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Abstract  

Cytochrome P450 is a superfamily of heme-dependent monooxygenases. These enzymes 

play a very important role in drug metabolism and detoxification since they catalyse a broad 

range of reactions including hydroxylation, dehalogenation, deamination, epoxidation, 

peroxidation, desulphurisation and dealkylation involving various substrates, such as 

alkanes, phenols, steroids and fatty acids. This thesis presents results from two P450 

hemoprotein investigations: I) targeting study of the most common cytochrome P450 BM-3 

from Bacillus megaterium, and II) discovery study of four novel putative cytochrome P450s 

from Cupriavidus necator H16. In Part II of this project, P450 BM-3 WT and W5F5 variants 

were expressed and purified, and their activities in three green solvents, 1-butanol, 2-butanol 

and dimethyl carbonate, were examined to check the tolerance of the wild type and the mutant 

W5F5 variants towards green solvents used for the first time with this enzyme. The results 

revealed a new green solvent with lower denaturation effect on P450 BM-3, the wild type 

and the mutant, with potential application in industrial biosynthesis. Part III focuses on the 

characterisation of four novel cytochrome P450 proteins of unknown structure and function. 

The proteins were analysed structurally and the first predicted models were discussed. 

Optimisations of the expression and purification of these proteins as well as optical properties 

were analysed. Scanning the changes in light absorbance of the substrate-protein complex 

with eleven substrates resulting in Type I changes when lauric acid and 3-phenoxytoluene 

were added to the purified P450-H16-B1743, as well as the evaluation of the catalytic activity 

of P450-H16-B1279 showed possible catalytic activity towards indol, malonic acid, adipic 

acid, 3-phenoxytoluene and S-Ethyl-N,N-dipropylthiocarbama (EPTC).     



 

 

1 Introduction 
 

1.1 Objectives 

In recent years, biocatalysts have been the subject of intensive investigations by 

pharmaceutical and industrial researchers, and that interest is continuously growing. This is 

not surprising given the potential advantages of enzymes: (I) the ability to display regio- 

chemo- and enantioselectivity; (II) the enhancement in reactions rate up to 1012 folds. (III) 

the ability to catalyse reactions in moderate conditions (pH and temperature), while these 

reactions require harsh conditions by using chemical catalysts (Carrea & Riva, 2000). 

Cytochrome P450 (CYP) is a superfamily of multifunction monooxygenases. More than 

6,000 enzymes have been classified as members of this family. They are found in nearly 

every organism including both prokaryotes and eukaryotes and play a crucial role in the 

metabolism of endogenous fatty acids and steroids as well as foreign compounds such as 

chemical carcinogens and drugs. Indeed, no other enzyme group can accept as many 

substrates (alkanes, phenols, steroids and fatty acids) or catalyse as many reaction types 

(hydroxylation, dehalogenation, deamination, epoxidation, peroxidation, desulphurisation 

and dealkylation (Bernhardt, 2006; Urlacher & Eiben, 2006; Urlacher et al., 2004). One of 

the main reasons that P450s attract so much attention is their ability to introduce one oxygen 

atom into the substrate, while the second one is reduced to water, a reaction which is difficult 

to catalyse by chemical catalysts (Whitehouse et al., 2012).  

This thesis is dedicated to the study of cytochrome P450s from two organisms: Bacillus 

megaterium (Part II) and Cupriavidus necator H16 (Part III). 
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1.1.1 Part II: Cytochrome P450 BM-3  

Despite the potential of using P450s, commercial application of the catalysed reactions of 

these enzymes has been hampered by the solubility of nonpolar substrates in aqueous 

solution. Therefore, organic co-solvents need to be added as supplements to increase 

substrate solubility (Wong et al., 2004).  

Traditional co-solvents, further to their negative effect on enzyme activity, could cause 

serious problems such as environmental pollution, human health and safety issues, as well as 

the risk of explosion. In addition, using hazardous solvents increases the final products’ cost 

as they require complicated separation processes, more accurate transformation and storage 

process as well as additional units for waste treatment. In contrast, using green solvents 

instead of hazardous solvents can result in potential savings of time, effort and costs by 

decreasing waste treatment costs, minimising safety requirements, reducing energy 

consumption and increasing the solvent recovery rate (Sheldon et al., 2007). For example, a 

comparison of ethers shows that t-amyl ethyl ether would be a highly desirable solvent for 

use instead of t-butyl methyl ether, which has a very low flash point and a low boiling point 

of 55°C, both of which lead to handling difficulties, especially on the commercial scale 

(Henderson et al., 2011). In addition, the removal of residual solvents from the reaction 

medium should be performed by either evaporation or distillation, both of which are 

associated with major environmental issues of global proportion and high insurance costs 

because of the high volatility of traditional solvents. Some of these solvents, which were 

classified as red solvents by GSK, such as chlorinated hydrocarbon solvents have already 

been banned or are likely to be in the near future. These issues of the non-green solvents have 

stimulated the chemical and pharmaceutical industries to seek more benign alternatives. The 
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intent of Part II of this project is to provide the pharmaceutical industry with the best green 

solvents which can be used as a replacement to the traditional organic solvents in reactions 

catalysed by cytochrome P450 BM-3. The behaviour of this protein will be investigated in 

the presence of different green solvents which are used for the first with the wild type and 

the W5F5 variant of P450 BM-3.  

1.1.2 Part III: Putative cytochrome P450s from Cupriavidus necator H16  

Although more than 6000 P450 cytochromes have been identified in animals, plants and 

microbes (Whitehouse et al., 2012), there are no general rules that can be applied to all P450s 

regarding their structure, substrates and reactions that can be catalysed by these superior 

enzymes. Due to this structural and functional diversity, identification of new P450 proteins 

can provide essential knowledge for industrially important biosynthetic processes. Each 

newly discovered cytochrome P450 represents a start point for unlimited expectations in 

biosynthesis applications.      

Although the full sequencing of the Cupriavidus necator H16 genome published by 

Pohlmann and co-workers showed the presence of four cytochromes P450 genes, P450 H16-

B2406, P450 H16-B1743, P450 H16-B1279 and P450 H16-B1009 (Pohlmann et al., 2006), 

the lack of structural data, spectroscopic information, relative substrates and catalytic 

activities of these novel P450s has motivated the investigation of the sequences of these four 

proteins and to align them with the other closest known P450s. In addition, it is of great 

interest to analyse the model and structure of the four P450s and try to express, purify, find 

proper substrates and discover what activities these proteins may exhibit. In this part of thesis, 

the main focus was to identify and characterise four novel cytochromes P450 from 
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Cupriavidus necator H16, the most excellent platform organism for the production of 

bioplastic and value-added compounds.        

 

1.2 Organisation of this thesis  

This thesis is organised in such a way that serves the diversity of its content, with a focus on 

the interconnections between its components to ensure that the reader understands the 

practical aspects of the thesis, linking it with the theoretical basis and moves from one topic 

to another easily. My thesis consists of three main parts, Part I, Part II and Part III, in addition 

to a general introduction (chapter 1) and comprehensive conclusions (chapter 12).  

Part I consists of two chapters (chapters 2 and 3), providing general information about heme 

proteins as well as the cytochrome P450 superfamily, which is essential to understand the 

subsequent Part II and Part III. In chapter 2, I tried to familiarise the reader with a background 

about hemoproteins by including information about heme structure and heme function, as 

well as explaining the differences in structures and reactions between seven types of 

hemoproteins. Chapter 3 provides detailed information about the discovery, nomenclature, 

evolution, structure, optical properties and catalytic cycle of cytochromes P450 superfamily 

in general, as well as explaining the usual and unusual catalytic reactions and the industrial 

applications of different P450s.  

The second part of the thesis (Part II) comprises four chapters (chapters 4-7) and is devoted 

to the P450 BM-3 and its tolerance towards non-conventional solvents and green solvents in 

particular. Chapter 4 provides detailed information about cytochrome P450 BM-3 

(CYP102A1) from Bacillus megaterium, such as protein, domains, expression, structure and 
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dimerisation. In addition, it provides information about the mechanism of electron 

transformation, protein engineering and immobilisation approaches that have been reported 

and industrial applications of this enzyme. Chapter 5 highlights solvent classification and the 

biocatalysis in different known solvent systems, as well as the methods of stabilising 

enzymes in these solvents and the tolerance of P450 BM-3 against these solvents. Chapters 

6 and 7 are the experimental chapters. All materials and protocols used for protein expression, 

purification, optical characterisation and activity evaluation in the presence of three green 

solvents are presented in chapter 6, while the results from these experiments are discussed in 

chapter 7.   

The study of four novel cytochrome P450s from Cupriavidus necator H16 (Ralstonia 

eutropha H16) is presented in Part III. This part consists of one theoretical chapter (chapter 

8) and three experimental chapters (chapters 9-11). Chapter 8 gives a brief overview of the 

history, genome, metabolism and industrial applications of Cupriavidus necator H16, as well 

as summarising the known P450s from this bacterium. Chapter 9 details the methodology 

that has been followed in the identification, sequence alignment and modelling of the four 

P450s, as well as the cloning, expression, purification, optical characterisation, substrate 

selectivity and activity investigation of these proteins. Chapter 10 presents the novel results 

from the sequence analysation and 3D structure modelling of P450s from Cupriavidus 

necator H16, while chapter 11 focuses on the results from expression, purification, optical 

characterisation, substrate binding and activity measurement of these proteins.  
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Part I: Heme proteins and cytochrome 
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2 Heme proteins 
 

2.1 Heme structure & function 

Heme is an important molecule which apparently plays a pivotal role in biocatalysis and 

exhibits diverse biological activities, such as storing and transferring dioxygen and electron 

transformation (Ting et al., 2011). Although marking the active role of heme in biology as a 

superior biocatalyst for the organic substrate hydroxylation dates to the mid-1960s, the 

discovery of the enzymatic role of heme dates back earlier, to when the action of horseradish 

peroxidase (HRP) was indicated in 1903 (Bach & Chodat, 1903). HRP was the subject of 

study due to its stability and ease of purification until Mason clarified the ability to insert a 

single atom of oxygen from molecular dioxygen into an organic substrate enzymatically 

(Mason, 1957). It was not too long before P450 was distinguished as one of the most 

attractive oxidases in biotechnology (Garfinkel, 1958; Klingenberg, 1958; Omura & Sato, 

1964).   

Both the reductive and the oxidative reactions can be catalysed by heme enzymes, but this 

project will focus on the oxidant enzymes. Depending on the oxygen source that heme 

enzymes use to catalyse oxidation reactions, they are classified into two groups, oxygenases 

and peroxidases. The former normally use O₂, while the later use H₂O₂ to oxidise organic 

substrates. There are issues associated with each oxidant, by using O₂, a large kinetic barrier 

usually forms since O₂ is not a reactive molecule, however, H₂O₂ can lead to the creation of 

toxic hydroxyl radicals which negatively affect enzyme activity. In general, before heme 

oxygenases can bind to O₂, the iron should be reduced to ferrous (Fe²⁺) to enable the 
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formation of the ferric-superoxide (Fe³⁺-OOˉ). After the arrival of the second electron the 

superoxide will be reduced to peroxide and from this point and on, both the oxidase and the 

peroxidase mechanism will be similar. Directly after the peroxide level, the O-O bond 

cleavage will take place either homolytically leaving behind two hydroxyl radicals or 

heterolytically to yield a water molecule and O atom with six valence electrons. In nature, 

the heterolytical pathway dominates the O-O bond cleavage because it is preferred to avoid 

the formation of hydroxyl radicals in the protein active site in most cases. The O-O cleavage 

leads to the most important step in the heme catalytic cycle, the formation of the active 

oxidant (compound I) by the oxidising equivalents rearrangement (Poulos, 2014).   

 

2.2 Structural analysis of heme proteins 

Heme as a prosthetic group can be found in many forms, but the most common forms are 

heme b which links to the host protein non-covalently and heme c which binds to two cysteine 

residues of the protein covalently by its vinyl groups (Figure 2-1). Heme proteins functional 

proficiency depends on several interrelated factors: I) heme protein diversity, II) protein’s 

microenvironment variability, III) axial ligands type and V) heme accessibility to solvents. 

Due to the heme complexity, a good structure analysis is required for a thorough 

understanding of the heme binding surroundings (Bowman & Bren, 2008; Schneider et al., 

2007).   

A recent study on dataset of 125 heme binding proteins (heme b and heme c) identified five 

amino acids as axial ligands to the iron (the residue is counted as axial ligand when the 

distance between the heme iron and the residue’s nitrogen, sulphur or oxygen is 3 Å or less). 
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These axial ligands are histidine (H), cysteine(C), methionine (M), lysine (K), and 

tyrosine(Y), with histidine domination for both heme b and heme c proteins. After histidine, 

cysteine represented the more utilising axial ligands in heme b against methionine in heme 

c. The relative frequency of heme proteins to all investigated proteins was also calculated 

and it was found that heme proteins have fewer cysteine (C), aspartic acid (D), isoleucine (I), 

lysine (K), asparagine (N), and serine residues (S) and higher number of alanine, 

phenylalanine (F), histidine, methionine, and tryptophan residues, while the highest relative 

frequencies were shown by C, F, M and Y (the axial ligands were excluded from the 

calculations) (Ting et al., 2011). Cysteine showed a dramatically high frequency with eight 

fold improvement compared to the background values in heme c proteins, which is expected 

owing to the classic binding motif in heme c (CXXCH) when histidine and the cysteine 

dominate because H works as a ligand and C binds to the vinyl groups covalently (Bowman 

& Bren, 2008). As well as the aromatic residues like phenylalanine and tyrosine in heme b 

and heme c and tryptophan in heme b which play a crucial role in heme interacting also 

showed higher relative frequency while the negatively charged residues such as glutamic 

acid, aspartic acid and lysine recorded fewer relative frequencies, which supports the idea 

that the heme binding pocket is fundamentally hydrophobic (Smith et al., 2010; Ting et al., 

2011). In contrast, arginine which holds a positive charge showed a higher level of 

occurrences compared to other charged amino acids. A secondary structure analysis of heme 

b illustrated fewer coil types and was more helical in comparison to both heme proteins and 

all investigated proteins. In contrast, coil types and helices in heme c showed similar levels 

to the background. When relative heme accessibility against solvents was checked, it is found 

that the heme interacting residues are mostly buried residues (Ting et al., 2011). The 
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investigation of the sequence motifs that play a pivotal role in heme binding, marked three 

types of motifs, heme c classic motif (CXXCH), binding motif came from heme b 

(GX[HR]XC[PLAV]G) and the binding motif which represents a traditional signature of 

P450s (FXXGXXCXG) (Nelson, 1999; Otyepka et al., 2007; Ting et al., 2011).  

 

 

 

 

2.3 Heme enzymes 

There are many types of hemoproteins were reported previously. In this section seven types 

of heme enzymes will be discussed in detail. These enzymes were chosen due to their 

biological functions variations. Figure 2-2 shows different types of heme enzymes.     

Figure 2-1: Chemical structures of of the natural occurring heme groups; heme b which 

links to the host protein non-covalently and heme c which binds to two cysteine residues 

of the protein covalently by its vinyl groups. The image was acquired with permission 

from (Ting et al., 2011) 
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Figure 2-2:  Seven types of hemoproteins. Each one of these enzymes has a biological 

diffrent function.  

 

 

 

2.3.1 Cytochrome P450s 

The discovery, structure, catalytic cycle, optical properties, catalysed reactions and 

applications of cytochrome P450s will be discussed in detail in chapter 3 of this thesis.  
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2.3.2 Nitric oxide synthases 

The importance of nitric oxide synthases comes from their ability to produce nitric oxide 

(NO), an essential signalling molecule in the nervous, immune and cardiovascular systems 

by catalysing the oxidation of L-arginine to L-citrulline (Bredt & Snyder, 1994). However, 

there is no sequence similarity with P450s; the C-terminal part of the molecule is similar to 

P450 reductase and the N-terminal portion which binds heme gives 450 nm absorption bands 

when it is reduced in the presence of CO, a specific characteristic of P450, and these two 

halves provide a self-sufficient oxygenase (Griffith & Stuehr, 1995; McMillan et al., 1992; 

Stuehr & Ikeda-Saito, 1992; White & Marletta, 1992). Nitric oxide synthase is normally 

activated when Ca²⁺-calmodulin binds to the linker region which connects the heme to the 

reductase domains (Abu-Soud & Stuehr, 1993). An unusual feature of nitric oxide synthase 

(NOS) is its ability to catalyse the reaction to produce NO using two different mechanisms, 

the first one in the presence of the cofactor tetrahydrobiopterin (BH4), while the second one 

is in the absence of BH4 (Poulos, 2014).  

Despite the similarity in heme ligation and optical properties between NOS and P450s, these 

two proteins have completely different architecture. The heme in NOS is encompassed by a 

beta structure instead of the helices in P450. Also, both the movement of the substrates into 

the active site and the exit of the product (NO) are much easier than P450 because the heme 

is more exposed to substrates. The cystine (Cys) in both proteins, NOS and P450s, accepts 

an H-bond from the NH group, indole NH in NOS rather than peptide NH in P450s, and 

unlike other proteins, the cofactor BH4 is permanently linked to NOS, donating the one 

required electron for the oxygen molecule activation (Poulos, 2014). This reaction can be 

catalysed by NOS in two steps. The first step is similar to the traditional reaction of P450s, 
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except it requires just one electron and this electron is donated by BH4, forming N-hydroxy-

L-arginine from L-arginine (Hurshman et al., 1999; Poulos, 2014; Wei et al., 2001). The 

second step is the oxidation of L-NHA to produce L-citrulline and NO. In the BH4 

mechanism, the peroxy intermediate is created by the reduction of the oxy complex by BH4. 

After this step, the cyclic intermediate is formed, yielding L-citrulline and NOˉ, while in the 

absence of BH4, the reactive H atom will form hydroperoxyl, followed by the formation of 

a cyclic intermediate which yields the products (Huang et al., 2001; Poulos, 2014).          

2.3.3 Peroxidases 

Peroxidases are ubiquitous enzymes owing to their ability to catalyse a variety of substrates. 

Except for cytochrome c peroxidase (Ccp) which uses cytochrome c as its redox partner, the 

most traditional substrates of these enzymes are small aromatic molecules (Hiner et al., 

2002). Non-mammalian peroxidases are classified into three classes: class I are intercellular 

peroxidases such as the cytochrome c peroxidase, pea cytosolic ascorbate peroxidase and the 

gene-duplicated bacterial and fungal catalase-peroxidases; class II are the fungal extracellular 

peroxidases such as manganese peroxidases and class III are the plant extracellular 

peroxidase such as HRP. Class II and class III need extra stabilisation represented by four or 

five disulphide bonds and the binding sites of two Ca ions, while class I does not contain any 

disulphide bonds. Peroxidases are single polypeptide chains with a single heme group 

connected to the enzyme by a histidine residue, varying in size between 30–40 kDa 

(Welinder, 1992). 

All three classes share the same catalytic cycle. In the first step, a porphyrin π cation radical 

(compound I) is formed by the removal of two electrons by the peroxide; one from the iron 



 

 

14 

 

and the second from the porphyrin (Dolphin et al., 1971). Compound I has a green colour 

and different spectral properties from other heme oxidative enzymes. In the second step, 

compound I will be reduced to compound II (red colour) by gaining an electron from the 

substrate molecule. At the final step, the Fe4⁺ is reduced to Fe³⁺ by the second substrate 

(Poulos, 2014). The O-O bond in peroxidase cleaves heterolytically leaving the oxygen atom 

with only six valence electrons, this oxygen atom is called oxenoid. The mechanism of the 

formation of compound I was described following the structural details of peroxide activation 

in cytochrome c peroxidase. This mechanism demonstrated the role of the distal His residue 

in the formation of compound I. This residue is essential for the acid-base catalysis of the 

peroxidases. The distal His52 residue transfers the peroxide proton of O1 “an oxygen atom 

bound to the heme iron” to the other oxygen atom O2 “an oxygen atom not bound to the 

heme iron” and that leads to heterolytic cleavage of the O−O bond (HAMILTON, 1974). The 

other residue which plays a crucial role in the peroxidases catalytic cycle is the distal Arg48. 

In order to stabilise the developed negative charge of the O2 atom, the anionic peroxide 

ligand interacts with the guanidinium side chain of Arg48 which is positively charged. So, 

the heterolytic cleavage of O-O bond in Ccp is achieved as a result of proton transformation 

from the His52 residue to the O2. The only problem with this mechanism is that the distance 

between O2 and the His52 is too far to form a H-bond. A functional study suggested that a 

water atom could play a vital role in proton transformation between O1 and O2 instead of 

His52 (Hiner et al., 2002; Poulos, 2014).   

2.3.4 Chloroperoxidases 

The main function of chloroperoxidase (CPO)  is the production of chlorinate compounds by 

converting Clˉ into a chlorinating agent like HOCl. This step comes after the formation of 
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compound I. Compound I is created using the same traditional steps of the heme peroxidases, 

but the distal His in the heme peroxidases is replaced by the active site Glu in CPO. In 

addition to chlorination, CPO has the ability to behave as a peroxidase and as a P450 in 

oxidising different organic molecules (Morris & Hager, 1966; Piontek et al., 2010).   

Chloroperoxidase has similar spectral properties to both P450s and NOS owing to the H-

bond acceptance by CYS ligand from a nearby NH group. CPO has been known as a 

peroxide-P450 hybrid, despite the fact that the overall structure of chloroperoxidase is not 

similar to either P450 or peroxidases. CPO exhibits peroxidase-like distal pocket properties 

owing to the distal pocket polarity and acid-base catalytic group which is responsible for the 

heterolysis of the peroxide O-O bond, except this group is Glu instead of His in other heme 

peroxidases which drops the optimal pH to about 3 (Poulos, 2014).  

2.3.5 Heme oxygenases 

Heme oxygenases are the enzymes responsible for the degradation of heme to produce 

biliverdin which is converted to bilirubin. These enzymes play a crucial role in getting rid of 

the toxic free heme which accumulates in the mammals’ bodies due to haemoglobin 

degradation, approximately 300 mg/day of heme is produced from the degradation of 6–8 g 

of haemoglobin (Kikuchi et al., 2005; Maines, 1988). Two isoforms of heme oxygenases 

have been identified, HO-1 and HO-2, which have completely different functions. HO-1 is 

responsible for heme degradation, while HO-2 is used mainly for CO formation, an important 

messenger molecule (Farombi & Surh, 2006; Maines, 2005). The structure of the human HO-

1 and those which are structurally related to human are not similar to any known heme protein 

structures. The heme lies between the proximal helices and the distal helices, with the axial 
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heme ligand served by a histidine residue. Different from the rest of the heme enzymes, the 

heme itself is a substrate for HO-1 and as a result, has active site flexibility important for the 

functionally active enzyme. The mechanism of the α-meso heme carbon oxidation by HO-1 

will be discussed in more detail because α-meso heme carbon is considered as the main 

substrate of most heme oxygenases. The first step of the catalytic cycle is the formation of α-

meso-hydroxyheme. Initially, it was thought that Fe(IV)=O acts as oxidant in HO just like 

P450, but this is unlikely as His serves as an axial ligand in HO and the role that the distal 

ligand plays in heme proteins is different from that in P450s, also the distance between the 

ferryl O atom and α-meso heme carbon is too far to enable the transformation of proton to an 

oxygen molecule (Montellano, 1998; Poulos, 2014).    

Like P450s and peroxidases, the dioxygen molecule must be cleaved into O1 and O2 by 

accepting a proton. From a structural point of view, it was suggested that the Asp residue 

plays an essential role in the O activation process until it was found recently that the most 

important residue in the HO catalytic cycle is the water molecule in the active site. This water 

molecule is the key catalytic group which transfers a proton to the iron-linked dioxygen 

(Matsui et al., 2010; Unno et al., 2007).    

2.3.6 Dioxygenases 

There are two types of dioxygenase enzymes, the human dioxygenase called indoleamine 2,3 

(IDO) and the bacterial enzyme tryptophan 2,3 (TDO). Both enzymes are soluble and have a 

similar function, which is the conversion of L-Trp to N-formylkynurenine. These enzymes 

have different names since they were discovered in 1930s, they were called tryptophan 

pyrrolase, then tryptophan peroxidase−oxidase and eventually named as dioxygenases 



 

 

17 

 

(Poulos, 2014). Tryptophan apparently plays a pivotal role in building a strong immune 

system during the conversion into N-formylkynurenine. As a result, IDO and TDO are 

considered as possible therapeutic targets to fight cancer cells (Platten et al., 2012). The 

structures of IDO and TDO are homologous, except IDO has extra domain. The active sites 

of these two enzymes are also very similar, but Ser 167 in human dioxygenase is His55 in 

the bacterial type. Based on the crystal structure of the L-Trp binding to the TDO, it is reported 

that the substrate carboxylate is linked to Arg117 by H-bonds, while the α-amino group bonds 

to the heme propionate. There are two possible mechanisms for the TDO catalytic cycle. The 

first one depends on the role of the N1 substrate proton abstracts in activating the substrate. 

Products using this mechanism were achieved either by dioxetane intermediate or by Criegee 

rearrangement. The second mechanism showed that the N1 proton transformation is not 

essential for O₂ cleavage. Based on the later mechanism, the first step in this reaction would 

be the insertion of dioxygen complex to the L-Trp so the O-O bond will cleave homolytically. 

In the second step, two actions are combined, the oxygen atom of epoxide will receive a 

proton from the α-amino N atom of L-Trp and the indol ring will be opened by ferryl O atom 

attack (Efimov et al., 2012; Poulos, 2014).    

2.3.7 Diheme proteins 

Diheme proteins or MauGs are involved in tryptophan tryptophylquinone (TTQ) post 

translational synthesis from the bacterial methyl amine dehydrogenase (MADH) (McIntire 

et al., 1991). Diheme proteins have two c-type hemes similar to peroxidase, low spin and 

high spin heme. Unlike peroxidase, these enzymes can use either H₂O₂ or O₂ to oxidise both 

hemes into Fe4⁺ and form the oxyferryl species (Fu et al., 2009; Poulos, 2014). The two 

hemes are kept close, sharing spin and charge via the Trp93 residue which lies between the 
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two hemes (Geng et al., 2013). The O-O cleavage in these enzymes occurs under the control 

of the general local acid-base mechanism. The challenging question about how the electron 

is transferred between MADH and MauG has been answered by studying the mutant Trp199 

in MauG. Trp199 is located between TTQ and the low spin heme in the midway. It was found 

that the Trp199 mutant has a negligible effect on heme properties, while it stopped TTQ 

production which supported the belief that Trp199 plays a pivotal role in electron 

transformation (Tarboush et al., 2011).        
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3 Cytochrome P450 superfamily 

3.1  Discovery 

The discovery of P450 hemoproteins dates back to 1958 when a study of heme proteins in 

rats and pig chromosomes highlighted a unique spectral feature of the CO-bound ferrous 

complex of a membrane-bound protein. This complex showed a Soret peak at 450 nm when 

it was pre-treated with a proper reduced agent (Garfinkel, 1958). The protein from this 

experiment was later identified as a member of P450 hemoprotein family, which takes its 

name from the distinctive Soret peak at 450 nm (Omura & Sato, 1962, 1964). The unique 

absorption band is a characteristic feature, not only for P450s, but also for the other three 

hemoprotein classes which are chloroperoxidases, protein H450 and NOSs (Danielson, 

2002). Cytochrome P450s belong to a superfamily which is classified into 265 different 

families, with more than 2000 identified protein, genomic and DNA sequences. A member 

of this family can be found in almost every living organism, prokaryotic and eukaryotic. 

P450s are also found in archaea, which supports the concept that P450s originally date back 

to ancient times, approximately 3.5 billion years ago (Danielson, 2002; Whitehouse et al., 

2012).   

 

3.2 Nomenclature 

In order to name and locate P450 genes into a certain family and subfamily, a standard 

nomenclature system was created due to the genetic diversity and sequence conservation 

shortage of these proteins. According to the P450 Nomenclature Committee, three factors 

need to be considered: “amino acid sequence identity, gene organisation and phylogenetic 
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association”(Nelson, 2009). Based on this system, P450’s name usually starts with three italic 

letters (CYP), which represent a root for all P450s genomic and cDNA sequence names. Next, 

the family name is written using Arabic numerals, followed by a letter for the subfamily. 

Subfamily members are allocated their numbers depending on the sequence reported to the 

nomenclature committee. The pseudogenes in P450s nomenclature system can be 

distinguished by the letter (P) directly after the family Arabic numeral. A pseudogene is a 

defective gene responsible for the production of a non-functional protein due to either the 

denaturation of one copy during the gene duplication or the shortage in the “requisite 

regulator elements” which are required for mRNA transcription (Danielson, 2002). P450 

sequences are placed in families and subfamilies depending on the similarity between their 

amino acids; 40% similarity qualifies P450 to be classified in the same family, while 55% 

similarity places it in the same subfamily and 97% similarity is considered as alleles (Nelson 

et al., 1993). P450 families are classified depending on the cytochrome type. For example, 

animal P450s are represented by CYP (1-49) and (301-499), CYP (51-69) and (501-699) 

represent lower eukaryotes, CYP (71-99) and (701-999) are for plants, with CYP (101-299) 

for bacteria (Danielson, 2002).            

 

3.3  Evolution 

Many mechanisms have been reported to be responsible for the functional diversity of the 

P450 superfamily, but the most recognised is the gene duplication process. It is believed that 

the first CYP member existed 3.5 billon years ago. At that time, due to the lack of oxygen, 

the P450 protein acted as nitro reductase or endo reductase. Directly after the formation of a 
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high amount of oxygen, the earlier CYP started to work as oxygen detoxify to protect living 

organisms (Danielson, 2002; Loomis, 1988; Schlezinger et al., 1999).    

By looking at the evolutionary history of P450 multigene family, enormous expansion has 

taken place because of genome duplication. Indeed, the first expansion related to the 

endogenous fatty acid metabolism occurred 1.5 billon years ago. Examples of these enzymes 

are CYP11 and CYP4, which are important to maintain eukaryotic membrane integrity 

(Nebert & Gonzalez, 1985).  

The second expansion is believed to have accorded the “endogenous steroid-synthesised 

P450 lineages” 900 million years ago. CYP19, CYP21 and CYP27 evolved dramatically to 

give rise to the CYP1 and CYP2, which are the focus of attention in the study of major drugs 

and carcinogen metabolism in mammals. The last evolutionary event was the largest to have 

occurred to many P450s about 400 million years ago. This expansion was motivated by two 

events. Firstly, the appearance of aquatic organisms and the use of toxic plants in their food. 

Secondly, the effect of hydrocarbon combustion products on terrestrial organisms (Gonzalez 

& Nebert, 1990; Nelson & Strobel, 1987).    

The phylogenetic analysis of the evolution of P450s revealed that the changes in the CYP 

genes were very fast in comparison to other proteins. The unit evolutionary period, which is 

defined as the time required for a protein to show a 1% change in amino acid sequence, has 

been estimated to be 2–4 million years for P450s, which is a relatively short period in 

comparison, for example, to 400 million years for the highly conserved histone proteins 

(Gonzalez & Nebert, 1990; Nelson & Strobel, 1987).  
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As mentioned previously, the mechanism responsible for the diversity of the P450s is mainly 

gene duplication. This continuous process produces new genes, which may be functionally 

inactive in some cases, causing continuous expansion in the family’s genes. As a result, the 

sequence diversity due to gene duplication in a single species is not only responsible for the 

evolutionary history of this particular species, but also the evolutionary history of the whole 

gene family (Gonzalez & Nebert, 1990).             

 

3.4  Structure 

Cytochrome P450 superfamily members were classified into three basic groups depending 

on the subcellular localisation: I) the microsomal type from the endoplasmic reticulum, II) 

the mitochondrial type from mitochondria and III) the cytosolic form. The majority of 

eukaryotic P450s are insoluble proteins found either as the microsomal type or mitochondrial 

type, the only exception being nitric oxide reductase (CYP55), which is thought to be 

acquired from bacteria and did not arise originally in eukaryotes, while the majority of 

prokaryotic P450s are soluble cytosolic forms (Nelson et al., 1996).  

Microsomal P450 can be distinguished by the presence of 20–25 hydrophobic residues 

consisting of an amino-terminal signal anchor sequence with less known hydrophobic 

connectors. These residues link the P450 protein to the endoplasmic reticulum membrane. 

The other characterisation of this P450 type is the presence of the charged residues, a 

negatively charged residue close to the amino-terminus and polar positively charged amino 

acids at the carboxy-terminus. These charged residues ensure a proper protein attachment to 
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the endoplasmic reticulum as well as providing suitable folding to the P450s (Kusano et al., 

2001). 

Like the microsomal P450, the mitochondrial type can be characterised by the amino-

terminus residue, but in this type, the residue is cleaved after protein synthesis and imported 

to the mitochondria so that the protein is connected to the mitochondria inner membrane by 

a string of hydrophobic amino acids, like the hydrophobic core residues in the microsomal 

P450. Similar to microsomal P450, the carboxy-terminus serves to provide the proper folding 

to the mitochondrial P450s (Kusano et al., 2001).  

Nevertheless, even though the sequence identity between eukaryotic and prokaryotic is very 

low, about 20% or less, the secondary structure of these two types is very highly conserved. 

The crystal structures of many bacterial cytochromes, such as CYP175A1, CYP121A1, 

CYP152, CYP101A1, CYP102A1, CYP107A1, CYP108 and CYP111A1, have been 

determined and analysis of their three dimensional structures have shown that even with a 

very low sequence homology between different bacterial cytochromes or between the 

eukaryotic and prokaryotic P450s, the overall protein topography showed a very high 

similarity (Graham‐Lorence et al., 1995; Hasemann et al., 1995). To date, there is a lack of 

understanding of eukaryotic cytochromes due to crystallisation difficulties of the membrane-

bound P450s. The only crystallised eukaryotic P450 is the cytosolic CYP55A1 from the 

Fusarium oxysporum, but as was mentioned previously in this section, this protein was 

originally a bacterial P450, so the crystal structure of this protein is not applicable for 

membrane-bound P450 structures. However, two key studies apparently played a pivotal role 

towards a better perception of the eukaryotic P450s. The first study succeeded in solving the 

crystal structure of prokaryotic CYP51 from Mycobacterium tuberculosis, which showed a 
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high conservation with the eukaryotic CYP51 family. The similarity between these two 

proteins is not limited to their structures, but extends to their catalytic activity (Podust et al., 

2001). The second important study was performed on the crystallisation of a modified 

mammalian cytochrome P450 (CYP2C5). In order to crystallise this protein, they created a 

more water-soluble protein through the replacement of the hydrophobic amino-terminal 

signal residue with a more water-soluble sequence. The CYP2C5 structure showed high 

similarity to bacterial P450s structures (Williams et al., 2000).  

In general, all P450s have a triangular structural framework with two portions, the rich 

carboxy-terminal (alpha helix) and the rich amino-terminal (beta sheet), with both the alpha 

helices and beta sheets located in the same heme plane. Sequence alignments of P450s 

established a number of sequence motifs, one of which is located in helix I close to the protein 

centre and has a sequence (G/A)GX(D/E)T with terminal threonine which plays an important 

role in the creation of the oxygen binding pocket in the enzymes (Poulos et al., 1987). A key 

sequence in helix K is EXXR, the mutation of any residue in this sequence caused complete 

functional inactivation of the mutants. Another important residue is cysteine, the fifth ligand 

of the heme. The heme is buried deep inside the protein and it is surrounded by helices L and 

I (Danielson, 2002; Nebert et al., 1988).  

The regions responsible for substrate-P450 binding gain special attention due to their 

importance in the catalytic activity of P450s. Many approaches have been applied for 

identifying the binding sites, including X-ray crystallography, which was used to identify the 

residues responsible for drug metabolism in eukaryotic P450s. Another predictive approach 

performed is site-directed mutation to determine differences in location of the amino acids 

which are closely related but different in their functions. The homology-based approach is 
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completely unbiased, providing supportive information about residues involved in substrate 

binding. In general, the experimental purpose of these approaches is to diagnose the amino 

acid changes responsible for a shift in either catalytic activity or substrate performance. 

CYP2A4 and CYP2A5 are the best examples of such an approach. Despite those proteins 

being highly identical (97.8%), they display completely different catalytic activity, but each 

protein starts to catalyse the reaction of the other protein by reciprocal substitutions of some 

amino acids. The residues that have the ability to shift the substrate specificity are called 

“substrate recognition sites (SRS)”. The homology-based analysis of P450s proved the 

significance of the SRSs, not only for substrate selectivity, but also for kinetic differences 

between P450 isoforms that catalyse the same reaction and metabolise the same substrate. 

For example, CYP2C4 and CYP2C5 show more than 95% sequence identity and they 

catalyse the hydroxylation of progesterone 21, but the Km of CYP2C4 is about 10-fold 

greater than the Km of CYP2C5. It was found that this Km difference is due to one amino acid 

located in SRS1. Only 6 SRSs were reported in eukaryotic P450s and the positions of these 

sites are compatible with the substrate contact site in the prokaryotic P450s-substrate 

complex (Danielson, 2002; Hanioka et al., 1992).   

 

3.5 Biochemistry 

3.5.1 Optical properties 

Hemoproteins are characterised by the ability of its heme group to absorb light at certain 

wavelengths. This chromatography phenomenon is affected by several factors, such as the 

surrounding environment of the heme, ligands that bind to heme and the heme oxidation 
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state. The spectroscopic properties of all P450s are dominated by the spin state of the heme 

iron. A hexacoordinated iron is represented spectroscopically by a low spin state, while a 

pentacoordinated iron, when the heme loses the distal ligand, is displayed as a high spin state. 

