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Abstract 

700 million Indians have used solid fuels in their homes for the last 30 years, contributing 

substantially to air pollutant emissions. The Indian economy and industrial, power generation, 

and transport sectors have grown considerably over the last decade, increasing emissions of air 

pollutants. These air pollutant emissions have caused present-day concentrations of ambient PM2.5 

and O3 in India to be amongst the highest in the world. Exposure to this air pollution is the second 

leading risk factor in India, contributing one-quarter of the global disease burden attributable to 

air pollution exposure. Air pollutant emissions are predicted to grow extensively over the coming 

years in India. Despite the importance of air quality in India, it remains relatively understudied, 

and knowledge of the sources and processes causing air pollution is limited.  

This thesis aims to understand the contribution of different pollution sources to the attributable 

disease burden from ambient air pollution exposure in India and the effects of future air pollution 

control pathways. The attributable disease burden from ambient PM2.5 exposure in India is 

substantial, where large reductions in emissions will be required to reduce the health burden due 

to the non-linear exposure-response relationship. The attributable disease burden from ambient 

O3 exposure is larger than previously thought and is of similar magnitude to that from PM2.5 in 

the future. Key sources contributing to the present day disease burden from ambient PM2.5 and O3 

exposure are the emissions from the residential combustion of solid fuels, land transport, and coal 

combustion in power plants. The attributable disease burden is estimated to increase in the future 

due to population ageing and growth. Stringent air pollution control pathways are required to 

provide critical public health benefits in India in a challenging environment. A key focus should 

be to reduce the combustion of solid fuels. 
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1.  Ambient air quality and human health in India 

Air pollution exposure is a leading global risk factor (Cohen et al 2017, GBD 2016 Risk 

Factors Collaborators 2017, Indian Council of Medical Research et al 2017b, India State-Level 

Disease Burden Initiative Collaborators 2017). Exposure to air pollution is the second leading risk 

factor in India, contributing one-quarter of the global disease burden attributable to air pollution 

exposure (Cohen et al 2017, GBD 2016 Risk Factors Collaborators 2017, Indian Council of 

Medical Research et al 2017b, India State-Level Disease Burden Initiative Collaborators 2017). 

The disease burden from air pollution is costly, worsening, and disproportionally falls on 

susceptible populations (Landrigan et al 2017). Despite this importance, research on air pollution 

in India is limited and little is known about the sources and processes that contribute to air 

pollution in this region. Understanding the causes and processes behind the health impacts of air 

pollution exposure across a range of scales is critical to reduce the substantial and growing disease 

burden in India. 

1.1.   Air pollution pathway 

Exposure to air pollution is a risk factor that causes health impacts (Smith 1993, McGranahan 

and Murray 2003, U.S. Environmental Protection Agency 2009a). Epidemiological risk is the 

probability that a disease, injury, or infection will occur. The risk assessment of air pollution 

follows the air pollution pathway (Figure 1) from sources through emissions, concentrations, 

exposures, doses, to health impacts (Smith 1993, McGranahan and Murray 2003, U.S. 

Environmental Protection Agency 2009a). Sources are the origin of the pollutant, generally the 

quantity and quality of fuel used. Emissions are air pollutants released from the source and are 

characterised by the environment, transported, and transformed. Concentrations are the amount 

of an air pollutant in space and time. Exposures are concentrations of air pollutants that are 

breathed in and depend on pathways, durations, intensities, and frequencies of contact with the 

pollutant. Doses are how much of the exposure is deposited in the body. Health impacts accrue 

from doses, can be acute (short-term) or chronic (long-term), and are non-specific in that they 

have many risk factors. Monitoring and intervention can occur at any stage along this pathway. 

Health impacts are the primary risk indicators, though control measures at this stage are often too 

late and complicated due to their non-specific nature. Doses are also too late in the air pollution 

pathway and are poorly understood for many pollutants. Control measures and standards 

generally focus on sources, emissions, and concentrations, with recent efforts targeting exposures.  
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Figure 1: Air pollution pathway (Smith 1993, McGranahan and Murray 2003, U.S. 

Environmental Protection Agency 2009a). 

1.1.1.  Fundamentals of ambient air pollution 

Ambient air pollution is a complex mixture of many particles and gases. Air quality is 

generally measured by a small subset of these particles and gases. Fine particles with aerodynamic 

diameters less than or equal to 2.5 micrometres (PM2.5) and tropospheric ozone (O3) are two 

important indicators of air quality. PM2.5 is the most consistent and robust predictor of health 

effects from studies of long-term exposure to air pollution (Health Effects Institute 2018). O3 has 

been associated with increased respiratory mortality (Health Effects Institute 2018). This thesis is 

consistent with the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) when 

quantifying exposure to ambient air pollution using PM2.5 and O3 as indicators. The air quality 

community often refers to aerosol mass as particulate matter (PM).  

1.1.1.1.   Aerosols 

An aerosol is a solid or a liquid suspended in a gas. Aerosol matter are characterised by their 

size, shape, and composition (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). Aerosols span 

three orders of magnitude in size, generally categorised into modes. The nucleation mode are 

particles with a diameter less than 0.01 mm, the Aitken mode are particles sized between 0.01ï

0.1 mm, the accumulation mode are particles with diameters between 0.1ï2.5 mm, and the coarse 

mode are particles with diameter between 2.5ï10 mm. Particles less than 0.1 mm are ultrafine 

particles, less than 2.5 mm in diameter are fine particulate matter (PM2.5), and particles less than 

10 mm (PM10) combine fine and coarse particles. Figure 2 shows the size of fine and coarse PM 

relative to human hair (Guarnieri and Balmes 2014). Fine and coarse particles vary in their origin, 

transformation, removal, composition, optical properties, and health impacts (Brasseur and Jacob 

2016, Seinfeld and Pandis 2016). Aerosols are physically intricate in shape becoming more 

spherical when dissolved or aged. However, they are often assumed spherical for simplicity 

(Brasseur and Jacob 2016, Seinfeld and Pandis 2016).  
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Figure 2: The size of particulate matter (Guarnieri and Balmes 2014). 

Aerosols are chemically complex (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 

Primary aerosols are directly emitted to the atmosphere, including sea salt (NaCl), mineral dust, 

sulphate (SO4), organic carbon (OC), black carbon (BC), metals, and bio-aerosols. Primary SO4 

are from sea spray and fossil fuel combustion. Primary OC and BC are from mobile exhausts, 

wildfires, agricultural combustion, and solid fuel burning. Primary metals are from volcanoes and 

industrial processes. Primary bio-aerosols are from viruses and bacteria. Primary organic aerosol 

(POA) are directly emitted organic matter (OM). Organic aerosol (OA) reacts in the gas, particle, 

and aqueous phase. 

Secondary aerosols are formed in the atmosphere. Secondary inorganic aerosols (SIA) include 

SO4, nitrate (NO3), ammonium (NH4), ammonium sulphate (NH4)2SO4, and ammonium nitrate 

(NH4NO3). Secondary SO4 are from the oxidation of sulphur gases, e.g. sulphur dioxide (SO2) 

oxidises to sulphuric acid (H2SO4) and is neutralised by ammonia (NH3) to form (NH4)2SO4. 

Secondary NO3 are from the oxidation of nitrogen oxides (NOx) partitioning to the particle phase, 

forming NH4NO3. Secondary NH4 are from NH3 emissions from agriculture or industry. 

Secondary organic aerosols (SOA) are formed from the oxidation of volatile organic compounds 

(VOC) and semi-volatile and intermediate volatility organic compounds (S/IVOCs) to low-

volatility products that condense into the particle phase (Brasseur and Jacob 2016, Seinfeld and 

Pandis 2016). SOA formation depends on volatility, hygroscopicity, and reactivity of the VOCs 

and the reacted products. Many different organic species contribute to SOA. POA can dilute and 

evaporate forming vapours, which can react and recondense to SOA (Brasseur and Jacob 2016, 

Seinfeld and Pandis 2016). 

Important aerosol chemical and microphysical processes include nucleation, coagulation, 

condensation, gas-phase chemistry, heterogeneous chemistry, cloud interactions, dry deposition, 
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and wet removal (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). Nucleation describes new 

aerosol formation from gases. Coagulation is the process by which two particles collide to form 

one larger particle. Condensation (evaporation) is the mass exchange between gases and particles. 

Chemistry differs by phase, where heterogeneous chemistry involves the liquid- and solid-phase 

(Brasseur and Jacob 2016, Seinfeld and Pandis 2016). Cloud interactions depend on aerosol 

activation forming cloud condensation nuclei in the presence of supersaturated water vapour. Dry 

deposition is direct exchange with the surface. Wet removal is through washout below clouds and 

rainout within clouds, where particles that have activated to form cloud condensation nuclei are 

removed. 

Aerosols have a lifetime of minutes to a week, depending on particle size, and is affected by 

deposition, transport, dispersion, and chemistry. Aerosol hygroscopicity is the uptake of water, is 

affected by the composition, and has a considerable influence on optical properties (Brasseur and 

Jacob 2016, Seinfeld and Pandis 2016). Aerosols deliquesce at a relative humidity where particles 

transition from non-aqueous to aqueous (Brasseur and Jacob 2016, Seinfeld and Pandis 2016).  

Nucleation and Aitken mode aerosol are formed from condensed gas and nucleated aerosols, 

are lost through coagulation, dominate the total aerosol number, and contribute little to the total 

aerosol mass due to their small size (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 

Accumulation mode aerosol are formed from condensation and coagulation, dominating the total 

aerosol surface area and mass (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 

Accumulation aerosols are primarily lost through rainout and dry deposition. Accumulation mode 

aerosols are largely soluble, hygroscopic, and deliquescent. Accumulation mode aerosols have a 

longer lifetime and transport further distances, than ultrafine and coarse aerosols. Coarse particles 

are mainly of primary origin through mechanical or natural processes. Coarse aerosols are lost 

through dry deposition and washout (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 

Aerosols scatter and absorb radiation, primarily in the visible wavelength range, influenced by 

their size, chemical composition, and shape (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 

This interaction with radiation means aerosols cause visibility impairment and means aerosol can 

affect the climate through aerosol radiation interactions (ARI) (Intergovernmental Panel on 

Climate Change 2013). Aerosols also alter the climate indirectly by interacting with clouds, 

known as aerosol-cloud interactions (ACI) (Intergovernmental Panel on Climate Change 2013). 

Aerosol radiation interactions can lead to warming through absorption of radiation (e.g. BC) or 

cooling through scattering (e.g. OC, SO4) (Intergovernmental Panel on Climate Change 2013). 

1.1.1.2.   Ozone 

O3 is a secondary gaseous pollutant produced in the atmosphere. O3 production and loss are 

controlled by different mechanisms in the stratosphere and troposphere. Photolysis of O2 controls 

stratospheric O3 production following the Chapman mechanism (Brasseur and Jacob 2016, 
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Seinfeld and Pandis 2016). In the troposphere, where ultra-violet (UV) radiation is not energetic 

enough to photolyse oxygen (O2) directly, production of tropospheric O3 is driven by 

photochemical oxidation of VOCs and carbon monoxide (CO) in the presence of NOx. O3 

production is complex and non-linearly dependant on temperature, radiation intensity, spectral 

distribution, precursor concentrations, among many other factors (Brasseur and Jacob 2016, 

Seinfeld and Pandis 2016). NOx is emitted mainly as nitric oxide (NO). NO is oxidised to NO2 by 

organic-peroxy (RO2) or hydro-peroxy (HO2) radicals released during VOC oxidation. VOC 

oxidation is initiated mostly by reaction with hydroxyl (OH) radicals. NO2 photolysis produces 

NO and a ground-state oxygen atom, O(3P), which reacts with O2 to form O3. O3 photolysis 

produces electronically excited oxygen atoms, O(1D), which react with water vapour to produce 

the OH radical, which can then further oxidise VOCs. O3 can react with NO to produce NO2, 

which is an important O3 sink in urban areas, where NO concentrations are very high, leading to 

low O3 abundances. VOCs are biogenic and anthropogenic, including methane (CH4), alkanes, 

alkenes, aromatic hydrocarbons, carbonyl compounds, alcohols, organic peroxides, and 

halogenated organic compounds. VOC lifetime can vary from an hour to a decade (Brasseur and 

Jacob 2016, Seinfeld and Pandis 2016). 

Chemical production and loss of O3 show complex dependencies on O3 precursor 

concentrations. Isopleths are used to illustrate the dependency of O3 production of NOx and VOC 

concentrations, depicting lines of constant O3 production rate and regimes where O3 is insensitive 

to VOC abundance (NOx-limited) and relatively insensitive or inversely related to NOx abundance 

(VOC-limited) (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). The majority of the 

troposphere is NOx-limited. Biogenic and anthropogenic VOCs are important precursors in rural 

and urban areas, respectively, though O3 and precursors of O3 can be transported long distances. 

Transport of stratospheric O3 is an additional minor source to tropospheric O3. The dominant sinks 

of tropospheric O3 are photochemical loss, dry deposition, as well as direct reactions with HO2 

and OH (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 

O3 lifetime varies with altitude, latitude, and season (Brasseur and Jacob 2016, Seinfeld and 

Pandis 2016). The global-mean lifetime of O3 is 19 days, though O3 lifetime is only a few days at 

the surface of the boundary layer and a few months in the upper troposphere (Brasseur and Jacob 

2016, Seinfeld and Pandis 2016). The gradient of O3 lifetime with altitude drives increasing O3 

concentrations at higher altitudes. The air quality community is primarily concerned with O3 at 

the surface. The diurnal cycles of rural O3 concentrations are less variable as rural O3 persists 

longer than in urban areas due to less chemical scavenging from other primary pollutants. Urban 

O3 diurnal cycles have a night-time decrease relative to day-time. O3 has low aqueous solubility 

(Brasseur and Jacob 2016, Seinfeld and Pandis 2016). 
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1.1.2.  Air pollution s ources 

1.1.2.1.   Sectors 

Throughout the year in India, there are air pollutant emissions from transport (on- and off-

road), residential (cooking, lighting, and water heating), industry, power generation, diesel 

generators (including agricultural pumps and tractors), open waste burning, natural and 

anthropogenic dust (combustion, industry, and resuspended road). In winter, there are additional 

emissions from residential heating, commercial heating, and agricultural burning. There are also 

emissions from informal industrial activities including brick kilns, food operations, and 

agricultural processing (Venkataraman et al 2018). 

Residential, industrial, and power generation sectors in India all primarily combust solid fuels 

(wood, crop residue, dung, and coal). Emission factors from solid fuel use are often three orders 

of magnitude larger in residential uses relative to those in a large-scale facility, due to advanced 

combustion control, fuel quality control, post-combustion emission control systems, and 

legislative and reporting requirements (Shen et al 2010, Wang et al 2012). Power generation and 

industrial activities are key in eastern and southern India. The majority (57%) of electricity is 

produced by coal (Global Alliance for Clean Cookstoves and Dalberg Global Development 

Advisors 2013). Indian coal has low sulphur contents, high ash and moisture contents, and low 

net calorific values, with implications for SO2 and PM emissions. Approximately one-quarter of 

coal is imported into India (Sahu et al 2017). The majority of Indiaôs thermal power plants do not 

adhere to regulations, do not use flue-gas desulphurisation, and have low energy efficiencies, 

leading to high air pollutant emissions (Venkataraman et al 2018). Indiaôs brick kilns use 

predominantly traditional technologies, such as Bullôs trench kilns (76%) and clamp kilns (21%), 

using fired-brick walling materials and coal (Venkataraman et al 2018). Agricultural burning of 

solid fuels is primarily in the northwest (Punjab and Haryana). Natural dust is a strong source of 

PM in the northwest near the Thar Desert. 

The total vehicle fleet in India is currently approximately 150 million, where between 67ï82% 

are two-wheelers including scooters, motorcycles, and mopeds due to their low cost (Pandey and 

Venkataraman 2014, Guttikunda and Mohan 2014). Approximately one-sixth is from four-

wheelers including cars and jeeps, and small shares are from other modes of transport (Pandey 

and Venkataraman 2014, Guttikunda and Mohan 2014). The vehicle fleet is predominately in 

urban areas (Pandey and Venkataraman 2014, Guttikunda and Mohan 2014). There is little use of 

public vehicles, largely due to a lack of infrastructure (Venkataraman et al 2018). Between 2000 

and 2015, the number of households grew by a 1.39% per year, installed capacity of electricity 

generation grew by 6.89% per year, industrial cement production grew by 5.06% per year, 

passenger-kilometres increased by 6.54% per year, and freight-kilometres increased by 3.61% per 

year (Venkataraman et al 2018). The next section focuses on residential emissions and solid fuel 

use in detail. 



 26   

1.1.2.2.   Residential emissions and solid fuel use 

Using solid fuels to create fire is arguably the defining task in human history (Wrangham 

2010). Until approximately 1850, everyone used solid fuels for cooking (Smith 2017b). The 

fraction of the global population using solid fuels decreased to 62% in 1980 and further decreased 

to 41% in 2010 (Bonjour et al 2013). The majority of the global population now use clean fuels, 

gas and electricity, which is a sign of substantial development (Smith 2017b). However, the 

absolute number of solid fuel users has remained the same between 1980 and 2010 (approximately 

3 billion globally, with 700 million in India) (World Health Organization 2015, Bonjour et al 

2013). The absolute number of solid fuel users is important when considering absolute emissions. 

Substantial development between 1990 and 2010 halved the number of extremely poor people 

(Gapminder 2018) and many in India now have mobile phones and motorbikes (Smith and Sagar 

2014). However, most of the Indian population earn between 2 and 8 dollars per day (Gapminder 

2018), still using traditional Indian stoves (Chulhas) with solid biomass (primarily brushwood) 

(Smith and Sagar 2014). Energy consumption per capita in India is 25% of the global average. 

This poverty is a fundamental reason for solid fuel use. 

As the absolute number of solid fuel users has remained the same for the last 30 years, globally 

and in India, waiting for people to come out of poverty has not solved the issue of solid fuel use. 

Solid fuel interventions are implemented to address the ongoing issue of solid fuel use. The goal 

of solid fuel interventions is to either make the available clean i.e. to combust biomass cleanly in 

advanced stoves (move from the bottom left to the top left of the energy ladder, Figure 3), or to 

make the clean available i.e. to make clean fuels affordable (move from the top right to the top 

left of the energy ladder, Figure 3) (Smith and Sagar 2014). Both types of solid fuel intervention 

aim to improve population health before they become wealthy. 



 27   

 

Figure 3: The energy ladder (World Health Organization 2006b, Gordon et al 2014). 

Indiaôs National Programme on Improved Chulha (NPIC) introduced 32 million improved 

cookstoves into rural areas between 1984 and 2001, 27% of the programmes aim (Hanbar and 

Karve 2002, Smith et al 1993). The Indian NPIC focused on fuel efficiency, as the benefits of 

clean combustion were not fully understood, and is cited as failing due to a top-down approach, 

with little feedback, and poor quality materials (Gifford 2010, Venkataraman et al 2010). The 

NPIC improved cookstoves often had higher air pollutant emissions and similar efficiencies to 

the traditional stoves they were replacing (Smith 1989). 

Two recent cross-sectional studies (defined population at a single point in time) evaluating the 

health benefits of clean fuels and improved stoves in India found improved respiratory and 

cardiovascular effects (Lewis et al 2017, Sukhsohale et al 2013). Randomised control trials 

(RCT), the gold standard of epidemiological evidence, have been used to study the impacts of 

solid fuel interventions on reducing air pollutant exposures, mostly the instances of lower 

respiratory infection (LRI) in young children (Gordon et al 2017, Jack et al 2015, Chen et al 2016, 

Schilmann et al 2015, Smith et al 2011, Mortimer et al 2017, Tielsch et al 2016, Hanna et al 

2016, Alexander et al 2017, Aung et al 2018). Hanna et al (2016) found no effect of improved 

cookstove use in India on any health indicators measured, due to irregular and inappropriate stove 

use, failed maintenance, and declined usage over time. Aung et al (2018) found improved 

cookstoves lowered systolic and diastolic blood pressure among exclusive users of the improved 

cookstove in India, while the confidence intervals included zero. Cookstove stacking (using 

multiple fuels or stoves at once) worsened systolic and diastolic blood pressure (Aung et al 2018). 

Stove stacking can lead to higher emissions than before the intervention, worsening the health 
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burden (Pillarisetti et al 2014, Masera et al 2000, 2007, Ruiz-Mercado et al 2011, Pine et al 2011, 

Gordon et al 2014). 

However, if correctly implemented solid fuel interventions can have large health, climate, and 

economic co-benefits (Smith et al 2014b, Wilkinson et al 2009, Smith and Haigler 2008). 

Wilkinson et al (2009) found 150 million advanced cookstoves in India could avoid 2 million 

premature mortalities, 55 million disability-adjusted life years (DALYs), and emissions of 0.5ï

1.0 billion tons carbon dioxide (CO2) equivalent over ten years. Venkataraman et al (2010) found 

clean household fuel in India could avoid 570,000 premature mortalities each year, one-third of 

national BC emissions, and 4% of all national greenhouse gas emissions. 

