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Abstract

Synthetic aperture radar (SAR) is a kind of imaging radar that can

produce high resolution images of targets and terrain on the ground.

At present, most of SAR processing algorithms are based on matched

filtering. This method is easy to implement and can produce stable

results. However, It also has some limitations. This approach must

obey the Nyquist sampling theorem and the resolution depends on

bandwidth of pulses. This means that the matched filter approach

must be based on a large amount of raw data but the performance is

limited. With the development of radar imaging, it is difficult for the

matched filtering approach to meet the requirement of high resolution

SAR iamges.

In this thesis, a new processing method based on the least squares

(LS) beamforming is utilized in the processing of SAR raw data. The

model of SAR simulates an virtual linear array. The processing of

SAR data can also be seen as a process of beamforming. The 1-

D azimuth direction echo data is processed using the beamforming

method. Simulation results based on the least squares design method

are compared with the matched filtering method and the conventional

beamforming method with different windows.
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Chapter 1

Introduction

1.1 Research Background

In the past 30 years, synthetic aperture radar (SAR) has been widely

applied in a multitude of application fields, such as the geoscience re-

search, the climate change research, the monitoring of Earth system

and environment and even planetary exploration [30]. SAR can be

utilized in the area of earthquake disaster monitoring [37] and map-

ping global surface of other planets, such as Venus, which has a thick

atmosphere [41]. SAR can be considered as an active microwave re-

mote sensing instrument. It transmits electromagnetic waves sequen-

tially, collects echoes reflected from ground targets and stores data in

order to process focused images. Compared with optical imaging sys-

tems, SAR can provide high resolution images without consideration

of daylight, cloud coverage and weather conditions. This is particu-

larly significant in some high latitude areas (polar night) and in some

bad weather conditions [11].
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Imaging techniques always desire higher resolution so that we can

obtain more details and information from images. SAR is an airborne

or spaceborne imaging radar which utilizes the moving of platform to

synthesize an antenna with a large aperture. This is why it is called

synthetic aperture radar. SAR works in a similar way as a phased

array and can be considered as a uniform linear array. The only dif-

ference with a phased array with many parallel antennas is that SAR

uses only one antenna in time-multiplex. With the moving of the an-

tenna platform, the antenna transmits pulses and collects echoes from

different ground targets at different geometric positions and creates

an virtual uniform linear array (ULA). Because an virtual ULA is cre-

ated by SAR, the process of imaging can be treated as array signal

processing and we can use methods of array signal processing to obtain

focused images. This is why we are expecting to use the beamforming

method to acquire a focused image in SAR.

Array signal processing can be divided into two main areas: beam-

forming [52] [23] and direction of arrival (DoA) estimation [6]. Beam-

forming, which is also called spatial filtering, is a signal processing

technique to form a directional beam for signal transmission and re-

ception [52]. This technique can be achieved by combining elements

in different sensors or antennas of an array. Compared with temporal

filtering, spatial filtering (beamforming) can separate desired signal

from interference even if they occupy the same temporal frequency

band [52]. A directional beam, which points to the desired signal, is
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formed so that we can collect the desired signal and suppress interfer-

ence signals. In array signal processing, DoA estimation is another key

research field to estimate the direction angle of impinging signals by

an antenna array. The DoA estimation has two main research aspects:

self-adaption array signal processing and spatial spectrum estimation.

These two aspects have developed rapidly adn are still being devel-

oped [31].

In the past decades, most of processing algorithms of SAR are

based on the matched filter method, such as the range-Doppler al-

gorithm [5] [26], the chirp-scaling algorithm [44] and the ω − k algo-

rithm [3]. These algorithms convolve the raw data with matched fil-

ter reference functions in order to compensate for the phase difference

and maximize the value of SNR. However, with the increasing require-

ment of resolution, the limitations and disadvantages of this method

become apparent. For instance, the challenge for hardware due to

high sampling rate, high computation, and large on-board memories

and downlink throughput. Also, the image resolution obtained by the

matched filter method is limited because of the width of mainlobe and

the sidelobe effect.

1.2 Research Aims and Objectives

Currently, most of SAR processing methods are based on matched

filter. However, the methods based on matched filter have many dis-

3



advantages and limitations. Firstly, matched filter must obey the

Nyquist sampling theorem. The sampling frequency must be larger

than the signal bandwidth in order to avoid the distortion. The reso-

lution is related to the signal bandwidth. This means that higher res-

olution requirement will result in a higher sampling frequency. Large

amount of raw data will be created for a high resolution requirement

image. It will be a large challenge for the entire hardware system and

we need more computation time to proceed the raw data. Secondly,

the result of matched filter is a sinc-like function. Because of the effect

of side lobes, the resolution could be limited. Two close point targets

could not be distinguished.

The main objective of the research is to propose a new SAR data

processing method based on array signal processing. The key point of

this research is to treat the SAR data processing as a problem of ar-

ray signal processing. SAR created an virtual array in time-multiplex.

We can start a new direction of view to see the problem of SAR data

processing. Compared with matched filter method, the beamforming

method has many advantages. The resolution of image will improve

and the side lobes will be mitigated by using beamforming method.

The aim of this research is not only to improve the quality of SAR

image, but also to reduce the amount of raw data. After utilizing the

beamforming methods in SAR processing, we are going to utilize the

concept of sparse array to change the ULA of conventional SAR to

a sparse array. This method can result in fewer sampling points and
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lower amount of raw data.

1.3 Contributions of Thesis

In this thesis, the main contribution is to utilize the least squares

beamforming method to preceed the SAR raw data. Compared with

the conventional SAR processing methods based on matched filter,

the processing method based on least squares beamforming decreases

the value of side lobes and improves the qualtity of SAR image. Fur-

thermore, we complete the preparation work to combine the SAR pro-

cessing and the array signal processing. A new direction view of SAR

processing is made so that we can research the utilization of beam-

forming method based on sparse array in the SAR processing. This is

an important research field to reduce the amount of SAR raw data.

1.4 Thesis Outline

In Chapter 1, we explain some essential features of SAR and array

signal processing and some processing algorithms based on matched

filter will be introduced generally. Then, in Chapter 2, a general liter-

ature review about SAR model and basic processing methods is given

to discuss the basic concepts of SAR and limitations of existing pro-

cessing methods. In Chapter 3, the most commonly used algorithm,

the range-Doppler algorithm, and the co-prime array SAR (CopSAR)
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are introuced with details. Some simulation results of both point and

area target are provided with these two approaches. In Chapter 4, the

processing method based on the least squares beamforming is utilized

in the processing of SAR data. The first part of Chapter 4 discusses

the conventional beamforming method for SAR with different types

of windows, such as rectangular window, Hamming window, Hanning

window, Blackman window and Kaiser window. The second part of

this chapter focuses on the least squares beamforming in details and

some simulation results of this method are shown to compare with con-

ventional beamforming method. Then, Chapter 5 gives the conclusion

of this thesis and some future work in this research field, such as beam-

forming method based on sparse array for SAR data processing and

beamforming method under the framework of compressed sensing for

SAR data processing.
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Chapter 2

Literature Review of SAR Model

and Basic Processing Methods

2.1 Introduction to Synthetic Aperture Radar

2.1.1 Concept of Synthetic Aperture Radar

Synthetic aperture radar (SAR) is a kind of radar imaging technology

that is often used to produce two-dimensional (2-D) images of ground

targets. Imaging radar is an active illumination system [42]. An an-

tenna, which is mounted on a moving aircraft or spacecraft, transmits

electromagnetic wave periodically in a side-looking direction towards

the ground. The echo is back-scattered from target on the ground and

the amplitudes and phases of echo are collected by the same antenna.

The realization of SAR is a marriage of the radar techniques and the

signal processing techniques. 2-D images produced by SAR have two

dimensions. One dimension is called azimuth (or along track), which

is the same as the direction of platform. Another dimension is called

range (or cross track) and is perpendicular to the azimuth direction.
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In the azimuth direction, high azimuth resolution is obtained by us-

ing aperture synthesis. The resolution of a radar system is the ability

to distinguish two objects separated by minimum distance. If objects

are separated, they will be located in different resolution cell and be

distinguishable. If not separated, the image will show a complex com-

bination of the reflected energy from two objects [42]. For the azimuth

resolution in SAR, beam width is the key parameter to separate ob-

jects. Radar can only distinguish two objects in different beams. If

two objects are illuminated by the same beam, they will be indis-

tinguishable and be seen as same object. This means that we must

decrease the beam width of radar to increase resolution. The half-

power angular beam width (β) of radar is a direct function of radar

wavelength (λ) and an inverse function of antenna aperture (D), which

is

β =
λ

D
(2.1)

The corresponding azimuth beam width (L) at range R is

L = βR (2.2)

Therefore, the azimuth resolution (ρa) is

ρa =
λ

D
R (2.3)

According to Equation (2.3), we can increase D to make the beam

width smaller and obtain a better resolution. To obtain high azimuth

resolution, a physically large antenna is needed to focus the transmit-

ted and received signals into a sharp beam [27]. While the platform of
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SAR moving ahead and antenna transmitting pulse periodically, the

SAR system simulates an uniform linear array and synthesizes a large

antenna aperture, which is shown in Figure 2.1. At positions A, B,

C and D, the antenna transmits and receives coherent signals to the

target ship. Due to this coherence of signals, SAR can create a sharp

beam and the synthetic aperture length is the distance from A to D

in figure.

Figure 2.1: Concept of aperture synthesis.

Then, we can calculate the theoretical azimuth resolution of SAR.