For a low spin state, the Soret peak is normally between 416–419 nm, while for the high spin 

state, the absorption maximum is shifted towards the blue region between 390–416 nm, with 

a trough at about 420 nm. The differences in the spectrum between the bound and unbound 

proteins yield a Type I difference spectrum. Many substrates, like saturated and unsaturated 

fatty acids and aromatic compounds, show a Type I difference spectrum when they are bound 

to P450s. The dissociation constant Kd can also be calculated depending on the differences 

between the substrate-free protein and substrate-bound protein in the spectrum. Another type 

(Type II) of difference spectrum is obtained when inhibitors, such as imidazole, nicotine, 

methylenedioxyphenyl compounds or 1,1-dialkylhydrazines, bind to a P450. The Soret peak 

of Type II can be seen at 426–435 nm with a trough at approximately 390–405 nm. A shift 

in the spin state also occurred when CO bound to the reduced P450 protein, due to the 

nitrogen atom of a histidine imidazole linked to the iron causing a shift in the absorption 

maximum to 447–452 nm (Danielson, 2002).   Type I and Type II changes are shown in 

Figure 3-1.  
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3.5.2  Catalytic cycle 

The hydroxylation of organic compounds represents a signature reaction of all P450s. To 

enable this reaction, the protein needs to activate the inert molecular oxygen splitting it into 

two oxygen atoms, one is introduced into the H-C bond of the organic substrates like fatty 

acids and aromatic compounds, while the other is released as a water molecule. In addition 

Figure 3-1: Scheme of the changes in cytochrome P450 spectra due to the substrate binding 

and inhibition are presented in as orange and green curves. Proposed structures for the high 

spin heme (Type I) and the metabolic intermediate complex of methylenedioxyphenyl 

compounds to carbene-iron complex (Type II) are also displayed as examples for the both 

types.  
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to atomic oxygen, this reaction requires a transfer of two electrons from a suitable donor via 

protein domains. NADPH and NADH are the preferred coenzymes for the chromosomal 

P450s, while in mitochondrial P450s, the required electrons are obtained from adrenodoxin 

and adrenodoxin reductase. In this protein system, a hydride ion transfers from NADPH to 

FAD, which is caused by the generation of the reduced form of two adrenodoxin molecules 

and two electrons. After that, each electron will be used to reoxide one adrenodoxin molecule. 

Finally, every adrenodoxin molecule will transfer a single electron to the heme iron of the 

hemoprotein (Danielson, 2002; Sligar & Murray, 1986).  

The catalytic cycle is shown in (Figure 3-2). From this figure, the P450 heme converts from 

a low spin state (hexacoordinate) to the high spin state (pentacoordinate) immediately after 

substrate binding. Receiving one electron reduces the iron from the ferric form (Fe+3) into a 

ferrous form (Fe+2). In the next step, an oxygen molecule will bind to the ferrous iron to 

produce ferrous dioxygen-bound complex, then a second electron will be accepted to form 

the ferric peroxy complex. The oxygen molecule will then be cleaved into two oxygen atoms 

by receiving two protons, forming the oxyferryl intermediate with (FeIV). This intermediate 

represents the catalytically reactive heme. Finally, the oxygen atom of the oxyferryl will be 

transferred to the substrate to produce the hydroxyl form of that substrate.  
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3.6 Cytochrome P450-catalysed reactions 

In general, cytochrome P450 catalysed reactions can be classified into four basic categories: 

I) the most common reaction is the hydroxylation of organic substrates, when a hydrogen 

atom is replaced by hydroxyl group; II) epoxidation reactions, in this reaction the C-C bond 

is cleaved when an oxygen atom is introduced to it; III) heteroatom oxidation reactions 

Figure 3-2: : Scheme of cytochrome P450 enzyme catalytic cycle. This figure shows 

the basic steps of substrate hydroxylation by P450; substrate binding, receiving the 

first electron, binding of molecular oxygen, accepting the second electron, oxygen 

cleavage, forming the oxyferryl intermediate with (FeIV) and finally produce the 

substrate hydroxyl. Image was acquired and modified with permission from (Erdogan, 

2014)  
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(heteroatom such as sulphur or nitrogen); IV) reduction reactions occurring under limited 

oxygen conditions (Danielson, 2002; Goeptar et al., 1995).  

 

3.6.1 Hydroxylation 

The most common substrate for the hydroxylation reactions of P450s are the aliphatic and 

the aromatic hydrocarbons. One of the important issues in the hydroxylation is the site of the 

oxygen atom insertion in the C-H bond, which depends mainly on the required energy to 

cleave this bond. For example, the hydroxylation of hydrocarbon chains is more likely to 

occur at the site not at the terminal methyl group due to the differences in the C-H bond 

strength in these two sites. An exception to this can be seen in mammalian P450 (CYP4A), 

which prefers to hydroxylate fatty acids at the ω position instead of the ω-1, regardless of the 

fact that the later position has a weaker carbon bond than the first position. The explanation 

of this behaviour is still unknown, but it could be an access limitation stands behind the 

hydroxylation of the terminal methyl group in this case (CaJacob et al., 1988; Danielson, 

2002). However, the presence of an adjacent heteroatom, such as a methyl group, on an 

aromatic ring gives this site the preference. Another possible hydroxylation reaction is the 

hydroxylation of a methyl group linked to N or O atom, but the hydroxylation of a methyl 

group with more than one halogen atom could cause protein acylation, which seriously 

affects both protein structure and function (Danielson, 2002; Mehendale et al., 1994; Raucy 

et al., 1993).   
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3.6.2 Epoxidation 

The majority of P450 epoxidation studies focused on the olefins epoxidation reactions to 

their epoxides, such as the production of the corresponding epoxide and 

trichloroacetaldehyde from the epoxidation of trichloroethylene. However, the epoxidation 

of the terminal olefin group like octane or ethylene causes protein inactivation. Surprisingly, 

in limited cases (1 out of 100), the reaction diverts from its path when the olefin terminal 

carbon alkylates one of the heme associated nitrogen atoms. This rare reaction is known as a 

“suicide inactivation” because it inactivates the catalysed protein (Danielson, 2002). 

 

3.6.3 Oxidation of aromatic rings 

The discovery of ability of the P450s to hydroxylate different aromatic substrates dates back 

to 1950s, when acetanilide hydroxylation was studied by a number of researchers in the 

National Institutes of Health in Bethesda, Maryland. The objective of this study was to 

identify the role of microsomal hydroxylases in drug metabolism. An example of the 

aromatic compounds hydroxylation is the conversion of “5-nitrobenzo[b] naphtho[2,1-

d]thiophene”, an environmental pollutant with a high risk to human health, into DNA adducts 

by cytochrome P450 (Danielson, 2002). 

 

3.6.4 Dealkylation 

The ability of cytochrome P450 to catalyse heteroatom oxidation has attracted much 

biomedical research attention. The molecules bearing atoms with high electronegative 
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charge, such as nitrogen or sulphur, are more likely be oxidised by P450s than molecules 

with low electronegative atoms like oxygen. This reaction requires free electron pairs on the 

heteroatoms and two different mechanisms have been reported. The first mechanism is when 

ferryl oxygen (the electron deficient molecule) moves from iron to the electron pairs of 

sulphur or nitrogen to produce sulphoxide or N-oxide metabolites, the sulphoxide bearing 

electron pairs can also oxidise again to produce a sulphone. However, the oxidation of 

oxygen heteroatoms by P450s is unlikely to accur; the oxidation of bromide and iodide 

substituents by breaking the carbon-halogen bond was reported. The second mechanism 

involves the alkyl-substituted heteroatoms dealkylation; this reaction requires two successive 

steps. Firstly, the carbon atom neighbouring the heteroatom is hydroxylated, then the 

heteroatom atom is extruded to produce a carbonyl group. This mechanism is normally 

applied for sulphur and oxygen dealkylation, but it takes a different path for nitrogen 

dealkylation. The transformation of one electron from nitrogen to ferryl oxygen will give the 

nitrogen atom a positive charge. This positively charged nitrogen will cause acidification of 

the proton on the carbon adjacent to the heteroatom atom, and produce either N-hydroxyl 

derivative of the substrate or N-dealkylated product when it is transferred to the ferryl oxygen 

group (Danielson, 2002; Seto & Guengerich, 1993).  

 

3.6.5 Unusual P450 reactions 

Cytochrome P450s were extensively studied due to their ability to catalyse a wide range of 

reactions. In addition to the four traditional types of reactions that were described in sections 

(3.6.1–3.6.4), many P450s are also involved in different unusual reactions.  
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Although, reduction reactions catalysed by P450s are not common, the variety of these 

reactions needs to be taken in consideration. The mechanism of this reaction remains 

uncertain, but the reduction could happen when the Fe2+O2 complex works as a reduced agent 

during the waiting of an electron. A classic example of this type of reaction is the reduction 

of alkyl halides in the presence of CCl4 and halothane (Mico et al., 1983; Van Dyke & 

Gandolf, 1976). Another example is the reduction of nitrogen oxides, such as nitroxides, C- 

and N-nitroso compounds, hydroxylamines and nitro groups by P450s (Guengerich, 2001; 

Wislocki et al., 1980). Additional unusual reduction reactions are the reduction of glyceryl 

trinitrate to produce nitric oxide and the reduction of benzamidoximine to produce 

benzamidoxime as a final product (Clement et al., 1997; Delaforge et al., 1993). Cytochrome 

P450s can also reduce inorganic substrates in addition to organic compounds, for example, 

the reduction of SO2 or HSO3- to SO2˙ˉ, which is in equilibrium with dithionite, S2O4 
2- 

(Lambeth & Palmer, 1973).  

A second unusual type of reaction catalysed by P450s is dehydrogenation, also known as 

alkane desaturation. Many organic compounds have been reported as dehydrogenation 

substrates, such as valproic acid, testosterone, warfarin, lovastatin, ethyl carbamate and 

bufuralol. It is believed that this reaction shares the same starting point with classic C-

hydroxylation, that is, abstraction of a hydrogen atom. During the reaction, there is 

competition between oxygen rebound and a hydrogen atom abstract, but the C-hydroxylation 

represents a key step in this reaction. To date, there is no clear explanation why some C-

hydroxylations are accompanied by dehydrogenation and others are not (Fisher et al., 1998; 

Guengerich, 2001; Rettie et al., 1988). 
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Another uncommon reaction catalysed by P450s is the oxidative cleavage of a carboxylic 

acid ester. This reaction was first discovered in rat P450 2C11 (Guengerich, 1987; 

Guengerich et al., 1988). The product of this reaction is normally carbonyl instead of alcohol. 

It is suggested that this reaction is a C-hydroxylation similar to the classic O-dealkylation 

reaction (Guengerich et al., 1988). Ring expansion, when stable five or six membered rings 

are formed from unstable membered rings as in the production of pyrroline from 

cyclobutylamine (Bondon et al., 1989), is also one of the unusual P450s reactions. P450s can 

catalyse, not only the ring expansion reaction, but also the formation of non-existing rings 

such as the oxidation of dihydropyridines which results in the production of a very stable five 

membered lactone ring (Guengerich et al., 1988). Cytochrome P450 catalytic reactions are 

not limited to the reactions described above, but also include numerous other reactions such 

as aldehyde scissions, dehydration, one electron oxidation, coupling reactions, isomerisation, 

phospholipase D activity and rearrangement of fatty acids and prostaglandin hydroperoxides. 

It is expected that new P450s catalytic reactions will be discovered in the near future due to 

the intensive research focussing on the study and improvement of reactions of this P450 

superfamily (Guengerich, 2001).  

 

3.7 Industrial applications of cytochrome P450s  

CYP proteins apparently play a pivotal role in the biodegradation and modification of 

chemical compounds due to their substrate diversity. The adaptation of some organisms to a 

new diet in some circumstances leads to the further expansion of the variety of P450 

substrates. Recent studies have shown that there are no similar enzymes to the cytochrome 
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P450 superfamily in terms of substrate acceptability and diversity of catalysed reactions, 

making the members of this family outstanding biocatalysts in many practical applications. 

In spite of the broad applicability of these enzymes, their applications have been hampered 

by many limitations including: I) electron transfer requirement and transformation limitation; 

II) the need for NAD(P)H and uncoupling between the NAD(P)H oxidation and the product 

formation; III) limited 3D structures for the substrate-protein complex; IV) low activity 

(Bernhardt, 2006; Bernhardt & Urlacher, 2014; Julsing et al., 2008; O'Reilly et al., 2011; 

Urlacher & Eiben, 2006). 

P450 enzymes were described by many researchers as biological manufacturer enzymes of 

many pharmaceutical compounds and fine chemicals. CYP71AV1 is reported as a biocatalyst 

of the three step reaction to produce artemisinic acid, which is used as anti-malarial drug by 

the oxidation of amorpha-4,11-diene into intermediates, artemisinic aldehyde and artemisinic 

alcohol, using the engineered S. cerevisiae strain (Paddon et al., 2013; Ro et al., 2006). In 

2010, more than 655,000 people died because of malaria and more than 200 million malaria 

cases were reported, therefore there is a need for a stable and relatively inexpensive source 

of artemisinin. The yield of artemisinic acid was very low, approximately 100 mg/l in 2008, 

which hindered the industrial application of this reaction until 2013, when a combination of 

improvements was applied, methods of synthetic biology, recombinant protein expression, 

downstream processing and protein engineering. These efforts successfully increased the 

artemisinic acid yield up to 25 g/L. Currently, CYP71AV1 is used by Sanofi (France) for the 

industrial manufacture of artemisinin (Bernhardt & Urlacher, 2014).     

In addition to anti-malarial drugs, CYPs enzymes are involved in the production of anticancer 

agents, anti-inflammatory materials and antibiotics. Taxol, a chemotherapeutic agent, is 
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synthesised in E. coli at a concentration of 1 g/L from geranylgeranyl pyrophosphate (GGPP) 

in a series of reactions ending in taxol production. Taxadiene-5α-hydroxylase produces 

taxadien-5α-ol in the first step of this reaction, which is later converted to taxol (Ajikumar et 

al., 2010). 

Another remarkable example of a multi-enzyme system application was reported in 

hydrocortisone production. In the first step, engineered S. cervisiae serves to produce ergosta-

5-ene-ol and ergosta-5,22-diene-ol (CYP11A1 substrates to produce pregnenolone). The 

yelled pregnenolone in a multi-step reaction using 3-β-hydroxysteroid dehydrogenase, 

CYP17A1, CYP21A1, and CYP11B1 to produce hydrocortisone as a final industrial product 

(Szczebara et al., 2003).  

Parvastin, which is used widely around the world to reduce the cholesterol levels, is produced 

in a two-step reaction. The first step is the compactin biosynthesis by Penicillium citrinum 

and the second step is the sodium compactin hydroxylation to produce parvastin using 

CYP105A3 (Arai, 1988; Bernhardt & Urlacher, 2014).  CYPs also participate in the 

biosynthesis of vitamin D3 metabolites. CYP105A1 from Streptomyces griseolus converts 

vitamin D3 directly into its active form 1α,25-dihydroxyvitamin D3 through two oxidation 

steps (Sakaki et al., 2011; Sasaki et al., 1992).  

An available industrial application of plants CYPs is their ability to biosynthesise 

anthocyanin, which results in the delphinidin-derived pigments in violet or blue flowers. Two 

CYPs are involved in anthocyanin biosynthesis, CYP75B and CYP75A. Suntory Ltd (Japan) 

and Florigene Pty Ltd (Australia) have successfully used these CYPs to develop genetically 

engineered blue roses, which is impossible to achieve by traditional plant hybridisation 
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methods (Bernhardt & Urlacher, 2014; Holton et al., 1993; Katsumoto et al., 2007). These 

P450s’ products and other products are listed in Table 3-1  

Table 3-1: Some of the CYP’s commercial products. The table was produced depending on 

the data from (Bernhardt & Urlacher, 2014; Girvan & Munro, 2016) 

Substrates P450s involved Products 

Amorpha-4,11-diene CYP71AV1 Artemisinic acid 

Taxadien-5α-o Taxadiene-5α-hydroxylase Taxol 

Ergosta-5-ene-ol and 

ergosta-5,22-diene-ol 

CYP17A1, CYP21A1 and 

CYP11B1 
Hydrocortisone 

vitamin D3 CYP105A1 1α,25-dihydroxyvitamin D3 

Roses CYP75B and CYP75A Blue roses 

Sugar CYP82Y2 and CYP719B1 Morphine 

Tyrosine CYP from Petunia hybrida Fisetin 
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Part II: Tolerance of cytochrome P450 

BM-3 to non-conventional solvents 
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4 Introduction to cytochrome P450 BM-3 
 

4.1 Domain architecture 

Cytochrome P450s are widely known heme-dependent monooxygenases found in many 

eukaryotes such as fungi, plants and mammals as well as prokaryotes, but the bacterial types 

are more preferred because of their purification and crystallisation simplicity (Munro et al., 

2002; Nelson et al., 1996). A bacterial type P450 BM-3 from Bacillus megaterium (118 kDa) 

is more thermostable, highly active and easier to handle in comparison to other P450s 

(Bernhardt, 2006). P450 BM-3 protein has two distinct domains, the heme domain (BMP) at 

about 55 kDa and the reductase domain (BMR) at approximately 65 kDa. The latter consists 

of two prosthetic flavin groups in an equimolar ratio: flavin adenine dinucleotide (FAD) and 

flavin mononucleotide (FMN) (Narhi & Fulco, 1986), with both domains matching the 

chromosomal P450s domains well (Govindaraj & Poulos, 1995). BMR aligned well with the 

mammalian P450 reductases (CPR), while BMP shows similarity to the eukaryotic 

cytochromes such as CYP2A and CYP2A subfamilies (Porter, 1991). When BMP and BMR 

were expressed and purified separately, P450 BM-3 appeared to have lost its activity. This 

discovery showed the role of the linker region on enzyme activity. This was further supported 

in latter research when a number of residues were deleted from the linking region resulting 

in P450 BM-3 inactivity (Govindaraj & Poulos, 1995; Munro et al., 1994). BMR is less stable 

than BMP and undergoes proteolysis easily to the FMN binding region and an FAD/NADPH-

binding region, both subdomains are inactive individually (Oster et al., 1991). P450 BM-3 

BMP has remarkable homology with eukaryotic P540 sequences, making it a potential 

template for eukaryotic P450 sequence analysis because the crystal structure of BMP has 
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been fully elucidated (Amarneh et al., 1993; Loughran et al., 2000). Comparing BMP with 

prokaryotic heme showed some minor differences, such as CO-binding behaviour, and a 

major variation regarding electron transformation because in contrast to P450 BM-3, which 

receives two electrons vie integrated flavin domain, other bacterial P540s required an 

external partner to transfer electrons to the heme during catalytic reactions (Boddupalli et al., 

1990; Tuck et al., 1992).   

 

4.2 Protein expression 

The expression of P450 BM-3 cannot be induced by monounsaturated acids or saturated 

straight-chain fatty acids in B. megaterium (Narhi & Fulco, 1982). It is found that 

polyunsaturated analogues, like arachidonic and linoleic acids, in spite of their toxic effects 

when they added exogenously to B. megaterium, bind more strongly than other straight-chain 

analogues to the BM-3 repressor Bm3R1 and induce the expression of BM3 (English et al., 

1994; Liang et al., 1998; Ruettinger & Fulco, 1981). Other inducers of BM-3 expression in 

B. megaterium are branched-chain saturated fatty acids. These fatty acids apparently play a 

pivotal role in the membrane fluidity regulation and it is thought that they could be the 

original BM-3 substrates owing to their high ratio (about 90%) in the total fatty acid content 

in B. megaterium (English et al., 1997; Kaneda, 1991). Although, P450 BM-3 is not able to 

metabolise barbiturates, it is reported that barbiturate members are strong inducers for BM-

3 expression (Fulco et al., 1983; Narhi & Fulco, 1982).  

 



 

 

41 

 

4.3 Protein structure 

The crystal structure of P450BM-3 has been extensively studied by many researchers. The 

resolved structure of the substrate-free protein has a long hydrophobic substrate access 

channel. This channel starts from the protein surface charged residues and extends to the 

buried heme iron (the active site for the substrate hydroxylation) (Huang et al., 2007; Li & 

Poulos, 1995).  

An open confirmation was distinguished in the substrate-free structure. It was found that this 

open conformation is too wide to serve in substrate binding. In order to enhance substrate 

binding, it was suggested that the protein will reshape the access channel during the binding 

process, resulting in more closed conformation (Whitehouse et al., 2012). A substrate-free 

(SF) form differs from a substrate-bound (SB) by F/G loop, F helix and G helix positions. 

Palmitoleiate-BMP complex was the first solved structure. From the analysis of the substrate-

protein complex crystal structure, it was observed that F and G helices turn around their axes 

180º resulting in locking the access channel and preventing contact with the I helix and salt 

bridge. Fatty acid bound to P450 BM-3 in the hydroxylation position near the heme iron with 

(ω-1), (ω-2) or (ω-3) carbon positions, while the (ω) end is confined between Phe 81 and 87 

residues due to the 90º rotation of Phe 87 and rearrangement of the methyl groups of the close 

side-chains which are in contact with the Ala 82 residue (Huang et al., 2007). The binding of 

N-palmitoyl glycine (NPG) to P450 BM-3 is the most studied complex structure because 

NPG is more soluble than the equivalent chain fatty acids and it binds to the protein more 

tightly (Haines et al., 2001). The P450 substrate-free structure (PDB code 1BU7) and the 

structural changes in P450 BM-3 during NPG binding (PDB code 1JPZ) are shown in Figure 

4-1. The changes in water molecules are the most significant phenomena in the substrate 
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binding process, highlighting the crucial role of water in this process. The access channel and 

active site of the SF contain approximately 17–21 water molecules, while the number is 

reduced to only three molecules in SB. One of the important water molecules that will be 

removed during the substrate binding is Wat202 (Figure 4-1 C). This molecule plays an 

important role in dioxygen binding in the SF form by stopping the formation of a hydrogen 

bond as a result of creating a kink in the I helix. The removal of Wat202 will allow the 

formation of a traditional hydrogen bond, reducing the kink angle of the I helix from 13º to 

5º, the whole hydrogen bond network will be widely rearranged due to the Gly265 

repositioning and His266 rotation. Wat23, the axial water molecule will be displaced to an 

alternative position, Wat502, due to the I helix movement during the replacement of this 

water molecule to stay connected to Ala264 by hydrogen bonds. As a result of Wat23 ligand 

replacement, the heme iron centre will change from hexacoordinate to pentacoordinate . The 

proteolysed FMN-BMP complex has also been determined. In this structure (PDB code 

1BVY), the two asymmetric molecules of the BMP were observed together with the FMN 

domain situated close to the centre, interrupting the Pro382–Gln387 reign. (Whitehouse et 

al., 2012). In an attempt to understand the enzyme inactivity in the presence of organic 

solvents, a structural study on the DMSO-BMP complex was performed at 14% v/v and 28% 

v/v DMSO (Kuper et al., 2007). In the low solvent concentration, Wat23 was off-axial at 

3.75 A˚ instead of 2.6 A˚ in the DMSO-free protein. At the high solvent concentration, 

DMSO was linked to the heme as a sixth ligand by the sulphur atom instead of oxygen. The 

DMSO-protein complex behaviour was represented well spectroscopically through the 

partial high spin at 14% (v/v) solvent against the typical low spin state at 28% v/v DMSO 

(Kuper et al., 2007). 
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Figure 4-1: Structural changes induced in P450 BM-3 by substrate binding. The substrate-

free BMP structure (PDB code 1BU7) first time crystilised by Sevrioukova et al. 

(Sevrioukova et al., 1999) has been shown in grey  and the structural changes in P450 

BM-3 during NPG binding (PDB code 1JPZ) (Haines et al., 2001) in green. The water and 

hydrogen bonds in black, and the haem iron in orange, and NPG in plum. A. Complete 

overlay B. Regions of the G-, H- and I-helices. C. The kink region of the I-helix. D. The 

active site. This figure acquired with permission from (Whitehouse et al., 2012).   
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4.4 Dimerisation  

The discovery that fatty acid oxidation activity of P450 BM-3 is directly proportional to the 

enzyme concentration supported the belief that enzyme dilution may cause a dissociation of 

the function of this enzyme (Matson et al., 1977), which was further supported when it was 

found that electron transfer could be intermolecular. During a sedimentation velocity study, 

the P450 BM-3 enzyme mixture consisted of monomers, dimers, trimers and tetramers, but 

the overwhelming majority in the mixture was dimers. Not only P450 BM-3, but also other 

P450s such as eukaryotic soluble NOS and cyctochrome c reductase, lost their activity when 

monomeric (Black & Martin, 1994). When enzymes lose their activity due to the deletion of 

some residues from their linker region, it may be because this linker region becomes too short 

to form the proper functional dimer (Urlacher & Eiben, 2006). Aiming to prove that 

intermolecular electron transfer occurs in P450 BM-3, two mutants of this enzyme were 

mixed. The BMP of the first one was inactivated, while the BMR of the second mutant was 

FMN-deficient. Surprisingly, the P450 BM-3 mutant mixture showed distinguished 

hydroxylation activity, providing strong evidence that the electrons in P450 BM-3 transfer 

by intermolecularly instead of intramolecularly (Neeli et al., 2005). Despite the evidence 

supporting the dimerisation theory, there is experimental evidence to show that enzyme 

inactivity could be due to FMN depletion after a long preincubation time instead of 

monomerisation (Haines et al., 2001).  
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4.5 Electron transfer and redox partners 

One of the catalytic activity requirements of P50 BM-3 enzymes is the transfer of two 

electrons from a cofactor such as NADH or NADPH through FAD and FMN domains to the 

iron heme centre. Flavin reduction and semiquinone formation play a crucial role in electron 

transfer and BMR function. In P450BM3, the FMN domain receives the first electron from 

the FADH2 and as a result of this transformation, three components are formed, anionic 

FMNH semiquinone (red colour), FADH semiquinone (blue colour) and heme-reducing 

species (Sevrioukova & Peterson, 1995; Sevrioukova et al., 1996). The transformation rate 

of the first FMN-to-heme electron is known as kf and is calculated by measuring the increase 

in the rate at 450 nm absorbance when the FeII(CO) complex is formed. Stopped-flow 

techniques are usually used for kf estimation, these measurements are normally taken in CO-

saturated buffer after adding NADPH to the SB enzyme (Govindaraj & Poulos, 1995). In a 

study regarding the relationship between the catalytic reaction rate and the electron transfer 

speed, it was found that the electrons were transferred to the heme much slower when laurate 

bound to the enzyme instead of myristate. This indicated that the kf value is directly 

proportional to Kcat and both of them are dramatically decreased when some residues were 

deleted from the linker region (Munro et al., 1996).  

All P450s require a cofactor to reduce oxygen and donate the required electrons for enzyme 

catalytic activity. In P450 BM-3, either NADH or NADPH is used as a cofactor. Using these 

cofactors is usually associated with uncoupling problems. Coupling efficiency is “the 

percentage of reducing equivalents from NAD(P)H that are utilised for the oxidation of 

substrate”. The coupling efficiency varies from enzyme to enzyme and from catalytic 

reaction to another for the same enzyme. In the oxidation reaction of P450cam (the cytochrome 
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from Pseudomonas putida that catalyses the hydroxylation of camphor), the coupling 

efficiency was 100%, that is, all electrons that have been donated by NADH were used by 

P450cam in the oxidation forming 5-exo-hydroxycamphor. However, the coupling efficiency 

of the NADH when the same enzyme was used in the styrene epoxidation was no more 7%. 

There are many uncoupling mechanisms which could cause untargeted consumption of the 

electros such as: I) ferrous-oxy intermediate auto-oxidation; II) two electron reduction 

resulting in water molecule formation; III) intermediate decomposition resulting in H2O2 

formation. Uncoupling due to peroxide formation may occur either by the promotion of H2O2 

dissociation or by the inhibition of the cleavage of the O-O bond. The peroxide dissociation 

happens when the substrate is unable to remove a water molecule from the active site, so 

when the H2O molecule accesses the active site, the polarity is raised and a charge is 

separated from iron producing a hydrogen peroxide anion (Cirino, 2004).  

 

4.6 Protein engineering 

Protein engineering using a biological approach has emerged as a superior tool to improve 

enzyme catalytic activity, producing tailor made enzymes able to work with new 

environments and substrates. This technique has already been successfully performed with 

many P450s, however, eukaryotic P450s catalyse a wide range of reactions and use a variety 

of substrates, hence their catalytic ability was hindered by solubility and isolation issues. As 

a result, the majority of P450s protein engineering research has focused on the soluble 

bacterial membranes of this family, in particular on P450BM3, a soluble self-sufficient 

highly active enzyme (Whitehouse et al., 2012).  
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Two different strategies of genetic approaches have been used to improve this enzyme: site-

directed mutagenesis and the random mutagenesis/directed evolution approach (both 

approaches are shown in Figure 4-2). Recently, a combination of these two types were also 

utilised and have become increasingly important for novel enzyme expression (Urlacher et 

al., 2006).  

Site-directed mutagenesis is the earliest engineering approach successfully used to improve 

protein specifications (activity, selectivity and stability). This method requires a wide 

knowledge of enzyme structures and the relationship between these structures and protein 

activity, which is a major limitation in rational approach application. The first site 

mutagenesis was applied at Ala328, Thr268 and Phe87 to enhance the ability of P450 BM-3 

to catalyse chemical substrates, such as 1,1,2,2-tetrachloroethane and 2-phenylpropanal 

(Alworth et al., 1997). Other mutations, such as F87G and F87V, increased enzyme activity 

when used with propylbenzene and 3-chlorostyrene, while the F87A variant showed lower 

activity, but higher selectivity giving 54% β-hydroxylation versus 1% by the WT (Appel et 

al., 2001). This engineering approach was also used to produce the high-value primary-

alcohols from n-alkanes. For example, the mutant A328V catalysed the oxidation of octane 

to produce 5% 1-octanol and 82% 2-octanol in comparison to zero and 17% in the WT 

respectively (Peters et al., 2003). Other mutants also achieved high production of either 1-

octanol or 2-octanol from octane such as A82L, F87V/A328F, V78T and A82G (Peters et 

al., 2003). Site mutagenesis was also used to improve enzyme accessibility towards short 

chain fatty acids by applying a double mutation at L75T/L181K. By using this mutant, the 

enzyme was able to oxidise hexanoic acid giving Kcat (43 s-1) instead of (3.8 s-1) for WT (Ost 
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et al., 2000). Although a site mutagenesis approach succeeded in improving P450 BM-3 

activity, selectivity and stability, good structural knowledge is required.  

In recent years, directed evolution has won protein engineering researchers’ attention because 

it does not require accurate information about protein structure. It is also able to be applied 

with a wide variety of design problems, in particular, obtaining new functional proteins. It is 

a random mutagenesis method using one or many start points, which are chosen depending 

on the specific goal of engineering (selectivity, stability or activity) (Arnold, 1998). In this 

process, the protein of interest should be encoded first, then screened before the improved 

protein variant can be isolated. The choice of suitable screening method is essential to the 

success of directed evolution experiments. Directed evolution applications have contributed 

to the development of protein properties knowledge and a wide range of molecule synthesis 

from building blocks to drug analogues, as well as the massive enhancement in activity, 

selectivity and stability not previously encountered in nature (Denard et al., 2015; Johannes 

& Zhao, 2006). 

Random mutagenesis followed by site-saturating to produce a second-generation variant, 

A74G/F87V/L188Q, also known as GVQ variant, was used to generate indigo-producing 

mutants. This variant was also able to oxidise a number of chemical substrates such as 

chlorinated dioxins, organophosphorus pesticides and polyaromatic hydrocarbons (PAHs) 

(Li et al., 2000). Furthermore, when the GVQ mutation was applied to CYP102A3, GVQA3 

showed a great improvement in enzyme activity with capric acid against WTA3 (35 s-1 vs. 0.8 

s-1) (Lentz et al., 2004). Further investigation lead to the discovery that when A330VA3 was 

used instead of Glu in GVQA3, the ability of the enzyme to produce 1-octanol from octane 

increased to form half of the product mixture (Lentz et al., 2006). A similar role was applied 
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on CYP102A1 (P450 BM-3) to generate A328VA1. Starting from F87A as a platform, eight 

random generations were screened and the most active mutations were combined to produce 

the V26T/R47F/A74G/F87A/L188K variant, which showed impressive enhancement in 

protein activity (Li et al., 2001). Furthermore, when the F87V mutant was used instead of 

F87A as a platform, even more enhancement in activity was observed (Lentz et al., 2001). 

One of the most interesting directed evolutions, is that identified during indigo screening in 

an experiment aiming to improve selectively towards small non-natural substrates. The 

variant from this study gave 30% propylphenol from propylbenzene in comparison to 1% for 

the WT. In addition, F87A and A330P were shown in the same screening to yield 78% 2-

phenyl-1-propanol from propylbenzene against zero for the WT (Whitehouse et al., 2012). 

Directed evolution was also used by Wong in 2004 to enhance P450 BM-3 tolerance towards 

co-solvents (Wong et al., 2004). The engineered P450 BM-3 was significantly more resistant 

in the media containing DMSO and tetrahydrofuran (THF), showing high tolerance in the 

present of acetone, acetonitrile, dimethylformamide and ethanol (Wong et al., 2004). There 

have been numerous attempts to improve P450 BM-3 performance through applying a 

successful protein engineering approach, many of which are ongoing, giving hope for 

tremendous developments in this area.   
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Figure 4-2: Biological approaches for enzymes engineering. Two approches are shown 

in the figure; random mutagenesis on the right hand when no accurate information about 

protein structure is required and three techniques of rational mutagenesis on the left hand,  

these techniques vary depending on the information available on the protein structure     
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4.7 Immobilisation 

Enzyme immobilisation, a process which can be defined as linking the purified enzyme or 

the whole cell to a carrier, is required for the effective application of enzymes in industrial 

manufacturing by achieving a continuous operation process, recycling the enzyme and the 

cofactor as well as ease of product separation (Tan et al., 2016). Immobilization methods are 

classified into four groups: I) binding to a solid support, II) carrier-free insolubilisation by 

cross-linking, and III) entrapment in a polymer network and IV) encapsulation in a 

membrane. Types of immobilisation are presented in Figure 4-3. Although the difficulties of 

immobilising P450s due to their need for electron transformation could negatively affect their 

function as shuttle molecules, many researchers have succeeded in applying an 

immobilisation technique with P450 BM-3.   

The first attempt to immobilise P450 BM-3 on a carrier was applied in 2003 by Maurer 

(Maurer et al., 2003). The enzyme was immobilised in a sol-gel matrix combined with a FDH 

(formate dehydrogenase), nicotinamide-adenine-dinucleotide phosphate (NADP+) 

dependent system. This approach succeeded in achieving continuous production of hydroxyl-

compounds from –ionone, naphthalene and octane using a cheap cofactor recycling system 

with the ability of FDH to convert NADP+ into NADPH which could be used by P450 BM-

3 as a source of the required electrons for hydroxylation (Maurer et al., 2003). The next step 

in P450 BM-3 immobilisation was achieved three years later by Waibel (Waibel et al., 2006). 

A triple mutant of P450 BM-3 together with Nippostrongylus brasilliensis AchE (NbAchE) 

were immobilised on a sol-gel matrix to produce an active bienzymatic biosensor used for 

insecticide detection in food (Waibel et al., 2006). In 2007, the continuous production of 

indigo from indole using whole cell immobilisation in calcium-alginate capsules was 
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investigated (Yan & Lehe, 2007). The immobilised E. coli strain showed very high thermal 

stability and the indigo yield was maintained at 94% of the original yield after five repeated 

runs Purified mutant P450 BM-3 M9 (R47F F87A M238K V281G M354S D363H W575C 

A595T) was entrapped on DEAE (anion matrix) combined with k-carrageenan, catalase (for 

immediate elimination of the hydrogen peroxide) and zinc dust as an alternative electron 

source. The immobilised enzyme was able to hydroxylate 3-phenoxytoluene in a plug flow 

reactor (Zhao et al., 2011).     

 

 

 

 

(A)                                 (B)                                  (C)                                        (D) 

Figure 4-3: Enzyme immobilisation strategies: (A) entrapment in a polymer network  (B) 

encapsulation in a membrane (C) binding to a solid support (D) crosslinking (carrier-free 

insolubilisation).  
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4.8 Industrial applications of cytochrome P450 BM-3 

By using P450 BM-3, a vast range of substrates can be utilised, including alkanes, phenols, 

steroids and fatty acids, and a broad range of reactions can be catalysed. Indeed, this natural 

soluble self-sufficient enzyme recorded the highest activity level among all other 

monooxygenases (Bernhardt, 2006; Urlacher & Eiben, 2006; Urlacher et al., 2004). Applying 

protein engineering approaches, both the rational and the random designs, made this protein 

more applicable, overcoming the barriers which hindered its industrial application for a long 

time. Examples of the applications of BM-3 variants are enormous. Multiple mutation 

variants of BM-3 were used to produce 4- and 5-hydroxy diclofenac products (nonsteroidal 

anti-inflammatory agents) used as painkillers from the conversion of diclofenac (Ren et al., 

2015). Another application of BM-3 is the manufacture of (ــــ)-perillyl alcohol (a possible 

anticancer drug) from terpene (ــــ)-limonene using a triple BM-3 variant 

A264V/A238V/L437F (Seifert et al., 2011). The production of antibacterial and antifungal 

agents 9 and 10-hydroxy-β-cembrenediol (tobacco diterpene b-cembrenediol) from β-

cembrenediol using two BM-3 mutants (F78A/I263L and L75A/V78A/F87G) was also 

reported (Venkataraman et al., 2014). In 2014, a BM-3 variant from a directed evolution 

approach was used to hydroxylate 1-tetralone; the hydroxylated products are of great 

biological importance in the synthesis of numerous biologically active compounds (Roiban 

et al., 2014). Another example of the application of P450 BM-3 variants is the conversion of 

omeprazole and esomeprazole (the potent antiulcer drugs) to their human type metabolites 

(CYP2C19) by a double BM3 mutant (F87V/A82F) (Butler et al., 2014). The BM3 mutant 

from a saturation mutagenesis of the active site was used to transfer 1-hexene into 1,2-
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epoxyhexane, which was recently used to produce aluminium core-shell nanoparticles (the 

new energetic material in the nanoparticle field) (Kubo et al., 2006).  
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5 Biocatalysis in non-conventional solvents 
 

5.1 Tolerance vs stability 

In general, proteins are barely stable molecules and denaturation can easily occur by a 

number of physical elements, such as heating, agitation and freezing. Furthermore, chemical 

changes, such as hydrolysis, play a significant role in protein instability. Potency and safety 

during manufacturing, transportation, and storage processes are affected in both biochemical 

and pharmaceutical industries. However, a general strategy for stabilising proteins is still 

lacking (Klibanov, 2001). 