Figure 4 shows the recent trends in solid fuel use in India (Energy Sector Management 

Assistance Program and Global Alliance for Clean Cookstoves 2015, International Energy 

Agency 2016a, Global Alliance for Clean Cookstoves and Dalberg Global Development Advisors 

2013, Jain et al 2015, Government of India 2011). Two-thirds of Indian households primarily use 

solid fuels, 26% of urban households compared to 87% of rural households. The rate of solid fuel 

use has remained high in rural areas since 1990. There has been a substantial conversion from 

solid fuel use to liquefied petroleum gas (LPG) in urban areas between 1994 and 2010, where 

LPG use has increased from 30% to 65% (Energy Sector Management Assistance Program and 

Global Alliance for Clean Cookstoves 2015, International Energy Agency 2016a, Global Alliance 

for Clean Cookstoves and Dalberg Global Development Advisors 2013, Jain et al 2015, 

Government of India 2011). LPG growth in India is currently 6% per year, and piped natural gas 

(PNG) (gaseous mixtures of hydrocarbons rich in methane) is growing at 11% annually (Smith 

2017b). LPG growth in India has been ongoing for decades, though only enough to cover the 

growth of the middle class (Smith 2017a). Of Indiaôs 700 million solid fuel users, approximately 

90% use traditional stoves. Solid fuel use is concentrated in the Indo-Gangetic Plain (IGP), and 

ten states account for 75% of all solid fuel use in India (Energy Sector Management Assistance 

Program and Global Alliance for Clean Cookstoves 2015, International Energy Agency 2016a, 

Global Alliance for Clean Cookstoves and Dalberg Global Development Advisors 2013, Jain et 

al 2015, Government of India 2011). Primary fuel use data does not account for fuel stacking. 

Other fuels represent electricity and biogas. Two-thirds of the Indian population has electricity 

access, 55% in rural areas, and 93% in urban areas (Global Alliance for Clean Cookstoves and 

Dalberg Global Development Advisors 2013). In summary, two-thirds of Indian households 

primarily use solid fuels, mostly wood in traditional stoves in rural areas within the IGP. 
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Figure 4: Solid fuel use in India. (a) Primary fuel use in India in 2011 in urban areas, rural 

areas, and overall. (b) Solid fuel use overall and in the top ten contributing states. (c) Solid fuel 

use per state as a percentage. (d) Number of households primarily using solid fuels. Change in 

primary fuel use between 1994 and 2010 in (e) rural areas and (f) urban areas (Energy Sector 

Management Assistance Program and Global Alliance for Clean Cookstoves 2015, International 

Energy Agency 2016a, Global Alliance for Clean Cookstoves and Dalberg Global Development 

Advisors 2013, Jain et al 2015, Government of India 2011). 
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The combustion of solid fuels is incomplete, leading to substantial emissions of air pollutants 

(Chafe et al 2014a, Lelieveld et al 2015, Silva et al 2016a, Butt et al 2016, Gordon et al 2014, 

Naeher et al 2007, Smith et al 2000b). The incomplete combustion is due to low combustion 

efficiencies, low-temperature combustion, and that the combustion gases are not within the 

combustion chamber long enough for complete combustion to occur (Jetter and Kariher 2009, 

Jetter et al 2012a, Grieshop et al 2011, Huang et al 2015, Reddy and Venkataraman 2002, Fuzzi 

et al 2015, Fleming et al 2018a). These air pollutants impact human health (Edwards et al 2014, 

Smith 2013, Gordon et al 2014), climate (Unger et al 2010, Butt et al 2016, Aunan et al 2009, 

Huang et al 2018), environment (Bailis et al 2015, Sovacool 2012, Mwampamba 2007), and 

human well-being (World Health Organization 2016b, Pachauri et al 2013, Rosenthal et al 2018). 

Solid fuels mark a fundamental divide on the energy ladder, representing a large difference in 

emissions of incomplete combustion pollutants (Smith et al 2000a, Jetter et al 2012a).  

Many people use improved cookstoves as opposed, or in addition, to traditional cookstoves. 

Globally, one-third of solid fuel users have improved cookstoves, with higher use in China 

(~85%) and lower use in India (~10%) (Energy Sector Management Assistance Program and 

Global Alliance for Clean Cookstoves 2015). Improved cookstoves encompass a wide variety of 

physical characteristics and performances, including combustion chamber insulation, chimneys, 

and fans. Many improved designs were developed before technical standards were in place, 

leading to high emissions (Hutton et al 2006, Energy Sector Management Assistance Program 

and Global Alliance for Clean Cookstoves 2015, Roden et al 2009, Kar et al 2012, Jetter and 

Kariher 2009, Smith et al 2000b, Winijkul et al 2016). Some improved cookstoves have been 

found to increase BC emissions relative to traditional stoves (Grieshop et al 2017), and these BC 

differences are not currently accounted for within carbon market accounts (Aung et al 2016). The 

increase in BC could potentially worsen health impacts if BC is found to be more toxic than total 

PM mass, as suggested by Smith et al (2009a) and Baumgartner et al (2014), coupled to 

worsening climate impacts through BC absorbing solar radiation. Chimneys and fans temporarily 

reduce household exposures by moving air pollutants outside (Sambandam et al 2015, Martin et 

al 2013, Venkataraman et al 2010). The majority (95%) of improved cookstoves in India are 

improved chimney Chulha stoves (Energy Sector Management Assistance Program and Global 

Alliance for Clean Cookstoves 2015). Field studies of improved cookstoves vary considerably to 

laboratory studies (Edwards et al 2014, Smith et al 2007, Roden et al 2009, Sambandam et al 

2015, Grieshop et al 2017, Kar et al 2012, Patange et al 2015, Muralidharan et al 2015). The 

variability is due to non-ideal user behaviour, variations in fuel composition, type, size, moisture, 

and combinations, cooking patterns, situational and measurement variabilities, seasonal patterns, 

and stove deterioration (Edwards et al 2014, Venkataraman et al 2010, LôOrange et al 2015). It 

is very difficult  to burn biomass in small, low-cost cookstoves cleanly enough to meet the required 

reductions in emissions to improve health (see non-linear health response to pollution in Section 

2.3). 
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Kerosene, a liquid fuel, is often used in India for lighting by rural populations and those in the 

lowest socioeconomic decile (Klimont et al 2017). Kerosene can increase specific pollutant 

emissions relative to solid fuels (Bates and Bruce 2014). Gas fuels, in particular LPG, are the 

primary alternative to traditional solid fuels in India, which improve combustion efficiencies and 

reduce emissions, though are limited by the high upfront connection cost, high recurring fuel cost, 

and lack of local fuel distribution (Smith 2015, S. Mehta 2003, Smith et al 2000b, Edwards et al 

2014, Ryu et al 2006, Smith et al 2000a, Smith and Sagar 2014, Jetter et al 2012b, Williams et al 

2015, Jain et al 2015). High fuel costs are often overcome by government subsidies 

(Venkataraman et al 2010), though only 7% of fossil fuel subsidies have been historically 

distributed to the lowest household income quintile groups (Arze del Granado et al 2012, Smith 

and Sagar 2015). Many people use more than one fuel depending on price, season, and availability 

(Sinton et al 2004). Efficient, cheap, and portable electric induction cookstoves are promoted in 

India (Smith 2014). 

1.1.3.  Emissions 

1.1.3.1.   Indian emissions 

Many studies have analysed the sectoral contributions to emissions in India (Venkataraman et 

al 2018, Kumar et al 2012b, Sahu et al 2017, Saikawa et al 2017, Vadrevu et al 2017, Mittal et 

al 2015). The most comprehensive emission inventory for India, by Venkataraman et al (2018), 

found present-day PM2.5, BC, OC, and NMVOC emissions are primarily from residential solid 

fuel, industries, and agricultural burning, while SO2 and NOx emissions are primarily from 

industries and power generation using coal and land transport (Figure 5). 

 

Figure 5: Indian emissions of PM and precursor gases for 2015 by sector (Mt yr-1) 

(Venkataraman et al 2018). Emissions of NOx are NO. 
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Residential emissions only account for 10% of global energy use (Chum et al 2011) but 

contribute 25ï55% of BC and 72ï78% of OC emissions globally (Bond et al 2013, Lu et al 2011, 

Huang et al 2015). In India, residential emissions account for 45ï86% of BC emissions and 68ï

97% of OC emissions (Bond et al 2013, Lu et al 2011, Huang et al 2015, Paliwal et al 2016). All 

species had increased emissions in India over the last decade (Sahu et al 2017, Saikawa et al 2017, 

Sadavarte and Venkataraman 2014, Pandey et al 2014). Over the last two decades, anthropogenic 

emissions of BC and OC in India have been rapidly increasing (Lu et al 2011), with emissions 

factors for BC from residential combustion remaining the same (Masera et al 2000, Huang et al 

2015). 

Emissions in India are particularly uncertain (Saikawa et al 2017). Residential emissions are 

generally based on a combination of fuel consumption rates and emissions factors (Butt et al 

2016, Smith et al 2014a), which are uncertain primarily due to emissions factors varying up to 

three orders of magnitude from fuel type, stove, fuel quality, combustion, and operating 

conditions (Roden et al 2009, Kodros et al 2015, Bond et al 2004, Jetter et al 2012b, Li et al 

2009, LôOrange et al 2012, Junker and Liousse 2008). The fuel type and activity data within 

residential emission inventories can also vary widely (Tao et al 2018). The uncertainty in 

published estimates for regional scale BC and OC emissions is typically a factor of two to five 

(Lu et al 2011, Kulkarni et al 2015, Winijkul et al 2016, Li et al 2016a). Aerosol optical depth 

(AOD), BC, and OC are often underestimated by models in regions with high residential 

emissions, such as India (Bond et al 2013, Butt et al 2016, Pan et al 2015). The uncertainty is 

potentially due to discrepancies in activity levels, technologies in use, and emission factors 

(Ramachandran et al 2015, Zhong et al 2016a). SOA precursor emissions are uncertain in India 

due to a lack of speciation measurements (Roden et al 2006, Martinsson et al 2015, Jayarathne et 

al 2018). The emission inventory uncertainty is important considering India is rapidly developing. 

The large uncertainty in residential emissions, particularly the relative emissions of BC and OC, 

leads to uncertainty in the net radiative forcing from residential emissions, where the sign of the 

net forcing is unknown (Butt et al 2016, Unger et al 2010, Kodros et al 2015, Aunan et al 2009, 

Bauer et al 2010, Bond et al 2013, Jacobson 2010). The uncertainty in sign poses doubt over the 

extent of climate co-benefits achieved through changes in this sector (Shindell et al 2012, Huang 

et al 2015, Fuzzi et al 2015, Gao et al 2018). 

1.1.3.2.   Air pollution control policies in India 

India has many national and sub-national policies aimed at addressing the health burden from 

air pollution (Sagar et al 2016). Table 1 is a non-exhaustive list of policies in place or being 

discussed within Indian ministries and agencies relating to air pollution control in India. For the 

first time, many of these policies are due to be unified within the upcoming National Clean Air 

Programme (NCAP) (Ministry of Environment Forests and Climate Change 2018). The NCAP 

provides a framework for air quality management with the aim of attaining Indian air quality 
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standards throughout the country. The NCAP identifies 100 non-attainment cities that will be 

required to create their own action plans. The NCAP specifies the need to increase the number of 

manual and continuous monitoring stations, especially in rural areas, with PM2.5 monitoring 

increasing from 67 to 1,000 stations in 2 years. This thesis will directly compliment the NCAP 

by providing source-specific estimates of ambient air quality and the exposure-associated health 

affects at high-resolution in India. 

The Ministry of Health and Family Welfare plays a key role with new targets based on the air 

pollution pathway aimed at providing the most significant exposure reductions, instead of only 

reducing pollutant concentrations (Ministry of Health and Family Welfare 2015a). The focus on 

exposures is important as it considers both ambient and household air pollution, and accounts for 

the large variations in intake fraction (U.S. National Research Council 2012). The Ministry of 

Finance has committed to provide clean gas for cooking to 50 million households by 2019 

(Ministry of Finance 2016). The Ministry of New and Renewable Energy launched the National 

Biomass Cookstove Initiative (NBCI) in 2009 to promote improved cookstoves utilising carbon-

finance to scale (Global Alliance for Clean Cookstoves and Dalberg Global Development 

Advisors 2013). NBCI aims to provide 10.5 million improved cookstoves by 2022, primarily to 

rural households. A range of 41 improved cookstoves approved by the Ministry of New and 

Renewable Energy have been distributed since 2013. However, many homes remain using 

traditional stoves post-intervention resulting in unrealised air pollutant reductions (Aung et al 

2016, Pope et al 2017). In 2009, the Rajiv Gandhi Gramin LPG Vitran Yojana (RGGLVY) was 

initiated by the Government of India to increase LPG coverage in rural areas. The RGGLVY 

scheme commissioned 10,000 connections by late 2014 but was discontinued in 2015 (Tripathi et 

al 2015). 

Since 2015, the Ministry of Petroleum and Natural Gas alongside three major oil companies 

have initiated three programmes to promote LPG to the poor (Mittal et al 2017), addressing the 

700 million solid fuel users caught in the Chulha trap (Smith 2017a). The Pratyaksh Hanstantrit 

Labh (PAHAL) (Ministry of Petroleum and Natural Gas 2018c) scheme directly pays fuel 

subsidies into peopleôs bank accounts, meaning that all LPG is now sold at international rates, 

substantially reducing diversion of LPG to the non-household sector (Smith 2017b). The Pradhan 

Mantri Ujjwala Yojana (Ujjwala) (Ministry of Petroleum and Natural Gas 2018a) scheme 

launched in 2016 aims to provide gas connections to 80 million poor households by March 2020 

and has already provided 50 million connections as of August 2018 (Dabadge et al 2018, Ministry 

of Petroleum and Natural Gas 2018b). Connections here specifically mean a formal account with 

a distributor covering a deposit to then access the subsidised LPG (Goldemberg et al 2018). There 

is uncertainty regarding the continued use of LPG post connection due to higher fuel prices 

(Kishore 2017). The Give it Up scheme was designed to persuade middle-class households to give 

up their fuel subsidies to redirect them to poor households, reaching over 10 million households 
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by late 2017 (Government of India 2018). The LPG growth rate in India continues to be 6%, 

though for the poor populations too, which is twice the previous rate (Smith 2017a). The Indian 

government aims to provide 10 million PNG connections by 2019, to free up LPG connections 

for the poor (Smith 2017a). India aims to provide clean cooking to 80% of all households by 2019, 

and 90% by the early 2020ôs (Goldemberg et al 2018). To emphasise, clean here refers to 

exposure-associated health impacts, however, replacing solid fuels with LPG results in minor CO2 

emissions (Haines et al 2017, Smith 2014). The Ministry of Power launched the Deen Dayal 

Upadhyaya Gram Jyoti Yojana (DDUGJY) in 2015 to provide electricity to rural households. 

India is involved in many global policies and commitments to reduce the disease burden from 

air pollution. The main aims of Indiaôs Intended Nationally Defined Contribution (INDC) under 

the United Nations Framework Convention on Climate Change is to achieve a 40% share of 

electricity generation from renewable sources by 2030, with 175 GW of renewable energy by 

2022, and to reduce PM emission intensity by 33ï35% by 2030 (Government of India 2015). 

Indiaôs INDCs include stricter emission standards for desulphurisation (Ministry of Environment 

Forests and Climate Change 2015b), de-NOx technologies in power generation (Ministry of 

Environment Forests and Climate Change 2015b), growth in public transport (National Transport 

Development Policy Committee 2014, National Institution for Transforming India 2015), tighter 

vehicle emission standards (Ministry of Road Transport and Highways 2016b, Government of 

India 2014), and improved energy efficiency in industry (Ministry of Environment Forests and 

Climate Change 2015b) and power generation (Ministry of Power 2015). 

Key global policies including India are the air pollution-related sustainable development goals 

(SDGs) (World Health Organization 2016c), including aiming to eradicate extreme poverty for 

all people everywhere (target 1.1), to end preventable deaths of children under 5 years of age 

(targets 1.4 and 3.2), to reduce hunger and increase agricultural productivity (target 2.3), to reduce 

premature mortality from non-communicable diseases (NCDs) by one third through prevention 

(target 3.4), to reduce the disease burden from air pollution (target 3.9), to provide universal 

access to clean household energy (target 7.1), to clean industrial and technological processes 

(target 9.4), to provide safe, affordable, accessible, and sustainable transport (target 11.2), to 

improve urban air quality (target 11.6), to provide benefits from reduced climate forcing (goal 

13), and reducing deforestation by eliminating domestic solid fuel use (target 15.2) (United 

Nations 2015, Haines et al 2017). India is part of the WHO South-East Asia Region who has the 

target of a 50% reduction in the proportion of households primarily using solid fuels by 2025 

(World Health Organization South East Asia Region 2013). 
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Table 1: Recent air pollution related policies in place or discussed within Indian ministries 

and agencies (Sagar et al 2016, Ministry of Finance 2016, Global Alliance for Clean Cookstoves 

and Dalberg Global Development Advisors 2013, Ministry of Petroleum and Natural Gas 2018c, 

Smith 2017b, Ministry of Petroleum and Natural Gas 2018a, Ministry of Environment and Forests 

2009, 2018, Forest Survey of India 2017, Nain Gill 2010, Ministry of Environment Forests and 

Climate Change 2015a, Ministry of Road Transport and Highways 2016a, Government of India 

2015, Ministry of Environment Forests and Climate Change 2015b, National Transport 

Development Policy Committee 2014, National Institution for Transforming India 2015, Ministry 

of Road Transport and Highways 2016b, Government of India 2014, Ministry of Power 2015, 

Ministry of New and Renewable Energy 2010, National Institution for Transforming India 2017, 

Ministry of Environment Forests and Climate Change 2018). 

Ministry  Air pollution related policy  

Ministry of 

Agriculture  
Policies to promote the varied use of crop residue to prevent burning. 

Ministry of Earth 

Sciences 

System of Air Quality and Weather Forecasting And Research 

(SAFAR) to inform, forecast, and increase awareness. 

National Air Quality Index (NAQI) qualitative scale of six pollutants. 

Ministry of 

Environment, 

Forest and Climate 

Change 

National Clean Air Programme (NCAP). 

Increase share of electricity generation from renewable sources. 

Stricter emission standards for desulphurisation. 

De-NOx technologies in power generation. 

Improved industrial energy efficiency. 

Reduce PM emission intensity. 

Measure multiple air pollutants and meteorology through the CPCB. 

Enforce Indian National Ambient Air Quality Standards (NAAQS). 

The New Environment Protection Amendment Rules. 

Continuous emission monitoring systems. 

Implementation of environment impact assessments on industry. 

Enforce the banning of agricultural and trash burning through the 

National Green Tribunal Act. 

Emission standards for the brick manufacturing industry. 

Ministry of Finance 
Estimate the cost of health impact from air pollution exposure. 

Provide clean gas for cooking to 50 million households by 2019. 

Ministry of Health 

and Family Welfare 

New targets aimed at the most significant exposure reductions. 

Tackle total pollution, considering both ambient and household. 
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Ministry of Heavy 

Industries and 

Public Enterprises 

Faster adoption and manufacturing of hybrid and electric vehicles. 

Ministry of Human 

Resource 

Development 

Ensure regular check-ups for non-communicable diseases of children. 

Include the health impacts of air pollution in the school curriculum. 

Ministry of Labour 

and Employment 

Ensure regular check-ups for non-communicable diseases of workers. 

Strengthen hospital capacity to cater for non-communicable diseases. 

Ministry of Micro, 

Small and Medium 

Enterprises 

Zero Effect, Zero Defect campaign to increase efficiency, pollution 

control, and use of renewable energy. 

Ministry of New 

and Renewable 

Energy 

Launched the NBCI in 2009 to provide 10.5 million improved 

cookstoves by 2022, primarily to rural households. 

Increase in solar and electric lighting. 

Support Integrated Rural Energy Programme on household pollution. 

Develop a national policy for clean biofuels. 

Ministry of 

Petroleum and 

Natural Gas 

PAHAL scheme directly pays subsidies into peopleôs banks. 

Ujjwala to provide gas connections. 

The Give it Up scheme to persuade middle-class households to give up 

their fuel subsidies to redirect them to poor households. 

Provide 10 million PNG connections by 2019. 

Ministry of Power 

National Mission for Enhanced Energy Efficiency. 

DDUGJY to provide electricity to rural households 

Improved energy efficiency through Perform, Achieve, and Trade. 

The Fly Ash Utilisation Policy. 

Promote improved cookstoves. 

Ministry of Road 

Transport and 

Highways 

Growth in public and electric transport. 

Tighter vehicle emission standards. 

Bharat VI standards reducing emissions from buses and trucks. 

Ministry of Rural 

Development 
Promote clean air guidelines. 

Ministry of Steel Reduce anthropogenic dust emissions. 

Ministry of Urban 

Development 

Disincentives for diesel generators.  

Enforcement of the ban on trash burning. 

