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Abstract 

To begin with, macromolecules consisting of poly(amido)amine dendrimers (PAMAM), 

polyglycidol, hyperbranched poly(amido)amine (HYPAM) were synthesized and characterized 

extensively. Porphyrins were also synthesized, characterized and modified in line with 

respective studies. Hereafter, surface modified TRIS PAMAM dendrimers and its analogs 

(hyperbranched polymers, hyperbranched PAMAMs) as potential drug delivery systems were 

studied with the use of model drugs (Ibuprofen and Porphyrin). Analogs of the model drugs 

were used to investigate the role of secondary interactions for high drug loading(s). UV-Vis 

Spectroscopy was utilized for studying and determining the maximum loading of the 

macromolecules under investigation. Further ahead, non-covalent approaches to improve 

dendrimer-protein binding were used by introducing amino acid chains as targeting groups on 

the dendrimer surface. Surface modified carboxylate PAMAM dendrimers were studied for 

their ability to bind with zinc metallated porphyrin. UV-Vis and Fluorescence Spectroscopy 

were used for protein binding studies. Lastly, Surface Crosslinked Micelles were synthesized 

and utilized as artificial blood mimics with an attempt to increase the half-life of encapsulated 

iron porphyrin acting as the heme mimic with the help of UV-Vis Spectroscopy. 
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1.1  Polymer therapeutics 

Every year, millions of lives are lost to Cancer, HIV (human immunodeficiency virus) and 

similar life-threatening diseases. With advancements in medical science towards better and 

speedy cures for such diseases, many hurdles remain in place, blocking effective treatments. 

These blockades range from effectively delivering the drug to the target site due to the 

incapability of the drug to distribute itself when administered. Beside these limiting factors, 

side effects of improper drug administration are also present; bio-toxicity and bioavailability 

etc. all play major roles in determining proper working of the drug. All these factors have 

caused great concern in the medical and science field in recent years. Because of these 

heightened concerns, science has invested a great deal of its research in developing novel Drug 

Delivery Systems (DDS) 1. This field of science, particularly in Polymer Science, is known as 

Polymer Therapeutics 2. As the name states, Polymer Therapeutics is a class of polymers that 

act as therapeutic drugs for the treatment of diseases such as Breast cancer, Alzheimer’s etc. 

These therapeutic drugs range from linearly branched polymers to bulky star polymers and 

micelles. They can be classified into conjugated polymers, hyperbranched polymers (HBPs), 

micelles, polymersomes, dendrimers and star polymers, polyvalent and multivalent polymers, 

to name a few (Figure 1.1). Polymers that have clinically succeeded or are at clinical 

development stage as potential polymer therapeutics are discussed in this short overview. 

Dendrimer

Linear polymer

Micelle

Bio-conjugate
Star polymer

HBP

              

Figure1.1. Graphical representation of known polymer therapeutics: Dendrimer, HBP (hyperbranched 
polymer), micelle, linear polymer, star polymer and bio-conjugates. 
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1.1.1 Types of Polymer Therapeutics 
 

Polymer therapeutics can be described as a group of polymers and macromolecules capable of 

acting as therapeutic agents, storing drugs within their structural moieties and transporting them 

to the target site. They usually consist of conjugates such as polymer-drug or polymeric drugs, 

polymer-protein and polymer micelles. Polymers have been an integral part of millions of lives 

in the past years however their usefulness as biomedical agents and applicants have come to 

light in the last 30 years 3. Before being investigated as novel drug delivery systems; polymers 

were well known for temporal or spatial control of drug delivery which led to the invention of 

bio-adhesive polymers responsible for the adhesion of an epithelial cell layer to a delivery 

system 4. Another outstanding discovery was that of ‘smart’ polymeric hydrogel systems 

capable of delivering bioactive agents on response to specific stimuli 4. In terms of 

macromolecules, dendrimers and hyperbranched polymers are common examples of PTs. 

Polymer therapeutics were or are customarily designed for treatment of cancer however; many 

other diseases such as diabetes, hepatitis B & C, multiple sclerosis has attracted attention as 

well. Besides acting as DDS, certain PTs hold the capacity of functioning as ‘implanted 

reservoir systems’.  

For a polymer to function as a PT, properties for maintaining an all-round therapeutic effect 

need to be met. Surface properties such as hydrophilicity, lubricity, and smoothness (hydrolytic 

degradation and swelling) 5 are important. But, if the polymer or polymeric material needs to 

be applied for a long term use especially in case of dental and orthopaedic applications, the 

polymer should be capable of repelling water and degrading at a very slow rate to avoid 

weakening its toughness and strength. These ideal surface properties can be effectively 

achieved by chemical, physical and biological means. And once the ideal properties required 

are accomplished; the addition or adhesion of drugs or proteins on to the polymer surface or 

within the cavities of the polymer becomes possible paving way for polymer therapeutics that 

could transport through organs and cells 6. It is imperative to mention that while molecular 

weight, adhesion and solubility need to be considered as important bulk properties for 

determining the release mechanisms of the drug(s); structural properties such as micro-

morphology and pore size play an important role defining the entry and exit of the drug 7, 8. 
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1.1.1.1  Linear polymers 

Linear polymers consist of simple chains having least and smallest branches if at all. Their 

ability to form random coils in good solvents while exhibiting multi-functionality (induced in 

the backbone of the chain) constructed the initial phase of Polymer Therapeutics. However, 

over the past decades they have become a difficult class of conjugates, reason being their poor 

drug loading capacity when compared with other types of polymer architectures such as 

hyperbranched polymers. Even though, they are not a popular class of polymer therapeutics, 

research to make them apt and valuable has been conducted ever since.  

Larson et al studied the importance of linear poly (ethylene glycol) PEG-drug conjugates. 

Although, PEG is biocompatible, easily synthesized with specific molecular weights; it suffers 

the drawback of being non-biodegradable and possessing low drug loading capacity 9. Its non-

biodegradability leads to its accumulation inside cells and tissues over time causing toxicity 

and side effects. However, in this study on conjugation with the camptothecin (CPT) derivative 

SN38 using glycine as the linker, the PEG-SN38 showed a drug loading of 3.7wt%. This was 

higher when compared to its earlier analogue PEG-CPT conjugate with a loading of only 

1.7wt% 10. Besides the high payload, good aqueous solubility, enhanced bio-degradability and 

longer blood circulation half-life was observed as well. This new conjugate is known as EZN-

2208 and has progressed to phase II clinical trials for the treatment of metastatic breast cancer 

(Figure 1.2).  
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Figure 1.2. Chemical structure of PEG-SN38 conjugate EZN-2208. 

The importance of linear polymers is highlighted as they are utilized in gene-delivery systems. 

Responsive gene-delivery systems are preferred especially if they can deliver the nucleic acids 

safely inside the cells. This is possible by using bio-reducible linear polyethylenimine (PEI) 11. 

The polymer has disulphide bonds that reduce the toxicity as charge density falls on cleaving 

under reducing conditions inside the cell. The polymer could remain stable in extracellular 

environments and undergo rapid degradation within cells successfully inducing in vitro DNA 

or small interfering RNA (siRNA) transfection (Figure 1.3) 12. 
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PEI-(Cys)x(Ac) (Poly (ethylenimine)-N'-scryloyl-cystamine conjugate)

PEI-(Cys)x(MAc) (Poly (ethylenimine)-N'-methacryloyl-cystamine conjugate)  

Figure 1.3. Chemical structure of branched PEI derivatives with reductively cleavable cystamine (PEI-Cys) 
periphery for safe and efficient in-vitro gene transfer.  

Linear polymer conjugates are known for improving the half-life and intracellular targeting of 

drugs however limited drug payload capacity holds them back from being one of the selected 

therapeutic agents. Hereafter this overview discusses the progress research has made with 

architecturally different polymers to overcome these limitations. 
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1.1.1.2        Drug-Polymer Conjugate 

Cellular internalization and cell specificity improvement requires the drug to be delivered at 

the target site however certain delivery systems have the tendency to control the distribution 

of the drug and its release at the target site over time 13. Nanoparticles as a result are the 

preferred linkers between polymers and drug as they can be labile towards certain digestive 

enzymes and acidic conditions rendering them well versed for cancer treatment 14. Such 

polymer systems are known as Drug-Polymer Conjugates (Figure 1.4). 

Linear polymer

Linker

Drug
 

Figure 1.4. Graphic representation of a Drug-Polymer conjugate. 

Certain physiological barriers do exist however they are reduced by selecting appropriate 

particle size, surface charge and hydrophobicity while designing the delivery systems. While 

overcoming the physiological challenges, biological obstacles arise that can be tackled if the 

nanoparticles are capable of vasculature, prolonged vascular circulation time, improved 

cellular uptake and endosomal-lysosomal escape. One example of drug-polymer conjugate to 

enter anti-cancer clinical trials is ProLindac (Figure 1.5). Chemically known as HPMA 

copolymer (N-(2-Hydroxypropyl) methacrylamide) platinate (AP 5346) (a cytotoxic diamino 

cyclohexane (DACH)-platinum moiety coupled to a biocompatible HPMA); this conjugate 

consists of a pH sensitive linker that causes the release of the drug in the extracellular space of 

the tumour 15.  
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Figure 1.5. Graphical representation of ProLindac, a cytotoxic diamino cyclohexane (DACH)-platinum 
moiety coupled to a biocompatible hydroxypropylmethacrylamide copolymer (HPMA). Reprinted from 
Advanced Drug Delivery Reviews, 61 (13), David P Nowotnik, Esteban Cvitkovic, ProLindac™ (AP5346): 
A review of the development of an HPMA DACH platinum Polymer Therapeutic, 1214-1219, Copyright 
2009, with permission from Elsevier. 

The Platinum drug released causes cross-linking of the DNA by binding to it and initiating 

apoptosis. Also, the linear polymer chain has weight-average molecular weight of 

approximately 25 kDa ensuring appropriate tumour targeting through fenestrated endothelial 

cells besides acceptable renal clearance. Another novel method has found its way to clinical 

trials as a maintenance therapy for ovarian cancer patients by means of intravenous injection; 

known as IT-101 (Insert Therapeutics) 16. This conjugate consists of camptothecin covalently 

linked to a cyclodextrin based polymer (CDP) using a glycine linker. This drug system exhibits 

high anti-tumour activity due to extended circulation time allowing repeated or prolonged 

access to the tumour. Also, its administration has shown considerably less side-effects on 

cancer patients thereby improving their quality of life.  

Satchi-Fainaro et al, synthesized and studied a conjugate of HPMA and TNP-470 (O-

(chloracetyl-carbomoyl) fumagillol)) covalently linked to Gly-Phe-Leu-Gly-ethylenediamine, 

a degradable bond 17. Animal tests revealed that the modified linker underwent cleaving in the 

presence of intralysosomal cysteine proteases - cathepsin B (present excessively in tumour 

endothelial cells). This resulted in selective accumulation of the conjugate in the tumour vessels 

due to EPR (enhanced permeability retention) effect while increasing and prolonging the 

therapeutic activity of TNP-470. Also, the conjugate structure prevented drug from crossing 

the blood brain barrier which resulted in negligible neurotoxicity and hence, took the conjugate 

pro-drug from laboratory testing to pre-clinical trials as Caplostatin by SynDevRx 18, 19. 
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1.1.1.3       Bio-conjugated polymers 

In Polymer Therapeutics, bio-conjugates are gaining popularity as preferred drug delivery 

vehicles. For having good pharmacokinetics, multifunctionality and circulation half-life; they 

are being rigorously researched for a breakthrough. Polyglycerols (PGs) make a good example 

of bio-conjugates since they are biocompatible and readily synthesized with controlled 

molecular weights while being multifunctional. Kizhakkedathu et al synthesized hybrid PGs 

consisting of both linear and hyperbranched polyglycerols in varying molar ratios using anionic 

ring opening multi-branching polymerization (ROMBP) and subsequently tested them for their 

biocompatibility and biodistribution in mice 20. These hybrids exhibited excellent blood 

circulation half-life in mice when compared to well known drug Dextran and polymer 

polyvinyl alcohol (PVA) (table 1.1). In addition, the accumulation was found to be minimal 

within major organs explaining the non-existence of non-specific elimination pathways. With 

such results, hybrid PGs have gained attention as conceivable bioconjugates in the field of drug 

delivery systems.  

At present diabetes is dangerously common disease leading to restricted lifestyle. Polymer 

therapeutics have been constantly researched for solution to this problem and a breakthrough 

might surface soon. In 2007, Ikumi et al managed to modify Poly (γ-glutamic acid)s (γ-PGA) 

with phloridzin (PRZ), creating the possibility of obtaining a cutting-edge oral anti-diabetic 

drug 21. Phloridzin (Figure 1.6) is a compound that prevents the glucose transport extensively 

by binding the glucose moiety to the sodium-glucose cotransporter (SGLT1) located on the 

mucosal side of epithelial cells.  

OHOHHO

OO

OH

OH
HO

HO O
 

Figure 1.6. Chemical structure of Phloridzin. 

This compound is found in the bark and stems of apple trees. Since, phloridzin exhibits 

hydrolysis (breaking of glucoside bond) by intestinal b-glucosidase and releases toxin 

phloretin, it cannot be used on its own. Hence, conjugation with γ-PGA yielded a bioconjugate 

γ-PGA-phloridzin (PGA-PRZ) (Figure 1.7) whose efficiency was researched upon by in vitro 

and in vivo experiments in rats. The results showed that the conjugated PRZ inhibited the 

glucose transport as strongly as intact PRZ while the hyperglycaemic effect was reduced 

remarkably, when administered orally. Also, replacing PGA-PRZ with excess intact PRZ; 
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didn’t result in any fluctuation in the blood glucose concentration. This behaviour from the 

bioconjugate suggested that the glucoside bond of PRZ was stopped from degrading and 

stabilized by its conjugation to PGA. As a result, a potential anti-diabetic drug is witnessed in 

this γ-PGA-PRZ bio-conjugate. 

 

Figure 1.7. Chemical structure of γ-PGA-phloridzin conjugates (PGA-PRZs). 

Moving forward, drug targeting and delivery (DTD) approach is a method being researched in 

which vectors are used to deliver cytotoxic agents specifically to tumour cells without affecting 

healthy cells. This ensures significant decrease in chemotherapy related side effects 22. In 2012, 

Gaviglio et al reported the synthesis, characterization and biological evaluation of Pt-peptide 

(Platinum-peptide) bioconjugates (Figure 1.8) 23. The Pt (IV)-peptide conjugates (Figure 1.8) 

were tested for their ability to hinder cellular proliferation in comparison to Pt (IV) parent 

compound. cis,cis,trans-diamminedichloridodiscuccinatoplatinum(IV) complex (Pt(IV)) 

releases cisplatin following reduction. Also, the succinate moieties consisting of terminal 

carboxylate groups at axial position are suited for coupling with biomolecules i.e. peptides post 

additional derivatization. The peptide(s) such as Neurotensin (NT) (tridecapeptide) over 

expresses itself in human pancreatic, prostate and lung cancers and so, its analogue Pseudo-

neurotensin (pNT) was used whereas Octreotate (tate), was the analogue of somatostatin (cyclic 

tetradecapeptide found in hypothalamus), another peptide that over expresses itself in human 

breast and brain tumours.  
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Figure 1.8. Chemical structures of Pt (IV)-peptide bioconjugates. 

The study revealed that the bio-conjugates displayed enhanced cytotoxicity as the peptides 

readily cleaved making Pt (IV) an active species improving its anti-cancer effect incredibly. 

Further studies are being conducted on making this bio-conjugated an efficient pro-drug 

delivery system. With the above-mentioned studies, bio-conjugates find themselves useful for 

varied medical endeavours in a fight against lethal diseases by being effective on the human 

body. 

 

1.1.1.4     Smart polymers 

For decades, science and medicine has been looking for cures to deadly diseases and with new 

discoveries taking place, new types of materials are created. These materials are more 

specifically known as smart polymers that are capable of tuning themselves according to the 

environment they are put in. Such an innovative system leaves science and medicine with 

endless possibilities towards better drug administration and definitive answers to currently 

unanswered aspects of disease prevention. Smart polymers are capable of undergoing alteration 

with respect to application requirement without affecting self-efficiency hence, a popular 

choice for DDS 24. The most popular class of smart polymers is Hydrogels; while being 

biocompatible, their swelling properties or state can be monitored permitting required amount 
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of drug release once administered 24. Beside hydrogels, smart polymers commonly referred to 

as stimuli responsive polymers, can be broadly classified into three types, temperature 

controlled, pH-responsive and electro-responsive polymers (Figure 1.9) 25. 
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Figure 1.9. Graphical representation of stimuli responsive hydrogels. 

 

Lowman et al studied a pH responsive hydrogel for the transport of orally administered insulin, 

a peptide drug that easily undergoes proteolytic degradation in the acidic stomach 26. To prevent 
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this from happening, (P(MAA-g-EG)) (poly(methacrylic-g-ethylene glycol)) preformed 

polymer was synthesized and the drug absorbed within. The intermolecular interaction between 

the drug and polymer occurred resulting in the protection of the drug from the acidic 

environment in the stomach and finally facilitating its release at the target site i.e. the intestine. 