Firstly, we need to point out that the flying mode of SAR is assumed

as the straight flight. The antenna of SAR is fixed on the platform of

aircraft or satellite. The antenna moves straightly in a fixed velocity

direction vector. All the following signal model, equations and anal-

ysis are all based on this assumption. The synthetic aperture length

(Ls) is the beam width of physical aperture antenna at range R, which
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is

Ls =
λ

D
R (2.4)

Hence, the azimuth resolution of SAR is

ρa =
1

2

λ

Ls
R =

D

2
(2.5)

where the one-half factor is because SAR uses the same antenna for

transmission and reception and radar signals travel through two-way

path between the antenna and the target. We can find that the az-

imuth resolution is only dependent on the physical aperture of antenna

of SAR and has no relationship with wavelength and distance from the

target. Moreover, this result indicates higher resolution is achievable

with smaller rather than larger physical aperture, which is contrary

of other kinds of radar. It appears surprising on the first view of this

equation. However, we can become clear that a shorter antenna sees a

point target on the ground for a longer time. This is because a shorter

physical antenna length can produce a larger angular beam width so

that we can have a longer illumination time of a point target. This is

equivalent to a longer virtual synthetic aperture length and a higher

azimuth resolution. However, this does not mean that an infinitesimal

antenna will obtain an extremely high azimuth resolution. For exam-

ple, we could simply build an antenna with length of 1cm to obtain a

5mm resolution of azimuth direction. This is completely impossible.

The length of physical antenna length must be large enough so that

we can create the proper interference pattern between the dipoles of

antenna for the beam spread. An extremely small antenna aperture
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will create an abnormal beam pattern and result in an ambiguous im-

age . In fact, the motion between SAR and target has Doppler effect.

The resolution is also related with Doppler bandwidth. This will be

discussed in the following section about SAR signal properties.

In the range direction, the fundamental idea of getting high resolu-

tion is the same as most radars. The range resolution determines the

width of range gates or bins [14]. From the radar fundamentals, we

can know that the distance between antenna and target is

R =
c∆t

2
(2.6)

where c is the speed of light and ∆t is the time delay between trans-

mitting pulse and receiving echo.

Figure 2.2: Train of transmitted and received pulse.

The train of transmitted and received pulses are shown in Figure

2.2. We can know that two echoes must have time difference so that

they can be distinguished by radar. The minimum time difference

between two distinguishable objects (two echoes are critically over-
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lapped) is the time duration of pulse (τp). Hence, the range resolution

of SAR can be given by

ρr =
cτp
2

=
c

2B
(2.7)

where B=1/τp is the bandwidth of pulse transmitted [14]. In order to

obtain high range resolution, the pulse transmitted should be narrow,

which means small time duration and large bandwidth. However,

energy transmitted by a narrow pulse is insufficient and it will be

difficult for the radar to collect the echoes. To deal with this problem,

the pulse compression technique was developed and utilized in SAR. In

general, narrow pulse used in radar always has unit Time-Bandwidth

Product (TBP). However, in a pulse compression system, a wide pulse

having a time duration T0 and a bandwidth B, where T0 · B is much

greater than one (unit), is somehow transmitted. Received echoes are

processed in such a way that narrow pulses having a time duration

Tp = 1
B are obtained [43]. The ratio of time duration of wide pulse T0

to that of narrow pulse Tp is a significant parameter called compression

ratio Kp,which is given by

Kp =
T0

Tp
= Tp ·B (2.8)

For the pulse compression technique, some kinds of pulses can be

used, such as the linear frequency modulated (LFM) signal, the non-

linear frequency modulated (NLFM) signal and the phase-coded sig-

nal. LFM signal is chosen for pulse compression in SAR. This pulse

compression technique maintains both high range resolution of narrow

pulses and target detectability of wide pulses [43].
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2.1.2 Geometric Model of SAR

The purpose of this part is to describe a general data acquisition ge-

ometric model of SAR and to define some geometry-related terms.

Figure 2.3 shows a general model of a SAR regarding radar location

and beam footprint illuminated on the Earth’s surface. The SAR im-

age formation create an image in slant range (not ground range) and

azimuth coordinates.

Figure 2.3: SAR data acquisition geometric model.
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In Figure 2.3, The target is a hypothetical point on the Earth’s

surface. The SAR systems actually images an area, but this point

target is used more easily to develop SAR theories [50]. The radar

beam is viewed as a cone and the footprint is the intersection of the

cone with ground. The footprint of a single beam is an ellipse, but the

whole footprint area will be a stripe on the ground due to the platform

moving. The nadir is the point on the Earth’s surface, which is di-

rectly below the antenna. Hence, the normal to the Earth’s surface at

the nadir passes through antenna. The zero Doppler plane is a plane

that is perpendicular to the platform velocity vector direction and the

azimuth direction. The intersection of the zero Doppler plane with

ground is called the zero Doppler line. The squint angle θsq in the

figure is an angle between the antenna beam pointing direction vec-

tor and the zero Doppler plane. If the squint angle is zero, the beam

direction vector is perpendicular to the platform velocity vector and

the SAR is side-looking. The parameter R is the slant range between

antenna and target. During the moving of platform, the distance R

will decrease gradually until platform moves to the closest point with

target, where R becomes R0, and then it will increase again. Hence,

R0 is called range of closet approach when the slant range is minimum

(when the zero Doppler line crosses the target). The line of R0 is

perpendicular to the platform velocity vector direction.

14



2.1.3 SAR Signal Properties

In SAR, linear frequency modulated(LFM) signal, which is also called

chirp signal, is used for pulse compression. The properties of LFM

signal will be introduced firstly. LFM signal is a kind of modulated

signals in which the frequency increases or decreases with time. [39].

The relationship of time and frequency of the LFM signal is a linear

function. The mathematical equation can be expressed as

s(t) = rect

(
t

T0

)
exp

{
j2πfct+ jπKt2

}
(2.9)

where t is the time variable in seconds, T0 is time duration of the

LFM signal, fc is carrier frequency and K is the linear FM rate in

Hz/s. The instantaneous frequency is the derivative of phase and can

be expressed as

f =
1

2π

dφ(t)

dt
=

1

2π

d(2πfct+ πKt2)

dt
= fc +Kt (2.10)

This means that the frequency is a linear function of time t with the

slope K. The waveform of LFM signal is shown in Figure 2.4.

In SAR, both signals in the range and azimuth directions can be

considered as LFM signal. Matched filtering approach is used for

LFM signal pulse compression. Matched filter is designed to do the

correlation process and cancel the quadratic phase term of LFM signal

and the equation is given by

h(t) = s∗(−t) = rect

(
t

T0

)
exp

{
j2πfct− jπKt2

}
(2.11)

15



Figure 2.4: LFM signal waveform.

After convolution with matched filter and removing carrier frequency,

the output can be given by

s0(t) = s(t) ∗ h(t) = T0rect

(
t

T0

)
sinc(πBt) (2.12)

where the ∗ is the mark of convolution calculation. The waveform of

output signal is shown in Figure 2.5. After pulse compression, signal

changes to a narrow pulse with unit TBP. Hence, the pulse width of

this output signal Tp = 1
B and the compression ratio Kp = T0

Tp
= T0B.

It is clear that the final output after pulse compression should be

a sinc function. Hence, the output of a point target should be two

orthogonal sinc functions in SAR image space.

In the range direction of SAR, the equation of transmitted LFM

16



Figure 2.5: Output signal after pulse compression.

signal can be given by

spul(τ) = wr(τ)cos
{

2πfcτ + πKτ 2
}

(2.13)

where wr(τ) = rect
(
τ
T0

)
, which is assumed as a rectangular pulse

envelope, and τ is the range time (fast time). This LFM signal is

transmitted to ground by antenna and reflected by objects on the

ground.

Next, we will discuss how the echoes are acquired across a range

swath. The radar beam has an elevation beam width in the elevation

plane and it is shown in Figure 2.6. The reflected energy at any illu-

mination instant is a convolution of transmitted pulse and the ground

17



reflectivity gr [9], which can be expressed

sr(τ) = gr(τ) ∗ spul(τ) (2.14)

where the mark of ∗ means the convolution calculation. Consider

a point target at a range distance Ra away from antenna, with the

magnitude A0, which is back-scattered reflection coefficient σ0. Hence,

the ground reflectivity is gr(τ) = A0δ(τ − 2Ra/c), where the 2Ra/c is

the time delay of the signal for reflector. the echo spul(τ) from the

point target is

sr(τ) = A0spul(τ − 2Ra/c)

= A0wr(τ − 2Ra/c)cos
{

2πfc(τ − 2Ra/c) + πK(τ − 2Ra/c)
2 + ψ

}
(2.15)

Figure 2.6: Elevation beam width in elevation plane.
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In the azimuth direction, we need to consider the Doppler effect

to analyze the SAR signal. The geometry side-looking model SAR is

shown in Figure 2.7. The slant distance between antenna and point

target decreases firstly until the closest slant distance R0, and then

increases again. Assume the coordinate of point target A is (0,Y0,0), va

is the velocity of platform and η is the azimuth time (slow time). Y0 is

the ground range which has a relationship with platform height H and

the closest slant distance R0, i.e. Y0 =
√
R2

0 −H2. The instantaneous

slant distance R(η) is given by [12]

R(η) =
√
R2

0 + x2 =
√
R2

0 + vaη2 (2.16)

In the general case, the closest slant distance R0 is much larger than

the moving distance of platform vaη. Hence, using Taylor series ex-

pansion, the instantaneous slant distance can be approximated as

R(η) =
√
R2

0 + vaη2 ≈ R0 +
vaη

2

2R0
(2.17)

Compared with transmitted pulses, the echoes have time delay and the

Doppler frequency shift [12]. Because of the relative motion between

platform and point target, the instantaneous phase of the azimuth

direction signal is

φ(η) = −2π
2R(η)

λ
= −2π

v2
a

λR0
η2 + Constant (2.18)

where the minus sign is because the echoes lag behind the transmitted

pulses. The instantaneous frequency of echoes in the azimuth direction

is the derivative of Equation (2.18) and can be expressed as

f(η) =
1

2π

dφ(η)

dη
= − 2v2

a

λR0
η (2.19)
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It is apparent that the instantaneous frequency is a function with time,

which can be considered as a LFM signal. Therefore we can also use

pulse compression to process azimuth echoes. The relative motion

between antenna and point target results in the phase shift with time

and linear variation of instantaneous frequency, which is known as

Doppler shift. More generally, the instantaneous frequency is

f(η) = fdc +Kaη = − 2v2
a

λR0
η + const (2.20)

where fdc defines the Doppler centroid and Ka is linear FM rate of

azimuth signal. If the working model is side-looking (squint angle is

zero), the Doppler centroid is zero. If the working model is not side-

looking, the Doppler centroid is a constant.