Ministry of Women 

and Child 

Development 

Promote awareness of air pollution from solid fuel use. 
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1.1.4.  Concentrations 

1.1.4.1.   Present day air pollutant concentrations in India 

An increasing share of the global population is exposed to poor air quality, being driven up by 

increasing ambient PM2.5 concentrations rather than changes in population (van Donkelaar et al 

2015, Brauer et al 2016, Shaddick et al 2018b, Cohen et al 2017, GBD 2016 Risk Factors 

Collaborators 2017). The Indian population is exposed to very high ambient PM2.5 concentrations 

with annual-mean concentrations of up to 150 mg m-3 in the Indo-Gangetic Plain (IGP) (Ministry 

of Environment and Forests 2018, Conibear et al 2018a) and episodic winter concentrations 

regularly reaching 800 mg m-3 (Ministry of Environment and Forests 2018). These concentrations 

are 15 and 32 times larger than the WHO Air Quality Guideline (AQG), respectively (World 

Health Organization 2006a). Fourteen of the top fifteen most polluted cities in the world regarding 

ambient PM2.5 concentrations are in India (World Health Organization 2018a). Indian cities 

entering the most polluted cities list is primarily a consequence of the introduction of air quality 

monitoring. O3 concentrations in India often exceed the WHO daily maximum 8-hour mean O3 

concentration of 50 parts per billion (ppb). 

Global ambient PM2.5 and O3 concentrations from the GBD are in Figures 6 and 7, respectively. 

Population-weighted annual ambient PM2.5 concentrations in India have increased by 27% from 

60 mg m-3 in 1990 to 76 mg m-3 in 2016 (Figure 6) (Health Effects Institute 2018). Ambient PM2.5 

concentrations in northern India are amongst the highest in the world (Figure 6a). Daily-mean 

household PM2.5 concentrations in India can exceed 1,500 mg m-3, with maximums reaching 5,000 

mg m-3 (Balakrishnan et al 2013, Matawle et al 2017, Balakrishnan et al 2014b, World Health 

Organization 2014b, Smith 2013). Population-weighted seasonal ambient O3 concentrations in 

India have increased by 27% from 62 ppb in 1990 to 77 ppb in 2016 (Health Effects Institute 

2018). The large ambient O3 concentrations in India are similar to those found in many other 

countries in the world (Figure 7). For reference, 1 ppb of O3 is approximately equal to 2 mg mï3 

(Fleming et al 2018b).  
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Figure 6: Annual-mean ambient PM2.5 concentrations from the Global Burden of Diseases, 

Injuries, and Risk Factors Study (GBD) 2016 using the data integration model for air quality 

(DIMAQ) (Shaddick et al 2018b, Cohen et al 2017, GBD 2016 Risk Factors Collaborators 2017). 

(a) 2016. (b) 2015. (c) 2014. (d) 2013. (e) 2012. (f) 2011. (g) 2010. (h) 2005. (i) 2000. (j) 1995. 

(k) 1990. 

 

Figure 7: Seasonal ambient O3 concentrations from the GBD2013 (GBD 2013 Risk Factors 

Collaborators 2015, Brauer et al 2016). Calculated as the maximum running 3-month average of 

daily 1-hour maximum values. 

PM2.5 concentrations within India are highest in the IGP (Henriksson et al 2011, David et al 

2018). The IGP, also known as the northern India river plain, is a huge fertile plain encompassing 
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eastern Pakistan, north and east India, and Bangladesh, via the Indus, Ganges, and Brahmaputra 

rivers, with the Himalayas to the north. The IGP is home to half of the Indian population, over 

700 million people (Tiwari et al 2016), mostly combusting solid fuels for their energy needs 

(Paliwal et al 2016). Aerosol loadings in the IGP can be 5ï8 times higher than outside the region, 

with aerosol optical depth (AOD) regularly over 1, and PM2.5 concentrations over 140 mg m-3 

(Nair et al 2007, Chowdhury and Dey 2016, Brauer et al 2012, Anenberg et al 2010, van 

Donkelaar et al 2016, Henriksson et al 2011, Kumar et al 2014b, Apte et al 2015a, Dey and Di 

Girolamo 2010, Ramachandran and Cherian 2008, Jethva et al 2007, Tiwari et al 2016). There is 

an increasing trend in AOD across India, consistent with the trend in PM2.5 (Moorthy et al 2013a, 

Moorthy 2016, Satheesh et al 2002, 2008). 

Natural as well as anthropogenic sources impact aerosol concentrations in India. The major 

natural aerosol over India is dust from the arid and semi-arid regions of southwest Asia and the 

Thar Desert in northwest India (David et al 2018, Dey et al 2004a, Pan et al 2015, Govardhan et 

al 2015, Sharma and Dikshit 2016), particularly in the summer (JJA) due to higher wind speeds 

(Satheesh et al 2002, Kaufman et al 2002, Satheesh et al 2008, Moorthy 2016, Henriksson et al 

2011, Adhikary et al 2007, Ramanathan et al 2001, Moorthy et al 2013a, Leon et al 2001, Cherian 

et al 2013, Chin et al 2009, Streets et al 2009, Kumar et al 2014b, Kharol et al 2011, Prasad and 

Singh 2007b). Pre-monsoon (MAM) dust storms in north India can increase AOD by more than 

50%, contributing up to 500 mg m-3
 to surface PM2.5 concentrations (Prasad and Singh 2007a, Dey 

et al 2004b, Kumar et al 2014a). Natural aerosols are mostly in areas with low population 

densities and are coarser in size relative to anthropogenic aerosols, reducing their health impacts 

(Henriksson et al 2011). Anthropogenic aerosol concentrations are maximum in the winter (DJF), 

due to increased emissions from residential solid fuel use and coal-fired power plants 

(International Energy Agency 2016a, Choudhry et al 2012, Singh et al 2004, Karagulian et al 

2015), less efficient wet removal, and lower boundary layer heights (Moorthy et al 2013a, 

Satheesh et al 2002, 2008, Moorthy 2016, Henriksson et al 2011, Adhikary et al 2007, 

Ramanathan et al 2001, Kaufman et al 2002, Leon et al 2001).  

Agricultural fires are important aerosol source in the spring (MAM) and post-monsoon (ON), 

especially in the northwest IGP (Sharma and Dikshit 2016, Reddy and Venkataraman 2002, Jena 

et al 2015b, Zhong et al 2016b, Vadrevu et al 2013, 2011, Badarinath et al 2009, Sharma et al 

2010, Pan et al 2015, Rajput et al 2014, Jethva et al 2018, Mittal et al 2009, Mishra and Shibata 

2012, Kaskaoutis et al 2014, Liu et al 2018, Cusworth et al 2018). The post-monsoon agricultural 

burning, although officially banned through the National Green Tribunal Act of 2010 (Nain Gill 

2010), generally occurs for a three-week period in late October to early November. This period 

coincides with weak winds, low boundary layer heights, and stagnation (Mishra and Shibata 2012, 

Singh and Kaskaoutis 2014), often resulting in serious air pollution episodes. The annual festival 

of Diwali coincides with the post-monsoon agricultural burning and is known to increase ambient 
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PM2.5 concentrations substantially (Nasir and Brahmaiah 2015, Pal et al 2014, Kumar et al 2016, 

Chauhan and Singh 2017).  

There has been limited quantifications of secondary PM2.5 in India (Pant and Harrison 2012, 

Pant et al 2016). Some studies have focused on specific aerosol components in specific Indian 

cities, finding 20ï68% of PM2.5 is attributed to secondary OC (Ram and Sarin 2010, Pant et al 

2015, Villalobos et al 2015, Ram and Sarin 2011). Inorganic aerosols contribute heavily to PM2.5 

throughout most of India, such as SO4 in the western IGP and northern India, especially during 

winter (Venkataraman et al 2018, Sadavarte et al 2016, David et al 2018, Kumar and Sunder 

Raman 2016, Rastogi et al 2016, Ram and Sarin 2011). SOA concentrations are high in the IGP 

and eastern India, especially during the daytime (David et al 2018, Ram and Sarin 2011, Rastogi 

et al 2016). SOA concentrations from biomass burning sources are large in eastern India in the 

spring and the northwest IGP in autumn (David et al 2018). BC and OC concentrations are high 

over the IGP and northern India, especially in winter and at night (Ram and Sarin 2011, 

Venkataraman et al 2018, Sadavarte et al 2016). OC concentrations are often much larger than 

BC concentrations. NH4 and NO3 concentrations are large across the northwest IGP in autumn, 

and NO3 concentrations are large in the summer across much of India. Large dust concentrations 

are found in west and northern India (David et al 2018). 

1.1.4.2.   Meteorological and geographical impacts on Indian air pollution 

The complex geography, meteorology, and topography of India influence air quality through 

changing ventilation, dilution, washout, photochemical reaction rates, dust emissions, biogenic 

emissions, deposition, atmospheric circulation, stagnation frequency, among other influences 

(Jacob and Winner 2009, Fiore et al 2012, Moorthy 2016, Kumar et al 2015a, Guttikunda and 

Gurjar 2012, West et al 2009b, Lawrence and Lelieveld 2010, Kaufman et al 2002, Pang et al 

2009, Zhang et al 2015, Han et al 2015). Seasons are categorised by winter (DJF), spring (MAM), 

summer (JJA), and autumn (SON). The summer monsoon season is characterised by the 

northward migration of the intertropical convergence zone (ITCZ) across the Indian Ocean, where 

onshore winds provide moisture from the ocean over land, leading to 70ï80% of the annual 

precipitation (Dixit and Tandon 2016, Bollasina et al 2011). The winter monsoon season is 

characterised by offshore winds bringing dry conditions and transporting aerosols from land to 

ocean (Lawrence and Lelieveld 2010). The climate classifications of India are equatorial in the 

south, changing to arid, warm temperate, snow, and polar further north (Kottek et al 2006). 

Temperatures are largely high, apart from in the far north (Kottek et al 2006). 

In summer, large-scale precipitation (washout), strong winds (entrainment), and large 

boundary layer heights (dilution) lead to aerosol concentration minima (Kumar et al 2015c, 

Tiwari et al 2016). In winter, there is little rain, weak winds, low boundary layers, and temperature 

inversions trapping pollution, leading to aerosol concentration maxima (Joshi et al 2016, Singh 

et al 2004, Moorthy et al 2005, Subramanian 2016, Yu et al 2011). There are stronger seasonal 
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variations in aerosol concentrations over India than interannual variations (Moorthy et al 2001, 

Joshi et al 2016, Henriksson et al 2011, Verma 2015, Lodhi et al 2013, Ramachandran and 

Cherian 2008, Kedia et al 2014). Air pollution in the IGP is often trapped by shallow atmospheric 

boundary layers and the topography of the Himalayas and is rarely influenced by marine inflow 

or the relatively cleaner air in the south (Kar et al 2010, David et al 2018). The prevailing 

northwesterly winds transport air pollution from the northwest IGP to the eastern IGP (David et 

al 2018). High O3 concentrations are often found during summer high-pressure systems when 

reduced wind speed and cloud cover develop stable conditions and reduce the mixing of O3 

precursors (U.S. Environmental Protection Agency 2013b). 

Land use change influences air quality (Vadrevu et al 2017, Heald and Spracklen 2015). 

Substantial areas of India are cropland, with some forest, shrubland, and barren land. The area of 

harvested agriculture has recently stagnated, while there has been continual large growth in 

nitrogen fertiliser use across South Asia (Vadrevu et al 2017, Xu et al 2018). There has been large 

(and often unplanned) urban growth in India, for example, the population of Delhi has doubled 

since 2000 to 22 million people, and is projected to further increase by 50% by 2050 

(Subramanian 2016).  

India has experienced large reductions in forest cover between 1930 and the mid-1990ôs, 

mainly attributed to the expansion of agriculture for the growing population (Sudhakar Reddy et 

al 2016). In the 1990ôs, government initiatives reduced the rates of forest loss, largely because of 

afforestation, reforestation, and tree plantations (Food and Agriculture Organization of the United 

Nations 2012). The forest survey of India from the Ministry of Environment and Forest reports 

recent net gains in forest cover (Forest Survey of India 2017). The net gains in forest cover do not 

differentiate between natural forests and plantations (Puyravaud et al 2010). Since 2000 in India, 

natural forests have decreased (Gregersen et al 2011, Sudhakar Reddy et al 2016, Ravindranath 

et al 2012, Hansen et al 2013) and plantations have increased (Food and Agriculture Organization 

of the United Nations 2012). Deforestation is concentrated in the northeast of India (Sudhakar 

Reddy et al 2016). A strong driver for the reduction in natural forests is solid fuel use (Puyravaud 

et al 2010). When biomass is harvested renewably, there is no contribution to CO2 concentrations. 

However, a considerable portion of biomass is not harvested renewably, leading to CO2 emissions 

and deforestation (Bailis et al 2015). The clearing of biomass through fires causes extensive air 

pollution in India (Mittal et al 2009, Mishra and Shibata 2012, Kaskaoutis et al 2014, Liu et al 

2018, Cusworth et al 2018, Jethva et al 2018). A reduction in forest cover may lead to a reduction 

in biogenic VOC emissions. 

Aerosol in India has been found to influence clouds, radiation, rainfall amount, rainfall onset, 

Himalayan glaciers, and atmospheric stability, which can all feedback to aerosol loadings (Kedia 

et al 2016, Fosu et al 2017, Lau et al 2008, Ramanathan et al 2005, Bollasina et al 2011, Jacobson 

2012, Koch and Del Genio 2010, Lohmann and Feichter 2005, Haywood and Boucher 2000, Fiore 
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et al 2012, Sarkar et al 2006, Intergovernmental Panel on Climate Change 2013, Spracklen et al 

2005, Ramanathan and Carmichael 2008, Jacob and Winner 2009, Reddington et al 2015, Dave 

et al 2017). Kedia et al (2018) found aerosols and gas chemistry enhanced rainfall by 20% in the 

Himalayan region. Gao et al (2018) found aerosols in India result in an overall negative direct 

radiative forcing (-3.18 Wm-2) at the top of the atmosphere. Gao et al (2018) found strong negative 

radiative forcing from the power sector offsets the positive radiative forcing from residential 

emissions in India. Residential cooking and agricultural burning contribute to Atmospheric 

Brown Clouds (ABCs) (Gustafsson et al 2009), which cover much of Asia and the Indian Ocean. 

ABCs contribute to climate warming through their effects on clouds, precipitation, and water 

availability (Ramanathan et al 2005). ABCs can substantially alter the South Asian monsoon 

(Bollasina et al 2011) and accelerate the melting of the Himalayan-Tibetan glaciers (Ramanathan 

and Carmichael 2008, Lau et al 2008), which are central to Indian meteorology and air pollution 

removal (Fiore et al 2012, Jacob and Winner 2009, Reddington et al 2015). 

Regional transport of aerosols into and out of India is important. Transport of pollution is 

highest in northwest India (Venkataraman et al 2018), lowest in southern India (Venkataraman et 

al 2018), and there is large aerosol transport from East Asia in the autumn (Sadavarte et al 2016). 

O3 from East Asian sources affects South Asia in autumn (Chakraborty et al 2015). 

1.1.5.  Exposures 

1.1.5.1.   Association and causation 

Epidemiology is the quantitative study of the distribution, determinants, and control of health, 

disease, or injury (Glass et al 2013). Epidemiology retrospectively observes and detects trends, 

attributing causes using toxicology to assess biological mechanisms. Epidemiological studies are 

at the population level, rather than the individual level (Brunekreef et al 2007). The classic 

approach of air pollution epidemiology is to question what is the association between pollution 

and health through a cohort study, and if the association is causal (Zigler and Dominici 2014, 

Glass et al 2013). Causal inferences are derived from observational studies, without the need for 

RCTs that could be unethical (e.g. smoking), impractical, or too time-consuming for policy-

making (Glass et al 2013). Various methods are used to judge the causality of health impacts of 

air pollution exposure. These include the consistency and strength of the observed associations 

between independent studies in different locations from different researchers. Causality cannot 

be based solely on a single epidemiologic study. Coherence between epidemiological associations 

from experimental, cohort (chronic), time-series (acute), controlled human exposure, and 

toxicological studies are required for causal inference (Ostro and Chestnut 1999, Brunekreef et al 

2007, Henneman et al 2017, U.S. Environmental Protection Agency 2009b). Biologically 

plausible mechanisms and a well characterised exposure-response (concentration-response) 

relationship, where health effects increase with exposure and duration, are also needed to infer 

causality (U.S. Environmental Protection Agency 2009b). The United States Environmental 
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Protection Agency (EPA) Integrative Science Assessment (U.S. Environmental Protection 

Agency 2009b, 2013b) is largely based on the classic approach categorising evidence as not likely, 

inadequate, suggestive, likely, and causal (Zigler and Dominici 2014, Glass et al 2013). The 

WHO International Agency for Research on Cancer (IARC) is also grounded in the classic 

approach through its monograph review (Glass et al 2013). The classic approach is used to 

determine the health impacts attributable to air pollution exposure used in this thesis. 

Confounding is a key issue for the classic approach, which is commonly mitigated through 

measurement and statistical adjustment (Glass et al 2013, Cole and Hernán 2008). All 

confounders cannot be known and measured, although no unmeasured confounding is commonly 

assumed (Cole and Hernán 2008). Confounders can have dynamic feedbacks on the exposure 

confounding (Glass et al 2013). Inferred causality can be later found to be weaker or invalid after 

additional data, updated methods, and control for further confounders (Dockery et al 2013, 

Henneman et al 2017, Moolgavkar 2016, Cox 2017, Cox and Popken 2015, Peel et al 2010, Kelly 

et al 2011, van Erp and Cohen 2009). Causation from mechanistic toxicology is different to 

attributable burden from associational epidemiology. 

1.1.5.2.   Intake fraction 

This thesis, similar to most previous studies, uses pollutant concentrations as surrogates for 

mean population exposure. The key difference between exposures and concentrations is due to 

intake fractions (Bennett et al 2002). The intake fraction, previously known as exposure 

effectiveness, is the amount breathed in by the exposed population (Ministry of Health and Family 

Welfare 2015b, Fantke et al 2017). The intake fraction varies by a factor of 100 from power plants 

to indoor stoves, and the same again to active smoking (Ministry of Health and Family Welfare 

2015b, Fantke et al 2017, Apte et al 2012). Intake fractions are influenced by population, 

proximity, and persistence. Generally, a small fraction of the total person-hours are spent in areas 

where ambient levels represent actual exposure (U.S. National Research Council 2012), due to 

activity level variation, for example, time indoors, in offices, and at school. For ambient air 

pollution, exposure to household emissions are likely to have a higher intake fraction than many 

sources of ambient pollution, due to their proximity and duration, and are on similar levels to 

vehicle emissions (Health Effects Institute International Scientific Oversight Committee 2010). 

Apte et al (2011) studied exposure in Delhi and found on-road commuters are exposed to 1.5 

times the concentration of ambient PM2.5. Exposures are also dependent on the escape fraction, 

which is the extent to which particles are deposited on surfaces before being incorporated into the 

ambient air (Chafe et al 2014b, Lam et al 2012). The implication of using concentrations as 

surrogates for exposures is that local sources are likely to be underestimated and remote sources 

are likely to be overestimated. This thesis accounts for intake fractions implicitly by accounting 

for population size, population density, and meteorology. 
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For household air pollution, exposure levels are mostly lower than household concentrations 

due to stove location, cooking duration, a division of tasks, the presence of a flue, the ventilation 

rate, the volume of the home, and the proximity of the home to other households and sources 

(Balakrishnan et al 2014b, Smith et al 2014a, Bruce et al 2015b, Edwards et al 2014, Ruiz-

Mercado et al 2011). Household air pollutant exposures have been measured in India since 1981 

(Smith et al 1983). Solid fuel combustion in traditional stoves leads to exposures between that 

experienced by second-hand smoking and active smoking (Pope III et al 2011, Smith and Peel 

2010). Traditional cooking with solid fuels is approximately equivalent to 400 cigarettes per hour 

in terms of PM2.5 exposure from second-hand smoke (Smith 1987). Household air pollution is a 

severe health issue in India (Balakrishnan et al 2014a, 2013). Household air pollution is not 

directly quantified in this thesis, though the contribution from household air pollution (residential 

emissions) to ambient air pollution is quantified. Ambient and household air pollution interact 

and exchange (Zhou et al 2015, Han et al 2015, Gordon et al 2014, Rehman et al 2011, 

Balakrishnan et al 2011, Chafe et al 2014b). 

1.1.6.  Doses 

The dose is the pollutant concentration in body tissues, such as the lung, after repeated 

exposure. PM dosimetry is the deposition, translocation, clearance, and retention of particles 

within the respiratory tract (U.S. Environmental Protection Agency 2009b). The dose of PM 

depends on the concentration, duration, ventilation, and particle characteristics. PM size is a key 

characteristic controlling deposition, translocation, and clearance of particles after exposure 

(Figure 8). PM deposition is primarily by diffusion, impaction, and sedimentation. Diffusion is 

the dominant mechanism for ultrafine PM (0.01ï0.1 mm), and sedimentation and impaction 

dominate coarse PM (2.5ï10 mm). Thoracic particles are coarse particles that reach the lung 

airways past the larynx. Respirable particles are fine particles those that reach the gas-exchange 

region of the lungs. The IER makes assumptions about the dosing rates between ambient air 

pollution, household air pollution, second hand smoking, and active smoking. For example, the 

dose from one cigarette is equivalent to an exposure to 667 mg m-3 of ambient PM2.5 for 24-hours 

(Burnett et al 2018, 2014). 
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Figure 8: Size-dependent deposition of particulate matter (Guarnieri and Balmes 2014). 

O3 dosimetry within the respiratory tract is affected by concentration, duration, respiratory 

tract morphology, breathing characteristics, the physicochemical properties of O3, extracellular 

lining fluid, and tissue layers (U.S. Environmental Protection Agency 2013b). Approximately 

80% of the amount inhaled irreversibly reacts at the airway surface and is deposited (Bromberg 

2016). 