The chemical environment of the intestine being alkaline causes the intermolecular interactions 

to disappear, aiding the hydrogel to swell which ultimately leads to the release of insulin. This 

approach of treating diabetes provides enhanced quality of life for patients while reducing the 

need of taking unnecessary precautions during the treatment.  

In another example of stimuli responsive polymers, Indomethacin (drug taken to reduce fever, 

pain and swelling) was used 27. This was encapsulated inside PLGA microparticles which were 

later embedded into a chitosan-pluronic hydrogel matrix, a temperature sensitive hydrogel 

(Figure 1.11). The purpose of this study was to induce delayed drug release, based on two 

factors, the PLGA microparticles releasing slowly due the matrix formation and secondly 

temperature-controlled stimuli causing further controlled discharge of the drug. This delayed 

drug release ensures that the medicine is only released when the body temperature intends to 

rise (during fever) making certain that the optimal dose is sent out at the correct point without 

causing any unwanted side effects. Also, slow and gradual release of the drug would mean 

prolonged therapeutic influence without the need of drug top up. 
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Figure 1.11. Graphical representation of the method for preparing the Indomethacin-PGLA drug 
conjugate using Chitosan-Pluronic hydrogel matrix. 
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The above-mentioned examples point out the possibility of smart or stimuli responsive 

polymers becoming the next generation drug delivery systems. However, while being tangible 

in their physiological properties and allowing the drug to reach the target site safely, major 

hurdles such as cytotoxicity, bio-degradability still need to be addressed. Nonetheless, with 

advancements taking place at tremendous speed, Smart Polymers indeed hold the key to the 

future of Polymer Therapeutics.  

 

1.1.1.5    Micelles 

In 1913 Dr McBain witnessed unusual behaviour exhibited by sodium palmitate solutions and 

coined the term ‘colloidal ions’ 28. In a discussion paper published later that year, renowned 

scientists argued the conditions and context in which these colloidal ions were observed 

drawing similarities to phase separations. The foundation of new macromolecules was 

established based on these findings. Later into the century, as more studies were carried out, a 

more popular name ‘micelles’ was used 29. The extensive aggregation of surfactants consisting 

of nonpolar groups avoiding contact with water i.e. hydrophobic and polar groups in contact 

with water i.e. hydrophilic form large aggregates known as micelles (Figure 1.12), from Latin 

micella meaning small bit 29.  

CMC

Hydrophilic unit-Head

Hydrophobic unit-Tail

Micelle

Aqueous media

 

Figure 1.12. Graphical representation of micelle formation at or above critical micelle concentration. The 
surfactant molecule consists of a hydrophilic unit (head) and a hydrophobic unit (tail) that aggregate with 
decrease in surface free energy as the surface contact of the surfactant with aqueous media increases. 

The aggregation behaviour is triggered when the surface tension or surface free energy of the 

surfactant decreases as the surface contact with aqueous solution increases. The surfactants 

decrease the contact area of the hydrophobic part by forming aggregates that causes the surface 

free energy to decrease. Once the critical threshold is passed, micelle formation occurs. This 

threshold is better known as Critical Micelle Concentration (CMC) 30 and is highly depend on 
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the concentration of the surfactants in an aqueous solution. Micelles are formed using 

surfactant molecules consisting of hydrophobic tail and hydrophilic head groups. Polymeric 

micelles result from amphiphilic di- or tri-block copolymers consisting of polar or solvophilic 

and non-polar or solvophobic blocks.  

Quite often certain drugs are not very effective as they are unable to access the site of action 

due to high dosage requirement. So, even if the drug is sent to the site in small quantities, they 

don’t prove to be very efficient. To get over this difficulty, modifications are done for the 

delivery of drugs, which in turn results in reduced efficacy and adverse effects. Undoubtedly 

micelles mimic natural carrier systems such as viruses and lipoproteins making them a 

preferable choice for drug delivery studies 30. Besides they exhibit favourable characteristics 

of high drug loading while shielding hydrophobic drugs from the outside environment and 

maintaining interactions with aqueous media using hydrophilic head groups. Also, with the 

help of surface targeting groups targeted drug delivery using micelles with minimal adverse 

effects has gained popularity. In one of the studies, DOX (doxorubicin) was encapsulated 

within copolymers of poly (lactic acid) and poly (2-methacryloyloxyethyl phosphorylcholine) 

(PLA-b-PMPC) micelles and corresponding biocompatibility was tested 31. Figure 1.12 gives 

a representation of intracellular release of encapsulated DOX within PLA-b-PMPC micelles. 
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Figure 1.12. Graphical representation of DOX (doxorubicin) loaded PLA-b-PMPC (poly (lactic acid) and 
poly (2-methacryloyloxyethyl phosphorylcholine)) micelles formation in water. 

Since, PLA (poly (lactic acid)) intends to form the hydrophobic core of the micelles; water 

insoluble drugs can be stored in the core without undergoing changes in their properties. Its 

biocompatibility and biodegradability plays a major role as well. On the other hand, PMPC are 

considered to have good blood compatibility with respect to the human body and prevents 

protein adsorption and platelet adhesion, all due to the presence of phospholipids, the building 

block of cell membranes 32. In this study, the zwitterionic phosphorylcholine group increased 

the biocompatibility of the micelles greatly. Also, the cytotoxicity was found to be lower with 

effectual delivery and release of DOX within the cancer cells. Henceforth, it could be said that 

the copolymers of Poly (lactic acid) and poly (2-methacryloyloxyethyl phosphorylcholine) 

(PLA-b-PMPC) tend to be emerging as the new generation of drug delivering polymer 

micelles.  

Sinn Aw et al in 2012, studied the delayed release of polymer micelles using TNT (Titania 

nanotube) arrays as drug eluting surfaces 33. The TNT nanotube arrays were electrochemically 

generated on a titanium surface and drug encapsulated polymer micelles were loaded at the 
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bottom of the structure. On top of these loaded micelles, blank or unloaded micelles were added 

that caused the delayed drug releasing effect (Figure 1.13). This phenomenon was proved by 

using four types of polymer micelles regular and inverted with water insoluble indomethacin 

and water soluble drug gentamicin. The study revealed elevated strength, good stability and a 

better administration technique when regular and reversed micelles were put in together.  This 

approach to facilitate time controlled and delayed release of drugs can be an effective way of 

suppressing and treating post-operative infections in orthopaedics and bone therapies besides 

providing enhanced bone integration. 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. Graphical representation of multi-drug release using TNT nanotube arrays and polymer 
micelles. Four types of polymer micelles regular and inverted with water insoluble indomethacin and water-
soluble drug gentamicin were studied. Republished with permission of Royal Society of Chemistry, from A 
multi-array delivery system with sequential release using titania nanotube arrays, Moom Sinn Aw, Jonas 
Addai-Mensah and Dunsan Losic, 48, 27, 2012; permission conveyed through Copyright Clearance Center, 
Inc. 

 

1.1.1.6 Hyperbranched Polymers 

In the end of 19th century, Berzelius reported the formation of a resin from tartaric acid (A2B2 

monomer) and glycerol (B3 monomer); this was the first hyperbranched polymer to be 

synthesized 34. This discovery led to extensive studies by Watson Smith, who later published a 

report in 1901, stating detailed reaction between phthalic anhydride (latent A2 monomer) or 

phthalic acid (A2 monomer) and glycerol (B3 monomer) 34. Their work was further investigated 

by Callahan, Arsen, Dawson, Howell and Kienle, et al and their findings are still in use today 
35. Following all these discoveries, Kim and Webster in 1988 managed to synthesis 
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hyperbranched polyphenylene polymer and hence, the terminology ‘Hyperbranched Polymers’ 

(HBP) was coined 36. A hyperbranched polymer consists of a functional core that leads out to 

the formation of branches that are not uniform. These branches expand to give more branches 

resulting in a supramolecular structure. These types of polymers are synthesized by ABx type 

monomers (Figure 1.14). The core of a hyperbranched polymer controls the molecular weight 

distribution of the polymer besides tackling the degree of branching.  

AB2 Monomer

Polymerization

Hyperbranched Polymer

Functional 
Group A

Functional 
Group B

 

Figure 1.14. Graphical representation of hyperbranched polymer synthesized using an AB2 monomer. 

HBPs have since found various applications in drug and protein delivery, gene transfection, 

bio-imaging, cytomimetic applications and tissue engineering 36. They are known to be 

efficient drug delivery transports because of their highly branched chemical structure and 

chemical stability even when the drugs are covalently attached to their surfaces. Drugs can be 

loaded within or on HBPs by forming drug complexes, unimolecullar micelles, multimolecullar 

micelles, responsive micelles and conjugates. Besides enhancing the aqueous solubility and 

bio-availability of the drugs, HBPs increase their circulation time with enhanced permeability 

and retention (EPR) effect 37.  

Currently, theranostics are gaining popularity because of their approach to treating diseases. In 

theranostics, the efficiency of therapeutics is tracked using latest diagnostics such as imaging 

etc. In this paper, it has been described how biocompatible HBPs were synthesized and 

administered for treating prostate cancer cells with subsequent optical imaging 38. The HBP 

was synthesized using reversible addition fragmentation chain transfer polymerisation (RAFT) 

of polyethylene glycol monomethyl methacrylate, with ethylene glycol dimethacrylate as the 

branching agent and internalised by the cancer cells with the help of prostate-specific 

membrane antigen (PSMA) targeting. The delivery system was a controlled delivery system 

which consisted of far-red fluorescent dye that allowed tracking of the polymer via optical 
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imaging. The fluorene 2-carboxaldehyde, model drug was attached to the HBP via hydrolytic 

degradable hydrazone linkage which intended to degrade at an endosomal pH of 5.5. At this 

pH, about 95% of the drug was released over a period of 4 hours compared to 5% released at 

physiological pH. The study revealed high uptake of the drug into the cancer cells where 

prostate specific membrane antigen was expressed compared to cancer cells without PSMA 

suggesting the increased efficiency of the targeting ligand.  
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Figure 1.15. Chemical structure of prostate-specific membrane antigen (PSMA) targeted HBP. 

In another study, the application of hyperbranched poly (citric acid) as an anticancer drug 

delivery system was researched. Since, citric acid intends to decompose easily, different ratios 

of citric acid and glycerol as AB3 and A3 monomers were used to synthesize HBP step by step 

to avoid degradation39. The HBPs were loaded with cisplatin and tested for their efficiency as 

delivery systems. The loading capacity was found to be high with increased stability in saline 

buffer solutions for several months. With IC50 (half maximal inhibitory concentration) values 

lower than that of free cisplatin over C26 cancer cell lines (murine colon adenocarcinoma), 

hyperbranched poly (citric acid) advanced as biocompatible cargos to transport anti-cancer 

drugs. 
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1.1.1.7        Dendrimers 

Vogtle et al. in 1978 reported successful ‘cascade’ synthesis of polymers 40. He reported that 

acrylonitrile was added to an amine by Michael addition reaction after which the nitrile groups 

were reduced to primary amines to yield a dendrimer. According to his work, this step could 

be infinitely repeated to give very highly branched macromolecular ligands. Following his 

work in 1985, Tomalia reconfigured the polymerization process to a step by step method to 

give highly branched polymers with low polydispersity 41. That same year, Newkome et al. 

also reported the synthesis of highly branched polymers and named them arborols, meaning 

tree in Latin 42. However, Dendrimers (dendron-tree and meros-parts) is a more popular word 

to dominate this class of polymers. After rigorous research, step by step synthesis of dendrimer 

with advancing generation was established. A dendrimer, in general, has a polyfunctional core, 

multiple branching units that consist of functional end groups that act as building blocks for 

high generation dendrimers (Figure 1.15). 

Polyfunctional Core

Branching Units

Functional End Groups

 

Figure 1.15. Graphical representation of a dendrimer structure. 

Structural uniformity, multifunctional surface and internal cavities renders dendrimers 

applicable in pharmaceutical and biomedical research. Dendrimers can encapsulate the drug or 

protein molecule either externally via surface modifications or internally in the cavities-

covalently and non-covalently or in the form of a core. 

1.1.1.7.1 Applications with surface conjugation  

In one of the studies, surface conjugation ability of dendrimers as vital anti-bacterial agents 

was studied. Cooper and co-workers synthesized PPI dendrimers (poly(propyleneimine)) with 

16 quaternary ammonium compounds (QACs) with long alkyl chains known for their 

disinfectant properties by increasing cell permeation and cell membrane disruption 43. These 
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QACs immobilized dendrimers exhibited enhanced antibacterial activity against both Gram-

positive and Gram-negative bacteria when compared to QACs immobilized HBPs. 
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Figure 1.16. Chemical structure of Generation 4 poly(propyleneimine) primary amine terminated 
dendrimers. 

1.1.1.7.2 Encapsulation within dendrimers 

Generation 4-poly (glycerol succinic acid) dendrimers (G4-PGLSA) were used for the 

encapsulation of the naturally derived anti-cancer drug, camptothecin. their cytotoxicity was 

studied 44. The G4-PGLSA-COONa modified dendrimers successfully encapsulated the drug 

10-HCPT (10-hydroxycamptothecin). These encapsulated dendrimers were exposed to MCF-

7 human breast cancer cells to show high cytotoxicity when compared to unloaded dendrimers. 

The research group led by Grinstaff, compared these dendrimers to PEG modified dendrimers, 

(G4-PGLSA-OH)2-PEG3400. Both the dendrimers were tested on HT-29 human colon cancer 

cells and similar results were obtained. This led to the conclusion that G4-PGLSA-COONa 

dendrimer was the most favourable delivery vehicle for 10-HPCT and 7-butyl 10-

aminocamptothecin (BACPT), a highly potent lipophilic camptothecin derivative.  
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Kolhe et al. studied Ibuprofen an anti-inflammatory drug as a complexed guest molecule for 

encapsulation within 3rd and 4th generation poly(amidoamine) (PAMAM) dendrimers. 

According to the study, 78 ibuprofen molecules were seemingly encapsulated in the cavities of 

PAMAM dendrimer due to the complexation taking place between the amine groups of the 

dendrimers and carboxyl group of the drug i.e. electrostatic interactions. The in-vitro release 

of ibuprofen is graphically represented in Figure 1.17. In comparison to free ibuprofen, the 

release of encapsulated ibuprofen from within dendrimers’ cavities was slower with swift 

access to A549 cells (adenocarcinomic human alveolar basal epithelial cells) 45. 
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Figure 1.17. Graphical representation of in vitro release study of encapsulated ibuprofen from within 
PAMAM dendrimer in different solvent(s). 
 

In another example involving PAMAM dendrimers, the core of the dendrimer used was 

Polypropylene oxide (PPO) to study the effect on the aqueous solubility of encapsulated 

hydrophobic non-steroidal anti-inflammatory drugs (NSAIDS) such as ketoprofen, ibuprofen 

and diflunisal (Figure 1.18) 46. The study revealed that due the presence of PPO core, 

ketoprofen exhibited the highest solubility followed by diflunisal and ibuprofen. These results 

were significantly better when compared to solubility of the same drugs in EDA (ethylene 

diamine) cored PAMAMs suggesting that the solubility of a drug could be enhanced or 

challenged by changing the core and properties of the dendrimers, thereby creating cost 

effective designs for novel drug delivering dendrimers. 
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Figure 1.18. Graphical representation of PPO cored PAMAM dendrimers with high drug loading. 

 

1.1.1.7.3 Dendrimers for functionalized Nano-particles and photosensitizers 

Attempts to functionalize the core of dendrimers for applications in biomedicine have been 

recent. Although this aspect of dendrimer application is in its nascent stage, certain research 

studies highlighted the potential of functionalized cored dendrimers focused towards 

photodynamic therapy (PDT) (Figure 1.20) and photothermal therapy (PTT) 47, 48. In PDT, 

visible light of specific wavelength activates a photosensitizer administered at the target site 

such as tumour cells. Highly reactive singlet oxygen species are generated following series of 

photochemical reactions resulting in heightened cytotoxicity in the tumour cells. This cytotoxic 

effect in the tumour cells is considered as a potential therapeutic strategy in curing cancer 48. 

In PTT, removal of tumour occurs when high amounts of heat is generated by activating the 

photosensitizer using controlled near infrared (NIR) irradiation 47. Most common examples of 

photosensitizers researched are porphyrins and gold nanoparticles. With dendrimer protection 

these photosensitizers can reach the targeted tumour site successfully.  

In 2014, Li et al studied the benefits of PEG-modified PAMAM dendrimers (PEG-cys-

PAMAM) with a spherical gold nanorod (GNR) core in photothermal therapy in vitro for 

cancer treatment (Figure 1.19) 47. Surface plasmon resonance (SPR) at visible light around 530 

nm is emitted by gold nanoparticles. However, it is difficult for SPR to reach the target site as 

the light is absorbed by bio-components such as haemoglobin. With the help of PEG-cys-

PAMAM, the nanoparticles can reach the target site and NIR irradiation can be used to activate 



29 
 

the SPR i.e. removal of tumour cells with controlled release of heat. GNR cored PEG-cys-

PAMAM dendrimer were studied for their effect on HeLa cells (immortal human cells-cervical 

cancer cells derived from cancer patient ‘Henrietta Lacks’ and tumour cells in mice. No damage 

to HeLa cells was observed whereas significant decrease in tumour volume was recorded. 