Figure 2.7: Side-looking model SAR geometry.
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After analyzing both the range signal and the azimuth signal, the

two-dimensional signal, which is demodulated to baseband, can be

expressed as

s0(τ, η) = A0wr(τ−2
R(η)

c
)wa(η−ηc)exp

{
−j4πfcR(η)/c+ jπK(τ − 2

R(η)

c
)2

}
(2.21)

where the τ is the time in the range direction and the η is the time in

the azimuth direction. This equation represents raw data of the point

target collected by antenna [12]. Many imaging algorithms, such as

the range-Doppler algorithm [5] [26], the chirp-scaling algorithm [44]

and the ω− k algorithm [3], have been developed to process raw data

and obtain focused images. These algorithms are all based on matched

filter to acquire the focused image [50] [12].

According to Equation (2.21), it is obvious that the raw data is

two-dimensional. The data of range direction can be processed by

pulse compression technique, which is implemented by the matched

filter method. The data of the azimuth direction can be seen as the

data of an virtual array, which means that the data can be processed

by the beamforming method. For a beamforming based processing

method, the point target expression can be represented by

s0(η) = A0wa(η − ηc)exp {−j4πfcR(η)/c} (2.22)

where the exponential phase is caused by relative motion between

point target and radar. The purpose of processing is to remove the

exponential phase of SAR data to acquire clear images. Because the
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raw data in the azimuth direction can be seen as the data collected

by an virtual uniform linear array, we can utilize the beamforming

method to process data.

2.2 Review of Matched Filter Based Processing

Methods

The Processing of SAR raw data requires a correlation of the col-

lected SAR raw data with the reference functions of the azimuth and

the range directions. Different reference matched filters are utilized in

the azimuth and range directions separately. The 2-D correlator in the

time domain can complete the correlation steps, but is computation-

ally inefficient [3]. For taking the advantages of fast processing speed

in the frequency domain, several processing algorithms have been de-

veloped in the decades with different correlation kernels.

The first digital processing algorithm is called range-Doppler al-

gorithm, which is developed by J. Bennett and I. Cumming [12] [5].

For more than four decades the range-Doppler algorithm has been

the basis of the most accurate and widely used SAR processing al-

gorithm [26]. It has three main steps, range compression, range cell

migration correction (RCMC) and azimuth compression. Several mod-

ifications of this algorithm are proposed to improve its performance.

The most important modification is the secondary range compression

(SRC), which is used to solve the problem of large squint angle [29].
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The range-Doppler algorithm performs the range compression in the

range frequency domain, the RCMC in the azimuth frequency and

the range time domain and the azimuth compression in the azimuth

frequency domain. This algorithm will be introduced with details and

simulation results will be shown in Chapter 3.

In the range-Doppler algorithm, the step of RCMC uses the in-

terpolation operation, which requires both computation time and ac-

curacy of processed image. The chirp scaling algorithm is proposed

by R. Raney to avoid interpolations and perform the RCMC accu-

rately [26] [44]. This algorithm modulates the frequency of chirp sig-

nal and makes the scaling of chirp signal. This is why this algorithm

is called chirp scaling algorithm. Phase multiplications using matched

filter are used to replace the interpolations that need long computa-

tion time in the range-Doppler algorithm. This algorithm requires only

complex multiplications and Fourier transform. Compared with the

range-Doppler algorithm, chirp-scaling is usually used in large swath

and large squint angle scenario. In order to acquire higher accuracy,

many modifications based on the chirp-scaling algorithm are proposed,

such as the extended chirp scaling (ECS) algorithm [35], the nonlin-

ear chirp scaling (NCS) algorithm [15] and the frequency scaling (FS)

algorithm [34].

After the chirp-scaling algorithm, a new class of algorithms were

then proposed and implemented in order to reduce the approximation
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error further. They are refereed to as the ω − k algorithm, which

processes data in the two-dimensional frequency domain [3] [36] [8].

This algorithm is based on Stolt interpolation and can match with

the SAR echo signal perfectly. Hence, it has high processing accuracy.

In the chirp-scaling algorithm, it uses approximations for SAR data

processing, which could be invalid in some scenarios. In order to slove

this problem, the ω − k algorithm was formulated in terms of wave

equation. The problem of original the ω−k algorithm is motion com-

pensation is not accurate. In order to solve this problem and make

the algorithm more practical, an extend the ω− k algorithm was pro-

posed [45] [46].

These algorithms are three main SAR processing algorithms based

on matched filter in the frequency domain. They all use some trans-

formations and approximations to do the matched filtering in the fre-

quency domain. In different applications, they have different modi-

fications in order to improve the image quality. In addition to those

frequency domain processing algorithms, there is another branch of

SAR data processing, which is the time domain processing algorithms.

The most typical algorithm is the back-projection algorithm [12]. In

theory, this algorithm can match with SAR echo signal perfectly with-

out any transformation or approximation. This is the most accurate

algorithm based on matched filter. However, extremely large compu-

tation time for correlation between the SAR echo signal and reference

function matched filter is required. Hence, it is seldom used in prac-
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tice and only used for scenarios with a small observing area.

Based on the theoretical framework of matched filter, many modifi-

cations of different algorithms are still being proposed to improve the

image quality. However, because of some features of matched filter,

the improvement of these algorithms could be limited and these are

the limitations of matched filter based algorithms.

2.3 Limitations and Existing Solutions of Matched

Filter Based Processing Methods

2.3.1 Limitations of Matched Filter Based Processing Meth-

ods

In general, most of processing algorithms are based on the same the-

oretical framework, which is the matched filter. Matched filter is a

linear process and easy for implementation. However, it also has sev-

eral obvious disadvantages and limitations.

Firstly, The algorithms based on matched filter must obey the

Nyquist sampling theorem. In order to avoid distortion of waveform,

the sampling frequency must be larger than signal bandwidth. This

means the amount of raw data will be much large for a high resolu-

tion requirement image. Moreover, because the resolution is related

to the signal bandwidth, higher resolution requirement need a higher
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bandwidth. This will result in a higher sampling frequency and it will

be a big challenge for the analogue-to-digital converter and the entire

hardware system [28].

Secondly, the result of matched filter is a sinc-like function. This

means that the image of an ideal point target will be a two-dimensional

impluse response with a certain width and the effect of side lobes [12].

Because of this reason, the resolution improvement of matched filter

based algorithm could be limited. For two close point targets, they

will be distinguishable and ambiguities without any detailed informa-

tion. Also, because the main lobes and side lobes of different point

targets can affect each other, the image processed by matched filter

will have coherent speckle noise and affect the resolution of image.

2.3.2 Existing Solutions for Limitations of Matched Filter

According to the last section, it is clear that what are the problems

of the matched filter based processing method. The most significant

problem is the high sampling frequency, which results in large amount

of sampling points and large amount of stored and processed data, for

high resolution requirement imaging. To reduce the amount of sam-

pling points (amount of data stored and processed), G. Martino pro-

posed a co-prime synthetic aperture radar (CopSAR) [16] [33]. Com-

pared with the uniform linear array of conventional SAR, CopSAR

uses one kind of sparse array, which is called co-prime array. Co-prime
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array is a combination of two uniform linear arrays with different inter-

element spacing. The two values of different inter-element spacing of

two arrays are two co-prime number times a constant distance d. This

means that they have no common factors except unity. As a result,

the elements of two arrays do not overlap. In the proposed algorithm

in this paper, a new SAR modality is proposed to transmit two inter-

laced sequences of pulses to build the co-prime array. In SAR, pulse

repetition frequency (PRF) means the inter-element spacing of arrays.

The PRF of conventional SAR corresponds to the aforementioned dis-

tance d. This means that the PRFs of two sub-arrays of the co-prime

array is smaller than PRF of the conventional SAR. It means that

the spacing of inter-element is larger than d. The PRFs of two sub-

arrays are smaller than Nyquist frequency. The data received by two

sub-arrays are processed by matched filter algorithm separately. This

means that the processed images will be severely aliased with many

ghost replica targets. Different PRFs will cause different locations of

ghost targets in two processed images.

The proposed algorithm in this paper can only be used when the

observation area consisting of bright targets on a dark background

(such as the scene of ships on the ocean surface), which is similar to

the scenario of some point targets. The impulse response of true tar-

get will be on the two aliased images at the same locations on the two

images. In one of the two aliased images, it shows the replica of tar-

get. However, in the other image, it only show the sea background in
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the same location. By comparing the two images, selecting the small-

est modulus of two images to remove the replica targets. Conversely,

wherever the true target is present, the two images will have similar

high moduli. Even a smaller one is selected, the final image still has

the correct pixel.

In [33], the authors proposed three modes, which are basic imple-

mentation, missing-pulse implementation and dual-frequency imple-

mentation. The proposed approach can reduce the amount of data

and increase the range swath at the same time without any resolution

loss. It is based on adaption of the co-prime array concept to the case

of SAR systems. In [17] and [18], G. Martino proposed an improved

CopSAR, which is called Orthogonal Co-prime SAR (OrthoCopSAR).

This is an improvement of the basic implementation mode of CopSAR,

which is based on transmission of (quasi) orthogonal waveforms. This

approach can reduce the amount of data and increase the range swath

without any ghost target.

These approaches have been tested by using simulated and real data

of SAR. It is suitable for ocean and maritime scenario. It is based on

co-prime array concept and matched filter. In the other word, these

approaches still use matched filter to process data without improving

the sampling method. The most significant problem with these ap-

proaches is that it is only suitable for scenario of some point targets

(ocean ship detection). By using the approach of selecting the lowest
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modulus of two images, the true point target will be removed if it is

in the location of replica target of another point target. This means

that this approach cannot be used for an image with many high re-

flected coefficient targets, such as mapping of the ground. Also, these

proposed approaches only use the concept of co-prime array. They do

not utilize any array signal processing method such as beamforming

or direction of arrival (DoA) estimation in their processing and still

use conventional matched filter algorithms to process data. These ap-

proaches can be used as a reference to propose new SAR processing

method based on array signal processing of co-prime or other kind of

sparse arrays.