1.1.7.  Health impacts 

Exposure to air pollution is a leading risk factor for human health (Cohen et al 2017, GBD 

2016 Risk Factors Collaborators 2017, Indian Council of Medical Research et al 2017b, India 

State-Level Disease Burden Initiative Collaborators 2017). Figure 9 shows the GBD2016 

estimates of global premature mortalities by major risk factor and cause in 2015 (GBD 2016 Risk 

Factors Collaborators 2017). Total pollution caused 16% of the total global deaths in 2015 (GBD 

2016 Risk Factors Collaborators 2017). Air pollution caused 72% of the disease burden from the 

total of all pollution (GBD 2016 Risk Factors Collaborators 2017). Ambient PM2.5 exposure, 

household air pollution, and ambient O3 exposure caused approximately 55%, 40%, and 5%, 

respectively of the disease burden from air pollution (GBD 2016 Risk Factors Collaborators 

2017). India contributes approximately 25ï30% of the global disease burden from air pollution 

while having 18% of the population (GBD 2016 Risk Factors Collaborators 2017). 
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Figure 9: Global premature mortalities by major risk factor and cause in 2015. Plot from 

Landrigan et al (2017) using data from GBD2016 (GBD 2016 Risk Factors Collaborators 2017). 

Various other air pollutants are associated with health effects such as CO (U.S. Environmental 

Protection Agency 2010), lead (U.S. Environmental Protection Agency 2013a), NOx (U.S. 

Environmental Protection Agency 2016), sulphur oxides (SOx) (U.S. Environmental Protection 

Agency 2017), and polycyclic aromatic hydrocarbons (PAH) (Grosovsky et al 1999). This thesis 

does not explore the health impacts of these other air pollutants. 

1.1.7.1.   Health impacts of PM2.5 exposure 

Health effects of ambient PM2.5 exposure are non-specific in that the causes have multiple risk 

factors (Pope III 2007). Health effects depend on concentrations and durations (Pope III 2007). 

Long-term exposures have larger, more persistent cumulative effects than short-term exposures 

(Pope III 2007). Observational epidemiological studies for health impacts of PM2.5 exposure are 

primarily based on studies in North America, Europe, and parts of Asia (Apte et al 2015a, Pope 

III et al 2009, 2011). Table 2 summarises the health impacts of long- and short-term PM2.5 

exposure from epidemiological, controlled human exposure, and toxicological studies (U.S. 

Environmental Protection Agency 2012, 2009b, Brook et al 2010, Newby et al 2015, Loomis et 

al 2013, Gordon et al 2014, Anderson et al 2012, Pope III and Dockery 2006, Naeher et al 2007, 

Edwards et al 2014, Bruce et al 2015b, Smith et al 2004, Bruce et al 2015a, Krewski et al 2009, 

Cohen et al 2017, Pope III 2007, Bell et al 2004, Stieb et al 2003, World Health Organization 

2013, World Health Organization Regional Office for Europe 2013, Bell et al 2013, Achilleos et 
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al 2017, Li et al 2016b, Atkinson et al 2012, Héroux et al 2015, Atkinson et al 2014, Levy et al 

2012). 

Long-term PM2.5 exposure is a cause of all-cause mortality, cardiovascular mortality, and 

cardiovascular morbidity, a likely cause of respiratory effects, and a suggestive cause of 

reproductive and developmental outcomes. Short-term PM2.5 exposure is a cause of mortality and 

cardiovascular effects, and a likely cause of respiratory effects. PM is an IARC group 1 

carcinogen. The classifications likely and suggestive causes are due to limited consistency and 

coherence across studies, and the lack of size-resolved PM exposure cancer studies. Susceptible 

populations to the health effects of PM exposure are those with underlying cardiovascular and 

respiratory illnesses, older adults for cardiovascular morbidity, children for respiratory effects, 

and those with lower socioeconomic status including reduced access to health care, low 

educational attainment, and residential location (U.S. Environmental Protection Agency 2009b). 

There is no clear evidence of a low safe threshold or specific lag period from short-term PM2.5 

exposure for cardiovascular or respiratory effects (U.S. Environmental Protection Agency 

2009b).  
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Table 2: Health impacts of PM2.5 exposure (U.S. Environmental Protection Agency 2012, 

2009b, Brook et al 2010, Newby et al 2015, Loomis et al 2013, Gordon et al 2014, Anderson et 

al 2012, Pope III and Dockery 2006, Naeher et al 2007, Edwards et al 2014, Bruce et al 2015b, 

Smith et al 2004, Bruce et al 2015a, Krewski et al 2009, Cohen et al 2017, Pope III 2007, Bell et 

al 2004, Stieb et al 2003, World Health Organization 2013, World Health Organization Regional 

Office for Europe 2013, Bell et al 2013, Achilleos et al 2017, Li et al 2016b, Atkinson et al 2012, 

Héroux et al 2015, Atkinson et al 2014, Levy et al 2012). 

PM2.5 

Duration Effect 
Evidence 

strength 
Mechanism 

Long-

term, 

chronic 

(months 

to years) 

All -cause 

mortality 
Causal All -cause. 

Cardiovascular 

morbidity and 

mortality 

Causal 

Ischaemic heart disease (IHD), cerebrovascular 

disease (CEV), atherosclerosis, coagulation, 

hypertension, and vascular reactivity. 

Respiratory 

effects 

Likely 

cause 

Chronic obstructive pulmonary disease (COPD), 

lower respiratory infection (LRI), impaired lung 

function, impaired lung growth, increased 

respiratory symptoms, asthma, altered pulmonary 

function, mild inflammation, oxidative 

responses, immune suppression, 

histopathological changes, and exacerbated 

allergic responses. 

Reproductive 

and 

developmental 

outcomes 

Suggestive 

cause 
Low birth weight and infant mortality. 

Cancer  Causal 

Lung cancer (LC). 

Limited evidence for bladder cancer, lung 

adenoma, enhanced frequencies of chromosome 

aberrations and micronuclei in lymphocytes, 

genetic and DNA damage, genetic mutations, 

altered gene expression, and DNA methylation. 

Short-

term, 

acute 

All -cause 

mortality 
Causal All -cause. 

Cardiovascular 

effects 
Causal 

Hospital admissions from IHD and congestive 

heart failure, cardiovascular disease, altered 
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(hours to 

weeks) 

vasomotor function, altered vessel tone, 

microvascular reactivity, myocardial ischemia 

(reduced blood flow), heart rate variability, 

systemic oxidative stress, altered blood pressure, 

blood coagulation, and systemic inflammation. 

Respiratory 

effects 

Likely 

cause 

Hospital admissions from COPD and respiratory 

infections, asthma, altered pulmonary function, 

pulmonary inflammation, oxidative responses, 

exacerbations of allergic responses, allergic 

sensitisation, and airway hyper-responsiveness. 

The biological mechanisms of ambient PM2.5 exposure are complex, vary with the duration of 

exposure, and are yet to be fully explained. Further biologically plausible mechanisms have been 

observed including modulated host defence and immunity, hypoxemia, the sequestration of red 

blood cells, vascular thrombogenic effects, altered endothelial function, among many others 

(Seaton et al 1999, 1995, U.S. Environmental Protection Agency 2009b, Pope III and Dockery 

2006, Health Effects Institute Review Panel on Ultrafine Particles 2013). Multiple mechanisms 

can overlay the patterns of response and can interact with other risk factors. The health effects of 

air pollution exposure are considered to be systematic (throughout the whole body) and consistent 

with accelerated ageing. 

New diseases and conditions are continually being associated with exposure to air pollution 

(Grandjean and Landrigan 2006, Landrigan et al 2017). Figure 10 shows the diseases and 

conditions plausibly affected by air pollution, where the ones in bold type are currently included 

in GBD categories (Thurston et al 2017). The GBD estimates the health impacts PM2.5 exposure 

for four non-communicable diseases (IHD, CEV, COPD, and LC) and one communicable disease 

(LRI). IHD is associated with a reduction of blood supply to the heart, potentially leading to a 

heart attack (Global Burden of Disease Collaborative Network 2017, World Health Organization 

2018c, Thurston et al 2016). CEV is a group of brain dysfunctions related to disease of the blood 

vessels supplying the brain, including stroke (Global Burden of Disease Collaborative Network 

2017, World Health Organization 2018c). COPD is the incompletely reversible obstruction of the 

airways, defined by three main characteristics; small airways obstruction (thickening cell walls), 

emphysema (inflammation), and chronic bronchitis (cough and phlegm) (Global Burden of 

Disease Collaborative Network 2017, World Health Organization 2018c, Postma et al 2015). LC 

is the abnormal change of cells in the lung, categorised as primary or secondary, and non-small 

cell or small cell (Global Burden of Disease Collaborative Network 2017, World Health 

Organization 2018c). LRI are a broad group of infections in the airways and lungs, such as 

pneumonia (Global Burden of Disease Collaborative Network 2017, World Health Organization 
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2018c). This thesis is consistent with the GBD and estimates health impacts of these five diseases 

when studying long-term PM2.5 exposure. 

 

Figure 10: Overview of diseases, conditions, and biomarkers affected by ambient air pollution 

(Thurston et al 2017). 

Short-term exposure to coarse PM (2.5ï10 mm) has suggestive causality with cardiovascular 

effects, respiratory effects, and mortality mainly from epidemiological evidence with a limited 

number of controlled human exposure and toxicological studies (U.S. Environmental Protection 

Agency 2009b). Short-term exposure to ultrafine PM (0.01ï0.1 mm) has suggestive causality for 

cardiovascular effects from a range of studies and respiratory effects primarily from controlled 

human exposure studies (U.S. Environmental Protection Agency 2009b). Ultrafine particles can 

diffuse into the bloodstream and translocate via the circulation. Ultrafine PM are associated with 

brain inflammation due to translocation to the brain via the olfactory nerve (Health Effects 

Institute Review Panel on Ultrafine Particles 2013). Research has suggested that the toxicity of 

PM2.5 is more directly related to particle surface area than to mass (Oberdörster et al 2005, 

Maynard and Maynard 2002), suggesting that ultrafine particles would be more damaging to 

health. However, the current scientific consensus is that the health effects from short-term 

exposure to ultrafine PM are not dramatically different from those of PM2.5 (Health Effects 

Institute Review Panel on Ultrafine Particles 2013, Atkinson et al 2015). There have not been any 

epidemiologic studies of long-term exposures to ambient ultrafine PM. Ultrafine PM number 

concentrations are highly variable and are more prone to exposure error than larger particles 

(Health Effects Institute Review Panel on Ultrafine Particles 2013, Atkinson et al 2015). Particle 

number health studies find positive associations that overlap zero (Atkinson et al 2015). 
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Epidemiological evidence is limited in resolving what specific characteristics, components, 

and sources of air pollution cause specific health effects (West et al 2016). Currently, the scientific 

consensus treats all fine particles as equally toxic without regard to their source, shape, volatility, 

and chemical composition (Lelieveld et al 2015, World Health Organization 2006a, Burnett et al 

2014, U.S. Environmental Protection Agency 2009b). Previous studies suggest that carbonaceous 

aerosol have strong associations with health impacts (Tuomisto et al 2008, Atkinson et al 2015) 

and that particles from fossil fuel combustion are more toxic than particles from other sources 

such as biomass burning (Thurston et al 2016). Secondary sulphates, nitrates, and crustal 

materials have been found to be less toxic than average PM2.5 (Tuomisto et al 2008, Kelly and 

Fussell 2012). There is insufficient evidence on the toxicity of metals (Atkinson et al 2015). Many 

previous studies use a single pollutant approach for single diseases, providing limited insight into 

the toxicity of particle constituents (Levy et al 2012, Atkinson et al 2015). There are no 

epidemiological studies that estimate the joint effects of ambient and household air pollution.  

1.1.7.2.   Health impacts of O3 exposure 

Table 3 summarises the long- and short-term health impacts of O3 exposure from controlled 

human exposure, epidemiological, and toxicological studies (World Health Organization 2013, 

U.S. Environmental Protection Agency 2013b, Jerrett et al 2009, Zanobetti and Schwartz 2011, 

Smith et al 2009b, Turner et al 2016, Atkinson et al 2016). Short-term O3 exposure is a cause of 

respiratory effects, a likely cause of cardiovascular effects and all-cause mortality, with 

suggestive causality for central nervous system effects. Long-term O3 exposure is a likely cause 

of respiratory effects, with suggestive causality of cardiovascular, reproductive and 

developmental effects, central nervous system effects, and all-cause mortality. Previous studies 

have highlighted the limited and confounded evidence for short-term cardiovascular effects 

(Goodman et al 2014), conflicting evidence for long-term health impacts (Committee on the 

Medical Effects of Air Pollutants 2015, Atkinson et al 2016, U.S. Environmental Protection 

Agency 2013b), and the limited evidence for use of low concentration thresholds (Committee on 

the Medical Effects of Air Pollutants 2015). There have been three, recent, major studies of long-

term O3 exposure and human health adding to the original American Cancer Society Cancer 

Prevention Study II (CPS-II) by Jerrett et al (2009); the updated CPS-II study by Turner et al 

(2016), the Harvard Medicare study (Di et al 2017), and the Canadian Census Health and 

Environment Cohort (CanCHEC) study (Crouse et al 2015). All studies found O3 health effects 

on all-cause mortality, unconfounded by PM2.5 or NO2, with some finding health effects for 

cardiovascular, diabetes, and respiratory mortality (Jerrett et al 2009, Turner et al 2016, Di et al 

2017, Crouse et al 2015). 
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Table 3: Health impacts of O3 exposure (World Health Organization 2013, U.S. 

Environmental Protection Agency 2013b, Jerrett et al 2009, Zanobetti and Schwartz 2011, Smith 

et al 2009b, Turner et al 2016, Atkinson et al 2016). 

O3 

Duration Effect 
Evidence 

strength 
Mechanism 

Long-

term, 

chronic 

(months 

to years) 

Respiratory 

effects 
Likely cause 

COPD, respiratory symptoms, new-onset 

asthma, and respiratory mortality. 

Cardiovascular 

effects 
Suggestive cause Increased vascular disease. 

Reproductive 

and 

developmental 

effects 

Suggestive cause 
Decreased sperm concentration, reduced 

birth weight, and restricted fetal growth. 

Central nervous 

system effects 
Suggestive cause 

Alterations in neurotransmitters, motor 

activity, memory, sleep, and 

neurodegeneration. 

All -cause 

mortality 
Suggestive cause All -cause. 

Short-

term, 

acute 

(hours to 

weeks) 

Respiratory 

effects 
Cause 

Hospital admissions from respiratory 

infections, COPD, asthma, respiratory 

tract inflammation, altered lung function, 

inflammatory responses, epithelial 

permeability, airway hyper-

responsiveness, and host defence 

impairment. 

Cardiovascular 

effects 
Likely cause 

Autonomic nervous system, oxidative 

stress, inflammation, decreased cardiac 

function, altered heart rate, enhanced 

ischemia injury, and disrupted vascular 

reactivity. 

All -cause 

mortality 
Likely cause All -cause. 

Central nervous 

system effects 
Suggestive cause 

Alterations in neurotransmitters, motor 

activity, memory, sleep, and 

neurodegeneration. 
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Biologically plausible mechanisms for the adverse health effects of O3 exposure include 

pulmonary function decrement, lung permeability, and many others. Susceptible populations to 

the health effects from O3 exposure are those with asthma, children, elderly, individuals lacking 

certain nutrients (e.g. vitamins C and E), outdoor workers, and individuals with gene variations 

(U.S. Environmental Protection Agency 2013b). The lag of health effects relative to exposure to 

O3 is dependent on age and pre-existing conditions and is consistently found to be within the first 

few days for morbidity and mortality endpoints (U.S. Environmental Protection Agency 2013b). 

The health effects of O3 exposure are confounded by temperature (Wilson et al 2014, Pattenden 

et al 2010) and other pollutants (Committee on the Medical Effects of Air Pollutants 2015). 

1.1.7.3.   Risk assessments to estimate the burden of disease 

Risk assessments quantify the disease burden of air pollution in terms of mortality and 

morbidity. This thesis follows the methodology of the comparative risk assessment from the GBD. 

The first GBD study was in 1993, commissioned by the World Bank (The World Bank 1993). 

The first comprehensive ambient air pollution study was for 2000 published in 2004 through the 

WHO and the World Bank (Cohen et al 2004, Pandey 2000), which was updated in 2009 by the 

WHO (World Health Organization 2009). The GBD progressed in 2010 through funding by the 

Bill & Melinda Gates Foundation and support from the WHO to study a huge scope of risk factors 

and causes throughout the world. This led to the publications of GBD2010 in 2012 (GBD 2010 

Risk Factors Collaborators 2012), GBD2013 in 2015 (GBD 2013 Risk Factors Collaborators 

2015), GBD2015 in 2016 (GBD 2015 Risk Factors Collaborators 2016a), and GBD2016 in 2017 

(GBD 2016 Risk Factors Collaborators 2017). 

There are five key inputs to risk assessments to estimate the burden of disease from air 

pollution exposure: pollutant concentrations, the counterfactual level, the population exposure, 

baseline mortality rates, and an exposure-response function (Ostro et al 2018). The input methods 

vary with approach, e.g. improvements to the exposure-response function. The input data vary in 

time, e.g. the age and size of the population exposed or the pollutant concentration. 

Accurate representation of air pollution concentrations is critical. The pollutant concentrations 

are estimated through chemical transport models (Fang et al 2013, Lelieveld et al 2013, Silva et 

al 2013, Ghude et al 2016, Butt et al 2016, Chafe et al 2014a, Lelieveld et al 2015, Anenberg et 

al 2010), satellite observations (Apte et al 2015a, Brauer et al 2012, van Donkelaar et al 2010, 

2016, Evans et al 2013), and ground measurements (Cohen et al 2004, Nagpure et al 2014, 

Guttikunda and Goel 2013, Chate et al 2013). Models allow for air pollutant estimations where 

ground measurements are limited in space and satellite observations are limited in time. Many 

ground measurements within the WHO ambient air pollution database, used by the GBD, derived 

PM2.5 from PM10 using conversion factors (World Health Organization 2018a). Recent GBD 

studies (GBD2015 and GBD2016) have combined all the above sources within a Bayesian 

hierarchical model, the data integration model for air quality (DIMAQ), along with land use 
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regression models, population, monitor type, PM2.5 to PM10 conversion factors, land use elevation, 

and the concentrations of SO4, NO3, OC, and NH3 (Shaddick et al 2018b). The error in predicted 

PM2.5 concentrations was greatly reduced through the addition of the local population as a 

covariate (Ostro et al 2018). 

The counterfactual level, also known as the theoretical minimum risk exposure level or the 

low-concentration cut-off, is a minimum pollutant concentration where no health effects occur. 

For long-term PM2.5 exposure, the disease-specific counterfactual in the GBD2010 and GBD2013 

ranged from 5.8ï8.9 mg m-3, and in the GBD2015 and GBD2016 ranged from 2.4ï5.9 mg m-3. For 

long-term O3 exposure, the counterfactual varied per study and percentile applied between 26.7ï

41.9 ppb. The population exposure is the specific group exposed to the pollutant concentration. 

Baseline mortality rates are the occurrence of the cause already present in that specific group. The 

exposure-response functions use epidemiological data to relate a specific pollutant concentration 

to a relative risk of disease. A significant advance in exposure-response function was the 

development of the integrated-exposure response (IER) functions (Burnett et al 2014) as part of 

the GBD2010 project (GBD 2010 Risk Factors Collaborators 2012) for long-term exposure to 

ambient PM2.5 concentrations. The IER functions combine epidemiological evidence from 

ambient air pollution, household air pollution, second-hand smoking, and active smoking to 

estimate the health response to exposures across a widened range of pollutant concentrations. 

Exposures to PM2.5 from air pollution and second-hand smoking are substantially smaller than 

those from active smoking (Pope III et al 2018). The IER functions are a pragmatic approach, 

including additional epidemiological evidence with each GBD study. The IER functions are 

detailed in Section 2.3 and used in Chapters 4 and 5. The exposure-response functions for long-

term O3 exposure (detailed in Section 2.4 and used in Chapter 6) use risk estimates per increment 

in pollutant concentration.  

Mortality is measured by the number of premature mortalities, which are considered 

preventable if the risk were to have been eliminated. The estimates are specifically for premature 

mortality, as death is postponed or brought forward rather than avoided (Brunekreef et al 2007). 

Morbidity is measured by years of life lost (YLL) due to the age-specific premature mortality 

relative to a healthy life expectancy. Years lost due to disability (YLD) account for the incidence 

and prevalence of disease, which can be added to YLL per cause to give the total disease burden, 

known as DALYs (World Health Organization 2018b). 

The economic impact of air pollution burden is difficult to assess as evaluation methods vary 

dramatically in the literature, including metrics of a lost healthy life year, willingness to pay, and 

ones based on income (World Health Organization 2003). A recent study by The World Bank and 

the Institute for Health Metrics and Evaluation (IHME) estimated the cost of air pollution 

following a willingness to pay approach and an income-based approach (The World Bank and 

Institute for Health Metrics and Evaluation 2016). For the willingness to pay approach, total air 
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pollution cost 7.4% of gross domestic product (GDP) in South Asia, where ambient PM2.5, 

household PM2.5, and ambient O3 cost 3.1%, 4.9%, and 0.4%, respectively (The World Bank and 

Institute for Health Metrics and Evaluation 2016). For the income-based approach, costs were 

lower than those from the willingness to pay approach, though were still substantial in India ($66 

billion in 2013 å 1% of GDP) largely due to the young population (The World Bank and Institute 

for Health Metrics and Evaluation 2016).  

