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Abstract

Decision trees are a popular model for classification and regression since

they have an easy interpretation and no parameter assumptions. In the

tree building process, we choose the Gini index as the splitting crite-

rion which has good performance for data with many missing values

and many categories (values). Other splitting criteria in use include

averaged squared error and statistical significant testing. In the tree

pruning process, we use cross validation to choose the best tree which

has the minimum possible prediction error.

When the explanatory variables are time series, however, trees can

not detect the potential correlation in them and may be influenced by

the noise involved. So we use wavelet analysis to transform the origi-

nal time series into wavelet transformed variables, by decomposing the

original time series into scaling and wavelet coefficients, representing

the smooth and detail information at different resolution levels. The

basis we choose is the Haar wavelet, as it is simple for interpretation.

Other bases are also considered, but they do not have obviously better

performance than the Haar wavelet. Although the approach of using

the wavelet transform is suitable for data without too many variables

to control the computational time, the computational time increases

due to using high dimensional wavelet transformed variables is roughly

only linear in the increase in the number of variables. So the compu-

tational time will not increase rapidly when the data are transformed

into suitable resolution levels or when the number of original variables

is not a lot.

The first application of decision trees with wavelet transformed vari-

ables is panel data classification. Trees can classify each observation,

but are not able to classify each individual which contains many ob-

servations. So we design three methods for panel data classification.
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After classify each observation using trees, Method 1 classifies each in-

dividual by summarizing the major class of its observations. Method

3 transfers the panel data into cross sectional data by summarizing

the information for each individual and then uses trees to classify this

cross sectional data. Method 2 is based on Method 1 and is similar to

but more complicated than Method 3. The difference between Method

2 and Method 3 is that the transformed cross-sectional data are no

longer heart rate values or wavelet transformed heart rate values but

the probabilities for each observation to be classified as group 1. The

probability is calculated from Method 1. So we number this method as

the second one as it is based on Method 1. Results show Method 3 is

generally the best on both simulated and real data as it works directly

on individuals while Methods 1 and 2 are based on classification results

of observations, which is not our primary target.

The second and the third applications are time series prediction. In the

second one, we explore, for static regression, whether or not wavelet

transformed variables are better than original variables in regression

problems under different circumstances. This includes different sea-

sonal effects at a possible time lag of explanatory variables. The mod-

els are then applied to real liver transplantation (LT) surgery data and

China air pollution data, both of which show that the wavelet trans-

formed variables are better. Wavelet transformed variables are directly

used in the third application: interval forecasting for streaming data.

In the forecasting process, if both the predicted value and its predic-

tion interval are known, we will know more about the uncertainty in

the prediction. There are two choices for interval construction. Gaus-

sian prediction intervals work well if the time series clearly follows a

Gaussian distribution. The quantile interval is not restricted by the

Gaussian distribution assumptions, which is suitable in this context as

we do not know the distribution of the future data. The performance

is measured by coverage and interval width. Instead of using only one

model, ensemble models are also considered. By comparing trees pro-
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duced using typical models like ARIMA and GARCH in both simula-

tion and real data applications, we find trees are more computationally

efficient than both alternative models. Compared with trees, ARIMA

may have a much wider prediction interval when trend is falsely de-

tected and is slow to react when the distribution changes. GARCH has

similar performance to trees in coverage and interval width. So tree

methods are suggested for time series prediction.

When comparing the performance of wavelet transformed variables and

original variables in both classification and regression simulation and

real data applications, results show that wavelet transformed variables

are better than or equal to the performance of original variables in ac-

curacy. Models using wavelet transformed variables also provide more

detailed information, which give better understanding of the classifica-

tion or regression process.
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Chapter 1

Introduction

The research focus is prediction: newly designed methods are applied to panel data

(longitudinal data) and time series data. Prediction can be framed as a supervised

learning problem, in which training data is used for model construction, and test

data is used for measuring model performance. The new methods are based on

existing techniques but give ways to apply them to new data structures that have

not been analysed by these models before. The techniques in use are decision

trees (Breiman et al., 1984b; Hothorn et al., 2006a,b) and the wavelet transform

(Donoho & Johnstone, 1994; Percival & Walden, 2000).

1.1 Introduction to decision trees

Decision trees are a decision support tool that use a tree-like graph or model

of decisions either for classification or regression. Both classification trees and

regression trees can be seen as supervised learning models, the former one maps

the input space into predefined classes while the latter one maps the input space

into a real-valued domain. As an important part of data mining, decision trees

are a discovery and prediction-oriented, supervised inductive learning method, in

which the trained model is assumed to be applicable to future, unseen, examples.

The meaning of classification not only includes identifying which group a new

observation belongs to, on the basis of training dataset, but also includes learning

how this new observation is identified by detecting the variables’ difference between

groups. In most cases, both identifying and learning are important, but sometimes,

1



1.1 Introduction to decision trees

learning is more important when the class has already been provided. Similarly,

for regression trees, the aim is to predict the new observation’s response variable

value and understand how it is determined.

To some extent, regression trees and classification trees are similar. For regres-

sion problems, the numerical response variable with higher values can be regarded

as group one and those with lower values can be seen as group two in classifi-

cation problems. In this context, the later discussion will mainly concentrate on

classification trees, which can be easily applied to regression problems.

So why do we use decision trees instead of other methods? For learning different

variables’ behaviour between different groups, many traditional methods test vari-

ables’ values to determine whether they differ significantly or not across different

groups, typically using means and variances. Subtle trends, however, may not be

detected. So more complex statistical models, like logistic regression (Cox, 1958;

Walker & Duncan, 1967), can be built to explore the information involved in the

data, but usually require many assumptions to make parameter estimation possi-

ble. For example, logistic regression requires the observations to be independent of

each other and for there to be little or no multicollinearity among the independent

variables. If the assumptions are not valid, solutions obtained from these meth-

ods are not reliable. In practice, some variables are correlated with each other.

These are typically against the assumptions required and will inevitably lead to

unreliable results.

Since parametric methods like logistic regression have such disadvantages, non-

parametric methods are suggested which can help explore nonlinear relationships

between variables without needing such assumptions. There are many popular

nonparametric methods like neural networks (Funahashi, 1989; Specht, 1990), sup-

port vector machine (Cauwenberghs & Poggio, 2001; Suykens & Vandewalle, 1999),

and decision trees (Breiman et al., 1984b; Hothorn et al., 2006a,b). In terms of

comprehensibility, decision trees tend to be better than “black-box” models in

interpreting data structure and helping researchers understand the information

involved. These advantages undoubtedly bring convenience to decision making in

medicine (Abdar et al., 2015; Goodman et al., 2016), commerce (Sun et al., 2016;

Zhang et al., 2014), and elsewhere. Classification and regression trees (CART) pro-

posed by Loh (2011) is one type of decision trees. This model splits the original

2



1.2 Introduction to wavelet transforms

dataset recursively using the Gini index (Gini, 1912), twoing criteria (Loh, 2011)

or ANOVA (Cohen, 1988; Iversen & Norpoth, 1987) to decide which variable is

most important and continues growing the tree until some criteria are achieved.

It can output a variable importance list and the corresponding accuracy. How-

ever, CART have some undesirable properties like tending to select variables that

have many classes (values) or many missing values, which will be investigated

in Chapter 2. So an unbiased tree model called the Conditional Inference Trees

(ctree)(Hothorn et al., 2006b) will also be considered, which uses a significance

test procedure to select variables instead of selecting the variable that maximizes

an information measure. In fact, since the independent variables in the dataset in

Chapter 3 are all long time series data, and with missing observations deleted, it

actually does not make much difference whether we use CART or ctree. So in the

classification analysis in Chapter 3, the traditional CART (rpart in R) is used, and

in the regression analysis in Chapter 5, ctree is in use as that model can output

some regression information (quantiles) to use directly in the next step. But rpart

can’t output quantiles directly, so the algorithm needs to be re-designed. For the

others, there is no big difference due to which one to use in this thesis.

In Chapter 6, the performance of regression trees is analysed when fitted to

data which simply following a mix of Gaussian and uniform distributions. When

we predict this time series using simplified trees, the prediction error is calculated

and decomposed into variance and other errors. When Gaussian or uniform ef-

fect is strong, those errors have different kinds of behaviour. Other exploration

includes the best tree depth with minimum prediction error and the performance

of Gaussian and quantile prediction intervals under different conditions.

1.2 Introduction to wavelet transforms

Generally, before attempting classification or regression, data preprocessing is es-

sential. Input data contain redundant information as well as useful information.

Redundant information may influence or even dominate the data information ex-

ploration. When the number of input variables is too large to conveniently handle,

typically dimension reduction methods will be applied like PCA (principal compo-

nent analysis) (Schölkopf et al., 1997; Tipping & Bishop, 1999) or LASSO (least

3



1.2 Introduction to wavelet transforms

absolute shrinkage and selection operator) (Meinshausen & Bühlmann, 2006; Tib-

shirani, 1996). PCA works by giving different weights to different variables, so

as to strengthen the role of important variables, which have greater contributions

to the data variance, while weakening that of redundant ones. LASSO works by

selecting important variables when doing regression. In most cases, these methods

are suitable for models with a lot of variables and are used as methods of dimen-

sion reduction. But for datasets having fewer variables, dimension reduction is not

required. However, it is still important to separate useful information from the

original variables. One method to do this is the wavelet transform.

To discover signal information on different resolution levels is like using a cam-

era to enjoy landscape pictures far or near. A camera lens can take broad landscape

pictures as well as zoom in to capture microscopic detail that is not easily seen by

the human eye. The original idea of signal decomposition comes from the Fourier

transform, which represents a signal using a sum of sine and cosine functions.

But the limitation of the Fourier transform is also obvious. It has only frequency

resolution and no time resolution. In other words, in the context of the Fourier

transform, a given signal is composed into a collection of the individual frequencies

of periodic signals, which is in the frequency zone. However, the wavelet transform

gives resolution in both time and frequency.

The wavelet transform decomposes the original time series into different fre-

quency bands including scaling (smooth) and wavelet (detail) coefficients on dif-

ferent levels at different time points. Noise has high frequency so it has little

information on coefficients on higher resolution levels. In this way, the noise part

can be separated from the signal and more information can be discovered. Orig-

inally, the wavelet transform and wavelet shrinkage (Donoho & Johnstone, 1994)

were commonly used to smooth out noise variation in signals, a process called

denoising. However, even without a formal denoising step, wavelets are able to

separate out “signal” from “noise”. This has a side effect of increasing the original

data dimension as wavelet transformed data are on many resolution levels. So the

method is basically suitable for datasets without high dimension.

When the data contain time series, like streaming data, the current data are

usually dependent on old data. Building models using only the most recent data
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seems unwise, so storing old information and utilizing long term variable informa-

tion in an efficient way is important. The wavelet transform can pick out long

term averages and short term fluctuations in data which can be exploited for clas-

sification when consecutive observations lack independence.

So, in this research, the wavelet transform is used before decision trees are

applied to the data. Models with and without wavelet-transformed data are com-

pared in terms of accuracy, explanatory ability and stability.

1.3 Motivating datasets

The data mainly used in this research are a medical dataset of monitoring variables

recorded during the liver transplant surgery. It will be used for panel data analysis

and time series analysis, including static time series and streaming data. In general,

An,k,t is denoted as the data value for individual n = 1, 2, . . . , N , variable k =

1, 2, . . . , K, and time t = 1, 2, . . . , Tn, allowing the length of the time series to

be different for each individual but the same for each variable in each individual.

Thus, for the nth individual, the data can be expressed as a Tn ×K matrix

An, ·, · =


An,1,1 · · · An,K,1
An,1,2 · · · An,K,2

...
. . .

...
An,1,Tn · · · An,K,Tn

 .

The full data can be written as a
N∑
n=1

Tn ×K matrix A where

AT =
[
AT1, ·, · AT2, ·, · · · · ATN, ·, ·

]
.

Such explanatory data are referred to as panel (or longitudinal) data. The response

variable y gives the group that each individual belongs to, which are shown as a

vector

yT =
[
yT1, · yT2, · · · · yTN, ·

]
,

where yn, · has Tn identical values, defined by (yn, 1, yn, 2, . . . , yn, Tn). Since each

individual belongs to only one group, the group labels for observations in that

individual are the same.
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1.3 Motivating datasets

Table 1.1: Monitoring variables recorded in the liver transplant (LT) surgery.

Abbreviation Full name Unit

CO cardiac output L/min
CI cardiac index L/min/m2

SVR systemic vascular resistance dyne-s/cm5

SVRI systemic vascular resistance index dyne-s/cm5/m2

Sys systolic pressure mm Hg
MAP mean arterial pressure mm Hg
Dia diastolic pressure mm Hg
SV stroke volume mL/beat
SVI stroke volume index mL/m2/beat
HR heart rate beats/min

In medical control experiments, different treatments lead to different effects on

individuals in different groups. Interpretation of how different treatments influence

monitoring variables is important. That is studied as the panel data analysis in

Chapter 3. During the surgery, if surgeons can monitor the real time condition of

patients, that will save lives in an emergency. Forecasting monitoring variables like

heart rate even one minute ahead will help surgeons monitor the condition better.

That is the goal of the time series analysis in Chapter 4 for static prediction and

in Chapter 5 for dynamic forecasting. Whereas static time series are used for a

basis model-building analysis in Chapter 4, including a China air pollution data

as the second static time series prediction application.

The data are from patients undergoing liver transplantation (LT) surgery be-

tween September 2004 and December 2011 at St James’ University Hospital, Leeds,

UK, which were recorded using LIDCO monitoring equipment (LIDCO, Cam-

bridge, UK). The intraoperative monitoring variables recorded are shown in Table

1.1; for more details, see Milan et al. (2016).

In the panel data context of Chapter 3, the task is to classify each individual

which contains many time points. Trees can only do point prediction, so three

methods are designed to do classification on individual levels by combining time

point information. We are going to check which method is better under situations

like different noise levels and group imbalance. In addition, investigations also
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1.3 Motivating datasets

include whether or not wavelet transformed data have a better performance than

the original data.

In the time series context, in Chapters 4 and 5, only one variable, heart rate

(HR), is in use instead of all K variables (other variables can be used as well in

future work). We analyse each patient separately by regarding each time series

An,k,. as one dataset for analysis. The aim is point prediction for the static time

series analysis in Chapters 4 as the basic exploration and interval prediction for

the streaming data in Chapter 5. Static time series analysis is a basic analysis

of applying wavelet transformed data to point prediction using decision trees.

Although streaming data analysis is already quite popular, work based on interval

prediction is rare. So new methods are designed for interval prediction with a

suitable width. In Chapter 4, a weight matrix is also used to measure the influence

of neighbouring provinces in the air pollution application.
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Chapter 2

Theory review of trees and the
wavelet transform

2.1 Introduction

This chapter gives a theoretical review of classification trees, regression trees and

wavelet analysis. For wavelet analysis, a brief review is shown in Section 2.6 but

primarily the focus is on trees. For trees, the construction process includes tree

building (Section 2.2) and tree pruning (Section 2.3). After that some proper-

ties of trees are explored, including the bias property of different splitting criteria

(Section 2.4), which help choose the best criterion between entropy and Gini for

classification trees. Exploration also includes the computational complexity in-

crease caused by noise variables (Section 2.5), which tells whether the increase of

dimension caused by wavelet transform is worthwhile or not. Since regression trees

are similar to classification trees except for the splitting criteria, we concentrate on

classification trees. There are many variations of trees including the classification

and regression trees (CART) (Breiman et al., 1984a; Loh, 2011), C4.5 (Quinlan,

2014), CHAID (Kass, 1980) and ctree (Hothorn et al., 2006b). Their tree construc-

tion processes are similar but with different splitting criteria and stopping rules

or pruning criteria. In R, two tree packages are suitable for analyses: ‘rpart’ (Th-

erneau et al., 2014) and ‘ctree’ (Hothorn et al., 2015), which are based on CART

and ctree. So this chapter concentrates on CART and gives a brief introduction

to ctree.
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2.2 Tree building process

2.2 Tree building process

A decision tree can be seen as a set of branching decision rules. Figure 2.1 shows

root node

internal node internal node

terminal 

node

terminal 

node

terminal 

node

terminal 

node

(a) Example 1

parent node

child node child node

(b) Example 2

Figure 2.1: Classification tree examples. The trees are not constrained to two
or three levels. These are examples to illustrate the mutual relationship between
successive levels.

the diagrams of typical trees. A root node is followed by internal nodes and the

final nodes are called terminal nodes or leaves. Alternatively, we can refer to the

sub node of a parent node as a child node. The number of child nodes per parent

node is usually two but can be three or more. From the parent node to child

nodes, the tree grows according to some decision rules based on an input attribute

X. For example, if X < c, then it goes to the left child node, or else it goes to

the right child node. Each node contains a subset of data. The task of inducing a

decision tree is typically handled by a recursive partitioning algorithm which, at

each non-terminal node in the tree, branches on that attribute which discriminates

best between the cases filtered down to that node. The aim of growing the tree

is to make each sub dataset after splitting as “pure” as possible, which means if

there is only a few categories or values for the target attribute in this child node,

the tree built has a good performance.

2.2.1 Classification tree building process

How to build such a tree? The difficulty is obvious. Global pattern optimisation

of the tree’s decision rules is an NP (nondeterministic polynomial time) problem,
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2.2 Tree building process

which means finding the best pattern is high in computation complexity. Note that

an ordered variable with K distinct values has (K − 1) splits of the form X 6 c,

and an unordered variable with K distinct unordered values has (2K−1 − 1) splits

of the form X ∈ S (Loh, 2011). Alternatively, local optimisation can replace it,

which means choosing the best split at every growing step. The subsequent split

chosen will not influence the split chosen beforehand. At each step, the “best”

split is chosen and it will not be changed in the successive steps. The “best” here

can be measured in many ways, one of which is impurity. The best split chosen

has the biggest decrease in impurity from parent node to child nodes.

Impurity here is highly related to information. The more information one

attribute has, the more impure it is. For example, if there is only one class or one

possible value in an attribute, then it is definitely pure and it has no information

in it as it has no other possibles. If there are many classes or many possible values

in an attribute and it is difficult to distinguish which class or value is the main

one, then it becomes impure. The more equal the number of observations among

classes or the more possible values the target attribute has, the more impure the

attribute will be, as it is hard to tell which is the main class. Mathematically,

impurity based criteria can be defined as the following (Rokach & Maimon, 2005,

2008).

For a classification tree, given a random variable Y with K discrete values,

calculated from a vector of observations’ proportions P = (p1, p2, ..., pK), where

the proportions have values in [0, 1], an impurity measure can be described as the

projection

Φ : [0, 1]K −→ R

that satisfies the following conditions:

(1) Φ(P ) > 0 (impurity value is not negative);

(2) Φ(P ) is minimum if ∃ k, such that component pk = 1 (Y has only one value);
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2.2 Tree building process

(3) Φ(P ) is maximum if ∀ k, pk = 1/K, where 1 6 k 6 K (Y has many val-

ues which share the same proportion);

(4) Φ(P ) is exchangeable with respect to the components of P ;

(5) Φ(P ) is smooth (differentiable everywhere) in its range.

The impurity reduction from the parent node to child nodes is described using

Φ(P ) as the following. For example, a root node, containing data set S, has im-

purity as Φ(P ). After the first splitting using variable X, the root node has M

child nodes each containing sub dataset Sm, m = 1, 2, . . . ,M , satisfying

M⋃
m=1

Sm = S and Sm
⋂

Sm′ = ∅.

Sm is a sub dataset in S, in which observations have the same classes or value

range. For numerical X, Sm can be a sample set satisfying Sm = S{X < x}. The

value of x is chosen in the splitting step. For numerical X, the measure finds the

best threshold and explore in that threshold for the best X value instead of trying

every value in X. Then the impurity reduction is

4ΦX(P{Y |S}) = Φ(P{Y |S})−
M∑
m=1

p{Sm} · ΦX(P{Y |Sm}),

and

p{Sm} =
number of observations in Sm
number of observations in S

.

Two commonly used splitting criteria are shown as the following with the reason

why they satisfy the impurity based criteria. One of the impurity measures is

information (Jones, 1979), which is used to evaluate the information quantity

involved in an event.

Let S be a set of events E1, E2, . . . , EK in which P (Ek) = pk with 0 6 pk 6 1

for k = 1, 2, . . . , K and

p1 + p2 + · · ·+ pK = 1.
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2.2 Tree building process

Then comes the following definition.

Definition 1. The self-information of event Ek is written as I(Ek) (0,∞) and

defined by

I(Ek) = − log2 pk.

There is no specific base of the logarithm since a base change will only influence

the scale of the units. In most cases, the most common bases encountered are 2

and e. With base 2, I is measured in bits whereas, in base e, the units of I are

nats, which is 0.693 times the number of bits. Without notation, base 2 is used. It

can be seen that the smaller pk is, the larger I(Ek) is. This is consistent with the

fact that the rarer an event is, the more information is conveyed by its occurrence.

Further, if two events Ej and Ek are independent (j, k ∈ {1, 2, . . . , K}), then

information has the property of

I(Ej ∪ Ek) = I(Ej) + I(Ek).

Definition 2. The entropy is the expectation, or average of the self-information

E(I) = −
K∑
k=1

pk log2 pk.

Since pk may be zero, pk log2 pk could be indeterminate in this definition, so

when pk = 0, the value zero is assigned to pk log2 pk (Jones, 1979). The proof

that entropy information meets the conditions to be an impurity measurement is

as follows.

(1) E(I) > 0.

Since 0 6 pk 6 1, so − log2 pk > 0. Then it is easy to see that the sum of

pk log2 pk over k is also greater than or equal to zero.

(2) E(I) is minimum if ∃ k, such that pk = 1.

If there is any k1 such that pk1 = 1, then the other pk will be zero, for all k 6= k1.
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2.2 Tree building process

Then −pk1 log2 pk1 = 0 and the information for other k is also zero by definition.

So E(I) = 0. According to (1), 0 is the minimum value of E(I).

(3) E(I) is maximised if ∀ k, pk = 1/K, where 1 6 k 6 K Jones (1979).

It can be easily proven that for x > 0, ln x 6 x− 1. Then using this result,

K∑
k=1

pk ln 1
K pk

6
K∑
k=1

pk ( 1
Kpk
− 1) 6

K∑
k=1

( 1
K
− pk) 6 1− 1 = 0.

(2.1)

So
K∑
k=1

pk ln
1

K pk
6 0.

Using Equation 2.1, it is easy to obtain

−
K∑
k=1

pk ln pk 6
K∑
k=1

pk ln K 6 ln K.

By dividing the above inequality by ln 2, the same result is obtained for logarithm

based on 2. That is

−
K∑
k=1

pk log2 pk 6
K∑
k=1

pk log2 K 6 log2 K.

Now it has been proven that E(I) gets its maximum value of log2 K only when

p1 = p2 = · · · = pK = 1/K.

(4) E(I) is exchangeable with respect to pk.

Since addition is commutative, the position of pk log2 pk can be changed with

others, so it is obvious E(I) is symmetric with respect to components of P .

(5) E(I) is smooth (first differentiable everywhere) in its range.
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2.2 Tree building process

Since I has its special value of 0 (when pk = 0), so it is assumed that pk 6= 0

when proving (5). The first differential result of E(I) for pk on (0, 1] is

∂ E(I)

∂ pk
= −K −

K∑
k=1

log2 pk.

So (5) is proved.

Now the entropy information has be proven as an impurity measure. The im-

purity reduction of the target attribute Y can be expressed as

Entropy GainX(Y, S) = Entropy (Y, S)−
M∑
m=1

p{Sm} · Entropy (Y, Sm),

and the entropy gain rate is

Entropy Gain rateX(Y, S) = Entropy GainX(Y, S)/Entropy (Y, S),

where

Entropy (Y, S) = −
∑
Y ∈S

p{Y |S} · log2 p{Y |S}

and

Entropy (Y, Sm) = −
∑
Y ∈Sm

p{Y |Sm} · log2 p{Y |Sm}.

Until now, we have applied the entropy information concept to the impurity mea-

surement, and proven entropy information satisfying the conditions of impurity

measure, so can be used as an impurity measure.

Another impurity measure is the Gini index, which is an impurity-based cri-

terion that measures the differences between the probability distributions of the

target attributes values. Specifically, the Gini index is a measure of how often

a randomly chosen element from the attribute set would be incorrectly labeled

if it were randomly labeled according to the distribution of labels in the subset.
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2.2 Tree building process

Mathematically, it can be computed by summing the probability pk of each class

being chosen times the probability 1− pk of a mistake in categorizing that class.

To compute the Gini index for a set of classes, suppose k ∈ {1, 2, ..., K}, and

let pk be the fraction of classes labeled with value k in the set. Then, the Gini

index can be defined as

Gini(p) =
K∑
k=1

pk (1− pk) = 1−
K∑
k=1

p2
k.

It can be proved that it meets all the conditions to be an impurity measurement.

It reaches minimum (zero) when all classes in the attribute fall into a single target

category and reaches its maximum of(1 − 1/K) when all classes in the attribute

have equal proportions. The decrease in Gini index from parent node to child

nodes is called Gini Gain, which is defined as

Gini GainX(Y, S) = Gini (Y, S)−
M∑
m=1

p{Sm} ·Gini (Y, Sm),

where

Gini (Y, S) = 1−
∑
Y=y

p2{Y |S}

and

Gini (Y, Sm) = 1−
∑
Y=y

p2{Y |Sm}.

The above equations mean that the Gini Gain is just the Gini index decrease from

parent node to child nodes after split by classes in an attribute.

2.2.2 Regression tree building process

Regression trees are similar to classification trees, except the response variable

is numerical for regression trees while that for classification trees are classical.

