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Abstract

With ever growing levels of urbanisation across the globe, a good understanding

of canopy flows is paramount to reduce pollution in major cities and prevent un-

wanted aerodynamic loading on structures. The multi-scale nature of not only

urban construction but that of natural environments requires a more complex

modelling system be employed. Fractal geometries have only recently been in-

vestigated in turbulent flows, their multi-scale properties make them the logical

choice for modelling and simulating flows involving such complex geometries.

Additionally, in recent years the usage of Lattice Boltzmann Methods (LBM)

vs Computational Fluid Dynamics (CFD) has increased, since LBM offers bet-

ter computational efficiency and speed over CFD. However, the shortcomings of

LBM still need to be benchmarked since macroscopic quantities of the flow are

extracted using a probabilistic model of the flow at microscopic scales. A plan

to investigate turbulent flows over a fractal and non-fractal obstacles has been

presented by implementing a LBM numerical analysis over a range of Reynolds

numbers (100-49410). The suitability of LBM’s multiple dynamics models in-

cluding: Bhatnagar Gross Krook (BGK), Multiple Relaxation Time (MRT) and

Regularised Lattice Boltzmann (RLB) have been studied for high reynolds num-

ber cases. Results from LBM cases were compared to available experimental data

and published literature, although, results of fractal cases were not mesh indepen-

dent compelling agreement between all three tested obstacles show a significant

validation of LBM as tool to investigate high Reynolds number flows.
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Chapter 1

Introduction

A canopy flow is one such that the fluid passes above and through a single or

number of obstacles attached at the bottom boundary. A clear example of this

is an atmospheric flow, where the atmosphere passes through buildings and or

vegetation. These flows are difficult to simulate under laboratory conditions due

to the number of scales that are involved. Interest in investigating these flow

conditions aims to understand the aerodynamic effects that both natural, such

as vegetation, and man-made, urban developments, have. These investigations

can reveal insights on how modern urban planning can be tailored to improve

aerodynamic conditions within and surrounding urban environments, which can

help in reducing pollution and improve air quality.

As the fluid flows through and above the canopy certain aerodynamics effects

occur, momentum is transported vertically by turbulent diffusion and individual

elements of the canopy will generate wakes. In the case of vegetation other effects

need to be considered like the swaying of the elements by the airflow, however,

this effect will not be considered as the scope of this investigation will be limited

to a fixed rigid canopy.

1.1 Aims and Objectives

In the field of civil aerodynamics there is a growing concern for the environmental

impact modern city planning can have, especially since more and more high rise

buildings are constructed. Additionally, it is still not fully understood how the

geography of a city can affect the natural ventilation rates, i.e. how much of the

air going through the city is exchanged with air above the city, which in turn are

1
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directly responsible for the pollution levels.

A recent report by the European Environment Agency (2016), on urban

sprawl (i.e. “the physical pattern of low-density expansion of large urban ar-

eas”) indicates that increasingly more cities have areas of low density population,

and expansion into these areas are not planned in advance allowing for unde-

veloped areas to form. However, the spreading of populations are responsible

for a lower concentration of pollutants than in densely populated areas. Hence,

by understanding the relations between the geometries of cities and ventilation

rates, it should be possible to minimise the health impacts of pollution in cities.

On the other hand in densely populated areas high rise buildings are becoming

more popular, this is increasingly concerning as these structures can have fatal

impact on pedestrian safety in high wind conditions.

As such it is imperative to understand fully both how air is transported

through a city and how momentum exchanges occur.

Since a city is a collection of multiple structures of differing scales a fractal

object (see section 1.3) can be an apt descriptor for such a geometry. Therefore,

the purpose of this investigation is to simulate the flow past a fractal canopy,

Figure 1.1, using the Lattice Boltzmann Method (LBM) (see chapter 2) and

identify whether this is a viable alternative to established numerical methods.

The choice for a LBM approach instead of a traditional Computational Fluid

Dynamics (CFD) solver is that LBM is computationally cheaper due to the fact

that LBM codes are easily parallelised, which gives the possibility of acceleration

via Graphical Processing Units (GPU). Additionally, until recently the large do-

main required to solve a city scale problem could only be realistically achieved

with Reynolds Averaged Navier Stokes (RANS) simulations, since Direct Numer-

ical Simulations (DNS) solutions would require ridiculous computing resources.

LBM permits Large Eddy Simulations (LES) closure models to be implemented

allowing for the unsteady structures to be investigated something not possible

with a RANS approach.

An experimental investigation using the same fractal beds proposed has al-

ready been conducted in a water flume, the data set should be used to validate

and confirm final results obtained from LBM analysis. Additionally, data from

simpler cases, such that of flow past an obstacle are also available and will serve

as starting point for LBM benchmarking.

Finally, the reason for conducting a numerical analysis, is quite simply the

fact that full domain data can be obtained at a fraction of the cost compared
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to an experimental approach. Therefore, an experimental approach is better

suited to investigate extremely small and precise areas to fully understand more

fundamental aspects of the flow.

Figure 1.1: Isometric view of the Sierpinski fractal canopy, flow direction is indicated
by the arrow above the obstacle.

The aims of this project are:

• Develop the criteria for conducting a numerical analysis of a canopy flow

using LBM.

• Validate the numerical results of base cases with available experimental

data.

• If possible compare the momentum transfer, as it pertains to the ventilation

rates, in the vertical direction between the canopy and the top layer for

canopies of different geometries but equal porosity and how this relates to

the different drag coefficients of each geometry.

1.2 Turbulence

Of all the flows occurring in nature, turbulent flows are the most common in the

universe. They occur across all range of scales, from the smallest flows inside

living organisms to the largest motions of galactic gas clouds. The prevalence

of this phenomenon signifies that the understanding of these motions can be

critical in any field of engineering, and due to its widespread occurrence poses a
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significant challenge to describe it, Richard Feynman when speaking about the

subject said (Feynman et al. 2013, p. 3-9):

there is a physical problem that is common to many fields, that

is very old, and that has not been solved. [...] Nobody in physics has

really been able to analyse it mathematically satisfactorily in spite of

its importance to the sister sciences. It is the analysis of circulating

or turbulent fluids.

Furthermore, a key characteristic of turbulent flows is that they are random in

space and time. That is, when an experiment is repeated under the same condi-

tions it will not yield the exact same result. Therefore, a deterministic approach

is not possible to obtain a valid result, and statistical approach is required.

In order for a flow to be considered turbulent it must meet the following

criteria as well:

Wide Range of Scales: Turbulent flows involve a wide range eddies that

span both temporal and spatial scales. The integral length scale, being the

largest, is defined by the characteristic length of the geometries wherein

the flow is contained, these are responsible for the majority of the system’s

energy. The smallest scales, Kolmogorov, are those where the dissipation

occurs and tend to be similar for different turbulent flows, therefore, they

are representative of the intrinsic nature of the turbulent flow.

Dissipation: In order to maintain turbulence an energy input is required as

the kinetic energy is converted to internal energy by viscous shear stresses.

The energy is introduced at the largest scales, which is then dissipated into

heat at the smallest scales. This process naturally makes turbulent flows

irreversible.

Rotationality: A turbulent flow is composed of many eddies, i.e. there is a

non-zero vorticity. They are generated via the vortex stretching mechanism,

which is the cornerstone of the energy cascade, wherein energy from the

largest scales is transferred to smaller scales .

Diffusion: The diffusivity of turbulence accelerates mixing of mixtures and

increased rates of heat, mass and momentum transfer.
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Figure 1.2: Reynolds sketches on the transition from laminar to turbulent flow

1.2.1 Turbulence transition

The transition into a turbulent flow was first observed and described by Reynolds

(1883), in which the now famous experiment determined a relation between the

inertial and viscous forces of a fluid. The Reynolds number, Re, is defined as

Re =
ρUL

µ
(1.1)

where, ρ, U, L and µ are the density, characteristic velocity, length scale and

dynamic viscosity respectively. The Reynolds number has come to be known is

a measurement criterion used to determine if a flow is turbulent. Whenever the

Reynolds number is sufficiently small, the viscous forces prevail and the flow is

said to be laminar.

In Reynolds’ original experiment, Figure 1.2, a dye was injected into a flow. If

the flow is laminar, the dye will remain as a well defined line (or laminae), which

indicates that there is no mixing in directions perpendicular to the bulk flow.

Once the inertial forces become greater the dye streak cannot be followed and

the flow ceases to be a laminar. Since the transition from laminar to turbulent

flow is not known exactly, it can only be said that turbulence occurs at high

Reynolds numbers.
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1.3 Fractals

A fractal is a mathematical object, constructed such that a self repeating pattern

appears in ever diminishing scales. Fractals were first introduced by Mandelbrot

(1983), those occurring in nature, e.g. romanesco broccoli, snowflakes and light-

ning bolts, all show self repeating patterns in smaller scales, but unlike those in

mathematics there is no repetition till infinity, instead the self similar pattern

will stop at a scale after which they will become smooth. In a turbulent flow, the

repeating pattern can be seen as a the eddies repeating in all scales of the energy

cascade.

1.3.1 Fractal Dimension

Due to the self repeating nature of fractal objects, their geometry does not fall into

the classical Euclidean definitions (1: line, 2: surface, 3: volume). For example,

the wake after an obstacle in a turbulent flow is not a single three dimensional

object neither a fully two dimensional surface. Instead a more apt description

would be a three dimensional space filled with rotating vortices of varying length

scales and intensities, where small structures are contained inside larger ones.

Therefore, most fractals will lie somewhere in between these definitions and the

Hausdorff dimension is used instead. A popular way to visualise this definition of

dimension is to use the box counting method, which involves covering the object

in boxes of a determined length, and then a fractal dimension can be calculated

using the following equation:

DF = − ln(N(r))

ln(r)
(1.2)

where N(r) is the number of boxes of length r required to cover the object. An

important point to make is that for non fractal objects the Hausdorff dimension

for said objects will be the same as the Euclidean dimension. A detailed approach

to how the Hausdorff dimension is derived using the box counting method can

be seen in Appendix A

The eventual goal of this investigation is to observe the effects of a fractal

canopy with a Sierpinski carpet design, Figure 1.3, with DF = 1.89. As a com-

parison the effects of a regular canopy with the same porosity and a randomly

arranged Sierpinski carpet should also be investigated, as they are of equal poros-

ity but differing geometries. An isometric view of a fractal canopy can be seen



Introduction 7

(a) Regular (b) Sierpinski (c) Random

Figure 1.3: Top view of porous clusters with different obstacle arrangements.

in Figure 1.1.

1.4 Wakes

When a solid object is placed in the path of a fluid, it forces an interaction

between the two media resulting in the formation of a wake behind said object.

If the interaction between the solid object and the incoming flow is strong enough,

it can result in severe structural damage to the object. Therefore, it is vitally

important for engineers to study and understand the causes and behaviour of

solid and fluid interactions to mitigate future problems but also enhance designs

for better efficiency.

Wake dynamics have been investigated for all kinds of objects in both two

and three dimensions hereby referred to as plates and obstacles respectively (For

the purposes of this investigation research will be focused on wakes produced by

obstacles and not plates.). By convention the wake is divided in two sections:

Near wake region. This encompasses the portion of the wake spanning

from the base of the object to approximately two diameters downstream.

Far wake region. This encompasses everything after the near wake region.

Furthermore, wakes from obstacles can be categorised as such:

Plane wake. These consist of obstacles constructed by extruding a profile

perpendicularly, such as in the case of cylinders. Since the object is quasi

two dimensional the flow is statistically stationary along the extruded axis

Axisymmetric wake. This is created by a fully three dimensional object

such as a disk or sphere.



8 Introduction

1.4.1 Solid Obstacles

The archetypal case of a solid obstacle is a single cylinder. In this case, a circular

or square cylinder is placed perpendicular to the flow direction, it’s length usually

spanning from one end of the domain to the other representing a case of infinite

aspect ratio. Similarly in the case of finite aspect ratio numerous research can

be found on slow past a sphere. Both of these two classical experiments stem

from the work conducted by von Karman (1911) where he describes the process

by which the vortex street which bares his name is formed. The free shear layer

formed at the shoulder points of the obstacle rolls up behind the obstacle in an

alternating manner, this results in the formation of a vortex street as vortices

of opposite signs are shed by the object. The vortices cause the obstacle to

experience a pressure force orthogonal to the flow direction. Since the vortices

alternate in time so does the force, this causes the obstacle to oscillate transversely

to the flow. This, wake induced load, can be catastrophic in one of two methods;

due to the cyclical nature of the load, the obstacle may fail due to fatigue but more

concerning is if the frequency of the shed vortices matches the resonant frequency

of the obstacle it will cause the obstacle to resonate and fail. To characterise the

oscillation in the flow the Strouhal number is used, it is defined as:

St =
ζD

U∞
(1.3)

where ζ is the frequency of vortex shedding, D is the characteristic length (or

obstacle diameter) and U∞ is the flow velocity.

As explained by Williamson (1996) the three dimensional wake of a single

cylinder has been modelled using the Ginzburg-Laundau equations, and the in-

stability which causes the formation of a vortex street has been describes as a

hopf bifurcation.

Using a collection of data from a number of sources Williamson (1996) showed

that with increasing Reynolds number, a number of different regimes could be

observed:

• Laminar Steady Re < 49

• Laminar vortex shedding 49 < Re < 140-194

• 3D Wake-transition Regime 190 < Re < 260

• Increasing Disorder in the Fine-Scale Three Dimensionalities
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• Shear-Layer Transition Regime 1,000 < Re < 200,000

• Asymmetric Reattachment Regime

• Symmetric Reattachment Regime

• Boundary-Layer Transition Regime

1.4.2 Self Similar Wake Theory

As described by Pope (2000) the concept of self similarity in a turbulent flow

is one that if a given quantity, Q(x, y), which can have characteristic scales as

functions of one of the independent variables, i.e. Q0(x) and l(x). Then a set of

scaled variables can be defined as follows:

η ≡ y

l(x)

Q∗(η, x) ≡ Q(x, y)

Q0(x)

Then if the scaled variable is shown to be independent of x then it is said

that Q(x, y) is self similar, and as such the expression Q∗(η, x) = Q̂(η) is true.

In addition the following must also be taken into consideration:

• The scales Q0(x) and l(x) usually have a power law dependency

• In certain circumstances general expressions for the scaled variables are

required. i.e.

Q∗(η, x) ≡ Q(x, y)−Q∞(x)

Q0(x)

• The self similar behaviour will not be observed over the entirety of x instead

it will be valid for a range.

• If the quantity, Q(x, y) is governed by a partial differential equation then

the variables Q0(x), l(x) and Q̂(η) are governed by ordinary differential

equations.

The theory behind self-similar wakes has been explored extensively by other

researchers such as Tennekes & Lumley (1972), Pope (2000) and George (1989).

Below is the derivation that shows the self similarity of a plane wake as illustrated

by Tennekes & Lumley (1972).
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y

x

Uc

〈U〉

Us

L0

Figure 1.4: Sketch of a plane wake past a cylinder. Showing the flow width δ,
characteristic convective velocity Uc and the characteristic velocity difference Us

In the case of a plane wake the characteristic convective velocity, Uc is the

same as the free stream velocity U∞. We can also expect that the velocity dis-

tribution in a plane wake to follow the form;

U∞ − U
Us

= f

(
y

L0
,
L0

L
,
L0Us
ν

,
Us
U∞

)
(1.4)

where U∞ is the free stream velocity, Us is the maximum velocity deficit, L0 is

the wake half width, L is the streamwise distance from the bluff body and y is

the coordinate of the wake width.

As the flow travels further downstream it is expected that the wake region

will spread, because of this we can say that L0
L → 0, Us

U∞
→ 0, L0Us

ν →∞, and as

such this reduces Eq 1.4 to:

U∞ − U
Us

= f

(
y

L0

)
(1.5)

We must also take note that L0 can change downstream and as such L0 =

L(x). Additionally, we know that in a wake the turbulence intensity is of the

order Us, therefore, the Reynolds stress is expected to have the form:

− uv = Us
2g(

y

L0
) (1.6)

where g is the self similar profile function for the Reynolds stress. Now equations
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Eq 1.6 and Eq 1.5 are the two scaled variables, Reynolds stress and the velocity

deficit respectively. Hence, if they can be expressed in terms of the local length

and velocity scales it will signify an invariance with respect to x. Now to prove

this, we will start with the streamwise equation of motion:

U
∂U

∂x
+ V

∂U

∂y
+
∂(u2 − v2)

∂x
+

∂

∂y
(uv) = ν

(
∂2U

∂x2
+
∂2V

∂y2

)
(1.7)

The above equation can now be reduced by eliminating the following terms:

• V ∂U
∂y in the far wake V ∼ 0 so it is negligible.

• ∂(u2−v2)
∂x assuming that the flow is isotropic at small scales renders this term

negligible.

• ν
(
∂2U
∂x2

+ ∂2V
∂y2

)
In the far wake region the Reynolds number is expected to

be large enough to render the viscous effects negligible as well.

Hence, now the equation of motion can be expressed as:

U∞
∂U

∂x
+
∂(uv)

∂y
= 0 (1.8)

Substituting Eq 1.5 and Eq 1.6 into Eq 1.8, and by defining η = y/L0 we

obtain, (Note that the prime here denotes a differential with respect to η.)

U∞

(
− ∂Us

∂x
f +

Us
L0

∂L0

∂x
ηf ′
)

= −U0
2

L0
g′ (1.9)

− U∞L0

Us
2

∂Us
∂x

f +
U∞
Us

∂L0

∂x
ηf ′ = g′ (1.10)

For there to be a valid self similarity situation, the coefficients of f and ηf ′

must be constants, so:

L0

Us
2

∂Us
∂x

= constant and
1

Us

∂L0

∂x
= constant (1.11)

We can, therefore, state that the general solution for both Eq 1.11 is of the

form:

L0 ∼ xn and Us ∼ xn−1

However this still leaves an indeterminate solution and another relation can
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be found by using the momentum integral.∫ ∞
−∞

U(U∞ − U)dy = −M/ρ (1.12)

Substituting Eq 1.5 into the above yields:

U∞UsL0

∫ ∞
−∞

f(η)dη − U0
2L0

∫ ∞
−∞

f2(η)dη = −M/ρ (1.13)

The second term is of the order of Us/U∞ in comparison with the first term,

since we have established previously that U∞/Us approaches zero in the far wake,

the second term can be neglected. Additionally substituting M = −ρθU∞2 ,

where θ is the momentum thickness we get

UsL0

∫ ∞
−∞

f(η)dη = U∞θ (1.14)

We can see from the above equation that UsL0 must also be independent of

x, therefore using the general solutions obtained above we can say: L0 ∼ xn and

Us = xn−1 then 2n− 1 = 0 so that n = 1/2

Us = Ax−1/2 and L0 = Bx1/2 (1.15)

Substituting the solutions obtained above into the equation motion, Eq 1.10

we are left with:

0.5U∞(B/A)(f + ηf ′) = g′ (1.16)

defining an eddy viscosity as −ūv ≡ νT (∂U/∂y) we can now use Eq 1.5 and Eq 1.6

to state:

νT = −UsL0g/f
′ (1.17)

assuming that νT is constant, and using the expression for turbulent Reynolds

number RT = UsL0/νT

νT /UsL0 ≡ 1/RT = −g/f ′ (1.18)

By substituting Eq 1.16 into the above we get:
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0.5U∞(B/A)(f + ηf ′) = f ′′/RT (1.19)

α(f + ηf ′) = f ′′ (1.20)

Finally the solution to Eq 1.20 is:

f = exp(0.5αη2) (1.21)

According to Pope (2000) and Tennekes & Lumley (1972) for the solution

presented in Eq 1.21 when plotted alongside experimental data such as that

presented by Wygnanski et al. (1986), there is very little deviation from the

theoretical solution, especially near the centreline. Towards the edges of the

velocity profile the predicted profile overestimates the actual value recoded in

experiments. The deviation as explained by Tennekes & Lumley (1972) in the

centre of the wake the assumption made earlier of a constant νT is appropriate.

