𝑚 p-GaN. The energy of carriers in the u-GaN channel is 

modulated by a 2 𝑛𝑚 Al2O3 separated gate, either in rectangular geometry with double 

gate or cylindrical geometry with gate-all-around. Unless stated otherwise, the width of 

the device in either rectangular or cylindrical geometry is kept at 10 𝑛𝑚, in-line with the 

minimum reported GaN nanowire widths of 14 nm or 10 nm reported in experiment [32], 

[33]. As shown in the corresponding band diagram in Fig. 6.3 (b), the u-GaN acts as 

channel and maintains the valence band sufficiently lower than both the hole quasi fermi 

level (ℎ+ 𝑄𝐹𝐿) as well as the conduction band in the n-GaN, thus preventing the 

tunneling of carriers when the gate bias is zero.  
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A negative gate bias, raises the energy of the bands in the channel, moving  the 

valence band closer to the hole quasi fermi level (ℎ+ 𝑄𝐹𝐿), as shown in Fig. 6.3 (c), 

which leads to an increase in hole concentration. At sufficiently large negative gate bias, 

the valence band in the channel aligns with the conduction band of n-GaN, hence 

enabling tunneling across the AlN barrier, as indicated by the arrow in Fig. 6.3 (c) and 

turning the device on. On the other hand, a positive gate bias reduces the energy levels 

of the conduction and valence bands in the u-GaN channel, as shown in Fig. 6.3 (d). 

However, since no AlN layer is present at the interface between p-GaN and u-GaN, the 

band bending between p-GaN and u-GaN occurs over a large distance, which greatly 

suppresses the tunneling current. Thus the device is maintained in the off-state.  

The drain to source current 𝐼𝐷𝑆 with respect to 𝑉𝐺𝑆 for a rectangular or fin geometry 

is plotted in Fig. 6.3 (e) for a device or channel width of 10 𝑛𝑚. In contrast to the n-

channel GaN HTFET reported in [14] where the channel is also doped, utilisation of u-

GaN as a channel layer reduces the leakage by 10 orders of magnitude. However, the 

bias requirement of this device also increases to raise the energy of the valence band for 

alignment with the conduction band across the AlN layer. A lightly doped channel could 

also be employed to reduce the operating bias of this device. As can be observed, the 

drain current remains orders of magnitude lower at positive gate bias than at negative 

gate bias, thus confirming non-ambipolar behaviour, as indicated by the band diagrams 

(Fig. 6.3 (d)). Owing to the wide band gap nature of GaN, the off-current of the device 

remains much lower at |10−14| 𝑚𝐴 𝑚𝑚⁄  even for a small channel length of 15 𝑛𝑚. A 

large band gap of AlN however, also introduces a large tunneling barrier height, which 

makes it difficult for the charge carriers to tunnel across the AlN. Hence the maximum 

drain current or on-current remains limited to 0.5 𝑚𝐴/𝑚𝑚 in a fin geometry. 
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Fig. 6.3. (a) Schematic diagram of a p-channel GaN heterojunction tunnel FET (HTFET), and its 

simulated band diagrams along [0001̅] (b) at zero gate bias (off-state), (c) negative gate bias (on-

state) and (d) positive gate bias (off-state), and (e) transfer characteristics showing non-ambipolar 

behaviour, similar to a p-channel MOSFET. 

6.4. OPTIMISED CYLINDRICAL P-CHANNEL GAN HTFET 

The most common technique to improve the on-current in TFETs is to introduce a 

highly doped pocket of opposite polarity in the vicinity of the source edge of the channel 

to enhance the electric field across the tunneling junction [34], [35]. Moreover, a better 

electrostatic gate control is expected in cylindrical or nanowire geometry. Hence, in this 

section, we analyse the electrical characteristics of an optimised cylindrical GaN HTFET, 

which utilises a thin (~2 𝑛𝑚) and highly doped (𝑁𝐴 = 3 × 1019𝑐𝑚−3) pocket at the 

interface between channel and an AlN barrier of 1.7 nm thickness of GaN HTFET, as 

shown in Fig. 6.4, while rest of the dimensions are kept same as that for the device in 

Fig. 6.3 (a). 

The electrical characteristics of the p-channel GaN HTFET are presented in Figs. 6.4 

(a) and (b), respectively. The current is normalised to the diameter of the cylindrical 

geometry. Owing to the thin p-GaN pocket, the maximum drain on-current |𝐼𝑂𝑁| in Fig. 
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6.4 (a) is more than double in comparison to a rectangular device without the pocket (Fig. 

6.3 (e)). An improved gate control in the cylindrical geometry also leads to a much 

steeper subthreshold slope (SS) of 32 𝑚𝑉/𝑑𝑒𝑐, in the absence of defect or trap states. In 

the absence of the thin AlN layer at the top edge of the gate, a positive gate bias alone is 

insufficient to produce a large band bending at this interface, hence the device continues 

to remain non-ambipolar. In Fig. 6.4 (b), it can be noted that a higher |𝑉𝐷𝑆| is required to 

turn-on the device as |𝑉𝐺𝑆| is increased. This is because a high |𝑉𝐺𝑆| not only raises the 

energy of the valence band in the channel but also increases the energy of the conduction 

band in n-GaN across the AlN barrier layer (Fig. 6.3 (c)), thus requiring a higher |𝑉𝐷𝑆| 

to align the bands to turn the device on. 

 

Fig. 6.4. Optimised (a) 𝐼𝐷𝑆 − 𝑉𝐺𝑆 and (b) 𝐼𝐷𝑆 − 𝑉𝐷𝑆 characteristics for the cylindrical p-channel 

GaN HTFET with a 2 nm pocket and 1.7 nm AlN barrier layer. 

A further increase in |𝐼𝑂𝑁| can be achieved by increasing the device width 𝑊, as 

shown in Fig. 6.5. However, this increase comes at the cost of increase in SS and leakage 

current, which arises from an inability of the gate to maintain the same potential across 

a wider channel. For a channel width greater than 22 𝑛𝑚, the device begins to conduct 

even at zero gate bias, resulting in a reduction in 𝐼𝑂𝑁/𝐼𝑂𝐹𝐹 and an increase in SS above 

60 𝑚𝑉/𝑑𝑒𝑐. 
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Fig. 6.5. Variations of |𝐼𝑂𝑁|, SS and 𝑙𝑜𝑔(𝐼𝑂𝑁/𝐼𝑂𝐹𝐹) with respect to device width. 

To analyse the sensitivity of the transfer characteristics to the mobility of holes 𝜇ℎ, 

the transfer characteristics at different 𝜇ℎ are investigated in Fig. 6.6, where 

14.6 𝑐𝑚2/𝑉𝑠 corresponds to the default value for the hole mobility. As expected the 

drain current shows a proportional relationship with a change in 𝜇ℎ. However, as can be 

inferred from the inset of this figure, with an order of magnitude change in 𝜇ℎ, the 

variation in drain current remains limited to ~10 − 20%. This relative insensitivity of 

the drain current to the hole mobility arises due to the presence of tunneling mechanism 

in TFETs, which, unlike MOSFETs, introduces an additional resistance 𝑅𝑡𝑢𝑛𝑛𝑒𝑙 in series 

with the channel resistance 𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 𝑅𝑡𝑢𝑛𝑛𝑒𝑙, which is strongly dependent upon the 

tunneling masses for electrons and holes, plays a dominant role in the determination of 

the drain current. 
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Fig. 6.6. Sensitivity of the simulated transfer characteristics to the mobility of holes 𝜇ℎ in the 

cylindrical p-channel HTFET. Inset shows the relative variation in the drain current with 𝜇ℎ. 

Fig. 6.7 (a) shows how the different regions in a p-channel HTFET contribute to the 

total on-resistance, 𝑅𝑂𝑁 (= 𝑉𝐷𝑆/|𝐼𝑂𝑁|), of the device. To determine the value of the 

tunnel resistance of an optimised cylindrical device (Fig. 6.4 (a)), 𝑅𝑂𝑁 is plotted as a 

function of gate to drain length 𝐿𝐺𝐷 and channel length 𝐿𝐺 , in Figs. 6.7 (b) and (c), 

respectively.  