Estimates of the disease burden attributable to air pollution exposure from 1990 to the present 

day are updated with each GBD study. The global estimate of premature mortality from long-

term ambient PM2.5 exposure was 3,223,540 (95th uncertainty interval (95UI): 2,828,854ï

3,619,148) for 2010 in GBD2010 (GBD 2010 Risk Factors Collaborators 2012), 2,926,000 (95UI: 

2,777,000ï3,066,000) for 2013 in GBD2013 (GBD 2013 Risk Factors Collaborators 2015), 

4,241,000 (95UI: 3,698,000ï4,777,000) for 2015 in GBD2015 (GBD 2015 Risk Factors 

Collaborators 2016a), and 4,092,692 (95UI: 3,624,442ï4,575,023) for 2016 in GBD2016 (GBD 

2016 Risk Factors Collaborators 2017). The inputs used between GBD2010 and GBD2013 are 

similar, as are those from GBD2015 and GBD2016 (Ostro et al 2018). The increase in estimates 

for GBD2015 and GBD2016 were driven mostly by the exposure-response function (~55%) and 

the derived PM2.5 concentrations from the DIMAQ (~20%), with contributions from changes in 

demographics and absolute exposure (Ostro et al 2018). The GBD2010 estimated the disease 

burden from LRI in children only, while all subsequent GBD studies estimated the disease burden 

from LRI in adults as well (Ostro et al 2018). Recent GBD studies (2015 and 2016) increased the 

historical PM2.5 concentrations over India (1990ï2016) (Ostro et al 2018), suggesting that earlier 

GBD studies (2010 and 2013) underestimated PM2.5 concentration in India. Recent IER functions 

(2015 and 2016) shifted the disease breakdown, reducing the contributions from heart (IHD) and 

brain (CEV) disease by ten percentage points each, and increasing the contribution from COPD 

by 20 percentage points relative to earlier IER functions (2013) (Ostro et al 2018). 

The GBD estimates the joint effects of ambient PM2.5, household air pollution from solid fuel 

use, and O3 exposure through a complex combination of their population attributable fractions 

under an assumption of independence, rather than summing their impacts (Lopez et al 2006, Hill 

et al 2017). This assumption of independence is unlikely for India, where there are large 

interactions and exchanges between ambient and household air pollution (GBD MAPS Working 

Group 2018). 

1.1.7.4.   Disease burden from air pollution exposure at the global scale 

The most recent estimates of the global burden of disease attributable to ambient PM2.5 

exposure are from GBD2016 (Figure 11). In 1990, the global estimate of annual premature 

mortality attributable to ambient PM2.5 exposure was 3,317,916 (95UI: 2,913,074ï3,750,917), 

with dominant contributions of 27% by China (901,262, 95UI: 752,834ï1,067,969) and 21% by 

India (698,245, 95UI: 594,235ï807,575) (Cohen et al 2017, GBD 2016 Risk Factors 



 56   

Collaborators 2017). In 2016, the estimates of annual premature mortality from exposure to 

ambient PM2.5 increased globally by 23% to 4,092,692 (95UI: 3,624,442ï4,575,023), in China by 

19% to 1,075,039 (95UI: 940,395ï1,221,813), and in India by 48% to 1,034,420 (95UI: 893,676ï

1,176,954) (Cohen et al 2017, GBD 2016 Risk Factors Collaborators 2017). The large increase 

in the burden of disease in India between 1990 and 2016 means that China and India both 

dominate the contribution to the global burden, each contributing one-quarter. The large 

populations of India and China are important factors to their large disease burdens. For the 

mortality rate per 100,000 population, which is independent of population size, the Eastern 

European countries of Bulgaria (126) and Ukraine (118) stand out relative to the rates in India 

(79) and China (79) in 2016 (Cohen et al 2017, GBD 2016 Risk Factors Collaborators 2017). The 

decrement in life expectancy from ambient PM2.5 in South Asia is 1.56 years (Apte et al 2018). 

 

Figure 11: The global burden of disease from ambient PM2.5 exposure in 2016. (a) Number of 

premature mortalities per country. (b) Mortality rate per 100,000 population per country 

(Institute for Health Metrics and Evaluation 2018). 
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Figure 12 shows the drivers of the changes in premature mortality attributable to ambient PM2.5 

exposure by country from 1990 to 2015 (Cohen et al 2017). The 23% increase in the global disease 

burden between 1990 and 2015 was driven by population ageing (+41%) and population growth 

(+26%), partially offset by improvements in baseline mortality rates (-54%). There are substantial 

variations in the drivers between countries, where India experienced more substantial impacts of 

population growth (+50%) and China had strong opposing influences between population ageing 

(+69%) and improving baseline mortality rates (-79%). The strong roles of the demographic and 

epidemiological transitions are clear, and often dominate the changes due to variations in 

exposure.  

 

Figure 12: Drivers of changes in estimated premature mortality associated with ambient 

PM2.5 exposure by country from 1990 to 2015 (Cohen et al 2017). 

Figure 13 shows the global burden of disease from exposure to ambient O3 in 2016. In 1990, 

the global estimate of annual premature mortality attributable to ambient O3 exposure was 

153,732 (95UI: 54,522ï267,745), with dominant contributions of 44% by China (68,395, 95UI: 

24,740ï120,304) and 27% by India (41,709, 95UI: 15,172ï70,285) (Cohen et al 2017, GBD 2016 

Risk Factors Collaborators 2017). By 2016, the global estimate of annual premature mortality 

from exposure to ambient O3 increased by 52% to 233,628 (95UI: 90,109ï385,303), increasing 

substantially by 116% in India to 90,253 (95UI: 34,556ï145,570), while only increasing by 2% 

in China to 69,707 (95UI: 26,763ï115,134) (Cohen et al 2017, GBD 2016 Risk Factors 

Collaborators 2017). The large increase in the disease burden from O3 exposure in India between 

1990 and 2016 means that India dominates the contribution to the global burden (39%). The 
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mortality rate per 100,000 in India increased by 43% between 1990 and 2016, while there was a 

15% reduction in China (Cohen et al 2017, GBD 2016 Risk Factors Collaborators 2017). The 

decrement in life expectancy from ambient O3 in South Asia is 0.10 years (Apte et al 2018). 

 

Figure 13: The global burden of disease from ambient O3 exposure in 2016. (a) Number of 

premature mortalities per country. (b) Mortality rate per 100,000 population per country 

(Institute for Health Metrics and Evaluation 2018). 

The global burden of disease from household air pollution from solid fuel use in 1990 was 

3,738,921 (95UI: 3,255,981ï4,301,372) premature mortalities globally, with dominant 

contributions of 34% by China (1,285,110, 95UI: 1,081,537ï1,521,215) and 26% by India 

(989,826, 95UI: 844,050ï1,153,357) (Institute for Health Metrics and Evaluation 2018). In 2016, 

the global estimate of premature mortality reduced by 31% to 2,576,361 (95UI: 2,215,953ï

2,968,891), with a substantial reduction of 53% in China (605,098, 95UI: 500,437ï735,840) and 

a smaller reduction in India of 21% (782,905, 95UI: 652,172ï941,484) (Institute for Health 

Metrics and Evaluation 2018). There were large reductions in the mortality rate per 100,000 
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population of 51% globally, 49% in India, and 61% in China (Institute for Health Metrics and 

Evaluation 2018). The decrement in life expectancy from household air pollution in South Asia 

is 1.22 years (Apte et al 2018). 

Overall, the main trends from 1990 (Figure 14a) to 2016 (Figure 14c) are that the number of 

premature mortalities from ambient PM2.5 exposure increased globally, and especially in India. 

The mortality rate per 100,000 population for ambient PM2.5 exposure remained stable (Figure 

14b and 14d), indicating that the growth in the number of premature mortalities was primarily 

driven by population characteristics. There were large decreases in the number of premature 

mortalities and the mortality rate from household air pollution from solid fuels, highlighting the 

important development relating to this issue that has occurred between 1990 and 2016, although 

a substantial burden remains globally and in India. The burden of disease from exposure to 

ambient O3 has remained relatively small compared to exposure to ambient PM2.5 and household 

air pollution. 

 

Figure 14: The disease burden from air pollution. (a) Annual premature mortality estimates 

in 1990. (b) Mortality rate per 100,000 population in 1990. (c) Annual premature mortality 

estimates in 2016. (d) Mortality rate per 100,000 population in 2016. Data from GBD2016 

(Institute for Health Metrics and Evaluation 2018). 
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Figure 15 shows India is uniquely in the middle of the environmental risk transition (Smith 

and Ezzati 2005), i.e. the risk overlap (Smith 1995), where there are both substantial risks from 

traditional (household solid fuel) and modern (ambient PM2.5) diseases. Pollutant concentrations 

have been increasing between 1990 and 2016 for ambient PM2.5 and O3, while solid fuel use (the 

common surrogate for estimating household air pollution) has remained the same. The reduction 

in deaths per year for household solid fuel has largely come from improvements in LRI, while the 

large increase for ambient PM2.5 is from IHD in older ages (Figure 15a). The infant (<5 years) 

YLL in India from LRI due to ambient air pollution exposure decreased by 30% between 2010 

and 2015, highlighting the epidemiological improvement (Lelieveld et al 2018). The reduction in 

DALYs per year for both ambient PM2.5 and household solid fuel has largely come from 

improvements in LRI in children (Figure 15b). 

 

Figure 15: Environmental risk transition estimates for India from GBD2016 for ambient 

PM2.5, O3, and household solid fuels from 1990ï2016 (Institute for Health Metrics and Evaluation 

2018). (a) Number of deaths per year. (b) Number of DALYs per year. (c) Mortality rate per 

100,000 per year. (d) DALYs rate per 100,000 per year. 
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1.1.7.5.   Disease burden from air pollution exposure within India 

In 2016, air pollution was the second leading risk factor in India, behind child and maternal 

malnutrition, and up from third in 1990 (India State-Level Disease Burden Initiative Collaborators 

2017). Four out of the top five leading causes of disease in India are caused in part by air pollution 

exposure (India State-Level Disease Burden Initiative Collaborators 2017). Figure 16 shows the 

Indian burden of disease from exposure to ambient PM2.5 in 2016. Within India in 2016, the 

densely populated state of Uttar Pradesh in the central IGP dominates the contribution (21%) to 

the national burden of disease from ambient PM2.5 exposure, ahead of West Bengal, Maharashtra, 

and Bihar all contributing 9% each (Indian Council of Medical Research et al 2017a). Regarding 

the mortality rate per 100,000 population, states throughout the IGP have massive burdens, 

especially Punjab (105), Haryana (103), Uttar Pradesh (99), and West Bengal (95) (Indian Council 

of Medical Research et al 2017a). The disease burden in Delhi from exposure to ambient PM2.5 

is 11,517 (95UI: 9,757ï13,331) premature mortalities per year with a mortality rate of 57 (95UI: 

48ï66) (Indian Council of Medical Research et al 2017a).  
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Figure 16: The Indian burden of disease from ambient PM2.5 exposure in 2016. (a) Number 

of premature mortalities per state. (b) Mortality rate per 100,000 population per state (Indian 

Council of Medical Research et al 2017a). 

Figure 17 shows the Indian burden of disease from exposure to ambient O3 in 2016. Uttar 

Pradesh dominates the contribution to ambient O3 with 27% of the national burden (Indian 

Council of Medical Research et al 2017a). States in the western IGP have the highest mortality 

rate per 100,000 population with Uttarakhand (12) and Himachal Pradesh (11), followed by Uttar 
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Pradesh (11) and Rajasthan (10) (Indian Council of Medical Research et al 2017a). Delhi has a 

mortality rate of 2 per 100,000 (Indian Council of Medical Research et al 2017a).  

 

Figure 17: The Indian burden of disease from ambient O3 exposure in 2016. (a) Number of 

premature mortalities per state. (b) Mortality rate per 100,000 population per state (Indian 

Council of Medical Research et al 2017a). 

In 2016, Uttar Pradesh dominates the contribution (23%) to the national burden of disease 

from household air pollution from solid fuel use, with Bihar contributing 11% in second (Indian 
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Council of Medical Research et al 2017a). Regarding the mortality rate per 100,000 population, 

states across northern India have substantial burdens, of 86 in Rajasthan, 82 in Uttar Pradesh, and 

76 in Bihar (Indian Council of Medical Research et al 2017a). The mortality rate in Delhi from 

household air pollution from solid fuel use is low (3) (Indian Council of Medical Research et al 

2017a). 

Overall, the disease burden from air pollution in India is highest in states across the IGP. States 

across the IGP are behind in the epidemiological transition, despite massive progress between 

1990 and 2016 (India State-Level Disease Burden Initiative Collaborators 2017). The 

epidemiological transition is from communicable, maternal, neonatal, and nutritional diseases 

(CMNNDs) to NCDs (India State-Level Disease Burden Initiative Collaborators 2017). NCDs 

are not transmittable by infectious agents and are chronic in their development over time (Ezzati 

et al 2018, Health Effects Institute Household Air Pollution Working Group 2018). Major 

improvement in the epidemiological transition between 1990 and 2016 in India means the disease 

burden from NCDs in all Indian states now outweighs that from CMNNDs (India State-Level 

Disease Burden Initiative Collaborators 2017). Cardiovascular (IHD) and chronic respiratory 

NCDs rates in India are more than double rates in high-income Western countries (Ezzati et al 

2018). 

1.1.7.6.   Source contributions to the burden of disease from air pollution 

Estimates of premature mortality from exposure to ambient PM2.5 in India vary by a factor of 

three, between 392,000 to 1,090,000 per year (Silva et al 2013, Chowdhury and Dey 2016, GBD 

2016 Risk Factors Collaborators 2017, Cohen et al 2005, Apte et al 2015a, Ghude et al 2016, 

Giannadaki et al 2016, GBD 2013 Risk Factors Collaborators 2015, Lelieveld et al 2015, GBD 

2010 Risk Factors Collaborators 2012, Silva et al 2016b, GBD 2015 Risk Factors Collaborators 

2016a, World Health Organization 2016a, Lelieveld 2017), with differences due to variations in 

ambient PM2.5 estimates, health functions, population datasets, and methodological approaches. 

Previous global modelling studies find emissions from residential energy use dominate the 

contribution to PM2.5 exposure associated premature mortality in India (Figure 18) (Lelieveld et 

al 2015, Lelieveld 2017, Silva et al 2016b). In contrast, air pollutant emissions from energy, 

industry, agriculture, and land transport dominate in Europe and the USA (Lelieveld et al 2015, 

Lelieveld 2017, Silva et al 2016b, Janssens-Maenhout et al 2015). Residential combustion has 

been found to be the dominant source contributor to global premature mortality from ambient 

PM2.5 exposure (Lelieveld et al 2015, Lelieveld 2017), with a substantial fraction of the global 

burden in India (Smith et al 2014a). Previous global modelling studies have estimated that 

emissions from residential energy use cause between 73,000 to 460,500 premature mortalities 

across India each year (Butt et al 2016, Chafe et al 2014a, Lelieveld et al 2015, Silva et al 2016b, 

Lelieveld 2017). 
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Figure 18: Source categories responsible for the largest impact on premature mortality 

associated with ambient air pollution in 2010 (Lelieveld et al 2015). Source categories are 

industry (IND), land transport (TRA), residential (RCO), biomass burning (BB), power 

generation (PG), agriculture (AGR), and natural (NAT). The white areas are where annual-mean 

PM2.5 concentrations are below the theoretical minimum risk exposure level. 

All previous global modelling studies estimating the source contributions to the disease burden 

(Lelieveld et al 2015, Lelieveld 2017, Silva et al 2016b) used global models with relatively coarse 

resolution, which may not resolve the high PM2.5 concentrations in India, and were limited by 

lack of ground measurements before 2016. Chapter 4 is the first study to use high-resolution 

simulations, evaluated by new ground measurements, to estimate the contribution of different 

emission sectors to ambient PM2.5 concentrations and the attributable disease burden from 

exposure across India.  

Previous global modelling studies have estimated the contribution of sources to the disease 

burden from ambient O3 exposure in India using the earlier CPS-II  risk estimates (Malley et al 

2017, Silva et al 2016b, Lelieveld et al 2015). These risk estimates have been recently updated 

(Turner et al 2016). Substantial contributions were found to be from power generation, land 

transport, and residential emissions (Malley et al 2017, Silva et al 2016b, Lelieveld et al 2015). 

Previous studies of the total and source-specific disease burden associated with O3 exposure have 

used global, offline chemical transport models at relatively coarse spatial resolution (between 0.5° 

× 0.67° and 2.0° × 2.5°) (Malley et al 2017, Silva et al 2016b, Lelieveld et al 2015). Tropospheric 

O3 has a non-linear dependence on precursors concentrations, with production on short timescales 

(Liang and Jacobson 2000, Carey Jang et al 1995, Wild and Prather 2006, Sharma et al 2017b). 

Coarse spatial resolution models dilute O3 precursors, causing simulated concentrations to diverge 

from observations (Liang and Jacobson 2000, Carey Jang et al 1995, Wild and Prather 2006, 
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Sharma et al 2017b). The model resolution also affects estimates of the O3 exposure relative 

disease burden (Punger and West 2013, Thompson et al 2014, Thompson and Selin 2012). Online-

coupled modelling explicitly accounts for feedbacks between chemistry and meteorology (Grell 

et al 2004, Baklanov et al 2014), which can be important when considering emission changes 

through different scenarios. Chapter 6 is the first study to estimate the source-specific disease 

burden from ambient O3 exposure in India at high spatial resolution, using the updated CPS-II 

risk functions (Turner et al 2016). 

1.1.7.7.   Future disease burden from air pollution in India 

Under a business-as-usual scenario, emissions are predicted to increase in India relative to the 

present day substantially (GBD MAPS Working Group 2018), with PM2.5, SO2, and NOx 

emissions approximately doubling by 2050 relative to 2015 (Sharma and Kumar 2016, 

International Energy Agency 2016b), increasing PM2.5 concentrations by 67% (Pommier et al 

2018). This increase in pollutant concentrations, alongside population growth and ageing, 

increases the disease burden from ambient air pollution exposure (Figure 19) (Lelieveld et al 

2015, Anenberg et al 2012, GBD MAPS Working Group 2018, International Energy Agency 

2016a).  

 

Figure 19: Increase in premature mortality associated with ambient air pollution exposure 

from 2010 to 2050 under a business-as-usual scenario (Lelieveld et al 2015). 

Alternative air pollution control pathways (scenarios) for India have been developed and 

evaluated in previous studies (Sharma and Kumar 2016, International Energy Agency 2016b, 

Pommier et al 2018, International Energy Agency 2016a, GBD MAPS Working Group 2018). 

The International Energy Agency (IEA) developed the New Policy Scenario (NPS) which 
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considers all relevant existing and planned policies as of 2016 and the Clean Air Scenario (CAS) 

which represents aggressive policy action using proven energy policies and technologies tailored 

to national circumstances (International Energy Agency 2016b, 2016a). Emissions of SO2, NOx, 

and PM2.5 under the NPS increased on average by 9% by 2040 relative to 2015, while the 

premature mortality estimate increased by 53% (International Energy Agency 2016b, 2016a). 

Emissions of SO2, NOx, and PM2.5 under the CAS decreased on average by 65% by 2040 relative 

to 2015, while the premature mortality estimate decreased by 5% (International Energy Agency 

2016b, 2016a). The GBD MAPS Working Group studied a business-as-usual reference scenario, 

an ambitious scenario reflecting stringent emission standards, and an aspirational scenario all 

through to 2050 (Venkataraman et al 2018, GBD MAPS Working Group 2018). Population-

weighted ambient PM2.5 concentrations across India in 2050 under the reference, ambitious, and 

aspirational scenarios changed by +43%, +10%, and -35%, respectively relative to the reference 

scenario in 2015 (Venkataraman et al 2018, GBD MAPS Working Group 2018). Premature 

mortality from ambient PM2.5 exposure would increase under the reference, ambitious, and 

aspirational scenarios by 234%, 194%, and 125% in 2050 relative to 2015 (Venkataraman et al 

2018, GBD MAPS Working Group 2018). Both the IEA and GBD MAPS Working Group studies 

highlight the substantial impact of the demographic transition in India. 

The previous studies that evaluated Indian scenarios (International Energy Agency 2016b, 

2016a, Pommier et al 2018, GBD MAPS Working Group 2018) used relatively coarse spatial 

resolution (0.5° × 0.5° or 0.5° × 0.67°) chemical transport models to estimate the impacts on PM2.5 

concentrations per scenario, which may not resolve the high PM2.5 concentrations in India. No 

previous studies have analysed the impacts of future air pollution control pathways on ambient 

O3 and the associated disease burden. 

Chapter 5 and 6 analyse the impacts of multiple air pollution control pathways (scenarios) in 

India on ambient PM2.5 and O3 concentrations and associated disease burdens, respectively. Both 

chapters use a higher resolution (30 km, 0.3° horizontal) regional numerical weather prediction 

model online-coupled with atmospheric chemistry, with the latest exposure-response functions, 

and disease-specific baseline mortality rates for 2015 and 2050. Both chapters are individually 

the first high-resolution analyses of the impacts of future scenarios on ambient PM2.5 and O3 

concentrations and resulting disease burden in India, respectively. 