However, towards the edges of the profile this assumption is not exactly true, due

to intermittency, but for most applications the deviation is small enough to be

acceptable.

1.4.3 Porous obstacles

In most natural environments, obstacles will not be entirely solid, and as such the

fluid will be able to pass through the obstacle’s gaps or pores. A porous obstacle

is composed of multiple elements that can be interconnected forming one single

body, like in the case of a tree, or the they can be separated forming a cluster of

bodies bonded by a perimeter, as is the case for a forest or a city. The porosity,

φ, of an obstacle is usually defined as the ratio of the empty volume to its total

volume.

φ =
VEmpty
VTotal

(1.22)

The most basic porous obstacle is the case of two cylinders placed close to each

other in the flow. This was studied by Williamson (1985) where the wakes of

two side by side cylinders produced a synchronised shedding of vortices either in

phase or anti-phase. For the case of anti-phase shedding their observations showed

that the vortex streets remained parallel to each other and do not interact with

each other, conversely, when the vortex street is in phase it is more unstable,
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giving it a tendency for vortices to merge forming a binary vortex street where

each a vortex pair would be composed of vortices of the same sign from either

cylinder. Furthering the observations of Williamson, Zdravkovich (1987) observed

that separation between the two cylinders was also responsible in modifying the

behaviour of the wake, he observed that at their closest only a single vortex street

would form and as expected when the cylinders were furthest apart the vortex

street from each cylinder would be in phase. When the gap ratio (ratio of the gap

to the diameter of the cylinder) lied between 2-2.2 the wakes from each cylinder

would differ in size with a bias towards one of the cylinders which could change

at irregular time intervals. Observations on different arrangements of cylinders

were also carried out, by placing the cylinders in line three new regimes were

described. In the closet case the free shear layer does not reattach itself to the

second cylinder and a vortex street is formed behind the second. At gap ratios

of 1.8-3.4 the free shear layer is able to reattach to the second cylinder and then

form a vortex street. Continuing to higher gap ratios a vortex street is able to

form behind the first cylinder causing the vortex street of the second to be of a

binary kind.

Nepf (1999) studied the effect of vegetation on flow. They postulated a model

for the drag, turbulence and diffusion of the flow in an emergent vegetation sce-

nario. Using as a basis previous models that used isolated cylinders to model

the drag of vegetation, they included the porosity as contributing factor to the

drag produced. Therefore, assuming that their scenario consisted of a group of

said cylinders. They stated that in low density distributions, less than 10%, the

cumulative effects of multiple wake interactions could be neglected, allowing for

the assignment of a local drag coefficient to each element in the group using previ-

ously made observations on cylinder pairs. Hence, the total drag from the group

could be estimated by summing the individual drags of each element. They were

also able to derive an expression for turbulence intensity and diffusion within the

vegetation patch. Additionally, they set-up an experimental investigation, using

a combination of acoustic and laser doppler techniques, to prove the validity of

their model. They were able to conclude that their model is correct in identifying

the relationship between turbulent intensity,
√
k/U , and the vegetative drag.

Nicolle & Eames (2011) looked into both the local and global effects of a even

circular group of cylinders on an incoming flow. Their numerical simulations

allowed them to recognise the appearance of three distinct flow regimes based

on the porosity of the obstacle. The basic principle follows that the maximum
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vorticity in the wake decays faster for highly porous obstacles. i.e. the large

separations between the elements does not allow for any wake interactions which

causes these wakes to be quickly advected downstream by the flow. Obstacles

which have elements more tightly grouped showed a tendency to behave as a

group and individual element characteristics are lost as the flow interacts with

the nearby elements. In the intermediate case, a steady wake region is formed

immediately after the group which is sustained by the flow passing through the

obstacle, eventually downstream the diffusion of the free shear layers cause an

instability which in turn creates a vortex street.

1.5 Fractal Canopy Flows

Due to the multiple scales involved it becomes very difficult to model canopies, as

such previous models presented have used overly simplified geometries (Raupach

& Shaw 1982, Seginer et al. 1976), such as cylinders, to describe the canopies.

This is not representative of either vegetation or urban canopies since a wide

range of length scales are associated with each case. In this case, it becomes more

reasonable to use fractal objects to describe such canopies since the complexities

can be simply described.

One of the earliest investigations into canopy flows include that of Wilson

et al. (1982) who conducted a series of experiments measuring the airflow past a

cornfield, based upon the experiments of Shaw et al. (1974) who first indicated

that the momentum flux was proportional to the square of the velocity. Due to

the fact that the investigation was conducted in the open air and the limitations

of the use of anemometers data could only be collected on relatively windy days,

’cup’ wind speeds in the range of 1.36-3.10 m s−1 It was shown that under these

conditions the drag of the vegetation was responsible for the vertical momentum

flux. The drag, FD, being characterised as,

FD = ρCDAs
2 (1.23)

where CD is the drag coefficient, A is the vegetative area per volume and s is

the cup wind speed (s =
√
u2 + v2). It was also postulated, that a variable drag

coefficient with height would be more accurate, however, the use of a constant

drag gives a sufficiently good approximation. As such, a mean CD 0.17 was

found for the canopy. Building on the work by both Wilson et al. (1982) and
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Figure 1.5: Fractal tree object used by Bai et al. (2012), (a) Perspective view and (b)
Frontal view

Shaw et al. (1974), Yue et al. (2007b) conducted a numerical analysis using Large

Eddy simulation (LES) on a corn canopy model and compared their results with

those of Wilson and Shaw. Their model differed from previously used models,

which involved a homogeneous distribution (field scale) of objects to a more apt

representation using the plant features (plant scale). Their results showed that

the older field scale approach yielded comparable results for basic statistics such

as mean flow, but in higher order statistics such as rms velocity the plant scale

approach is better suited. So it can be inferred from Yue’s analysis that the

canopies cannot be represented using a singular length scale, therefore, a fractal

representation of the canopy would be better suited.

Bai et al. (2012) conducted an investigation on a “fractal tree”, Figure 1.5, to

observe the structure of the wake behind the structure. Their observations of the

transverse flow structures indicated that the eddy viscosity varied with the length

scale of the obstacle preceding it, i.e in the bottom region where only the large

structures are present the eddy viscosity was the largest, and got progressively

smaller higher up in the wake. In the study the interest was focused on the

transversal plane which is perpendicular to the direction in which the fractal scale

changes. Although, the research presented was for a single object to represent

a sparse canopy, some similarity is to be expected for the proposed fractal beds

and should serve as a starting point for analysis, although in this research the

variations of eddy viscosity should be observed in the vertical plane in the forms

of sweeps and ejections.

Additional research into fractal turbulence has been conducted by other groups.

However, the focus has been towards grid generated turbulence wherein features

such as high turbulence intensities caused by the interactions of the wakes at

varying lengths downstream of a fractal grid were reported. (Seoud & Vassilicos
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Figure 1.6: Schematic of quadrant events and ‘hole’ region

2007, Mazellier & Vassilicos 2010, Stresing et al. 2010, Laizet & Vassilicos 2012)

Lu & Willmarth (1973) first introduced the notion of a quadrant analysis,

by decomposing the shear stress into four quadrant events, as shown in Fig-

ure 1.6. The second and fourth quadrants indicate the events known as ejection

and sweeps which are responsible for the downward momentum flux in the system,

whilst the remaining two quadrants indicate the upward transfer of momentum.

Additionally the ‘hole’ acts as a filter to eliminate small fluctuating components

of the velocity signal, such as to only consider significant events. Quadrant analy-

sis has been applied to canopy flows in both experimental, by Shaw et al. (1983),

and simulations, by Yue et al. (2007a) both indicated that the largest fraction of

events corresponded to sweeps followed by ejections and both the outward and

inward interactions events have the shortest time frame.

1.6 Summary

A brief introduction to the subject of turbulence has been given along with a

description of fractal objects and how they relate to natural, every-day structures.

Canopy flows have been introduced along with certain flow structures common

to these types of flows. In the next chapter an introduction of a novel technique

known as the Lattice Boltzmann Method (LBM) will be given. An overview into
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the formulation and mechanics of LBM will be presented including derivations of

fundamental equations.



Chapter 2

The Lattice Boltzmann

Method

A fluid like any state of matter is composed of a number of atoms and molecules

(hereafter referred to as particles), but unlike solid matter when a shear force is

applied it offers no resistance and continually deforms. Additionally the motion

of fluids is heavily influenced by the time and length scales involved. At the

microscopic levels each particle’s motion appears random and therefore the fluid

becomes inhomogeneous. On the other hand, at the macroscopic level, localised

fluctuations of the particle velocities are averaged out and the whole fluid behaves

as a single continuous body. The Lattice Boltzmann Method (LBM) introduces

an intermediary meso-scale between the macro- and micro-scale. By considering

particle collections, the statistical mechanics of a system can be described as a

distribution function, f(x, ξ, t), which indicates the probability of encountering

a particle in the system at position x, with velocity ξ, at time t.

This approach allows LBM to be used in both macro- and micro-scale sce-

narios with reasonable computing resources. LBM is also simple to apply on

domains with complex geometries, and the code is readily adaptable to Graph-

ical Processing Units (GPU) processing, but it requires more memory than a

continuum method solver. Furthermore with LBM, problems in both macro- and

micro-scale can be resolved with reasonable accuracy.

In order to simulate the flow of a fluid, mathematical models have been devel-

oped for each scale. Macroscopic scales use a continuum approach, microscopic

descriptions are based on molecular dynamics (MD) and mesoscopic scales use

models rooted in kinetic theory. In the next few sections a brief overview of

19
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the macroscopic and microscopic methods will be introduced. For a further in

depth explanations on how each method works and implemented the reader is di-

rected to the extensive literature such as Rapaport & Rapaport (2004), Versteeg

& Malalasekera (2007), Anderson & Wendt (1995).

2.1 Macroscopic Scales - Continuum Method

Any model of a fluid, be it in macro-, meso- or micro-scale, intends to solve a

number of transport equations for mass, momentum and energy. By applying

general conservation principles to said quantities a set of continuity equations

may be derived.

The continuum method, which is what most computational fluid dynamics

(CFD) methods use, approaches the problem by considering the system to be

one continuous entity wherein the motion of individual particles do not affect the

overall motion of the fluid. In this approach, the transport equations are obtained

by applying the conservation principles to a control volume. This results in a

number of ordinary (ODE) and partial differential equations (PDE).

These equations for mass, momentum, and energy conservation as defined by

Batchelor (2000) are as follows:

Mass:
∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

Momentum:
∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ (2.2)

Energy:
∂(ρe)

∂t
+∇ · (ρue) = −∇ · q − p∇ · u+ τ : ∇u (2.3)

where ρ is the density, t is the time, u is the flow velocity field, p is the pressure,

τ is the deviatoric stress tensor, and q is the energy flux.

Eq 2.2 is known as the Navier-Stokes equations, named after the two physicists

who formulated them. These equations are to date unsolved, as such, they are

one of the seven Millennium Prize Problems to which the Clay Institute offers a

one million dollar award to whomever can solve any of the seven problems. They

describe the motions of a fluid by applying Newton’s second law to the motion

of a fluid.

The major drawback of this system is that it does not produce a closed set of

equations as p, q, and τ still remain unknown. To resolve this each variable must
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be independently modelled, in the case of pressure an equation of state must be

used. For the deviatoric stress in the case of an incompressible fluid it can be

modelled as:

τ = 2µS (2.4)

where µ is the dynamic viscosity , and the strain rate tensor S = 0.5(∇u +

(∇u)T ). Hence the incompressible Navier-Stokes becomes,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u (2.5)

where ν is the kinematic viscosity, and finally the heat flux can be modelled using

the Fourier’s Law,

q = −κ∇T (2.6)

where κ is the thermal conductivity and ∇T is the temperature gradient.

Since the focus of this investigation will be in isothermal flows, Eq 2.3 can be

ignored in its entirety. Although this now represents a complete model for the

fluid, due to many reasons such as non-linearity of the Navier-Stokes equations,

complex boundary conditions, geometry etc, they still can’t be solved analytically.

Therefore, Finite Elements (FE), Finite Volume (FV) and Finite Difference (FD)

methods convert the ODEs and PDEs into a system of algebraic equations which

are solved iteratively until a convergence is achieved.

2.2 Microscopic Scales - Molecular Dynamics

From a microscopic point of view any fluid is composed of a number of particles

randomly moving in space conserving mass, momentum and energy. For a gas,

under ideal conditions, the following hold true;

• The number of molecules is very large, but their separation is also very

large compared to their molecular size.

• Molecules move randomly with a distribution in speeds that does not change.

• Molecules undergo elastic collisions with other molecules and boundaries

but they do not exert any aditional forces on each other.

• Molecules obey Newton’s second law.
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So Newton’s Second law applied to each particle is as follows:

Fi = m
d2xi
dt2

(2.7)

where m is the mass of the particle i and xi is the position vector of that particle.

The total force, Fi can be further decomposed into the sum of intermolecular

forces and the external forces.

Fi =
N∑

j=1,j 6=i
fij +Gi (2.8)

To determine the force exerted by the particles on the walls of a system, we

consider a box of length, L, and the average force, F , exerted by a particle on

the wall is the rate of change momentum.

F∆t = 2mξx (2.9)

Taking the time interval to be the time for a particle to collide with a wall and

return back, ∆t = 2L/ξx, the average force for N particles is

F =
mNξ2x
L

(2.10)

Taking into account that the displacement in all directions is similar, i.e. ξ2 =

ξ2x + ξ2y + ξ2z = 3ξ2x, the pressure in the container is

P =
F

A
(2.11)

=
2N

3V

[
1

2
mξ2

]
(2.12)

where V is the volume of the container. Additionally, it is known that for an

ideal gas the following is true

PV = nRT (2.13)

where n is the number of moles of the gas and R is the ideal gas constant.

Equating Eq 2.12 and Eq 2.13 yields

KE =
3

2
kT (2.14)
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where k is the Boltzmann constant defined as the ratio of the ideal gas constant

and Avogadro’s number equal to 1.38× 10−23 J K−1

Eq 2.14 demonstrates the concept of kinetic temperature, which shows that

the temperature, which is a macroscopic quantity, is proportional to the average

molecular kinetic energy of the particles. Therefore, an increase in molecular

velocities would increase the average kinetic energy raising the temperature and

also increase the the frequency of particles colliding with the boundaries of the

system measured as an increase in pressure.

A key disadvantage of the MD method is that it is very resource intensive,

as it models every particle in the medium. Large size problems are considered in

the order of 10−2m, hence, this approach is infeasible for any kind of engineering

scenario.

2.3 Mesoscopic Scales - Kinetic Theory

When making observations in mesoscopic scales its necessary to consider particle

clusters, to do so a probability distribution function (pdf) is used. In an N-

body fluid, the pdf fN (q,p, t), is a statistical description of the system which

represents the number of particles at any given time positioned between q + dq

with momentum p + dp in the phase space. That is, a 6N dimensional space

where the Cartesian coordinates are the 3N components of position, qN , and

momentum, pN .

2.3.1 Boltzmann Distribution

It has been established that from a microscopic point of view a fluid is composed

of many particles moving randomly. For a system, the microstate is, at a given

time, the collection of positions and momenta for all particles in the system, which

correspond to a given macrostate. The macrostate refers to the macroscopic

properties such as pressure, temperature, volume and density. Boltzmann was

the first to show that system’s entropy, S, and the possible number of microstates

of the system, Ω, follows the following,

S = klog(Ω), (2.15)

i.e. an increase in entropy is a change resulting from increasing the number of

microscopic arrangements. He was also able to demonstrate that the number of
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microstates for a given energy are far greater when the system was in thermal

equilibrium than any other. He later established that for any system at thermal

equilibrium the probability of being in a particular state at energy, E is

f(E) = Ae
−E
kT , (2.16)

where A is a normalisation constant. A more comprehensive derivation can be

seen in Appendix B.

This is known as the Boltzmann distribution. In the following section it

will be shown that Maxwell was able to show that an ideal gas has a specific

distribution at equilibrium but it was Boltzmann’s contribution that showed how

the equilibrium is reached.

2.3.2 Maxwell-Boltzmann Distribution

When considering any kind of engineering fluid flow scenario, the number of par-

ticles that would need to be considered for a microscopic analysis is preposterous

and would be impossible to solve using modern computing resources. Maxwell

(1860) proposed that its unnecessary to know the velocity and position of every

molecule at each instant in time. Since momentum is conserved for a gas in ther-

mal equilibrium the distribution is not one of time but instead of velocity. By

imagining the distribution of the particles in a three-dimensional velocity space,

where the coordinates represent the component value of the particle’s velocity,

all the particles that lie within a spherical surface from the origin will have the

same speed. Therefore the distribution of particles between a range of speeds

was shown to be

f(ξ) = 4πξ2
( m

2πkT

)3/2
e
−mξ2
2kT . (2.17)

The above equation is derived from the Boltzmann distribution as shown in Ap-

pendix B. It should be noted that the function increases parabolically from zero

to a maximum and then decreases exponentially. Then as the temperature in-

creases the maxima is shifted towards the right, as can be seen in Figure 2.1.

2.3.3 The Boltzmann Equation

The issue when trying to solve for a system of N particles arises from the Liouville

equation (Liouville 1838) wherein the the pdf for a single particle depends on the
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Figure 2.1: Maxwell-Boltzmann probability distribution for nitrogen gas N2, as a
function of molecular velocity, ξ adapted from Eq 2.17 using molecular mass of

nitrogen, m = 4.65× 10−26 kg

pdf for two particles and so on and so on.