In a typical binary split regression tree, the input attributes space is partitioned
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by a sequence of binary splits into terminal nodes. At each terminal node, the

predicted response value is the mean of the data in each terminal node. Compared

to a classification tree, the main difference is the impurity criterion. For regression

trees, it is the averaged squared error that is used, which measures the difference

between the real data and the predicted data. For one specific node with N

observations, the impurity is

R(Y, S) =
1

N

∑
yn∈S

(
yn − ȳS

)2
,

where ȳS is the mean value of the observations in dataset S. The reason why use

ȳS as the node predicted value is due to that only using ȳS, R(Y, S) can reach its

minimum value with given yn. So the predicted response value is chosen as ȳ in

this sample set S. R(Y, S) has a simple interpretation. For sample set S, R(Y, S)

is the within node sum of squares. When dataset S is split into M subsets Sm,

m = 1, 2, . . . ,M , the proportion of observations in subset m is p{Sm}. Then the

overall sum of squared error R after splitting has the decrease

4R(Y, S) = R(Y, S)−
M∑
m=1

p{Sm} ·R (Y, Sm).

Thus a regression tree is formed by iteratively splitting nodes so as to maximise

the decrease in 4R at each step.

2.2.3 Conditional inference trees

Conditional Inference Trees (ctree) (Hothorn et al., 2006a,b) estimate a regression

relationship by binary recursive partitioning in a conditional inference framework.

Roughly, the algorithm works as follows:

1. Test the global null hypothesis of independence between each of the input

variables and the response variable (which may be multivariate as well).

Stop if this hypothesis cannot be rejected. (For example, the corresponding

p-value is bigger than a specific threshold. The threshold in use is 0.05.)

Otherwise select the input variable with strongest association to the re-

sponse. This association is measured by a p-value corresponding to a test
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for the partial null hypothesis of independence between single input variable

and the response. In the conditional inference (permutation tests), either

multiplicity-adjusted p-values (Bonferroni adjusted, default) or univariate p-

values are applied. A node is able be split when the p-value is smaller than

0.05.

2. Implement a binary split in the selected input variable. The split itself can

be established by any split criterion, including those in CART, CHAID and

so on.

3. Recursively repeat steps 1) and 2).

For univariate regression, variable selection methods in use are Spearman cor-

relation test, the Wilcoxon-Mann-Whitney test or the Kruskal-Wallis test and

permutation tests based on ANOVA statistics or correlation coefficients (Hothorn

et al., 2006b). Since ctree is based on statistical parameters, there is no bias due

to missing values.

2.3 Tree pruning

2.3.1 Complexity parameter

Trees can sometimes grow very big with only one observation in each terminal

node. Such over fitting problems will result in trees having poor generalisability

(having high training accuracy but low testing accuracy). So building a tree with

both suitable complexity and accuracy is necessary. Typically, we ‘prune back’

trees to avoid overfitting.

Before the tree pruning process, a sufficiently large tree Tmax is built. For the

tree that does not grow to be that large, it is defined as T , which is a subtree in

Tmax and sharing the same root node as Tmax. The node in either Tmax or T is

defined as t, which can be any possible node in the tree. Tt refers to the subtree of

T starting from node t to its terminal nodes. The tree and node misclassification

costs (misclassification rate) are referred to as R(T ) and R(t), and they have the

relationship

R(T ) =
∑
t∈T̃

R(t),
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where T̃ refers to the set of terminal nodes of tree T . In addition to the misclas-

sification cost, The complexity of the tree is measured by the number of terminal

nodes of the the tree. For example, for tree T , the complexity is defined as |T̃ |.
In the tree pruning process, the weakest link node(s) is cut in each step. That

means, with the same complexity increase, the node (branch) with the smallest

misclassification rate decrease will be cut. The complexity parameter α is used to

record the tree in each step, which determines the weight of complexity in the tree

pruning process. The higher the value of α, the smaller the tree will be.

In the first step, T1 is pruned from Tmax by cutting off all the terminal nodes

that do not decrease misclassification cost at all. This means T1 is the smallest

subtree of Tmax satisfying

R(T1) = R(Tmax) (2.2)

The α after this first step is defined as α1 = 0.

In the second step, the first weakest link is cut. For any node t ∈ T1, set

Rα(t) = R(t) + α|t̃|, (2.3)

where Rα(t) combines the misclassification cost and tree complexity. As node t is

itself the terminal node, so it has the complexity as 1. For any branch Tt, define

Rα(Tt) = R(Tt) + α|T̃t|. (2.4)

In that sense, define a function g1(t), t ∈ T1, by

g1(t) =
R(t)−R(Tt)

|T̃t| − 1
, t /∈ T̃1. (2.5)

For t ∈ T̃1, define g1(t) as +∞. g1(t) measures the misclassification cost decrease

from node t to the branch Tt starting from node t. The node or branch with the

minimum g1(t) value will be cut. Define the weakest link t̄1 in T1 as the node such

that

g1(t̄1) = mint∈T1g1(t) (2.6)

and put

α2 = g1(t̄1). (2.7)
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Define a new tree T2 by pruning away Tt̄1 from T1. Now continue to prune the tree

from T2. A decreasing sequence of subtrees is recorded

T1 > T2 > T3 > · · · > {t1}.

The corresponding {α} are an increasing sequence, that is

α1 < α2 < α3 < · · · < αn.

Now we need to select one of these trees (best α) as the optimum-sized tree.

Generally, the tree that has the least misclassification cost for the test data is

chosen. This is done using cross-validation.

2.3.2 Best complexity parameter chosen from cross-validation

In practice, rpart uses cross-validation to select the best complexity parameter α,

so as to decide the depth of the tree. Cross-validation is a technique to evaluate

predictive models by partitioning the original samples into a training set to fit

the model, and a test set to evaluate it. For example, if some of the observations

are selected for training and the rest for testing, the results may not be robust

due to sampling sensitivity especially when the data set size is not big. So k-fold

cross-validation is suggested to make the results more reliable.

In k-fold cross-validation, the original dataset is randomly partitioned into k

equal-sized subsets (such as k = 10). Of the k subsets, a single subset is retained

as validation data for testing the model, and the remaining k − 1 subsets are

used as training data. The cross-validation process is then repeated k times (the

folds), with each of the k subsets used exactly once as the validation data. The

k results from the folds can then be averaged (or otherwise combined) to produce

a single estimate of tree performance. The advantage of this method is that all

observations are used for both training and validation, and each observation is

used for validation exactly once.

The process for k-fold cross-validation in rpart is shown in Figure 2.2:

Step 1 Randomly sample a training dataset A1 and treat the remaining data A2 as

a test dataset for which the explanatory variable is known but the response

information is unknown;
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Figure 2.2: k-fold cross-validation flowchart.
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Step 2 Use all the data in A1 to build a tree, and let the corresponding α value list

be (α1, α2, ..., αn). So each α value leads to a tree with specific depth.

Step 3 Divide A1 into k folds as B1, B2,... Bk;

Step 4 Choose α1 as the complexity parameter in the tree pruning process;

Step 5 Choose B2 to Bk as training data and B1 as test data. Use this training data

and α = α1 to build a tree. The error of classify the test data using this tree

is recorded as ex1 .

Step 6 Repeat Step 5 using B2, B3,... Bk as test data separately and get k error

values. The mean and the standard deviation of these k errors are noted as

ex and ex,sd (short for standard error) for α1.

Step 7 Repeat Steps 4–6 and get the ex and ex,sd for every α value.

Step 8 Choose the tree depth with the lowest ex.

The tree being chosen will be used for testing using data A2.

2.4 Splitting bias

In this section, the properties of different splitting criteria (entropy, Gini, etc.) are

explored under different conditions. The splitting bias is defined as the difference

between the observed and the theoretical information gain. For classification trees,

one of the most popular criteria is information gain, namely the Shannon entropy

information gain from parent node to child nodes. However this criterion is liable

to unfairly favour attributes with large numbers of values or categories compared

to those with few. This will be proven later in this section. In this sense, noise

variables with large numbers of values could be selected in preference to genuinely

informative attributes with fewer values. In general, this would lead to poorer pre-

dictive performance from the resulting tree. The probability to choose predictor

variables with more information decreases.

In addition, splitting rules favour those noisy predictor variables with more missing
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values since their sample size is smaller than others. In this case, as the sample

size decreases, the probability for choosing noisy predictor variables with more

information decreases.

The gain ratio calculated from information gain also suffers the same kind of

problem. It is acknowledged that attributes with very low information values (low

attribute information) appear to gain an unfair advantage (Strobl et al., 2007,

sections:1-2.2).

Another splitting criterion is χ2. In fact, this criterion is not biased since for

different degrees of freedom, χ2 follows different probability distribution functions.

Using degrees of freedom, χ2 eliminates the problem of bias. Although there are

splitting criteria like χ2 that have no bias, CHAID (Kass, 1980) in R, which uses χ2

as the splitting criterion, however requires dependent and explanatory variables

both to be categorical variables, which is not suitable for the datasets. For regres-

sion problems, ctree will be used, which is an unbiased method, having no splitting

bias in these cases.

2.4.1 Bias due to missing values.

In this section, it will be shown that both Gini and entropy information have bias

in favour of choosing variables with more missing values. So no matter which

splitting criterion is chosen, we have to face the bias due to missing values. That

is why pre-processing is applied to missing values in the real data application in

Chapter 3.

When information gain is calculated, there is a bias between the theoretical

gain and observed gain values due to the difference between the sample and pop-

ulation distributions. This bias can be different when there are missing values.

For missing values in independent variables, most procedures deal with them by

leaving out incomplete observations. The models in this thesis actually are more

ambitious. Any observation with values for the dependent variable and at least

one independent variable will participate in the modelling (Therneau et al., 1997).

For the Gini index, how bias is influenced by missing values has been investigated
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2.4 Splitting bias

by Strobl et al. (2007)(Sections 1-2.2). So an equivalent analysis for entropy is

conducted as the following.

Assume there are an independent variable X and a dependent variable Y with

two categories. The number of observations in the first category for Y is N1, and

the other is N2. Then the entropy information for the root node is

entN = −N1

N
log2

(
N1

N

)
− N2

N
log2

(
N2

N

)
.

In order to calculate the expectation of entN , for simplicity, we first calculate the

bias for E
(
N2

N
log2

(
N2

N

))
, where N2 ∼ B (N, p) and N is fixed. The result is

E

(
−N2

N
log2

(
N2

N

))
=E

(
−N2

N
(log2 (N2)− log2 (N))

)
=E

(
−N2

N
(log2 (N2))

)
+ p log2 (N) .

If bias has value 0, that is the observed information gain is equal to the theoretical

information gain, then

E

(
−N2

N
log2

(
N2

N

))
= −p log2 (p) ,

so that

E

(
−N2

N
(log2 (N2))

)
= −p log2 (Np) .

Then bias is given by E
(
−N2

N
(log2 (N2))

)
− (−p log2 (Np)). Similarly, we can get

the bias for N1, which follows B (N, 1− p). Then the total bias for the root node

is

E (biasN) =E

(
−N1

N
(log2 (N1))

)
− (− (1− p) log2 (N (1− p)))

+ E

(
−N2

N
(log2 (N2))

)
− (−p log2 (Np)) .

It is not easy to get E
(
−N1

N
(log2 (N1))

)
and E

(
−N2

N
(log2 (N2))

)
− (−p log2 (Np))

analytically as they contain the terms of the form E (N1 log2 (N1)), so a polynomial

expression is used to approximate the log function. Given that

log2 (1 + a) = a− a2

2
+
a3

3
· · · , (2.8)
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2.4 Splitting bias

for |a| < 1, we substitute a = p− 1 in Equation (2.8), and require p not be small.

If X ∼ B (n, p), then its moments are given by

E (X) = np,

E
(
X2
)

= np+ n (n− 1) p2,

E
(
X3
)

= np+ p2
(
3n2 − 3n

)
+ p3

(
n3 − 3n2 + 2n

)
, and

E
(
Xk+1

)
= pq ·

d
(
E
(
Xk
))

dp
+ npE

(
Xk
)

for k = 3, 4, . . . .

Given that N1 and N2 are binomially distributed, we obtain, using the first two

terms in the expansion of the log function,

E
(
êntN2

)
=E

(
−X
N

log2

X

N

)
=E

[
−X
N

(
X −N
N

− 1

2

(
X −N
N

)2
)]

=E

[
−2X2

N2
+

3X

2N
+

X3

2N3

]
.

Now, using the formulae for E(Xk), it is easy to get

E
(
êntN2

)
=

(
1

2N2
− 2

N
+

3

2

)
p+

(
− 3

2N2
+

7

2N
− 2

)
p2 +

(
1

N2
− 3

2N
+

1

2

)
p3.

Then, the bias of entropy for N2 can be calculated as

biasN2
=E

(
êntN2

)
− E (entN2

)

=E
(
êntN2

)
−
(
−2p2 +

3

2
p+

1

2
p3
)

=

(
1

2N2
− 2

N

)
p+

(
− 3

2N2
+

7

2N

)
p2 +

(
1

N2
− 3

2N

)
p3.

Similarly, the bias for N1 is

biasN1 =

(
1

2N2
− 2

N

)
(1− p) +

(
− 3

2N2
+

7

2N

)
(1− p)2 +

(
1

N2
− 3

2N

)
p3,

so the bias for the root node is

biasN =biasN1 + biasN2

=

(
1

2N2
− 2

N

)
+

(
− 3

2N2
+

7

2N

)(
1− 2p+ 2p2

)
+

(
2

N2
− 3

N

)
p3.

(2.9)
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2.4 Splitting bias

For the root node, the expected entropy information is E(ênt) for N observations.

After splitting the root node, it is easy to get the left child node and the right child

node with NL observations and NR observations respectively. Two cases where X

and Y are independent and when they are associated are considered as the follow-

ing.

Case 1: explanatory variable X is independent of response variable Y .

In this case,

E
(
4̂ent

)
=E

(
ênt
)
− NR

N
E
(
êntR

)
− NL

N
E
(
êntL

)
=biasN + E (ent)

− NR

N
(biasR + E (entR))− NL

N
(biasL + E (entL)) .

Since X is independent of Y , so E (ent) = E (entR) = E (entL), and

E
(
4̂ent

)
=biasN −

NR

N
biasNR −

NL

N
biasNL

=

(
2

N
+

1

2N2
− 1

2NLNR

)
p+

(
− 3

2N2
+

3

2NLNR

− 7

2N

)
p2

+

(
3

2N
+

1

N2
− 1

NLNR

)
p3 +

(
2

N
+

1

2N2
− 1

2NLNR

)
(1− p)

+

(
− 3

2N2
+

3

2NLNR

− 7

2N

)
(1− p)2

+

(
3

2N
+

1

N2
− 1

NLNR

)
(1− p)3 .

As X, Y are independent, the split in X can be anywhere. It is assumed to be in

the middle of X, so NL = NR = N
2

. The other circumstances can be explored in

future work. Then we have

E
(
4̂ent

)
=

(
2

N
− 3

2N2

)
p+

(
9

2N2
− 7

2N

)
p2 +

(
3

2N
− 3

N2

)
p3+(

2

N
− 3

2N2

)
(1− p) +

(
9

2N2
− 7

2N

)
(1− p)2 +(

3

2N
− 3

N2

)
(1− p)3 .
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Since E (4ent) = 0, then

bias = E
(
4̂ent

)
.

If p = 0.5, then bias = 5
8N

. This shows that, when X and Y are independent, as

sample size N decreases, entropy gain increases, which means noise (redundant)

variables with more missing values have a better chance to be chosen.

Case 2: explanatory variable X is associated with response variable

Y .

In practice, if X is not a noise variable, then X and Y are associated. For

example, X and Y are related as Y = a+ bX, where a and b are constants. Since

X is dependent on Y , the split should be at the same place as that in Y . In

that case, the sample will become pure after splitting, which means E
(
êntR

)
=

E
(
êntL

)
= 0. Then, the expectation of entropy gain is:

E
(
4̂ent

)
=E

(
ênt
)
− NR

N
E
(
êntR

)
− NL

N
E
(
êntL

)
=biasN + E (ent) .

Then, the bias of the entropy gain is

bias =biasN + E (ent)− E (ent)

=biasN .

Similarly, when p = 0.5, from Equation (2.9), biasN = −5/ (8N) < 0. So, there

are circumstances, when X is not a noise variable, and X, Y are dependent, that

we have a negative bias. It is opposite to the situation for independent variables.

The approximation is verified by simulation, choosing p = 0.5, 0.6, ..., 0.9 as p

and 1 − p are symmetric. For a specific N (the total number of observations),

N2 ∼ B (N, p) and N1 = N − N2 are chosen. Then, the entropy bias in the

simulation can be calculated using N , N1, N2 and assumptions from the above

two situations. The results in Figure 2.3 show that the theoretical values are

roughly the same as the simulated ones, which confirms our approximation. One

difference is that when N is small and p or 1 − p is small, the log approximation
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2.4 Splitting bias

Figure 2.3: Entropy gain bias in theory and practice. Red dots are theoretical
values and black dots are based on simulation. The x axis shows the total number
of observations, N .
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2.4 Splitting bias

used in Equation (2.8) is not so suitable, so there is gap between the simulated

and theoretical results.

For noise variables, the more missing values there are, the bigger the chance

they are to be chosen as a splitting variable. For informative variables, the more

missing values there are, the smaller chance they have to be chosen. Both situations

will lead to bad results. That is why we deal with missing values and other outliers

in the data cleaning process in Chapter 3.

2.4.2 Bias related to more values or categories

In this section, it is explored how the entropy and Gini criteria have bias related

to the number of categories or number of possible values in X. A χ2 statistic is

also involved as a criterion for comparison, which does not have this bias due to

more values or categories as its degree of freedom changes accordingly.

The ground truth is assumed as that X and Y are independent. When the

ground truth is unknown, for any split in X, the event that X is dependent on Y

in each child node is accepted with probability p. The hypotheses are

H0: X is independent of Y ; H1: X is dependent on Y

When H0 is true, then X is independent of Y for any possible split in X. The

corresponding probability to accept H0 is

(1− p)r

where

r =

{
m− 1, ordered variable X

2m−1 − 1, categorical variable X,

and m is the number of unique values for an ordered variable or categories for a

categorical variable. When H1 is accepted, we have

P (H1 is accepted|H0 is true) = 1− (1− p)r ,

which means that there is at least one split in X that makes X depend on Y . It is

easy to see that explanatory variables with more values or categories have a better

chance to be chosen even though X is independent of Y . For the Gini index or
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2.4 Splitting bias

entropy gain, they have not eliminated this multiple comparison effect, so they

still have that kind of bias. But for a Chi-squared test (Kass, 1980), it uses the

corresponding p value instead, and it has different distribution for different degrees

of freedom calculated from the possible values or categories in X, so it eliminates

this effect.

Now, a simulation is conducted to explore the bias effect for the Gini gain and

entropy gain while compared with p (χ2). The process is shown in Algorithm 1

and the corresponding results are shown in Figure 2.4. It is obvious, for entropy

Algorithm 1 Bias simulation

Require: number of values or categories in explanatory variable X : m
number of values or categories in response variable Y : k
simulation times t number of samples N

Ensure: entropy gain, entropy gain rate, Gini gain, p (χ2)m,k
for t=1:1:100 do

for m=2:1:10 do
for k=2:1:10 do
X = sample (1 : m,N, replace = TRUE)
Y = sample (1 : k,N, replace = TRUE)
entropy gain = entropy gain (X, Y )
entropy gain rate = entropy gain rate (X, Y )
Gini gain = Gini gain (X, Y )
p (χ2) = p (χ2)(X,Y )

end for
end for

end for
return entropy gainm,k, entropy gain ratem,k, Gini gainm,k, p (χ2)m,k

gain and entropy gain rate, that the bias increases when k or m increases. For

the Gini index, it also increases, but the bias value changes little, always being

around 0.009. For χ2, as expected, there is no sign of bias due to more values or

categories in X and Y .

For classification purposes, the Gini index is chosen as the splitting criterion as

its bias due to more values or categories is not that large compared to entropy. The

rpart package in R includes the choice of Gini index as the default splitting criterion.

For χ2, although it is good, the CHAID package in R can only be applied to
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2.4 Splitting bias

Figure 2.4: Bias when number of categories or values in X and Y changes. Here,
the x axis label k is the number of values or categories in response variable Y and
the y axis label m is the number of values or categories in explanatory variable
X. The darker the shade, the higher the bias. The important point is how the
intensity changes across k and m in each sub figure. The comparative intensity of
the same k and m among different figures is also important but it is not included
in our analysis context. So the values are not scaled.
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2.5 Influence of noise variables on CART computational complexity

categorical variables while our later analyse include continuous response variables.

There are many algorithms to build classification trees, including ID3 (Quinlan,

1986), C4.5 (Quinlan, 2014) and CART (Loh, 2011), etc. ID3 is one of the original

algorithms, which uses the entropy information criterion, but it does not apply

any pruning nor does it deal with numeric attributes or missing values. As an

evolution of ID3, C4.5 uses the entropy information gain ratio as the splitting

criterion. The splitting ceases when the number of instances to be split is below a

certain threshold, and error-based pruning is performed after the growing phase.

Further, C4.5 can handle numeric attributes. In terms of CART, such binary

trees are constructed based on the Gini index or twoing criterion and the tree is

pruned by complexity criterion. It can also involve misclassification costs and prior

probability distributions in the tree building process (Rokach & Maimon, 2008).

As software R is used for coding, and the decision tree package rpart is generally

based on CART, so CART is chosen as the classification tree using Gini index as

the splitting criterion.

2.5 Influence of noise variables on CART com-

putational complexity

2.5.1 Introduction

The contribution in this section is to explore how the number of noise variables

influences the computational time under simplified conditions using the existed

Bonferroni multiplier (Bonferroni, 1936).

This section explores how the number of noise variables influences the com-

putational complexity compared to merely using informative variables. The term

computational complexity here refers to the time complexity of an algorithm. In

computer science, the time complexity of an algorithm quantifies the amount of

time taken by an algorithm to run as a function of the length of the string rep-

resenting the input. Time complexity is commonly estimated by counting the

number of elementary operations (such as addition, subtraction, multiplication,

division, comparison operations) performed by the algorithm, where an elemen-

tary operation takes a fixed amount of time to perform. Thus the amount of time
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2.5 Influence of noise variables on CART computational complexity

taken and the number of elementary operations performed by the algorithm differ

by at most a constant factor. In that way, the number elementary operation is

counted to represent the computational complexity.

For CART, the following ideal conditions are assumed:

1. All the independent variables can be divided into effective variables and

noise variables. The criterion is whether they are used in the tree growing

process or not. As the most effective variables will be chosen for splitting

firstly. Those variables not chosen have less effect than those chosen. A

tree building process includes both a growing process and pruning process

(or stopping criteria). This time, the tree is assumed to choose the stopping

criteria, so that we only need to concentrate on the growing process. Noise

variables refer to variables that are not used in the tree growing process.

2. All variables are categorial variables for convenience of calculation.

3. For every split, no matter how many categories the independent variable

has, there are always two child nodes after the parent node since CART is a

binary tree. All nodes are assumed to stop splitting at the same time which

means the depth is the same for every branch on the same level.

4. When one independent variable is chosen as a split, it will not be chosen

again.

Such simplifying assumptions are made for easy of calculation. In reality, the pro-

cess is more complex than that. Define N as the number of explanatory variables

including both effective variables and noise variables, M as the number of effec-

tive variables, and cj as the number of categories in the jth independent variable.

In the splitting process, the explanatory variable will be split into two intervals

(numerical) or groups (categorical). The number of all possible ways of separating

the cj categories into two groups is the Bonferroni multiplier (Bonferroni, 1936).

Here since all categories are split into two groups, it is

S (cj, 2) =
2∑
r=1

(−1)2−r rcj

r! (2− r)!
.
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2.5.2 Computational complexity without noise variables

For the initial split, assume variable a1 is chosen, and the computational complex-

ity is

20

M∑
j=1

S (cj, 2) b+m,

where b is the computational complexity involved in calculating the entropy infor-

mation for one possible split in one variable and m is the computational complexity

for calculating the entropy information in y.

After that, variable a1 will not be used again because of Assumption 4. Assume

variable a2 is chosen as the split for both child nodes after a1, and the compu-

tational complexity for both child nodes are similar, so the total computational

complexity at step 2 is

21

M∑
j=2

S (cj, 2) b.

Even though it is essential to calculate the entropy gain from the parent node to

child nodes, just calculating the entropy information in child nodes is sufficient

since the parent node entropy information has already been calculated from the

previous step. So here we just count the computational complexity for the child

nodes.

Under Assumption 3, the number of terminal nodes increases in a power of 2.

After summing all the computational complexity for all the nodes, the computa-

tional complexity for the whole tree is:

CCeffect =
M−1∑
s=0

2s
M∑

j=s+1

S (cj, 2) b+m.

2.5.3 Computational complexity with noise variables

It is easy to calculate the computational complexity with noise variables in a

similar way to the case without noise variables. The difference is the total number

of explanatory variables in use is not M but N , which includes the noise variables.
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The difference comparison will be shown in the subsection 2.5.4. For the initial

split, assume variable a1 is chosen, so the computational complexity is

20

N∑
j=1

S (cj, 2) b+m.

For the second split, it is

21

N∑
j=2

S (cj, 2) b.

There are many reasons for the tree to stop growing, such as the node becomes

pure or all the variables have the same proportion in all the y categories. At level

M + 1, all the M effective variables are used, so the tree will test whether the first

noise variable is effective or not. Since noise variables are assumed to be those

not selected by the tree. So after the testing, the tree will stop growing. The

computational complexity for the testing is

2M
N∑

j=M+1

S (cj, 2) b.

For the whole tree, the computational complexity is

CCeffect+noise =
M∑
s=0

2s
N∑

j=s+1

S (cj, 2) b+m.

