
Characterising Computational

Devices with Logical Systems

Richard Arthur James Whyman

Submitted in accordance with the requirements for

the degree of

Doctor of Philosophy

University of Leeds

School of Mathematics

September 2018

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

Some of the work in Chapters 4, 5, 7, and 8 of this thesis has appeared in

publication as: “Physical Computation and First-Order Logic,” in the proceedings

of the Machines Computations and Universality 2018 conference [75] (this won the

best student paper award). Some of the work in Chapters 4, 5, 8 and 9 has appeared

in publication as: “An Atemporal Model of Physical Complexity,” in the proceedings

of the Physics and Computation 2018 workshop [74]. I was responsible for the

entirety of both of these publications.

This copy has been supplied on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowl-

edgement.

c©2018 The University of Leeds and Richard Arthur James Whyman

The right of Richard Arthur James Whyman to be identified as Author of this

work has been asserted by Richard Arthur James Whyman in accordance with the

Copyright, Designs and Patents Act 1988.

ii

Acknowledgements

Firstly I would like to thank my family for raising me and encouraging me to study

mathematics. I would also like to thank Vladimir Kisil for supervising me. The

Leeds logic group also deserves a thank you for inspiring me to pursue a more logic

focused PhD.

Most of all I would like to thank all the friends I have made at Leeds and especially

Sarah Sigley for their love and support throughout my PhD.

iii

Abstract

In this thesis we shall present and develop the concept of a theory machine. Theory

machines describe computation via logical systems, providing an overarching for-

malism for characterising computational systems such as Turing machines, type-2

machines, quantum computers, infinite time Turing machines, and various physical

computation devices.

Notably we prove that the class of finite problems that are computable by a

finite theory machine acting in first-order logic is equal to the class Turing machine

computable problems. Whereas the class infinite problems that are computable by

a finite first-order theory machine is equal to the class type-2 machine computable

problems.

A key property of a theory machine computation is that it does not have to occur

in a causally ordered manner. A consequence of this fact is that the class of problems

that are computable by finite first-order theory machine in polynomial resources is

equal to NP∩ co-NP. Since there are problems which appear to lie in NP∩ co-NP \

P that are efficiently solvable by a quantum computer (such as the factorisation

problem), this gives weight to the argument that there is an atemporal/non-causal

component to the apparent speed-up offered by quantum computers.

iv

Contents

Acknowledgement ii

Abstract iv

List of Figures ix

1 Introduction 1

1.1 Sequential and Non-sequential Algorithms 6

1.1.1 Non-causal Circuit Algorithms 8

1.2 Constraints on Physical Computation 9

1.2.1 Other Uses for our Formalism 12

1.3 Outline of this Document . 13

2 Computation Preliminaries 15

2.1 Computability Theory . 16

2.2 Complexity Theory . 22

2.3 Type-2 Machines . 25

2.4 Quantum Computation . 27

2.5 Infinite Time Turing Machines . 32

v

CONTENTS

3 Logical System Preliminaries 35

3.1 Vocabularies and Structures . 35

3.2 The Definition of a Logical System 39

3.2.1 Logical Systems that we will use 41

3.3 Further Logic Definitions . 43

3.4 Proofs in a Logical System . 48

4 Theory Machines 51

4.1 The Definition of a Theory Machine 54

4.2 Describing Words as Sets of Logical Sentences 57

4.2.1 Finite Word Sets . 58

4.2.2 Infinite Word Sets . 59

4.2.3 Computing with Word Sets 61

5 Examples of Theory Machines 65

5.1 Turing Machines . 66

5.2 Physical Systems . 72

5.2.1 Physical Systems Satisfying Differential Equations 73

5.2.2 Blakey’s Double Slit Factoriser 76

5.3 Extensions of the Turing Machine Model 78

5.3.1 Multi-tape Turing machines 78

5.3.2 Type-2 Machines . 80

6 Properties of Theory Machine Computation 85

6.1 Combining Theory Machines . 89

vi

CONTENTS

6.1.1 Joining Theories . 89

6.1.2 Concatenating and Combining Theory Machines 93

7 Further Examples of Theory Machines 99

7.1 Quantum Computers . 99

7.2 Infinite Time Turing Machines . 110

8 Physical Computation and Complete Theories 117

8.0.1 Some Useful Results . 120

8.1 Examples of FFOT Machines . 124

8.1.1 Turing Machines . 124

8.1.2 Differential Equation Systems 127

8.2 FFOT Machines and Turing Computability 129

8.2.1 Complete Logical Systems and Turing Computability 132

8.3 FFOT Machines and Type-2 Computability 133

8.3.1 Complete Logical Systems and Type-2 Computability 136

9 Theory Machine Complexity 139

9.0.2 Observations on Computational Resource Usage 140

9.1 Boundedly Characterising a Turing machine 143

9.2 Boundedly Characterising Blakey’s factoriser 148

9.3 Efficient Computation and NP ∩ co-NP. 149

10 Conclusion and Further Work 157

vii

CONTENTS

A Axioms 159

A.1 Standard sets of axioms . 159

A.1.1 Axioms for Equality . 159

A.1.2 Axioms for the Natural Numbers 160

A.1.3 Axioms for the Integers . 161

A.1.4 Axioms for the Real Numbers 161

A.1.5 Axioms for the Complex Numbers 162

A.1.6 Axioms for the Ordinals . 166

References 169

Index 176

viii

List of Figures

1.1 MONIAC, located in the science museum, London (Picture copyright:

Richard Whyman) . 3

2.1 An input configuration of a single-tape Turing machine. 18

2.2 If a Turing machine carrying out the computation of a function halted

in the above configuration then its output would be 110. 18

2.3 A multi-tape Turing machine configuration. 20

2.4 A type-2 machine. 27

2.5 The initial configuration of an infinite time Turing machine with an

input beginning with 10100011 34

5.1 A diagram of the wave propagation in Blakey’s double-slit factoriser. 77

9.1 The possible computation paths of N1 and N2 on input w. 152

9.2 A computation path that may occur within H. 154

ix

LIST OF FIGURES

x

Chapter 1

Introduction

“Computation is a kind of magic, a mathematician can write a few

a lines on a piece of paper and point to a patch of sky and say; there is

a new plant.” -Vladimir Kisil

In 1936 Turing published his famous paper [67] in which he defined what he called

automatic machines but what we now call the Turing machine [27], which mathe-

matically formulated the process of a person or machine algorithmically deciding a

problem. However Turing was not the first to describe a mathematical formulation

of computation, in the 1930’s Church described his lambda calculus [23, 24], and

prior to this the theory of general recursive functions had been developed [20, 27].

Notably, the class of problems that can be computed by a Turing machine is

equal to the class of problems that are effectively calculable via Lambda calculus,

which is in turn equal to the class of problems that are recursive [27, 67]. Therefore,

despite being quite different from each other these three models of computation are

in a sense equivalent to one another.

This equivalence lead to what is now known as the Church-Turing thesis [27, 29,

67], which is often rendered as:

“Every effectively calculable function is computable by a Turing machine.”

1

Chapter 1. Introduction

The Church-Turing thesis seems to suggest that any computational system that

we can compute with is at most as computationally powerful as a Turing machine.

Indeed modern digital computers have the same computational power as Turing

machines [27].

Suppose that we have arbitrary physical system S, the Church-Turing thesis seems

to imply that if we were to use S to carry out a computation then we should only

be able to compute Turing machine computable problems with S. However a Tur-

ing machine computation is defined is in a very particular way, whereas since S is

arbitrary it is not immediately apparent what a computation on S actually is. It is

therefore not entirely clear why such a computation should be bounded by what is

Turing machine computable.

Remark 1.0.1 By physical system, we mean a system that exists or could be made

to exist in the real world. Computing with a physical system should then involve

being able to input data into the system (by adjusting the locations or properties

of the objects within said system) so that we may reliably observe an output from

the system that provides a solution to some problem of ours. Examples of physical

computation systems include a table of ball bearings and grooves [13], a screen

diffracting a ray of light [17], a slide rule [7], and indeed a normal digital computer.

Computation is typically thought of as a discrete sequential process that is governed

by an algorithm [42], but for such a process to make sense in S the relevant evolution

in S would have to happen in accordance to a discrete, ordered, and acyclic notion

of time. Not only does this effectively preclude computers which make use of closed

time loops [5] (see Subsection 1.1.1 for details), it also does not accurately reflect

our understanding of many real-world physical systems. For example, if we want to

describe the action of a fluid-mechanical system we use a set of differential equations

such as the Navier-Stokes equations [55]. However, such a description does not tell us

directly how the system evolves at each moment in time, and since there remains no

general solution to the Navier-Stokes equations, we are in general unable to extract

an algorithm detailing its evolution.

2

Figure 1.1: MONIAC, located in the science museum, London (Picture copyright:

Richard Whyman)

An example of a fluid-based computer is the monetary national income analogue

computer (MONIAC) [14] (Figure 1) which utilises water and a collection of con-

tainers and valves to simulate the UK economy.

Now the quantum computer [50, 59, 63] is an example of a physical computation

system which does appear to act in accordance to a discrete, ordered, and acyclic

notion of time. However the manner in which quantum computers compute is quite

different to how a Turing machine computes (see Sections 2.2 and 2.4 for details), and

though a Turing machine is able to simulate any quantum computation [50, 59], the

simulation appears to be far more complex than the original computation. Indeed,

whilst the class of problems that are computable by a quantum computer is equal

to the class of Turing machine computable problems, the class of problems that are

feasibly computable by a quantum computer appears to be larger that of a Turing

machine [63].

Going beyond systems that are clearly physically realisable, there are many ex-

3

Chapter 1. Introduction

amples of computational systems that are more powerful than a Turing machine.

Perhaps the most reasonable of these is the type-2 machine of computable analysis

[71, 72]. A type-2 machine is essentially a Turing machine that has been modified to

have infinite inputs and outputs (see Section 2.3 for details). Hence type-2 machines

can clearly compute problems that are not Turing machine computable.

Type-2 machines are also capable of computing with real numbers, as each real

number can be encoded as an infinite word via its binary expansion. However, a key

aspect of type-2 machines is that at every finite stage the output of a computation

is computable by a regular Turing machine. So in this sense a type-2 machine can

be simulated by a Turing machine, and so in some respects a type-2 machine is not

more powerful than a Turing machine and the existence of a such a device in the

real world would not violate the Church-Turing thesis. However this also means

that a type-2 machine is in general unable to decide whether two real numbers are

equal to one another, as whilst 0.999 . . . = 1, if a = 0.999 . . . and b = 1.000 . . . then

a type-2 machine cannot know that a = b by looking at only a finite number of the

symbols in a and b.

Another form of super-Turing computer is the Blum-Shub-Smale (BSS) machine

[22, 52], which performs algebraic computations over an arbitrary (ordered) ring.

The BSS machine was devised by Blum, Shub, and Smale in 1989 [18, 19]. Unlike

a type-2 machine, a BSS machine that acts over the real numbers R is capable of

deciding whether two arbitrary real numbers are equal to one another in a single

step. Conversely, type-2 machines are able to compute the real exponential function,

but a real BSS machine cannot [22], so in some sense they are incomparable.

In 2000 Hamkins and Lewis presented the infinite time Turing (ITT) machine

[43, 44] which acts like a Turing machine but is able to compute in an ordinal

number of time steps (see Section 2.5 for details). ITT machines are capable of

computing any type-2 machine computable problem, as well as any arithmetical

relation (Theorem 7.2.5). Which means that ITT machines are even more powerful

than type-2 machines, and BSS machines, and are able to decide problems that a

Turing machine has no way of computing.

4

Some infinite computations that occur in the manner of an ITT machine may in

fact be physically realisable. As it is has been proposed [57] that a computer passing

through the event horizon of a black hole and into another universe could in theory

compute a problem in finite time (from the appropriate observer’s perspective) that

is not Turing machine computable.

In recent work Beggs and Tucker have proposed various physical experiments that

could, in theory, be used to compute problems which are not Turing computable

[8, 9, 10, 11, 12]. Arguing that with unbounded precision such experiments should

be able to efficiently decide any problem in P/ log ?. A mathematical formalisation

of these experimental processes was given by us in [73]1.

Beyond this, in 2012 Koepke and Seyfferth [52] combined BSS and ITT machines

to obtain infinite time Blum-Shub-Smale machines, which are able to compute any

sets of real numbers in the Lωω level of Gödel’s constructible universe. Going even

further Koepke and Koerwien in [51] presented the concept of an ordinal computer,

which acts like a Turing machine but has tapes of ordinal length and acts in an

ordinal number of time steps. Ordinal computers are capable of deciding any set of

ordinals in the whole of the constructible universe L [51].

So given everything we have mentioned above, it can be seen that there exist

multiple different mathematical formalisms which claim to describe some form of

computation. Some of these formalisms are inequivalent to one another, some of

these formalisms claim to describe some form of “physical” computation, and some

of these “physical” computation systems are inequivalent to each other. However

what does not appear to defined is an overarching computational formalism that

would allow one to characterise any of these forms of computation, as well as enable

one to compare different computational systems to one another.

In this document we present the concept of a theory machine2, which is intended

to provide this overarching computational formalism, and allow us to characterise

1In should be noted that the mathematical formalism presented in [73] will not be appearing

in this document.
2Despite the similar name, theory machines are not related to the concept of a “logic theory

machine” found in [58].

5

Chapter 1. Introduction

any form of computational system. Theory machines are inspired by (and serve as

a generalisation of) Gurevich’s concept of a sequential algorithm [42], and Hosman

et al.’s reasoning on physical computation [48] (both of which we describe below).

We originally presented theory machines in our paper Physical Computation and

First-Order Logic [75] and further developed the concept in our paper An Atemporal

Model of Physical Complexity [74]. The formal definition of a theory machine will

be given in Chapter 4.

1.1 Sequential and Non-sequential Algorithms

In attempt to characterise the computational processes required to implement any

deterministic sequential algorithm Gurevich introduced the concept of a sequential

abstract state machine in Logic and the Challenge of Computer Science [41]. Gure-

vich further demonstrated in Sequential abstract-state machines capture sequential

algorithms [42] that every sequential algorithm can be step-for-step simulated by an

appropriate sequential abstract state machine.

Gurevich’s proof of this result depended on the assertion that a sequential algo-

rithm should satisfy the following 3 postulates [42]:

1. Sequential time: Each sequential algorithm A is associated with a set of states

S(A), a set of initial states I(A) ⊆ S(A), and a one-step transformation τA :

S(A)→ S(A), which evolves A in discrete time steps.

2. Abstract state: S(A) and I(A) are each sets of first-order structures with

the same finite vocabulary Υ that are closed under isomorphism. The one-

step transformation τA does not change the domain of any state, and any

isomorphism from a state X ∈ S(A) to a state Y ∈ S(A) is also an isomorphism

from τA(X) to τA(Y).

3. Bounded exploration: There exists a finite set of Υ-ground terms1 T such that

1Definition 3.1.8

6

1.1 Sequential and Non-sequential Algorithms

if X, Y ∈ S(A) coincide over T then the differences between X and τA(X) are

the same as the differences between Y and τA(Y).

A computation of a sequential algorithm A is then a finite or infinite sequence of

states X0, X1, X2, . . . from S(A), where X0 ∈ I(A) and τ(Xi) = Xi+1 for all i ∈ N.

Gurevich justified the first part of the second postulate by arguing that “The

huge experience of mathematical logic and its applications indicates that any static

mathematical situation can be faithfully described as a first-order structure.” Be-

fore noting that second-order and higher-order structures can be described in terms

of many-sorted first-order structures. Indeed sequential algorithms can still be de-

scribed using higher order logic, it is just the states that use the semantics of first-

order logic.

Notably, the first postulate was not directly justified by Gurevich in [42], instead

it serves as more of a definition than an assertion. Now it does make sense that a

sequential algorithm should have an associated collection of states/configurations,

with some of them corresponding to input states. However the association with

a discrete one-step transformation only appears to follow from the fact that only

sequential algorithms are considered.

We believe that whilst Gurevich’s algorithmic postulates all make sense for de-

scribing a classical machine-based computational process, the sequential time pos-

tulate and its one-step transformation is not sufficiently general for describing all

forms of physical computation. This is because crucially the transformation expects

that a physical system’s evolution is discrete. Not only does this not fit with our

continuous experience of the world, but it also assumes that a classical notion of

time is present and acts independently of the physical system in an unchanging,

acyclic manner.

Our belief is further justified by the fact that algorithms that are not constrained

by a discrete unchanging notion of time have been defined. In Axiomatising analog

algorithms [21] Bournez, Dershowitz, and Néron defined the analog algorithm, which

is a generalisation Gurevich’s sequential algorithms to contexts where the states

7

Chapter 1. Introduction

(which are still first-order structures) evolve over a totally ordered monoid (for

example the monoid R>0). Thereby enabling a characterisation of continuously

evolving computational scenarios.

Though Bournez et al.’s analog algorithms do provide a characterisation of con-

tinuous computation, they are still limited. As since totally ordered monoids are

necessarily acyclic (that is, time is not allowed to loop), Bournez et al.’s analog

algorithms are unable to characterise a computation on a closed time-like curve.

This is a problem as closed time-like curves exist as solutions to Einstein’s theory

of general relativity [38], which suggests that we should also be able to implement

a physical computation system on such a curve [32].

1.1.1 Non-causal Circuit Algorithms

Now computation on a closed time-like curve may, at first, appear to be logically

impossible as a closed time-like computer could output in such a way so as to

prevent its computation from ever being initiated, leading to a paradox. A second

issue is that computing on a closed time-like curve could lead to an “ex nihilo”1 [5]

appearance of some uncomputed piece of information. For example, a closed time-

like computer could output a proof of whether P = NP, a user might then check

that the proof is correct, before inputting it back into the computer, and sending

the proof back in time to be outputted. The proof is given, but there is no clear

answer as to where it actually came from.

In Computational tameness of classical non-causal models Baumeler and Wolf [5],

described a model of computation on closed time-like curves in which these issues

are overcome by assuming that any such computation is uniquely determined and

logically consistent. Uniqueness ensures that any uncomputed information cannot

appear without being a necessary result of the process, whereas logical consistency

necessarily prevents a paradox from occurring.

Specifically, they defined a deterministic non-causal circuit algorithm A to be a

1Out of nothing.

8

1.2 Constraints on Physical Computation

deterministic algorithm which on any input x ∈ {0, 1}∗ produces a Boolean circuit

Cx in which there exists a unique y ∈ {0, 1}∗ that is a fixed point of Cx. That is,

Cx(y) = y. If y = 1z for some z ∈ {0, 1}∗ then A accepts x, otherwise A rejects x.

Baumeler and Wolf proved that the computational power of polynomially time

deterministic non-causal circuit algorithms is equal to UP ∩ co-UP (see Definitions

2.2.12 and 2.2.13 for details), and every problem that is decidable by a deterministic

non-causal circuit algorithm is Turing machine computable. So not only is their

non-causal computation non-paradoxical, it also does not violate the Church-Turing

thesis.

Notably, there exist problems in UP ∩ co-UP that are efficiently solvable by a

quantum computer but have no known polynomial time Turing machine algorithm,

such as the factorisation problem [63] (see Section 2.2 for details). This suggests

that there may be a non-causal component to the quantum computational speed-up.

Therefore, given all of this, following the arguments of Gurevich and Bournez et

al. theory machine computations will occur on logical structures. However, rather

than describing each computation as a discrete ordered sequence of structures, in

a theory machine the whole of a computation is described via a single consistent

structure. Hence any temporal evolution of the machine is described within this

structure, and may take on a variety of forms. Indeed, as we shall demonstrate,

the inclusion of the evolution within the structure itself allows a theory machine to

compute in a consistent non-causal or atemporal manner.

1.2 Constraints on Physical Computation

The algorithmic notions described above each provide abstract descriptions of po-

tential computational processes. But what they do not make clear is when a given

algorithm can be actually realised by a physical system. Indeed, there might exist

physical computational processes that are not describable (or at least not faithfully

describable) by such algorithms.

9

Chapter 1. Introduction

A framework for discussing physically realisable computation was put forward in

When does a physical system compute? [48] by Horsman, Stepney, Wagner, and

Kendon. Horsman et al.’s central assertion was that for any physical system to be

computationally usable, a user must possess a representation relation R from the

system to some numerical/logical/linguistic abstraction, reasoning that “without a

way of describing objects abstractly, we cannot do science.” To then compute with

this physical system the user must have a theory T that describes how the system

behaves within the abstraction.

The representation relation and the theory model the physical system, and to-

gether they are required to provide a “good” model of the system. So suppose that

p is an initial state of the system and R(p) is the abstract representation of the

system in state p. Let H be some physical dynamics and HT be the representation

of H within the abstract theory. The representation R and theory T then provide

a “good” model of the dynamics of the system if in general R(H(p)) ≈ HT(R(p)),

so in a sense, if R and H commute. Knowledge that this commutation relation

is true can be obtained by carrying out multiple experimental tests. However, a

user is naturally limited to being able to carry out only a finite number of these

tests. Hence for unbounded systems they can only ever be partially certain about

the correctness of their theory.

Further, the abstract representation and theory should allow the user to predict

the output of the physical computer from any given input. Horsman et al. stressed

that “Without this predictive element, a physical system is not a computer... If a

computational description of a physical evolution can only be applied post-hoc, then

the system has not acted as a computer.” [48] So a user cannot carry out a physical

process on a system and then pick a computational representation for the system.

For example, let f : N→ N be an arbitrary function that is not Turing machine

computable, and let M be a simple Turing machine that on any input x ∈ {0, 1}∗

outputs x0. Through a post-hoc description we would be able to make M compute

f . As for any n ∈ N we can take x ∈ {0, 1}∗ to represent n and interpret x0 as

representing f(n). It would then by the case that on input n the Turing machine

10

1.2 Constraints on Physical Computation

M outputs f(n) despite M not really doing anything.

We believe that Horsman et al.’s approach is, for the most part, the “correct”

approach to physical computation. As it is surely the case that a user is unable to

compute with a physical system without some prior theoretical understanding of it.

They cannot simply push a button and just hope that their physical computer gives

them the correct output.

However, Horsman et al.’s formalism is not particularly explicit, they do not

specify any general conditions about how the abstraction of a physical system may

be presented. This was of course a deliberate choice, humanity as a whole does

not have a complete understanding of physics, so there was no sense in Horsman

et al. proposing unjustifiable constraints on their representations. But beyond

clearly defining what is not physical computation, Horsman et al.’s generality does

unfortunately prevent further conclusions from being drawn about what is achievable

(both feasibly and in principal) with physical computation.

Theory machines are intended to be able characterise any possible physical com-

putation system. To ensure that this is the case we shall try to make theory machines

be as general as possible, so as to not preclude any forms of physical computation.

However this does mean that some of the computational systems that are character-

isable may well be “unphysical”. This is less of a bug and more of a feature of our

formalism, as it allows us to also consider hypercomputational frameworks such as

infinite time Turing machines and Blum-Shub-Smale machines. Thereby enabling

us to see where the boundary between the physical computation and unphysical

computation lies.

The generality of theory machines does not conflict with Horsman et al.’s key

ideas. Indeed they do note that the inverse of the representation relation, an instan-

tiation from the abstract to physical, is unlikely to always exist, stating that “there

is no a priori reason to suppose that there is a physical system corresponding to

every model.” However in Chapter 8 we do consider a restricted version of theory

machines, which we call finite first-order theory machines. We prove that computa-

tional systems characterisable by finite first-order theory machines are computation-

11

Chapter 1. Introduction

ally equivalent to Turing machines. Therefore if we assume that the Church-Turing

thesis is true and also applies to physical computation, then any physical computa-

tional device may be characterised by a finite first-order theory machine.

1.2.1 Other Uses for our Formalism

Another benefit of our theory machine formalism is that it provides a general way

of looking at physical complexity.

Though it has been argued [70] that the class of problems which are feasibly

computable by a physical system should be equal to the class of problems that are

efficiently computable by a Turing machine (denoted by P). The fact that quantum

computers appear to be able to feasibly decide problems that are not believed to lie

in P, such as the factorisation problem [63], appears to suggest this equality is false.

Further, in [16, 17] Blakey described a collection of classical physical devices that

are capable of solving the factorisation problem in polynomially bounded space and

time. However, Blakey argued that, unlike quantum factorisers, his factorisation

systems are not feasibly realisable, as the precision needed to implement his systems

is required to grow exponentially with the size of the input.

Indeed Blakey argued that “unconventional computers warrant unconventional

complexity analysis” and that the general resource usage of physical computation

should be measured in more than just time and space alone. For example the energy

or precision required by a computation should also be considered.

As we shall see in Chapter 9 theory machines provide us with a natural way of

describing the general resource usage of a computation. We then argue that since

finite first-order theory machines appear to be able to characterise any physical

computational process, a problem is feasibly computable by such a process only if it

may be characterised by a theory machine with polynomial resource usage. Notably,

we prove in Chapter 9 that the class of problems that can be computed by a finite

first-order theory machine with polynomial resources is exactly NP∩co-NP. Theory

machines are able to achieve this feat by efficiently computing in an atemporal/non-

12

1.3 Outline of this Document

causal manner. Since problems such as the factorisation problem appear to lie

in NP ∩ co-NP \ P, this gives additional weight to the argument that there is an

atemporal/non-causal component to the quantum computational speed-up.

Besides complexity, our formalism also serves as an actualisation of the concept

of model-based computation put forward by Beebe and Ulmann in Model-based

computation [7, 68]. The idea behind model-based computation is that in order to

compute the solution to a given problem we use a a system which acts in a manner

that is analogous to the problem. For example a scale model of a physical process

acts in analogous manner to that process and we can use the model to answer

questions about the physical process (see Remark 5.2.1 for details).

1.3 Outline of this Document

The remainder of this document is structured as follows.

• In Chapter 2 we define various standard computational frameworks that are

considered in this document.

• In Chapter 3 we give the definition of a logical system. We also give the specific

definitions of each of the logical systems used in this document. Further, we

define what it means for a logical system to be complete.

• In Chapter 4 we define our principal concept, the theory machine. We also

define what it means for a theory machine to compute decision and function

problems.

• In Chapter 5 we give examples of theory machines. In particular we explain

how theory machines may be used to characterise Turing machines, type-2

machines, and physical systems which are defined via a collection of differential

equations.

• In Chapter 6 we discuss the properties of theory machines, as well as how

we may combine two theory machines. We also prove in Theorems 6.1.9 and

13

Chapter 1. Introduction

6.1.12 that if LS is a logical system which contains first-order logic, then the

class of problems computable by a finite LS-theory machine is closed under

functional concatenation as well as union and intersection.

• In Chapter 7 we give further examples of theory machines, detailing how theory

machines may be used to characterise quantum computers, and infinite time

Turing machines.

• In Chapter 8 we discuss computation with finite first-order theory machines,

and finite LS-theory machines in which LS is a complete logical system. We

prove in Theorem 8.2.1 that, for finite problems, the computational power of

such theory machines is equivalent to that of a Turing machine. Whereas in

Theorem 8.3.3 we prove that for general problems their power is equivalent to

that of a type-2 machine. This leads us to argue that these theory machines

are able to characterise an arbitrary physical computation system.

• In Chapter 9 we define a concept of complexity for theory machines. We prove

in Theorem 9.3.1 that the class of problems that are computable by a finite

first-order theory machine with polynomial resources is NP ∩ co-NP.

• In Chapter 10 we conclude and discuss further work.

• In the Appendix A we define the various sets of axioms, such as the integer

successor axioms, that are used repeatedly in this document.

• The end of this document features the references followed by the index.

14

Chapter 2

Computation Preliminaries

The following definitions are presented for the purposes of clarity and completeness,

and may be mostly skim-read by a familiar reader.

Definitions 2.0.1 Let A be a finite set of symbols, we call such a set an alphabet.

The set of words of A length n ∈ N is:

An = {a1a2 . . . an | a1, a2, . . . , an ∈ A}.

The set of finite words of A is then:

A∗ =
⋃
n∈N

An.

The set of infinite words of A is the set:

Aω = {a1a2 . . . | a1, a2, . . . ∈ A}.

The length of a finite word is the number of symbols it contains, if w = b1b2 . . . bm

then we denote the length of w by |w| = m.

Let v = c1c2 . . . ∈ A∗ ∪ Aω, the concatenation of w and v is the word wv =

b1b2 . . . bmc1c2

For any a ∈ A we denote the word of length n which consists entirely of a’s by

an, and the infinite word consisting entirely of a’s by aω.

15

Chapter 2. Computation Preliminaries

Definitions 2.0.2 A total function f : A → B is a map that is defined for every

element of A.

A partial function f from A to B is a total function from some subset C ⊆ A to

B. That is, f(x) may not be defined for some x ∈ A. We then write f :⊆ A → B

for this partial function and denote the set of elements of A for which f is defined

by dom(f), which we refer to as the domain of f .

2.1 Computability Theory

Definitions 2.1.1 [4, 27, 65, 67] A Turing machine M has a single two-way infinite

tape (Figure 2.1) divided into squares (also referred to as cells). At each moment in

time each cell contains a single symbol from the tape’s alphabet. The machine has

a head which at any moment in time points to exactly one of the tape cells. If the

cell pointed to by the head at a given moment in time contains the symbol a then

we say that the head is reading a at this moment in time. The machine also has

a finite set of internal states and at each moment in time the Turing machine is in

one of these states.

A configuration of a Turing machine then consists of the contents of the tape, the

current internal state of the machine and the position of the head. The inputs of a

Turing machine are finite words taken from specified input alphabet. At time 0 the

machine begins in a specified initial state with the input written on the tape from

left to right, and the head pointing to the cell containing the leftmost symbol of the

input. The remaining tape cells at time 0 are taken to be blank, however for clarity

it useful to refer to such cells as containing the blank symbol of the tape alphabet.

The blank symbol is not part of the input alphabet, hence from looking at the tape

it is clear where the input word starts and ends.

To evolve the configuration from one time step to the next the machine follows

a finite set of rules. At each time step the machine checks its internal state, reads

the contents of the cell pointed to by the head, and implements one of its rules

accordingly.

16

2.1 Computability Theory

Some of the Turing machine’s internal states are specified to be halting states,

and if the machine enters one of these states then it halts, meaning that it produces

an output and ceases to evolve.

A Turing machine is represented by a 7-tuple M = (Λ,Π,b,A, s0, H,R) where:

• Λ is a finite alphabet of tape symbols,

• Π is a finite set of internal states,

• b ∈ Λ is the blank tape symbol,

• A ⊆ (Λ \ b) is a finite alphabet of input symbols,

• s0 ∈ Π is the initial state,

• H = 〈s〉 or 〈s, t〉 for halting states s, t ∈ Π,

• R is a set of Turing machine rules.

Each rule in R is of the form:

(t, b;u, c, p) ∈ (Π \H)× Λ× Π× Λ× {LEFT, PAUSE,RIGHT},

which is read as “if the machine is in internal state t reading b then go to state u,

replace the symbol being pointed to with c, and have the tape head perform the

operation p.” With p = LEFT standing for “move one square left”, p = PAUSE

for “stay in the same tape square” and p = RIGHT for “move one square right”.

We call a Turing machine M a deterministic Turing machine if for any two rules

(t, b;u, c, p), (t′, b′;u′, c′, p′) ∈ R we have:

((t, b) = (t′, b′))⇒ ((u, c, p) = (u′, c′, p′)).

So at each moment in time at most one rule may be implemented by M . In this

document, unless otherwise mentioned, all our Turing machines will be deterministic.

If H = 〈sa, sr〉 for some sa, sr ∈ Π then M carries out a decision process, and

we call sa the accepting state and sr the rejecting state. Suppose that M is a

17

Chapter 2. Computation Preliminaries

· · · b b 1 0 1 1 0 0 b b · · ·

Figure 2.1: An input configuration of a single-tape Turing machine.

· · · 0 b 0 1 1 0 b 0 1 b · · ·

Figure 2.2: If a Turing machine carrying out the computation of a function halted

in the above configuration then its output would be 110.

deterministic Turing machine. If on a given input w ∈ A∗ the machine eventually

halts in the accepting state then the output of M is that it “accepts” w, whereas if

it eventually halts in the rejecting state then the output of M is that it “rejects” w.

If H = 〈s1〉 for some s1 ∈ Π then M carries out the computation of a function.

If on a given input w ∈ A∗ the machine reaches s1 then the output of M consists of

the word written on the tape from the right of the tape cell pointed to by the head

up to but not including the first blank symbol (See Figure 2.1). This output word

is then denoted by M(w). If M never reaches a halting state from input w then this

output is undefined.

Definition 2.1.2 Let a ∈ {∗, ω}. A decision problem is a subset A ⊆ Aa. If a = ∗

then A is a finite decision problem, otherwise if a = ω then A is an infinite decision

problem.

Definition 2.1.3 [65] Let M be a Turing machine with input alphabet A. We say

that M computes a finite decision problem A ⊆ A∗ if for any w ∈ A∗ we have:

(w ∈ A ⇐⇒ M accepts w) and (w 6∈ A ⇐⇒ M rejects w).

If there exists a Turing machine that computes A then we say that A is Turing

machine computable.

Definition 2.1.4 Let a, b ∈ {∗, ω}. A function problem is a partial function f :⊆

Aa → Bb from a set of words Aa to a set of words Bb. If a, b = ∗ then f is a finite

function problem.

18

2.1 Computability Theory

Definition 2.1.5 [65] Let M be a Turing machine with input alphabet A and blank

symbol b 6∈ B. We say that M computes a finite function problem f :⊆ A∗ → B∗

if for any w ∈ dom(f) we have:

M(w) = f(w).

If there exists a Turing machine that computes f then we say that f is Turing

machine computable.

The condition above that the blank symbol of M is not part of B is a necessity

as it is not possible for a Turing machine to output a word that contains its blank

symbol.

Remark 2.1.6 Since a Turing machine program is finite, in a given alphabet there

is a countable number of possible Turing machine programs. However the sets of pos-

sible decision problems and possible function problems are both uncountable. Which

means that there must exist problems that are not Turing machine-computable.

Definition 2.1.7 A finite problem is either a finite decision problem or a finite

function problem. A general problem is either a decision problem or a function

problem.

Definition 2.1.8 [65] A multi-tape Turing machine Mm is a Turing machine with

m > 2 tapes (Figure 2.1), each with their own head. At time 0 the input is written

on only the first tape, with every other cell starting off blank.

A multi-tape Turing machine is represented by the 7-tupleMm = (Λ,Π,b,A, s0, H,P)

where as in Definition 2.1.1; Λ is a finite alphabet of tape symbols, Π is a finite set

of internal states, b ∈ Λ is the blank tape symbol, A ⊆ (Λ\b) is a finite alphabet of

input symbols, s0 ∈ Π is the initial state, and H is a 1 or 2-tuple of halting states.

Though unlike a Turing machine, P is a set of multi-tape Turing machine rules.

Each multi-tape Turing machine rule in P is of the form:

(t,~b;u,~c, ~p) ∈ (Π \H)× Λm × Π× Λm × {LEFT, PAUSE,RIGHT}m,

19

Chapter 2. Computation Preliminaries

· · · 0 1 1 0 1 1 0 0 1 1 · · ·

· · · 1 1 0 0 1 0 0 b 1 0 · · ·

... ...

· · · 0 0 1 1 1 1 0 b 1 1 · · ·

Figure 2.3: A multi-tape Turing machine configuration.

which is read as “if the machine is in internal state t reading ~b from the tapes then

go to state u, replace the symbols being pointed to with ~c, and have the tape head

perform the operation ~p on the tapes.”

If Mm is computing a function then the output is written on the mth tape.

Slightly unusually, here we shall take the output to be the word written rightwards

from the cell where mth tape head is at time 01. The output word of Mm on input

w ∈ A∗ is denoted by Mm(w).

Like with Turing machines, the multi-tape Turing machines in this document will

be deterministic, so for any (t,~b;u,~c, ~p), (t′,~b′;u′,~c′, ~p′) ∈ P we have:

((t,~b) = (t′,~b′))⇒ ((u,~c, ~p) = (u′,~c′, ~p′)).

Remark 2.1.9 For any alphabet A, if |A| > 2 then for any n ∈ N there exists a

computable bijective function 〈·, . . . , ·︸ ︷︷ ︸
×n

〉 :
∏n

i=1 A
∗ → A∗ which encodes elements of∏n

i=1 A
∗ as elements of A∗.

We can therefore represent a multi-input decision problem C ⊆
∏n

i=1 A
∗ as single-

input decision problem D ⊆ A∗ such that for any (w1, . . . , wn) ∈
∏n

i=1 A
∗:

(w1, . . . , wn) ∈ C ⇐⇒ 〈w1, . . . , wn〉 ∈ D.
1We define the output of a multi-tape Turing machine in this somewhat unusual way as later

it will allow us to more easily describe type-2 machines (Definition 2.3.1) and infinite time Turing

machines (Definition 2.5.4).

20

2.1 Computability Theory

Similarly we may represent a multi-input and output function problem g :⊆∏n
i=1 A

∗ →
∏m

j=1 B
∗ as single-input and output function problem h :⊆ A∗ → B∗

such that for any (w1, . . . , wn) ∈ dom(h):

g(w1, . . . , wn) = (v1, . . . , vm) ⇐⇒ h(〈w1, . . . , wn〉) = 〈v1, . . . , vm〉.

Definitions 2.1.10 A relation problem is a subset R ⊆
∏n

i=1 A
∗.

R is computable if there exists some Turing machine M with input alphabet A

such that for any (w1, . . . , wn) ∈
∏n

i=1 A
∗:

((w1, . . . , wn) ∈ R ⇐⇒ M accepts 〈w1, . . . , wn〉),

and:

((w1, . . . , wn) 6∈ R ⇐⇒ M rejects 〈w1, . . . , wn〉).

Definition 2.1.11 [27] Let Σ0
0 = Π0

0 = ∆0
0 be the class of computable relations.

For each n ∈ N let:

• Σ0
n+1 the class of relations of the form R(~x) ≡ ∃~yP (~x, ~y) for some P ∈ Π0

n.

• Π0
n+1 the class of relations of the form R(~x) ≡ ∀~yP (~x, ~y) for some P ∈ Σ0

n.

• ∆0
n = Σ0

n ∩ Π0
n.

We then say that a relation R is arithmetical if R ∈
⋃
n∈N(Σ0

n ∪ Π0
n).

Theorem 2.1.12 [27] For all n ∈ N:

Σ0
n,Π

0
n ⊂ ∆0

n+1 ⊂ Σ0
n+1,Π

0
n+1.

Also:

Σ0
n 6= Π0

n.

Hence every relation problem in
⋃
n∈N(Σ0

n∪Π0
n)\∆0

0 is not Turing machine-computable.

21

Chapter 2. Computation Preliminaries

2.2 Complexity Theory

The definitions appearing in this section, unless otherwise mentioned, can also be

found in [4].

Definition 2.2.1 Let t : N→ N be an increasing function1. A deterministic Turing

machine M with input alphabet A computes in time t if for any w ∈ A∗ the number

of time steps between time 0 and the time at which M on input w reaches a halting

state is at most t(|w|).

Definition 2.2.2 Let u : N→ N be an increasing function. A deterministic Turing

machine M with input alphabet A computes in space u if for any w ∈ A∗ the number

of tape cells that are used in a computation2 with input w is at most u(|w|).

Remark 2.2.3 Clearly if M computes in time t then on any input w the number

of tape cells that are used in the computation is at most t(|w|) + |w| as the machine

cannot visit more than one tape cell at each time step.

Notation 2.2.4 Let f, g : N→ N be functions, we write:

f(n) = O(g(n)),

if there exists c,N ∈ N such that for any n > N we have f(n) 6 c× g(n).