Another approach to reduce amount of data and mitigate the ef-

fect of sidelobes is using the theory of compressed sensing. In recently

years, compressed sensing (CS) has been applied in the field of SAR

imaging. The reason why SAR cannot reduce the amount of data

using matched filter is because we must obey the Nyquist sampling

theorem to avoid aliasing. Under the framework of compressed sens-

ing, it is possible to reconstruct the sparse or compressible signals

with fewer amount of data [10] [4] [19]. Compressed sensing SAR

uses priori information of SAR, which is the sparsity of SAR data. In

[53], the authors proposed sparse signal representation from complete

dictionaries based on the CS theory. In [6], a technique for the com-

pression of raw data is proposed based on the use of continuous wavelet

transform in order to obtain a sparse representation of the complex
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SAR image. In [22], the authors proposed a method to reduce the

amount of stored SAR data based on compressed sensing. In [21],

based on the approximated observation, a new SAR fast compressed

sensing method is proposed.

Under the framework of compressed sensing, the two main prob-

lems are choosing the measurement matrix to represent the SAR signal

and choosing different reconstruction algorithms to rebuild signal in

different scenarios. The reconstruction in the CS framework is to solve

an l0 norm minimization problem. In [20], Donoho points out that

this is a NP-hardness (Non-deterministic Polynomial-time Hardness)

problem and difficult to solve. The most common approach is to use l1

norm minimization to replace the original problem. In [9], the authors

proved that they could reach the same solution. The first method to

solve l1 norm minimization problem is using basis pursuit (BP). This

method can solve the problem based on convex optimization. Another

method is called matching pursuit (MP), which is a kind of greedy al-

gorithms.

In [7], B. Han proposed a compressed sensing SAR imaging based

on co-prime arrays sampling. Co-prime is widely used in the field of

DoA estimation and can achieve a higher number of degrees of free-

dom. High degrees of freedom means more signal information. This

means this co-prime array sampling structure can obtain enough in-

formation of the signal by non-uniform low speed sampling. The mea-
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surement matrix is obtained by the transformation of sampling array.

In this proposed algorithm, the orthogonal matching pursuit (OMP)

greedy algorithm, which is an enhancement of the MP method, is used

to reconstruct the signal. Some simulations of several point targets

and small area target are shown.

Compressed sensing theory uses the sparsity of SAR signal. Spar-

sity means only a small portion of the observing area has targets, such

as several point targets or small area target. This means that proposed

approaches based on compressed sensing cannot process SAR data of

ground mapping, where targets are on the entire observing area. For a

scenario that is not sparse, we can use sparse representation to repre-

sent SAR data, which means making the SAR data sparse in the other

domain. However, the sparse representation for SAR data is difficult

because echo signals reflected by different targets have random phase.

New approach is still being proposed to solve this problem.
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Chapter 3

SAR Raw Data Processing

Approaches

The raw data received from the radar system must be processed in or-

der to acquire focused image. Currently, most of algorithms to process

data are based on matched filter. In the time or frequency domain,

the matched filter is used to compensate the phase difference of signals

received by different sensors (sampling points) of the virtual array. In

the following section, one of the most commonly used algorithm, which

is called the range-Doppler algorithm, is introduced and simulation re-

sults of point target and area target are shown. Then, a introduction

of co-prime SAR (CopSAR) is shown with details, which introduces

the concept of co-prime array and the CopSAR. Also, some simulation

results are presented as follows.
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3.1 The range-Doppler Algorithm

3.1.1 Introduction to the Algorithm

The range-Doppler algorithm processes the raw data calculated from

Equation (2.21), which have been first demodulated to baseband, to

produce the focused SAR image. This algorithm separately performs

pulse compression via the matched filtering in the Fourier transformed

range and azimuth domains [26]. For processing time efficiency, the

Fourier transforms are processed using fast Fourier transforms (FFTs).

Due to the slant range always changes during the motion of platform,

this change results in the range cell migration and the coupling be-

tween the range and azimuth directions. The range cell migration

correction (RCMC) is performed in the range time and the azimuth

frequency domain, which is called the range-Doppler domain. This is

why this algorithm is called the range-Doppler algorithm. Performing

the RCMC in this range-Doppler domain is the defining feature of the

algorithm when compared with other processing algorithms. In Figure

3.1, a block diagram of the range-Doppler algorithm is shown. There

are three main steps of the range-Doppler algorithm, which are the

range compression, the RCMC and the azimuth compression [12].
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Figure 3.1: Block diagram of range-Doppler algorithm.
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In Section 2.1.3, the matched filtering in the time domain is com-

pleted by using the convolution operations. As we known, the convo-

lution operations are the same as the multiplication operations in the

frequency domain. We only need to transform the raw data and the

matched filter reference functions into the frequency domain. Com-

pared with the convolution operations in the time domain, the multi-

plication operation is much easier in computation so that the process-

ing time will decrease dramatically. Hence, all steps of this algorithm

are all based on the frequency domain.

Firstly, the two-dimensional signal s0(τ, η) is analyzed as a series

range time signals for each azimuth bin. The equation of this signal

is shown in Equation (2.21). The variable τ is the time of the range

direction (fast time) and the η is the time of the azimuth direction

(slow time). The signals of the range direction are transformed into

the frequency domain via FFT, which can be expressed as S0(fτ , η).

The range compression is performed in the range frequency domain.

The matched filter in the range frequency domain is defined asG(fτ) =

exp
{
jπ f

2
r

K

}
and is multiplied with signals S0(fτ , η). The matched filter

is used to remove quadratic phase of signal and compress chirp signal

into a sinc function in the range direction. After performing IFFT and

transforming back to the range and azimuth time domain, the signals

can be represented as

src(τ, η) = IFFTτ{S0(fτ , η)G(fτ)}

= A0pτ [τ − 2R(η)/c]wa(η − ηc)exp{−j4πfcR(η)/c}
(3.1)
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where the compressed pulse envelope pr(τ) is the IFFT of the window

Wr(fτ). For a rectangular window, pr(τ) is a sinc function. For a

tapered window, it will be a sinc-like function with lower side lobes.

Figure 3.2: Signal diagram after range compression [1].

The diagram of signals after range compression is shown in Figure

3.2. The diagram depicts that the signal trajectory of the azimuth

direction is curving, which is not in a same range cell. Due to the

variation of slant range between the radar and the target, all reflected

signals from the target cannot come in a same range cell and follow

a hyperbolic trend in the azimuth direction called the range cell mi-

gration (RCM). These signals are required to migrate back to a same

range cell, which is called range cell migration correction (RCMC).
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In the azimuth time domain, the RCM curves of different targets are

different and we cannot correct them at the same time. However,

in the azimuth frequency domain, RCM curves of targets with same

range distance are same and we can correct them at the same time.

This is the reason why the RCMC is performed in the range-Doppler

domain [12] [2].

For the low squint cases, the antenna beam points close to zero

Doppler direction (side-looking model points to zero Doppler direc-

tion). The slant range can be approximated to

R(η) =
√
R2

0 + V 2
a η

2 ≈ R0 +
v2
aη

2

2R0
(3.2)

Combining Equation (3.1) and (3.2), the range compressed signal can

be given by

src(τ, η) ≈ A0pτ [τ−
2R(η)

c
]wa(η−ηc)exp{−j

4πfcR0

c
}exp{−jπ 2v2

a

λR0
η2}

(3.3)

According to Equation (2.20), the second exponential phase term in

Equation (3.3) can be expressed by exp{−jπKaη
2}. It is apparent that

this phase term is quadratic phase and is a function of η2. Then, an

azimuth FFT is performed on each range gate to transform the range

compressed signal into the range-Doppler domain. The relationship

between the azimuth time and the azimuth frequency is

fη = −Kaη (3.4)

By substituting Equation (3.4) into Equation (3.3), the data after
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azimuth FFT in the range-Doppler domain can be given by

S1(τ, fη) = FFT{src(τ, η)}

= A0pr[τ −
2Rrd(fη)

c
]Wa(fη − fηc)exp{−j

4πfcR0

c
}exp{jπ

f 2
η

Ka
}

(3.5)

where Wa(fη− fηc) is azimuth beam pattern in the range-Doppler do-

main, the first exponential phase term is the inherent phase informa-

tion of target and the second phase term is the azimuth modulation.

The RCM curve is the term Rrd(fη) and can be approximated by

Rrd(fη) ≈ R0 +
v2
a

2R0

(
fη
Ka

)2

= R0 +
λ2R0f

2
η

8v2
a

(3.6)

The amount of RCM needed to correct is given by the second term in

Equation (3.6).

∆(fη) =
λ2R0f

2
η

8v2
a

(3.7)

There are two main approaches to implement the RCMC, which are

the nearest neighbour interpolation and the sinc function based in-

terpolation. The nearest neighbour interpolation performs more effi-

ciently but only obtains approximate correction. The efficiency of the

sinc function based interpolation depends on the size of interpolator

kernel. Longer interpolator kernel can correct more accurately but

with a lower efficiency. Usually, a four-point or eight-point interpola-

tion is chosen to give a reasonable accuracy [50].

In Figure 3.3, the signal diagram is corrected and becomes parallel

with the azimuth direction. There are many sinc function diagrams

which are parallel in the direction of azimuth. This does not mean
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Figure 3.3: Signal diagram after the RCMC [1].

that there are many replicas in the direction of azimuth. It means

that the signal data can be seen as a sinc function in the range di-

rection after range compression, which is the processing result of the

first step of the range-Doppler algorithm. All data except the columns

that are close to the point target in the azimuth direction can be seen

as zero if we ignore the effect of noise. This means that the final im-

age will be all black (no reflection) in these areas with data of zero.

This is because that the LFM signal in the range direction has been

compressed into the sinc function. In the columns that is close to

the point target, they will be intensity of the mainlobe and sidelobes

of the sinc function in the range direction after the range compression.
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Assuming the RCMC is applied accurately, the signal after the

RCMC can be represented by

S2(τ, fη) = A0pr(τ −
2R0

c
)Wa(fη − fηc)exp{−j

4πf0R0

c
}exp{jπ

f 2
η

Ka
}

(3.8)

It is apparent that the range envelope sinc function pr becomes inde-

pendent of the azimuth frequency, which means the RCM has been

corrected.