According to Matthews (1993), protein stability is defined as the difference between folded 

and unfolded protein in their free energy, so protein stability depends mainly on the protein 

structure and could be improved either by stimulating the conversion from unfolded to folded 

protein or by decreasing the formation of the denatured form, or a combination of both 

(Matthews, 1993).  

The protein in its native state (folded condition) is an ensemble of compact conformations 

with low energy, which is mainly characterised by low entropy due to the retention of all 

protein atoms in a well-known geometry. When a protein is denatured (unfolding state) by 

changing temperature, pH or adding denaturants, the protein conformations ensemble 

becomes highly heterogeneous and complex. In other words, the entropy will increase due to 

the loss of the native interactions and as a result, a large set of arrangements will be offered 

to the residues (Matthews et al., 1987).  
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Finding the most stable protein is a great challenge in protein science because enhancing 

protein stability will not provide an outstanding protein unless it is combined with improving 

the tolerance of this protein. Tolerance in general can be defined as the ability to bear 

something potentially difficult, while protein tolerance specifically is the ability of the protein 

to stay catalytically active in the presence of denaturants, such as organic solvents. In 

summary, a stable folded protein must also be kinetically accessible and the protein activity 

should be kept within satisfied limits in the presence of denaturants (Matthews, 1993; 

Pietrzykowski & Treistman, 2008).      

 

5.2 Solvent classification 

Green chemistry is the design of chemical processes that reduce or eliminate the use of 

hazardous substances. Solvents form an interesting part of the green chemistry philosophy 

because of the volume in which they are used in the chemical and pharmaceutical industries. 

According to the American Chemical Society Green Chemistry Institute Pharmaceutical 

Roundtable (ACS GCIPR), 22000 kg of solvents are used annually (Henderson et al., 2011). 

This quantity constitutes 80–90% of the non-aqueous mass of materials used to make an 

active pharmaceutical ingredient (API) (Breeden et al., 2012; Henderson et al., 2011; Sheldon 

et al., 2007).  

There are many classifications used to sort solvents such as Pfizer results and tools, ACS 

GCI Solvent Selection Guide, Sanofi’s Solvent Selection Guide and GSK Solvent Selection 

Guide (Henderson et al., 2011). The one suggested by GSK is the most common classification 

because it gives reliable information to researchers to help them to switch to a more 
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sustainable biosynthesis process. Solvents, according to GSK, are classified depending on 

lifecycle assessment information. They are scored from 1 (red) to 10 (green), 1–3 red, 4–7 

orange and 8–10 green to give a relative ranking for every solvent in the guide in each 

category, where the score depends on the following categories: environmental impact (effects 

of solvents on the environment), health (acute and chronic effects on human health and the 

potential for exposure), flammability and explosion (issues affecting storage and handling of 

solvents), reactivity and stability (factors affecting the stability of the solvent), melting and 

boiling points (covering high boiling point solvents that have high energy. The GSK solvents 

classification and the solvents selection guide are shown in (Table 5-1 and Figure 5-1) 

respectively.  

Table 5-1: The ranking of green  solvents  in each category depending on the GSK guide, 

2010 (Henderson et al., 2011).  

 

 

 

Solvent M. P. 

˚C 

B. P. 

˚C 

Recycling Environment Health Explosion 

 

Stability Life 

cycle 

Water 0 100 4 10 10 10 10 10 

1-Butanol 
-89 

 
118 5 7 5 8 9 5 

2-Butanol 
-115 

 
100 4 6 8 7 9 6 

t-Butyl 

acetate 
-78 95 6 9 8 6 10 8 

Isopropyl 

acetate 
-73 89 5 7 7 6 9 7 

Propyl 

acetate 
-92 102 5 7 8 6 10 4 

Dimethyl 

carbonate 
-1 91 4 8 7 6 10 8 
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Figure 5-1: Solvents classification depending on GSK in 2010 (Henderson et al., 2011), 

the green region represents solvents with few issues, the orang region indicates solvents 

with some issues and the red area is sets solvents with major issues such as: environmental 

impact, health, flammability and explosion, reactivity and stability and melting and boiling 

points 

N-Methyl pyrrolidne 
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5.3 Biocatalysis in organic media 

In recent years, biocatalysts have been the subject of intensive investigations by 

pharmaceutical and industrial researchers, with the interest continuously growing. This is not 

surprising given the potential advantages of enzymes: (I) the ability to display regio-, chemo- 

and enantioselectivity; (II) the enhancement in reaction rate up to 1012 fold; (III) the ability 

to catalyse reactions in moderate conditions (pH and temperature), while these reactions 

require harsh conditions using chemical catalysts (Carrea & Riva, 2000). These superior 

properties of enzymes are restricted by their orientation to the aqueous reaction media (their 

natural media). The importance of water in enzymatic catalyst systems is an assumptive 

matter, since it helps to maintain proteins in their active structures as well as playing an 

essential role in enzyme dynamics. In spite of these advantages, using aqueous enzymatic 

media is faced with a variety of limitations. The insolubility of many substrates in water, the 

unwanted side reactions and the difficulties of products recovery are major issues indicated 

in biocatalytic systems using water as a solvent (Zaks & Russell, 1988). 

In an effort to resolve this problem, many types of solvents were investigated to find a 

suitable active solvent as a replacement of water. In this chapter, different types of solvents 

that have been with enzymes and their impact on enzyme stability and activity will be 

highlighted. 

 

5.3.1 Neat solvent 

The fact that enzymatic activity and structural stability decrease in a media containing 

organic solvents made the later a way of study for years. In fact, the phenomenon of using 
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organic solvents in enzymatic media dates back to the 1930s of the last century, but this field 

did not command attention until a report by Zaks and Klibanov in the early 1980s (Halling 

& Kvittingen, 1999; Zaks & Klibanov, 1984). They indicated that the enzymatic deactivation 

theory is actually based on studying the enzymes in hydrous solvents not in neat solvents. 

Accordingly, anhydrous enzymology became a material of study and analysis by many 

researchers and industrial laboratories (Carrea et al., 1995; Klibanov, 1997). The 

hydrophobicity of organic solvents is considered valuable to provide an effective enzyme 

medium. It was measured and studied depending on the partition coefficient value, log P (a 

ratio of a compound concentration in a mixture of two immiscible phases at equilibrium). It 

was reported that the activity of biocatalysts in organic solvents is highly dependent on the 

log P value as follows: I) strongly inactivating when it is used with a solvent log P < 2; II) 

slightly denatured at log P value between 2 and 4; and III) keep its native structure in a log P 

> 4 (Laane et al., 1987). The reason behind this observed trend is that a highly hydrophobic 

solvent does not strip off the enzymes’ water which is essential to their activity, so these 

solvents should not affect enzyme structures. 

It was shown that protein stability and activity for numerous enzymes, such as ribonuclease, 

porcine pancreatic lipase (PPL) and α-chymotrypsin, can be improved by using neat organic 

solvents (Volkin et al., 1991; Zaks & Klibanov, 1984; Zaks & Russell, 1988). Chymotrypsin 

showed no appreciable effect on its crystal structure when it was introduced into neat hexane. 

In addition to enhancement in activity and structure stability of enzymes achieved by using 

neat solvents, new enzymatic reactions have come to light. Examples of these reactions, 

which would not have been possible with aqueous media, are the production of esters from 
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their constituent acids and alcohols, transesterification, aminolysis and thio-

transesterification (Klibanov, 2001; Schmitke et al., 1996; Zaks & Klibanov, 1985). 

 

5.3.2 Water-solvent mixture (co-solvent) 

Water-solvent mixture or water-miscible solvents are homogeneous systems in which the 

enzymes are either suspended or dissolved. At high concentrations, most co-solvents cause a 

significant drop in enzymatic activity. These solvents form a layer around the enzyme and 

strip the water, which is an essential molecule for biocatalyst, from the active site of the 

enzyme, thereby changing the enzyme structure. As a result, most enzymes are unstable and 

inactive in water-solvent mixtures. However, there are some exceptions, such as polyols and 

glymes, when enzymes showed stability and activity very similar to their activity and stability 

in aqueous medium.   

The dynamic and catalytic properties of enzymes greatly depend on the amount of water 

present in the reaction media. By using water-miscible solvents, a relationship between 

thermodynamic water activity and water concentration was examined using a variety of 

common polar solvents. This study showed that a solvent’s hydrophilic nature has a 

significant impact on the enzyme activity. Five alcoholic solvents were investigated, 

methanol, 2-propanol, 1, 2-butanol, ethanol and acetonitrile (Bell et al., 1997) and the effect 

of water on the enzyme’s secondary structure was assessed using three types of conditions, 

a neat organic solvent, a water-solvent mixture (co-solvent) and pure water. The secondary 

structures of lysozyme and subtilisin in pure solvents were very close to those of the native 
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enzymes, while a significant deviation was recorded in the water-solvent mixture (Griebenow 

& Klibanov, 1996). 

 

5.3.3 Biphasic system 

The biphasic solvent system is used to improve catalysts’ recyclability, activity, stability and 

product separation. The prosperity of such schemes depends on the differences between the 

two liquids in various properties, and usually polarity. One of solvents should be polar to 

dissolve and retain the catalyst, and the other solvent should be nonpolar to dissolve the 

products (Lee et al., 2003). The first biphasic used was a mixture of water and carbon dioxide 

(Bhanage et al., 1999), which showed a good result when it was used with water-soluble 

catalysts and substrates. However, another combination needs to be applied for water-

insoluble reaction media, such as ionic liquids mixed with supercritical CO2 (Heldebrant & 

Jessop, 2003). 

The activity, selectivity, product and catalyst recovery of two enzymes, Wilkinson’s catalyst 

and a cationic rhodium complex were examined using two different biphasic solvents 

(polyethylene oxide, heptane and CH2Cl2 and polyethylene oxide, heptane and methanol), 

respectively. The results showed that using both enzymes led to high yields and selectivity 

(da Rosa et al., 2000). Three years later, an encouraging result was achieved using 

polyethylene glycol together with supercritical fluid CO2 as a biphasic solvent in a reaction 

catalysed by RhCl(PPh3)3. The biphasic solvent and the catalyst were not replaced for five 

cycles and the catalyst activity was about 99% combined with an increase in product mass 
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recovery for five cycles (Heldebrant & Jessop, 2003). The effects of some solvents used with 

proteins are shown in Table 5-2. 

Table 5-2: Some solvents used with native enzymes and their effects on enzymes properties 

Solvents Enzymes Reaction 
Effect on 

enzyme 
References 

99% ethanol 

porcine 

pancreatic lipase 

(PPL) 

transesterification 
high activity at 

high temperature 

(Zaks & 

Klibanov, 

1984) 

1-butanol & DMF 

ribonuclease, 

chymotrypsin 

and lysozyme 

hydrolysis of N-

benzoylL-tyrosine 

ethyl ester (BTEE) 

high thermal 

stability 

(Volkin et al., 

1991) 

hexane 
uncrosslinked 

chymotrypsin 
crystallisation stable structure 

(Klibanov, 

1997) 

hexane, dodecane, 

hexadecane, ethyl ether, 

isopropyl, ether butyl, ether 

acetonitrile tetrahydrofuran, 

dioxane, toluene, pyridine, 

dimethyl sulphoxide, 

formamide & carbon 

tetrachloride 

PPL, Candida 

cylindracea 

lipase, Mucor 

and 

Pseudomonas 

lipoprotein 

lipase 

 

transesterification 

reaction between 

tributyrin and 

heptanol 

enzymatic 

activity similar 

to that in water 

(Zaks & 

Klibanov, 

1985) 

supercritical carbon dioxide 

(SC-CO2) 

amberlyst & 

zeolite 
carbonatation 

Stability 

improvement 

(Vieville et 

al., 1998) 

Supercritical CO2/toluene 

mixture 

commercial 0.5 

wt.% Pd/Al2O3 

oxidation of 

benzyl alcohol to 

benzaldehyde 

high reaction 

rate 

(Caravati et 

al., 2006) 

Supercritical CO2/n-hexane 

mixture 
lipase B esterification 

high conversion 

rate 99% 

(Knez et al., 

2012) 

ionic liquid 1-butyl-3-

methylimidazolium 

hexafluorophosphate 

chymotrypsin 
transesterification 

and hydrolysis 

slight 

enhancement in 

activity 

(Berberich et 

al., 2003) 

[C4mpy][Tf2N] monellin ------------ 
improved 

thermostability 

(Baker et al., 

2004) 

1-Butyl-3-

methylimidazolium 

(bmim) dihydrogen 

phosphate (dhp), 

N-butyl-N-methyl 

pyrrolidinium 

dihydrogen phosphate (p1,4 

dhp),choline dihydrogen 

phosphate 

cytochrome c & 

P1,4dhp 
----------- 

improved 

thermostability 

(Fujita et al., 

2005) 

polyethylene oxide, heptane 

CH2Cl2 

Wilkinson’s 

catalyst 

hydrogenation of 

hex-1-ene 

high selectivity 

and yield 

(da Rosa et 

al., 2000) 

polyethylene oxide, heptane, 

methanol 

cationic rhodium 

complex 

hydrogenation of 

hex-1-ene 

high selectivity, 

yield, separation 

and recycling 

efficiency 

(da Rosa et 

al., 2000) 
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5.4 Biocatalysis in micellar systems  

A mixture of water-in-oil (w/o) or oil-in-water (o/w) is called an emulsion. The stability of 

emulsions is controlled by the effect of amphiphilic compounds. Amphiphilic molecules have 

the ability to interact with polar as well as nonpolar molecules at the same time because of 

the differences in polarity between the head and the tail of these components; hydrophilic 

head and hydrophobic tail. The presence of these amphiphiles encourages the formation of 

monophasic (emulsion) inside the biphasic (microemulsion) by decreasing the interfacial 

water-oil tension. The ratio of water to oil is responsible for the variation in the 

microemulsion microstructure from tiny droplets of water-in-oil phase to the reverse 

microemulsions, tiny droplets of oil-in-water phase. The structure and stability of emulsions 

differ from those for microemulsions; emulsions are less stable and they separated into two 

layers once the agitation stops. In addition, the size of emulsion droplets is in micrometres 

range, while they are in nanometres in microemulsions. Another important difference 

between these two systems is the formation of spherical aggregates, these aggregates are in 

colloidal size and they called micelles. The micelle system is homogeneous monophasic 

system. Different micelles systems have different structures based on their composition, 

temperature and presence of amphiphilic compounds (Braga & Belo, 2015).  

Microemulsions have been used successfully for enzymatic catalysis in many reactions such 

as hydrolysis, transesterifications, peptide and sugar acetals, and ester syntheses (Krishna et 

al., 2002). Microemulsions were used to overcome the heterogeneous nature of the reaction 

mixture when lipase was applied to hydrolyse long-chain aliphatic esters to glycerol and free 

fatty acids (Carvalho & Cabral, 2000). When reverse micellar system (sodium lauryl 

sulphate/benzene) was applied, hydrogen production by Rhodopseudomonas sphaeroides 
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increased by 25-fold. In addition, a 12-fold increase in alcohol dehydrogenases (ADH) 

catalysed reduction rate was recorded when Marlipal O 13/60/cyclohexane was used to 

reduce 2-heptanone to S-2-heptanol (Braga & Belo, 2015).   

 

5.5 Biocatalysis in ionic liquids 

Salts which have the ability to stay in a liquid state and do not crystallise at room temperature 

are called ionic liquids. For the names and physical properties of some ionic liquids, see Table 

5-3. Imidazolium is a widely used ionic liquid and the first one discovered was EtNH3NO3. 

Over the past twenty years, ionic liquids have become increasingly important as green 

solvents for various reactions because of their remarkable results in biochemical reactions 

such as redox, hydrolysis and esterification. They provide an ideal solvent for engineering 

media for biocatalytic reactions because of the unique advantages for biocatalysis, such as 

their non-volatile nature which maintains a stable system pressure, ability to dissolve several 

compounds, as well as forming multiphase systems with many solvents (Seongsoon & Romas, 

2003a). 

Neat ionic liquids represent a new class of solvents, which are polar and non-aqueous at the 

same time depending on the cation and anion properties. Unlike organic solvents, they do not 

inactivate enzyme activity (Seongsoon & Romas, 2003b). Much attention has been given to 

improve protein stability, activity and solubility in neat ionic liquids (Weingärtner et al., 

2012). 

The first kinetics study to compare pure ionic liquids, aqueous ionic liquids and pure organic 

solvents was conducted in 2000. In this study, they highly recommended using anhydrous 
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ionic liquids due to the high product yield (80%) (Lau et al., 2000). Subsequently, numerous 

studies reported the excellence of pure ionic liquids as alternative to organic solvents 

(Eckstein et al., 2002; Lozano et al., 2001; Summers & Flowers, 2000).  
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Table 5-3: Names and physical properties of some common ionic liquids used with enzymes 

IL IL name 
M. P. 

°C 

Viscosity 

cP at 25 

°C 

Density 

g/ml at 

25 °C 

Enzyme References 

[C2mim] 

[BF4] 

1-Ethyl-3-

midazolium 

tetrafluoroborate 

- 43 - 

Lysozyme, 

Catalase, 

Myoglobin, 

Trypsin 

Glucose isomerase, 

Xylanase 

(Huddleston et al., 

2001; Judge et al., 

2009; Noritomi et al., 

2011) 

 

[C2mim] 

[Br] 

1-Ethyl-3-

methylmidazolium 

bromide 

 

58–60 - - 
Trypsin 

 

(Ge et al., 2010; 

Huddleston et al., 2001) 

[C4mim] 

[BF4] 

1-Butyl-3-

methylmidazolium 

tetrafluoroborate 

−81 233 1.12 

Horseradish 

Peroxidase, 

Glucose Oxidase 

(HRP), Esterase 

(Huddleston et al., 

2001; Patel et al., 2014; 

Persson & 

Bornscheuer, 2003) 

[C4mim] 

[PF6] 

1-Butyl-3-

methylmidazolium 

hexafluorophosphate 

10 450 1.36 

Candida rugose, 

Esterase, 

Thermolysin, 

Lipase 

Chymotrypsin 

(Erbeldinger et al., 

2000; Huddleston et al., 

2001; Lau et al., 2004; 

Meng et al., 2011; 

Pavlidis et al., 2009; 

Persson & 

Bornscheuer, 2003) 

[C8mim] 

[PF6] 

1-Octyl-3-

methylmidazolium 

hexafluorophosphate 

 

- 682 1.22 
Candida rugosa 

enzyme 

(Huddleston et al., 

2001; Lau et al., 2004) 

5.6 Biocatalysis in supercritical fluids 

Supercritical fluids (SCFs) are solvents used at a combination of high pressure and 

temperature, usually above their critical value. From the time they were discovered in 1822 
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to date, their applications have witnessed considerable developments. The superior 

specifications by mixing gas properties (diffusivity and viscosity) with liquid properties 

(density and solvating ability) has opened new prospects for the use of SCFs as solvents for 

many applications. Furthermore, they are considered safe, cost efficient, nontoxic, easy to 

recover and environmentally friendly, which makes them a good alternative for traditional 

solvents (Knez et al., 2014). The stability of heterogeneous catalysts in a glycerol 

carbonatation process was investigated using supercritical solvents. The catalysts appeared 

to be more stable in a media containing supercritical carbon dioxide (SC-CO2) (Vieville et 

al., 1998). A comparative study between neat CO2, neat toluene and CO2/toluene mixture 

was published by Caravati et al. in 2005 and it elucidated that the highest reaction rate can 

be achieved by adding a small amount of toluene to the SC-CO2 (Caravati et al., 2006). The 

same supercritical solvent (SC-CO2) was tested alone and as a mixture (SC-CO2/n-hexane) 

in the esterification process catalysed by lipase B, showing that the SC-CO2/n-hexane 

mixture was the best, with a 99% conversion rate and 11.2 (w/w) yield (Knez et al., 2012).  

5.7 Stabilisation of enzymes in non-conventional solvents 

Despite enzyme inactivation by organic solvents, the numerous advantages of using these 

solvents motivated industry and academia to find effective strategies for enzyme stabilisation 

in non-conventional solvents. These strategies can be classified into three categories: I) 

isolation of stable biocatalysts; II) enzyme structure modification, and III) solvent 

environment modification (Stepankova et al., 2013).  

Microorganisms that have the ability to live and survive under harsh conditions, such as high 

and low temperature, extreme pH and organic solvents medium, offer a very effective source 
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of extremozymes which are highly stable enzymes. This strategy succeeded in improving the 

tolerance of some enzymes against organic solvents by enhancing the hydration 

characteristics of these enzymes, which are responsible for enzyme inactivation due to the 

loss of crucial water molecules (Karan et al., 2012). The tolerance of protease towards many 

co-solvents was investigated. This enzyme was isolated from P. aeruginosa PST-01 grown 

in soil saturated with a high concentration of different organic solvents. This enzyme showed 

stability in a media containing co-solvents rather than in aqueous media (Ogino et al., 1999). 

In addition, α-amylase and alkaline phosphatase also showed very good tolerance against 

organic solvents when they isolated from Haloarcula sp. strain S-1 and Streptomyces 

clavuligerus strain Mit-1 respectively (Fukushima et al., 2005; Thumar & Singh, 2009).    

Modification of biocatalysts was also applied to improve enzyme activity using different 

strategies including enzyme immobilisation, ionic liquid coating, chemical modification and 

genetic engineering. Stabilising enzymes in solvents by using immobilisation is one of the 

most common strategies. All immobilisation types were reported as effective methods to 

enhance enzyme stability. Candida antarctica lipase B showed outstanding activity in neat 

solvents when it is adsorbed on Lewatit ion exchange resin (Hanefeld et al., 2009). In 

addition, when α-chymotrypsin was bound covalently to a nanoporous silica glass, it showed 

impressive improvement in activity and stability in the presence of organic solvents (Wang 

et al., 2001). Moreover, not only the enzyme, but also its cofactor NADPH were entrapped 

in the polymer network (polyvinyl alcohol gel beads), protected from the negative effect of 

pure hexane in this experiment, the entrapped dehydrogenase from Lactobacillus kefir 

successfully transformed some hydrophobic ketones to the “corresponding enantiomerically 

pure (R)-alcohols” (De Temiño et al., 2005). In addition to their importance as green solvents, 
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ionic liquids play a crucial role in enhancing enzyme tolerance towards organic solvents by 

acting as enzyme-coating agents. These coating agents offer a stable microenvironment for 

the reaction by binding to the enzymes. It was reported that when lipase B from C. Antarctica 

was coated with [BTMA][Tf2N] or [TOMA][Tf2N], it remained active at high temperatures, 

95°C, in hexane (Lozano et al., 2007).  

Numerous techniques and strategies have been applied to identify a suitable solution for loss 

of enzyme activity in a media containing solvents, but one which has been successfully used 

to overcome stability and activity problems, properly helping to maintain a satisfactory 

physical and chemical stability of enzymes in non-conventional solvents is protein 

engineering.  

Genetic mutagenesis, both rational and directed evolution approaches were used to stabilise 

enzymes towards organic solvents. By applying the B-FIT method, protein rigidity was 

increased as a result of replacing the high B-factors residues with the lowest ones and a 

considerable enhancement was reported in proteins’ tolerance in a high solvent media (Reetz 

et al., 2010). Reetz and co-workers highly recommended using the B-FIT method at sites 

showing high B-factors to increase thermostability and tolerance against solvents. By using 

this approach, lipase from Bacillus subtilis (BSL) showed high tolerance towards three 

different solvents, DMSO, ACN, and DMF (Reetz et al., 2010).  

Surface loop engineering has been successfully used to overcome stability problems towards 

solvents and maintain protein activity through insertion, deletion and substitution of residues 

from the enzyme surfaces (Reich, 2014). The stability and activity of a lipase from Bacillus 

subtilis was examined in the presence of 60% DMSO by applying site saturation mutagenesis 
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for 91 amino acids of the lipase loops. The protein showed improvement in DMSO tolerance 

and a massive increase in protein activity (8-fold) (Yedavalli & Rao, 2013). A year later, two 

loop mutants of reductase NCR from Zymomonas mobilis were generated using a rational 

approach dependent on surface structure information, one of them showed a considerable 

increase in tolerance towards organic solvents (Reich et al., 2014).  

In 2013, protein engineering of residues located in the access tunnels was used to enhance 

enzyme stability against solvents. A unique improvement in enzyme stability against 42% 

(v/v) DMSO for four variants generated using access tunnel mutagenesis was reported by 

Koudelakova and co-workers (Koudelakova et al., 2013). 

Directed evolution applications contributed to the expansion of the knowledge regarding 

protein properties and a wide range of molecule synthesis from building blocks to drug 

analogues as well as the massive enhancement in activity, selectivity and stability not 

previously encountered in nature (Denard et al., 2015; Johannes & Zhao, 2006). An 

impressive example about the role of this approach in activity and stability improvement is a 

500-fold enhancement in the protease subtillisin E specific activity after multiple generations 

of random mutagenesis were applied in the presence of 60% DMF. In addition, a 20-fold 

increase in p-nitrobenzyl (pNB) activity was recorded by using just four generations of 

random mutagenesis in approximately 15–20% DMF (Moore & Arnold, 1996). Wong et al. 

(2004) used directed evolution to enhance P450 BM-3 tolerance towards co-solvents. The 

engineered P450 BM-3 was significantly more resistant in the media containing DMSO and 

THF, showing a high tolerance in the presence of acetone, acetonitrile, dimethylformamide 

and ethanol (Wong et al., 2004). Likewise, the activity as well as tolerance of laccase in a 
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high concentration of acetonitrite and ethanol (20–60%) was increased significantly by the 

fifth generation (Zumárraga et al., 2007).  

Before genetic engineering, chemical enzyme modification approach was widely applied to 

enhance enzyme stability and it was used successfully to improve enzyme resistance towards 

organic solvents. However, chemical modification has been overshadowed in recent years by 

protein engineering, it remained a useful technique for enzyme stabilization taking into 

consideration the advantages can be gained by using this technique such as the simplicity of 

the procedure and no structure details are required, in Figure 5-2 the advantages and 

disadvantages of both chemical and biological proteins engineering are summarised. 

PEG was an investigated polymer for chemical modification since 1985, being used to shield 

and surface modify polypeptides (Veronese et al., 1985). This method was applied for the 

first time to improve enzyme resistance against organic solvents in 1986 by Inada and co-

workers (Inada et al., 1986). When lysozyme was conjugated with methoxy polyethylene 

glycol, protein tolerance was enhanced against dichloromethane (Diwan & Park, 2001). The 

improvement in protein stability by using this approach may be very well due to a decrease 

in residue mobility resulting by the polymer (Nischan & Hackenberger, 2014). 

The easiest method that has been used extensively for enzyme stabilisation is reaction 

environment modification. This technique can be applied by adding different additives to the 

enzyme aqueous solution or directly before enzyme lyophilisation. These agents could be 

sugars, inorganic salts or polyols. It was found that these additives increase protein rigidity 

by increasing the hydrophobicity around nonpolar amino acid residues (Stepankova et al., 

2013). Three additives (glycerol, trehalose and sorbitol) were examined for thermolysin 
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stabilisation in the presence of different co-solvents, with trehalose improving the stability 

of thermolysin effectively in the presence of dimethylformamide, while both glycerol and 

sorbitol significantly stabilised the same enzyme in n-propanol and isopropanol. Also, a 60-

fold enhancement in the fungal protease activity in neat organic solvents was reported when 

the enzyme was stabilised using sorbitol and PEG (Debulis & Klibanov, 1993; Pazhang et 

al., 2006).  

 

 

5.8 Tolerance of cytochrome P450 BM-3 to organic co-solvents 

Using P450 BM-3 in industry as a biocatalyst is hindered by some limitations, one of which 

is enzyme inactivation in a medium containing organic solvents. Increased P450 BM-3 

 

Figure 5-2: The advantages and disadvantages of chemical and biological approaches used 

for enzyme engineering 
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applicability requires a better understanding of the mechanism responsible for a loss in 

activity in the presence of co-solvents and enhancing BM-3’s tolerance in such mediums. 

Many experimental studies were focused on investigating this phenomenon (Bailey, 1995; 

Kuper et al., 2007; Roccatano et al., 2005; Wong et al., 2004). The behaviour of cytochrome 

P450 BM-3 in water as well as changes that have been noticed in the wildtype and its mutants 

structures (mainly F87A variant was selected for this purpose) by adding different cosolvents 

and in particular dimethylsulphoxide (DMSO) were extensively analysed (Roccatano et al., 

2005, 2006).   

A 15 ns long molecular dynamic study (MD) simulations in pure water and in 14%  

DMSO/water mixture was reported by Roccata(Roccatano et al., 2005)no and co-worker 

(Roccatano et al., 2005). In general, no major changes were noticed in protein structure in 

both cases. However, the significant variations were found in helices E, F, and G helices as 

well as in EF and FG loops when DMSO was used instead of water.  A higher mobility was 

recorded at the mouth of the active site around Phe42, Arg47, and Tyr51 residues in both 

simulations with more overall average deviations from the original crystal structure when 

DMSO was used (Roccatano et al., 2005). At the same study it was also observed that DMSO 

molecules accumulated on the protein surface increasing the solvent concentration to about 

30-40 % (v/v) and allowing to only one molecule of DMSO to form a hydrogen bond with 

the side chain of Arg47 as can be seen from the density distribution of the DMSO molecules 

around the heme domain at the last 5 ns of the simulation (Figure 5-3). It was found 

previously that both Arg47 and Tyr51 play an essential role in facilitating the access of fatty 

acids substrates to the substrate access channel (SAC) since the mutation of Arg47 and Tyr51 

hamper the binding of fatty acids (Denard et al., 2015; Ost et al., 2000).  



 

 

75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Density distribution of the DMSO molecules around the heme domain. The 

last 5 ns of the trajectory from (Roccatano et al., 2005)was performed to calculate the 

solvent distribution by using a cubic grid with 0.1 nm grid spacing in the GROMACS 

package. The VMD program was used to visualise the averaged volumetric density data  

(Humphrey et al., 1996). The protein is shown in cartoon with the amino acids coloured 

according to their chemical nature (red: acid, blue: basic and green: polar, gray: unpolar). 

Residues Pro45, Ala191 and Arg47 are shown as sticks in the figure. The DMSO high 

density molecules are represented in yellow. This image was acquired with permission 

from (Roccatano, 2015) 
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Generally, mutant Phe87Ala, showed lower tolerance than the WT when the catalytic activity 

was observed in all the considered cosolvents (Wong et al., 2004). The activity of this mutant 

dramatically reduced as the concentration of DMSO increased. At about 14% (v/v) DMSO, 

the WT retained its full activity while the activity of F87A variant decreased to only about 

30% from its original activity (Wong et al., 2004). The low tolerance of this mutant against 

DMSO highlighted the vital role of Phe87 residues in protection the active site from the 

inhibitory effect of DMSO and other solvents because this residue lays in the active site 

cavity and likely prevents solvents from access to the heme cofactor region (Lau et al., 2000). 

The inhibitory effect of the cosolvent on the enzymatic activity is usually caused by the 

elimination of the functional water around the active site of the enzyme causing protein 

denaturation (Lau et al., 2000; Sørensen & Mortensen, 2005). 

The changes in opening of the SAC mouth in the water and in the DMSO were also studied 

and analysed (Roccatano et al., 2005). The entrance opening expanding is usually checked 

by the distance between the Cα of the residues Pro45 and Ala191 (Humphrey et al., 1996). 

A study to measure the SAC opining distance of P450 MB-3 substrate-free structure (PDB 

ID: 1BU7) reported that this distance showed a bimodal distribution with two peaks at about 

0.8 and 1.2 nm, respectively (Roccatano et al., 2005). The crystallographic unit cell of this 

structure contains two chains; A and B and the entrance distance were about 0.87 and 1.09 

nm respectively and it was reduced further to 0.7 for chain A when it was measured in water. 

This closing in the SAC explain the hardness in releasing the substrates from the active site. 

MD Simulation on the Phe87Ala mutant in the same conditions reported that this mutant has 

similar distances as the crystallographic structures for both peaks of the bimodal distributions 
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(Roccatano et al., 2006). MD simulations of the free-substrate wildtype structure (PDB 

ID:1BU7) in 14% (v/v) DMSO/water mixtures concluded the tendency of the protein to retain 

the open SAC in the presence of solvents. On contrary, adding DMSO did not affect the 

shape of the bimodal distribution of the Phe87Ala mutant. However, the presence of DMSO 

shift both peaks to 1.6 and 1.8 nm causing entrance expanding. This widening increases the 

flexibility of the EF helix subdomain the presence of DMSO in comparison to the WT and 

gives more chance to DMSO to access the active site and reducing the catalytic activity of 

the enzyme (Roccatano et al., 2006).  

Another way to identify the changed in protein structure and dynamic behaviour due to the 

solvents effect is the measure of the root mean square deviations (RMSD) and fluctuations 

(RMSF) (Sørensen & Mortensen, 2005). RMSD and RMSF were measured in the presence 

of DMSO in respect the starting crystallographic structure of the WT. A high deviations and 

fluctuations were highlighted in the region of E, F-G helices (Sørensen & Mortensen, 2005).  

To have better understanding of the effect of DMSO on P450 BM-3 activity for both the WT 

and Phe87Ala mutant, both the WT and Phe87Ala heme domain crystal structures permeated 

with low and high concentration of DMSO were determined (Bailey, 1995; Kuper et al., 

2007). The crystals structures of P450 BM-3 were solved after soaking them in 14 % (v/v) 

DMSO (PDB ID: 2J4S) and 28 % (v/v) DMSO/water mixture (PDB ID: 2J1M). Both crystal 

structures do not show large conformation change in comparison to the crystal structure in 

water.  In 2J4S structure, the iron coordinating water molecules displaced to a distance of 

0.377 nm with a nonplanar distortion in the heme region. However, 2J1M structure showed 

a replacement of water molecule by one of DMSO and it was confirmed that this molecule 

coordinates the iron with its sulfur atom. on contrast, high concentration of DMSO caused 
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significant changes in the active site such as increasing the I-helix kinking (Kuper et al., 

2007).  

On the other hand, the Phe87Ala mutant crystal structures of the hemein the presence of 

DMSO concentrations 14% (v/v) (PDB ID: 2X7Y and 28% (v/v) (PDB ID: 2X80) were also 

solved and compared with the WT structures in the same conditions (Bailey, 1995). The 

structure (2X7Y) showed a similar structure as in water solution while a higher RMSD was 

observed in the case of 2X80.  In both structures, a DMSO molecule was found in the active 

site (they were oriented towards the heme iron but not coordinating it) with Fe-ODMSO 

distances of 0.325 and 0.303 nm for the 2X7Y and 2X80, respectively.  

To conclude, in the WT and when the concentration of DMSO is low, the residue Phe87 is 

able to play its role and preventing DMSO from replacing water molecules from the 

coordination site of the iron atom but when the concentration of DMSO increase the chance 

of its molecules to access the SAC increase too.  However, replacing the Phe residue by the 

Ala residue in the Phe87Ala variant facilitate the access of DMSO into the active site even 

in the low solvent’s concentrations.  

 

5.8.1 Mutants of P450 BM-3 F87A and their tolerance to organic co-solvents 

The effect of DMSO and tetrahydrofuran (THF) on the activity of WT P450 BM-3 and its 

mutants was highlighted experimentally by Wong and co-workers (Wong et al., 2004). 

Random mutations were introduced into the P450 BM-3 F87A parents. In the first round, the 

tolerance of 6,520 clones was checked against 22.5% DMSO and 2.8% THF. From this round 

two mutants with multiple solvent resistances were chosen; F87AB5 (T(ACG)235A(GCG); 
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S(AGT) 1024R(AGA)) and F87APEC3 (R(CGC)471C(TGC)). F87AB5 showed 3.7 and 5.3-

fold enhancement at 10% (v/v) DMSO and 2% (v/v) THF respectively so this mutant was 

selected as starting point to the next step which is saturation mutagenesis. This step produced 

a triple mutant F87ASB3 which has significantly higher total activity compared to F87AB5 

in the presence of organic cosolvents. A random mutagenesis was applied again on F87ASB3 

this time generating mutant F87A5F5 (E(GAA)494K(AAA) and R(AGA)1024E(GAG)). 

The specific activity of F87A5F5 is increased 5.5-fold at 10% (v/v) DMSO and 10-fold at 

2% (v/v) THF in comparison to F87A. 