Definition 2.2.5 A function p : N → N is a polynomial function if there is some

k ∈ N such that p(n) = O(nk).

Definition 2.2.6 A finite word problem A ⊆ A∗ is polynomial time computable if

there exist a Turing machine M and polynomial function p such that M computes

A in time p.

We denote the class of polynomial time computable word problems by P.

1That is, for any m,n ∈ N, if m 6 n then t(m) 6 t(n).
2We say that a tape cell is used if it either contains part of the input or at some point in time

during the computation the head of the machine points to that cell

22

2.2 Complexity Theory

Definition 2.2.7 Let M = (Λ,Π,b,A, s0, H,R) be such that for some rules (s, a; k,

b, p), (s, a; k′, b′, p′) ∈ R we have ((k, b, p) 6= (k′, b′, p′)). Clearly M is not a determin-

istic Turing machine and so we refer to M as a non-deterministic Turing machine.

So if at a given moment in time M is in state s and its head is reading a then either

the rule (s, a; k, b, p) or the rule (s, a; k′, b′, p′) may be implemented by the machine.

Hence at the next moment in time there are at least two possible configurations

that M may be in. It is therefore possible that M may carry out multiple different

computations on the same input.

Let H = 〈sa, sr〉 then M carries out a non-deterministic decision process, with

accepting state sa and rejecting state sr. If for a given computation path of M

on input w ∈ A∗ the machine eventually halts in state sa then the output of this

computation path is that M “accepts” w. Whereas if on this computation path the

machine eventually halts in the rejecting state sr then the output of the computation

path is that M “rejects” w.

Definition 2.2.8 Let M be a non-deterministic Turing machine with input alpha-

bet A. We say that M computes a finite decision problem A ⊆ A∗ if for any w ∈ A∗

we have:

w ∈ A ⇐⇒ There exists a computation path of M on input w which accepts w,

and:

w 6∈ A ⇐⇒ Every computation path of M on input w rejects w.

So every computation of M on any input halts.

Definition 2.2.9 Let t : N → N be an increasing function. A non-deterministic

Turing machine N with input alphabet A computes in time t if for any w ∈ A∗ and

any computation of M on input w, the number of time steps between time 0 and

the time at which the computation reaches a halting step is at most t(|w|).

Definition 2.2.10 A word problem B ⊆ A∗ is non-deterministic polynomial time

computable if there exists a non-deterministic Turing machine N and polynomial

23

Chapter 2. Computation Preliminaries

function p such that N computes B in time p.

We denote the class of non-deterministic polynomial time computable word prob-

lems by NP.

Definition 2.2.11 A word problem C ⊆ A∗ is co-non-deterministic polynomial

time computable if there exists a non-deterministic Turing machine N and polyno-

mial function p such that N computes A∗ \ C in time p.

We denote the class of co-non-deterministic polynomial time computable word

problems by co-NP.

Definition 2.2.12 [5, 69] A word problemD ⊆ A∗ is unambiguous non-deterministic

polynomial time computable if there exists a non-deterministic Turing machine N

and polynomial function p such that N computes D in time p, and for any w ∈ D

the accepting computation for M on input w is unique.

We denote the class of unambiguous non-deterministic polynomial time com-

putable word problems by UP.

Definition 2.2.13 A word problem E ⊆ A∗ is co-unambiguous non-deterministic

polynomial time computable if there exists a non-deterministic Turing machine N

and polynomial function p such that N computes A∗ \ E in time p, and for any

w ∈ E the accepting computation for M on input w is unique.

We denote the class of co-unambiguous non-deterministic polynomial time com-

putable word problems by co-UP.

An important problem in complexity theory is the factorisation problem. The

factorisation problem is typically rendered as “given a number N ∈ N find a prime

factor of N”. As for any natural number N there exists a unique prime factorisation,

that is a collection of prime numbers p1, . . . , pl such that p1 × · · · × pl = N .

So the factorisation problem may be rendered as a function problem f : {0, 1}∗ →

{0, 1}∗ such that if w ∈ {0, 1}∗ is a binary expansion of N ∈ N then f(w) = v, where

v is the binary expansion of one of p1, . . . , pl.

24

2.3 Type-2 Machines

However the factorisation problem may also be rendered as a decision problem

F ⊆ {0, 1}∗ such that for each 〈w1, w2〉 ∈ {0, 1}∗1, if w1 and w2 are binary expansions

of N ∈ N and K ∈ N respectively then 〈w1, w2〉 ∈ F if and only if there exists a

prime factor pi of N such that pi 6 K.

It is also known that F ∈ UP ∩ co-UP ⊆ NP ∩ co-NP [5].

2.3 Type-2 Machines

The type-2 machines of computable analysis [72] (Figure 2.3) generalise the concept

of a multi-tape Turing machine by enabling it to compute with infinite input words

and produce infinite output words.

Definition 2.3.1 [72] A type-2 machine T is a multi-tape machine (Definition

2.1.8) with m > 3 tapes, where the input and output word sets are of two pos-

sible types ∗ or ω. Like with multi-tape Turing machines, each input word of a

type-2 machine is placed on the first tape rightwards from the head position. If T ’s

input set is of type ∗ then every input word must be finite and followed by an infinite

sequence of blank cells. Whereas if T ’s input set is of type ω then every input word

must be infinite and fill the entirety of the first tape to the right of the head.

Rule-wise a type-2 machine behaves exactly like a multi-tape Turing machine

with m > 3 tapes. That it, the machine sequentially applies its multi-tape rules in

accordance to the contents of its tapes and its internal state.

If T ’s output set is of type ∗ then every output of T must be a finite word. So

like with a multi-tape Turing machine that computes a function, if T given input w

reaches the halting state then the output of T is the finite word written on tape m

to the right of the cell where the tape head started to the last non-blank symbol.

We denote the output of T given input w by T (w) and if T on input w never halts

then T (w) is undefined.

1Where as in Remark 2.1.9, 〈·, ·〉 is an encoding of {0, 1}∗ × {0, 1}∗ in {0, 1}∗.

25

Chapter 2. Computation Preliminaries

Conversely if T ’s output set is of type ω then every output of T must be an infinite

word. To output an infinite word a type-2 machine must compute forever without

halting, eventually filling every cell of tape m to the right of where the head started

with a non-blank output symbol. So T (w) is the infinite word of non-blank tape

symbols that are eventually written on tape m to the right of where the tape head

started. If T on input w eventually halts or does not eventually write a non-blank

symbol on every relevant tape cell, then T (w) is undefined.

The mth tape of T is write-only, and after each symbol is written the machine

moves right and never changes that symbol1. Whereas the input tape is read-only,

with the machine never moving leftwards on tape 12. The computation is then

carried out on the remaining tape(s).

A type-2 machine is then represented by the 9-tuple T = (Λ,Π,b,A, s0, s1,P, a, b)

where a, b ∈ {∗, ω} describe the types of the input and output words sets respectively.

Whereas Λ,Π,b,A, s0, s1 and P are as they are in Definition 2.1.8 so; Λ is a finite

alphabet of tape symbols, Π is a finite set of internal states, b ∈ Λ is the blank tape

symbol, A ⊆ (Λ \b) is a finite alphabet of input symbols, s0 ∈ Π is the initial state,

s1 ∈ Π is the halting state, and P is a set of multi-tape Turing machine rules.

Remark 2.3.2 A key aspect of a type-2 machine is that we should be able to stop

the computation at any time and still obtain a portion of the output. However this

aspect would not make sense if we tried to carrying out a never-ending decision

process. As in such a process the machine should only ever output a clear “accept”

or “reject”. This is why here a type-2 machine is defined to only ever have one

halting state, as type-2 machines are typically used to carry out the computation of

functions and not the computation of decision problems.

Definition 2.3.3 Let T be a type-2 machine with input alphabet A, blank symbol

1This means that we could in theory stop a type-2 machine at any time step of its computation

and know that whatever T has already written on tape M must be a correct initial segment of the

output word.
2Such a restriction allows for the output tape of one type-2 machine to used as the input tape

of another.

26

2.4 Quantum Computation

1 0 1 0 1 1 0 0 1 0 · · ·

· · · 0 0 0 1 1 1 0 0 0 1 · · ·

... ...

· · · 1 1 1 0 1 1 0 0 1 1 · · ·

1 1 1 0 1 1 0 0 1 0 · · ·

M

Figure 2.4: A type-2 machine.

b 6∈ B, input type a, and output type b. We say that T computes a word function

problem f :⊆ Aa → Bb if for any w ∈ dom(f) we have:

T (w) = f(w).

If there exists a type-2 machine that computes f then we say that f is type-2

computable.

Proposition 2.3.4 [72] Let a, b, c ∈ {∗, ω}. If the word function problems f :⊆

Aa → Bb and g :⊆ Bb → Cc are type-2 computable and b = ∗ or c = ω, then

g ◦ f :⊆ Aa → Cc is type-2 computable.

Otherwise if b = ω and c = ∗ then for both a = ∗ and a = ω, there exists

a type-2 computable function f :⊆ Aa → Bω and a type-2 computable function

g :⊆ Bω → C∗ such that g ◦ f :⊆ Aa → C∗ is not type-2 computable.

2.4 Quantum Computation

Quantum computers utilise quantum objects and quantum transformations to effi-

ciently perform calculations that do not appear to be feasibly implementable by a

Turing machine in polynomial time.

27

Chapter 2. Computation Preliminaries

A well-studied model of quantum computation is the quantum circuit model, the

necessary details of which we will explain below. A full explanation of the model is

given in [50, 59], whilst a full introduction to quantum mechanics may be found in

[6]. The quantum object that a quantum circuits operate on is called a qubit.

Definitions 2.4.1 A qubit is a quantum object whose state is an element of the

set:

Q = {α|0〉+ β|1〉 | α, β ∈ C and |α|2 + |β|2 = 1}.

Q is a Hilbert space [76] with basis elements |0〉 and |1〉, we refer to these elements

as the basis states for Q.

When multiple qubits are considered they can be entangled, which means that

the set of possible states for N ∈ N qubits is the tensor product [47]:

Q⊗ · · · ⊗ Q︸ ︷︷ ︸
N times

= Q⊗N =


2N−1∑
k=0

αk|k〉

∣∣∣∣∣∣ α0, . . . , α2N−1 ∈ C and
2N−1∑
k=0

|αk|2 = 1

 .

Where we write |bN−1〉|bN−2〉 · · · |b0〉 = |bN−1bN−2 · · · b0〉 = |k〉 if the binary expan-

sion of k is bNbN−1 · · · b0, so Q⊗N has 2N basis states.

If we consider a qubit with state α1|0〉 + β1|1〉 together with a qubit with state

α2|0〉+ β2|1〉 the combined state is:

(α1|0〉+ β1|1〉)(α2|0〉+ β2|1〉) = α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉

Definition 2.4.2 A quantum transformation U : Q⊗N → Q⊗N is a map from the

space of N qubits to the space of N qubits. Which means that U must be a unitary

transformation. We also refer to a quantum transformation as a quantum gate.

Notably, a quantum transformation can be applied to two qubits in such a way

that the two qubits cannot be decomposed, for example the joint state may become

1√
2
|00〉+ 1√

2
|11〉 6= (α1|0〉+ β1|1〉)(α2|0〉+ β2|1〉) for any α1, β1, α2, β2 ∈ C.

Any quantum transformation on Q⊗N can be written as a 2N×2N complex-valued

matrix, with the kth row and columns corresponding to the kth basis state of Q⊗N .

28

2.4 Quantum Computation

An example of a single qubit quantum gate is the Hadamard gate:

H =
1√
2

 1 1

1 −1

 .

The Hadamard gate maps α|0〉 + β|1〉 to α+β√
2
|0〉 + α−β√

2
|1〉. Another example of a

single qubit quantum gate is the π
4

gate1:

T =

 1 0

0 ei
π
4

 .

The π
4

gate maps α|0〉+β|1〉 to α|0〉+ ei
π
4 β|1〉. An example of a two qubit quantum

gate is the controlled-not gate:

•
=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

The controlled-not gate maps α|00〉+β|01〉+γ|10〉+δ|11〉 to α|00〉+β|01〉+δ|10〉+

γ|11〉.

Definition 2.4.3 A quantum circuit on N qubits consists of a finite sequence of

quantum transformations applied to Q⊗N . Typically, the qubits inputted into a

quantum circuit are either in state |0〉 or in state |1〉.

A circuit U1, U2, U3, U4 applied to 5 qubits in states |a1〉, |a2〉, |a3〉, |a4〉, |a5〉 ∈

{|0〉, |1〉} respectively can be written as:

|a1〉

U1 U2 U3 U4

|a2〉
|a3〉
|a4〉
|a5〉

The output of the above circuit is then U4U3U2U1(|a1a2a3a4a5〉).
1For historical reasons, sometimes π

4 gate is often referred to as the π
8 gate [50, 59]

29

Chapter 2. Computation Preliminaries

In many cases a quantum gate U acting on Q⊗N will just carry out the identity

mapping I on some (but not necessarily all) of the qubits. Which means that it

can be decomposed as U = V ⊗ I⊗(2N−l), where V : Q⊗l → Q⊗l is also a unitary

transformation. Which means that if for U acting on Q⊗5 we have U = V ⊗ I⊗2

then U can be written as:

U

Naturally if we can perform the transformation U then we can perform U⊗I. We

may also permute the qubits in Q⊗N before and after applying each gate. Through

permutations and tensor products we may construct a large gate set from a small

number of gates.

Indeed it so happens that any N -qubit quantum circuit can be efficiently approx-

imated by an N -qubit circuit constructed from just the Hadamard gate, the π
4

gate

and the controlled-not gate [50, 59]. In this document we will therefore assume that

any quantum circuit will be constructed from this gate set.

The exact values of the complex state of a qubit cannot typically be measured.

Instead a quantum measurement of a qubit can only have two possible outputs,

these two outputs each correspond to a basis state of Q, and after measuring the

state of the qubit will become one of these states. This change in the state due to

the measurement means that a quantum measurement cannot be repeated.

In this document we will always take these basis states to be |0〉 and |1〉. If we

apply a measurement with basis states |0〉, |1〉 to a qubit in state α|0〉 + β|1〉 then

the probability of measuring a |0〉 is |α|2 and the probability of measuring a |1〉 is

|β|2.

Applying a measurement with basis states |0〉, |1〉 to the first qubit of a collection

of N qubits in the collective state of
∑2N−1

k=0 αk|k〉 results in |0〉 with a probability

30

2.4 Quantum Computation

of
∑2N−1−1

j=0 |α2j|2 and in |1〉 with a probability of
∑2N−1−1

j=0 |α2j+1|2.

Definition 2.4.4 In the quantum circuit model, a quantum computer consists of

a sequence of quantum circuits Q = {QN}N∈N that can be computably constructed

1, and for each N ∈ N the circuit QN has N inputs.

We input a word w ∈ {0, 1}∗ into the quantum computer Q as the state |w〉,

to which we apply the quantum circuit Q|w|. We then apply a measurement with

basis states |0〉, |1〉 to Q|w||w〉, the output of Q on input w is then the result of this

measurement.

Definition 2.4.5 Let Q be a quantum computer and A ⊆ {0, 1}∗ be a decision

problem. We say that Q computes A if for any input w ∈ {0, 1}∗:

w ∈ A ⇐⇒ Q outputs |1〉 with probability P >
2

3
,

and:

w 6∈ A ⇐⇒ Q outputs |1〉 with probability P 6
1

3
.

Definition 2.4.6 A word problem A is bounded quantum polynomial time com-

putable if there exists a quantum circuit Q and a polynomial function p : N → N

such that Q computes A, and for any w ∈ {0, 1}∗ the number of gates in Q|w| is at

most p(|w|).

We denote the class of bounded quantum polynomial time computable word prob-

lems by BQP.

Let F be the factorisation problem rendered as a decision problem, it is known [63]

that F ∈ BQP.

1That is there exists some Turing machine which for any N ∈ N is able to compute an exact

description of QN

31

Chapter 2. Computation Preliminaries

2.5 Infinite Time Turing Machines

The concept of an infinite time Turing (ITT) machine [44] was devised by Hamkins

and Lewis in 2000. An ITT machine generalises standard Turing machine compu-

tation by allowing it to take an ordinal number of time steps. The ordinal numbers

are defined as follows

Definition 2.5.1 [25, 64] A well-ordered set is a set W with a strict total ordering

relation < that is well-ordered. That is in W the relation < satisfies the properties

of:

• For any x, y ∈ W , either (x < y), (x = y) or (x > y) is true and no two of

these relations are simultaneously true.

• For any x, y, z ∈ W if (x < y) and (y < z) then (x < z).

• For any non-empty subset T ⊆ W there exists an x ∈ T such that for any

y ∈ T \ {x} we have (x < y).

Definition 2.5.2 [25, 64] Two ordered setsW1,W2 with respective orderings<1 and

<2 have the same order type if there exists an order-preserving bijection between

W1 and W2. That is there exists a total function f : W1 → W2 such that for any

x, y ∈ W1, we have x <1 y in W1 if and only if f(x) <2 f(y) is true in W2.

Definition 2.5.3 [25, 64] An ordinal number is an order type of a well-ordered

set. The set of ordinals ORD is then the set of all ordinal numbers.

Axioms for the ordinals are detailed in Definition A.1.14.

The order type of the empty set is clearly an ordinal, as is the order type of any

finite set of the form {0, 1, . . . , n}. The set of natural numbers N is well-ordered

and its corresponding ordinal is denoted by ω. Generally, given any ordinal α there

exists a successor ordinal α + 1. If a well-ordered set W with ordering < has order

type α, then the set W ∪ {a} with ordering <, where x < a for any x ∈ W , has

32

2.5 Infinite Time Turing Machines

order type α + 1. The class of ordinals is of the form:

ORD = 0, 1, 2, . . . ω, ω + 1, . . . 2ω, 2ω + 1, . . .

So in a sense, the class of ordinals generalises the set of natural numbers. For α 6= 0,

if there does not exist an ordinal β such that β+ 1 = α then we refer to α as a limit

ordinal, otherwise α is a successor ordinal. ω is an example of a limit ordinal.

Definition 2.5.4 [43, 44] An infinite time Turing machine (IIT machine) V is a

multi-tape machine with m > 3 tapes. Like a multi-tape Turing machine (Definition

2.1.8) an ITT machine has m > 3 tapes each with their own tape head. Each tape

consists of a well-ordered collection of ω cells that contain either a 0 or a 1 (an ITT

machine has no blank symbol). Unlike a usual multi-tape Turing machine the tapes

of an ITT machine are only infinite in the rightwards direction, and each tape has

a left-most cell at position 0 (which allows the tape cells to be indexed by N).

An ITT computation is allowed to take an ordinal number [54] of time steps. At

time 0 and successor time steps an ITT machine behaves just like a normal multi-

tape Turing machine with tape alphabet {0, 1}, implementing a multi-tape Turing

machine rule depending on what the tape heads see and what the machine’s internal

state is. Whereas at limit ordinal time steps we make the contents of each tape cell

equal to the limit supremum of its previous contents1. At limit ordinal times the

heads of the machine are placed back at cell 0, and the internal state becomes the

special limit state.

Like a type-2 machine, the inputs of an ITT machine are infinite words from

{0, 1}ω, which are placed on the first tape at time 0. Every cell on every other tape

contains 0 at time 0 (see Figure 2.5). Unlike a type-2 machine an infinite output

word in {0, 1}ω can be written (and re-written) in its entirety on the mth tape before

the machine halts at some (possibly transfinite) time.

1So if δ is a limit time step, and there exists an ordinal α < δ such that the symbol in cell x

is 0 at every time step β ∈ (α, δ), then at time δ the symbol in cell x must be a 0. Otherwise if

for every α < δ there exists a β ∈ (α, δ) such that the symbol in cell x is a 1, then at time δ the

symbol in cell x must be a 1.

33

Chapter 2. Computation Preliminaries

1 0 1 0 0 0 1 1 · · ·
0 0 0 0 0 0 0 0 · · ·

...

0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 · · ·

Input:

Work:

Output:

Figure 2.5: The initial configuration of an infinite time Turing machine with an

input beginning with 10100011

We denote an ITT machine by the 5-tuple1 V = (Π, s0, sλ, s1, S), where Π is a

finite set of internal states, s0 ∈ Π is the input state, sλ ∈ Π is the limit state,

s1 ∈ Π is the halting state, and S is the finite set of rules. Each rule of V is an

element of (Π \ {s0})× {0, 1}m × Π× {0, 1}m × {LEFT, PAUSE,RIGHT}m.

If an ITT machine V given input w ∈ {0, 1}ω eventually halts, then we denote

the infinite word written of the mth tape from the left-most cell by V (w).

Definitions 2.5.5 Let A ⊆ {0, 1}ω be a decision problem. We say that an ITT

machine V computes A if for any w ∈ {0, 1}ω:

(w ∈ A ⇐⇒ V (w) = 10ω) and (w 6∈ A ⇐⇒ V (w) = 0ω).

Let f :⊆ {0, 1}ω → {0, 1}ω be a function problem. We say that an ITT machine V

computes f if for any w ∈ dom(f):

V (w) = f(w).

Proposition 2.5.6 [44] Every halting ITT machine computation must halt at a

countable ordinal time step.

1We do not need to mention the tape or input alphabet of an ITT machine as it is always

{0, 1}.

34

Chapter 3

Logical System Preliminaries

“Rome wasn’t built in a day” - Anonymous

In this chapter we formally define what we mean by a logical system, and also define

its related notions.

Informally a logical system LS is a mathematical formalism with which we may

define LSV-structures, LSV-sentences, and a semantic consequence relation (|=LSV
).

We will use these concepts to define a theory machine and the manner in which it

computes.

Examples of logical systems include first-order logic, second-order logic, and

modal logic [15, 31].

Typically the concept of a logical system is not formally defined, hence whilst

the definitions in this chapter are based on what is generally taken to be true when

working with any logical system, they are to some extent our own concepts.

3.1 Vocabularies and Structures

Here, for any logical system LS, every LS-structure will be based upon a first-order

logical structure [46]. Every such structure includes a vocabulary of symbols, which

is sometimes referred to as a similarity-type.

35

Chapter 3. Logical System Preliminaries

Definition 3.1.1 A vocabulary V is a set of symbols. Each symbol in V is either:

• An m-ary relation symbol, for some m ∈ N.

• An n-ary function symbol, for some n ∈ N \ {0}.

• A constant symbol.

Definition 3.1.2 Let V be a vocabulary. A V-structure M consists of the following:

• A set M , which is referred to as the domain of M and denoted by dom(M) =

M .

• For each m-ary relation symbol R ∈ V, there is an m-ary relation R : Mm →

{true, false} in M. So for any a1, . . . , am ∈ M the statement R(a1, . . . , am)

is either true or false in M.

• For each n-ary function symbol f ∈ V, there is an n-ary function f : Mn →M

in M. So for any a1, . . . , an ∈M there is a b ∈M such that f(a1, . . . , an) = b

in M.

• For each constant symbol c ∈ V, there is a constant c in M. The constant c is

assigned to some element of M .

If V = {R1, . . . , RI} ∪ {f1, . . . , fJ} ∪ {c1, . . . , cK} where each Ri is a relation, each

fj is a function and each ck is a constant, then we write:

M = 〈M ;R1, . . . , RI , f1, . . . , fJ , c1, . . . , cK〉.

Notation 3.1.3 When required for the sake of clarity, we denote the relation in

a structure M which corresponds to the relation symbol R by RM. Similarly we

denote the function in M which corresponds to the function symbol f by fM, and

the constant in M which corresponds to the constant symbol c by cM.

We will define the formulas of a logical system as combinations of other formulas.

In order for this construction to make sense the variables of all of these formulas

will be taken from a fixed set.

36

3.1 Vocabularies and Structures

Definition 3.1.4 The set of variables Ξ is a fixed vocabulary of the form:

Ξ = ΞC ∪ ΞR ∪ ΞF.

Where:

ΞC = {x1, x2, . . . | Each xi is a constant symbol},

ΞR = {P1, P2, . . . | Each Pj is an α(j)-ary relation symbol},

ΞF = {g1, g2, . . . | Each gk is a β(k)-ary function symbol},

and α : N \ {0} → N and β : N \ {0} → N \ {0} are functions that denote the arity

of each relation and function symbol in Ξ. Also for any k ∈ N and any l ∈ N \ {0}

the sets {z ∈ N | α(z) = k} and {z ∈ N | β(z) = l} are infinite.

We refer to the symbols in Ξ as variables.

So Ξ contains an unbounded number of distinct constant symbols. Similarly for any

m ∈ N and any n ∈ N\{0} there is an unbounded number of distinct m-ary relation

symbols in Ξ, and an unbounded number of distinct n-ary function symbols in Ξ.

Remark 3.1.5 Whenever we refer to a vocabulary V in this document which is not

Ξ we will assume that V ∩ Ξ = ∅.

Notation 3.1.6 We denote the set of possible relations (of any arity) on a set M

by MR and the set of possible functions (of any arity) on M by MF.

Remark 3.1.7 For a finite set {1, . . . , L} there are 2L
m

possible m-ary relations

and LL
n+1

possible n-ary functions. For an infinite set I the situation is less clear,

and contents of IR and IF depend on the set-theoretic axioms one assumes. For

simplicity, in this document we will assume that the standard axioms of Zermelo-

Fraenkel set theory ZFC [25] hold.

Definition 3.1.8 Inductively, a V-term is a word such that:

• If c ∈ V is a constant symbol, then c is a V-term.

37

Chapter 3. Logical System Preliminaries

• If x ∈ ΞC is a constant variable, then x is a V-term.

• If f ∈ V is an n-ary function symbol and γ1, . . . , γn are V-terms, then f(γ1, . . . , γn)

is a V-term.

• If g ∈ ΞF is an n-ary function variable and γ1, . . . , γn are V-terms, then

g(γ1, . . . , γn) is a V-term.

• Nothing else is a V-term.

A V-term τ is a first-order term if it does not contain any function variables. τ is a

ground term if it is a first-order term which does not contain any constant variables.

Notation 3.1.9 We write a term τ which contains constant variables ~x = (x1, . . . , xk)

from ΞC and function variables ~g = (g1, . . . , gl) from ΞF as τ(x1, . . . , xk; g1, . . . , gl) =

τ(~x;~g).

We can assign each variable in a V-term τ to an element of M or MF. Under such

an assignment τ itself becomes assigned to an element of M when considered in a

V-structure with domain M . Formally, this assignment is defined as follows.

Definition 3.1.10 Let M be a V-structure with domain M and let τ(~x;~g) be a

V-term. Let ~a = a1a2 . . . ∈Mω an infinite word of elements of M such that each ai

in ~a corresponds to xi in ~x = (x1, . . . , xk). Let ~h = h1h2 . . . ∈Mω
F be an infinite word

where each hj is a β(j)-ary function on M which corresponds to gj in ~g = (g1, . . . , gl).

τM[~a;~h] is an element of M such that:

• If τ = c, where c is a constant symbol in V, then τM[~a;~h] = cM.

• If τ = xi, where xi is a constant variable, then τM[~a;~h] = ai.

• If τ = f(γ1, . . . , γn), where f is a function symbol in V, and for each j ∈

{1, . . . , n} γj is V-term such that γMj [~a;~h] = bj, then τM[~a;~h] = fM(b1, . . . , bn).

• If τ = gi(γ1, . . . , γn), where gi is a function variable, and for each j ∈ {1, . . . , n}

γj is V-term such that γMj [~a;~h] = bj, then τM[~a;~h] = hi(b1, . . . , bn).

38

3.2 The Definition of a Logical System

We refer to τM[~a;~h] as the assignment of τ to (~a;~h) in M.

Notation 3.1.11 Let τ, δ(x) be terms, where δ contains a single constant variable

x and no function variables. The word δ(τ) denotes that x has been replaced by

τ in δ. Let n ∈ N, the word δn(τ) then denotes that δ has been placed around τ

exactly n-times. So δ0(τ) = τ and δk+1(τ) = δ(δk(τ)) for any k ∈ N.

Definition 3.1.12 An atomic V-formula is a word of the form R(τ1, . . . , τm), where

R ∈ V ∪ Ξ is either an m-ary relation symbol or an m-ary relation variable, and

τ1, . . . , τm are V-terms.

Let M be a V-structure with domain M , and let ~a ∈Mω and ~h ∈Mω
F .

We write R(τ1, . . . , τn)[~a;~h] for the assignment of R(τ1, . . . , τn) to (~a;~h) in M.

R(τ1, . . . , τn)[~a;~h] is true in M if the relation RM(τM1 [~a;~h], . . . , τMn [~a;~h]) is true in

M. Otherwise we say that R(τ1, . . . , τn)[~a;~h] is false in M.

If τ1, . . . , τm are first-order terms then R(τ1, . . . , τm) is a first-order atomic for-

mula.

3.2 The Definition of a Logical System

We now come to our definition of a logical system. It should be noted that in

this document we only ever make use of logical systems which contain first-order

logic (Definition 3.2.4). So whilst the following definition may at first appear to be

somewhat vague, every logical system that is used in the following chapters will be

well-defined.

Definition 3.2.1 A logical system LS consists of the following:

• A set of logical symbols L.

• A set of non-logical symbols N which is a vocabulary.

• A collection of conditions for defining LS-structures.

39

Chapter 3. Logical System Preliminaries

• A collection of rules for constructing LS-formulas.

• A collection of rules for defining the truth of each LS-formula in each LS-

structure.

Each LS-structure and each LS-formula is defined using an additional vocabulary

V, where V∩N = ∅. When such a vocabulary is specified we refer to an LS-structure

as an LSV-structure and an LS-formula as an LSV-formula.

Each LSV-structure is an N ∪V-structure in which the elements of N satisfy the

conditions specified by LS.

Each LSV-formula is constructed from elements of L and N∪V-atomic formulas.

Each rule for constructing the LSV-formulas is of the form; “if φ1, . . . , φl are LSV-

formulas and φ1, . . . , φl satisfy conditions C, then the word θ(1,...,l) in ({φ1, . . . , φl} ∪

L)∗ is an LSV-formula.” Words that cannot be constructed in this manner are not

LSV-formulas.

Let M be an LSV-structure with domain M , and let ~a ∈ Mω, ~Q ∈ Mω
R , and

~h ∈ Mω
F . For every LSV-formula ψ, we either have M |=LSV

ψ
[
~a; ~Q;~h

]
, in which

case we say that ψ is true in M, or M 6|=LSV
ψ
[
~a; ~Q;~h

]
in which case we say that ψ

is false in M.

If an atomic LSV-formula φ is true in M under assignment [~a;~h], then we write:

M |=LSV
φ
[
~a; ~Q;~h

]
,

for any ~Q ∈Mω
R . Otherwise if φ[~a;~h] is false in M, we then write:

M 6|=LSV
φ[~a; ~Q;~h].

For each non-atomic LSV-formula θ(1,...,l) constructed from φ1, . . . , φl there is a rule

of LS of the form:

M |=LSV
θ(1,...,l)[~a; ~Q;~h] ⇐⇒ S(φ1, . . . , φl;

[
~a; ~Q;~h

]
).

Where S is some statement, the truth of which depends on the truth of M |=LSV

φi
[
~a′; ~Q′;~h′

]
for each i ∈ {1, . . . , l} and some collection of assignments related to(

~a; ~Q;~h
)
.

40

3.2 The Definition of a Logical System

Notation 3.2.2 If φ is a first-order formula which does not contain any relation

or function variables, then for any LSV-structure M, we may write M |=LSV
φ[~a]

instead of M |=LSV
φ[~a; ~Q;~h].

3.2.1 Logical Systems that we will use

In this subsection we will define each of the logical systems that will we use in this

document. For simplicity, all of these logical systems we will be based on first-order

logic [46].

Definition 3.2.3 The logical symbol set of first-order logic is LFO = {¬,∧,∨,→

,↔,∀,∃}.

Definition 3.2.4 A logical system LS with non-logical symbol set N contains first-

order logic, if the following is true for LS and a vocabulary V:

• LFO ⊆ N.

• Every first-order atomic V ∪N-formula is an LSV-formula.

• If φ and θ are LSV-formulas, then ¬φ, φ ∧ θ, φ ∨ θ, φ → θ, and φ ↔ θ are

LSV-formulas. Also for any xi ∈ ΞC if φ does not contain ∀xi or ∃xi then ∀xiφ

and ∃xiφ are LSV-formulas. We refer to LSV-formulas constructed in this

manner from first-order atomic V ∪N-formulas as first-order V ∪N-formulas.

• For each LSV-structure A with domain A, each ~a ∈ Aω, and any LSV-formulas

φ and θ we have:

(A |=LSV
¬φ[~a]) ⇐⇒ (A 6|=LSV

φ[~a]),

(A |=LSV
(φ ∧ θ)[~a]) ⇐⇒ (A |=LSV

φ[~a] and A |=LSV
θ[~a]),

(A |=LSV
(φ ∨ θ)[~a]) ⇐⇒ (A |=LSV

φ[~a] or A |=LSV
θ[~a]),

(A |=LSV
(φ→ θ)[~a]) ⇐⇒ (A |=LSV

¬φ[~a] or A |=LSV
θ[~a]),

(A |=LSV
(φ↔ θ)[~a]) ⇐⇒ (A |=LSV

(φ→ θ)[~a]) and A |=LSV
(θ → φ)[~a]),

(A |=LSV
∀xiφ[~a]) ⇐⇒ (For every bi ∈ A we have A |=LSV

φ[~a \ bi]),

(A |=LSV
∃xiφ[~a]) ⇐⇒ (There exists bi ∈ A such that A |=LSV

φ[~a \ bi]).

41

Chapter 3. Logical System Preliminaries

Where ~a \ bi denotes the word ~a in which the ith symbol ai is replaced by bi.

Definition 3.2.5 First-order logic (denoted by FO) is a logical system which con-

tains first-order logic, has logical symbol set LFO, and non-logical symbol set ∅.

Every V-structure is an FOV-structure. Every FOV-formula is a first-order V-

formula.

Definition 3.2.6 First-order logic with equality (denoted by FO=) is a logical

system which contains first-order logic, has logical symbol set LFO, and non-logical

symbol set {=}, where = is a binary relation.

A V ∪ {=}-structure A is an FO=
V -structure if for every a, b ∈ dom(A) we have

a =A b iff a and b are the same element of dom(A). Every FO=
V -formula is a first-

order V ∪ {=}-formula.

Definition 3.2.7 First-order real logic (denoted by FOR) is a logical system which

contains first-order logic, has logical symbol set LFO, and non-logical symbol set

NFOR = {=, <,+,×, 0, 1}. Where =, < are binary relation symbols, +,× are binary

function symbols, and 0,1 are constant symbols.

A V∪NFOR-structure A is an FOR-structure if it has domain R and the symbols

=, <,+,×, 0, 1 all have their usual meanings in R1. Every FORV-formula is a first-

order V ∪NFOR-formula.

Definition 3.2.8 First-order complex logic (denoted by FOC) is a logical system

which contains first-order logic, has logical symbol set LFO, and non-logical symbol

set NFOC = NFOR ∪ {R, i}. Where NFOR is as in Definition 3.2.7, R is a unary

relation symbol, and i is a constant symbol.

A V ∪ NFOC-structure A is an FOC-structure if it has domain C, the symbols

=, <,+,×, 0, 1, i all have their usual meanings in C, with R(a) being true iff a ∈

R ⊂ C, and < giving the usual real ordering on this subset 2. Every FOCV-formula

1Which means that every FOR-structure satisfies the real arithmetic axioms in Definition

A.1.7.
2Which means that every FOC-structure satisfies the complex arithmetic axioms in Definition

42

3.3 Further Logic Definitions

is a first-order V ∪NFOC-formula.

Definition 3.2.9 Second-order logic (denoted by SO) is a logical system which

contains first-order logic, has logical symbol set LSO = LFO ∪
⋃
N∈N{∀

N ,∃N} ∪⋃
L∈N\{0}{∀

L
,∃L}, and non-logical symbol set ∅.

Every V-structure is an SOV-structure.

For any Rj ∈ ΞR, if φ is an SOV-formula which does not contain ∀NRj or ∃NRj

then ∀NRjφ and ∃NRjφ are SOV-formulas. For any fk ∈ ΞF, if φ does not contain

∀Nfk or ∃Nfk then ∀Nfkφ and ∃Nfkφ are SOV-formulas.

For each SOV-structure A with domain A, each ~a ∈ Aω, ~Q ∈ AωR, ~h ∈ AωF, and

any SOV-formulas φ and θ we have:

(A |=SO ∀NRjφ
[
~a; ~Q;~h

]
) ⇐⇒

For every N -ary relation Pj ∈ AR

we have A |=SO φ
[
~a; ~Q \ Pj;~h

]
,

(A |=SO ∃NRjφ
[
~a; ~Q;~h

]
) ⇐⇒

There exists an N -ary relation Pj ∈ AR

such that A |=SO φ
[
~a; ~Q \ Pj;~h

]
,

(A |=SO ∀
L
fkφ
[
~a; ~Q;~h

]
) ⇐⇒

For every L-ary function gk ∈ AF

we have A |=SO φ
[
~a; ~Q;~h \ gk

]
,

(A |=SO ∃
L
fkφ
[
~a; ~Q;~h

]
) ⇐⇒

There exists an L-ary function gk ∈ AF

such that A |=SO φ
[
~a; ~Q;~h \ gk

]
.

Definition 3.2.10 Second-order logic with equality (denoted by SO=) is a logical

system which is the same as second-order logic, except that SO=’s non-logical symbol

set is {=}, and a V∪{=}-structure A is an SO=
V -structure if for every a, b ∈ dom(A)

we have a =A b iff a and b are the same element of dom(A).

3.3 Further Logic Definitions

In this section we define some commonly used logical notions [46] in the context of

an arbitrary logical system LS with vocabulary V.

A.1.9.

43

Chapter 3. Logical System Preliminaries

Definition 3.3.1 We refer to the logical symbols ∀,∃ ∈ LFO as first-order quanti-

fiers and the logical symbols ∀N , ∃N ,∀L,∃L ∈ LSO for N ∈ N and L ∈ N \ {0} as

second-order quantifiers. Hence a first-order and second-order quantifier is referred

to as quantifier.

Definition 3.3.2 Let φ be an LSV-formula. A variable v ∈ Ξ is free in φ if φ does

not contain Qv for any quantifier Q.

Definition 3.3.3 An LSV-sentence is an LSV-formula that does not contain any

free variables.

Notation 3.3.4 If φ is an LSV-sentence then for any LSV-structure M, we may

write M |=LSV
φ if M |=LSV

φ[~a; ~Q;~h], in which case we say that φ is true in M.

Definition 3.3.5 Let B be an LSV-structure, and Φ,Θ be sets of LSV-sentences.

We say that B is an LSV-model of Φ if every sentence in Φ is true in B, and we

denote this by B |=LSV
Φ.

Definition 3.3.6 We say that Φ semantically implies Θ in LSV if every LSV-

structure that is an LSV-model of Φ is also an LSV-model of Θ. We denote this by

Φ |=LSV
Θ.

Definition 3.3.7 If for a given set of sentences Θ there is an LSV-structure in

which Θ is true, then we say that Θ is LSV-satisfiable.

Definitions 3.3.8 Let V1,V2,V3 be vocabularies such that V1 ⊂ V2 ⊂ V3, and let

A2 be an LSV2-structure.

A V1-reduct of A2 is an LSV1-structure A1 such that dom(A1) = dom(A2) and

for every m-ary relation R ∈ V1, n-ary function f ∈ V1, and constant c ∈ V1

we have that RA1(a1, . . . , am) is true iff RA2(a1, . . . , am) is true, fA1(b1, . . . , bn) =

fA2(b1, . . . , bn) and cA1 = cA2 .