The contribution of the drain resistance 𝑅𝑑𝑟𝑎𝑖𝑛 to 𝑅𝑂𝑁 from the slope of 𝑅𝑂𝑁 vs. 𝐿𝐺𝐷 

in Fig. 6.7 (b), yields an extracted 𝑅𝑑𝑟𝑎𝑖𝑛 for an 𝐿𝐺𝐷 of 27 nm, of 71.4 Ω 𝑚𝑚. Similarly 

the channel resistance 𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙 obtained from the slope of 𝑅𝑂𝑁 vs. 𝐿𝐺  is ~913 Ω 𝑚𝑚 at 

𝐿𝐺 = 15 𝑛𝑚. Owing to a high electron mobility (~800 𝑐𝑚2/𝑉 ⋅ 𝑠) in comparison to the 

hole mobility (~16 𝑐𝑚2/𝑉 𝑠) in GaN, the contribution of the source resistance, 𝑅𝑠𝑜𝑢𝑟𝑐𝑒, 

is negligible in the present case. Therefore, 𝑅𝑡𝑢𝑛𝑛𝑒𝑙 is simply obtained as 𝑅𝑂𝑁 − 𝑅𝑑𝑟𝑎𝑖𝑛 −

𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙, which for an AlN barrier of 1.7 𝑛𝑚 results in ~3.93 𝑘Ω 𝑚𝑚, corresponding to 
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a specific resistivity of ~3.09 × 10−4 𝛺 𝑐𝑚2, for this cylindrical device, which is 

comparable to the best value for the tunnel resistivity of 1.2 × 10−4𝛺 𝑐𝑚2 in a 

polarisation induced tunnel diodes reported for GaN/InGaN/GaN hetero-tunnel junction 

[13]. 

 

Fig. 6.7. (a) Contribution of different regions to the total on-resistance (RON) of the device. 

Variation of on-resistance with respect to (b) channel length and (c) gate to drain length, where 

the gate to source length and the device width are kept fixed at 56 𝑛𝑚 and 10 𝑛𝑚, respectively. 

6.5. ANALYSIS OF TUNNEL DISTANCE  

To contrast the operation of the PITJ HTFET from a conventional TFET, employing 

group IV semiconductor such as Si, in Figs. 6.8 (a) and (b), the band diagrams during the 

OFF and ON states are compared with a conventional double gated p-i-n TFET in Si. 

The figures indicate the tunnel distance, defined as the minimum horizontal distance 

between the valence and conductance bands. In Fig. 6.8 (a), with an increase of gate bias 

in a silicon TFET, the tunnel distance reduces from 6.1 𝑛𝑚 to 3.5 𝑛𝑚 as the device 
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switches from OFF to ON. However as the tunnel distance gets smaller, the tunneling 

region also moves away from the gated channel region therefore resulting in a weaker 

gate control. 

 

Fig. 6.8. Comparison of the band diagrams in ON- and OFF- states of a (a) conventional TFET 

on Si and (b) a heterojunction TFET on GaN. 

In the case of an HTFET in Fig. 6.8 (b), since tunneling occurs only across the AlN 

barrier layer, the location of the tunneling region does not depend upon the value of gate 

bias. Therefore, a better control over the tunneling region is achieved resulting in a 

smaller tunnel distance than is possible in a conventional TFET. 

To further highlight the distinction in operation, the transfer characteristics and 

tunneling distances of the two devices are compared in Fig. 6.9. Due to a large bandgap 

even though the maximum on-current is smaller, a wider band gap in GaN as well as a 

better control of the tunneling distance, limited only by the thickness of the tunnel barrier, 

lead to a higher ON/OFF current ratio and a steeper SS.  
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Fig. 6.9. Variations of the drain current and tunnel distance with respect to gate bias for a 

conventional TFET in Si and a heterojunction TFET in GaN. 

6.6. SUMMARY 

In summary, an analysis of a p-type heterojunction TFET in GaN reveals that owing 

to a polarisation induced tunnel junction to enable carrier transport, transfer 

characteristics do not suffer from ambipolarity. Unlike common p-channel MOSHFETs 

in GaN, the transfer characteristics show normally-off operation with a threshold voltage 

greater than |−4| 𝑉, along with a subthreshold swing of 36 𝑚𝑉/𝑑𝑒𝑐. Despite a low hole 

mobility and a tunneling mechanism, which raises the resistance of the source and drain 

path, the device is able to achieve a drain-current ~1.2 𝑚𝐴/𝑚𝑚 with an ON/OFF current 

ratio of ~1014 at a much smaller footprint of < 20 𝑛𝑚 × 20 𝑛𝑚, making an array of 

such devices can serve as a viable candidate for achieving high performance low power 

p-channel MOSHFET on GaN. In addition, since the region of tunneling is pinched to 

the location of the PITJ, a better electrostatic control over the tunneling region via the 
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gate and reduction in the tunnel distance by a factor of 2 are shown in the present device 

compared to the conventional TFETs. Although the present mechanism is only explained 

utilising AlN to realise the polarisation induced tunnel junction, further improvements in 

the on-current and reduction in the supply voltage are expected for the PITJ based on 

smaller band gap materials such as InGaN or InN instead of AlN. 
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Chapter 7 Negative Capacitance beyond Ferroelectric 

Switches 

Negative capacitance transistors are a unique class of switches capable of operation 

beyond the Boltzmann limit to realise sub-thermionic switching. Until now, the negative 

capacitance effect has been predominantly attributed to devices employing an unstable 

insulator with ferroelectric properties, exhibiting a two-well energy landscape, in 

accordance with Landau theory. The theory and operation of a solid electrolyte Field 

Effect Transistor (SE-FET) of subthreshold swing less than 60 𝑚𝑉/𝑑𝑒𝑐 in the absence 

of a ferroelectric gate dielectric is demonstrated in this work. Unlike ferroelectric FETs 

that rely on a sudden switching of dipoles to achieve negative capacitance, we 

demonstrate the modelling of a distinctive mechanism that relies on the accumulation 

and dispersion of ions at the interfaces of the oxide, leading to a subthreshold slope (SS) 

as low as 26 𝑚𝑉/𝑑𝑒𝑐, first reported in [1] and [2]. The frequency of operation of these 

unscaled devices lies in a few milli-Hertz, because at higher or lower frequencies, the 

ions in the insulator are either too fast or too slow to produce voltage amplification. This 

is unlike Landau switches, where the SS remains below 60 𝑚𝑉/𝑑𝑒𝑐 even under quasi-

static sweep of the gate bias. The proposed FETs show a higher on-current with thicker 

oxide in the entire range of gate voltage, clearly distinguishing their scaling laws from 

those of ferroelectric FETs. Our theory validated with experiment, demonstrates a new 

class of devices capable of negative capacitance that opens up alternate methods of steep 

switching beyond the traditional approach of Ferroelectric or memristive FETs. 

 INTRODUCTION 

Complementary Metal Oxide Semiconductor (CMOS) technology is the main driver 

of the contemporary information age. Its pervasiveness has been delivered by an 
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exponential increase in processing power of a chip via a continuous reduction in the 

physical dimensions of transistors by almost a factor of half, every 18 months, according 

to Moore’s law. Despite continuous downscaling, a proportional reduction in the supply 

voltage has been a greater challenge since the last decade, resulting in higher density 

chips with increased power consumption today. As introduced in chapter 2, this 

limitation arises because the drain to source current, 𝐼𝐷𝑆 is exponentially dependent on 

the semiconductor surface potential (Ψ𝑠) [3], i.e., 𝐼𝐷𝑆 ∝ 𝑒𝑥𝑝 (𝑞Ψ𝑠 𝑘𝐵𝑇⁄ ), requiring Ψ𝑠 

to change by at least ~60 𝑚𝑉 for an order of magnitude (a decade) change in 𝐼𝐷𝑆. 