2.5.4 Computational complexity increase

The increase in computational complexity due to the presence of noise variables is

CCinc =CCeffect+noise − CCeffect

=
M∑
s=0

2s
N∑

j=s+1

S (cj, 2) b+m−
M−1∑
s=0

2s
M∑

j=s+1

S (cj, 2) b−m

=
M∑
s=0

2s
N∑

j=M+1

S (cj, 2) b.

Assuming that the cj has the same value across different j, then we can rewrite

S (cj, 2) b as one value u. Then CCinc becomes

CCinc =
(
2M+1 − 1

)
· (N −M)u.
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which is a linear function of the number of noise variables, N −M . So, even when

methods which increase the dimension of explanatory variables are used before

the application of decision trees, the computational complexity will not increase

dramatically.

2.6 Wavelet analysis

Sometimes data have nearly the same range and mean but different frequencies

like sine functions with different periods. Decision trees unfortunately can not

easily classify or do regression on such data as there is no obvious split point to

separate them. For example, the time series in Figure 2.6 has the same mean

and range, so decision trees can not find the split to classify the groups. For time

series, there might be dependence between successive observations; growing trees

which treat each time point as an independent observation may ignore this in-

formation. Wavelet analysis can deal with this by picking out patterns in short

term fluctuations in data which can be exploited for classification when consec-

utive observations lack independence. To discover signal information at different

resolution levels is like using a camera to enjoy landscape pictures near or far.

A camera lens can take broad landscape pictures as well as zoom in to capture

microscopic detail that is not easily seen by the human eye. Decomposing data

into different resolution levels, including the smooth and detail information, may

help decision trees be useful.

The original idea of signal decomposition into different frequencies comes from

the Fourier transform, which represents a signal using a sum of sine and cosine

functions. But the limitation of the Fourier transform is also obvious: it has only

frequency resolution and no time resolution. In other words, in the context of the

Fourier transform, signals are just a collection of periodic signals of the individual

frequencies. However, the wavelet transform decompose a signal in both time and

scale (frequency).

MODWT is short for maximal overlap discrete wavelet transform, which is

a non-decimated wavelet transform. For data, where values change over time

and different individuals have different frequency characteristics, simple Fourier

analysis is not suitable. So wavelet analysis is used here to simultaneously represent
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a signal in the time and frequency domains (Aykroyd et al., 2016). MODWT is

actually based on the discrete wavelet transform (DWT), but unlike the DWT, the

MODWT is not constrained to data whose sample size is a power of 2 (Percival &

Walden, 2000).
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Figure 2.5: The Haar scaling function (a) and mother wavelet (b).

One of the wavelet bases is Haar wavelet. As shown in Figure 2.5(a), the Haar

scaling function is defined as

φ (t) =

{
1 t ∈ [0, 1)
0 else.

(2.10)

Using dilation and translation methods, the scaling function at resolution level j

and location k is:

φj,k (t) = 2j/2φ
(
2jt− k

)
.

Note that

φ
(
2jt− k

)
=

{
1 t ∈ Ij,k
0 else;

and that φj,k (t) is compactly supported on Ij,k = [2−jk, 2−j (k + 1)), where j =

0, 1, 2, . . . , J (2J 6 n) and k = 0, 1, 2, . . . n − 1 represent the resolution level and

location respectively. When j = 0, the scaling coefficients are actually the original

time series. Thus, when j is small, it means wavelets are highly localized at a

fine scale resolution level, representing brief transient effects. Conversely, when j

is large, it represents lower frequency activity at a coarser scale resolution level
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(Aykroyd et al., 2016). Here the factor of 2j/2 ensures energy preservation, defined

by

energy =
1

2

2π∫
0

|f(x)|2dx (2.11)

so that the energy in the data set will be preserved and that is why wavelets are

orthogonal and have inverse transforms, for more detail, see Graps (1995). Then,

the scaling coefficients sj,k can be calculated as

sj,k = <x (t) , φj,k> =

∫
R

x (t)φj,k (t) dt = 2j/2
∫
Ij,k

x (t) dt.

As shown in Figure 2.5(b), the Haar mother wavelet function ψ (t) is defined as

ψ (t) =


1 t ∈ [0, 0.5)
−1 t ∈ [0.5, 1)
0 else,

and, the wavelet function at resolution level j and location k is

ψj,k (t) = 2j/2ψ
(
2jt− k

)
.

The wavelet coefficients dj,k can be calculated as

dj,k = sj−1,k − sj,k.

The scaling coefficients vector sj = (sj,0, sj,1, . . . , sj,n−1) and wavelet coefficient

vector dj = (dj,0, dj,1, . . . , dj,n−1) become new variables which can be used for

classification and regression.

When it comes to MODWT in R, the implementation in waveslim ignores

the energy preservation factor 2j/2, which will not affect the results when using

classification or regression trees. Since the MODWT is designed for time series

of any length, it has its own methods for dealing with boundary conditions like

periodic and reflection. In this thesis, reflection is chosen, as the time series is

not periodic. After reflection, the time series of length n, becomes one of length

2n, so the first n wavelet coefficients of the transform are used as the wavelet

transformed variables. The level of the wavelet transform depends on the length
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2.6 Wavelet analysis

of the test data. The maximum level should not exceed the allowance of the test

data (2J 6 n).

An example of using the Haar wavelet to transfer a time series is shown in

Figure 2.6. The first 300 observations are from sin(0.2t), and the second 300

observations are from sin(t). The observations all contain noise following N(0, 0.1).

This data set can not be classified easily by trees as the two parts share the same

range [-1, 1]. But the time series is different with higher frequency on the right

side data. After wavelet transform, the differences for time series with different

frequencies become obvious. Scaling coefficients on level 8 (s8) are smoother than

that on level 1 (s1), which is almost the original time series. Wavelet coefficients on

level 8 (d8) show information about oscillations of length 28 observations. Although

trees can not distinguish data set with the same mean and range, however, after

wavelet transform, d1, d8 and s8 have different ranges in the two parts, so that

trees can classify these wavelet transformed variables.

The Haar wavelet belongs to the family of Daubechies’ wavelet (Daubechies,

1988). Different wavelet functions have different vanishing moments, among which

the Haar wavelet has one vanishing moment. The number of vanishing moments is

the maximum degree of the polynomials that the scaling function can reproduce.

The higher the vanishing moments, the smoother the basis is, as shown in Figure

2.7. For example, D4 (Daubechies’ wavelet on level 4) has two vanishing moments,

so that its basis is smoother than that of Haar wavelet, so the wavelet transformed

data is also smoother than that of Haar. The smoother the basis is, the more

complex the scaling and wavelet function are. The discrete scaling coefficients sj,k

for Haar are

sj,k =
1

2j

2j−1∑
l=0

xk−l,

and the wavelet coefficients dj,k for Haar are

dj,k =
1

2j

2j−1−1∑
l=0

xk−l −
2j−1−1∑
l=2j−1

xk−l

 .

The coefficients sj,k and dj,k will be used in the wavelet transformed variables in

the later chapters.
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2.6 Wavelet analysis

Figure 2.6: Wavelet transformed time series on level 8 using the Haar wavelet
basis. The x axis is time.
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Figure 2.7: Scaling function and mother wavelet for D4 and D12.

The simple form of the Haar functions mean that the Haar wavelet is eas-

ier to interpret. Compared to other Daubechies’ wavelets with higher vanishing

moments, the Haar wavelet is more simple and so more interpretable. So, in

the remaining chapters, the Haar wavelet is used as the wavelet transform basis.

There are circumstances when other wavelet transform behaves well as shown in

Section 3.3.4. But if their behaviour is similar, the Haar wavelet is chosen for its

easy interpretation.
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Chapter 3

Panel data prediction

3.1 Introduction

This chapter explores the circumstances under which wavelet-transformed vari-

ables have a better classification performance for panel data than using variables

on their original scale. The tree models and wavelet transform methods have

been described in Chapter 2. Use of wavelet-transformed data provides localized

mean and difference variables which might be more effective than the original

variables. Three methods are considered by aggregating panel data to classify at

the individual-level, which will be described in detail in Section 3.2. This will be

illustrated with simulated data and data gathered during a liver transplantation

surgery. Most of the content in this chapter has been published as Zhao et al.

(2018).

There are data which often contain multiple time series variables for organisa-

tions or individuals that need classification, especially in areas such as economics,

finance, marketing, medicine and biology. It can also be important to determine

which of the time series are useful in performing the classification; interpreting

this information can be highly useful in investigating the relationships between

the variables and the class labels.

Our interest in this problem was motivated by data collected on patients un-

dergoing liver transplant surgery. Each patient is classified into one of two groups,

according to whether they did or did not use beta-blocker medication. During

the operation, monitoring took place for several variables such as heart rate and
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3.1 Introduction

systolic blood pressure, with data recorded once every heartbeat.

The dataset in use is the panel data mentioned in Chapter 1. The explanatory

data are

AT =
[
AT1, ·, · AT2, ·, · · · · ATN, ·, ·

]
.

The time series length Tn varies among different individual n and the response

variable is

yT =
[
yT1, · yT2, · · · · yTN, ·

]
,

where elements in yn, · should all be Group 1 or all be Group 2. Difficulties in

analysing such datasets include: (1) unequal values of Tn; (2) aggregating the panel

data to provide classification for each individual; and (3) lack of independence

between consecutive times.

Such data are generally subject to noise if they are collected or recorded by

people or machines. Wavelet shrinkage (Donoho & Johnstone, 1994) is a popular

denoising method, which is commonly used to smooth out random noise variation

in signals. However, even without a formal denoising step, wavelets are able to

separate out “signal” from “noise”, and this property will be used to improve pre-

diction performance. It will also be seen that wavelets can pick out short term

fluctuations in real data which can be exploited for classification when consec-

utive observations lack independence. Instead of using the standard decimated

discrete wavelet transform (DWT), the maximal overlap discrete wavelet trans-

form (MODWT) will be used, see, for example, Percival & Walden (2000, ch. 5),

as it is not constrained by time series length Tn and each time point is represented

at all resolution levels of the MODWT. Equivalent translation-equivariant trans-

forms are the non-decimated stationary wavelet transform (Nason & Silverman,

1995) and cycle-spinning (Coifman & Donoho, 1995).

The classification and regression trees (CART) method of Breiman et al. (1984b)

will be used for classification purpose. Using DWT (or MODWT) with CART (or

other decision trees or random forests) in time series data has already been consid-

ered (Alickovic & Subasi, 2016; Gokgoz & Subasi, 2015; Upadhyaya & Mohanty,

2016), as well as other classification methods (Maharaj & Alonso, 2007, 2014) but,

to the best of our knowledge, until now the application to panel data is quite rare.

Previous authors have directly converted the wavelet representation of panel data
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3.2 Methodology

into cross-sectional data using summaries such as energy, standard deviation, or

entropy (Upadhyaya & Mohanty, 2016; Zhang et al., 2015). Inspired by this idea,

Method 3 is designed. But, in this chapter, other methods will be designed as well

and more detailed exploration among those methods will be conducted including

in simulation and real data applications.

However detecting when and how MODWT can help CART in classification

accuracy and variable selection for panel data is important. Thus, this chap-

ter uses CART with original and wavelet-transformed variables to classify panel

data. This chapter makes the contributions of: (1) designing another two methods

(Method 1 and Method 2) including the one (Method 3) shown in (Upadhyaya

& Mohanty, 2016; Zhang et al., 2015) but with mean and standard deviation as

summaries; (2) applying these methods to simulated data so as to explore how

different methods perform under different conditions. For chapter structure, the

methodology is introduced in Section 3.2, and is applied to simulated panel data

experiments in Section 3.3 before analysing the liver transplantation (LT) panel

data in Section 3.4. Some concluding comments appear in Section 3.5.

3.2 Methodology

3.2.1 Methods introduction

In this section, three methods are proposed to produce individual-level classifi-

cations from panel data, which can be applied to the original data, the wavelet-

transformed data, or a combination of both. A flow diagram outlining these meth-

ods is shown in Figure 3.1.

Since we wish to classify individuals, but are dealing with panel data, the

predictions from CART can not be used directly as these classify each time point

separately. The information needs to be combined either by combining time-point

level predictions or by aggregating data first and then performing classification for

individuals. Several methods are proposed to classify individuals based on panel

data, by illustrating in terms of the original data A. Specifically, Method 1 is based

on time-point level predictions, Method 2 is based on both time-point level and

individual level predictions and Method 3 is based on individual level predictions.
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3.2 Methodology

Figure 3.1: Flow diagram for panel data classification.
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Equivalently, these methods can also be applied to the wavelet-transformed data

W , or indeed to a combination of A and W . For simplicity, each of the methods

is described in terms of a binary classification, but is easily generalized to more

than two groups.

3.2.2 Method 1: prediction aggregation after classification

Using CART, it is easy to obtain the predicted class ŷn,t of individual n and each

time point t = 1, . . . , Tn. Schematically we have

An, ·, · =


An,1,1 · · · An,K,1
An,1,2 · · · An,K,2

...
. . .

...
An,1,Tn · · · An,K,Tn

→ ŷn,. =


ŷn,1
ŷn,2

...
ŷn,Tn

 .
For individual n, we compute the proportion of time points which were classified

as Group 1,

Pn =
1

Tn

Tn∑
t=1

I{ŷn,t = 1},

where the indicator variable is defined as

I{ŷn,t = 1} =

{
1 if ŷn,t = 1
0 if ŷn,t = 2.

The prediction at each time point is used to predict the class of individual n:

An, ·, · → ŷn =

{
1 if Pn > a
2 otherwise,

where the best split point a is found using a global search (0 ≤ a ≤ 1). Every Pn

will be tested as a possible a value in the training dataset. The Pn that leads to

the highest training accuracy will be selected as the a.

3.2.3 Method 2: predictions based on time-point level and
individual level CART

Method 2 is based on Method 1 as it uses the output probability information from

Method 1. The detail is shown as the following.
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3.2 Methodology

1. Here, a classification tree is constructed as in Method 1. The number of

variables putting into the tree may not be the same as the number of variables

really participating in the built tree because some noise variables will not be

selected by the tree. Suppose variable k′ is used in this classification tree,

where k′ ∈ {1, 2, . . . , K ′}, making a total of K ′ newly renumbered variables,

which are used in the already built tree. So the dataset used in this tree

becomes

A′n,.,. = [An,k′,t]Tn×K′ .

For each observed value of each of these variables, the tree is used to derive

the probability of classifying an observation as being from Group 1, based

on the subtree descending from that observation. For example, suppose the

variable HR (heart rate) is used in the tree and lower heart rate (like 60

beats/min) means higher probability (0.8) for the individual to be classified

as group 1. Then the value of 60 will be replaced by 0.8. The detail is shown

as below.

2. Consider variable k′. To compute the derived probabilities, we inspect the

nodes in the tree where variable k′ is used. In a node, with split point η,

observations satisfying An,k′,t < η are directed to one sub-tree, while those

satisfying An,k′,t > η are directed to a different sub-tree. In each sub-tree,

An,k′,t is replaced by the proportion of observations classified as Group 1,

which is denoted as Pn,k′,t.

For example, for An,k′,t, if An,k′,t > η, then

Pn,k′,t = PAn,k′,.>η,

where PAn,k′,.>η is the proportion classified as Group 1 for variable k′ in that

sub tree node satisfying An,k′,. > η.

3. If variable k′ is used in more than one node, we take the product of the

probabilities (note that k′ ∈ {1, 2, . . . , K ′} implies that variable k′ must be

used in at least one node). For example, if variable k′ appeared twice, with

thresholds η1 and η2, then

Pn,k′,t = PAn,k′,.>η1 · PAn,k′,.>η2 ,
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3.2 Methodology

where PAn,k′,.>η1 and PAn,k′,.>η2 are the proportions classified as Group 1 for

variable k′ in the nodes satisfying An,k′,. > η1 and An,k′,. > η2 respectively.

4. This whole process is repeated for each k′ ∈ {1, 2, . . . , K ′} in turn, converting

each time series of observed values to a vector of proportions and finally, from

A′n,.,., we obtain

Pn,.,. = [Pn,k′,t]K′×Tn .

5. Then, the mean and standard deviation of these empirical probabilities are

taken as new variables to be used in a “second-stage” CART. (Of course,

other summaries could be used.) Schematically, we have

Pn, ·, · =


Pn,1,1 · · · Pn,K′,1
Pn,1,2 · · · Pn,K′,2

...
. . .

...
Pn,1,Tn · · · Pn,K′,Tn

 (3.1)

↙↘ ↙↘

P
(m)
n,k,· =

[
P

(m)
n,1,·, P

(sd)
n,1,· · · · P

(m)
n,K′,·, P

(sd)
n,1,·

]
.

6. Then the mean and standard deviation matrix for all individuals and vari-

ables are calculated as a cross sectional data matrix

P̃ =


P

(m)
1,1,. · · · P

(m)
1,K′,. P

(sd)
1,1,. · · · P

(sd)
1,K′,.

P
(m)
2,1,. · · · P

(m)
2,K′,. P

(sd)
2,1,. · · · P

(sd)
2,K′,.

...
. . .

...
...

. . .
...

P
(m)
N,1,. · · · P

(m)
N,K′,. P

(sd)
N,1,. · · · P

(sd)
N,K′,.

 . (3.2)

After that, we apply CART to P̃ , and get the predicted value for each individual:

P̃ =


P

(m)
1,1,. · · · P

(m)
1,K′,. P

(sd)
1,1,. · · · P

(sd)
1,K′,.

P
(m)
2,1,. · · · P

(m)
2,K′,. P

(sd)
2,1,. · · · P

(sd)
2,K′,.

...
. . .

...
...

. . .
...

P
(m)
N,1,. · · · P

(m)
N,K′,. P

(sd)
N,1,. · · · P

(sd)
N,K′,.

→ ŷ =


ŷ1

ŷ2
...
ŷN

 . (3.3)

Note that in this second stage, each individual has just one mean and one standard

deviation value corresponding to each of the variables in that tree, hence there is

only one predicted class for each individual.
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3.2.4 Method 3: data aggregation before classification

Here, we aggregate the original data for each individual into a small number of

summaries for each variable — chosen to reflect the nature of the data — to

form individual level cross-sectional data, and then use CART directly. In the

implementation, the mean A
(m)
n,k,· and standard deviation A

(sd)
n,k,· of variable k for

each individual n An,k,t are used to construct cross sectional data

Ã = [A(m), A(sd)]N×2K ,

where A(m) = [A
(m)
n,k,· ]N×K and A(sd) = [A

(sd)
n,k,· ]N×K . For dataset unknown, mean

and variance are proposed, but when the dataset has other good statistics, they

can also be included. The process is the same as in Equations (3.1) to (3.3), but

applied to data A rather than probabilities P .

3.3 Simulation study

We now explore the performance of Methods 1–3 using both original and wavelet-

transformed data in a simulation study, before applying the methods to our LT

data in Section 3.4. 100 replicate trials are conducted for each simulation. For

every trial, new data are generated on N individuals and then split the N individ-

uals into training and test sets, with 0.8N individuals used for training and the

remaining data used to assess performance. All three methods are used for each

dataset.

This section investigates: (1) whether wavelet variables have better perfor-

mance in classification than the original variables; (2) which variables are more

important in the tree; (3) which of the proposed methods perform better in dif-

ferent circumstances. The criteria are prediction accuracy (the percent of correct

classified individuals) and the ability to correctly identify informative variables.

All computations were performed in R (R Core Team, 2014), using the pack-

ages rpart (Therneau et al., 2014) for constructing classification trees and waveslim

(Whitcher, 2013) for wavelet decomposition.
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3.3 Simulation study

Table 3.1: Simulation variables and parameters. Variables V1–V5 are contaminated
at rate θ by normally distributed noise which has the same mean and variance as
the variable in question.

Variable Distribution Parameters

name Group 1 Group 2

Explanatory V1 AR(1)+N(0,σ2
2) α = 0.8 α = 0.5

variables σ2
1 = 0.36 σ2

1 = 0.75

V2 sin+N(0,σ2
2) 2 sin(3t+ 5) 2 sin(4t+ 5)

V3 sin+N(0,σ2
2) 2 sin(5t+ 6) 2 sin(5t+ 3)

V4 Poisson λ1 = 2 λ1 = 2.5

+N(0,σ2
2) λ2 = 2.5 λ2 = 2

V5 exp (rate=λ) λ1 = 1 λ1 = 2

+N(0,σ2
2) λ2 = 2 λ2 = 1

Redundant V6 Poisson λ = 1

variables V7 Poisson λ = 2

V8 AR α = 0.7

V9 MA β = 0.6

V10 exp λ = 8

3.3.1 Data generation

Panel data are generated with two groups, comprising a total of N = 300 indi-

viduals. For each individual, there are 10 “time series” variables. Five of these

variables (V1–V5) are informative, having different distributions in the two groups,

while the remainder (V6–V10) are identically distributed across both groups and

referred to as redundant variables. Details of the variable models, distributions

and parameters are shown in Table 3.1.

For each informative variable, the parameters of the models are chosen so that

the first two moments are identical for the two groups. The five explanatory

variables follow an AR process (V1), sine models (V2 and V3), Poisson (V4) and

exponential (V5) distributions, so both autocorrelated and independent variables
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are included. We independently generate T sn ∼ U(Tn/4, 3Tn/4) as a “change point”

for each individual, and for variables V4 and V5 observations before and after this

point follow the same distribution but with different parameters. Noise is added

to V1–V5 in two ways. Firstly, Gaussian white noise εt ∼ N(0, σ2
2) is added, and

the data is contaminated by making random replacements at rate θ with N(µ, σ2),

where µ and σ2 are mean and variance. These data generation methods ensure that

the marginal distribution for each explanatory variable between the two groups is

the same, while the joint distribution is different between the two groups.

In order to assess the influence of noise levels and group balance on classification

accuracy and selection of explanatory variables, simulations are conducted under

different circumstances with noise level 0 ≤ σ2 ≤ 20, contamination rate 0.1 ≤
θ ≤ 0.8 and the number of individuals in Group 1 ranging from 150 to 270, with

the total number N = 300 fixed.

After generating the data, these variables are wavelet transformed using the

Haar wavelet basis. Then, we use the original and wavelet-transformed data to

conduct 100 replicate trials for each experiment.

3.3.2 Separate analysis for each explanatory variable

Classification accuracy

In order to tell which explanatory variable is most effective in classification, clas-

sification trees are built with only one informative explanatory variable at a time,

replacing the other four informative variables with standard Gaussian white noise

N(0, σ2 = 1). This provides a check that the CART methodology is correctly

selecting informative variables while ignoring variables that contain no useful in-

formation. In each case, classification accuracy for the original variables on the

test data is generally around 50%. However, Table 3.2 shows that, for wavelet

variables, it is generally above 85% except for V3, which is noticeably lower. In

particular, variable V2 is the most informative. This can be attributed to the

wavelet coefficients distinguishing the different frequencies of V2 in the two groups,

which will be shown in detail later in this section. Method 3 is usually the best

method due to the aggregation over time points effectively averaging out random

variation, giving a cleaner picture of the differences between the groups.
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Table 3.2: Classification accuracy when using wavelet-transformed version of each
of the informative variables in isolation.

Method Informative variable

V1 V2 V3 V4 V5

1 86.83% 99.67% 53.67% 92.17% 97.17%
2 85.67% 100.00% 47.67% 93.00% 97.33%
3 100.00% 100.00% 94.33% 100.00% 100.00%

Interpretation of scale choice

A further advantage of using wavelet-transformed data is the added insight which

can sometimes be gained by considering which scales are used in the classifica-

tion. In order to illustrate clearly, parameters are simplified by fixing Tn = 768

(Tn can be other values as well) and T sn = Tn/2 = 384, and without white noise

added to the explanatory variables, but V2–V5 still have 10% of generated obser-

vations randomly replaced with noise as they are originally noise free but V1 has

noise involved when the data are generated. Figures 3.2–3.4 show examples of the

time series generated and plots of those wavelet-transformed variables which were

most commonly selected as containing useful information by CART. We note that

CART can easily detect differences in the mean level of a variable with a single

split, and can also partially detect increased variance by two splits.

V1 For V1, the main variables chosen were s8 (representing smoothing over a

window of 28 = 256 time points, which has less noise included) and d1 (the

difference between successive observations). Recall that V1 follows an AR(1)

model with autoregressive parameter α = 0.8 in Group 1 and α = 0.5 in

Group 2, so the short-term autocorrelation is substantially higher in Group

1. Using the raw data does not access this information, but it is detected

by the local averages in s8 and local fluctuations in d1.

V2 For V2, the frequency difference in the sine function is detected by both s1

and d1, which means successive information is more important.
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Figure 3.2: Wavelet transformed information for V1–V3 for individual one sepa-
rately in Group 1 and Group 2 with 0.1 contamination rate and noise level 0,
except V1. Original variables have similar value range between two groups, but,
after wavelet transform, the value range is no longer similar.
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Figure 3.4: Wavelet transformed information for V4–V5 for first individual in Group
1 and Group 2 (alternating rows) with 0.1 contamination rate and noise level 0.
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V3 The sine function in the two groups differs only by a phase translation along

the time axis. This is not easily recognized as it does not affect the auto-

correlation or frequency characteristics which are encoded in the wavelet-

transformed variables. Indeed, Methods 1 and 2 fail in this case. Method

3 still works here, but the reasons are subtle and the improvement is in

fact an artefact caused by the data length Tn not being a multiple of the

cycle length of the sine wave. This means that changing the starting point

of the cycle results in one part of the cycle being slightly over-represented,

illustrated in Figure 3.3. This effect, though small, is picked up when the

s8 and d1 variables are averaged over the full time series. Since this effect

will change as the relationship between the cycle length and Tn changes, we

would not expect the good performance of Method 3 to be reproducible for

variables like V3 in general.