Fs(q1,p1, ..., qs,ps) =

∫
fN (q1,p1, ..., qN ,pN )dqs+1, dps+1, ..., dqN , dpN (2.18)

This results in a function of N variables, and considering that a simple fluid is

considered to be of the order 1023, arriving at a solution is impossible by today’s

standards. Therefore, to simplify the problem only the pdf of a single particle is

considered, such that the velocity distribution function can now be defined as

f(x, ξ, t) = mNF1(q1,p1, t) (2.19)

where the particle position x = q1 and velocity ξ = p1/m show a change in

notation to the physical space.

The assumption made by Boltzmann to only consider the one particle pdf is

apt because the averaged statistics of the system can be obtained via the moments

of of the velocity distribution function.

ρ =

∫
fdξ (2.20)
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ρu =

∫
ξfdξ (2.21)

ρe(x, t) =

∫ |(ξ − u)|2
2

fdξ (2.22)

Now the particles in the system do collide with each other which is represented

as the rate of change between the initial and final distributions in a given time

period. Given the following assumptions, Boltzmann (1872) was able to define

Eq 2.23 known as the Boltzmann Transport Equation.

• Particles interact via binary collisions. Figure 2.2

• Collisions are localised in space and time - they occur at a determined

position and time.

• Collisions are elastic - momentum and kinetic energy are preserved.

• Collisions are microreversible - this means that microscopic dynamics are

time reversible, i.e. the probability that the pre-collision velocities are

changed to the post-collision velocities is the same as post-collision veloci-

ties being changed to the pre-collision velocities

• Boltzmann chaos is true - signifying that the velocities of the two particles

are uncorrelated.

∂f

∂t
+
∂f

∂x
ξ +

FE
m

∂f

∂ξ
= Ω(f, f) (2.23)

The external force, FE , can be neglected for the scope of this investigation. The

left hand side of Eq 2.23 represents the streaming motion of particles and the

right hand side the collisions defined by the collision integral as

Ω12(ξ) =

∫
RN

∫
SN−1

B(|ξ − ξ∗|, cosθ)[f(ξ′)f(ξ′∗)− f(ξ)f(ξ∗)]dσdξ∗ (2.24)

where ξ and ξ∗ represent the velocity of each particle before the collision and

the prime denotes the velocity after the collision. Furthermore, the term B(|ξ −
ξ∗|, cosθ) is called the Boltzmann collision kernel which depends only on the

relative velocities and the deviation angle, θ (Mouhot & Strain 2007, Villani

2002)
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Figure 2.2: A Binary Collision

As per Cercignani (1988) the conservation properties of the Boltzmann Equa-

tion are demonstrated through the collisional invariants, ψi(ξ) such that∫
ψi(ξ)Ω12(ξ)dξ = 0 (2.25)

which take the form; 1,ξ, and |ξ − u|2/2. Additionally, as per the Boltzmann

H-Theorem it was also proven that the system at its equilibrium state the distri-

bution is Maxwellian see Wolf-Gladrow (2004) for further details on how this is

proven.

2.3.3.1 The Bhatnagar Gross Krook (BGK) Approximation

Due to the complicated nature of the collision operator the first step to produce

an effective computational model for the Boltzmann transport equation relies on

the simplification of this integral, the most popular one being the approximation

introduced by Bhatnagar, Gross & Krook (1954). They suggested that over time

the system would tend to a local equilibrium and as such the integral form of the

collision operator can be expressed in the form

ΩBGK =
feq − f

τ
(2.26)
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where τ is referred as the relaxation factor. The relaxation factor here acts very

much like the viscosity in the fluid where a lower value of τ means a faster decay

towards the local equilibrium, which is indicative of high Reynolds number flows.

In section 2.5 we will demonstrate that there is indeed a relationship between

the relaxation factor and the viscosity by means of the Chapman-Enskog (CE)

expansion.

2.4 Lattice Boltzmann Equation

2.4.1 Lattice Gas Automata (LGA)

LBM evolved from more simple models called Lattice Gas Automata (LGA) these

methods treated the fluid as set of of simulated particles on a regular lattice

with certain symmetry properties. The reasoning being that the macroscopic

dynamics of the system could be represented as a statistical collective of the

micro-dynamics of the fluid particles. Therefore, as long as the physical laws are

not violated then simple micro fluid models can replace the complex continuum

fluid models already known.

The first LGA model proposed by Hardy, Pomeau and de Pazzis, known as

the HPP model (Hardy et al. 1973a,b) consisted in a two dimensional square lat-

tice wherein a particle is allowed to move to any of the four neighbouring nodes.

Additionally the collision rule is such that when two particles with opposite ve-

locities move to the same node they will be deflected perpendicularly to their

direction of travel. In the case that a particle meets a boundary it may rebound

from said boundary and in all other cases the particles will continue unaffected,

this can be seen in Figure 2.3.

Mathematically this is expressed as

ni(x+ ciδt, t+ δt)︸ ︷︷ ︸
Streaming

= ni(x, t) + Ωi(n(x, t))︸ ︷︷ ︸
Collisions

(2.27)

where ni is the number of particles moving with velocity ci at node x at time t,

and δt is the timestep. It can take either the value 1 or 0 depending whether there

is a particle present or not at the node. The discrete velocity of the particles is the

product of the lattice speed, c = δx/δt, and the unit vector indicating the direction

in which the particle is moving. Consequently the subsequent flow variables can

be obtained using the ensemble average of the boolean number fi = 〈ni〉
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Figure 2.3: Collision rules for the HPP model

ρ =
∑
i

mfi

ρu =
∑
i

mcifi

ρe = ρRT =
∑
i

m

2
(ci − ui)2fi

(2.28)

Although HPP was shown to satisfy the basic conservation laws, it fails to

satisfy the continuum equations because of lack of symmetry in the lattice. Specif-

ically, the lack of a robust rotational symmetry meaning that angular momen-

tum is not preserved, which results in anisotropy in the results. Additionally,

this model produces spurious invariants which make it unphysical. For example,

whilst linear momentum is conserved the HPP model goes one step further and

also conserves momentum along each row and each column of the lattice. There is

also the ‘chequerboard’ invariant, wherein any particle that would be in a ‘white

cell’ of the lattice would always be in a ‘black cell’ in the next timestep. This re-

sults in the system being divided into two subsystems which is not representative
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of an actual fluid flow.

The symmetry requirements was first explored by Frisch, Haslacher, and

Pomeau in 1986 who presented a new LGA model now called FHP after the

authors (Frisch et al. 1986). The obvious difference between FHP and HPP is

that FHP uses a triangular lattice, where each node is surrounded by 6 neigh-

bouring nodes. In this case the discrete velocities are ci = c(cosθi, sinθi) where

θi = (i − 1)π/3 and i = 1 − 6 and similarly to the HPP model, the state is

described by six Boolean values, ni. In this model five different types of collisions

are allowed as shown in Figure 2.4

It was also later shown by Frisch et al. (1987) that the equilibrium distribution

function takes the form of a Fermi-Dirac distribution and allowing for the physical

constraints of mass and momentum, it can be written as,

feqi =
ρ

6

[
1 +

ci · u
c2s

+G(ρ)
Qi : uu

2c4s

]
(2.29)

where cs is the speed of sound, specifically for the FHP model c2s = c2/2, G(ρ) =

(6 − 2ρ)/(6 − ρ) and Qi = cici − c2s. Given these inferences it was shown that

the FHP model was superior to the HPP model because it would satisfy the

hydrodynamic equations. However, when rescaling the model it results in the

pressure being dependent on the velocity which is unphysical when dealing with

flows of high Mach numbers. If the case remains in the incompressible range the

model is acceptable.

It is clear that both the HPP and FHP models are only suitable for a 2D flow.

Therefore, if one expects to use LGA for anything other than simple fluid models

a 3D lattice had to be devised. The lattice arrangement proposed by d’Humières

et al. (1986) was a face centered hyper-cube (FCHC) with 24 discrete velocities.

This results in a collision rule which is necessarily large in the order of 224! But, as

it was explained by d’Humières this is not necessarily a detriment as it allows for

more collisions to be simulated and, therefore, the model can be used at higher

Reynolds numbers. Additionally, in comparison to other 3D lattices proposed

the 4D hyper-cubic lattice option is naturally isotropic making it a more robust

option. The theoretical formulation for the collision operator was proposed by

Frisch et al. (1987) and Wolfram (1986).

The fundamental basis of LGA is quite simple, the model requires only

Boolean operations to solve the equations. This simplicity and the fact that

update process for each node relies only on local information mean that LGA is
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Figure 2.4: Collision rules for the FHP model. Where the model has two outcomes for
a given set of incoming velocities, either has an equal probability of occurring
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heavily and easily parallelised for faster simulation time. However, the advan-

tages of LGA do not come without its disadvantages. The reliance on Boolean

operations gives rise to statistical noise in the model, it violates the Gallilean

invariance and the dependence of pressure on velocity were all motivators for the

development of LBM as an alternative to LGA.

2.4.2 LGA to LBE

A proposal by McNamara & Zanetti (1988) showed that by replacing the Boolean

operator ni with the more realistic velocity distribution function fi the statistical

noise of the LGA could be removed. As such the new model is expressed as,

fi(x+ ciδt, t+ δt)− fi(x, t) = Ωi(f(x, t)) (2.30)

where Ωi(f) is the collision operator. As a way to simplify the computation

of the collision operator Higuera & Jiménez (1989) proposed a linearisation of

the distribution function, such that it is composed of an equilibrium and a non-

equilibrium component,

fi = feqi + fneqi , (2.31)

where the equilibrium distribution function takes the form of a Fermi-Dirac equa-

tion as shown previously. This leads to the formulation of the collision operator

as:

Ωi(f) = Kij(fj − feqj ) (2.32)

where the collision matrix Kij = ∂Ωi/∂fi. Further simplifications to the collision

matrix were brought forwards by a number of groups (Chen et al. 1991, Koelman

1991, Qian et al. 1992), this resulted in the definition of the collision matrix to

be,

K = −τ−1I (2.33)

∴ Ωi(f) = −1

τ
[fi − feqi ] (2.34)

2.4.3 Continuous Boltzmann Equation to LBE

A more direct way to derive the LBE is to do so from the continuous Boltz-

mann Equation instead of through LGA. Starting at the isothermal continuous



The Lattice Boltzmann Method 33

Boltzmann equation with the BGK approximation,

∂f(x, ξ, t)

∂t
+ ξ · ∇f(x, ξ, t) = − 1

τc
[f(x, ξ, t)− feq(x, ξ, t)] (2.35)

In order to discretise ξ into a set of discrete velocities ci, we expand the

equilibrium distribution function, which is Maxwelian, into a Taylor series,

feq =
ρ

(2πRT )D/2
exp

(
− ξ2

2RT

)[
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u2

2RT

]
(2.36)

Hence the discrete velocities must be set such that the following numerical quadra-

ture holds exactly, ∫
ξkfeqdξ =

∑
i

wic
k
i f

eq(ci), 0 ≤ k ≤ 3 (2.37)

where wi and ci are the weights and points of the numerical quadrature respec-

tively. This leads to the formulation of the discrete distribution function as,

fi(x, t) = wif(x, ci, t) (2.38)

∴
∂fi
∂t

+ ci · ∇fi = − 1

τc
[fi − feqi ] (2.39)

finally integrating the above equation over t to t + δt will yield the lattice BGK

(LBGK) model,

fi(x+ ciδt, t+ δt)− fi(x, t) = −1

τ
[fi(x, t)− feqi (x, t)] (2.40)

The macroscopic quantities, density and velocity of the fluid can therefore be

obtained from the discrete distribution functions as follows,

ρ =
∑
i

fi

ρu =
∑
i

cifi
(2.41)

It then follows that by the construction of a series of lattice tensors of the

form,

Lα1α2...αn =
∑
i

ciα1ciα2 ...ciαn (2.42)
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the discrete equilibrium distribution function, f
(eq)
i , has the following velocity

moments:

∑
i

feqi = ρ∑
i

cif
eq
i = ρu∑

i

cicif
eq
i = ρuu+ pI∑

i

ciαciβciγf
eq
i = c2sρ[uδ]αβγ

= c2sρ(uαδβγ + uβδαγ + uγδαβ)

(2.43)

2.5 Chapman-Enskog Expansion. From Boltzmann to

Navier Stokes

Up until now the Boltzmann equation and Maxwell distribution functions are all

representations of microscopic systems, whilst fluid flows are continuous systems.

Hence, a method to retrieve the macroscopic properties of the system from its

microscopic behaviour is needed. There are other methods that can link the

continuous description of a fluid flow (i.e. Navier Stokes equations) with the

Boltzmann Equation such as Grad’s method (Grad 1949) which discretises the

Navier-Stokes to achieve the Boltzmann Equation. However, for the purposes of

this thesis, only the Chapman-Enskog procedure will be detailed as this is the

most widely utilised and implemented method.

The Chapman-Enskog procedure entails the multi-scale expansion of the dis-

tribution function’s spatial and temporal variables with respect to the Knudsen

number. The Knudsen number, Kn, is a non-dimensional quantity represented

as the ratio between the molecular mean free path, lmfp, and the characteristic

length scale, L, of the system.

Kn =
lmfp
L

(2.44)

The significance of the Knudsen number is that it determines whether the sys-

tem should be considered an continuum, Kn << 1, where the flow is heavily

influenced by intermolecular interactions rather than the interactions between
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molecules and solid boundaries.

First the following multi-scale expansions are introduced:

fi = f0i + εf1i + ε2f2i

∂t = ε∂t0 + ε2∂t1

∂α = ε∂0α

(2.45)

where ∂t, ∂α and ε are short notations for ∂/∂t, ∂/∂xα and Kn respectively.

Additionally the superscript 0 is used to denote the local equilibrium and the

others indicate a departure from the local equilibrium in increasing order. Now

the second order Taylor expansion of Eq 2.40 is as follows,

Difi +
δt
2
D2
i fi =

1

τδt
(feqi − fi) +O(δ2t ) (2.46)

where Di = ∂t + ciα∂α. Substituting the multiscale expansions Eq 2.45 into the

taylor expansion Eq 2.46 and collecting all the terms in the same order yields,

ε0 : f0i = feqi (2.47)

ε1 : D0
i f

0
i = − 1

τδt
f1i (2.48)

ε2 : ∂t1f
0
i +

(
1 +

1

2τ

)
D0
i f

1
i = − 1

τδt
f2i (2.49)

where D0
i = ∂t0 + ci · ∇0. Given that Eq 2.43 and Eq 2.41 are true then using

Eq 2.47 the following can be stated, for k > 0,∑
i

fki = 0∑
i

cif
k
i = 0

(2.50)

The conservation equations for mass and momentum can be obtained by pre-

multiplying Eq 2.48 by 1 and ci and taking the summation over i.

Mass Conservation:

1

[
D0
i f

0
i

]
= 1

[
− 1

τδt
f1i

]
(∂t0 + ci · ∇0)f

eq
i = − 1

τδt
f1i
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(2.51)

Using Eq 2.43 and Eq 2.50 the mass conservation is shown to be,

∂t0ρ+∇0 · ρu = 0 (2.52)

Momentum Conservation:

ci

[
D0
i f

0
i

]
= ci

[
− 1

τδt
f1i

]
(∂t0 + ci · ∇0)f

eq
i ci = − ci

τδt
f1i

Again substituting the results of Eq 2.43 and Eq 2.50 the momentum conservation

is shown as,

∂t0(ρu) +∇0 · π0 = 0 (2.53)

where the zeroth order flux tensor, π0αβ =
∑

i ciαciβf
0
i = ρuαuβ + pδαβ and

p = c2sρ. Similarly the conservation equations in at the order ε2 are as follows.

Mass conservation:

1

[
δt1f

0
i +

(
1 +

1

2τ

)
D0
i f

1
i

]
= 1

[
− 1

τδt
f2i

]
δt1f

eq
i +

(
1 +

1

2τ

)
(∂t0 + ci · ∇0)f

1
i = − 1

τδt
f2i

∴ ∂t1ρ = 0 (2.54)

Momentum Conservation:

ci

[
∂t1f

0
i +

(
1 +

1

2τ

)
D0
i f

1
i

]
= ci

[
− 1

τδt
f2i

]
∂t1f

eq
i ci +

(
1 +

1

2τ

)
(∂t0 + ci · ∇0)f

1
i ci = − ci

τδt
f2i

∴ ∂t1(ρu) +

(
1− 1

2τ

)
∇0 · π1 = 0 (2.55)

where π1αβ =
∑

i ciαciβf
1
i . To evaluate this term pre-multiply Eq 2.48 by ciαciβ

and sum over i

ciαciβ

[
− 1

τδt
f1i

]
= ciαciβ

[
f0i (∂t0 + ci · ∇0)

]
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− 1

τδt

∑
i

ciαciβf
1
i = ∂t0

∑
i

ciαciβf
0
i + ∂0γ

∑
i

ciαciβciγf
0
i

= ∂t0
∑
i

ciαciβf
eq
i︸ ︷︷ ︸

π0

+∂0γ
∑
i

ciαciβciγf
eq
i︸ ︷︷ ︸

Eq 2.43

= ∂t0
(
ρuαuβ + c2sρδαβ

)
+ ∂0γ

(
c2sρ(uαδβγ + uβδαγ + uγδαβ)

)
= ∂t0(ρuαuβ) + ∂t0(c2sρ)δαβ + ∂0γ (c2sρuαδβγ)

+ ∂0γ (c2sρuβδαγ) + ∂0γ (c2sρuγδαβ)

Expand the first, third and fourth terms via product rule:

= uβ [∂t0(ρuα)] + uα [ρ∂t0(uβ)] + ∂t0(c2sρ)δαβ

+ uα
[
∂0γ (c2sρ)δβγ

]
+ c2sρ

[
∂0γ (uαδβγ)

]
+ uβ

[
∂0γ (c2sρ)δαγ

]
+ c2sρ

[
∂0γ (uβδαγ)

]
+ ∂0γc

2
sρuγδαβ

= c2s
[
∂t0ρ+ ∂0γ (ρuγ)

]
+ uβ

[
∂t0(ρuα + ∂0α(c2sρ))

]
+ uα

[
∂t0(ρuβ + ∂0β (c2sρ))

]
+ c2sρ

[
∂0αuβ + ∂0βuα

]
Using the first order conservation equations, Eq 2.52 and Eq 2.53, the above

equation reduces down to:

= c2sρ(∂0αuβ + ∂0βuα)− ∂0γ (ρuαuβuγ)

= c2sρ(∂0αuβ + ∂0βuα) +O(M3)

where M is the Mach number. For incompressible flows the Mach number is

relatively low, therefore, the second term may be neglected and the first order

flux tensor becomes,

π1αβ = −τδtp(∂0αuβ + ∂0βuα)

Now that the first and second order conservation equations have been defined,

combining them together will yield the conservation equations for a continuum.