Overcoming this Boltzmann limit (60 𝑚𝑉/𝑑𝑒𝑐) of the sub-threshold swing (SS) of a 

Metal–Oxide–Semiconductor Field Effect Transistor (MOSFET) is considered as a 

possible continuation of CMOS scaling for future logic devices [4]–[7]. Broadly 

speaking, beyond the relationship between Ψ𝑠 and 𝐼𝐷𝑆 as indicated above, the SS is 

affected by how well the gate can be coupled to the semiconductor, via the body factor 

𝑚, where 𝑉𝐺𝑆 is the applied potential at the gate, distributed across the gate dielectric and 

the semiconductor region of a typical transistor as  

 𝑉𝐺𝑆 = 𝜙𝑚𝑠 + 𝑉𝑜𝑥 + Ψ𝑠 (7.1) 

Where 𝜙𝑚𝑠 represents the difference in work function between the gate and 

semiconductor, and 𝑉𝑜𝑥 is the potential drop across the dielectric. In such a case, for a 

constant 𝜙𝑚𝑠, 𝑚, the body factor can be expressed as 𝑚 = 𝑑𝑉𝐺𝑆/𝑑Ψ𝑠. If the capacitances 

associated with the gate dielectric and the semiconductor are represented as 𝐶𝑖𝑛𝑠 and 𝐶𝑠𝑐 

respectively, the body factor 𝑚 is equal to 1 + 𝐶𝑠𝑐/𝐶𝑖𝑛𝑠 > 1, giving rise to a subthreshold 

swing [4], 𝑆𝑆 = 𝑚 × 2.3𝑘𝐵𝑇 𝑞⁄ = 𝑚 × 𝑛 > 60 𝑚𝑉/𝑑𝑒𝑐 in conventional transistors. A 

change in the surface potential (𝑑Ψ𝑠) larger than the change in the applied gate bias 

(𝑑𝑉𝐺𝑆) is required to achieve 𝑚 < 1. 
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A number of alternative approaches, broadly considered subsets of “Steep 

Subthreshold devices”, are now being contemplated to achieved 𝑚 < 1. Techniques that 

result in 𝑚 < 1, also largely referred to as Landau switches [8], are of great significance 

to technology, as they result in low operating voltages and thereby reduced power 

consumption of electronic circuits. Amongst such techniques, reported to date, the most 

promising for future technology nodes are ferroelectric FETs (FE-FETs) [9], [10], 

initiated by the pioneering work of Salahuddin and Datta in 2008 [11], though others, 

such as piezoelectric FETs [12], [13], nanoelectromechanical FETs (NEMFETs) [14]–

[16], and phase-FETs [17], [18], employing a resistive switch have also been reported. 

There are two important distinctions in approach amongst the various mechanisms that 

are described. In one case, the net capacitance between the gate and the semiconductor 

channel is boosted by introducing a material in the gate dielectric stack with an inherent 

instability, such as in a FE-FET or a NEMFET [8], depicted in Fig. 7.1 (a). In these FETs, 

the energy profile of the gate dielectric stack exhibits a dual energy-well that upon 

transition from one well to the other, leads to a negative capacitance 𝐶𝐹𝐸/𝑁𝐸𝑀. In the 

second case, the abrupt switching of a resistive switch in series with the current flow 

path, between a low resistance state (LRS) and a high resistance state (HRS), is utilised 

to produce steep switching. The resistive switch is typically realised either with a material 

exhibiting insulator-to-metal transition (IMT) such as vanadium dioxide [17] or a 

memristor element, as in Fig. 7.1 (b),  realised either via a phase change memory (PCM), 

electrochemical metallization memory (ECM), or valence change memory (VCM) [19]. 

In PCMs, a change in the phase of a material, e.g. GeTe or Sb2Te3, from the amorphous 

to crystalline or vice-versa ‘sets’ or ‘resets’ the device in the LRS or HRS. The ECM 

consists of an active electrode of Ag or Cu and a counter electrode of e.g. Pt separated 

by an insulating layer of solid electrolyte, e.g. SiO2 or Ta2O5, where resistive switching 
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from the HRS to the LRS takes place via migration of metallic ions from the active 

electrodes into the insulator, thus forming a conducting filament [20]. In the case of a 

VCM, the movement of negatively charged oxygen ions or positively charged vacancies 

in the thin film (~10 𝑛𝑚) of, for example TaOx, HfOx, or TiOx, results in the 

formation/dissolution of a vacancy rich conducting filament that is responsible for  

resistive switching [21]. 

 

Fig. 7.1. Various schemes for sub-60 mV/dec switching. (a) Device schematic of a FE-FET 

(LHS) and a NEMFET (RHS) where due to either the switching of domains in the FE-FET, or 

electromechanical motion of the gate in the NEMFET,  𝐶𝐹𝐸/𝑁𝐸𝑀 becomes negative, resulting in 

a body factor 𝑚 = 1 + 𝐶𝑠𝑐/𝐶𝐹𝐸/𝑁𝐸𝑀 < 1  and 𝑆𝑆 < 60 𝑚𝑉/𝑑𝑒𝑐. (b) Phase-FETs, where a 

resistive switch either consisting of a material exhibiting insulator-to-metal phase transition 

(IMT) (LHS) or a memristor (VCM or ECM) (RHS) is included in the current path of an ordinary 

FET. (c) Schematic of a Ta2O5/ZnO device and the equivalent gate circuit model of the MOS 

capacitor, indicating charge separation of oxygen ions and vacancies at respective opposite 

interfaces of the 𝑇𝑎2𝑂5. An additional capacitance 𝐶𝐸𝐿 arises as a result, in parallel with the gate 

dielectric capacitor 𝐶𝑖𝑛𝑠. 

In this work, we demonstrate an alternate Negative Capacitance mechanism to 

achieve steep switching characteristics but only under dynamic operation in 𝑇𝑎2𝑂5/𝑍𝑛𝑂 

solid electrolyte (SE-) FETs, shown in Fig. 7.1 (c). As indicated in this figure, the 



129 

 

presence of doubly charged mobile oxygen ions and vacancies in the 𝑇𝑎2𝑂5, induces a 

sheet charge at the interface of 𝑇𝑎2𝑂5 and 𝑍𝑛𝑂, which gives rise to an additional 

electrolytic capacitance, indicated by 𝐶𝐸𝐿 in the equivalent circuit diagram. We develop 

a theoretical framework that provides evidence that under a dynamic sweep of the gate 

bias, 𝐶𝐸𝐿 achieves a negative value such that |𝐶𝐸𝐿| > 𝐶𝑖𝑛𝑠, leading to sub-60 𝑚𝑉/𝑑𝑒𝑐 

switching, yet without the involvement of any ferroelectric material or filamentary 

processes in the gate insulator. 

 RESULTS  

Our alternate mechanism for steep switching is demonstrated in bottom gated three-

terminal thin-film transistors fabricated in-house by our team, as shown in Fig. 7.1 (c). 

A conducting Indium Tin Oxide (ITO, 20 /square) is used as gate, thicknesses of 

120 and 275 𝑛𝑚 of tantalum oxide (𝑇𝑎2𝑂5) of dielectric constant 𝜖𝑇𝑎2𝑂5
≈ 20.8 are 

deposited as the gate insulator and 40 𝑛𝑚 of zinc oxide as channel, via RF sputtering as 

reported in ref [1]. The sputtered 𝑇𝑎2𝑂5 results in an amorphous phase, as the 

temperature required for crystallisation is more than 1000 K [22]. The transfer 

characteristics data, supplied for the purpose of this work, consist of the drain-current in 

the forward and backward directions at scan rates of gate voltage ranging from 2.17 𝑚𝐻𝑧 

to 15.65 𝑚𝐻𝑧, obtained using an Agilent B1500 in Fig. 7.2 (a). During the backward 

sweep, a two-fold reduction in the average subthreshold swing is observed when the scan 

rate is reduced from 15.65 𝑚𝐻z to 2.17 𝑚𝐻𝑧, while the gate leakage current of the 

device always remains below 1 𝑛𝐴, as displayed in the inset. Unlike the conventional 

clockwise hysteresis associated with charge trapping at oxide/semiconductor interfaces 

that leads to a reduction in the drain current during the backward sweep [23], the 

anticlockwise hysteresis in the transfer characteristics, as well as its dependence on the 

scan rate, indicates the presence of an electric field dependent memory effect arising from 
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ionic motion in the insulator that closely resembles the flipping of electric dipoles in a 

ferroelectric FET [24]. In the present case, factors governing the value of 𝑚 can be 

understood from the relationship of the surface potential of the channel in response to an 

applied gate voltage, which in its simplest form is given as  

 𝑉𝐺𝑆 = 𝜙𝑚𝑠 +
𝑄𝑐ℎ

𝐶𝑖𝑛𝑠
−

𝑄𝑜𝑥

𝐶𝑖𝑛𝑠
+ Ψ𝑠 (7.2) 

𝐶𝑖𝑛𝑠 is the unit area capacitance of the gate insulator, 𝑄𝑜𝑥 is the sheet charge density 

at the interface of the oxide and semiconductor, and 𝑄𝑐ℎ is the sheet charge density in 

the semiconductor. In the present case, due to accumulation-dispersion of ions and 

vacancies within the gate dielectric under dynamic sweep of the gate voltage, the charge 

in the insulator, 𝑄𝑜𝑥 varies with the applied gate bias. This can be expressed by first 

taking the derivative of Eq. (7.2) with respect to Ψ𝑠, and rewriting the derivative of 𝑄𝑜𝑥 

with respect to 𝑉𝑜𝑥 with an application of the chain rule, as: 