PEG-cys-PAMAM 
G2, G3, G4 dendrimers

PEG-PAMAM dendrimers with GNR of different sizes

6 min0 min 15 min 21 min

CTAB 
(Cetyl trimethylammonium bromide)
HAuCl4 
(Chloroauric acid)
AgNO3

 

(Silver nitrate)
Ascorbic acid
NaBH4

 

(Sodium borohydride)

 

Figure 1.19. Graphical representation of PEG-PAMAM dendrimers with GNR obtained from PEG-cys-
PAMAM dendrimers.  

 

Studies using porphyrin cored G3.0 polyaryl ether dendrimers for PDT were conducted by 

Nishiyama et al 48, 49. Porphyrin cored G3.0 polyaryl ether dendrimers with 32 quaternary 

ammonium groups and 32 carboxylate groups were synthesized. Both dendrimers exhibited 

endocytosis-mediated entry with cationic dendrimers being more evident. Compared to free 

Protoporphyrin IX (PpIX) both dendrimers exhibited lowered toxicity in intracellular 

organelles and membranes with high cytotoxicity in Lewis lung carcinoma (LLC) cells. Further 

studies looking into the dark toxicity of the dendrimers in comparison to free PpIX revealed 

lower levels of toxicity suggesting porphyrin cored dendrimers as potential targeted PDT 

agents.  
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Figure 1.20. Schematic representation of porphyrin-cored dendrimers used for production of singlet 
oxygen for Photodynamic Therapy. 

 

 

1.2 Conclusions  

In this overview, prevalent polymer therapeutics and their utility as novel drug delivery systems 

is discussed. The era of polymer therapeutics started with linear polymers and continues to 

progress with advancements seen in their viability as drug delivery systems. They might not be 

able to have high drug payload nonetheless their straightforward synthesis, ability to form coils 

while encompassing drugs and; significance in responsive gene-delivery systems have been 

stepping stones towards advanced polymer therapeutics. Following through, drug-polymer 

conjugates ensure the transportation of the drug to target site using linkers that are labile 

towards digestive enzymes and acidic conditions. This property of drug-polymer conjugates 

makes them preferable for cancer treatments and studies looking into this specific use can be 

seen. However, physiological and biological challenges arise that require furtherance along 

with enhanced vasculature, prolonged vascular circulation time, improved cellular uptake and 

endosomal-lysosomal escape. Studies looking into prevention of diabetes and cancer 

treatments have focused on bio-conjugates for a breakthrough as the conjugates offer good 

pharmacokinetics, multifunctionality and circulation half-life.  

The classification of smart polymers as part of polymer therapeutics is underlined by the fact 

that these polymers are stimuli-responsive and can undergo application-dependant alteration. 

These polymers are usually electro-responsive, pH-responsive and temperature-responsive 

finding applications in targeted drug administration and slow drug release studies. Conversely, 

cytotoxicity and bio-degradability remain an issue requiring research to further the use of smart 
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polymers for drug administration to clinical phase. With Dr McBain discovering colloid 

formations in sodium palmitate solutions, an era of micelles began. Their progress in the field 

of polymer therapeutics has been extensive. From suppressing and treating post-operative 

infections in orthopaedics and bone therapies along with enhanced bone integration by slow-

multiple drug(s) release using TNT arrays to development of bio-degradable and blood-

compatible micelle for efficient drug transport, micelles are headed forward as the future of 

polymer therapeutics.  

Biocompatible HBPs were used to transport drugs to treat prostate cancer with optical imaging 

to follow the treatment progress. This type of treatment known as theranostics is gaining 

popularity with HBPs at its core. HBPs have strived to be the penultimate drug delivery systems 

due to their highly branched chemical structure and chemical stability even when the drugs are 

covalently attached to their surfaces. Studies using HBPs to transport drugs by forming drug 

complexes, unimolecular, multimolecular and responsive micelles and conjugates have and 

continue to provide promising results. HBPs have demonstrated enhanced aqueous solubility 

and bio-availability of drugs and increased circulation time with enhanced permeability and 

retention effect. However, dendrimers are the competing class of DDS. The contenders are 

structurally uniform with multifunctional surface and internal cavities making them applicable 

in pharmaceutical and biomedical research. Dendrimers can encapsulate the drug or protein 

molecule either externally via surface modifications or internally in the cavities-covalently and 

non-covalently or in the form of a core. Lately, dendrimers have been studied for encompassing 

functionalised nanoparticles for photothermal therapy for cancer treatment with encouraging 

results giving them a headway as the leading polymer therapeutics. Cancer treatments via 

photodynamic therapy and photothermal therapy to delivery of anti-inflammatory drugs, 

dendrimers are capable of various bio-medical applications with successful end-results. With 

advancements in the field of medicine with promising clinical trials, therapies etc. taking place, 

the decision of which drug delivery system is better between HBPs and dendrimers, remains 

indefinite.  
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3.1 Introduction 
 

After the inception of dendrimers as the new class of macromolecules, research contemplating 

their synthesis gained momentum. Once the synthetic routes for dendrimers were identified 

and accepted by the scientific community, the focus switched to their applications. Dendrimers 

in general, are macromolecules with a globular, well-defined, mono-dispersed structures. Their 

physiochemical properties make them one of the most suited therapeutic polymers. Some of 

their most advantageous properties consist of bio-distribution and pharmacokinetic 

characteristics. These can be modified by controlling the size, functionality, and conformation 

of the dendrimers. With increments in their generations, the molecular weight continues to 

grow in a controlled manner giving them the identity of single molecular system. The potential 

of strengthened ligand-receptor binding is exploited as the multivalent ligand density increases 

with incrementing generations. And finally, with the use of self-immolative dendrimers capable 

of functionality modification, their self-degradation is kept in check 1. 

With numerous benefits connected with dendrimers’ properties, their interactions with drugs 

has been a topic of wide-spread research 2. In this brief introduction, advancements in 

dendrimer-drug interactions will be presented with PAMAM dendrimers as the focal point. 

Broadly, two well-researched interactions exist: non-covalent and covalent interactions.  

Covalent interactions represent the conjugation of drugs with relevant functional groups of the 

dendrimers which can later be released by cleaving hydrolytic labile bonds chemically or 

enzymatically 3. Acetylated PAMAM dendrimers were conjugated with 5-Fluorouracil (5-FU), 

an antitumor drug (Figure 3.1), transporting them safely to the target tumour site and releasing 

it slowly with reduced toxicity 4. Although the toxicity results for this study were good, the 

modification of the PAMAM dendrimers was rather time consuming if not difficult. Another 

example highlighting this issue was the use of G5-PAMAM dendrimers for targeted drug 

delivery by their conjugation to folic acid was studied by Baker group 5. The terminal amines 

of the dendrimer were glycidol capped to form ester linkages with methotrexate (MTX). The 

slow drug release by the dendrimer system on comparison to free drug release was reported to 

be less than ~5% over 2.5 hours, making the dendrimers the ideal drug delivery system. With 

blockage and under-expression of folic acid receptors, the conjugates ended up losing their 

anti-proliferative effect. To get better results and avoid under-expression, improvement in the 

synthesis of the conjugate were carried out, reflecting on the drawbacks of covalent interactions 

with dendrimers in drug delivery systems.  
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p-nitrobenzoic acid encapsulated 
within Poly(propylene imine)

L-phenylalanine

Surface functionalised Poly(propylene imine) 
with L-phenylalanine (Dendritic Box) stably 

encapsulated p-nitrobenzoic acid  

Figure 3.1. Graphical representation of a (host-guest) dendritic box with surface functionalised poly 
(propylene amine) with L-phenylalanine encapsulated with p-nitrobenzoic acid. 
 

The IC50
 toxicity (the half maximal inhibitory concentration measuring the potency of a 

substance in inhibiting a specific biological or biochemical function) of anticancer drug, 

Paclitaxel was reduced 10-fold on comparison to free Paclitaxel, upon conjugation with G4-

PAMAM dendrimers 6 while the PEG-ylated dendrimers demonstrated a reduction of ~25-fold. 

Even though PAMAMs were able to reduce the toxicity, on comparison to PEG-ylated 

dendrimers, they lacked potential. The application of dendrimers in photodynamic therapy 

(PDT) can be seen as well. For example, study involving prophyrin cored carboxylated 

glycodendrimers for PDT, showed significant results 12 (Figure 3.2).  
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Figure 3.2. Graphical representation of synthesis drug cored dendrimers such as porphyrin or 
phthalocyanine containing carbohydrate glycodendrimers, for Photodynamic Therapy (PDT). Republished 
with permission of Current Organic Synthesis, from Porphyrins and Phthalocyanines Decorated with 
Dendrimers: Synthesis and Biomedical Applications, Figueira F, Pereira MR, Silva S, Cavaleiro J AS, 
Tome J, 11 (01) 2014; permission conveyed through Copyright Clearance Center, Inc. 
 

Overall, the above said examples of covalent dendrimer-drug interactions show good potential 

however, their complicated synthesis serves as a major drawback. Changes to the properties of 

the drug as reported with folic acid receptors due to conjugation with the dendrimer also makes 

this method for encapsulation studies less favourable. Twyman et al reviewed various types of 

covalent dendrimer-drug interactions primarily based upon their conjugated synthesis which 

were found to be difficult and time-consuming 7.  

Having said that, non-covalent interactions, is another approach to drug delivery. Hydrophobic 

interactions besides electrostatic and secondary interactions govern the encapsulation and 

solubility of the drug in this approach. The need for structural modifications is minimal except 

the modification of terminal functionality modifications to lower cyto-toxicity of the system. 

With this approach, hydrophobic drugs can easily be encapsulated without the need of 

complicated modifications to the dendrimer or the drug.  
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This form of drug encapsulation also facilitates host-guest interactions where a drug can be 

enticed to reside in the hydrophobic cavity of the dendrimer under aqueous media conditions. 

The following examples reflect on the noncovalent PAMAM dendrimer-drug interactions that 

have been successful. 

Up to 78 ibuprofen molecules per PAMAM dendrimer (G3 and G4) were encapsulated and 

their release in vitro was studied 8. The release of Ibuprofen was found to be slower than that 

of free Ibuprofen. Also, the dendrimer-drug complex could enter A549 cells faster than free 

Ibuprofen. This studied proved that dendrimer had the potential to deliver drugs to the target 

sites, safely. In another example, dendrimers behaved as vectors for gene delivery by forming 

transfection complexes upon interacting with the phosphate groups of the nucleic acids 9. The 

dendrimers could carry large amount of genetic material mainly because of their well-defined 

shape and low pK of amines. Size dependant solubility of hydrophobic drug, nifedipine, 

calcium channel-blocking agent, was studied with varying generations of PAMAM dendrimers 

in aqueous media 10. The study revealed as the size of the dendrimer increased, the solubility 

of the drug increased as well.   
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3.2 Aims and Objectives 

After discussing the shortfalls of covalent interactions and benefits of non-covalent interactions 

briefly, understanding the aims of this research will be straightforward. This chapter discusses 

the application of PAMAM dendrimers and its analogues as drug delivery systems. The studies 

were carried out using one small and one large drug along with their respective analogues.  

As we know, amine PAMAMs on their own are toxic and cannot be used for drug delivery 

without modifications 7, 14. Hence, neutral TRIS PAMAMs consisting of terminal OH groups 

were synthesised from G2.0 to G5.0. Their synthesis and characterisation are described in detail 

in Chapter 2 Section 2.2.2.3. Following the successful synthesis, determining which generation 

gives the highest loading of a drug was conducted using the model drug, Ibuprofen. This was 

followed by determination of the best suitable concentration of the dendrimer for all the 

encapsulation studies. To do that, varying concentrations of the selected PAMAM generation 

were encapsulated with excess Ibuprofen and studied via UV-Vis Spectroscopy to give the 

loading of Ibuprofen in each concentration. The concentration giving the highest loading was 

set as the standard dendrimer concentration for all future encapsulation experiments.  

The next aim was to compare TRIS PAMAMs to a hyperbranched polymer to determine 

whether dendrimers are better or hyperbranched polymers. Another reason for comparison of 

the two macromolecules was to understand the role of secondary interactions in the 

encapsulation of drugs and increase in their respective solubility. Four drugs were chosen, 

although, five were tested with TRIS PAMAMs alone to understand the effect of 

hydrophobicity in dendrimers, only four were studied with polyglycidol. The first two drugs 

were Ibuprofen and THPP followed by their analogs Cuminol and ZnTHPP. These were 

selected to study whether secondary interactions between the drug and the dendrimer, if at all 

it occurs, maximises the solubility of the drug or not.  

As polyglycidol does not contain any internal amines, it did not mimic the internal interactions 

that would take place between a drug and TRIS PAMAM dendrimer. Therefore, the third and 

the final aim of the research involved comparing hyperbranched PAMAMs (HYPAMs) with 

Amine PAMAMs in their efficiency as drug delivery systems. Since, HYPAMs consists of 

terminal amines, they could not be compared to TRIS PAMAMs. As a result, a direct 

assessment between HYPAMs and Amine PAMAMs was done. 

In the end, evaluation to determine which of the four polymers studied displayed overall good 

solubility with all the above-mentioned factors at hand, was done.    
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3.3 Results and discussion 
 

Part 1 TRIS PAMAM vs Polyglycidol  
 

3.3.1 Polymer selection 

PAMAM dendrimers were synthesized from the starting generation G0.5 to G5.0 for studying 

their ability as drug delivery systems. The beginning of the study involved in understanding 

how good drug encapsulations were as the size of the dendrimer increased. In other words, 

determining the ability of successfully encapsulating drugs with increasing dendrimer 

generation was the first milestone of this study. So as discussed in chapter 2 section 2.2.2.3, 

upon successful synthesis, PAMAMs underwent surface modification to suit the needs for 

respective drug delivery applications. To understand which generation works best in 

encapsulating drugs, TRIS PAMAMs were chosen (Figure 3.4). TRIS PAMAMs have neutral 

surfaces with the presence of TRIS-OH groups making them the preferable choice for drug 

delivery studies. 



 119 
 

 

Figure 3.4 Structure of G4.0 TRIS PAMAM 

 

To conduct the study, successive TRIS PAMAMs i.e. G2.0, G3.0, G4.0 and G5.0 were used to 

encapsulate excess Ibuprofen at a concentration of 1 x 10-4 M via co-precipitate method. 

Methanol was used as the common solvent and TRIS buffer with 0.01 M concentration was 

used as the buffer system. UV-Vis Spectroscopy was used for determining the extent of 

encapsulation within each dendrimer generation. Ibuprofen was chosen for this study as it has 

been extensively studied in Twyman group as a model drug 13. It is a small drug with low 

aqueous solubility and good hydrophobic interactions with PAMAMs. It has a characteristic 

wavelength at 264 nm with a molar extinction co-efficient of 320.70 M-1cm-1. Also, the 

maximum solubility of Ibuprofen in buffer was determined beforehand. These values were 

used to calculate the concentration of Ibuprofen after encapsulation obtained. The maximum 

loading of Ibuprofen i.e. maximum number of Ibuprofen molecules incorporated per dendrimer 

were calculated by dividing the concentration of Ibuprofen by the concentration of the 

dendrimers. The results for this study are tabulated below (Table 3.1). 
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Table 3.1 Concentration and loading of Ibuprofen encapsulated within successive TRIS PAMAMs  

TRIS-
PAMAMs 

(1 x 10-4 M) 
 

Obtained Concentration 
of Ibuprofen using Molar 

Extinction Coefficient 
(ε=320.60 M-1cm-1) 

(x 10-3 M) 

Maximum loading 
of Ibuprofen 

obtained 
(stoichiometry of 

loading/dendrimer) 

G 2.0 0.48 4.80 

G 3.0 1.33 13.29 

G 4.0 3.07 30.66 

G 5.0 2.16 21.61 

 

From the results, we notice that as the generation increases, the encapsulation ability also as 

well. It was certain that G 4.0 TRIS PAMAM encapsulated the highest number of Ibuprofen 

molecules. However, the argument here is why doesn’t G 5.0 encapsulate more than its 

predecessor? After all, the encapsulation seems to be size dependant. The reason is that as the 

dendrimer size increases, an increase in dense shell packing is witnessed as well. As a result, 

less space is available for the drugs to occupy. Therefore, a significant drop in drug loading is 

seen (Graph 3.1). As for G 4.0 TRIS PAMAMs, they encapsulated the highest number of 

Ibuprofen proving that they have the perfect structure with good steric packing.  
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Graph 3.1. Loading of Ibuprofen within different generations of TRIS PAMAMs 
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The study described above provided with which generation of TRIS PAMAMs to proceed 

further. This was clearly, G 4.0 TRIS PAMAMs. The encapsulation ability of the dendrimer at 

a fixed concentration was to be studied. To determine the optimal concentration, varying 

concentrations of G 4.0 TRIS PAMAM were used to encapsulate excess Ibuprofen. The 

concentration of the dendrimer varied from 1x10-5 M to 1x10-3 M. The loading of Ibuprofen 

obtained are presented in the Graph 3.2 below. 
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Graph 3.2. Loading of Ibuprofen per G4.0 TRIS PAMAM molecule. 