Mass conservation:

ε1 : ∂t0ρ+∇0 · ρu = 0

ε2 : ∂t1ρ = 0
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∂t0ρ+∇0 · ρu+ ∂t1ρ = 0

∂tρ+∇ · ρu = 0

Momentum Conservation:

ε1 : ∂t0(ρu) +∇0 · π0 = 0

ε2 : ∂t1(ρu) +

(
1− 1

2τ

)
∇0 · π1 = 0

∂t0(ρu) + ∂t1(ρu) +∇0 · π0 = −
(

1− 1

2τ

)
∇0 · π1

∂t(ρu) +∇ · (ρuu+ pI) = −
(

1− 1

2τ

)
∇ ·
[
−τpδt(∇u+∇uT )

]
∂t(ρu) +∇ · (ρuu) +∇p = −∇ ·

[(
−τpδt +

pδt
2

)(
∇u+∇uT

)]
∂t(ρu) +∇ · (ρuu) = −∇p+∇ ·

[(
c2sρτδt −

c2sρδt
2

)(
∇u+∇uT

)]
∂t(ρu) +∇ · (ρuu) = −∇p+∇ ·

[
c2sρδt

(
τ − 1

2

)(
∇u+∇uT

)]
∂t(ρu) +∇ · (ρuu) = −∇p+∇ ·

[
ρν
(
∇u+∇uT

)]

it can be seen that from this expansion, that a definition for the kinematic vis-

cosity, ν, in the lattice space is:

ν = c2s

(
τ − 1

2

)
δt (2.56)

This definition becomes very significant when balancing the resource requirements

needed for computations, as will be explained in chapter 4

In order to retrieve the familiar incompressible Navier-Stokes equations, it

is assumed that the density variations are negligible such that the conservation

equations take the form,

∇ · u = 0 (2.57)

∂tu+ u · ∇u = −1

ρ
∇p+ ν∇2u (2.58)
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2.6 Dynamics Models

The core of the LBM is to solve the Lattice Boltzmann Equation, Eq 2.40, as such

a dynamics model must be implemented to appropriately resolve the collision op-

erator, Eq 2.24. As detailed in the prior section the Chapman-Enskog expansion

makes the assumption that the Mach number is low enough to neglect the O(M3)

term, this is only feasible if the flow is incompressible. Therefore, most dynamics

models implemented in LBM are so called quasi-compressible since they can be

used for compressible flows, but usually a flow with very low Mach number is

used to dampen out compressibility effects of the model. Of the different types

of dynamics models used the following three are of interest:

• Single Relaxation Time (SRT)

• Multiple Relaxation Time (MRT)

• Regularised Lattice Boltzmann (RLB)

2.6.1 Single Relaxation Time (SRT)

This method is simply the BGK approximation as explained earlier. It is simple

enough from here to infer that in order to adapt the BGK model to a particular

case the appropriate feq must be chosen. In its general form the equilibrium

distribution function takes the form,

feqi = Φwi

[
A+Bci · u+ C(ci · u)2 +Du2

]
(2.59)

where u is the macroscopic flow velocity, wi is a weighting factor, Φ is a scalar

parameter (e.g density) and constants A, B, C, and D vary depending on the

type of lattice used to discretise the domain.

Due to the fact that only a single equilibrium function is used to describe the

entire dynamics of the flow, it can result in numerical instabilities when trying to

simulate cases of high Reynolds numbers. This is because as Reynolds numbers

increase the value of the relaxation factor gets increasingly closer to 0.5 which

result in diverging solutions when simulated.
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2.6.2 Multiple Relaxation Time (MRT)

As it has been previously stated, SRT methods lack stability because all the colli-

sions are relaxed by a single criteria, therefore, as the flow increases in complexity

the model oversimplifies the process and looses accuracy. So a more reasonable

approach is to have multiple relaxation factors for each of the different modes

in the flow, such that the collision operator is replaced with a collision matrix

whose eigenvalues are the relaxation factors. A generalised form of the LBE had

already been formulated by d’Humières (1992), which included a collision matrix,

but it wasn’t until Lallemand & Luo (2000) that it was fully implemented as an

alternative to the BGK scheme. Since then there have been a number of different

schemes that use more than one relaxation factor and as such any method that

interprets relaxation parameters as the eigenvalues of the collision matrix and

tuned via a linear stability analysis fall under the class of MRT scheme. The

process starts with the generalised form of the LBE as presented by d’Humières,

fi(x+ ciδt, t+ δt)− fi(x, t) = −
∑
j

Λij

[
fj − feqj

]
, i = 0 ∼ b− 1 (2.60)

where Λij is the collision matrix and b is the number of discrete velocities. Sub-

sequently as d’Humières (2002) formulated, the model needs to be transformed

from the velocity space to the moment space. This splits the collisions into

their respective modes which can be classified as conserved (“hydrodynamic”) or

non-conserved (“kinetic”) and as such the relaxation parameters of the kinetic

moments can be tuned to increase the stability of the model.

m = Mf (2.61)

where M is an invertible matrix composed of i vectors each of which has b

polynomials of the discrete velocities and f is the set of i distribution functions.

So the LBE in moment space is,

m(x+ ciδt, t+ δt)−m(x, t) = −S(m−meq) (2.62)

where the diagonal matrix S = MΛM−1 and the moment space equilibria

meq = Mf eq. Since only the collision step is dependent on the moment space

computation a typical timestep calculation for an MRT scheme would follow the

following steps,
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• Transform the the distribution functions to the moment space

• Compute the collisions in the moment space

• Transform the post collision moment space distributions back to the velocity

space

• Compute the streaming step in the velocity space

So the LBE-MRT can be generalised as:

f(x+ ciδt, t+ δt)− f(x, t) = −M−1S(m−meq) (2.63)

Construction of the transformation matrices is dependent on the type of lattice

being used, the process for constructing this for a two dimensional lattice is de-

tailed in Bouzidi, d’Humières, Lallemand & Luo (2001). Following on this work

d’Humières (2002) shows how this is achieved for three dimensional lattices. Com-

pared to the BGK method the addition of the moment space transformation step

naturally adds to the computational requirements, but since M is an orthogonal

matrix it does not have a heavy impact as proven by d’Humières (2002).

In a more recent attempt to compromise the computational efficiency of the

BGK scheme and the accuracy and stability of the MRT scheme, Ginzburg (2005)

proposed a two relaxation time (TRT) model. The central premise of the model

lies in the fact that most lattices are constructed such that the discrete velocities

each have an opposite one, therefore, the velocity distribution functions can be

decomposed into a symmetric and anti-symmetric component. The TRT-LBE,

therefore takes the form

fi(x+ ciδt, t+ δt)− fi(x, t) = −λs(f+i − f
(eq)+
i )− λa(f−i − f

(eq)−
i ) (2.64)

where λs and λa are the symmetric and antisymmetric relaxation factors and the

+,- notation is similarly used to make the same distinction in the distribution

functions. The computational benefits of the TRT were investigated by Karlin

et al. (2011).

2.6.3 Regularised Lattice Boltzmann (RLB)

The regularised method as proposed by Latt & Chopard (2006) argues that the

instabilities of the BGK method lie in the fact that certain symmetries of the
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flow are not preserved prior to the collision step. Their solution was based on

the fact that the non-equilibrium components of the distribution is approximated

using only the first order expansion term in the Chapman-Enskog procedure, as

detailed in section 2.5. When comparing the approximated solution using the

Chapman-Enskog expansion to a numerically calculated one the approximation

lacked symmetry properties due to the exclusion of the higher order contributions.

In their solution they proposed incorporating the non-equilibrium component of

the momentum flux tensor, Πneq
αβ , such that,

f1i =
ti

2c4s
QiαβΠneq

αβ . (2.65)

Therefore, the general expression for the distribution function would be as so,

f regi = feqi (ρ,u) + f1i . (2.66)

Since the calculation of the momentum flux is a standard procedure anyway

when solving the majority of fluid flow problems. And given that the procedure

is a local one, the addition of this extra step has a small impact on the overall

computation of the simulation.

2.6.4 Summary of Collision Operators

In this section the different methods to model the collision operation of the LBE

have been discussed. In summary these are:

ΩBGK = −1

τ
[f − f eq]

ΩMRT = −M−1S [m−meq]

ΩTRT = −
[
λs(f

+ − f(eq)+) + λa(f
− − f(eq)−)

]

2.7 LBM Computation

The LBM starts in the same way as the LGA in that the domain needs to be

divided into a series of lattices. At the nodes of these lattices the distribution

functions for the particles are allocated, and as the simulation is run these are

allowed to stream to neighbouring nodes through a fixed number of directions
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Table 2.1: Common Lattice Boltzmann Method Lattice models

Lattice Discrete Velocity Weight Sound
Type Vector, ci factor, wi speed, c2s

D2Q9
(0, 0) 4/9

1/3(±1, 0), (0,±1) 1/9
(±1,±1) 1/36

D3Q19
(0, 0, 0) 1/3

1/3(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/18
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/36

dependent on the lattice type chosen. A key requirement of the lattices being

that in order to maintain isotropy the set of velocities in the lattice must be

symmetrical.

By convention lattices are named following DnQb where n is the number of

dimensions and b is the number of discrete lattice velocities. As mentioned in

subsection 2.4.3 each of the discrete velocities is weighted such that the model

maintains Galilean invariance and isotropy. In Table 2.1 the associated weights

for the most common lattice types are shown as derived by Qian et al. (1992)

(see also Qian & Humières (1990)). Additionally, some examples of the lattice

arrangements can be seen in Figure 2.5 and in more detail in Appendix C.

All lattice models are based on the same principle wherein, the particles

stream to neighbouring nodes from a common central node. In fluid flow ap-

plications, the most commonly used lattices are the D2Q9 and D3Q19 for two

and three dimensional problems respectively. (Mohamad 2011, p. 19-22)

The main advantage of using LBM over CFD is the relative simplicity of

the equations, remember when any of the dynamics models are applied the LBE

becomes a simple linear PDE, shown below in its discrete form,

fi(x+ ciδt, t+ δt)− fi(x, t) = Ωi (2.67)

The LBM intends to solve the LBE (Eq 2.67) for every lattice in the domain,

this usually involves the following steps:

• Setup and mesh

• Initialisation

• Streaming
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(a) D2Q9 (b) D3Q19

Figure 2.5: Examples of common lattice arrangements used in LBM for fluid flow
simulations

• Collision

• Boundaries

2.7.1 Setup and mesh

This process is similar to other CFD methods, wherein the geometry and outer

domain is defined. Once the geometry is defined a mesh must be applied to the

domain, which will define the position of each node in the current domain. The

simplest choice consists of a regular lattice with a fixed grid spacing, δx and the

timestep used is denoted as δt. The reason for using a fixed grid is due to the

evolution of LBM from LGA which used this type to avoid having to interpolate

between the nodes. However, as the complexity of the fluid being simulated is

increased and non-rectilinear boundaries are used it necessary to consider more

advanced meshing methods.

2.7.1.1 Non Uniform Meshes

Local refinement of meshes is a key criterion in maximising computational effi-

ciency of a fluid simulation. The use of a single fixed spacing between nodes in

a mesh can become prohibitively expensive when simulating cases with large do-

mains, as this results in unnecessary resources being spent in solving parts of the
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domain with either simplistic flow characteristics or sections where the researcher

is not interested. Additionally if there are sections of the boundaries or obstacles

in the flow which would not be aligned with the nodes of the mesh, then again a

local refinement of the grid to match the boundaries appropriately would increase

the mesh density in the entire domain.

The method of local grid refinement, hereby referred to as the multi-grid

approach, was first introduced by Filippova & Hänel (1998), see Figure 2.6, can

be looked as having different layers of the domain. The base layer, i.e. the

coarsest, occupies the full domain and areas of where the flow is expected to have

a large gradient will be locally refined using a finer resolution. The method allows

for multi level refinement and also non-consistent refinement levels can also be

implemented. The first obstacle in implementing this process is how to maintain

dynamical similarity between two refinement layers. In LBM computations are

performed in lattice space, necessitating a conversion from the physical space.

This conversion is achieved from the characteristics of the grid. In a fixed grid

arrangement we can define the following,

δx =
L

N
(2.68)

δt =
uphy
ulbm

δx (2.69)

where L is the characteristic length, N is the number of gridpoints on the length

L, uphy is the velocity in physical space and ulbm is the velocity in lattice space.

To maintain dynamic similarity the Reynolds number in both lattice and physical

space must match such that,

ulbm(L/δx)

νlbm︸ ︷︷ ︸
Relbm

=
uphyL

νphy︸ ︷︷ ︸
Rephy

therefore, the viscosity in lattice units is,

νlbm = νphy
δt
δ2x
. (2.70)

Given that the Chapman-Enskog expansion demonstrated a relationship between

the relaxation parameter and the viscosity see Eq 2.56, then changing the grid

resolution in any way will result in a different Reynolds number for the refined

areas. Therefore, it is necessary to rescale the relaxation factor in the finer mesh
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Figure 2.6: Advanced meshing options for LBM. (a) Multigrid (b) Multiblock. In the
case of the Multigrid case the solid circular nodes represent the coarse mesh region, the
open circular nodes are the common nodes between the fine and coarse layers, and the

solid square nodes are the mesh nodes.

based on the coarse mesh as so,

τ f =
1

2
+ n

(
τ c − 1

2

)
(2.71)

where the subscripts f and c represent the fine and coarse mesh quantities re-

spectively, and the refinement factor n = δcx/δ
f
x . Similarly the timestep in the

refined grid must also be rescaled using the refinement factor, δft = δct/n. Under

this new method first the coarse mesh streaming and collisions are computed for

the time t+ δct and then the distribution functions for the fine mesh boundaries

are interpolated from the coarse mesh and then the streaming and collisions are

computed for the fine mesh for t, t+ δft , · · · , t+ (n− 1)δft .

This method increases the complexity of the solver and the domain, but it

can drastically reduce the total number of nodes and as direct result reduce the

hardware requirement needed to solve the problem. An alternative to Fillipova’s

multi-grid approach is the proposed method of Yu et al. (2002), see Figure 2.6,

wherein instead of having a coarse layer and fine layer with information exchang-

ing at the common nodes the mesh is split into independent blocks with their

own resolutions and information is only exchanged between the blocks at the

interfaces.
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More recently progress has been made in designing algorithms for adaptive

meshes, this involves placing a number of “sensors” and if the critical value is

exceeded then the area surrounding the sensor is locally refined using a hierarchi-

cal data structure, known as quad-tree or oct-tree in two and three dimensions

(Crouse et al. 2003, Tölke et al. 2006). In addition to the multi-grid/block meth-

ods described here other methods with non-uniform grids have been developed

for LBM,

• Interpolation methods

• Finite difference methods

• Finite volume methods

• Finite element methods

• Taylor series expansion and least squares methods

However, these lie beyond the scope of this investigation, and the reader is

directed to the following literature for further information: He et al. (1996), Cao

et al. (1997), Nannelli & Succi (1992), Lee & Lin (2001), Shu et al. (2001).

2.7.2 Initialisation

Initial conditions are intrinsic to any fluid flow simulation. Therefore, it is neces-

sary at the very beginning of the simulation to define the distribution functions

at all nodes in the lattice. Since general macroscopic quantities such as initial

velocity and density are given as parameters a simple way to initialise the nodes

is given by,

fi(t0) = feqi (ρ0,u0) (2.72)

In the case that density is not given, the initial pressure must first be calcu-

lated from the the Poisson equation and then the density may be computed.

2.7.3 Streaming

Streaming is simply allowing the velocity distribution functions to move across

lattice linkages to neighbouring nodes, a graphical representation can be seen in

Figure 2.7. This step is by far the least intensive as it merely requires changing
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Figure 2.7: Illustration of the streaming process of a lattice node for the D2Q9 case

the indexes of the distribution functions to those of node at which it is moving

to,

f ′i(x+ ci, t) = fi(x, t) (2.73)

2.7.4 Collision

The collision is the computational step in the algorithm, it entails the compu-

tation of the equilibrium distribution functions and the subsequent relaxing of

the distribution function in line with the model to arrive at the post collision

distribution function. The process is model dependent as each lattice type has a

different equilibrium distribution function and depending on the dynamics model

chosen it may be necessary to pre-compute certain parameters or conduct space

transformations.

For example taking the BGK method,

• Based on the streamed distribution functions the macroscopic variables are

computed via the relations shown in Eq 2.41

• The computed macroscopic variables are used to construct the equilibrium

distribution function as per the lattice structure chosen.
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Figure 2.8: Illustration of the periodic boundary condition on a D2Q9 lattice.

• The streamed distributions are relaxed towards their equilibrium to yield

the post collision distribution function fi(x+ ciδt, t+ δt)

In the case of the MRT scheme the process is similar but it computed in the

moment space as detailed in subsection 2.6.2

2.7.5 Boundaries

In order to conform to a real system boundary conditions are applied where

necessary. The most common boundary conditions will be explored here.

The simplest boundary to implement is the periodic boundary, see Figure 2.8.

In this case, the distribution functions leaving the domain are streamed back

to the opposite side. This situation is useful when simulating large or infinite

domains, however, simply allowing distributions to stream is only physical when

there is no pressure gradient in that direction, i.e. in the case of fluid moving

over an infinitely wide plate. In the case of requiring periodicity in the same

direction of the flow a correction term based on the density, pressure gradient

and the sound speed is necessary as demonstrated by Zhang & Kwok (2006).

When dealing with a flat solid boundary the bounce-back method is the most

widely used. Its premise is quite simple, it assumes that when a particle en-

counters a boundary its velocity is reversed. In doing so, the momentum of all

particles hitting a boundary is always reversed such that the macroscopic velocity

at the boundary is zero. Hence, the bounce back method effectively implements a

no-slip boundary condition, which is necessary at all fixed wall boundaries. The

two main ways to implement this are the full-way and half-way schemes. In the

full-way bounce back, as shown in Figure 2.9, all the distribution functions that

leave the fluid are reverted and streamed back to the prior node. It should be
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Figure 2.9: Illustration of the full-way bounce-back boundary condition on a D2Q9
lattice, for a no-slip wall located at the bottom of the simulation domain.

noted that since the distribution functions are physically leaving the domain then

the scheme requires the presence of “ghost” nodes to temporarily store the values

of exiting distribution functions but no collisions are computed on these nodes,

since they are a part of the solid boundary.