We say that an LSV3-structure A3 is a V3-expansion of A2 if A2 is a V2-reduct of

A3.

44

3.3 Further Logic Definitions

Clearly if A1 is a V1-reduct of A2 and dom(A) = A then for any LSV1-formula φ

and each ~a ∈ Aω, ~Q ∈ AωR, and ~h ∈ AωF we have:

(A1 |=LSV1
φ
[
~a; ~Q;~h

]
) ⇐⇒ (A2 |=LSV2

φ
[
~a; ~Q;~h

]
).

Definition 3.3.9 Let A and B be LSV-structures, and let LS have non-logical

symbol set N. An embedding from A to B is an injective map µ : dom(A) →

dom(B) such that:

• For any m-ary relation R ∈ V ∪N and any a1, . . . , am ∈ dom(A) we have:

RA(a1, . . . , am) is true in A ⇐⇒ RB(µ(a1), . . . , µ(am)) is true in B.

• For any n-ary function f ∈ V ∪N and any b1, . . . , bn ∈ dom(A) we have:

µ(fA(b1, . . . , bn)) = fB(µ(b1), . . . , µ(bn)).

• For any constant c ∈ V ∪N we have µ(cA) = cB.

Definition 3.3.10 We say that two LSV-structures A and B are isomorphic if

there exists an embedding µ from A to B such that its inverse µ−1 is an embedding

from B to A. We then refer to µ as an isomorphism.

For the most part theory machines we will only be able to specify structures up

to isomorphism. However the following theorem demonstrates that this is not a

problem as the output of a theory machine will depend only on the sentences that

are true in its structures.

Theorem 3.3.11 Let LS be one of the logical systems defined in Section 3.2.1 and

let V be a vocabulary. If two LSV-structures A and B are isomorphic, then for any

LSV-sentence φ:

(A |=LSV
φ) ⇐⇒ (B |=LSV

φ).

Proof: Let A and B have domains A and B respectively, and µ : A → B be an

isomorphism from A to B.

45

Chapter 3. Logical System Preliminaries

If LS ∈ {FO,FO=, FOR, FOC} then the set of logical symbols of LS does not

contain any second-order quantifiers, and the LS-formulas are constructed from

first-order terms.

Let LS have non-logical symbol set N, and let τ be a first-order V ∪ N-term.

We wish to show that µ(τA[~a]) = τB[µ(~a)], where if ~a = a1a2 . . . ∈ Aω then µ(~a) =

µ(a1)µ(a2) . . . ∈ Bω. There are 3 possibilities.

If τ = c, where c is a constant symbol in V ∪N, then:

µ(τA[~a]) = µ(cA) = cB = τB[µ(~a)].

If τ = xi, where xi ∈ ΞC, then:

µ(τA[~a]) = µ(ai) = τB[µ(~a)].

If τ = f(γ1, . . . , γn), where f is a function symbol in V ∪ N, and for each j ∈

{1, . . . , n} γj is V-term such that γAj [~a] = bj, then:

µ(τA[~a]) = µ(fA(b1, . . . , bn)) = µ(f)B(µ(b1), . . . , µ(bn)) = τB[µ(~a)].

Hence µ(τA[~a]) = τB[µ(~a)] follows by induction on the length of τ .

Now let φ be an LSV-formula of the form φ = R(τ1, . . . , τn) for some m-ary

relation R and some first-order V ∪N-terms τ1, . . . , τn. It is then the case that:

φ[~a] is true in A ⇐⇒ RA(τA1 [~a], . . . , τAn [~a]) is true in A,

⇐⇒ RB(µ(τA1 [~a]), . . . , µ(τAn [~a])) is true in B,

⇐⇒ RB(τB1 [µ(~a)], . . . , τBn [µ(~a)]) is true in B.

Therefore for any first-order atomic LSV-formula φ we have A |=LSV
φ[~a] iff B |=LSV

φ[µ(~a)]. This must similarly be true for any LSV-formula constructed without

quantifiers, as we can just decompose such a formula into its atomic parts, which

must each have the same truth value in A and B. Whereas if φ = ∀xiθ(xi) we then

46

3.3 Further Logic Definitions

have:

(A |=LSV
∀xiθ(xi)[~a]) ⇐⇒ (For every bi ∈ A we have A |=LSV

θ(xi)[~a \ bi]),

⇐⇒ (For every µ(bi) ∈ B we have B |=LSV
θ(xi)[µ(~a) \ µ(bi)])),

⇐⇒ (For every di ∈ B we have B |=LSV
θ(xi)[µ(~a) \ di])),

⇐⇒ (B |=LSV
∀xiθ(xi)[µ(~a)]).

The same is similarly true for φ = ∃xiθ(xi). Consequently, by induction on the

length of φ, the result holds for LS ∈ {FO,FO=, FOR, FOC}.

Now if LS ∈ {SO, SO=} then the set of logical symbols of LS does contain

second-order quantifiers, and the LS-formulas are constructed from general terms.

Let τ be a V ∪ N-term. We now wish to show that µ(τA[~a;~h]) = τB[µ(~a);µ(~h)],

where if ~h = h1h2 . . . ∈ AωF then µ(~h) = µ(h1)µ(h2) . . . ∈ Bω
F where each µ(hj) is a

β(j)-ary function such that µ(fj)(µ(d1), . . . , µ(dβ(j))) = µ(fj(d1, . . . , dβ(j))) for any

d1, . . . , dβ(j) ∈ A.

For τ = c, xi, or f(γ1, . . . , γn), where c is a constant symbol in V ∪ N, xi ∈ ΞC,

and f is a function symbol in V∪N then we have the required equality by our above

reasoning.

Alternatively if τ = gi(γ1, . . . , γn), where gi is a function variable, and for each

j ∈ {1, . . . , n} γj is V ∪N-term such that γAj [~a;~h] = bj, then:

µ(τA[~a;~h]) = µ(hi(b1, . . . , bn)) = µ(hi)(µ(b1), . . . , µ(bn)) = τB[µ(~a);µ(~h)].

Hence as before µ(τA[~a;~h]) = τB[µ(~a);µ(~h)] follows by induction on the length of τ .

Let φ = R(τ1, . . . , τn) for some m-ary relation R and some V∪N-terms τ1, . . . , τn.

We can then follow the same reasoning as above to see that φ[~a,~h] is true in A iff

RB(τB1 [µ(~a), µ(~h)], . . . , τBn [µ(~a), µ(~h)]) is true in B.

Therefore for any atomic LSV-formula φ we have A |=LSV
φ
[
~a; ~Q;~h

]
iff B |=LSV

φ
[
~a; ~Q;~h

]
. By our above reasoning this must similarly be true for any LSV-formula

constructed without second-quantifiers.

47

Chapter 3. Logical System Preliminaries

Suppose ~Q = Q1Q2 . . . ∈ AωR then µ(~Q) = µ(Q1)µ(Q2) . . . ∈ Bω
R where each µ(Qi)

is an α(i)-ary relation such that µ(Qi)(µ(b1), . . . , µ(bα(i))) is true iff Qi(b1, . . . , bα(i))

is true for any b1, . . . , bα(i) ∈ A. Now if φ = ∀NRjθ(Rj) then we have:

A |=LSV
∀NRjθ(Rj)

[
~a; ~Q;~h

]
⇐⇒

For every N -ary relation Pj ∈ AR

we have A |=LSV
θ(Rj)

[
~a; ~Q \ Pj;~h

]
,

⇐⇒
For every N -ary relation µ(Pj) ∈ BR we

have B |=LSV
θ(Rj)

[
µ(~a);µ(~Q) \ µ(Pj);µ(~h)

]
,

⇐⇒
For every N -ary relation Tj ∈ BR

we have B |=LSV
θ(Rj)

[
µ(~a);µ(~Q) \ Tj;µ(~h)

]
,

⇐⇒ B |=LSV
∀NRjθ(Rj)

[
µ(~a);µ(~Q;µ(~h)

]
The same is similarly true for φ = ∃NRjθ(Rj). Whereas for φ = ∀Lfkθ(fk):

A |=LSV
∀Lfkθ(fk)

[
~a; ~Q;~h

]
⇐⇒

For every L-ary function gk ∈ AF

we have A |=LSV
θ(fk)

[
~a; ~Q;~h \ gk

]
,

⇐⇒
For every L-ary function µ(gk) ∈ BF we

have B |=LSV
θ(fk)

[
µ(~a);µ(~Q);µ(~h) \ µ(gk)

]
,

⇐⇒
For every L-ary function ek ∈ BF

we have B |=LSV
θ(fk)

[
µ(~a);µ(~Q);µ(~h) \ ek

]
,

⇐⇒ B |=LSV
∀Lfkθ(fk)

[
µ(~a);µ(~Q;µ(~h)

]
The same is similarly true for φ = ∃Lfkθ(fk). Consequently, by induction on the

length of φ, the result also holds for LS ∈ {SO, SO=}. o

3.4 Proofs in a Logical System

An important thing for us to be able to do with a logical system is prove statements

from other statements [34]. We therefore define below what it means for a sentence

to be proven in the context of a given logical system LS. Using this we define what

it means for a logical system to be complete which we will be an important concept

in Chapter 8.

48

3.4 Proofs in a Logical System

Definition 3.4.1 An LS-proof system P is a finite set of rules of the form:

Γ1 | φ1, . . . ,ΓK | φK
∆ | ψ

.

Where Γ1, . . . ,ΓK ,∆ are sets of LS-formulas, φ1, . . . , φK , ψ are LS-formulas, and

∆ and ψ depend on Γ1, . . . ,ΓK and φ1, . . . , φK .

Example 3.4.2 Examples of FO-proof system rules include:

Γ1 | φ1, Γ2 | φ2

Γ1 ∪ Γ2 | φ1 ∧ φ2

,
Γ ∪ {θ} | φ

Γ | θ → φ
,

Γ1 ∪ {θ1} | φ, Γ2 ∪ {θ2} | φ

Γ1 ∪ Γ2 ∪ {θ1 ∨ θ2} | φ
,

Γ | θ

Γ ∪∆ | θ
.

Where the in the last rule ∆ is any set of FO-formulas.

Definition 3.4.3 Let P be an LS-proof system. A P-proof is a finite sequence

Γ1 | φ1, . . . ,ΓN | φN where for each i ∈ {1, . . . , N}, Γi is a finite set of LS-formulas,

φi is an LS-formula, and either φi ∈ Γi or there exist i1, . . . , iK < i such that:

Γi1 | φi1 , . . . ,ΓiK | φiK
Γi | φi

.

For some rule of P.

Definition 3.4.4 Let P be an LS-proof system, and ∆ be a set of LS-sentences

and θ be an LS-sentence. We say that there is a P-proof of θ from ∆ if there

exists a P-proof Γ1 | φ1, . . . ,ΓN | φN with ΓN ⊆ ∆ and θ = φN . We denote this by

∆ `P θ.

Clearly, given any finite sequence Γ1 | φ1, . . . ,ΓN | φN written as an input word, a

Turing machine may check whether the sequence is a valid P-proof θ from ∆.

49

Chapter 3. Logical System Preliminaries

Definition 3.4.5 A logical system LS is complete if there exists an LS-proof sys-

tem P such that for any set of LS-sentences Γ and any LS-sentence φ we have:

Γ |=LS φ ⇐⇒ Γ `P φ.

Theorem 3.4.6 [36, 45] First-order logic, and first-order logic with equality are

complete logical systems.

50

Chapter 4

Theory Machines

“It is my contention that these operations include all those which are

used in the computation of a number. The defence of this contention

will be easier when the theory of machines is familiar to the reader.” -

Alan Turing [67]

As we discussed in Section 1.2, in When does a physical system compute? [48]

Horsman, Stepney, Wagner, and Kendon put forward a minimal collection of re-

quirements that a physical system must satisfy in order for it to be capable of

computation. Crucially Horsman et al. asserted that in order for a person to be

able to compute with a physical system they must be able to abstractly represent

the necessary workings of the system, whilst also possessing a sufficiently correct

theory of how the system behaves.

We assert that this representation and theory can be expressed in terms of the

logical sentences of a theory machine. A theory machine is given by a triple M =

(T, I,O) where T is a set of sentences, and I and O are sets of sets of sentences1.

The theory of the system is given by T, which describes the necessary aspects of the

system we wish to compute with. The set of admissible inputs into the system is

given by I, and the set of measurable outputs from the system is given by O.

1To clarify, each element of I and each element of O is a set of sentences.

51

Chapter 4. Theory Machines

Further we require that for any Φ ∈ I there exists a structure P which satisfies

T ∪Φ, and for which there is at most one true output Θ ∈ O. We then take Θ to be

the outcome of the computation by M on input Φ. This structure P does not need to

contain a clear notion of time, nor does Θ need to follow from I via a clear sequence

of algorithmic steps. Hence the typical notion of a sequential causal computation

does not necessarily occur within a theory machine. However, we shall insist that

the only way Θ can be the output of M on input Φ is if Θ is true in every model of

T ∪Φ. This constraint ensures that the computation cannot in general just happen

in one undefined uncomputable step. Instead, as we shall see, the computation must

typically have a non-trivial amount of structure to it in order to produce an output.

Suppose that in the real world a person has found/built a computational system S.

A key motivation behind the concept of a theory machine is that, for any reasonably

correct theory TS of S and any valid input Φ of S, they can expect that the real world

will provide them with a structure that satisfies TS ∪ Φ. If it did not then either

TS would have to be incorrect or Φ would have to be invalid. So if S already exists

as a real world physical system then we do not have to worry about constructing

its models ourselves. What we need to concern ourselves with is constructing and

understanding S in the first place.

The nature of a theory machine computation is intended to mimic what happens

when we use a physical system1 to carry out a decision process. For example,

suppose we wish to compute with some kinematic system of billiard balls [13], to do

this we can include the axioms of Newtonian mechanics as our theory T to predict

the motions of the system (Newtonian mechanics may not be a perfect description of

reality, but in many cases it is more than good enough for describing the necessary

properties of a kinematic system). Each input Φ ∈ I could be a non-contradictory

description of the positions and velocities of the balls at some initial time t0
2.

Whereas each output Θ ∈ O could be a position measurement at some final time t1.

1See Remark 1.0.1 for an explanation of what we mean by a physical system.
2This description should state what we know to be true about the input configuration, such

knowledge is likely to have a degree of uncertainty around it. For example, part of Φ could state

that at time t0 the x-coordinate of the 1st ball is located between rationals a
b and a+1

b .

52

As it is a real physical situation we should always be able to create a kinematic

scenario from t0 to t1 in which T ∪ Φ is satisfied. Due to imprecision in the input’s

description Φ and the inexactness of the theory T there are likely to be many sce-

narios that satisfy T∪Φ. However, if we know that in each of them only the output

Θ is true, then the exact scenario created does not actually matter, all that matters

is which element of O is true given an input of Φ.

The fact that multiple models may exist and all point to the correct output is

also key to the theory machine concept (and, notably, differs from Baumeler and

Wolf’s assertions in [5]). Accepting that our description of a system could have

multiple inequivalent models rather than one “true” model allows us to focus on

what properties are necessary to impose on the system in order for it to produce the

correct output. This also helps us see what parts of the process must be shielded

from outside influences for the computation to work.

For example, in the real world an implementation of a Turing machine will exist

within a much larger ambient space. This space is likely to include complex objects

that may lead to computational errors (such as a person). For the purpose of

the computation such objects can be ignored provided we can prevent them from

interfering.

Also, for defining an arbitrary decision process this focus on description rather

than the individual structures is arguably a necessity. In many real world cases, to

know the entirety of a physical system’s structure would require an infinite number

of tests, which a person would arguably never be able to do. However, as noted by

Horseman et al. [48] after a finite number of tests we should be able to infer some of

a system’s properties and construct our own abstract theory about how it behaves.

In this document we will not dwell upon how one may infer/impose a system’s

properties, instead we shall take such properties to be known and implementable,

and look into how assuming these properties effects what is computationally possible.

We believe that the computational aspects of many different kinds computational

device can be described by a theory machine. Indeed in this document we will

demonstrate how theory machines can be used to characterise:

53

Chapter 4. Theory Machines

• A Turing machine in Examples 5.1.1, 5.1.2, 8.1.1, 8.1.3 and 9.1.6.

• A type-2 machine in Examples 5.3.2, and 8.3.1.

• A quantum computer in Example 7.1.6.

• An infinite time Turing machine in Example 7.2.1.

4.1 The Definition of a Theory Machine

We shall now define our principal concept of a theory machine and its method of

computation.

Definitions 4.1.1 Let LS be a logical system and V a vocabulary of LS, an LSV-

theory machine is a triple M = (T, I,O) where:

• T is a set of LSV-sentences,

• I and O are sets of sets of LSV-sentences,

• For every Φ ∈ I the set T ∪ Φ is LSV-satisfiable,

• For every Φ ∈ I and Θ,Ψ ∈ O if Θ 6= Ψ then the set T ∪ Φ ∪ Θ ∪ Ψ is not

LSV-satisfiable.

We call T the theory of M, call I the set of inputs of M, and O the set of outputs

from M.

We say that M computes Θ ∈ O from Φ ∈ I if:

T ∪ Φ |=LSV
Θ.

We denote this by M(Φ) = Θ. If for Θ,Ψ ∈ O there exist LSL-models of T ∪ Φ

where Θ is true and Ψ is true, and Θ 6= Ψ then M does not compute anything on

input Φ and M(Φ) is undefined.

54

4.1 The Definition of a Theory Machine

If the logical system does not matter then we may refer to M as just a theory

machine and if the logical system does matter but the vocabulary does not then we

may refer to M as an LS-theory machine.

For a given physical computation system described by a theory machine M, the

theory T is intended to detail the laws that the system obeys.

Each element of the input set I is intended to be a description of some variable

input configuration (e.g. the positions of a collection of dials), it could be finite and

word-like, it could be an infinite real, it could be a function on reals, or any number

of other possibilities. Whatever the case, if an object can be exactly defined by some

set of properties then it can be inputted into a theory machine. The same is true

for the outputs O, allowing us to take the output from one theory machine and plug

it in as an input to another1.

Example 4.1.2 A set of first-order sentences that defines the real number c ∈ [0, 1)

with binary expansion 0.b0b1 . . . is:{
T k(c) ./bk

1

2

}
k∈N

.

Where T (x) = 2x− b2xc, and ./0≡< and ./1≡> (an explanation of why this works

is given in Example 4.2.8). So for example we could have an input or output set of:{{
T k(c) ./bk

1

2

}
k∈N

∣∣∣∣ b0b1 . . . ∈ {0, 1}ω
}
.

Example 4.1.3 A set of first-order sentences that defines a function from f : N→

N is:

{f(Sn(0)) = Sf(n)(0)}n∈N,

where S is the successor function on N.

In a theory machine we require that for any input Φ ∈ I there exists a model of Φ

together with the machine’s theory. The purpose of this requirement is to ensure

that the concept of inputting Φ into the machine actually makes sense. As if no

1In Section 6.1 and Theorem 6.1.9 we explain how and when theory machines can be concate-

nated together.

55

Chapter 4. Theory Machines

models existed of T∪Φ then the input configuration of Φ would have to be logically

forbidden in such a way that inputting Φ would be physically impossible, and hence

would itself not make sense as an input.

Note that this does not mean that an input is not allowed to cause a theory

machine to “crash” or “break” in some way. If such a scenario is logically possible

then such an input is allowed, and if necessary the machine breaking can be treated

as a potential relevant output.

We also intend that for each input a theory machine produces at most one output.

Hence we have the fourth condition of Definition 4.1.1, which means that not only

can we not have M(Φ) = Θ and M(Φ) = Ψ for Θ 6= Ψ, but there do not even exist

two separate LSV-models of T ∪ Φ in which Θ and Ψ are true. Consequently if we

have a model A of T ∪Φ and we know that the output Θ ∈ O is true in A, then we

know for certain that M(Φ) = Θ as no other output can be true in A if Θ is true in

A.

Example 4.1.4 Let V = {R, f, c} where R is a unary relation, f a unary function,

and c a constant. A simple example of a FOV-theory machine1 is M = (T, I,O)

where:

• T = {∀x(R(x)↔ R(f(x)))},

• I = {{R(c)}, {¬R(c)}},

• O = {{R(f(c))}, {¬R(f(f(c)))}}.

We then have:

M({R(c)}) = {R(f(c))},

as in any model of T, if R(c) is true then R(f(c)) must also be true, so T ∪

{R(c)} |=FOV
{R(f(c))}. Whereas:

M(¬R(c)) = {¬R(f(f(c)))},
1A FO stands for first-order logic (Definition 3.2.5)

56

4.2 Describing Words as Sets of Logical Sentences

as given ¬R(c) is true in some model of T then we also have ¬R(f(c)) is true in this

model and so ¬R(f(f(c))) is true, hence T ∪ {¬R(c)} |=FOV
{¬R(f(f(c)))}.

4.2 Describing Words as Sets of Logical Sentences

As many examples of computation systems use words (or word-like objects) to rep-

resent their inputs and outputs we naturally require a standard manner in which to

write words as sets of logical sentences. Informally, we do this by taking a set which

defines each element in a well-behaved sequence of ground terms [31] to be equal to

a symbol in the word.

Definition 4.2.1 We call a sequence of ground terms X = {χi}i∈N a simple se-

quence if there exist a ground term δ and terms γ(x) and σ(x) with a single free

variable x, such that every element of X is of the form χi = γ(σi(δ)).

The idea behind a simple sequence of terms is that it expresses the repeated ap-

plication of a function, such as the “next symbol on the right” function. Hence it

can be easily and simply constructed. For a unary function f and a constant c the

sequence of terms {f i(c)}i∈N is a simple sequence, as is {h((g ◦f)i(h(c, c)), c)}i∈N for

a unary function g and a binary function h.

Remark 4.2.2 When defining a word as a set of sentences we will make use of the

equality relation “=”, which satisfies the usual equality axioms (Definition A.1.1) of

being an equivalence relation that preserves the functions and relations of the logical

system. In an FOV-theory machine M, we may add the set of equality axioms EQ=
V

to the theory of M to ensure that = ∈ V is an equivalence relation that preserves

the functions and relations of V.

EQ=
V can also be defined in exactly the same manner in any logical system which

contains first-order logic1, and if the number of functions and relations in the vo-

cabulary V is finite then EQ=
V is also finite.

1Such as those logics mentioned in Subsection 3.2.1

57

Chapter 4. Theory Machines

However, for simplicity, we will often use logical systems that already contain

true equality as part of their fixed set of symbols, in the structures of such a logical

system must EQ=
V always be satisfied.

4.2.1 Finite Word Sets

Definitions 4.2.3 Let X = {χi}i∈N be a simple sequence. For a set of constants

A with b 6∈ A, the finite X-word set corresponding to the finite word w =

w0w1 · · ·wn ∈ A∗ is:

Φ∗X(w) = {χi = wi | i ∈ {0, . . . , n}} ∪ {χn+1 = b}.

The set of finite X-word sets from an alphabet A is then:

Â∗X = {Φ∗X(w) | w ∈ A∗}.

Hence a finite X-word set Φ∗X(w) maps each term χi of X to the ith symbol in w. So

whilst X may be “simple” the X-word set may be arbitrarily complex.

Remark 4.2.4 The symbol b is intended to represent the “blank” symbol, hence

χn+1 = b implies that this is the end of the word. Note that if χi = γ(σi(δ)) then

by adding the sentence ∀x((γ(x) = b)→ (γ(σ(x)) = b)) to the theory of a machine

with inputs from Â∗X we can ensure that χj = b for each j > n.

We can describe the initial tape configuration of a Turing machine as a finite X-word

set as follows.

Example 4.2.5 Let C be a binary function, S be unary functions, and 0 be a

constant. Suppose that we are describing a Turing machine-like scenario and for

each time step x and cell y the value of C(x, y) corresponds to the contents of the

yth tape square at time x. To define the values of these tape squares at time 0 we

may use the simple sequence:

XTM = {C(0, Sn(0))}n∈N.

58

4.2 Describing Words as Sets of Logical Sentences

As suppose that we have a second-order theory machine whose theory contains the

Peano successor axioms (Definition A.1.3) with S as the successor function. The

finite XTM -word set:

Φ∗XTM (w) = {C(0, Si(0)) = wi | i ∈ {0, . . . , n}} ∪ {C(0, Sn+1(0)) = b},

then implies that:

C(0, 0) = w0, C(0, 1) = w1, C(0, 2) = w2, . . . , C(0, n) = wn, and C(0, n+1) = b,

where C(0, n+1) = b may be viewed as stating that the n+1th cell square is blank

at time 0.

If the theory machine also contains the sentence:

∀x((C(0, x) = b)→ (C(0, S(x)) = b)),

then Φ∗XTM (w) also implies that C(0,m) = b for all m > n.

It is natural to expect that χi = a and χj = b means that χi 6= χj, however without

specifying that a 6= b it is entirely possible to have a model where two distinct

constants are equal to one another. To avoid the issues that this would cause we

will often use the following set of sentences.

Definition 4.2.6 Let V be a vocabulary and = ∈ V be a binary relation. The set

of distinct constant axioms for V is:

CD=
V = {¬(c = d) | c, d ∈ V are constants and c 6= d}.

So clearly if LS contains first-order logic and A is a LSV-structure which satisfies

EQ=
V ∪ CD=

V then every constant in A is distinct.

4.2.2 Infinite Word Sets

Definitions 4.2.7 Let X = {χi}i∈N be a simple sequence. For a set of constants A,

the infinite X-word set corresponding to the infinite word u = u0u1 · · · ∈ Aω is:

Φω
X(u) = {χi = ui | i ∈ N}.

59

Chapter 4. Theory Machines

The set of infinite X-word sets from an alphabet A is then:

Âω
X = {Φω

X(u) | u ∈ Aω}.

Note how an infinite word has no end, so a blank symbol is not needed. We can

describe a real number as an infinite Y-word set as follows.

Example 4.2.8 Suppose we have a theory machine whose theory contains the real

arithmetic axioms (Definition A.1.7). Let −, ×, and b·c be real functions that cor-

respond to their usual meanings, and let 2 and c be constants, with 2 corresponding

to its normal value R.

Consider the terms:

σ(x) ≡ (2× x)− b(2× x)c, and γ(x) ≡ b(2× x)c,

with free variable x. Using these we may construct the simple sequence:

Y = {γ(σn(c))}n∈N.

Let c ∈ [0, 1] and u ∈ {0, 1}. The infinite Y-word set:

Φω
Y(u) = {γ(σn(c)) = ui | i ∈ N},

then corresponds to the statement that c = 0.u0u1 . . . in binary.

To see why this is the case note that b2cc = 0 if c ∈ [0, 1
2
) and b2cc = 1 if

c ∈ [1
2
, 1). Thus γ(c) = u0 iff u0 is the first digit of the binary expansion of c. Now if

c ∈ [0, 1
4
)∪[1

2
, 3

4
) then 2c−b2cc ∈ [0, 1

2
), and if c ∈ [1

4
, 1

2
)∪[3

4
, 1) then 2c−b2cc ∈ [1

2
, 1).

Hence γ(σ(c)) = u1 iff u1 is the second digit of the binary expansion of c. We can

then see by induction that γ(σn(c)) = ui iff ui is the ith digit of the binary expansion

of c.

Lemma 4.2.9 Let LS be a logical system which contains first-order logic, let X =

{χi}i∈N be a simple sequence in a vocabulary V of LS, let A ⊂ V be a set of

constants, and let a ∈ {∗, ω}.

For any w, v ∈ Aa, if w 6= v then: Φa
X(w) ∪ Φa

X(v) ∪ EQ=
V ∪ CD=

V is not LS-

satisfiable.

60

4.2 Describing Words as Sets of Logical Sentences

Proof: If a = ∗ let w = w1 · · ·wn and v = v1 · · · vm. We then have Φ∗X(w) = {χi =

wi | i ∈ {0, . . . , n}}∪{χn+1 = b}, and Φ∗X(v) = {χi = vi | i ∈ {0, . . . ,m}}∪{χm+1 =

b}. Since w 6= v it must be the case that either |w| 6= |v| or wj 6= vj for some j ∈ N.

If |w| 6= |v| then without loss of generality let |w| < |v|, in which case we must have

{χn+1 = b} and {χn+1 = vn+1} which together with EQ=
V ∪CD=

V is a contradiction

as b 6∈ A.

If wj 6= vj for some j ∈ N then we have {χj = wj} and {χj = vj} which together

with EQ=
V ∪ CD=

V must also be a contradiction.

If a = ω let w = w1w2 · · · and v = v1v2 · · · . We then have Φω
X(w) = {χi =

wi | i ∈ N}, and Φω
X(v) = {χi = vi | i ∈ N}. Since w 6= v it must be the case that

wj 6= vj for some j ∈ N.

We have {χj = wj} and {χj = vj} which together with EQ=
V ∪ CD=

V must also

lead to a contradiction. o

4.2.3 Computing with Word Sets

We can now define what it means for a theory machine to compute a word problem.

Definition 4.2.10 Let A be a set of symbols and A ⊆ Aa for a ∈ {∗, ω} be a deci-

sion problem. We say that an LSV-theory machine M = (T, I,O) in the vocabulary

of V is able to compute A if there exists a set of constants A ⊆ V and a simple

sequence X such that Âa
X ⊆ I, and for two distinct finite output sets Θ,Ψ ∈ O we

have that for every w ∈ Aa:

(w ∈ A ⇐⇒ M(Φa
X(w)) = Θ) and (w 6∈ A ⇐⇒ M(Φa

X(w)) = Ψ).

So a theory machine is able to compute a word problem if there exists a way in

which we can configure each input word into the machine, such that the output of

the function can clearly determined from the machine. Note that a problem can

only be computed by a theory machine if every possible input word can be encoded

into the machine, as we cannot just ignore troublesome inputs.

61

Chapter 4. Theory Machines

Definition 4.2.11 Let A and B be sets of symbols, and let f :⊆ Aa → Bb for

a, b ∈ {∗, ω} be a word function problem.

We say that an LSV-theory machine M = (T, I,O) is able to compute f if

there exist sets of constants A,B ⊆ V and simple sequences X,Y such that Âa
X ⊆ I,

B̂b
Y ⊆ O, and for every u ∈ dom(f) we have:

M(Φa
X(u)) = Φb

Y(f(u)).

So a theory machine is able to compute a word function problem if there exists a

simple way for a user to configure each input word into the machine, such that the

function’s output can be simply read off from the machine.

As with a decision problem, a theory machine is only able to compute a function

problem if every possible input and output word is contained within the input and

the output sets. This is required, as we do not expect to know before hand exactly

what words lie in f ’s domain and co-domain. Hence we cannot compute a partial

function by just removing the undefined elements from the input or output sets,

they must be undefined by the computation as well.

Also note the similarities between Definitions 4.2.10 and 4.2.11, with Definitions

2.2.8 and 2.1.5.

Definition 4.2.12 Let LS be a logical system and P be either a word problem

or a word function problem. We say that P is LS-computable if there exists an

LS-theory machine that is able to compute P.

Remark 4.2.13 Instead of using simple sequences as a basis for describing a theory

machine’s computation of a word problem, we could have just used computable

mappings. That is, we could have just required that there existed Turing computable

mapping from a set of input words to the set of input sets, and the set of output

sets to a set of output words.

Such a requirement would have allowed for a much more general way of defining

the inputs/outputs. However it would have also conflicted with our goal of devising

62

4.2 Describing Words as Sets of Logical Sentences

a general overarching concept of computation. As our concept would have had to

rely on another formulation of computation in order to make sense.

Another issue is that the computable mappings could themselves carry out a

computation. Meaning that any form of computation defined in this way would, by

default, be at least as powerful as a Turing machine.

63

Chapter 4. Theory Machines

64

Chapter 5

Examples of Theory Machines

Computational systems can take on many real world forms that are clearly not

identical to one another. For example two different Turing machines may be built

using completely different materials. However when we as observers look at these

different realisations it is usually clear to us when they are exhibiting the same basic

computational system. Similarly there may be multiple different inequivalent theory

machines that characterise a given computational system, however it should be clear

(or at least demonstrable) when such a characterisation occurs.

Definition 5.0.14 We say that a computational system S is characterised by a

theory machine M = (T, I,O), if every input ι of S corresponds to an input Φι in I,

in such a way that every model of M with input Φι corresponds to the computation

of S on input ι. Every output of S should also correspond to an output in O, so that

M is able to compute any problem that is computed by S.

Correspondence is of course not quite a formal mathematical notion, however it

should be clear (or at least be demonstrable) when a correspondence does occur.

For example the input of a word w into a Turing machine may correspond to the

finite word set Φ∗XTM(w) = {C(0, Si(0)) = wi | i ∈ {0, . . . , n}}∪{C(0, Sn+1(0)) = b}

in Example 4.2.5. Whereas the placement of an object at point c = 0.u0u1 . . . ∈ [0, 1)

may correspond to the input set {γ(σn(c)) = ui | i ∈ N} in Example 4.2.8.

65

Chapter 5. Examples of Theory Machines

In this chapter we will demonstrate how various well-known examples of compu-

tation can be characterised by theory machines.

5.1 Turing Machines

In the following example we will demonstrate how we can characterise a Turing

machine which decides a word problem with a theory machine that uses second-

order logic with equality (Definition 3.2.10).

Example 5.1.1 Let M = (Λ,Π,b,A, s0, 〈sa, sr〉,R) be a Turing machine1 which

computes the decision problem A ⊆ A∗.

We can then characterise M by an SO=
VM

-theory machine2:

TMM = (TMTM , Â
∗
XTM

, {{I(h) = sa}, {I(h) = sr}}),

with vocabulary:

VM = {<,S,C,H, I, 0, h} ∪ Λ ∪ Π.

Where < is the usual binary ordering relation of Z and S is the unary successor

function. C,H, I are functions such that for a cell y, the cell’s content at time step

x is given by C(x, y), the cell pointed to by the head at time x is given by H(x),

and the machine’s internal state at time x is given by I(x).

The constant 0 represents both the centre of the tape and the starting time.

Whereas the constant symbol h represents the halting time, which means that the

value of h within the structure depends on when the machine reaches a halting state.

Finally, Λ and Π are sets of constant symbols each corresponding to an element of

Λ or Π.

To input TMM uses the simple sequence:

XTM = {C(0, Sn(0))}n∈N,
1As in Definition 2.1.1 Λ is M ’s tape alphabet, Π is the set of internal states, b is the blank

symbol, A is the input alphabet, s0 is the initial state sa is the accepting state, sr is the rejecting

state, and R is M ’s set of rules.
2A SO= stands for second-order logic with equality (Definition 3.2.10).

66

5.1 Turing Machines

which as in Example 4.2.5 ensures that each input provides a full description of how

the input word is written on the tape at time 0. The theory of TMM is:

TMTM = ISA ∪ CD=
VM
∪ ITs0 ∪ ETR ∪HT(sa,sr),

where ISA is the set of integer successor axioms (Definition A.1.5), and CD=
VM

is the

set of distinct constant axioms for VM (Definition 4.2.6). The set of sentences ITs0

defines the initial configuration of the machine, the set ETR describes the evolution

of the machine, and the set HT(sa,sr) ensures that the machine halts when it reaches

sa or sr.

As ISA ⊂ TMTM , by Proposition A.1.6, any model of TMTM must be isomorphic

to an expansion of the usual ordered structure of the integers 〈Z;<,S, 0〉.

Explicitly, the initial configuration is given by:

ITs0 =


(H(0) = 0) ∧ (I(0) = s0),

∀y(((C(0, y) = b) ∧ (0 < y)→ (C(0, S(y)) = b)),

∀y((y < 0)→ (C(0, y) = b))

 .

So by ITs0 , in any model A of TMTM ∪ Φ∗XTM (w) at time 0 the head points to cell

0 and the internal state is s0. The input:

Φ∗XTM (w) = {C(0, Si(0)) = wi | i ∈ {0, . . . , |w| − 1}} ∪ {C(0, S|w|(0)) = b},

specifies that at time 0 in A the word w ∈ A∗ is written on the tape starting from the

0th tape cell. Φ∗XTM (w) also states that w is followed by a cell containing the blank

symbol b, so by the second sentence of ITs0 and induction, the contents of every

cell to the right of the input must be blank at time 0. Similarly by the last sentence

of ITs0 , every cell to the left of the input is blank. Hence the initial configuration

of A must be the same as it is for M with input w.

For evolving the configurations of the machine we have:

ETR =

 ∀x((0 < S(x)) ∧ µ(t,b)(x, x))→

(µ(u,c)(S(x), x) ∧ π(p)(x) ∧ ν(x)))

∣∣∣∣∣∣ (t, b;u, c, p) ∈ R

 .

After time step 0, each sentence of ETR implements a rule of R via the following

three sorts of terms. Firstly for each s ∈ Π, and a ∈ Λ we have the term:

µ(s,a)(x1, x2) ≡ ((I(x1) = s) ∧ (C(x1, H(x2)) = a)),

67

Chapter 5. Examples of Theory Machines

which indicates that at time x1 the internal state is s, and the cell pointed to by the

head at time x2 contains an a at time x1. Secondly for each p ∈ {LEFT, PAUSE,

RIGHT} we have the term:

π(p)(x) ≡


H(S(x)) = S(H(x)) if p = RIGHT,

H(S(x)) = H(x) if p = PAUSE,

S(H(S(x))) = H(x) if p = LEFT,

that states that at the time step after x, if p = RIGHT then the head is shifted to

the succeeding tape position, if p = LEFT then the head is shifted to the preceding

tape position, and if p = PAUSE then the head stays where it is. Finally we have:

ν(x) ≡ ∀y(¬(H(x) = y))→ (C(x, y) = C(S(x), y))),

which ensures that the tape contents of any cell that is not being pointed to by a

tape head, is preserved moving from time x to time S(x).

Hence for each (t, b;u, c, p) ∈ R the sentence ∀x((0 < S(x))∧µ(t,b)(x, x))→ (µ(u,c)

(S(x), x) ∧ π(p)(x) ∧ ν(x))) states that at any time x > 01 if the internal state is s

and the head is pointing to a cell containing a b, then at time x + 1 the internal

state becomes u, the symbol b is replaced with c, and the head position is moved

p. Also, the contents of every cell not pointed to by the head at time x is the same

at time x+ 1 as it is at time x. Therefore this sentence clearly implements the rule

(t, b;u, c, p). So since ETR contains a sentence that implements each rule of R, if the

configuration of A at time x is the same as M at time x then the configurations of

A and M are the same at time x+ 1.

For halting we have the set:

HT(sa,sr) =

 ∀x((I(x) = sa)→ (h = x)),

∀x((I(x) = sr)→ (h = x))

 .

So by HT(sa,sr) if at time x the machine is in the internal state sa or the internal state

sr then x = h, the halting time step of A. The output, which is either {I(h) = sa}

or {I(h) = sr} is therefore defined at this time.

10 < S(x) means that 0 < (x+ 1), which means that x > 0.

68

5.1 Turing Machines

So the configuration of A at time 0, along with the configuration evolution of A

is same as it is for the Turing machine M with input w. Therefore by induction,

for any t ∈ N the configuration of A at time t is the same as it is for M at time t.

Which means that A reaches sa or sr and therefore halts at the same time that M

does.

Clearly the outputs {I(h) = sa} and {I(h) = sr} are unique and completely de-

pendent on the configurations of the machine prior to time h. The outputs therefore

cannot be affected by whatever occurs afterwards in A without making A logically

inconsistent. Thus we have that, A |=SO=
VM

(I(h) = sa) if and only if M accepts w,

and A |=SO=
VM

(I(h) = sr) if and only if M rejects w.