V4, V5 These variables have the same mixture when aggregated over time points as

their distributions are symmetric between groups, but differ in which parts

of the signal they are slightly higher and lower. Visually, the difference is

clear in the s8 variables which forms localized averages. This difference is

lost when aggregated along the time axis, as happens with the original vari-

ables. However, the differences at level 8 are extremely helpful here as they

record larger positive (negative) values when there is an increase (decrease)

in the local mean. In addition, the taking of localized means effectively

averages out the white noise.

These differences could be detected from the original variables, but care would

be needed to compute a summary statistic that would encode the differences be-

tween groups, especially if the location of the change point T sn is not known.

Although the examples in Figure 3.4 have T sn = Tn/2 for simplicity, the wavelet-

transformed variables will detect the presence of an increase or decrease in the

localized means adaptively regardless of the best scale to average over, or location

of the change point.
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3.3 Simulation study

3.3.3 Simulation with all explanatory variables included

Ideal circumstance

In ideal circumstances, noise level σ2 = 0 is included, as well as a low contamination

rate of θ = 0.1 and equal group sizes. We also construct situations in which CART

works for the original data, by adding an offset δ = 0.2 to all observations of

variables V1 − V5 in Group 1, making the expectation of these variables higher

in Group 1. In that circumstance, we can check whether wavelet transformed

variables can be better or similar to original variables in performance when the

circumstance favours original variables.

With δ = 0, Table 3.3 shows that using CART with the original data cannot

distinguish the two groups using Methods 1 and 2, as it simply uses the default

tree (classifying all individuals into the majority group as there is a big imbalance

between the group size). It is a little better when using Method 3, with a prediction

accuracy of 36.7/60 and detecting explanatory variables V1, V3, which are explana-

tory variables instead of redundant variables. However, using wavelet transformed

data results in nearly 100% prediction accuracy. The explanatory variables and

scales used are consistent with those in Figures 3.2–3.4. For Methods 1–2, V2 is

still the best explanatory variable, followed by V5 (and V1). For Method 3, V1, V5

and V2 are all quite good.

When mean level is increased with δ = 0.2, the original data and the wavelet-

transformed data share identical accuracy. When explanatory variables have ob-

vious mean-levels differences between two groups, wavelet-transformed variables

have the same good performance as original data. In terms of variable choice,

CART with original data generally chooses all the explanatory variables especially

information of their means, and still selects redundant variables in some cases.

However, CART with wavelet-transformed variables is more parsimonious while

retaining excellent accuracy and is less likely to include redundant variables.

Practical circumstances

We now consider changes in noise level, contamination rate and group size balance.

The corresponding results are shown in Figure 3.5. Each panel gives classification
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3.3 Simulation study

Table 3.3: Accuracy results with noise level σ2 = 0, contamination rate θ = 0.1 and
equal training group sizes of 150. Accuracy is the number of correctly classified
individuals from a test set of 60, averaged over 100 replicate simulations. Entries
– indicate that no splitting was done.

Method Accuracy (/60, sd) Original Wavelet

Original Wavelet Variables* Redundant** Variables*

Offset δ = 0
1 30.0(0.00) 59.7(0.64) – – V2 V5 V1

2 30.0(0.00) 60.0(0.00) – – V2 V5

3 36.7(3.90) 59.5(0.83) V1 V3 (m sd) yes V1 V5 V2

Offset δ = 0.2
1 59.8(0.46) 59.6(0.79) V5–V1 yes V2 V3

2 60.0(0.00) 59.9(0.34) V4 V5 (m sd) no V2 V5 V3

3 60.0(0.10) 59.7(0.59) V1–V5 (m) no V5 V2

* Main variables in the first six important variables from CART.
** Whether redundant variables are used by CART.
No redundant variables were selected by CART using wavelet variables.
The “m” and “sd” represent the mean and standard deviation.

Table 3.4: Choice of variable, resolution level and wavelet or scaling coefficient
when applying CART to wavelet-transformed simulated data.

Method Variables (information)

Offset δ = 0
1 V2 (s1, s2, d2) V5 (s8, d8, s7) V1 (s8)
2 V2 (d1, d2, s1, s2 m sd) V5 (d8, s8m)
3 V1 (d1, d2 sd) V5 (d7, d8 m) V2 (d1, d2 sd)

Offset δ = 0.2
1 V2 (s6–s8) V3 (s6–s8)
2 V2 (s8 m sd) V5 (s8 m sd) V3 (s8 m sd)
3 V5 (d6–d8, s8 m) V2 (s1, s2 m)
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Figure 3.5: Testing accuracies results for real circumstances. Blue solid lines
represent results for wavelet variables and red dashed lines represent that for the
original variables. The x-axis for the first row is noise level, for the middle row is
contamination rate, for the last row is Group 1 size.

accuracy as the proportion of correctly classified individuals for both wavelet-

transformed and original data (solid and dashed lines respectively) under a range

of circumstances.

As one would expect, increasing noise or contamination levels reduces the ac-

curacy of the methods using wavelet-transformed data, with Method 3 being least

affected since the aggregation over time points before classification effectively av-

erages out noise in the wavelet coefficients before conducting the classification

procedures. The classification accuracy obtained using the original data is broadly

unchanged, since classification was already essentially arbitrary in this case by

classifying the observations into the major group.

Making the groups more unbalanced in size leaves classification using wavelet-

transformed data largely unchanged, while classification using the original data
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3.4 Application to liver transplantation data

appears to improve since predicting all individuals to be from the dominant group

becomes an increasingly effective strategy.

3.3.4 Alternative wavelet basis functions

In the previous simulation, the Haar wavelet basis is used as defined in Equa-

tion (2.10). There are many other choices of wavelet basis available and we have

repeated the analyses with minimum-bandwidth discrete-time wavelets with fil-

ter length 4 (mb4, see Morris & Peravali (1999)), Daubechies wavelets with filter

length 4 (db4, see Daubechies (1992)) and Least Asymmetric wavelets with filter

length 8 (la8, see Daubechies (1992)) in the R package waveslim. Full results are

shown in Appendix A, and they show that Haar is generally better than the others

in most circumstances. Compared with la8, Haar is almost always better. When

comparing Haar with mb4 and d4, Haar is better when noise level and contami-

nant rate are low. When noise level and contaminant rate are high (5, 10, 20 and

0.5, 0.8 respectively), Haar is no longer the best in Methods 1 and 2 but still the

best in Method 3. In most cases, Method 3 has the best performance. Therefore,

due to good accuracy and the easier interpretation of the Haar wavelet, the Haar

basis is recommended in practice.

3.4 Application to liver transplantation data

3.4.1 Data description and preprocessing

Liver Transplantation (LT) is a high-risk surgical treatment choice for patients

suffering end-stage liver disease (Milan et al., 2016). Pre-operative treatment,

like beta-blockers, may help reduce the surgical risk to some extent while also

influencing the chance of surgical complications. For example, systolic dysfunc-

tion and low cardiac output with beta-blockers may compromise renal perfusion

(Chirapongsathorn et al., 2016). So, if we can monitor variables like heart rate,

systolic dysfunction and cardiac output effectively, then, adverse effects can be

detected earlier. These explanatory variables will be applied to classify patients as

using or not using beta-blockers. In practice, a patient’s beta-blocker use is known

before surgery, but here we classify patients’ into beta-blocker use to investigate
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3.4 Application to liver transplantation data

Table 3.5: Monitoring variables recorded in the liver transplant (LT) dataset.

Abbreviation Full name Unit

CO cardiac output L/min
CI cardiac index L/min/m2

SVR systemic vascular resistance dyne-s/cm5

SVRI systemic vascular resistance index dyne-s/cm5/m2

Sys systolic pressure mm Hg
MAP mean arterial pressure mm Hg
Dia diastolic pressure mm Hg
SV stroke volume mL/beat
SVI stroke volume index mL/m2/beat
HR heart rate beats/min

which monitoring variables are considered informative in the classification so as to

explore the different behaviour of variables in different groups.

Data on patients undergoing LT between September 2004 and December 2011

at St James’ University Hospital, Leeds, UK, was recorded using LIDCO moni-

toring equipment (LIDCO, Cambridge, UK). The ten intraoperative monitoring

variables recorded are shown in Table 3.5; for more details, see Milan et al. (2016).

After removal from the dataset of some individuals with poor-quality data, there

are 90 patients who used beta-blocker (Group 1) and 236 patients who did not

(Group 2). For each patient, the data consist of a multivariate time series of

length one thousand to tens of thousands.

Since the number of patients in Group 2 is around 2.6 times that in Group 1,

CART might be biased to predict all new patients as being from Group 2. This

imbalance could be dealt with using a cost matrix, by discarding data from the

larger group, or by sampling replicate data from the smaller group. The latter is

chosen; after randomly sampling training and test data from the entire dataset,

we triplicate the individuals from Group 1 for training and test data separately.

There are then a total of 270 patients in Group 1, relatively in balance with 236

patients in Group 2. To investigate the robustness of the results to this procedure,

the analysis is conducted twice, both with and without group size modification.

The data for each variable A ·, k, · are shown in Figure 3.6. In order to see the
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3.4 Application to liver transplantation data

detail, for some variables, the y-axis limits are set to be smaller than the actual

limits.

In Figure 3.6, There are some quite sharp increases and decreases across time,

although variables like HR should not increase or decrease so suddenly as long as

the patient is still alive. So the data required considerable cleaning before classifi-

cation could be attempted. It is assumed that variables for each patient would not

fluctuate sharply in a short time phase, and hence should remain within a limited

range over a short time. Data points outside this range are regarded as outliers.

The other outliers include a non-trivial number of missing or impossible values.

Missing values can cause bias for the Gini index and other criteria as shown in

Section 2.4.1. So they should be cleaned as well. Firstly, we deal with data values

outside the range and name this as the initial filter stage. For the second stage, we

will tackle data values which fluctuate sharply in a short time span and call this

the secondary filter stage. The algorithm for these two stages is described below

and summarised as Algorithm 2.

Initial filter Since there are outliers, robust statistics are applied for cleaning.

Define

madn,k = med {|An,k,· −med(An,k,·)|} ,

the median of the absolute deviations from the median. If An,k,t is missing,

infinite or zero, or satisfies

An,k,t /∈ [med(An,k,.)− 5madn,k, med(An,k,.) + 5madn,k],

then the last observation is carried forward and replaced by An,k,t by An,k,t−1.

5 can be changed to other suitable values accordingly. The higher the value,

the more proportion of the observations will be replaced, and the cleaner the

data will be. But the main property of the data will be influenced when the

value goes very high. So it depends on the requirement of the experiment.

If t − 1 = 0, then we use the median of that variable. We use the previous

value for replacement due to the presence of autocorrelation and since the

previous value has already been defined as non-outlying.
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3.4 Application to liver transplantation data

Figure 3.6: Original observations for all patients (stacked end to end). The time
series have sharp increase and decrease which should not happen in reality. They
will be regarded as outliers as well as missing values.
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3.4 Application to liver transplantation data

Algorithm 2 data preprocessing: smoothing

Require: original data : An,k,t
Ensure: smoothed data An,k,t
{ number of patients : N, n = 1 : N
number of observations for each n : Tn, t = 1 : Tn
number of variables : 10, k = 1 : 10}

for k=1:1:10 do
for n=1:1:N do
mn,k = m(An,k, ·)
madn,k = mad(An,k, ·)
for t=1:1:T do

if Ak,n,t /∈[mn,k−5madn,k, mn,k +5madn,k] or Ak,n,t = NaN, Inf, 0, then
An,k,t ← An,k,t−1

end if
end for
s = Tn/20
for p=1:1:20 do
Q1 =first decile of (An,k,Tp)
Q9 =ninth decile of (An,k,Tp)
d = Q9 −Q1

for t = tp,1 : 1 : tp,s do
if Ak,n,t /∈[Q1 − 1.5d, Q9 + 1.5d], then
An,k,t ← An,k,t−1

end if
end for

end for
end for

end for
return An,k,t
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3.4 Application to liver transplantation data

Secondary filter In the secondary filter stage, assumption is made that data

values will not fluctuate sharply in a short time interval equal to 1/20 of the

time series length. (Other time intervals were considered, but in practice for

these data, intervals of Tn/20 worked well.) We define

Qj
n,k,p = jth decile of {An,k,ti+1

, An,k,ti+2
, . . . , An,k,ti+s},

where i = s(p−1), s = Tn/20 and p = 1, 2, . . . , 20 refers to the pth short time

interval. With Q1 and Q9 as the first and ninth deciles and d = Q9 − Q1,

we replace data values An,k,t /∈ [Q1− 1.5d, Q9 + 1.5d] by An,k,t = An,k,t−1. If

t− 1 = 0, then An,k,t = Q5.
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Figure 3.7: Example of data cleaning for CO data from patient 1. Solid horizontal
lines represent median and initial filter range, dashed lines represent secondary
filter range.

As an example, raw and cleaned CO data from patient 1 are shown in Figure

3.7. After initial filter, outliers above the 5 mad are changed to be the previous

observation value. After secondary filter, outliers in detail are also changed into

their previous observation value as shown in Algorithm 2.

The smoothed dataset is shown in Figure 3.8. Details of outliers are shown

in Table 3.6. According to Table 3.6, nearly 0.3% to 2% of the observations are

regarded as outliers, so outliers are replaced without changing the information in

the observations a lot since the proportion is quite small. In most variables, the

two groups have similar proportions of changes.
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3.4 Application to liver transplantation data

Figure 3.8: Smoothed data of all the patients. Sharp increase or decrease points
have been replaced.
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3.4 Application to liver transplantation data

Table 3.6: Number of outliers for each variable.

Variable

Group CO CI SVR SVRI Sys MAP Dia SV SVI HR

1 No. 28963 21023 77144 41521 11667 17270 19985 38042 18390 57695
% 0.77 0.56 2.04 1.10 0.31 0.46 0.53 1.01 0.49 1.53

2 No. 44227 43808 119197 119081 32335 38794 46189 49792 49509 178640
% 0.57 0.56 1.53 1.53 0.42 0.50 0.59 0.64 0.64 2.30

3.4.2 Results

After data cleaning, the original and wavelet-transformed variables are applied

to the classification methods, with 80% of the individuals randomly sampled for

training and the remaining 20% for testing. To reduce sensitivity of observed

classification accuracy to this sampling, we conducted 50 replicate trials for each

method. The corresponding results are shown in Table 3.7.

Without group size adjustment, Methods 2 and 3 generally choose to split no

variables and lead to the default tree. Method 1 does worse than this, sometimes

choosing Group 1 as the main group as it builds trees on time-point level instead

of directly on individual level. Method 2 also has such cases, so that is why

their standard deviations are high. Without these cases, they generally choose the

default tree with accuracy around 45 to 46 and standard deviation around 1 to 2.

These confirm that group size adjustment is needed in this case.

After group size adjustment, individuals in Group 1 account for 53.4% of all the

individuals, approximately in balance with individuals in Group 2. The student’s

t-test shows that there are no significant differences (with significant level 0.1)

between the three methods either for wavelet-transformed or for original data.

However, accuracy from the wavelet-transformed data is slightly higher in nearly

all cases. This may be due to some variable means in different groups being

sufficiently different for decision rules using the original data to work well. When

we come across data that has no significant mean difference, the wavelet transform

is highly recommended as its accuracy is then significantly higher. Size adjustment
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3.5 Conclusions and discussion

initially seems to lower the accuracy, but it should be noted that with the balanced

group sizes a default tree will now attain accuracy of 33/65. Without considering

the time for wavelet transform (as both methods share the same time of wavelet

transform for time points), the computation time for Method 2 (around 7 hours per

trial) is even much longer than Method 3 (less than 1 second per trial). So, we find

the best prediction of beta-blocker use to be achieved using wavelet-transformed

data in Method 3 with a size adjustment.

The main variables chosen are HR, SV, CO, SVR, SVI, and CI. CART based

on wavelet-transformed data generally chooses variables on resolution level 9 or 10

which are smoother, effectively choosing to use moving-average versions of the orig-

inal data. In this case, some variables have different means between the two groups

(Milan et al., 2016), so CART based on original data works reasonably well, but

the automatic smoothing of the variables via the wavelet transform improves the

classification. It also gives us the added interpretation that the optimal smoothing

is done over a time window of 29–210 heartbeats, approximately 5–17 minutes.

This finding has clinical relevance. One of the main effects of beta-blockers is a

slowing heart rate. A previous study that compared heart rates among a group

of patients — both treated and not treated with beta-blockers — found a dif-

ference between two large groups with more than 10,000 measurements for each

patient (Milan et al., 2016). Since clinical data during long surgical procedures are

‘noisy’, the complex statistics performed identified the need for data smoothing.

Wavelet-transformed variables have shown improved interpretation via consider-

ation of which resolution scales are the most informative. This method can be

applied to other ‘noisy’ databases in the future.

3.5 Conclusions and discussion

Wavelets provide a basis for automatic feature extraction methods, allowing the

classification technique (CART in our case) to select from localized means and

differences over a range of scales. Compared to other feature extraction methods,

the initial process is not dimension reduction. Feature extraction methods such as

principal component analysis (Asavaskulkeit & Jitapunkul, 2009), locality sensitive

hashing (Datar et al., 2004), and manifold learning (Costa & Hero, 2004; Nie et al.,
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Table 3.7: Testing accuracy results for the LT data using Methods 1–3 with and
without group size adjustment. The main variables listed are the first six important
variables list output by CART.

Method Accuracy (/65, sd) Main variables*
original wavelet original wavelet

Without size adjustment

1 39.4(11.63) 45.16(6.09) HR CO SV SVR HR CO SV CI
CI SVRI SVI s9 s10

2 44.46(7.07) 45.56(5.76) – –

3 46.7(1.16) 46.7(1.20) – –

With size adjustment

1 39.2(4.53) 40.4(4.78) HR CO SV HR SV CO
SVR CI SVI s9 s10

2 40.34(3.82) 41.94(6.32) HR SV SVI HRs9 s10 (m, sd)
m, sd SVIs10 (m, sd)

Syss10 (m, sd)
SVs10 (m, sd)
Dias10 (m, sd)

3 38.82(2.86) 39.84(3.69) HR m, SVR m, CI m, CO m, HR s1–s8 m
MAP m, SVI m, SVRI m

2010), all aim to reduce the number of explanatory variables. Using wavelet-

transformed variables actually increases the dimension by transforming original

variable into detail and smoothed coefficients on different resolution levels. This

can reveal hidden information which is not easy for classification trees to find using

only the original data. This does mean that the wavelet transformation of the

data is more suitable for experiments without an excessive number of predictors,

otherwise a further variable reduction step will be required and this will increase

the computational burden (Chitaliya & Trivedi, 2010; Li & Wen, 2014; Mazloom

& Ayat, 2008). This also makes a solid recommendation for us to use wavelet

transformed variables in Chapter 4 and Chapter 5, for future analysis of time

series.

CART, as a decision tree method, can be seen as a variable reduction method
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since it chooses the “best” variable to split on in each step. Compared to methods

like ANN (Rowley et al., 1998), SVM (You et al., 2014) and LASSO (Roberts &

Nowak, 2014), its main advantage is its ease of interpretation, although it might not

achieve the same accuracy as other methods. When applying CART to wavelet-

transformed data, the disadvantages (like dimension increase) of using the wavelet

transform are mitigated since CART carries out a dimension reduction function.

By learning which wavelet-transformed variables are more effective, we can also

gain the added interpretation of which scales are important.

Compared to other feature extraction methods, the wavelet transform has its

own advantages. It helps discover information hidden by noise that can not be

achieved by other methods which do not provide information decomposition across

different scales for one single variable. In our simulation, we have shown the

effectiveness of wavelet-transformed data in CART classification where the key

features of interest are changes in autocorrelation or frequency structures (our

variables V1 and V2), or relatively small changes in mean level which occur at

unknown times and are hidden by considerable noise (V4 and V5).

The scaling function we use in the wavelet decomposition is the Haar wavelet,

the simplest case of the compactly-supported wavelets described by Daubechies

(1992). In our experience, the Haar wavelet tends to have equal or better accuracy

than other choices of wavelet and has the benefit of easier interpretation. For data

whose expectation and variance have some connection, such as the Poisson and

exponentially distributed V4 and V5, we might consider using the Haar-Fisz wavelet

transform (Fryzlewicz & Nason, 2004). Since, in real situations, we will usually not

know the distribution of the time series, we generally use the Haar wavelet which

is a robust all-purpose selection that allows for easy interpretation compared to

more complicated wavelet bases.

We set out to produce individual-level predictions from panel data, where sim-

ple application of CART produces time-point level predictions. Comparison of the

different methods we used has shown that methods which perform at least some

aggregation before prediction have improved performance over a naive approach

of predicting at each time point and using a simple voting mechanism to aggre-

gate these predictions. Additionally, aggregation before classification (Method 3)
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is computationally fast in comparison to Methods 1 and 2. So, overall, we recom-

mend Method 3 with wavelet transformed data.
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Chapter 4

Wavelets and CART for static
time series forecasting

4.1 Introduction

Chapter 3 has shown that wavelet transformed variables can be better than orig-

inal variables for classification. This chapter will explore whether or not wavelet

transformed variables are still better than original variables for forecasting using

regression methods. Explorations include static time series in this chapter and will

be extended to dynamic time series forecasting in Chapter 5. We explore the per-

formance using simulated autoregressive (AR) time series and real data including

the LT data shown in Chapter 3 and Chinese air pollution data. The simulation

is done under different seasonal effect levels and forecasting length levels. The

reason for using AR based time series is that the heart rate data in the real data

application has autoregressive properties. It is easy to understand that the current

heart rate is highly correlated with the previous ones in reality and there is some

periodic property as well. That is why AR is used in the simulation with some

seasonal effect added.

4.2 Simulation

In this section, we generate an AR time series following

yrawt = a1 · yrawt−1 + a2 · yrawt−2 + a3 · yrawt−3 + · · ·+ a12 · yrawt−12 + εt, (4.1)
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4.2 Simulation

where εt ∼ N(0, σ2), σ = 1, [a1, . . . , a12] = [0, 0, 0.1, 0.8, 0, 0, 0, 0, 0,−0.1, 0.1,−0.5],

and t = 1, 2, 3, . . . , 10000. In the model for yrawt , the parameters were chosen to

ensure a stationary time series as the heart rate value will not always have decrease

or increase trend and both short and long time lag effects are included. In addition,

to make the simulated time series yrawt more realistic (like the heart rate), we add

a periodic effect (seasonal effect) to it. Assuming that this time series is collected

daily, and there is a sine shape change around the year (365 days), the seasonal

effect function is

yseasont = α sin(t′ · 2π/365), t′ = t mod 365, t = 1, 2, . . . 365.

The seasonal effect yseasont is added to yrawt to obtain yt with seasonal effect. An

example is shown in Figure 4.1 for one simple realisation. After generating yt, we

get the wavelet transformed data W T×16 using MODWT for level j = 1, 2, . . . , 8,

where T is the number of observations. For details of the wavelet transform,

see Chapter 2. There are 8 smooth variables s1, s2, · · · s8 and 8 detail variables

d1, d2, · · · , d8, making a total of 16 variables.

W =


W d1

1 · · · W d8
1 | W s1

1 · · · W s8
1

W d1
2 · · · W d8

2 | W s1
2 · · · W s8

2
...

. . .
... | ...

. . .
...

W d1
T · · · W d8

T | W s1
T · · · W s8

T

 .
After that, the time lag variables are generated from yt and W T×16

t . In that

case, we get our Ylag and Wlag (lagged MODWT of Y ) variables. Since Ylag is

actually lagged s0, Ylag is included in the wavelet transformed variables but still

use Ylag as the variable name. Here t is the current time for forecasting.

Ylag =
[
yt−1 yt−2 · · · yt−k.lag

]
(T−k.lag)×k.lag

Wlag =
[
Ylag Wt−1 Wt−2 · · · Wt−k.lag

]
(T−k.lag)×17·k.lag

So Wlag (including original variable Ylag) is used to predict Y . To compare the

performance of original variables and wavelet transformed variables, Ylag, Wlag are

applied separately into CART, and use previous yt, up to lag k.lag for forecasting

the current value (forecast horizon p = 0 here) with and without wavelet transform:

ŷ(t+p) = f(yt−1, yt−2, · · · , yt−k.lag),
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Figure 4.1: Time series data generating process. Only 800 observations are shown
for illustration. (a) is the raw time series without seasonal effect. (b) is the seasonal
effect with α = 3. (c) is the time series with seasonal effect added.
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4.3 Simulation results under different seasonal effect levels

where the function is estimated using training data and ŷt is forecast by applying

test data to this estimated function (trained model).

The accuracy of the results is measured by R-squared:

R2 = 1− SSres
SStot

,

where SSres =
∑

t(yt− ŷt)2 and SStot =
∑

t(yt− ȳ)2, in which ŷt is the fitted value

of yt.

4.3 Simulation results under different seasonal

effect levels

Since here yt is generated from a known distribution with the true maximum lag

12, a long time lag. The seasonal effect in yt means longer lags are also informative,

but it might be too long to include in the models. Sometimes, when computational

efficiency is important, we have to use short lag information like lag 4 or even no

lag information. In that case, models under lag 12, lag 8, lag 4 and lag 1 are

trained with 8000 observations and with the remaining 2000 observations used for

testing.

Different seasonal effect levels α lead to different results. For each experiment,

50 trials (50 simulated data) are conducted and the averaged R2 results are shown

in Figure 4.2 and Table 4.1.

As seasonal effect level increases, R-squared increases as well. This is because,

with higher seasonal effect level, the time series trend becomes more clear. In

addition, the more lag variables in use, the higher the R-squared.