1.2.   Summary and Aims 

Two-thirds of Indian households primarily use solid fuels, mostly wood in polluting traditional 

stoves in rural areas within the IGP. The absolute number of solid fuel users has remained stable 

for the last 30 years, contributing substantially to air pollutant emissions. India experienced large 

growth in the economy, industry, power generation, and transport sectors over the last decade 

leading to a large growth in emissions of air pollutants. Emissions of air pollutants are predicted 

to grow substantially over the coming years in India. These air pollutant emissions have caused 
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very high concentrations of ambient PM2.5 and O3 in India. Exposure to these air pollutants is the 

second leading risk factor in India (GBD 2016 Risk Factors Collaborators 2017, India State-Level 

Disease Burden Initiative Collaborators 2017). India contributes one-quarter and one-third of the 

present-day global disease burden attributable to ambient PM2.5 and O3 exposure, respectively 

(GBD 2016 Risk Factors Collaborators 2017, India State-Level Disease Burden Initiative 

Collaborators 2017). India is uniquely in the middle of the environmental risk transition, where 

there is both substantial risk from household air pollution and ambient air pollution (GBD 2016 

Risk Factors Collaborators 2017, India State-Level Disease Burden Initiative Collaborators 

2017).  

Despite the importance of air quality in India, it remains relatively understudied, and 

knowledge of the sources and processes causing air pollution is limited. It is critical to understand 

the contribution of different emission sources to ambient air pollution to design effective policies 

to reduce this substantial disease burden. This thesis aims to understand the source contributions 

to the attributable disease burden from ambient air pollution exposure in India and the effects of 

future air pollution control pathways. 

The thesis has three main objectives. Firstly, quantify the contributions of different emission 

sources to ambient PM2.5 concentrations and the related disease burden across India in the present 

day. Secondly, estimate the impact from different future air pollution control pathways on ambient 

PM2.5 concentrations and human health in India. Thirdly, understand the current and future disease 

burden from ambient O3 exposure in India, identifying critical contributing emission sources and 

the impacts of future policy scenarios. These objectives are achieved by combining high-

resolution computer simulations, new and extensive observations, and the latest exposure-

response relationships. The high-resolution, online-coupled, regional numerical weather 

prediction (NWP) model, Weather Research and Forecasting Model with Chemistry (WRF-

Chem), is used throughout these chapters. 

1.3.   Outline 

Chapter 1 introduces the research topic, aim, objectives, and outline. Chapter 2 discusses the 

methods. Chapter 3 discusses the model evaluation. Chapter 4 estimates the contribution of 

different emission sources to ambient PM2.5 concentrations and the related disease burden across 

India. Chapter 5 estimates the impacts of different air pollution control pathways on ambient 

PM2.5 and human health in India. Chapter 6 studies the source contributions of ambient O3 

concentrations in India, the exposure-related disease burden, and the changes under future policy 

scenarios. Chapter 7 summarises and discusses the work undertaken, highlighting areas of future 

work.  
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2.  Methods 

This chapter describes the methods and models used in this thesis. Section 2.1 summarises the 

background of air quality modelling. Section 2.2 describes the air quality model used in the thesis. 

Section 2.3 and 2.4 describe the exposure-response functions for PM2.5 and O3, respectively. 

Section 2.5 describes the population data used. Section 2.6 explains the methods used to estimate 

the sector-specific disease burden. Section 2.7 discusses uncertainties in the methods. 

2.1.   Air quality modelling  

Satellite observations are limited in either space or time. Ground measurements are limited in 

space, especially over India. Models can address these gaps in space and time, giving insight into 

driving processes and mechanisms of air quality. The main purpose of the model used in this 

thesis was to simulate total PM2.5 and O3 concentrations accurately and to attribute total 

concentrations to different emission sectors. There are a wide variety of models. The discussion 

here, and the term model used subsequently, applies to three-dimensional, mathematical 

(describing fundamental atmospheric processes), Eulerian (fixed grid), atmospheric models 

(Seinfeld and Pandis 2016). 

The essential components of a model are emissions, transport, and physiochemical 

transformations (Brasseur and Jacob 2016). Models are based on the non-linear primitive 

equations including the momentum equation, thermodynamic equation, continuity equation, and 

the ideal gas law (Brasseur and Jacob 2016). The primitive equations have no analytical solution, 

and numerical methods are required (Brasseur and Jacob 2016). 

Aerosol schemes are required to resolve the large aerosol size range for the chemical and 

microphysical processes through individual modules (Brasseur and Jacob 2016). Aerosol schemes 

represent aerosol size, mass, and number (Brasseur and Jacob 2016). Bulk aerosol schemes 

resolve aerosol mass, assume the size distribution, are numerically efficient, and are useful when 

focusing on gas-phase chemistry (Brasseur and Jacob 2016). Modal aerosol schemes carry aerosol 

mass and number, representing aerosol size by overlapping intervals assuming a lognormal 

distribution (Brasseur and Jacob 2016). Sectional aerosol schemes discretise aerosol size into bins 

carrying mass and number (Brasseur and Jacob 2016). Aerosol schemes can interact with 

radiation, photolysis, and clouds (Brasseur and Jacob 2016). The continuity equations solved for 

aerosol mechanisms are the same as for gas mechanisms (Brasseur and Jacob 2016). 

Models use gas-phase mechanisms to simulate chemical production and loss (Brasseur and 

Jacob 2016, Seinfeld and Pandis 2016). Gas-phase mechanisms use an ensemble of chemical 

reactions to calculate chemical production and loss using rate laws, aqueous chemistry using 

cloud type, and phase equilibrium using Henryôs law coefficients (Brasseur and Jacob 2016, 

Seinfeld and Pandis 2016). Gas-phase mechanisms simplify large, complex organic compounds 

by classifying them by functionality or volatility, which are then represented by a surrogate 
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species or lumped species (Brasseur and Jacob 2016, Seinfeld and Pandis 2016). More complex 

gas-phase mechanisms explicitly resolve chemistry (Brasseur and Jacob 2016, Seinfeld and 

Pandis 2016). 

Models include emissions through inventories or calculate them online (Brasseur and Jacob 

2016). Bottom-up emissions inventories use knowledge of the underlying processes such as 

emission factors, activity rate, and scaling factors, with or without top-down constraints from 

observations (Brasseur and Jacob 2016). Models include emissions from anthropogenic, biogenic, 

biomass burning, volcanic, and mechanical sources (Brasseur and Jacob 2016). Regional models 

also require initial and boundary conditions often supplied from a global model (Palmer and 

Williams 2010). Models are particularly sensitive to the initial conditions (Palmer and Williams 

2010). 

2.2.   Weather Research and Forecasting Model with Chemistry 

The simulations performed for this thesis used the Weather Research and Forecasting (WRF) 

model (Skamarock et al 2008). WRF was designed for regional and numerical weather prediction 

by the National Center for Atmospheric Research (NCAR), the National Oceanic and 

Atmospheric Administration (NOAA), the National Centre for Environmental Prediction 

(NCEP), the United States Air Force, the Naval Research Laboratory, the University of 

Oklahoma, and the Federal Aviation Administration. WRF was publically released in 2000 and 

has since been extended for many Earth system applications, such as atmospheric chemistry 

(WRF-Chem), hydrology (WRF-Hydro), fire (WRF-Fire), hurricanes (HWRF), urban 

meteorology (WRF-Urban), solar and wind energy (WRF-Solar), turbulence (WRF-LES), and 

polar environments (POLAR WRF) (Powers et al 2017). This thesis used WRF-Chem version 

3.7.1 (Grell et al 2005, Fast et al 2006). 

The workflow of WRF follows preprocessing, forecast modelling, and postprocessing. 

Preprocessing input data is performed via the WRF preprocessing system (WPS). WPS first 

configures the horizontal domain, interpolating static geographical data (geogrid). WPS then 

reads, reformats, and extracts input data (ungrib, wesely, and exo_coldens). WPS then ingests and 

interpolates input data creating initial and boundary meteorological conditions (metgrid). 

Emission inventory variables are mapped onto WRF-Chem variables for biogenic (bio_emiss), 

anthropogenic (anthro_emiss), and fire (fire_emiss) emissions. The last step of preprocessing is 

to create initial and boundary chemistry conditions (mozbc). The ACOM laboratory of NCAR 

provided the preprocessors (bio_emiss, anthro_emiss, fire_emiss, and mozbc). 

This thesis used the WRFotron scripts developed by Christoph Knote to automate WRF-Chem 

simulations with re-initialised meteorology. WRFotron is split into preprocessing (pre.bash), 

main execution (main.bash), and postprocessing (post.bash). WRFotron allowed WRF-Chem to 

create optimal initial conditions in the spin-up period using data assimilation, then the model free-
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runs for a set period to allow for sophisticated physics without drifting. The input data for nudging 

has a 3-hour update interval, and values were interpolated in-between. Nudging was only applied 

to selected variables (horizontal wind, vertical wind, potential temperature, and water vapour 

mixing ratio) and with a nudging coefficient that still allows for WRF-Chem to create its own 

dynamic, fine-scale, meteorology.  

WRF-Chem is fully online-coupled (Grell et al 2005). Online-coupled models account for 

interactions and feedbacks between air quality and meteorology (Grell et al 2005). These 

interactions can include impacts on radiation, cloud condensation nuclei, removal processes, and 

transport (Grell et al 2005). Offline models treat air quality and meteorology independently using 

archived meteorology, losing valuable information about atmospheric processes (Grell et al 

2005). WRF-Chem uses the Advanced Research WRF (ARW) fluid flow solver to calculate air 

quality and meteorology components using the same transport, grid coordinates, sub-grid scale 

physics, and timestep (Skamarock and Klemp 2008). ARW is fully compressible, allowing for 

significant changes in fluid density (Skamarock and Klemp 2008). ARW is non-hydrostatic, 

calculating the full vertical momentum equation (Skamarock and Klemp 2008). Fully 

compressible, non-hydrostatic, numerical solvers allow explicit representation of structures 

previously parameterised (Skamarock and Klemp 2008). ARW has a Eulerian mass conserving 

dynamical core (Skamarock et al 2008). The driving equations of ARW have been derived in full 

in Skamarock and Klemp (2008). The timestep of ARW is limited by the Courant-Friedrichs-

Levy (CFL) stability criterion (Courant et al 1928) and is suitable for regional NWP applications 

not influenced by the pole problem (Brasseur and Jacob 2016). ARW uses terrain-following, 

hydrostatic, pressure coordinates to account for surface topography (Laprise 1992). 

WRF-Chem allows users to select mechanisms, schemes, and parameterisations, including 

numerous options for physics, chemistry, and dynamics. The application of WRF-Chem over 

South Asia was first documented in 2012 with two key papers evaluating the model's performance 

for meteorology (Kumar et al 2012a) and chemistry (Kumar et al 2012b), establishing its 

credibility for future use. Since then WRF-Chem has been used extensively over South Asia, 

including papers using more complex sectional aerosol schemes (Kumar et al 2015b), higher 

resolution simulations (Kumar et al 2015c), and exploring the impacts of dust (Kumar et al 2014a, 

2014b).  
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2.2.1.  Model setup 

The setup choices for WRF-Chem implemented in this thesis were initially based on papers 

using WRF-Chem over South Asia (Kumar et al 2012a, 2012b, 2015c, 2014a, 2014b, 2015b). 

The details of the model setup are summarised in Table 4 and detailed in section 2.2.2, 2.2.3, and 

2.2.4. 

Table 4: Model setup and parameterisation used in the WRF-Chem model. 

Model Setup and Parameterisation 

Process Method 

Domain 60̄  to 100̄  East, 0̄ to 40̄  North 

Timestep 180 seconds 

Horizontal  Resolution of 30 km, along a 140 × 140 grid 

Vertical  33 vertical and 27 meteorology levels (top at 10 hPa) 

Microphysics Thompson scheme (Thompson et al 2008) 

Longwave radiation RRTM longwave (Mlawer et al 1997) called every 30 mins 

Shortwave radiation RRTM shortwave (Pincus et al 2003) called every 30 mins 

Boundary layer 

physics 

Mellor-Yamada Nakanishi and Niino 2.5 (Nakanishi and Niino 2006), 

called every timestep 

Land surface Noah Land Surface Model (Ek et al 2003) 

Convective 

parameterisation 

Grell 3-D ensemble (Grell and Freitas 2014, Grell and Devenyi 2002), 

called every 60 seconds 

Gas-phase chemistry MOZART-4 (chem_opt = 201) (Emmons et al 2010), every 12 mins 

Photolysis scheme Madronich fTUV (Tie et al 2003) called every 30 mins 

Aerosol scheme MOSAIC 4-bin (chem_opt = 201) (Zaveri et al 2008), using KPP, 

called every 12 mins 

Dust GOCART with AFWA, dust_opt = 3 (Chin et al 2002, 2000) 

Ini tial  and boundary 

chemistry / aerosol 

MOZART-4 / GEOS5 (National Center for Atmospheric Research 

2016) 

Initial  and boundary 

meteorology 

NCEP GFS and NCEP FNL (National Centers for Environmental 

Prediction et al 2007, 2000) 

2.2.2.  Physics 

Model simulation design considers resolution, complexity, and duration in the context of 

computational constraints (Brasseur and Jacob 2016). The spatial resolution should reflect the 

typical scales of the processes of interest (Brasseur and Jacob 2016). Increasing spatial resolution 

requires shorter timesteps per calculation, substantially increasing the demand on computational 

memory, storage, and wall clock time (Brasseur and Jacob 2016). Sub-grid scale processes are 

parameterised using empiricism, rather than deterministic physics (Brasseur and Jacob 2016). 
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The model domain was a 140 × 140 cell grid, with a horizontal resolution of 30 km, 33 vertical 

levels up to 10 hPa, and a timestep of 180 seconds. The resolution of 30 km was chosen as 

adequate to resolve fine gradients in air pollutant concentrations while remaining computationally 

feasible to perform 15 years of simulations. The relatively low vertical resolution has been used 

in previous high horizontal resolution (10 km) simulations for air quality applications due to 

computational constraints (Kumar et al 2015c). The time-step of the model simulation was taken 

as 6 × grid spacing to ensure that the model does not violate the CFL stability criterion (Courant 

et al 1928). Figure 20 shows the model domain used within all WRF-Chem simulations in this 

thesis, using a Lambert conformal conical projection, with terrain height displayed. 

 

Figure 20: Model domain used in this thesis. Background colour shows terrain height from 

WRF-Chem simulated domain on a Lambert conformal conical projection. 

Static geography fields were interpolated from the 20 category international geosphere-

biosphere programme (IGBP) modified moderate resolution imaging spectroradiometer 

(MODIS) based land use classifications at 30 arc-second resolution by the WPS (Figure 21). 

Substantial areas of India are cropland, with some forest, shrubland, and barren land. MODIS-

based categories should only be used with the Noah Land Surface Model (Ek et al 2003), which 

was used to parameterise heat and moisture fluxes in four soil layers to 2 m. A single layer urban 

canopy model was implemented with surface effects for roofs, walls, and streets. 



 74   

 

Figure 21: International geosphere-biosphere programme (IGBP) modified moderate 

resolution imaging spectroradiometer (MODIS) based land use classifications in India. 

The Thompson scheme was used for cloud microphysics including cloud formation, phase 

conversion, and precipitation (Thompson et al 2008). The Thompson scheme has been found to 

accurately simulate Himalayan precipitation (Karki et al 2018, Reshmi Mohan et al 2018, 

Rajeevan et al 2010). The Grell 3-D scheme (Grell and Freitas 2014) was used for convective 

parameterisation, which is a development of the Grell-Devenyi scheme (Grell and Devenyi 2002). 

The Grell scheme has been found to have improved skill at simulating the South Asian monsoon 

relative to other cumulus schemes (Dash et al 2006, Yu et al 2011). 

The Rapid Radiative Transfer Model (RRTM) option was used for downward and upward 

fluxes of absorption, scattering, and emission from both shortwave radiation due to solar activity 

and longwave radiation due to water vapour, clouds, and trace gases (e.g. CO2 and O3) (Iacono et 

al 2008). The Mellor-Yamada Nakanishi and Niino 2.5 (Nakanishi and Niino 2006) boundary 

layer scheme was called every timestep. WRF-Chem has been used to skillfully  simulate air 

pollution episodes over China with the Mellor-Yamada Nakanishi and Niino 2.5 boundary layer 

scheme and the RRTM radiation schemes (Chen et al 2017a). 

NCEP Global Forecast System (GFS) 6-hourly analyses initialised meteorological conditions 

at 0.5̄  resolution. These, together with GFS 3-hour forecasts in between were also used for 

boundary conditions and grid analysis nudging (National Centers for Environmental Prediction 

et al 2007, 2000). Simulated mesoscale meteorology was kept in line with analysed meteorology 

through grid nudging to the NCEP GFS analyses to limit errors in mesoscale transport (National 

Centers for Environmental Prediction et al 2007, 2000). Kumar et al (2014b) used WRF-Chem 
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over South Asia and found nudging improved model skill in simulating meteorology. In this 

thesis, model meteorology was reinitialised every month to avoid drifting of WRF-Chem, while 

chemistry and aerosol fields were kept to allow for pollution build up and mesoscale transport 

phenomena to be captured. During the simulations, horizontal and vertical wind, potential 

temperature, and water vapour mixing ratio were nudged to GFS analyses in all model layers 

above the planetary boundary layer using four-dimensional data assimilation (FDDA) (Liu et al 

2006, 2005). FDDA in WRF-Chem does not use the analyses fields for its values. Instead, it uses 

them as initial conditions, and then uses the primitive atmospheric equations, affecting chemicals 

through transport. One-week spin-up was implemented based on previous studies (Berge et al 

2001, Kumar et al 2015c, Knote et al 2015). The immediate model results were outputted every 

hour. 

2.2.3.  Chemistry 

Gas-phase chemical reactions were calculated using the chemical mechanism Model for 

Ozone and Related Chemical Tracers, version 4 (MOZART-4) (Emmons et al 2010). Several 

updates to photochemistry of aromatics, biogenic hydrocarbons, and other species relevant to 

regional air quality were applied including a detailed treatment of VOCs (Knote et al 2014, 

Hodzic and Jimenez 2011, Hodzic and Knote 2014). The MOZART-4 scheme has been used in 

other studies over India using WRF-Chem and captured critical observed features of gas-phase 

species (Kumar et al 2014b, Ghude et al 2016). The updated MOZART-4 gas-phase mechanism 

should be used with either the Tropospheric Ultraviolet-Visible (TUV) (Tie et al 2005) or the Fast 

Tropospheric Ultraviolet-Visible (fTUV) module to calculate photolysis rates (Tie et al 2003). 

The fTUV scheme was implemented as it is a simplified version of the TUV model (Madronich 

and Weller 1990), reducing computational costs of using the full TUV scheme (Hodzic and Knote 

2014). The fTUV code was updated to include aerosol feedbacks on photolysis (Hodzic and Knote 

2014). Gas wet deposition was a combination of resolved (Neu and Prather 2012) and convective 

washout (Grell and Freitas 2014), updated to use Henryôs law constants in gas-droplet partitioning 

(Knote et al 2015). Gas dry deposition was based on aerodynamic, transport, and surface 

resistances (Wesely 1989). The updated version of MOZART-4 has been used in many previous 

studies (Knote et al 2014, 2015, Hodzic et al n.d., Campbell et al 2015, Im et al 2015, Wang et 

al 2015). 

Aerosol physics and chemistry were represented by the MOSAIC 4-bin scheme without 

subgrid convective aqueous chemistry (Hodzic and Knote 2014, Zaveri et al 2008). The Kinetic 

PreProcessor (KPP) (Damian et al 2002) was used to convert the underlying chemistry into 

ordinary differential equations. Four sectional discrete size bins were used within MOSAIC based 

on dry aerosol diameter; 0.039ï0.156 mm, 0.156ï0.625 mm, 0.625ï2.5 mm, 2.5ï10 mm (Hodzic 

and Knote 2014, Zaveri et al 2008). Water uptake and loss do not transfer aerosols between the 

size bins (Hodzic and Knote 2014, Zaveri et al 2008). MOSAIC carries sulphate (SO4), nitrate 
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(NO3), ammonium (NH4), calcium (Ca), carbonate (CO3), black carbon (BC), primary organic 

mass (OM), liquid water (H2O), sea salt (NaCl), methanesulfonate (CH3SO3), and other inorganic 

mass such as minerals and trace metals (Hodzic and Knote 2014, Zaveri et al 2008). The aerosol 

number was carried separately, and both aerosol mass and number were calculated for each size 

bin (Hodzic and Knote 2014, Zaveri et al 2008). MOSAIC assumes aerosols are spherical, 

internally mixed within the same size bin and externally mixed with other size bins, implying that 

per size bin there is no ageing time for emissions to transfer from hydrophobic to hydrophilic 

(Kumar et al 2015c). Wet deposition of aerosols was a mixture of resolved (Neu and Prather 

2012) and convective washout (Grell and Freitas 2014). Dry deposition was based on the 

resistances approach (Wesely 1989) as a function of friction velocity and the boundary layer 

height (Walcek et al 1986). The thermodynamic module in MOSAIC was designed for dynamic 

gas-particle partitioning, reliably predicting particle deliquescence (moisture absorption until 

dissolution), water content, and solid-liquid phase equilibrium in multicomponent aerosols, and 

is computationally efficient (Hodzic and Knote 2014, Zaveri et al 2008). MOSAIC removes 

aerosols via grid-scale precipitation (Chapman et al 2009, Easter et al 2004). 