After the RCMC, a matched filter is used to implement the azimuth

compression in the azimuth direction to complete pulse compression

in the azimuth direction. It is convenient to implement azimuth com-

pression in the Range-Doppler domain. Similar with the matched

filter in the range direction, the azimuth matched filter is the complex

conjugate of the second exponential phase term in Equation (3.5) to

remove quadratic phase in the azimuth direction and can be given by

Haz(fη) = exp

{
−jπ

f 2
η

Ka

}
(3.9)

where Ka is the azimuth linear FM rate shown in Equation (3.4).

An IFFT is then completed after the azimuth compression. The final

signal is given by

sac(τ, η) = IFFTη{S2(τ, fη)Haz(fη)}

= A0pr(τ −
2R0

c
)pa(η)exp

{
−j4πfcR0

c

}
exp{j2πfηcη}

(3.10)

where pa is azimuth impulse response, which is a sinc-like function

and similar with pr. The envelopes pa and pr show that the target is

40



focused and positioned at τ = 2R0/c and η = 0. These two envelopes

are orthogonal, which is shown in Figure 3.4, so that we can acquire

a focused point in the image space. There are two exponential phase

terms in Equation (3.10). The first term is target phase which de-

pends on range position and the second term is a linear phase which

depends on the Doppler centroid [13] [12].

Figure 3.4: Signal diagram after the azimuth compression [1].

Compared with Figure 3.3, Figure 3.4 shows the final SAR image of

a point target by using the processing algorithm of the range-Doppler

algorithm. In Figure 3.3, the data is a sinc function in the range direc-

tion. However, the data in the azimuth direction is still LFM signal

with a rate of Ka. It is difficult to show this in a diagram but we can
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know it from the Equation (3.8). In Figure 3.4, the LFM signal in the

azimuth direction is compressed to the sinc function as well. Hence,

the final SAR image shows two orthogonal sinc functions in the posi-

tion of point target. This means that all data except the column and

row of the point target should be zero in theory. The final image of

a point target in the SAR image space should be a cross which has a

centre in the position of the point target.

3.1.2 Simulation Results

Firstly, a simulation sample of the range-Doppler algorithm is given

to acquire a point in the image space. In this simulation, the ob-

servation area is from Xmin = −400m to Xmax = 400m in the az-

imuth direction. The central line of observation area in the range

direction is Yc = 10000m and the area in the range direction is from

Yc − Yw = 9400m to Yc + Yw = 10600m. The moving velocity of plat-

form is v = 100m/s and the height is H = 5000m. The resolution

of range and azimuth direction are both set to ρr = ρa = 2m. The

sampling points in the azimuth and range direction are Na = 2048

and Nr = 1024. The coordinate of target point is (0, Yc), which is the

center location of the observation area.

Figure 3.5 shows the intensity of the point target. In Figure 3.5,

high intensity is represented by yellow and low intensity is represented

by blue. From this figure, we can find that the location of point tar-
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get has a high amplitude intensity. However, there are also many

sidelobes in the surrounding locations in the both azimuth and range

directions. These sidelobes could make the image distorted. If another

point target with low intensity is on the adjacent location of this high

intensity point target, the point with low intensity will be covered by

the sidelobe of the high value point because the intensity of sidelobe

could be higher than the low value point target. This situation will

make the processed image distorted and the image could be different

from the real image of ground.

Figure 3.5: Intensity of the point target.

Figures 3.6 and 3.7 show the impulse response (point target result)

43



in the range and azimuth directions, respectively. In these two figures,

we can analyze the performance of this range-Doppler algorithm. The

3dB width of main lobe is the real resolution of this image. From these

two figures, the azimuth resolution is 3m and the range resolution is

3.5m. Compared with theoretical resolution 2m, the real resolution

of processed image is worse than theoretical calculation. This means

that the quality of processed image could be worse than expected.

SAR has a ratio to analyze the performance of sidelobe effect, which

is called the peak sidelobe ratio (PSLR). It is a ratio of maximum in-

tensity of mainlobe and maximum intensity of strongest sidelobe. In

these two figures, the PSLR values of the range and azimuth direction

are provided, which are -12.68dB in the range direction and -12.90dB

in the azimuth direction. These two values of PSLR are acceptable

and this means that we can obtain a clear SAR image. The simulation

of an area target is introduced in the following part.
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Figure 3.6: Impulse response (point target result) in the range direction.

Figure 3.7: Impulse response (point target result) in the azimuth direction.
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Secondly, a simulation of area target is shown as follows. A pic-

ture or photo is created by many discrete pixels (points with different

grayness degrees). Similarly, the area target is equivalent to many

point targets with small distance which is smaller than resolution. In

this simulation, the observation area in the azimuth direction is still

Xmin = −400m and Xmax = 400m. The observation in range direc-

tion is from Yc − Yw = 9400m to Yc + Yw = 10600m, which are all the

same as the point target simulation. Other parameters are also the

same as the simulation of point target. However, the sampling points

of the azimuth and range direction are changed to Na = 512 and

Nr = 1024. A Google satellite map photo is set in the center area of

observing area, which has a size of 601x701, which is shown in Figure

3.8. This means that there are totally 421301 discrete point targets

with adjacent distance of half of theoretical resolution, which is 1m.

These point targets build a rectangular area target on the center area

of observing area. Different point target has different back-scattered

reflection coefficient, which is correspond to the grayness degree of

pixel in the map photo. Other locations in the observation area all

have no target with no reflections. This means that these area will be

all black in the processed SAR image.

Figure 3.9 shows the simulation result of the area target. From this

image, many details of input image can be distinguished. However, it

is obvious that the quality of this reconstructed image is worse than

the input image in Figure 3.8. This is because the real resolution of
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this image is worse than the theoretical resolution. Also, the quality

of image is influenced by the effect of side lobes. This area target sim-

ulation result is the same as the analysis of the point target (impulse

response) in the above part.
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Figure 3.8: Input image of the area target [49].

Figure 3.9: Intensity of the area target.
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3.2 Co-prime SAR Concept and Simulations

3.2.1 Introduction to Co-prime Array and CopSAR

In this research, the most significant aim is to reduce the amount of

raw data. We can use the concept of sparse array in the array sig-

nal processing. The sparse array is a concept which is different from

the ULA. The ULA has fixed distance between two adjacent sensors.

However, the sparse array has different distance between different two

sensors. This means that sparse array uses fewer sensors than the

ULA in a same length of array. We can exploit the second order sta-

tistical information to receive a smaller performance compared with

the ULA. However, the amount of data decreases because the amount

of sensors decreases. The co-prime array uses two co-prime integers in

two sub-arrays. In Figure 3.10, for two sub-arrays with two co-prime

integers, they share the same sensor in the first position and they will

share the same sensor again until the MN − th position because M

and N are co-prime. This means that we can generate an virtual array

with consecutive integers from -M(N-1) to M(N-1), which is a larger

virtual ULA with better performance. This is why we are going to

utilize the co-prime array in SAR as well.

The concept of co-prime array will be introduced in deails in the

following parts. Co-prime array is one kind of sparse arrays. The

co-prime array consists of two uniform linear sub-arrays with distance

Md and Nd respectively, which is shown in Figure 3.10. There are
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M sensors in the first sub-array and N sensors in the second sub-

array where M and N are co-prime integers, for example, 4 and 5.

In the location of 0, two sub-arrays share same sensor. Except this

sensor, two sub-arrays have separate ULA pattern with different spac-

ing. d is the unit of inter-element spacing. For uniform linear array

(ULA), d is typically set to λ/2 or smaller than λ/2 to avoid spatial

aliasing [51] [54]. However, it is obvious that distance between two

adjacent sensors of the co-prime array is larger than d.

Based on the sparse array signal processing, we can build an vir-

tual ULA. Based on the concept of difference co-array, an virtual ULA

with 2M(N−1)+1 virtual sensors can be generated. The virtual sen-

sors are corresponding to the consecutive integers from −M(N−1) to

M(N−1). This operation leads to a significant increase in the degrees

of freedom, which means co-prime array can receive same performance

with fewer sensors (fewer sampling points and fewer amount of data

in SAR) [51].
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Figure 3.10: A general co-prime array structure.

For the co-prime SAR, it uses the concept of co-prime to reduce

the sampling points, which reduces the amount of the raw data stored

and increase the range swath [16]. Because this approach is still based

on matched filter, the sampling must obey the Nyquist sampling the-

orem. This means that the sampling frequency must higher than the

bandwidth of signal. In the azimuth direction, the bandwidth is the

SAR signal Doppler bandwidth, i.e., its Nyquist rate. Usually, in or-

der to avoid the aliasing, the selected PRF of conventional SAR must

be larger than the Doppler bandwidth, which can be represented as

PRF0 ≥
2v

L
(3.11)

where v is the velocity of SAR platform and L is the real length of

antenna. However, the PRF of co-prime array must be smaller than

the PRF0 because the distance between two adjacent sensor increases.
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For example, if the two co-prime integers are 4 and 5, the structure

of CopSAR are shown in Figure 3.11. The blue point is the first sub-

array with M = 4, which means its PRF1 = PRF0/M . The other red

points are the second sub-array withN = 5 and the PRF2 = PRF0/N .

Because two integers are co-prime, the array will repeat the pattern

each MN = 20 sensors. To calculate the reduction of raw data, a

ratio R is defined between the number of pulses transmitted by the

CopSAR and the number of pulses transmitted by the conventional

SAR.The ratio R can be expressed as

R =
1

PRF0
(
PRF0

M
+
PRF0

N
− PRF0

MN
) =

M +N − 1

MN
(3.12)

Figure 3.11: Structure of the CopSAR concept.