From Table 4.1, it is clear when only lag 1 (k.lag = 1) is permitted, MODWT

based CART chooses to use s2 first, as it contains information on yt−4. When

lag 4 and higher lags are used, CART chooses variables with lags 4, 8, 7, 11 and

12 which contain information about the true lags as the parameter values shown

in Equation 4.1. When the seasonal effect level increases, CART tends to choose

relatively smoother variables like s2 and s1. This is because, with a higher seasonal

effect level, the sine pattern becomes the main trend compared to the AR pattern

and relatively smoother variables can weaken the AR pattern but also can keep

the sine trend.
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4.3 Simulation results under different seasonal effect levels

Table 4.1: Simulation results on choice of variables for different seasonal effect
levels α when comparing original variables and wavelet variables with different
possible lags. The information is averaged from 50 trials.

α Original* Wavelet*

lag1 0 y.lag.1 d2.lag1 d4.lag1 s1.lag1 s2.lag1 d3.lag1 y.lag.1

2 y.lag.1 s2.lag1 s3.lag1 s1.lag1 s4.lag1 s5.lag1 s6.lag1

4 y.lag.1 s2.lag1 s3.lag1 s1.lag1 s4.lag1 s5.lag1 y.lag.1

6 y.lag.1 s2.lag1 s3.lag1 s1.lag1 s4.lag1 y.lag.1 s5.lag1

8 y.lag.1 s2.lag1 s3.lag1 s1.lag1 y.lag.1 s4.lag1 s5.lag1

10 y.lag.1 s2.lag1 s3.lag1 s1.lag1 y.lag.1 s4.lag1 s5.lag1

lag4 0 y.lag.4,1,2,3 y.lag.4 d1.lag3 d1.lag4 s1.lag3 s1.lag4 d2.lag2

2 y.lag.4,1,2,3 y.lag.4 s1.lag3 s1.lag4 d1.lag3 s2.lag1 s2.lag4

4 y.lag.4,1,2,3 y.lag.4 s1.lag3 s1.lag4 s2.lag4 s2.lag1 s3.lag1

6 y.lag.4,1,2,3 y.lag.4 s1.lag3 s1.lag4 s2.lag4 s2.lag1 s3.lag1

8 y.lag.4,1,2,3 s1.lag3 s2.lag1 s3.lag1 y.lag.4 s1.lag4 s2.lag2

10 y.lag.4,1,2,3 s2.lag1 s1.lag3 s3.lag1 s2.lag2 s1.lag1 s1.lag2

lag8 0 y.lag.4,8,5,3,1,7 y.lag.4 d1.lag3 y.lag.8 d1.lag4 d1.lag8 d2.lag7

2 y.lag.4,8,7,1,2,6 y.lag.4 y.lag.8 s1.lag3 s1.lag7 s1.lag4 d1.lag4

4 y.lag.4,8,7,1,2,6 y.lag.4 s1.lag3 y.lag.8 s1.lag4 s1.lag7 s2.lag4

6 y.lag.4,8,7,1,2,6 y.lag.4 s1.lag3 s1.lag4 y.lag.8 s1.lag7 s2.lag4

8 y.lag.4,8,7,1,2,6 s1.lag3 s2.lag1 s2.lag4 s2.lag3 s3.lag1 s2.lag2

10 y.lag.4,8,7,1,2,6 s1.lag3 s2.lag1 s2.lag2 s3.lag1 s2.lag3 s2.lag4

lag12 0 y.lag.4,8,12,11,9,3 y.lag.4 y.lag.8 d1.lag3 d1.lag4 d1.lag11 d1.lag8

2 y.lag.4,8,11,12,7,1 y.lag.4 y.lag.8 s1.lag3 s1.lag7 s1.lag4 s2.lag4

4 y.lag.4,8,11,1,7,2 y.lag.4 s1.lag3 y.lag.8 s1.lag4 s1.lag7 s2.lag1

6 y.lag.4,8,7,1,2,6 y.lag.4 s1.lag3 s1.lag7 s1.lag4 s2.lag4 y.lag.8

8 y.lag.4,8,7,1,2,6 s1.lag3 s2.lag1 s2.lag3 s3.lag1 s2.lag2 s2.lag4

10 y.lag.4,8,1,7,2,6 s1.lag3 s2.lag1 s2.lag3 s3.lag1 s2.lag2 s2.lag4

* variables given by the variable importance list in the model (same on other tables).
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4.4 Simulation results under different forecast ahead length levels.

Figure 4.2: Accuracies for different time lag and seasonal effects using simulated
data. Solid lines represent results of MODWT models and dashed lines represent
results of original models.

4.4 Simulation results under different forecast

ahead length levels.

In this section, we change the forecast horizon p from one observation ahead to 99

observations ahead in steps of 2, keeping k.lag at 1, 4, 8 and 12. Here the seasonal

effect level α is chosen as 3. By applying the simulated data into the model CART,

50 trials are conducted in this experiment.

ŷ(t+p) = f(yt−1, yt−2, · · · , yt−k.lag).

Results in Figure 4.3 show that, as p increases, the R-squared of original data

based models decreases until it is close to zero, while that of MODWT decreases

much slowly to a lower limit of around 0.4. There is some big periodic fluctuation

for original and wavelet results. This is because the interaction between forecast-

ing horizon and permitted lags (k.lag) in explanatory variable might be around

the true model lags 3, 4, 10, 11, 12. Another reason is the seasonal effect. For

example, we have p as 2 and k.lag as 1, so it is exact lag 3, which allows a good

forecasting. Even so, MODWT based forecasts do better in terms of R-squared.
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4.5 Application to LT data

Figure 4.3: Simulation averaged accuracy results on different forecast length levels.
Solid lines represent results of MODWT models. Dashed lines represent results of
original models.

The variable importance lists are shown in Table 4.2. It is clear that when more

long-lag variables are permitted, CART has a better chance to choose more true

lag variables. When p increases, MODWT based CART uses more coarse scale

variables which contain long memory information. Besides, for some p values, de-

tail variables are more important, in which the frequency of the sine function plays

a major role.

The simulation section has shown that forecasts based on wavelet transformed

variables can be better than those using the original variables under different

conditions. We now apply the wavelet-based forecasting to real data, including

the LT data and air pollution data.

4.5 Application to LT data

As described in Chapter 1 and Chapter 3, the LT data contains 326 individuals.

Each individual is regarded as one trial, making a total of 326 parallel trials in

this experiment. Since it is an autoregression problem, instead of using all ten

variables (other variables can also be used), the variable we use is heart rate (HR).

So for each individual, the heart rate data are regarded as one time series. For
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4.5 Application to LT data

Table 4.2: Simulation results on choice of variables for different forecast horizon.

p original* wavelet*

lag1 0 y.lag.1 s2.lag1 s3.lag1 s1.lag1 s4.lag1 s5.lag1 d7.lag1

2 y.lag.1 s1.lag1 s2.lag1 s3.lag1 y.lag.1 s4.lag1 s5.lag1

4 y.lag.1 s2.lag1 s3.lag1 s1.lag1 s4.lag1 s5.lag1 d7.lag1

8 y.lag.1 d7.lag1 s4.lag1 s3.lag1 d6.lag1 s2.lag1 s1.lag1

20 y.lag.1 d7.lag1 d6.lag1 s2.lag1 s1.lag1 s3.lag1 s4.lag1

50 y.lag.1 d6.lag1 d7.lag1 s2.lag1 s1.lag1 s3.lag1 y.lag.1

100 y.lag.1 s7.lag1 d8.lag1 s6.lag1 s5.lag1 s4.lag1 s3.lag1

lag4 0 y.lag.4,2,1,3 y.lag.4 s1.lag3 s1.lag4 s2.lag1 s2.lag4 s3.lag4

2 y.lag.2,4,3,1 y.lag.2 s1.lag1 s1.lag2 s2.lag2 s3.lag2 s2.lag1

4 y.lag.3,4,1,2 s1.lag3 s2.lag3 s2.lag1 s2.lag4 s3.lag3 s3.lag1

8 y.lag.3,1,2,4 y.lag.3 s1.lag2 s1.lag3 s2.lag3 s3.lag3 s2.lag2

20 y.lag.2,1,4,3 d7.lag4 d7.lag3 d7.lag2 d7.lag1 s8.lag3 s8.lag2

50 y.lag.1,3,4,2 s8.lag3 s8.lag2 s8.lag1 d6.lag4 d6.lag3 d6.lag2

100 y.lag.4,2,1,3 s7.lag4 s7.lag3 s7.lag2 s7.lag1 d8.lag4 d8.lag3

lag8 0 y.lag.4,8,7,6,2,1 y.lag.4 y.lag.8 s1.lag3 s1.lag4 s1.lag7 s2.lag1

2 y.lag.2,6,5,4,8,1 y.lag.2 y.lag.6 s1.lag1 s1.lag2 s1.lag5 s2.lag2

4 y.lag.7,3,5,4,1,8 s1.lag3 s1.lag7 s2.lag1 s2.lag3 s2.lag4 s3.lag1

8 y.lag.3,7,5,1,6,4 y.lag.3 y.lag.7 s1.lag3 s1.lag2 s1.lag6 s2.lag3

20 y.lag.6,2,8,5,3,4 d7.lag5 d7.lag6 d7.lag4 d7.lag7 d7.lag3 d7.lag8

50 y.lag.1,5,8,3,4,7 s8.lag7 s8.lag6 s8.lag5 s8.lag4 s8.lag3 s8.lag2

100 y.lag.8,4,1,6,5,2 s7.lag8 s7.lag7 s7.lag6 s7.lag5 s7.lag4 s7.lag3

lag12 0 y.lag.4,8,11,7,12,1 y.lag.4 y.lag.8 s1.lag3 s1.lag4 s1.lag7 s2.lag4

2 y.lag.2,6,9,5,10,4 y.lag.2 y.lag.6 s1.lag1 s1.lag2 s1.lag5 s2.lag2

4 y.lag.7,11,3,4,10,5 s1.lag3 s2.lag3 s1.lag7 s2.lag1 s3.lag1 s2.lag4

8 y.lag.3,7,10,11,6,1 y.lag.3 y.lag.7 s1.lag3 s1.lag2 s1.lag6 s2.lag3

20 y.lag.12,8,1,6,5,4 d7.lag7 d7.lag8 d7.lag6 d7.lag9 d7.lag10 d7.lag11

50 y.lag.1,5,12,8,9,4 s8.lag4 s8.lag5 s8.lag6 s8.lag2 s8.lag1 s8.lag3

100 y.lag4,10,6,8,2,11 s7.lag11 s7.lag10 s7.lag9 s7.lag8 s7.lag12 s7.lag7
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4.5 Application to LT data

each individual, 80% of the time series are used for training and the remaining

20% for testing. To compare the performance of wavelet transformed variables

and original variables, instead of using the ratio of R-squared, we use the ratio of

SSres of the two models:

ratio =
original SSres
wavelet SSres

.

The ratio of R-squared is actually the ratio of SSreg, which is not as meaningful as

the ratio of SSres. SSreg measures how far away the predicted values are from the

averaged true values while SSres measures the distance between predicted values

and true values, the latter one of which is more direct. If the SSres values for

original data is higher than that for MODWT data, then MODWT based CART is

better than using original data in that trial. This experiment is conducted under

different situations and average the results over 326 individuals. The results in

Figure 4.4: LT Prediction results using regression trees with original data and
wavelet transformed data.

Figure 4.4 show that wavelet transformed data perform much better than original

data when forecast length p is not high (like those before 100). As p increases, the

performance of wavelet transformed data is approaching that of original data, but

still better. When the permit time lag k.lag is only 1, the wavelet transformed data
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4.5 Application to LT data

Table 4.3: LT data results on choice of variables for different lag levels.

p original* wavelet*

lag 1 60 y.lag.1 s5, s6, s3, s2, s1

120 y.lag.1 s5, s4, s6, s3, s2, s1

180 y.lag.1 s5, s6, s4, s3, s2, s1

240 y.lag.1 s4, s3, s5, s2, s6, s1

lag 4 60 y.lag.1,2,3,4 s4 lag4,3; s5 lag1-4

120 y.lag.1,2,3,4 s4 lag4,3; s5 lag1,4,2,3

180 y.lag.1,2,3,4 s5 lag4,3,1,2; s4 lag4,3

240 y.lag.1,2,3,4 s4 lag1-4; s3 lag3,4

lag 8 60 y.lag.3,2,4,5,6,1 s5 lag1-6

120 y.lag.1,3,2,4,8,7 s5 lag1-6

180 y.lag.2,6,3,5,4,7 s5 lag1-6

240 y.lag.1,2,3,4,5,6 s4 lag1-4; s3 lag3,4

lag 12 60 y.lag.3,2,4,5,6,1 s5 lag1-6

120 y.lag.1,2,4,3,8,7 s5 lag1-6

180 y.lag.6,11,10,12,8,9 s5 lag1-6

240 y.lag.1,2,3,4,5,6 s4 lag1-4; s3 lag3,4

is obviously better than original data which has only one variable yt−1, whereas

MODWT based CART contains long time information.

From Table 4.3, short-term lag information is more important in forecasting

which means the current HR value is more correlated with the most recent values.

Also, coarser scale variables are more useful as they contain less noise and long

time range information.

79



4.6 Application to air pollution data

4.6 Application to air pollution data

Air pollution is quite a serious problem in China. People get diseases due to

unhealthy air quality or even hazardous air. An Air Quality Index (AQI) is a

generalised comprehensive way to describe air quality, which is based on the level of

6 atmospheric pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), suspended

particulates (PM10, PM2.5), carbon monoxide (CO), and ozone (O3) measured at

monitoring stations throughout each city (Gupta et al., 2006; Gurjar et al., 2008).

If AQI could be forecast ahead by, say one month, then government and people

would have enough time to prepare at least some response measures. This is the

time series forecasting problem we consider in this section.

The AQI dataset collected comes from the China Air Quality Online Moni-

toring and Analysis Platform (https://www.aqistudy.cn/) which summaries the

information from data centre of the Ministry of Environmental Protection of the

People’s Republic of China (http://www.mep.gov.cn/). Since the data are shown

in maps, which are not available for downloading directly, we collect the data

manually. It is a monthly dataset (averaged from daily data) of 31 provinces in

China (except Hongkong, Macao and Taiwan) from December 2013 to April 2017,

making a total of 41 months. Monthly data are used in the analysis for prediction.

But if more precise prediction is required and time permitted, daily or even hourly

data can also be collected. The data can be described as

AT = [AT.,1, A
T
.,2, · · · , AT.,T ]

and A.,t = [a1,t, a2,t, · · · , aN,t]T , where t = 1, 2, . . . , T and n = 1, 2, . . . , N with

T = 41 and N = 31.

Since air pollution has spatial spillover effects (air pollutants are apt to diffuse

and migrate across different regions), one province’s AQI can also be influenced

by that from neighbouring provinces. So we use another variable to describe these

spillover effects. For detail of spatial regression analysis, see Ward & Gleditsch

(2018). There are many ways to construct a spatial weight matrix. In this section,

it is assumed that only geographically contiguous provinces share spatial influence.

In this scenario, we have an adjacency matrix, B, with elements

Bi,j =

{
1 if provinces i and j are neighbours (i, j ∈ {1, 2, . . . , N})
0 otherwise including i = j.
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4.6 Application to air pollution data

Then, a standardised matrix, B is constructed by making the sum of each column

equal to 1. So the elements of the standardised B matrix are

Bs
i,j = Bi,j/

∑
k

Bi,k, i, j ∈ 1, . . . , N

So, the spatial spillover effects become

(ASW.,t )T = AT.,tB
s,

which measures the spillover effect from all the neighbouring provinces to the

current province and the overall spatial weighted variable is

(ASW )T = [(ASW.,1 )T , (ASW.,2 )T , · · · , (ASW.,T )T ].

In order to detect whether wavelet transformed variables have a better perfor-

mance in forecasting, we apply MODWT to both An,. and ASWn,. for each separate

province, n at level j. (Since the time length T is 41, so the maximum level j is

5 (25 = 32), j = 1, 2, . . . , 5.) The wavelet transformed data MODWT (An, ·) for

province n are denoted as the T × 2J matrix Wn, · (J is the maximum level of

wavelet transform in this section), where

Wn, · =


W d1
n,1 · · · W dJ

n,1 | W s1
n,1 · · · W sJ

n,1

W d1
n,2 · · · W dJ

n,2 | W s1
n,2 · · · W sJ

n,2
...

. . .
... | ...

. . .
...

W d1
n,T · · · W dJ

n,T | W s1
n,T · · · W sJ

n,T

 .
Here, s0 is not included as it is actually the original variable, but we will combine

it later. The wavelet transformed data are then

W = [W T
1, ·,W

T
2, ·, · · · ,W T

N, ·]
T .

Similarly, we get the wavelet transformed data W SW corresponding to spatial

spillover effects variable ASW .

For the monthly data, a maximum time lag of 12 (lag.max) is chosen as it

covers one whole year and the pollution now is more likely to be similar to the

pollution same time last year. Taking the original data An,. as an example, with

time lag i included, it becomes

Alag.in,. = [an,i, an,(i+1), · · · , an,(T−lag.max+i)]
T
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4.6 Application to air pollution data

Table 4.4: AQI forecasted results using original and wavelet data. First overall 6
important variables are listed.

Accuracy (R2) Variables

original 0.5451 AQI.lag12 AQI.lag11 AQI.lag1 AQIW.lag12 AQIW.lag11 AQIW.lag1

wavelet 0.5742 AQI.s2.lag10 AQI.s1.lag11 AQI.s1.lag12 AQI.s2.lag11 AQI.s3.lag8 AQI.s3.lag7

and An,. with time lag becomes

Alagn,. = [Alag.1n,. , Alag.2n,. , · · · , Alag.maxn,. ].

After combination, we have Alag. In the same way, we can also get (ASW )lag, W lag

and (W SW )lag.

Until now, we have finished constructing the explanatory variables. Specifically,

the original explanatory variables Xo are

Xo = [Alag, (ASW )lag]

and wavelet transformed explanatory variables Xw are

Xw = [Alag, (ASW )lag,W lag, (W SW )lag].

Note that Xo is included in Xw, as wavelet smooth variable on level 0 is actually

the original variable.

Y reg = [AT.,lag.max+1, A
T
.,2, · · · , AT.,T ]T

Training data and test data are separated by time point 30. So we have 558

observations for training and the remaining 341 for testing. The regression trees

are applied to conduct the experiment with 100 trials to get an robust result. That

is because for regression trees, random sampling in the cross validation leads to a

slightly different cross-validation error, which may cause the tree depth to differ

after pruning according to the cross-validation error.

The results in Table 4.4 show that wavelet variables do better in fitting. For

variables used, original data based CART chooses AQI with lags 1, 11 and 12.
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4.7 Conclusion

For weighted AQI, CART also choose lags 1, 11 and 12. That suggests AQI has

a long-lag autocorrelation effect and adjacent provinces do have obvious effects

on AQI itself. The ratio is 1.07, with the wavelet transformed variables having a

higher R2 (0.5742) compared to the original variables (0.5451).

4.7 Conclusion

In this Chapter, we compared the performance of the original variables with

wavelet transformed variables in time series analysis. Wavelet data generally result

in better accuracy measured by R2 and R2 ratio. Important variable information

used in the tree is also obtained.

Specifically, MODWT based CART can detect true lag information and has

much better performance when only short lag information is permitted (k.lag

is small). When forecast length increases, R2 from MODWT based forecasting

decreases much more slowly compared to that of original forecasting. For real

data analysis, MODWT based CART also performs better in both LT data and

Chinese air pollution data.
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Chapter 5

Interval Forecasts based on
Regression Trees for Streaming
Data

5.1 Introduction

Chapter 4 has shown, compared to original CART, wavelet based CART has bet-

ter performance in static time series prediction. So MODWT data will be used

directly for streaming data forecasting in this chapter. Streaming data are data

that are continuously generated by different sources. Such data should be pro-

cessed incrementally using stream processing techniques without having access to

all of the data. In a data stream analysis, models are built to capture information

hidden in the data, either for description or prediction. Regression trees have been

widely developed to capture such information. For many applications, forecast-

ing the target value at a given time in the future is the primary task. However,

sometimes an interval forecast is also required and maybe more useful than the

point forecast. The term “interval forecast” refers to an interval that will “usu-

ally” (with a specified confidence) include the true value of the streaming variable

at the specified time. The interval construction method is inspired by Appice &

Ceci (2006), who consider count-based (count the number of observations) and

normal distribution-based procedures. In this chapter, a count-based procedure

is employed using quantiles information from the trees for interval construction,

preferring not to rely on any distributional assumption or approximation.
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5.1 Introduction

The interest in this problem is motivated by a real data example. During

surgery, the patient’s heart rate is monitored in case of emergency. If we can

reliably predict heart rate, even just a minute ahead, surgeons have some time

for preparation, which could potentially save lives. In this circumstance, point

prediction for an exact heart rate value is of limited use. Surgeons pay more

attention to the range of the heart rate (whether in the normal range or not),

and methods designed for interval forecast are more directly targeted at range

monitoring. We apply these methods to financial data as well. Other applications

include industrial process monitoring, social media activity or customer behaviour

data.

Forecasting can be based on statistical time series models like ARIMA or

GARCH, but they require structural and distributional assumptions such as white

noise should be normally distributed. In reality, unseen future data may not sat-

isfy these assumptions. Data mining methods like decision trees do not need such

assumptions. Trees are simpler to interpret and can provide simple decision rules

for people to refer to when an decision mechanism is required. However, since trees

are generally not based on an underlying statistical or probabilistic model, there

is no distributional means of constructing confidence intervals based on regression

trees. As trees allocate each observation into a terminal node, the collection of

observations in each terminal node can be used to construct an interval estimate.

For these reasons, we choose trees as the regression model and compare the tree

based forecasts with those produced by ARIMA and GARCH models.

The coverage rate (proportion of test values falling into the interval forecast) of

the interval forecast are regarded as the main measure of how well the methods are

performing. If almost all the true values are in the interval forecasts, the methods

are successful, though we would like a specified proportion. Interval width and

computational load are also taken to be measures of performance.

The rest of this chapter is arranged as follows. Section 5.2 reviews key con-

cepts in regression tree modelling of streaming data. The methodology is intro-

duced in Section 5.3, and is applied to simulated data in Section 5.4 with ARIMA

and GARCH for comparison. After that we apply it to real datasets followed

by comparisons with ARIMA and ARMA-GARCH in Section 5.5 and Section 5.6

respectively. Some concluding comments appear in Section 5.7. All computation
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5.2 Related work

was performed in R (R Core Team, 2014), using the packages partykit (Hothorn &

Zeileis, 2015) for regression trees, waveslim (Whitcher, 2013) for wavelet decompo-

sition and forecast (Hyndman, 2017; Hyndman & Khandakar, 2008) for ARIMA,

rugarch (Ghalanos, 2014) and fGarch (Wuertz et al., 2013) for GARCH and ARMA-

GARCH.

5.2 Related work

Like other methods which use regression trees for streaming data, there are several

questions we need to answer. The first one is how to utilize long term variable

information. Since forecasting is conducted in the context of streaming data, most

of the current data depend on old data. Building models using only the most recent

data seems unwise, so storing old information in an efficient way is important. One

way of doing this is via a wavelet transform, which can pick out long term averages

and short term fluctuations. Instead of using the standard decimated discrete

wavelet transform (DWT), we use the maximal overlap discrete wavelet transform

(MODWT; Percival & Walden (2000)), as it is not constrained by time series length

Tn, so MODWT can be applied to every time point. Wavelet transformed variables

have already been shown to be better than or similar to original variables in the

context of classification trees (Zhao et al., 2018) and static time series forecasting

in Chapter 4. So again, here the input variables are wavelet transformed variables.

The second question is how to deal with streaming data. Various tree-based

models have been designed for streaming data, many of which are implemented

in the Massive Online Analysis (MOA) open source framework for data stream

mining (Bifet et al., 2010). In MOA, the Hoeffding Tree family (Bifet et al., 2009;

Domingos & Hulten, 2000; Jin & Agrawal, 2003; Pfahringer et al., 2007) provides

some important models, followed by other recently developed models to include

more complex situations (Duarte et al., 2016; Ikonomovska et al., 2011, 2015).

However, performance of these models is assessed by accuracy of the predicted

values as point estimates, while here we pay more attention to performance based

on interval forecast accuracy. Without considering trees, there are other mod-

els which use neural networks to obtain prediction intervals such as Shrestha &

Solomatine (2006) and Quan et al. (2014) which combines coverage and width as
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one target. These models can be applied to streaming data as well, but lack the

straightforward interpretation of tree-based models.

Thirdly, how to detect concept drift (statistical properties of the target vari-

able changes)? The data generation mechanism can be referred to as “concept”.

This concept can remain stable or change over time, for example, the statistical

properties of the target variable, which the model is trying to predict, change over

time in unforeseen ways. This causes problems because the predictions become

less accurate as time passes. If it is stable, models built now can still be used for

future prediction. If it is not stable, we say concept drift happens, either gradually

or abruptly. In this scenario, statistical properties of the target variable, which

the model is trying to predict, change in unforeseen ways. This leads to poor

prediction performance, as the model built based on the old concept is no longer

suitable for prediction of the target variable. So we need to develop concept drift

detections tools and update or retrain the model when drift is detected.

Concept drift detection tools are generally based on the prediction accuracy.