The SOA formation mechanism varies with or without the use of aqueous chemistry in the 

MOSAIC aerosol scheme (Hodzic and Knote 2014). For MOSAIC without aqueous chemistry, 

as used in this thesis, the SOA formation mechanism was from Hodzic and Knote (2014), based 

work by Hodzic and Jimenez (2011). SOA calculations use a lumped surrogate VOC for 

anthropogenic (VOCA) and biomass burning (VOCBB) co-emitted with CO that oxidises with OH 

and condenses into SOA (Hodzic and Jimenez 2011). The ratio of VOCA (or VOCBB) to CO 

emissions was parameterised as being proportional to the ratio of SOA formed to the change in 

CO in very aged air (Hodzic and Jimenez 2011). CO is typically well produced by models, can 

be measured by satellites, has similar or collocated emissions sources as anthropogenic SOA 

precursors, and is approximately inert with regard to SOA timescales (Hodzic and Jimenez 2011). 

Simulated SOA accuracy from this CO proxy approach is similar to volatility basis set (VBS) 

parameterisations (Robinson et al 2007), while being much less computationally expensive and 

can be used in regions where the emissions of SOA precursors are not yet available (e.g. India) 

(Hodzic and Jimenez 2011). Hodzic and Knote (2014) updated the SOA calculations from Hodzic 

and Jimenez (2011) to use ambient ageing measurements of OA that produce reasonable and 

efficient simulated SOA precursors. Hodzic and Knote (2014) calculate biogenic SOA via a two-

product approach (partitioning coefficient and a proportionality constant for each specie oxidising 

VOCs) (Odum et al 1997, Odum Jay et al 1996), with updated yields (Hodzic and Knote 2014). 

Glyoxal SOA, a product of isoprene oxidation, formation and partitioning were included using a 

simple surface uptake mechanism (Knote et al 2014).  

Simulations over India comparing the bulk scheme from Georgia Tech / Goddard Global 

Ozone Chemistry Aerosol Radiation and Transport (GOCART) (Chin et al 2000) and the 
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MOSAIC 8-bin sectional schemes have shown the MOSAIC scheme more accurately represents 

aerosol observations (Kumar et al 2015b). MOSAIC accounts for many aerosol processes (e.g., 

aerosol thermodynamics, SOA formation, in-cloud, and impaction scavenging) not included in 

the GOCART bulk aerosol scheme. The 8-bin MOSAIC sectional aerosol scheme is 1.8 times 

slower than the 3-mode Modal Aerosol Dynamics Model for Europe (MADE) (Ackermann et al 

1998) modal aerosol scheme while containing 2.7 times more prognostic chemical species (Fast 

et al 2011). The MOSAIC 4-bin aerosol scheme is less computationally demanding relative to the 

8-bin scheme, while still skilfully simulating PM2.5 mass over India (Sarangi et al 2015, Kumar 

et al 2015b). In this thesis, the MOZART-MOSAIC 4-bin without subgrid convective aqueous 

chemistry was implemented throughout, due to the balance of detailed aerosol and trace gas 

processes with computational efficiency. There are uncertainties within MOSAIC, such as aerosol 

shape and morphology, assumed chemical species density, assumed refractive indices, and the 

conversion factor between OM and OC (Barnard et al 2010).  

2.2.4.  Emissions 

Anthropogenic emissions for 2010 were taken from the Emission Database for Global 

Atmospheric Research with Task Force on Hemispheric Transport of Air Pollution (EDGAR-

HTAP) version 2.2 at 0.1̄ × 0.1̄  horizontal resolution (Janssens-Maenhout et al 2015). EDGAR-

HTAP v2.2 uses the Model Intercomparison Study for Asia Phase III (MIX), which is a mosaic 

of Asian anthropogenic emission inventory (Li et al 2017b). For India, MIX uses the Indian 

emission inventory provided by the Argonne National Laboratory (Lu et al 2011, Lu and Streets 

2012) for SO2, BC, and OC for all sectors, as well as NOx for power plants, and Regional Emission 

inventory in Asia (REAS) version 2.1 (Kurokawa et al 2013) for other species. The bottom-up 

global emission inventory EDGAR v4.3 filled gaps in EDGAR-HTAP v2.2 (Janssens-Maenhout 

et al 2015). Emissions include PM2.5, PM10, SO2, NOx, CO, NMVOC, NH3, BC, and OC 

(Janssens-Maenhout et al 2015). Emissions are classified by source sector: aviation, shipping, 

power generation (ENE), industrial non-power (IND), land transport (TRA), residential energy 

use (RES), and agriculture (AGR) (Janssens-Maenhout et al 2015). Power generation emissions 

for the energy sector are from electricity and heat production. Industrial non-power emissions 

include large-scale combustion and industrial processes. Emissions from residential energy use 

categorised in EDGAR-HTAP v2.2 comprise small-scale combustion devices for heating, 

cooking, lighting, and cooling in addition to supplementary engines for residential, commercial, 

agricultural, solid waste, and wastewater treatment (Janssens-Maenhout et al 2015). In India, 

residential emissions are primarily from cooking. Residential energy use emissions of PM2.5, BC, 

and OC, were qualitatively classified as highly uncertain within EDGAR-HTAP v2.2 (Janssens-

Maenhout et al 2015). Seasonal cycles were derived from monthly activity data for power 

generation, industrial non-power, and all transport sectors, while residential energy use depends 

on regional monthly-mean temperature (Lu et al 2011). EDGAR has been found to simulate air 
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quality well over South Asia using WRF-Chem relative to other anthropogenic emission 

inventories (Saikawa et al 2017). Emissions from EDGAR-HTAP v2.2 were chosen over 

ECLIPSE due to higher spatial resolution in EDGAR-HTAP v2.2 (0.1̄ × 0.1̄ relative to 0.5̄  × 

0.5̄ ), that ECLIPSE underestimated BC and trace gas emission magnitudes and had inaccuracies 

in their spatial distribution over India (Stohl et al 2015, Klimont et al 2017), and that simulations 

using EDGAR emissions estimate PM closer to observations over India (Saikawa et al 2017).  

Biomass burning emissions were taken from the Fire Inventory from NCAR (FINN) version 

1.5 bottom-up inventory using burned area estimates (Wiedinmyer et al 2011). Biomass burning 

emissions are from the open burning of biomass including wildfires, agricultural fires, and 

prescribed fires, and not biofuel use and trash burning (Wiedinmyer et al 2011). FINN uses daily, 

1 km resolution, global estimates of gas and aerosol emissions from satellite observations of active 

fires and land cover with updated emission factors and estimated fuel loadings (Akagi et al 2011). 

FINN fire emissions were used over the Global Fire Emissions Database (GFED) fire emissions 

as FINN has higher spatial resolution and better captures small fires (Reddington et al 2016, 

Randerson et al 2012). However, it is likely that emissions from agricultural fires are still 

underestimated (Cusworth et al 2018). 

Biogenic emissions were calculated online by the Model of Emissions of Gases and Aerosol 

from Nature (MEGAN) (Guenther et al 2006) online canopy model. MEGAN is driven by 1 km 

satellite measurements of land use (Guenther et al 2006). MEGAN estimates the net emission of 

134 gases and aerosols from terrestrial ecosystems (Guenther et al 2006). MEGAN is 

recommended to be used with the updated gas-phase mechanism of MOZART-4 as it speciates 

biogenic VOCs online (Hodzic and Knote 2014). 

Dust emissions were calculated online through GOCART with Air Force Weather Agency 

(AFWA) modifications based on wind speed and land surface characteristics (Legrand et al 2018, 

Chin et al 2000, Ginoux et al 2001, Jones et al 2012, 2010, Su and Fung 2015, Kok 2011). The 

AFWA modifications are based on dust emission parameterisations from Marticorena and 

Bergametti (1995) with ten saltation size bins and five dust size bins (0ï2 mm, 2ï3.6 mm, 3.6ï6 

mm, 6ï12 mm, and 12ï20 mm) (Legrand et al 2018). GOCART AFWA dust emissions were 

chosen over GOCART dust emissions due to updated physics, over the MOSAIC and 

MADE/SORGAM dust emissions option due to errors, and over the GOCART dust emissions 

with University of Cologne (UOC) modifications due to lack of testing (Legrand et al 2018). 

MOZART-4 / Goddard Earth Observing System Model version 5 (GEOS5) 6-hourly 

simulation data were used for chemical and aerosol boundary conditions (National Center for 

Atmospheric Research 2016), which were interpolated onto the WRF-Chem domain using the 

mozbc preprocessor. The species map within mozbc defines the speciation of initial and boundary 
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chemistry conditions from MOZART-4 with an assumed size distribution, as MOZART-4 used a 

bulk scheme for 12 aerosol compounds. 

Monthly files were concatenated to annual files for use with the preprocessor anthro_emiss. 

Within anthro_emiss, emissions preprocessing was set up for a modal aerosol scheme, MADE 

(Ackermann et al 1998), and mapping splits these to the appropriate size bin. The anthro_emiss 

preprocessor outputs two datasets per domain for 00 and 12 hours Coordinated Universal Time 

(UTC). Preprocessors map unspeciated PM2.5 from emission input files to other inorganics after 

subtracting all known aerosol. A similar process happens for PM10, where the mass is the 

difference between PM10 and PM2.5 only. Within the fire_emiss preprocessor, emissions were 

mapped directly onto WRF-Chem MOSAIC aerosol bins, avoiding double counting, and the size 

distribution were calculated online. 

2.3.   Exposure-response function for long-term ambient PM2.5 exposure 

Long-term (annual) average exposures to ambient PM2.5 concentrations were associated with 

a relative risk of disease estimated through the integrated exposure-response (IER) functions 

(Burnett et al 2014). The IER functions (Burnett et al 2014), developed as part of GBD2010 

(GBD 2010 Risk Factors Collaborators 2012), represent a significant advance in estimating risk 

from PM2.5 exposure. The IER functions combine epidemiological evidence from ambient air 

pollution, household air pollution, second-hand smoking, and active smoking to estimate the 

health response to exposures across a widened range of pollutant concentrations (Burnett et al 

2014). Exposures to PM2.5 increase from ambient air pollution to second-hand smoking, 

household air pollution from solid fuel combustion, and active smoking (Pope III et al 2018). The 

IER functions enable the estimation of risk factor across the global concentration range of ambient 

PM2.5 (Burnett et al 2014). The IER functions assume that PM2.5 is an appropriate indicator of risk 

and that epidemiological data is valid across populations (Ostro et al 2018). There are individual 

IER functions per cause of COPD, IHD, CEV, LRI, and LC. The IER functions primarily use 

epidemiological data from cohort studies from the United States, Europe, and parts of Asia. 

Relative risks (RR) are the ratio of the probability of a health endpoint occurring in a 

population exposed to a level of pollution, to the probability of that same health endpoint 

occurring in a population that is not exposed. An RR of one represents no increase in risk. RRs 

for individual health conditions vary due to differences in approach, exposure estimates, and the 

mechanisms linking exposures to the health condition (Burnett et al 2014, Pope III et al 2011). 

The IER functions use age-specific modifiers for each disease to estimate the RR of mortality 

associated with ambient PM2.5 concentrations (z), as shown in Equation 1. The maximum risk is 

1 + Ŭ, the ratio of the IER at low to high concentrations is ɓ, and the power of the PM2.5 

concentration is ɔ. Parameter distributions of Ŭ, ɓ, and ɔ were sampled for 1,000 simulations to 

derive the mean IER function with 95% uncertainty intervals.  
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Equation 1: Integrated exposure-response (IER) functions to estimate long-term relative risk 

from PM2.5 exposure (Burnett et al 2014). 

IERs are non-linear, especially for cardiovascular diseases (IHD and CEV), where the relative 

change in RR increases at lower PM2.5 concentrations (Burnett et al 2014, Bruce et al 2014). 

Consequently, substantial health improvements are only realised at the lowest exposures (Cohen 

et al 2017). The IER functions have large uncertainties within the 30ï100 mg m-3 PM2.5 

concentration range, due to limited epidemiological evidence for cardiovascular mortality from 

ambient PM2.5 exposure and a small number of studies of second-hand smoke exposure (Jerrett 

2015). The IER functions have been found to underestimate risk over the PM2.5 concentration 

exposure range experienced in China (Yin et al 2017) and for infant LRI in Sub-Saharan Africa 

(Heft-Neal et al 2018). IERs are based on the assumptions of equitoxicity of PM2.5 from different 

sources, that PM2.5 adequately represents risk from combustion mixtures, and that health 

outcomes are sufficiently similar across exposure sources and settings (Bruce et al 2015b, Burnett 

et al 2014). In contrast to the IERs, there are other exposure-response relationships (e.g. log-

linear) that have been used in various studies (Anenberg et al 2011, 2010, Cohen et al 2005, Apte 

et al 2015b).  

The IER functions estimate the age and disease-specific RR for each ambient PM2.5 

concentration. There are IERs for each health condition (LRI, CEV, COPD, IHD, and LC), where 

the parameter combinations are updated with additional epidemiological evidence for each release 

of the GBD project (2010, 2013, 2015, and 2016). The GBD2015 IER (GBD 2015 Risk Factors 

Collaborators 2016a, Cohen et al 2017) was used in Chapter 4, and the GBD2016 IER (GBD 

2016 Risk Factors Collaborators 2017) was used in Chapter 5. Both the IER functions from 

GBD2015 and GBD2016 have uniform theoretical minimum risk exposure levels (zcf) for PM2.5 

of 2.4 mg m-3. However, it is accepted that there is no safe population-level threshold of exposure 

to PM2.5 (World Health Organization 2006a). Figure 22 compares the GBD2015 and GBD2016 

IER. The response of RR to PM2.5 exposure is very similar between GBD2015 and GBD2016 for 

the respiratory diseases (COPD and LRI) and LC. For the GBD2016, the RR for cardiovascular 

diseases (IHD and CEV) reduces relative to the RR in GBD2015. The GBD2015 requires age 

groupings from LRI for early-, late-, and post-neonatal, and populations between 1 and 80 years 

upwards in 5-year groupings. The GBD2015 requires age groupings from IHD, CEV, COPD, and 

LC for adults over 25 years old, split into 5-year age groups. The GBD2016 requires age 

groupings split into 5-years from 25 to 95 years and upwards for all diseases, in addition to 0 to 

25 years for LRI. 
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Figure 22: Integrated-exposure response (IER) functions estimating the relative risk (RR) of 

mortality from ambient PM2.5 concentrations from Global Burden of Diseases, Injuries, and Risk 

Factors Study (GBD) 2015 (GBD 2015 Risk Factors Collaborators 2016b) and GBD2016 (GBD 

2016 Risk Factors Collaborators 2017). Mean exposure-response shown in bold line for 

ischaemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary 

disease (COPD), lower respiratory infections (LRI), and lung cancer (LC). IHD and CEV have 

shaded regions representing the variation between age groups. 

Premature mortality (M) was estimated as a function of population (P), baseline mortality rates 

(I), and the attributable fraction (AF) for a specific RR (Equation 2). The population data used is 

discussed in Section 2.5. To be consistent with the GBD, country and disease-specific baseline 

mortality rates from the GBD study (Institute for Health Metrics and Evaluation 2018) in 5-year 

groupings for both genders combined were used from GBD2015. In Chapters 5 and 6, baseline 

mortality rates were from the International Futures model as discussed in Section 2.5. A 

sensitivity study was performed in Chapter 4 using state-specific baseline mortality rates from 

Chowdhury and Dey (2016) for India accounting for socioeconomic variations across the country 

through using GDP as a proxy applied to WHO statistics from 2011 (World Health Organization 
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2011). The sensitivity study applied the state-to-nation ratios from the state-specific baseline 

mortality rates to the GBD2015 baseline mortalities for COPD, IHD, and CEV. Baseline mortality 

for LC did not exhibit any relation with GDP, and they did not study LRI. Accordingly, the 

GBD2015 values were directly used for these diseases. This was done for mean, upper, and lower 

confidence intervals.  

( )RRRRIPAFIPM 1-³³=³³=  

Equation 2: Long-term premature mortality from PM2.5 exposure. 

Years of life lost (YLL) for each age and disease were estimated as a function of premature 

mortality and age-specific life expectancy (LE) from the standard reference life table from the 

GBD (Equation 3). The standard reference life table was used from GBD2015 (Global Burden of 

Disease Study 2015 2016b) in Chapter 4 and GBD2016 in Chapters 5 and 6 (Global Burden of 

Disease Study 2016 2017b). Applying country-specific life expectancy values (Ministry of 

Statistics and Programme Implementation 2016) from the Government of India in 2014 reduced 

YLL by 60% relative to using the GBD2015 LE values. The GBD normative standard life table 

was used for the main YLL results to be consistent with the extensive work done on this issue by 

the GBD project. The GBD project in 2010 developed the normative standard life table after 

consultation with philosophers, ethicists, and economists to compute YLL at each age by 

identifying the lowest observed death rate for any age group in countries of more than 5 million 

in population (Murray et al 2012). Two principles behind the decision were that the only 

differences in the rating of death or disability should be due to age and that everyone in the world 

has the right to best life expectancy in the world. The GBD India-specific study used the same 

GBD normative standard life table (India State-Level Disease Burden Initiative Collaborators 

2017). 

LEMYLL ³=  

Equation 3: Long-term years of life lost from PM2.5 exposure. 

The GBD meta-analyses estimates for PM2.5 risks include studies from India for household air 

pollution, but no epidemiologic studies exist for long-term ambient PM2.5 exposure in India. 

Recent epidemiological studies in India, supported by the Indian Council of Medical Research 

(ICMR) and the European Research Council, are underway to analyse the health impacts of long-

term exposure to ambient and household air pollution (Tonne et al 2017, Balakrishnan et al 2015). 

The IER functions are required for risk assessments in locations where the risk of exposure to air 

pollution is high, and there are little data on long-term epidemiological studies, such as India. The 

lack of locally-derived exposure-response functions has impeded previous risk assessment 

attempts to impact local policy in India (The World Bank 1995, Health Effects Institute Public 

Health and Air Pollution in Asia Program 2011).  
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Only a few short-term time-series studies of mortality and air pollution have been conducted 

in India (Figure 23). The first by Cropper et al (1997) for Delhi in 1997 found the excess risk of 

mortality to be 0.23% ± 0.1 per 10 mg m-3 increase in total suspended PM concentrations. Nidhi 

(2008) found risk estimates of 0.6% for hospital admissions per 10 mg m-3 increase in respiratory 

suspended particulate matter in Delhi. Two Indian epidemiological studies of short-term PM10 

exposure exist from the Public Health and Air Pollution in Asia (PAPA) study (Health Effects 

Institute Public Health and Air Pollution in Asia Program 2011). The Delhi study reported an all-

cause risk estimate of 0.15% (95UI: 0.07ï0.23) per 10 mg m-3 increase in PM10 concentrations 

(Health Effects Institute Public Health and Air Pollution in Asia Program 2011). The Chennai 

study reported an all-cause risk estimate of 0.44% (95UI: 0.17ï0.71) per 10 mg m-3 increase in 

PM10 concentrations (Health Effects Institute Public Health and Air Pollution in Asia Program 

2011). Dholakia et al (2014) studied five Indian cities for all-cause mortality from PM10 exposure 

and found risk estimates in Shimla of 1.36% (95UI: -0.38ï3.1), in Ahmedabad of 0.16% (95UI: 

-0.31ï0.62), in Bangalore of 0.22% (95UI: -0.04ï0.49), in Hyderabad of 0.85% (95UI: 0.06%ï

1.63%), and in Mumbai of 0.2% (95UI: 0.1ï0.3). Maji et al (2017) estimated risks of 0.14% 

(95UI: 0.02%ï0.26%) for daily all-cause-mortality per 10 mg m-3 increase in PM10 in Delhi. 

Dholakia et al (2014) found more polluted cities had lower relative risks than clean cities, 

consistent with the non-linear exposure-response function for long-term exposure to PM2.5. Pande 

et al (2018) spatially extrapolated these relative risks for short-term PM10 exposure across India. 

Maji et al (2017) also found higher risks at lower PM concentrations, with risk estimates of 0.38% 

per 10 mg m-3 increase in PM10 concentrations up to 100 mg m-3, and risk estimates of 0.13% for 

higher concentrations. Maji et al (2018) found hospital admissions increased by 0.47% (95UI: 

0.03%ï0.91%) per 10 mg m-3 increase in PM10 concentrations in Delhi. The only work analysing 

PM2.5 was published in 2018 by Balakrishnan et al (2018) who studied pregnant mothers in an 

integrated rural-urban cohort in Tamil Nadu and found a 4 g (95UI: 1.08ï6.76) decrease in birth 

weight and 2% (95UI: 0.5ï4.1) increase in the prevalence of low birthweight per 10 mg m-3 

increase in PM2.5 concentrations. Kumar et al (2010b) associated air quality indicated through 

visibility reductions per 1 km to increase mortality by natural causes by 2.4% (95UI: 1.8ï3.0). 