The half-way bounce back is a more accurate scheme, since it allows the

boundary nodes to remain wet, i.e. they are still part of the simulation domain.

In this case the distributions leaving the domain are reflected, and then due to

the node being inside the domain the collision step is calculated, see Figure 2.10

An additional scheme called the specular reflection method which can be

used with either the full or half way bounce back schemes, see Figure 2.11 and

Figure 2.12. This method reflects the distribution functions with respect to the

wall normal direction effectively cancelling out the wall normal momentum but

preserving the tangential momentum to impose a free-slip boundary condition.

These boundary methods focus on the local behaviour at the boundary only,

since no relations between the macroscopic variables and the distribution func-

tions are defined this can lead to some errors. As such the works of Noble et al.

(1995), Inamuro et al. (1995), Zou & He (1997) would be of interest to minimise

such errors.
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Figure 2.10: Illustration of the half-way bounce-back boundary condition on a D2Q9
lattice, for a no-slip wall located at the bottom of the simulation domain.
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Figure 2.11: Illustration of the full-way bounce-back boundary condition on a D2Q9
lattice, for a free-slip surface located at the bottom of the simulation domain.
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Figure 2.12: Illustration of the half-way specular boundary condition on a D2Q9
lattice, for a free-slip surface located at the bottom of the simulation domain.

All the methods discussed here are only valid for flat boundaries for the case

of a curved boundary such as a sphere a number of interpolation and extrapo-

lation schemes also based on the bounce back methods have been successfully

implemented. However, for the purpose of this investigation only rigid and flat

boundaries are used, therefore, the reader is directed to the extensive literature

such as Bouzidi, Firdaouss & Lallemand (2001) and Guo et al. (2002) for further

details.

2.8 Turbulence modelling - Large Eddy Simulation

(LES)

Computing a turbulent flow using a Reynold Averaged Navier Stokes (RANS),

see Appendix D, approach yields an averaged solution, and as such the unsteady

turbulent motions of a flow are lost. The most popular method to achieve this

is to use a two equation model such as the k − ε. In the LBM the approach to

solve this model is to introduce another two distribution functions for k and ε

which are resolved in the collision step of the algorithm. (Teixeira 1998, Succi

et al. 1995)
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A very similar approach can be taken to apply the two-equation model k−ω
to the LBM algorithm. In this model ω is the specific rate of dissipation of the

turbulence kinetic energy into internal thermal energy. (Shu et al. 2006)

On the other hand, using a Direct Numerical Simulation (DNS) approach to

model all the scales of the flow, a very high resolution is required and as such

the computational cost of using DNS ∝ Re3, this results in the majority of the

resources being spent on resolving small dissipation scales. Due to the large

Reynolds numbers involved in any engineering flow, and the current computing

resources available, using DNS techniques is wildly impractical.

The introduction of LES in Smagorinsky (1963) allowed for more accurate so-

lutions to be achieved without a large computational demand. The LES approach

sits in between RANS and DNS, in this scenario large scale motions are resolved

explicitly whilst small scales are modelled. The effectiveness of this technique

is based upon that small scale motions are universal and can be represented by

simple models, whereas large scale motions, which are affected by the flow ge-

ometry, contain the majority of the flow’s energy and anisotropy are resolved

exactly. Hence, LES avoids the large computational cost associated with DNS,

and it also proves to be superior than RANS approaches for flows with large

scale unsteadiness i.e. vortex shedding and flow separation in bluff body cases.

A graphical representation of the differences between the different approaches

can be seen in Figure 2.13. A simplification of the LES method is that it acts

as a low pass filter so the high frequency components (small scales) are removed

from the computation.

From a computational demand point of view, since the small scales of the

flow are not resolved the domain can be discretised with a coarser mesh, which

results in a reduction of the number of degrees of freedom in the problem.

In practice LES simulations use the simple model introduced by Smagorinsky

(1963) this involves the consideration of a filter function G to separate the scales

and then using a simple eddy-viscosity approach the Navier-Stokes equations can

be closed. The simplicity of this method has allowed it to remain a popular

choice for use in LES simulations involving isotropic turbulence. (Fernandino

et al. 2009)

The Smagorinsky model postulates that the total viscosity can be decomposed

to the physical and turbulent viscosity, where the turbulent viscosity represents
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Figure 2.13: Differences between the different turbulence models

the small scales that are being modelled.

νtotal = ν + νt (2.74)

Thus, the turbulent eddy viscosity, νt is expressed as,

νt = Cs∆
2|S| (2.75)

where Cs is the Smagorinsky constant, which depends on the geometry of the

system, but usually takes the values between 0.1-0.2. The ∆ is the filter width,

in LBM this is taken as the lattice spacing, and |S| is calculated from the local

strain stress tensor, Sαβ as |S| =
√

2SαβSαβ The local stress tensor being defined

as,

Sαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
(2.76)

In LBM the local stress tensor can be computed from the non-equilibrium stress

tensor defined as,

Παβ =

q∑
i=1

ciαciβ (fi − feqi ) (2.77)
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The turbulence viscosity can, therefore, be shown as (Hou et al. 1994, Delbosc

et al. 2014)

νt =
1

6

(√
ν2 + 18C2

s∆2

√
ΠαβΠαβ − ν

)
(2.78)

The above method has been shown to work in the LBM framework, and

although they provide acceptable results shown by Delbosc et al. (2014), Sagaut

(2010) argues that the since the original Smagorinsky model was derived directly

from the Navier-Stokes equations the same non-linearities do not apply to LBM.

As such, building from the work of Stoltz and Adamas they were able to present

a different approach to improve the performance of LBM-LES algorithms. (Stolz

& Adams 1999, Stolz et al. 2001)

Although no simulations have been presented in this report to validate sub-

grid LES models in an LBM framework. There are multiple cases in the literature

proving its validity as a research tool. Fernandino et al. (2009), Hou et al. (1994),

Sagaut (2010), Koda & Lien (2015). Hence, the author is confident of the appli-

cability of this method to the proposed investigation.
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Chapter 3

Results

The purpose of this chapter will be to primarily expose the simulation setup used,

and explain to the reader the methodology used during the investigation. Finally

the results of the investigation will be presented for each case and an analysis

including observations will be presented in chapter 4

3.1 Simulation Domain and Boundary conditions

As the purpose of this investigation was to determine the validity of LBM as

a suitable alternative to other CFD methods at high Reynolds numbers, the

numerical domain was chosen to simulate a prior experimental set-up of which

validation data was readily available. The experiment, conducted at the Uni-

versity of Sheffield by Prof. Wernher Brevis, placed a single obstacle in a water

flume and measured the wake characteristics using an acoustic doppler velocime-

ter (ADV). The experimental condition was set such that, given the obstacle with

diameter D, the Reynolds Number, ReD, was 28350. Although the experimental

data being used as a comparative source in this investigation remains unpublished

the reader is directed to the following experimental investigation conducted in

the same flume Higham & Brevis (2018).

In order to fully understand whether the LBM is a viable numerical method,

it is crucial to first simplify the problem to its basic components. The final

objective, is to conduct a simulation of a flow moving over a fractal canopy, this

scenario can be seen as the superposition of different processes, which can be

identified as follows,

• Quasi 2D flow past a single or porous obstacle.
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Figure 3.1: Schematic of the flume and geometry of the numerical domain

• Quasi 2D flow past a confined obstacle

• Fully 3D flow past a obstacle.

For reasons that will be detailed further in chapter 5, only results pertaining

to the first point will be presented in this thesis. For this scenario three obstacles

were simulated; a basic square cylinder and two porous obstacles, one with a

regular arrangement and a second using a fractal geometry, refer to Figure 3.2

for the obstacle geometries. Both porous obstacles were designed so that their

volume fraction, i.e. porosity, was the same. For all three cases the obstacle

was placed at the centre of the domain, such that the upstream and downstream

portion of the domain was equal, and the side walls were also at an equal distance

from the obstacle. Whilst there is no experimental data available for the case

of the square cylinder to perform a quantitative analysis, there exists sufficient

evidence in the published literature to conduct a qualitative analysis. For all cases

presented here the LBM software used was Palabos, developed at the University

of Geneva by J. Latt and B. Chopard (Latt 2009). For all three obstacle types

simulations, we run over a range of Reynolds numbers varying from laminar

flow to turbulent flow; in all cases a three dimensional domain was constructed
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D

(a)

D

D/9

(b)

D/9D/3D/27

D

(c)

Figure 3.2: Top view of the obstacles being used for this investigation and their
geometries. (a) Solid Square, (b) Porous Regular, (c) Porous Fractal (Sierpinski)

using D3Q19 lattices. Table 3.1 details the simulation parameters common to

all three obstacles. Additionally, for each Reynolds number a mesh sensitivity

analysis was conducted using the same mesh densities for all seven cases. Due to

differing inlet velocities for each case, variation in the timestep and subsequently

the relaxation time for each mesh is to be expected, as an example Table 3.2

shows the corresponding parameters for case VII. This being a water channel,

the domain boundary conditions remained the same irrespective of the obstacle

and flowrate simulated. Hence, the bottom and side walls were set to a no-slip

condition whilst the top boundary was set to free-slip. A uniform inlet was set

at the left side of the domain and an outlet at the right. Refer to Figure 3.1 for

a schematic of the numerical domain. Due to the explicit nature of the LBM it

is necessary to allow the flow to develop to the stage where it is fully developed.

Therefore for all three cases the time at which data recording starts corresponds

to when the flow has cycled ten times over the entire domain. Additionally for all

flowrate cases, Smagorinsky subgrid modelling was selected using a Smagorinsky

constant Cs = 0.2.

3.2 Mean Velocity and TKE

In this section the mean velocity, turbulent kinetic energy (TKE) and the con-

vergence of the simulations will be discussed.
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3.2.1 Solid Square Obstacle

Of the three obstacles tested the solid case is the simplest, therefore, it is the

obvious choice to start with. First of all, it is necessary to identify the suitability

of dynamics models previously discussed. At this stage, in order to validate the

results, it is unnecessary to consider the entire domain for analysis as this would

result in significantly large data files. Therefore, it was decided to consider the

following planes in the domain,

• Z-Normal plane at 40% of the flow depth from the channel floor.

• Y-Normal plane at 50% of the channel width.

• X-Normal plane at 25%, 50% and 75% of the channel length.

Furthermore, in order to prevent the formation of a large gradient at the inlet

when starting the simulation, the inlet velocity is gradually increased over a time

period equivalent to 20000 timesteps.

3.2.1.1 Dynamics Models - BGK

The first model tested was the BGK as it is the simplest. For the slowest of all

the flows, case I, Figure 3.3 demonstrates the convergence of the average kinetic

energy in the whole domain, and as it can be seen for all mesh cases the data was

sampled at a sufficiently converged state. Furthermore, the mean velocity maps

shown in Figure 3.4 are as expected. The recirculation zone behind the obstacle

is easily identifiable spanning approximately 2 diameters downstream with the

flow surrounding the obstacle being accelerated around it.

Upon closer inspection at the centreline velocity profiles as shown in Fig-

ure 3.5, there are still some issues. First of all the near wake region appears to be

fully converged and the magnitude of the recirculation region does seem in line

with what is expected from the literature. Secondly the flow recovery after the

wake cannot be fully determined as the length of the channel chosen for this case

is too short so it is not inconceivable that the outlet may be having an effect on

the flow. Finally the flow appears to accelerate in the inlet portion of the domain,

since there are no other obstacles in the channel this behaviour is unexpected.

All remaining cases resulted in diverged solutions.
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Figure 3.3: Average kinetic energy in the lattice over time, with BGK dynamics.
Solid square obstacle at ReD = 100.

3.2.1.2 Dynamics Models - RLB

The second model tested was the regularised method of Latt & Chopard (2006).

As explained previously, this method maintains the single relaxation time of the

BGK, but redefines the eqilibrium distribution function to account for symmetries

lost in the Chapman-Enskog expansion.

This method, whilst still using a single relaxation factor like the BGK, proved

to be stable enough that the high Reynolds number cases produced a converged

result.

3.2.1.2.1 Laminar Cases A stark difference in the laminar cases from the

BGK is that case II did produce a converged result. This immediately demon-

strates that the regularized procedure can be an alternative to the BGK method.

The centreline streamwise profiles shown in Figure 3.6, for case I, once again show

a very well converged near wake region as in the BGK profiles. However, the RLB

does nothing to affect the upstream and far wake region of the flow, although the

variation between mesh densities is slightly smaller for the RLB case.

On the other hand, for case II, the upstream region appears markedly decel-

erated than case I. However, the near wake and far wake regions appear to be

considerably affected. What stands out the most here is the loss of symmetry

in the recirculation zone. The far wake region appears to recover at a different

rate than the near wake region, a behaviour not observed in case I. Although the

BGK case did diverge, the relative closeness of two cases in terms of Reynolds
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Figure 3.5: Normalised mean streamwise velocity profile along the centreline of the
Z-normal plane, with BGK dynamics. Solid square obstacle at ReD = 100 (Case I).

numbers, means that it to be expected that the two cases should have results

which are close to one another.

3.2.1.2.2 Turbulent Cases Again where the RLB shows superiority over the

BGK method is in the ability for converged results at higher Reynolds numbers,

since all turbulent flow cases had a converged result. By first taking a look at the

kinetic energy convergence for cases III-VII, Figure 3.7, it is immediately clear

that the energy of the system is not smooth and constant at all times like the

laminar cases, however, fluctuations remain relatively constant and small over

time for all cases. A noticeable difference is that for case III irrespective of mesh

density the average kinetic energy fluctuates around the same value, whilst for the

remaining cases consistently there is about ∼15% difference between the coarsest

and finest meshes.

Turning to the mean profile data for each case, Figure 3.8. Firstly, the up-

stream domain shows that the flow is accelerated less with increasing Reynolds

numbers. This indicates a lessening influence at the centreline by the wall bound-

ary layers, as already by the densest meshes of case IV the upstream velocity is

no longer accelerated

Secondly, in the near wake region it can be observed that the recirculation

bubble for cases III and IV is smaller than for the remaining cases. Furthermore,

cases III and IV do not show a converged result whilst the remaining cases show

a stronger convergence in this region. A noticeable difference to the BGK cases

is the magnitude of the recirculation zone, whilst the BGK cases consistently
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Figure 3.6: Normalised mean streamwise velocity profile along the centreline of the
Z-normal plane, with RLB dynamics. Solid square obstacle at (a) ReD = 100 (Case I)

(b) ReD = 500 (Case II).

predicted a minimum normalised streamwise velocity of -0.2. Cases III and IV,

due to not having a converged result, show a minimum velocity between -0.25

and -0.5 for case III and -0.2 and -0.4 for case IV. The remaining cases are

more consistent indicating a recirculation velocity of about -0.35. Additionally,

it should be noted that in each case, regardless of the mesh density, the location

of the minimum velocity is always the same.

Thirdly, observations in the far wake region of the profiles make clear the

weaknesses of the RLB method. Case III has a completely unphysical downstream

acceleration, beyond the initial inlet velocity and even stranger is the fact that

there appears to be no clear path to convergence via mesh density. Previous

cases, including Case I with BGK, all showed a clear convergence of the results

in all three identified regions of the flow. Case IV, does have some acceleration,

but this phenomenon is only observed at the coarser meshes. However, whist

case III showed no indication of achieving a converged result, case IV is more

promising, but only for the coarse meshes, 226 NPM - 349 NPM, the subsequent

mesh densities break with the convergence established by the prior meshes and in

the instance of 374 NPM the unphysical acceleration can be once again observed.

Interestingly, cases V and VI show a divergence at higher mesh resolutions from

an already converged low resolution result. Finally in case VII, is can be seen

that there is no acceleration at any mesh density and also the result appears to

be converged even at the lower resolutions.
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Figure 3.7: Average kinetic energy in the lattice over time for turbulent flow past
solid square cylinder, with RLB dynamics. (a) ReD = 2470 (Case III) (b) ReD = 12352

(Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410
(Case VII)
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Figure 3.8: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane, with RLB dynamics. Square cylinder obstacle at (a) ReD = 2470

(Case III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057
(Case VI) (e) ReD = 49410 (Case VII)
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Comparing the profiles of turbulent kinetic energy (TKE), Figure 3.9. For

case III, contrary to the results of Figure 3.8a, the profiles show what would

seem as converged result. However, the large fluctuations of TKE along the

profile are unrealistic in time averaged data. In the subsequent cases, the profiles

all appear much smoother with the higher Reynolds cases again appearing to be

more converged than the others.

Figure 3.10 presents the velocity profiles upstream of the obstacle at locations

corresponding to: 0.0X (inlet), 0.1X, 0.2X, 0.3X and 0.4X of the channel length,

the obstacle centre being positioned at 0.5X in all cases. For case III the entire

velocity profile is accelerated in the upstream region concurrent with the results

of Figure 3.8a, furthermore the profile is not logarithmic as would be expected

from a channel flow, instead there seems to be a sustained acceleration in the

flow around 0.1Z, whilst the magnitude of this jet dampens along the channel

it is not sufficient to completely correct this behaviour. Similarly, case IV also

experiences this jet phenomenon in the same region of the domain, and once again

the anomaly is still present at 0.4X. The rest of the profile appears unaffected

by this jet, although, from 0.2X onwards a secondary shear layer, increasing over

time, can be seen forming at the surface of the flow. Since the top of the channel

is a free stream surface with no solid surfaces this phenomenon is also completely

unphysical. The remaining cases all show similar evolutions of the flow there is

still the jet at the bottom of the channel but this is quickly damped out and

a fully logarithmic profile consistent with what is expected from the theory is

observed by 0.3X - 0.4X.

The profiles shown in Figure 3.11, show the evolution of the flow after the

obstacle at locations 0.6X, 0.7X, 0.8X, 0.9X and 1.0X (outlet). Once again there

is a clear distinction in the evolution for cases III and IV compared to the rest.

Cases V, VI and VII by 0.9X a turbulent logarithmic profile can be observed,

however, for cases III and IV due to the unphysical downstream acceleration

observed in Figure 3.8a and Figure 3.8b, more so for case III than case IV, the

flow recovers to what appears to be a shear flow.