The Drift Detection Method (DDM) (Gama et al., 2004) monitors the probability

of error in real time. The Early Drift Detection Methodology (EDDM)(Baena-

Garćıa et al., 2006) was developed as an extension of DDM, and is more suitable

for slow moving gradual drifts, where DDM previously failed (Sethi & Kantardzic,

2017). The Statistical Test of Equal Proportions (STEP) (Nishida & Yamauchi,

2007) computes the accuracy of a batch of recent predictions and compares it with

the overall accuracy from the beginning of the stream, using a chi-squared test to

check for deviation. An incremental approach, Concept Drift Detection (ECDD),

was proposed by Ross et al. (2012). Some window-based methods like the Adaptive

Windowing (ADWIN) algorithm (Bifet & Gavalda, 2007; Yoshida et al., 2011) and

SeqDrift2 (Sobhani & Beigy, 2011) detect whether sub windows have significant

differences in terms of predictive accuracy. These tools are generally based on the

prediction accuracy.

We wish to base the response to concept drift on the accuracy of the interval

forecasts rather than the prediction accuracy. An interval forecast which covers

most of the data suggests that the model in use is a good one which should continue

to be used as long as it remains effective. The three simple ways for a time series to

change are to change mean value with variance fixed; change variance with mean
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value fixed; or change both mean value and variance. When variance changes but

with mean value fixed, we can enlarge or shrink our interval forecast to cover future

data more efficiently. But when the mean value changes with or without variance

change, we need to consider building a new model. For the terminal node in a

tree, the interval forecast from this node is obtained from the sample quantiles

of the observations falling into this node. So when the mean of the data changes

substantially, our tree will no longer be suitable. The criterion is that when too

many test data fall outside the forecast intervals, then we build a new model with

the most recent batch of data to update the current ensemble model or replace the

current model.

The fourth question is when concept drift has been detected, what should we do.

There are many ways to improve the model when concept drift is detected. Some

rebuild the model using the new batch of data after the concept drift point. Some

remove the poorly performing nodes and grow new nodes with the latest batch

(Bifet & Gavaldà, 2009; Domingos & Hulten, 2000). In ensemble methods, some

approaches drop the worst model and replace it with the rebuilt model but with

the other models unchanged. Inspired by these ideas, we develop two methods,

one based on a single tree and one ensemble method.

5.3 Methodology

5.3.1 Background

In this section, two methods are proposed to create interval forecasts for streaming

data; one method based on a single tree and one ensemble approach. We then

describe an approach to adaptively adjust the interval forecasts to the changing

characteristics of the data and discuss criteria for model retraining. Finally, some

measures of model performance are proposed.

The dataset will be introduced here first. We use regression tree models to

forecast time series {yt}, denoting the predicted value h steps ahead of time t as

ŷt+h = f(yt, yt−1, . . . , yt−γ+1).

This prediction uses the previous γ observations to predict y at h time points

ahead. It is assumed that the initial training dataset consists observations up to
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time T . The first T −h observations will be used as A and the last h observations

will be used as the response variable. A schematic matrix representation is

A =


y1 y2 · · · yγ
y2 y3 · · · yγ+1
...

...
. . .

...
yT−h−γ+1 yT−h−γ+2 · · · yT−h


−→
−→

...
−→


yh+γ

yh+γ+1
...
yT

 . (5.1)

One thing to note is that not all of the matrix A will be used to predict each

future yt, but each line will be used to predict each time point. The matrix just

represents a batch of data. Since we wish to use the wavelet transformed data

of the left matrix A, a longer time range is required. For example, the level of

the wavelet transform is set as 8, which requires at least 256 observations. If γ

is smaller than 256, then the observations from yT−h−255 to yT−h will be used for

wavelet transform instead of yT−h−γ+1 to yT−h and the series of wavelet coefficients

will be truncated from time T −h− r+1 to time T −h to make it the same length

as yT−h−γ+1 to yT−h. In that case, the training can only start when the number

of stored observations reaches 256. So instead of starting from y1 to yγ, it will

start from y257−γ to y256. We refer to the matrix of wavelet coefficient series as W .

Then we can use each line in W to predict yh+γ, . . . , yT . For example, yt in A will

be [W d1
t · · · W d8

t ,W s1
t · · · W s8

t ] in the matrix W .

In the later sections, we will use this wavelet transformed variable W as our

input variable. Specifically, the explanatory data for training and prediction are

all wavelet transformed data.

5.3.2 Proposed methods

We propose two forecasting methods, an ensemble method and a single-tree method.

As shown in Figure 5.1, initially, when T reaches time t0, the observations up to

time t0 will be used to train the initial model as shown in Equation 5.1 and training

stage 1 in Figure 5.1. Then, the observations yh+γ, ..., yt0 are changed from output

prediction observations to input observation in A by changing yt0−h to yt0 . So we

can use data A up to t0 to obtain predictions from t = 2h+ γ to t0 + h shown as

prediction stage1. From then on, forecasting is done continuously, but after each

batch of data, we review and update our models.
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Figure 5.1: Methods process using original data for illustration.

We now describe how the methods proceed in stages. At Stage 1, we use the

initial t0 observations for initial training and forecasting. Each subsequent batch

of h observations afterwards are regarded as a new stage in the process, so at Stage

k, data yt, t = 1, 2, . . . , t0 + kh will be available. At each Stage k = 1, 2, 3, . . ., we

go through the following steps. (Some details of the model and forecast updating

process are deferred to the Section 5.3.3.)

• Step 1: (k + 1)st prediction

– (k + 1)st prediction (single method)

For each new observation at Stage k, use the latest model to get a

prediction Pt for t ∈ Sk+1 = {t0 + kh+ 1, . . . , t0 + (k + 1)h}.

– (k + 1)st prediction (ensemble method)

For each new observation at Stage k, continuously use the method below

to get a weighted forecast for new data at Stage k + 1. Denote a

prediction by the vector P = (L, ŷ, U), including the predicted value ŷ

and forecast interval limits L,U . Let P(1) be the forecast from the first

(oldest) model (not constrained to trees), P(2) the next oldest and so
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on. Then the combined forecast from a bag of s ≤ m models is P̄(s),

defined recursively by

P̄(2) = k1P(1) + k2P(2),

P̄(3) = k1P̄(2) + k2P(3),
...

P̄(s) = k1P̄(s−1) + k2P(s),

where k1 + k2 = 1, s is the number of models trained which should

be smaller than the maximum model allowance m (set beforehand).

Generally k2 > k1 to make the most recent forecast the most important

term.

• Step 2: kth RMSE calculation

Calculate the root mean squared error (defined later in Equation (5.2)) be-

tween the newly observed data from Stage k and the point forecasts of these

data which were made in the previous Stage k − 1 (kth prediction).

• Step 3: kth model updating

If a new model was created at Stage k − 1, retrain the model using the new

data or update the model using the kth RMSE as described later in §5.3.3.

• Step 4: (k + 1)st model training

– (k + 1)st model training (single method):

The current model may become less relevant, showing bias or excess

uncertainty due to concept drift, so we choose to train a new model

when necessary. However, a new model is only trained when deemed

necessary and otherwise we continue with the existing model. The

decision on whether to train a new model is based on the coverage

of the forecasts on the most recent batch of data. For the latest h

observations, let

py = max

{
1

h

∑
t∈Sk

I[ŷt > (yt + δ)],
1

h

∑
t∈Sk

I[ŷt < (yt − δ)]

}
,

91



5.3 Methodology

which will increase if the predictions are systematically above or below

the true values by a tolerance δ. If py exceeds a threshold of, say, 90%,

then we train a new model using these h observations to replace the old

model.

– (k + 1)st model training (ensemble method):

Use data at Stage k to train a new model. If the total amount of data

observed until now is greater than some upper limit TΩ, then we use the

latest TΩ observations to emphasize more recent information and make

the models more responsive to concept drift.

This outlines the ongoing process of model updating which will continue as

long as data are being observed. We now give more details of the construction and

updating of our forecast intervals, which is largely the same for both ensemble and

single-tree methods.

5.3.3 Construction and updating of interval forecasts

Forecast interval construction

For each terminal node, the 0.025 and 0.975 quantiles of the values in that node

are chosen as an initial interval [L′, U ′]. To make the forecast interval less sensitive

to overfit the training data, it is enlarged to

[L,U ] = [L′ − α(U ′ − L′), U ′ + α(U ′ − L′)], α ∈ R.

Larger values of the tuning parameter α lead to wider intervals, usually with

correspondingly higher coverage. So α can be used to trade off coverage and

width. This tuning parameter is only applied to new models when they are first

trained.

Updating forecast intervals

The width of the interval forecasts will be adaptively adjusted depending on the

coverage of the most recent point forecasts. For a general Stage k, comprising
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time points t ∈ Sk, the root mean squared error of the point forecasts of the h

observations is

RMSE =

√
1

h

∑
t∈Sk

(ŷt − yt)2. (5.2)

Denote the forecast interval at time t by [Lt, Ut]. Let pU and pL be the proportions

of intervals with yt < Ut and yt > Lt respectively:

pU =
1

h

∑
t∈Sk

I{yt < Ut}, pL =
1

h

∑
t∈Sk

I{yt > Lt}.

There are four combinations of how [L,U ] might be updated, which are summa-

rized in Table 5.1. These empirical coverage rates will decide when to increase or

decrease L or U by β · RMSE to adapt for the forecasting performance at Stage

k, since we assume the model updated by the current data can be applied to the

future prediction. The reason to use RMSE is that it is a good measure of the

model performance. Other metrics can also be considered. Here, β is a tuning

parameter and values of β ∈ [2, 3] are found to be effective. We set lower and

upper target coverage rules a and b, and try to maintain coverage rates in the

range (a, b). Typical values would be a = 0.95, b = 0.99.

If pU < a, meaning that the proportion of observations where Ut > yt does not

even reach the minimum desired coverage, then the values of U will be increased

by β ·RMSE. Similarly, if pL < a, L will be decreased by β ·RMSE.

If pU > b, meaning that the observation is below the upper limit of the forecast

interval more often than we intended, the future forecasts U will be decreased by

β · RMSE, so long as this does not make Ut < ŷt. The Ut will not be decreased,

if the adjusted pU would go below a while calibrating on the newly-arrived Stage

k data. Similarly, if pL > b, we increase L by β ·RMSE subject to the constraint

Lt < ŷt.

5.3.4 Performance measurement

To measure the performance of the interval forecasts, the coverage will be used,

that is the proportion of observations in [L,U ]:

coverage =
1

T − t0

T−t0∑
t=1

I{yt ∈ [Lt, Ut]}.
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pU < a pU > b

pL < a
U → U + β · RMSE
L→ L− β ·RMSE

U → U − β · RMSE
L→ L− β ·RMSE

pL > b
U → U + β · RMSE
L→ L+ β ·RMSE

U → U − β · RMSE
L→ L+ β ·RMSE

Table 5.1: Situations where [L,U ] is adapted to recent forecasting performance,
subject to the constraints, for example Lt < ŷt < Ut.

However if two methods have similar coverage, then we prefer the method which

has the lower mean forecast-interval width:

width =
1

T − t0

T−t0∑
t=1

(Ut − Lt).

5.4 Simulation study

In this section, the performance of tree based models will be compared with that

from parametric models using simulated data. If the dataset is generated from

a parametric-model based distribution family, then we can ensure the parametric

model will be a suitable approach. If non-parametric models, like trees, can have

better or similar performance than this parametric model, then the non parametric

model is good. ARIMA and GARCH are chosen as the parametric models.

5.4.1 ARIMA simulation

Here ARIMA is chosen as the parametric model and trees as the non-parametric

model. The general expression for an ARIMA model is(
1−

p∑
k=1

αkB
k

)
(1−B)dyt =

(
1 +

q∑
k=1

βkB
k

)
εt,

where B is the lag operator, the αk are the parameters of the autoregressive part

of the model, the βk are the parameters of the moving average part and the εt

are error terms assumed to be independently normally distributed with mean zero

and variance σ2. Here, in general p and q are chosen as 1, but for noise only
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variables, p and q are chosen as 0. Here d can be 0 (without trend) or 1 (if

trend is possible). In this simulation, we assume, for one time series generated,

there is minimal distribution change (parameters share different but similar values)

to allow minimal changes in one time series flow, but, for different time series,

distribution changes obviously since they come from different sources. The time

series are generated of length 3000 according to one of the parameter distributions

j;

{Y i} ∼ ARIMA(αi, βi, σi, di), i = 1, 2, . . . , 10,

where αi, βi ∼ U(aj, bj), i.i.d, σi ∼ U(cj, dj) and di ∼ B(1, 0.5) with possible

value 1 to allow trend, and di = 0 without trend. After choosing parameters from

distribution j, we generate parameters αi, βi, σi, and di 10 times from U(aj, bj),

U(cj, dj) and B(1, 0.5); so we get nine change points in each time series. For

example, for the first time series (j = 1), we have values of U(a1, b1) and U(c1, d1)

as U(1, 2) and U(0.1, 0.2) (values are only for illustration). For the second time

series (j = 2), we have U(a2, b2) and U(c2, d2) as U(5, 6) and U(0.7, 0.8). Their

values differ a lot among different j to make them different time series. For one time

series (like j = 1), αi, βi, σi are randomly chosen from U(1, 2) and U(0.1, 0.2) to

make slightly changes when time goes on. The time series we use for one simulation

is

Y = {Y 1, Y 2, . . . , Y 10}.

In each simulation, we generate one time series Y of length 30000 (3000 times

10) for each j, and apply all methods separately for forecasting. The number of

simulations is chosen as 20 (j = 20). So there are 20 time series, in which each

time series has 30000 observations. The parameters we find work well for tree

based methods are β = 2, α = 0.2, b = 0.99, a = 0.95, h = 100 (can be other

values as well), t0 = 1311 (including input and output variables of length 1200,

prediction ahead h = 100, and γ = 12) and γ = 12, δ = 2, TΩ = 1000, and m = 3.

A similar ARIMA forecasting approach will be employed to the regression tree

methods for comparison. The input variable (y) will be the original variable in-

stead of wavelet transformed variables, as ARIMA generally uses only one variable

as input variable. (There is a model ARIMAX that takes in multiple input vari-

ables that can also be considered in future work.) We use the function auto.arima
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in the R package forecast (Hyndman, 2017; Hyndman & Khandakar, 2008) to find

the best ARIMA model according to AICc (small sample size corrected AIC). This

function conducts a search over possible models within the order constraints pro-

vided: p, q ∈ {0, 1, . . . , 6} and d ∈ {0, 1, 2}. Allowing higher orders incurs a higher

computational load. In R, ARIMA can try to reach a given prediction interval

level given by users. In order to compare the performance of ARIMA with trees,

the prediction interval levels c chosen for Single ARIMA and Ensemble ARIMA

are coverage results from Single tree and Ensemble tree methods to obtain results

comparable to those obtained using regression trees. As in the regression tree

methods, the first t0 = 1311 (same as the tree setting for comparision) observa-

tions will be used to train the initial model. Using data from t − γ + 1 to t, we

can predict the value at time t+ 1

ŷt+1 = f(yt, yt−1, . . . , yt−γ+1),

where γ = 1000. Then we recursively use this predicted ŷt+1 to predict ŷt+2

ŷt+2 = f(ŷt+1, yt, yt−1, · · · , yt−γ+2),

and so on to get the predicted value h = 100 observations ahead as ŷt+100.

There are two criteria for model retraining and updating. As shown in Table

5.1, retraining occurs if the method fails to achieve coverage between c− 0.3 and

0.99; updating if the method fails to achieve coverage between c− 0.15 and 0.99,

where c is the coverage result from trees. The second criteria is that the minimum

gap between two successive retraining or updating is 100 new observations so as to

avoid excessively frequent fitting. When retraining, instead of using h observations

as in the regression model, we use 10h observations to make the ARIMA model

robust to short-term trends. For example, if ARIMA still uses h observations as in

the regression model, when trend is detected in that h observations, there might

be quite sharp increase or decrease in the long-term prediction. But the reality

might be the trend is only temporally appeared in that h observations, and it will

not continue afterwards. The reason why trees use that h observations is that

trees do not have trend effect built in the model and the predicted value at each

terminal node is fixed. So there is no need to worry about the sharp increase or
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decrease. But, for ARIMA, it uses 10h observations instead to build a relatively

robust model. In the Ensemble tree method, we choose to train a new model for

every h = 100 observations. Since we use 10h observations for ARIMA training, in

the ensemble method for ARIMA, there is no need to train a new model every 100

observations. If not, the model will only have slightly change since only 100 out of

1000 observations are updated. The model updating and retraining criteria are the

same as the Single ARIMA shown in Table 5.1. For updating, we keep p, q, and

d fixed and update the parameters using the most recent γ = 10h observations.

For the ensemble ARIMA model, we choose up to m = 3 most recent models and

weight predictions in the same way as that in the ensemble tree method. Other

criteria are the same as in the tree methods. Results from 20 simulations are shown

in Table 5.2, Figure 5.2 and Figure 5.3.
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Table 5.2: The mean and standard deviation (sd) of coverage, width, widthsd and time for all methods across 20 simulations. Widthsd is the averaged standard
deviation of width within each simulation. The sd in width(sd) is the standard deviation of mean width across 20 simulations.

α, β U(0.1, 0.2) U(0.8, 0.9)

σ white noise U(0.2, 0.5) U(4, 5) U(0.2, 0.5) U(4, 5)

trend possible no yes no yes no yes no yes

Case 0 1 2 3 4 5 6 7 8

Single tree method

coverage(%) 99.38(0.1) 98.90(0.5) 76.48(5.8) 99.33(0.3 ) 71.22(6.7) 94.89(1.3) 67.99(9.4) 94.47(1.3) 64.47(5.6)
width 5.48(0.1) 3.32(0.4) 8.40(2.4) 12.13(0.5) 33.31(12.0) 11.82(1.1) 62.41(26.7) 42.99(3.4) 232.54(84.3)
widthsd 0.01(0.0) 0.14(0.1) 8.36(2.9) 0.04(0.1) 33.97(13.3) 3.05(0.7) 82.56(32.4) 11.74(2.2) 288.72(94.1)
time 17.59(0.3) 19.04(0.4) 21.14(0.8) 18.30(0.6) 21.96(1.2) 18.35(0.6) 21.52(1.5) 17.80(0.6) 21.79(0.7)

Ensemble tree method

coverage(%) 99.34(0.0) 99.27(0.1) 74.69(7.2) 99.31(0.1) 71.40(8.3) 94.43(0.8) 67.81(9.5) 94.16(0.8) 65.28(5.5)
width 5.46(0.0) 3.30(0.1) 8.27(1.7) 12.05(0.1) 32.83(7.2) 9.54(0.6) 59.32(19.6) 34.63(1.1) 222.70(51.9)
widthsd 0.16(0.0) 0.37(0.1) 8.25(2.5) 0.51(0.1) 29.49(5.9) 2.21(0.2) 79.42(25.0) 7.27(0.5) 270.90(60.5)
time 123.95(3.3) 122.20(2.0) 127.39(4.2) 121.08(3.4) 127.09(3.7) 125.45(3.1) 126.99(3.9) 123.95(2.6) 129.86(2.1)

Single ARIMA method

coverage(%) 99.05(0.1) 98.38(0.8) 76.96(5.7) 99.00(0.1) 80.75(5.4) 93.08(1.2) 89.35(5.8) 93.86(1.4) 86.97(4.6)
width 6.34(0.5) 3.39(0.3) 20.06(8.1) 12.92(1.2) 65.12(23.1) 11.89(1.8) 216.87(69.8) 42.48(7.1) 765.44(196.9)
widthsd 6.26(1.4) 2.79(0.8) 66.96(48.0) 10.21(4.3) 201.71(116.8) 10.72(1.7) 396.44(151.9) 36.40(7.7) 1430.69(533.4)
time 98.50(2.8) 95.05(3.6) 83.49(2.3) 97.72(2.8) 82.89(2.3) 97.52(4.9) 90.08(2.8) 96.34(4.5) 88.62(3.9)

Ensemble ARIMA method

coverage(%) 99.08(0.1) 98.59(0.5) 76.39(6.1) 99.02(0.1) 75.11(6.2) 95.18(0.8) 76.23(5.1) 95.10(0.8) 74.24(3.5)
width 6.33(0.5) 3.49(0.3) 18.07(6.3) 12.90(1.1) 61.03(15.1) 11.55(1.5) 197.41(63.1) 42.36(5.7) 720.77(176.5)
widthsd 5.46(1.2) 2.61(0.7) 53.63(37.8) 8.65(3.5) 163.53(98.3) 9.13(1.5) 344.90(124.7) 32.91(6.1) 1275.78(502.8)
time 414.17(7.3) 411.76(8.8) 516.41(271.1) 413.80(7.7) 466.25(227.0) 646.61(347.6) 793.38(382.8) 820.32(413.1) 630.81(342.7)
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Figure 5.2: Simulation results of coverage and width. Panels 0-8 represent the 9
distributions in Table 5.2.

When comparing tree methods with ARIMA methods in terms of computation
time, tree methods take less than 25% of the time of ARIMA in both single and
ensemble methods.

When comparing tree methods with ARIMA in coverage and width, it is clear
that the Ensemble tree method is better than Single ARIMA method and En-
semble ARIMA method in most situations except Cases 4, 6 and 8 in Figure 5.2.
But for these cases, the points are roughly in a line, which means methods with
higher coverage are at the cost of higher width. If we allow a wider interval for
tree methods, they might achieve the same coverages as that of ARIMA. For the
tree methods, the Single tree method has equal performance to that of the Ensem-
ble tree method except Cases 5 and 7 where the Single tree method has a relatively
higher width.

Comparing widthsd, tree methods are better than ARIMA. For a time series,
when trend disappears, not yet updated ARIMA will still forecast with trend
before retraining thus the forecasted intervals can be extremely wide. When there
is no trend, but a trend is falsely detected by ARIMA, intervals can be wide as
well, but tree methods, which consider trend in a different way, can avoid such
situations.

When the time series distribution changes, tree methods react more quickly
compared to ARIMA which uses information directly. An example is shown in the
circled area of Figure 5.3.
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Figure 5.3: Simulation results (from one realisation of Case 3). In this plot, α,
β both follow U(0.1, 0.2), σ follows U(0.2, 0.5) with trend possible. Red dashed
vertical lines represent the time when distribution changes. ARIMA has extremely
wide intervals in some cases. Take the circles area as an example, ARIMA reacts
slowly when distribution changes as shown in the circles area.
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5.5 Forecasting heart rate during LT surgery

In conclusion, the Ensemble tree method is somewhat better than the others
when there is no time efficiency requirement. When time is critical, the Single tree
method is suggested. When the ARIMA effect is strong and trend possible, the
Single ARIMA method is suggested at the cost of wide intervals.

5.4.2 GARCH simulation

We now choose GARCH as our parametric model. Simulated data from the
GARCH model as

yt = σt|t−1et,

where et follows i.i.d. N(0, 1) and is independent of past yt′ , with t′ < t and

σt|t−1 = w +
r∑

k=1

γky
2
t−k +

s∑
k=1

δkσt−k|t−k−1,

where γk and δk measure the influence of y2
t−k and σt−k|t−k−1 to the current σt|t−1. In

this simulation, both r and s are chosen to be 1. However, when fitting the GARCH
model, both r and s are allowed to a maximum of 3. For the data simulation
process, it is the same as the ARIMA simulation part. The functions in use
include garchAuto, ugarchfit, ugarchforecast in the R packages rugarch (Ghalanos,
2014) and fGarch (Wuertz et al., 2013). The criteria to find the best GARCH
model is AIC. The results are shown in Figures 5.4, 5.5 and Table 5.3. Figure 5.4
shows that the forecast intervals from the Single tree method are less responsive
to concept drift. For Case 4, tree methods are better than GARCH with a slightly
smaller width. For the other circumstances, they share similar performance. That
means, under similar parameter settings, tree methods have similar performance
to the GARCH methods even the data are generated from GARCH distributions.

5.5 Forecasting heart rate during LT surgery

As introduced in Section 1.3, the data in use come from patients undergoing Liver
Transplantation (LT) operation, which is a high-risk treatment choice for patients
having end-stage liver disease. The data, which was recorded using a LIDCO
monitor on patients undergoing LT between September 2004 and December 2011,
is provided by St James’s University Hospital, Leeds, UK. For details, refer to
Milan et al. (2016). The variable in use is the heart rate (beats/min), as it is
one of the most important variables to be monitored on an ongoing basis during
surgery. The aim is to predict heart rate h = 100 heart beats ahead (in our data,
each heart beat takes around 0.5 to 1 seconds), so that the operating team can have
enough time for preparation if heart rate is forecasted to go out of a normal range,
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5.5 Forecasting heart rate during LT surgery

Figure 5.4: Simulation results (from one realisation of Case 4). In this plot, γ
and δ both follow U(0.3, 0.5). Red dashed vertical lines represent the time when
distribution changes.

Figure 5.5: Simulation results for paired coverage and width. Panels 0-4 represent
the 5 distributions in Table 5.3.
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5.5 Forecasting heart rate during LT surgery

Table 5.3: The mean and standard deviation (sd) of coverage, width, widthsd and
time for all methods across 20 simulations. Widthsd is the standard deviation of
width within each simulation. The sd in width(sd) is the standard deviation of
mean width across 20 simulations. w follows uniform distribution U(0, 2).