Overall, the effects of short-term exposure in Indian cities are on a par with those observed in 

hundreds of studies worldwide (0ï2% per 10 mg m-3 increase in PM concentrations, with excess 

risk reducing at higher PM concentrations) (Health Effects Institute International Scientific 

Oversight Committee 2010), which form the basis of the exposure-response functions used by the 

GBD and this thesis. 
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Figure 23: Short-term PM and PM10 exposure excess risk estimates in India. 

2.4.   Exposure-response function for long-term ambient O3 exposure 

The disease burden associated with COPD from ambient O3 exposure was estimated using 

relative risk (RR) estimates from the earlier American Cancer Society Cancer Prevention Study 

II (CPS-II)  study from Jerrett et al (2009), in addition to the updated CPS-II study from Turner et 

al (2016). The updated CPS-II study derived RR estimates from a larger study population (+49%), 

studying twice as many deaths during a longer follow up period (+22%). The updated CPS-II 

study used improved exposure estimates and found the hazard ratios (HR) for respiratory 

mortality increased. The earlier CPS-II study found HR per 10 ppb for respiratory mortality after 

adjusting for PM2.5 confounding of 1.04 (95UI: 1.01ï1.07), while the updated CPS-II study found 

HR for COPD mortality after adjusting for PM2.5 and NO2 confounding of 1.14 (95UI: 1.08ï1.21). 

The updated CPS-II study found through sensitivity analyses that the long-term O3 health impacts 

are not confounded by socioeconomic status or modelling approach. To be consistent with the 

GBD, premature mortality was estimated from the risk of ambient O3 exposure from the cause of 

COPD only. The GBD used the earlier CPS-II study risks with 3-month average daily maximum 

1-hour O3 concentrations (3mDMA1), while the updated CPS-II study used annual average daily 

maximum 8-hour O3 concentrations (ADM8h). Both the earlier (Jerrett et al 2009) and updated 

(Turner et al 2016) RR estimates were used, with the corresponding O3 metric. No epidemiologic 

studies exist for long-term O3 exposure in India. 

Premature mortality associated with O3 exposure (M) was estimated for COPD for adults over 

25 years of age (as per GBD) following Equation 4. Mortality was a function of the baseline 

mortality rate (I), attributable fraction (AF), and the exposed population (P) per age group. The 
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AF was a function of the effect estimate (ɓ) and the change in O3 concentrations (æX) relative to 

the low-concentration cut-off (LCC), given in Equation 5. Both the earlier and updated CPS-II 

study AF functions were given in Figure 24, clearly showing the impact of the increased HR for 

the updated CPS-II study. The exposure-response function for the updated CPS-II is more non-

linear, relative to the earlier CPS-II function, where there are larger changes in risk for low 

concentrations compared with higher concentrations (Pope III et al 2015). 

 

Figure 24: Attributable fractions as a function of ambient O3 concentrations for chronic 

obstructive pulmonary disease (COPD) from both the earlier American Cancer Society Cancer 

Prevention Study II (CPS-II)  (Jerrett et al 2009) and the updated CPS-II study (Turner et al 2016). 

Mean (solid line) as well as upper and lower 95% confidence intervals (shading) shown for both 

low-concentration cut-offs (LCCmin and LCCfifth). 

Two LCCs represent uncertainty in the HR as either the minimum exposure (LCCmin) or the 

fifth percentile (LCCfifth), whereby if the O3 concentration is below the LCC there is no effect of 

O3 exposure on mortality and æX equals zero. The earlier CPS-II study (Jerrett et al 2009) used 

the minimum and fifth percentile LCCs of 33.3 ppb and 41.9 ppb, respectively, while the updated 

CPS-II study (Turner et al 2016) used the minimum and fifth percentile LCCs of 26.7 ppb and 

31.1 ppb, respectively. Epidemiological studies generally find little evidence for low 

concentration thresholds, and disease burden estimates using thresholds will, therefore, be 
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conservative (U.S. Environmental Protection Agency 2013b). ɓ is the natural log of the HR for a 

10 ppb increase in long-term O3 exposure (Equation 6). To account for uncertainty in the RR 

estimates, 1,000 estimates of ɓ were sampled from normal distributions of ɓ using 95% 

uncertainty intervals to derive a distribution of the AF. YLL  were estimated in the same way as 

detailed in Section 2.3, using the standard reference life table from GBD2016 (Global Burden of 

Disease Study 2016 2017b). 

PAFIM ³³=  

Equation 4: Long-term premature mortality from O3 exposure. 

XeAF D--= b1  

Equation 5: Long-term attributable fraction from O3 exposure. 

10

)ln(HR
=b  

Equation 6: Long-term hazard ratio from O3 exposure. 

A couple of previous epidemiological studies have researched the health impacts of short-term 

O3 exposure in Delhi, India. Nidhi (2008) and Maji et al (2018) found short-term risk estimates 

of 3.3% and 3.41% (95UI: 0.02%ï6.83%), respectively, for hospital admissions per 10 mg m-3 

increase in O3 in Delhi. Maji et al (2017) estimated risks of 0.31% (95UI: 0.05%ï0.57%) for daily 

all-cause-mortality per 10 mg m-3 increase in O3 concentrations in Delhi. These mortality risks, 

although for all-cause and Delhi only, are larger than corresponding risks recommended by the 

WHO (0.29%) (Héroux et al 2015) and Turner et al (2016) (0.2%) which are in line with the 

estimates used in this thesis. This suggests the estimates in this thesis are conservative. 

2.5.   Current and future population of India 

For Chapter 4, present-day population density data for 2015 was obtained at 0.25̄ × 0.25̄ 

resolution from the Gridded Population of the World, Version 4 (GPWv4), created by the Centre 

for International Earth Science Information Network (CIESIN) and accessed from the National 

Aeronautics and Space Administration (NASA) Socioeconomic Data and Applications Centre 

(SEDAC) (Center for International Earth Science Information Network and NASA 

Socioeconomic Data and Applications Center 2016b). The United Nations adjusted version was 

implemented for 2015 with a total population of 1.302 billion in India. Shapefiles were used to 

split data per state within India from Spatial Data Repository, The Demographic and Health 

Surveys Program (ICF International n.d.) and the GADM database of Global Administrative 

Areas version 2.8 (Hijmans et al 2016). Chapter 4 includes rural and urban splits, where urban 

areas were defined as having a population density of at least 400 personsô km-2, as used in previous 

studies (Lelieveld et al 2015). Population age composition was taken from the GBD2015 

population estimates for 2015 for Chapter 4 (Global Burden of Disease Study 2015 2016a). The 
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GPWv4 national identifier grid (Center for International Earth Science Information Network and 

NASA Socioeconomic Data and Applications Center 2016a) was used to allocate data by country.  

For Chapters 5 and 6, present day (2015) and future (2050) population density, population age 

structure, and baseline mortality rates for COPD, IHD, CEV, LC, and LRI were obtained from 

the International Futures (IFs) integrated modelling system (Hughes et al 2011) base case scenario 

(Hughes et al 2012). The IFs base case scenario forecasts a range of global transitions in human 

development including increasing incomes, education, health, infrastructure, governance, and 

productivity that are continuous with historical patterns, include non-linear relationships, and 

exclude large disruptive changes (Hughes et al 2012). Figure 25 shows the variation in baseline 

mortality, population age distribution, and population density for India between 2015 and 2050. 

Baseline mortality rates for all diseases in India show reductions in 2050 relative to 2015, 

primarily for LRI, CEV, and IHD where there are substantial decreases. The baseline mortality 

rate for COPD reduces slightly in 2050 relative to 2015 for age groupings 60 years and older. The 

population age distribution shifts towards older ages (40 years and older), and there is 

considerable population growth, particularly across the IGP. 
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Figure 25: Change in baseline mortality, population age distribution, and population density 

for India between 2015 and 2050 from the International Futures (IFs) integrated modelling 

system (Hughes et al 2011) baseline scenario. Baseline mortality rates for (a) lower respiratory 

infections (LRI), (b) chronic obstructive pulmonary disease (COPD), (c) ischaemic heart disease 

(IHD), (d) cerebrovascular disease (CEV), and (e) lung cancer (LC) in 2015 and 2050. (f) 

Population age distribution. (g) Spatial distribution of population density in 2015 for South Asia. 

(h) Change in population density for South Asia between 2050 and 2015. 

Figure 26 shows the difference in baseline mortality, population age distribution, and 

population density for India in 2015 between IFs (Hughes et al 2011) and the GBD2016 (GBD 

2016 Risk Factors Collaborators 2017). IFs population density for India in 2015 is very similar to 

the GPWv4 (10,000 smaller population in IFs out of 1.3 billion, primarily across the IGP) (Center 

for International Earth Science Information Network and NASA Socioeconomic Data and 

Applications Center 2016b). IFs population age groupings for India is similar to the population 

age structure used by the GBD2016 (Global Burden of Disease Study 2016 2017a). Baseline 
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mortality rates below 65 years of age are similar for all diseases between IFs and GBD2016 

(Institute for Health Metrics and Evaluation 2018), while above 65 years of age IFs has larger 

values for respiratory diseases (LRI and COPD) and smaller for cardiovascular diseases (IHD and 

CEV) and LC relative to the GBD2016. The baseline mortality rate for COPD in 2015 from IFs 

is slightly larger than the corresponding rate from GBD2016 (Institute for Health Metrics and 

Evaluation 2018) for age groupings 75 years and older. 

 

Figure 26: Variation in baseline mortality, population age distribution, and population 

density for India in 2015 between the International Futures (IFs) integrated modelling system 

(Hughes et al 2011) baseline scenario and data used in GBD2016 (GBD 2016 Risk Factors 

Collaborators 2017). Baseline mortality rates for (a) lower respiratory infections (LRI), (b) 

chronic obstructive pulmonary disease (COPD), (c) ischaemic heart disease (IHD), (d) 

cerebrovascular disease (CEV), and (e) lung cancer (LC) in 2015 from IFs and GBD2016 

(Institute for Health Metrics and Evaluation 2018). Note that for LRI, IFs provides age group 0ï

4 while GBD2016 provides age group 0ï5. (f) Population age distribution in 2015 from IFs and 

GBD2016 (Global Burden of Disease Study 2016 2017a). (g) The difference in population density 
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for South Asia in 2015 from IFs and Gridded Population of the World, Version 4 (GPWv4) 

(Center for International Earth Science Information Network and NASA Socioeconomic Data and 

Applications Center 2016b). 

2.6.   Sector-specific disease burden 

There are two main methods for estimating the sectoral contributions to premature mortality 

from ambient air pollution exposure, each giving greatly different results (Kodros et al 2016). 

The subtraction (or zero-out) method calculates the sector-specific mortality (MSECTOR) as the 

difference between the all-source premature mortality estimate from all sources (MALL) and the 

premature mortality estimate based on a model simulation where the emission sector has been 

removed (MSECTOR_OFF) as in Equation 7 (Silva et al 2016b, Kodros et al 2016, Chambliss et al 

2014). 

OFFSECTORALLSECTOR MMM _-=  

Equation 7: Sector-specific premature mortality following the subtraction method. 

Alternatively, the attribution method first calculates the fractional sectoral reduction in PM2.5 

concentrations from removing an emission sector (PM2.5_SECTOR_OFF) and then uses this fraction to 

scale the total premature mortality estimate (Equation 8) (GBD MAPS Working Group 2016, 

Lelieveld et al 2015, Chafe et al 2014a, Kodros et al 2016, Archer-Nicholls et al 2016, Lelieveld 

2017).  

( )
ALLOFFSECTORALLALLSECTOR PMPMPMMM _5.2__5.2_5.2 -=  

Equation 8: Sector-specific premature mortality following the attribution method. 

The two methods answer different questions: the attribution method estimates the number of 

premature mortalities that could be attributed to a sectorsô emissions, while the subtraction 

method estimates the reduction in premature mortalities that could be achieved by removing the 

sectorsô emissions. The non-linear exposure-response relationships mean these two methods give 

different estimates. Chapters 4 and 6 use and compare both methods when estimating sector-

specific disease burdens. 

2.7.   Uncertainties 

Uncertainty intervals at the 95% level (95UI) were estimated through combining fractional 

errors in quadrature (i.e. square root of the sum of squares) from two standard deviations of 

weekly PM2.5 or daily O3 concentrations per grid cell, the derived uncertainty intervals for the 

exposure-response functions, and the provided uncertainties in baseline mortality rates (Institute 

for Health Metrics and Evaluation 2018). Applying uncertainties in quadrature results in similar 

uncertainty ranges (±50%) as when using Monte Carlo analysis (Chen et al 2017b, Jain et al 2017, 

Silva et al 2016b, Liu et al 2009). Uncertainty ranges are only noticeably reduced when using 
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Bayesian Hierarchical modelling as performed by recent updates to the GBD project (GBD 2015 

Risk Factors Collaborators 2016a, GBD 2016 Risk Factors Collaborators 2017, Cohen et al 2017). 

However, the relative uncertainty range for India in the GBD is larger than that for many other 

countries, due to the lack of ground measurements in India (Ostro et al 2018). 

Model errors arise through limited physical understanding, parameterisations, numerical 

errors, and model implementation (Brasseur and Jacob 2016). Model uncertainty arises from 

stochastic, unresolved processes, and parameter uncertainty (Brasseur and Jacob 2016). 

Emissions inventories for India have significant uncertainties, especially across the IGP 

(Janssens-Maenhout et al 2015, Saikawa et al 2017, Monks et al 2015, Jena et al 2015a, 

Karambelas et al 2018a, 2018b). Monitoring stations are limited in India and are especially scarce 

in rural areas (Karambelas et al 2018b). Consistent with the GBD project, the toxicity of PM2.5 

were treated as homogenous regarding source, shape, and chemical composition, due to the lack 

of composition-dependent exposure-response functions. Disease burden estimates do not account 

for multiple exposure cases or multipollutant scenarios. 

Chapter 5 and 6 estimate future air pollution and associated health impacts using the same 

meteorology inputs and parameterisations, and hence do not include the impacts of climate 

changes on air quality, although these changes are likely smaller relative to those driven by 

emission changes for PM2.5 (Pommier et al 2018, Silva et al 2017, Fang et al 2013, Jacobson 

2008, Kumar et al 2018) and O3 (Pommier et al 2018, Kumar et al 2018, Silva et al 2017). 

Consequently, the validity of results is limited to the impacts of projected emission changes in 

India and do not include impacts of future climate change or impacts of emission changes outside 

India. Reductions in O3 precursors in India may reduce O3 concentrations outside of India, 

providing public health benefits not accounted for (West et al 2009a). Reduced O3 concentrations 

will also reduce damage to crops and the economic cost associated with premature mortalities 

(Ghude et al 2014, 2016, Sinha et al 2015), as well as providing substantial climate co-benefits 

(Shindell et al 2012). 
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3.  Model evaluation 

Model evaluation is critical to validate, verify, and estimate model skill in simulating reality 

(Brasseur and Jacob 2016). Model evaluations use observations as reality (Brasseur and Jacob 

2016). Observations are either in-situ or remote, short- or long-term, active or passive, and can be 

systematically- or randomly-biased relative to reality (Brasseur and Jacob 2016). This section 

evaluates a WRF-Chem model simulation for 2014. In Section 3.1, the metrics are defined. In 

Section 3.2, the meteorology is evaluated. In section 3.3, surface PM2.5 concentrations are 

evaluated. In Section 3.4, aerosol optical depth is evaluated. In Section 3.5, surface O3 

concentrations are evaluated. 

3.1.   Metrics 

Statistical metrics recommended for evaluating air quality models (Yu et al 2006) include 

mean bias (MB), normalised mean bias (NMB), root mean square error (RMSE), normalised 

mean absolute error (NMAE), and Pearsonôs correlation coefficient (r). These have been used in 

previous studies for evaluating regional, air quality models (Emery et al 2001, Kumar et al 2012b, 

2012a, Zhang et al 2006). The MB indicates the level of overestimation (positive values) or 

underestimation (negative values) by the model (Equation 9). N represents the total number of 

model-observation pair values while Mi and Oi represent the ith model and observed values, 

respectively. The NMB represents the model bias relative to the observations without being overly 

influenced by small numbers in the denominator (Equation 10). The RMSE captures the average 

error produced by the model (Equation 11). The NMAE represents the mean absolute difference 

between the model and observations relative to the observations (Equation 12). The extent of the 

linear relationship between model and observations is given by the Pearsonôs correlation 

coefficient (Equation 13). The over bars represent the respective mean. MB has the same units as 

the variable being evaluated, while all other metrics are unit-less. The gradient of best fit is 

determined using least-squares solution to a linear matrix equation. Model performance 

benchmarks in simulating meteorology for air quality for temperature are < ± 0.5 K for MB and 

< 2 K for NMAE, while for wind speed are < ± 0.5 m s-1 for MB and < 2 m s-1 for RMSE (Emery 

et al 2001). 
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Equation 10: Normalised mean bias. 
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Equation 11: Root mean squared error. 
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Equation 12: Normalised mean absolute error. 
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Equation 13: Pearsonôs correlation coefficient. 

3.2.   Meteorology 

The meteorological evaluation was undertaken using the ECMWF global reanalysis products 

(ERA-Interim) of boundary layer height, precipitation, wind speed, wind direction, and 

temperature (Dee et al 2011). For NWP models in general, there is a dry bias over land in India, 

suggesting parameterisation issues early in the simulations, while there is a wet bias over the 

Arabian Sea. Overall, WRF-Chem underestimated precipitation (NMB = -0.66, r = 0.58), with a 

dry bias during the summer monsoon especially over Bangladesh and Myanmar. Precipitation on 

land was better simulated for winter and spring, in contrast to the model underestimation in 

summer and autumn across southwest India, central India, and the Bay of Bengal (Figure 27). The 

underestimation of precipitation during the monsoon may underestimate aerosol washout, and 

lead to overestimated simulated PM2.5 concentrations. The Mellor-Yamada Nakanishi and Niino 

2.5 boundary layer physics scheme (Nakanishi and Niino 2006) simulated the spatial variability 

in seasonal South Asian boundary layer height generally well (NMB = 0.38), apart from model 

overestimation during winter and spring (Figure 28). The overestimation of boundary layer height 

may lead to excessive dilution of aerosol, reducing simulated surface PM2.5 concentrations. Wind 

speed and direction was well captured by the model (NMB = 0.09, r = 0.69) (Figure 29). The MB 

of 0.14 m s-1 and RMSE of 0.72 m s-1 are within the performance benchmarks of < ± 0.5 m s-1 for 

MB and < 2 m s-1 for RMSE. The temperature was well simulated by the model for all seasons 

(NMB = 0.0, r = 0.94) (Figure 30). The NMAE of 0.0 K is within the performance benchmark of 

< 2 K for NMAE, while the MB of -0.99 K is outside the performance benchmark of < ± 0.5 K 
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for MB. Simulating temperature accurately is key for O3 studies, as temperature strongly 

influences O3 formation rates. Kumar et al (2012a) used WRF-Chem over South Asia, with a 

similar setup to this study (e.g. Thompson microphysics and RRTM long-wave radiation 

schemes), and found that WRF simulated meteorology is of sufficient quality for use in air quality 

simulations. 

 

Figure 27: Spatial distribution of seasonal-mean total precipitation for 2014. (aïd) WRF-

Chem. (eïh) ECMWF global reanalyses. (iïl) The difference (WRF-Chem minus ECMWF). 

Results shown for winter through autumn, see labels at the top of the figure.  
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Figure 28: Spatial distribution of seasonal-mean boundary layer height for 2014. (aïd) WRF-

Chem. (eïh) ECMWF global reanalyses. (iïl) The difference (WRF-Chem minus ECMWF). 

Results shown for winter through autumn, see labels at the top of the figure. 

 

Figure 29: Spatial distribution of seasonal-mean wind speed and direction for 2014. (aïd) 

WRF-Chem. (eïh) ECMWF global reanalyses. (iïl) The difference (WRF-Chem minus ECMWF). 

Results shown for winter through autumn, see labels at the top of the figure.  
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Figure 30: Spatial distribution of seasonal-mean temperature for 2014. (aïd) WRF-Chem. 

(eïh) ECMWF global reanalyses. (iïl) The difference (WRF-Chem minus ECMWF). Results 

shown for winter through autumn, see labels at the top of the figure.  
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Figure 31: Annual-mean meteorology correlations between model and ECMWF global 

reanalyses at each grid cell. (a) Boundary layer height, (b) total precipitation, (c) wind speed, 

and (d) temperature for 2014. 

3.3.   Ambient surface PM2.5 concentrations 

Surface measurements of PM2.5 were obtained from the National Air Quality Monitoring 

Program (NAMP) by the Central Pollution Control Board (CPCB), Ministry of Environment and 

Forests, Government of India (Ministry of Environment and Forests 2018). CPCB measurements 

used the automatic beta attenuation method (Ministry of Environment and Forests 2013). 

Environmental data collection in India has primarily been focused on compliance with Indiaôs 

NAAQS (Health Effects Institute Public Health and Air Pollution in Asia Program 2011). Most 

of the sites are in urban areas. The monitoring sites are shown spatially in Figure 32 and detailed 

in Table 11 (Appendix B). The network of sites reporting PM2.5 has expanded substantially in the 

last few years, with only four sites reporting in 2014, compared to 45 in 2016. India has strong 






















































































































































































































