The above description of a Turing machine machine may seem to be worryingly

complicated, leading one to question the utility of the theory machine formalism.

However it is worth noting that the Turing machine formalism is itself fairly compli-

cated to explain to someone unfamiliar with it (the original definition given by Alan

Turing took over two pages to explain [67]). The definition also relies on concepts

such as the integers and a discretely order-able notion of time. These concepts may

seem to be intuitively obvious but if we are going to be rigorous then they must

be defined in order to be enforced. Indeed, paying such careful attention to the

definition of a computational system may reveal inherent contradictions about one’s

assumptions.

Regardless, the usefulness of the theory machine formalism will be retroactively

justified by our results in future chapters.

We shall now demonstrate how we can use a theory machine to characterise a

Turing machine that computes a word function problem.

Example 5.1.2 Let M ′ = (Λ′,Π′,b,A, s′0, 〈s1〉,R′) be a Turing machine1 which

computes the function f :⊆ A∗ → B∗.

In a similar manner to Example 5.1.1 characterise M ′ with an SO=
VM′

-theory

1By Definition 2.1.1 since M ′ has only one halting state, M ′ carries out the computation of a

function.

69

Chapter 5. Examples of Theory Machines

machine:

TMM ′ = (TMTM ′ , Â
∗
XTM

, B̂∗YTM),

with vocabulary:

VM ′ = {<,S,C,H, I, 0, h} ∪ Λ′ ∪ Π′.

Where each element of {<,S,C,H, I, 0, h} is as it is in VM in Example 5.1.1, and

each of the symbols in Λ′ ∪ Π′ is a constant.

To input and output the theory machine TMM ′ uses the simple sequences:

XTM = {C(0, Sn(0))}n∈N and YTM = {C(h, Sn(H(h)))}n∈N.

So as in Example 5.1.1 XTM describes how the input word is written to the right of

cell 0 at time 0. Whereas YTM describes the output word and how it is written to

the right of cell pointed to by the tape head at time the halting time h.

The theory of TMM ′ is:

TMTM ′ = ISA ∪ CD=
VM′
∪ ITs′0 ∪ ETR′ ∪HTs1 ,

where ISA, ITs′0 , CD
=
VM′

, ETR′ are as they are in Example 5.1.1, with s′0 and R′

replacing s0 and R. Whereas HTs1 ensures that the machine halts only when its

internal state is s1. Explicitly this is achieved by:

HTs1 = {∀x((I(x) = s1)→ (h = x))}.

So if at time x the internal state reaches s1 then x is at the halting time h of any

model A′ of TMTM ′ ∪ Φ∗XTM (w). The output:

Φ∗YTM (v) = {C(h, Si(H(h))) = vi | i ∈ {0, . . . , |v| − 1}} ∪ {C(h, S|v|(H(h))) = b},

is then defined at this time.

Hence by the same reasoning as in Example 5.1.1, the configurations of A′ evolve

from time 0 exactly as they do in the Turing machine M ′ with input w, and likewise

the model outputs at the time step when the state s1 is reached. By definition when

M ′ halts the word f(w)b is written on the tape going rightwards from the tape

70

5.1 Turing Machines

head. Hence we must have A′ |=SO=
VM′

Φ∗YTM (f(w)), and this output is unique since

by definition b 6∈ B.

Therefore for any input w ∈ dom(f):

TMM ′(Φ
∗
XTM

(w)) = Φ∗YTM (f(w)).

Conversely, if w 6∈ dom(f) then M ′ on input w must never halt, hence I(p) 6= s1

for any p ∈ dom(A′). Which means that h could take any value in A′, including

negative numbers, where C(x, y) could take any value. Consequently any output

Φ∗YTM (v) ∈ B̂∗YTM can be true in some model of TMTM ′ ∪ Φ∗XTM (w), and therefore

TMM ′(Φ
∗
XTM

(w)) is undefined.

Theorem 5.1.3 Any word problem A ⊆ A∗ or function problem f :⊆ A∗ → B∗

that is computable by a Turing machine can be computed by a theory machine.

Proof: Let M be a Turing machine that computes A ⊆ A∗. The theory machine

TMM in Example 5.1.1 is then able to compute A.

To see that TMM is indeed a theory machine, note firstly that the theory of TMM

is clearly a set of SO=
VM

-sentences, and the inputs and outputs are clearly sets of

sets of SO=
VM

-sentences. Secondly, since CD=
VM
⊂ TMTM the outputs {I(h) = sa}

and {I(h) = sr} are clearly not mutually satisfiable regardless of the input.

Thirdly, for any Φ∗XTM (w) ∈ Â∗XTM the set TMTM∪Φ∗XTM (w) is satisfied by a model

such as A above in which between time 0 and the halting time the configurations of

A are identical to M with input w. However A is an expansion of Z, so times prior

to 0 or after h exist and the configurations of A must also be defined at such times.

Though these configuration are, for the most part, independent by TMTM∪Φ∗XTM (w).

So for example, at any time x where x < 0 or x > h we can have A be such that

C(x, y) = b for every cell y, H(x) = 0 and I(x) = q, where q 6∈ Π. Clearly no rule

of ETR can be applied at such times so there is no need for any evolution of these

configurations, and since I(x) 6= sa or sr we do not have h = x1 and h = x2 for

x1 6= x2, which would give a logically inconsistent model.

71

Chapter 5. Examples of Theory Machines

To see that TMM is able to compute A observe how Â∗XTM is the set of inputs of

TMM , and for any w ∈ A∗ by our reasoning in in Example 5.1.1 we have:

w ∈ A ⇐⇒ M accepts w ⇐⇒ M(Φ∗XTM (w)) = {I(h) = sa},

and:

w 6∈ A ⇐⇒ M rejects w ⇐⇒ M(Φ∗XTM (w)) = {I(h) = sr}.

Similarly, let M ′ be a Turing machine that computes f :⊆ A∗ → B∗. The theory

machine TMM ′ in Example 5.1.2 is then able to compute f . By the same reasoning

as above, TMM ′ is a theory machine, the only difference being the output set, and

by Lemma 4.2.9 since CD=
VM
⊂ TMTM no two elements of B̂∗YTM are mutually

satisfiable.

Finally, to see that TMM ′ is able to compute f note how Â∗XTM and B̂∗YTM are the

input and output sets of TMM ′ , and by our reasoning in in Example 5.1.2 for any

w ∈ dom(f) we have:

TMM ′(Φ
∗
XTM

(w)) = Φ∗YTM (f(w)).

o

5.2 Physical Systems

We may also utilise various analogue physical systems to carry out the computation

of a problem. For example, a point light source placed in front of a pair of slits

may be used to factorise integers [17] (see Subsection 5.2.2 below). However more

typically a physical system A is used to figure out how a larger physical system B

behaves. For example, one might want to calculate the flow of air around the wings

of an aircraft before building it, to do this one could build a small scale model of

the aircraft and place it in a wind tunnel with some sensors attached.

Remark 5.2.1 Suppose we have a theory machine M = (T, I,O) that characterises

a physical system S, with I corresponding to a collection of possible input states, and

72

5.2 Physical Systems

O to a collection of relevant measurable properties. S may be too large/complicated

to actually construct, and computationally infeasible to simulate with a classical

computer. However, M may have many possible models, and if for any input Φ ∈ I

there exists a much smaller/simpler model of M, then we know that we can construct

this model of T∪Φ and use it to figure out the what the properties of S are on input

Φ.

It is also possible that some aspects of M can be adjusted whilst still leading to

analogous outcomes. That is, we may transform M into a theory machine M′ =

(T′, I′,O′) in such a way that for any Φ ∈ I there exists a Φ′ ∈ I′ such that M′(Φ′) =

Θ′ if and only if M(Φ) = Θ. If we can show this is the case and M′ has easily

constructible models then we may use M′ to discern the properties of S.

The above demonstrates that we can use theory machines to carry out the concept

of model-based computation [7].

5.2.1 Physical Systems Satisfying Differential Equations

Various different physical systems (e.g. fluid-mechanical systems [55] and electro-

magnetic systems [33, 49]) are defined via a collection of smooth functions with do-

main R3×R. That is, the domain of each function consists of the usual 3-dimensions

of space, together with 1-dimensional time. The evolution of these functions typ-

ically depends on a set of differential equations (e.g. the Navier-Stokes equations

[55] or the electromagnetic wave equations [33, 49]). Given an initial state and some

boundary conditions, this set of differential equations will often define every future

state of the system. MONIAC [14] (Figure 1) is an example of a computation system

which can be defined in such a manner.

We can characterise this sort of physical system S, which computes from an

initial time of τ0 to an end time of τ1, by a theory machine MS = (TS, IS,OS) that

uses first-order real logic (Definition 3.2.7). First-order real logic (FOR) contains

{<,+,×, 0, 1} as pre-defined symbols, and every FOR-model is an expansion of

usual structure of real arithmetic 〈R;<,+,×, 0, 1〉. So the domain of any model of

73

Chapter 5. Examples of Theory Machines

MS is R, which means that any quaternary function f of MS is a function from R4

to R. To describe a vector-valued function g : R4 → R3 in MS we can split it up

into its 3 component functions g1, g2, g3 : R4 → R.

For each dimension i of R4 we can define using first-order real logic a quaternary

function ∂if to be equal to the partial derivative of f in the ith dimension. As

typically the partial derivative of a function f in the 1st dimension is defined to be:

∂1f(x, y, z, t) = lim
δ→0

f(x+ δ, y, z, t)− f(x, y, z, t)

δ
.

In a first-order real logic such a statement can be expressed by:

∀x∀y∀z∀ε∃δ(((0 < ε)→

((0 < δ) ∧ (|(((f(x+ δ, y, z, t)− f(x, y, z, t))/δ)− ∂1f(x, y, z, t))| 6 ε))).
(5.1)

Where “/” is an additional binary function symbol defined by adding the sentence

∀x∀y∀z(x = (y × z))→ ((x/y) = z) to TS
1.

The partial derivative of f in the other dimensions of R4 can be defined similarly,

and from the ∂if functions we can define the second partial derivatives of f .

A differential equation of the form ∂f
∂x

= f + 1 can then be implemented within

MS by including in TS a sentence of the form:

∀x∀y∀z∀t(∂1f(x, y, z, t) = (f(x, y, z, t) + 1)).

Similarly, a boundary condition of the form ∂f
∂z

= 0 on the xy-plane where x = 0 = y

is implemented by adding to TS the sentence:

∀z∀t(∂3f(0, 0, z, t) = 0).

The theory of MS can then be of the form:

TS ≈ Derivative definitions + Differential equations + Boundary conditions.

1Note that this sentence does not define the value of x/y for y = 0. Typically division by 0 is

of course taken to be undefined, however in any model of TS it will have a value as every function

in an FOR-structure is total. As it’s undefined, this value could be any element in R. However,

if we define TS appropriately then this value will affect neither the rest of the structure, nor the

output of any computation of MS.

74

5.2 Physical Systems

Meanwhile the input and output sets of MS can be of the form:

IS ≈ Initial states, and OS ≈ End states/Measurements.

The initial state of MS can be defined in various ways, we could for example define

the f at time τ0 to be equal some polynomial function, say:

f(x, y, z, τ0) = axyz + bx2y + cxy3z5.

In which case we would write the above as a sentence of TS with constants a, b, c,

these constants could then be specified within the input in similar manner to how

we defined a real number in Example 4.2.8.

If OS is a set of end states then its elements could take a similar form to an input

state. For example, if we knew at the end time τ1 that f was of the form:

f(x, y, z, τ1) = px2yz2 + y.

then an output could be a description of the value of the constant p. However, in

many real word cases we are unlikely to already know the form of the end state,

and even if we did, its not clear how we would learn its coefficients. Instead, an

output of such a system is more likely to take the form of measurement, which can

be described in terms of a threshold at some point in the domain for example we

could have the output set:

OS = {{(f(1, 1, 0, τ1) < 1)}, {(1 6 f(1, 1, 0, τ1))}}.

Which describes whether or not the value of f is less than 1 at point (1, 1, 0) at time

τ1.

Remark 5.2.2 More generally if f : D×R→ R is a smooth function and D ⊆ R3

is convex, then the state of f at time τq ∈ R may be described via a single infinite

word set. This is due to Taylor’s Theorem in n-variables [40], which states that the

function f at time τq is equal to a 3-dimensional Taylor series of the form:

f(x1, x2, x3, τq) =
∞∑
m=0

1

m!

3∑
i1,...,im=1

∂mf

∂yi1 · · · ∂yim
(a)

m∏
j=1

(xij − aij).

75

Chapter 5. Examples of Theory Machines

Where a is some element of D × {τq}, the collection of values of ∂mf
∂yi1 ···∂yim

(a) for

i1, . . . , im ∈ {1, 2, 3} and m ∈ N then defines f everywhere in D × {τq}. This is

a countable set of real numbers, which means that it can be defined with a single

infinite word, and can therefore be described via a single infinite word set.

Further, if D is not convex but is compact, then we are able to cover D by a

finite set of convex balls {Ui}Ki=1. Hence we can describe f at time τq within each

ball Ui via a 3-dimensional Taylor series defined using the partial derivatives of f(c)

for some c ∈ Ui. The state of f at time τq can therefore be entirely defined via an

infinite word set which describes each of these Taylor expansions.

5.2.2 Blakey’s Double Slit Factoriser

A specific example of a physical computational system that can be described via a

collection of functions that satisfies a set of differential equations is Blakey’s double

slit factoriser. Blakey’s double slit factoriser was described by Blakey in [17], notably

the device is capable of factorising integers in polynomially bounded space and time

whilst still being describable with classical physics.

Blakey’s factoriser (Figure 5.2.2) consists of a screen with a pair of slits of distance

1 apart at points A = (0, 0) and B = (1, 0) with a light source placed in front of the

two slits at C = (1
2
, −1

2
). A detector runs perpendicular to the screen from A which

detects where sufficiently strong instances of radiation hit the screen.

To factorise the integer n ∈ N one makes the light source emit radiation of wave-

length 1
2
√
n

from C. The two slits then diffract the light wave, causing an interference

pattern on the detector. Blakey showed in [17] that if maximal constructive inter-

ference is detected at a distance h from the screen then
√
n(
√
h2 + 1 + h) must be

a factor of n.

We can describe the propagation of the light wave via an electromagnetic wave

function E : R4 → R3 that satisfies the electromagnetic wave equations for a point

charge [33, 49] at (0.5, -0.5, 0) with magnitude m, which is a differential equation of

76

5.2 Physical Systems

?

D
et

ec
to

r

A B

C

h

Figure 5.1: A diagram of the wave propagation in Blakey’s double-slit factoriser.

the form: (
v2
ph∇2 − ∂2

∂t2

)
E = -mδ(~x− (0.5, -0.5, 0)), (5.2)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian, vph is the speed of light in the medium

of the wave, and δ is the Dirac delta function1.

Hence we can characterise Blakey’s factoriser with an FOR-theory machine whose

theory contains the electromagnetic wave equations for a point charge. The screen

and slits can be implemented as boundary conditions. Whereas the wavelength of

the light source may be defined using the an integer input n ∈ N, which itself can

be defined as binary word. The point of maximal constructive interference h may

be similarly defined as the lowest point on the y-axis such that |E| = 2α, where α is

the amplitude of the wave. From h, the factor
√
n(
√
h2 + 1 + h) can be outputted

by the machine as another binary word.

1So δ(~y) =

 1 if ~y = (0, 0, 0),

0 otherwise.
for any ~y ∈ R3 [49].

77

Chapter 5. Examples of Theory Machines

5.3 Extensions of the Turing Machine Model

Turing machines take finite words as inputs and give finite words as outputs. How-

ever, as indicated by Definitions 4.2.7 we are able to input infinite words into a

theory machine, and a theory machine is able to compute infinite output words.

An extension of the Turing machine model that admits infinite inputs and outputs

is the type-2 machine (See Section 2.3 for details). Type-2 machines are them-

selves an extension of the multi-tape Turing machine model (Definition 2.1.8), and

in this section we will demonstrate how both of these models of computation can be

characterised by theory machines.

5.3.1 Multi-tape Turing machines

If both the input and output sets of a type-2 machine are of type ∗ then it behaves

identically to a multi-tape Turing machine. Indeed to highlight their similarities we

shall firstly characterise a multi-tape Turing machine before demonstrating how its

description can be simply converted into a type-2 machine.

Example 5.3.1 Let Mm = (Λ,Π,b,A, s0, 〈s1〉,P) be a multi-tape Turing machine1

which computes the function g :⊆ A∗ → B∗.

We can then characterise Mm by an SO=
VMm

-theory machine:

TMMm = (TMTMm , Â
∗
XTM1

, B̂∗YTMm),

with vocabulary:

VMm = {<,S, I, 0, h} ∪ {C1, . . . , Cm} ∪ {H1, . . . , Hm} ∪ Λ ∪ Π.

Where <,S, I, 0, h are as in Example 5.1.1, and Λ ∪Π is a set of constant symbols.

Whereas C1, . . . , Cm are binary functions and H1, . . . , Hm are unary functions such

that Cn(x, y) gives the symbol in cell y, on tape n ∈ {1, . . . ,m} at time x, and the

cell pointed to by the nth tape head at time x is given by Hn(x).

1So as in Definition 2.1.8 Λ,Π,b,A, s0, and 〈s1〉 are as they are for a Turing machine and each

rule of P is an element of Π \ {s1})× Λm ×Π× Λm × {LEFT, PAUSE,RIGHT}m.

78

5.3 Extensions of the Turing Machine Model

To input and output TMMm uses the simple sequences:

XTM1 = {C1(0, Sm(0))}n∈N and YTMm = {Cm(h, Sn(0))}n∈N.

The theory of TMMm is then:

TMTMm = ISA ∪ CD=
VMm
∪ IT(s0,m) ∪ ETP ∪HTs1 ,

where exactly as in Example 5.1.2 ISA is the set of integer successor axioms (Defini-

tion A.1.5), CD=
VMm

is the set of distinct constant axioms for VMm (Definition 4.2.6),

and HTs1
1 ensures that the machine halts when it reaches s1. Whereas IT(s0,m) de-

fines the initial configuration of every tape, and each sentence of ETP describes a

multi-tape rule of the machine.

As before, since the theory contains ISA, any model of TMTMn must be isomor-

phic to an expansion of the usual ordered structure of the integers. Explicitly, the

initial configuration of the multi-tape Turing machine is given by:

IT(s0,m) =



∧m
n=1(Hn(0) = 0) ∧ (I(0) = s0),

∀y(((C1(0, y) = b) ∧ (0 < y))→ (C1(0, S(y)) = b)),

∀y((y < 0)→ (C1(0, y) = b)),

∀y
∧m
n=2(Cn(0, y) = b)


.

This points every tape head to cell 0 at time 0, and as in Example 5.1.2 ensures

that every tape cell on tape 1 not defined by the input is blank at time 0. The last

sentence of IT(s0,m) then implies that every tape cell not on tape 1 is also blank at

time 0. For applying the rules of Mn we have:

ETP =

 ∀x((0 < S(x)) ∧ µ(tl,~bl)
(x, x))→

(µ(~ul,~cl)(S(x), x) ∧ π(~pl)(x) ∧ νm(x)))

∣∣∣∣∣∣ (tl,~bl;ul,~cl; ~pl) ∈ P

 .

As in Example 5.1.1 each sentence of ETP implements a rule of P via three sorts of

terms, this time in a multi-tape form. So firstly for each s ∈ Π and ~a ∈ Λm we have:

µ(s,~a)(x1, x2) ≡ (I(x1) = s) ∧
m∧
n=1

(Cn(x1, Hn(x2)) = an),

1Recall that HTs1 = {∀x((I(x) = s1)→ (h = x))}.

79

Chapter 5. Examples of Theory Machines

which indicates that at time x1 the internal state is s, and the cell pointed to by

head n at time x2 contains an at time x1, for each n ∈ {1, . . . ,m}. Secondly for

p ∈ {LEFT, PAUSE,RIGHT} and n ∈ {1, . . . ,m} let:

π(p,n)(x) ≡


Hn(S(x)) = S(Hn(x)) if p = RIGHT,

Hn(S(x)) = Hn(x) if p = PAUSE,

S(Hn(S(x))) = Hn(x) if p = LEFT,

For ~p ∈ {LEFT, PAUSE,RIGHT}m we then have:

π(~p)(x) ≡
m∧
n=1

π(p,n)(x).

which states that at the time step after x the head on each tape is shifted in the

manner indicated by p. Finally we have:

νm(x) ≡ ∀y
m∧
n=1

(¬(Hn(x) = y)→ (Cn(x, y) = Cn(S(x), y))),

which ensures that the tape contents of any cell that is not being pointed to by a

tape head is preserved moving from time x to time S(x).

Hence by same reasoning as in Examples 5.1.1 and 5.1.2 the configurations of

any model C of TTMMm ∪ Φ∗XTM1
(w) evolve from time 0 exactly as they do in the

multi-tape Turing machine Mm with input w ∈ dom(g). Like in Example 5.1.2 HTs1

ensures that when C reaches the state s1 the machine halts, labelling the time step

that this happens at by h. By definition of Mm tape m should then contain the

word g(w)b written from tape square 0 at time h, and as the configurations of C

are identical to those of Mm we have that C models the output:

Φ∗YTMm (g(w)) =
{Cm(h, Si(0)) = g(w)i | i ∈ {0, . . . , |g(w)| − 1}}

∪ {Cm(h, S|g(w)|(0)) = b},

Therefore for any w ∈ dom(g):

TMMm(Φ∗XTM1
(w)) = Φ∗YTMm (g(w)).

5.3.2 Type-2 Machines

We shall now demonstrate how we can characterise a type-2 machine with a theory

machine.

80

5.3 Extensions of the Turing Machine Model

Example 5.3.2 Let T = (Λ,Π,b,A, s0, s1,U, a, b) be a type-2 machine with m

tapes1 that computes the function f :⊆ Aa → Bb.

We can then characterise T by an SO=
VT

-theory machine:

T2MT = (T2MTT , Â
a
XTM1

, B̂b
YT2

),

with vocabulary:

VT = {<,S,O, I, 0, h} ∪ {C1, . . . , Cm} ∪ {H1, . . . , Hm} ∪ Λ ∪ Π.

where O is a unary function used in defining the output, and everything in VT \{O}

is as it is for VMm in Example 5.3.1. The input sequence XTM1 is as it is in Example

5.3.1, whereas the output sequence is:

YT2 = {O(Sn(0))}n∈N.

The theory of T2MT is:

T2MTT = ISA ∪ IT(s0,m) ∪ ETU ∪HT bs1 .

Where ISA, CD=
VT

, IT(s0,m), and ETU are as they are in Example 5.3.1, with the

constants of VT replacing those of VMm and P replaced by U. The setHT bs1 deals with

defining the output and halting, however T should only halt if Bb = B∗, otherwise

if Bb = Bω then T should never halt. Hence we have:

HT bs1 =

 HTs1 ∪ {∀y(O(y) = Cm(h, y))} if b = ∗,

{∀x∀y(¬(Cm(x, y) = b)→ (O(y) = Cm(x, y))} if b = ω.

Where as in Example 5.3.1 HTs1 = {∀x((I(x) = s1) → (h = x))}, so if b = ∗ the

additional sentence ensures that O(y) gives the contents of the yth cell of tape m

at time h. If T never halts then there is no point at which the whole output will

be written on tape m, so in order to extract it we have HT ωs1 which defines O(y)

to be equal to whatever the contents of cell y of tape m are when it is not blank.

1As in Definition 2.3.1; Λ is the alphabet of tape symbols, Π is the set of internal states, b ∈ Λ

is the blank tape symbol, A ⊆ (Λ \ b) is the alphabet of input symbols, s0 ∈ Π is the initial state,

s1 ∈ Π is the halting state, U is a set of m-tape Turing machine rules, and a, b ∈ {∗, ω} are the

input and output types.

81

Chapter 5. Examples of Theory Machines

This value is well-defined as, by the definition of a type-2 machine, each square of

the mth tape eventually has a non-blank symbol written on it, and afterwards this

symbol remains fixed.

Let D be a model of T2MTT ∪ Φa
XTM1

(w) for some w ∈ dom(f). Clearly by the

input and IT(s0,m), for each i ∈ {1, . . . ,m} and y ∈ N the values of Ci(0, y), Hi(0),

and I(0) in D correspond exactly to the initial configuration of T . As D |=SO=
VT
ETU

the evolution of these values moving from Ci(n, y) to Ci(S(n), y) should similarly

correspond exactly to the evolution of T . Therefore by induction for every x ∈ N

the values of Ci(x, y), Hi(x), and I(x) correspond exactly to the configurations of

T at every time x.

Now there are two possible cases.

Case 1. b = ∗, in which case if w ∈ dom(f) then T on input w must eventually

halt. By HT ∗s1 , at this time step in D the values of O(y) are defined for each y ∈ N

to be equal to the contents of tape m. So as in Example 5.3.1 since tape m should

contain the word f(w)b written from square 0, we have that:

D |=SO=
VT
{O(Si(0)) = f(w)i | i ∈ {0, . . . , |f(w)| − 1}} ∪ {O(S|f(w)|(0)) = b}.

Conversely if w 6∈ dom(f) then T on input w must never halt, in which case we

have the same scenario as in Example 5.1.2 and any possible output in B̂b
YT2

could

be true in a model of T2MTT ∪ Φa
XTM1

(w). Therefore T2M(Φa
XTM1

(w)) is undefined

for such w.

Case 2. b = ω, in which case if w ∈ dom(f) then T must on input w eventually

write a symbol on each cell of tape m. The value of Cm(x, y) in D for each y ∈ N is

therefore eventually defined to be f(w)y. Hence by HT ωs1 and the reasoning above

the value of O(y) in D is then defined to be equal to f(w)y. Thus we have that:

D |=SO=
VT
{O(Si(0)) = f(w)i | i ∈ N}.

Conversely if w 6∈ dom(f) then T on input w must either halt at some point, or

eventually cease to write symbols onto the mth tape. In either scenario there must

exist an N ∈ N such that Cm(x, Sn(0)) = b for all n > N . Hence O(Sn(0)) is not

82

5.3 Extensions of the Turing Machine Model

specified by T2M∪Φa
XTM1

(w) and could take any value. Therefore T2M(Φa
XTM1

(w))

is undefined for such w.

In both of the above cases D was an arbitrary model of T2MTT ∪Φa
XTM1

(w), hence

we have that T2MT (Φa
XTM1

(w)) = Φb
YT2

(f(w)) for each w ∈ Aa.

Notably, the output function O of T2MT is unary. Only taking a cell position as an

input, so O does not have any apparent time dependency. In a sense his means that

O’s value exists outside of time, whilst still depending on the temporally ordered

computation. The atemporal nature of this output is therefore an example of how

a theory machine is able to compute without conforming to the usual assertion that

the entirety of a computational process must follow a causal temporal order.

Theorem 5.3.3 Any word function problem f :⊆ Aa → Bb for a, b ∈ {∗, ω} that

is computable by a type-2 machine can be computed by a theory machine.

Proof: Let T be a type-2 machine that computes f :⊆ Aa → Bb, so for any w ∈ Aa

we have T (w) = f(w). The theory machine T2MT in Example 5.3.2 is then able to

compute f .

To see that T2MT is indeed a theory machine we can follow the same reasoning

as in the proof of Theorem 5.1.3, noting that a type-2 machine with input w ∈ Aa

provides a model of T2MTT ∪ Φa
XTM1

(w) provided that at negative time steps the

internal state of the machine is not in Π. The fact that the outputs are mutually

unsatisfiable also follows from Lemma 4.2.9.

To see that T2MT is then able to compute f observe how Âa
XTM1

and B̂b
YT2

are

the input and output sets of T2MT , and by our reasoning in Example 5.3.2, for any

w ∈ dom(f) we have:

T2MT (Φa
XTM1

(w)) = Φb
YT2

(f(w)).

o

83

Chapter 5. Examples of Theory Machines

84

Chapter 6

Properties of Theory Machine

Computation

We used to think that if we knew one, we knew two, because one and

one are two. We are finding that we must learn a great deal more about

‘and.’ - Sir Arthur Eddington

In Chapter 5 we saw that various sorts of computation devices and frameworks can

be characterised with theory machines. For finite word problems, the computational

power of each of these examples has so far been less than or equal to that of a Turing

machine1. So naturally one might be led to speculate that the computational power

of any theory machine is it at most that of a Turing machine. However, the following

result demonstrates that such an assertion is quite spectacularly false.

Proposition 6.0.4 For any word problem A ⊆ A∗ and any word function problem

f :⊆ A∗ → B∗ there exists an FO-theory machine that is able to compute A and

an FO-theory machine that is able to compute f .

Proof: Consider the FOVA-theory machine:

MA = (TA, Â
∗
XC
, {{P}, {¬P}}),

1Note that by Remark 2.1.6 and Theorem 2.1.12 there exist finite word problems that are not

computable by a Turing machine.

85

Chapter 6. Properties of Theory Machine Computation

in vocabulary:

VA = {=, S, C, P, 0,b} ∪A,

where = is a binary relation, S,C are unary functions, P is a 0-ary relation, and

{0,b} ∪A are constant symbols. Let the input sequence be:

XC = {C(Sn(0))}n∈N,

and let MA have theory:

TA = EQ=
VA
∪


|w|−1∧

n=0

(C(Sn(0)) = wn) ∧ (C(S|w|(0)) = b)

→ P

∣∣∣∣∣∣ w ∈ A


∪


|w|−1∧

n=0

(C(Sn(0)) = wn) ∧ (C(S|w|(0)) = b)

→ ¬P
∣∣∣∣∣∣ w 6∈ A

 .

Clearly then TA ∪ Φ∗XC (w) |=FO P iff w ∈ A and otherwise TA ∪ Φ∗XC (w) |=FO ¬P .

Therefore MA is able to compute A.

Similarly, consider the FOVf -theory machine:

Mf = (Tf , Â
∗
XC
, B̂∗XW),

in vocabulary:

Vf = VA ∪ {W} ∪B,

where W is a unary function, and B is a set of constant symbols. Let the output

sequence be:

XW = {W (Sn(0))}n∈N,

and let Mf have theory:

Tf = EQ=
Vf
∪ T′f ,

where:

T′f =



|w|−1∧
n=0

(C(Sn(0)) = wn) ∧ (C(S|w|(0)) = b)


→

|f(w)|−1∧
n=0

(C(Sn(0)) = f(w)n) ∧ (C(S|f(w)|(0)) = b)



∣∣∣∣∣∣∣∣∣∣∣∣
w ∈ dom(f)


.

Clearly then Tf ∪ Φ∗XC (w) |=FO Φ∗XW (f(w)) for every w ∈ dom(f). Therefore Mf is

able to compute f . o

86

So with first-order theory machines we are able to compute any finite word prob-

lem. Arguably, this result is quite problematic as not only do MA and Mf above

compute in a manner which provides no real insight into the problems that they are

calculating. But it is also very difficult to see how real world computational devices

that model MA or Mf could ever be constructed for the majority of problems, even

if we already knew A or f in its entirety.

Furthermore the issue here is not just not limited to first-order theory machines.

In any logical system which contains first-order logic we can characterise exactly the

same sort of device.

Crucially though the theories of MA and Mf are both countably infinite in size,

and it is this infinite amount of information that really enables these theory machines

to compute arbitrary finite word problems. If we restricted ourselves to considering

only theory machines with finite theories (consisting of only finite sentences) then

questionable examples such as MA and Mf would not be possible. Indeed each of the

theory machine examples we gave in Chapter 5 had finite theories. Furthermore,

a finite theory can be finitely described, which conforms with Horsman et al.’s

assertion in [48] that we can only ever obtain a finite amount of information about

a physical system that we are computing with.

Definition 6.0.5 Let LS be a logical system. A finite LS-theory machine is an

LS-theory machine M = (T, I,O) such that T is a finite set of sentences.

In Chapter 8 we will we will show that a finite word problem is computable by a

finite first-order theory machine if and only if it is computable by a Turing machine

(Theorem 8.2.1). However in this chapter we will consider consider computation

with more general logical systems.

Definition 6.0.6 Let LS be a logical system. We say that a problem P is finite

LS-computable if there exists a finite LS-theory machine that is able to compute

P .

87

Chapter 6. Properties of Theory Machine Computation

Though the class of finite LS-theory machines is clearly a very general object, as

we shall see, the collection of problems that machines within the class are able to

compute satisfies several interesting properties.

Proposition 6.0.7 Let LS be a logical system. If a word problem A ⊆ Aa for

a ∈ {∗, ω} is computable by a finite LS-theory machine then the problem A∗ \A is

computable by a finite LS-theory machine.

Proof: Let M be a finite LS-theory machine such that M is able to compute A.

There then must exist a simple sequence X such that Âa
X ⊆ I, and two distinct finite

output sets Θ,Ψ ∈ O such that for every w ∈ Aa:

(w ∈ A ⇐⇒ M(Φa
X(w)) = Θ) and (w 6∈ A ⇐⇒ M(Φa

X(w)) = Ψ).

It is then the case that M is itself able to compute Aa \ A by simply swapping the

interpretation Θ and Ψ, taking Ψ to indicate that w ∈ Aa \ A and Θ to indicate

that w 6∈ Aa \ A. o

The fact that the collection of decision problems that are computable by the class

of finite LS-theory machines is in fact closed under complementation may seem a

little surprising. As there are many classes of decision problems, such as Σ0
1 and

NP, which are not closed under complementation (or at least not believed to be).

However decision a problem B ⊆ A∗ is in Σ0
1 or NP not because there is a definite

machine which is able to decide it, but because the elements of B and only B can

be found in some way. The elements of A∗ \B are not necessarily obtainable in any

specified manner.

Proposition 6.0.7 follows from the fact that a finite LS-theory machine can only

compute A ⊆ A∗ if it can decide whether w ∈ A or w 6∈ A given any element of A∗.

So we can just use the same machine to compute A∗ \ A.

88

6.1 Combining Theory Machines

6.1 Combining Theory Machines

Suppose functions f :⊆ Aa → Bb and g :⊆ Bb → Cc are both computable by finite

LS-theory machines, an important question is whether g ◦ f :⊆ Aa → Cc is also

computable by a finite LS-theory machine. Similarly, if A,B ⊆ Aa are both finite

LS-computable then are both A ∩B and A ∪B finite LS-computable?

For many sorts of computational device [50, 65], this functional concatenation

along with the intersection and union of problems follows trivially. But the theory

machines in a given class may characterise many different sorts of computational

device, so as we shall see, these properties do not always hold.

6.1.1 Joining Theories

Given a finite LS-theory machine M1 which is able to compute f :⊆ Aa → Bb

and a finite LS-theory machine M2 which is able to compute g :⊆ Bb → Cc,

we wish to construct a finite theory machine which is able to compute g ◦ f :⊆

Aa → Cc. An obvious candidate would be a LS-theory machine whose models are

exactly the structures which consist of a model of M1 unified with a model of M2.

Ideally providing a structure which characterises a computation of M1 followed by

a computation of M2.

Such a machine requires a logical system in which this structural unification can

be described. But before we can describe these logical systems, we give the following

definition which explains what we formally mean when we refer to the unification

of two LS-structures.

Definition 6.1.1 Let LS be a logical system, V1 and V2 be disjoint LS-vocabularies,

and V ⊇ V1 ∪ V2. Let A1 be an LSV1-structure, and A2 be an LSV2-structure.

An LSV-structure A is a join of A1 and A2 if dom(A) = dom(A1)∪dom(A2), and

A|dom(A1) and A|dom(A2) are LSV-extensions of A1 and A2 respectively. We denote

this by A = A1 ∪ A2.

89

Chapter 6. Properties of Theory Machine Computation

Suppose that we are given two LS-theories T1 and T2. Our goal is to construct

an LS-theory S whose collection of models are exactly the structures which are a

model of T1 unified with a model of T2. Formally we require that S is as follows.

Definition 6.1.2 Let LS be a logical system, and V1 and V2 be disjoint LS-

vocabularies. Let T1 be an LSV1-theory and T2 be an LSV2-theory.

Suppose that S is an LS-theory such that A is a model of S iff A = A1 ∪ A2, for

some A1 |=LSV1
T1 and some A2 |=LSV2

T2. We then say that S joins T1 and T2.

Definition 6.1.3 A logical system LS is joinable if for any LSV1-theory T1 and

any LSV2-theory T2 such that V1 and V2 are disjoint, there exists an LS-theory S

that joins T1 and T2.

We shall demonstrate below that if LS is joinable, then functional concatenation

can be achieved within the class of finite LS-computable problems.

As we shall prove in Lemma 6.1.7 first-order logic is joinable. To join together two

theories of first-order logic T1,T2 we add two new unary relation symbols P1, P2 6∈

(V1∪V2) to the vocabulary with P1(x) meaning “x is within a structure that models

T1” and P2(x) meaning “x is within a structure that models T2”. In each sentence of

Ti we then modify each instance of quantification to quantify only over the elements

in the appropriate structure.

Definition 6.1.4 [39, 66] Let LS contain first-order logic. For any LS-sentence

φ and unary predicate P let φP denote the sentence obtained by replacing each

instance of ∀ with ∀P and ∃ with ∃P . Where:

∀Px(ψ(x)) ≡ ∀x(P (x)→ ψ(x)) and ∃Px(ψ(x)) ≡ ∃x(P (x) ∧ ψ(x)).

We then say that φP is the sentence φ sorted by P .

For a set of first-order sentences T let TP = {φP | φ ∈ T}, and say that TP is the

set T sorted by P .

Example 6.1.5 Let V = {Q,S, f, g, c} where Q is a binary relation, S is a unary

90

6.1 Combining Theory Machines

relation, f is a binary function, g is a unary function, and c is a constant. Consider

the theory:

T =



S(c),

∀xS(g(x)),

∃x∀y(Q(x, c) ∨ S(f(x, y))),

∀1R∃x(R(x)→ S(x))


.

Let P 6∈ V be a unary relation. We can then sort T by P , obtaining the set of

sentences:

TP =



S(c),

∀PxS(g(x)),

∃Px∀Py(Q(x, c) ∨ S(f(x, y))),

∀1R∃Px(R(x)→ S(x))


,

which is equivalent to:

S(c),

∀x(P (x)→ S(g(x))),

∃x(P (x) ∧ ∀y(P (y)→ (Q(x, c) ∨ S(f(x, y))))),

∀1R∃x(P (x) ∧ (R(x)→ S(x)))


.

The set of sentences TP then applies exactly to the elements in which P (x) is true.

Implicitly we take logical structures to be closed under functional assignments

and to contain all of a vocabulary’s constants. These properties are not usually

specified, but might well be necessary in order for a theory to specify the appropriate

structures. We therefore have the following definition.

Definition 6.1.6 For a unary relation P , a constant c, and an n-ary function f let:

PPc ≡ P (c), and

PPf ≡ ∀Px1 · · · ∀PxnP (f(x1, . . . , xn)).

For a vocabulary V the set of P -preservation sentences for V is:

PPV = {PPs | s is a constant or a function in V}.

Lemma 6.1.7 First-order logic is joinable.

91

Chapter 6. Properties of Theory Machine Computation

Proof: Let T1 and T2 be two first-order theories in disjoint vocabularies V1 and V2

respectively. Let P1, P2 6∈ V1 ∪ V2 be unary relations, and V = V1 ∪ V2 ∪ {P1, P2}.

Consider the V-theory:

J
(P1,P2)
(T1,T2;V1,V2) = TP1

1 ∪ PP1

V1
∪ TP2

2 ∪ PP2

V2
.

This theory joins T1 and T2.