 
𝑑𝑉𝐺𝑆

𝑑Ψ𝑠
=

𝑑𝜙𝑚𝑠

𝑑Ψ𝑠
+

1

𝐶𝑖𝑛𝑠

𝑑𝑄𝑐ℎ

𝑑Ψ𝑠
−

1

𝐶𝑖𝑛𝑠

𝑑𝑉𝑜𝑥

𝑑Ψ𝑠

𝑑𝑄𝑜𝑥

𝑑𝑉𝑜𝑥
 + 1 (7.3) 

By defining 𝑑𝑄𝑐ℎ/𝑑Ψ𝑠 = C𝑠𝑐 as the unit area capacitance associated with the 

semiconductor and 𝑑𝑄𝑜𝑥/𝑑𝑉𝑜𝑥 = C𝐸𝐿 as a unit area differential electrolytic capacitance, 

equating 𝑑𝜙𝑚𝑠 𝑑Ψ𝑠⁄  to zero for a constant 𝜙𝑚𝑠, and substituting 𝑉𝑜𝑥 from Eq. (7.1), the 

above equation can be simplified to the desired expression, as 

 𝑚 = 1 +
𝐶𝑠𝑐

𝐶𝐸𝐿 + 𝐶𝑖𝑛𝑠
 (7.4) 

Where m (= 𝑑𝑉𝐺𝑆/𝑑Ψ𝑠) is the body factor, C𝐸𝐿 is defined as 𝑑𝑄𝑜𝑥/𝑑𝑉𝑜𝑥. In the 

present case, if the rate of change of vacancies 𝑑𝑄𝑜𝑥/𝑑𝑡 at the interface of 𝑇𝑎2𝑂5 with 

the semiconductor is higher than the rate of change of bias across the oxide 𝑑𝑉𝑜𝑥/𝑑𝑡, the 

resulting 𝐶𝐸𝐿 turns negative with a magnitude greater than 𝐶𝑖𝑛𝑠, resulting in 𝑚 less than 

unity according to Eq. (7.4). Electrolyte gated transistors have been used in the past to 
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achieve high carrier densities [25], realise non-volatile memories [26], reduce operating 

voltage [27], or reduce subthreshold slope but only down to 82 𝑚𝑉/𝑑𝑒𝑐 [28] to our 

knowledge. 

 

Fig. 7.2. Measured Transfer characteristics and subthreshold swing. (a) Dependence of the 

switching properties of fabricated 𝑍𝑛𝑂/𝑇𝑎2𝑂5 SE-FETs on the scan rate of the gate voltage and 

the corresponding gate current characteristics. Transfer characteristics are captured under 

forward and reverse sweeps for frequencies ranging from 2.17 𝑚𝐻𝑧 to 15.65 𝑚𝐻𝑧, 

corresponding to scan rates of 0.05 𝑉/𝑠 − 0.36 𝑉/𝑠. A steep subthreshold swing of 26 𝑚𝑉/𝑑𝑒𝑐 

is obtained corresponding to the lowest sweep frequency. Corresponding gate currents for two 

gate bias sweeps are plotted in the inset. (b) Dependence of the subthreshold swing extracted 

from the 𝐼𝐷𝑆 − 𝑉𝐺𝑆 characteristics in (a) in the reverse sweep, on the scan frequency. The 

subthreshold slope begins to exceed 60 𝑚𝑉/𝑑𝑒𝑐 beyond 23 𝑚𝐻𝑧 of the gate sweep in the reverse 

direction. 

Whilst negative capacitance under dynamic conditions has been observed in 

materials ranging from crystalline to amorphous inorganic semiconductors and organic 

compounds [29], [30], it has previously been attributed to minority carrier flow, interface 

states, slow transient time of the carriers, or space charge [30]. This is the first instance 

of dynamic negative capacitance at a suitable scan rate to obtain a 𝑆𝑆 < 60 𝑚𝑉/𝑑𝑒𝑐 in 

thin film transistors [1]. As the gate sweep frequency is increased beyond ~20 𝑚𝐻𝑧, a 

sub-60 𝑚𝑉/𝑑𝑒𝑐 of SS disappears as shown in Fig. 7.2 (b), as the phenomenon requires 

ionic motion within the insulator to equilibrate with the applied gate electric field. This 
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chapter attempts to develop a model to explain these characteristics. 

The dynamic drain current characteristics of the SE-FET are evaluated by self-

consistently coupling the electronic charge density in the ZnO semiconductor with the 

variable 𝑄𝑜𝑥, owing to the field dependent motion of oxygen ions inside 𝑇𝑎2𝑂5. 𝑇𝑎2𝑂5 

amongst other oxides such as 𝐻𝑓𝑂2 and 𝑇𝑖𝑂𝑥, is widely known to contain oxygen ions 

and vacancies whose dynamics have been utilised to explain the resistive switching 

behaviour in valence change memory (VCM) cells. In our model, the motion of ions is 

modelled as the drift and diffusion of doubly charged negative oxygen ions [31] in the 

𝑇𝑎2𝑂5 solid electrolyte (SE) under an electric field, where the drift velocity of the ions 

subjected to an external electric field ℇ𝑜𝑥 is described by the point ion model of Mott and 

Gurney [32], [33] as 

 𝑣𝑑 = 𝑎𝑓 exp −
𝐸𝑎

𝑘𝑇
sinh

𝑞𝑧𝑎ℇ𝑜𝑥

𝑘𝑇
 (7.5) 

Where 𝑎 is the effective hopping distance, which is of the order of interatomic 

distance (~0.2 − 0.5 𝑛𝑚 [19]), 𝐸𝑎 is the height of the potential barrier, and 𝑓 is the 

attempt frequency.  

 

Fig. 7.3. (a) Schematic showing the accumulation of oxygen ions and vacancies at opposite 

interfaces of the insulator. (b) An arbitrary ion profile across the interface and its linear 

approximation. 

Referring to Fig. 7.2 (a), since the applied gate bias and hence the voltage across the 
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insulator 𝑉𝑜𝑥, which determines the ℇ𝑜𝑥 remain much lower than the maximum gate bias 

during the majority of operation, equation (7.5) can be safely linearly approximated as  

 𝑣𝑑 = 𝜇𝑖𝑜𝑛ℇ𝑜𝑥 (7.6) 

Where 𝜇𝑖𝑜𝑛 defined as 𝑞𝑧𝑎2𝑓 exp(−𝐸𝑎/𝑘𝑇) /𝑘𝑇 is the mobility of oxygen ions. The 

rate of change of sheet charge density at an interface 𝑑𝑄𝑜𝑥/𝑑𝑡 is governed by a balance 

between the drift and diffusion current densities: 

 
𝑑𝑄𝑜𝑥

𝑑𝑡
= 𝑞𝑧𝑛𝑖𝑜𝑛 𝜇𝑖𝑜𝑛ℇ𝑜𝑥 − 𝑞𝑧𝐷∇𝑛𝑖𝑜𝑛 (7.7) 

First term on the right hand side is the drift term, described by Eq. (7.6), 𝑛𝑖𝑜𝑛 is the 

concentration of ions, 𝑞𝑧 = −2𝑒 is the charge on the oxygen ions, where the ℰ𝑜𝑥 causes 

the ions to accumulate at an interface, leading to the formation of interface sheet charge 

𝑄𝑜𝑥 at the opposite interfaces of 𝑇𝑎2𝑂5, as shown in Fig. 7.3 (a). The second term in the 

above equation accounts for the diffusion, where 𝐷 is the diffusion coefficient of the 

oxygen ions, related to the mobility 𝜇𝑖𝑜𝑛 via the Nernst-Einstein relation [34], [35] as 

𝐷 = (𝑘𝑇/𝑞𝑧) 𝜇𝑖𝑜𝑛. 