The data showed that the G4.0 TRIS PAMAM performed best at a concentration of 1 x 10-4 M. 

As the concentration of the dendrimer increments, the loading of ibuprofen should ideally be 

constant i.e. plateauing off. To the contrary, the loading drops significantly. One possible 

hypothesis for this experiment is aggregation. This phenomenon was studied shoulder to 

shoulder by another researcher in the Twyman group15. However, the focus of my study was 

on selecting the perfect dendrimer concentration with maximum loading. This concentration 

dependant study showed exactly that and 1x10-4M concentration for G 4.0 TRIS PAMAMs 

was chosen to be used for all future encapsulation studies. 
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3.3.2 Drug(s) selection 

To study the encapsulation ability of G4.0 TRIS PAMAMs, five drugs were carefully selected. 

The selection was based upon their solubility in buffer and their primitive hydrophobicity. The 

solubility of drugs needs to be poor or very low in water/aqueous media. If we take a moment 

to think about this, one of the important properties of a good drug delivery system is to carry a 

drug which cannot tolerate aqueous media on its own. The dendrimers provide a safe 

environment for these drugs while they are transported to specific (target) sites.  

Building on this, drugs with poor aqueous solubility naturally have good hydrophobic 

properties. This makes their encapsulation furthermore simple. The internal amines of the 

dendrimer interact with the drug (host-guest) helping the drug stay in place without undergoing 

structural modifications. A series of drugs were tested and studied specifically in consideration 

with the above two requirements. The chosen drugs were Ibuprofen, Warfarin, and THPP. The 

other two drugs studied were Cuminol and ZnTHPP (Figure 3.5). Ibuprofen, Warfarin and 

Cuminol were commercially sourced whereas THPP and ZnTHPP were synthesised in 

laboratory (Chapter 2 Section 2.3). Cuminol and ZnTHPP are important as they undergo 

secondary interactions while encapsulated. A stronger interaction with the dendrimer should 

result in higher drug loading. Also, Cuminol is an analogue of Ibuprofen while ZnTHPP is the 

analogue of THPP. So, the performance of Ibuprofen and THPP to that of their respective 

analogues was studied and compared. Table 3.2 below provides with characteristic wavelength, 

molar extinction coefficient and the maximum solubility of the drugs tested in the laboratory. 

Table 3.2. Drugs with their respective UV-Vis properties. 

Drug 
Characteristic 

wavelength 
(nm) 

Molar 
extinction 
coefficient 
(M-1cm-1) 

Maximum 
Inherent 

solubility in 
TRIS buffer 

(M) 

Ibuprofen 264 320.70 6.02 x 10-3 

Cuminol 263 5837.60 6.66 x 10-4 

THPP 418.5 297922 4.04 x 10-7 

ZnTHPP 424.5 15379 8.71 x 10-7 

Warfarin 306.5 14934 3.80 x 10-4 
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Figure 3.5. The chosen drugs for future encapsulation studies with G4.0 TRIS PAMAMs 

 

3.3.3 Encapsulation studies for TRIS PAMAMs 

Having determined the optimum dendrimer for encapsulation, the next step was to investigate 

how well it could encapsulate and dissolve some other drug molecules and five drugs were 

chosen. The encapsulation was done as previously described via the co-precipitate method 

(Figure 3.6). The obtained concentration (c) for each drug was calculated by using their 

maximum absorbance (A) at characteristic wavelength(s), respective molar absorption 

coefficient (ε) and correcting for any dilutions and inherent solubility in the TRIS buffer. The 

molar extinction coefficient for respective drugs is obtained by following the Beer Lambert 

Law (the length (l) of quartz cuvette is 01 cm); 

                                                 

                                                A = εcl                                                            Equation 3.1 
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The maximum loading obtained was calculated by dividing the concentration obtained by the 

concentration of the dendrimer. At this point, it is important to mention that a high buffer 

concentration was used.  Specifically, a TRIS buffer with a concentration of 0.01M (and a pH 

of 7.4 was required). This relatively high concentration was required to ensure that it was strong 

enough to cope with the dendrimer’s basic amines. This is important as many of the drugs have 

acidic protons and could be deprotonated, which would enhance their inherent solubility.  The 

results for each of the drugs encapsulated are listed in the Table 3.3. 

 

 

 

 

 

 

 

 

Figure 3.6. Graphical representation of co-precipitate encapsulation method. Step 1 and Step 2 represent 
polymer solution with a concentration of 1x10-4 M (TRIS PAMAMs) and excess drug(s) solution, 
respectively. Hereafter, the polymer and drug solutions are mixed and stirred vigorously for an hour (Step 
3) following which the solvent (methanol) is removed in vacuo and TRIS buffer of 0.01M concentration is 
added to give polymer-drug complex (Step 4). 

 

Table 3.3. Drugs with respective loading per dendrimer molecule 

 

 

 

 

 

 

 

 

 

 

 

Drugs  
Concentration 
of encapsulated 
drugs (x10-3 M) 

Maximum 
Drug loading/ 

dendrimer 

Ibuprofen 3.06 30.66 

Cuminol 0.64 6.40 

THPP Negligible Negligible 

ZnTHPP 0.019 0.19 

Warfarin 3.60 35.96 

Step 1 Step 2 Step 3 Step 4 
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The table above lays out the concentration and the loading for each of the five drugs 

encapsulated and studied. Interestingly, when comparing Ibuprofen and Cuminol, higher 

loading with ibuprofen was achieved, with ~31 Ibuprofen molecules encapsulated per 

dendrimer. Cuminol, which does not possess a carboxylic acid group, gave a loading of six per 

dendrimer. The reason the dendrimer can encapsulate so much more ibuprofen, is due to the 

acid group, which can be deprotonated by the dendrimer’s internal amines to form a salt; this 

interaction is not possible for the Cuminol. As such, 5-6 times more ibuprofen can be 

encapsulated than the neutral Cuminol. If we look at the porphyrins, THPP loading was almost 

non-existent and could not be reported in numerical form hence, reported as ‘negligible’. 

However, ZnTHPP can co-ordinate to the dendrimers internal amines, which accounts for the 

increase in encapsulation efficiency (with respect to the non-metallated porphyrin).  Overall, 

these results show how important secondary interactions are with respect to drug loading and 

encapsulation efficiency. And finally, almost forty molecules of warfarin per dendrimer could 

be encapsulated. 

 

3.3.4 Encapsulation studies with Polyglycidol  

To get a deeper insight into the effect of secondary interactions between guest and host, 

encapsulation studies using a new polymer that does not possess any internal amines (that gave 

rise to the secondary interactions observed in the PAMAM dendrimer) were needed to be 

studied. Although we wanted a polymer with little to no secondary interactions, it still needed 

to be water soluble and provide a suitable hydrophobic environment to encapsulate drug 

molecules. For this part of the study, polyglycidol was chosen as the polymer (Figure 3.7).  
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Figure 3.7. Structure of polyglycidol with presence of internal ether oxygens 

 

A significant advantage of using HBPs instead of dendrimers is their significantly simpler 

synthesis. However, as discussed in the previous Chapter 2 Section 2.2.3, characterization with 

respect to molecular weights from GPC is not accurate. This is key, as molecular weight is 

important when calculating concentration. Obtaining a dendrimer solution with an accurate 

molar concentration is easy, as dendrimers are mono-disperse and have a unique and 

identifiable structure.  This is not possible with HBPs as they are poly-dispersed and do not 

have defined molecular weight; making molar concentrations impossible to calculate.  

Therefore, when studying polymers, we use mass per volume (m/v) as the units for 

concentration.  For the work described in the following sections, an m/v concentration or 0.83 

mg/mL has been used, as this corresponds directly to the 1x10-4 M concentration used for the 

G4.0 TRIS PAMAM dendrimer.  This will enable us to make a reasonable comparison between 

the two systems.  

For the encapsulation studies, we selected the acidic Ibuprofen molecule and its neutral 

analogue Cuminol and a metallated and non-metallated porphyrin (ZnTHPP and THPP). As 
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polyglycidol does not possess any internal amines, which were essential for the secondary 

interactions (observed in G 4.0 Tris PAMAM dendrimer), we were not expecting to see any 

significant differences in the encapsulation efficiency.  HBPs-drug complexes were made using 

the same co-precipitate method that was used for PAMAM experiments. They were later 

analysed via UV-Vis Spectroscopy to give the obtained concentration of respective drugs (with 

the use of Beer Lambert law (Equation 3.1)). The results obtained are shown below in Table 

3.4. 

Table 3.4. Concentration of drugs obtained after encapsulation within PG 1:10 

 

Drugs 

Obtained 
concentration of the 
drugs encapsulated 

(x10-2 M) using Eq. 3.1 
Ibuprofen 1.11 

Cuminol 0.35 

THPP Negligible 

ZnTHPP Negligible 
 

 

If we consider the porphyrin pair first, we observe that the HBP does not appear to be a good 

host for either, despite the possibility of a weak interaction between the ether oxygens and the 

metallated porphyrin. Presumably because of the poor coordination ability of ether oxygen, 

and Polyglycidol’s open structure. Also, unlike dendrimers where open structure helps in better 

encapsulation, the level of branching in HBP means they are more dynamic and structurally 

flexible whereas dendrimers are static. As a result, the data for the porphyrins could not be 

reported in numerical form. We initially predicted that the HBP would bind ibuprofen and 

cuminol with a similar efficiency, as the HBP does not possess the internal functionality 

capable of contributing to any meaningful secondary interactions.  However, ibuprofen was 

encapsulated very well, with a dissolved concentration akin to that recorded for the PAMAM 

dendrimer.  In addition, if we compare the concentration with that recorded for cuminol, we 

notice that the HBP encapsulates ibuprofen 3-4 times better than cuminol.  This is less than the 

ratio observed for the PAMAM dendrimer, which could encapsulate ibuprofen 5-6 times better 

than cuminol.  This therefore provides good evidence for secondary interactions within the 

PAMAM dendrimer.  We also predicted that overall binding efficiencies would be low for both 

molecules, as the HBP has a poorly defined and relatively open structure.  However, the 

concentration of dissolved cuminol was around 5 times higher than the value obtained using 

the PAMAM dendrimer.  Now, we are not sure why, could be due to the polarity of 
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polyglycidol that can be linked to the presence of internal hydroxyl groups which get 

deprotonated to O-. It could also be due to the strong buffer system. 

 3.3.5 Comparing TRIS PAMAM to Polyglycidol 

 After conducting encapsulation studies with polyglycidol, the next step was to compare the 

results to that of TRIS PAMAMs. To do that, obtained concentrations of Ibuprofen, Cuminol 

and ZnTHPP after encapsulation within G4.0 TRIS PAMAMs and PG1:10 were compared, 

respectively. The first drug to be compared was Ibuprofen (Graph 3.3). 
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Graph 3.3. Comparing the encapsulation results for Ibuprofen between TRIS PAMAM and PG 1:10 

 

It was evident that difference in encapsulation of Ibuprofen was not significant however, TRIS 

PAMAMs were able to encapsulate slightly more than PG1:10.  This result didn’t really prove 

if secondary interactions were needed to get more drugs inside a polymer. The next comparison 

was made for cuminol, analog of ibuprofen (Graph 3.4). For cuminol, the story was different. 

Polyglycidol incorporated more cuminol than TRIS PAMAM did.  
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Graph 3.4. Comparing the encapsulation results for Cuminol between TRIS PAMAM and PG 1:10 

 

To sum up, Table 3.5 compares the concentration of all the drugs encapsulated in both, G4.0 

TRIS PAMAM and PG 1:10. 
 

Table 3.5. Comparison of concentration of drugs encapsulated within TRIS PAMAM and PG 1:10 

Drugs  

 
Obtained Concentration after  

encapsulation (x 10-2M) 
 

G4.0 TRIS PAMAM      PG 1:10 

Ibuprofen 1.16 1.11 

Cuminol 0.06 0.35 

THPP Negligible Negligible 

ZnTHPP 0.0019 Negligible 

 

With the encapsulation of drugs compared between the two polymers; it was clear that 

polyglycidol could encapsulate ibuprofen and cuminol. The importance of secondary 

interactions was highlighted. While ibuprofen showed a sixteen-fold increase in its loading, 

relatively low encapsulation for cuminol was reported. In conclusion, polyglycidol did not 

show superior encapsulation abilities. This was due to the absence of secondary interactions 

which are important for attaining high drug loading. TRIS PAMAMs on the other hand, could 

engage in secondary interactions leading to higher encapsulation efficiencies. Therefore, for a 
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better comparison, it was decided to look at a polymer that possessed similar internal 

functionalities to the PAMAM dendrimer. This formed the second milestone of the 

encapsulation studies which will be discussed in the next section. 

 

Part 2 HYPAMs vs Amine PAMAM dendrimer 
 

In the previous section, conclusions were drawn based on the encapsulation results that 

polyglycidol was no good when compared to TRIS PAMAMs. Preferably a hyperbranched 

polymer with internal functionalities, capable of secondary interactions should be studied. So, 

the question was, what type of hyperbranched polymer would be able to compete with TRIS 

PAMAMs. The idea of fracturing an already synthesised amine terminated PAMAM 

dendrimers i.e. G2.0, G3.0 and G4.0 was put into action. Upon thermal condensation, the 

dendrimers would undergo retro Michael addition internally. This would result in structural 

imperfections forming hyperbranched polyamidoamines. As discussed previously in Chapter 

2 Section 2.2.4, the GPC analysis was not accurate. It seems as the condensation reaction 

progressed with time, fluctuation in the polydispersity of the polymer was observed. With 

repeated analysis, recurrent results proved the same. This brought us to the conclusion that 

instead of forming a structurally imperfect hyperbranched polymer, the dendrimer was 

shrinking down to its predecessor, a smaller dendrimer. 

At that juncture, it was decided that instead of fracturing PAMAM dendrimers, hyperbranched 

PAMAMs (HYPAMs) would be synthesised and their encapsulation abilities will be 

subsequently studied. The detailed synthesis and characterisation of these polymers is 

discussed in Chapter 2 Section 2.2.5. As stated, two monomers AB2 and AB4 were synthesised. 

These monomers underwent retro Michael addition via thermal condensation to give AB2 

HYPAM and AB4 HYPAM, respectively (Figure 3.8). Since, their characterised molecular 

weights were not definite due to their poly-disperse nature, concentration was calculated using 

mass/volume (m/v) or 0.82mg/ml. This matched the concentration of 1 x 10-4M for TRIS 

PAMAMs. However, HYPAMs consist of terminal amine groups therefore, they were 

compared to amine terminated G4.0 PAMAM (Figure 3.9).  
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Figure 3.9 Structure of G4.0 PAMAM dendrimer 
 

3.3.6 Encapsulation studies with HYPAMs and G4.0 Amine PAMAM 

Since, the secondary interactions were the focus of this study, Ibuprofen and THPP along with 

their respective analogs were chosen (i.e. cuminol and ZnTHPP). Here as well, co-precipitate 

method was used to prepare the complexes. While the concentration of polymers was constant 

excess quantity of drugs was used. Hereafter, the complexes were analysed using UV-Vis 

Spectroscopy at each drug’s characteristic wavelength. The concentration of the encapsulated 

drug was determined by using its molar coefficient, dilutions, and respective inherent solubility 

in TRIS buffer. The drugs with their characteristic UV-Vis properties are mentioned in table 

3.2 previously. The first polymer to be studied was AB2 HYPAM with the above-mentioned 

drugs. The table 3.6 below gives the concentration of the encapsulated drugs obtained. 
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Table 3.6 Concentration of drugs obtained after encapsulation within AB2 HYPAM 

Drug(s) 
Obtained Concentration 

of the drugs encapsulated  
(x 10-2 M) 

Ibuprofen 1.00  

Cuminol 0.91 

THPP Negligible 

ZnTHPP 0.15 

 

For AB2 HYPAM, encapsulation of THPP was very low and hence, it could not be reported. 

On the contrary, the concentration of ZnTHPP was well-observed. Reason being this polymer 

experiences good secondary interactions with the metallated porphyrin due to the presence of 

internal amines. Another reason is the open structure of the polymer. For Ibuprofen and 

Cuminol, the obtained concentrations for both encapsulated drugs were similar. It could be said 

that, number of cuminol molecules encapsulated were equal to that of ibuprofen. This was an 

interesting result proving the efficiency of secondary interactions which were absent in the 

previously discussed polyglycidol. The next polymer to be studied was AB4 HYPAM. 

Although its molecular weight could not be determined successfully, a high degree of 

branching resulting in high drug loading was still expected. Table 3.7 below details the 

concentration for the drugs encapsulated. 
 