To see this, suppose that A1 |=LSV1
T1 and A2 |=LSV2

T2. Let A′1 be a V-expansion

of A1 in which P1(p) is true for every p ∈ dom(A′1), and let A′2 be a V-expansion of

A2 in which P2(q) is true for every q ∈ dom(A′2).

The join A = A′1∪A′2 then FOV-models J
(P1,P2)
(T1,T2;V1,V2) as clearly A satisfies PP1

V1
∪PP2

V2
,

since A′1 and A′2 are by definition closed under the functions of V1 and V2 respectively.

We also have A |=FOV
TP1

1 , as the truth of TP1
1 depends only on the elements of A for

which P is true, which are exactly the elements in A′1, for which T1 holds. Similarly

A |=FOV
TP2

2 as the truth of TP2
2 depends only on the elements in A′2, for which P2

is true.

Now suppose that B |=FOV
J

(P1,P2)
(T1,T2;V1,V2), then clearly B has two partial-substructures

BP1 and BP2 , such that x ∈ dom(BPi) iff Pi(x) is true. As B models PP1

V1
∪ PP2

V2
,

both BP1 and BP2 must be respectively V1-closed and V2-closed. Hence B′P1
the

V1-reduct of BP1 , and B′P2
the V2-reduct of BP2 are FOV-structures. Now as TP1

1

does not reference any element of dom(B) that lies outside of dom(BP1), the struc-

ture B′P1
must satisfy T1. Similarly as TP2

2 only references elements of dom(BP2),

the structure B′P2
satisfies T2. Therefore B must be a join of structures that satisfy

T1 and T2. o

Lemma 6.1.8 Any logical system which contains first-order logic 1 is joinable.

Proof: If a logical system LS contains first-order logic then the theory J
(P1,P2)
(T1,T2;V1,V2)

from proof of Lemma 6.1.7 can be defined in exactly the same manner and we can

follow exactly the same argument as above with LS replacing first-order logic.

1Such as every logical system defined in Subsection 3.2.1

92

6.1 Combining Theory Machines

In some logical systems (such as first-order real logic) every LS-model must have

the same domain, in which case the sorting relations are unnecessary and the theory

T1 ∪ T2 joins T1 and T2.

o

6.1.2 Concatenating and Combining Theory Machines

Theorem 6.1.9 Let LS be a logical system which contains first-order logic. If the

word function problems f : Aa → Bb and g : Bb → Cc where a, b, c ∈ {∗, ω} are

computable by a finite LS-theory machine, then g ◦ f is computable by a finite

LS-theory machine.

Proof: Let M1 = (T1, I1,O1) be a finite LSV1-theory machine that is able to com-

pute f with inputs Âa
X1
⊆ I1 and outputs B̂b

Y1
⊆ O1, as well as equality relation

=1 ∈ V1, which satisfies the equality axioms EQ=1

V1
⊆ T1 (Definition A.1.1).

Similarly, let M2 = (T2, I2,O2) be a finite LSV2-theory machine that is able to

compute g with inputs B̂b
X2
⊆ I2 and outputs ĈcY2

⊆ O2, as well as equality relation

=2 ∈ V2, with EQ=2

V2
⊆ T2.

Clearly B ⊆ (V1 ∩ V2), so V1 and V2 are not disjoint. However to ensure dis-

jointness we can just replace V2 with V2 = {v | v ∈ V2} and relabel the sentences

of M2 = (T2, I2,O2) to give us the finite LSV2
-theory machine M2 = (T2, I2,O2).

Clearly M2 and M2 are able to compute exactly the same problems as each model

of M2 is isomorphic to a model of M2.

Also let the output simple sequence of M1, and the input simple sequence of M2

be:

Y1 = {γ1(σn1 (δ1))}n∈N and X2 = {γ2(σn2 (δ2))}n∈N.

Consider the LSV-theory machine M′ = (T′, I1,O2) with vocabulary:

V = V1 ∪ V2 t {P1, P2, ϑ},

93

Chapter 6. Properties of Theory Machine Computation

where P1, P2 are unary relations and ϑ is a unary function. Let M′ have theory:

T′ = J
(P1,P2)
(T1,T2;V1,V2) ∪KP1

(B;Y1,X2;ϑ).

Where J
(P1,P2)
(T1,T2;V1,V2) is as in proof of Lemma 6.1.7. Whereas KP1

(B;Y1,X2;ϑ) defines ϑ to

be a function that maps every output in B̂b
Y1

onto its corresponding input in B̂
b

X2
:

KP1

(B;Y1,X2;ϑ) =


ϑ(δ1) =2 δ2,

∀P1x(ϑ(σ1(x)) =2 σ2(ϑ(x))),

∀P1x
∧

s∈(B∪{b})

((γ1(x) =1 s)→ (γ2(ϑ(x)) =2 s))

 .

J
(P1,P2)
(T1,T2;V1,V2) and KP1

(B;Y1,X2;ϑ) are finite, so M′ is also a finite LS-theory machine.

Let A be a model of T′. For any p, q ∈ dom(A) if p = σn1 (δ1) and q = σn2 (δ2) for

some n ∈ N, then we have ϑ(p) =2 q in A, this follows from the first and second

sentences of KP1

(B;Y1,X2;ϑ) and induction on n. Hence, by the third sentence we must

also have that if γ1(p) =1 s in A then γ2(q) =2 s in A.

Therefore if A |=LSV
Φb

Y1
(v) for some v ∈ Bb, then we must also have A |=LSV

Φb
X2

(v).

Now let A |=LSV
T′∪Φa

X1
(w) for some w ∈ Aa. By Lemma 6.1.8, since J

(P1,P2)
(T1,T2;V1,V2) ⊂

T′ the structure A is a join of a model A1 of T1 and a model A2 of T2. Additionally

A1 |=LSV
Φa

X1
(w), so since M1 computes f we also have A1 |=LSV

Φb
Y1

(f(w)).

Hence A |=LSV
Φb

Y1
(f(w)), so by our reasoning above A |=LSV

Φb
X2

(f(w)). Which

means that A2 |=LSV
Φb

X2
(f(w)), and as M2 computes g we have A2 |=LSV

Φc
Y2

(g(f(w))).

Therefore A |=LSV
Φc

Y2
(g(f(w))), and as A was arbitrary we have:

M′(Φa
X1

(w)) = Φc
Y2

(g ◦ f(w)),

for any w ∈ Aa. o

Definition 6.1.10 Let M1 and M2 be LS-theory machines as in the proof of The-

orem 6.1.9 above. We then refer to M′ above as the (B;Y1,X2)-concatenation of M1

and M2 which we denote by M2 ◦(B;Y1,X2)
M1.

94

6.1 Combining Theory Machines

Note how f and g in Theorem 6.1.9 are total functions, an obvious question is

whether the above result works for partial functions as well. It so happens that the

concatenation of two finite LS-computable partial functions is not in general finite

LS-computable, see Corollary 8.3.7 for details.

However as the below example indicates, the concatenation of two Turing com-

putable finite word functions is necessarily Turing computable.

Example 6.1.11 Let M1 and M2 be Turing machines that compute functions f :⊆

A∗ → B∗ and g :⊆ B∗ → C∗ respectively. We can then characterise M1 and M2 as

in Example 5.1.2 by SO=-theory machines:

TMM1 = (TMTM1 , Â
∗
XTM

, B̂∗YTM), and TMM2 = (TMTM2 , B̂
∗
XTM

, Ĉ∗YTM).

The (B;YTM ,XTM)-concatenation M2◦(B;YTM,XTM)
M1 is then able to compute g◦f :⊆

A∗ → C∗.

Theorem 6.1.12 Let LS be a logical system which contains first-order logic. If

word problems A,B ⊆ Aa where a ∈ {∗, ω} are computable by a finite LS-theory

machine then A ∩B and A ∪B are computable by a finite LS-theory machine.

Proof: Let M1 = (T1, I1,O1) be a finite LSV1-theory machine that is able to com-

pute A ⊆ Aa, with inputs Âa
X1
⊆ I1, and outputs Θ1,Ψ1 ∈ O1 corresponding to

accepting and rejecting1 respectively. Also let M1 have equality relation =1 ∈ V1,

which satisfies the equality axioms EQ=1

V1
⊆ T1.

Similarly, let M2 = (T2, I2,O2) be a finite LSV2-theory machine that is able to

compute B ⊆ Aa, with inputs Âa
X2
⊆ I2, and outputs Θ2,Ψ2 ∈ O2 corresponding

to accepting and rejecting respectively. Also let M2 have equality relation =2 ∈ V2,

which satisfies the equality axioms EQ=2

V2
⊆ T2.

As in the proof of Theorem 6.1.9 we can replace V2 with V2 to ensure that

V1 ∩ V2 = ∅.
1As in Definition 4.2.10

95

Chapter 6. Properties of Theory Machine Computation

By definition, Ψ1 must be a finite set of sentences, so let ψ1 =
∧
φ∈Ψ1

φ. We then

have Ψ1 |=LSV1
ψ1 and ψ1 |=LSV1

Ψ1. Similarly let ψ
2

=
∧
φ∈Ψ2

φ.

Consider the finite LSV-theory machine M′′ = (T′′, I1,O
′′), with vocabulary V =

V1 ∪ V2 t {P1, P2, ϑ}, where P1, P2 are unary relations and ϑ is a unary function.

Let M′′ have theory:

T′ = J
(P1,P2)
(T1,T2;V1,V2) ∪KP1

(A;X1,X2;ϑ).

where J
(P1,P2)
(T1,T2;V1,V2) and KP1

(A;X1,X2;ϑ) are as in the proof of Theorem 6.1.9, with the

terms of X1 replacing those of Y1.

Let B be a model of T′′. By our reasoning in the proof of Theorem 6.1.9, we can

see that if B |=LSV
Φa

X1
(w) for some w ∈ Aa, then B |=LSV

Φa
X2

(w). So each input

of M1 is copied and becomes an input of M2 as well.

Let M′′ have output set:

O′′ = {Θ1 ∪Θ2, {ψ1 ∨ ψ2
}}.

So let B |=LSV
T′′ ∪Φa

X1
(w) for some w ∈ Aa. By Lemma 6.1.8, since J

(P1,P2)
(T1,T2;V1,V2) ⊂

T′′ the structure B is a join of a model B1 of T1 ∪ Φa
X1

(w) and a model B2 of

T2 ∪ Φa
X2

(w).

If w ∈ A ∩ B then by the definition of M1 and M2 we have B1 |=LSV
Θ1 and

B2 |=LSV
Θ2. Hence B |=LSV

Θ1 ∪ Θ2. Otherwise if w 6∈ A ∩ B then either

B1 |=LSV
Ψ1, in which case B1 |=LSV

ψ1, or B2 |=LSV
Ψ2, in which case B2 |=LSV

ψ
2
.

Therefore B |=LSV
ψ1 ∨ ψ2

. Consequently M′′ is able to compute A ∩B.

To compute A ∪B, let θ1 =
∧
φ∈Θ1

φ and θ2 =
∧
φ∈Θ2

φ. By replacing the output

set O′′ in M′′ with:

O′′′ = {{θ1 ∨ θ2},Ψ1 ∩Ψ2},

we find as above that if w ∈ A ∪ B then B1 |=LSV
θ1 or B2 |=LSV

θ2, so therefore

B |=LSV
θ1∨θ2. Otherwise if w 6∈ A∪B then w 6∈ A and w 6∈ B, hence B1 |=LSV

Ψ1

and B2 |=LSV
Ψ2, and therefore B |=LSV

Ψ1 ∪Ψ2. o

Remark 6.1.13 By Proposition 6.0.7, and Theorems 6.1.9 and 6.1.12, if LS is

one of the logical systems we defined in Subsection 3.2.1, then the collection of

96

6.1 Combining Theory Machines

problems computable by the class of finite LS-theory machines is closed under

complementation, intersection, union, and functional concatenation.

97

Chapter 6. Properties of Theory Machine Computation

98

Chapter 7

Further Examples of Theory

Machines

In this chapter we explain how we can characterise quantum computers and infinite

time Turing machines with finite theory machines.

7.1 Quantum Computers

As we explained in Section 2.4, the circuit model of quantum computation involves

using a classical computer to computably generate a quantum circuit before imple-

menting a quantum computation on that circuit [50, 59]. We can therefore use the

concept of concatenating theory machines that we developed in the previous chap-

ter to characterise this model of quantum computation by a finite theory machine.

This is done by combining the quantum circuit implementing machine detailed in

Examples 7.1.3 and 7.1.5 below with a Turing machine like the one in Example 5.1.2.

As noted in Section 2.4, we can efficiently approximate any computable quantum

circuit using just the Hadamard, π
4
, and controlled-not gates [59]. We can completely

describe such a quantum circuit using words constructed from:

Υ = {H̃, T̃ , ⊕̃, �

′
1, �

′
1, �

′
2, �

′
2}. (7.1)

99

Chapter 7. Further Examples of Theory Machines

This is sufficient for describing a quantum circuit as the qubit(s) that each gate

is applied to can be specified by two pointers which begin at the 0th qubit, and

are moved up and down by �1, �1 and �2, �2. The symbols H̃ and T̃ then indicate

that the Hadamard and the π
4

gate are respectively applied to the qubit pointed to

by the first pointer. The symbol ⊕̃ indicates that the controlled-not gate should

be implemented with the first pointer pointing to the control qubit and the second

pointing to the target qubit. In this way the whole circuit can be specified by a

word read from left to right, with the gates being implemented in the order that

they are written.

Example 7.1.1 A word of the form H̃ �1 T̃ H̃ �1 T̃ describes the circuit:

H T

T H

H̃ �1 T̃ H̃ �1 T̃

The first symbol H̃ of the word indicates that a Hadamard gate should be applied

to the 0th qubit, as the first pointer points to the 0th qubit at the start of the

computation. The next symbol �1 then indicates that this pointer should now point

to the 1st qubit, which means that the following symbols T̃ and H̃ indicate that

the π
4

and Hadamard gates should be applied to this qubit. �1 then moves the first

pointer back to qubit 0, and so the final symbol T̃ means that the π
4

gate is applied

to this qubit.

Example 7.1.2 A word of the form �2 �2 ⊕̃H̃ �1 T̃ �1 H̃ �2 ⊕̃ describes the circuit:

• H

T

H •

�2 �2 ⊕̃ H̃ �1 T̃ �1 H̃ �2 ⊕̃

So after the first two symbols �2 �2 of the word move the second pointer to the 2nd

qubit, the next symbol ⊕̃ indicates that a controlled-not gate is applied, with the

2nd qubit as the target qubit and the 0th as the control, since the first pointer still

100

7.1 Quantum Computers

points to the 0th qubit. The following string of symbol H̃ �1 T̃ �1 H̃ then indicate

that a Hadamard, a π
4
, and a Hadamard gate should be applied to the 0th, 1st, and

2nd qubits respectively. Finally �2 moves the second pointer to the 1st qubit, so ⊕̃

now indicates that a controlled-not gate is applied with the 1st qubit as the target

qubit and the 2nd as the control.

Though describing a circuit via this sort of word does imply a sequential imple-

mentation of the gates, it is worth noting that the above circuits are equivalent

to:

H T

T H

and

• H

T

H •

So circuits in which single-qubit gates are applied to different qubits simultaneously

may still be effectively described in the above manner.

The basis set for N qubits is {|x〉 : x ∈ {0, . . . , 2N − 1}}, for simplicity in

the examples below we will order the qubits from right to left. So for example

|11001〉 = |1〉4|1〉3|0〉2|0〉1|1〉0, indicates that the 0th, 3rd and 4th qubits are in state

|1〉, whereas the 1st and 2nd qubits are in state |0〉.

To apply a single-qubit quantum gate U =

 u00 u01

u10 u11

 to the lth qubit of

|ψ〉 =
∑2N−1

m=0 αm|m〉 we apply the transformation I⊗(N−l−1) ⊗ U ⊗ I⊗(l−1). Such a

transformation is fairly complicated to describe, to do so we can look at the binary

expansion of each element of m ∈ {0, . . . , 2N − 1}.

Indeed let B and O be binary functions, such that B(x, y) gives the binary value

of the yth digit of x for each x, y ∈ N. Whereas O(x, y) = z if z and x have the same

binary expansion as each other except for the yth digit. So formally for x, y ∈ N

101

Chapter 7. Further Examples of Theory Machines

where x = · · · 00bN−1bN−2 · · · b1b0 in binary1, we have:

B(x, y) = by. (7.2)

O(x, y) = z if z = · · · 00bNbN−1 · · · by+1(1− by)by−1 · · · b1b0 (7.3)

The values of I⊗(N−l−1) ⊗ U ⊗ I⊗(l−1) = (umn)2N

m,n=1 (a 2N × 2N complex-valued

matrix) are then:

vmn =



u00 if n = m and B(m, l) = 0,

u01 if n = O(m, l) and B(m, l) = 0,

u10 if n = O(m, l) and B(m, l) = 1,

u11 if n = m and B(m, l) = 1,

0 otherwise.

Therefore I⊗(N−1) ⊗ U ⊗ I⊗(l−1) applied to |ψ〉 results in:

2N−1∑
m=0

((1−B(m, l))(u00αm + u01αO(m,l))) +B(m, l)(u10αO(m,l) + u11αm)))|m〉.

Note that since B(m, l) ∈ {0, 1}, for each m, the mth component of the summation

above must be equal to either (u00αm + u01αO(m,l))|m〉 or (u10αO(m,l) + u11αm)|m〉.

Specifically, applying the Hadamard gate to the lth qubit of |ψ〉 results in:

2N−1∑
m=0

((1−B(m, l)) 1√
2
(αm + αO(m,l))) +B(m, l) 1√

2
(αO(m,l) − αm)))|m〉, (7.4)

whereas applying the π
4

gate to the lth qubit of |ψ〉 gives:

2N−1∑
m=0

((1−B(m, l))αm +B(m, l)e
iπ
4 αm)|m〉. (7.5)

To apply the controlled-not gate to |ψ〉 =
∑2N−1

m=0 αm|m〉 with control qubit l and

target qubit k we swap the values of αm and αO(m,k) if B(m, l) = 1, otherwise they

remain as they are. Hence we obtain:

2N−1∑
m=0

((1−B(m, l))αm +B(m, l)αO(m,k))|m〉. (7.6)

1Note that like with qubits we number the digits of a binary expansion from right to left,

allowing for an infinite sequence of zeros on the left.

102

7.1 Quantum Computers

In the following example we characterise a quantum device by a theory machine in

first-order complex logic (FOC) (Definition 3.2.7). This device takes as its input a

state |w〉 where w ∈ {0, 1}∗ and a quantum circuit description written as a word

of Υ∗ (from Equation 7.1 above). The device calculates the result of this circuit on

input |w〉 and outputs whether the first qubit is measured to be |1〉 with a probability

greater than 2
3
, or with probability less than or equal to 1

3
.

Example 7.1.3 Consider the finite FOC-theory machine:

QC = (QCT, IQ, {{α}, {β}}),

in the vocabulary of:

VQ = VC+ ∪ {V,B,O, I, C, P1, P2,M, s, d} ∪Υ,

where as in Definition A.1.11 the symbols in VC+ = {6,N,−, /, ·2,
√
·, | · |, 2∧, 2, eiπ4 }

have their usual meanings in C. Whereas V,B,O are binary functions such that

V (x, y) gives the complex value of the yth basis state at time x, and B,O are

defined as in Equations 7.2 and 7.3 above. C, I, P1, P2,M are unary functions where

I(m) and C(m) give the mth symbol of the input state and circuit word respectively.

Whereas P1(x) and P2(x) represent the circuit pointers mentioned above at time x,

and M expresses the probability that qubit 0 is measured to be |1〉 at the end of the

computation. Finally s, d and the elements of Υ are constants, with s corresponding

to the input state, d corresponding to the measurement time, and Υ consisting of

the set of symbols used to describe the circuit as in Equation 7.1.

To input a quantum state together with a circuit we have:

IQ =
{

Φ∗XQS(w) ∪ Φ∗XQC (v)
∣∣∣ w ∈ {0, 1}∗ and v ∈ Υ∗

}
So the inputs are formed from a finite XQS-word set and a finite XQC-word set,

where:

XQS = {I(n̂)}n∈N and XQC = {C(n̂)}n∈N.

Where n̂ ≡ 1 + · · ·+ 1︸ ︷︷ ︸
n times

for n ∈ N. So the finite word set:

Φ∗XQS(w) =
{
I(k̂) = wk | k ∈ {0, . . . , |w| − 1}

}
∪
{
I(ˆ|w|) = b

}
,

103

Chapter 7. Further Examples of Theory Machines

gives the integer binary expansion of the input state via I, with for example w =

001010 corresponding to the binary number 10100. Whereas the finite word set:

Φ∗XQC (v) =
{
C(ĵ) = vj | k ∈ {0, . . . , |w| − 1}

}
∪
{
C(ˆ|v|) = b

}
,

ensures that C(m) maps to the mth symbol of the circuit word v for each m ∈ N.

The output sentences α and β (defined below in 7.7 and 7.8) indicate whether

the quantum circuit should accept, or reject its input. The theory is:

QCT = CD=
VQ
∪ ACA ∪BODN ∪ ITQN ∪ EV QN ∪MTQN ∪ PN

{B,O,P1,P2,M}.

Where CD=
VQ

is the set of distinct constant axioms for VQ (Definition 4.2.6), and

ACA is the set of additional real axioms (Definition A.1.11), which ensures that

in each model of QCT the symbols in VC+ have their usual definitions (Corollary

A.1.13). The set BODN defines the functions B and O. The initial configuration

of the quantum circuit is defined by the sentences in ITQN, and is evolved in ac-

cordance with those in EV QN. The function M which expresses the measurement

outcome is defined by MTQN. Finally as in Definition 6.1.6 PN
{B,O,P1,P2,M} ensures

that B,O, P1, P2,M map natural numbers to natural numbers.

Note that much of the theory of QC is sorted by N (Definition 6.1.4), this is

because the time step and the qubit states are natural numbers. So the quantified

inputs in BOD∪ ITQ∪EV Q∪MTQ will all lie in N, but since V is not mentioned

in PN
{B,O,P1,P2,M}, it may map to any element of C.

Let Q be an FOC-model of QCT ∪ Φ∗XQS(w) ∪ Φ∗XQC (v), by definition, such a

model is an expansion of the usual structure of the complex numbers, and since

ACA ⊆ QCT the symbols of VC+ have their usual definitions in Q.

So formally, to define B and O as in Equations 7.2 and 7.3 we have:

BOD =



∀x∀y(B(x, y) = 0) ∨ (B(x, y) = 1),

∀x∀y(x < (2∧(y))))→ (B(x, y) = 0)),

∀x∀y¬(B(x, y) = B(x+ (2∧(y)), y)),

∀x∀y∀z((B(x, z) = B(O(x, y), z))↔ ¬(y = z))


.

104

7.1 Quantum Computers

B(x, y) corresponds to a bit value, so it always maps to 0 or 1. As BODN ⊆ QCT,

the values of B(x, y) for x, y ∈ N are defined through induction. The second sentence

of BODN serves as a base case. If x < 2y then the yth entry of the binary expansion

of x must be 0 as we can view such an expansion to be preceded on the left by an

infinite sequence of 0’s1. The third sentence of BODN provides the inductive step,

as adding 2y to x must change the value of the yth entry of x’s binary expansion

since this corresponds to adding the binary number 1 0 · · · 0︸ ︷︷ ︸
×(y−1)

to x. The value can

only be 0 or 1, so any change must cause this value to flip.

The final sentence of BODN then states that the function O(x, y) maps to a

natural number n such that B(n, z) = B(x, z) for every z ∈ N except y, which

corresponds to taking:

n = . . . B(n,N) . . . B(n, y + 1)(1−B(n, y))B(n, y − 1) . . . B(n, 1)B(n, 0).

As mentioned before, to express the values of the whole qubit state at each time

step we have the function V . Where V (x, y) gives the complex value of the yth basis

state at time x, meaning that the whole state of the circuit at time x is:∑
y∈N

V (x, y)|y〉.

The functions P1 and P2 act as the two pointers of the quantum circuit indicating

which qubit is to be transformed by the next quantum operation. So at the start

of the quantum computation the pointers should both point to the 0th qubit. To

ensure this and to define the initial state of V at time 0 we have:

ITQ =



∀x((I(x) = b)→ (I(x+ 1) = b)),

∀x((C(x) = b)→ (C(x+ 1) = b)),

∀x(¬(I(x) = b)→ (B(s, x) = I(x))),

∀x((I(x) = b)→ (B(s, x) = 0)),

V (0, s) = 1,

∀y(¬(y = s)→ (V (0, y) = 0)),

(P1(0) = 0) ∧ (P2(0) = 0)



.

1This corresponds to taking the state of any qubit not affected by the circuit as existing but

remaining fixed as |0〉.

105

Chapter 7. Further Examples of Theory Machines

From the input we have Q |=FOC {I(|w|+1) = b}∪{C(|v|+1) = b}. Hence the first

two sentences of ITQN ensure through induction that I(m) = b and C(n) = b in Q

for all m > |w| and n > |v| (as in Example 4.2.5). The third and fourth sentences

of ITQN then define the binary expansion of s in Q to be 0−ωw.

Hence for any basis state |ψ〉, where ψ ∈ N the input Φ∗XQS(w) together with

BODN and the fifth and sixth sentences of ITQN ensure that V (0, ψ) = 1 in Q iff

|ψ〉 = |w〉, and otherwise V (0, ψ) = 0. Meaning that at time 0 the quantum state

of the circuit is exactly |w〉.

To evolve V via the quantum circuit described by v ∈ Υ we have:

EV Q =



∀x((C(x) = �1)→ (P1(x+ 1) = (P1(x)− 1))),

∀x((C(x) = �1)→ (P1(x+ 1) = (P1(x) + 1))),

∀x((C(x) = �2)→ (P2(x+ 1) = (P2(x)− 1))),

∀x((C(x) = �2)→ (P2(x+ 1) = (P2(x) + 1))),

∀x((C(x) = H̃)→ ∀y(η1(x, y) ∧ η2(x, y)),

∀x((C(x) = T̃)→ ∀y(υ1(x, y) ∧ υ2(x, y)),

∀x((C(x) = ⊕̃)→ ∀y(κ1(x, y) ∧ κ2(x, y)),

∀x(((C(x) = b) ∧ ¬(C(x− 1) = b))→ (d = x),


The first four sentences of EV QN define how the pointers move given symbols

�1, �1, �2, or �2 on the input word Φ∗XQC (w). So at time step x pointer j points

to qubit a in Q if Pj(x) = a, and if C(x) = vx = �j, then at time x + 1 pointer

j should point to a − 1, and so we have Pj(x + 1) = a − 1 in Q. Whereas if

C(x) = vx = �j then the pointer should point to a + 1 at time x + 1, and so

Pj(x+ 1) = a+ 1 in Q.

Given the symbol H̃ a Hadamard gate is applied to the qubit at P1(x) via the

fifth sentence of EV QN and the formulas:

η1(x, y) ≡ (B(y, P1(x)) = 0)→ (V (x+ 1, y) = (V (x, y) + V (x,O(y, P1(x))))/
√

2),

η2(x, y) ≡ (B(y, P1(x)) = 1)→ (V (x+ 1, y) = (V (x, y)− V (x,O(y, P1(x))))/
√

2).

So as in Equation 7.4 η1(x, y)∧η2(x, y) ensures that if pointer 1 is pointing to the lth

qubit in Q and the complex value of the basis state |y〉 is αy at time x, then at time

106

7.1 Quantum Computers

x+ 1 it becomes 1√
2
(αy +αO(y,l)) in Q if the lth digit of y is a 0 and 1√

2
(αy−αO(y,l))

if the lth digit is a 1.

Given the symbol T̃ a π
4

gate is applied to the qubit at P1(x) via the sixth sentence

of EV QN and the formulas:

υ1(x, y) ≡ (B(y, P1(x)) = 0)→ (V (x+ 1, y) = V (x, y)),

υ2(x, y) ≡ (B(y, P1(x)) = 1)→ (V (x+ 1, y) = (ei
π
4 × V (x, y))).

As in Equation 7.5 υ1(x, y) ∧ υ2(x, y) maps αy|y〉 at time x to αy|y〉 at time x + 1

in Q if P1(x)th digit of y is a 0, and to e
iπ
4 αy|y〉 at time x+ 1 otherwise.

Given the symbol ⊕̃ a controlled-not gate is applied to the qubits at P1(x) and

P2(x) via the seventh sentence of EV QN and the formulas:

κ1(x, y) ≡ (B(y, P1(x)) = 0)→ (V (x+ 1, y) = V (x, y)),

κ2(x, y) ≡ (B(y, P1(x)) = 1)→ (V (x+ 1, y) = V (x,O(y, P2(x)))).

As in Equation 7.6 if pointer 1 is pointing to the lth qubit then this is the control

qubit. So if the lth digit of y is a 0 then κ1(x, y) just maps αy|y〉 at time x to αy|y〉

at time x + 1 in Q. Whereas if the lth digit of y is a 1 and pointer 2 is pointing

to the kth qubit then κ2(x, y) makes the value of the yth basis state equal to the

value of the O(y, k)th basis state at time x+ 1. Since O(O(y, k), k) = y the seventh

sentence swaps the values of yth and O(y, k)th basis states in Q for each y ∈ N with

B(y, l) = 1.

Recall that the circuit input Φ∗XQC (w) together with the third sentence of ITQN

implies that (C(x) = b) ∧ ¬(C(x − 1) = b) is true iff x = |v|. So at time |v| the

circuit ends, hence the quantum computation should end as well, and so the final

sentence of EV QN fixes this time to be d in Q.

Finally, we take the quantum circuit as accepting the input if the probability of

measuring that the first qubit is |1〉 is greater than 2
3
, and rejecting if the probability

is less than 1
3
. This measurement can happen for a basis state |y〉 if and only if

B(y, 0) = 1, which is true if and only if y ∈ N is odd. Therefore the probability of

measuring |1〉 is equal to
∑∞

y=0 |V (e, 2y + 1)|2.

107

Chapter 7. Further Examples of Theory Machines

To calculate this probability we use the function M , where we define M(m) =∑m
y=0 |V (e, 2y + 1)|2 inductively as follows:

MTQ =

 M(0) = |V (d, 1)|2,

∀y(M(y + 1) = (M(y) + |V (d, ((2× y) + 1)|2))

 .

The outputs are then {α} and {β} where:

α ≡ ∃Ny((2/(2 + 1)) < M(y)), (7.7)

β ≡ ∀Ny(M(y) 6 (1/(2 + 1))). (7.8)

Clearly, M is an increasing function, and we may only have
∑∞

y=0 |V (e, 2y + 1)|2 >
2
3

if there exists some m ∈ N such that
∑m

y=0 |V (e, 2y + 1)|2 > 2
3
. Conversely∑∞

y=0 |V (e, 2y + 1)|2 6 1
3

only if
∑l

y=0 |V (e, 2y + 1)|2 6 1
3

for every l ∈ N.

Therefore α is true in Q iff the probability of measuring a |1〉 in the first qubit

of the output of the circuit described by v and given input |w〉 is greater than to 2
3
.

Whereas β is true in Q iff the probability of this scenario is less than or equal to 1
3
.

If the probability is between 1
3

and 2
3

then the output is undefined.

Remark 7.1.4 Whilst the output of the theory machine QC describes the proba-

bility of an event, the result is not itself probabilistic. Instead, the measurement

probability of at least 2
3

or no greater than 1
3

is obtained by each model of QC with

certainty.

In Example 7.1.6 below we shall describe how we can combine a theory machine like

QC above with a Turing machine, creating a device which is able to decide problems

in exactly the same way that a quantum computer does (Definition 2.4.5). That is,

for a quantum circuit Q = {QN}n∈N and each input w ∈ {0, 1}∗ the device computes

with its Turing machine component a word that describes Q|w| before applying Q|w|

to |w〉 and measuring.

However, to concatenate two theory machines they must both use the same logical

system. So firstly we shall explain how QC can also be characterised in second-order

logic with equality, before in Example 7.1.6 combining such a machine with the SO=

description we gave of a Turing machine in Example 5.1.2.

108

7.1 Quantum Computers

Example 7.1.5 Consider the finite SO=
V′Q

-theory machine:

QC′ = (QCT′, IQ, {{α}, {β}}),

in the vocabulary of:

V′Q = VQ ∪ {<,R,+,×, 0, 1, i},

where VQ is as in Example 7.1.3 and <,R,+,×, 0, 1, i are the usual symbols of

complex arithmetic, with R being the unary characteristic function of the reals in

C. Further let IQ, α and β be exactly as they are in Example 7.1.3, and let QC′

have the theory:

QCT′ = QCT ∪ CAA.

Where QCT is as in Example 7.1.3, and CAA is the set of complex arithmetic axioms

(Definition A.1.9), which by Proposition A.1.10 ensures that every model of QCT′ is

isomorphic to an expansion of the usual structure of complex arithmetic.

QCT′ is otherwise the same as QCT, and the inputs and the outputs of QC′ are

identical to those of QC. Hence by our reasoning in Example 7.1.3, any model of

QC′ with input Φ∗XQS(w)∪Φ∗XQC (v) must satisfy α if the probability of measuring |1〉

in the first qubit of the output of the circuit described by v and given input |w〉 is

greater than to 2
3
, and β if this probability is less than or equal to 1

3
.

Example 7.1.6 Let K = (Kn)n∈N be a computable sequence of quantum circuits

constructed from the gate set {H,T,CNOT, }. Further let MK be a Turing machine

with input alphabet {0, 1} which on input w ∈ {0, 1}∗ computes the word v where

v ∈ Υ∗ describes the circuit K|w|.

We can characterise MK with the finite SO=-theory machine:

TMMK
= (TMTMK

, ˆ{0, 1}
∗
XTM

, Υ̂∗YTM),

where the theory TMTMK
corresponds to TMTM ′ in Example 5.1.2 with the rules

and states of M ′ replaced by those of MK . Let:

QC′ ◦
(Υ;YTM,XQC)

TMMK
= (T◦, ˆ{0, 1}

∗
XTM

, {{α}, {β}}),

109

Chapter 7. Further Examples of Theory Machines

be the (Υ;YTM ,XQC)-concatenation of TMMK
and QC′ with vocabulary V◦ = VMK

∪

VQ ∪ {P1, P2, ϑ}, where as in the proof of Theorem 6.1.9 we have replaced VQ with

VQ so as to ensure disjointness.

We can then characterise the computation of the computable quantum circuit K

by the finite SO=-theory machine:

CQCK = (CQCTK , ˆ{0, 1}
∗
XTM

, {{α}, {β}}),

with vocabulary VCQK = V◦ ∪ {%}. Where CQCK ’s theory is:

CQCTK = T◦ ∪KP1

({0,1},XTM ,XQS ;%).

The set KP1

({0,1},XTM ,XQS ;%) is as in the proofs of Theorems 6.1.9 and 6.1.12, and serves

to map the input word of TMMK
into an input state of QC′.

Since T◦ ⊂ CQCTK , any model K of CQCTK is a join of a model A of TMTMK
and

a model Q of QCT.

Now if K |=SO=
VCQK

Φ∗XTM (w) then A |=SO=
VMK

Φ∗XTM (w), and so A |=SO=
VMK

Φ∗YTM (v). Therefore by T◦ it follows that Q |=SO=
VQ

Φ∗XQC (v).

From KP1

(XTM ,XQS ;%) and our reasoning in the proof of Theorem 6.1.9 we also have

Q |=SO=
VQ

Φ∗XQS(w). Consequently by our reasoning in Example 7.1.3 we have

Q |=SO=
VQ

α if the first qubit is measured to be |1〉 with a probability greater than

2
3
, and Q |=SO=

VQ
β if it is measured to be |1〉 with probability less than or equal to

1
3
.

K models α or β only if the same scenarios hold. Therefore if the computable

quantum circuit K is able to decide the problem A ⊆ {0, 1}∗, then our finite theory

machine CQCK is also able to decide A.

7.2 Infinite Time Turing Machines

As we described in Section 2.5, infinite time Turing machines (IIT machines) [44]

generalise the concept of a multi-tape Turing machine by allowing the computation

110

7.2 Infinite Time Turing Machines

to take an ordinal number (Definition 2.5.3) of time steps. In the following we

characterise an ITT machine by a finite theory machine.

Example 7.2.1 Let V = (Π, s0, sλ, s1, S) be an ITT machine with m − 2 work

tapes1. We can then characterise V by the finite SO=
VV

-theory machine:

ITV = (ITTV , ˆ{0, 1}
ω

XTM1
, ˆ{0, 1}

ω

YTMm
),

with vocabulary:

VV = {<,L, S, I, h} ∪ {C1, . . . , Cm} ∪ {H1, . . . , Hm} ∪ {0, 1} ∪ Π.

Where the symbols in VV \ {L} are as they are in Example 5.3.1 with 0 taking the

place of the blank symbol b. Whereas L is a unary relation such that L(x) is true iff

x is a limit ordinal. The sequences XTM1 and YTMm are also the same as in Example

5.3.1, describing the cell contents of the first tape at time 0 and the mth tape at

time h respectively.

The theory of ITTV is then:

ITTV = UOSA ∪ CD=
VV
∪ IT(s0,m) ∪ ETS ∪HTs1 ∪ LCsλ .

Where UOSA is the set of uncountable ordinal successor axioms (Definition A.1.16),

and CD=
VV

is the set of distinct constant axioms for VV (Definition 4.2.6). Whereas

the sets, ITs0,m, ETS, and HTs1 are as in Example 5.3.1 for a multi-tape Turing

machine with m tapes, blank symbol 0, and rule set S. The definition of the limit

relation L together with how the limit configuration is defined is then given in LCsλ .

As UOSA ⊂ ITTV , by Proposition A.1.17, any SO=
VV

-model of ITTV must be

isomorphic to an expansion of an uncountable limit ordinal structure 〈Oδ;<,L, S, 0〉,

where Oδ is the set of ordinals less than some uncountable limit ordinal δ, and L

characterises the set of limit ordinals.

So if O |=SO=
VV

ITTV ∪Φω
XTM1

(w) for some w ∈ {0, 1}ω then since IT(s0,m) ⊂ ITTV ,

the structure must have the same initial configuration as that of a 3-tape Turing

1As in Definition 2.5.4; Π is the set of internal states, s0 ∈ Π is the initial state, sλ ∈ Π is the

limit state, s1 ∈ Π is the halting state, and S is a set of m-tape Turing machine rules.

111

Chapter 7. Further Examples of Theory Machines

machine. Notably, there is no ordinal below 0, so the sentence ∀y((y < 0) →

(C1(0, y) = b)) in IT(s0,m) is redundant.

Also, ETS ⊂ ITTV , so by our reasoning in Examples 5.3.1 and 5.3.2, for any time

step x if the configuration of O at time x is equal to the configuration of V at time

x, then the configuration of O at time S(x) must be the same as the configuration

of V at time S(x).

The configuration at each limit stage is determined by:

LCsλ =



∀Lx((I(x) = sλ) ∧
∧m
i=1(Hi(x) = 0)),

∀x∀y
∧m
i=1((Ci(x, y) = 0) ∨ (Ci(x, y) = 1),

∀Lx∀y
∧m
i=1((Ci(x, y) = 0)↔

(∃z1∀z2((z1 < x) ∧ (z1 < z2) ∧ (z2 < x))→ (Ci(z2, y) = 0)))


.