As mentioned above cytochrome P450 BM-3 WT is significantly more tolerance to organic 

cosolvents than the F87A variant. To investigate the effect of F87A mutants on the WT 

resistance, position A87 was mutated back to phenylalanine in the evolved sequences (Wong 

et al., 2004). This back mutation yielded a very tolerant mutant (W5F5 from parent F87A5F5) 

against cosolvents especially DMSO. This final mutant showed 6-fold enhancement against 

25% DMSO and 3.4-fold improvement in 2% THF as well as it is observed that W5F5 is also 

resistance to other cosolvents like acetone, acetonitrile, DMF, and ethanol (Wong et al., 

2004). Due to its outstanding resistance against many organic solvents this back mutant 

(W5F5) was chosen in this project to investigate its tolerance against green solvents and 

compare it to the WT.  
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6 Materials and Methods  
 

6.1 Chemical and biological materials  

All chemicals are of analytical grade or higher quality and purchased from VWR Prolabo 

(Belgium), AppliChem (Germany), Sigma (UK), Merck KGaA (Germany) and Formedium 

LTD (UK). All biological materials used in this project are high quality and purchased from 

Sigma (UK), Complete Mini Roche (UK) and New England BioLab (UK). 

 

6.2 Kits 

QIAprep Spin Miniprep kit (Qiagen, Germany) was used for pETM-11 W5F5 and pETM-

11 WT plasmid extraction.  

 

6.3 Media 

Auto-induction media (Terrific Broth base): To prepare 1 L of media, the following 

chemicals were used: 12 g tryptone, 24 g yeast extract, 3.3 g (NH4)2SO4, 6.8 g KH2PO4, 7.1 

g Na2HPO4, 0.5 g glucose, 2.2 g α-lactose monohydrate, and 0.31 g MgSO4.7H20.  

Auto-induction media (2×TY): 16 g tryptone, 10 g yeast extract, 3.3 g (NH4)2SO4, 6.8 g 

KH2PO4, 7.1 g Na2HPO4, 0.5 g glucose, 2.1 g α-lactose monohydrate and 0.31 g 

MgSO4.7H2O.  
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Auto-induction media (Super Broth base): (NH4)2SO4, 6.8 g KH2PO4, 7.1 g Na2HPO4, 0.5 

g glucose, 2.2 g α-lactose monohydrate and 0.31 g MgSO4.7H20. 

2×TY media: 16 g tryptone, 10 g yeast extract and 5 g NaCl were mixed with deionised 

water to prepare 1 L of media. 

TYE agar media: 10g tryptone, 5g yeast extract, 8 g NaCl and 15 g agar. Kanamycin was 

added when temperature reached 50–60ºC. 

  

6.4 Strains and vectors 

Dr Tuck Seng Wong graciously provided me with pETM-11 vectors encoding the wild type 

P450 BM-3 WT and the modified P450 BM-3 W5F5 genes. The constructs had a kanamycin 

resistance gene to allow selection, polyhistidine tag and TEV-site to facilitate the purification 

process and lac repressor induction control. The E. coli strain DH5α was used for all routine 

cloning experiments, whereas the E. coli strains BL21 (DE3) and C41 (DE3) were used for 

recombinant protein expression. 

 

6.5 P450 BM-3 expression   

A self-replicating circular DNA (pETM11) bearing the sequences coding for the P450 BM-

3 of interest was isolated using a QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany) 

based on the alkaline lysis of bacterial cells. The plasmid DNA was quantified and evaluated 

using a spectrophotometer from Expedeom, UK. Both pETM11-P450 BM-3 WT and 
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pETM11-P450 BM-3 W5F5 plasmids were introduced into E. coli competent cells by 

transformation. In this process, 50 mM CaCl₂ was used to make E. coli cells porous, so they 

could take up foreign DNA. The plasmid (1 mM) was introduced to E. coli BL21 (DE3) or 

C41 (DE3) cells/CaCl₂ mixture and incubated on ice for 10 min before heat shock at 42°C 

for 1 min. Then, the mixture was immediately cooled on ice for 2 min. The cells were 

regenerated with 2×TY media by incubation for 1 hr at 37°C and 200 rpm. The transferred 

cells were then plated on TYE agar plates with 50 µM kanamycin. For validation, the plates 

with plasmid DNA were grown along with a plate of E. coli cells with no plasmid DNA.    

After transformation, protein expression was induced using auto-induction media containing 

a low glucose concentration and a high lactose concentration. By using this technique, both 

the wild type and the mutant of P450 BM-3 were expressed. The expression of P450 BM-3 

W5F5 was optimised using a variety of conditions such as different growth medium and 

various DE3 lysogen E. coli strains. Growth media was supplemented with 50 µg/ml 

kanamycin, 1 mM trace elements and 1 mM δ-aminolevulinic acid before inoculation with 

broth culture. Then, it was incubated for 24 hr at 30°C and 200 rpm. Expression using 

induction agent isopropyl β-D-1-thiogalactopyranoside (IPTG) was also investigated; the 

media was left to grow at 37°C until the OD 600 reached ~0.6, then expression was induced 

using 1 mM IPTG. The solution was incubated overnight (typically 12–16 hr) at 30°C and 

200 rpm, before the cells were harvested by centrifugation at 4°C and 6000 rpm for 5 min. 

The pellets were stored at -20°C for later use. 
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6.6 Protein purification using affinity chromatography  

The ÄKTA pure system from EG Healthcare, Germany was used for all protein purification 

during this project. E. coli cell pellets with P450 BM-3 variants were resuspended in 

equilibration buffer (buffer A1: 50 mM NaH2PO4, 200 mM NaCl, pH 8). The solution was 

supplemented with one tablet of the proteinase inhibitor and 1 mM of DNase and RNase. 

Bacterial lysis was performed via ultrasonication (Sonics Vibra Cell VCX 130, Sonics, USA) 

on ice for a total of 5 min (10 sec bursts and 20 sec cooling time) and 70% AMPL. Cell debris 

was eliminated by centrifugation (60 min, 6000 rpm, 4°C). The supernatant was filtered 

through a 0.45 µm filter to produce a clarified cell lysate. Then, protein purification was 

performed by affinity chromatography. Firstly, the 5 ml HisTrap prepacked column from GE 

Healthcare (Germany) was pre-equilibrated using buffer A1, then the filtrated sample was 

loaded and the desired protein was eluted using a gradient of buffer B1 (buffer A1 plus 250 

mM imidazole, pH 8) to buffer A1. Finally, the fractions with the desired protein were pooled 

for the next step of purification. For optimisation, different elution times (10 min, 20 min and 

40 min) at a constant flow rate of 2 ml/min were applied. 

   

6.7 Ion exchange chromatography 

The fractions with the desired protein from the affinity step were reloaded into the ion 

exchange step (IEX) to separate targeted protein as well as to concentrate the fraction volume 

to a volume suitable for the next step (gel filtration). Two buffers were used in this step, 

equilibration buffer (buffer A2: 100 mM Tris-HCl, pH 8) and elution buffer B2 (buffer A2 

plus 2 M NaCl, pH 8). Fractions with the desired protein from the affinity step were diluted 
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8 times using buffer A2 to reduce the NaCl concentration from 300 mM to 37.5 mM and then 

loaded onto the ion exchange column pre-equilibrated with buffer A2. Finally, the desired 

protein was eluted using step elution (100% of buffer B2). Two different types of ion 

exchange columns were used for optimal purification, DEAE and super Q. The same steps 

were performed for each column, column washing, sample loading and sample elution. The 

fractions with desired protein were pooled for the next purification step. 

6.8 Gel filtration chromatography (size exclusion chromatography) 

The fractions with the desired concentrated protein from ion exchange chromatography were 

transferred to a 320 ml Hiload 26/600 Superdex 200 pg gel filtration column. The column 

was pre-equilibrated with 1.5 column volume (CV) of buffer C (50 mM Tris-HCl, 1mM 

EDTA, 10% (v/v) glycerol, pH 7.2). Then, the concentrated sample (up to 5 ml) was loaded 

onto the column and circulated buffer washed out proteins sequentially from a large to small 

volume. The flow rate used during this step was no more than 1.5 ml/min. Samples are eluted 

isocratically from a SEC column, using a single buffer system.  

 

6.9 SDS-PAGE electrophoresis  

Purified proteins were analysed using SDS-PAGE electrophoresis. A 10% acrylamide-SDS 

gel was used for the analysis throughout the experiments due to the high molecular weights 

of the proteins expressed. The gel was prepared in two layers, the lower part (resolving gel) 

was prepared first and left to solidify for one hour before adding the upper layer (stacking 

gel). After 30 min, 5 μl of PageRulerTM unstained broad range protein ladder (Thermo 

Fisher) and 10 μl of samples were loaded. Electrophoresis running conditions were 200 V, 
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400 A for 60 min. Commassie Brilliant Blue was added to stain the gel and a gel 

documentation system was used to capture the gel picture.     

 

6.10 Large-scale expression and purification 

After optimising the expression and purification of P450 BM-3 W5F5, the optimum strain, 

media and conditions were applied for the large-scale expression and purification of the wild 

type and mutant proteins (400 ml). For expression, the BL21 (DE3) strain was used to 

inoculate the SB AIM at 30°C for 24 hr. For protein purification, three chromatography steps, 

affinity, ion exchange and gel filtration, were used in their optimum conditions to produce a 

high yield of the desired purified P450s.  

 

6.11 Spectroscopic measurement 

In order to define the spectral features of P450 BM-3 WT and P450 BM-3 W5F5, the spectra 

of purified P450s were measured between 250–750 nm using a UV-3100PC 

spectrophotometer (VWR, USA). Both proteins were diluted with buffer (50 mM Tris-HCl, 

1 mM EDTA and 10% v/v glycerol, pH 7.2) using a 3:1 dilution rate. The spectra obtained 

were used to evaluate the purity of the wild type and the mutant variant by calculating the 

Reinheitzahl value (RZ) (RZ is a ratio of P450 heme absorbance at 418 nm to the absorbance 

of all proteins in the solution at 280 ratio nm). The purest fractions by this criterion were 

stored for further use.  
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6.12 Enzyme concentration quantification  

The protein concentration was calculated from the spectra using the Beer-Lambert law 

according to the following equation: 

 

 

 

Where, A is the absorbance at 280 nm (A = -log (It/Io) = -log (T)), where It is the radiant flux 

transmitted by that material, Io is the radiant flux received by that material and T is the 

transmittance of that material), ε is the extinction coefficients in M-1 cm-1 at 280 nm measured 

in water, L is the length of path the light passes through in cm and C is the protein 

concentration in M. 

 

6.13 Enzymatic assay via NADPH consumption 

The activity of purified P450 BM-3 WT and P450 BM-3 W5F5 enzymes was evaluated by a 

NADPH consumption assay. For evaluation of the activity of the P450s, 1 ml volume of the 

reaction mixture contained 100 mM potassium phosphate buffer (pH 7), 800 µM lauric acid 

and 0.5% (v/v) P450 BM-3 W5F5 or P450 BM-3 WT. The reaction was induced by adding 

250 µM NADPH and the fatty acid oxidation was measured by monitoring the absorption 

change at 340 nm. This assay was applied to the solvent-free medium as well as reaction 

media containing different concentrations of 1-butanol, 2-butanol, and dimethyl carbonate to 

assess the proteins’ tolerance towards different green solvents by calculating the relative 

   𝑨 = 𝜺𝑳𝑪    ……….…………………….        (Equation 6.1) 
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activity ratio (relative activity is the ratio of specific activity in the presence of organic co-

solvent to that in the absence of organic co-solvent). The P450-BM-3 wild type relative 

activity was compared to the mutant variants. Trace amounts of methanol used to dissolve 

the substrate were not taken into account.  

To ensure that the activity which has been shown by P450s variants is not due to the effect 

of these solvents on the protein structure, the spectra of the free-solvent protein and the 

spectra in the presence of different solvents was compared within the wavelengths 250–750 

nm to identify any change such as red or blue shifts in the Soret band as a result of adding 

these solvents.      
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7 Tolerance of cytochrome P450 BM-3 to non-
conventional solvents  

 

7.1 Optimisation of protein expression and purification 

7.1.1 Expression and purification of P450 BM-3 mutant using E. coli C41(DE3) 

P450 BM-3 W5F5 was expressed by using TB AIM depending on metabolism changes, that 

is, the switch from glucose to lactose. In the absence of lactose, the E. coli RNA polymerase 

that transcribes mRNA for protein production cannot bind to the promotor sequence because 

the repressor lac I links to the promotor and prevents T7 RNA polymerase expression. After 

switching to lactose, the latter will bind to lac I and make it fall off. Therefore, T7 RNA 

polymerase will be transcribed and translated, and the targeted protein will be expressed 

(Ramos et al., 2004). 

Firstly, E. coli C41 (DE3) strain was used for W5F5 expression. This strain was reported as 

superior as a host for protein overexpression (Miroux & Walker, 1996). After expression, 

cell pellets were centrifuged, filtrated and lysed as described in section 6.6. Then, the protein 

was purified by affinity chromatography. In this project, pETM-11W5F5 and pETM-11WT 

were designed to express a protein with a histidine tag in its C-terminus to facilitate the 

protein purification process. The histidine tag is a highly efficient tool for recombinant 

protein purification using affinity chromatography because it does not require prior 

knowledge about the biochemical properties of the protein. The targeted protein separates in 

this method depending on the tag ability to interact reversibly with a ligand linked to a 

chromatography medium, metal ions (Ni2+) within an immobilised metal chelate, which has 

the ability to link to the histidine tag of P450 BM-3 (Janson & Rydén, 1989). From the 
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chromatogram in Figure 7-1 A, the desired protein can be distinguished by the increase of 

UV absorption at 280 nm, which can be seen as a blue peak in fraction 5 and 6 at 

approximately 50% (v/v) of the elution buffer.  

Purified protein was analysed using 10% SDS-PAGE electrophoresis. This technique 

separates proteins depending on the mobility of molecules, which is a function of their length 

and mass-to-charge ratio. SDS was used to linearise the proteins and give them a negative 

charge. When an electric field was applied across the gel, the negatively charged proteins 

migrated towards the anode at the bottom of the electrophoresis tank, with the distance 

depending on their size, so small protein molecules moved easily down the gel, while the 

larger molecules were trapped in the gel closer to the cathode (Rath et al., 2009). 

 Figure 7-1 B, Lanes 3 and 4 in SDS gel picture showed no P450 BM-3 W5F5 from the 

column during both loading and the washing process, indicating successful binding between 

the column matrix and the desired protein. In line 6, P450 BM-3 W5F5 is expressed 

successfully at 118 kDa, but it is combined with a high rate of non-target proteins at lower 

kDa values. The high level of impurities prompted attempts to improve the purification 

efficiency as well as investigate the expression using other host cells.  
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Figure 7-1: A. Chromatogram to monitor the purification of P450 BM-3 W5F5 from 

C41 (DE3) by affinity chromatography, 45 ml of sample was loaded onto the His Trap 

5 ml column and the protein was eluted at approximately 50% elution buffer. The 

purification conditions were 2 ml/min flow rate and 100% elution within 10 min. B. 

SDS-PAGE protein analysis, the arrow indicates the P450 BM-3 W5F5 at 118 kDa. 
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7.1.2 The effect of purification duration on protein purity 

It is important to have a balance between resolution and time during purification. 

Furthermore, the purity of the protein depends on the purpose that it is intended for. In a 

functional study, as in this project, a high purification level is required.  Therefore, P450 BM-

3 W5F5 was expressed in C41 (DE3) and purified again using affinity chromatography, but 

this time the elution period was increased from 10 min to 20 min using the same flow rate (2 

ml/min). The protein fractions from this process were checked by SDS-PAGE. By increasing 

the elution period, a slight enhancement in protein quantity was observed, while the level of 

impurities was still high (Figure 7-2). 

7.1.3 Expression and purification of P450 BM-3 mutant using E. coli 

BL21(DE3) 

The expression of P450 BM-3 W5F5 protein was also checked using E. coli BL21 (DE3), a 

common bacterial strain used for P450 expression. The same expression and purification 

conditions for expressed protein in C41 (DE3) were also used with this strain and the results 

are shown in Figure 7-3. By comparing the gel picture of the protein expressed in C41 (DE3) 

with the same protein expressed in BL21 (DE3), it could be observed that the latter is 

preferred due to the high concentration of P450 BM-3 W5F5 produced; however, the protein 

purity still needs to be improved.  
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In an attempt to reach the desired protein purity, the elution period during the affinity step 

was increased from 20 min into 40 min. By slowing down the elution process, the peak in 

the chromatogram seemed to be split into two intersecting peaks (Figure 7-4); peak 1 (lanes 

5) and peak 2 (lanes 6-8). The P450 protein in peak 2 showed a significant improvement in 

terms of purity and concentration. The eluted fractions of peak 2 showed chromatic gradients 

from light yellow to dark red, light red then to light yellow, again referring to the heme 

protein concentration in these fractions (Figure 7-5).    
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Figure 7-2: SDS-PAGE protein analysis of the eluted protein fractions from the affinity 

chromatography step, the arrow indicates the P450 BM-3 W5F5 at 118 kDa. Protein was 

expressed in C41 (DE3) and the elution flowrate was 2 ml/min for 20 min.  
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Figure 7-3: SDS-PAGE protein analysis of the eluted protein fractions from the affinity 

chromatography step, the arrow indicates the P450 BM-3 W5F5 at 118 kDa. Protein was 

expressed in BL21 (DE3) and the elution flowrate was 2 ml/min for 20 min.  
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Figure 7-4: A. Chromatogram monitored during the purification of P450 BM-3 W5F5 

from BL21 (DE3) strain by affinity chromatography, 45 ml of sample was loaded to 

the HiTrap 5 ml column, the Peak represents eluted proteins at about 45% (v/v) elution 

buffer. The purification conditions are: 2 ml/min, 40 min. B. SDS-PAGE protein 

analysis, the arrow indicates the P450 BM-3 W5F5 at 118 kDa 
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7.1.4 Using different expression inducing methods and media for W5F5 mutant 

expression  

Before moving to another purification step, three types of auto-induction media were 

assessed for P450 BM-3 W5F5 expression in E. coli BL21 (DE3), 2×TY AIM, Terrific broth 

AIM (TB AIM) and Super broth AIM (SB AIM). The expression levels were visualised and 

quantified using SDS-PAGE gel analysis. From Figure 7-6, it can be seen that P450 BM-3 

W5F5 expression level from highest to lowest could be achieved by using SB AIM, TB AIM 

and 2×TY AIM. The improvement in the expression gained by using SB AIM may due to 

the richness of this media by tryptone (35 g/l). In addition, the expression using IPTG instead 

of auto-induction media was investigated for P450 BM-3 production, but the protein showed 

a very low expression level. The harvested cell pellets of P450 BM-3 W5F5 from the 

expression using 50 ml 2×TY induced by 1 mM IPTG and the expression using 50 ml SB 

AIM are shown in Figure 7-7 A. The pellet using SB AIM shows a sign of high expression 

Figure 7-5: The chromatic gradients of the protein fractions from the affinity 

purification step from light yellow for low hemoprotein concentration to dark red for 

high hemoprotein concentration.  
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distinguished by the redness of this pellet in comparison to the pellet from the expression 

using IPTG, which was less red in colour.  The low expression by using IPTG was also 

noticed throw the SDS gel image (Figure 7-7 B). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 

P
ro

tein
 la

d
d

er 

2
×

T
Y

 A
IM

 

T
B

 A
IM

           

S
B

 A
IM

 

 

  

Figure 7-6: SDS-PAGE protein analysis using different ALM in BL21 (DE3); 2×TY, TB 

and SB. The expression was taken place at 30°C. The arrow indicates the P450 BM-3 

W5F5 at 118 kDa.  
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7.1.5 Ion exchange chromatography 

The fractions with the desired protein from the affinity purification step were diluted and 

loaded onto the ion exchange column. This technique purifies proteins according to 

Figure 7-7: A. The pellets from the expression of P450 BM-3 W5F5 in E. coli BL21 

(DE3). I. by using 50 ml 2×TY induced by 1 mM IPTG. II. by using 50 ml SB AIM. B. 

SDS-PAGE analysis of the P450 BM-3 W5F5 expressed by using 1 mM IPTG. The protein 

was  purified by affinity chromatography. The purification conditions are: 2  ml/min, 40 

min. The arrow indicates the P450 BM-3 W5F5 at 118 kDa          
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differences in their net surface charge (Janson & Rydén, 1989). Two types of ion exchange 

column were compared for P450 MB-3 W5F5 purification and concentration, DEAE and 

super Q. From Figure 7-8, it can be concluded that the purity of protein did not improve by 

using any of these columns, but the protein was more concentrated using the super Q column. 

These results showed the importance of the addition of a third purification to achieve the 

desired purity. 
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Figure 7-8: SDS-PAGE protein analysis during the purification of P450 BM-3 W5F5 

from BL21 (DE3) strain by using two types of ion exchange  chromatography columns 

I) DEAE 5 ml column II) Q 5 ml column. 40 ml of diluted sample (37.5 mM NaCl) 

was loaded to each column. 100% (v/v) of elution buffer and 2 ml/min were used. The 

arrow indicates the P450 BM-3 W5F5 at 118 kD 
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7.1.6 Gel filtration chromatography 

Two proteins were eluted from the first and second purification steps, the desired protein at 

118 kDa and non-target proteins at lower kDa values, approximately 50 kDa. The two 

proteins were different in size and could be separated using gel filtration chromatography 

(size exclusion). In this step, proteins are separated according to differences in their 

molecular size as they pass through a gel filtration medium (Janson & Rydén, 1989). 

During this process, proteins are diluted extensively against buffer C (50 mM Tris-HCl, 1mM 

EDTA, 10% (v/v) glycerol, pH 7.2), consequently, the target protein was expressed using 

100 ml of SB AIM instead of 50 ml and the sample was passed through affinity and ion 

exchange steps before it was ready for gel filtration. In order to check the efficiency of this 

technique for protein purification, 4 ml of the concentrated P450 BM-3 W5F5 solution was 

loaded onto a 320 ml Hiload 26/600 Superdex 200 pg gel filtration column. The 

chromatogram showed two separate peaks, peak 1 for the larger size protein and peak 2 for 

the smaller one. The fractions from both peaks were analysed using SDS-PAGE analysis 

(Figure 7-9). Visualisation of the gel indicated that the two proteins from the previous ion 

exchange column fractions were separated efficiently depending on the difference in size; 

large protein at 118 kDa and a smaller protein at approximately 50 kDa.  
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(A) (B) 

Figure 7-9: SDS PAGE analysis for the proteins from two peaks of gel filtration 

chromatography.  A. SDS PAGE analysis for the first peak fractions (9 fractions from 8-

16). B. SDS PAGE analysis for the second peak fractions (5 fractions from 20-24). 100 

ml of SB AIM was used to express P450 BM-3 W5F5 at 30 C, the expression period was 

24 hr. Target protein can be distinguished at 118 kDa while other unwanted protein at 

about 50 kDa.  
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7.2 Large-scale expression and purification 

In order to achieve the desired protein concentration for use in the future functional 

investigation, 1200 ml of SB AIM was used to express P450 BM-3 W5F5. The optimum 

expression and purification conditions were performed. The pellets from the large-scale 

expression had a dark red colour, indicating a high expression level (Figure 7-10). The 

chromatograms of the three purification steps and SDS-PAGE gel images are shown in 

(Figure 7-11, Figure 7-12 and Figure 7-13). From the gel picture in Figure 7-13 B, it was 

evident that P450 BM-3 W5F5 was expressed and purified successfully, so could proceed 

with the enzyme activity assessment. The separation of two proteins in the protein solution 

when they passed through gel filtration column is presented in Figure 7-14   

 

 

For comparison purposes, 400 ml of SB AIM was used to express the wild type protein, P450 

BM-3 WT, with the same expression and purification conditions used for the mutant. The 

fractions from the last purification step, gel filtration chromatography, were analysed by 

electrophoresis and the SDS-PAGE gel showed good expression and purification levels 

(Figure 7-15).  

Figure 7-10: P450 BM-3 W5F5 cell pellets from 1200 ml expression culture. Each pellet 

comes from 400 ml expression media (SB AIM). The expression was taken place at 30°C 

and 200 rpm for 24 hr.  
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Figure 7-11: A. Chromatogram monitored during the large scale purification of P450 

BM-3 W5F5 from E. coli BL21 (DE3) strain by affinity chromatography. The elution 

conditions were: 2 ml/min, 40 min. B. SDS-PAGE protein analysis for the first peak 

fractions (7-10) and second peak fractions (15-19) 
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Figure 7-12: A. Chromatogram monitored during the large scale purification of P450 

BM-3 W5F5 from E. coli BL21 (DE3) strain by ion exchange chromatography. The 

more pure fractions from affinity run (15-22) were loaded into super Q column. The 

elution conditions were: 2 ml/min, step elution. B. SDS-PAGE protein analysis for 

the peak fractions 6-10 
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Figure 7-13: A. Chromatogram monitored during the large scale purification of P450 

BM-3 W5F5 by gel filtration chromatography. B. SDS-PAGE protein analysis for the first 

peak fractions 13-18 and second peak fraction 33. The elution conditions were: 1.5 

ml/min, step elution. 
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Figure 7-14: Protein purification by using gel filtration chromatography.  A. the loaded 

sample before separation. B. two bands can be noticed due to proteins separation  based 

on the difference in size 
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Figure 7-15: SDS-PAGE protein analysis of the large scale purification of P450 BM-3 

WT by gel filtration chromatography for the first peak (fractions 15-19) and the second 

peak (fraction 33). The elution conditions were: 1.5 ml/min, step elution. 

118 

kDa 

kDa 

150 —  

100 — 

70 — 

50 — 

40 — 

30 — 

20 — 



 

 

108 

 

7.3 Water miscibility of solvents 

Six solvents are considered green according to the GSK classification in 2010, 1-butanol, 2-

butanol, butyl acetate, isopropyl acetate, propyl acetate and dimethyl carbonate. Before 

beginning the enzyme activity assay in the presence of these solvents, the solubility and 

miscibility of these solvents in water were checked depending on the information provided 

by PubChem; the online database tool of chemical molecules. According to the PubChem 

(https://pubchem.ncbi.nlm.nih.gov), butyl acetate, propyl acetate and isopropyl acetate are 

water immiscible with a very low solubility in water; 14 g/L, 18.9 g/L and 29 g/L (at 20 °C) 

respectively. On the other hand, the moderate solubility of 1-butanol, 2-butanol and dimethyl 

carbonate; 68 g/L, 181 g/L and 138 g/L respectively has increased the miscibility of these 

solvents. Different concentrations of these solvents 0–25% (v/v) were mixed with 100 mM 

potassium phosphate buffer (pH 7) and incubated for 30 min at RT. After the incubation 

period, the solutions were examined visually to indicate any separation in phases. Figure 7-16 

shows that 1-butanol, 2-butanol and dimethyl carbonate were partially miscible in buffer, 

showing good miscibility at low concentrations, from 0–10% (v/v), however 1-butanol and 

dimethyl carbonate became immiscible at concentrations ≥ 15% (v/v) while 2-butanol stay 

miscible up to 20% (v/v). Depending on these results and to ensure homogenous reaction 

environment, P450s activity was investigated using no more than 10% (v/v) of the green 

solvents.  
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Figure 7-16: Miscibility of three green solvents: A. 1-butanol B. 2-butanol and C. 

dimethyl carbonate in 100 mM potassium phosphate buffer (pH 7). The solution started 

to show turbidity at concentrations ≥ 15% (v/v) of 1-butanol and ≥ 20% (v/v) of 2-

butanol while the immiscibility of dimethyl carbonate became clear through the biphasic 

at concentrations equal or greater than15 % (v/v).  
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7.4 Effects of solvent on optical spectra 

To check the features of the purified wildtype and its mutant W5F5, the UV-visible 

absorption properties of spectra at 250–750 nm were assessed. For both proteins, the spectral 

feature of the heme were clearly evident. The Soret band had a maximum absorption at 420 

nm, with alpha/beta bands at 564 nm and 531 nm respectively, as shown in Figure 7-17. In 

addition, the purity of enzymes was evaluated by the RZ values (light absorbance at 420 nm 

for hemoprotein/light absorbance at 280 nm for total protein content in the solution). RZ 

values were 0.69 and 0.59 for the parents and the mutant respectively. After that, the spectra 

of the enzyme-solvent solutions were examined. There were no significant optical changes 

observed when these solvents were added to the P450 BM-3 WT and its mutant W5F5, as 

shown in Figure 7-18 to Figure 7-23. These results confirm that all green solvents used in 

this project do not affect the P450s structure or cause any blue shifts (as substrate) or red 

shifts (as inhibitor). Consequently, no interaction between these solvents and heme cofactor 

was observed through optical spectra scanning.  
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Figure 7-17: Spectra measurement of the purified enzyme. The scanning applied for the 

wavelengths between 250-750 nm. A. P450 BM-3 W5F5. B.  Wildtype P450 BM-3 WT. 

The Soret bands of both the wildtype and the mutant W5F5 are shown at 420 nm and 

the alpha/beta bands at 564 nm and 531 nm respectively.  
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Figure 7-18: Effect of 5% (v/v) dimethyl carbonate on the spectra of P450 BM-3 W5F5. 

Light absorbance was checked between 300-800 nm to detect any interaction between the 

solvent and the heme cofactor of the protein.The concentration 5%(v/v) of dimethyl 

carbonate was chosen as this was the maximum concentration that used for P450 activity 

evaluation.   
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Figure 7-19: Effect of 2.5% (v/v) 1-butanol on the spectra of P450 BM-3 W5F5. Light 

absorbance was checked between 300-800 nm to detect any interaction between the 

solvent and the heme cofactor of the protein.The concentration 2.5%(v/v) of 1-butanol was 

chosen as this was the maximum concentration that used for P450 activity evaluation.   
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Figure 7-20: Effect of 3.5% (v/v) 2-butanol on the spectra of P450 BM-3 W5F5. 

Light absorbance was checked between 300-800 nm to detect any interaction between 

the solvent and the heme cofactor of the protein.The concentration 3.5% (v/v) of 2-

butanol was chosen as this was the maximum concentration that used for P450 activity 

evaluation.   
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Figure 7-21: Effect of 5% (v/v) dimethyl carbonate on the spectra of P450 BM-

3 WT. Light absorbance was checked between 300-800 nm to detect any 

interaction between the solvent and the heme cofactor of the protein.The 

concentration 5%(v/v) of dimethyl carbonate was chosen as this was the 

maximum concentration that used for P450 activity evaluation 
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Figure 7-22: Effect of 2% (v/v) 1-butanol on the spectra of P450 BM-3 WT. Light 

absorbance was checked between 300-800 nm to detect any interaction between the solvent 

and the heme cofactor of the protein.The concentration 2%(v/v) of 1-butanol was chosen 

as this was the maximum concentration that used for P450 activity evaluation 
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7.5 Effects of protein dilution on protein stability 

In this part of the project, different quantities of the enzyme were assessed to select an 

enzyme concentration which is able to perform in a range in which the plot of NADPH 

consumption versus time is linear when all other factors, including temperature, substrate 

concentration, reaction time and volume, are fixed. It can be seen from Figure 7-24 that 0.5% 

(v/v) W5F5 gave a high catalytic activity as well as a linear light absorbance within 60 sec. 

The concentration of 0.5% (v/v) was also used for the wildtype. The possibility of enzyme 

Figure 7-23: Effect of 2.5% (v/v) 2-butanol on the spectra of P450 BM-3 WT.  Light 

absorbance was checked between 300-800 nm to detect any interaction between the 

solvent and the heme cofactor of the protein.The concentration 3.5% (v/v) of 2-butanol 

was chosen as this was the maximum concentration that used for P450 activity evaluation 
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denaturation over the experimental time was also assessed. Enzyme activity using two 

dilution ratios, 33.33% and 3.33%, were examined over a 6-hr experimental time period. 

High dilution of enzyme caused a significant decrease in enzyme activity from 100% to 69% 

after 6 hr, while decreasing the dilution ratio to 3.33% maintained the enzyme activity at a 

high rate of approximately 100%. This could be very well due to enzyme monomerisation 

which may be happened as a result of the excessive dilution (Whitehouse et al., 2012)(see 

Figure 7-25).  
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Figure 7-24: P450 BM-3 W5F5 concentration selection. A. NADPH 

consumption rate within different enzyme concentration (% v/v). B. Absorbance  

at 340 nm within 60 second using 5% (v/v) enzyme concentration. This 

absorbance indicates the decrease in NADPH quantity in the reaction mixture 

with time due to the reaction activity.  
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Figure 7-25: Relative activities of P450 BM-3 W5F5 variant as a function of time at two 

dilution ratios. Relative activity in this experiment is the ratio of specific activity at any time 

during the experiment to that at time zero 
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7.6 Tolerance of P450 BM-3 wildtype and W5F5 mutant to 1-butanol, 2-

butanol and dimethyl carbonate 

 

In order to examine the tolerance of P450 BM-3 WT and its mutant W5F5, the relative 

activity of these enzymes was calculated in the absence and presence of three green solvents: 

1-butanol, 2-butanol and dimethyl carbonate. A continuous assay was applied to record the 

NADPH consumption at 340 nm per second. NADPH absorbs UV light exclusively in its 

reduced form and shows no absorption in oxidised forms at 340 nm. So, the decrease in 

NADPH concentration can be followed spectrophotometrically at 340 nm within the reaction 

period, and the enzyme activity is evaluated depending on this property (Noble et al., 1999) 

However, this assay was applied for 300 sec, but only the initial rates of the activity (60 sec) 

were used for the relative activity calculation. The relative activities of the purified parents 

and mutant in the presence of green solvents are presented in Figure 7-26, Figure 7-27 and 

Figure 7-28. Compared to wildtype, variant W5F5 showed a slight improvement in activity 

in 1-butanol and 2-butanol, but in general, the relative activity in these solvents was low, 

falling sharply to zero at co-solvent concentrations between 2–3.5% (v/v). Figure 7-28 

indicates that variant W5F5 can tolerate significantly higher concentrations of dimethyl 

carbonate than the parent. The variant W5F5 showed approximately 128% relative activity 

in 5% (v/v) dimethyl carbonate in comparison to 30% (v/v) for the wild type. In contrast, 6% 

(v/v) dimethyl carbonate seems to be a critical value as the relative activity at this value is 

drastically reduced to approximately 80% (v/v) for the mutant variant.    
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Figure 7-26: Relative activities of P450 BM-3 W5F5 variant and WT as a 

function of 1-butanol concentration. Relative activity in this experiment is the 

ratio of specific activity at any time during the experiment to that at time zero 

Figure 7-27: Relative activities of P450 BM-3 W5F5 variant and WT as a 

function of 2-butanol concentration. Relative activity in this experiment is the 

ratio of specific activity at any time during the experiment to that at time 
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Figure 7-28: Relative activities of P450 BM-3 W5F5 variant and WT as a function of 

dimethyl carbonate concentration. Relative activity in this experiment is the ratio of 

specific activity at any time during the experiment to that at time  
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7.7 Conclusion  

Cytochrome P450 BM-3 WT and its mutant W5F5 were successfully expressed in two E. 

coli strains, C41(DE3) and BL21(DE3). The characteristic red colour of the cell pellet reflects 

the ability of these strains to produce the heme cofactor. Although it is reported that 

C41(DE3) is superior for overexpression of seven recombinant proteins (Miroux & Walker, 

1996) the yield of protein was higher in BL21(DE3). Aiming to optimise the expression of 

W5F5 variant, many expression factors were examined, such as induction methods and 

media, with the results revealing that the auto-induction media was preferable over using 

IPTG to induce the expression and the SB AIM was the best media for high protein 

expression levels.  

In the preparation of microsomal monooxygenases for the functional study, the purity of 

protein is a vital issue. Three different steps were applied to achieve efficient separation of 

P450s: affinity chromatography, ion exchange chromatography and gel filtration 

chromatography (size exclusion). The purification efficiency of affinity chromatography step 

was increased by increasing the elution period from 20 min to 40 min, which slowing down 

the elution and increasing the efficiency of the purification process . This step was able to 

eliminate the majority of impurities from the crude protein extract. However, P450 BM-3 

W5F5 was accompanied by a protein at lower kDa (approximately 50 kDa) as shown in 

Figure 7-4. The second purification step (ion exchange chromatography) in addition to 

improving protein purity, was utilised to concentrate the protein and reduce the protein 

fraction size to an acceptable level for the next step. The final step (gel filtration) aims to take 

advantages of the different physical properties of the proteins in the solution, in particular 
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different sizes. This step offered an excellent level of purity, with complete removal of the 

undesired protein (Figure 7-9).      

Many parameters were checked prior to the investigation of the wild type and the mutant 

P450s’ tolerance towards green solvents, such as the effect of these solvents on protein 

spectra and whether they interact with the heme cofactor of P450 BM-3 through scanning the 

protein spectra in the presence of these solvents, green solvent miscibility in water and the 

effect of dilution on protein activity. The activity evaluation of P450 BM-3 showed that the 

variant W5F5 is more tolerant than the wild type towards all green solvents tested. This is in 

agreement to a report by Wong and co-workers (2004), when they functionally compared 

this mutant with the wild type in the presence of many organic co-solvents classified as 

orange and red according to the GSK classification in 2010 (Wong et al., 2004). When the 

effect of these three green solvents on enzyme activity was investigated, it is found that the 

impact of 1-butanol and 2-butanol on both WT and W5F5 was high. The enzyme activity 

dropped to zero at solvent concentrations between 2-3.5% (v/v). In contrast, the variant 

W5F5 showed a significantly high tolerance against dimethyl carbonate; 128.5% relative 

activity at 5% (v/v) solvent concentration in comparison to 30% relative activity for the wild 

type at the same dimethyl carbonate concentration (Figure 7-28). The behaviour of the W5F5 

variant in the presence of dimethyl carbonate is similar to its previously reported behaviour 

towards DMSO. Wong and co-workers recorded about 110% relative activity of the variant 

W5F5 at 5% (v/v) DMSO, but W5F5 remained active up to 25% (v/v) by using the later 

solvent, while it started to drop at 6% (v/v) dimethyl carbonate. This may be due to the 

immiscibility of dimethyl carbonate which was observed at 10% (v/v) and above.              
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Part III: Novel putative cytochrome 

P450s from Cupriavidus necator H16 
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8 Introduction to Cupriavidus necator H16 
(Ralstonia eutropha H16) 

 

8.1 Cupriavidus necator H16 

Cupriavidus necator H16 is a Gram-negative bacterium found in both freshwater and soil, 

which multiplies by binary fission. It is a mesophilic rod-shaped bacteria, which in contrast 

to many other Gram-negative bacteria, is not pathogenic. This bacterium belongs to the order 

Burkholderiales, class Betaproteobacteria and it was isolated 60 years ago from soil near 

Goettingen, Germany (Alagesan et al., 2018). Cupriavidus necator H16 attracted the 

attention of bioscientists due to its ability to utilise a wide range of substrates and produce 

large quantities of polyhydroxyalkanoate (PHA), the biodegradable plastic with a wide range 

of applications (Pohlmann et al., 2006).    