Table 3.7. Concentration of drugs obtained after encapsulation within AB4 HYPAM 

Drug(s) 
Obtained Concentration 

of the drugs encapsulated  
(x 10-2 M) 

Ibuprofen 1.18  

Cuminol 0.72 

THPP Negligible 

ZnTHPP 0.2 

 

Comparing Ibuprofen to cuminol, solubility of the former seemed high. As for THPP and 

ZnTHPP, very low values of THPP were obtained and hence could not be reported. On the 

other hand, ZnTHPP showed good solubility.  
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As the GPC did not give good results (Chapter 2 Table 2.7 and Table 2.8), the presence of 

monomers and small oligomers could not be ruled out. If this was the case, possible interactions 

would take place between the AB4 monomer and the metallated porphyrin. Therefore, a control 

experiment had to be done using methanol as the solvent followed by TRIS buffer (Figure 

3.10). To do that, mass/volume concentration of the monomer was prepared at 0.82mg/ml. 

Complex of the ZnTHPP and the monomer was formed. UV-Vis Spectroscopy and Beer 

Lambert law (Equation 3.1) were used to analyse this complex. Originally, if the interactions 

were taking place between the monomer and the drug, similar absorbance would be observed. 

However, when the complex was analysed, the solubility was like the inherent solubility of 

ZnTHPP (Table 3.2). As a result, the spectrum could not be analysed and reported in the form 

of data. This proved that the AB4 HYPAM was indeed a polymer and not a monomer. Also, it 

was more likely to have a high degree of branching making it behave like a dendrimer. This 

would mean a more controlled environment with the presence of internal amines (comparable 

to TRIS PAMAMs). Hence, good performance in terms encapsulating drugs and increasing 

their solubility was seen.  
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Figure 3.10 Graphical representation of possible interactions occurring between ZnTHPP and AB4 
monomer. A control experiment was performed to test the hypothesis whether interactions were taking 
place between the monomer and the drug. The co-precipitate encapsulation method was applied to form a 
monomer-drug complex in TRIS buffer which was analysed via UV-Vis Spectroscopy to reveal if the drug 
was encapsulated within the monomer or not. 
 

Finally, the studies were repeated with G4.0 PAMAM as well and are reported in the table 3.8 

below. G4.0 TRIS PAMAMs could have been used for comparison however, since its terminal 

functionalities are different to that of HYPAMs; G4.0 PAMAM was good choice as the 

competitor. The concentration values suggested the solubility of Ibuprofen was ten times better 

than that of cuminol. Again, the emphasis was made on the acid groups of ibuprofens that 
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enhanced the interactions with the dendrimer. As cuminol doesn’t have any acid groups 

present, the encapsulation is relatively lowered. Between THPP and ZnTHPP, the 

encapsulation of THPP was unsuccessful. Nonetheless, incorporation of ZnTHPP was possible 

with enhanced solubility.  
 

Table 3.8 Concentration of drugs obtained after encapsulation within G4.0 PAMAM 

Drug 
Obtained 

Concentration of the 
drugs encapsulated 

(x 10-2 M) 
Ibuprofen 1.10  

Cuminol 0.01 

THPP Negligible 

ZnTHPP 0.02 

 

 

 

Now, assessment of each of the polymer’s efficiency in increasing the solubility of the drugs 

is studied. Although, AB4 HYPAMs gave really good results, as their characterisation remained 

problematic, they will not be used for comparison. Instead, AB2 HYPAM will be compared to 

G4.0 PAMAM. Table 3.9 does the comparison.  
 

Table 3.9. Assessment of encapsulation efficiency between AB2 HYPAM and G4.0 PAMAM 

 Drugs  

 
Obtained Concentration  

after encapsulation (x 10-2M) 
 

  AB2 HYPAM     G4.0 PAMAM 

Ibuprofen 1.00 1.10 

Cuminol 0.91 0.01 

THPP Negligible Negligible 

ZnTHPP 0.15 0.02 
 

 

Overall, the HYPAM seems to give better results than G4.0 PAMAM. Almost constant 

solubility is observed for Ibuprofen. However, for cuminol, AB2 HYPAM provides good 

solubility than G4.0 PAMAM. Similarly, ZnTHPP encapsulates better in AB2 HYPAM as 

compared to G4.0 PAMAM. One possible explanation for G4.0 PAMAM to give low solubility 

is its compact structure i.e. dense shell packing that hinders incorporation of the drug 

molecules. Literature reports that at neutral pH, primary amines are protonated, and the 
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dendrimer is significantly smaller than a corresponding dendrimer in high or low pH11 due to 

the basic nature of HYPAMs and PAMAMs, we need the pH to be controlled with buffer. 
 

 

3.4 Conclusions and Future work 
 

To begin with, the generation with highest drug loading for TRIS PAMAM dendrimers was 

determined. The model drug used was Ibuprofen. The complexes were made via co-precipitate 

method and analysed using UV-Vis spectroscopy. G4.0 TRIS PAMAM was found to be the 

best between G2.0, G3.0 and G 5.0 TRIS PAMAMs. Following this, the optimum 

concentration for all the future encapsulation studies was determined. Varying concentrations 

of G4.0 TRIS PAMAM ranging from 5x10-3 M to 5x10-5 M were used. Co-precipitate method 

with Ibuprofen as the model drug was repeated. The optimal concentration for G4.0 TRIS 

PAMAM was found to be 1x10-4M with ~31 Ibuprofen molecules encapsulating per dendrimer.  

Now, five drugs were chosen including Ibuprofen, from which four drugs were used to study 

encapsulation ability of polymers other than G4.0 TRIS PAMAMs. The drugs chosen were 

Ibuprofen and THPP with their respective analog Cuminol and ZnTHPP. The fifth drug was 

warfarin but was only studied with G4.0 TRIS PAMAMs. TRIS PAMAMs consist of internal 

amines that provide secondary interactions besides creating hydrophobic cavities for the drug 

to stay safe in. This results in high drug loading with these dendrimers. However, to know for 

sure, we needed to test this with a polymer of comparable molecular weights and without the 

presence of internal amines. Polyglycidol is one such polymer. It consists of internal ether 

oxygen which provide weak interactions however, the interactions tend to be strong enough to 

hold drugs in the cavity.  

The encapsulation studies with the above state drugs were conducted to find that out of the four 

drugs, THPP did not encapsulate at all. However, its analog, ZnTHPP had enhanced solubility 

because due to its zinc core providing better secondary interactions. G4.0 TRIS PAMAM, 

showed to encapsulate the porphyrin while PG 1:10 failed to do so. Cuminol should exceptional 

solubility with PG1:10 but we couldn’t understand why. As for Ibuprofen, in dendrimer a 

slightly higher concentration was found compared to PG1:10. Overall, G4.0TRIS PAMAMs 

could encapsulate more due to the presence of secondary interactions as driving force. To verify 

the role of secondary interactions, we decided to use hyperbranched PAMAMs. With similar 

chemical structure and presence of internal amines, which polymer encapsulate more, could be 

determined.  
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Firstly, the amine PAMAMs were subjected to thermal condensation to give fractured 

PAMAMs resembling hyperbranched PAMAMs. However, their fracture wasn’t successful 

(Chapter 2 section) and then it was decided that hyperbranched PAMAMs (HYPAMs) will be 

synthesised. Their synthesis was successful and upon characterisation, they were studied for 

their encapsulation abilities and related with Amine PAMAMs instead of TRIS PAMAMs due 

to their terminal functionality.  

With the encapsulation results obtained, it was suggested that HYPAMs were better to Amine 

PAMAMs as they possessed a more flexible structure with strong secondary interactions; 

especially with ZnTHPP. This also proved that metallated porphyrins tend to bind better than 

their non-metallated counterparts. Having said that, the encapsulation ability of the polymers 

studied above should be investigated with other types metallated porphyrins perhaps 

ZnTDHPP (Tetra (3,5 dihydroxyphenyl) porphyrin zinc) or ZnTDMPP (Tetra (3,5 

dimethoxyphenyl) porphyrin zinc) to name a few. 

Ibuprofen also gave good encapsulation results, but it was perceived to be so high, due to the 

presence of acidic groups on Ibuprofen. However, Cuminol also encapsulated well but the 

reason for its unusually high loading could not be understood. It was found necessary that the 

encapsulation studies with this drug are reiterated. The use of drugs with minimal to no 

solubility in water should be studied as well. As TPP and ZnTPP have also been studied with 

the latter performing better, different types of drugs other than porphyrin need to be looked at, 

such as metal-free Phthalocyanines, another class of large hydrophobic photosensitizers 

towards PDT 14 (Figure 3.11). 
  

N

NH N

HN

 

Figure 3.11. Structure of metal-free phthalocyanine 
 

To conclude the results obtained from all the encapsulation studied performed using the four 

types of polymers or macromolecules, Graph 3.5 details the concentrations of the drugs studied 
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by the three polymers. While G4.0 TRIS PAMAM proves best for Ibuprofen, AB2HYPAM 

comes out as the winner between the three polymers. Clearly these encapsulation studies need 

to be performed with much more hydrophobic drugs to assess if AB2 HYPAM still works best 

or not. 
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Graph 3.5. Evaluating the best polymer or macromolecule out of the three: G4.0 TRIS PAMAM, PG 1:10 
and AB2HYPAM, in terms of encapsulation and solubility enhancers at a concentration of 1 x 10-4 M, 
respectively. 
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3.5 Experimental section 
 

3.5.1 General experimental considerations 

3.5.1.1 UV/Vis spectroscopy 

The UV/Vis spectrum was recorded on an Analytik Jena AG Specord s600 UV/Vis Spectrometer 

and analysed by the Software (WinASPECT). 

3.5.1.2 pH measurement 

The pH of the buffer solutions prepared (section 3.5.2.1) was substantiated using a pH 210 

Microprocessor pH Meter from Hanna Instruments Ltd. (Leighton Buzzard, UK). The device was 

calibrated using pH 4.0 and pH 10.0 standard solutions. 

3.5.1.3 Source of solvents, chemicals, and drug(s) 

All the solvents and chemicals were sourced from Sigma-Aldrich and VWR. Cuminol was 

sourced from VWR. Ibuprofen and Warfarin were sourced from Sigma-Aldrich. 
 

3.5.2 Encapsulation Studies 

3.5.2.1 Molar extinction coefficient(s) of drug(s) 

Solutions of known concentration(s) were made up using methanol for each drug, respectively. 

Using a quartz cuvette, the solution for each drug was analysed for maximum absorbance via 

UV-Vis spectroscopy at respective characteristic wavelengths. Dilutions were carried out to 

obtain a set of readings between maximum absorbance of ~0.3-1.5, respectively. For each drug, 

a Beer lambert plot between the maximum absorbance and corresponding concentrations was 

plotted to give the molar extinction coefficient (ε).   

3.5.2.2 Buffer Solution 

In a 1000ml volumetric flask, 12.1g (0.01M) of TRIS buffer solution was dissolved in 1 litre 

of distilled water. The pH was maintained ~7.4. 

3.5.2.3 Inherent solubility tests for drug(s) 

Excess drug(s) were dissolved in 5ml of methanol and vigorously stirred at 400-500 rpm for 

about 10 mins. The solvent was removed in vacuo followed by addition of 5ml buffer solution. 

The drug solution(s) were filtered into clean sample vial(s) using cotton wool. Inherent 
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solubility for each respective drug was determined by using the Beer lambert equation (1) with 

pre-determined molar extinction coefficient(s) and maximum absorbance (A) of the drug(s) 

obtained by analysing the filtered drug samples via UV-Vis Spectroscopy.  

3.5.2.4 G4.0 TRIS PAMAM Solution 

In a 250ml volumetric flask, 203.72mg of G4.0 TRIS PAMAM was dissolved in methanol to 

give the required solution (1x10-4M).  

3.5.2.5 Hyperbranched Polymer Solutions 

For AB2 and AB4 HYPAMs, PG1:10 and G4.0 PAMAM; a concentration of 0.82mg/ml (m/v) 

was used to make up solutions in 250ml volumetric flasks using methanol. 

3.5.2.6 Encapsulation of drugs  

In a clean sample vial, 5ml of the polymer solution was mixed with excess of the drug being 

studied. After rigorous stirring for approximately an hour at 400-500 rpm, the solvent was 

removed in vacuo following which 5ml of TRIS buffer (0.01M) was added. The complex 

solution was filtered into a clean sample vial(s) using cotton wool and analysed via UV-Vis 

Spectroscopy at characteristic wavelengths for each drug, respectively. 
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4.1 Introduction and Aims 
 

Many biological processes in a human body are driven by protein-protein interactions. At times, 

these interactions are uncontrolled leading to diseases 1. Polymers or macromolecules acting as 

scaffolds with charged surfaces have the potential to stop these interactions from occurring 2. 

The charged macromolecules bind to the hot spot of the proteins 2. Proteins with small 

interfacial area have been studied so far. Twyman et al in 2008, made attempts to study the 

protein binding efficiency of dendrimers as size selective ligands 3. Acid dendrimers 

synthesized via divergent route ranging from G0.5 to G4.5 were studied (Figure 4.1) (synthesis 

and functionalisation discussed in Chapter 2 Section 2.2.2.1). The surface area of the 

dendrimers complimented the interfacial area of the chosen proteins; α-Chymotrypsin and 

Cytochrome C. From the study, it was found that with α-Chymotrypsin bound best with G3.5 

while Cytochrome C bound best with G2.5, due to its smaller interfacial area 4, 5. This study 

reflected on the concept of size selective binding proving that the size of the dendrimer played 

an important role in protein binding.  

 

Figure 4.1. The carboxylate PAMAM deprotonates to give negative charge on its surface that enhances its 
ability to bind with the protein.  

Shifting focus from the established size-selective studies done in the past, the less understood 

binding efficiency of Carboxylate PAMAMs with our model protein, Cytochrome C, was 

G3.5 Carboxylate 
PAMAM 

Deprotonated G3.5 
Carboxylate PAMAM 

Buffer 

Cartoon representing Deprotonated 
G3.5 Carboxylate PAMAM 
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studied and hence, is discussed in this chapter. Initial protein binding studies were conducted 

between Cytochrome C, porphyrin and G3.5 Acid PAMAM. This was a competition 

experiment. To monitor the binding between the protein and dendrimer, TCPP was used as the 

probe. In theory, when bound to Cytochrome C, the porphyrin will quench with no emission 

recorded. With the addition of the dendrimer, protein will bind to the dendrimer displacing the 

porphyrin. The displaced porphyrin would become fluorescence active again, hence, emission 

recorded. As more TCPP is displaced, higher the emission (Figure 4.2).  

 

 

 

 

 

 

Figure 4.2. Competition experiment-When TCPP     is bound to Cytochrome C       , the fluorescence is 

quenched. Upon displacement by Carboxylate dendrimers        it becomes free and fluorescence-active        . 

However, this cannot be the only possibility. There is no surety that the dendrimer is binding 

with the protein. It could simply mean that the dendrimer encapsulates the porphyrin and does 

not bind to the protein. The porphyrin will still be fluorescence active and emit signals at 

~650nm (Figure 4.3). The more dendrimer added to the porphyrin-protein solution, the more 

porphyrin molecules are released therefore, heightened emission. 

Figure 4.3. The bound TCPP is encapsulated by the carboxylate dendrimer making it fluorescence active 
without binding to the dendrimer. 

This leads us to consider how we quantify protein binding. Covalent approaches for 

encapsulating the porphyrin can be used. Fixing or holding the porphyrin in one place or better, 
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using porphyrin cored dendrimers, hyperbranched polymers. These approaches have been 

studied in the Twyman group and turned out to be very time consuming with minimal success 

rate. Henceforth, non-covalent approach for encapsulation of the porphyrin shall be utilised 

(Figure 4.4). This approach is supposed to be efficient as it does not involve complicated 

chemistry. Once encapsulated within the dendrimer, the probe should have minimum to no 

solubility in aqueous media. Binding with protein will only be facilitated via interaction 

between surface functionalised dendrimer (discussed in section 4.2.9) and the protein.  

 

 

 

Figure 4.4 New method of quantifying Protein-dendrimer binding. 

 
Having said that, targeting groups for protein binding studies could be another, better option. 

Adding targeting groups on the surface of the dendrimer using non-covalent approach, the 

binding affinity of the dendrimer-protein can increase manifold. This was the other half of the 

study; using targeting groups to quantify binding between dendrimers and proteins. To achieve 

this, a linear chain with a hydrophobic tail that is incorporated easily within the dendrimer 

cavity and hydrophilic head, so that the overall solubility of the system is enhanced, was desired 

(Figure 4.5).  
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incapable of binding with 
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Unbound 
Cytochrome C 

Fluorescence 
emission 
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Figure 4.5. Mono-valent system-consisting of a targeting group, preferably an amino acid. Increase in 
binding affinity can be studied. 

 

The targeting group chosen was an amino acid chain. Mono-valent system i.e. one amino acid 

working as the targeting group. However, as good binding affinity with a mono-valent system 

is reported 6, why not use two or three chains of amino acid to strengthen the binding further. 