The PRF of CopSAR is lower than the Nyquist rate, the replica

ghost targets will be displayed on the image space.The shift of replicas

in the azimuth direction and the range direction can be calculated by

the following equations:

∆xi = i
PRF0λr0

2v
(3.13)

∆ri =
∆x2

i

2r0
(3.14)

where λ is the wavelength, r0 is the closest slant range between the

radar and the target. Two sub-arrays can be used to produce two

separate SAR images. This means that they should use different PRF
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to calculate replicas in different SAR images. For the first sub-array,

each target gives rises to replicas displayed as

∆xi1 = i1
PRF0λr0

M2v
(3.15)

∆ri1 =
∆x2

i1

2r0
(3.16)

For the second sub-array, each target gives rise to replicas displayed

as

∆xi2 = i2
PRF0λr0

N2v
(3.17)

∆ri2 =
∆x2

i2

2r0
(3.18)

The resolution of these two processed images are the same as the con-

ventional SAR because the synthetic array length of CopSAR is the

same as the conventional SAR. But because of the low sampling fre-

quency, these two images are severely aliased. According to aforemen-

tioned equations, replicas on the two images will at different locations,

unless it is the real target. To combine these two aliased images, we

can choose the smaller modulus at each pixel, the replica ghost targets

will be removed. The choosing step can be represented as

s(x, r) =


s1(x, r), if |s1(x, r)| < |s2(x, r)|

s2(x, r), otherwise
(3.19)

Because this CopSAR is used in the scenario of ocean ships detection,

a replica in the location of one aliased image, the same location of an-

other aliased image must be dark and without any replica. The final

image s(x, r) with no replica can be obtained. In one of the two aliased
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images, there is a replica ghost of the target. In the other aliased im-

age, it should be darkness with low modulus (sea background). By

choosing the smallest modulus of the two aliased images, the replica

ghost targets can all be removed. Some simulation results of CopSAR

are shown in the following subsection.

3.2.2 Simulation Results

Firstly, a simulation of single point target is provided. The parameters

are the same as the area target simulation in the section 3.1.2. The two

co-prime integers are the same as the aforementioned example, which

are 4 and 5. The conventional SAR PRF0 = 94.858Hz. The PRF of

two sub-arrays are PRF1 = 23.7145Hz and PRF2 = 18.9716Hz, re-

spectively. These two PRF are lower than Nyquist rate and will result

in severely aliased. The point target is set on the center of observing

area, which is (0,Yc). The aliased image s1(x, r) is created by the first

sub-array and the s2(x, r) is created by the second sub-array. The

final image s12(x, r) is created by combining s1(x, r) and s2(x, r) using

the smallest modulus of each pixel.
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Figure 3.12: Intensity of point target processed by the CopSAR.

In Figure 3.12, a point target processed by CopSAR is shown. Com-

pared with simulation result of conventional SAR, it has similar per-

formance of resolution and side lobes. However, the amount of data

decreases significantly compared with conventional SAR. In the con-

ventional SAR, the sampling points of this simulation is 1024. For

this CopSAR, the number of sampling points in the first sub-array is

256 and the number is 205 in the second sub-array. This means that

there are 461 sampling points totally. This is a significant reduction

compared with the conventional SAR. Because the PRF reduces, the

range swath also increases without any loss of geometric resolution.
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Figures 3.13 to 3.16 show the impulse response (point target re-

sult) of the first sub-array aliased image, the second sub-array aliased

image, the combined image and the conventional SAR image, respec-

tively. According to Figures 3.13 and Figure 3.14, it is obvious that the

location of replica ghost targets are different for different sub-arrays.

Hence, by choosing the smallest modulus of each pixel, we can achieve

the final image in Figure 3.15. Compared with the image of conven-

tional SAR, it has small sidelobes around the point target but it can

be ignored because it is relatively much lower than the mainlobe of

the point target. This means that this approach CopSAR can achieve

similar performance of image quality but with a significant reduction

of data amount and increase of range swath.
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Figure 3.13: Impulse response (point target result) of s1(x, r) in the azimuth direc-

tion.
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Figure 3.14: Impulse response (point target result) of s2(x, r) in the azimuth direc-

tion.
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Figure 3.15: Impulse response (point target result) of s12(x, r) in the azimuth direc-

tion.
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Figure 3.16: Impulse response (point target result) of the conventional SAR in the

azimuth direction.
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The second simulation is to simulate a ship target with length of

100m, which is a long target with many point targets. The parame-

ters of simulation are all the same as the point target simulation. In

Figures 3.17 and 3.18, the simulation results of CopSAR and conven-

tional SAR are compared.

Compared with the point target simulation result of the conven-

tional SAR, the result of CopSAR has some small replicas in the

image. This is because the replica ghost targets also have sidelobes.

Some replica sidelobes of these two aliased images coincide in the same

locations and cannot be removed perfectly. This situation results in

that the replica ghost targets cannot be remove completely using the

approach of Equation (3.19). However, the modulus is much lower

compared with the real target and can be ignored and seen as noise

in the final image. Furthermore, we can compare the data amount

of this two approaches. The conventional has 1024 sampling points.

The CopSAR has 256 sampling points in the first sub-array and 205

sampling points in the second sub-array. There are only 461 sampling

points totally in the CopSAR, which is only 45% of the data amount

in the conventional SAR. It is obvious that the CopSAR has a bet-

ter advantage of data amount in some scenarios (ship detection and

surveillance in the ocean).
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Figure 3.17: Intensity of ship target processed by the CopSAR.
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Figure 3.18: Intensity of ship target processed by the conventional SAR.
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Chapter 4

Least Squares Beamforming Based

Processing Method

4.1 Conventional Beamforming Method withWin-

dows

4.1.1 Conventional Beamforming Based SAR Processing Method

In the last chapter, the expression of point target in the azimuth di-

rection is represented in Equation (2.22). The matched filter method,

such as the most commonly used range-Doppler algorithm, is to re-

move quadratic phase of the signal and compress the chirp signal into a

sinc function in the azimuth direction so that we can obtain a clear im-

age of the point target [2]. The matched filter method performs pulse

compression in the Fourier transformed azimuth domain for a higher

processing time efficiency. The Fourier transform is processed using

fast Fourier transforms (FFTs). For the range-Doppler algorithm, the

signals of azimuth direction are transformed into the frequency do-

main via FFT. After Fourier transform, the expression of point target
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in the frequency domain can be expressed as

S1(fη) = A0 Wa(fη − fηc) exp{jπ
f 2
η

Ka
} (4.1)

where Ka = 2v2a
λR0 and Ka is the linear FM rate of azimuth signal, which

has been shown in Equation (2.20). The matched filter of the azimuth

direction is the complex conjugate of the exponential phase term in

Equation (4.2). and can be given by

Haz(fη) = exp

{
−jπ

f 2
η

Ka

}
(4.2)

The data of point target in the frequency domain is multiplied by the

matched filter and then transformed back to the time domain using

IFFT to obtain a clear image. For a point target in the azimuth direc-

tion in the observation area, the simulation result after processing by

the range-Doppler algorithm is shown in Figure 4.1. We can see that

the impulse response shows a sinc function with a mainlobe and some

sidelobes. The matched filter method is equivalent to the beamform-

ing method. Hence, the impulse response is the same as the result

of point target. The width of mainlobe (-3dB width) is 2.1m, which

is similar to the theoretical resolution 2m. The value of sidelobe is

-13.5dB. Response with high sidelobes could affect the quality of SAR

image. For the matched filter method, the value of sidelobe is a main

problem which need to be solved.

Compared with Figure 3.7, the performance of mainlobe width and

PSLR in Figure 4.1 are better. This is because the result of Figure 3.7

are processed using the 2D raw data with both range and azimuth di-
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rections. The sidelobe value PSLR in Figure 4.1 is a theoretical result

using the matched filter (conventional beamforming). In the following

part, we are going to explain why the matched filter is equivalent to

the conventional beamforming under the framework of the array signal

processing.

In the view of array signal processing, the process of the matched

filter can be seen as beamforming. The collected raw data in the

azimuth direction is collected by an virtual ULA. This means that the

raw data can be seen as input data in array signal processing and the

matched filter can be seen as the weight in different virtual sensors.

Assume the collected raw data is X, Equation (2.22) can be expressed

in the form of matrix

X = AS =



0

...

0

exp−j 4π
λ R1

exp−j 4π
λ R2

...

exp−j 4π
λ Rn−1

exp−j 4π
λ Rn

0

...

0


M×1

[
σ1

]
(4.3)

where A is the exponential phase of reflected signal and S is the re-
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(a) Impulse response (point target result) of

matched filter method (the range-Doppler algo-

rithm).

(b) Details of mainlobe and sidelobes.

Figure 4.1: Matched filter method (range-Doppler algorithm).
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flection coefficient matrix of point target. In matrix A, we assume

the synthetic aperture length has n sampling points. This means that

n points can receive the reflected signal from the point target. The

raw data X consists of the whole observation line and there are totally

M sampling points in matrix X. The entire observation line is much

longer than the synthetic aperture length. All other sampling points

cannot receive the reflected signal from this point target and there are

all zero in other points. This is why only n points of exponential phase

part have non-zero data. The R1 is the first sampling point which re-

ceives the reflected signal from the point target. The R2 is the second

sampling and the Rn is the n − th sampling points. The matrix S

is the matrix of the point target reflection coefficients. In Equation

(2.22), there is only one point target. Hence, the matrix S is a single

value of σ1, where σ1 is the back-scattered reflection coefficient of the

point target.

For more complicated situation, assume there are two point targets

in the observation line and the positions of two points have a distance

of two sampling points. By using these assumption, we can re-express
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the Equation (2.22) into

X = AS =



0 0

...
...

0 0

exp−j 4π
λ R11 0

exp−j 4π
λ R21 0

... exp−j 4π
λ R12

exp−j 4π
λ R(n−1)1 exp−j 4π

λ R22

exp−j 4π
λ Rn1

...

0 exp−j 4π
λ R(n−1)2

0 exp−j 4π
λ Rn2

0 0

...
...