It was previously known as Hydrogenomonas eutropha, Wautersia eutropha, Alcaligenes 

eutrophus and Ralstonia eutropha, possibly due to its ability to utilise a variety of materials 

as nutrient sources. Recently, due to its high resistance to copper and genomic similarity with 

Cupriavidus necator strains, it was officially named as Cupriavidus necator H16, but many 

researchers contain to use Ralstonia eutropha in their articles (Lu et al., 2016; Vandamme & 

Coenye, 2004). In comparison to other family members, C. necator H16 represents one of 

the larger bacterial genomes, with a total size of 7,416,677 bp, the sizes of other members lie 

between 5.8 and 8.6 Mbp (Holden et al., 2004; Nierman et al., 2004; Salanoubat et al., 2002).   
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8.2 Genome 

The C. necator H16 genome consists of two chromosomes and one megaplasmid: 

“chromosome 1 (4,052,032 bp), chromosome 2 (2,912,490 bp) and megaplasmid pHG1 

(452,156 bp)”. The G+C content is nearly identical in chromosome 1 and chromosome 2, 

with the proportion of coding regions almost the same in both chromosomes. C. necator H16 

genome has 59 transfer RNA (tRNA) genes, the majority of which (51) are carried on 

chromosome 1, the reset genes are distributed as seven on chromosome 2 and one on the 

plasmid (pHG1). Five ribosomal RNA (rRNA) operons were reported in C. necator H16 

genome, three on chromosome 1, two on chromosome 2. In addition, seven out of fourteen 

insertion elements are located on pHG1. From the gene distribution analysis of this organism, 

it was observed that the majority of key functions are located on chromosome 1, including 

DNA replication, transcription and translation, while chromosome 2 represents a refuge for 

many major reactions, such as aromatic compound decomposition, and utilisation of nitrogen 

sources as alternative nutrients. Nonetheless, all three replicons carry genes responsible for 

the synthesis of chemotaxis proteins and cell appendices (Pohlmann et al., 2006).  

   

8.3 Metabolism and substrate utilisation 

Over last 30 years, C. necator H16 was extensively studied because of its ability to produce 

PHA bioplastic on an industrial scale. This bacterium metabolises a wide range of organic 

substrates such as starch, fatty acids, tricarboxylic acid cycle intermediates, alcohols, polyols 

and sugars. Recently, agricultural residues were also investigated as substrates for this 

bacterium. In addition to the traditional organic substrate, C. necator H16 can also grow 
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autotrophically, it has the ability to use oxygen, hydrogen and carbon dioxide as alternative 

nutrients and energy sources (Lu et al., 2016). 

8.3.1 Lithoautotrophic metabolism 

C. necator can digest both carbon dioxide and formate (HCO2
−) as carbon and energy sources 

via the Calvin-Benson-Bassham cycle (CBB). Lithoautotrophic/organoautotrophic 

metabolism can occur even under heterotrophic conditions. CO2 is fixed by specified 

enzymes encoded in two cbb operons on chromosome 2 and pHG1, these operons are 

activated by a LysR-type transcriptional regulator (CbbR) located on chromosome 2. It 

became clear from the results of many studies that C. necator can induce CO2 utilisation 

whenever required, but the roles of the cbb regulator and the positive effector (reduced 

metabolite) are as yet unclear and require further investigation (Bowien & Kusian, 2002). 

Two enzymes were reported for carbon fixation in C. necator: carbonic anhydrase (CA) and 

ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Four types of CA enzymes 

achieve efficient carbon fixation, encoded by the genes can, can2, caa and cag. Each gene 

plays a different role in CO2 fixation. Can has important role in cell growth under 

atmospheric CO2 as well as providing RuBisCO with CO2. Caa helps in trapping the CO2 

inside the cell by converting it into more soluble bicarbonate when it passes through the cell 

membrane. The position of caa in the periplasm and being the favoured substrate for CO2 

helps this enzyme to perform its function. The functions of cag and can2 have not been fully 

elucidated, but it is thought that can2 helps in controlling the pH levels and cag could also 

work to supply CO2 to RuBisCO. The second fixation enzyme is RuBisCO, this enzyme 

contributes to CO2 fixation when two molecules of 3-phosphoglycerate are formed as a result 
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of the spontaneous split of an unstable intermediate (ribulose-1,5,-bisphosphate) during 

carbon fixation (Lu et al., 2016).   

8.3.2 Heterotrophic carbon metabolism 

C. necator H16 uses numerous organic components for heterotrophic growth as a carbon 

source. Fatty acids and lipids, when they are used as carbon sources by C. necator H16, gave 

more energy per mole carbon than any other source for carbon. Triacylglycerols from fatty 

acids cannot be metabolised directly by this bacterium, first they have to be digested by the 

extracellular lipase LipA into glycerols and free fatty acids. Chromosome 1 carries genes 

coding for the metabolism of organic acids, while chromosome 2 carries three genes coding 

for enzymes responsible for the degradation of 2-ketogluconate, glucosaminate, glucose and 

fructose. C. necator H16 has two sets of β-oxidation pathway genes (Embden-Meyerhoff-

Parnas and the oxidative pentose phosphate pathways), both of which are vital for the cell 

growth. Moreover, the fatty acyl-CoA intermediates from these pathways contribute to the 

production of PHA from oils and fats (Pohlmann et al., 2006).  

In contrast to many microorganisms, C. necator H16 is unable to digest many carbohydrates. 

Sugar as carbon source is restricted in the wild type of this bacterium to fructose, gluconate, 

xylose and N-acetyl-d-glucosamine (NAG), while the engineered variants of this organism 

have the ability to utilise glucose (Brandt et al., 2012; Holder et al., 2011; Raberg et al., 

2012).  

Cellulosic biomass is also reported as a carbon source for this bacterium. Wheat was used 

for PHB production as well as levulinic acid (refining cellulosic biomass) applied as a carbon 
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source. Recently, hydrolysed sago starch and sugarcane bagasse were used successfully to 

produce PHA (Koutinas et al., 2007; Wang et al., 2013; Yu & Stahl, 2008).  

An interesting source of carbon for C. necator H16 is the aromatic compounds like phenol 

and benzoate. The ability of this organism to metabolise the organic compounds (known 

environmental pollutants) could make it a potential tool for environmental pollution 

treatment in the future (Johnson & Stanier, 1971; Pohlmann et al., 2006).  

Engineered C. necator H16 can utilise some unique substrates as carbon sources. A short 

chain alcohol like ethanol has been converted to PHA when used by a C. necator variant. In 

addition, the by-products from various industries were used by different variants of this 

bacterium to produce PHA, including lactate, acetate, C2 α-hydroxy acid glyoxylate, 

glycolate and unprocessed crude glycerol (Lu et al., 2016). Figure 8-1 shows the difference 

in technique between the lithoautotrophic and the heterotrophic metabolism.  
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8.3.3 Anaerobic metabolism    

C. necator is able to grow under anaerobic conditions by using nitrogen compounds as an 

electron acceptor instead of oxygen. This denitrification process can be achieved by four 

reductase enzymes encoded on the pHG1: “Nitrate (NO3
−) is sequentially reduced to nitrite 

(NO2
−), nitric oxide (NO), and nitrous oxide (N2O), respectively, by nitrate reductase (NAR), 

nitrite reductase (NIR), nitric oxide reductase (NOR), and nitrous oxide synthase (NOS)”. It 

was suggested that sulphur also could be used as an alternative terminal electron acceptor 

Figure 8-1: Cupriavidus necator H16 metabolism systems to digest different types of 

substrates and produce polyhydroxyalkanoate (PHA) A. Lithoautotrophic metabolism, 

when the bectrium uses different organic components for growth as a carbon source B. 

heterotrophic metabolism, the digestion of both carbon dioxide and formate (HCO2
−) as 

carbon and energy sources via the Calvin-Benson-Bassham cycle (CBB). of This image 

acquired with permission from (Pohlmann et al., 2006). 
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under anaerobic conditions through the sulphur reduction pathway. However, the genome 

sequence of C. necator H16 does not contain enzymes that form the sulphur reduction 

pathways such as “ArsRtype transcription regulator, sulphur dehydrogenase, sulphur-

chelating/binding complex, thiosulfate-oxidising complex, and sulphate thioesterase”, so 

reducing sulphur instead of nitrogen has not proved to date (Lu et al., 2016; Pohlmann et al., 

2006).  

 

8.4 Potential industrial applications 

The ability of Cupriavidus necator H16 to metabolise diverse carbon sources and produce 

many value-added compounds means it represents an excellent microbial factory. In 

particular, this bacterium attracted bioscientists’ interest due to its ability to produce and store 

many types of biopolymer, such as hydroxyhexanoate (PHH) and hydroxybutyrate (PHB), 

under stress conditions like nitrogen limitation or non-carbon nutrient starvation (Brigham et 

al., 2012). PHA represents an outstanding biodegradable replacement for petroleum-based 

polymer (as an example of PHA, chemical structure of PHB is presented in Figure 8-2).  

 

 

 

 

 

Figure 8-2: Structure of poly-(R)-3-hydroxybutyrate (PHB), a type of 

polyhydroxyalkanoate. The structure is generated by using ChemBioDrwa Ultra 

(http://www.perkinelmer.com/ chemdraw)   
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PHA polymers have a wide range of applications in packaging, agricultural and waste 

treatment, and disposable household products but the most impressive application is in the 

medical sector to manufacture many items such as surgical meshes, implants, sutures and 

scaffolds (Brigham & Sinskey, 2012; Lu et al., 2016). Many different types of monomers can 

be synthesised by C. necator H16, each with different thermal and mechanical properties: I) 

short chain monomer (C3-C5), (scl) PHA such as homopolymer (PHB); II) medium-chain 

monomers (C6-C12), (mcl) PHA and III) combination of scl and mcl monomers (scl-co-mcl 

PHA). Due to its advantageous properties and similarity to petroleum-based plastics scl-co-

mcl, PHAs from engineered C. necator H16 became the goal of production (Lu et al., 2016).   

C. necator was also used to produce non-alcohol biofuel when PHA was converted into 

methyl esters by an acid-catalysed hydrolysis. Free fatty acids, which can also be converted 

to methyl esters, were produced from engineered C. necator with inactivated PHB 

biosynthesis and β-oxidation pathways. This strain was also able to produce another fuel, 

methyl ketone (Chen, 2009; Müller et al., 2013; Torella et al., 2013). Another engineered 

strain of this bacterium, with no PHA production genes, has been shown to produce 

isobutanol and isopropanol by redirecting the extra energy produced as a result of PHA gene 

elimination (Lu et al., 2016).  

Each hydroxyalkanoate monomer has a chiral centre on the carbon atom with two functional 

groups, a hydroxyl group and a carboxyl group (see Figure 8-2), which enable the bacterium 

to produce different fin chemicals like perfumes, vitamins and antibiotics (Gao et al., 2011). 

The monomer unit, (R)-3-hydroxybutyric in the PHB is an essential element for the 

production of antibiotics from C. necator. In starving conditions, there are seven 

depolymerases in this bacterium responsible for the hydrolysis of PHB into (R)-
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hydroxyalkanoate acid monomers without any in vitro hydrolysis step. (R)-hydroxyalkanoate 

precursors are also produced by the elimination of the PHA synthase genes from C. necator, 

which allows the production and direct isolation of (R)-hydroxyalkanoates. The ability of C. 

necator to synthesise multi-monomer lengths of PHA increases the chance to produce 

different hydroxyalkanoate chiral compounds (Lee & Lee, 2003). In addition, the ability of 

C. necator to digest different types of organic compounds makes it an outstanding biological 

tool for bioremediation. This bacterium was used successfully to clean up soils from two 

pollutants, p-nitrophenol and 2,4-dichlorophenoxyacetic acid (Chen et al., 2004; Watanabe, 

2001).  The ability of C. necator H16 to produce different value-added chemicals is 

demonstrated in  Figure 8-3  

 

Figure 8-3: Scheme explaining the ability of C. necator H16 to metabolise and produce a 

variety of materials. The substrates are in red color and the products are in green. . 
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8.5 Summary of known cytochrome P450 enzymes from Cupriavidus sp. 

The genome sequence study of many Cupriavidus sp led to the identification of numerous 

genes which were classified as cytochrome P450 enzymes according to the BLAST database. 

Cytochrome P450 enzymes were distinguished in many Cupriavidus sp such as Ralstonia sp. 

GA3-3, Cupriavidus sp. SK-4, Cupriavidus sp. UYPR2.512, Cupriavidus sp. IDO and 

Cupriavidus sp. taiwanensis (for the full list of P450s from Cupriavidus sp., go to BLAST 

(www. blast.ncbi.nlm.nih.gov)).  

Although, the genome sequence analysis of many Cupriavidus sp. identified cytochrome 

P450 as a part of these sequences and gave information about the genome sequence of P450, 

to date only one characterisation study published in 2012 analysed the spectroscopic, 

biochemical and catalytic properties of a member of the Cupriavidus sp, CYP116B1 from 

Cupriavidus metallidurans (Warman et al., 2012).     

CYP116B1 is a redox partner fusion enzyme in which the electrons are typically derived 

from NAD(P)H and are delivered to the P450 by the iron-sulphur centre (2Fe-2S) and FMN. 

A spectrophotometric scanning of this enzyme showed the feature of P450 with a Soret 

maximum at 418 nm and alpha/beta bands at 566 and 532 nm, respectively. The scattering 

of light indicated that CYP116B1 is a monomer enzyme (Warman et al., 2012). Three 

unsaturated fatty acids (palmitoleic, myristoleic and arachidonic acids) showed a substrate-

protein binding feature (Type I) but the protein was unable to oxidise these fatty acids. 

However, this protein showed catalytic activity towards two herbicides, S-propyl 

dipropylthiocarbamate (vernolate) and S-ethyl dipropylthiocarbamate (Warman et al., 2012).  
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The following chapters (chapters 9-11) present the first report of the modelling, cloning, 

expression, purification, spectroscopic, substrate binding possibility and activity evaluation 

of four C. nectar H16 P450 enzymes (H16_B2406, H16_B1743, H16_B1279 and 

H16_B1009).   
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9 Methods and Materials  

9.1 Chemicals 

All chemicals are of analytical grade or higher quality and purchased from VWR Prolabo 

(Belgium), AppliChem (Germany), Sigma (UK), Merck KGaA (Germany) and Formedium 

LTD (UK). All biological materials used in this project are in high quality and purchased 

from Sigma (UK), Roche (UK) and New England BioLab (UK). The devises, kits and media 

used in this part of the thesis were mentioned in sections 6.2-6.3.   

 

9.2 Strains and vectors 

Dr Tuck Seng Wong and Dr Kang Lan Tee graciously provided four pETM-11 vectors 

encoding four P450 genes: H16_B2406, H16_B1743, H16_B1279 and H16_B1009. Each 

construct has a kanamycin resistance gene to allow selection, polyhistidine tag and TEV-site 

to facilitate the purification process and lac repressor induction control. The E. coli strain 

DH5α was used for all routine cloning experiments, while E. coli strains BL21 (DE3) and 

C41 (DE3) and HMS 174 (DE3) were used for recombinant protein expression. 

9.3 Identification, sequence alignment and structure modelling of novel 

putative P450s in the Cupriavidus necator H16 genome 

Although the protein genome sequences of four P450s from Cupriavidus necator H16 (CYP-

H16-B2406, CYP-H16-B1743, CYP-H16-B1279 and CYP-H16-B1009) were reported, 

there was a lack of detailed information regarding sequence analysis, sequence alignment or 
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3D protein structure. Many online tools were used for P450s characterisation and structure 

modelling, a list of these tools and their functions and websites were presented in Table 9-1.  

Expasy ProtParam online tool analysis was used to determine the detailed information about 

P450s such as predicted molecular weight, theoretical pI and extinction coefficient, which 

are important for protein expression and purification. For each protein sequence, a list of 

homologues that share a high level of similarity with its most closely related sequence was 

achieved using BLAST sequence alignment analysis and the top homologue sequences were 

chosen and subjected to the Clustal W online alignment tool. Prosite, another online tool was 

used to identify the motifs and the fingerprint sequences for the four proteins.   

In the absence of structural data, a modelling study was performed to produce predicted 

structures of four P450s from C. necator H16 using two online tools; SWISS MODEL and 

Phyre. SWISS MODEL was used to build the heme domain of all P450 while the later was 

applied for modelling the reductase domains of B1279 and B1009. Same procedure was 

followed by using both tools. Firstly, sequences of proteins were submitted to both servers 

(SWISS MODEL and Phyre2). Next, models with the best hit by each tool was chosen for 

heme and reductase domains. Then, the quality of the 3D models was verified by using 

VERIFY 3D and the final models were visualised by using PyMol 2.2 program.  The heme 

of the crystal structure of the templates were used to build the heme cofactor of the four 

P450s models. For further qualification of the predicted models, the 3D structure of each 

protein was superimposed with the crystal structure of the templet that used to build this 

model to determine the match between each model and its template. As well as the overall 

root mean deviation (RMSD) between each model and its template was calculated using 

PyMol 2.2. In addition, sequences alignment between models and their templates were 
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checked by Pairwise ClustalW alignment tool and the hydrophobic residues that bound to the 

heme in each heme domain were highlighted in the sequence alignment and labelled in the 

structure pictures. Furthermore, heme domain 3D models that produced by using SWISS 

MODEL were compared by models suggested by Phyre for the same heme domain in case 

the templates that suggested by these two servers are different. In order to extend our 

knowledge of these proteins, a detailed analysis of the intact enzymes was also applied using 

the SnapGen programme.     

 Table 9-1: List of software tools for C. necator H16 P450s modilling and their functions 

and links of the websites.  

 

Software tool Function Link 

BLAST 

To compare proteins 

sequences and determine the 

closest sequences to a protein 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?

PROGRAM=blastp&PAGE_TYPE=Bla

stSearch&LINK_LOC=blasthome 

ClustalW To find sequences alignment 
https://embnet.vital-

it.ch/software/ClustalW.html 

 

Expasy ProtParam 

To determine the protein 

sequence of unknown 

nucleotides 

http://web.expasy.org/protparam/ 

Phyre 2 

Create prediction of protein 

structure based on sequence 

alignment and existing protein 

crystal structure data 

http://www.sbg.bio.ic.ac.uk/~phyre2/ht

ml/page.cgi?id=index 

 

PROSITE 
To identify fingerprint 

sequence motifs of proteins 

https://prosite.expasy.org/ 

 

Protein Data Bank 

(PDB) 

To obtain structure 

information of the previously 

crystalized protein 

http://www.rcsb.org/pdb/home/home.do 

PyMol 
3D protein model 

investigation and imaging 
https://www.pymol.org/ 

SnapGene 
To identify plasmid sequence 

features 

http://www.snapgene.com/ 

 

SWISS MODEL 

Create prediction of protein 

structure based on sequence 

alignment and existing protein 

crystal structure data 

https://swissmodel.expasy.org/ 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://embnet.vital-it.ch/software/ClustalW.html
https://embnet.vital-it.ch/software/ClustalW.html
http://web.expasy.org/protparam/
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
https://prosite.expasy.org/
http://www.rcsb.org/pdb/home/home.do
https://www.pymol.org/
http://www.snapgene.com/
https://swissmodel.expasy.org/
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9.4 Cloning of Cupriavidus necator H16 P450 enzymes  

Four genes from Cupriavidus necator H16_B2406, H16_B1743, H16_B1279 and 

H16_B1009, were cloned and transferred into the expression vector pETM11 by Dr Kang 

Lan Tee using the standard molecular biology techniques of PCR, DNA digestion, ligation, 

transformation and isolation. The resultant colonies were verified by DNA sequencing. A 

QIAprep Spin Miniprep kit was used to isolate four high purity plasmids, pETM11-H16-

B2406, pETM11-H16-B1743, pETM11-H16-B1279 and pETM11-H16-B1009, from DH5α 

cells. The concentrations and purities of these plasmids were measured by 

spectrophotometry. 

 

9.5 Protein expression and purification 

Four BL21 (DE3) cultures were grown overnight and each one was transformed with one of 

the Cupriavidus necator H16 P450 vectors using the CaCl2 heat shock method for pETM11-

P450 BM-3 transformation (see section 6.5). For Cupriavidus necator H16 P450 expression, 

Traffic Broth AIM was supplemented with 50 µg/ml kanamycin, 1 mM trace elements and 1 

mM δ-aminolevulinic acid before inoculation with 1:200 BL21 (DE3) overnight culture and 

incubated at 30°C for 16–18 hr. Then, the cells were harvested by centrifugation at 4°C and 

6000 rpm for 5 min and cell pellets were stored at -20°C. The frozen pellets were thawed in 

50 mM potassium phosphate buffer, lysed chemically using lysozyme and analysed for 

protein expression and solubility by SDS-PAGE electrophoresis. The molecular weights, IPs 

and the extension coefficients of the four proteins were calculated by the ProtParam 
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programme and these molecular weights were used to identify the target protein bands in the 

SDS-PAGE gel.      

The optimal purification conditions for P450 BM-3 were applied during the purification of 

the four P450s from Cupriavidus necator H16. Pellets from 50 ml expression culture were 

lysed physically by sonication, centrifuged, filtrated and loaded onto the affinity column 

(HisTrap). The column was pre-equilibrated in buffer A1 (50 mM NaH2PO4, 200 mM NaCl, 

pH 8), then the targeted protein was eluted using a gradient of buffer A1 to buffer B1 (buffer 

A1 plus 250 mM imidazole, pH 8). Fractions with the desired proteins were then pooled and 

analysed by SDS-PAGE electrophoresis to evaluate protein expression and purity after 

purification and specify the possibility of moving to another purification step. Protein 

features and concentrations were checked after the affinity step by spectra measurement at 

250–300 nm as described previously.  

9.5.1 Expression optimisation of B1279 and B1009 

Proteins that were lowly expressed (B1279 and B1009) were optimised under a variety of 

conditions (growth medium, growth temperature and DE3 lysogen E. coli strains BL21 

(DE3) and C41 (DE3)). Each protein was expressed in twelve different expression conditions 

as shown in Figure 9-1. After analysis, the optimal expression conditions were applied to 

produce 50 ml of B1279 and B1009, and the affinity purification was repeated to compare 

these results with the previous results before optimisation.  
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Figure 9-1: The expression optimisation of H16-B1279. Two E. coli strains were used;  

BL21(DE3) and C41(DE3), each strain was used to express P450 protein in three different 

AIM; 2×TY, TB and SB at two expression tempuratures; 25°C and 30°C.  
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9.5.1.1 B1009 expression  

The expression of B1009 was investigated to obtain a sufficient quantity for functional 

studies. In addition to previous expression trials which were performed using two E. coli 

strains BL21 (DE3) and C41 (DE3) under a variety of conditions, B1009 expression using 

E. coli HMS174 (DE3) strain was investigated. The isolated plasmid pETM11-H16-B1009 

was introduced to pre-cultured HMS174 (DE3) supplemented with 200 µg/ml rifampicin (10 

mg/ml stock concentration in 67% methanol and 0.17 N NaOH) and 30 µg/ml kanamycin 

(30 mg/ml stock concentration) by transformation using CaCl₂ with a heat shock method. 

For protein expression, a single clone from HMS174 (DE3) pETM-11-H16-B1009 was 

selected and grown overnight in 5 ml of 2×TY media supplemented with 200 µg/ml 

rifampicin and 30 µg/ml kanamycin. The expression was examined using two different 

induction methods, auto-induction media (SB) and IPTG. Standard protocols for the 

expression using both AIM and IPTG were followed in this experiment, with only a deviation 

in the stock concentration of kanamycin (30 mg/ml was used instead of 50 mg/ml which had 

been used for the expression using both BL21 (DE3) and C41 (DE3)). The expression was 

investigated at two expression temperatures, 25°C and 30°C and the results were analysed 

for concentration, purity and solubility using SDS-PAGE electrophoresis.  

    

9.6 Large-scale expression and purification 

The expression was scaled up to 400 ml for three Cupriavidus necator H16 P450 enzymes 

(B2406, B1743 and B1279), which showed high expression in the small-scale production. 

The optimal expression conditions and the same protocol for the small-scale expression were 
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performed. Protein concentrations were checked visually depending on the pellet colour and 

protein bands on the SDS gel. The same affinity purification conditions that were applied in 

the small-scale purification were used with the large scale. Fractions from the affinity step 

with the desired proteins were pooled, diluted with buffer A2 (100 mM Tris-HCl, pH 8) and 

loaded onto the ion exchange column (Q-super) pre-equilibrated with buffer A2. P450 

proteins were concentrated and eluted using step elution of buffer B2 (buffer A2 plus 2 M 

NaCl, pH 8). Concentrated proteins were then subjected to gel filtration to de-salt and 

separate proteins according to their sizes.   

9.7 Spectroscopic measurement 

The purified P450 proteins (B2406, B1743 and B1279) were identified optically by scanning 

the UV-visible spectra between 250 to 800 nm in a 1-cm path length cuvette using an UV-

3100PC spectrophotometer from VWR (USA). Protein samples were diluted in buffer C (50 

mM Tris-HCl, 1mM EDTA, 10% (v/v) glycerol, pH 7.2) using 3:1 (v/v) as a dilution rate. 

The spectra obtained were also used to indicate protein purity by calculating the RZ ratio.  

 

9.8 Enzyme concentration estimation 

The Beer-Lambert law was used as before (equation 6.1) to calculate the initial 

concentrations of the Cupriavidus necator H16 P450 proteins using the spectra at 280 nm, 

path length in cm and the extinction coefficient in M-1 cm-1 at 280 nm. 
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9.9 Purification optimisation of B1279  

Different purification strategies were investigated in an attempt to enhance the concentration 

of the purified B1279. First, to overcome protein loss during the ion exchange process, this 

step was omitted so that the purest fractions of the desired protein from the affinity step were 

then purified by gel filtration. Secondly, gradient elution was used instead of step elution in 

the ion exchange step to check the purity after this step and decide if it was possible to skip 

the final step (gel filtration), especially as the protein was diluted extensively at this stage. 

Also, the concentration of imidazole was increased in the elution buffer in the first 

purification step (affinity) from 250 mM to 500 mM to increase the quantity of eluted protein 

from this step. In addition, ultrafiltration of the purified protein after the final purification 

step (gel filtration) was investigated. Finally, B1279 was expressed on a large scale using 

C41 (DE3) and purified to compare the results with that expressed in BL21 (DE3).  

 

9.10 Substrate binding 

Analysis of interactions of three P450s from Cupriavidus necator H16 (B2406, B1743 and 

B1279) with a range of saturated fatty acids, unsaturated fatty acids, aromatic component and 

herbicides was applied by a progressive titration in buffer C (50 mM Tris-HCl, 1mM EDTA, 

10% (v/v) glycerol, pH 7.2). List of components used in this experiment are shown in Table 

9-2. Spectra were scanned between 300–800 nm after the addition of each substrate. 

Titrations were carried out at RT and substrates were dissolved either in MilliQ water, 

methanol or DMSO, with the final concentration of all substrates in solution being no more 

than 1000 µM, except vernolate which was increased up to 2000 µM. Spectra for the titration 
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of the methanol-P450 and DMSO-P450 complex were assessed for any denaturation in the 

protein structure as a result of the addition of the solvents.     
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Table 9-2: Protocol and materials were used in substrate binding experiment.  

 

 

 

 

 

 

  

Component Negative control 

for B2406 & 

B1743 (µl) 

Positive control 

for B2406 & 

B1743 (µl) 

Negative control 

for B1279 (µl) 

Positive control 

for B1279 (µl) 

(1)* Buffer 245 245 95 95 

(2)** Substrate I, 

II 

0 0.5, 1, 1.5, 2 then 

0.5 µl was added 

every run 

0 0.5, 1, 1.5, 2 then 

0.5 µl was added 

every run 

(3)*** Enzyme 750 750 900 900 

Total volume 995 995.5, 996, 

996.5… 1000 

995 995.5, 996, 

996.5…. 1000 

*Component (1): 50 mM Tris/HCl buffer, 1 mM EDTA, pH 7.2.  

**Component (2): I) 0.1 M of: a) lauric acid, MW 200.32 g/mole, 0.2 g was dissolved in 10 ml of 

methanol; b) myristic acid, MW 228.38 g/mole, 0.23 g was dissolved in 10 ml of methanol; c) 

palmitic acid, MW 256.42g/mole, 0.26 g was dissolved in 10 ml of methanol d) malonic, MW 148.03 

g/mole, 0.15 g was dissolved in 10 ml of MilliQ water; e) adipic acid, MW 146.14 g/mole, 0.15 g 

was dissolved in 10 ml of DMSO; f) indole, MW 117.15 g/mole, 0.12 g was dissolved in 10 ml of 

DMSO; g) naphthalene, MW 128.17 g/mole, 0.13 g was dissolved in 10 ml of DMSO; h) 3-

phenoxytoluene, MW 184.24 g/mole, density 1.05 g/ml, 175 µl was dissolved in 10 ml of DMSO; i) 

butyric acid, MW 88.11 g/mole, density 0.96 g/ml, 91 µl was dissolved in 10 ml of MilliQ water; j) 

EPTC, MW 189.32 g/mole, density 0.96 g/ml, 19.7 µl was dissolved in 1 ml of methanol. II) 0.4 M 

vernolate, MW 203.34 g/mole, density 0.954 g/ml, 85 µl was dissolved in 1 ml of methanol.  

***Component (3): B2406 or B1743 proteins 
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9.11 Enzymatic assay via NADPH or NADH consumption 

Activity of the Cupriavidus necator H16-B1279 was tested using the NADPH and NADH 

consumption assay; this assay technique was explained previously in section 6.13. The total 

reaction volume was 1 ml and assay was performed at RT. The reaction mixture consisted of 

four basic components: I) reaction buffer (50 mM Tris/HCl, 1 mM EDTA, pH 7.2); II) 

substrates, 100 mM stock concentration of all substrates (butyric acid, myristic acid, 3-

phenoxytoluene, lauric acid, naphthalene, EPTC, malonic, adipic acid, indole, palmitic acid) 

was used except for vernolate, 400 mM stock concentration was used; III) B1279 purified 

protein, 100 nM was used as the total enzyme equivalent concentration, and V) the induction 

factors either 250 µM NADPH or 200 µM NADH final concentrations were used to start the 

reaction. These components were mixed according to the order and concentrations shown in 

Table 9-3. 

The induction factors were added 5 seconds after the reaction start. The substrates 

concentrations were chosen taking into consideration the miscibility of the fatty acid 

solutions in the reaction buffer. Two different solvents in addition to water were used, 

methanol and DMSO, and trace amounts of these solvents used to dissolve the substrates 

were disregarded from calculations.  
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Table 9-3: Protocol and components used for B1279 activity evaluation 

 

 

 

 

 

Component Negative control 

(µl) 

Positive control 

(µl) 

Positive control 

concentrations 

(µM) 

(1) Activity buffer 840 

837.5* 41.90 

835** 41.75 

830*** 41.50 

(2) Substrate 0 

2.5* 250 

5** 500 

10*** 1000 

(3) Enzyme 60 60 0.1 

(4) NADPH/NADH 100 100 250/200 

Total volume 1000 1000 

* Myristic acid, palmitic acid or 3- phenoxytoluene., 

**Lauric acid or naphthalene 

***Adipic acid, butyric acid, indol, malonic acid, EPTC or vernolate 
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10 Genetic analysis and structure modelling of 
putative cytochrome P450s from Cupriavidus 
necator H16 

 

10.1 Identification and sequence alignment of the genome of novel 

putative P450s 

By using Expasy ProtParam analysis, essential information for each P450 expression analysis 

and purification was determined. The detailed information of P450-H16-B2406, P450-H16-

B1743, P450-H16-B1279 and P450-H16-B1009 are presented in Table 10-1.   

Table 10-1: Expasy ProtParam analysis for recombinant B2406, B1743, B1279 and B1009. 

 B2406 B1743 B1279 B1009 

Number of amino acids 
405 429 810 1126 

Molecular weight (kDa) 
42.13 48.15 90 123 

Total negatively 

charged residues (Asp + 

Glu)  

37 61 110 126 

Total positively charged 

residues (Arg + Lys)  
30 47 85 112 

Extinction coefficient  

(M-1 cm-1 at 280 nm 

measured in water)  

42315 55015 95310 127365 

Theoretical pI 
6.08 5.90 5.75 6.15 

Estimated half-life  

 

30 hours (mammalian reticulocytes, in vitro). 

>20 hours (yeast, in vivo). 

>10 hours (Escherichia coli, in vivo). 
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BLAST analysis gave many homologous sequences to all P450s from Cupriavidus necator 

H16. The top two closest relatives in BLAST were selected and subjected to ClustalW tool 

analysis for sequence alignment of B2406, B1743, B1279 and B1009 (Figure 10-1 to Figure 

10-4). Furthermore, the CYP 116 B1 sequence was also compared with the four P450 

sequences. This protein showed 82%, 75% and 55% identity with B1279, B1009 and B2406 

respectively and is the only protein from Cupriavidus sp. that has been characterised 

(Warman et al., 2012).  

The motifs and the fingerprint sequences of four P450 sequences were identified using 

PROSITE, the online tool, to achieve a better understanding of their structure and activity. 

By using this tool, (FGHGRHACPG), (FGVGVHRCLG), (FGYGSHQCMG) and 

(FGNGERACIG) in the N-terminal of B2406, B1743, B1279 and B1009 respectively, 

matched the PROSITE consensus motif (FGXGXXXCXG) which represents the cytochrome 

P450 cysteine heme iron ligand and the cysteine residue is the heme iron fifth ligand (Minerdi 

et al., 2015).  

The C-terminal region of P450-H16-B1279 showed sequence homology to reductase proteins 

as it contains three basic functional parts an FMN binding domain, a NADH binding domain 

and a ferredoxin-like [2Fe2S] domain. Sequence SRGGS of B1279 corresponded to the 

PROSITE consensus FMN binding motif [G/S]RGGS, while GIGITP corresponds to the 

consensus motif GXGXXP for NADH binding. Another signature sequence is represented 

by the [2Fe2S] ferredoxin motif CXX[G/A]XC[G/A/S/T]XC which is represented as 

CEEGLCGSC in this protein (Minerdi et al., 2015). Three of the four cysteines involved in 

binding the iron-sulphur cluster are located in the [2Fe2S] motif, while the fourth one is 

residue CYS 792. The results from the sequence analysis of B1279 showed that this protein 
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is a catalytically self-sufficient cytochrome P450 enzyme composed of a heme and a 

reductase domain.  

B1009 sequence analysis via PROSITE indicated that this protein is also a self-sufficient 

cytochrome P450 enzyme because of the presence of both a heme domain and reductase 

domain. Cys463 represents the fifth cysteine heme ligand, while the reductase domain 

consists of a flavodoxin-like domain (FLAVODOXIN_LIKE) and ferredoxin reductase-type 

FAD binding domain (FAD_FR).   