The first sentence of LCsλ ensures that at limit ordinal time steps the internal state

is sλ, and each tape head is placed back at square 0. The second sentence states

that each square contains either a 0 or a 1. Combining this with the final sentence

then dictates what the contents of each square is at each limit time step. At limit

step x, the yth cell of tape i contains a 0 iff there exists a time step z1 prior to x such

that for every step z2 between z1 and x the yth cell of tape i contains 0. Otherwise

the cell contains a 1. Hence Ci(x, y) = lim supz→xCi(z, y).

So O and V have both the same initial configuration, and the configurations of

O at successor and limit time steps evolve as they do in V . Therefore by transfinite

induction, every configuration of O at every time step of O is the same as it is in V .

Finally by Proposition 2.5.6, every halting ITT machine computation is count-

able, so if the halting state s1 is eventually reached in V , it must be reached at some

countable ordinal time step. Now as O is an expansion of an uncountable limit

ordinal structure dom(O) it contains every countable ordinal. So if the halting state

s1 is reached by V then it must occur at some time in O.

We also have HTs0 ⊂ ITTV , so the ordinal time step at which O halts is h. The

output is then Φω
YTMm

(v) for some v ∈ {0, 1}ω, where clearly v is exactly what is

written on the mth tape of V on input w at the halting time step.

112

7.2 Infinite Time Turing Machines

Theorem 7.2.2 Any decision problem A ⊆ {0, 1}ω or function problem f :⊆

{0, 1}ω → {0, 1}ω, that is computable by an infinite time Turing machine can be

computed by a finite SO=-theory machine.

Proof: Let V be an infinite time Turing machine that computes the decision prob-

lem f :⊆ {0, 1}ω → {0, 1}ω. By Definition 2.5.5 for any w ∈ {0, 1}ω we have

V (w) = f(w). The finite SO=-theory machine ITV in Example 7.2.1 is then able to

compute f with each input w encoded as Φω
XTM1

(w) and by our reasoning in Example

7.2.1 we have that for any w ∈ {0, 1}ω:

ITTV (Φω
XTM1

(w)) = Φω
YTMm

(f(w))).

The fact that ITV is indeed a theory machine follows by the same reasoning as in

the proof of Theorem 5.1.3, with an ITT machine with input w ∈ {0, 1}ω giving

a model of ITTV ∪ Φω
XTM1

(w) provided that at time steps after h the internal state

of the machine is not in Π. Whilst the fact that each of the possible outputs are

mutually unsatisfiable follows from Lemma 4.2.9.

Similarly, let W be an infinite time Turing machine that computes the decision

problem A ⊆ {0, 1}ω. By Definition 2.5.5 for any w ∈ {0, 1}ω the ITT machine W

outputs 10ω if w ∈ A and 0ω otherwise. Now the finite SO=-theory machine ITW

is not able to compute A as the outputs Φω
YTMm

(10ω) and Φω
YTMm

(0ω) are not finite.

However, if we replace the output set ˆ{0, 1}
ω

YTMm
of ITW with {Θ,Ψ} where:

Θ =

 Cm(h, 0) = 1,

∀x((¬(x = 0) ∧ ∀y(L(y)→ (x < y)))→ (Cm(h, x) = 0)

 ,

and:

Ψ = {∀x(∀y(L(y)→ (x < y))→ (Cm(h, x) = 0)},

then:

IT′W = (ITTV , ˆ{0, 1}
ω

XTM1
, {Θ,Ψ}),

is an SO=-theory machine that is able to compute A. This follows from the above

reasoning and the fact that Θ and Φ are both finite sets of sentences. Also in any

model of ITTW∪Φω
XTM1

(w)), the truth of Θ is equivalent to the truth of Φω
YTMm

(10ω) =

113

Chapter 7. Further Examples of Theory Machines

{Cm(h, Si(0)) = 1} ∪ {Cm(h, Si(0)) = 0 | i ∈ N \ {0}} whereas the truth of Ψ is

equivalent to the truth of Φω
YTMm

(0ω) = {Cm(h, Si(0)) = 0 | i ∈ N}, hence the two

outputs are mutually unsatisfiable. o

Remark 7.2.3 There is a potential problem with how an ITT machine is defined,

namely that there is a left-most point and it is not clear what would happen if an

ITT machine tried to move past this point. This is particularly problematic as an

ITT machine does not appear to have any way of knowing where this left-most point

is. Hamkins and Lewis did not discuss this issue in [44], and presumably they did

not expect an ITT machine to have a problem when reaching the end of the tape.

One solution is to add a new symbol L to the language and place it only at the

start point of each tape [75], so if the machine sees L it knows not to move further

left. However, such a solution can be implemented without adding to the alphabet

(and complicating what happens at limit stages). All we have to do is encode 0, 1,

and L in the language of {0, 1}∗ as 00, 11, and 01 respectively, and have the ITT

machine rewrite the symbols on the input tape and place 01 at the beginning of

every tape. Hence we do not need modify our description of an ITT machine above

to obtain Hamkins and Lewis’ results for the computational capabilities of an ITT

machine.

Remark 7.2.4 By definition, an ITT machine has no blank tape cells and only two

sorts of tape symbols. So without altering the input word the only unambiguous

finite words that we can input into an ITT machine are unary words, that is, words

from {1}∗. An input 1n can then be written on the input tape as 1n0ω. Though

unary encoding is significantly less efficient than binary encoding, through Gödel

numberings [27] we may encode any finite word from A∗ as a unary word of {1}∗.

Theorem 7.2.5 [44] Every arithmetical relation (Definition 2.1.11) is decidable by

an infinite time Turing machine.

Proof (sketch): To see that any relation R ∈ Σ0
1 is ITT computable, let P be

such that R(~x) ≡ ∃~yP (~x, ~y). Given any input ~x ∈
∏n

i=1 A
∗ (~x may be inputted

114

7.2 Infinite Time Turing Machines

into an ITT machine by encoding it as a word of A∗ (as in Remark 2.1.9) and

encoding this word as a word of {1}∗), we can compute the truth of R(~x) with an

infinite time Turing machine VR which computably checks the truth of P (~x, ~y) for

each ~y ∈
∏n

i=1 A
∗ in turn. If VR finds a ~y for which P (~x, ~y) holds then VR halts

and accepts. Otherwise VR keeps computing and eventually reaches the limit time

step ω with internal state sλ, in which case we know that there does not exist a

~y ∈
∏n

i=1 A
∗ such that P (~x, ~y) is true, hence R(~y) must be false and so VR halts and

rejects.

In similar manner we can compute any relation in the arithmetical hierarchy of

the form ∃~y1∀~y2 · · · ∃~yn−1∀~ynP (~x, ~y1, . . . , ~yn) with an ITT machine which checks the

truth of each possible entry of a given relation within α to α + ω time periods. o

Corollary 7.2.6 There exists a problem which is finite SO=-computable that is

not Turing machine computable.

Proof: By Theorem 7.2.5, for any R ∈
⋃
n∈N(Σ0

n ∪ Π0
n) there exists an ITT ma-

chine which is able to compute R. By Theorem 2.1.12 we know that there exist

arithmetical relations that are not Turing machine computable, so let P be such a

relation.

So since we can encode P as a decision problem, by Theorem 7.2.2 P is finite

SO=-computable whilst not being Turing machine computable. o

Therefore, like infinite theory machines, finite SO=-theory machines are able to

compute a wide variety of finite problems beyond the Turing machine computable

problems.

Remark 7.2.7 Infinite time Turing machines are not the only example of a super-

Turing system that can be characterised by a finite theory machine. Blum-Shub-

Smale machines, which can algebraically compute with real numbers are also capable

of such feats. We explained how such computational system can be characterised

by a finite theory machine in [75].

115

Chapter 7. Further Examples of Theory Machines

When characterising a computational process using a theory machine any encoding

of an input should really happen within the theory machine itself. So to characterise

this encoding we have the following example in which we have a type-2 machine

which encodes words from A∗ into words of {0, 1}ω, concatenated with an ITT

machine.

Example 7.2.8 Let TE be a type-2 machine with input alphabet A, input type ∗

and output type ω. Given any finite input word w ∈ A∗ let TE output w̃0ω, where

w̃ is an encoding of w in {0, 1}∗.

Let VR be an ITT machine such that for some R ⊆
∏n

i=1 A
∗ we have that VR

accepts w̃0ω iff w = 〈w1, . . . , wn〉1 and (w1, . . . , wn) ∈ R.

As in Example 5.3.2 we can characterise TE by the finite SO=
VTE

-theory machine:

T2MTE = (T2MTTE , Â
∗
XTM1

, ˆ{0, 1}
ω

YT2
).

Whereas as in Example 7.2.1 we can characterise VR by the finite SO=
VVR

-theory

machine:

ITVR = (ITTVR ,
ˆ{0, 1}

ω

XTM1
, ˆ{0, 1}

ω

YTMm
),

We can then describe a machine which takes inputs from A∗ and computes whether

w ∈ R by encoding w into an ITT machine VR which is able to decide R, via the

({0, 1};YT2,XTM1)-concatenation ITVR ◦({0,1};YT2,XTM1
)
T2MTE .

1As in Remark 2.1.9.

116

Chapter 8

Physical Computation and

Complete Theories

So far in this document we have presented various computational systems and ex-

plained how such systems can be characterised by theory machines. While some

of these computational systems are grounded in what is clearly physically possible

(e.g. Turing machines [27, 67], quantum computers [50, 59], and physical computers

[16]), other systems instead find utility in computing in ways that are questionably

achievable (e.g. Type-2 machines [72] and infinite time Turing machines [44])1.

The diverse inequivalent nature of these formulations presents the question of

what a computation actually is, and if computation can be “unphysical” then where

does the boundary between “physical” and “unphysical” computation lie? For ex-

ample, is it the transfinite aspect of an infinite time Turing machine that makes it

“unphysical”? If so, then why is a quantum computer able to “physically” compute

with an infinite continuous space?

One resolution to these questions is to invoke the Church-Turing thesis [27, 29, 67],

which as we noted in Chapter 1 is often rendered as:

“Every effectively calculable function is computable by a Turing machine,”

1Though notably these models have not been proven to be physically impossible, however its

not clear what form such a proof would take.

117

Chapter 8. Physical Computation and Complete Theories

and assume that it applies to any physical process that we compute with.

Now this may seem to be a perfectly natural assumption, as the physical world

provides us with the means to compute. So if it provided us with the means to

compute a function that was not Turing computable then the Church-Turing thesis

would have to be false. However, the Turing machine was designed to mimic and

describe how a person mathematically computes something [67], rather than how

a physical system might go about computing it. Indeed there are many aspects of

physics we (humanity as a whole) do not yet understand, so we cannot in good faith

disregard computational structures capable of violating the Church-Turing thesis

and label them “unphysical” just because we do not like what they can do.

That being said, in Quantum theory, the Church-Turing principle and the uni-

versal quantum computer [29] Deutsch suggested that there is at least sufficient

evidence to assert that the Church-Turing thesis applies to physical systems that we

are able to construct. He stated the modified thesis:

“Every finitely realizable physical system can be perfectly simulated by a universal

model computing machine operating by finite means.”

There is some theoretical justification for this thesis. In Church’s thesis and princi-

ples for mechanisms [35] Gandy formulated a concept of what it meant for a problem

to be computed by an arbitrary constructible mechanism, proving that a problem

is computable by such a device if and only if it is computable by a Turing machine.

However, as well as being highly complex and involving a large number of as-

sumptions, Gandy’s formulation focussed on devices that were entirely human-

constructible. This is of course rather questionable, as the universe we live in is

not human-constructed, physical reality exists without us having to build it. It

could therefore be possible that there exist elements of reality that are not human-

constructible which provide us with the ability to compute problems that are not

Turing computable. For example in [8, 9, 10, 11, 12] Beggs and Tucker described

various physical experiments that used the physical word as a computational oracle.

118

Now as we noted in Section 1.2 and Chapter 4, in When does a physical system

compute? [48] Horsman et al. argued that in order for a person to be able to

compute with a physical system they must possess an abstract representation of the

system along with a sufficiently correct theory of how the system behaves. Such a

theory must also be testable through measurement of the system. Therefore if there

did exist elements of reality capable of computing problems that are not Turing

computable, then in order to utilise them a person would also have to know and

understand how such elements worked. This knowledge and understanding would

of course take the form of the person’s representation and theory of the system.

As already noted, we assert that this representation and theory can be expressed

in terms of logical sentences. This theory should also be finite as it is should be a

theory that can be understood by a human and is derived from a finite number of

tests. However as we proved in Corollary 7.2.6, for some logical systems there exist

finite theory machines which can characterise computational systems that are capa-

ble of violating the Church-Turing thesis. This suggests that such logical systems

have unreasonable descriptive power, in that they are able to characterise unphysical

computation systems.

Instead we assert that a computational system is physically realisable only if its

computational aspects can be characterised by a finite first-order theory (FFOT)

machine, that is a theory machine which is either a finite FO-theory machine or a

finite FO=-theory machine.

In this chapter we will prove that a finite problem may be computed by a FFOT

machine if and only if it is computable by a Turing machine (Theorem 8.2.1). There-

fore if we assume that the Church-Thesis applies to physical process then FFOT

machine characterisable systems may also be physically realisable. Further, if the

computational aspects of a system cannot be characterised by a FFOT machine then

such a system should not be physically realisable.

We will also prove in this chapter that a general word problem may be computed

by a FFOT machine if and only if it is computable by a type-2 machine (Theorem

8.3.3). Thereby providing an explanation of how we can compute with infinite inputs

119

Chapter 8. Physical Computation and Complete Theories

and outputs (such as real numbers) in a manner which is physically justifiable.

The key results in this chapter (Theorem 8.2.1 and Theorem 8.3.3), along with

many of the concepts, featured in our paper “Physical Computation and First-Order

Logic” [75].

8.0.1 Some Useful Results

As the following result demonstrates, finite FO-computability and finite FO=-

computability are equivalent, which is why we may collectively refer to finite FO-

theory machines and finite FO=-theory machines as FFOT machines.

Proposition 8.0.9 A problem is finite FO-computable if and only if it is FO=-

computable.

Proof: (⇒) Let M be a finite FOV-theory machine. If V contains the binary relation

= as one of its symbols then we may replace = with =′ 6∈ V in every sentence of M.

This gives us a new FO-theory machine M′ with vocabulary V′ = (V∪{=′}) \ {=},

and clearly M′ is able to compute any problem that M is able compute. Also, M′

can be interpreted as a finite FO=
V -theory machine that does not mention the true

equality relation, which means that any problem computable by M is then finite

FO=-computable.

(⇐) Let N = (T, I,O) be a finite FO=
U -theory machine that is able to compute a

decision problem A ⊆ Aa or a function problem f :⊆ Aa → Bb. As T is finite the set

of symbols used in T must be finite. Similarly the set of symbols used in the set of

input sets Âa
X and the set of output sets B̂b

Y must be finite since the sentences within

them are constructed from simple sequences, and A and B are finite. Without loss

of generality we may then suppose that U is a finite vocabulary. Therefore EQ=
U is a

finite set and so there exists a finite FOU∪{=}-theory machine N′ = (T ∪EQ=
U , I,O)

which is able to compute any problem that N is able to compute.

To see why this is the case, for any Φ ∈ I, suppose that N(Φ) = Θ. If M is an

FO=
U -model of T ∪ Φ, then M is also an FOU∪{=}-model of T ∪ EQ=

U ∪ Φ, where

120

the equality relation is interpreted as one of the normal relations of the vocabu-

lary, rather than a non-logical symbol of the logical system. We then still have

M |=FOU∪{=} Θ.

For the other direction, let N be an FOU∪{=}-model of T ∪ EQ=
U ∪ Φ, as noted

in Remark A.1.2 it is possible that that there may be two distinct elements p, q ∈

dom(N) where p = q in N. In which case, by EQ=
U the function and relation

assignments of p and q must all be identical in N.

There therefore exists an FOU∪{=}-structure N′ which elementarily embeds into

N and for any p, q ∈ dom(N′) we have p = q in N′ iff p and q are the same element

of dom(N′). It is then the case that N′ is an FO=
U -structure, and as N′ |=FO=

U
Θ

then we must also have that N |=FOU∪{=} Θ. Therefore N′(Φ) = Θ. o

Remark 8.0.10 So far in this document we have avoided giving specific examples

of theory machines that are also FFOT machines. This is in part because the

models of a FFOT machine tend to be far from unique. Indeed, if there exists an

infinite model of a FFOT machine, then by the Lowenheim-Skolem theorem [46]

there must exist models of any infinite cardinality. This highly variable description

of a system would have seemed odd to begin with, however Examples 8.1.1, 8.1.1

and 8.3.1 should demonstrate that this varied description can still give clear and

computationally sensible outputs.

When describing Turing machines and type-2 machines in Examples 5.1.1, 5.1.2,

5.3.1, and 5.3.2 we made repeated use of the integer successor axioms ISA [56]

(Definition A.1.5). However, these are clearly not first-order axioms, instead to

characterise Turing machines and type-2 machines with FFOT machines we will use

the following set of first-order sentences.

Definition 8.0.11 The first-order integer successor axioms in the vocabulary of

121

Chapter 8. Physical Computation and Complete Theories

{=, <, S}, where =, < are binary relations, and S is a unary function, is the set:

ISA− =



ZAx(1) ∀x∀y(S(x) = S(y))→ (x = y),

ZAx(2) ∀x∃y(S(y) = x),

ZAx(3) ∀x(x < S(x)),

ZAx(4) ∀x¬∃y((x < y) ∧ (y < S(x)),

ZAx(5) ∀x¬(x < x),

ZAx(6) ∀x∀y(x < y)→ ¬(y < x),

ZAx(7) ∀x∀y∀z((x < y) ∧ (y < z))→ (x < z)



.

The following set is also useful.

Definition 8.0.12 The set of second-order axioms in ISA is:

ISASO =

 ZAx(8) ∀1Z(((∃xZ(x)) ∧ (∀y(Z(y)↔ Z(S(y))))→ ∀zZ(z)),

ZAx(9) ∃1N(((∃xN(x)) ∧ (∀y(N(y)→ N(S(y))) ∧ (∃z¬N(z)))


Note how:

ISA− = ISA \ ISASO.

Thus ISA− is just the usual successor axioms for the ordered integers ISA without

its two second-order axioms. This means that the usual ordered structure of the

integers 〈Z;<,S〉 is also a model of ISA−. However there also exist other non-

standard models of ISA− that are not isomorphic to 〈Z;<,S〉. For example the

structure with domain {(n, 1) | n ∈ Z} ∪ {(n, 2) | n ∈ Z}, such that S((n, i)) =

(n+ 1, i), and (n, i) < (m, j) if either n < m and i = j, or i = 0 and j = 1.

Remark 8.0.13 Due to Gödel’s first incompleteness theorem [27, 37] it is impossi-

ble to give a first-order axiomatisation of the ordered integers.

Despite the existence of these non-standard models we still have the following useful

result.

Proposition 8.0.14 Let V = {<,S, 0̌} where 0̌ is a constant symbol1, and let

M |=FO=
V
ISA−.

10̌ has been given an accent so as to distinguish it from 0 in Z.

122

Then the map µ : Z→M given by µ(n) = Sn(0̌) (where S0(0̌) = 0̌ and S−m(0̌) =

q iff Sm(q) = 0̌) is a well-defined embedding of Z onto M. Also, for any n ∈ Z there

does not exist a p ∈ dom(M) such that µ(n) < p and p < µ(n+ 1).

Proof: By definition µ(0) = 0̌. Further, by the definition of µ we also have

S(µ(a)) = µ(a+ 1), since S(µ(a)) = S(Sa(0̌)) = Sa+1(0̌) = µ(a+ 1).

For each n ∈ Z where n > 0 each value of Sn(0̌) is distinct. To see this, note that

by ZAx(3) for any p in dom(M) we have p < S(p), as < is also defined by ZAx(7)

to be a transitive relation, by induction we have Sn(0̌) < Sl(0̌) for any l ∈ Z such

that n < l in Z. As p 6< p by ZAx(5) for any p ∈ dom(M), the value of µ(n) must

be distinct for each n.

For each k ∈ Z where k < 0 the value of µ(k) must also be well-defined. As

clearly S−1(0̌) is well-defined since by ZAx(2) an element q ∈ dom(M) such that

S(q) = 0̌ is guaranteed to exist. q is also unique, as if S(q′) = 0̌ then by ZAx(1)

we have q′ = q. By similar reasoning S−2(0̌) must also be well-defined, and as such

reasoning can be repeatedly applied, by induction µ(k) is well-defined. Also by the

same argument as above we have µ(k) < µ(l) if k < l, hence for every n ∈ Z the

value of µ(n) is distinct, and therefore a = b iff µ(a) = µ(b).

By the above reasoning we also know that if a < b in Z then µ(a) < µ(b) in

M. Now conversely, if a 6< b in Z then b 6 a, and if a = b then by ZAx(5)

¬(µ(a) < µ(b)), whereas if b < a then µ(b) < µ(a) and by ZAx(6) ¬(µ(a) < µ(b)).

Consequently µ is an embedding of Z into M.

Finally for any n ∈ Z there does not exist a p ∈ dom(M) such that µ(n) < p and

p < µ(n + 1). As suppose that µ(n) = q then µ(n + 1) = S(q), and so by ZAx(4)

there does not exist a p such that q < p and p < S(q). o

Remark 8.0.15 Let M be any FO or FO=-model of ISA−. In this chapter we

will refer to the part of M that contains 0 and is isomorphic to Z as the standard

part of M.

123

Chapter 8. Physical Computation and Complete Theories

In this chapter a key property for a logical system will be completeness. Recall from

Definition 3.4.5 that a logical system LS is complete if there exists an LS-proof

system P such that for any sets of LS-sentences Γ,∆ we have Γ |=LS ∆ ⇐⇒

Γ `P ∆. Which means that ∆ is true in any LS-model of Γ iff there exists a finite

LS-proof of every sentence in ∆ from Γ. Gödel’s completeness theorem states that

first-order logic is complete, and the same is true for first-order logic with equality

[34, 36, 45].

An important property of a complete logical system is the following.

Lemma 8.0.16 Let LS be a complete logical system, and Γ,∆ be sets of LS-

sentences. If Γ |=LS ∆ then for every finite subset Ω ⊆ ∆ there exists a finite subset

Υ ⊆ Γ such that Υ |=LS Ω.

Proof: By the definition of complete logical system, if Γ |=LS ∆ then Γ `P ∆,

and so Γ `P Ω. Therefore for each φ ∈ Ω there exists a finite P-proof of φ from

Γ. Clearly such a proof can only reference a finite number of sentences in Γ, so let

Υφ ⊆ Γ be the finite set of sentences in Γ that are used to prove φ ∈ Ω.

Now let Υ =
⋃
φ∈Ω Υφ, which is clearly finite, and it must also be the case that

exists a P-proof of every element of Ω from Υ. Hence we have Υ `P Ω, and so by

the definition of completeness we have that Υ |=LS Ω. o

8.1 Examples of FFOT Machines

8.1.1 Turing Machines

We may characterise a Turing machine computing a decision problem with a FFOT

machine in much the same manner as how we characterised it by a finite SO=-theory

machine in Example 5.1.1.

Example 8.1.1 Let M = (Λ,Π,b,A, s0, 〈sa, sr〉,R) be a Turing machine which

computes the decision problem A ⊆ A∗.

124

8.1 Examples of FFOT Machines

We can characterise M via the finite FO=
VM

-machine:

TM−M = (TMT−M , Â
∗
XTM

, {{I(h) = sa}, {I(h) = sr}}),

in the same vocabulary, VM , as TMM in Example 5.1.1 and with the same input

sequence XTM . The theory of TM−M is:

TMT−M = TMTM \ ISASO.

Where TMTM is the theory of TMM in Example 5.1.11, which except for ISASO ⊂

ISA is a finite first-order theory.

As ISA− ⊂ TMT−M , for any w ∈ A∗ any FO=
VM

-model D of TMT−M ∪ Φ∗XTM (w)

must be an expansion of an FO=
{<,S,0}-model D′ of ISA−.

Clearly the input Φ∗XTM (w) = {C(0, Si(0)) = wi | i ∈ {0, . . . , |w|−1}}∪{C(0, S|w|(0)) =

b} defines C within the standard part of D. Similarly ITs0 ⊂ TMT−M defines the

remainder of the initial configuration of M at time 0 in D. The rules of R are then

applied by ETR ⊂ TMT−M , and so as in Example 5.1.1 at times S(0), S2(0), S3(0), . . .

the evolution of the configurations of M is represented correctly in D.

As M computes A, it must halt on every input. That is, there must exist a

finite time step at which the internal state of M is either sa or sr. Hence by

HT(sa,sr) ⊂ TMT−M the halting time step h must occur within the standard part

of D. The truth of the output I(h) = sa or the output I(h) = sr in D therefore

depends entirely on what happens in the standard part of D.

Crucially, as in Example 5.1.1, all the configurations of M on input w necessarily

occur within D, and necessarily lead to the same output. The output cannot be

changed by what happens in the non-standard part of the model, as if it was then

this would lead to a logical contradiction. Nor can h occur at a non-standard time

step, as constants must have a unique value in any FO= model.

It must therefore be the case that D |=FO=
VM
{I(h) = sa} iff M accepts w, and

D |=FO=
VM
{I(h) = sr} iff M rejects w.

1Recall that TMTM = ISA∪CD=
VM
∪ ITs0 ∪ETR ∪HT(sa,sr), where ITs0 describes the initial

configuration, ETR describes the application of the rules of R, and HT(sa,sr) describes how M

halts.

125

Chapter 8. Physical Computation and Complete Theories

Hence we have that TM−M is able to compute A, even though TM−M has models

which are highly non-standard.

Remark 8.1.2 Unlike TMM there are of course models of TM−M which have non-

standard elements, and these elements are not present in the definition of a Turing

machine. However, these non-standard elements are transfinite and so in the real

world they are unreachable and unobservable. So whilst such a model of TM−M may

not correspond to a Turing machine M in the manner we typically view it, there

is no way of us knowing for certain that a real world actualisation of M does not

have these transfinite elements an infinite distance/time away from our position.

Also, the non-standard parts of these models do not have any effect on the proper

computation. We therefore argue that TM−M characterises the Turing machine M .

In a similar manner to Example 5.1.2 we may also characterise a Turing machine

computing a function problem as a FFOT machine.

Example 8.1.3 Let M ′ = (Λ,Π,b,A, s0, 〈s1〉,R) be a Turing machine which com-

putes the function problem f :⊆ A∗ → B∗.

We can characterise M ′ via the finite FO=
VM′

-machine:

TM−M ′ = (TMT−M ′ , Â
∗
XTM

, B̂∗YTM),

in the same vocabulary, VM ′ , and with the same input and output sequences, re-

spectively XTM and YTM , as TMM ′ in Example 5.1.2. The theory of TM−M ′ is then:

TMT−M ′ = TMTM ′ \ ISASO.

Where TMTM ′ is the theory of TMM ′ in Example 5.1.2.

As in Example 8.1.1 above we have ISA− ⊂ TMT−M ′ . So for any w ∈ A∗ any

FO=
VM′

-model E of TMT−M ′ ∪Φ∗XTM (w) contains a standard part which is isomorphic

to Z. Similarly to in Example 8.1.1 it must then follow that the entire computation

of M ′ is described within the standard part of E, and if M ′ halts then it must do

so within the standard part of E.

126

8.1 Examples of FFOT Machines

Consequently if w ∈ dom(f) then M ′ on input w halts and outputs f(w), and

so by our reasoning in Example 5.1.2 we have E |=FO=
VM′

Φ∗YTM (f(w)). Whereas if

w 6∈ dom(f) then M ′ on input w never halts, hence I(p) 6= s1 for all p > 0 in the

standard part of E. Therefore, as in Example 5.1.2, any output Φ∗YTM (v) ∈ B̂∗YTM

can be true in some model of TMT−M ′∪Φ∗XTM (w), and consequently TM−M ′(Φ
∗
XTM

(w))

is undefined.

Therefore TM−M ′ is able to compute f :⊆ A∗ → B∗.

Remark 8.1.4 By Proposition 8.0.9 both of the finite FO=-theory machines TM−M

and TM−M ′ above can be converted into finite FO-theory machines, and so every

Turing machine computable problem is finite FO-computable.

8.1.2 Differential Equation Systems

In Subsection 5.2.1 we discussed how we may characterise a physical system S that

obeys a set of differential equations with an FOR-theory machine MS. We can

also characterise such a system with an SO=
V -theory machine M′S in which the non-

logical symbols of FOR are included as part of the vocabulary V. All we have to

do is add the real arithmetic axioms RAA (Definition A.1.7) to the theory of M′S.

It then follows from Proposition A.1.8 that any model of M′S must be isomorphic

to an expansion of the usual structure of real arithmetic 〈R;<,+,×, 0, 1〉, and so

such a model is also an FOR-structure. However, the real arithmetic axioms are a

second-order set of sentences, so to characterise S with a FFOT machine we use the

following set.

Definition 8.1.5 [28] The set of first-order dense ordered field axioms in the vo-

cabulary of VR = {=, <,+,×, 0, 1}, where =, < are binary relations, +,× are binary

functions, and 0,1 are constants, is:

DOF = RAA \

 ∀
1Q((∃uQ(u) ∧ ∃v∀w(Q(w)→ (w < v)))

→ ∃x∀y(∀z(Q(z)→ (z < y))↔ ((x < y) ∨ (x = y))))

 .

127

Chapter 8. Physical Computation and Complete Theories

Much like with ISA− and ISA, the models of DOF include the usual structure

of real arithmetic 〈R;<,+,×, 0, 1〉 as well as other structures such as the usual

structure of rational arithmetic 〈Q;<,+,×, 0, 1〉. Indeed there exists an embedding

from the usual structure of rational arithmetic into any model of DOF [28].

We may then characterise a differential equation system S (such as MONIAC [14]

or Blakey’s double slit factoriser [17]) with an FO=-theory machine M−S , where M−S

is the same as M′S above but with DOF included in the theory of M−S instead of

RAA.

Though there do exist FO=-models of M−S that are not expansions of the usual

structure of real arithmetic, the necessary aspects of real arithmetic must hold in

any such model. That is, any model of DOF must be closed under addition, mul-

tiplication, have non-zero multiplicative inverses, and contain a dense total order.

Further, if a real number r is defined by the theory of M−S , then any model of M−S

must contain r whilst still being closed under addition, multiplication etc.

Crucially if a function f is defined in M−S , then its partial derivative ∂1f can

still be defined within the theory of M−S in the exact same manner as in MS (see

Equation 5.1 in Subsection 5.2.1). By definition, the value of ∂1f(~a) will then be

equal to the usual value of ∂f
∂x

at point ~a, or the two values will be infinitesimally

close to one another. That is, the distance between them is less than ε for all ε > 01.

Therefore functions described in M−S will either be equal to, or infinitesimally

close to their values in MS. So the same output will be obtained provided that for

any input each of the possible outputs of M−S is bounded away from one another.

For example, if OS = {{f(τ1) < 0}, {1 < f(τ1)}} then the two possible outputs are

of distance 1 away from one another.

1Which is possible in a non-standard model of DOF , such as the hyperreals [61].

128

8.2 FFOT Machines and Turing Computability

8.2 FFOT Machines and Turing Computability

In the previous section we saw how various examples of computational systems may

be characterised with FFOT machines. A natural question to ask is whether there

exist computational systems that can be characterised by FFOT machines which are

able to compute problems that are not Turing machine computable. The following

theorem demonstrates that the answer to this question is “no”.

Theorem 8.2.1 A finite problem is Turing machine computable if and only if it is

finite FO-computable.

We split up the proof of Theorem 8.2.1 into two Lemmas.

Lemma 8.2.2 A finite decision problem A ⊆ A∗ is Turing machine computable if

and only if it is finite FO-computable.

Proof: (⇒) This follows from Example 8.1.1 and Remark 8.1.4.

(⇐) Conversely, suppose that we are able to compute A ⊆ A∗ with the finite

FOV-theory machine M = (T, I,O) with input set Â∗X ⊂ I and outputs Θ,Ψ ∈ O

corresponding to accepting and rejecting respectively.

By definition, for any w ∈ A∗ if w ∈ A we have T∪Φ∗X(w) |=FOV
Θ. Hence by the

completeness of first-order logic (Theorem 3.4.6)[36, 45] we have T ∪ Φ∗X(w) `P Θ

for some FO-proof system P, and there exists a finite P-proof of the truth of Θ

given T ∪ Φ∗X(w). Conversely if w 6∈ A we have T ∪ Φ∗X(w) |=FOV
Ψ and there exists

a finite formal proof of the truth of Ψ given T ∪ Φ∗X(w).

As T ∪ Φ∗X(w) is a finite set of FOV-sentences the set of all first-order sentences

provable from it is computably enumerable. We can therefore construct a Turing

machine MM that, on an input of w, enumerates all sentences provable from T ∪

Φ∗X(w).

By the definition of a theory machine, only one of Θ,Ψ ∈ O will be provable

from T ∪ Φ∗X(w). Further, Θ and Ψ must also be finite, so if w ∈ A then MM must

129

Chapter 8. Physical Computation and Complete Theories

eventually enumerate every element of Θ, and will never enumerate every single

element of Ψ. Conversely if w 6∈ A then MM must eventually enumerate every

element of Ψ, and will never enumerate every single element of Θ.

We can then define MM to halt and accept if it enumerates every element of Θ,

and halt and reject if it enumerates every element of Ψ. The Turing machine MM

then computes A ⊆ A∗ and thus A is Turing machine computable. o

Lemma 8.2.3 A finite function problem f :⊆ A∗ → B∗ is Turing machine com-

putable if and only if it is finite FO-computable.

Proof: (⇒) This follows from Example 8.1.3 and Remark 8.1.4.

(⇐) Conversely, suppose that we are able to compute f :⊆ A∗ → B∗ with the

finite FOV-theory machine M′ = (T, I,O) with input set Â∗X ⊂ I and output set

B̂∗Y ⊂ O.

By definition, for each w ∈ dom(f) we have T ∪ Φ∗X(w) |=FOV
Φ∗Y(f(w)) and for

any Ψ ∈ B̂∗Y\{Φ∗Y(f(w))} we have T∪Φ∗X(w) 6|=FOV
Ψ. Hence by the completeness of

first-order logic [36, 45] we have T ∪Φ∗X(w) `P Φ∗Y(f(w)) for some FO-proof system

P, and there exists a finite P-proof of the truth of Φ∗Y(f(w)) given T ∪ Φ∗X(w).

As T ∪ Φ∗X(w) is a finite set of FOV-sentences the set of all first-order sentences

provable from it is computably enumerable. Similarly as Y is a simple sequence,

the sentences of B̂∗Y are computably enumerable. We can therefore construct a

Turing machine MM′ that, on an input of w, enumerates all sentences provable from

T ∪ Φ∗X(w), while concurrently enumerating the elements of B̂∗Y.

By our reasoning above we know that Φ∗Y(f(w)) is the only set of sentences B̂∗Y

that can be entirely proven from T∪Φ∗X(w). So by repeatedly checking whether every

sentence in each enumerated element of B̂∗Y have been proven, MM′ will eventually

find Φ∗Y(f(w)). The output word f(w) can then be extracted from the set of sentences

Φ∗Y(f(w)).

If w 6∈ dom(f) then for no element Ψ ∈ B̂∗Y is T ∪ Φ∗X(w) |=FOV
Ψ true. which

means that no set in B̂∗Y is provable from T ∪ Φ∗X(w), and so MM′ on input w will

130

8.2 FFOT Machines and Turing Computability

never halt.

Consequently MM′ is able to compute f , and so f is Turing machine computable.

o

By the above result, if the Church-Turing thesis is true and applies to physical cal-

culations, then it must be the case that the computational aspects of any obtainable

physical system is describable by a finite first-order theory machine. Hence the

Church-Turing thesis can be reformulated as:

Every effectively calculable function is computable by a finite first-order

theory machine
(8.1)

This modified thesis fits in with what Kripke discussed in The Church-Turing Thesis

as a Special Corollary of Gödels Completeness Theorem [53]. Kripke asserted that:

“A computation is just another mathematical deduction, albeit one of a very spe-

cialized form.” He also argued in favour of what he called “Hilbert’s thesis” that the

steps of any mathematical argument can be given in first-order logic (with equality).

The Church-Turing thesis is then a consequence of Gödel’s completeness theorem as

for any mathematical argument there must exist a Turing machine which can carry

it out.

Now we do not quite agree that a computation is necessarily a mathematical de-

duction, as we of course assert that an arbitrary computation can be characterised

by a theory machine in some logic LS. Such a computation cannot necessarily be

described as a deduction as LS may not be complete, meaning the truth of some

results does not necessarily follow from a finite proof. However, given Theorem

8.2.1 above (as well as Theorem 8.2.4 below) along with our assertions about phys-

ical computation, we do agree that any physically realisable computation can be

described by a mathematical deduction.

131

Chapter 8. Physical Computation and Complete Theories

8.2.1 Complete Logical Systems and Turing Computability

The above result is not in fact limited to first-order logic or first-order logic with

equality. As the proof of Theorem 8.2.1 relies on just two facts; the fact that we can

characterise any Turing machine by a finite first-order theory machine, and the fact

that first-order logic (with equality) is complete.

Neither of these properties are held by only first-order logic and first-order logic

with equality. We therefore have the following generalisation.

Theorem 8.2.4 If LS is a complete logical system and any Turing machine can

be characterised by a finite LS-theory machine then the class of finite problems

that are finite LS-computable is equal to the class of Turing machine computable

problems.

Proof: By definition, if a finite LS-theory machine characterises a Turing machine

M then it is able to compute the finite problem that is computed by M . Therefore

the class of Turing machine computable problems is contained within the class of

finite problems that are LS-computable. Equality follows from LS being a complete

logical system, as we can just replace every instance of FO in the proofs of Lemmas

8.2.2 and 8.2.3 with LS to obtain a Turing machine that is able to compute each

finite LS-computable finite problem. o

Therefore if we can finitely describe the computational aspects of a system P using a

logical system such as LS above then everything computable by P is Turing machine

computable. Conversely, if we can use P to compute finite problems that are not

Turing machine computable, then P is not characterisable by a finite LS-theory

machine.

Corollary 8.2.5 Let LS be as in Theorem 8.2.4. The infinite theory machines

defined in the proof of Proposition 6.0.4 that are capable of computing any finite

problem are not in general characterisable by a FFOT machine or a finite LS-theory

machine.

132

8.3 FFOT Machines and Type-2 Computability

8.3 FFOT Machines and Type-2 Computability

As we shall see, FFOT machines are not limited to computing finite problems, they

are perfectly capable of computing with infinite inputs and outputs. Indeed we may

characterise a Type-2 machine by a FFOT machine in a similar manner to how we

characterised it with a finite SO=-theory machine in Example 5.3.2.

Example 8.3.1 Let T = (Λ,Π,b,A, s0, s1,U, a, b) be a type-2 machine with m

tapes that computes the function f :⊆ Aa → Bb. We can characterise T via the

FO=
VT

-theory machine:

T2M−T = (T2MT−T , Â
a
XTM1

, B̂b
YT2

),

in the same vocabulary VT , and with the same input and output sequences, XTM1

and YT2, as T2MT in Example 5.3.2. The only difference is the theory of T2M−T ,

which is:

T2MT−T = (T2MTT \ ISASO) ∪ EQVT .

As in Example 8.1.3 since ISA ⊂ T2MT−T , every model F of T2MT−T ∪Φa
XTM1

has a

standard part which is isomorphic to the usual ordered structure of the integers. In

addition, even though the input set may be infinite, as each element of Φa
XTM1

is of

the form {C1(0, Si(0)) = wi}, the input set defines the values of C1(0, y) only within

the standard part of F.