Twyman group has studied the effect of terminal groups’ functionality on the ability of 

dendrimers to bind proteins 6. To the contrary, as predicted there wasn’t any increase in the 

binding affinity instead, a drop was observed. The use of multiple targeting groups w.r.t. a 

mono-valent system was found to be a complete mess. 
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Figure 4.6. Poly-valent system in protein binding i.e. Dynamic Combinatorial Library 

 

Therefore, a poly-valent system was thought of as an exemplary idea. A non-binding dendrimer 

for instance, G4.0 neutral PAMAM is added to a mixture of model protein and three amino acid 

ligands (targeting groups). The model protein will be bound to the dendrimer by the utilisation 

of one of the many ligands or targeting groups available, also known as ‘best-fit’ or Dynamic 

Combinatorial Library 6 (figure 4.6).  
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4.2 Results and discussion 

 
Part 1 Adding Targeting group to the dendrimer for Improved Binding 

 

4.2.1 Synthesis of the targeting groups 

The first part of this research as outlined in the aims was to improve the binding between a 

model protein and the dendrimer. As the protein involves a range of different. This was done 

by incorporating a targeting group within the surface of a neutral dendrimer non-covalently. 

Subsequently, the binding properties of the system were studied. Hence, the first step involved 

the synthesis of a targeting group that could be easily encapsulated. Since the inner cavities of 

the dendrimer provides a safe hydrophobic environment (as shown in Chapter 2), a targeting 

group with a hydrophobic tail and hydrophilic head was required. The hydrophilic head must 

comprise an aromatic group to help interact with the solvent system. Therefore, with these 

considerations in mind, a targeting group was synthesised. The general synthesis mechanism is 

given in the Scheme 4.1 below.  
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Scheme 4.1. General synthesis mechanism for the targeting groups 

 

As the nitrogen of the amine is more nucleophilic than the oxygen, chemo-selectivity results in 

formation of an amide. At this stage, the nitrogen of the amide becomes more electronegative 

than both the hydrogen and carbon. This results in an increased electron density pull making it 

more delta negative and nucleophilic. Also, the acid chloride next to the amide is attacked by 

its active lone pair.  
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Hereafter, the carbon bound to the chloride and oxygen becomes prone to a nucleophilic attack 

as the electron density is pulled towards the electronegative chloride and oxygen. As a result, 

deprotonation of the nitrogen occurs by 4-aminophenol and since chloride is a good leaving 

group, it comes off next.  

 

4.2.2 Characterisation of the targeting groups 

To verify the successful synthesis of the targeting group, standard characterisation techniques 

were utilised. In 1H NMR, a singlet peak around 9.15 ppm was seen. This corresponded to the 

amide-proton. The proton directly attached to the nitrogen is deshielded due to high electron 

withdrawing power of nitrogen. Hence, a shift towards the low field in the signal is observed. 

Aromatic signal around 6 ppm was also visible. The presence of aliphatic carbons was 

confirmed by the presence of corresponding protons around 2 ppm.   

With 13C NMR, peak at 170 ppm corresponding to the carbonyl peak next to the amide 

confirmed the synthesis to be successful. To reconfirm the NMR results, FT-IR was performed. 

Signals around 1650 cm-1 for the amide carbonyl stretch and 1500 cm-1 for the aromatic C-C 

bend were obtained. ES-MS was also used to characterize the targeting group. Molecular ion 

peak at 236.2 was visible, confirming successful synthesis of N-(4-hydroxyphenyl) 

hexadecanamide. 

 

4.2.3 Encapsulation studies 

After the successful synthesis of the targeting group, its encapsulation within the dendrimers 

was the next phase of this study. The dendrimers for this study were to have neutral surface 

functionality. Previously synthesised neutral OH-PAMAMs and TRIS-PAMAMs were selected 

(Chapter 2 Section 2.2.2.2 and Section 2.2.2.3). G4.0 OH PAMAM and G4.0 TRIS PAMAM 

(32 end groups) were chosen as the perfect generation for the encapsulation studies. They were 

perfect as small dendrimers would not have the structural integrity to incorporate the groups 

while larger dendrimers would hinder encapsulation due to their dense shell packing.  

Having said that, co-precipitate method was used for encapsulating the targeting group within 

both the neutral dendrimers. Methanol was used as the common solvent followed by the 

addition of TRIS buffer at a pH of 7.36, 0.1 M. UV-Vis Spectroscopy was used for analysing 

the complexes formed.  
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Figure 4.7. Targeting group’s protonated and deprotonated form with different UV absorbances. 

 

The first study using G4.0 OH PAMAM showed absorbance at 265 nm and 400 nm 

corresponding to the targeting group’s protonated and deprotonated form (Figure 4.7). 

However, with G4.0 TRIS PAMAM, no absorption was recorded (Graph 4.1). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph 4.1. The absorption recorded for the targeting group encapsulated within the G4.0 OH PAMAM and 
G4.0 TRIS PAMAM, respectively. The protonated and deprotonated form of the targeting group at 265nm 
and 400nm when encapsulated with G4.0 OH PAMAM can be observed whereas for G4.0 TRIS PAMAM, 
no such absorbances were recorded. 
 

A possible reason for this result was thought to be the formation of a complex between the 

deprotonated anion with amines or hydroxyl groups on the surface of the dendrimers. Since, 

G4.0 TRIS PAMAM consists of polar hydroxyl terminal groups, higher chances of 

complexation within this dendrimer must have resulted in poor absorption. However, if this was 

the case, the buffer system should have been able to sort this out. On the contrary, due to the 

presence of acidic head groups, the buffer facilitated the internal complexation between the 

targeting group and the internal amines of the dendrimer (Figure 4.8).   

G4.0 OH PAMAM 

G4.0 TRIS PAMAM 

Protonated form  

Deprotonated form  

UV Spectra of encapsulated targeting group (N-(4-hydroxyphenyl) 
hexadecanamide 



 155 
 

Buffer

Buffer

TRIS PAMAM with Targeting group-Ideal scenario

Internal complexation- one of the possibilities

 

Figure 4.8. Graphical representation depicting internal complexation between the targeting group and 
TRIS PAMAM dendrimer. 

  

Even though, encapsulation of the targeting group was successful within G4.0 OH PAMAM, 

the conclusion was derived that better hydrophobic interactions between the targeting group 

and the dendrimer were needed. Also, the failed encapsulation with G4.0 TRIS PAMAM clearly 

suggested that the targeting groups are required to be less acidic i.e. less prone to deprotonation 

at a certain pH to avoid internal complexation. The future studies with targeting groups were 

continued by a new PhD researcher in the Twyman’s group. 
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Part 2 Protein-binding Studies 

 

4.2.4 Probe selection 

As discussed in the aims, various types of probes have been studied by the Twyman group for 

protein binding. One of the extensively researched probes are porphyrins. Up till now the 

challenge was the encapsulation of porphyrins. From Chapter 3 Section 2.2.3, we understood 

that the encapsulation of porphyrins can be made successful by co-ordinating them with metals. 

We studied the encapsulation of 5,10,15,20-Tetra (4 hydroxyphenyl) porphyrin zinc (ZnTHPP) 

with different polymers and all of them were able to encapsulate the porphyrin successfully, 

even if the loading was low. For protein binding studies, the loading of the probe i.e. the 

porphyrin within a polymer should be measurable. Preferably, in 1:1 ratio or greater. 

Nonetheless, if the loading is low, we can compensate for that by controlling the concentration 

of the probe-binding ligand system. In this study, dendrimers act as the binding ligand. Having 

said that, ZnTHPP gave good encapsulation results with the previously studied drug delivery 

systems and hence, was selected to be the probe for protein binding studies (figure 4.9). 

N

N

N

N

HO OH

OHHO
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Figure 4.9. Structural representation of ZnTHPP 

 

4.2.5 Binding ligand  

Protein binding involves a range of different interactions including π-π, H-bonding and simple 

electrostatic interactions. The proteins we are targeting have binding areas that have a positive 

charge at neutral pH. Hence, the protein ligand should possess negative charge on its surface.   

Carboxylate PAMAMs consist of terminal acid groups that get deprotonated under basic 

conditions. In other words, in the presence of buffer, the dendrimer obtains negative charge on 
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its surface and hence, binds better than other dendrimers or polymers with the protein. 

Therefore, previously synthesised half generation PAMAM dendrimers were hydrolysed to 

give Carboxylate PAMAM dendrimers. Their synthesis and characterisation are detailed in 

Chapter 2 section. With the series of Carboxylate PAMAMs synthesis, the generation with a 

comparable surface area to that of model proteins was used for the studies. This was chosen to 

be G3.5 Carboxylate PAMAM (Figure 4.10). 
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Figure 4.10. Structure of G3.5 Carboxylate PAMAM dendrimer 

 

 

 

 

 



 158 
 

4.2.6 The Model Protein-Cytochrome C (Cyt c) 

         

N

N N
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HO O O
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Figure 4.11. 3D structure of Cytochrome C alongside its chemical structure 7. 3D structure of Cytochrome 
C reprinted from Journal of Molecular Biology, 214/2, Bushnell, G., Louie, G. and Brayer, G, High-
resolution three-dimensional structure of horse heart cytochrome c, 585-595, Jul 20, 1990, with permission 
from Elsevier. 
 

As stated in the introduction and aims of this chapter, protein binding studies had been using 

small proteins with much smaller interfacial area. With the progress of macromolecules in the 

field of protein binding, it was found necessary to start studying larger proteins with larger 

interfacial area (hotspots). Twyman group have studied Cytochrome C (Figure 4.11) as the 

model protein extensively as it has an interfacial area comparable to that of dendrimers’ surface 

area 8. Cytochrome C has an interfacial area of ~1000Å and it binds best with a G2.5 carboxylate 

PAMAM dendrimer with surface area of ~1200Å7. However, there hasn’t been definite proof 

that this is the case due to multiple possibilities when studying protein-dendrimer binding, 

Cytochrome C was chosen as the model protein to be studied with a dendrimer generation 

higher than G2.5 carboxylate PAMAM i.e. G3.5 Carboxylate PAMAM dendrimer.  
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4.2.7 Encapsulation of ZnTHPP 

The first step for the protein binding study was the encapsulation of ZnTHPP within G3.5 Acid 

PAMAM. This was done via co-precipitate method. Methanol was used as the common solvent 

followed by the addition of TRIS buffer (0.01 M, pH 7.4). A porphyrin-dendrimer complex was 

formed that was analysed by UV-Vis Spectroscopy. The absorption of the complex with 

encapsulated porphyrin was recorded at the characteristic wavelength of 430.5 nm with a molar 

extinction coefficient of 200500 M-1cm-1 (molar extinction coefficients specific to individual 

spectrometers). The absorption spectrum was used to determine the loading of ZnTHPP per 

dendrimer (Table 4.1).  

Table 4.1. Concentration and loading of ZnTHPP obtained after encapsulation within G3.5 Carboxylate 
PAMAM. 

Dendrimer 
concentration 

(x10-4M) 

Concentration of 
ZnTHPP 
(x10-4M) 

Ratio of dendrimer to 
porphyrin 

1.00 0.54 1:0.54 

 
 

A loading of five porphyrin molecules in every ten acid dendrimers was obtained. This was 

lower than the required stoichiometry of 1:1 i.e. one porphyrin per dendrimer (Figure 4.12). It 

meant one in two dendrimers binding with Cyt c, would contain a porphyrin. 

 

 

 

 

 

 

Figure 4.12. The ideal stoichiometry expected for protein-binding studies to achieve one porphyrin per 
dendrimer. 
 
 

However, if the porphyrin loading is low, it can be worked out. In our case, the loading was one 

porphyrin in two dendrimers, to compensate for this, the total complex concentration was 2x10-

5 M after dilution, but measurable as 1x10-5M (Figure 4.13). However, dendrimers without 

porphyrin will still bind though they won’t be detected. This will be considered when Ka will 

be calculated.  

Cytochrome C ZnTHPP-G3.5 
Carboxylate 

PAMAM complex 

1:1 using G3.5 
Carboxylate 
PAMAM [ ] 
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Figure 4.13. The dendrimer without the porphyrin will be detectable upon binding as no quenching will 
occur due to absence of encapsulated porphyrin. Hence, G3.5 Carboxylate PAMAM [ ]/2. 

 

4.2.8 Fluorescence studies  

Following the complex formation, the next step was to study interactions between Cyt c and 

the porphyrin-dendrimer ligand. Since, Cyt c and porphyrins, in general are fluorescence active, 

fluorescence spectroscopy was used to study the same. Titrations of Cyt c were carried out in 

the complex solution. Concentration of 400 µM for Cyt c was made up using the complex 

solution. This ensured that during titration, the concentration of porphyrin remained constant. 

A quartz cuvette contained 2ml of the complex solution to which for each titration, 10µl of the 

Cyt c solution was added and the fluorescence spectrum recorded. The fluorescence spectrum 

recorded was that of ZnTHPP porphyrin at an emission wavelength of ~610nm (with an 

excitation wavelength of 350nm).  

It was predicted, upon protein-ligand binding, quenching in the fluorescence would occur due 

to the presence of the encapsulated porphyrin acting as the probe. This quenching effect would 

increase with every titration as more Cyt c would bind with the probe-ligand system. A fall in 

intensity for the probe would mean quenching was taking place. This could later be used to 

obtain the binding constant for the protein-ligand system. The quenching effect is plotted as a 

graph between intensity of the probe-protein ligand recorded at the emission wavelength of the 

probe at ~610 nm (Graph 4.2). 

Cytochrome C  Measurable 
concentration 

(1x10-5 M) 

Bound; 
detectable 

Bound; not 
detectable 
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Probe + Protein Ligand

 

Graph 4.2. Quenching effect recorded for probe-protein ligand titration with Cc 

 

The results were better than expected. With every titration, quenching occurred with a fall in 

the intensity of the probe-ligand system. This also meant that the binding between the protein 

and the ligand system was quite strong. To understand this better, the change in intensity was 

plotted against the concentration of the protein used (Graph 4.3). This gave us a binding 

constant for the protein-ligand system. Higher the value, better the binding between the protein 

and the ligand (dendrimer).  

 

 

Graph 4.3. Intensity change vs concentration of Cytochrome C to give a Ka of 2.08 x 105 
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From the graph 3.3, the apparent Ka was found to be 2.08x105 with an almost perfect R square 

value of 0.999. This gave us the binding constant of 4.16x105 after taking the stoichiometry of 

porphyrin incorporation into account (Figure 4.13). The binding constant was close to the 

original experiments using porphyrin cored dendrimers and/or porphyrin competition 

experiments. The spotlight on the fact that to study effective protein binding, non-covalent 

approach worked equally well when compared to covalent approaches, was an important find. 

The conclusions deduced from this study were that any hydrophobic probe can be incorporated 

non-covalently inside the dendrimers to follow and study the binding affinity between the 

protein and the ligand. Also, the use of metal co-ordinated porphyrin as a probe was found to 

be quite useful as its loading was relatively higher than previously studied porphyrins. 

Since, the porphyrin used for this study was different to those studied in the past, there was the 

possibility of the porphyrin falling out or coming out of the dendrimer complex system and 

interact with the protein, hence, the quenching effect. To be certain, a control experiment of 

Cytochrome C and ZnTHPP was carried out. ZnTHPP was dissolved with five times excess 

Cytochrome C in TRIS buffer (0.01M, pH 7.4). Firstly, the protein-probe control was UV-Vis 

analysed. The absorbance for the porphyrin was similar to its inherent absorbance in TRIS 

buffer, confirming that it was a hydrophobic probe.  

Secondly, fluorescence emission of the control was run with the emission wavelength at 

~610nm. No decrease in the intensity was noticed. This confirmed that the porphyrin was 

indeed not interacting or binding with the protein and validated the protein binding results 

discussed above. The importance of using a hydrophobic probe with minimal interactions with 

the proteins was established. 
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4.3 Conclusions and Future work 

The protein binding study focused on two individual topics: using targeting groups to enhance 

binding affinity of the dendrimers and quantifying protein binding by exploiting secondary 

interactions between the dendrimer and metallated porphyrin. Both topics had a thing in 

common, non-covalent approach for encapsulation.  

In the first study, targeting group, N-(4-hydroxyphenyl) hexadecanamide, with an acidic-

aromatic hydrophilic head and hydrophobic tail was synthesized. This followed its 

encapsulation in two terminally functionalised PAMAM dendrimers. These were G 4.0 neutral 

OH PAMAM, and G 4.0 TRIS PAMAM. The complexes were analysed via UV-Vis 

Spectroscopy. For neutral dendrimers, the encapsulation of the targeting groups was successful 

with an absorbance for its deprotonate state recorded. However, for TRIS PAMAMs, the 

encapsulation did not work with no absorbance recorded. It was postulated that the targeting 

group’s acidic-aromatic head group might have deprotonated forming a complex salt internally 

with the internal amines of the TRIS PAMAMs. For future studies, the use of non-acidic head 

groups was to be explored to avoid internal complexation. This part of the study was handed 

over to a new fellow PhD student.  

On the other hand, it might have just been that the hydrophobic interactions between the 

dendrimer and the targeting group were weak and modifications to the linear chain would be 

needed to resolve this issue, possibly by introducing secondary interactions. 