γ white noise U(0, 0.2) U(0, 0.2) U(0.6, 0.8) U(0.3, 0.5)
δ U(0, 0.2) U(0.6, 0.8) U(0, 0.2) U(0.3, 0.5)
Case 0 1 2 3 4

Single tree method
coverage(%) 97.48(0.7) 97.30(0.5) 96.14(0.6) 96.46(0.7) 99.24(0.2)
width 5.53(0.6) 12.29(2.5) 9.84(1.2) 10.80(2.2) 5.38(0.2)
widthsd 1.47(0.4) 4.30(1.6) 3.24(0.8) 3.79(0.9) 0.00(0)
time 18.16(0.5) 18.28(0.4) 18.39(0.3) 18.31(0.2) 18.30(0.2)

Ensemble tree method
coverage(%) 98.86(0.3) 98.66(0.2) 97.43(0.1) 97.83(0.3) 99.33(0.0)
width 5.95(0.5) 12.88(2.3) 10.69(1.1) 11.78(2.3) 5.47(0.0)
widthsd 1.83(0.3) 5.23(2.2) 4.03(1.1) 4.78(1.8) 0.15(0.0)
time 118.04(3.0) 119.97(1.3) 119.42(1.0) 119.68(1.0) 119.90(1.0)

Single GARCH method
coverage(%) 95.74(1.8) 95.08(1.3) 94.77(1.0) 94.14(1.3) 99.74(0.1)
width 4.68(0.7) 9.77(2.0) 9.07(1.4) 9.06(1.8) 6.14(0.2)
widthsd 1.52(0.4) 4.19(1.8) 5.59(2.4) 4.78(1.9) 0.32(0.0)
time 659.13(337.2) 647.46(173.7) 704.80(112.0) 645.69(152.6) 1998.05(66.3)

Ensemble GARCH method
coverage(%) 98.81(0.8) 98.15(0.8) 96.15(0.7) 96.02(1.0) 99.77(0.0)
width 6.22(0.9) 12.81(2.5) 10.43(1.8) 10.48(2.2) 6.18(0.0)
widthsd 1.99(0.3) 5.40(1.9) 6.37(2.6) 5.42(2.3) 0.31(0.0)
time 1876.97(211.8) 1715.50(206.6) 1201.78(111.1) 1185.54(122.0) 2294.39(31.2)
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5.5 Forecasting heart rate during LT surgery

when the patient might be in danger. To illustrate the methods, the previously
cleaned data (Zhao et al., 2018) as described in Chapter 3 will be used here.

5.5.1 Tree-based forecasting

When forecasting heart rate using the Ensemble and Single tree methods, we found
parameter values β = 2, α = 0.2, b = 0.99, a = 0.95, h = 100, t0 = 1311 and
γ = 12, δ = 2, TΩ = 8000, and m = 3 generally work well across those patients.
We use one patient’s data for illustration. The results are shown in Figure 5.6.
Ensemble and Single tree methods have coverage (77.7%, 85.9%), widths (7.6, 6.8),
and computing times (134, 12) in seconds. From the results, we can see that both
methods have good performance. Generally, the forecast intervals cover the true
values without being excessively wide, only failing to include the true data when
there are episodes of high volatility. Retraining happens with the same path of
distribution change as shown in the Single method.

Summary results for all 325 patients are shown in Table 5.5 and Figure 5.7
including an enlarged version of those patients whose mean interval width was
smaller than 20. Figures 5.7 to 5.8 and Table 5.5 show that the results of Single
and Ensemble tree methods are generally similar, with the Ensemble tree method
giving a little higher coverage but having wider intervals and being substantially
more computationally demanding. The Ensemble tree method has a relatively
lower density compared to Single tree when width is around 10 and the coverage
density is a little higher when coverage is around 0.88.

However coverage and width are pairwise results, closely correlated for each
individual. A higher coverage might happen at the cost of higher width instead
of a better model. Drawing conclusions about their performance separately is
not appropriate, so they should be considered together. Results of some selected
patients are shown in Figure 5.9, with the results of the Ensemble and Single tree
methods for a single patient joined by a dashed line for clarity. For example, for
patient 34, the Ensemble tree method has better coverage but at the price of wider
intervals. But for patients 45 and 46, the Single tree method has better coverage
with narrower intervals. For patient 26, they share nearly the same coverage, but
the Ensemble tree method has a smaller width.

We consider how often each method is better than the other in terms of coverage
and width. One method is superior if it gives better coverage and width, inferior
if it has worse coverage and width, and the two methods represent a trade-off if
one has better coverage and the other has better width. To compare the methods,
the proportions of patients in each category in shown in Table 5.4. It is clear
that the single-tree method is the best as it has substantially more patients where
there is both higher coverage and narrower intervals (32.62%). The Ensemble tree
method is only superior in about 5% of patients. When neither method is clearly
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5.5 Forecasting heart rate during LT surgery

Figure 5.6: Data and monitoring forecasts using regression trees for liver trans-
plantation on one patient.

Table 5.4: The relative performances of Ensemble and Single tree methods as
percentages of the 325 patients.

Narrower intervals
Ensemble method Single method

Higher coverage
Ensemble method 5.23% 44.62%

Single method 17.54% 32.62%
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5.5 Forecasting heart rate during LT surgery

Figure 5.7: Summary results of forecasts for all 325 patients. Each point represents
mean coverage and width for one patient. The inset plot is a zoom in of the larger
plot.

better, the Ensemble tree method is more likely to have higher coverage, while the
Single tree method is more likely to have narrower intervals. Ignoring the interval
width, each method has better coverage in about 50% of cases.

In terms of the computation time required, shown in Figure 5.10, the compu-
tation time has a roughly linear relationship with time series length Tn. The fitted
regression slope coefficients of 0.016 (Ensemble tree method) and 0.001 (Single-tree
method) indicate that ensemble method takes around 16 times as much computa-
tion as the single-tree method. However, since new observations arrive at intervals
of about 0.6–1 second (per heart beat generally takes 0.6 to 1 second), the com-
putation can easily be done online in real time.

The variables used in the trees include both scaling coefficients and wavelet
coefficients at high and low resolution levels using both short and long lag infor-
mation. That means heart rate prediction needs both averages and contrasts with
long and short time interval information. In our case, averages were taken over
time spans between 2 and 256 heartbeats. Prediction by only using short term
information may not have a good performance.

5.5.2 Comparison to ARIMA

In this section, we use the real data in an ARIMA model to compare its per-
formance with that from trees. The parameters are the same as those in the
simulation in Section 5.4.1. Results are shown in Figure 5.11 and Table 5.5.
Ensemble tree and Single tree methods have coverage (86.82%, 90.46%), widths
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5.5 Forecasting heart rate during LT surgery

Figure 5.8: Kernel density plots of coverage (left) and mean width (right) for the
full set of 325 patients.
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5.5 Forecasting heart rate during LT surgery

Figure 5.9: Coverage and mean interval width of Ensemble and Single tree methods
for selected patients 26, 34, 45 and 46.

Figure 5.10: The computational time (in seconds) for Ensemble and Single tree
methods for all 325 patients. The fitted linear regression slope coefficients are
0.016 and 0.001 for Ensemble and Single tree respectively.

108



5.5 Forecasting heart rate during LT surgery

(9.98, 10.56), and computing times (240, 65) for patient 1.

Table 5.5: Tree and ARIMA results: mean and standard deviation (sd) of coverage,
width and time for each Method over 325 patients.

Method Coverage Width Time
mean sd mean sd mean sd

Tree

Single 0.8837 0.0447 11.05 11.72 35.25 16.81
Ensemble 0.8861 0.0405 12.53 12.08 553.71 267.53

ARIMA

Single 0.8853 0.0286 10.93 8.32 466.07 256.33
Ensemble 0.8732 0.0300 10.38 7.956 1032.20 525.58

For ARIMA, it is hard to distinguish whether the Ensemble or Single method
is better in terms of coverage and width. The Single method is a little bit higher in
both coverage and width, but clearly less computationally demanding. But they
all face a problem: when concept drift in the trend occurs, the old model is no
longer suitable for future prediction (especially when d is not 0). But for tree
based models, such situations do not occur as tree based model does not consider
trend. When we do a pairwise comparison, the results are shown in Table 5.6.

The single-model method (7.71%) is superior slightly more often than the en-
semble method (5.03%). When neither method is clearly better, the ensemble
method is more likely to have narrower intervals, while the single-model method is
more likely to have higher coverage. In practice, the single-model method is pro-
posed as the performances are comparable but is less computationally demanding.

Now we compare the single regression tree and single-model ARIMA approaches.

Table 5.6: The relative performances of ARIMA methods as percentages of the
325 patients.

Narrower intervals
ensemble method single method

Higher coverage
ensemble method 5.03% 7.38 %

single method 79.87% 7.71%
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5.5 Forecasting heart rate during LT surgery

Figure 5.11: Data and monitoring forecasts using ARIMA models for liver trans-
plantation on patient 1.
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Table 5.7: The relative performances of single-forecast approaches for regression
trees and ARIMA as percentages of the 325 patients.

Narrower intervals
ARIMA Ctree

Higher coverage
ARIMA 12.62% 38.77 %

Ctree 33.85% 14.77%

The results are shown in Table 5.7 and Figure 5.12. The tree based approach is
superior slightly more often than the ARIMA method (14.77% vs. 12.62%). So
roughly, their performance is similar in coverage and width although the tree
method is somewhat higher in standard deviation as shown in Table 5.5. However,
in terms of computational time, the tree method obviously outperforms ARIMA.
So in conclusion, we would prefer the single-tree based method.

5.6 Forecasting stock price

In order to compare tree based methods with more sophisticated time series mod-
els, in this section, we compare tree-based model with ARMA-GARCH in stock
price forecasting. The stock we choose is Shanghai Stock Exchange Composite
Stock Price Index (SSE Index), which is a stock market index of all stocks (A
shares and B shares) that are traded at the Shanghai Stock Exchange. It is a
relatively long time series with both stationary and non-stationary phases as well
as many distribution change points. The time series dates from 19th, December,
1990 to 1st, June, 2018, making a total of 6713 closing price observations excluding
market closing days like weekends and holidays. Since the time series xt is not sta-
tionary, we take logs and do first order differencing to reduce variance fluctuation,
so the variable in use is

yt = log(xt+1)− log(xt)

The parameters chosen for trees are β = 2, α = 0.2, b = 0.99, a = 0.95, h = 100,
t0 = 1311, γ = 12, δ = 2, TΩ = 1000, and m = 3. For ARMA-GARCH, the
maximum value for p, q, r and s are all 2, with γ = 300. Results are shown in
Table 5.8 and Figure 5.13. Results show that, for SSE Index time series, ensemble
ARMA-GARCH is definitely better than single tree method with higher coverage
and lower width. For the rest comparison of the methods, ARMA-GARCH share
similar performance with tree methods, and higher coverage is at the cost of higher
width. But in terms of computational time, the ensemble tree method is preferred.
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5.6 Forecasting stock price

Figure 5.12: The relative performances of single-forecast approaches for regression
trees and ARIMA across all 325 patients.

Figure 5.13: The performances of single and ensemble methods for regression trees
and ARMA-GARCH using SSE Index data.

112



5.7 Conclusion

Table 5.8: The performance of tree methods and ARMA-GARCH methods using
SSE Index data.

Method coverage(%) width(0.01) widthsd(0.01) time

Tree

single 93.58% 9.84 3.4 6.06
ensemble 96.70% 11.15 4.7 38.45

ARMA-GARCH

single 90.93% 7.25 3.1 302.36
ensemble 93.94% 8.40 3.1 598.86

5.7 Conclusion

In this chapter, two tree-based methods are proposed to deal with forecasting in
a streaming data context. In contrast to many alternative methods, we pay more
attention to forecast intervals than point forecasts, although the point forecasts
are essential to adaptively adjust the forecast intervals for the current model’s
accuracy. This adaptation is accomplished by updating the forecast interval to
capture the stream trend using root mean square error calculated from the most
recent batch of data, so as to update the model for future prediction.

Rather than fixing a time interval of historical data to use in forecasting, we
use wavelet transform to capture long term variable information. The maximal
overlap wavelet transform decomposes the original time series into different reso-
lution levels to capture averages and fluctuations over a range of time scales. This
means that the tree construction algorithms can choose whichever aspects of the
information in the data are most useful. Moreover, we gain the benefit of allowing
long time spans of historical data to be used in the models without requiring they
all be present as separate explanatory variables, so that the information in use will
not be constrained to the most recent batch.

When applied to simulated data and real data, tree based methods are gener-
ally better than or similar to ARIMA, GARCH and ARMA-GARCH except when
ARIMA effect is strong and trend possible. For model ARIMA, when trend disap-
pears, ARIMA will still forecast with trend before retraining thus the forecasted
intervals can be extremely wide. When there is no trend, but a trend is falsely
detected by ARIMA, intervals can be wide as well. But tree methods, which con-
sider trend in a different way, can avoid such situations. So because of this possible
false trend, we suggest using tree methods even when ARIMA effect is strong.
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5.7 Conclusion

When ARIMA effect is strong without trend, the ensemble tree method is
somewhat better than the single tree method. Generally the ensemble method has
a bigger width and higher coverage while single tree method has a smaller width
and lower coverage. But they have roughly the same performance. When time effi-
ciency is required, the single tree method is suggested, otherwise the ensemble tree
method is preferred.
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Chapter 6

Theory exploration for decision
tree based linear fitting

After applying decision trees to regression problems in Chapters 4 and 5, we now
explore the performance of trees when fitted to data generated from a linear model.
The corresponding bias, variance, and prediction error between the fitted simplified
tree and the true simple linear model will be calculated. Then how those errors vary
will be explored when the linear data distribution changes. The motivation is to
explore how the trees perform under different distributions. Afterwards, prediction
interval is proposed using Gaussian and quantile intervals, which explains why
quantile interval is chosen in Chapter 5. The simple linear model in use is

Y = α + βX + ε,

where f (X) = α + βX is the true model. It is supposed that, though out this
chapter, X ∼ U (a, b) independently, ε ∼ N (0, σ2).

6.1 The Bias-Variance Decomposition

The expected squared prediction error (SPE) is one of the important metrics to
measure how well the trained model be applied to further unseen data. As shown
in Hastie et al. (2001), SPE of a regression fit f̂ (X) at an input point X = x0 is

SPE (x0) =E[
(
Y − f̂ (x0)

)2

|X = x0]

=σ2 + [Ef̂ (x0)− f (x0)]2 + E[f̂ (x0)− Ef̂ (x0)]2

=σ2 + Bias2
(
f̂ (x0)

)
+ Var

(
f̂ (x0)

)
=Irreducible Error + Bias2 + Variance.
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The first term is the variance of the target around its true mean f (x0), and cannot
be avoided no matter how well the f (x0) is estimated, unless σ2 = 0. The second
term is the squared bias, the amount by which the average of the estimate differs
from the true mean; the last term is the variance; the expected squared deviation
of f̂ (x0) around its mean. Typically the more complex the model f̂ is, the lower
the (squared) bias but the higher the variance (Hastie et al., 2001) will be.

6.1.1 Decomposition background

For the ith observation Yi, the (unconditional) expectation is

E (Yi) =E (α + βXi + εi)

=α + βE (Xi) + E (εi)

=α + β · a+ b

2
,

and the variance is

Var (Yi) =Var (α + βXi + εi)

=β2Var (Xi) + Var (εi)

=β2 · (b− a)2

12
+ σ2.

They both have no relationship to i. In that case, E (Y ) = E (Yi) and Var (Y ) =
Var (Yi). So for N observations, the expectation and variance for the average Ȳ
are

E
(
Ȳ
)

=
1

N
(E (Y1) + E (Y2) + · · ·+ E (YN))

=E (Y )

=α + β · a+ b

2

and

Var
(
Ȳ
)

=
1

N2
(Var (Y1) + Var (Y2) + · · ·+ Var (YN))

=
1

N
Var (Y )

=
1

N
{β2 · (b− a)2

12
+ σ2}.
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6.1 The Bias-Variance Decomposition

6.1.2 Decomposition in the context of decision trees

In the context of decision trees, the fitted model is f̂ (X) in a simplified form

f̂ (X) = Ȳ i, i = 1, 2, ..., k

where k is the number of terminal nodes in the tree f̂ (X), and Ȳ i is the mean
of y in terminal node i. In a tree with only the root node, k = 1, and the fitted
model is f̂ (X) = Ȳ . Then for point x0,

Bias2
(
f̂ (x0)

)
=[E{f̂ (x0)} − f (x0)]2

=[α + β · a+ b

2
− α− β · x0]2

=β2

(
a+ b

2
− x0

)2

,

and the variance is

Var
(
f̂ (x0)

)
=E[f̂ (x0)− Ef̂ (x0)]2

=E[Ȳ −
(
α + β · a+ b

2

)
]2

=E
(
Ȳ 2
)

+

(
α + β · a+ b

2

)2

− 2E
(
Ȳ
)(

α + β · a+ b

2

)
=E2

(
Ȳ
)

+ Var
(
Ȳ
)
−
(
α + β · a+ b

2

)2

=
σ2

N
+ β2 (b− a)2

12N
.

So the SPE at point x0 is

SPE
(
f̂ (x0)

)
=σ2 + Bias2

(
f̂ (x0)

)
+ Var

(
f̂ (x0)

)
=σ2 + β2

(
a+ b

2
− x0

)2

+
σ2

N
+ β2 (b− a)2

12N

=

(
1 +

1

N

)
σ2 + β2

(
a+ b

2
− x0

)2

+ β2 (b− a)2

12N
.
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Then the mean squared prediction error (MSPE) is

MSPE =

∫ b

a

SPE
(
f̂ (x)

)
P (X = x) dx

=

∫ b

a

SPE
(
f̂ (x)

) 1

b− a
dx

=

(
1 +

1

N

)
σ2 + β2 (b− a)2

12N
+ β2

∫ b

a

(
a+ b

2
− x
)2

1

b− a
dx

=

(
1 +

1

N

)
σ2 + β2 (b− a)2

12N
+ β2 1

12
(b− a)2

=

(
1 +

1

N

)(
σ2 + β2 (b− a)2

12

)
,

comprising variance

E (Var) =
1

N

(
σ2 + β2 (b− a)2

12

)

and squared bias as

E
(
Bias2

)
= β2 (b− a)2

12
.

Now the number of terminal nodes in the decision tree is extended from k = 1 to
a general k, then the MSPE, Bias2 and variance for x ∈ [a, b] equals to that for
x ∈ [a, (a+ (b− a) /k)] since the decision tree is assumed to make k equal terminal
nodes with the same number of observations in each terminal node. In that case,
for x ∈ [a, b] for a general k, the MSPE is

MSPE =

(
1 +

k

N

)(
σ2 + β2 (b− a)2

12k2

)

with variance as

E (Var) =

(
k

N

)(
σ2 + β2 (b− a)2

12k2

)
and squared bias as

E
(
Bias2

)
= β2 (b− a)2

12k2
. (6.1)

It is easy to see that with a lower |β|, b − a, σ2 and higher N , variance, squared
bias and MSPE will all decrease.
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6.1 The Bias-Variance Decomposition

6.1.3 Optimal k to minimise MSPE

The ideal number of terminal nodes can be found by minimising the MSPE with
aspect to k. Here k is a discrete integer, so the target k will be the nearest integer
from the differentiate result. Calculating the first derivative of MSPE, we get

dMSPE (k)

d (k)
=
σ2

N
− β2 (b− a)2

6k3
− β2 (b− a)2

12Nk2
,

and the second dierivative of MSPE is always positive. So we only need to solve

dMSPE (k)

d (k)
= 0, k ∈ [1, N ]. (6.2)

The real root of Equation (6.2) is

kmin =
3

√
β2 (b− a)

2

12σ2
·

 3

√√√√
N +

√
N2 − β2 (b− a)

2

324σ2
+

3

√√√√
N −

√
N2 − β2 (b− a)

2

324σ2

 . (6.3)

Having

N � β (b− a)

18σ
,

then kmin can be approximated by

kmin ≈
3

√
β2 (b− a)2N

6σ2
.

In addition, the constraint for root k is also kmin ∈ [1, N ]. If kmin is not in [1, N ],
MSPE might always decrease.

By substituting kmin in Equation (6.3)back into Equation (6.1), we will get

E
(
Bias2

)
= 48

(
12σ2β (b− a) /N

)2/3
,

and it is easy to see, with the increase of σ and β (b− a) when N is fixed, E
(
Bias2

)
will increase. For the others, they will be shown as figures.

So how will the ratios E (Var) /MSPE, E
(
Bias2

)
/MSPE, σ2/MSPE vary when

parameters change? Since a, b and β appear together, they are regarded as one
parameter. For b and a, the thing matters is their difference, so, we use a = 0
and only change b. Here k is set to be kmin calculated using given parameters
for Equation (6.3) and if kmin does not exist, the results will not be shown. The
results in Figures 6.1 (changing β2(b−a)2) and 6.2 (changing σ2) show that, under
both circumstances, MSPE, E (Var) and E

(
Bias2

)
all increase.
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Figure 6.1: Ratios E (Var) /MSPE, E
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/MSPE, σ2/MSPE with different

β2 (b− a)2. N = 100 and α = 0.
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6.1 The Bias-Variance Decomposition

In Figure 6.1, when β2 (b− a)2 gets bigger, X is more likely to be uniformly
distributed and kmin increases as y is more accurately described with a uniform
distribution, and the ratio of Var, Bias2 over MSPE gets larger while σ2 increases.
In Figure 6.2, when σ2 gets bigger, the Gaussian distribution will play a bigger
role in data generation and kmin decreases. That is why σ2/MSPE increases. For
E (Var) /MSPE, E

(
Bias2

)
/MSPE, they generally decrease. The decrease speed

slows with bigger b and β as expected.

6.1.4 Simulation

In this simulation, a simplified tree model will be designed to confirm the theory
results using simulated data. That is when parameters of the simulated data
change, the distribution of X and y will also change. The question is how the
statistics of Var, Bias2, MSE, and kmin change accordingly.

In the simplified tree, X is evenly split into k intervals, i = 1, 2, . . . , k. For
specific k, a, b, N , α, and β, we are going to calculate the statistics of MSPE, Var
and Bias2 for the ith interval in k from simulated data. So for the ith interval, the
x range is

Ri = [a+ (i− 1) (b− a) /K, a+ (i) (b− a) /K].

The number of observations in interval i (i = 1, 2, ...k − 1) is ni

ni = b

(
N −

i−1∑
j=0

nj

)
/ (k − i)c,

defining n0 = 0 and nk = N −
k−1∑
j=0

nj.

• Step 1: For the data (x, y) in Ri, we train a model from them as

f̂i (x) = ȳ

for simulated y and ȳ is the averaged value of y in Ri.

• Step 2: Repeat Step 1 s times. Then we have s trained models {f̂j (x)},
j = 1, 2, ..., s.

• Step 3: Simulate one x0 uniformly from the x range Ri. We are going to
calculate the SPE (x0), Var (x0) and Bias2 (x0) for this specific x0.

• Step 4: Simulate s values of yj using x0.
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6.2 Prediction interval

• Step 5: Calculate the statistics of SPE (x0), Var (x0) and Bias2 (x0) for this
specific x0 as

SPE (x0) =
1

s

s∑
j=1

(
f̂i (x0)− yj

)2

Bias2 (x0) = {1

s

s∑
j=1

f̂i (x0)− f (x0)}2

Var (x0) = variance
(
f̂i (x0)

)
.

• Step 6: Repeat Step 3 to Step 5 for n.repeat times and calculate the mean
of SPE (x0), Var (x0) and Bias2 (x0) as MSPEi, Bias2

i and Vari.

Do Step 1 to Step 6 for all i, i = 1, 2, ..., k and calculate the mean as MSPE,
Bias2 and Var.

The results of simulations with 200 trials are shown in Figure 6.3 and Figure 6.4.
For Figure 6.3, kmin ∈ [1, N ], we have a minimum MSPE. But when kmin /∈ [1, N ]
as in Figure 6.4, MSPE keeps decreasing.

6.2 Prediction interval

Instead of point prediction, a prediction interval is also desirable especially for time
series with high variance. If both the point prediction as well as the prediction
interval can be provided, we will be more confident for the prediction. This study
also helps us decide the proper prediction interval method for Chapter 5. Gaus-
sian based prediction interval and quantile interval are compared under different
parameters distributions.

6.2.1 Probability function of Y

Since our linear model
Y = α + βX + ε

is the sum of uniform and Gaussian distributions, the probability function for Y
is

PY (y) =

∫ b

a

P (Y = y|X = x)PX (x) dx

=

∫ b

a

1√
2πσ

exp

{
−(y − (α + βx))2

2σ2

}
1

b− a
dx.
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Figure 6.3: An example when kmin exists. The x axis label is k: the number of
tree splits. MSPE, Bias2 and Var are averaged calculations from 200 simulation
trials. Black line is the MSPE, blue line is the Bias2, orange line is σ2 and red line
is the Var. Solid lines are from simulated data and dashed lines are theoretical
calculations. The parameters values are given as: α = 2, β = 4, N = 100, a = 0,
b = 3, σ = 4.
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Figure 6.4: An example when kmin does not exist. The x axis label is k: the
number of tree splits. MSPE, Bias2 and Var are averaged calculations from 200
simulation trials. Black line is the MSPE, blue line is the Bias2, orange line is
σ2 and red line is the Var. Solid lines are from simulated data and dashed lines
are theoretical calculations. The parameters values are given as: α = 2, β = 12,
N = 100, a = 0, b = 4, σ = 0.2.
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6.2 Prediction interval

By letting t = (α + βx− y) /σ, we obtain

PY (y) =
1

β (b− a)

∫ α+βb−y
σ

α+βa−y
σ

1√
2π

exp{−t
2

2
}dt

=
1

β (b− a)

[
Φ

(
α + βb− y

σ

)
− Φ

(
α + βa− y

σ

)]
.

Now we get the probability of Y . But PY (y) is in a complex form meaning that
the parameters are not easily solvable in theory by a given value for PY (y).

6.2.2 Prediction interval as a Gaussian distribution

If we want to get the prediction interval, say [y1, y2] for Y at (1− p) level, the
theoretical way is to obtain y1 and y2 from the equations∫ y1

−∞
PY (y) dy =

p

2
and

∫ ∞
y2

PY (y) dy = 1− p

2
.

However, the integral of Φ is not analytically solvable without approximating Φ
with other suitable expressions. The results will also be quite complex. If we know
the parameters values, then y1 and y2 can easily be found numerically.