 

 

necator H16    1 MKHHHHHHPMSDYDIPTTENLYFQGAHMPDTDIDPLSAVTHPDPYPYYRELAASQPFFRD 

SK-4           1 ---------------------------MPDTDIDPLSAVTHPDPYPYYRELAASQPFFRD 

UYPR2.512      1 -----------------------------DTDIDPLSAVTHPDPYPYYRELAASQPFFRD 

metallidurans  1 ---------------------------------DPLSAVTHPDPYPYYRELAASQPFFRD 

                                                  *************************** 

nactar           DRLGLWVAAGPQEVADVLAHSDCRVRPPAQPVPPALAGTAAGELFGRLVRMNDGAAHAPL 

SK-4             DRLGLWVAAGPQEVADVLAHSDCRVRPPAQPVPPALAGTAAGELFGRLVRMNDGAAHAPL 

UYPR2.512        DRLGLWVAAGPQEVADVLAHSDCRVRPPAQPVPPALAGTAAGELFGRLVRMNDGAAHAPL 

Cupriavidus      DRLGLWVAAGPQEVADVLAHSDCRVRPPAQPVPPALAGTAAGELFGRLVRMNDGAAHAPL 

                 ************************************************************ 

nactar           KALLMPMLAGID---PAAAAQRATVLAAVLDAGEASWAAMSGECINRWLFTLPVVTVADL 

SK-4             KALLMPMLAGID---PAAAAQRATVLAAVLDAGEASWAAMSGECINRWLFTLPVVTVADL 

UYPR2.512        KALLMPMLAGID---PAAAAQRATVLAAVLDAGEASWAAMSGECINRWLFTLPVVTVADL 

Cupriavidus      KALLMPMLAGI---DPAAAAQRATVLAAVLDAGEASWAAMSGECINRWLFTLPVVTVADL 

                 ***********    ********************************************* 

nactar           LGLPVAN--EGSSAAEAAQRVAAFAGAQSPLADAPAVRAGAEAAQWLGHWLADAADG--- 

SK-4             LGLPVAN--EGSSAAEAAQRVAAFAGAQSPLADAPAVRAGAEAAQWLGHWLADAADG--- 

UYPR2.512        LGLPVAN--EGSSAAEAAQRVAAFAGAQSPLADAPAVRAGAEAAQWLGHWLADAADG--- 

Cupriavidus      LGLPVA--NEGSSAAEAAQRVAAFAGAQSPLADAPAVRAGAEAAQWLGHWLADAAD---- 

             ******   *********************************************** 
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nactar           -AGPLPALRQAARAAGIDAQAVAANIIGLLVQACEATAALAGNTLLRLGRDTTQSGLPLD 

SK-4             -AGPLPALRQAARAAGIDAQAVAANIIGLLVQACEATAALAGNTLLRLGRDTTQSGLPLD 

UYPR2.512        -AGPLPALRQAARAAGIDAQAVAANIIGLLVQACEATAALAGNTLLRLGRDTTQSGLPLD 

Cupriavidus      GAGPLPALRQAARAAGIDAQAVAANIIGLLVQACEATAALAGNTLLRLGRDTTQSGLPLD 

                  *********************************************************** 

nactar           AVVARVAREDPPVQNTRRFLAADAQLCGHAVKAGDAVLVLLAAASCS-GAAASERPWTFG 

SK-4             AVVARVAREDPPVQNTRRFLAADAQLCGHAVKAGDAVLVLLAAASCS-GAAASERPWTFG 

UYPR2.512        AVVARVAREDPPVQNTRRFLAADAQLCGHAVKAGDAVLVLLAAASCS-GAAASERPWTFG 

Cupriavidus      AVVARVAREDPPVQNTRRFLAADAQLCGHAVKAGDAVLVLLAAASCS-GAAASERPWTFG 

                 *********************************************** ************ 

nactar           HGRHACPGDRLAQALAAATVAALRARGADPAALAQAFRYRPSLNARIPHFLSTOP 405 

SK-4             HGRHACPGDRLAQALAAATVAALRARGADPAALAQAFRYRPSLNARIPHF----- 374 

UYPR2.512        HGRHACPGDRLAQALAAATVAALRARGADPAALAQAFRYRPSLNARIPHFL---- 372 

Cupriavidus      HGRHACPGDRLAQALAAATVAALRARGADPAALAQAFRYRPSLNARIPHFLST-- 380 

        ************************************************** 

 

Figure 10-1: Amino acid sequence alignment of P450-H16_B2406 with other P450s from 

Cupriavidus sp. The key residues are marked as following: the conserved heme in green, 

the fifth ligand of heme (cysteine) in red. (*) indicating similar identity, (.) is for strongly 

similar residues and (:) to indicate weak similarity. The alignment was produced by using 

data from BLAST and ClustalW online tool. 
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C.necator H16         MKHHHHHHPMSDYDIPTTENLYFQGAHMTDTNQHALLHDGYDLLSDHYVQEAHALWRDIR 

C.IDO                 ---------------------------MTDTNQHALLHDGYDLLSDHYVQEAHALWRDIR 

Actinobacteria        ----------------------------------------YDLLSDHYVQEAHALWRDIR 

P.fungorum            ---------------------------MTDTNQHALLHDGYDLLSDHYVQEAHALWRDIR 

                                                              ******************** 

C.necator H16         SSGCPVAHSEKWGGSWLPTTYDDIHHVAQNPAVFSSRAAEIAGEVPPQGSG-LVLPPLTS 

C.IDO                 SSGCPVAHSEKWGGSWLPTTYDDIHHVAQNPAVFSSRAAEIAGEVPPQGSG-LVLPPLTS 

Actinobacteria        SSGCPVAHSEKWGGSWLPTTYDDIHHVAQNPAVFSSRAAEIAGEVPPQGSG-LVLPPLTS 

P.fungorum            SSGCPVAHSEKWGGSWLPTTYDDIHHVAQNPAVFSSRAAEIAGEVPPQGSG-LVLPPLTS 

                      *************************************************** ******** 

C.necator H16         DPPDHKIHRDLLEPYFTPARVAAIEPYAQSLARDLARRVAVKGEADLGEDYSKPFVLSLL 

C.IDO                 DPPDHKIHRDLLEPYFTPARVAAIEPYAQSLARDLARRVAVKGEADLGEDYSKPFVLSLL 

Actinobacteria        DPPDHKIHRDLLEPYFTPARVAAIEPYAQSLARDLARRVAVKGEADLGEDYSKPFVLSLL 

P.fungorum            DPPDHKIHRDLLEPYFTPARVAAIEPYAQSLARDLARRVAVKGEADLGEDYSKPFVLSLL 

                      ************************************************************ 

C.necator H16         TRFLDVPDDRQERFMDWAIRVLKYGPFDQELRKAAFDEAFADLEQLLKEREQDPGEDLVS 

C.IDO                 TRFLDVPDDRQERFMDWAIRVLKYGPFDQELRKAAFDEAFADLEQLLKEREQDPGEDLVS 

Actinobacteria        TRFLDVPDDRQERFMDWAIRVLKYGPFDQELRKAAFDEAFADLEQLLKEREQDPGEDLVS 

P.fungorum            TRFLDVPDDRQERFMDWAIRVLKYGPFDQELRKAAFDEAFADLEQLLKEREQDPGEDLVS 

                      ************************************************************ 

C.necator H16         HIALATIDGKPISRKHRIGSLLLAVLAGADTTWNALNASLNHLADHPADRATLINEPGLL 

C.IDO                 HIALATIDGKPISRKHRIGSLLLAVLAGADTTWNALNASLNHLADHPADRATLINEPGLL 

Actinobacteria        HIALATIDGKPISRKHRIGSLLLAVLAGADTTWNALNASLNHLADHPADRATLINEPGLL 

P.fungorum            HIALATIDGKPISRKHRIGSLLLAVLAGADTTWNALNASLNHLADHPADRATLINEPGLL 

                      ************************************************************ 

C.necator H16         RTTAVEELLRFYAPLSIARVTTEEVELKGRCIGAGERVILAYPAANRDPAVFENPDEVQL 

C.IDO                 RTTAVEELLRFYAPLSIARVTTEEVELKGRCIGAGERVILAYPAANRDPAVFENPDEVQL 

Actinobacteria        RTTAVEELLRFYAPLSIARVTTEEVELKGRCIGAGERVILAYPAANRDPAVFENPDEVQL 

P.fungorum            RTTAVEELLRFYAPLSIARVTTEEVELKADTTWNALNASLNHLADHPADRATLINEPGLL 

                      ****************************.     . .. * : * :    .    :   * 

C.necator H16         DRKRNRHLTFGVGVHRCLGSHLARMEMRVAIEEWLKAIPNFERIS-GAVKWSAGNARGPE 

C.IDO                 DRKRNRHLTFGVGVHRCLGSHLARMEMRVAIEEWLKAIPNFERIS-GAVKWSAGNARGPE 

Actinobacteria        DRKRNRHLTFGVGVHRCLGSHLARMEMRVAIEEWLKAIPNFERIS-GAVKWSAGNARGPE 
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P.fungorum            RTTAVEELLRFYAPLSIARVTTEEVELKVAIEEWLKAIPNFE-RISGAVKWSAGNARGPE 

                        .  ..*    .          .:*::**************    ************** 

C.necator H16         NVRIRVVSTOP  

C.IDO                 NVRIRVV---- 

Actinobacteria        NVRIR------ 

P.fungorum            NVRIRV----- 

                      *****       

 

Figure 10-2: Amino acid sequence alignment of P450-H16_B1743 with other P450s from 

Cupriavidus sp. The key residues are marked as following: the conserved heme in green, 

the fifth ligand of heme (cysteine) in red. (*) indicating similar identity, (.) is for strongly 

similar residues and (:) to indicate weak similarity. The alignment was produced by using 

data from BLAST and ClustalW online tool. 
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C.necator            MKHHHHHHPMSDYDIPTTENLYFQGAMANPSPSAARSGCPIDHSALTAPNGCPVSHNAAQ 

F.nantongensis       ---------------------------MTISATGAARGCPIDHSTLAAPNGCPVSHNAAQ 

B.UYPR2.512          --------------------------MANPSPSAARSGCPIDHSALTAPNGCPVSHNAAQ 

C.metallidurans      --------------------------MPQTNAPASSGSCPIDHSALRAPNGCPVSHQAAA 

                                                    .  :   *****.:: *********:**  

C.necator            FDPFGDGYQQDPPEYVRWSREQEPVFYSPRLGYWVVTRYEDIKAIFRDNLTFSPSIALEK 

F.nantongensis       FDPFGDGYQQDPPEYVRWSREQEPVFYSPQLGYWVVTRYDDIKAIFRDNLTFSPSIALEK 

B.UYPR2.512          FDPFGDGYQQDPPEYVRWSREQEPVFFSPRLGYWVVTRYQDIKAIFRDNLTFSPSIALEK 

C.metallidurans      FDPFEDGYQQDPPEYVRWSRAQEPVFYSPKLGYWVVTRYDDIKAIFRDNITFSPSIALEK 

                     **** *************** *****:**:*********:*********:********** 

C.necator            ITPTGDEANAVLASYGYAMNRTLVNEDEPAHMPRRRALMAPFTPAELAHHEPLVRRLARE 

F.nantongensis       ITPTGDEANAVLASYGYAMNRTLVNEDEPAHMPRRRALMAPFTPAELAHHEPLVRRLTRE 

B.UYPR2.512          ITPTGDEANAVLASYGYAMNRTLVNEDEPAHMPRRRALMAPFTPAELAHHEPLVRRLARE 

C.metallidurans      ITPTGEAANAVLASYGYAMNRTLVNEDEPAHMPRRRALMEPFTPAELAHHEPMVRKLTRE 

                     *****: ******************************** ************:**:*:** 

C.necator            YVDRFIDDGRADLVDQMLWEVPLTVALHFLGVPEEDMDLLRQYSIAHTVNTWGRPKPEEQ 

F.nantongensis       YVDRFIDDGRADLVDQMLWEVPLTVALHFLGVPEEDMDLLRQYSIAHTVNTWGRPKPEEQ 

B.UYPR2.512          YVDRFIDDGRADLVDQMLWEVPLTVALHFLGVPEEDMDLLRQYSIAHTVNTWGRPKPEEQ 

 

C.metallidurans      YVDRFIDNGRADLVDEMLWEVPLTVALHFLGVPEEDMDLLRQYSIAHTVNTWGRPKPEEQ 

                     *******:*******:******************************************** 

C.necator            VAVAHAVGNFWQLAGRILDKMREDPSGPGWMQYGLRKQKELPDVVTDSYLHSMMMAGIVA 

F.nantongensis       VAVAHAVGNFWQLAGRILDKMREDPSGPGWMQYGLRKQKELPEVVTDSYLHSMMMAGIVA 

B.UYPR2.512          VAVAHAVGNFWQLAGRILDKMREDPSGPGWMQYGLRKQKDLPEVVTDSYLHSMMMAGIVA 

C.metallidurans      VAVAHAVGNFWQLAGRILDKMREDPSGPGWMQYGLRKQRELPEVVTDSYLHSMMMAGIVA 

                     ***********************:**************::**:***************** 

C.necator            AHETTANASANAIKLLLQHPDAWREICDDPSLIPNAVEECLRHNGSVAAWRRLVTRDAEV 

F.nantongensis       AHETTANASANAIKLLLQHPDAWRELCEDPALIPNAVEECLRHNGSVAAWRRLVTRDAEV 

B.UYPR2.512          AHETTANASANAVKLLLQHPDAWREICDDPSLIPNAVEECLRHNGSVAAWRRLVTRDAEV 

C.metallidurans      AHETTANASANAIKLLLQHPDVWREICEDPALIPNAVEECLRHNGSVAAWRRLVTRDTEV 

                     ************:********.***:*:**:**************************:** 

C.necator            GGIRLPAGSKLLIVTSSANHDERHFADADLFDIRRDNASEQLTFGYGSHQCMGKNLARME 

F.nantongensis       GGIRLPAGSKLLIVTSSANHDERHFADADLFDIRRDNASEQLTFGYGSHQCMGKNLARME 

B.UYPR2.512          GGIRLPAGSKLLIVTSSANHDERHFADADLFDIRRDNASEQLTFGYGSHQCMGKNLARME 
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C.metallidurans      GGMSLAVGSKLLIVTSSANHDEHHFADADLFDIHRDNASDQLTFGYGSHQCMGKNLARME 

                     **: *..***************:**********:*****:******************** 

E C.necator            MQVFLEELTRRLPHMRLAEQTFTYVPNTSFRGPEHLLVEWDPAQNPERRDPALLEVHQPV 

F.nantongensis       MQVFLEELTRRLPHMRLAEQTFTYVPNTSFRGPEHLLVEWDPAQNPERRDPALLAVRQPV 

B.UYPR2.512          MQVFLEELTRRLPHMRLAGQAFTYVPNTSFRGPEHLLVEWDPAQNPERRDPAVLDVRQPV 

C.metallidurans      MQIFLEELTSRLPHMRLAAQRFTYVPNTSFRGPEHLWVEWEPARNPERTDPTVLAPRDAV 

                     **:****** ******** * *************** ***:**:**** :*::*  ::.* 

C.necator            RIGEPSAHTIARTVVVERVTPAADGVVRLRLAAPDGKPLPRWAPGSHIDVECGDTGLSRQ 

F.nantongensis       RIGEPSAHTIARTVLVERATPAADGVLRLRLVAPDGKPLPRWAPGSHIDVECGDTGLSRQ 

B.UYPR2.512          RIGEPSAHTIARTVVIERVTPAADGVVRLRLAAPDGKPLPRWAPGSHIDVECGDTGLSRQ 

C.metallidurans      RIGEPTGGTTGRTLVVERVETAAEGVVRIRLVSPDGRALPRWSPGSHIDVECGHTGISRQ 

                     *****:. * .*::::**. .**:**:*:**.:***:.****:**********.**:*** 

C.necator            YSLCGDPDDTGALEIAVLRDPDSRGGSAWVHGSVQAGDRLRIRGPRNHFRFDEGCGRAIF 

F.nantongensis       YSLCGDPDDAAALEIAVLRDPASRGGSAWVHGSVRAGDRLRIRGPRNHFRFDEQCGRAIF 

B.UYPR2.512          YSLCGDPDDAAALEIAVLRDPDSRGGSAWVHGSVRAGDRLRIRGPRNHFRFDESCKRAIF 

C.metallidurans      YSLCGDPADTGAFEIAVLREPESRGGSAWIHASLHAGDKLKVRGPRNHFRLDETCRRAIF 

                     ******* *:.*:*****::* *******:*.*:.***:*::********:** * **** 

C.necator            IAGGIGITPVSAMARRARALGIDYEFHYCGRSRQAMAMLDELQALHGARLHVHASDEGQR 

F.nantongensis       IAGGIGVTPVSAMARRARALGIDYTFHYCGRSRQAMAMLDELQALHGTRLQVHASDEGRR 

B.UYPR2.512          IAGGIGITPVSAMARRARALGIDYEFHYCGRSRKAMAMPDELQALHGARLQVHASDEGQR 

C.metallidurans      IAGGIGVTPVSAMARRAKELGVDYTFHYCGRSRASMAMIDELRALHGDRVRIHAADEGQR 

                     ******:**********: **:** ******** :*** ***:**** *:::**:***:* 

C.necator            ADFGKLLARPDPRTQIYACGPQRMLDALAESCAAWPEDALRVEHFVSKLGTLDASKELPF 

F.nantongensis       ADFGKLLGQPDADTQIYACGPQRLLDALAECCAAWPAEALRVEHFVSRLGTLDASKEQPF 

B.UYPR2.512          ADFGKLLAQPDPRTQIYACGPQRMLDALAECCAAWPEDALRVEHFVSRLGTLDASQEQPF 

C.metallidurans      ADLAQVLGAPDANAQIYACGPARMVEALEALCAAWPEDSLRVEHFSSQLGTLDPSREQPF 

                     **:.::*. **. :******* *:::**   ***** ::****** *:*****.*:* ** 

C.necator            SVELKDSGLVMEVPAGQTLLSALRGANIDVQSDCEEGLCGSCEVRVLAGQVDHRDVVLTR 

F.nantongensis       TVELKDSGLVLEVPAGQTLLGALRGANIDVQSDCEEGLCGSCEVRVLAGQVDHRDVVLTR 

B.UYPR2.512          TVELKDSGLVMEVPAGQTLLSALRSANIDVQSDCEEGLCGSCEVRVLAGQVDHRDVVLTR 

C.metallidurans      TVELKDSGLTLEVPPDQTLLATLRAANIDVQSDCEEGLCGSCEVRVLAGEIDHRDVVLTR 

                     :********.:***..****.:**.************************::********* 

C.necator            SEREANQRMMACCSRACGGGRLVLELSTOP 

 

F.nantongensis       AERDANHRMMACCSRACGGGRLVLEL---- 
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B.UYPR2.512          SEREANQRMMACCSRACGGGRLVLEL---- 

C.metallidurans      GEREANNRMMACCSRAAKGGKIVLGL---- 

                     .**:**:*********. **::** *     

 

Figure 10-3: Amino acid sequence alignment of P450-H16_B1279 with other P450s from 

Cupriavidus sp. The key residues are marked as following: the conserved heme in green, 

the fifth ligand of heme (cysteine) in red, the FMN binding motif in pink, the NADH 

binding motif in gray and the 2Fe-2S cluster in yellow. (*) indicating similar identity, (.) 

is for strongly similar residues and (:) to indicate weak similarity. The alignment was 

produced by using data from BLAST and ClustalW online tool. 
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C.necator            MKHHHHHHPMSDYDIPTTENLYFQGAHMPPPIELSSPDQASDAPHQAPARSMHAPIPEPI 

E.GA3-3              ---------------------------MPPPIELSSPDQASDAPHQTPARSIHATIPEPI 

D.SK-4               ---------------------------MPPPIELSSPDQASDAPHQTPARSMHAPIPEPI 

C.metallidurans      -----------------------------------------------MSTATPAAALEPI 

                                                                     :     .  *** 

C.necator            PRDPGWPLVGNLLQITPGALGQHLLARSRHHDGIFELNFAGRRVPFVTSVALASELCDAA 

E.GA3-3              PRDPGWPLVGNLLQITPGALGQHLLARSRHHDGIFELNFAGRRVPFVTSVALASELCDAA 

D.SK-4               PRDPGWPLVGNLLQITPGALGQHLLARSRHHDGIFELNFAGRRVPFVTSVALASELCDAA 

C.metallidurans      PRDPGWPIFGNLFQITPGEVGQHLLARSRHHDGIFELDFAGKRVPFVSSVALASELCDAT 

                     * *** *:.***:**.** :*****************:***:*****:*****:*:***: 

C.necator            QFRKYIGPPVSYLRGMAGDGLFTARSDEANWGKAHRILMPAFSQRAMKGYFDVMLRVANR 

E.GA3-3              QFRKYIGPPLSYLRGMAGDGLFTARSDEANWGKAHRILMPAFSQRAMKGYFDVMLRVANR 

D.SK-4               QFRKYIGPPLSYLRGMAGDGLFTARSDEANWGKAHRILMPAFSQRAMKGYFDVMLRVANR 

C.metallidurans      RFRKIIGPPLSYLRDMAGDGLFTAHSDEPNWGCAHRILMPAFSQRAMKAYFDVMLRVANR 

                     :*** ****:****.*********:***.*** ***************.*********** 

C.necator            LVDKWDQQGPDADIAVADDMTRLTLDTIALSGFGYDFESFASTELHPFIEAMVGALEEAM 

E.GA3-3              LVDKWDQQGPDADIAVADDMTRLTLDTIALSGFGYDFESFASAELHPFIEAMVGALEEAM 

D.SK-4               LVDKWDRQGPDADIAVADDMTRLTLDTIALSGFGYDFESFASAELHPFIEAMVGALEEAM 

C.metallidurans      LVDKWDRQGPDADIAVADDMTRLTLDTIALAGFGYDFASFASDELDPFVVAMVGALGEAM 

                     ******:***********************:****** ***  :*.**: ****** *** 

C.necator            SKLTRFALQDRFMHAAHQKFDQDTRFMRDLVDDVIRRRRAGDAAERPGGTANDLLGLMLE 

E.GA3-3              SKLTRFALQDRFMHAAHQKFDQDTRFMRDLVDDVIRRRRAGDAAERPGGTANDLLGLMLE 

D.SK-4               SKLTRFALQDRFMHAAHQKFDQDTRFMRDLVDDVIRRRRAGDAAERRGGTANDLLGLMLE 

C.metallidurans      QKLTRLPIQDRFMGRAHRQAAEDIAYMRNLVDDVIRQRRVSPTSG------MDLLNLMLE 

                      ****:.:*****  **::  :*  :**:*******:**.. :.        ***.**** 

C.necator            ARDPDTDQRLDDENIRNQVITFLIAGHETTSGLLTFALYELLRNPGVMAQAYAEVDAVLP 

E.GA3-3              ARDPDTDQRLDDENIRNQVITFLIAGHETTSGLLTFALYELLRNPGVMAQAYAEVDAVLP 

D.SK-4               ARDPDTDQRLDDENIRNQVITFLIAGHETTSGLLTFALYELLRNPGVMAQAYAEVDAVLP 

C.metallidurans      ARDPETDRRLDDANIRNQVITFLIAGHETTSGLLTFALYELLRNPGVLAQAYAEVDTVLP 

                     ****:*.:**** **********************************:********:*** 

C.necator            GDAAPVYADLARLPVLDRVLKETLRLWPTAPAFAVAPFEDTLLGGRYLIRKDRRLSVVLT 

E.GA3-3              GDAAPVYADLARLPVLDRVLKETLRLWPTAPAFAVAPFEDTLLGGRYLIRKDRRLSVVLT 

D.SK-4               GDAAPVYADLARLPVLDRVLKETLRLWPTAPAFAVAPFEDTLLGGRYLIRKDRRLSVVLT 

C.metallidurans      GDAPPVYADLARMPVLDRVLKETLRLWPTAPAFAVAPFDDVVLGGRYRLRKDRRISVVLT 
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                     ***.*:******:*************************:*.:***** :*****:***** 

C.necator            ALHRDPKVWADPERFDIDRFLPEQEAKLPRHAYMPFGNGERACIGRQFALTEAKLALALM 

E.GA3-3              ALHRDPKVWADPERFDIDRFLPEQEAKLPRHAYMPFGNGERACIGRQFALTEAKLALALM 

D.SK-4               ALHRDPKVWADPERFDIDRFLPEQEAKLPRHAYMPFGNGERACIGRQFALTEAKLALALM 

C.metallidurans      ALHRDPKVWANPERFDIDRFLPENEAKLPAHAYMPFGQGERACIGRQFALTEAKLALALM 

                     **********:************.**:** *******:********************** 

C.necator            LRNFQFTDAHDYQFRIKETLTIKPDGFTVRARRRRPHERIAAAPLC-TAQAPRAGPDVQG 

E.GA3-3              LRNFQFTDAHDYQFRIKETLTIKPDGFTVRARRRRPHERIAAVPLAGTAQAPRAGPDVQG 

D.SK-4               LRNFQFTDAHDYQFRIKETLTIKPDGFTVRARRRRPHERIAAAPLAGTAQAPQAGPDVQG 

C.metallidurans      LRNFAFQDPHDYQFRLKETLTIKPDQFVLRVRRRRPHERFVTQQAS-QAVADAAQTDVRG 

                     **:* * *.******:********* :.:*.********:.:      : *  * .:* * 

C.necator            RGRTLAVLCGSSLGTARELAEQVHAGALAAGFDATLRDLDDVADALPTTGLAVIIAATYN 

E.GA3-3              RGRTLAVLCGSSLGTARELAEQVHAGALAAGFDATLRDLDDVADALPTTGLAVIIAATYN 

D.SK-4               GGRPLAVLCGSSLGTARELAEQVHAGALAAGFDATLRDLDDVADALPTTGLAVIIAATYN 

C.metallidurans      HGQAMTVLCASSLGTARELAEQIHAGAIAARFDAKLADLDDAVGALPTSGLAVVVAATYN 

                      *:.::***.************:****:** ***.* ***:...***.:*:**::***** 

C.necator            GRAPDSARRLEALLDSGAASGYRAEALSVAVLGCGNSQWPTYQAFPRRVYEFFTNAGASP 

E.GA3-3              GRAPDSARRLEALLDSGAASGYRAEALSVAVLGCGNSQWPTYQAFPRRVYEFFTNAGASP 

D.SK-4               GRAPDSARRLEALLDSGAASGYRAEALSVAVLGCGNSQWPTYQAFPRRVYEFFTNAGASP 

C.metallidurans      GRAPDSGRKFEAMLDADDASGYRANGVRLALLGCGNSQWATYQAFPRRVFDFFITAGAVP 

                     ******.*::**:**:. ****** .: :*:********.*********.:**  *** * 

C.necator            LLPRGEADGNGDFDQAVERWLALLWQALQAGDGVGGPAHGTPPVRVQVKDVAEIRASTLP 

E.GA3-3              LLPRGEADGNGDFDQAAERWLALLWQALQAGDGVGGPAHGTPPVRVQVKDVAEIRASTLP 

D.SK-4               LLPRGEADGNGDFDQAAERWLALLWQALQAGGGVGGPAHGTPPVRVQIRDVAEIRASTLP 

C.metallidurans      LLPRGEADGNGDFDQAAERWLAQLWQALQADGADTGGLG----VDVQVRSMAAIRAETLP 

                     ****************.***** *******...  *       : **::.:* ***.*** 

C.necator            ANTEAFTVLANTELVNDPSGLWDFSHEAPRTSTRDIRLRLPDGVRYATGDHLAVYPQNQP 

E.GA3-3              ANTEAFTILANAELVNDPSGLWDFSREAPRTSTRDIRLRLPDGVRYATGDHLAVYPQNQP 

D.SK-4               ANTQGFTVLANTELVNDPSGLWDFSREAPRTSTRDIRLRLPEGVRYATGDHLAVYPQNQP 

C.metallidurans      AGTQAFTVLSNDELVGDPSGLWDFSIEAPRTSTRDIRLQLPPGITYRTGDHIAVWPQNDA 

                     *.*: **:*:* ***.**:*****: ************:** *: * ****:**:***:. 

C.necator            GMVAALCERIGIDPDAIVTLSASGGAARGLPLGEALSVRQLLTHFVELQDVVSRHTLRLL 

E.GA3-3              GMVAALCERIGIDPDAIVTLSASGGAARGLPLGEALSVRQLLTHFVELQDVVSRHTLRLL 

D.SK-4               GMVAALCERIGIDPEAIVTLSASGGAARGLPLGEALSVRQLLTHFVELQDVVSRHTLRLL 

C.metallidurans      QLVSDLCERLDLDPDAQATISAPHGMGRGLPIDQSLPVRQLLTHFIELQDVVSRQTLRAL 
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                      :*: ****:.:**:* .*:**. * .****:.::*..*******:********:*** * 

C.necator            SQSSRCPVTRQALRQLASDDAGSGYAAQVAPRRLGLADVLDRFPAIEVDLAGLLACTVPM 

E.GA3-3              SQSSRCPATRQALRQLASDDAGSGYAAQVAPRRLGLADVLDRFPAIEMDLAGLLACTVPM 

D.SK-4               SQSSRCPVTRQALQQLASDDAGSGYAAQVAPRRLGLADVLDRFPAIEVDLAGLLACTVPM 

C.metallidurans      AQATRCPFTKQSIEQLASDDAEHGYATKVVARRLGILDVLVEHPAIALTLQELLACTVPM 

                     :* :*** *:*::.*****:*  **:::*..****: *** ..*** : *  ****:*** 

C.necator            RPRFYSIASSPLVSPGVATITVGTVWSPALSGRGLFRGVASTWLQGLAPGAMVAGAIRTP 

E.GA3-3              RPRFYSIASSPLVSPDVATITVGTVWSPALSGRGLFRGVASTWLQGLAPGAMVAGAIRTP 

D.SK-4               RPRFYSIASSPLVSPDVATITVGTVWSPALSGRGLFRGVASTWLQSLAPGAAVAGAIRTP 

C.metallidurans      RPRLYSIASSPLVSPDVATLLVGTVCAPALSGRGQFRGVASTWLQHLPIGARVSASIRTP 

                     ***:***********.***: ** * :.****:* ********** *. ** *:.:**** 

C.necator            NPTFAPAADPATPMILIGPGTGIAPFRGFLEERAAQQAAGQPVAPVQLYYGCRHPAHDWL 

E.GA3-3              NPTFAPAADPATPMILIGPGTGIAPFRGFLEERAAQQAAGQPMAPVQLYYGCRHPAHDWL 

D.SK-4               NPTFAPAADPATPMILIGPGTGIAPFRGFLEERAAQQAAGQPEAPVQLYYGCRHPAHDWL 

C.metallidurans      NPPFAPDPDPTAPMLLIGPGTGIAPFRGFLEERALRKMAGNAVTPAQLYFGCRHPQHDWL 

                     **.*** .**::**:******************* :: **:. :*.***:***** **** 

C.necator            YRNNVERWQAQGVVQVHLACSVVDGEPRYVQDLLWQRRADVWARLNQGAIIYVCGDGRHM 

E.GA3-3              YRNDVERWQAQGVVQVHLACSVVGGEPRYVQDLLWQRRADVWARLNQGAIIYVCGDGRHM 

D.SK-4               YRDDVERWQAQGVVQVHLACSVVDGEPRYVQDLLWHRRADVWARLNQGAMLYVCGDGRHM 

C.metallidurans      YREDIERWAGQGVVEVHPAYSVVPDAPRYVQDLLWQRREQVWAQVRDGATIYVCGDGRRM 

                     **:::*** .***.::* * *** . *********:** :**::: :** :*******:* 

C.necator            APAVRQVLIQIGAEQGGMTPEAASDWLADLVSAGRYRQDVFNSTOP 

E.GA3-3              APAVRQVLIQIGAEQGGMTAEAASDWLAELVSAGRYRQDVFN---- 

D.SK-4               APAVRQVLIQIGAEQGGMTPEAASDWLAELVSAGRYRQDVFN---- 

C.metallidurans      APAVRQTLIDIGKAQGGMTDEAASDWFGGLVAQGRYRQDVFN---- 

                     ******.*::**  ***** ******:. **: *********     

Figure 10-4: Amino acid sequence alignment of P450-H16_B1009 with other P450s from 

Cupriavidus sp. The key residues are marked as following: the conserved heme in green, 

the fifth ligand of heme (cysteine) in red, FMN in pink and FAD in yellow. (*) indicating 

similar identity, (.) is for strongly similar residues and (:) to indicate weak similarity. The 

alignment was produced by using data from BLAST and ClustalW online tool. 
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10.2 P450 structure modelling 

The online tool SWISS-MODEL was used to predict 3D protein structures for B2406, B1743, 

B1279 and B1009 heme domains.  This web service is designed to provide protein structure 

homology modelling at different levels of complexity. Building a protein homology model 

by SWISS-MODEL can be achieved by four basic steps; I) structural templates selection II) 

sequences alignment between targeted model protein and proteins of the templates III) model 

building depending on the alignment IV) model qualification (Schwede et al., 2003).  

A list of 50 templates were suggested by SWISS-MODEL for each protein depending on 

sequences alignment and structures similarity. These models were visualised by using 

PyMol, this molecular graphics system able to graphically generate proteins structures in 

three dimensions and produce high-quality 3D images of biological molecules, such as 

proteins (Sevrioukova et al., 1999). The 3D predicted structures of four C. necator H16 heme 

domains were displayed in figures (Figure 10-5 A to Figure 10-7 A and Figure 10-9 A). 

Generally, all heme domain structures displayed typical P450 folds with expected helical 

features (α helices, β sheets and loops). Structures showed that these four proteins are 

probably monomers, folded into α/β domains characteristic of P450s. The heme prosthetic 

group of each protein appeared at the centre of the heme domain structure (shown as a stickin 

all heam domain structures). The heme cofactor was obtained from the crystal structure of 

the template of each protein.  

The predicted structures of models were superimposed and compared with the crystal 

structures of their templates. The overlapping by using PyMol was displayed in figures 

(Figure 10-5 B to Figure 10-7 B and Figure 10-9 B). From the way that the secondary 
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structure elements of protein folding shaped, it can be concluded that all heme domains are 

very similar to their templets structures except minor differences that were found in the loop, 

N-terminal regions and C-terminal and these limited variations in the structure between 

P450s members are a known phenomenon because these regions are highly variable in the 

primary sequence (Sirim et al., 2010).  

The heme cofactors of all P450s likely to be bound to highly conserved hydrophobic residues 

that were labelled in (Figure 10-5 C to Figure 10-7 C and Figure 10-9 C). Some of the models 

binding residues different from the templates once but they occupied the same position and 

have very similar functions to each other. The templates and the models details and PDB 

codes were displayed in  Table 10-2. As well as the binding residues of templates and models 

were shown in Table 10-3.  In addition, sequence alignment between P450s primary 

structures and their templets showed highly conserved binding residues (highlighted in 

yellow in Appendix I). Sequences alignments were applied by using ClustalW online tool, 

ClustalW is an alignment tool run with several sets of starting parameters and in each case, 

the alignments applied according to an objective function. ClustalW considers the individual 

weight of the sequence and residue-specific gaps and positions (Roccatano, 2015) 

Templates that were offered by SWISS-MODEL (50 templates) covered only the heme 

domain of P450s, so another program was used to model the reductase domain of B1279 and 

B1009, Phyre the modelling online tool was chosen for reductase domain modelling because 

it provides an extended list of the suggested models (120 templates including both the heme 

and the reductase domain).The Phyre2 server predicts the three-dimensional structure of a 

protein sequence using the techniques of homology modelling, it is provides advanced 

interface and fully updated fold library (Bennett et al., 2008). The 3D structures of the 
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reductases domains of B1279 and B1009 were shown in Figure 10-8 A and Figure 10-11 A 

and the results of superimposing the models to their templets were shown in Figure 10-8 A 

and Figure 10-11 B. Two ligands can be recognised in the structure of reductase domain of 

B1279; the FMN and the iron-sulphur binding motifs (can be seen as sticks in Figure 10-8). 

For B1009 reductase structure three ligands were noticed in the structure, these ligands are; 

FAD, FMN and (nicotinamide-adenine-dinucleotide phosphate) NADP binding motifs (these 

ligands can be seen as sticks Figure 10-11).  

The resulting models were qualified by using VERIFY 3D online tool and a final model was 

obtained. VERIFY 3D is an online tool measures the compatibility of a protein model (3D) 

with its sequence (1D). The position of each residue in the 3D structure is identified by its 

environment (alpha, beta, loop, polar, apolar etc). This profile is represented by the average 

3D-1D score for each residue in the protein structure. According to VERIFY 3D a model will 

considered successful and it passes the test if 80% or more of protein’s residues show average 

(3D-1D) ≥ 0.2 (Lüthy et al., 1992). In general, all models that have been shown in this chapter 

passed the qualification evaluation applied by VERIFY 3D test with more than 80% of 

residues scored average (3D-1D) ≥ 0.2 as can be seen in Appendix II.   

More details about models and their templates for each P450 protein and their functions, 

ligands and binding residues were mentioned below: 

10.2.1 B2406 structure analysis 

Among the templets that offered by SWISS MODEL, cytochrome CYP144A1 (PDB ID: 

5hdi. 1. A) was chosen to build a 3D structure of cytochrome P450 B2406 heme domain 

since it was the best hit with 21.51% sequence identity to the target protein (by SWISS 



 

 

166 

 

MODEL as well as Phyre) and 0.89 coverage. This model passed the qualification evaluation 

performed by VERIFY 3D with 82.02% of the protein’s residues showed average (3D-1D) 

≥ 0.2 (Appendix II). CYP144A1 is a monomer cytochrome isolated from mycobacterium 

tuberculosis (strain ATCC 25618 / H37Rv) and it is classified as oxidoreductase. The crystal 

structure of CYP144A1 was solved as substrate-free at 1.54 Å resolution (Noble et al., 1999).   

A comparative structural analysis applied by superimposing the predicted model with the 

template showed that B2406 and P450 144 have nearly the same structural organization. For 

more assurance on the quality of the model, the RMSD between the resulting model and the 

templet was also measured and it was 1.59Å. Furthermore, the residues that bound to the 

heme (displayed as sticks in Figure 10-5 C) are highly conserved and this can be noticed in 

both the 3D structure and the sequence alignment between the templet and the model (these 

residues are highlighted in yellow in Appendix I). From the structure analysis of the heme 

cofactor, it was observed that three residues in the template structure bound to the heme; 

H129, R133 and R327 against three residues in the model structure; H117, K121 and R309 

respectively. It could be shown that some of the secondary structure elements merge together 

to structure modules due to this absolute conservation. However, Arg133 in the template was 

replaced by Lys121 in the mode, both amino acids have positively charged side chains and 

very similar structures and functions.    
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Figure 10-5: Structural analysis of P450 H16 B2406 heme domain. (A) 3D model of 

B2406 with heme cofactor. The heme cofactor is shown as stick and it is coloured by 

elements (carbon in green, nitrogen in blue, oxygen in red and sulphur in orange). 

Secondary structures are displayed in cyan (helices), magenda (sheets) and pink (coils). 