0 0


M×2

σ1

σ2

 (4.4)

where the R11 is the first sampling point received the reflected signal

from the first point target and the Rn1 is the n − th sampling point

received the reflected signal from the first point target. In the same

pattern, the R12 is the first sampling point received the reflected sig-

nal from the second point target and the Rn2 is the n − th sampling

point received the reflected signal from the second point target. In

the matrix A, the exponential phase data of the second point target is

two sampling points after the exponential phase data of the first point

target. The expression is the same as our assumption. The matrix S

also extends to two rows because of two point targets. The σ1 is the

reflection coefficient of the first point target and the σ2 is the reflection

66



coefficient of the second point target. If there are more points targets

in the observation line, we can simply extend more columns of matrix

A and more rows of matrix S in the Equation (4.3).

In Figure 4.2, a general matrix pattern of SAR raw data is shown. It

can be used to express any scenario with any number of point targets.

The shadow parts of columns in matrix A are non-zero exponential

data of different point targets in observation line, which is similar to

the steering vector in the model of array signal processing.

Figure 4.2: General matrix pattern of SAR raw data.

The purpose of processing is to remove the exponential phase part,

which is similar to the beamforming method. In beamforming, the

data collected by sensors are processed by weight vector to form a
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beam pointing to desired direction and suppress interfering signals

from other directions [32] [24]. It is convenient to develop matrix

notation to express the output after processing. Define a weight vector

w and raw data vector X, then

w = [w0, w1, ..., wM−1]
T (4.5)

X = [x0, x1, ..., xM−1]
T (4.6)

where the T is the transpose of matrix. The output of array can be

expressed as

Y = wHX = wHAS (4.7)

where the weight vector is the complex conjugate of the exponential

phase matrix A and the H is the Hermite transpose of the matrix. By

the theory of array signal processing, we can prove that the conven-

tional beamforming method can be utilized in SAR. This processing

method is equivalent to the matched filter method. The only differ-

ence is that this conventional beamforming method is implemented in

the time domain, but the matched filter method (range-Doppler algo-

rithm) is implemented in the frequency domain. Hence, it is obvious

that the conventional beamforming can receive similar result (similar

mainlobe width and sidelobe value).

In order to improve the performance of procecssing result, we can

add windows based on conventional beamforming. A new window

weight vector can be added to the data after processing. There are

many kinds of windows to control the main beam width and the side-
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lobe value. The relationship between width of main beam and the

value of sidelobe is a trade-off problem. Smaller main beam width

(higher spatial resolution) means higher value of sidelobe. The level

of sidelobes is defined as the ratio of peak intensity of mainlobe and

the peak intensity of the highest sidelobe, which is called the peak side-

lobe ratio (PSLR). A smaller value of PSLR means a better method.

The spatial resolution is evaluated by the value of impulse response

width (IRW). It is the width of mainlobe of impulse response, which

is measured by 3dB width of the mainlobe, or the minimum distance

to distinguish two point targets.

In this thesis, five kinds of windows are used for SAR data pro-

cessing, which are rectangular window, Hanning window, Hamming

window, Blackman window and Kaiser window. The expressions of

these windows are represented below

Rectangular w(m) = 1,m = 1, 2, ...M (4.8)

Hanning w(m) = 0.5(1− cos2πm

M
),m = 1, 2, ...M (4.9)

Hamming w(m) = 0.54− 0.46cos
2πm

M
,m = 1, 2, ...M (4.10)

Blackman w(m) = 0.42− 0.5cos
2πm

M
+ 0.08cos

4πm

M
,m = 1, 2, ...M

(4.11)

69



Kaiser w(m) =
I0(β

√
1− (2m/M)2)

I0(β)
,m = 1, 2, ...M (4.12)

where M is the number of sampling points for the entire observation

area, I0 is the zeroth-order modified Bessel function and β the non-

negative real number called attenuation coefficient that determines

the shape of the window. The attenuation coefficient determines the

trade-off between mainlobe width and sidelobe level. Usually, this co-

efficient is chosen as β=2.5.

According to above equations, it is obvious that the rectangular

window is equivalent to processing without window. Hanning, Ham-

ming and Blackman windows all have an increased mainlobe width to

obtain a lower value of sidelobe. In these three windows, Hanning ob-

tains the highest PSLR and Blackman obtains the lowest PSLR. For

Kaiser window, the sidelobe part of window weight vector is one-third

of the mainlobe weight to have a suitable mainlobe width and value

of sidelobes.

4.1.2 Simulation Results

In this section, some simulation results are provided. We build a SAR

model in MATLAB [47] to create raw data. The observation area is

from Xmin = −500m to Xmax = 500m in the azimuth direction. The

central line of the observation area in range direction is Yc = 10000m.

The moving velocity of platform is v = 100m/s and the height is
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H = 6000m. The resolution of the azimuth direction is set to 2m. The

sampling points in the azimuth direction is M = 1001. The coordinate

of target point is (0, Yc), which is the center location of the observa-

tion area. The synthetic aperture length of SAR is Lsar = 250m. The

sampling frequency is PRF = 100Hz. This means that the distance

between two sampling points(two virtual sensors) is d = 1m.

Figures of simulation results are shown below for different windows.

For Figure 4.3, it is the response with rectangular window (or without

window). The result of this method is equivalent to the matched filter.

For Figure 4.3(b), this figure shows the response details of main beam

and sidelobes after the conventional beamforming method. The value

of PSLR is -13.5dB, which is also similar to the result of matched filter

method.

For Figures 4.4, 4.5 and 4.6, it is obvious that the value of PSLR

is smaller than the rectangular window. The Hanning, Hamming and

Blackman windows show a decreasing trend of PSLR. The values of

PSLR are decreasing from -14.26dB (Hanning window) to -14.33dB

(Hamming window), then -14.9dB for Blackman window. Figure 4.7

shows the result of conventional beamforming with Kaiser window,

which has an attenuation coefficient β=2.5. The value of PSLR is -

13.81dB, which is worse than the performance of other windows. How-

ever, this method obtains a balance between the mainlobe width IRW

and the sidelobe effect PSLR.
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(a) Impulse response (point target result) of con-

ventional beamforming with rectangular window.

(b) Details of mainlobe and sidelobes.

Figure 4.3: Conventional beamforming with rectangular window.
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(a) Impulse response (point target result) of con-

ventional beamforming with Hanning window.

(b) Details of mainlobe and sidelobes.

Figure 4.4: Conventional beamforming with Hanning window.
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(a) Impulse response (point target result) of con-

ventional beamforming with Hamming window.

(b) Details of mainlobe and sidelobes.

Figure 4.5: Conventional beamforming with Hamming window.
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(a) Impulse response (point target result) of con-

ventional beamforming with blackman window.

(b) Details of mainlobe and sidelobes.

Figure 4.6: Conventional beamforming with Blackman window.
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(a) Impulse response (point target result) of con-

ventional beamforming with Kaiser window.

(b) Details of mainlobe and sidelobes.

Figure 4.7: Conventional beamforming with Kaiser window(β=2.5).

76



By using the conventional beamforming method to process SAR

raw data, we have shown that the beamforming technique in array

signal processing can be utilized in SAR data processing to improve

the quality of SAR images.

4.2 Least Squares Beamforming Method

4.2.1 Least Squares Beamforming Based SAR Processing

Method

The least squares (LS) approach has a long history and has been re-

searched very well in the array signal processing. The aim of beam-

forming based on least squares approach is to minimize the difference

between the designed beam response of this approach and a desired

response. In the LS approach, we need to create a desired response,

which has the information of the direction angle of main beam, the

region of mainlobe and the region of sidelobes. In order to minimize

the difference, it is achieved by minimizing a cost function JLS so that

we can get the optimal coefficients of weight matrix [32].

As we known, the LS approach is widely used in the array signal

processing.We can utilize this approach into the SAR processing by

changing the variables of the LS equations. For example, the beam

response in the model of array signal processing is based on direction

(degrees). In the model of SAR, the beam response is based on the
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location of the observation area. Hence, we can change the variable of

direction to the variable of location so that we can utilize this method

in the SAR processing.

Firstly, we need to analyze the LS problem in the model of array

signal processing. Assume the desired beam response is Pd(θ) and the

designed beam response is P (θ). The desired beam response is the

beam response in extremely ideal situation. Usually, we desire the

beam response in the mainlobe is 1 and the response in the sidelobe

region is 0. However, it is impossible in practical implementation. The

response function always attenuates gradually. The designed beam

response is the response we receive after designing. We can control by

changing the variables of the mainlobe region Θm, the sidelobe region

Θs and the coefficient of sidelobe region αLS. It can be expressed as

Pd(θ) = wHd(θ) (4.13)

where the w is the weight vector of array, H is the Hermite trans-

pose of matrix and the d(θ) is the steering vector. The LS based design

is formulated by minimizing the squares of error between desired beam

response and design beam response over the interested angle Θ, which

can be expressed as

min
w

∫
Θ

|P (θ)− Pd(θ)|2dθ (4.14)

When we does not define the coefficient of sidelobe region, the coef-

ficients of both mainlobe and sidelobe regions are same, which is the

unit 1. This means that the coefficient weighting function is not ex-
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pressed in the Equation (4.14). However, the coefficients of mainlobe

and sidelobe regions are usually different [32] [56]. This means that

we need to define the weighting function v(θ) for this coefficient of

the sidelobe region. The weighting function v(θ) is added to Equation

(4.14) and the equation can be re-expressed as

min
w

∫
Θ

v(θ)|P (θ)− Pd(θ)|2dθ (4.15)

For the LS problem, in order to minimize the squares error between

the desired beam response and the designed beam response, we need to

design a cost function JLS. When the cost function is in the minimum

point, we can get the best performance of the designed beam response

so that we can have an optimum weight vector. The cost function JLS

can be expressed as

JLS(w) =

∫
Θ

v(θ)|P (θ)− Pd(θ)|2dθ

=

∫
Θ

v(θ)(P (θ)− Pd(θ))(P (θ)− Pd(θ))Hd(θ)

=

∫
Θ

v(θ)(|P (θ)|2 + |Pd(θ)|2 − 2Re{P (θ)P ∗d (θ)}dθ

= wHGLSw −wHgLS − gH
LSw + gLS

(4.16)

where

GLS =

∫
Θ

v(θ)(d(θ)dH(θ))dθ

=

∫
Θ

v(θ)D(θ)dθ
(4.17)

gLS =

∫
Θ

v(θ)(d(θ)P ∗d (θ))dθ (4.18)

gLS =

∫
Θ

v(θ)|Pd(θ)|2dθ (4.19)
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For the solution of the optimum weight vector, we need to take the

gradient of the cost function JLS with respect to the weight vector

w. Setting the cost function to zero so that we can get the optimum

weight coefficients of weight vector wopt

wopt = G−1
LS gLS (4.20)

The expressions of cost function are all represented by integration

operations. However, due to the integration, it is hard to obtain a

closed-form solution to the cost function [55] [25]. Instead of the in-

tegration of continuous form, we can approximate the cost function

with discrete summations giving the discrete form

JLSD
= wHGDw −wHgD − gHDw + gD (4.21)

where

GD =
∑
θk∈Θm

D(θk) + αLS
∑
θk∈Θs

D(θk) (4.22)

gD =
∑
θk∈Θm

d(θk) (4.23)

gD =
∑
θk∈Θm

1 (4.24)

θk is the direction angles that are of interest. Θm is the mainlobe

region and Θs is the sidelobe region. αLS is the coefficient of sidelobe

region.