3.2.1.2.3 Outlet zone types A key feature observed in Figure 3.8, in the far

wake region of the velocity profiles, the flow will reach a maxima and then slowly

decelerate as it approaches the outlet. This effect should not be observed as in

physical scenario the velocity after an obstacle should recover to a certain value

and then remain constant at that value. One explanation for this phenomenon
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Figure 3.9: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane, with RLB dynamics. Solid square obstacle at (a) ReD = 2470 (Case

III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)
(e) ReD = 49410 (Case VII)
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Figure 3.12: Normalised mean streamwise velocity profiles comparing three different
outlet sponge zone types (None - NSZ, Smagorinsky - SSZ and Viscous - VSZ) along

the centreline of the Z-normal plane, with RLB dynamics. Solid square obstacle at (a)
ReD = 100 (Case I) (b) ReD = 500 (Case II)

is that the cause is a numerical error, due to the fact that infinitely long do-

main cannot be simulated, and an outlet has to be defined. If not positioned

sufficiently far away it is possible to have the flow reflect at the boundary and

affect the incoming flow after it. As a means of ensuring that the outlet was not

causing additional reflections in the flow, a sponge zone (a localised area of higher

viscosity, that would allow the flow to slow down much faster prior to reaching

the outlet) of length D was placed in front of the outlet. Furthermore, two differ-

ent sponge zones were tested, a Smagorinsky based one wherein the Smagorinsky

constant in the sponge zone was increased to 0.6 and a simpler viscosity based

sponge zone.

For the two laminar cases, Figure 3.12 only case I was able to produce a

result for the viscous based sponge zone but only for the four finest meshes.

Additionally, only a very slight change can be observed in the outlet region of

the profile where the recovery rate has slightly slowed down. In the cases where

a Smagorinski sponge zone was implemented, there is no change with respect to
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not having a sponge zone.

Similarly for the turbulent cases, the streamwise profiles are shown in Fig-

ure 3.13. Cases IV to VII show that the viscous type sponge zone results in a

diverged solution, and direct comparison between the runs without a sponge zone

and a Smagorinsky type one show near identical profiles for each case at all reso-

lutions as well. Hence, it is clear that the unphysical phenomena must be arising

from the underlying dynamics model chosen. Therefore, the MRT method needs

to be explored as well.

3.2.1.3 Dynamics Models - MRT

Finally the last dynamic model tested was the multiple relaxation time. Since,

the choice of outlet sponge zone was determined to have no net positive effect on

the simulation outcome, to keep the cases as simple as possible the MRT model

was tested without a sponge zone only. Similarly to the RLB this method was

effective in the high Reynolds number region.

3.2.1.3.1 Laminar cases The two laminar cases, presented in Figure 3.14,

both show that near the side walls the flow separates forming quite large bubbles

forcing the accelerated flow into the central region of the transversal plane. This

effect is more dominant in case I, hence the shape of the wake appears to be

more triangular compared to the elliptical shape of case II. The downstream

cross-stream velocity maps, Figure 3.15, show the formation of two recirculation

zones side by side aft of the obstacle, with case I showing more clearly defined

structures and symmetrical structures about the centreline.

A significant difference can be made between the two cases by looking at the

average kinetic energy, Figure 3.16, whilst case I demonstrates a smooth constant

average kinetic energy in the domain that does not change, case II fluctuates over

a constant value. However, case II shows that the mesh resolution has very little

effect on the average kinetic energy, whilst case I demonstrates the opposite.

Additionally, with respect to the RLB method, the MRT offers no change in

the streamwise profiles, Figure 3.17.

3.2.1.3.2 Turbulent cases For the turbulent cases, first consider the mean

velocity maps, Figure 3.18. It can be seen that as the velocity of the flow is

increased so does the wake length, but only between cases IV and V. Furthermore,

both cases III and IV show that the accelerated portion of the flow is quickly
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Figure 3.13: Normalised mean streamwise velocity profiles comparing three different
outlet sponge zone types (None - NSZ, Smagorinsky - SSZ and Viscous - VSZ) along

the centreline of the Z-normal plane, with RLB dynamics. Solid square obstacle at (a)
ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d)

ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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(a) (b)

Figure 3.14: Normalised mean streamwise velocity maps, u/U∞, of the Z-normal
plane at 40% flow depth from the channel floor with MRT dynamics and a resolution of

417 NPM. Solid square obstacle at (a) ReD = 100 (Case I) (b) ReD = 500 (Case II)

(a) (b)

Figure 3.15: Normalised downstream mean cross-stream velocity maps, v/U∞, of the
Z-normal plane at 40% flow depth from the channel floor with MRT dynamics and a

resolution of 417 NPM. Solid square obstacle at (a) ReD = 100 (Case I) (b) ReD = 500
(Case II)
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Figure 3.16: Average kinetic energy in the lattice over time for turbulent flow past
solid square obstacle, with MRT dynamics. (a) ReD = 100 (Case I) (b) ReD = 500

(Case II)
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Figure 3.17: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane, with MRT dynamics. Solid square obstacle at (a) ReD = 100 (Case I)

(b) ReD = 500 (Case II)
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drawn into the centre of the channel forming a number of pockets of low velocity

surrounded by areas of high velocity flow. By comparison the remaining cases do

not develop this phenomenon instead the high velocity flow remains as two jets,

one on either side of the obstacle, that dissipate over the channel length.

Turning to the cross-stream maps, Figure 3.19, all cases show the two re-

circulation zones previously. However, cases III-IV show far more cross-stream

activity in the flow closer to the outlet, case III clearly shows a third recirculation

zone, which when compared to the corresponding streamwise map indicates that

the flow is being draw towards the centreline. The far wake structures of case IV

suggest the contrary where the flow is being pushed towards the side walls.

The kinetic energy convergence and the velocity profiles are shown in Fig-

ure 3.20 and Figure 3.21 respectively. From the kinetic energy convergence there

appears to be a subdivision between cases III-IV and V-VII, both cases III and

IV have little to no variation between the meshes whilst the remaining cases do

demonstrate a noticeable variation between the meshes.

By observing the velocity profiles, this separation becomes clear as cases III

and IV are those which present the most unphysical flow. It should be noted

that all turbulent cases demonstrate an unphysical upstream region. Although,

as the Reynolds number and mesh density are increased, this anomaly seems to

correct itself. However, at the finest mesh of case VII the upstream region still

remains unphysical but only slightly. When observing the near wake region case

III shows a very erratic flow, across the meshes there does not seem to be a clear

convergence and the magnitude of the recirculation velocity along with case IV is

the largest compared to the remaining cases. Furthermore, as in the RLB results,

the shortest recirculation bubble is observed in case III. Case IV does show some

improvement, and the near wake region appears to be quite converged, although

the size of the recirculation bubble grows and contracts as the mesh density

increases. The remaining cases all show little to no variation of the wake size at

all resolutions, however the magnitude does vary, but by the finest resolution a

sufficiently converged result can be observed.

In the far wake region cases III and IV both show unphysical results, with case

III showing the most erratic behaviour akin to the RLB results. The remaining

cases all maintain physicality of the flow and also show little variation between

resolutions.

The TKE profiles, shown in Figure 3.22, for case III further reinforce the

erratic description of the flow observed in the velocity profiles. Case IV stands
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(a)

(b)

(c)

(d)

(e)

Figure 3.18: Normalised mean streamwise velocity maps, u/U∞, of the Z-normal
plane at 40% flow depth from the channel floor with MRT dynamics and a resolution of
417 NPM. Solid square obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case

IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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out from the other cases in that the variation across the different resolutions is

the greatest of all the cases, most significantly in the peak TKE. Compared to

all other turbulent cases the peak TKE for case IV has the greatest change, the

outlier appears to be the 499 NPM mesh, the simulations with 300 - 374 NPM

do show somewhat of a convergence with the finest mesh, however the 499 NPM

mesh shows a dramatic reduction in TKE over the entire profile. Cases V-VII

show much less variation between resolutions but significant fluctuations can be

observed in the profiles of case V with these fluctuations becoming smoother as

the flow velocity is increased. Contrary to the observations in the RLB cases the

upstream region of the flow appears to be only slightly uniformly accelerated.

Looking at the upstream vertical velocity profiles along the channel, shown in

Figure 3.23, there is a significant difference between the inlet profiles for all cases

and the other locations, whilst cases III and IV seem to develop a shear velocity

profile with case III being more pronounced the remaining cases do show a well

defined logarithmic turbulent profile as predicted in the theory. Additionally as

in the RLB cases, significant fluctuations can be observed with low resolution

cases experiencing a lower frequency and higher magnitude oscillation compared

to the finer meshes. Immediately after the inlet, at 0.1X, all velocity profiles

for all cases appear similar, the channel floor jet observed in the RLB results is

clearly present again and the profile appears to have reverted to a near uniform

profile. Furthermore, cases III and IV also have developed a top shear layer which

becomes increasingly pronounced over the channel length. In cases V-VII the top

shear layer also develops but at a later stage, and it again grows as the flow

advances in the channel. Comparing the evolution of the profiles for cases V-VII

after the inlet, it can be observed that as the flow develops across the channel

the variations between the resolutions grow, however, a clear convergence can be

observed in every case.

Figure 3.24 shows the downstream vertical profiles. As with the streamwise

profiles a distinction can be made between cases III-IV and V-VII, the wake pro-

files, at 0.6X, for cases III and IV appear remarkably shear-like, this contrasts

cases V-VII where by the finest resolution the flow is relatively uniformly decel-

erated across the entire height of the channel, but in case III an overall negative

shear can be observed across each resolution, only the finest mesh breaks the

pattern with a positive shear, additionally case IV resolutions show a positive

shear. Moreover, the slowest two cases also appear to develop near parabolic

profiles around 0.7-0.8X with case VI being more prominent. Further evolution
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Figure 3.20: Average kinetic energy in the lattice over time for turbulent flow past
solid square obstacle, with MRT dynamics. (a) ReD = 2470 (Case III) (b)

ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e)
ReD = 49410 (Case VII)
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Figure 3.21: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane, with MRT dynamics. Solid square obstacle at (a) ReD = 2470 (Case

III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)
(e) ReD = 49410 (Case VII)
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Figure 3.22: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane, with MRT dynamics. Solid square obstacle at (a) ReD = 2470 (Case

III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)
(e) ReD = 49410 (Case VII)
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along the channel, the flow experiences a deceleration close to the bottom of the

channel forcing the flow into a shear flow profile. The remaining cases, shortly

after the wake, recover to a logarithmic profile and maintain this characteristic

until the outlet.

As will be explained in further detail in chapter 4 the MRT model has proven

to be reliable choice than the RLB and BGK options. Hence, the remaining

obstacles will be studied only using the MRT model and without a sponge zone.

Furthermore, cases I and II will also be omitted as 1) No suitable validation data

could be acquired from the literature and 2) the focus of this thesis lies on the

turbulent regime.

3.2.2 Porous Regular Obstacle

The first of the two porous obstacles explored was the regular obstacle. As it can

be seen in the mean velocity maps, Figure 3.25, since the obstacle is essentially

a grid of square cylinders there is a direct path for the fluid to take through the

rows of the obstacle, hence, behind each row of obstacles a wake can be seen,

with the middle three rows forming a smaller wake compared to the two edge

rows. Furthermore, it can be clearly seen that although the individual obstacles

are apart they do have a group effect on the flow as the general area behind

the obstacle is noticeably decelerated. Compared to cases IV-VII case III has a

significantly larger wake size especially behind the far rows of the obstacle.

In the cross-stream velocity maps, Figure 3.26, it can be seen that the column

of obstacles closest to the outlet each form a small recirculation zone after it,

subsequently the group effect dominates the flow and two larger recirculation

zones are formed. For this obstacle it is only case III that demonstrates continued

cross-stream activity in the far wake region.

Following on to the streamwise profiles, shown in Figure 3.27 and Figure 3.28.

Although the experimental data is of a case ran at an ReD = 28350, since the

turbulent cases except for case III are all of the same order of magnitude it is a

reasonable assumption that all cases should be relatively similar.

Observations in the upstream region of the flow show identical behaviour as

in the solid case, this is natural as there has been no change in this area of the

domain.

The near wake region for all cases shows a convergence toward the experi-

mental data, however, an exact match is not achieved in any. A trend can be
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(a)

(b)

(c)

(d)

(e)

Figure 3.25: Normalised mean streamwise velocity maps, u/U∞, of the Z-normal
plane at 40% flow depth from the channel floor with MRT dynamics and a resolution of
417 NPM. Porous regular obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case
IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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observed that as the Reynolds number is increased the velocity profiles become

smoother irrespective of the resolution in both the near and far wake regions.

Similar observations can be made from the TKE profiles, in all cases the low

resolutions severely overestimate the actual value as measured experimentally

but quickly converge towards the experimental data at the higher resolutions.

Additionally since the TKE peak is so narrow the experimental profile does not

capture it properly, however, looking at the individual measurement points, again

both case IV and V are the ones that most accurately match the experimental

data. Furthermore, cases IV and V both seem to diverge from the experimental

data at approximately the same location. Moreover, whilst in the mean velocity

profiles its the far wake region that mostly aligns with the experimental, for all

cases the TKE profile correctly matches the near wake as measured.

Figure 3.29 shows the downstream vertical profiles, as the inlet region has

not changed it is necessary to analyse this area of the domain. A key difference

for the regular obstacle is that for cases IV-VII the flow does not appear to have

recovered to a fully turbulent velocity profile. at 0.9X and 1.0X it is clearly shown

that the bulk centre flow is still decelerated

3.2.3 Porous Fractal Obstacle

A clear characteristic of the flow for the fractal obstacle is that the recircula-

tion does not happen immediately behind the obstacle. In fact the recirculation

zone is delayed till about 4D for case III and 2.5D for cases IV-VII as shown in

Figure 3.30.

The cross-stream maps show similar observations already described, however,

for the fractal obstacle, Figure 3.31, all cases demonstrate a degree of cross-

stream flow activity, with the magnitude decreasing with higher flow velocities.

Furthermore, the cross-stream flow in the far wake region acts to push the flow

towards the side walls.

The mean streamwise profiles, as shown in Figure 3.32, continue the estab-

lished trend wherein the results become smoother as the Reynolds number is

increased. Additionally, for this obstacle the results also fail to locate the recir-

culation point accurately, whilst for the other obstacles irrespective of resolution

the location of the recirculation was well defined, for the fractal obstacle as the

resolution is increased the minima of the profile also changes without a clear con-

vergence at higher resolutions. However, as shown in the experimental data and
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Figure 3.27: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane, with MRT dynamics. Porous regular obstacle at (a) ReD = 2470 (Case
III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)

(e) ReD = 49410 (Case VII)
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Figure 3.28: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane, with MRT dynamics. Porous regular obstacle at (a) ReD = 2470 (Case
III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)

(e) ReD = 49410 (Case VII)
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(a)

(b)

(c)

(d)

(e)

Figure 3.30: Normalised mean streamwise velocity maps, u/U∞, of the Z-normal
plane at 40% flow depth from the channel floor with MRT dynamics and a resolution of
417 NPM. Porous fractal obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case
IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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the mean velocity maps the flow immediately after the obstacle is slightly accel-

erated before decelerating into the recirculation zone. This behaviour is captured

momentarily in cases V-VII at 374 NPM but subsequent meshes fail to capture

this. Overall, the general trend and shape of the experimental profile is replicated

by the numerical results, but the differences between individual resolution cases

are cause for further analysis.

The TKE profiles of Figure 3.33 show significant agreement between the ex-

perimental and numerical results in the far wake region. Again, due to under-

sampling of the near wake region the experimental profile fails to accurately

identify the peak TKE.

For the vertical profiles, Figure 3.34, downstream of the obstacles all cases

fail to recover to a fully developed turbulent profile instead remaining as a shear

profile.

3.3 Mass Flowrate

An inviolable law in physical systems is that of mass conservation. This principle

can be checked by calculating the mass flowrate of the three X normal planes,

at 25%, 50% and 75% of the channel length. The results presented are of cases

corresponding to 417 NPM resolution, MRT dynamics and no sponge zone.

3.3.1 Solid Square Obstacle

Figure 3.35 shows the mass flowrates for the tree velocity components as a time

signal for each plane. What immediately becomes clear is that the mass flowrate

is not constant instead it fluctuates over time, of which both the frequency and

amplitude of the oscillations increase as the Reynolds number is increased. Both

the transverse and vertical components show a near zero average mass flowrate

over the recorded period, this meaning that the entire flow is being driven in

the streamwise direction. For case III it is clear that as the flow travels down

the channel, the streamwise mass flowrate increases. Case IV also stands out in

that the streamwise mass flowrate appears to be constant at all three locations

indicating that the obstacle has little to no effect on the streamwise flow. The

remaining cases, V-VII, show a more appropriate evolution wherein after the

obstacle the flow has decelerated in the streamwise direction and there is increased

activity in the transverse and vertical directions.
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Figure 3.32: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane, with MRT dynamics. Porous fractal obstacle at (a) ReD = 2470 (Case
III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)

(e) ReD = 49410 (Case VII)
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Figure 3.33: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane, with MRT dynamics. Porous fractal obstacle at (a) ReD = 2470 (Case
III) (b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI)

(e) ReD = 49410 (Case VII)
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Table 3.3: Mean and signal frequencies (f,Hz) for mass flowrate (MFR, kg/s) of solid
square obstacle.

ReD
U V W

MFR f MFR f MFR f

2470
0.25X 3.00 0.05 0.00 0.04 0.01 0.54
0.50X 3.11 0.05 -0.01 0.04 -0.02 0.02
0.75X 3.21 0.02 -0.13 0.04 0.02 0.06

12352
0.25X 14.54 0.20 -0.01 0.15 0.03 0.22
0.50X 14.66 0.02 0.02 0.15 -0.11 0.02
0.75X 14.65 0.02 0.03 0.15 0.17 0.28

24705
0.25X 28.33 0.16 0.00 1.04 0.01 1.73
0.50X 28.42 0.16 0.03 1.04 -0.09 0.26
0.75X 27.26 0.02 -0.03 0.31 0.09 0.56

37057
0.25X 42.30 0.21 0.00 1.43 0.02 2.76
0.50X 42.20 0.06 0.06 1.43 -0.10 0.34
0.75X 40.30 0.06 -0.01 0.45 0.11 0.34

49410
0.25X 56.32 0.28 0.00 1.95 0.03 0.18
0.50X 56.11 0.28 0.08 1.95 -0.14 0.34
0.75X 53.54 0.28 -0.04 0.71 0.18 1.12

Mean flowrates and signal frequencies can be seen in Table 3.3

3.3.2 Porous Regular Obstacle

With the regular obstacle, Figure 3.36, the same signal frequency and amplitude

trend is observed. However, in the vertical direction there is a noticeable loss of

energy at 0.5X, whilst the prior and latter locations both show an average near

zero the 0.5X location has a sustained negative average mass flowrate vertically.

In the transverse direction prior to and at the obstacle there is effectively no

transversal motion only after the obstacle is the fluid moving in this direction.

Along the streamwise direction the same observations as for the square obstacles

can be made for cases II and IV. However, cases V-VII, at 0.50X the flowrate

has slowed down noticeably from the 0.25X and then it further decelerates by the

time it arrives at 0.75X.