(B) Comparative structural analysis of B2406 model with structure (PDB ID: 5hdi. 1. A ). 

Superimposed image of B2406 model (cyan) with CYP144A1 crystal structure (gold) is 

shown in the Figure. (C) Active site close view of B2406. Prosthetic group appearing at 

the centre of the active site is shown along with hydrogen bonds at yellow. Residues bound 

to the heme cofactor are shown as sticks and coloured by elements (hydrogen in gray, 

nitrogen in blue, oxygen in red and carbon atoms are coloured in cyan for the model and 

gold for the template.  Amino acids in the model structure which bound to the heme 

cofactor are labelled in figure while the template’s residues are listed in Table 10-3. This 

model was generated by using SWISS MODEL 
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10.2.2 B1743 structure analysis 

C. necator H16 P450 B1743 model was built by SWISS MODEL using the template CYP130 

(PDB ID: 2uvn. 1. A) isolated from mycobacterium tuberculosis (strain ATCC 25618 / 

H37Rv). CYP130 crystal structure was solved as econazole-bound CYP130 at 3 Å 

resolutions and it was classified as oxidoreductase (Rath et al., 2009). CYP130 was the best 

hit (by both SWISS MODEL and Phyre); it has 28.68 % sequence identity to P450 B1743 

with 0.89 coverage. This model scored 98.70% in the VERIFY 3D quality evaluation 

(Appendix II).  

The superimposing of the model to CYP130 structure showed good similarity with 1.41 Å 

RMSD over 376 residues. The structure analysis of the template showed 5 residues bound to 

the heme: H97, R101, R295, Y318 and S348 while the residues of the model that share the 

same positions with the above residues were as following: H124, R128, R318, Y341 and 

G370 respectively. It can be seen that 4 out of five residues are the same while the fifth one 

S348 in template was replaced by G370 in the model (Figure 10-6 C).  
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Figure 10-6: Structural analysis of P450 H16 B1743 heme domain. (A) 3D model of B1743 

with heme cofactor. The heme cofactor is shown as stick and it is coloured by elements 

(carbon in green, nitrogen in blue, oxygen in red and sulphur in orange). Secondary 

structures are displayed in cyan (helices), magenda (sheets) and pink (coils). (B) 

Comparative structural analysis of B2406 model with structure (PDB ID: 2uvn. 1. A ). 

Superimposed image of B2406 model (cyan) with CYP130 crystal structure (gold) is shown 

in the Figure. (C) Active site close view of B2406. Prosthetic group appearing at the centre 

of the active site is shown along with hydrogen bonds at yellow. Residues bound to the 

heme cofactor are shown as sticks and coloured by elements (hydrogen in grey, nitrogen in 

blue, oxygen in red and carbon atoms are coloured in cyan for the modwl and gold for the 

template. Amino acids in the model structure which bound to the heme cofactor are labelled 

in figure while the template’s residues are listed in Table 10-3 This model was generated 

by using SWISS MODEL 
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10.2.3 B1279 structure analysis 

10.2.3.1 B1279 heme domain: 

The crystal structure of tepidiphilus thermophilus P450 heme domain (PDB ID: 6gii 1. A) 

was suggested by SWISS MODEL as well as Phyre as a best hit with 62.92 % sequence 

identity to build P450 B1279 3D model.  The tepidiphilus thermophilus P450 heme domain 

is a monomer cytochrome and it is classified as oxidoreductase. The crystal structure of this 

template was solved as substrate-free at 1.9 Å resolution (Carugo, 2007). This model passed 

the qualification evaluation performed by VERIFY 3D with 94.95% of the protein’s residues 

showed average (3D-1D) ≥ 0.2 (Appendix II). 

The superimposing of the model to the template structure showed a very high similarity with 

0.078 Å RMSD over 416 residues. The structure analysis of the template and the model 

showed that both structure have the same residues bound to the heme and these residues share 

the same positions which reflect the high accuracy of the predicted model. These residues 

are: H159, R163, R360 and H417and H151, R155, R352 and H409 of the template and the 

model respectively (Figure 10-7 A).  

10.2.3.2 B1279 reductase domain: 

P450 B1743 reductase domain model was built by Phyre using the template of CYP153A 

reductase (PDB ID: 2pia. 1. A) isolated from burkholderia cepacia. CYP153A crystal 

structure was solved at 2 Å resolutions and classified as phthalate dioxygenase reductase 

(Janson & Rydén, 1989). CYP153A was the best hit with 34 % sequence identity to P450 

B1743. This model scored 96.21% in the VERIFY 3D quality evaluation (Appendix II).  
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When CYP153A structure superimposed to the model it showed good similarity with 1.03 Å 

RMSD. Two prosthetics groups: 2Fe-2S and FMN were noticed and represented as sticks in 

Figure 10-8. It is observed that four cysteine residues in both template and model bound to 

the 2Fe-2S ligand.  Further, 9 residues in the template structure as well as model bound to 

the FMN and 7 out of 9 are the same while the other two are functionally similar and all 

binding residues occupied the same position. This structure analysis leads to the belief that 

the reliability of the predicted model is high and the ferredoxin reductase in the model is 

likely to be bound to the structure by the above binding residues. A list of the binding residues 

for both ligands were listed in Table 10-3. 

10.2.4 B1009 structure analysis 

10.2.4.1 B1009 heme domain: 

C. necator H16 P450 B1009 3D heme domain model was built by SWISS MODEL using the 

template CYP102A1 (PDB ID: 1bu7. 1. A) isolated from bacillus megaterium (strain ATCC 

14581 / DSM 32 / JCM 2506 / NBRC 15308 / NCIMB 9376 / NCTC 10342 / VKM B-512). 

P450 BM-3 crystal structure was solved in complex with  FMN-binding domains of bacterial 

cytochrome P450BM-3 at 1.65 Å resolutions and was classified as oxidoreductase 

(Sevrioukova et al., 1999). This template’s structure was the best hit with 46.89% sequence 

identity to P450 B1009 and 0.83 coverage. This model scored 90.52% in the VERIFY 3D 

quality evaluation (Appendix II). 

A comparative structural analysis applied by superimposing the predicted model with the 

template showed that B1009 heme domain and P450 BM-3 are very similar and the RMSD 

between the resulting model and the templet was also measured and it was 0.37 Å which 
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indicates the high accuracy of the generated model. Furthermore, the residues that bound to 

the heme are highly conserved and this can be noticed from Figure 10-9 C. From overlapping 

the template to the model structure, it observed that three residues in the template structure 

bound to the heme; K69, W96 and R398 and the same residues in the model structure also 

bound to the heme cofactor which are; K124, W151 and R461 respectively these highly 

conserved binding residues increase the probability that the model predicted structure likely 

connects to the heme cofactor of the template.  

Different model was suggested by Phyre. This model was analysed in order to compare it 

with the model that was offered by SWISS MODEL. Same protein was suggested by Phyre 

as a template which is P450 BM-3 but in deferent solved crystal structure (PDB ID: 2ij2. 1. 

A). This crystal structure is also for P450 BM-3 but in a novel substrate-free state when the 

mobile (helical) structural elements was reorganised resulting in a more open activity site 

cavity. This template has 46% identity with the model and 91.92% quality evaluation by 

VERIFY 3D (Appendix II).  

When the model (PDB ID: 2ij2. 1. A) was superimposed to the template, it gave a highly 

similar result to what has been gained from the overlapping by using the template that was 

suggested by SWISS MODEL (PDB ID: 1bu7. 1. A) with the exactly same residues bound 

to the heme cofactor for both the model and the template (see Figure 10-10).  However, the 

RMSD by using the structure that was suggested by Phyre2 (2ij2. 1. A) was high (1.01 Å) in 

comparison to the RMSD of the template given by SWISS MODEL (1bu7. 1. A), 0.37 Å and 

that make the first suggested template by SWISS MODEL (PDB ID: 1bu7. 1. A) more 

accurate (see Table 10-2.    
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Figure 10-7: Structural analysis of P450 H16 B1279 heme domain. (A) 3D model of 1279 

with heme cofactor. The heme cofactor is shown as stick and it is coloured by elements 

(carbon in green, nitrogen in blue, oxygen in red and sulphur in orange). Secondary 

structures are displayed in cyan (helices), magenda (sheets) and pink (coils). (B) 

Comparative structural analysis of the model with structure (PDB ID: 6gii 1. A). The model 

is shown in cyanand the template crystal structure in gold. (C) Active site close view of 

B2406. Prosthetic group appearing at the centre of the active site is shown along with 

hydrogen bonds at yellow. Residues bound to the heme cofactor are shown as sticks and 

coloured by elements (hydrogen in grey, nitrogen in blue, oxygen in red and carbon atoms 

are coloured in cyan for the B1279 modek and gold for the template.  Amino acids in the 

model structure which bound to the heme cofactor are labelled in figure while the 

template’s residues are listed in Table 10-3. This model was generated by using SWISS 

MODEL 
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Figure 10-8: Structural analysis of P450 H16 B1279 reductase domain. (A) 3D model of 

B1279 reductase with two ligands. The ligands are shown as stick and it is coloured green 

for FMN and red for Fe-S cluster. Secondary structures are displayed in cyan (helices), 

magenda (sheets) and pink (coils). (B) Comparative structural analysis of B1279 model 

with structure (PDB ID: 2pia. 1. A). Superimposed image of the model (cyan) with CYP153 

A crystal structure (grey) is shown in the Figure. (C) Reductase domain close view of 

B1279. Prosthetic groups appearing along with hydrogen bonds at yellow and they are 

coloured by elements (carbon in green, nitrogen in blue, oxygen in red and sulphur in 

orange). Residues bound to the heme cofactor are shown as sticks and coloured by elements 

(hydrogen in grey, nitrogen in blue, oxygen in red and carbon atoms are coloured in cyan 

for the model and grey for template).  Amino acids in the model structure which bound to 

the heme cofactor are labelled in figure while the template’s residues are listed in Table 

10-3. This model was generated by using Phyre2.  
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Figure 10-9: Structural analysis of P450 H16 B1009 heme domain. (A) 3D model of 

B1009 with heme cofactor. The heme cofactor is shown as stick and it is coloured by 

elements (carbon in green, nitrogen in blue, oxygen in red and sulphur in orange). 

Secondary structures are displayed in cyan (helices), magenda (sheets) and pink (coils). 

(B) Comparative structural analysis of B1009 model with structure (PDB ID: 1bu7. 1. A). 

Superimposed image of B2406 model (cyan) with CYP102A1 crystal structure (gold) is 

shown in the Figure. (C) Active site close view of B2406. Prosthetic group appearing at 

the centre of the active site is shown along with hydrogen bonds at yellow. Residues bound 

to the heme cofactor are shown as sticks and coloured by elements (hydrogen in grey, 

nitrogen in blue, oxygen in red and carbon atoms are coloured in cyan for the model and 

gold for template.  Amino acids in the model structure which bound to the heme cofactor 

are labelled in figure while the template’s residues are listed in table Table 10-3. This model 

was generated by using SWISS MODEL 
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Figure 10-10: Structural analysis of P450 H16 B1009 heme domain. (A) 3D model of 

B2406 with heme cofactor. The heme cofactor is shown as stick and it is coloured by 

elements (carbon in green, nitrogen in blue, oxygen in red and sulphur in orange). 

Secondary structures are displayed in cyan (helices), magenda (sheets) and pink (coils). (B) 

Comparative structural analysis of B1009 model with structure (PDB ID: 2ij2. 1. A). 

Superimposed image of the model (cyan) with P450 BM-3 crystal structure (gold) is shown 

in the Figure. (C) Active site close view of B2406. Prosthetic group appearing at the centre 

of the active site is shown along with hydrogen bonds at yellow. Residues bound to the 

heme cofactor are shown as sticks and coloured by elements (hydrogen in grey, nitrogen in 

blue, oxygen in red and carbon atoms are coloured in cyan for the model and gold for the 

template). Amino acids in the model structure which bound to the heme cofactor are 

labelled in figure while the template’s residues are listed in Table 10-3. This model was 

generated by using Phyre2.  

C 

B A 



 

 

177 

 

10.2.4.2 B1009 reductase domain: 

P450 B1009 reductase domain 3 D model was built by Phyre2 using the template from rat 

reductase complexed with nicotinamide-adenine-dinucleotide phosphate (NADP)(+) (PDB 

ID: 1j9z. B) isolated from rattus norvegicus . The template crystal structure was solved at 

2.7 Å resolutions and classified as NADPH-cytochrome P450 reductase (Hubbard et al., 

2001). This template was the best hit with 28% sequence identity to P450 B1009. This model 

scored 93.29% in the VERIFY 3D quality evaluation (Appendix II).  

From superimposing the model to its template, a good similarity was observed with 1.16 Å 

RMSD over 576 residues. In Figure 10-11, three prosthetics groups were distinguished: a 

flavodoxin-like domain FMN, ferredoxin reductase-type FAD binding domain (FAD_FR) 

and nicotinamide-adenine-dinucleotide phosphate (NADP). These three ligands were shown 

as sticks in figure 10-11 and together formed a typical reductase structure.  
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Figure 10-11: Structural analysis of P450 H16 B1009 reductase domain. (A) 3D model of 

B1009 reductase with three ligands. The ligands are shown as stick and it is coloured green 

for FMN, red for FAD and blue for NADP. Secondary structures are displayed in cyan 

(helices), magenda (sheets) and pink (coils). (B) Comparative structural analysis of B1009 

model with structure (PDB ID: 1j9z. B). Superimposed image showed the model in cyan  

and the template crystal structure in grey. This model was generated by using Phyre2. 
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Table 10-2: List of the the results for the homology modelling of four C. necator H16 P450 

proteins  and templates used for this modilling. 

 

 

 

 

 

 

 

 

 

Target model Server Template PDB 

ID 

Organism  Identity 

(%) 

Overall 

RMSD 

(Ǻ) 

B2406 heme 

domain 

 

SWISS 

MODEL 
CYP144 

5hdi. 

A 

Mycobacterium 

tuberculosis 
21.51 1.59 

B1743 heme 

domain 

 

SWISS 

MODEL 
CYP130 

2uvn

. A 

Mycobacterium 

tuberculosis 
28.68 1.41 

B1279 heme 

domain 

 

SWISS 

MODEL 

P450 heme 

domain 

6gii. 

A 

Tepidiphillus 

thermophilus 
62.92 0.08 

B1279 reductase 

domain 

 

Phyre 2 CYP153A 
2pia. 

A 

Marinobacter 

aquaeolei 
34 1.03 

B1009 heme 

domain 

 

SWISS 

MODEL 
P450 BM-3 

1bu7 

A 

Bacillus 

megaterium 
46.89 0.37 

Phyre 2 

 
P450 BM-3 

2ij2. 

A 

Bacillus 

megaterium 
46 1.01 

B1009 reductase 

domain 

 

Phyre 2 
NADPH-P450 

reductase 

1j9z. 

B 

Rattus 

norvegicus 
28 1.16 
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Table 10-3: This table lists the residues that bound to theprosthetic groups in models and 

their templates of four C. necator H16 P450 proteins    

 

 

 

 

 

  

Target model Ligands 

Binding residues 

in the model 

structure 

Template 

Binding residues in 

the template 

structure 

B2406 heme 

domain 

 

Heme 

cofactor 
H117, K121, R309 

CYP144 

(PDB ID: 5hdi. A) 
H129, R133, R327 

B1743 heme 

domain 

 

Heme 

cofactor 

H124, R128, R318, 

Y341, G370 

CYP130 

(PDB ID: 2uvn. A) 

H97, R101, R295, 

Y318, S348 

B1279 heme 

domain 

 

Heme 

cofactor 

H151, R155, R352, 

H409 

P450 heme domain 

(PDB ID: 6gii. A) 

H159, R163, R360, 

H417 

B1279 reductase 

domain 

Fe-S 
C754, C759, C762, 

792 
CYP153 

(PDB ID: 2pia. A) 

C272, C277, C280, 

C308 

FMN 

R539, Q540, S542, 

A556, L558, R564, 

G566, S567, T608 

R55, T56, S58, A72, 

K74, R80, G82, S83, 

T124 

B1009 heme 

domain by 

SWISS MODEL 

 

Heme 

cofactor 
K124, W151, R461 

P450 BM-3 

(PDB ID: 1bu7. A) 
K69, W96, R398 

B1009 heme 

domain by Phyre 

 

Heme 

cofactor 
K124, W151, R461 

P450 BM-3 

(PDB ID: 2ij2. A) 
K69, W96, R398 
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10.3 Study of the basic configuration of the P450 expression vectors  

The pETM-11 plasmid from Novagen was chosen in this study as an expression vector to 

express four P450s, B2406, B1743, B1279 and B1009, due to its ability to produce a high 

level of soluble and nontoxic recombinant proteins in E. coli, the expression vectors of these 

proteins are shown in Figure 10-12 to Figure 10-15. In this system, the expression of the 

target gene is controlled by the T7 phage RNA polymerase promoter in production hosts 

containing a prophage (λDE3) (Baneyx, 1999). 

A commercial expression vector is designed with at least one affinity tag to allow efficient 

purification of large amount of protein, while some of these tags were used to enhance the 

protein’s solubility. There are many known affinity tags such as glutathione S-transferase 

(GST), maltose binding protein (MBP) and polyhistidine tag (His), but the most commonly 

used is the polyhistidine tag consisting of 2–10 residues, which facilitate the production of 

pure protein in large quantities. The pETM-11 plasmid in this study was designed with a His-

tag to allow easy separation of pure proteins. In spite of the advantages of using fusion 

proteins, in some cases they could negatively affect enzyme activity. Consequently, cleavage 

factors were added to the expression vector to separate the recombinant protein from affinity 

tags. For the pETM-11 plasmid used in this project, tobacco etch virus protease (TEV) was 

inserted for this purpose. The His domain was connected to the plasmid by a linker region, 

which enhances the flexibility and mobility of the protein to achieve an efficient purification 

and tag cleavage. In addition, this linker region helps to improve protein solubility. 

Furthermore, many restriction sites were included in the pETM-11 to cut and ligate the 

recombinant DNA ends into the plasmid according to changes in the requirements during the 

experimental work. 
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Figure 10-12: pETM11 expression plasmid (6483 bp) encoded H16_B2406 gene 

(green). The pETM11 vector contains the N-terminal T7 promoter and kanamycin 

resistance selection marker. Plasmid image was produced using SnapGene software.  
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Figure 10-13: pETM11 expression plasmid (6555 bp) encoded H16_B1743 gene 

(green). The pETM11 vector contains the N-terminal T7 promoter and kanamycin 

resistance selection marker. Plasmid image was produced using SnapGene software. 
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Figure 10-14: pETM11 expression plasmid (7692 bp) encoded H16_B1279 gene (green). 

The pETM11 vector contains the N-terminal T7 promoter and kanamycin resistance 

selection marker. Plasmid image was produced using SnapGene software. 
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Figure 10-15: pETM11 expression plasmid (8646 bp) encoded H16_B1009 gene 

(green). The pETM11 vector contains the N-terminal T7 promoter and kanamycin 

resistance selection marker. Plasmid image was produced using SnapGene software 
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11 Characterisation of putative cytochrome 
P450s from Cupriavidus necator H16  

 

11.1  Putative cytochrome P450s from Cupriavidus necator H16  

When the concentration and the purity of the isolated plasmids; pETM11-H16-B2406, 

pETM11-H16-B1743, pETM11-H16-B1279 and pETM11-H16-B1009 were checked, it is 

found that all concentrations ranged between 70–80 nM and the A260/A230 and A260/A280 ratios 

were equal or more than 2 indicating the high purity of plasmids and their capability to be 

used in further investigations.    

These four isolated plasmids; pETM11-H16-B2406, pETM11-H16-B1743, pETM11-H16-

B1279 and pETM11-H16-B1009 were transferred into E. coli BL21 (DE3) cells and showed 

a significant growth on TYE agar media supplemented with 50 µg/ml kanamycin in 

comparison to no growth on the control plate (free-plasmid E. coli BL21 (DE3) cells) (Figure 

11-1). The expression was carried out in TB auto-induction media at 30°C for 24 hr. The 

transformation and expression protocols were described in detail in section 9.5. Collected 

pellets after 24 hr were red in colour, indicating successful heme protein expression. Different 

expression levels can be observed depending on the pellet colour as shown in Figure 11-2.   
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B2406 B1743 B1279 B1009 

 

Control 

H16-B2406 

H16-B1743 

H16-B1009 

H16-B1279  

Figure 11-1: The resulting clones from the transformation of pETM11 plasmid 

into BL21 (BM3). Four genes were transformed. The plates from transformation 

were presented as: 1) H16-B2406. 2) H16-B1009. 3) H16-B1743.  4) H16-B1279 

5) the control. 

 

Figure 11-2: The pellet from the expression of four genes  in BL21 (BM3). Those gees 

are: 1) H16-B2406 2) H16-B1743 3) H16-B1279 4) H16-B1009, 50 ml of TB AIM media 

was used for the expression of each protein at 30°C. The incubation period was 24 hr.   
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The solubility of Cupriavidus necator H16 P450s were checked by SDS-PAGE as described 

in section 9.5. The protein bands are surrounded by yellow rectangles to clarify the 

soluble/insoluble fractions (Figure 11-3). From the comparison of the soluble fractions (lane 

2-5) to the insoluble fractions (lane 6-9) of the same proteins, it could be concluded that all 

Cupriavidus necator H16 P450 protein are soluble in water when they expressed in E. coli 

BL21 (DE3) as a host cells.  
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Figure 11-3: SDS-PAGE analysis for the soluble and insoluble fraction of four genes in 

pETM11 plasmid: H16-B2406, H16-B1743, H16-B1279 and H16-B1009. The yellow 

boxes surround the target proteins that clarified in the table underneath each lane. 
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11.2 Optimisation of protein expression and purification 

After testing the possibility of expressing P450s from Cupriavidus necator H16 and checking 

the solubility of these proteins, it is prudent to check the yield of each protein and the 

possibility to purify these proteins. Proteins from 50 ml of expression culture were lysed and 

loaded onto a HisTrap column. The purification was performed as described in section 9.5. 

From Figure 11-4 and Figure 11-5, it can be observed that two proteins, B2406 and B1743, 

showed a very good yield and purity from the first step of purification, while the yield of 

B1279 was lower and associated with unknown protein at 50 kDa (Figure 11-6). In contrast, 

the expression and purity of B1009 was very low (Figure 11-7). These results indicate that 

both B2406 and B1743 can be expressed on a large scale using the optimal conditions, while 

the large-scale expression of B1279 and B1009 requires further improvement. 

Two E. coli strains and a variety of conditions were applied in the expression optimisation 

of B1279 and B1009, which was described in section 9.5.1. The expression of B1009 

remained very low with no significant deference between the expression in E. coli BL21 

(DE3) and E. coli C41 (DE3), also no enhancement was observed when the incubation 

temperature was decreased from 30°C to 25°C and when 2×TY AIM or SB AIM were used 

as shown in Figure 11-8. However, using a lower expression temperature (25°C) increased 

B1279’s expression when the other factors were fixed. Also, using SB AIM gave the highest 

protein production in both E. coli BL21 (DE3) and E. coli C41 (DE3). In addition, from the 

gel picture (Figure 11-9), C41 (DE3) strain provided higher B1279 expression compared to 

E. coli BL21 (DE3), while the later gave the purest protein. Based on these results, the 

optimal conditions of SB AIM, 25°C and E. coli BL21 (DE3) were used to express B1279 

on large-scale using the protocol described in section 9.6.  
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The expression of B1009 was also investigated in E coli HMS174 (DE3) strain. The induction 

using auto-induction media and IPTG were examined at 25°C and 30°C incubation 

temperatures. The results showed an improvement in B1009 expression in E. coli HMS174 

(DE3) using  auto-induction media at 30°C but the protein was insoluble by using this strain 

(Figure 11-10 and Figure 11-11). From the results, it could be indicated that E. coli HMS174 

(DE3) is favourite over E. coli BL21(DE3) and E. coli C41(DE3) for B1009 expression. 

However, solubility of B1009 need to be improved by using one or more of proteins’ 

improvement solubility strategies.  
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Figure 11-4: SDS-PAGE analysis of B2406 protein for the fractions eluted from 

affinity chromatography for the protein expressed in BL21 (DE3), 50 ml of sample 

was loaded to the HisTrap 5 ml column. The purification conditions were: 2 ml/min, 

40 min. 
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Figure 11-5: : SDS-PAGE analysis of B1743 protein for the fractions eluted from 

affinity chromatography for the protein expressed in BL21 (DE3), 50 ml of sample was 

loaded to the HisTrap 5 ml column. The purification conditions were: 2 ml/min, 40 min. 
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Figure 11-6: SDS-PAGE analysis of B1279 protein for the fractions eluted from 

affinity chromatography for the protein expressed in BL21 (DE3), 50 ml of sample 

was loaded to the HisTrap 5 ml column. The purification conditions were: 2 ml/min, 

40 min. 
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Figure 11-7: SDS-PAGE analysis of B1009 protein for the fractions eluted from 

affinity chromatography for the protein expressed in BL21 (DE3), 50 ml of sample 

was loaded to the HisTrap 5 ml column. The purification conditions were: 2 ml/min, 

40 min. 
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Figure 11-8: SDS-PAGE analysis of B1009 expression optimisation. The protein was 

expressed in BL21 (DE3) and C41 (DE3) using three AIM: 2×TY, SB and TB under 

two different temperatures: A. 25˚C B. 30 ˚C.  The yellow boxes surround the target 

protein. 
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Figure 11-9: SDS-PAGE analysis of B1279 expression optimisation. The protein was 

expressed in BL21 (DE3) and C41 (DE3) using three AIM: 2×TY, SB and TB under 

two different temperatures: A. 25˚C B. 30 ˚C. The yellow boxes surround the target 

protein.   
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Figure 11-10: SDS-PAGE analysis of B1009 expression and solubility. The protein 

was expressed in E. coli HMS 174(DE3) using SB AIM at different incubation 

temperatures: 25˚C and 30˚C. The incubation was carried out for 24 hr. The yellow 

boxes surround the target proteins. 
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Figure 11-11: SDS-PAGE analysis of B1009 expression and solubility. The protein 

was expressed in HMS 174(DE3) using 100 µM IPTG at different incubation 

temperatures: 25˚C and 30˚C. The incubation was carried out for 6 hr and 18 hr after 

induction to investigate the solubility. The yellow boxes surround the target protein. 
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11.3 Large-scale expression and purification 

The production of the three Cupriavidus necator H16 P450s successfully expressed in E. coli 

BL21 (DE2) was scaled up to 400 ml cultures. The expression was followed by three 

purification steps, affinity chromatography, ion exchange chromatography and gel filtration 

chromatography, as described in section 7.2. 

The chromatograms and the SDS gel pictures of the purified P450s, indicated a good yield 

and purity of all three proteins after the affinity step as the first step of purification (Figure 

11-12). In the second step (ion exchange), the three proteins were successfully concentrated 

(Figure 11-13) in preparation for the final step of purification, gel filtration chromatography 

to purify proteins depending on their size. The concentration and the purity of B2406 and 

B1743 after the final purification step were sufficient to proceed with the functional study 

(Figure 11-14 and Figure 11-15). However, while the third protein was of satisfactory purity, 

the concentration was still too low (1.6 nM in comparison to 17 and 20 nM for B1743 and 

B1279 respectively), Figure 11-16 
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Figure 11-12: SDS-PAGE protein analysis for the first peak (19-20) and the second peak (21-

24) from protein purification using affinity chromatography. The purification was carried out 

for 400 ml expression culture of: A. B2406 B. B1743 and C. B1279. Gradient elution was used, 

the flow rate was 2 ml/min for 40 min.  
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Figure 11-13: SDS-PAGE protein analysis for the peak (6 and 7) from protein purification 

using ion exchange chromatography of three P450s A. B2406 B. B1743 and C. B1279. 

step elution was used, the flow rate was 2 ml/. 
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Figure 11-14: A. Chromatogram monitored during the large scale purification of H16-

B2406 by gel filtration chromatography. B. SDS-PAGE protein analysis for the first peak 

fraction 11 and second peak fractions (20-22).  
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Figure 11-15: A. Chromatogram monitored during the large scale purification of H16-

B1743 by gel filtration chromatography. B. SDS-PAGE protein analysis for the eluted 

fractions at  chromatogram’s peaks. The desired protein was observed at 4th peak.  
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Figure 11-16: A. Chromatogram monitored during the large scale purification of H16-

B1279 by gel filtration chromatography. B. SDS-PAGE protein analysis for the eluted 

fractions at  chromatogram’s peaks. The desired protein was observed at 4th peak.   
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11.4 Optical properties 

The chromatogram and protein electrophoresis analysis provided an initial judgement on the 

protein concentrations and purities, but for more accurate visualisation, the absorbance of 

these proteins were scanned between 250–800 nm for more comprehensive data regarding 

the protein features, concentrations and purity. Figure 11-17 displaying the spectra of B2406, 

B1743 and B1279, all three proteins showed typical features of heme cofactors of P450s with 

a Soret peak at 416 nm for B2406 and 418 nm for B1743 and B1279. Alpha/beta bands were 

also observed at 571/535 nm, 569/537 nm and 567/533 nm for B2406, B1743 and B1279 

respectively. In addition, the estimated concentrations of proteins depending on the UV 

absorbance and the extinction coefficients of the proteins were calculated from the spectrum 

values using the Beer-Lambert law (equation 6.1), which were 20, 17 and 1.6 nM for B2406, 

B1743 and B1279 respectively. The concentration for the later protein could be a barrier to 

verifying the binding of substrates and identifying potential substrates, which prompted 

further attempts to improve the purification of this protein.         
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Figure 11-17: Spectra measurement for three proteins from Cupriavidus necator H16; 

A. H16-B2406 B. H16-B1743 C. H16-B1279. Proteins were scanned for the wavelength 

250-750 nm. All three proteins showed typical features of heme cofactors of P450s with 

a Soret peak at 416 nm for B2406 and 418 nm for B1743 and B1279. Alpha/beta bands 

were also observed at 571/535 nm, 569/537 nm and 567/533 nm for B2406, B1743 and 

B1279 respectively 
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11.5 B1279 purification optimisation  

With regard to the SDS gel pictures of B1279 (Figure 11-6), it was noticed that the 

concentration of this protein was high in the crude extract, but then decreased during the 

subsequent purification steps, indicating that it is the purification process that requires 

improvement, not the expression. Many attempts were made to overcome this problem. 

Firstly, the ion exchange step was omitted to reduce the amount of protein lost during the 

purification process, but this did not increase the protein concentration (Figure 11-18). 

Secondly, the elution in the ion exchange step was changed from a step elution to a gradient 

elution and the gel filtration was omitted as the protein is higly diluted in this final step. 

However, as shown in Figure 11-19, the protein after ion exchange was not pure and applying 

gel filtration chromatography is vital. Next, the purification of B1279 expressed in another 

E. coli strain C41 (DE3) was investigated, but this protein was also associated with a higher 

yield of untargeted protein at approximately 50 kDa (Figure 11-20). Other attempts to 

enhance B1279 concentration, such as increasing the amount of imidazole in the affinity 

elution buffer and applying ultrafiltration after the final purification step were not effective.    

A comparison of the estimated concentrations of B1279 expressed in both BL21 (DE3) and 

C41 (DE3) after purification and B1743 protein is presented in Table 11-1. Both proteins 

have a similar concentration in the crude extract but the recovery of B1279 was nearly half 

that of B1743 after each purification step, leading to a decrease in concentration from 5.2 nM 

in the crude extract to 1.6 nM after the gel filtration step. This is probably due to the high 

hydrophobicity and tendency of this protein to non-specific bind to the matrix materials of 

the purification column and filtration membranes.  
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Due to the low concentration of B1279, it was decided not to proceed with the investigation 

of substrates binding to this protein, which requires a high protein concentration to indicate 

the changes in P450 features as a result of substrate binding. Instead, the activity of this 

protein to catalyse the reaction of different saturated, unsaturated, aromatic and herbicides 

substrates was assessed.     
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Figure 11-18: The first attempt at B1279 purification optimisation. The effect of 

skipping the second purification step; ion exchange on the yield of B1279 was checked 

by. A. spectra scanning B. SDS electrophoresis analysis.    
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Figure 11-19: The second attempt at B1279 purification optimisation. The effect of 

using gradient elution in the ion exchange step instead of step elution on the yield of 

B1279 was tested by. A. spectra scanning B. SDS electrophoresis analysis.   
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Figure 11-20: The third attempt at B1279 purification optimisation. B1279 was expressed 

in C41 (DE3) instead of BL21 (DE3) to evaluate the yield of B1279. The results were 

analysed by: A. spectra scanning B. SDS electrophoresis analysis. The yellow boxes 

indicate the target protein.  

 

 

kDa 

250 — 

150 —  

100 — 

70 — 

50 — 

kDa 

250 — 
150 —  

100 — 

70 — 

50 — 



 

 

213 

 

  

 

 

 

 

 

 

 

 

Table 11-1: Comparison of the purification of B1279 in BL21 (DE3) and C41 (DE3) and the 

purification of B1743 
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11.6  Substrate binding 

when the binding of 11 substrates to B2406 and B1743 proteins was assessed as described in 

section 9.10, no significant optical changes in the B2406 spectra were detected with any of 

the 11 examined substrates, while type I shifts were observed in the B1743 spectra with two 

substrates, lauric acid and 3-phenoxytoluene as shown in Figure 11-21.  

The binding of 3-phenoxytoluene to B1743 induced a very small shift in the Soret band from 

418 to 417 (blue shift), reducing the UV absorbance to 0.69 nm instead of 0.71 nm in the free 

substrate protein. Similar spectral changes were observed when 3-phenoxytulen was titrated 

to the B1743 solution; a blue shift towards 390 in the Soret maximum and the UV value 

decreased from 0.70 nm to 0.57 nm. 
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Figure 11-21: Analysis of two substrates binding to B1743. A. Spectral titration 

for B1743 with lauric acid. B. Spectral titration for B1743 with 3-

phenoxytoluene. Arrows indicate the progressive decrease in the ferric LS Soret 

band (at 418 nm) and the associated increase in the ferric HS feature at about 

390 nm 
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11.7 Activity measurement 

Among the three P450s that have been successfully expressed in E. coli and purified during 

this project, B1279 was selected to be functionally analysed. In contrast to B2406 and B1743, 

B1279 is the only protein that contains a reductase module (FMN and 2Fe-2S) fused to its 

heme domain according to the genome analysis and 3D structure modelling in chapter 10, 

thereby increasing the probability of B1279 being catalytically active as a self-sufficient 

protein. 

The activity evaluation of B1279 showed that the consumption rates of the redox partner, 

NADH, were very low, approaching its rate in the background reactions (0.048 nmole/s) with 

all substrates (lauric acid, palmitic acid, myristic acid, butyric acid, adipic acid, malate, 

indole, naphthalene, 3-phenoxytoluene, EPTC and vernolate) (Figure 11-22). The standard 

probability value “p-value” was more than 0.05 for all tested substrates. In biology, 

difference between two groups considered significant if the p-value < 0.05 (Bailey, 1995). 

When NADPH was used instead of NADH as electrons donor, five substrates showed a 

significant consumption of NADPH with p-value > 0.05. These substrates as can be seen in 

Figure 11-23are: indol, EPTC, malonic acid, adipic acid and 3-phenoxytolouene. As a result, 

B1279 is likely to be catalytically active with these five substrates. 

In general, the low catalytic activity may be because the protein was extensively diluted 

during the purification process. Losing activity as a result of extensive dilution may be due 

to either monomerisation of the enzyme domains which could affect the transformation of 

the required electrons from the cofactor to the active site or to the FMN depletion if the 

enzyme was incubated for an extended period in the dilute solution (Whitehouse et al., 2012)       
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Figure 11-22: B1279 activity analysis towards eleven substrates. The bars represent the 

NADH consumption rate as a result to use the cofactor during the reaction. The NADH 

consumption indicates an interaction with the protein that is directly proportional to the 

reaction rate. Three independent experiments were performed with triplicates with error 

bar in the standard error of the mean (SEM). The calculation of the p-value showed that 

all the results from this experiment is not significant with p-value >0.05.    
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_     _    _    _     _     _ 

Background NADPH consumption 

Figure 11-23: : B1279 activity analysis towards eleven substrates. The bars represent 

the NADPH consumption rate as a result of using the cofactor during the reaction. The 

NADPH consumption indicates an interaction with the protein that is directly 

proportional to the reaction rate. Three independent experiments were performed with 

triplicates with error bar in the standard error of the mean (SEM). The star above each 

bar (*) indicates that the result is significant with p-value <0.05 and the (-) shows that 

the result is not significant with p-value >0.05.      
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11.8 Conclusion  

Although numerous bacterial cytochrome P450 enzymes have been identified and their 

structures and functions extensively investigated, only one cytochrome from Cupriavidus sp. 

has been studied structurally and functionally, CYP116B1from Cupriavidus metallidurans 

(Warman et al., 2012). In this chapter, the first characterisation, absorbance, relevant 

substrates and activity of four cytochrome P450s from Cupriavidus necator H16 were 

reported. 

A PROSITE online tool and CLUSTALW multi-alignment of the amino acid sequences of 

these proteins with other P450 sequences from BLAST showed the conserved regions and 

the level of similarity. The homology search indicated similarity between three C. necator 

H16 P450s and the self-sufficient P450, CYP116B1. This protein showed 82%, 75% and 

55% similarity with B1279, B1009 and B2406 respectively, but there was no similarity with 

B1743 in the top twenty BLAST sequences.  