Following the same reasoning as in Example 5.3.2 together with Example 8.1.1

we can see that the computation of T on input w is entirely described within the

standard part of F.

As before in Example 5.3.2, there are two possible cases.

Case 1. b = ∗, in which case if w ∈ dom(f) then the halting state s1 should

eventually be reached at time h and the output word {O(Si(0)) = f(w)i | i ∈

{0, . . . , |f(w)| − 1}} ∪ {O(S|f(w)|(0)) = b} is defined within the standard part of F

(that is, if O(p) is described by the output then p is in the standard part of F) via

{∀y(O(y) = Cm(h, y))} ⊂ T2MT−T . Whereas if w 6∈ dom(f) then as in Example 5.3.2

the values of O(y) could be anything in F, and hence T2M−T (Φa
XTM1

) is undefined.

133

Chapter 8. Physical Computation and Complete Theories

Case 2. b = ω in which case, if w ∈ dom(f) then for each n ∈ N there exists

an l ∈ N such that Cm(Sl(0), Sn(0)) 6= b. Also, {∀x∀y(¬(Cm(x, y) = b)→ (O(y) =

Cm(x, y))} ⊂ T2MT−T , and the output word {O(Si(0)) = f(w)i | i ∈ N} is therefore

defined in F. Notably, the value of O(q) depends on the non-blank values of Cm(p, q)

for all p ∈ dom(F), not just the p that are in the standard part of F. However this

cannot prevent the output from being defined, as if Cm(t, q) is not blank at any

time step t ∈ dom(F) then we must have Cm(t, q) = Cm(p, q) to prevent a logical

contradiction within the model.

Alternatively, if w 6∈ dom(f), then as in Example 5.3.2 the value of O(Sk(0))

is eventually unspecified for some large enough k ∈ N. Hence there are multiple

possible outputs that could be true in F and T2M−T (Φa
XTM1

) is undefined.

Therefore T2M−T is able to compute f :⊆ A∗ → B∗.

Remark 8.3.2 As in Remark 8.1.4, it follows from Proposition 8.0.9 that we can

also characterise any type-2 machine by a finite FO-theory machine. Therefore any

type-2 computable problem is finite FO-computable.

Do there exist computational systems that can be characterised by FFOT machines

which are able to compute problems that are not Turing machine computable? The

following Theorem 8.2.1 implies that the answer to this question is, again, “no”.

Theorem 8.3.3 Let a, b ∈ {∗, ω}. A word function problem g :⊆ Aa → Bb is

computable by a type-2 machine if and only if g is finite FO-computable.

Proof: (⇒) This follows Remark 8.3.2.

(⇐) Suppose that g :⊆ Aa → Bb is computable by some finite FOV-theory

machine M = (T, I,O) with input set Âa
X ⊂ I and output set B̂b

Y ⊂ O.

As in the proof of Lemma 8.2.3 for every w ∈ dom(g) we have T ∪ Φa
X(w) |=FOV

Φb
Y(g(w)). By the completeness of first-order logic [36, 45] (Theorem 3.4.6) and

Lemma 8.0.16, for any finite subset Ω ⊂ Φb
Y(g(w)), there exists a finite subset

134

8.3 FFOT Machines and Type-2 Computability

Υ ⊂ Φa
X(w), such that T ∪ Υ |=FOV

Ω. Hence again by the completeness of first-

order logic there must exist a finite formal proof of the truth of Ω given T ∪Υ.

Thus we can construct a type-2 machine TM, that on input w ∈ Aa enumerates

the elements of Φa
X(w), and from this enumeration, TM enumerates all sentences

provable from T ∪ Φa
X(w). Let TM then record each provable sentence of the form

υi = d, for Y = {υi}i∈N and d ∈ B. Through such sentences TM can clearly obtain

g(w) from which it may then sequentially output g(w).

If w 6∈ dom(g) then there is some l ∈ N such that υl = e is not provable for any

e ∈ B. Therefore TM is unable to record the lth symbol on the output tape, and

hence TM(w) is similarly undefined. o

In the original Church Turing thesis an effectively calculable function was intended

to be finite [27, 67]. However if we were to assume that it could also be an infinite

function, then Theorem 8.3.3 and our reformulation of the Church Turing thesis (8.1)

collectively imply that every effectively calculable function (whether its infinite or

not) is computable by a type-2 machine.

This does in fact fit in with the usual view of computability for functions from Aω

to Bω, in that such a function is computable iff it is type-2 computable [71, 72]. This

view is justified by the fact that a type-2 machine computes an infinite word problem

in a Turing machine-like manner, and the fact that we can stop a type-2 machine

computation at any point and know that whatever has so far been outputted is a

prefix of the output word.

Our result provides an alternative justification of this view; a FFOT machine

that is able to compute an infinite function problem f :⊆ Aω → Bω is just a FFOT

machine which is able to admit the infinite word sets of Âω
X and B̂ω

Y as inputs and

outputs. So infinite problems that are computable in such a manner provide a

natural infinite extension to finite FFOT machine computable problems. Now as

these finite problems are Turing computable and the infinite problems are type-2

computable, type-2 computability naturally extends Turing computability .

135

Chapter 8. Physical Computation and Complete Theories

Another consequence of Theorem 8.3.3 is that if a computational system is able

to compute problems that are not type-2 computable, then such a system is not

characterisable by a FFOT machine.

Corollary 8.3.4 Infinite time Turing machines are not in general describable by a

FFOT machine.

Corollary 8.3.5 Blum-Shub-Smale machines are not in general describable by a

FFOT machine.

8.3.1 Complete Logical Systems and Type-2 Computability

Like in Subsection 8.2.1 our result is not limited to first-order logic or first-order

logic with equality. We instead have the following generalisation of Theorem 8.3.3.

Theorem 8.3.6 If LS is a complete logical system and any type-2 machine can

be characterised by a finite LS-theory machine then the class of function problems

that are finite LS-computable is equal to the class of type-2 computable function

problems.

Proof: If a finite LS-theory machine characterises a type-2 machine T then it is able

to compute the function problem that is computed by T , and so the class of type-

2 computable problems is contained within the class of LS-computable function

problems. Equality then follows from LS being a complete logical system, as we

can just replace every instance of FO in the proof of Theorem 8.3.3 with LS to

obtain a type-2 machine that is able to compute each finite LS-computable word

problem. o

We can therefore extend the Church-Turing thesis even further and assert that

a computational system with finite or infinite inputs and outputs (such as real

numbers) is physically realisable only if it is characterisable by a FFOT machine.

We also have the following corollary.

136

8.3 FFOT Machines and Type-2 Computability

Corollary 8.3.7 Let LS be a complete logical system that contains first-order

logic. If the word function problems f :⊆ Aa → Bb and g :⊆ Bb → Cc where

a, b, c ∈ {∗, ω} are finite LS-computable and b = ∗ or c = ω, then g ◦ f :⊆ Aa → C∗

is finite LS-computable.

Otherwise if b = ω and c = ∗ then for both a = ∗ and a = ω, there exists a

finite LS-computable function f :⊆ Aa → Bω and a finite LS-computable function

g :⊆ Bω → C∗ such that g ◦ f :⊆ Aa → C∗ is not finite LS-computable.

Proof: From Theorem 8.3.6, the functions f, g, and g◦f are finite LS-computable if

and only if they are type-2 computable. Therefore the result follows by Proposition.

2.3.4 o

137

Chapter 8. Physical Computation and Complete Theories

138

Chapter 9

Theory Machine Complexity

“The field, created as it was to cater primarily for Turing-like mod-

els of computation, fails to capture the true complexity of many non-

standard (analogue, chemical, quantum, etc.) computers.” - Ed Blakey

In the 1960’s Cobham and Edmonds [26, 30] asserted that a computational problem

is feasibly computable if and only if it can be decided in polynomial time on a

Turing machine (and thereby lies in P). Though not within its originally intended

scope, it has been suggested [70] that Cobham and Edmonds assertion should also

apply to what is feasibly computable by any physical system. However, this idea

has since been challenged by results from quantum computation [59], such as Shor’s

factorisation algorithm [63], which suggest that the class of problems decidable by

a quantum computer in polynomial time (BQP) may include problems that do not

lie in P. These results lead naturally to the questions of what it is about quantum

systems that makes them capable of feasibly deciding problems that may lie outside

of P, and whether there exist other physical systems with such capabilities.

Now as we noted in Subsection 1.1.1, in [5] Baumeler and Wolf looked into the

computational power of polynomially bounded circuits acting within closed time-

like curves of polynomial length. They asserted that a computation may occur

on such a circuit if it is logically consistent and unique, demonstrating that with

these assumptions the computational power of these non-causal circuits is equal to

139

Chapter 9. Theory Machine Complexity

UP ∩ co-UP. Notably, BQP problems such as the factorisation problem also lie

in UP ∩ co-UP, suggesting that there may be a non-causal aspect to the quantum

computational speed-up.

Baumeler and Wolf’s innovative non-causal circuit model did not have the goal of

describing the feasible computational aspects of a general physical system. However,

as we saw in Chapter 8, our concept of a FFOT machine appears to be able to

characterise the computational aspects of an arbitrary physical system. So in this

chapter we shall develop the concept of theory machine complexity, with the goal

that the complexity of a physical computation may be understood through the

complexity of a corresponding FFOT machine computation.

Notably, rather than describing each computation as a discrete ordered sequence

of structures, in a theory machine the whole computation is described via a single

consistent structure. Hence any temporal evolution of the machine is described

within this structure. This inclusion of the evolution within the structure allows a

theory machine to compute in a consistent non-causal and atemporal manner.

Further, in [16] Blakey argued that in order to measure the complexity of un-

conventional computation devices require unconventional notions of complexity. So

the general resource usage of a computation, such as its space, energy, and precision

usage (as well as its time usage) should be taken into account when considering the

complexity of a problem.

From the computability standpoint, by Theorem 8.2.1 finite-input FFOT ma-

chines are exactly as powerful as Turing machines. But as we shall see with Theorem

9.3.1, from the complexity standpoint this equivalence appears to break down.

Much of the work in this chapter has appeared in our publication An Atemporal

Model of Physical Complexity [74].

9.0.2 Observations on Computational Resource Usage

Though a Turing machine is typically defined as being unbounded in time and space,

a halting computation on a Turing machine is usually understood to be finite in time

140

and space. Hence it should be possible to describe a Turing machine computation

in time t and space s via a structure with a domain of size max(t, s).

Similarly we typically may view a kinematic system as occurring within a contin-

uously infinite space. But if when implementing such a system for the purpose of a

computation we require only bounded precision, along with bounded space and time,

then such a computation may be described by a finite structure that approximates a

continuously infinite space. For example a computation of precision ε, taking time t

and within a space of diameter r, may be described via a structure of size max(t, r
ε
).

We therefore argue that if a theory machine on input Φ is satisfied by a finite

structure of size n, then the amount of computational resources required to carry

out a computation on input Φ is of order at most n.

Definition 9.0.8 Let A ⊆ A∗ be a finite word problem, and q : N→ N be a strictly

increasing function. We say that an LSV-theory machine M = (T, I,O) is able to

compute A with q resources if M is able to compute A via some simple sequence X

and Σ̂∗X ⊆ I, such that for every w ∈ A∗ there exists an LSV-structure A where:

T ∪ Φ∗X(w) |=LSV
A, and |dom(A)| = O(q(|w|)),

where |dom(A)| denotes the cardinality of the domain of A.

So the idea behind the above definition is that the theory machine M compute A

with q resources if for any input w there exists a model of M on input w which

requires at most order q(|w|) resources to correctly compute an output. Clearly this

mimics the concepts of time and space complexity for Turing machines1.

Further, as per our reasoning in Chapter 8, we argue that if physical system S can

compute A, and S can be characterised by a FFOT machine that is able to compute

A with q resources then on input w the physical system S requires at most order

q(|w|) resources to decide A.

Definition 9.0.9 A theory machine M = (T, I,O) is finitely modelable if for every

Φ ∈ I there exists a model M of T ∪ Φ, in which |dom(M)| is finite.

1See Definitions 2.2.1 and 2.2.2.

141

Chapter 9. Theory Machine Complexity

Clearly, it is a necessary requirement that a theory machine is a finitely modelable

in order for it to be a able to compute a problem with q resources for any q : N→ N.

Definition 9.0.10 Let A ⊆ A∗ be a finite decision problem. We say that a theory

machine M = (T, I,O) is able to compute A with polynomial resources if M is able

to compute A with p resources, and p is a polynomial function1.

If M is a theory machine that is able to compute A but M is not able to compute A

with polynomial resources then we say that M requires super-polynomial resources

to compute A. The primary reason why P is considered to be the class of problems

that are feasibly computable with a Turing machine is because polynomial time

growth is relatively slow. For the similar reasons we argue that a problem A ⊆ A∗

can be feasibly computed with a theory machine M if and only M is able to compute

A with polynomially resources.

Further, we believe that a randomness-free physical system S is able feasibly

compute A only if S can be characterised by a FFOT machine which is able to

compute A with polynomial resources.

Remark 9.0.11 The reason why we believe that this feasible characterisation only

works for randomness-free system is because in order to properly characterise a

probabilistic computation system2, a theory machine has to model every possible

computation path of the system. This is due to the fact that a theory machine

computation only gives outputs that it is certain of, and in order to be certain that

one has the correct output of a probabilistic computer one must ensure that it is the

most likely outcome. This means that a probabilistic Turing machine that computes

in polynomial time but has an exponentially growing number of computation paths

can only be characterised with a theory machine with super-polynomial resource

growth.

1See Definition 2.2.5
2Such as a probabilistic Turing machine [4] or quantum computer [50, 59]

142

9.1 Boundedly Characterising a Turing machine

9.1 Boundedly Characterising a Turing machine

Despite the fact that a halting Turing machine computation takes place over a finite

time period and uses a finite number of tape squares, our characterisation of a

Turing machine TM−M in Example 8.1.1 is not finitely modelable. This is because

every structure which satisfies the machine’s theory contains an expansion of Z and

therefore has a domain with infinite cardinality.

However it is possible to characterise a Turing machine with a FFOT machine

that has bounded models of arbitrary finite size. We just need to replace ISA− in

the theory of TM−M with the bounded first-order integer successor axioms BISA−

defined below.

BISA− is modelled by structures that are similar to Z, but have a specified

greatest number r, with S(r) = r, and a specified least number l which has no

predecessor. We will demonstrate in Proposition 9.1.3 that the set of FO=-models

of BISA− includes finite structures with domain {a, a+1, . . . ,−1, 0, 1, . . . , b−1, b}.

Definition 9.1.1 The set of bounded first-order integer successor axioms in the

vocabulary of {=, S, 0, l, r}, where = is a binary relation, S is a unary function, and

l, r are constants, is:

BISA− =



BZAx(1.1) ∀x¬(S(x) = l),

BZAx(1.2) (S(r) = r),

BZAx(1.3) ∀x∀y((S(x) = S(y))→ ((x = y) ∨ (S(x) = r))),

BZAx(2) ∀x((x = l) ∨ ∃y(S(y) = x)),

BZAx(3.1) ∀x((x < S(x)) ∨ (x = r)),

BZAx(3.2) ∀x((l = x) ∨ (l < x)),

BZAx(3.3) ∀x((r = x) ∨ (x < r)),

ZAx(4) ∀x¬∃y((x < y) ∧ (y < S(x)),

ZAx(5) ∀x¬(x < x),

ZAx(6) ∀x∀y(x < y)→ ¬(y < x),

ZAx(7) ∀x∀y∀z((x < y) ∧ (y < z))→ (x < z)



.

143

Chapter 9. Theory Machine Complexity

BZAx(1.1)-BZAx(1.3) correspond to a bounded version of the axiom ZAx(1) in

ISA−. Similarly BZAx(2) corresponds to ZAx(2) and BZAx(3.1)-BZAx(3.3) corre-

spond to ZAx(3) in ISA−. The remaining axioms are then identical to the remaining

axioms in ISA−.

Notation 9.1.2 For any a,∈ Z, where a < 0 and b > 0, let Z[a,b] denote the set

{a, a+ 1, . . . ,−1, 0, 1, . . . , b− 1, b} ⊂ Z.

Proposition 9.1.3 Let V = {<,S, 0̌, l, r}. For each a, b ∈ Z where a < 0 < b let

K[a,b] = 〈Z[a,b], <, S, 0̌, l, r〉 have the usual ordering and a successor function such

that S(b) = b and S(x) = x+ 1 if x 6= b. Also let l = a, r = b, and 0̌ = 0. It is then

the case that K[a,b] is an FO=
V -model of BISA−.

Proof: BZAx(1.1) holds in K[a,b] as by definition a−1 does not lie in Z[a,b], similarly

BZAx(1.2) holds as S(b) = b. BZAx(2) is then true as for every p ∈ (Z[a,b] \ {a}) we

know that p − 1 lies in Z[a,b]. Also BZAx(1.3) holds in K[a,b] as in (Z[a,b] \ {b}) the

function S is an injection, whereas if S(q) = S(q′) and q 6= q′ then we must have

q, q′ ∈ {b− 1, b} and so S(q) = b = r, which by BZAx(1.3) is also fine.

The ordering on Z[a,b] is the same as the usual ordering on Z, which means that

< in K[a,b] is still a strict total order, hence ZAx(5)-ZAx(7) are satisfied. As with

Z, for every p ∈ (Z[a,b] \ {b}) the value of S(p) = p + 1 is greater than p, hence

BZAx(3.1) is true in K.

Also, as in Z for each q ∈ Z[a,b] there are no elements of Z[a,b] between q and S(q).

Since if q = b then S(q) = q, and otherwise if there existed an element between q

and S(q) then it would also be present in Z, which would mean that Z would not

satisfy ZAx(4). However from Proposition A.1.6 we know that ZAx(4) is satisfied

in Z, hence it is also true in K[a,b]. Finally BZAx(3.2) and BZAx(3.3) are satisfied

as clearly by definition a is the least element of Z[a,b] and b is the greatest element

of Z[a,b]. o

Corollary 9.1.4 The bounded first-order integer successor axioms are finitely mod-

elable.

144

9.1 Boundedly Characterising a Turing machine

Proposition 9.1.5 Let V = {<,S, 0̌, l, r} and V′ = {<,S, 0̌}. Let M be an FO=
V -

model of BISA−.

Suppose that there exists a d ∈ dom(M) and an N ∈ N \ {0, 1} such that for any

m,n ∈ {0, . . . , N} if m 6= n then Sm(d) 6= Sn(d) in M, and for some j ∈ {0, . . . , N}

we have that Sl(d) = 0̌.

Let a = −j and b = N − j. Also let K[a,b] be as in Proposition 9.1.3. Then the

map µ : K[a,b] →M given by µ(n) = Sn(0̌) (where as in Proposition 8.0.14 S0(0̌) = 0̌

and S−m(0̌) = q iff Sm(q) = 0̌) is well-defined and such that:

• µ(0) = 0̌.

• For any p1 ∈ Z[a,b] \ {b} and p2 ∈ Z[a,b] we have p1 + 1 = p2 in K[a,b] iff

S(µ(p1)) = µ(p2) in M1.

• For any p1, p2 ∈ Z[a,b] we have p1 < p2 in K[a,b] iff µ(p1) < µ(p2) in M.

Proof: By assumption µ is a well-defined mapping, as dom(K[a,b]) = Z[a,b], and so

for any p ∈ Z[a,b] we have µ(p) = Sp(0̌) = Sp(Sj(d)) = Sp+j(d).

Clearly by definition µ(0) = S0(0̌) = 0̌. Also for any p1 ∈ Z[a,b]\{b} and p2 ∈ Z[a,b]

if p1 +1 = p2 in K[a,b] then S(µ(p1)) = S(Sp1+j(d)) = Sp1+1+j(d) = Sp2+j(d) = µ(p2).

Now by BZAx(3.1) for any q in dom(M) we have q < S(q). By ZAx(7) < is

also defined to be a transitive relation, so since d < S(d), by induction we have

Sm(d) < Sn(d) for any m,n ∈ {0, . . . , N} such that m < n in N. Therefore if

p1 < p2 in K[a,b] then µ(p1) = Sp1+j(d) < Sp2+j(d) = µ(p2), and so µ(p1) < µ(p2) in

M.

Conversely, if p1 6< p2 in K[a,b] then p1 6 p2, and if p1 = p2 then by ZAx(5)

¬(µ(p1) < µ(p2)). Whereas if p2 < p1 in K[a,b] then µ(p2) < µ(p1) and by ZAx(6)

¬(µ(p1) < µ(p2)). Consequently p1 < p2 in K[a,b] iff µ(p1) < µ(p2) in M. o

1So µ is almost an embedding from K[a,b] to M, when looking at <, S and 0̌. The difference is

that S(b) = b in K[a,b], but this need not be true for µ(b) in M.

145

Chapter 9. Theory Machine Complexity

We may now characterise a Turing machine computing a decision problem with a

finitely modelable FFOT machine in in a similar manner to how we characterised it

by a finite FO=-theory machine in Example 8.1.1.

Example 9.1.6 Let M = (Λ,Π,b,A, s0, 〈sa, sr〉,R) be a Turing machine which

computes the decision problem A ⊆ A∗, in time t : N→ N and space u : N→ N.

We can characterise M via the finite FO=
BVM

-machine:

BTM−M = (BTMT−M , Â
∗
XTM

, {{I(h) = sa}, {I(h) = sr}}),

in the vocabulary of:

BVM = VM ∪ {l, r},

where VM is the vocabulary used in Example 5.1.1 and XTM is the input sequence

used in Example 5.1.1 . The theory of BTM−M is then:

BTMT−M = (TMTM \ (ISA ∪ ETR)) ∪BISA− ∪ ET ′R.

Where TMTM is the theory of TMM in Example 5.1.1. So the difference is that

BTMT−M contains the bounded integer successor axioms rather than the standard

integer successor axioms, also BTMT−M contains ET ′R, which is a slightly modified

version of the set of sentences that implement the rules of R.

Specifically ET ′R is:

ET ′R =

 ∀x((0 < S(x)) ∧ µ(s,a)(x, x))→

(µ(r,b)(S(x), x) ∧ π′(p)(x) ∧ ν(x)))

∣∣∣∣∣∣ (s, a; r, b, p) ∈ R

 .

Where µ and ν are as in Example 5.1.1. Whereas instead of π(p)(x), for each p ∈

{LEFT, PAUSE, RIGHT} we have the term:

π′(p)(x) ≡


(H(S(x)) = S(H(x))) ∧ ¬(H(x) = S(H(x))) if p = RIGHT,

H(S(x)) = H(x) if p = PAUSE,

(S(H(S(x))) = H(x) ∧ ¬(H(S(x))) = S(H(S(x)))) if p = LEFT,

So for each rule of R we have the added condition that if the head moves right or

left, then it must move to a different tape cell. Otherwise the rules are implemented

in the same manner.

146

9.1 Boundedly Characterising a Turing machine

Let G be an FO=
VM

-model of BTMT−M ∪ Φ∗XTM (w). By the input Φ∗XTM (w) =

{C(0, Si(0)) = wi | i ∈ {0, . . . , |w| − 1}} ∪ {C(0, S|w|(0)) = b} it follows that

G |=FO=
BVM

¬(C(0, Si(0)) = b) for all i ∈ {0, . . . , |w| − 1}, but also G |=FO=
BVM

C(0, S|w|(0)) = b. Hence G |=FO=
BVM
¬(Sm(0) = Sn(0)) for all m,n ∈ {0, . . . , |w|}

such that m 6= n. Therefore by Proposition 9.1.5 there is a map from K[0,|w|] onto G

which preserves 0, ordering and the successor function from 0 to |w| − 1. The sen-

tences defining the initial configuration of M on input w are the same as in Example

5.1.1, so the initial configuration of G is the same as M on cells 0 to |w|.

Further the sentences of ET ′R allow G to build on this, as they implement the

rules of R whilst (with the addition of π′(p)(x)) also ensuring that if G needs to use

a tape cell outside of dom(K[0,|w|]) = Z[0,|w|] then such a tape cell is distinct from

every other tape cell in Z[0,|w|]. So by Proposition 9.1.5 we have a mapping onto

G from some large enough K[a,b] structure. Therefore by the same reasoning as in

Example 5.1.1 from time 0 to |w| the configurations of G must be the same as the

configurations of M on input w

Now, a key property of a halting Turing machine computation is that for any

two distinct time steps x1, x2 between 0 and the halting time, the configuration of

the machine at time x1 differs from the configuration of the machine at time x2.

As otherwise the machine would become stuck in an infinite loop. So in G this

means that there is some y such that ¬(C(x1, y) = C(x2, y)) in G, and therefore

¬(x1 = x2) in G for all x1, x2 ∈ {0, . . . , t(|w|)} such that x1 6= x2. Consequently

by Proposition 9.1.5 again we have a mapping onto G from a structure K[a,b], where

K[a,b] encompasses all of the time steps and tape cells used by the computation of

M on input w.

Therefore by the same reasoning as in Example 8.1.1, the entirety of the compu-

tation of M on input w occurs in G completely within the region of Z[a,b], eventually

reaching the state sa or the state sr and halting. As in Example 8.1.1 this output

is directly implied by the input, and so as M computes A, it follows that BTM−M is

able to compute A.

Now, regarding the resources that BTM−M computes A with. By the definition of

147

Chapter 9. Theory Machine Complexity

the functions t and u the entirety of the computation of M on input w occurs only

on the tape between cells −u(|w|), and u(|w|), and takes place between time steps

0 and t(|w|).

Let a = −u(|w|) and b = max{t(|w|), u(|w|)}. It is therefore possible that G is

a BVM -expansion of K[a,b], as by Proposition 9.1.3, K[a,b] is a model of BISA− ⊂

BTMT−M , and by our reasoning above the entirety of the computation of M on input

w may be described in G completely within the region of Z[a,b].

The cardinality of Z[a,b] is b− a + 1 = max{t(|w|), u(|w|)} + u(|w|). By Remark

2.2.3 we see that u(|w|) 6 t(|w|)+ |w|, hence |dom(G)| 6 2t(|w|)+2|w| = O(t(|w|)).

Consequently if t is a polynomial function, then BTM−M is able to compute A

with polynomial resources.

9.2 Boundedly Characterising Blakey’s factoriser

We conjecture that we should be able to describe a finitely bounded version of R

with a modification of the dense ordered field axioms DOF , in a similar manner to

how we described a bounded version of Z with BISA−, a modification of the first-

order integer successor axioms. For example, we could approximate R via a finite

structure with a domain of the form { a
m
| a ∈ {−m3, . . . ,m3}}, in which for elements

between −m and m addition can be defined as usual, whereas multiplication could

be such that a
m
× b

m
is equal to whichever element in the domain is nearest to ab

m2 .

As in Subsections 5.2.2 and 8.1.2, it should be possible to characterise Blakey’s

factorisation system with an FFOT machine that includes this modified version of

DOF . Blakey’s factorisation system acts within a bounded region and is designed

to output even with a degree of error. Indeed, if we define the partial derivatives

as we did in Equation 5.1 in Subsection 5.2.1 then they will be defined to be ap-

proximations to their true value. So the outputs will also be the same, provided

that each model of the system is sufficiently precise. To ensure that we do have

enough precision we can define within the theory for the error of the model 1
m

to

148

9.3 Efficient Computation and NP ∩ co-NP.

be sufficiently small in relation to the input. For example for an input of n ∈ N we

may have (1
m
× n× n× n) 6 1, ensuring that 1

m
6 1

n3 .

Now regarding the resource usage of such a machine. Clearly inputting n should,

in general, give a different output to inputting n + 1. Hence there must be a clear

separation between 1
2
√
n

and 1
2
√
n+1

, which means that in order to implement the

device, the error 1
m

must be less than | 1
2
√
n+1
− 1

2
√
n
|. This error shrinks at an inverse

polynomial rate with respect to n, and at an inverse exponential rate with respect

to the length of n’s binary expansion. By the definition of the factoriser, the domain

of any model of it must at least contain 0 and 1, and between these two numbers

there are at least m elements of the domain. Therefore, as m grows exponentially

with the size of the input, so must the minimal domain size.

We therefore conclude that such a FFOT machine requires super-polynomial re-

sources in order to compute the factorisation problem, agreeing with Blakey’s [17]

assertion that his factoriser requires an infeasibly large resource growth.

9.3 Efficient Computation and NP ∩ co-NP.

As we mentioned before in Subsection 9.0.2 we argue that a computational problem is

efficiently computable by a randomness-free physical system only if it is computable

by FFOT machine with polynomial resources. In this section we offer an answer to

what this class of problems is.

Theorem 9.3.1 A problem is computable by a FFOT machine with polynomial

resources if and only if it is in NP ∩ co-NP.

Proof: (⇒) Let p : N→ N be a polynomial function and M = (T, I,O) be a FFOT

machine in the vocabulary V which computes A ⊆ A∗ with p resources.

By assumption, for some simple sequence X and some Θ,Ψ ∈ O, we have Â∗X ⊆ I

and for each w ∈ A∗ there is a finite FOV-structure A satisfying T ∪ Φ∗X(w) with

149

Chapter 9. Theory Machine Complexity

|dom(A)| 6 p(|w|). Also if w ∈ A then A |=FOV
Θ and if w 6∈ A then A |=FOV

Ψ.

We can non-deterministically obtain such a structure as follows.

Let V contain m relations, k functions, and r constant symbols, also let each

relation and function symbol have an arity at most l. We can encode each ele-

ment of dom(A) as a word in {0, 1}p(|w|). Each relation can then be encoded as

a string of length O(p(|w|)l) by simply listing the strings representing the related

elements. Similarly each function can be encoded by a string of length O(p(|w|)l+1)

and each constant by a string of length O(p(|w|)). We can therefore encode an

exact description of A by a single finite word ρw ∈ {0, 1}q(|w|), where q(n) =

O(m · p(n)l + k · p(n)l+1 + r · p(n)), which is polynomial in the length of w.

In a fixed domain dom(A) a sentence of the form ∀xφ(x) is true iff the sentence∧
a∈dom(A) φ(a) is true. Similarly ∃xψ(x) is true iff

∨
b∈dom(A) ψ(b) is true. Hence to

check if:

∀x1∃x2 · · · ∀xm−1∃xmθ(x1, . . . , xm) ∈ T,

is true in A it is sufficient to determine whether:∧
a1∈dom(A)

∨
a2∈dom(A)

· · ·
∧

am−1∈dom(A)

∨
am∈dom(A)

θ(a1, . . . , am),

is true in A. This can be achieved by checking whether θ(a1, . . . , am) is true in at

most |dom(A)|m assignments.

There is a fixed number of sentences in T and the number of quantifiers in each

one is fixed, hence the time taken to test whether A |=FOV
T grows polynomially

with |w|. The number of sentences in Φ∗X(w) is equal to |w|+ 1 and each sentence in

Φ∗X(w) is a quantifier-free sentence whose length grows linearly with |w|, therefore

the time to determine whether A models Φ∗X(w) also takes time polynomial in |w|.

We can therefore construct a non-deterministic Turing machine M1, that given

any input w ∈ A∗, tries to non-deterministically generate a description ρw of some

structure A modelling T ∪ Φ∗X(w). After generating ρw the machine checks in poly-

nomially many steps whether each sentence of T ∪ Φ∗X(w) is true in A. If it does

then M1 determines whether A |=FOV
Θ.

150

9.3 Efficient Computation and NP ∩ co-NP.

As Θ is a fixed finite set of sentences, like T, this decision process can be carried

out in time polynomial in |w|. If A does FOV-model Θ then M1 accepts w. If any

sentence in T ∪Φ∗X(w)∪Θ is false in A then M1 halts. Thus if for all possible ρw we

have that Θ is false in any structure which models T ∪ Φ∗X(w) then M1 rejects w.

By assumption, for any w ∈ A∗, if A |=FOV
T ∪ Φ∗X(w) then A |=FOV

Θ iff

w ∈ A. Therefore M1 accepts w if and only if w ∈ A, and since M1 computes in

non-deterministic polynomial time we have that A ∈ NP.

Conversely to see that A ∈ co-NP we can construct a non-deterministic polyno-

mial time Turing machine M2 which acts the same as M1, except that M” checks

whether A models Ψ rather than Θ. By the same reasoning as above M2 accepts

w ∈ A∗ iff w ∈ A∗ \ A, therefore A∗ \ A ∈ NP and A ∈ co-NP. Thus by combining

this with the above result we have A ∈ NP ∩ co-NP.

(⇐) If B ∈ NP ∩ co-NP then B ∈ NP and A∗ \ B ∈ NP, hence there must exist

two non-deterministic polynomial time Turing machines N1, N2 that respectively

decide B and A∗ \ B. To avoid confusion we can assume without loss of generality

that N1 and N2 have disjoint sets of internal states.

We can then construct a finitely modelable FFOT machine BTM−(N1,N2) which

acts like a non-deterministic Turing machine that can implement the rules from

either N1 or N2. In addition BTM−(N1,N2) is defined in such a way that it must

always produces a computational path which halts on the accepting state of N1 or

N2, any other computational path will lead to a logically inconsistency (see Figures

9.3 and 9.3). Such a computation will of course require only polynomial resources

(as N1 and N2 compute in polynomial time). So by simply looking at which of these

accepting states is reached by BTM−(N1,N2) on input Φ∗XTM (w) we are able to compute

B with polynomial resources.

For each i ∈ {1, 2} let Ni = (Λi,Πi,b,A, s0i , 〈sai , sri〉,Ri). The machine has non-

deterministic rule set Ri, so for each (t, b) ∈ (Πi × Λi) let R
(t,b)
i denote the set of

rule suffixes of Ri that are prefixed by (t, b). If Ni is in state t reading b then any

one of the rule suffixes in R
(t,b)
i may be applied. Also (by relabelling if necessary)

let Π1 ∩ Π2 = ∅.

151

Chapter 9. Theory Machine Complexity

w

⊥

⊥

⊥

η

⊥

⊥

⊥

⊥

⊥

η

⊥

⊥

η

⊥

⊥

⊥

w

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

N1 N2

Figure 9.1: The possible computation paths of N1 and N2 on input w.

In the vocabulary of V(N1,N2) = VN1 ∪ VN2 ∪ {e} let:

BTM−(N1,N2) = (BTMT−(N1,N2), Â
∗
X, {{I(h) = sa1}, {I(h) = sa2}}),

be an FO=
V(N1,N2)

with theory:

BTMT−(N1,N2) = BISA− ∪ CD=
V(N1,N2)

∪ IT(s01 ,s02) ∪ ET ′R1
∪ ET ′R2

∪HT ′(sa1 ,sa2).

Where BISA− is the set of bounded integer successor axioms, and CD=
V(N1,N2)

is the

set of distinct constant axioms for V(N1,N2). Further, in a similar manner to Example

5.1.1, the set of sentences IT(s01 ,s02) defines the two possible initial configurations

of the machine, and the sets ET ′R1
and ET ′R2

describe the two possible modes of

evolution of the machine. The set HT ′(sa1 ,sa2) ensures that the machine halts when

it reaches sa1 or sa2 , crucially HT ′(sa1 ,sa2) also ensures that the machine must halt in

one of these states.

Specifically we have:

IT(s01 ,s02) =



(H(0) = 0),

(I(0) = s01) ∨ (I(0) = s02),

∀y(((C(0, y) = b) ∧ (0 < y))→ (C(0, S(y)) = b)),

∀y((y < 0)→ (C(0, y) = b))


.

152

9.3 Efficient Computation and NP ∩ co-NP.

Which is the same as ITs0 , except for the fact that the initial state could begin in

either state s01 or state s02 . So as in Example 5.1.1, for any model H of BTMT−(N1,N2)∪

Φ∗XTM (w) the initial configuration of H is the same as it is for either N1 or N2 on

input w.

For each i ∈ {1, 2} the non-deterministic rules of Ri are implemented by:

ET ′Ri =

 ∀x (((0 < S(x)) ∧ µ(s,a)(x, x))→∨
(v,b,p)∈R(s,a)

i
(µ(v,b)(S(x), x) ∧ π′(p)(x) ∧ ν(x)))

∣∣∣∣∣∣ (s, a) ∈ (Πi × Λi)

 .

Where µ and ν are as they are in Example 5.1.1, and π′(p), is as it is in Example 9.1.6.

So for each set R
(s,a)
i each sentence of ET ′Ri implements a rule of Ri beginning with

(s, a). Exactly which rule is implemented is not specified, however two different rules

of R
(s,a)
i cannot be implemented simultaneously as this would lead to a contradiction.

By the same reasoning as in Example 9.1.6 it follows from BISA− ∪ IT(s01 ,s02) ∪

ET ′R1
∪ ET ′R2

in BTMT−(N1,N2), and Proposition 9.1.5 that any possible the compu-

tation of N1 or N2 takes place within a bounded region corresponding to Z[a,b] in

H.

Now by the same reasoning as in Example 5.1.1, if the configuration of H at time

x is the same as a possible configuration of Ni at time x then the configuration of

H at time x+ 1 is also a possible configuration of Ni at time x+ 1.

Finally for halting we have:

HT ′(sa1 ,sa2) =



∀x((I(x) = sa1)→ (h = x)),

∀x((I(x) = sa2)→ (h = x)),

∀x(¬(I(x) = sr1) ∧ ¬(I(x) = sr2)),

(I(h) = sa1) ∨ (I(h) = sa2)


.

Which corresponds to HT(sa,sr), with sa and sr replaced by sa1 and sa2 , together with

(crucially) the last two sentences which state that the rejecting states can never be

reached, and any model H must eventually halt in one of the two accept states.

So if at time x the machine is in the internal state sa1 or the internal state sa2

then x = h in H. The output {I(h) = sa1} or {I(h) = sa2} is therefore defined at

this time.

153

Chapter 9. Theory Machine Complexity

w

η

N1 N2

Figure 9.2: A computation path that may occur within H.

So the configuration of H at time 0, along with the configuration evolution of H

is same as N1 and N2 with input w. Therefore by induction, for any x ∈ N the

configuration of H at time x is a possible configuration of N1 or N2 at time x. By

HT ′(sa1 ,sa2) no computation happening in H can be a rejecting computation, as if so

then sr1 or sr2 would eventually be reached.

Hence any computation that happens in H must be an accepting computation,

and if w ∈ B then H must describe a computation of N1 that ends in state sa1 , as

any computation of N2 on input w would end in the reject state sr2 . Conversely if

w ∈ A∗ \B then H must describe a computation of N2 that ends in state sa2 .

This means that H |=FO= (I(h) = sa1) iff w ∈ B. So BTM−(N1,N2) is able

to compute B. Now we also know that any accepting computation of N1 or N2

takes a polynomial number of time steps (and so uses a polynomial number of tape

squares). Therefore by our reasoning in Example 9.1.6 and the fact that BISA− ⊂

BTMT−(N1,N2) we know that there exists a model H of BTMT−(N1,N2) ∪Φ∗XTM (w) such

that |dom(H)| is polynomial in |w|.

Consequently BTM−(N1,N2) is able to compute B in polynomial resources. o

154

9.3 Efficient Computation and NP ∩ co-NP.

The FFOT machine described in the above proof will only follow a computational

path if that path eventually leads to an accept state. The only way the machine

could know which paths to take would be if potential future states are somehow

able to influence the present states. The above theory machine therefore acts in a

non-causal and somewhat atemporal manner, whilst still being clearly bounded in

its computational capabilities.

Hence if P 6= NP ∩ co-NP then our result implies that atemporal/non-causal

physical computation is more powerful then classical sequential computation.

The problems with known quantum polynomial time algorithms that are believed

to lie in BQP \ P can all be phrased as a hidden subgroup problem [59], which also

lies in NP ∩ co-NP. Our result therefore adds further evidence to the idea that [5]

the source of the quantum computational speed-up lies in quantum computers being

able to act in an atemporal/non-causal manner.