Mean flowrates and signal frequencies can be seen in Table 3.4
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Figure 3.35: Mass flowrate evolution at different locations (0.25X, 0.50X and 0.75X)
in the channel for the three velocity components (U - streamwise, V - transversal, W -
vertical), with MRT dynamics. Solid square obstacle at (a) ReD = 2470 (Case III) (b)
ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e)

ReD = 49410 (Case VII)
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Figure 3.36: Mass flowrate evolution at different locations (0.25X, 0.50X and 0.75X)
in the channel for the three velocity components (U - streamwise, V - transversal, W -
vertical), with MRT dynamics. Porous regular obstacle at (a) ReD = 2470 (Case III)

(b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e)
ReD = 49410 (Case VII)



108 Results

Table 3.4: Mean and signal frequencies (f,Hz) for mass flowrate (MFR, kg/s) of
porous regular obstacle.

ReD
U V W

MFR f MFR f MFR f

2470
0.25X 3.03 0.06 0.00 0.34 0.01 0.43
0.50X 3.16 0.04 0.00 0.34 -0.03 0.01
0.75X 3.28 0.04 0.01 0.07 0.00 0.04

12352
0.25X 14.51 0.04 0.01 0.06 0.03 0.04
0.50X 14.58 0.04 0.00 0.15 -0.07 0.06
0.75X 14.52 0.04 0.02 0.27 0.01 0.15

24705
0.25X 28.36 0.33 0.00 1.14 0.02 1.73
0.50X 28.15 0.15 0.02 0.40 -0.21 0.04
0.75X 27.27 0.13 -0.01 0.45 0.05 0.57

37057
0.25X 42.34 0.18 0.00 1.55 0.02 2.43
0.50X 41.81 0.18 0.03 0.31 -0.22 0.11
0.75X 40.29 0.18 0.02 0.45 0.06 0.26

49410
0.25X 56.42 0.12 0.00 2.08 0.04 0.18
0.50X 55.67 0.12 0.04 0.35 -0.32 0.02
0.75X 53.62 0.01 0.00 0.71 0.07 0.56

3.3.3 Porous Fractal Obstacle

For the cases ran with a fractal obstacle, both the transverse and vertical di-

rections show similar behaviour described for the regular obstacle. The distinct

change in the established pattern occurs in the streamwise direction. In this di-

rection, for cases IV-VII, both the 0.50X and 0.75X locations show an increased

mass flowrate, though as the Reynolds number is increased the difference is less-

ened.

Mean flowrates and signal frequencies can be seen in Table 3.5

3.4 Strouhal Number

In addition to the temporal analysis, exposed in the previous section, a frequency

analysis was conducted. This consisted in identifying the dominant frequency via

a Fourier analysis of each velocity signal at every node in the domain, then the

Strouhal number can be computed using the equation,

St =
ζD

U∞
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Figure 3.37: Mass flowrate evolution at different locations (0.25X, 0.50X and 0.75X)
in the channel for the three velocity components (U - streamwise, V - transversal, W -
vertical), with MRT dynamics. Porous fractal obstacle at (a) ReD = 2470 (Case III)

(b) ReD = 12352 (Case IV) (c) ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e)
ReD = 49410 (Case VII)
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Table 3.5: Mean and signal frequencies (f,Hz) for mass flowrate (MFR, kg/s) of
porous fractal obstacle.

ReD
U V W

MFR f MFR f MFR f

2470
0.25X 3.02 0.09 0.00 0.32 0.01 0.44
0.50X 3.17 0.05 0.00 0.05 -0.03 0.05
0.75X 3.27 0.02 -0.06 0.05 0.05 0.09

12352
0.25X 14.61 0.38 0.00 0.29 0.03 0.04
0.50X 14.92 0.05 0.02 0.20 -0.10 0.09
0.75X 14.94 0.05 0.05 0.20 0.10 0.38

24705
0.25X 29.36 0.02 0.00 1.25 0.03 1.77
0.50X 30.78 0.02 0.03 0.39 -0.15 0.12
0.75X 30.80 0.02 -0.05 0.39 0.18 0.78

37057
0.25X 43.68 0.22 0.00 1.56 0.04 2.66
0.50X 45.36 0.17 0.06 0.54 -0.20 0.18
0.75X 45.03 0.07 0.03 0.54 0.25 1.09

49410
0.25X 57.96 0.07 0.00 2.33 0.05 3.21
0.50X 59.90 0.07 0.07 0.72 -0.28 0.11
0.75X 59.19 0.07 0.02 0.72 0.32 1.44

Strouhal number values will be presented only for the finest mesh scenario

using MRT dynamics and no sponge zone.

3.4.1 Solid Square Obstacle

See Figure 3.38 and Figure 3.39.

3.4.2 Porous Regular Obstacle

See Figure 3.40 and Figure 3.41.

3.4.3 Porous Fractal Obstacle

See Figure 3.42 and Figure 3.43.

3.5 Outlet Sensitivity

As demonstrated, by the lack of recovery to a fully developed profile in the reg-

ular and fractal cases it calls into question whether the choice to use a 1.5m
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(a) (b)

(c) (d)

(e)

Figure 3.39: Strouhal number, St, maps of the Z-normal plane at 40% flow depth
from the channel floor with MRT dynamics and a resolution of 417 NPM. Solid square

obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c) ReD = 24705
(Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII) . Domain cropped to

show area immediately downstream of the obstacle
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(a) (b)

(c) (d)

(e)

Figure 3.41: Strouhal number, St, maps of the Z-normal plane at 40% flow depth
from the channel floor with MRT dynamics and a resolution of 417 NPM. Porous

regular obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII) .

Domain cropped to show area immediately downstream of the obstacle
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(a) (b)

(c) (d)

(e)

Figure 3.43: Strouhal number, St, maps of the Z-normal plane at 40% flow depth
from the channel floor with MRT dynamics and a resolution of 417 NPM. Porous

fractal obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII) .

Domain cropped to show area immediately downstream of the obstacle
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Table 3.6: Domain sizes tested in addition to 1.5m.

Outlet length (m) 1.0 1.1 1.2 1.3 1.4

Obstacle Diameter, D (m) 0.135 0.135 0.135 0.135 0.135
Channel Length, X (m) 2.635 2.735 2.835 2.935 3.035
Channel Width, Y (m) 0.486 0.486 0.486 0.486 0.486
Flow Height, Z (m) 0.326 0.326 0.326 0.326 0.326

Outlet length (m) 1.6 1.7 1.8 1.9 2.0

Obstacle Diameter, D (m) 0.135 0.135 0.135 0.135 0.135
Channel Length, X (m) 3.235 3.335 3.435 3.535 3.635
Channel Width, Y (m) 0.486 0.486 0.486 0.486 0.486
Flow Height, Z (m) 0.326 0.326 0.326 0.326 0.326

downstream channel is sufficient. The initial choice was made in order to bal-

ance the available resources because of the uniform mesh required by Palabos, a

small increase in the domain size can exponentially increase the total number of

nodes, thus requiring more resources to complete. Although an optimum domain

length should have been identified prior to running the mesh sensitivity cases, no

indication has been made towards a correlation between the mesh density and

the domain size. As such an outlet sensitivity analysis was conducted for all the

turbulent cases using the coarsest mesh, 226 NPM, and MRT dynamics for all

three obstacle types. A list of the additional outlet domain sizes and the relevant

simulation parameters are given in Table 3.6.

3.5.1 Solid Square Obstacle

In the solid obstacle case, first observe the mean profiles as shown in Figure 3.44.

It is quite clear that changing the outlet length has very little to no effect on

the overall numerical result. The only exception being the two shortest domains

in cases V-VII, wherein both the near and far wake region are severely affected.

Nonetheless, 1.2m outlet length shows sufficient agreement in the mean profiles

to be considered a minimum outlet length.

Continuing the streamwise profile observations for the TKE, Figure 3.45, the

profiles show once again suitable agreement along the entire profile with outlet

lengths greater than 1.2m in all cases.

Given that the size of the outlet domain is variable that changes, to correctly

view the evolution of the vertical profile it is best to consider fixed normalised
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streamwise locations in the domain based on the obstacle diameter, as shown in

Figure 3.46. The vertical profiles, serve to further reinforce the observations made

for the streamwise profiles, however, only cases V-VII recover to a logarithmic

profile, whilst the two slower cases maintain a shear profile.

3.5.2 Porous Regular Obstacle

For the porous regular obstacle a significant effect can be observed in the higher

Reynolds cases (cases V-VII), Figure 3.47. Although the near wake region remains

unaffected, except in the shortest domain sizes, the far wake region of the profile

shows better agreement with outlet lengths of at least 1.8m. Once again the TKE

profiles agree with this assessment, Figure 3.48.

With regards to the vertical profiles, Figure 3.49, a clear distinction can once

gain be made between cases III-IV and cases V-VII, the slower cases again show

a tendency to recover towards a slight shear profile. The faster cases do eventu-

ally recover to a logarithmic profile with the longest domain showing the most

agreement and the 1.8m and 1.9m cases still showing a slight acceleration near

the free surface.

3.5.3 Porous Fractal Obstacle

For the fractal cases both the mean velocity, Figure 3.50, and the TKE, Fig-

ure 3.51, again follow the established trend explained previously and similar to

the regular case an acceptable minimum outlet length is deemed as 1.8m.

The vertical profiles, Figure 3.52, show that for all cases the flow fails to

properly recover at any of the tested domain lengths rather it maintains a constant

shear profile.

3.6 Full Domain results

Finally, taking all the results presented into account a singular full domain dataset

was produced for each obstacle corresponding to case VII with a resolution of 417

NPM and an outlet length of 1.8m. Flow visualisations are shown in Figure 3.53,

Figure 3.54 and Figure 3.55 for all three obstacles.
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Figure 3.44: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane for domains with varying outlet lengths, with MRT dynamics. Solid

square obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)



120 Results

(a)

-15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

(b)

-15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

(c)

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

(d)

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

(e)

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

Figure 3.45: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane for domains with varying outlet lengths, with MRT dynamics. Solid

square obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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Figure 3.47: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane for domains with varying outlet lengths, with MRT dynamics. Porous

regular obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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Figure 3.48: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane for domains with varying outlet lengths, with MRT dynamics. Porous

regular obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)
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Figure 3.50: Normalised mean streamwise velocity profiles along the centreline of the
Z-normal plane for domains with varying outlet lengths, with MRT dynamics. Porous

fractal obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)



128 Results

(a)

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

Exp, (RE 28350)

(b)

-15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

Exp, (RE 28350)

(c)

-15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

Exp, (RE 28350)

(d)

-15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

Exp, (RE 28350)

(e)

-15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0m

1.1m

1.2m

1.3m

1.4m

1.5m

1.6m

1.7m

1.8m

1.9m

2.0m

Exp, (RE 28350)

Figure 3.51: Normalised turbulent kinetic energy profiles along the centreline of the
Z-normal plane for domains with varying outlet lengths, with MRT dynamics. Porous

fractal obstacle at (a) ReD = 2470 (Case III) (b) ReD = 12352 (Case IV) (c)
ReD = 24705 (Case V) (d) ReD = 37057 (Case VI) (e) ReD = 49410 (Case VII)



Results 129

3
D

8
D

10
D

12
D

14
D

(a
)

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0
0

.1
0

.2
0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.8

m

1
.9

m

2
.0

m

(b
)

-0
.6

-0
.4

-0
.2

0
0

.2
0

.4
0

.6
0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.8

m

1
.9

m

2
.0

m

(c
)

-0
.8

-0
.6

-0
.4

-0
.2

0
0

.2
0

.4
0

.6
0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.8

m

1
.9

m

2
.0

m



130 Results

3D
8D

10D
12D

14D

(d
)

-0
.8

-0
.6

-0
.4

-0
.2

0
0

.2
0

.4
0

.6
0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.8

m

1
.9

m

2
.0

m

(e
)

-0
.8

-0
.6

-0
.4

-0
.2

0
0

.2
0

.4
0

.6
0

.8
0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.0

m

1
.1

m

1
.2

m

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.3

m

1
.4

m

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.5

m

1
.6

m

1
.7

m

1
.8

m

1
.9

m

2
.0

m

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

1
.4

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.8

m

1
.9

m

2
.0

m

F
ig

u
re

3
.5

2
:

N
o
rm

alised
m

ean
stream

w
ise

v
elo

city
p

ro
fi

les
a
t

va
ry

in
g

p
o
sitio

n
s

in
th

e
ch

a
n

n
el

(3D
,

8D
,

10D
,

12D
,

14D
after

th
e

ob
stacle)

of
th

e
Y

-n
o
rm

al
p

lan
e,

w
ith

M
R

T
d

y
n

a
m

ics.
P

o
ro

u
s

fra
cta

l
o
b

sta
cle

a
t

(a
)
R
e
D

=
2470

(C
ase

III)
(b

)
R
e
D

=
12352

(C
ase

IV
)

(c)
R
e
D

=
2
4
705

(C
a
se

V
)

(d
)
R
e
D

=
3
7
0
5
7

(C
a
se

V
I)

(e)
R
e
D

=
49410

(C
ase

V
II)



Results 131

F
ig

u
re

3
.5

3
:

Is
o-

su
rf

ac
es

of
th

e
Q

-c
ri

te
ri

o
n

,
w

h
er

e
Q

=
2
5
0
,

fo
r

th
e

d
ow

n
st

re
a
m

p
o
rt

io
n

o
f

th
e

d
o
m

a
in

fo
r

a
so

li
d

sq
u

a
re

o
b

st
a
cl

e.
S

u
rf

ac
es

a
re

co
lo

u
re

d
u

si
n

g
th

e
in

st
a
n
ta

n
eo

u
s

st
re

a
m

w
is

e
ve

lo
ci

ty
.



132 Results

F
ig

u
re

3
.5

4
:

Iso
-su

rfaces
o
f

th
e

Q
-criterio

n
,

w
h

ere
Q

=
2
5
0
,

fo
r

th
e

d
ow

n
strea

m
p

o
rtio

n
o
f

th
e

d
om

ain
for

a
p

orou
s

regu
lar

ob
stacle.

S
u

rfaces
a
re

co
lo

u
red

u
sin

g
th

e
in

sta
n
ta

n
eo

u
s

strea
m

w
ise

velo
city.



Results 133

F
ig

u
re

3
.5

5
:

Is
o-

su
rf

ac
es

of
th

e
Q

-c
ri

te
ri

o
n

,
w

h
er

e
Q

=
2
5
0
,

fo
r

th
e

d
ow

n
st

re
a
m

p
o
rt

io
n

o
f

th
e

d
o
m

a
in

fo
r

a
p

o
ro

u
s

fr
a
ct

a
l

o
b

st
a
cl

e.
S

u
rf

ac
es

a
re

co
lo

u
re

d
u

si
n

g
th

e
in

st
a
n
ta

n
eo

u
s

st
re

a
m

w
is

e
ve

lo
ci

ty
.



134 Results



Chapter 4

Discussions and Analysis

In this chapter an analysis of the results presented in the previous chapter will

discussed.

First of all, the stability of the LBM is directly influenced by the relaxation

factor. The Chapman-Enskog expansion from chapter 2, demonstrates that there

exists a relationship between viscosity and the relaxation factor, Eq 2.56. Which

also tells us that the closer the relaxation factor reaches to 0.5 the more likely

the simulation is to diverge. This is particularly important for SRT cases as

the relaxation factor will solely depend on the chosen setup parameters. Since

computations in LBM are conducted in lattice space there is no requirement for

the simulated fluid to be physically accurate only the Reynolds numbers have

to match to maintain dynamic similarity, this allows the user to alter the lattice

properties to achieve a stable solution. Starting from Eq 2.56 and substituting

the conversion factors for δt and the value of c2s for a D3Q19 lattice (see Table 2.1)

the following expression is obtained,

τ = 3
ulbm
uphy

1

δx
νphy + 0.5 (4.1)

which means that the relaxation factor is directly proportional to the ratio of

the LBM velocity and the physical velocity and also inversely proportional to the

lattice spacing. Therefore, in order to get a converging simulation there are two

actions that can be taken.

• Decrease node spacing, δx. Due to the uniform grid requirement of

Palabos, this has the consequence of exponentially increasing the domain

size, thus increasing the resources required.

135
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• Increase the lattice speed, ulbm. This results in an increased timestep,

thus losing high frequency components of the flow, which are of interest

in turbulent flows. Furthermore, lattice speed can only be increased to a

certain point as the Mach number in LBM must be kept artificially low to

avoid compressibility effects.

4.1 Choice of Dynamics Model

In choosing the dynamic model for the simulation the weakness of the BGK

method was presented for high Reynolds number cases, as the BGK method

failed to produce a converged result for flows faster than case I. On the other

hand both the RLB and MRT schemes proved to be effective at higher Reynolds

numbers with both methods being able to achieve a stable solution for all cases.

Since no experimental data was available for validation purposes for the square

obstacle a qualitative analysis using representative results found in the literature

will be conducted. In the cases involving the BGK model the results of Breuer

et al. (2000), wherein a square cylinder was modelled using both LBM and Finite

Volume Method (FVM) for a range of Reynolds numbers with the maximum

being 300. Since the BGK method only produced results for the ReD = 100 case

the results of Breuer are an acceptable starting point. The difference between the

results of this investigation and those of Breuer are that the present investigation

was entirely conducted using a three dimensional lattice whilst that of Breuer

was two dimensional. The centreline velocity profiles of Breuer and the present

investigation at ReD = 100 are presented in Figure 4.1.

Immediately it can be determined that the present results for the BGK

method do agree with established results in the near wake region.

Furthermore the recovery rate for the far wake region also appears to be in

agreement, however, since the present results lack any information beyond 7D,

the oscillatory behaviour of the flow observed in Breuer’s work is not present

in the current domain. Additionally, the present results show that the recovery

period in the far wake is smooth, but the results of Breuer indicate that there is

a small deceleration around 4D after the obstacle.

The results of the inlet region show the largest disparity, whilst the present

results show a significant acceleration as the flow approaches the obstacle, the

literature contradicts this behaviour. Considering that there are no further ob-

stacles in this region of the flow this behaviour is entirely unphysical. One could



Discussions and Analysis 137

(a)

-6 -4 -2 0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

226 NPM

244 NPM

275 NPM

300 NPM

318 NPM

349 NPM

374 NPM

499 NPM

417 NPM

(b)

Figure 4.1: Mean centreline velocity profiles for flow past solid square cylinder at
ReD = 100 (Case I). (a) Present Investigation (b) Results of Breuer et al. (2000)

attribute this effect to the normalisation procedure, i.e. since the normalisation

velocity is that of a uniform profile there could be a disparity, at that height,

between the uniform profile velocity and the actual logarithmic velocity profile.