To simplify the solution of Eq. (7.7), we assume that the density of oxide ions decays 

linearly away from the interface, as shown in Fig. 7.3 (b), which leads to:  

 ∇𝑛𝑖𝑜𝑛 ≈
𝑛𝑝𝑒𝑎𝑘

𝑥𝐷
=

1

𝑞𝑧

2𝑄𝑜𝑥

𝑥𝐷
2  (7.8) 

Where 𝑛𝑝𝑒𝑎𝑘 and 𝑥𝐷 are the average charge concentration and average diffusion 

thickness from the interface as indicated in Fig. 7.3 (b). Upon substitution of 𝐷 and ∇𝑛𝑖𝑜𝑛, 

back into Eq. (7.7), the desired relationship for the rate of change of interface oxide 

charge is obtained as  

 
𝑑𝑄𝑜𝑥

𝑑𝑡
= 𝑞𝑧𝜇𝑖𝑜𝑛𝑛𝑖𝑜𝑛

(𝑄𝑐ℎ − 𝑄𝑜𝑥)

𝜖𝑜𝑥
−

𝑘𝑇

𝑞𝑧
𝜇𝑖𝑜𝑛 ⋅

2𝑄𝑜𝑥

𝑥𝐷
2  (7.9) 

Where the ℇ𝑜𝑥 is replaced with (𝑄𝑐ℎ − 𝑄𝑜𝑥) 𝜖𝑜𝑥⁄  using the Gauss’ law and 𝜖𝑜𝑥 is the 
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dielectric constant of the insulator. This equation is self-consistently coupled with the 

electronic charge density in the ZnO channel 𝑄𝑐ℎ. In our work in Ref. [2], 𝜇𝑖𝑜𝑛 and 𝑥𝐷 

are kept fixed, however a better agreement between the experiment and the model is 

obtained for 𝜇𝑖𝑜𝑛 and 𝑥𝐷 that change according to ℰ𝑜𝑥 and 𝑄𝑜𝑥 inside 𝑇𝑎2𝑂5, described 

as 

 

𝜇𝑖𝑜𝑛 =
𝜇𝑖𝑜𝑛,0

[1 + (
𝜇𝑖𝑜𝑛,0ℰ𝑜𝑥

𝑣𝑠𝑎𝑡
)

𝛽

]

1
𝛽

 

(7.10) 

 
𝑥𝐷 =

𝑥𝐷,0

1 −  (
𝑄𝑜𝑥

𝑄𝑜𝑥,0
)

2 
(7.11) 

A summary of parameters used in the modelling of ions in 𝑇𝑎2𝑂5 is presented in 

Table A1, appendix. The distribution of electronic density inside ZnO is evaluated by 

solving 1 D Poisson along with the charge density, which is obtained by integrating the 

density of band and trap states of ZnO with the Fermi function. The net sheet charge 

density in the channel 𝑄𝑐ℎ is calculated by summing the sheet charge densities in the 

conduction band and the trap states [36], 𝑄𝑓𝑟𝑒𝑒 and 𝑄𝑙𝑜𝑐. The trap states within the band 

gap of ZnO are modelled using acceptor- and donor-like tail, deep, and Gaussian density, 

as depicted in Fig. 7.4. The parameters used in the model are described in Tables A1 and 

A2 in the appendix. 
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Fig. 7.4. The distribution of acceptor- and donor- like trap state densities considered in the band 

gap of ZnO. Refer to Table A2 in the appendix for a description of these parameters. 

From a knowledge of sheet charge densities within 𝑍𝑛𝑂, the dynamic transfer 

characteristics of this device at a given source to drain voltage, 𝑉𝐷𝑆 are obtained under 

the gradual channel approximation as [37] 

 𝐼𝐷𝑆 = 𝜇𝑍𝑛𝑂 ⋅ (
𝑄𝑓𝑟𝑒𝑒

𝑄𝑐ℎ
) ⋅

𝑊

𝐿
𝑄𝑓𝑟𝑒𝑒 ⋅ 𝑉𝐷𝑆 (7.12) 

Where 𝜇𝑍𝑛𝑂 is the band electron mobility of 𝑍𝑛𝑂, 𝑊 and 𝐿 are the width and length 

of the 𝑍𝑛𝑂 channel.  

Apart from oxygen ions, some metal cations such as 𝑊, 𝑇𝑎, 𝑇𝑖, and 𝐻𝑓 can also 

participate in the oxygen exchange reactions by diffusing from the metal contact into the 

insulator in the vicinity of the interface, which can affect the electrical properties of thin 

films (~7 𝑛𝑚) of 𝑇𝑎2𝑂5 [38]. However, Indium Tin Oxide (ITO), employed as a bottom 

gate, is known for its electrical and chemical stability and has been used for preventing 
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the diffusion of specific metallic ions [39]. While there is some evidence of diffusion of 

Indium ions inside an organic material after a long-term operation in Organic LEDs [40] 

and in some polymers [41], to the best of my knowledge no evidence is available for the 

diffusion of such ions from Indium Tin Oxide (ITO) or ZnO into other oxides. We, 

therefore, neglect the role of other mobile specifies in our analysis.  

Fig. 7.5 (a) shows a comparison of the simulated transfer characteristics with the 

supplied experimental transfer characteristics during the forward and backward gate 

sweeps at a scan frequency of 10 𝑚𝐻𝑧 for a 𝑇𝑎2𝑂5 thickness of 275 𝑛𝑚, with a SS of 

35 𝑚𝑉/𝑑𝑒𝑐. This thickness and scan rate are selected due to a wider hysteresis that 

makes it easy to visualise regions of internal voltage amplification (𝑎 → 𝑏 and 𝑐 → 𝑑) in 

the figures. During the forward sweep, the doubly charged oxygen ions are driven 

towards the gate/𝑇𝑎2𝑂5 while the positively charged vacancies are accumulated at the 

𝑇𝑎2𝑂5/𝑍𝑛𝑂 interface, resulting in a build-up of positive interface charge density 𝑄𝑜𝑥 at 

this interface, as shown in Fig. 7.5 (b). During the backward scan of the gate bias, as 𝑉𝐺𝑆 

is reduced from its maximum point, 𝑄𝑜𝑥 continues to rise to its maximum value at a gate 

bias of ~2.5 𝑉, highlighted by the dashed circle in Fig. 7.5 (b), well below the maximum 

applied voltage of 6 𝑉. This is attributed to the delay in achieving its steady state value, 

owing to the poor mobility of oxygen ions, estimated as 1 × 10−11𝑐𝑚2/𝑉𝑠 via 

Chronoamperometry measurements of the gate current [23] described using the Cottrell 

equation [42] (See Table A1 in the appendix for a summary of model parameters). This 

build-up of 𝑄𝑜𝑥 also helps to maintain the sheet charge density 𝑄𝑐ℎ in the semiconductor 

channel, and therefore a higher drain current in the reverse sweep. Until point 𝑎, the 

surface potential of the channel is maintained by 𝑄𝑐ℎ, while the entire drop in gate 

potential occurs across 𝑇𝑎2𝑂5. Beyond point 𝑎, as 𝑉𝐺𝑆 reduces further, a sudden 

depletion in 𝑄𝑜𝑥 (see inset Fig. 7.5 (b)), causes the drain current to drop sharply as the 
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channel is forced into depletion. The energy profiles (𝑈 vs. 𝑄𝑐ℎ), obtained by integrating 

𝑄𝑐ℎ with respect to bias 𝑉𝑜𝑥 across the 𝑇𝑎2𝑂5, are plotted in Figs. 7.5 (c) and (d) during 

the forward and backward sweeps of gate bias. Owing to the accumulation and sudden 

depletion of the mobile oxygen ions, the energy profiles show inflection points in the 

regions marked 𝑐 → 𝑑 and 𝑎 → 𝑏, leading to 𝑑2𝑈/𝑑𝑄𝑐ℎ
2 < 0 in these regions. The 

corresponding inverse unit area capacitances, plotted in Figs. 7.5 (e) and (f), show 𝐶𝐸𝐿 

less than zero in these regions, with a magnitude greater than 𝐶𝑖𝑛𝑠 (~67 𝑛𝐹/𝑐𝑚2, 

measured from MIM structures), which also causes the total capacitance 𝐶𝑡𝑜𝑡(= 𝐶𝑖𝑛𝑠 +

𝐶𝐸𝐿) to become negative. Following Eq. (7.4), this leads to a body factor less than unity. 