155

Chapter 9. Theory Machine Complexity

156

Chapter 10

Conclusion and Further Work

In this document we have presented the concept of a theory machine, and demon-

strated how we can use theory machines equipped with various logical systems to

characterise different computational devices, both “physical” and “unphysical”. We

have also argued that any realisable physical computer (including, potentially, a non-

causally acting one) should be characterisable by a theory machine acting within a

complete logical system (such as first-order logic).

In Chapter 9 we argued that we can describe the resources used by a theory

machine computation by considering the minimal domain size of its satisfying mod-

els. We can then use this complexity measure to describe the resource usage of any

system which is characterised by this theory machine.

However, in Remark 9.0.11 we noted that an issue with this complexity measure is

that it does not faithfully capture the resource usage of a probabilistic computation.

We suspect that a solution to this issue is to look at the size of the quantifier-free

LS-sentences that completely describe a given LS-structure. In first-order logic

any structure of size N may be described by a quantifier-free sentence of size O(N).

However using some form of probabilistic logic [60] we believe that a probabilistic

Turing machine computation with time bound N and O(2N) computation paths

may be completely described by a probabilistic sentence of length O(N)

We believe that we should also be able to faithfully capture quantum complexity

157

Chapter 10. Conclusion and Further Work

using this modification of theory machine complexity. Indeed we suspect that any

polynomial time quantum computation can be non-causally characterised with a

polynomially-resourced theory machine that uses a classical probabilistic logic. A

possible non-causal model for quantum computation that this theory machine could

describe is the two-state vector formalism [1, 2].

Another future avenue of research is to look into more general classes of theory

machine input and output sets, instead of just words from A∗ or Aω. For example one

might consider words of ordinal length, such as the kind that the ordinal computers

of Koepke and Koerwien [51] can operate on. Indeed we suspect that the class of

finite SO=-computable ordinal problems is equal to the constructible universe L,

which is class of problems that an ordinal computer is able to decide.

In general we believe that the computational capabilities of any computational

system S may be finitely captured by some logical system LS. That is, there

exists some logical system LS, for which a finite LS-theory machine is able to

characterise S, and the class of problems computable by S is equal to the class of

finite LS-computable problems.

We therefore believe that by studying computational systems via theory machines

we should be able to gain a clearer understanding of how and why distinct systems

differ in their ability to compute and their ability to efficiently compute.

158

Appendix A

Axioms

“This is a one line proof... if we start sufficiently far to the left.” -

Unknown

In this appendix we list various standard sets of axioms that are used to define

theory machines in the main body of this document. We also note relevant results

for these sets.

A.1 Standard sets of axioms

A.1.1 Axioms for Equality

Definition A.1.1 In a vocabulary V for each k-ary relation R ∈ V and n-ary

function f ∈ V let:

EQ=
R ≡ ∀x1 . . . ∀xk∀y1 . . . ∀yk

(
k∧
i=1

(xi = yi)→ (R(x1, . . . , xk)↔ R(y1, . . . , yk))

)
,

EQ=
f ≡ ∀x1 . . . ∀xn∀y1 . . . ∀yn

(
n∧
i=1

(xi = yi)→ (f(x1, . . . , xn) = f(y1, . . . , yn))

)
.

The V-equality axioms [31] for the binary relation =∈ V are then:

EQ=
V = {EQ=

V | V ∈ V} ∪


∀x(x = x),

∀x∀y(x = y)→ (y = x),

∀x∀y∀z((x = y) ∧ (y = z))→ (x = z)

 .

159

Chapter A. Axioms

So EQ=
V states that = is an equivalence relation that preserves the truth of every

relation in V, as well as the value of each function assignment.

Remark A.1.2 Let LS be a logical system, and V be a vocabulary containing the

binary relation =′. If M |=LSV
EQ=′

V then it is possible that there may be two

elements p, q ∈ dom(M) where p 6= q but p =′ q in M. However in M the function

and relation assignments of p and q must be identical, so there is no way of knowing

within M that p and q are in fact distinct.

Indeed there must exist an LSV-structure M′ which embeds into M and for any

p, q ∈ dom(M′) we have p =′ q iff p = q.

If LS=′ is a logical system which consists of LS together with a true equality

relation =′1, then M′ is also an LS=′

V -structure. Hence for any LSV-sentence φ

(which is also an LS=′

V -sentence), φ is true in M iff φ is true in M′. Therefore for

any LSV-theory T, we have T ∪ EQ=′

V |=LSV
φ iff T |=LS=′

V
φ.

A.1.2 Axioms for the Natural Numbers

Definition A.1.3 The set of Peano successor axioms [56] in the vocabulary of

{=, S, 0}, where = is a binary relation, S is a unary function and 0 is a constant, is:

PSA =



∀x¬(S(x) = 0),

∀x∀y((S(x) = S(y))→ (x = y)),

∀x¬(S(x) = x),

∀1N((N(0) ∧ (∀y(N(y)→ N(S(y))))→ ∀zN(z))


Recall from Definition 3.2.9 that ∀1Nφ(N) means that we are quantifying over all

unary relations.

Proposition A.1.4 [56] The Peano successor axioms are uniquely SO=-modelled

by the usual structure of the natural numbers 〈N;S, 0〉.
1Such as FO= or SO= in Subsection 3.2.1.

160

A.1 Standard sets of axioms

A.1.3 Axioms for the Integers

Definition A.1.5 The set of integer successor axioms [56] in the vocabulary of

{=, <, S}, where =, < are binary relations and S is a unary function, is:

ISA =



ZAx(1) ∀x∀y(S(x) = S(y))→ (x = y),

ZAx(2) ∀x∃y(S(y) = x),

ZAx(3) ∀x(x < S(x)),

ZAx(4) ∀x¬∃y((x < y) ∧ (y < S(x)),

ZAx(5) ∀x¬(x < x),

ZAx(6) ∀x∀y((x < y)→ ¬(y < x)),

ZAx(7) ∀x∀y∀z((x < y) ∧ (y < z))→ (x < z),

ZAx(8) ∀1Z(((∃xZ(x)) ∧ (∀y(Z(y)↔ Z(S(y))))→ ∀zZ(z)),

ZAx(9) ∃1N(((∃xN(x)) ∧ (∀y(N(y)→ N(S(y))) ∧ (∃z¬N(z)))



.

Proposition A.1.6 Any SO=-model of ISA is isomorphic to the usual ordered

structure of the integers 〈Z;<,S〉.

Proof: ZAx(1), ZAx(2), ZAx(8), and ZAx(9) together with the convention that

every function and relation is total, is equivalent to the integer successor axioms

given in [56]. Hence every model of ISA with vocabulary V = {<,S} is isomorphic

to an expansion of the usual structure of the integers 〈Z;S〉 with successor function

S(x) = x+ 1.

Now if M |=SO=
V
ISA then by ZAx(5)-ZAx(7) < in M is a strict total order,

whilst ZAx(3) and ZAx(4) ensure that M = Z has ordering:

· · · < −2 < −1 < 0 < 1 < 2 < · · · .

Therefore M must be isomorphic to the usual ordered structure of the integers

〈Z;<,S〉. o

A.1.4 Axioms for the Real Numbers

Definition A.1.7 The set of real arithmetic axioms [3, 62] in the vocabulary of

VR = {=, <,+,×, 0, 1}, where =, < are binary relations, +,× are binary functions,

161

Chapter A. Axioms

and 0,1 are constants, is:

RAA =



RAx(1) ∀x∀y((x+ y) = (y + x)),

RAx(2) ∀x∀y∀z(((x+ y) + z) = (x+ (y + z))),

RAx(3) ∀x((x+ 0) = x),

RAx(4) ∀x∃y((x+ y) = 0),

RAx(5) ∀x∀y((x× y) = (y × x)),

RAx(6) ∀x∀y∀z(((x× y)× z) = (x× (y × z))),

RAx(7) ∀x((x× 1) = x),

RAx(8) ∀x(¬(x = 0)→ ∃y((x× y) = 1)),

RAx(9) ∀x∀y∀z(((x+ y)× z) = ((x× z) + (y × z))),

RAx(10) ∀x∀y((x < y) ∨ (x = y) ∨ (y < x)),

RAx(11) ∀x¬(x < x),

RAx(12) ∀x∀y((x < y)→ ¬(y < x)),

RAx(13) ∀x∀y∀z((x < y) ∧ (y < z))→ (x < z),

RAx(14) ∀x∀y∀z(x < y)→ ((x+ z) < (y + z)),

RAx(15) ∀x∀y(((0 < x) ∧ (0 < y))→ (0 < (x× y))),

RAx(16)
∀1Q((∃uQ(u)∧∃v∀w(Q(w)→ (w < v)))

→ ∃x∀y(∀z(Q(z)→ (z < y))↔ (x 6 y)))



.

Proposition A.1.8 [3, 62] Any SO=-model of RAA is isomorphic to the usual

structure of real arithmetic 〈R;<,+,×, 0, 1〉.

A.1.5 Axioms for the Complex Numbers

Definition A.1.9 The set of complex arithmetic axioms [62] in the vocabulary of

VR ∪ {R, i}, where VR = {=, <,+,×, 0, 1} is as in Definition A.1.7, R is a unary

162

A.1 Standard sets of axioms

relation, and i is a constant, is:

CAA = RAAR∪PR
VR
∪



CAx(1) ∀x∀y((x+ y) = (y + x)),

CAx(2) ∀x∀y∀z(((x+ y) + z) = (x+ (y + z))),

CAx(3) ∀x((x+ 0) = x),

CAx(4) ∀x∃y((x+ y) = 0),

CAx(5) ∀x∀y((x× y) = (y × x)),

CAx(6) ∀x∀y∀z(((x× y)× z) = (x× (y × z))),

CAx(7) ∀x((x× 1) = x),

CAx(8) ∀x¬(x = 0)→ ∃y((x× y) = 1),

CAx(9) ∀x∀y∀z(((x+ y)× z) = ((x× z) + (y × z))),

CAx(10) ((i× i) + 1) = 0,

CAx(11) ∀x∃y∃z(x = (y + (z × i)))



.

Recall from Definition 6.1.4 that RAAR denotes the axioms of RAA from Definition

A.1.7 sorted by the relation R, so they are only true when R is true. Whereas as

in Definition 6.1.6, PR
VR

is the set of R-preservation sentences for VR, meaning that

the subset in which R is true contains 0, 1 ∈ VR and is closed under the + and ×

functions.

Proposition A.1.10 [62] Any SO=-model of CAA is isomorphic to the usual struc-

ture of complex arithmetic 〈C;<,R,+,×, 0, 1, i〉.

When characterising a quantum computer in Examples 7.1.3-7.1.6 we use the fol-

lowing set of axioms to define some well-known functions, relations and constants

on C.

Definition A.1.11 The set of additional complex axioms in the vocabulary of VC∪

{6,N,−, /, ·2,
√
·, | · |, 2∧, 2, eiπ4 } where 6 is a binary relation, N is a unary relation,

−, / are binary functions, ·2,
√
·, | · |, 2∧ are unary functions, and 2, ei

π
4 are constants,

163

Chapter A. Axioms

is:

ACA =



Def(6) ∀Rx∀Ry(x 6 y)↔ ((x < y) ∨ (x = y)),

Def1(N) N(0),

Def2(N) ∀Rx((0 6 x)→ (N(x)↔ N(x+ 1))),

Def3(N) ∀Rx(((x < 1) ∧ ¬(x = 0)))→ ¬N(x)),

Def(−) ∀x∀y∀z(x = (y + z))→ ((x− y) = z),

Def(/) ∀x∀y∀z(¬(y = 0) ∧ (x = (y × z)))→ ((x/y) = z),

Def(·2) ∀x(x2 = (x× x)),

Def(
√
·) ∀Rx((0 6 x)→ ((

√
x×
√
x) = x)),

Def(| · |) ∀x∀Ry∀Rz(x = (y + (z × i)))→ (|x| =
√
y2 + z2)),

Def1(2∧) (2∧(0)) = 1,

Def2(2∧) ∀Nx(2∧(x+ 1) = ((2∧(x))× 2)),

Def(2) 2 = (1 + 1),

Def(ei
π
4) ((ei

π
4)2 = i) ∧ (∀Rx∀Ry((x+ (i× y)) = ei

π
4)→ (0 < x))



.

We denote the additional complex vocabulary by:

VC+ = {6,N,−, /, ·2,
√
·, | · |, 2∧, 2, ei

π
4 }.

Proposition A.1.12 If B is an SO=-model of CAA ∪ ACA then B is isomor-

phic to the usual structure of complex arithmetic 〈C;<,6,R,N,+,−,×, /, ·2,
√
·, | ·

|, 2∧, 0, 1, 2, i〉 with:

• The less than or equal to relation “6”,

• The characteristic relation of the natural numbers “N”,

• The negation function “−”,

• The division function “/”,

• The squaring function “ ·2”,

• The square root function “
√
·”,

• The modulus function “ | · |”,

164

A.1 Standard sets of axioms

• The powers of 2 function “2∧”,

• The number 2,

• The number ei
π
4 ,

all defined as usual on dom(B) = C. However if y = 0 then x/y may take any value

in C. Similarly if z 6∈ R or z < 0, and if n 6∈ N then
√
z and 2∧(n) may have any

value in C.

Proof: By Proposition A.1.10 any SO=-model of CAA is an expansion of the usual

model of the complex numbers.

Now clearly Def(6) defines x 6 y on C in its usual manner if R(x)∧R(y) is true.

The same is similarly true for Def(−), Def(/), Def(·2), Def(
√

), Def(| · |), and Def(2)

which define −, /, ·2,√,| · |, and 2 respectively.

Def(/) does not define x/y for y = 0. However x/y must take some value in C as

every function in an SO=-structure is total, so as it is undefined x/y can take any

value of C in B. The same is true for the undefined values of
√
z and 2∧(n).

The fact that N(x) is true in B for x ∈ C iff x ∈ N follows by Def1(N)−Def3(N)

and induction. By Def1(N) we have that N(0) is true in B, and Def2(N) provides

the inductive step to ensure that N(x) is true in B if x ∈ N. Conversely, if x ∈ R\N

and x < 1 and x 6= 0 then by Def3(N) we have that N(x) is false in B.

The function 2∧ is defined inductively Def1(2∧) and Def2(2∧) to be such that

2∧n = 2n for each natural number n ∈ N, as by the usual definition of exponentiation

20 = 1 and 2x+1 = 2x × 2.

Finally Def(ei
π
4) defines the constant ei

π
4 to have its usual value in C. As if

z2 = i = ei
π
2 then either z = ei

π
4 = 1√

2
+ 1√

2
i or z = ei

5π
4 = − 1√

2
− 1√

2
i. So if in

addition the real part of z is greater 0, then it must be the case z = ei
π
4 . o

Corollary A.1.13 If C is an FOC-model of ACA then C is isomorphic to the usual

structure of complex arithmetic in which the conditions of Proposition A.1.12 hold.

165

Chapter A. Axioms

Proof: By definition, any FOC-structure is an expansion of the usual structure of

complex arithmetic, so if C is an FOC-model of ACA we may follow the proof of

Proposition A.1.12 to show that the conditions of Proposition A.1.12 hold for C. o

A.1.6 Axioms for the Ordinals

As noted in Definition 2.5.3 the ordinal numbers serve as an extension of the natural

numbers, and each ordinal number corresponds to the order type of a well-order.

Definition A.1.14 [25, 64] The set of ordinal successor axioms in the vocabulary

of {=, <, L, S, 0}, where =, < are binary relations, L is a unary relation, S is a unary

function and 0 is a constant, is:

OSA =



OAx(1) ∀x¬(S(x) = 0),

OAx(2) ∀x∀y(S(x) = S(y))→ (x = y),

OAx(3) ∀x¬(S(x) = x),

OAx(4) ∀x(¬(x = 0)→ (0 < x)),

OAx(5) ∀x(x < S(x)),

OAx(6) ∀x¬(x < x),

OAx(7) ∀x∀y((x < y)→ ¬(y < x)),

OAx(8) ∀x∀y∀z((x < y) ∧ (y < z))→ (x < z),

OAx(9) ∀x(L(x)↔ (¬∃y(S(y) = x) ∧ ¬(x = 0))),

OAx(10)
∀1R(∃x(R(x)))

→ ∃y(R(y) ∧ ∀z(R(z)→ ((y < z) ∨ (y = z))))



.

OAx(10) is commonly known as the well-ordering axiom.

Proposition A.1.15 Every SO=-model of the ordinal successor axioms is isomor-

phic to a limit ordinal structure of the form 〈Oλ; =, <, L, S, 0〉 where for some limit

ordinal λ we have:

Oλ = {σ ∈ ORD | σ < λ},

and L(p) is true iff p ∈ Oλ is a limit ordinal.

166

A.1 Standard sets of axioms

Proof: Let M |=SO= OSA, then < in M must be strict total and discrete well-

order with least element 0, such that for any γ ∈ M the least element of M that

is greater than γ is S(γ). Therefore M must be isomorphic to an ordinal structure

with domain of the form:

Oδ = {σ ∈ ORD | σ < δ},

for some ordinal δ. Now by convention any SO=
V -structure is closed under any

function in V. So for every γ ∈ Oδ the ordinal S(γ) must be contained within Oδ,

hence δ cannot be a successor ordinal, and as Oδ is non-empty δ must be a limit

ordinal.

By OAx(9), for any p ∈ dom(M), we have L(p) is true iff p 6= 0 and there does

not exist some q ∈ dom(M) such that S(q) = p. So clearly p cannot be 0 or a

successor ordinal, hence p must be a limit ordinal. o

For our characterisation of an infinite time Turing machine computation in Section

7.2 it is necessary that such a computation does not end prematurely. We avoid this

by ensuring that the computation occurs within an uncountable ordinal number of

time steps. Hence we have the following definition.

Definition A.1.16 The set of uncountable ordinal successor axioms in the vocab-

ulary of {=, <, L, S, 0}, where =, < are binary relations, L is a unary relation, S is

a unary function and 0 is a constant, is:

UOSA = OSA∪

 UOAx
¬∃1

(f∀x∀y(¬(x = y) → ¬(f(x) = f(y)))

∧ ∀z∀δ(L(δ)→ (f(z) < δ)))

 .

Recall from Definition 3.2.9 that ∃1
fφ(f) means that we are quantifying over unary

functions.

Proposition A.1.17 Every SO=-model of the uncountable ordinal successor ax-

ioms is isomorphic to an uncountable limit ordinal structure.

167

Chapter A. Axioms

Proof: Since OSA ⊂ UOSA, by Proposition A.1.15, every SO=-model of UOSA is

isomorphic to a limit ordinal structure of the form W = 〈Oλ; =, <, L, S, 0〉 for some

limit ordinal λ.

Now UOAx implies that there cannot exist a function f in W such that f is an

injection, and f(z) is less than any limit ordinal. ω is the least limit ordinal and the

ordinals below it are exactly the numbers contained within N. So if f did exist then

it would be an injective mapping from Oλ to N, and so by definition Oλ would be

countable. Therefore since such a function f cannot exist, Oλ must be uncountable.

o

168

References

[1] Yakir Aharonov, Eliahu Cohen, Eyal Gruss, and Tomer Landsberger. Measure-

ment and collapse within the two-state vector formalism. Quantum Studies:

Mathematics and Foundations, 1(1-2):133–146, 2014. 158

[2] Yakir Aharonov and Lev Vaidman. The two-state vector formalism: an updated

review. In Time in quantum mechanics, pages 399–447. Springer, 2008. 158

[3] Christopher Apelian and Steve Surace. Real and Complex Analysis. CRC Press,

2009. 161, 162

[4] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.

Cambridge University Press, 2009. 16, 22, 142

[5] Ämin Baumeler and Stefan Wolf. Computational tameness of classical non-

causal models. In Proc. R. Soc. A, volume 474. The Royal Society, 2018. 2, 8,

24, 25, 53, 139, 155

[6] Mark Beck. Quantum mechanics: theory and experiment. Oxford University

Press, 2012. 28

[7] Cameron Beebe. Model-based computation. In Unconventional Computa-

tion and Natural Computation - 15th International Conference, UCNC 2016,

Manchester, UK, July 11-15, 2016, Proceedings, pages 75–86, 2016. 2, 13, 73

[8] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker. Oracles

and advice as measurements, volume 5204 of Lecture Notes in Comput. Sci.

Springer, Berlin, 2008. 5, 118

169

REFERENCES

[9] Edwin Beggs, José Félix Costa, Diogo Poças, and John V. Tucker. Oracles

that measure thresholds: the Turing machine and the broken balance. J. Logic

Comput., 23(6):1155–1181, 2013. 5, 118

[10] Edwin Beggs, José Félix Costa, Diogo Poças, and John V. Tucker. An analogue-

digital Church-Turing thesis. International Journal of Foundations of Com-

puter Science, 25(4):373–389, 2014. 5, 118

[11] Edwin J Beggs, José Félix Costa, and John V Tucker. Limits to measurement

in experiments governed by algorithms. Mathematical Structures in Computer

Science, 20(06):1019–1050, 2010. 5, 118

[12] Edwin J. Beggs, José Félix Costa, and John V. Tucker. The impact of mod-

els of a physical oracle on computational power. Mathematical Structures in

Computer Science, 22(5):853–879, 2012. 5, 118

[13] Edwin J. Beggs and John V. Tucker. Can Newtonian systems, bounded in

space, time, mass and energy compute all functions? Theoretical Computer

Science, 371(1-2):4–19, 2007. 2, 52

[14] Chris Bissell. Historical perspectives-the moniac a hydromechanical analog

computer of the 1950s. IEEE Control Systems, 27(1):69–74, 2007. 3, 73, 128

[15] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic, volume 53

of Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, 2001. 35

[16] Ed Blakey. Unconventional complexity measures for unconventional computers.

Natural Computing, 10(4):1245–1259, 2011. 12, 117, 140

[17] Edward William Blakey. A model-independent theory of computational complex-

ity : from patience to precision and beyond. PhD thesis, University of Oxford,

UK, 2010. 2, 12, 72, 76, 128, 149

[18] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and

real computation. Springer Science & Business Media, 2012. 4

170

REFERENCES

[19] Lenore Blum, Mike Shub, Steve Smale, et al. On a theory of computation

and complexity over the real numbers: NP-completeness, recursive functions

and universal machines. Bulletin (New Series) of the American Mathematical

Society, 21(1):1–46, 1989. 4

[20] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability and

logic. Cambridge university press, 2002. 1

[21] Olivier Bournez, Nachum Dershowitz, and Pierre Néron. Axiomatizing ana-

log algorithms. In Pursuit of the universal, volume 9709 of Lecture Notes in

Comput. Sci., pages 215–224. Springer, [Cham], 2016. 7

[22] Vasco Brattka. The emperors new recursiveness: The epigraph of the exponen-

tial function in two models of computability. In Words, Languages & Combi-

natorics III, pages 63–72. World Scientific, 2003. 4

[23] Alonzo Church. A set of postulates for the foundation of logic. Ann. of Math.

(2), 33(2):346–366, 1932. 1

[24] Alonzo Church. An unsolvable problem of elementary number theory. American

journal of mathematics, 58(2):345–363, 1936. 1

[25] Krzysztof Ciesielski. Set theory for the working mathematician, volume 39.

Cambridge University Press, 1997. 32, 37, 166

[26] Alan Cobham. The intrinsic computational difficulty of functions. Logic,

Methodology and Philosophy of Science: Proceedings of the 1964 International

Congress, pages 24–30, 1965. 139

[27] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton,

FL, 2004. 1, 2, 16, 21, 114, 117, 122, 135

[28] Christian d’Elbée. On the complete ordered field. http://choum.net/∼chris

/cours et notes/reals.pdf, 2013. 127, 128

[29] David Deutsch. Quantum theory, the Church-Turing principle and the uni-

versal quantum computer. In Proceedings of the Royal Society of London A:

171

REFERENCES

Mathematical, Physical and Engineering Sciences, volume 400, pages 97–117.

The Royal Society, 1985. 1, 117, 118

[30] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,

17(3):449–467, 1965. 139

[31] Richard L Epstein. Classical mathematical logic: the semantic foundations of

logic. Princeton University Press, 2011. 35, 57, 159

[32] John Friedman, Michael S Morris, Igor D Novikov, Fernando Echeverria, Gun-

nar Klinkhammer, Kip S Thorne, and Ulvi Yurtsever. Cauchy problem in

spacetimes with closed timelike curves. Physical Review D, 42(6):1915, 1990. 8

[33] Minoru Fujimoto. Physics of classical electromagnetism, volume 240. Springer

Science & Business Media, 2007. 73, 76

[34] Jean H Gallier. Logic for computer science: foundations of automatic theorem

proving. Courier Dover Publications, 2015. 48, 124

[35] Robin Gandy. Church’s thesis and principles for mechanisms. Studies in Logic

and the Foundations of Mathematics, 101:123–148, 1980. 118

[36] Kurt Gödel. Die vollständigkeit der axiome des logischen funktionenkalküls.

Monatshefte für Mathematik, 37(1):349–360, 1930. 50, 124, 129, 130, 134

[37] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und

verwandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198,

1931. 122

[38] Kurt Gödel. An example of a new type of cosmological solutions of Einstein’s

field equations of gravitation. Reviews of modern physics, 21(3):447, 1949. 8

[39] Joseph A. Goguen and José Meseguer. Order-sorted algebra i: Equational de-

duction for multiple inheritance, overloading, exceptions and partial operations.

Theor. Comput. Sci., 105(2):217–273, November 1992. 90

[40] Stanley I Grossman. Multivariable calculus, linear algebra, and differential equa-

tions. Academic Press, 2014. 75

172

REFERENCES

[41] Yuri Gurevich. Logic in computer science column. Bulletin of the EATCS,

35:71–81, 1988. 6

[42] Yuri Gurevich. Sequential abstract-state machines capture sequential algo-

rithms. ACM Transactions on Computational Logic, 1(1):77–111, 2000. 2, 6,

7

[43] Joel David Hamkins. A survey of infinite time Turing machines. In Interna-

tional Conference on Machines, Computations, and Universality, pages 62–71.

Springer, 2007. 4, 33

[44] Joel David Hamkins and Andy Lewis. Infinite time Turing machines. The

Journal of Symbolic Logic, 65(2):567–604, 2000. 4, 32, 33, 34, 110, 114, 117

[45] Leon Henkin. The completeness of the first-order functional calculus. The

journal of symbolic logic, 14(3):159–166, 1949. 50, 124, 129, 130, 134

[46] Wilfrid Hodges. Model theory. Cambridge University Press, 1993. 35, 41, 43,

121

[47] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge

University Press, 1991. 28

[48] Clare Horsman, Susan Stepney, Rob C Wagner, and Viv Kendon. When does a

physical system compute? In Proceedings of the Royal Society A, volume 470,

page 20140182. The Royal Society, 2014. 6, 10, 51, 53, 87, 119

[49] John David Jackson. Classical electrodynamics. John Wiley & Sons, 2012. 73,

76, 77

[50] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quan-

tum computation. Number 47. American Mathematical Soc., 2002. 3, 28, 29,

30, 89, 99, 117, 142

[51] Peter Koepke and Martin Koerwien. Ordinal computations. Math. Structures

Comput. Sci., 16(5):867–884, 2006. 5, 158

173

REFERENCES

[52] Peter Koepke and Benjamin Seyfferth. Towards a theory of infinite time Blum-

Shub-Smale machines. In CiE, pages 405–415. Springer, 2012. 4, 5

[53] Saul A. Kripke. The Church-Turing thesis as a special corollary of Gödel’s

completeness theorem. In B. J. Copeland, C. Posy, and O. Shagrir, editors,

Computability: Turing, Gödel, Church, and Beyond. MIT Press, 2013. 131

[54] Azriel Levy. Basic set theory. Springer-Verlag, 1979. 33

[55] L.D Lifshitz, Landau. Fluid Mechanics. Course of Theoretical Physics. Perga-

mon,Oxford, 1987. 2, 73

[56] Angelo Margaris. Successor axioms for the integers. The American Mathemat-

ical Monthly, 68(5):441–444, 1961. 121, 160, 161

[57] István Németi and Gyula Dávid. Relativistic computers and the Turing barrier.

Applied Mathematics and Computation, 178(1):118–142, 2006. 5

[58] Allen Newell and Herbert Simon. The logic theory machine–a complex informa-

tion processing system. IRE Transactions on information theory, 2(3):61–79,

1956. 5

[59] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum

information. Cambridge University Press, Cambridge, 2000. 3, 28, 29, 30, 99,

117, 139, 142, 155

[60] Nils J Nilsson. Probabilistic logic. Artificial intelligence, 28(1):71–87, 1986. 157

[61] Abraham Robinson. Non-standard analysis: Studies in logic and the founda-

tions of mathematics. Princeton University Press, Princeton, NJ. Reprint of the

second (1974) edition, With a foreword by Wilhelmus AJ Luxemburg, 1966. 128

[62] Eric Schmidt. Reductions in norman megills axiom system for complex num-

bers. 161, 162, 163

[63] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

3, 9, 12, 31, 139

174

REFERENCES

[64] Wac law Sierpiński. Cardinal and ordinal numbers, volume 34. Państwowe

Wydawn. Naukowe, 1958. 32, 166

[65] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson

Course Technology Boston, 2006. 16, 18, 19, 89

[66] Cesare Tinelli and Calogero G. Zarba. Combining decision procedures for sorted

theories. In Logics in Artificial Intelligence, 9th European Conference, JELIA

2004, Lisbon, Portugal, September 27-30, 2004, Proceedings, pages 641–653,

2004. 90

[67] Alan Mathison Turing. On computable numbers, with an application to

the Entscheidungsproblem. Proceedings of the London mathematical society,

2(1):230–265, 1937. 1, 16, 51, 69, 117, 118, 135

[68] Bernd Ulmann. Analog computing. Walter de Gruyter, 2013. 13

[69] Leslie G Valiant. Relative complexity of checking and evaluating. Information

processing letters, 5(1):20–23, 1976. 24

[70] Anastasios Vergis, Kenneth Steiglitz, and Bradley Dickinson. The complexity of

analog computation. Mathematics and computers in simulation, 28(2):91–113,

1986. 12, 139

[71] Klaus Weihrauch. Type 2 recursion theory. Theoretical Computer Science,

38:17–33, 1985. 4, 135

[72] Klaus Weihrauch. Computable analysis. Springer-Verlag, Berlin, 2000. 4, 25,

27, 117, 135

[73] Richard Whyman. Physical computation, p/poly and p/log. In Proceedings of

the 7th International Workshop on Physics and Computation, PC 2016, Manch-

ester, UK, 14 July 2016., pages 41–52, 2016. 5

[74] Richard Whyman. An atemporal model of physical complexity. In Electronic

Proceedings in Theoretical Computer Science, volume 273, pages 39–51, 07 2018.

ii, 6, 140

175

REFERENCES

[75] Richard Whyman. Physical computation and first-order logic. In Machines,

Computations, and Universality - 8th International Conference, MCU 2018,

Fontainebleau, France, June 28-30, 2018, Proceedings, pages 153–169, 2018. ii,

6, 114, 115, 120

[76] Nicholas Young. An introduction to Hilbert space. Cambridge university press,

1988. 28

176

Index

=, 57

ACA, 163

BISA−, 143

BQP , 31

CAA, 162

DOF , 127

EQ=
V , 159

FO, 42

FOC, 42

FOR, 42

ISA, 121, 161

ISA−, 121

ISASO, 122

O(f(n)), 22

ORD, 32

OSA, 166

PSA, 160

RAA, 161

SO, 43

SO=, 43

UOSA, 167

A∗, 15

Aω, 15

An, 15

b, 16, 58

K[a,b], 144

LS-computable, 62

LS, 39

LS-formula, 39

LS-model, 44

LS-satisfiable, 44

LS-structure, 39

LSV-formula, 40

LSV-sentence, 44

LSV-structure, 40

M2 ◦(B;Y1,X2)
M1, 94

NP ∩ co-NP, 149

NP, 23

P, 22

P-proof, 49

PPV , 91

Φ∗X(w), 58

Φω
X(w), 59

Q, 28

TP , 90

UP, 24

V-term, 37

XTM1 , 78

XTMm , 78

XTM , 66, 70

Ξ, 37

ΞC, 37

177

INDEX

ΞF, 37

ΞR, 37

YT2, 81

YTM , 70

Z[a,b], 144

π
4

gate, 29

Â∗X, 58

Âω
X, 59

〈w〉, 20

|w|, 15

|=LS, 44

dom(M), 36

dom(f), 16

`P, 49

aω, 15

an, 15

f :⊆ A→ B, 16

Able to compute a decision problem, 61

Able to compute a function problem, 62

Accepting state, 17

Accepts, 17, 23

Additional complex axioms, 163

Alphabet, 15

Arithmetical relation, 21

Atomic formula, 39

Blakey’s double slit factoriser, 76, 127,

148

Blank symbol, 16, 58

Blum-Shub-Smale machine, 115, 136

Bounded first-order integer successor ax-

ioms, 143

Bounded quantum polynomial time, 31

Cell, 16

Characterisation, 65

Church-Turing thesis, 1, 117, 118, 131

co-NP, 24

co-UP, 24

Co-non-deterministic polynomial time com-

putable, 24

Co-unambiguous non-deterministic poly-

nomial time computable, 24

Complete logical system, 50

Complex arithmetic axioms, 162

Computable by a quantum computer, 31

Computation with q resources, 141

Computation with polynomial resources,

142

Computes in space u, 22

Computes in time t, 22, 23

Concatenation of theory machines, 94

Configuration, 16

Constant, 36

Controlled-not gate, 29

Decision problem, 18

Dense ordered field axioms, 127

Deterministic Turing machine, 17

Differential equation systems, 73, 127

Domain, 36

Domain of a function, 16

178

INDEX

Embedding, 45

Encoding, 20

Entanglement, 28

Equality, 57

Equality axioms, 159

Expansion, 44

FFOT machine, 119

Finite LS-computable, 87

Finite LS-theory machine, 87

Finite X-word set, 58

Finite decision problem, 18

Finite first-order theory machine, 119

Finite function problem, 18

Finite problem, 19

Finite word, 15

Finitely modelable, 141

First-order atomic formula, 39

First-order complex logic, 42

First-order integer successor axioms, 121

First-order logic, 42

First-order logic with equality, 42

First-order real logic, 42

First-order term, 38

Formula, 39

Free variable, 44

Function, 36

Function problem, 18

Gate, 28

General problem, 19

Ground term, 38

Hadamard gate, 29

Halting, 16

Halting state, 16

Head, 16

Infinite X-word set, 59

Infinite time computation, 34

Infinite time Turing machine, 33, 110,

111, 136

Infinite word, 15

Initial state, 16

Input alphabet, 16

Inputs, 54

Integer successor axioms, 161

Internal state, 16

Isomorphic, 45

Isomorphism, 45

ITT machine, 33, 110, 111

Join of two structures, 89

Join of two theories, 90, 92

Joinable, 90–92

Limit ordinal, 32

Limit state, 33

Logical system, 39

Model, 44

Multi-tape Turing machine, 19, 78

Non-deterministic polynomial time com-

putable, 23

Non-deterministic Turing machine, 23

179

INDEX

Non-deterministic Turing machine com-

putation, 23

Ordinal number, 32, 166, 167

Ordinal successor axioms, 166

Outputs, 54

Partial function, 16

Peano successor axioms, 160

Polynomial function, 22

Polynomial time computable, 22

Preservation sentences, 91

Proof, 49

Proof system, 49

Quantifier, 44

Quantum circuit, 27, 29, 103, 109

Quantum computation, 27, 99, 103, 109

Quantum computer, 31

Quantum gate, 28

Quantum measurement, 30

Quantum transformation, 28

Qubit, 28

Reading, 16

Real arithmetic axioms, 161

Reduct, 44

Rejecting state, 17

Rejects, 17, 23

Relation, 36

Relation problem, 21

Satisfiable, 44

Second-order logic, 43

Second-order logic with equality, 43

Semantic implication, 44

Sentence, 44

Set of variables, 37

Simple sequence, 57

Sorted, 90

Standard part of Z, 123

Structure, 36

Successor ordinal, 32

Super-polynomial resources, 142

Super-Turing computation, 115

Symbol, 36

Tape, 16

Term, 37

The completeness theorem, 50

The factorisation problem, 24

Theory, 54

Theory machine, 54

Theory machine computation, 54

Total function, 16

Turing machine, 16, 66, 69, 124, 126, 127,

146

Turing machine computable, 18, 19, 129,

132

Turing machine computation, 18, 19

Turing machine rule, 16, 17

Type-2 computable, 26, 134, 136

Type-2 machine, 25, 81, 133

Unambiguous non-deterministic polyno-

mial time computable, 24

180

INDEX

Uncountable ordinal successor axioms, 167

Variable, 37

Vocabulary, 36

Well-ordering, 32, 166

Word concatenation, 15

Word length, 15

181

	Acknowledgement
	Abstract
	List of Figures
	1 Introduction
	1.1 Sequential and Non-sequential Algorithms
	1.1.1 Non-causal Circuit Algorithms

	1.2 Constraints on Physical Computation
	1.2.1 Other Uses for our Formalism

	1.3 Outline of this Document

	2 Computation Preliminaries
	2.1 Computability Theory
	2.2 Complexity Theory
	2.3 Type-2 Machines
	2.4 Quantum Computation
	2.5 Infinite Time Turing Machines

	3 Logical System Preliminaries
	3.1 Vocabularies and Structures
	3.2 The Definition of a Logical System
	3.2.1 Logical Systems that we will use

	3.3 Further Logic Definitions
	3.4 Proofs in a Logical System

	4 Theory Machines
	4.1 The Definition of a Theory Machine
	4.2 Describing Words as Sets of Logical Sentences
	4.2.1 Finite Word Sets
	4.2.2 Infinite Word Sets
	4.2.3 Computing with Word Sets

	5 Examples of Theory Machines
	5.1 Turing Machines
	5.2 Physical Systems
	5.2.1 Physical Systems Satisfying Differential Equations
	5.2.2 Blakey's Double Slit Factoriser

	5.3 Extensions of the Turing Machine Model
	5.3.1 Multi-tape Turing machines
	5.3.2 Type-2 Machines

	6 Properties of Theory Machine Computation
	6.1 Combining Theory Machines
	6.1.1 Joining Theories
	6.1.2 Concatenating and Combining Theory Machines

	7 Further Examples of Theory Machines
	7.1 Quantum Computers
	7.2 Infinite Time Turing Machines

	8 Physical Computation and Complete Theories
	8.0.1 Some Useful Results
	8.1 Examples of FFOT Machines
	8.1.1 Turing Machines
	8.1.2 Differential Equation Systems

	8.2 FFOT Machines and Turing Computability
	8.2.1 Complete Logical Systems and Turing Computability

	8.3 FFOT Machines and Type-2 Computability
	8.3.1 Complete Logical Systems and Type-2 Computability

	9 Theory Machine Complexity
	9.0.2 Observations on Computational Resource Usage
	9.1 Boundedly Characterising a Turing machine
	9.2 Boundedly Characterising Blakey's factoriser
	9.3 Efficient Computation and NP∩co-NP.

	10 Conclusion and Further Work
	A Axioms
	A.1 Standard sets of axioms
	A.1.1 Axioms for Equality
	A.1.2 Axioms for the Natural Numbers
	A.1.3 Axioms for the Integers
	A.1.4 Axioms for the Real Numbers
	A.1.5 Axioms for the Complex Numbers
	A.1.6 Axioms for the Ordinals

	References
	Index