From Figure 6.5, if the uniform (Gaussian) distribution plays a main role, then
Y can be approximately described by a uniform (Gaussian) distribution. Under
the conditions that, β is not too large and σ is not too small, and k is 1 (with only
one interval), we will approximate the distribution of Y as a Gaussian distribution
N (µY , σ

2
Y ):

Y ∼ N

(
α + β · a+ b

2
, β2 · (b− a)2

12
+ σ2

)
.

Then the prediction interval under a 95% criteria for this Gaussian distribution is
aroundȲ − 1.96

√√√√(1 +
1

N

)(
β2 · (b− a)

2

12
+ σ2

)
, Ȳ + 1.96

√√√√(1 +
1

N

)(
β2 · (b− a)

2

12
+ σ2

)
Then for a general k, the prediction interval becomesf̂ − 1.96×

√√√√(1 +
k

N

)(
β2 · (b− a)

2

12k2
+ σ2

)
, f̂ + 1.96×

√√√√(1 +
k

N

)(
β2 · (b− a)

2

12k2
+ σ2

) ,
which is the form [

f̂ − 1.96× RMSPE, f̂ + 1.96× RMSPE
]
,

a typical Gaussian prediction interval.
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6.2 Prediction interval

Figure 6.5: Probability density function of Y with different parameter values. Red
line is the theoretical probability and black line is the simulated probability.
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6.2 Prediction interval

6.2.3 Prediction simulation using Gaussian prediction in-
terval and quantile interval

In this simulation, we explore the performance of Gaussian prediction intervals
and quantile intervals under different parameter combinations. The parameters
include σ, b− a, β and k. When the other parameters are fixed, a higher σ means
a stronger Gaussian distribution effect, in which case, Gaussian prediction interval
may work well. When β2(b− a)2 is large, the uniform distribution plays a bigger
role. Then Gaussian prediction interval may not work so well. For both Gaussian
prediction interval and quantile interval, they are all influenced by the observation
size of the terminal node. When the sample size is large, they can have stable
performance, but when sample size is small, performance differs.

The Gaussian prediction interval in use is

[f̂ − cRMSPE, f̂ + cRMSPE],

where c is 1.96, and RMSPE is the root mean squared error estimated from the
training data in each terminal node.

The quantile interval [L,U ] comes from the 0.025 and 0.975 quantiles of each
terminal node from the training data.

Step 1: Training data generation. Using given parameters α, β, a, b, σ, N ,
data are generated according to the model

Y = α + βX + ε.

So we get the true fitted values for Y .

Step 2: RMSPE and quantiles from training data. From this training data,
the trained model, RMSPE and quantiles are calculated as the following
steps.

Step 2.1: Model training For training data A (the rest data B is the test data),
we sort the data x in an ascending order, so y will also be rearranged following
x, and then Atraining is divided into k roughly successive equal folds, making
a total of N observations. The number of observations in fold i (i = 1, 2, ...k)
is ni

ni = b

(
N −

i−1∑
j=0

nj

)
/ (k − i)c,

defining n0 = 0.

For the ith fold in A, giving xi and yi, the predicted value will be

ŷ = ȳi, x ∈ [min (xi) ,max (xi)],

128



6.2 Prediction interval

in the trees context. The predicted value of a tree model is the averaged re-
sponse values of each terminal node. Samples being split into those terminal
nodes will have the corresponding averaged value as the predicted value.

Step 2.2: RMSPE and quantile calculation. When the model for each i is
trained as modelAi , the predicted values for y in A will be ŷ. Then the
RMSPE for the training data is

RMSPE =

√√√√ N∑
r=1

(y − ŷ)2 /N.

The quantile interval L and U are the 0.025 and 0.975 quantiles of the ith
training data y.

Step 3: Test data generation and model testing. Using the same parame-
ters α, β, a, b, σ N as in Step 1, data are generated according to

Y = α + βX + ε.

Then the test data B are put into modelA and the coverage is computed as

1

N

N∑
r=1

I (ŷ − cRMSPE < y < ŷ + cRMSPE) .

Step 4: Repeat Steps 1 to 3 Repeat Steps 1 to 3 s times to get an averaged
coverage.

Using parameters a = 0, α = 2 and s = 200, the results are shown in Figures
6.6.

The results show that quantile interval coverages are closer to the 0.95 reference
line for fixed σ, b and β. Gaussian prediction interval is only closer to the 0.95
coverage when σ is large, otherwise it is larger than 0.95 at the cost of wider width.
When k is chosen as the best kmin, the coverages get closer to the 0.95 reference
line as σ increases for both quantile and Gaussian prediction intervals. But when
the uniform distribution effect gets stronger, the coverages all go far away from
0.95. So when the number of observations for each terminal node is large and
the data distribution is not obviously Gaussian, quantile intervals are suggested.
When the data follows obvious Gaussian distribution, then Gaussian prediction
intervals are recommended.
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Figure 6.6: Prediction coverage using RMSPE. The black dash line is 0.95. The
dash lines are coverage. The solid lines are width. The red lines represent Gaussian
prediction interval and the blue lines represent quantile prediction interval. The
right-hand y axis (purple) is the axis for width. N = 10000.
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6.3 Conclusion

In this chapter, the data are constructed using a simple model that includes both
Gaussian and uniform distributions. We explored the squared prediction error in
the context of trees and decompose that error into bias, variance and irreducible
error. The bias decreases when the tree gets bigger. But for squared prediction
error and variance, the relationship is not monotonic. We also calculated the
best tree depth with a minimum mean squared prediction error. When Gaussian
effect dominates, the best tree depth density decreases. But when uniform effect
dominates, the best tree depth increases. Under both circumstances, mean squared
error, variance and bias all increase.

After that, two options are given for the prediction interval using Gaussian
prediction interval or quantile interval. When Gaussian distribution is obviously
dominant, Gaussian prediction intervals are suggested. Otherwise, quantile inter-
vals are suggested, which is also why quantile intervals are chosen as the prediction
intervals in Chapter 5, although they both perform poorly when the uniform dis-
tribution is quite strong. When the number of observations is small in the terminal
node, both interval constructions perform poorly in terms of coverage.

131



Chapter 7

General conclusions and future
work

7.1 Overview of work done

This chapter gives a short summary of the main ideas in this thesis, including
inspiration, modelling, methods and results from simulated and real data. Then
an outline of possible improvements to this study and future work are given.

In Chapter 1, we described the main contributions in this thesis: design new
methods for panel data classification and time series regression for both static and
dynamic time series. The tools chosen include decision trees (rpart and ctree) and
MODWT. The reasons for using those models are briefly explained afterwards. For
decision trees, they are easily interpreted and have no requirement of parameter
distributional assumptions. MODWT can help improve the performance of trees
by deeply exploring the smoothing and detailed information from the scaling and
wavelet coefficients.

In Chapter 2, we gave a review of trees and the wavelet transform. The review
of trees includes the tree building process, including classification trees, regression
trees and conditional inference trees, and then a short description of the tree
pruning process was given. For trees, there are many splitting criteria to choose.
We explored their splitting bias due to missing values, variables with more values
or categories. Between entropy information and the Gini index, we choose the Gini
index as the splitting criterion as its bias due to more values or categories is not
that large compared to entropy. Using wavelet transformed variables, the number
of explanatory variables is increased. So, under some assumptions, we studied the
influence of noise variables on CART computational complexity. That increase
will generally only result in a linear increase in the computational complexity.
For wavelet analysis, we introduced the wavelet transform process, Haar scaling
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7.1 Overview of work done

function and mother wavelet function as well as other Daubechies’ wavelet. These
ideas form the essential background to the proposed method.

The motivating data set comes from a medical application: monitored vari-
ables for patients undergoing liver transplantation surgery. In medical comparison
experiments, different treatments make different effects on individuals in different
groups. Interpretation of how different treatments influence monitoring variables
is important. That is what the panel data analysis did in Chapter 3, by perfom-
ing classification of individuals and explore how the individuals are classified. For
decision trees, they can classify each observation, but the target here is to classify
each individual, which contains many observations across different times. So three
methods are designed based on time-point level predictions, individual level pre-
dictions or both together. For wavelet transformed variables, their performance is
compared with original variables using both simulated data and the LT surgery
data.

The wavelet-transformed variables are found to have better classification per-
formance for panel data than using variables on their original scale. Examples
were provided showing the types of data where using a wavelet-based represen-
tation is likely to improve classification accuracy. Results show that in most
cases wavelet-transformed data have better or similar classification accuracy than
the original data, and only select genuinely useful explanatory variables. Use of
wavelet-transformed data provides localized mean and difference variables which
can be more effective than the original variables, provide a means of separating
“signal” from “noise”, and bring the opportunity for improved interpretation via
the consideration of which resolution scales are the most informative. Panel data
with multiple observations on each individual require some form of aggregation to
classify at the individual level. Three different aggregation schemes are presented
and compared using simulated data and real data gathered during liver transplan-
tation. Among the three methods, aggregating individual level data before clas-
sification outperform methods which rely solely on the combining of time-point
classifications.

During the surgery, if surgeons can monitor the real time condition of patients,
that may save lives in an emergency. Forecasting monitoring variables like heart
rate even one minute ahead will help surgeons monitor the condition. The static
time series are used in a basic model-building analysis in Chapter 4 and streaming
data are used in the real time forecasting in Chapter 5. In Chapter 4, we regarded
the heart rate time series during LT surgery as static time series and explored
whether or not wavelet transformed variables are better than original variables in
time series regression. We also explored this using an air pollution data set from
China. Wavelet data generally result in better accuracy measured by metrics of R2.
For this reason, wavelet transformed variables are used in the analysis in Chapter 5.
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Specifically, MODWT based CART can detect true lag information and have much
better performance when only short lag information is permitted for using. When
the forecast length increases, R2 from MODWT based forecasting decreases much
more slowly than that of original forecasting. For real data analysis, MODWT
based CART also performs better in both LT data and China air pollution data.

In Chapter 5, wavelet transformed variables are used for streaming data interval
forecasting, which was shown to be better than using the original variables in
Chapter 4. The interval forecasts are required in this chapter instead of just
a point forecast. In order to track streaming data effectively, we required the
forecast interval to cover the true data a specified proportion of the time, and to be
as narrow as possible. To achieve this, two methods are proposed: one ensemble
method and one method based on a single model. For the ensemble method,
we used weighted results from the most recent models, and for the single-model
method, we retain one model until it becomes necessary to train a new model. For
the current model in use in those two methods, we propose a method to update
the interval forecast adaptively using root mean square errors calculated from
the latest data batch. We choose wavelet-transformed data to capture long time
variable information and Conditional Inference Tree for the underlying regression
tree model. Results show that both methods perform well, having good coverage
without the intervals being excessively wide. The method based on a single model
performs the best in computational (CPU) time compared to the ensemble method.
When compared to ARIMA and GARCH approaches, we designed simulation using
ARIMA or GARCH distributed time series. Our methods still achieve better or
similar coverage and width but require considerably less CPU time.

After those application, some theories are explored about trees in Chapter 6,
including the behaviour of bias, variance and squared prediction error using trees
as the fitted model. For the true model, it includes both Gaussian and uniform
distributions. The bias decreases when the tree gets bigger. But for squared pre-
diction error and variance, the relationship is not monotonic. When the Gaussian
effect gets stronger, the best tree depth obviously decreases. But when the uniform
effect gets stronger, the best tree depth increases. Under both circumstances, mean
squared error, variance and bias all increase. For the prediction interval choices,
when Gaussian distribution is obviously strong, Gaussian prediction interval is
suggested. Otherwise, quantile interval is suggested although they both perform
poorly when the uniform distribution is quite strong. When the number of ob-
servations in the terminal node is small, both interval construction methods have
poor coverage.
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7.2 Future work

For the LT data analysis in both classification and regression purposes, each indi-
vidual are regarded independently, but, actually, their correlation could be consid-
ered in the analysis. Individuals with similar properties may have similar distribu-
tions for the recorded data. Methods for clustering can include k-means clustering
(Wagstaff et al., 2001), distance-based metrics, random forests (Shi et al., 2005).
In Chapter 5, we need to wait until there are enough data to train the first model.
But if we can find previous individuals who share similar property with the cur-
rent individual, we may start the forecasting using the model from those previous
individuals.

In the classification in Chapter 3, each variable was assumed to be independent
although trees do not have constraints of independence or dependence for explana-
tory variables. In the tree building process, the split comes from one variable. If
we can also consider the possible combinations of many variables for one split, that
may work better. Possible methods include PCA, factor analysis (Rummel, 1988),
linear discriminant analysis (Izenman, 2013), or tree-based methods.

Instead of using tree models, other models can be considered for comparison.
For example, after wavelet transform, logistic panel data regression (Chamberlain,
1984) can be applied to the panel data using LASSO selected variables, and sum-
marised cross-section data can be classified using support vector machine (Cortes
& Vapnik, 1995).

When group size is rebalanced, the data of minor groups were triplicated in
this thesis. Other sophisticated methods, however, like Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al., 2002) can also be considered.

In Chapter 4, the results are shown only as numbers. It is also possible to
show the predicted results using heat maps which would give a more direct way of
comparing to the original data.

In Chapter 5, we updated the model when coverage is not good or retrain the
model when updating does not work. There were circumstances when old data
patterns are suitable for new data but those patterns have already been “forgotten”
by the current model. For the ensemble method, instead of keeping the most recent
models, it might be a good idea to choose which models to keep based on data
patterns. It is also a good idea to save as many old models as possible, and delete
those with low accuracy after a long time.

The proposed methods contain many tuning parameters. Although their values
are chosen by trying many possible values. It will be better if further research can
be done to evaluate the method’s reliability, by exploring the influence of different
parameter values on the performance of the method.

Instead of detecting concept drift by coverage and mean information, other
tools can also be developed for interval prediction purpose, like ADWIN, STEP
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shown in Section 5.2. The dynamic tree methods like the Hoeffding tree family,
can be developed for interval prediction using quantile or other information.

If interpretation is not the major requirement of model output, then approaches
like random forest, neural networks are good models as well.
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Appendix A

Wavelet transform methods
comparison
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Table A.1: Results comparison between Haar and mb4.

method 1 method 2 method 3
original wavelet original wavelet original wavelet

sigma 0 noisep=0.1 Haar mean 30 59.7 30 60 36.71 59.52
sd 0 0.64 0 0 3.9 0.83

mb4 mean 30 57.33 30 56.99 36.54 59.84
sd 0 1.9 0 1.92 3.82 0.39

sigma 0.5 noisep=0.1 Haar mean 30.1 57.91 30.08 57.69 35.49 59.83
sd 0.66 1.53 1.31 1.54 3.69 0.43

mb4 mean 30.08 56.8 30.08 56.7 35.6 59.49
sd 0.63 1.88 1.31 1.93 3.8 0.76

sigma 1 noisep=0.1 Haar mean 29.92 56.77 29.97 56.34 32.82 59.7
sd 0.63 1.85 0.22 1.93 4.26 0.63

mb4 mean 29.92 56.31 29.97 55.71 33.11 57.59
sd 0.63 1.84 0.3 2.17 3.97 1.67

sigma 5 noisep=0.1 Haar mean 30 51.77 30.01 48.28 30 57.97
sd 0 2.78 0.1 3.17 3.78 1.67

mb4 mean 30 55.35 30 52.3 30.1 52.55
sd 0 2.19 0 2.83 3.97 2.69

sigma 10 noisep=0.1 Haar mean 30.07 49.65 30 41.48 29.9 54.93
sd 0.65 3.05 0.71 3.54 3.78 2.92

mb4 mean 30.07 54.03 30.01 46.26 29.97 49.41
sd 0.65 2.52 0.76 3.99 3.87 3.79

sigma 20 noisep=0.1 Haar mean 29.85 45.79 29.9 34.85 29.72 47.65
sd 0.9 5.16 0.64 4.43 3.7 7.08

mb4 mean 29.85 52.33 29.9 39.91 29.76 40.18
sd 0.9 3.81 0.64 4.41 3.85 7.9

sigma 0 noisep=0.3 Haar mean 30 58.65 30 57.05 34.82 59.82
sd 0 1.71 0 1.89 4.07 0.48

mb4 mean 30 56.26 30 56.24 34.65 57.62
sd 0 1.83 0 1.78 4.37 1.7

sigma 0 noisep=0.5 Haar mean 29.97 55.58 30.03 55.71 32.2 59.63
sd 1.03 1.8 0.98 1.86 3.8 0.72

mb4 mean 29.97 55.11 30 55.05 32.09 56.02
sd 1.03 2.26 0.83 2.3 3.83 1.94

sigma 0 noisep=0.8 Haar mean 29.98 43.65 29.97 44.06 29.84 51.81
sd 0.53 3.62 0.54 3.76 3.78 2.46

mb4 mean 30.01 46.03 29.98 45.04 29.97 46.4
sd 0.61 3.43 0.53 3.65 3.79 3.29

sigma 0 noisep=0.1 Haar mean 59.81 59.59 60 59.87 59.99 59.72
delta=0.2 sd 0.46 0.79 0 0.34 0.1 0.59

mb4 mean 59.81 59.51 60 59.57 59.99 59.95
sd 0.46 0.79 0 0.62 0.1 0.22
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Table A.2: Results comparison between Haar and d4.

method 1 method 2 method 3
original wavelet original wavelet original wavelet

sigma 0 noisep=0.1 Haar mean 30 59.64 30 59.96 35.72 59.53
sd 0 0.7 0 0.32 3.99 0.8

d4 mean 30 57.7 30 57.11 35.71 59.88
sd 0 1.78 0 1.79 3.81 0.38

sigma 0.5 noisep=0.1 Haar mean 29.95 57.47 29.9 57.8 34.71 59.83
sd 0.39 1.88 0.63 1.52 4.01 0.43

d4 mean 29.98 56.76 29.91 56.62 34.67 59.4
sd 0.49 1.97 0.55 1.98 4.27 0.78

sigma 1 noisep=0.1 Haar mean 29.95 56.78 29.93 56.47 34.08 59.61
sd 0.5 1.68 0.7 1.85 3.63 0.69

d4 mean 29.95 56.41 29.93 56.09 33.95 57.35
sd 0.5 1.85 0.7 2.14 3.55 1.56

sigma 5 noisep=0.1 Haar mean 30.03 52 30 48.23 30.19 57.9
sd 0.3 2.67 0.14 3.16 3.54 1.38

d4 mean 30.03 54.84 30.01 51.71 30.16 52.57
sd 0.3 2.53 0.1 2.65 3.71 3

sigma 10 noisep=0.1 Haar mean 29.85 50.05 29.84 41.97 29.56 55.09
sd 1.11 3.31 1.02 4.25 3.71 2.52

d4 mean 29.82 54.91 29.79 46.77 29.51 50.32
sd 1.15 2.65 1.09 3.81 3.46 2.93

sigma 20 noisep=0.1 Haar mean 29.96 44.9 29.97 34.47 30.14 48.46
sd 0.62 6.49 0.33 4.43 3.35 6.21

d4 mean 29.96 51.87 29.92 38.97 30.15 39.88
sd 0.62 5.03 0.51 4.42 3.22 7.41

sigma 0 noisep=0.3 Haar mean 30 58.52 30 57.25 34.26 59.74
sd 0 1.51 0 1.78 4.87 0.65

d4 mean 30 56.22 30 56.09 34.14 57.54
sd 0 2.13 0 2.07 4.82 1.83

sigma 0 noisep=0.5 Haar mean 29.94 55.71 29.94 55.6 32.04 59.57
sd 0.6 1.75 0.6 1.98 3.69 0.67

d4 mean 29.94 55.37 29.94 55.04 31.85 55.9
sd 0.6 1.93 0.6 2.14 3.51 2.32

sigma 0 noisep=0.8 Haar mean 30.06 43.65 30.05 43.44 30.38 51.61
sd 0.92 3.48 0.9 3.92 3.86 2.91

d4 mean 30.06 46.31 30 45.07 30.39 45.93
sd 0.92 3.2 0.14 3.44 3.71 3.14

sigma 0 noisep=0.1 Haar mean 59.68 59.55 60 59.81 59.99 59.71
delta=0.2 sd 0.53 0.77 0 0.44 0.1 0.64

d4 mean 59.68 59.55 60 59.6 59.99 59.96
sd 0.53 0.74 0 0.64 0.1 0.2
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Table A.3: Results comparison between Haar and la8.

method 1 method 2 method 3
original wavelet original wavelet original wavelet

sigma 0 noisep=0.1 Haar mean 30 59.73 30 60 35.98 59.63
sd 0 0.62 0 0 4.11 0.82

la8 mean 30 56.33 30 56.84 36.24 59.79
sd 0 2.8 0 4.49 4.12 0.46

sigma 0.5 noisep=0.1 Haar mean 30.08 57.58 30.13 57.53 35.47 59.65
sd 1.28 1.46 1 1.64 4.12 0.61

la8 mean 30.08 51.92 30.13 49.44 35.97 59.25
sd 1.28 2.96 1 3.36 3.82 0.89

sigma 1 noisep=0.1 Haar mean 30.08 56.94 30.08 56.3 33.85 59.65
sd 0.8 1.89 0.8 1.87 4.41 0.66

la8 mean 30.08 49.94 30.08 48.24 34.05 55.72
sd 0.8 2.91 0.8 3.38 4.69 2.35

sigma 5 noisep=0.1 Haar mean 30 52.26 30 48.9 30.06 57.95
sd 0 2.86 0 3.45 3.8 1.64

la8 mean 30 43.89 30 41.49 30.73 40.75
sd 0 3.72 0 4.02 3.94 4.51

sigma 10 noisep=0.1 Haar mean 30.07 49.87 30.09 41.22 30.05 55.1
sd 0.7 2.74 0.9 3.87 3.69 2.58

la8 mean 30.07 41.56 30.09 37.45 30.44 35.68
sd 0.7 3.89 0.9 4.3 3.79 5.44

sigma 20 noisep=0.1 Haar mean 30.03 45.81 29.99 35.38 29.84 48.3
sd 0.22 5.56 0.22 4.59 3.61 6.31

la8 mean 30.03 36.46 30.02 33.12 29.88 30.98
sd 0.22 5.08 0.14 4.79 4.03 4.04

sigma 0 noisep=0.3 Haar mean 30 58.23 30 57.24 33.9 59.77
sd 0 1.71 0 1.67 3.61 0.62

la8 mean 30 50.61 30 49.04 33.82 56.37
sd 0 2.95 0 2.87 3.75 1.8

sigma 0 noisep=0.5 Haar mean 29.99 55.84 30 55.61 31.56 59.55
sd 0.1 1.69 0 1.86 4.18 0.69

la8 mean 29.99 47.72 30 46.78 31.57 50.49
sd 0.1 3.28 0 2.93 4.37 3.01

sigma 0 noisep=0.8 Haar mean 30 43.59 30.05 44.13 29.52 51.38
sd 0.38 4.04 0.5 4.07 3.86 2.73

la8 mean 30 37.87 30 37.32 29.84 38.24
sd 0.38 3.26 0 4.23 3.64 3.44

sigma 0 noisep=0.1 Haar mean 59.76 59.7 60 59.82 59.99 59.7
delta=0.2 sd 0.51 0.59 0 0.41 0.1 0.59

la8 mean 59.76 59.68 60 59.87 59.99 59.82
sd 0.51 0.69 0 0.37 0.1 0.41
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Bifet, A. & Gavaldà, R. (2009). Adaptive learning from evolving data streams.
In International Symposium on Intelligent Data Analysis , 249–260, Springer. 88

141



REFERENCES

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R. & Gavaldà, R.
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143



REFERENCES

Gokgoz, E. & Subasi, A. (2015). Comparison of decision tree algorithms for
EMG signal classification using DWT. Biomedical Signal Processing and Con-
trol , 18, 138–144. 42

Goodman, K.E., Lessler, J., Cosgrove, S.E., Harris, A.D., Lauten-
bach, E., Han, J.H., Milstone, A.M., Massey, C.J. & Tamma, P.D.
(2016). A clinical decision tree to predict whether a bacteremic patient is infected
with an extended-spectrum β-lactamase–producing organism. Clinical Infectious
Diseases , 63, 896–903. 2

Graps, A. (1995). An introduction to wavelets. IEEE Computational Science and
Engineering , 2, 50–61. 37

Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y. & Ku-
mar, N. (2006). Satellite remote sensing of particulate matter and air quality
assessment over global cities. Atmospheric Environment , 40, 5880–5892. 80

Gurjar, B., Butler, T., Lawrence, M. & Lelieveld, J. (2008). Evaluation
of emissions and air quality in megacities. Atmospheric Environment , 42, 1593–
1606. 80

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The Elements of Statis-
tical Learning . Springer. 115, 116

Hothorn, T. & Zeileis, A. (2015). Partykit: a modular toolkit for recursive
partitioning in R. Journal of Machine Learning Research, 16, 3905–3909. 86

Hothorn, T., Hornik, K., Van De Wiel, M.A. & Zeileis, A. (2006a). A
lego system for conditional inference. The American Statistician, 60, 257–263.
1, 2, 16

Hothorn, T., Hornik, K. & Zeileis, A. (2006b). Unbiased recursive par-
titioning: A conditional inference framework. Journal of Computational and
Graphical Statistics , 15, 651–674. 1, 2, 3, 8, 16, 17

Hothorn, T., Hornik, K. & Zeileis, A. (2015). ctree: Conditional inference
trees. The Comprehensive R Archive Network . 8

Hyndman, R.J. (2017). forecast: Forecasting functions for time series and linear
models . R package version 8.2. 86, 96

Hyndman, R.J. & Khandakar, Y. (2008). Automatic time series forecasting:
the forecast package for R. Journal of Statistical Software, 26, 1–22. 86, 96

144



REFERENCES
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