In the second study, quantification of protein binding between a model protein, Cytochrome C 

and a protein ligand, G3.5 carboxylate PAMAM was carried out. This was successfully 

achieved by using a probe, ZnTHPP with good secondary interactions. These interactions were 

exploited by encapsulating the porphyrin non-covalently previously with TRIS PAMAM as 

part of designing a perfect drug delivery system (Chapter 3). The same was followed here with 

better loading achieved in Carboxylate PAMAMs. Fluorescence spectroscopy was used to 

study the binding study the probe was fluorescence active with an emission at ~610nm. 

Cytochrome C solution was titrated into a solution of the protein ligand-probe complex solution. 

With increasing concentration of the protein, the emission intensity of the porphyrin declined 

verifying the strong binding affinity between the protein and the dendrimer. The values were 

accumulated to give a binding constant of 4.16x105 with a Ka of 2.08x105. These values were 

almost same as those of competition experiments.  
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The successful study was concluded with the understanding that, secondary interactions play 

an important role in protein binding studies. Different types of metallated porphyrins can now 

be studied for their role as probes helping quantify protein binding to more accurate levels. 

Finally, the most important future work arisen from the conclusions drawn by the two studies, 

is to combine both the approaches and study their effect on the interaction between the protein 

and its ligand (Figure 4.14). 
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Figure 4.14. Graphically representation of secondary interactions between a modified targeting group, 
metallated porphyrin and G4.0 TRIS PAMAM (the dendrimer i.e. protein ligand for protein binding will 
be G3.5 carboxylate PAMAM). Between tertiary amines and the internal oxygen of the carboxylate 
PAMAM, the amines are better electron donors making binding between the zinc core of ZnTHPP and the 
tertiary amines possible. 
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4.4 Experimental 
 

4.4.1 Instrumentation 

 

4.4.1.1 NMR Spectroscopy 

All deuterated solvents were supplied by Sigma Aldrich. 1H NMR and 13C NMR spectra were 

recorded using instruments of Brucker AV1400 MHz, Brucker AVX400 MHz and Brucker 

HD400 MHz. The NMR spectra were analysed by using Topspin 3.0 NMR software. 

4.4.1.2 Infrared (IR) Spectroscopy 

IR spectra were recorded using a Perkin-Elmer UATR Infrared spectrometer. Spectra were 

analysed with Spectrum100 software and spectra are stated using %Transmittance and 

wavenumber (cm-1). 

4.4.1.3 Mass Spectrometry 

An Electrospray ionisation (ES) was used to give the mass spectra. The instrument used was a 

WATERS LCT mass spectrometer. 

4.4.1.4 UV/Vis spectroscopy 

The UV/Vis spectrum was recorded on an Analytik Jena AG Specord s600 UV/Vis 

Spectrometer and analyzed by the Software (WinASPECT). 

4.4.1.5 Fluorescence Spectroscopy  

Fluorescence results were obtained using a HORIBA Scientific Fluoromax-4 

spectrofluorometer and analyzed by the software (FluorEssence V3). 

4.4.1.6 pH measurement 

The pH of the buffer solutions prepared was substantiated using a pH 210 Microprocessor pH 

Meter from Hanna Instruments Ltd. (Leighton Buzzard, UK). The device was calibrated using 

pH 4.0 and pH 10.0 standard solutions. 
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4.4.2 General synthetic procedures 
 

4.4.2.1 Synthesis of N-(4-hydroxyphenyl) hexadecanamide 

The general procedure was followed where a solution of THF and 4-aminophenol (2.16 g, 19.8 

mmol) was added dropwise to the cooled toluene and palmitoyl chloride (0.54 g, 1.98 mmol) 

solution to give a pink mixture. The reaction mixture was stirred for 2 hours and then diluted 

with DCM and water. The organic layer was separated and the solvent was removed under 

reduced pressure. The crude product was chromatographed on silica gel (eluting with ethyl 

acetate/pet ether 1:3 vv-1) to give the final product (670 mg, 98%) as a white solid. 

Rf 0.4 [ethyl acetate/40-60 petroleum ether (1:3)]; λmax/cm-1(FTIR) 3313 (O-H stretch), 2916 

and 2850 (C-H stretch), 1652 (amide, C=O stretch), 1611 (aromatic, C=C bend), 1548 (N-H 

bend); δH(ppm, 400 MHz; DMSO) 9.14 (1H, s, NH), 7.35 (2H, d, J 10.0, aromatic CH), 6.68 

(2H, d, J 10.0, aromatic CH), 2.22 (2H, t, J 8.0, COCH2), 1.57 (2H, quin, J 7.0, COCH2CH2), 

1.26 (24H, m, remaining CH2), 0.87 (3H, t, J 5.0 CH3); δC(ppm, 400 MHz; MeOD) 170.9 

(C=O), 153.5 (C), 121.2 and 115.4 (CH), 40.67, 40.6, 40.4, 40.2, 39.7, 39.6, 39.3, 36.7, 31.2, 

29.5, 29.4, 29.2, 25.7 and 22.6 (CH2) 14.5 and 14.4 (CH3); m/z (ES) 348 (MH+). 

 

4.4.3 Encapsulation studies 

4.4.3.1 Encapsulation of targeting group 

Co-precipitate method was used for the encapsulation of the targeting group. Volumes of 10ml 

each for both the targeting group (1x10-3M) and the dendrimer (1 x 10-4 M) were prepared in 

methanol. The solutions were combined and stirred for 1 hour. The solvent was removed in 

vacuo to give a complex following which, 10 mL of TRIS buffer (0.1 M, pH 7.36) was added. 

The complex was filtered and analysed via UV-Vis Spectroscopy. 

4.4.3.2 Encapsulation of ZnTHPP 

Co-precipitate method was used for the encapsulation of the metallated porphyrin. Excess 

ZnTHPP was dissolved in 5ml of G3.5 Carboxylate PAMAM (1x10-4M) using methanol as the 

common solvent. The solution was stirred briefly followed by removal of the solvent in vacuo. 

5 ml of TRIS buffer (0.01M, pH 7.4) was added to the complex. The complex solution formed 
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was filtered, diluted and analysed by UV-Vis Spectroscopy at a characteristic wavelength of 

430.5nm to give a final concentration of 5x10-6M for encapsulated ZnTHPP. 

4.4.4 Protein binding studies 

4.4.4.1 Titration of Cytochrome C in the ZnTHPP-G3.5 Carboxylate PAMAM 
complex solution 

The above prepared ZnTHPP-G3.5 Carboxylate PAMAM complex solution was diluted 43-

fold to give a value close to the desired stoichiometry. A concentrated solution of Cytochrome 

C (400µM, 49.54mg) was prepared in 10ml of the above formed complex solution. The 

fluorescence excitation wavelength for the porphyrin was set at 420nm and an emission 

wavelength at 610nm. In a cuvette, 2ml of the complex solution was added to which 10µl of 

the Cytochrome C solution was added after every emission reading until the intensity became 

constant. The total volume of Cytochrome C added was 300µl. Change in the intensity vs 

concentration of Cytochrome C in the complex solution was plotted to give the binding 

constant, Ka=2.08x105. 
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5.1 Introduction 
With an ageing population on the rise globally, the availability of blood donors continues to 

descend leading to chronic blood donor shortage. The most affected are developing countries 

due to poor safety and storage standards when it comes to blood donations and transfusion. 

Besides, enough blood supplies during times of war, natural disasters, and epidemics remains 

a concern 1. Hence, development of a perfect artificial blood substitute has become vital over 

the years to meet the increasing demands. Although there have been breakthroughs in this field 

with different types of artificial blood substitutes being discovered, there end use as a blood 

replacement lingers. This brief introduction will touch on types of artificial blood substitutes 

(Figure 5.1) that have been developed and associated obstacles while considering the prospects 

of new emerging artificial blood substitutes. Finally, how porphyrin encapsulated micelles can 

overcome routine challenges as potential artificial blood substitutes will be discussed. 

 

Figure 5.1. Graphical representation of types of polymeric artificial blood substitutes. Reprinted by 
permission from Moradi, S., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2016). Artificial Blood 
Substitutes: First Steps on the Long Route to Clinical Utility. Clinical Medicine Insights: Blood Disorders, 9, 
33–41. http://doi.org/10.4137/CMBD.S38461. 
 

5.1.1 Types of artificial blood substitutes 

Red Blood Cells (RBCs) contain haemoglobin capable of carrying oxygen when it comes to 

blood transfusion for saving patients’ lives 2. Infectious and non-infectious complications make 

the RBC transfusion difficult 3. Currently, three types of RBC substitutes have been developed: 

perfluorocarbon-based oxygen carriers (PFBOC), haemoglobin-based oxygen carriers (HBOC) 

(Figure 5.2) and stem cell-based oxygen carriers (SCBOCs). The first two artificial blood 

substitutes dominate the market.  
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Figure 5.2. Graphical representation of types of RBC substitutes3 

 

5.1.1.1 Perfluorocarbon-based oxygen carriers 

The ability to carry oxygen by PFCs was first reported in 1966 5. The dissolve oxygen rather 

than binding to it 6 with a solubility twenty times better than water 7. This is possible due to 

their straight or cyclic hydrocarbon structure, although linear PFCs are known to perform better 
8,9. Besides, their fluorine-carbon bonds are so strong, the metabolizing of the substitute is 

prevented 9. In addition, they are heat resistant with temperatures above 300℃ and hence can 

be heat sterilized 10. Clinical potential of PFCs has been studied as well in the past. For instance, 

in 1985, Mushlin et al reported the benefits of small sized PFCs in maintaining myocardial 

function by improving the oxygenation rate of occluded coronary artery 11. 

Having said that, over the years, PFCs have not been able to succeed in clinical trials. PFCs are 

generally insoluble in water and this is rectified by using emulsifying agents. Adverse effects 

associated with the use of emulsifying agents were observed in the clinical trials of Fluosol-DA 

(a patented emulsion of two perfluorochemical compounds, perfluorodecalin and perfluoro 

tripropylamine) 12. Also, the ability of Fluosol-DA to carry oxygen was found to be less than 

that of RBCs 13. Another well-known PFC, OxygentTM displayed signs of mild 

thrombocytopenia leading to its discontinuation in clinical trials 14. 

 

5.1.1.2 Haemoglobin based oxygen carriers (HBOCs) 

Hb extracted from outdated human or bovine blood in chemically modified to give HBOCs 15. 

For an increased intravascular retention, the chemical modifications are important as they 

stabilise Hb 16. However, before they can be used as substitutes, their purification becomes 

necessary. With HbA0
 (human Hb), approximately 99% purity was reported following 

purification with anionic and cationic chromatography 17.  
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HBOCs ideally bind with oxygen and their oxygen-binding affinity is temperature, pH and 

oxygen tension dependant 16. HBOCs have been developed and studied in three forms: cross-

linked, polymerised, and surface-modified HBOCs. With respect to clinical trials, their 

performance has been undermined with emergence of adverse effects. End organ damage, 

myocardial infarction, neurotoxicity, renal failure, and heightened risk of mortality are few of 

the side effects that have brought the development of HBOCs to a halt 17. 

 

5.1.1.3 Stem cell-based oxygen carriers (SCBOCs) 

The literature on SCBOCs is inadequate making their introduction comprehensive. These types 

of RBC substitutes are bone marrow derived. At present, three types of SCBOCs that are being 

developed and researched upon are known: erythropoiesis, hematopoietic SCBOCs, and 

pluripotent SCBOCs. There are significant challenges that need to be overcome for SCBOCs 

to become the future of artificial blood substitute. To name a few, production scale up, removal 

of cells with tumour forming potential, shortening of expansion time, differentiation, genetic 

mutation, selection, and testing are the hurdles that need to be sorted for SCBOCs to progress 

in clinical trials 18.  

 

5.1.2 Porphyrin encapsulated micelles as artificial blood substitutes 

Polymeric micelles have been extensively studied as potential drug and gene delivery systems. 

They are known for their characteristically high drug loading capacity, modifiable particle size, 

good stability, and increased accumulation in solid tumours among many others 19. In addition, 

their structural and physiochemical properties can be modified in tune with their end 

applications. Here, their ability to encapsulate porphyrins and subsequently be utilised as 

artificial blood substitutes are discussed.  

Diblock copolymer poly(ethylene glycol)-b-poly(4-vinylpyridine-co-Nheptyl-4-

vinylypridine)(PEG-b-P(4VP-co-4VPHep)) were self-assembled with the host-guest inclusion 

β-CD/Fe(III)TPPS (β-cyclodextrin/ tetrakis(4-sulphonatophenyl)porphyrinato iron(III)) to 

form a core-shell complex micelle mimicking haemoglobin 20 (Figure 5.3). The inclusion of the 

Fe(II)TPPS (tetrakis(4-sulphonatophenyl)porphyrinato iron(II)) in the cavity of β-CD via host-

guest interaction avoided the formation of a dimer. This system was encapsulated in the 

hydrophobic interior of the micelle while the hydrophilic PEG exterior stretched in aqueous 

media providing increased solubility. With increased blood circulation time, the micelle system, 
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a potential artificial blood substitute could possibly be used for the treatment of hypoxia in the 

future. 

 

 
Figure 5.3. Graphical representation of complex micelles formation and subsequent oxygen binding 

Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature, Nano Research 
(Complex micelles with the bioactive function of reversible oxygen transfer, Liangliang Shen, Lizhi Zhao, 
Rui Qu et al), © (Jan 1, 2014) 21. 

 

Similar hierarchical self-assembled complex micelles were synthesized and studied for their 

respective oxygen binding affinity. Poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLys), 

tetrakis(4-sulfonatophenyl) porphinato cobalt(II) (Co(II)TPPS), a heptapeptide (Cys-His-His-

His-His-His-His) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) were self-

assembled encapsulating Co(II)TPPS-TM-β-CD system in their hydrophobic interior. The 

complex micelle proved to be a potential oxygen carrier in vivo by displaying superior 

biocompatibility and cellular uptake 22.  

 

After briefly focusing on different types of artificial blood substitutes, it was understood that 

complex polymer micelles show exceptional characteristics comparable to that of PFCs and 

HBOCs. This chapter also aims to study the ability of a porphyrin complex micelle as an 

artificial blood substitute. The following section details the aims of this study. 
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5.2 Aims 
 

As the search for the perfect artificial blood substitute is in progress, the utilisation of 

therapeutic polymers continues to grow. Micelles are one such class of therapeutic polymers 

that have recently gained attention for their use as artificial blood substitutes. From the 

introduction, we gathered that polymer micelles were successful in showing potential as future 

artificial blood mimics.  

This chapter focuses on the use of non-covalent approach in designing a simplified artificial 

blood mimic in the form of porphyrin encapsulated surface crosslinked micelles (SCMs). 

Surfactant molecule will be synthesised consisting of a hydrophobic tail and hydrophilic head 

(Figure 5.4). Upon determining their critical micelle concentration (CMC), they’ll later be 

crosslinked to form SCMs.  

These SCMs will incorporate iron(III) cored porphyrins(Fe(III)TPP) non-covalently in their 

hydrophobic interior preventing autoxidation in aqueous media. As the micelles will be 

crosslinked, their stability below CMC will be corroborated. The synthesis of the surfactant 

molecule is discussed in Chapter 2 Section 2.2.6.2. This chapter will discuss the micellisation 

and cross-linking of this surfactant molecules. 

 

Figure 5.4. Graphical representation of SCMs encapsulated Fe (III)TPP 23. 

 

Before crosslinking the micelles, Fe(III)TPP will be encapsulated in 1:1 ratio to avert porphyrin 

aggregation. To overcome the issue of porphyrin insolubility in water, the encapsulation will 

take place in aqueous media. The complex micelles will then be crosslinked using an azide 

Encapsulated Porphyrin 

 Hydrophobic surfactant “tails” 

 Hydrophilic surfactant “heads” 

 Alkyne-azide cross-links 

 



 179 
 

functionalised cross-linker via ‘click’ chemistry. The inactive Fe3+ core of the encapsulated 

porphyrin will be reduced to active Fe2+. The time taken for the oxidation of the active Fe2+ to 

inactive Fe3+ will be monitored using UV-Vis Spectroscopy to give the half-life of the porphyrin 

encapsulated SCMs after studying their iron stability, respectively. 
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5.3 Results and discussion 
 

Part 1 Non-crosslinked micelles  

 

5.3.1 Micellisation of 4-(dodecyloxy)benzyltripropargylammonium bromide 

The micellisation of the surfactant could be carried out only when its critical micelle 

concentration was known. To do this, a standard method using fluorescence spectroscopy for 

calculating the critical micelle concentration (CMC) was applied. Concentrations of the 

surfactant ranging from 0.3-10 x 10-5M were prepared using pyrene. The fluorescence spectra 

(Figure 5.5) with respective I1 and I3 transitions were recorded and analysed to give the CMC 

of the surfactant as ~9 x 10-5M (Graph 5.1). This value was close to the literature value25 

calculated to be ~1.5 x 10-5M. 

 

 

 

Figure 5.5. Fluorescence emission spectra of pyrene in the presence of 4-
(dodecyloxy)benzyltripropargylammonium bromide in water where I1 and I3 are the pyrene transitions, 
respectively. A drop in the intensity for the surfactant is observed with dilution (concentration dependant). 
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Graph 5.1. A plot between the concentrations of 4-DBD used for recording fluorescence spectra, and the 
ratio of the respective intensities I1 and I3 provides with the CMC of the surfactant. From the graph a 
gradual decrease in the intensity ratio is observed from 0.9-9 x 10-5M indicating micelle formation before it 
plateaus off, suggesting the CMC of surfactant to be 9.0 x 10-5M, respectively. 