By using the LS concept, a beamformer based on a 10-element

array with adjacent distance of sensors 0.5λ can be designed. The

attenuation coefficient of sidelobe αLS is 0.8. The mainlobe region is
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set to a single direction of Θm = 0◦ and the sidelobe region is set to be

Θs ∈ [−90◦,−10◦]∪ [10◦, 90◦]. The direction angles are sampled every

1◦. The response of the designed LS beamformer is shown in Figure

4.8.

Figure 4.8: Beam response of beamformer based on the least squares.

As shown in Figure 4.8, the mainlobe is at the desired locations of

0◦. Also, the value of sidelobe is much attenuated. Compared with

conventional beamforming, the value of first sidelobe decreases to -

19.16dB, which is much smaller. The width of mainlobe is also in an

acceptable value. This means that the LS based beamforming can be

utilized in SAR data processing to improve the quality of SAR im-

age [25].
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The LS based beamformer designed above is interested in direction

angles from −90◦ to 90◦. However, in the model of SAR, we do not

have variable of direction angles. Instead of these angles, we change

the direction of interest into the location of interest, which is from

Xmin to Xmax in the azimuth observation line. This means that the

mainlobe region Xm and sideloe region Xs are both described by the

location of interest. In SAR processing, we also desire the impulse

response (point target result) has a peak value in the location of the

point target and other locations are all zero (no sidelobes).The impulse

response function in SAR is the same as the beam response in the

array signal processing. The function must attenuate gradually. This

means that the sidelobes cannot be removed completely. However,

we can use variables of the mainlobe region Xm, the sideloe region

Xs and the sidelobe coefficient αLS to control and reduce the value of

sidelobes. Hence, we can utilize the expressions of LS method in the

SAR processing and re-express them to fit the problem in the SAR

society. The cost function Jsar of SAR processing can be re-expressed

as

Jsar = wHGsarw −wHgsar − gH
sarw + gsar (4.25)

where

Gsar =
∑
xk∈Xm

D(xk) + αLS
∑
xk∈Xs

Dxk) (4.26)

gsar =
∑
xk∈Xm

d(xk) (4.27)
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gsar =
∑
xk∈Xm

1 (4.28)

The optimal weight vector is also represented as

woptsar = G−1
sar gsar (4.29)

Figure 4.9: Steps of SAR processing based on the least squares beamforming.

This optimal weight vector for SAR is to make the beam point to a

location in the azimuth observation line, such as 0m, -10m and 10m.

In order to cover the whole observation line, we are going to build

many sets of weight vectors pointing to different locations. Figure 4.9

shows the steps of SAR processing based on LS, where X is the SAR

raw data vector, which has a size of M × 1. W is the weighting vector

matrix pointing to different locations. The beam of w(x1) is pointing

to the location of Xmin and w(xn) is pointing to Xmax. In the obser-

vation area from Xmin to Xmax, the locations are discretized into n

points to create n beams pointing to different locations to create the
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SAR image.

In the LS based SAR processing method, we can select different

values of mainlobe region Xm, sidelobe region Xs and attenuation co-

efficient αLS to make a balance between mainlobe width and sidelobe

value. The aim of this method is to find a better balance to improve

the quality of SAR image.

4.2.2 Simulation Results

In this section, some simulation results of the least squares beam-

forming methods are provided. The basic parameters to build the

SAR model is the same as the simulations in section 3.1. The azimuth

observation area is still from Xmin = −500m to Xmax = 500m. The

distance between two adjacent sampling points is still d = 1m and the

number of sampling points is M = 1001. This means that the size of

the raw data vector is M × 1 = 1001 × 1. The distance between two

beams pointing to two adjacent locations is set to 1m. The beams

created by weight vector matrix are pointed to -500m,-499m,...500m.

This is to make the weight vector matrix into a square matrix. This

means that the size of the output vector is the same as the size of raw

data vector. The attenuation coefficient αLS is set to 0.8 and always

keep fixed.

We can change the mainlobe region and sidelobe region to obtain
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different results. For the weight vector pointing to location x = 0m,

the mainlobe region is designed to be the single point Xm = 0m and

the sidelobe region is designed to Xs ∈ [−500,−∆s] ∪ [∆s, 500] being

sampled every 1m. We are going to create beams pointing to different

locations. The general descriptions of mainlobe region and sidelobe

region are Xm = x(k) and Xs ∈ [−500,−∆s +x(k)]∪ [∆s +x(k), 500],

respectively. ∆s is a variable to change the sidelobe region selection.

In the following simulations, we choose ∆s=50m, 80m and 120m.

Figures 4.10, 4.11 and 4.12 show the simulation results of SAR pro-

cessing method based on the least squares beamforming with different

sidelobe regions. Compared with simulation results of conventional

beamforming (matched filter) with windows, it is clear that the value

of sidelobe has decreased. This means that the sidelobe effect has

been reduced using this least squares beamforming based method.

The width of mainlobe keeps the same with conventional beamform-

ing (matched filter). By comparing the value of sidelobe and the width

of mainlobe, the method based on the least squares beamforming im-

proves the quality of SAR image by reducing the levels of sidelobe.
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(a) Impulse response (point target result) of SAR

processing method based on the least squares

beamforming for ∆s=50m.

(b) Details of mainlobe and sidelobes.

Figure 4.10: SAR processing method based on the least squares beamforming for

∆s=50m.
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(a) Impulse response of SAR processing method

based on the least squares beamforming for

∆s=80m.

(b) Details of mainlobe and sidelobes.

Figure 4.11: SAR processing method based on the least squares beamforming for

∆s=80m.
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(a) Impulse response (point target result) of SAR

processing method based on the least squares

beamforming for ∆s=120m.

(b) Details of mainlobe and sidelobes.

Figure 4.12: SAR processing method based on the least squares beamforming for

∆s=120m.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the range-Doppler algorithm and CopSAR concept are

introduced. Also, the least squares beamforming based processing

method is utilized in the processing of SAR raw data. The simula-

tion results of this method show that the processing method based

on beamforming can mitigate the value of side lobes and improve the

quality of SAR image. The processing methods of array signal pro-

cessing can be used in the society of SAR for a higher resolution. The

beamforming method based on sparse arrays and compressed sensing

can be researched to utilize in the SAR data processing in the future

work.

89



5.2 Future Work

In this thesis, a method based on the least squares beamforming is uti-

lized in the processing of SAR data. There are some other array signal

processing techniques which can be utilized in SAR data processing,

such as beamforming method based on sparse array for SAR data pro-

cessing and beamforming method under the framework of compressed

sensing for SAR data processing. So for the future work, three poten-

tial research aspects are introduced in the following parts.

5.2.1 Beamforming Method Based on Sparse Arrays

Firstly, we can apply the concept of sparse array beamforming in SAR.

In the section 3.2, the CopSAR based on co-prime array has considered

to utilize sparse arrays into SAR model and data processing. However,

it only uses the concept of sparse arrays. The processing method is still

based on the matched filter. This means that this CopSAR still has

many limitations and disadvantages, which have been analyzed in the

subsection 3.2.2. Hence, we must use the beamforming method based

on sparse arrays to solve these problems. By trying different types

of sparse arrays, such as nested array [38], co-prime array [54] [51]

and extended co-prime array [40], we are going to compare them and

choose one kind of sparse array which can achieve the best imaging

quality. There is an important problem to solve. In conventional SAR,

the virtual array pattern is always ULA for different point targets in
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the observing area. However, for a sparse array, the array pattern will

be different for different point targets. This problem must be consid-

ered and solved if we want to utilize sparse array in the beamforming

based processing approach. When this problem is solved, SAR will

not transmit and receive pulses with a constant PRF any more. In-

stead of virtual ULA, SAR can transmit and receive pulses in terms

of a sparse array. This will reduce the amount of data significantly.

5.2.2 Beamforming Method Under the Framework of Com-

pressed Sensing

Then, we can use the concept of compressed sensing and combine it

with the beamforming method. In [48], the proposed DoA estimation

approach is under the framework of compressed sensing. By using the

sparsity property of signals, reconstruction algorithm (l1 norm mini-

mization) based on compressed sensing can estimate the direction of

impinging signals by using fewer amount of data than conventional

DoA estimation algorithms. If we utilize this method in SAR, the

amount of data will decrease further and the effect of sidelobes will

be mitigated using the reconstruction algorithms. However, the SAR

data is sparse when it only has several point targets or small area tar-

get. The data does not have sparsity property when it has large area

target (many reflected targets on the entire observing areas). In this

scenario, we need to research for solutions to use compressed sensing.

Firstly, in the observing area, the back-scattered reflection coefficient
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could be low and the echo of these targets can be seen as noise. Then,

the SAR echo data can be seen as sparse signal and can utilize com-

pressed sensing to process it. If the targets are all with high reflected

coefficients, the raw data cannot be seen as sparse signal.
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