The reason why a sub-60 𝑚𝑉/𝑑𝑒𝑐 switching is only present during 𝑎 → 𝑏 in the 

backward sweep but not during 𝑐 → 𝑑 in the forward sweep, is because 𝑄𝑜𝑥 remains 

negative during the transition from 𝑐 → 𝑑 (see Fig. 7.5 (b)), a polarity which depletes the 

carriers in the channel. Therefore, the device shows no switching in this region and 

continues to remain in the off-state. This parallel system of capacitance 𝐶𝑡𝑜𝑡 is stabilised 

by the capacitance of the ZnO semiconductor, which appears in series with 𝑇𝑎2𝑂5 gate 

insulator, since the required condition for stability |𝐶𝐸𝐿 + 𝐶𝑖𝑛𝑠| > 𝐶𝑠𝑐 is satisfied.  
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Fig. 7.5. Electrical properties and simulated energy profiles to demonstrate the origin of sub-

60 𝑚𝑉/𝑑𝑒𝑐 of SS. (a) Comparison of simulated and measured transfer characteristics of a 

𝑇𝑎2𝑂5/ 𝑍𝑛𝑂 SE-FET for an oxide thickness of 275 𝑛𝑚, at a scan frequency of 10 𝑚𝐻𝑧. (b) Plot 

of sheet charge density 𝑄𝑜𝑥 at the interface of the dielectric and the semiconductor with applied 

gate bias. Potential energy profiles during (c) forward and (d) backward gate sweeps are indicated 

by arrows. The corresponding inverse unit area capacitance with respect to sheet charge density 

in the channel during (e) forward and (f) backward gate sweeps. 

The electrical characteristics of an SE- and an FE-FET under quasi-static gate bias 

sweep, are compared in Figs. 7.6 (a) and (b) for the forward and backward sweeps of the 
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gate bias. In Fig. 7.6 (a), since the ions in the SE have sufficient time to respond to an 

infinitesimally small scan rate, the hysteresis observed previously, now vanishes, the 

build-up of 𝑄𝑜𝑥 remains limited only by the balance between drift (responsible for 

accumulation) and diffusion (responsible for depletion) of ions. The steep-switching also 

vanishes, since 𝑄𝑜𝑥 simultaneously increases or decreases alongside the gate bias under 

equilibrium and the energy profile reduces to a single energy-well without any inflection 

point, as shown in the inset of Fig. 7.6 (a). In stark contrast, in an equivalent FE-FET 

simulated in Fig. 7.6 (b), the existence of a double energy-well profile, as shown in the 

inset gives rise to hysteresis in transfer characteristics, even if the bias is swept quasi-

statically. Moreover, while the SS in the present device becomes greater than 

60 𝑚𝑉/𝑑𝑒𝑐 under quasi-static operation, it continues to remain less than 60 𝑚𝑉/𝑑𝑒𝑐 in 

a FE-FET. This distinction that is directly based upon their underlying mechanisms, sets 

both types of devices apart.  

 

Fig. 7.6. Quasi-static transfer characteristics for SE- and FE- FETs. Comparison of transfer 

characteristics of an (a) SE-FET (Experimental data supplied by Xiaoyao Song, University of 

Sheffield) and (b) FE-FET both at a scan frequency of 33 𝜇𝐻𝑧 where the device characteristics 

tend towards their corresponding quasi-static behaviour, FE-FET is simulated using 𝛼 = −3 ×

1011 𝑐𝑚/𝐹, 𝛽 = 6.8 × 1023𝑐𝑚5/𝐹𝐶2, 𝛾 = 0, and 𝜌 = 4 × 1011 𝛺 𝑐𝑚.  

The mechanism of vacancy migration inside 𝑇𝑎2𝑂5 is limited to thin films of 𝑇𝑎2𝑂5 

or 𝑇𝑎𝑂𝑥 (~5 − 20 𝑛𝑚) [21], [38], [43]–[47], where a migration of ions and vacancies 
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leads to the formation of a vacancy rich conductive filament inside 𝑇𝑎2𝑂5, much smaller 

than the thickness of our films. The measured gate current characteristics of the order of 

a few nanoamperes eliminate the possibility of any filamentary process (cf. inset, Fig. 7.2 

(a)). Moreover, the temperature dependence of the transfer characteristics, as presented 

in Fig. 7.7, further supports our claim that the observed phenomena is due to the 

movements of oxygen ions. According to the point ion model of Mott and Gurney, a rise 

in the temperature results in a higher mobility of the ions. Therefore, at a higher 

temperature, the higher mobility of ions contributes to a larger 𝑄𝑜𝑥, which produces an 

increase in the drain current during the forward bias. This enhancement with respect to a 

change in gate bias also leads to an earlier depletion of 𝑄𝑜𝑥 during the reverse sweep, 

resulting in a smaller hysteresis. 

 

Fig. 7.7. The experimental temperature dependence of the transfer characteristics (measured 

by Dr. Premlal B. Pillai, University of Sheffield), showing a reduction in the hysteresis and 

an increase in the maximum drain current with temperature owing to an increase in the mobility 

of the oxygen ions inside 𝑇𝑎2𝑂5.  

The distinction in operation of our device is further established via an examination 

of the dynamic characteristics with frequency. The SS during the forward and backward 

gate bias sweep in the entire frequency range is summarised in Figs. 7.8 (a) and (b). The 

model of an SE-FET in Fig. 7.8 (a) exhibits 𝑆𝑆 < 60 𝑚𝑉/𝑑𝑒𝑐 only in the frequency 
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range ~2.2 − 20 𝑚𝐻𝑧 highlighted by the oval, showing good agreement in both forward 

and backward sweeps with experiment. The value of steep switching during the backward 

sweep is sensitive to the maximum accumulated 𝑄𝑜𝑥 and its subsequent depletion as the 

gate bias is reduced. As the frequency of gate sweep is increased further, the transfer 

characteristics of SE-FETs tend towards that of a thin film transistor (TFT) with an 

ordinary insulator as the gate dielectric at higher frequency. Moreover, close to the quasi-

static gate bias operation, 𝑆𝑆 is 80 𝑚𝑉/𝑑𝑒𝑐, attesting to the excellent quality of the 

interface. In contrast, the dependence of the 𝑆𝑆 of a simulated FE-FET shown in Fig. 7.8 

(b) reveals values less than 60 𝑚𝑉/𝑑𝑒𝑐 for both forward and backward scans up to 

~10 𝜇𝐻𝑧, where the device tends towards the quasi-static mode with both forward and 

backward sweep having identical slopes, for 𝜌 = 3 × 1012 𝛺 𝑐𝑚. Beyond this point, the 

hysteresis between the forward and backward transfer characteristics becomes larger due 

to the finite delay in the switching of domains as determined by 𝜌, which leads to an 

increase/decrease in SS during the forward/backward sweeps respectively. As the 

frequency of gate sweep increases from 50 to 60 𝑚𝐻𝑧, the response of the domains in 

the ferroelectric with respect to the applied gate bias become smaller due their 

incapability to follow the fast changing gate bias. This results in a decrease in the 

polarisation charge, which directly corresponds to a smaller drain current. Consequently, 

in this range of sweep frequency, the subthreshold swing of the device in both forward 

and backward directions shows an increase, due to the smaller changes in the drain 

current with applied gate bias. At a sweep frequency of 60 𝑚𝐻𝑧 or beyond, the domains 

in the ferroelectric stop responding to the changes in gate bias, leading to constant carrier 

density in the channel. Thus the drain current no longer shows any switching with gate 

bias. Although not shown, the hysteresis of the SE-FET becomes zero at very low and 

high sweep frequencies where the SS for both forward and backward sweeps become 
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identical, whereas the hysteresis in a FE-FET, if not stabilised, can persist even for 

identical SS in the forward and backward sweeps, as seen in Fig. 7.6 (b). 

 

Fig. 7.8. Subthreshold swing (SS) vs. frequency of SE- and FE- FETs. (a) SS of an SE-FET with 

frequency of scan rate in the forward and backward directions of gate bias. (b) 𝑆𝑆 versus 

frequency of a FE-FET (simulated using 𝛼 = −3.2 × 1011 𝑐𝑚/𝐹, 𝛽 = −6.8 × 1023𝑐𝑚5/𝐹𝐶2, 

𝛾 = 0, and 𝜌 = 3 × 1012 𝛺 𝑐𝑚) showing a below 60 𝑚𝑉/𝑑𝑒𝑐 of switching at low frequency of 

operation in both forward and backward sweeps in contrast to the SE-FET (Experimental data 

supplied by Dr. Premlal B. Pillai and Xiaoyao Song, University of Sheffield). 