The generated 3D models of four C. necator H16 P450s showed a typical P450 fold with α 

helices, β sheets and loops. From Figure 10-5to Figure 10-7 and Figure 10-9, it is evident 

that the heme cofactors of all proteins are buried deeply in the heme domain structures where 

the heme cofactor would be expected (heme from the crystal structure of templets were used 

for this purpose) suggesting no aberration in the P450 heme domains for all four proteins.  

Generally, all heme domain structures displayed a typical P450 fold with expected helical 

features (α helices, β sheets and loops), structures’ images showed that these four proteins 

are probably monomers, folded into α/β domains characteristic of P450s. 
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From overlapping the predicted models of each heme domain and reductase domain to its 

template, a high similarity was observed and this similarity was evident as the majority of 

the secondary structure elements merge together to structure modules due to this absolute 

conservation. However, some differences in N-terminal, C-terminal and loops. Differences 

in these regions of the P450 structure was reported previously and it could be due to the 

highly variable in the primary sequence of these regions (Sirim et al., 2010). The calculated 

RMSD between all predicted models and the crystal structures of their templates were less 

than 2 Å and this low RMSD indicates the high accuracy of the generated model (Carugo, 

2007). As well as the quality of all models were checked by the quality verifying online tool 

(VERIFY 3D) and more than 80% of all models’ residues showed average (3D-1D) ≥ 0.2.  

The structure analysis of the hydrophobic residues that bound to the identified heme cofactor 

in the heme domains of B2406, B1743, B1279 and B1009 showed a very high conservation 

between the templets’ and the models’ binding residues. This high conservation also 

observed by sequences alignment of all models with the sequences of their templates. 

However few differences were noticed in some limited cases between binding residues of the 

generated models and templates but these residues still occupied same positions and have 

very similar functions to each other. The primary and the secondary structure analysis of four 

P450 from C.necator H16 leads to the belief that the reliability of all predicted models are 

high and the prosthetic groups (heme) in all heme domains are likely to be bound to the 

structure. Therefore, it is believed that all C. necator H16 P450 heme domains would be 

functionally active if they fused naturally or genetically to a proper redox partner.  

In B1279 3D model reductase, a typical structure of ferredoxin reductase was clearly 

observed by the identification of FMN and Fe-S binding motifs with the presence of four Cys 
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residues in the 2Fe-2S creating a square plane to coordinate the cofactor (shown as red stick 

in Figure 10 7). The high conservation of the residues bound to both ligands probably 

facilitated the binding of both prosthetic groups FMN and Fe-S in the model to the structure, 

thereby catalysing the transformation of electrons from a donor (NADPH or NADH) to the 

active site (heme cofactor) of B1279. The existence of the active site represented by a typical 

P450 heme cofactor connected to the structure and the fact that this heme domain naturally 

fuses to the ferredoxin reductase containing two prosthetics groups (FMN and Fe-S) suggests 

that this protein may be catalytically active.    

The 3D model of the reductase domain of B1009 showed three prosthetics groups: a 

flavodoxin-like domain FMN, ferredoxin reductase-type FAD binding domain (FAD_FR) 

and nicotinamide-adenine-dinucleotide phosphate (NADP). These three ligands were shown 

as sticks in Figure 10-11and together formed a typical reductase structure (detailed analysis 

of the prosthetics groups of the reductase domain of B1009 is absence from this study).  

Both B2406 and B1743 successfully expressed using E. coli BL21(DE3) and SB AIM at 

30°C and the high yield obtained was efficiently purified by three chromatography steps 

(affinity, ion exchange and gel filtration) without any further optimisation. Optimisation of 

B1279 expression was attempted using different E. coli strains, inducer agents and expression 

temperatures. However, during the purification process, a large amount of B1279 was lost 

and it was diluted extensively, with recovery percentages of this protein of 14%, 52% and 

31% after affinity, ion exchange and gel filtration respectively. The recovery percentages for 

the protein expressed in E. coli BL21(DE3) were similar to those when E. coli C41(DE3) 

was used. Despite the many changes applied, unfortunately the recovery of B1279 remained 

low. The analysis of the results from the B1279 purification and application of a step to step 
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comparison with the B1743 purification (Table 11-1), indicated that the low recovery of 

protein was probably due to the protein nature and tendency to non-specifically bind to the 

purification column matrix and filtration membranes.      

The expression of B1009 in E. coli BL21(DE3) and E. coli C41(DE3) was very low and the 

numerous unsuccessful attempts to enhance its expression in these two strains, such as 

different expression temperatures, different inducers and various media gave the motivation 

to examine another E. coli strain. An enhancement was observed when B1009 was expressed 

in E. coli HMS174(DE3) by using AIM SB at 30°C. However, the expressed B1009 in E. 

coli HMS174(DE3) showed low solubility.  

The light absorbance scanning of B2405, B1743 and B1279 between 250-800 nm showed 

typical features of heme cofactors of P450, confirming the sequence analysis and 3D 

structure findings that these three proteins are new members of the P450 monooxygenases 

superfamily. With regard to potential substrates of B2406 and B1743, changes in the spectra 

of the lauric acid-B1743 and 3-phenoxytoluene -B1743 complexes were observed. B1279 

was excluded from the binding experiments because it was unlikely to observe any change 

in its spectra due to the low concentration after the purification process. Instead, B1279 

activity was investigated with all 11 substrates using NADPH and NADH as cofactors 

proteins, showed possible activity with indol, EPTC, malonic acid, adipic acid and 3-

phenoxytolouene as indicated by the increase in NADPH consumption rate in substrate-

enzyme solution in comparison to SF B1279 solution.   
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12 Conclusion and Future Prospects 
 

12.1 Cytochrome P450 BM-3  

Despite the fact that P450 BM-3 has been the subject of study for many years, only a few 

researchers have reported the effect of co-solvents on BM-3 activity. Previously, BM-3 

tolerance was investigated in traditional solvents which were classified as hazardous 

materials according to many classifications such as the one published by GSK in 2010 

(Henderson et al., 2011). In recent years, using alternative green solvents has earned the 

attention of both industrialists and academics due to their environmental advantages 

including waste reduction, hazard elimination and process economy improvement.      

In part II of the project, I used three green solvents, 1-butanol, 2-butanol and dimethyl 

carbonate, to dissolve one of the most common insoluble fatty acid substrates, lauric acid, 

for hydroxylation catalysed by P450 BM-3. The activity of the WT and the W5F5 variant 

were compared in the presence of these solvents. The W5F5 variant was chosen owing to its 

tolerance to many co-solvents (Wong et al., 2004). To the best of my knowledge, this is the 

first report of the P450 BM-3 tolerance against green solvents. The results from this part of 

the project (Part II) showed that dimethyl carbonate is a very good green replacement of the 

traditional hazardous solvents, as the relative activity of the P450 BM-3, both WT and W5F5, 

was 31% and 128% respectively at 5% (v/v) solvent.    

Both the wild type and its mutant W5F5 showed very low tolerance towards other green 

solvents tested, 1-butanol and 2-butanol. It is necessary to apply further steps in the future 

towards improving BM-3 resistance against these green solvents. This could be achieved by 
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applying one or more of protein stabilisation strategies such as isolation of stable biocatalysts, 

immobilisation, chemical modification, ionic liquid coating and genetic modification (see 

section 5.7 for more detail).  

12.2 Putative cytochrome P450s from Cupriavidus necator H16  

This part of the thesis presented a detailed analysis of four novel cytochrome P450s: H16_ 

B2406, H16_B1743, H16_B1279 and H16_B1009. All these proteins are natural 

cytochromes from Cupriavidus necator H16. This bacterium can grow heterotrophically and 

autotrophically and is an excellent platform for the production of degradable bioplastic and 

value-added compounds. Three of these four proteins, B2406, B1743 and B1279, were 

successfully expressed in E. coli and purified using three chromatograph steps. The optical 

analysation of these three proteins confirmed typical features of heme cofactors of 

cytochrome P450, with a Soret peak at 416 nm for B2406 and 418 nm for B1743 and B1279, 

as well as alpha/beta at 571/535, 569/537 and 567/533 for B2406, B1743 and B1279 

respectively.  

12.2.1 P450 B2406 and P450 B1743 

The sequence alignment of B2406 and B1743 with other P450s provided by the database and 

the predicted 3D structures of these proteins showed the heme cofactors buried deep in the 

heme domain structure. Also, these results confirmed that both of these proteins are missing 

any type of reductase modules rendering them catalytically inactive.  

With regard to potential substrates of B2406 and B1743, no binding of any the 11 substrates 

tested was demonstrated by B2406, while lauric acid and 3-phenoxytoluene showed small 

blue shifts of the Soret bands towards 390 nm (Type I) when mixed with B1743. The binding 
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between these two substrates and B1743 suggests that this protein could be catalytically 

active if fused in future to an appropriate redox partner to generate a new multi-domain 

construct. The molecular Lego approach was used previously and proved to be successful for 

the enhancement of catalytic properties of P450 BM-3 heme domain. Flavodoxin from 

Desulfovibrio vulgaris (FLD) and BM-3 heme domain from Bacillus megaterium (BMP) 

were fused genetically to produce a BMP–FLD fusion protein. The catalytic activity of the 

BMP–FLD fused enzyme was improved by six fold when it was used to hydroxylate p-

nitrophenol (Fantuzzi et al., 2006; Sadeghi et al., 2000). For future work, it is recommended 

to use genetic approach to produce catalytic active fused enzyme.  

12.2.2 P450 B1279 

The genetic analysis of the B1279 sequence, the undefined structure and substrate selectivity 

cytochrome, enabled the characterisation of the heme binding cofactor, 2Fe-2S centre and 

FMN. This analysis confirmed the hypothesis that the heme domain of this protein is 

naturally fused to a reductase module. Typically, in this system, electrons are driven from a 

cofactor redox NADPH or NADH to the heme cofactor by the iron-sulphur centre and 

flavoprotein (FMN).  

The functional analysis of B1279 showed its potential to be catalytically active towards five 

substrates; indol, EPTC, malonic acid, adipic acid and 3-phenoxytolouene according to the 

significant increase in the consumption rate of NADPH. However, in general, the activity 

was very low and that may be very well because B1279 was highly diluted during the 

purification steps due to its tendency to form unwanted bonds with the purification column 

matrices. According to Whitehouse and co-workers, there are two possible scenarios for the 
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loss of P450 activity in a dilute solution, it may be due to monomerisation of the enzyme 

domains or to the FMN depletion if the enzyme was incubated for an extended period in the 

dilute solution (Whitehouse et al., 2012). The phenomenon of weak activity was also 

indicated previously with another fused protein containing the same reductase system, 

(FMN-[2Fe-2S]), RhF from Rhodococcus sp. NCIMB9784. This protein catalysed the O-

dealkylation of 7-ethoxycoumarin. Although, the consumption of the NADPH and NADH 

were not measured in the project, Raobert and co-workers confirmed the low level of 

substrate turnover depended on the fluorescent properties of the product 7-hydroxycoumarin 

(Roberts et al., 2003).    

Purification resolution depends, not only on the nature of the experimental conditions such 

as pH, ionic strength and elution conditions, but also on functional groups on the column 

matrix, so higher efficiency purification columns may be required in furture studies. 

Resolution in terms of efficiency can be improved by decreasing the particle size of the 

matrix. For example, using the Mono Q™ ion exchange column instead of Super Q and 

Superdex Peptide gel filtration column as an alternative to Hiload 26/600 Superdex 200 pg 

may increase the purification resolution to significant levels due to the small particle sizes of 

these matrices. Nonetheless, it would be interesting in the future to investigate the activity of 

B1279 with other substrates usually metabolised by Cupriavidus necator H16, such as acetic 

acid, propionic acid, glycolate, lactate, levulinic acid and benzoate (Lu et al., 2016).  

Due to time limitations and technical issues, there are many analysations yet to be performed 

in the investigation of B1279 activity with indol, EPTC, malonic acid, adipic acid and 3-

Phenoxytoluene which will be the focus of further studies of this protein. In particular, the 

determination of kinetic constants (Km and Kcat) using Michaelis equation, the pyridine 
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hemochromogen assay to detect the concentration of heme and determine the extinction 

coefficient of the hemoprotein sample using Beer-Lambert’s law, flavin cofactor 

identification using HPLC, stopped-flow kinetics to determine cofactor concentration 

dependent enzyme reduction rates and protein concentration measurement by ferrous-CO 

complex formation (Luciakova, 2015; Warman et al., 2012).  

12.2.3 P450 B1009 

H16_B1009 was studied genetically and structurally for the first time in this project. The 

results proved that the structure of this protein consists of two domains, heme and reductase. 

The reductase domain in this protein comprises two main proteins, FAD and FMN, which 

help in the electron transformation from the redox partner to the heme cofactor (active site).   

The expression of B1009 in two E. coli strains; BL21(DE3) and C41(DE3) was very low. All 

attempts to improve B1009 expression in these strains like using different media, 

temperatures, inducer agents and expression time were unsuccessful. Fortunately, A 

significant improvement in protein expression was observed when E. coli HMS174(DE3) 

strain was used. However, B1009 showed low solubility when E. coli HMS174(DE3) was 

used.  therefore it would be interesting to investigate the improvement of protein solubility 

in the future by using one or more of the tradition techniques to increase protein solubility in 

E. coli such as cultivation at reduced temperatures, changing media compositions and fusing 

to affinity tags like maltose binding protein (MBP) and N-utilizing substance A (NusA) 

(Sørensen & Mortensen, 2005).   

In general, these findings indicate that our knowledge regarding cytochrome P450 enzymes 

suggests that general rules cannot be applied to all members of this superfamily or even to 
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all P450s from Cupriavidus necator H16. Every new P540 will open the door to new 

products, substrates and catalytic reactions as well as to unlimited biotechnological 

knowledge.    
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Appendices 

Appendix I: Sequences alignment  
 

B2406 heme domain:   

Heme domain sequence alignment between B2406 and crystal structure (PDB ID:5HDI.A.). 

The model was suggested as a best hit by SWISS MODEL and Phyre online tools. Residues 

that bound to the heme cofactor were highlighted in yellow. (|) indicating similar identity, (.) 

is for strongly similar residues and (:) to indicate weak similarity. The alignment was 

produced by using ClustalW online tool  

  

 

 

 

B2406           1 MKHHHHHHPMSDYDIPTTENLYFQGAHMPDTDIDPLSAVTHPDPYPYYRE   50 

                              ..|....|.:|             .|.:..||||.|.. 

5HDI            1 ------------MTIAKDANTFF-------------GAESVQDPYPLYER   25 

 

B2406          51 LAASQPFFRDDRLGLWVAAGPQEVADVLAHSDCRVRPP--AQPVPPALAG   98 

                  :.|:....|......:...|...|.:.:.      ||.  :..:...:.. 

5HDI           26 MRAAGSVHRIANSDFYAVCGWDAVNEAIG------RPEDFSSNLTATMTY   69 

 

B2406          99 TAAG--------ELFG--RLVRMNDGAAHAPLKALLMPMLAGIDPAAAAQ  138 

                  ||.|        .|.|  .::...|..|||..:.|::..|       ||: 

5HDI           70 TAEGTAKPFEMDPLGGPTHVLATADDPAHAVHRKLVLRHL-------AAK  112 

 

B2406         139 RATVLAA-VLDAGEASWA-AMSGECINRWLFT----LPVVTVADLLGLPV  182 

                  |..|:.. .:.|.:..|. .|...|| .|:..    ||::.||:|:|||  

5HDI          113 RIRVMEQFTVQAADRLWVDGMQDGCI-EWMGAMANRLPMMVVAELIGLP-  160 

 

B2406         183 ANEGSSAAEAAQRVA-AFAGAQ--SPLADAPAVRAGAEAAQWLGHWLADA  229 

                        ..:.||.|. .:|..|  ..|.:...:.|...|...|..::.:. 

5HDI          161 ------DPDIAQLVKWGYAATQLLEGLVENDQLVAAGVALMELSGYIFEQ  204 

 

B2406         230 ADGAGPLP------ALRQAARAAGIDAQAVAANIIGLLVQACEATAALAG  273 

                  .|.|...|      .|..|..:..:|.......::.|.....|:||||.| 

5HDI          205 FDRAAADPRDNLLGELATACASGELDTLTAQVMMVTLFAAGGESTAALLG  254 

 

B2406         274 NTLLRLG-RDTTQSGLP-----LDAVVARVAREDPPVQNTRRFLAADAQL  317 

                  :.:..|. |...|..:.     |.|.:....|.:||.:...|.:.....| 

5HDI          255 SAVWILATRPDIQQQVRANPELLGAFIEETLRYEPPFRGHYRHVRNATTL  304 

 

B2406         318 CGHAVKAGDAVLVLLAAASCSGAAASERPW-------------TFGHGRH  354 

                  .|..:.| |:.|:||..|:....|..|.|.             :||.|.| 

5HDI          305 DGTELPA-DSHLLLLWGAANRDPAQFEAPGEFRLDRAGGKGHISFGKGAH  353 

 

B2406         355 ACPGDRLAQALAAATVAALRARGADPAALAQAFRYRPSLNARIPHFL---  401 

                  .|.|..||: |.|..|..|..........|....:.||:..|....|    

5HDI          354 FCVGAALAR-LEARIVLRLLLDRTSVIEAADVGGWLPSILVRRIERLELA  402 



 

 

2 

 

B1743 heme domain:   

Heme domain sequence alignment between B1743 and crystal structure (PDB ID: 2UVN. 

A.). The model was suggested as a best hit by SWISS MODEL and Phyre online tools. 

Residues that bound to the heme cofactor were highlighted in yellow. (|) indicating similar 

identity, (.) is for strongly similar residues and (:) to indicate weak similarity. The alignment 

was produced by using ClustalW online tool. 

 

 

 

 

 

 

B1743           1 MKHHHHHHPMSDYDIPTTENLYFQGAHMTDTNQHALLHDGYDLLSDHYVQ     50 

                   .|||||                   |||....|..               

2UVN.           1 -MHHHHH-------------------HMTSVMSHEF--------------     16 

 

B1743          51 EAHALWRDIRSSGCPVAHSEKWGGSWLP-----TTYDDIHHVA--QNPA-     92 

                                .:|.:|.|...| |     ..:|.:|||.  |.|.  

2UVN.          17 --------------QLATAETWPNPW-PMYRALRDHDPVHHVVPPQRPEY     51 

 

B1743          93 --VFSSRAAEI-------------------AGEVPPQGSGLVLPPLTSDP    121 

                    ...||.|::                   .||:...|.....|.:..|| 

2UVN.          52 DYYVLSRHADVWSAARDHQTFSSAQGLTVNYGELEMIGLHDTPPMVMQDP    101 

 

B1743         122 PDHKIHRDLLEPYFTPARVAAIEPYAQSLARDLARRVAVKGEADLGEDYS    171 

                  |.|...|.|:...|||.:|..:||..:....:...::...|..|:..:.. 

2UVN.         102 PVHTEFRKLVSRGFTPRQVETVEPTVRKFVVERLEKLRANGGGDIVTELF    151 

 

B1743         172 KPFVLSLLTRFLDVPDDRQERFMDWAIRVLKYGPFDQELRKA--AFDEAF    219 

                  ||....::..:|.||::...:|..|...::.....|.....|  |..... 

2UVN.         152 KPLPSMVVAHYLGVPEEDWTQFDGWTQAIVAANAVDGATTGALDAVGSMM    201 

 

B1743         220 ADLEQLLKEREQDPGEDLVSHIALATI--DGKPISRKHRIGSLLLAVLAG    267 

                  |....|::.|..:|.:|.:||:..|.:  ||........:......|..| 

2UVN.         202 AYFTGLIERRRTEPADDAISHLVAAGVGADGDTAGTLSILAFTFTMVTGG    251 

 

B1743         268 ADTTWNALNASLNHLADHPADRATLINEP-GLLRTTAVEELLRFYAPL-S    315 

                  .||....|..|:..|...|..|..|:::| |:  ..|||||||..:|: . 

2UVN.         252 NDTVTGMLGGSMPLLHRRPDQRRLLLDDPEGI--PDAVEELLRLTSPVQG    299 

 

B1743         316 IARVTTEEVELKGRCIGAGERVILAYPAANRDPAVFENPDEVQLDRKR--    363 

                  :||.||.:|.:....|.||.||:|.|.:||||...: .||..:||..|   

2UVN.         300 LARTTTRDVTIGDTTIPAGRRVLLLYGSANRDERQY-GPDAAELDVTRCP    348 

 

B1743         364 NRHLTFGVGVHRCLGSHLARMEMRVAIEEWLKAIPNFERISGAVKWSAGN    413 

                  ...|||..|.|.|||:..|||:.|||:.|.|...|:||.....:.||.|: 

2UVN.         349 RNILTFSHGAHHCLGAAAARMQCRVALTELLARCPDFEVAESRIVWSGGS    398 

 

B1743         414 ARGPENVRIRVV    425 

                     ..           

2UVN.         399 YV----------    400 

 



 

 

3 

 

B1279 heme domain:   

Heme domain sequence alignment between B1279 and crystal structure (PDB ID: 6GII.A.). 

The model was suggested as a best hit by SWISS MODEL and Phyre online tools. Residues 

that bound to the heme cofactor were highlighted in yellow. (|) indicating similar identity, (.) 

is for strongly similar residues and (:) to indicate weak similarity. The alignment was 

produced by using ClustalW online tool  

 

 

 

 

 

 

B1279           1 --MKHHHHHH-----PMSDYDIPTTENLYF-QGAMANPSPSAARSGCPID     42 

                    ..||||||     |...:....|..... :|:|.......||..||:. 

6GII.           1 MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSMETELKETARGTCPVA     50 

 

B1279          43 HSALTAPNGCPVSHNAAQFDPFGDGYQQDPPEYVRWSREQEPVFYSPRLG     92 

                  |...::..||||...|..||||.|.|..||.::|||:|||.|:||:|:|. 

6GII.          51 HGGQSSVGGCPVHRLAEDFDPFQDAYMADPAQFVRWAREQVPIFYAPKLN    100 

 

B1279          93 YWVVTRYEDIKAIFRDNLTFSPSIALEKITPTGDEANAVLASYGYAMNRT    142 

                  |||||||:.||.||||.:|||||..|:.......|...||..||||.||| 

6GII.         101 YWVVTRYDTIKQIFRDPVTFSPSNVLQSFAQPSAEVRQVLERYGYAFNRT    150 

 

B1279         143 LVNEDEPAHMPRRRALMAPFTPAELAHHEPLVRRLAREYVDRFIDDGRAD    192 

                  |||||||.|:.|||.||.||....||.|||:||.|.|..|:||||.|||| 

6GII.         151 LVNEDEPMHLERRRVLMEPFASEHLAEHEPMVRELVRRAVNRFIDTGRAD    200 

 

B1279         193 LVDQMLWEVPLTVALHFLGVPEEDMDLLRQYSIAHTVNTWGRPKPEEQVA    242 

                  |||||:||||.|||||||||.::|.:.:|:::||||||.:|||.||||:| 

6GII.         201 LVDQMIWEVPFTVALHFLGVDDDDREKMRRFAIAHTVNAFGRPSPEEQLA    250 

 

B1279         243 VAHAVGNFWQLAGRILDKMREDPSGPGWMQYGLRKQKELPDVVTDSYLHS    292 

                  ||..||.|||..|.:|:|||....|||||:|.:|:||..||||||||||| 

6GII.         251 VAETVGQFWQFCGEVLEKMRRTADGPGWMRYSIRQQKLYPDVVTDSYLHS    300 

 

B1279         293 MMMAGIVAAHETTANASANAIKLLLQHPDAWREICDDPSLIPNAVEECLR    342 

                  ||.|.||||||||..|:.||:|.||:|...|||||.||||||.|.||||| 

6GII.         301 MMQAIIVAAHETTVFATTNALKTLLEHETVWREICADPSLIPAAAEECLR    350 

 

B1279         343 HNGSVAAWRRLVTRDAEVGGIRLPAGSKLLIVTSSANHDERHFADADLFD    392 

                  :||.||.|||..||:.||.|:|||.|:.:|:|.:|||||..||.|.:.|| 

6GII.         351 YNGPVAGWRRRTTREVEVEGVRLPVGANILMVVASANHDSAHFDDPEFFD    400 

 

B1279         393 IRRDNASEQLTFGYGSHQCMGKNLARMEMQVFLEELTRRLPHMRLAEQTF    442 

                  |.|.||||.|.||||:|||:|:||.|||||:.:|||:|||||||||||.| 

6GII.         401 IGRSNASEHLNFGYGAHQCLGRNLGRMEMQIMIEELSRRLPHMRLAEQRF    450 

 

B1279         443 TYVPNTSFRGPEHLLVEWDPAQNPERRDPALLEVHQPVRIGEPSAHTIAR    492 

                  .|:.|.|||.|.||.||||||||||||||                      

6GII.         451 DYLHNVSFRAPRHLWVEWDPAQNPERRDP---------------------    479 
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B1009 heme domain:   

Heme domain sequence alignment between B1009 and crystal structure (PDB ID: 1BU7.A.). 

The model was suggested by SWISS MODEL online tool. Residues that bound to the heme 

cofactor were highlighted in yellow. (|) indicating similar identity, (.) is for strongly similar 

residues and (:) to indicate weak similarity. The alignment was produced by using ClustalW 

online tool  

 

 

 

 

 

B1009         1 MKHHHHHHPMSDYDIPTTENLYFQGAHMPPPIELSSPDQASDAPHQAPAR       50 

                                                                        

1bu7.         1 --------------------------------------------------        0 

 

B1009         51 SMHAPIPEPIPRDPGWPLVGNLLQITPGALGQHLLARSRHHDGIFELNFA     100 

                     .|.| :|:...:..:.||..:......|.|:..:.....||:.... 

1bu7.          1 ----TIKE-MPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAP      45 

 

B1009         101 GRRVPFVTSVALASELCDAAQFRKYIGPPVSYLRGMAGDGLFTARSDEAN    150 

                  ||...:::|..|..|.||.::|.|.:...:.::|..|||||||:.:.|.| 

1bu7.          46 GRVTRYLSSQRLIKEACDESRFDKNLSQALKFVRDFAGDGLFTSWTHEKN     95 

 

B1009         151 WGKAHRILMPAFSQRAMKGYFDVMLRVANRLVDKWDQQGPDADIAVADDM    200 

                  |.|||.||:|:|||:|||||..:|:.:|.:||.||::...|..|.|.:|| 

1bu7.          96 WKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHIEVPEDM    145 

 

B1009         201 TRLTLDTIALSGFGYDFESFASTELHPFIEAMVGALEEAMSKLTRFALQD    250 

                  ||||||||.|.||.|.|.||...:.||||.:||.||:|||:||.|....| 

1bu7.         146 TRLTLDTIGLCGFNYRFNSFYRDQPHPFITSMVRALDEAMNKLQRANPDD    195 

 

B1009         251 RFMHAAHQKFDQDTRFMRDLVDDVIRRRRAGDAAERPGGTANDLLGLMLE    300 

                  .......::|.:|.:.|.||||.:|..|:|.      |..::|||..||. 

1bu7.         196 PAYDENKRQFQEDIKVMNDLVDKIIADRKAS------GEQSDDLLTHMLN    239 

 

B1009         301 ARDPDTDQRLDDENIRNQVITFLIAGHETTSGLLTFALYELLRNPGVMAQ    350 

                  .:||:|.:.|||||||.|:|||||||||||||||:||||.|::||.|:.: 

1bu7.         240 GKDPETGEPLDDENIRYQIITFLIAGHETTSGLLSFALYFLVKNPHVLQK    289 

 

B1009         351 AYAEVDAVLPGDAAPVYADLARLPVLDRVLKETLRLWPTAPAFAVAPFED    400 

                  |..|...||. |..|.|..:.:|..:..||.|.||||||||||::...|| 

1bu7.         290 AAEEAARVLV-DPVPSYKQVKQLKYVGMVLNEALRLWPTAPAFSLYAKED    338 

 

B1009         401 TLLGGRYLIRKDRRLSVVLTALHRDPKVWADPERFDIDRFLPEQ---EAK    447 

                  |:|||.|.:.|...|.|::..||||..:|.|    |::.|.||:   .:. 

1bu7.         339 TVLGGEYPLEKGDELMVLIPQLHRDKTIWGD----DVEEFRPERFENPSA    384 

 

B1009         448 LPRHAYMPFGNGERACIGRQFALTEAKLALALMLRNFQFTDAHDYQFRIK    497 

                  :|:||:.|||||:|||                                   

1bu7.         385 IPQHAFKPFGNGQRAC----------------------------------    400 
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B1009 heme domain:   

Heme domain sequence alignment between B1009 and crystal structure (PDB ID: 2ij2.A). 

The model was suggested as a best hit by Phyre2.2 online tool. Residues that bound to the 

heme cofactor were highlighted in yellow. (|) indicating similar identity, (.) is for strongly 

similar residues and (:) to indicate weak similarity. The alignment was produced by using 

ClustalW online tool  

 

 
 

 

 

B1009          1 MKHHHHHHPMSDYDIPTTENLYFQGAHMPPPIELSSPDQASDAPHQAPAR      50 

                                                                      

2IJ2.          1 --------------------------------------------------       0 

 

B1009          51 SMHAPIPEPIPRDPGWPLVGNLLQITPGALGQHLLARSRHHDGIFELNFA    100 

                      .|.| :|:...:..:.||..:......|.|:..:.....||:.... 

2IJ2.          1 -----TIKE-MPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAP     45 

 

B1009         101 GRRVPFVTSVALASELCDAAQFRKYIGPPVSYLRGMAGDGLFTARSDEAN    150 

                  ||...:::|..|..|.||.::|.|.:...:.::|..|||||||:.:.|.| 

2IJ2.          46 GRVTRYLSSQRLIKEACDESRFDKNLSQALKFVRDFAGDGLFTSWTHEKN     95 

 

B1009         151 WGKAHRILMPAFSQRAMKGYFDVMLRVANRLVDKWDQQGPDADIAVADDM    200 

                  |.|||.||:|:|||:|||||..:|:.:|.:||.||::...|..|.|.:|| 

2IJ2.          96 WKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHIEVPEDM    145 

 

B1009         201 TRLTLDTIALSGFGYDFESFASTELHPFIEAMVGALEEAMSKLTRFALQD    250 

                  ||||||||.|.||.|.|.||...:.||||.:||.||:|||:||.|....| 

2IJ2.         146 TRLTLDTIGLCGFNYRFNSFYRDQPHPFITSMVRALDEAMNKLQRANPDD    195 

 

B1009         251 RFMHAAHQKFDQDTRFMRDLVDDVIRRRRAGDAAERPGGTANDLLGLMLE    300 

                  .......::|.:|.:.|.||||.:|..|:|.      |..::|||..||. 

2IJ2.         196 PAYDENKRQFQEDIKVMNDLVDKIIADRKAS------GEQSDDLLTHMLN    239 

 

B1009         301 ARDPDTDQRLDDENIRNQVITFLIAGHETTSGLLTFALYELLRNPGVMAQ    350 

                  .:||:|.:.|||||||.|:|||||||||||||||:||||.|::||.|:.: 

2IJ2.         240 GKDPETGEPLDDENIRYQIITFLIAGHETTSGLLSFALYFLVKNPHVLQK    289 

 

B1009         351 AYAEVDAVLPGDAAPVYADLARLPVLDRVLKETLRLWPTAPAFAVAPFED    400 

                  |..|...||. |..|.|..:.:|..:..||.|.||||||||||::...|| 

2IJ2.         290 AAEEAARVLV-DPVPSYKQVKQLKYVGMVLNEALRLWPTAPAFSLYAKED    338 

 

B1009         401 TLLGGRYLIRKDRRLSVVLTALHRDPKVWADPERFDIDRFLPEQ---EAK    447 

                  |:|||.|.:.|...|.|::..||||..:|.|    |::.|.||:   .:. 

2IJ2.         339 TVLGGEYPLEKGDELMVLIPQLHRDKTIWGD----DVEEFRPERFENPSA    384 

 

B1009         448 LPRHAYMPFGNGERACIGRQFALTEAKLALALMLRNFQFTDAHDYQFRIK    497 

                  :|:||:.|||||:|||||:||||.||.|.|.:||::|.|.|..:|:..|| 

2IJ2.         385 IPQHAFKPFGNGQRACIGQQFALHEATLVLGMMLKHFDFEDHTNYELDIK    434 

 

B1009         498 ETLTIKPDGFTVRARRRRPHERIAAAPLCTAQAPRAGPDVQG-           539 

                  ||||:||:||.|:|:.::       .||....:|......:.  

2IJ2.         435 ETLTLKPEGFVVKAKSKK-------IPLGGIPSPSTEQSAKKV           470 
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Appendix II: Models qualification evaluation performed by VERIFY 3D. The model 

considers accurate if 80% or more of protein’s residues showed average (3D-1D) ≥ 0.2 

 

B2406 heme domain: 

VERIFY 3D results of B2406 heme domain model built by SWISS MODEL using the crystal 

structure (PDB ID: 5hdi. 1. A.). more than 82.02% protein’s residues showed average (3D-

1D) ≥ 0.2 

  

B1743 heme domain: 

VERIFY 3D results of B1743 heme domain model built by SWISS MODEL using the 

crystal structure (PDB ID: 2uvn. 1. A.). more than 98.70% of protein’s residues showed 

average (3D-1D) ≥ 0.2 
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B1279 heme domain: 

VERIFY 3D results of B1279 heme domain model built by SWISS MODEL using the 

crystal structure (PDB ID: 6gii. 1. A.). more than 94.95% of protein’s residues showed 

average (3D-1D) ≥ 0.2 

 

B1279 reductase domain: 

VERIFY 3D results of B1279 reductase domain model built by Phyre2.2 using the crystal 

structure (PDB ID: 2pia. 1. A.). more than 94.21% of protein’s residues showed average 

(3D-1D) ≥ 0.2 
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B1009 heme domain: 

VERIFY 3D results of B1009 heme domain model built by SWISS MODEL using the 

crystal structure (PDB ID: 1bu7. 1. A.). more than 90.52% of protein’s residues showed 

average (3D-1D) ≥ 0.2 

 

B1009 heme domain: 

VERIFY 3D results of B1009 heme domain model built by Phyre2.2 using the crystal 

structure (PDB ID: 2ij2. 1. A.). more than 91.92% of protein’s residues showed average 

(3D-1D) ≥ 0.2 
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B1009 reductase domain: 

VERIFY 3D results of B1009 reductase domain model built by Phyree2.2 using the crystal 

structure (PDB ID: 1j9z. 1. A.). more than 93.29% of protein’s residues showed average 

(3D-1D) ≥ 0.2 
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Appendix III: List of amino acids Abbreviations 

Amino acid 3-letter 1-letter 
Side chain 

class 

Side chain 

polarity 

Side chain 

charge 

Alanine  Ala A aliphatic nonpolar neutral 

Arginine Arg R basic basic polar positive 

Asparagine  Asn N amide polar neutral 

Aspartic acid Asp D acid acidic polar negative 

Cysteine  Cys C sulfur-containing nonpolar neutral 

Glutamic acid  Glu E acid acidic polar negative 

Glutamine Gln Q amide polar neutral 

Glycine  Gly G aliphatic nonpolar neutral 

Histidine His H basic aromatic basic polar positive (10%) 

neutral (90%) 

Isoleucine  Ile I aliphatic nonpolar neutral 

Leucine  Leu L aliphatic nonpolar neutral 

Lysine  Lys K basic basic polar positive 

Methionine Met M sulfur-containing nonpolar neutral 

Phenylalanine  Phe F aromatic nonpolar neutral 

Proline Pro P cyclic nonpolar neutral 

Serine Ser S hydroxyl-

containing 

polar neutral 

Threonine  Thr T hydroxyl-

containing 

polar neutral 

Tryptophan  Trp W aromatic nonpolar neutral 

Tyrosine  Tyr Y aromatic polar neutral 

Valine  Val V aliphatic nonpolar neutral 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Alanine
https://en.wikipedia.org/wiki/Arginine
https://en.wikipedia.org/wiki/Asparagine
https://en.wikipedia.org/wiki/Aspartic_acid
https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Glutamic_acid
https://en.wikipedia.org/wiki/Glutamine
https://en.wikipedia.org/wiki/Glycine
https://en.wikipedia.org/wiki/Histidine
https://en.wikipedia.org/wiki/Isoleucine
https://en.wikipedia.org/wiki/Leucine
https://en.wikipedia.org/wiki/Lysine
https://en.wikipedia.org/wiki/Methionine
https://en.wikipedia.org/wiki/Phenylalanine
https://en.wikipedia.org/wiki/Proline
https://en.wikipedia.org/wiki/Serine
https://en.wikipedia.org/wiki/Threonine
https://en.wikipedia.org/wiki/Tryptophan
https://en.wikipedia.org/wiki/Tyrosine
https://en.wikipedia.org/wiki/Valine
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Appendix IV: List of Publications 

Publications in preparation 

“Characterization and genetic analysis of putative cytochrome P450s from Cupriavidus 

necator H16”. Article.   

“Protein engineering for tolerance and stability improvement in non-conventional 

solvents”. Review. 

Book chapter 

Omar Ali, H., Alessa, A. H. A., Al-nuaemi, I. J., Wong, T. S. “Protein engineering for 

lignocellulose degradation.” Environmental Science and Engineering Volume 8 (2017). 1st 

ed. USA: Studium Press LLC. 

Oral Presentation 

Activity Evaluation of Cytochrome P450s, Postgraduate Research Conference, Jun  2017, 

Sheffield, UK. 

Poster Presentations 

Cytochrome P450 BM-3 tolerances in non-conventional green solvents, The First Iraqi 

Conference, October 2016, Sheffield, UK 

Cytochrome P450 BM-3 W5F5 expression and purification optimisation, Postgraduate 

Research Conference, January 2016, Sheffield, UK 

 