 

5.3.2 Encapsulation studies 

5.3.2.1 Control experiment with metal free tetraphenyl porphyrin (TPP) 

After the CMC of the surfactant was determined, the next step involved encapsulating the metal 

free tetraphenyl porphyrin (TPP). To do this, the surfactant was prepared at its critical micelle 

concentration in water. In this micelle solution, TPP dissolved in dichloromethane was added. 

In theory, as dichloromethane would evaporate, TPP will subsequently get incorporated within 

the micelle. However, this was not the case when the formed complex was analysed via UV-

Vis spectroscopy. To optimise encapsulation, acetone was used as a solvent for TPP. This is 

because, TPP is partially soluble in acetone facilitating formation of a blend ensuring insertion 

of TPP within the micelle. The complex once prepared was analysed by UV-Vis spectroscopy 

at TPP’s characteristic wavelength, 417 nm. This time the encapsulation was successful with 

presence of Soret band at 420 nm along with the four Q peaks visible as well. Since, this was a 

control experiment to test whether, TPP can be encapsulated successfully by the micelle or not, 

the concentration of the TPP was not calculated. 
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5.3.2.2 Encapsulation of model haem group, 5,10,15,20-Tetraphenyl-21H,23H-
porphyrin iron (III) (Fe(III)TPP) 

With the confirmation that the micelle was capable of encapsulating porphyrin, the next step 

was to encapsulate an iron cored porphyrin, namely 5,10,15,20-Tetraphenyl-21H,23H-

porphyrin iron (III) (Fe(III)TPP). For a micelle to function as a synthetic haemoglobin mimic, 

a site for oxygen binding was needed. Fe(III)TPP would serve the purpose. The synthesis for 

this porphyrin has been described in detail in Chapter 2 Section 2.3.2.2.2. 

Upon successful synthesis, encapsulation of Fe(III)TPP followed the same method as did for 

TPP. Controlled concentrations of both the micelle and Fe(III)TPP was used to get 1:1 ratio of 

micelle to Fe(III)TPP. This was necessary as a 1:1 ratio would mimic the synthetic haemoglobin 

model. The concentration of micelle was calculated to be 2 x 10-6M (using the CMC and 

aggregation number mean average of 45). Hence, the concentration of FeTPP was also 2x10-

6M. Instead of using dichloromethane, acetone was used to ensure encapsulation. The complex 

formed was analysed by UV-Vis spectroscopy. The absorbance of the complex was recorded 

at the characteristic wavelength of 423 nm. The concentration of encapsulated Fe(III)TPP was 

calculated by using its molar extinction coefficient 106478M-1cm-1. It was calculated to be 1.88 

x 10-6 M. The concentration of encapsulated Fe(III)TPP was slightly lower than expected 

however, this meant possible aggregation was averted. 

 

5.3.3 Studying the Iron Stability of the Synthetic haemoglobin mimic 

The iron stability study involves the activation of the iron core of the porphyrin, Fe(III)TPP as 

it remains encapsulated within the micelle. The shift in the inactive Fe3+ to active Fe2+ state is 

caused by exposure of the system to air. This phenomenon can be followed by using UV-Vis 

spectroscopy. This study reflects on the stability of the system to withstand degradation of the 

activated iron core by autoxidation. Longer degradation time means better stability of the 

system. With the micelles encapsulating the porphyrins, longer degradation time is expected 

reflecting on a well stabilised haemoglobin model. As the stoichiometry is controlled with 1:1 

ratio of the micelles to Fe(III)TPP, the aggregation behaviour of porphyrins is avoided. Also, 

as the inner cavity of micelle is hydrophobic, a ‘safe’ environment for the porphyrin exists. This 

avoids the protons of the water molecules to act as catalysts; initiating autoxidation. The above-

mentioned iron activation was done by using equimolar amount of reducing agent, Sodium 

dithionite. The quantity of the reducing agent was controlled to avoid over-reduction of iron 

centres.  
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While stirring, the porphyrin-micelle system was flushed with nitrogen atmosphere after the 

addition of the reducing agent. Samples of the mixture were drawn before and after the addition 

of the reducing agent and UV-Vis analysed using a capped nitrogen flushed cuvette. There was 

a soret band shift from 425 nm to 437 nm, indicating reduction of the iron centre.  

Following this, the characteristic wavelength of the system was adjusted to 430 nm. Hereafter, 

the sample in the cuvette was exposed to air and readings every fifteen seconds for an hour 

were recorded. The gradual decay of Fe2+ to Fe3+ took 600 seconds giving a half-life of ~300 

seconds (Graph 5.2) which was three-fold better than that of free 5,10,15,20-Tetraphenyl-

21H,23H-porphyrin iron (II) (Fe(II)TPP).   

 

 

Graph 5.2. Normalised absorbance of the Fe(II)TPP complexes encapsulated in micelles at 430nm over a 
period of 600 seconds. Hence, the half-life of the porphyrin encapsulated micelle system was ~300 seconds, 
respectively. 
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Part 2 Surface crosslinked micelles (SCMs) 

 

The second milestone of this research involved formation of porphyrin encapsulated SCMs and 

their subsequent iron stability studies. Synthesis of the crosslinker was the first step in achieving 

this milestone. This was followed by encapsulation of Fe(III)TPP within the micelles in a ratio 

1:1. Once, the porphyrin-micelle system was ready, it underwent crosslinking to give SCMs. 

Hereafter, the porphyrin encapsulated SCMs were subjected to Iron stability tests just as the 

micelles in first part of this chapter were. To begin with, synthesis of the crosslinker is described 

below. 
 

5.3.4 Synthesis of azide functionalised cross-linker 

Crosslinking the micelles was important for isolating and protecting Fe(III)TPP while providing 

increased solubility. Therefore, the preferred azide functionalised crosslinker was synthesised 

(Scheme 5.1).  

Br
Br

N3

N3
NaN3

Acetone+

 

Scheme 5.1. Reaction scheme of the azide functionalised crosslinker 1,4-Bis(azidomethyl)benzene 24 

 

Dry acetone was used to dissolved p-xylene dibromide to which sodium azide was added 24. 

The reaction mixture was refluxed for twelve hours under a nitrogen atmosphere. Upon reaction 

completion, the mixture was filtered and concentrated in vacuo to give a yellow oil as the 

crosslinker. Standard characterisation techniques were applied to verify the synthesis. FT-IR 

gave a peak at around ~2097 cm-1 corresponding confirming the presence of C-N3. Also, ES-

MS gave a molecular ion peak of 188 MH+ corresponding to the molecular weight of the 

crosslinker.   
 

5.3.5 Encapsulation of Fe(III)TPP 

Before micelles were crosslinked, the encapsulation of Fe(III)TPP was necessary. Once the 

crosslinkers would crosslink on the surface of the micelles, a cage like sphere will be formed. 

The incorporation of the porphyrin after crosslinking hence, would become even more difficult. 

To avoid this situation, the encapsulation of the porphyrin was done first, followed by 

crosslinking of the micelles. The method for encapsulation was the same method used in Part 

1. The stoichiometry of the porphyrin-micelle system was maintained at 1:1 ratio.  
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5.3.6 Surface crosslinking of micelles 

After the incorporation of Fe(III)TPP in the micelles, surface crosslinking of the micelles 

formed the next step. Equimolar amount of the surfactant and the crosslinker were to be used. 

This was to ensure that for every surfactant molecule, a crosslinker was present. As the micelles 

were prepared in distilled water during the encapsulation of Fe(III)TPP, the concentration was 

maintained at 2x10-6M. To this micellar solution, copper (II) chloride (6.7mg/ml) and sodium 

ascorbate (99mg/ml) were added. The mixture was stirred at room temperature for 24 hours 

after which it was directly used for Iron stability study.  

 

5.3.7 Iron stability study of SCMs 

For conducting the iron stability study, the procedure followed in Part 1 Section 5.3.3 was 

repeated here. Samples before and after the addition of reducing agent, Sodium dithionite, were 

drawn and analysed by UV-Vis Spectroscopy in a capped, nitrogen flushed quartz cuvette. 

Unfortunately, a soret band shift for the Fe(II)TPP from 427 nm to ~435nm was not observed. 

This indicated that the reduction of iron centre from inactive Fe3+ to active Fe2+ was 

unsuccessful. Due to limited time, this experiment was carried out once. 

 

 

 

  



 186 
 

5.4 Conclusions and Future work 

This study comprised of five milestones. First milestone was the synthesis of surfactant 

molecule 4-(dodecyloxy)benzyltripropargylammonium bromide. Once it was successfully 

synthesized and characterised, its CMC was calculated using fluorescence spectroscopy. The 

CMC was determined to be 2x10-6M. This gave us the concentration at which the surfactant 

molecule will form micelles, 1x10-6M. This was relatively a new type of surfactant molecule 

and was being synthesised for the first time. Even though the synthesis (discussed in Chapter 2 

Section 2.2.6.2) was straight forward, it was extensive and time consuming. Optimising the 

synthetic approach should be one of the future milestones for this study.  

The second milestone involved the encapsulation of Fe(III)TPP non-covalently within the 

micelle in 1:1 ratio using aqueous media. However, before Fe(III)TPP could be encapsulated, 

a control experiment was conducted by encapsulating free TPP within the micelle using non-

covalent approach. UV-Vis Spectroscopy was utilized to verify the encapsulation of TPP. As 

the control experiment was successful, encapsulation of Fe(III)TPP followed. The complex 

micelle was analysed via UV-Vis Spectroscopy and a soret band at 425nm confirmed the 

encapsulation. From the introduction, it was understood that porphyrins other than Fe(III)TPP 

could be used as for encapsulation within the micelles. It’ll be interesting to study whether 

Co(II)TPP (for instance) could be incorporated within the above formed micelles and their iron 

stability and oxygen binding performance investigated. 

Once the complex micelle was formed, the third milestone was to conduct iron stability and 

oxygen binding studies. To do that, the inactive Fe3+ core of the encapsulated porphyrin was 

reduced to active Fe2+ A shift in the soret band from 425 nm to 437 nm confirmed iron 

reduction. After this, the UV-Vis Spectroscopy was used to determine the time it took for 

oxidation of the Fe2+ to occur and revert to inactive Fe3+ state. This was calculated to be 600 

seconds giving a half-life of 300 seconds. This was found to be three time better than that of 

free TPP.  

The fourth milestone consisted of synthesising an ‘azide’ functionalised crosslinker and 

crosslinking a porphyrin encapsulated micelle to form a surface crosslinked SCM. This SCM 

would represent a simplified version of artificial blood mimic. The azide functionalised 

crosslinker was synthesised successfully following which the complex micelle was crosslinked 

using copper(II) chloride and sodium ascorbate. Studying the surface charge of the SCMs using 

zeta-potential to confirm successful crosslinking should be explored. 
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Finally, the fifth milestone was the iron stability and oxygen binding studies using UV-Vis 

Spectroscopy. An attempt to reduce the inactive iron core of the encapsulated porphyrin was 

carried out. Once the procedure was conducted, UV-Vis Spectroscopy was used to verify the 

reduction of the iron core. Unfortunately, the reduction of the inactive Fe3+ to active Fe2+ had 

been unsuccessful. A soret band shift from 425 nm to ~437nm was not detected. It was evident 

that the experiment had to be repeated however, due to time constraints, the study could not be 

repeated. In the presence of imidazole, a model ligand representing the distal histidine in 

haemoglobin, the iron stability and oxygen binding studies of the SCM-porphyrin system would 

be required.   

The idea of designing a simplified artificial blood mimic using complex micelles was conceived 

and tested. Even though the SCMs could not be tested for their respective iron stability and 

oxygen binding studies, as failure in reducing the iron core was encountered, it wasn’t the end 

of the research. We were able to prove that micelles can be used to encapsulate hydrophobic 

porphyrin molecules using non-covalent approach. The iron core of the complex micelle was 

reduced and tested for its stability. The longer it took for the iron to return to its inactive state, 

the better was the half-life. This was found to 300 seconds, better than free TPP. Overall, the 

conceived idea is half achieved. Attempts in studying the iron stability and oxygen binding 

study for the SCMs have already begun. 
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5.5 Experimental 

5.5.1 Instrumentation 

5.5.1.1 NMR 

Proton NMR spectra were obtained using a Bruker AV-400 machine at 400 MHz with a 5mm 

BB-1H probe. Carbon NMR spectra were obtained using a Bruker AV-400 machine at 400 

MHz with a 5 mm BB-1H probe. NMR data was evaluated using the Bruker software, 

‘TopSpin’. All NMR samples were made using deuterated chloroform.  

5.5.1.2 Ultra Violet-Visible Spectroscopy 

UV-Vis spectra were measured using a Perkin Elmer Lambda 35 UV-Vis Spectrometer. 

Solutions were made up in oven dried volumetric flasks with dichloromethane solvent and 

filtered into glass cuvettes. The machine was calibrated with pure dichloromethane before use. 

The machine scanned in the 200-800 nm region with a resolution of 1 nm.  

5.5.1.3 Fourier Transform Infrared (FTIR) Spectroscopy  

All FTIR samples were analysed neat on a Perkin-Elmer Paragon 1000 FT-IR 

spectrophotometer with integral DuraSample IR-II.  

5.5.1.4 Mass Spectroscopy  

Electrospray ionisation mass spectrometry (ES-MS) was carried out using a Micromass Prospec 

spectrometer with a mass range 2-800 Da.  

5.5.1.5 Fluorescence Emission Spectrometry 

All spectra were recorded using a Fluoromax-4 fluorescence spectrometer using the 

FluorEssence software in the s mode. 

5.5.1.6 Flash Column chromatography 

Flash column chromatography was carried out using Bio-BeadsTM S-X1 Support sourced from 

BIO-RAD. 

5.5.1.7 Thin layer chromatography 

Thin layer chromatography was performed using TLC Silica gel 60 F254 Aluminium sheets 

sourced from Merck KGaA. 
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5.5.2 Synthesis of Cross-Linker 

Sodium azide (3.9 g, 60 mmol) was added to a solution of p-xylylene dibromide (4.0 g, 15 

mmol) in dry acetone (20 mL) in a round bottom flask. The reaction mixture was heated to 

reflux under Nitrogen for 12 hours. The solid was removed by filtration and the filtrate was 

concentrated in vacuo to give a yellow oil. 

Yield 2.33 g 83 %; IR νmax/cm-1 2097 (C-N3); 1H NMR (CDCl3, 400 MHz,∂): 7.45 (s, 4H), 4.40 

ppm (s, 4H) 13C NMR (CDCl3, 100 MHz) 135.9, 128.9, 55.0 ppm; m/z [MS(ESI)] 188 (MH+) 

(calculated for C8H8N6
+ 188.1 gmol-1) 

 

5.5.3 Iron stability and oxygen binding studies of micelles-Part 1 

1:1 metalloporphyrin-micelle complex (Fe(III)TPP) was prepared in water (20 ml) at a 

concentration of 2 x 10-6 M. 10ml of the solution was transferred into a rubber sealed double-

neck round bottom flask before degassing and nitrogen refilling cycle was repeated 3 times. An 

equal molar (2 x 10-6 M) of aqueous sodium dithionite (Na2S204) solution was added to the 

solution. The mixture was stirred for 20 minutes. A glass syringe was used to collect 1.5ml of 

the sample solution which was transferred into a rubber sealed, degassed and nitrogen flushed 

quartz cuvette. The sample was then analysed using UV-Vis spectroscopy to ascertain 

successful iron reduction (at 437 nm). Then, time-scanning at fixed wavelength (430 nm) was 

set-up and the sample was left continuously stirring under atmospheric air. The UV-Vis reading 

was taken every 15 seconds for 1 hour.  

 

5.5.3 Surface crosslinking of porphyrin encapsulated micelles  

CuCl2 (1ml of 6.7mg/ml aqueous solution, 5µmol), and sodium ascorbate (1ml of 99mg/ml 

aqueous solution, 50µmol) were added to an aqueous solution of porphyrin encapsulated 

micelle (10ml, 0.02mmol). The reaction mixture was stirred for 24 hours at room temperature 

to obtain porphyrin encapsulated SCMs. 
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5.5.5 Iron stability and oxygen binding studies of SCMs 

About 10ml of the SCM solution was transferred into a rubber sealed double-neck round bottom 

flask before degassing and nitrogen refilling cycle was repeated 3 times. An equal molar (2 x 

10-6 M) of aqueous sodium dithionite (Na2S204) solution was added to the solution. The mixture 

was stirred for 20 minutes. A glass syringe was used to collect 1.5ml of the sample solution 

which was transferred into a rubber sealed, degassed and nitrogen flushed quartz cuvette. The 

sample was then analysed using UV-Vis spectroscopy to ascertain successful iron reduction (at 

437 nm) followed by time-scanning at fixed wavelength (430 nm) for every 15 seconds for 1 

hour.  
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