Finally, Fig. 7.9 (a) shows a comparison of transfer characteristics during the 

backward scan of a SE-FET obtained from the model and measurement at different oxide 

thicknesses at a scan rate of 0.05 𝑉/𝑠. An increased drain to source on-current for the 

higher oxide thickness suggests the presence of higher sheet density of oxide ions 𝑄𝑜𝑥 

due to an increased number of mobile species, as shown in Fig. 7.10. The value of 𝑛𝑖𝑜𝑛 

and 𝑥𝐷 used in the simulation for calibration are listed in Table A1 in appendix. The 

scaling behaviour of an SE-FET is contrary to the scaling laws of FE-FETs of the same 

thickness, especially in the region of subthreshold switching, illustrated in Fig. 7.9 (b). 

FE-FETs show a cross-over point in their scaling [48] with a greater insulator thickness 

effectively reducing the electric field and thereby the polarisation due to alignment of 

dipoles, leading to a smaller density of carriers in the channel. 
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Fig. 7.9. Comparison of the SE-FET and FE-FET transfer characteristics at different gate 

dielectric thicknesses. (a) Experimental (supplied by Dr. Premlal B. Pillai) and modelled transfer 

characteristics in the reverse sweep of SE-FETs with oxide thicknesses of 120 and 275 nm and 

corresponding simulated behaviour, showing higher maximum on-current of 3.63 𝜇𝐴/𝜇𝑚 for the 

thicker insulator and 1.8 𝜇𝐴/𝜇𝑚 for thinner, at a gate-bias of 3 𝑉, while the 𝑆𝑆 is 28 𝑚𝑉/𝑑𝑒𝑐 

and 48 𝑚𝑉/𝑑𝑒𝑐 for both respectively. (b) shows the dependence of the ON current in log and 

linear scales in a FE-FET which follows a conventional scaling rule, i.e, thicker oxide device 

revealing lower on-current, while the 𝑆𝑆 for both the thicknesses is ~16 𝑚𝑉/𝑑𝑒𝑐 (simulated 

using 𝛼 = −3 × 1011 𝑐𝑚/𝐹, 𝛽 = 6.8 × 1023𝑐𝑚5/𝐹𝐶2, 𝛾 = 0, and 𝜌 = 4 × 1011 𝛺 𝑐𝑚). A 

cross-over point with gate voltage is observed in the characteristics. 

 

Fig. 7.10. Variation of sheet density of oxide ions at an interface for two different oxide 

thicknesses, demonstrating consistency of material parameters across a range of thicknesses.  
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An extrapolation of drain current characteristics and SS characteristics obtained from 

our simulation model to smaller thicknesses of 𝑇𝑎2𝑂5, as provided in Fig. 7.11 (a) and 

(b), indicates that at 20 𝑛𝑚, hysteresis in the drain current shrinks to ~0.2 𝑉, while the 

SS no longer remains smaller than 60 𝑚𝑉/𝑑𝑒𝑐, in the backward sweep. 

 

Fig. 7.11. (a) Simulated transfer characteristics, and (b) SS characteristics at different thicknesses 

of  𝑇𝑎2𝑂5 layer.  

The presence of hysteresis in SE-FETs aligns well with applications such as 

biological synapses in neuromorphic applications [1]. These devices are ideally suited 

for logic-in-memory via crossbar arrays rather than conventional CMOS. From a 

knowledge of the density and mobility of oxygen ions, the presented model can be used 

to predict device behaviour, i.e. the amount of hysteresis and swing for a particular sweep 

frequency of gate bias. The model shows that frequency of operation is directly 

proportional to the mobility of oxygen ions 𝜇𝑖𝑜𝑛. For example, an order of magnitude 

boost in 𝜇𝑖𝑜𝑛 will increase the scan frequency by an order, to produce electrical 

characteristics with the same swing. Therefore, by adjusting 𝜇𝑖𝑜𝑛, e.g. with temperature, 

these devices can be operated at even higher frequency, e.g. ~1 𝐻𝑧, a desirable frequency 

in neuromorphic applications. 

 SUMMARY 

The theory and mechanism leading to a new class of negative capacitance FETs is 
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unveiled here using an example of a 𝑇𝑎2𝑂5/𝑍𝑛𝑂 FET. It is shown that the field driven 

motion of ions and vacancies in the gate insulator (𝑇𝑎2𝑂5) leads to an accumulation of 

charge at the interface of the semiconductor. The dispersion of this charge during the 

reverse sweep, without any filamentary process, creates a negative differential 

capacitance, responsible for steep switching as low as 26 𝑚𝑉/𝑑𝑒𝑐 in the 𝑚𝐻𝑧 range in 

these devices via a body factor effectively less than unity. Here we prove irrevocably that 

the switching behaviour observed in our case, is primarily different from the mechanism 

arising from a dual energy landscape responsible for the switching in FE-FETs, by 

scrutinising the relationship of 𝑆𝑆 with the frequency in the forward and backward 

directions. Distinct characteristics of SE-FET identified in this work demonstrate a 

representative class of devices with a solid/liquid electrolyte as gate insulator, whose 

performance can be tuned via control of the diffusivity of ions. This class of materials 

therefore opens up unique opportunities for optimisation of device performance via 

control of interfacial phenomena in semiconductor devices. 
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Chapter 8 Conclusions and Future Work 

8.1. CONCLUDING REMARKS 

This thesis explores potential pathways for continual improvement in energy 

efficiency and processing capabilities of semiconductor devices and provides possible 

solutions to the societal challenges over the coming decade. Chapter 1 introduces these 

challenges and possible solutions and their applicability. In particular, two main 

directions for achieving these goals are discussed: 1) Realisation of high performance p-

channel MOSHFET in GaN to implement an on-chip power CMOS based gate driver for 

power devices, and 2) employing band-to-band tunnelling or negative capacitance 

mechanisms to achieve less than 60 𝑚𝑉/𝑑𝑒𝑐 of subthreshold swing. A summary of ideas 

covered in different chapters of this thesis is as follows: 

1. In chapter 2, the operation of a paraelectric FET is described, whereby it is 

demonstrated that these device can also exhibit sub-60 𝑚𝑉/𝑑𝑒𝑐 of operation, during 

the backward sweep of a dynamic gate bias. 

2. In chapters 4 and 5, the performance of p-channel devices in GaN is analysed. The 

inherent presence of 2DHG coupled with poor mobility of holes in GaN in 

conventional p-channel devices in GaN leads to severe trade-off between on-current 

and threshold voltage, making it difficult to maintain high performance in the E-mode 

operation of the device. Utilisation of AlGaN cap and biasing the underlying 2DEG 

are shown to locally deplete the 2DHG under the gate and reduce the off-current, 

making it feasible to have high |𝑉𝑡ℎ| and |𝐼𝑂𝑁|.  

3. In chapter 6, a vertical p-channel tunnel FET in GaN for achieving less than 

60 𝑚𝑉/𝑑𝑒𝑐 of subthreshold swing is proposed. Due to a large band gap, the 

utilisation of polarisation charge to facilitate band-to-band tunneling becomes 
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necessary in GaN. Whilst the conventional TFETs suffer from ambipolarity, the 

transfer characteristics of the presented device show ambipolar-free characteristics, 

owing to the polarisation induced tunnelling junction (PITJ). Moreover, a study of 

the band diagrams at different gate biases confirms a better electrostatic control over 

the region of tunnelling, which remains pinched to the location of the PITJ. In 

contrast, in a conventional TFET, the region of tunnelling tends to move away as the 

gate bias is increased, thereby making it difficult for the gate to modulate the 

tunnelling region. 

4. In chapter 7, another mechanism of surpassing 60 𝑚𝑉/𝑑𝑒𝑐 of subthreshold swing is 

explored that relies upon the generation of negative capacitance in the gate dielectric. 

The materials with inherent instability, such as ferroelectrics, are popularly known to 

exhibit the negative capacitance. Ferroelectric FETs, employing a ferroelectric 

material in the gate dielectric stack have been demonstrated to achieve sub-60 

mV/dec of switching in the literature. In this chapter, a novel mechanism of achieving 

the negative capacitance operation in 𝑇𝑎2𝑂5/𝑍𝑛𝑂 solid-electrolyte (SE)-FET, which 

originates from the movements of oxygen ions inside 𝑇𝑎2𝑂5, is explored and 

modelled. 

8.2. FUTURE WORK 

Apart from the calibration of the model with the experimental results, the analysis 

carried out in chapters 4, 5, and 6 has been for the most part theoretical. Therefore, an 

immediate next step for these works is to fabricate proposed p-channel MOSHFET with 

AlGaN cap and p-channel HTFET employing PITJ and analyse additional issues that 

might arise in the realisation of these devices and factors that can deteriorate the 

performance of these devices in practice. Examples of such difficulties can be associated 

with the uncertainty in the thickness of GaN channel in p-channel MOSHFET, resulting 
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from the poor control of etching while selectively removing the p-GaN layer before a 

regrowth of AlGaN cap, or introduction of various defects during the fabrication, such 

as traps and dislocations and resulting trap-assisted tunneling that could degrade the 

subthreshold swing in the case of TFET. 

Advancements in the growth of gate oxide are necessary to control and lower the 

impact of trap states at various interface between oxide/AlGaN cap and oxide/GaN, while 

at the same time lower the gate leakage current through the oxide, for a reliable and 

replicable operation of these devices. The MOCVD growth of Mg doped p-GaN layer 

currently suffers from, large activation energy (120 − 200 𝑚𝑒𝑉) of Mg dopants and 

memory effect, leading to poor hole density in p-GaN and a broader doping profile. 

Moreover, during the epitaxial growth at high temperature, Mg ions can diffuse into the 

GaN layer underneath, thus contributing to the leakage current and affecting the 

minimum thickness that can be achieved in manufacture. Hence, novel doping techniques 

are required to obtain p-GaN layers capable of producing high hole density as well as 

sharper doping profile. 

Other possibilities to boost the performance of p-type devices in GaN include 

improving the hole mobility by tailoring the valence band structure in GaN, for example 

by application of stress to lower the effective mass of holes; an E-mode operation with 

high |𝑉𝑡ℎ| can be obtained by introduction of positive ions directly in the gate oxide to 

deplete the hole gas underneath, thereby eliminating the regrowth of AlGaN cap 

altogether. 

The negative capacitance phenomena in 𝑇𝑎2𝑂5/𝑍𝑛𝑂 TFT reported in chapter 7, is 

currently limited to only small (𝑚𝐻𝑧) frequency range. To make this phenomenon work 

at higher frequency would require a boost in the mobility of oxygen ions present within 

𝑇𝑎2𝑂5. This can be achieved by either altering the growth conditions for 𝑇𝑎2𝑂5 or 



154 

 

utilising alternative solid-electrolyte with higher mobility of ionic species. On the 

modelling side, the presented model for SE-FET is currently one-dimensional; it only 

accounts for changes in the ionic and carrier densities along the vertical directions. This 

greatly limits the applicability of the model where the role of other factors along the 

lateral direction are of interest, such as, non-uniform distribution of 𝑉𝐷𝑆 along the channel 

and capacitance introduced by the source and drain contact pads. 

Currently, the model only takes into account the movement of oxygen ions, assuming 

that an accumulation of ions at one interface results in the formation of an equivalent 

mirror charge at the opposite interface due to the vacancies, while ignoring the motion 

of these vacancies. This assumption holds good owing to the comparatively smaller 

mobility of oxygen vacancies, however, a more accurate approach would require 

including the dynamics of both oxygen ions and vacancies. In addition, the model 

assumes the profile of accumulated oxygen ions at the gate-insulator interface decays 

linearly in order to simplify the diffusion term in the drift-diffusion equation. This could 

result in the model unable to properly capture the rise or decay of the drain current with 

time during a pulsed gate bias measurement. Therefore, a complete solution is demanded 

that self-consistently couples the drift-diffusion phenomenon of doubly charged ions and 

vacancies inside the gate dielectric with the Fermi distribution of electrons inside the 

semiconductor. 
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Appendix 

Table A1. Parameters for 𝑇𝑎2𝑂5 used in the drift-diffusion model presented in Chapter 7. 

Input Parameters 

Parameters Values 

𝝐𝑻𝒂𝟐𝑶𝟓
 20.8 

𝝁𝒊𝒐𝒏,𝟎 (𝒄𝒎𝟐 𝑽𝒔⁄ ) 1 × 10−11 

𝒗𝒔𝒂𝒕 (𝒄𝒎 𝒔⁄ ) 3.64 × 10−6 

𝜷 0.5 

𝑸𝒐𝒙,𝟎 (𝝁𝑪 𝒄𝒎𝟐⁄ ) 37 

Thickness 𝑻𝒂𝟐𝑶𝟓 (𝒏𝒎) 𝟏𝟐𝟎 𝟐𝟕𝟓 

𝒏𝒊𝒐𝒏 (𝒄𝒎−𝟑) 1.3 × 1018 5.2 × 1018 

𝒙𝑫,𝟎 (𝒏𝒎) 20 22 

 

The reported 𝜇𝑖𝑜𝑛,0 in the above table corresponds to a diffusion coefficient 𝐷(=

𝑘𝑇𝜇𝑖𝑜𝑛 𝑞𝑧⁄ ) of 1.3 × 10−13𝑐𝑚2/𝑠, which is in good agreement with the theoretically 

computed diffusion coefficient (= 3.5 × 10−13𝑐𝑚2/𝑠) for oxygen vacancy migration 

[1], and cross-verified using Chronoamperometry data of gate current that can be defined 

using the Cottrell equation [2] which has been reported elsewhere [3]. The value of 

diffusion thickness 𝑥𝐷 is obtained by matching the model results with experiment. 
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Table A2. Parameters for 𝑍𝑛𝑂 used in the 1D Poisson solver. 

Parameter Value Description 

𝑁𝑇𝐴 6.75 × 1019𝑒𝑉−1𝑐𝑚−3 Acceptor-like tail state 

𝑘𝑇𝑇𝐴 0.05 𝑒𝑉 Acceptor-like tail state slope 

𝑁𝐷𝐴 3.0 × 1016𝑒𝑉−1𝑐𝑚−3 Acceptor-like deep state 

𝑘𝑇𝐷𝐴 0.8 𝑒𝑉 Acceptor-like deep state slope 

𝑁𝐺𝐴 4 × 1018𝑒𝑉−1𝑐𝑚−3 Acceptor-like Gaussian state 

𝜇𝐺𝐴 0.5 𝑒𝑉 Mean of acceptor-like Gaussian state  

𝜎𝐺𝐴 
0.39 𝑒𝑉 

Standard deviation of acceptor-like 

Gaussian state 

𝑁𝑇𝐷 1 × 1020𝑒𝑉−1𝑐𝑚−3 Donor-like tail state 

𝑘𝑇𝑇𝐷 0.1 eV Donor-like tail state slope 

𝑁𝐷𝐷 5 × 1016𝑒𝑉−1𝑐𝑚−3 Donor-like deep state 

𝑘𝑇𝐷𝐷 0.8 eV Donor-like deep state slope 

𝑁𝐺𝐷 1 × 1019𝑒𝑉−1𝑐𝑚−3 Donor-like Gaussian state 

𝜇𝐺𝐷 0.5 𝑒𝑉 Mean of donor-like Gaussian state  

𝜎𝐺𝐷 
0.32 𝑒𝑉 

Standard deviation of donor-like 

Gaussian state 

𝑁𝐶 1𝑒19 𝑐𝑚−3 conduction band density of states 

𝑁𝑉 8𝑒16 𝑐𝑚−3 valence band density of states 

𝐸𝐺  3.35 𝑒𝑉 band gap 

𝜇𝑍𝑛𝑂 4 𝑐𝑚2/𝑉𝑠 electron mobility 

𝜖𝑍𝑛𝑂 7.5 dielectric constant 

The key factors affecting the drain current in amorphous oxide semiconductors 

(AOS) are the density of acceptor-like tail states 𝑁𝑇𝐴 and corresponding tail-state slope 

k𝑇𝐴.We have considered values which lie in the range commonly reported for 𝑍𝑛𝑂 and 

𝐼𝑛𝐺𝑎𝑍𝑛𝑂 TFTs, 1.3 × 1019 − 2.85 × 1020 𝑒𝑉−1𝑐𝑚−3 for 𝑁𝑇𝐴, and 0.030 − 0.059 𝑒𝑉 

for 𝑘𝑇𝐴 [4]–[6]. The values of acceptor- and donor- like deep states and donor-like tail 

states (𝑁𝐷𝐴, 𝑁𝐷𝐷, 𝑁𝑇𝐷) their corresponding slopes (𝑘𝑇𝐷𝐴, 𝑘𝑇𝐷𝐷, 𝑘𝑇𝑇𝐷), are adjusted from 

the values in Ref. [7] to match with experiment. Conventional techniques are unsuitable 

to extract the mobility of these transistors due to enhancement and memory effects. A 

value of 4 𝑐𝑚2/𝑉𝑠 was obtained by a fit to the drain current [8], [9].  
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