However, the results presented are those of corresponding to 0.4Z which is the

point at which a uniform and logarithmic velocity profile intersect, meaning that

any flow acceleration should be minimal at best. Since, this behaviour must be

a numerical artefact, as further demonstrated by the fact that higher resolutions

show a tendency to decrease the acceleration, it follows that the mesh resolution

chosen is in fact not fine enough. However, a comparison of the resolutions used

by Breuer indicate that the finest mesh case simulated in fact used a smaller

lattice spacing than that of Breuer. Therefore, this leads to the only conclusion

that the disparity between the results must lie with the domain length chosen.

Since the results of Breuer are two dimensional, a longer domain has a much less

computational burden than that of a three dimensional case.

For the RLB and MRT only the turbulent cases (III-VII) are being considered,

since this is the focus of the investigation. Therefore, the results of Bosch & Rodi

(1998), Figure 4.4, will be used as a comparative measure, wherein both numerical

and experimental results were presented at ReD = 22000. Figure 4.2 shows the

centreline profiles of the MRT and RLB results of the present study.

The first point to be made, is that for both the RLB and MRT methods, the

method appears to be more stable with increasing Reynolds numbers, which is

counter intuitive as an increase in Reynolds number would mean a more chaotic
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flow, therefore, more numerically unstable.

Now, comparing the near wake region of the flow, it becomes clear that the

RLB method severely overestimates the magnitude of the recirculation zone, but

the wake length does appear to agree with the established measurements. In the

far wake region there does appear to be some agreement in the data, but when

approaching the outlet the uncharacterised deceleration of the flow is observed.

As posited in the previous chapter, it was thought that this could be an artefact

of the domain size and an attempt to reduce this effect via the use of sponge zones

prior to the outlet was investigated. As further demonstrated, in Figure 3.13 the

inclusion of a sponge zone in the domain did not positively affect the results

and in the case of the viscous type caused a stable solution to diverge. The

reason for the viscous type sponge zone causing a divergence could be due to an

incompatibility of having one area of the lattice use Smagorinski and another use

purely viscous subgrid model. Therefore, it was determined that the deceleration

effect at the outlet of the RLB cases must have been a product of the dynamic

model implemented.

On the other hand, the MRT method does show agreement in both the near

and far wake region in the higher flow cases with the experimental results pre-

sented by Bosch.

Comparisons made of the TKE profiles can also be made. Figure 4.3 shows

that both methods, with the exception of case III and case IV (in MRT only), lie

in between the bounds of the results presented by Bosch, with the RLB method

showing more agreement with the experimental data and the MRT scheme agree-

ing with the numerical results.

Given that the RLB severely overestimated the near wake region of the flow,

the MRT is the only option to consider for high Reynolds number flows.

4.2 Porous Obstacles

For the porous obstacles only the MRT scheme was used without sponge zones,

as it was demonstrated in the previous section this combination yielded the most

satisfactory results. The mean velocity profiles, Figure 4.6, show that in the case

of the regular obstacle at a resolution of 417 NPM, compared to the experimental

results the LBM approximations lie below the experimental results including

those of case V which is the closest match the experimental conditions. Overall,

case IV is the case that best matches the experimental data, this is interesting
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Figure 4.2: Mean centreline velocity profiles for flow past solid square cylinder in the
turbulent regime. (a) RLB Model (b) MRT Model. ReD = 2470 (Case III),

ReD = 12352 (Case IV), ReD = 24705 (Case V), ReD = 37057 (Case VI), ReD = 49410
(Case VII).
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Figure 4.3: Mean centreline TKE profiles for flow past solid square cylinder in the
turbulent regime. (a) RLB Model (b) MRT Model. ReD = 2470 (Case III),

ReD = 12352 (Case IV), ReD = 24705 (Case V), ReD = 37057 (Case VI), ReD = 49410
(Case VII).
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(a) (b)

Figure 4.4: Experimental and numerical results presented by Bosch & Rodi (1998).
(a) Mean streamwise velocity profile (b) Mean TKE profile

as it is case V which most closely matches the experimental conditions, case IV

being less than half of the experimental Reynolds number.

In the case of the fractal obstacle, comparisons using the highest resolution,

417 NPM, is not appropriate. Consistently from the mesh sensitivity analysis ex-

posed in chapter 3 the resolution that most adequately matches the experimental

results (especially in the near wake region) is that of 374 NPM. The mesh of the

fractal obstacle at the highest resolution, Figure 4.5, shows that although the

lattice spacing is smaller than the smallest iteration of the fractal geometry, not

all instances of the third iteration obstacles have the same size for the 417 NM

resolution, however, the 374 NPM resolution is a more faithful representation

of the fractal geometry as the majority of the individual obstacles maintain the

square cross-section. This fact is quite substantial as it indicates that the flow is

heavily influenced by the geometry of the fractal, which would lead to the spec-

ulation that the same obstacle but with the sub-obstacles arranged in a different

manner would yield an entirely different near wake.

Returning back to the streamwise profiles of Figure 4.6, the acceleration im-

mediately after the obstacle is well captured by the LBM for cases V-VII, however,

cases III-IV do demonstrate this effect to a lesser extent. Given that cases III-IV

represent flow speeds slower than the experimental data it could be that this

behaviour is specific to the higher flowrate cases. Subsequently, there is a dis-

agreement between the LBM cases for the location of the profile minima, with

cases IV, VI, VII predicting a location closer to the obstacle than cases III, V.

Although this location predicted by the first group appears to agree with the ex-
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Figure 4.5: Meshing of the fractal obstacle. Each square represents a node in the
lattice, with the filled squares representing the obstacle. (a) 417 NPM (b) 374 NPM
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Figure 4.6: Mean centreline velocity profiles for flow past porous obstacle in the
turbulent regime. (a) Regular (b) Fractal. ReD = 2470 (Case III), ReD = 12352 (Case

IV), ReD = 24705 (Case V), ReD = 37057 (Case VI), ReD = 49410 (Case VII).
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Figure 4.7: Mean centreline TKE profiles for flow past porous obstacle in the
turbulent regime. (a) Regular (b) Fractal. ReD = 2470 (Case III), ReD = 12352 (Case

IV), ReD = 24705 (Case V), ReD = 37057 (Case VI), ReD = 49410 (Case VII).

perimental data it may not be correct. Given the undersampling of the velocity

profile in this region, if one were to interpolate the experimental data using the

minima of the profile predicted by the LBM, the location of the minima would

agree more with cases III and V. In the far wake region the LBM results all show

significant disagreement with the experimental results, with cases IV-VII show-

ing an unphysical flow acceleration close to the outlet. Given that the result is

still clearly dependent on the mesh resolution, the results of the fractal obstacle

cannot be declared conclusive and finer mesh studies are required. To a certain

extent the divergence from the experimental data is also expected, because it is

where the subgrid model would struggle the most to match the complex vortex

shredding interaction occurring there. The simple Smagorinski closure used is

only valid for homogeneous isotropic turbulence cascade and clearly breaks down

in this region.

Looking at the TKE profiles, Figure 4.7, in the case of the regular obstacle

there is significant agreement between the LBM results and the experimental

data. Since the experimental data was collected via an ADV, which is an intrusive

method data near or close to the obstacle is very difficult to collect, and since

the peak occurs immediately aft of the obstacle its natural for the experimental

data in this region to be underestimated.

For the fractal obstacle, the TKE profiles, show a decent agreement with

experimental data, more so in the far wake than in the near wake. Case III

appears to fully agree with the experimental data, however, given the fact that
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all other results point to case III being more transitional flow than fully developed

turbulent flow, it is more likely that the peak TKE was not correctly captured in

the experimental data due to under sampling along the profile.

4.3 Transversal Profiles

The evolution of the wake can be further observed in the transverse direction.

Both the streamwise, Figure 4.8, and cross-stream, Figure 4.9, velocity profiles

in this direction help to characterise the shape of the wake for each obstacle. At

1D length after the obstacle we can observe three distinct wake shapes for each

obstacle. Given that the regular obstacle allows the flow to pass un impeded on

alternate rows, the retardation of the velocity is significantly less than the other

obstacles with the central gaps acting as a small nozzle. Furthermore, the effects

of the obstacle can clearly be seen long into the far wake than the solid and fractal

obstacles. For the fractal case although it can be seen that by 6D the wake is

approximately the same as the solid square obstacle for cases IV-VII considering

it took the square obstacle 5D to reach to this point from a recirculating wake it

took the fractal obstacle 3D. Furthermore, in the far wake, for the fractal the flow

is less affected by the obstacle compared to solid case with increasing Reynolds

numbers.

The cross-stream near wake can be characterised quite simply as a clockwise

rotating structure for the solid obstacle and quite interestingly for the porous

obstacles there are two side by side clockwise structures. In the case of the regu-

lar obstacle these structures are short lived and by 6D the flow is behaving as if

the obstacle were a solid one. However, in the fractal case these structures per-

sist for longer until 6D and slowly by 9D they merge into a single anticlockwise

structure near the centreline and then separate out forcing the flow towards the

walls at 12D. On the other hand, as the flowrate is increased, and the flow con-

tinues downstream for the regular and solid case, the flow maintains a centreline

attractive behaviour preserving the singular clockwise structure. Given that the

cross-stream velocity is a direct result of placing the obstacle in the flow, looking

at the profiles at 12D it can certainly be said that the porous obstacles have a

much longer effect than the solid obstacle.
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Figure 4.8: Transverse streamwise velocity profiles at different locations in the
channel for the three obstacles (SS - Solid Square, PR - Porous Regular, PF - Porous

Fractal), with MRT dynamics. (a) 2D (b) 3D (c) 6D (d) 9D (e) 12D. ReD = 2470 (Case
III), ReD = 12352 (Case IV), ReD = 24705 (Case V), ReD = 37057 (Case VI),

ReD = 49410 (Case VII).
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Figure 4.9: Transverse cross-stream velocity profiles at different locations in the
channel for the three obstacles (SS - Solid Square, PR - Porous Regular, PF - Porous

Fractal), with MRT dynamics. (a) 2D (b) 3D (c) 6D (d) 9D (e) 12D. ReD = 2470 (Case
III), ReD = 12352 (Case IV), ReD = 24705 (Case V), ReD = 37057 (Case VI),

ReD = 49410 (Case VII).
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Figure 4.10: Length to minimum streamwise velocity, L∗, from the base of the
obstacle in the streamwise direction for all three obstacles

4.4 Wake Length

Given that the regular obstacle does not form a wake, wake lengths can only

truly be compared between the fractal and solid obstacle. Additionally, due to

the fractal delaying the formation of the recirculation zone two definitions could

be adopted, one being the length from the base of the obstacle to the point

where the streamwise velocity remains positive or the maximum length where

the streamwise velocity is negative. Therefore, to adequately compare the three

different obstacles a parameter common to all three is defined as follows: L∗ is the

length from the base of the obstacle to the minimum mean streamwise velocity.

Figure 4.10, shows the variation in this length for all the tested obstacles and

Reynolds numbers.

Overall, the flow is least impeded by the regular obstacle, given that along the

centreline there are no sub-obstacles this is natural and expected. However, the

fractal obstacle having one third the porosity of the solid obstacle has a greater

impeding effect on the flow. In the fully developed turbulent cases (VI-VII) both

the solid and fractal cases show a similar pattern, the maximum length to the

minima occurs at ReD = 24705. In the case of the solid obstacle it then steadily

decreases with increasing flowrate, whilst for the fractal obstacle L* remains

constant after ReD = 37057. This further demonstrates the earlier conclusion

that although the near wake region is increased by the use of a fractal obstacle

the recovery is much faster with increasing Reynolds numbres.
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4.5 Mass Flowrate

Based on the mass flowrate results presented, we can see that flow is entirely

dominated by the streamwise velocity, which is expected as the flow is entering

and exiting the domain in that direction. Although the mean flowrates in the

remaining two directions is near zero, it is quite clear that some momentum is

exchanged between the streamwise flow with the transverse and vertical flow, just

that the exchange is made equally in either direction of the dimension after the

obstacle. This is to be expected as vortex shedding from cylinders follows an

alternating pattern, namely the von Karman street.

Additionally, in the streamwise direction for all three obstacles we can isolate

case III as anomalous because the flowrate accelerates as it goes downstream

this is unphysical as it is expected that the momentum gained in the transverse

and vertical directions would be drawn from the streamwise direction. When

calculating mass flow a constant density was assumed, this is because the Mach

number was sufficiently low that compressibility should not have been an issue.

However, it seems that for case III there may have been some compressibility

effects appearing.

The fractal obstacle also stands out because the higher flowrate cases also

show this acceleration in the downstream section of the channel contrary to what

is observed for the other two obstacles which follow a more predictable behaviour.

Considering that the fractal obstacle profiles showed the most disparity with

established results, this is further indication that more analysis is required for

the fractal obstacle cases. However, it should be pointed out that comparisons

of mass flowrates between the obstacles are all done for the 417 NPM case, as

this was the only resolution for which X-Normal plane data was recorded. As

pointed out earlier, since 417 NPM is not a true representation of the geometry,

mass flowrate comparisons for the fractal case should be done with the 374 NPM

case, or other resolutions that maintain the most representative geometry of the

fractal obstacle.

4.6 Strouhal Numbers

For the Strouhal numbers for the square obstacle, we can once again look at

the published results of Bosch & Rodi (1998) for expected values, in which the

Strouhal number is expected to range between 0.125-0.145. The Strouhal number
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maps presented in the previous chapter agree with this in the area where the near

wake ends.

Since there is no global wake region for the regular obstacle as the is little to

impede the flow from going straight through, there is no clearly defined near wake.

However, in the immediate area after the obstacle there is a region which has a

relatively higher frequency compared to the surrounding region. This Strouhal

number is roughly nine times the expected value. Considering that the regular

obstacle comprises square cylinders which are nine times smaller than the solid

obstacle it yields that this group of obstacles is not behaving as a group instead

the vortex shedding is being dominated by the individual cylinders.

In the case of the fractal obstacle since there is a defined wake region, by

looking at the edge of the near wake we again see similar scaling effect instead

this time the vortex shedding is being dominated by the largest cylinder in the

obstacle.

4.7 Outlet Sensitivity

From the results presented in the previous chapter, in the case of the square ob-

stacle it was determined that the length of the downstream section has a minimal

effect on the outcome, with data being reasonably converged as early as 1.2m.

However, it becomes more important with the two porous cases as the minimum

downstream section was determined to be 1.8m. Nevertheless, this length has a

greater effect on the far wake region of the flow, with the near wake being left

unaffected, except for the fractal obstacle. In this scenario, the near wake does

seem affected by the downstream length, however, as the flow velocity is increased

the effect becomes smaller.



Chapter 5

Conclusions, Issues and Future

Work

5.1 Conclusions

In conclusion, a parametric study has been conducted to investigate whether

LBM is a suitable option to simulate high Reynolds number flows in a channel

with Smagorinsky subgrid modelling. Flows ranging from Reynolds numbers of

100 to 49410 were tested using three different dynamics models, BGK, RLB and

MRT, for three different obstacle types: Solid Square (SS), Porous Regular (PR)

and Porous Fractal (PF) in a 3D domain.

Based on the results, the BGK method is suitable for the simplest of flows

and requires a sufficiently long outlet domain, therefore, confining the simulation

to only 2D cases. The RLB, whilst more stable than the BGK it overestimates

the near wake region of the flow. The MRT method, in the turbulent regime,

does yield results that agree with the established literature in the case of square

cylinder. In cases involving a porous regular obstacle the MRT-LBM is capable

of predicting very well the centreline streamwise velocity and TKE proflies, when

comparing to ADV experimental results. Similarly, in the cases of a porous fractal

obstacle the near wake characteristics are predicted well, but the far wake region

of the streamwise velocity profiles differ to the experimental results. Additionally,

a tendency towards a universal behaviour is observed across all three obstacles,

with the porous obstacles achieving this universal behaviour faster than the solid

obstacle. For the solid square case this is achieved for ReD > 24000.

In the case of the fractal obstacle it is paramount to check that the smallest

149
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fractal scale is properly meshed. The local capture of the smallest geometry is

more important than its fine meshing.

Additional tests also concluded that whilst the downstream portion of the

domain has an effect on the results, these are confined to the far wake regions

of the flow and the near wake region converges with acceptably short domains.

Attempts to minimise the effects of the outlet region via the use of sponge zones

showed no change in the case of Smagorinsky based sponge zones and divergence

in the case of viscous based sponge zones.

As expected the wake observed after the obstacle depends greatly on the

internal structure of the porous object. The oscillation observed for the solid

square is annihilated in the case of the porous regular obstacle but only pushed

downstream in the case of the porous fractal obstacle. Strouhal numbers in the

near wake region, again for the solid square case, agree with the established

literature. For the porous regular, the vortex shedding scales with the size of the

individual cylinders and in the porous fractal case its the largest iteration that

dominates.

Considering the computational benefits (highly parallelisable linear equa-

tions), LBM does prove itself to be a significant contender to established CFD

methods for investigations involving high Reynolds number flows.

5.2 Issues

As is the case with any investigative project the time constraints limit the amount

of work that can possibly be conducted, and this was no difference in this project.

Therefore, in the following sections a clear plan of what remains to be done for

this project will be given. In addition, the issues that were faced by the lead

investigator during this project will also be laid out.

One of the main issues faced in this investigation was the need to balance com-

putational resources due to the uniform grid requirement imposed by Palabos. It

should be noted that although Palabos does have advanced meshing capabilities,

these are only available in two dimensions at the time of investigation.

Initially, a version of LBM developed at the University of Leeds by Delbosc

et al. (2014) that is GPU accelerated was going to be used. However, this proved

to be more difficult to implement than originally thought. The results from this

software were quite unrealistic, which included,
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• Slow evolution of the vertical profile

• Unphysical downstream acceleration

• Overestimation of the near wake region for the simplest solid square cylinder

• Results were sensitive to inlet domain lengths rather than outlet domain

lengths.

5.3 Future Work

The results presented in this investigation are an exhaustive exploration of LBM

simulations for a quasi two dimensional flow past an obstacle, however this is

still not complete. Results for a fractal porous obstacle indicate that a mesh

independent result still has not been achieved. Therefore, before continuation of

the investigation finer mesh studies of the fractal obstacle need to be conducted.

As stated in the first part of this thesis the eventual goal of the investigation is

to use LBM to simulate the flow past a fractal bed as a simplified model of a city.

Prior to simulating a fully three dimensional case using a fractal bed it would be

necessary to investigate a confined obstacle but also changing the arrangement of

individual obstacles so as to keep the same porosity but have different lacunarity

and sucolarity.

Finally implement a periodic boundary condition with a forcing term to sim-

ulate a fractal canopy. One major benefit of simulating this case is the lack

of inlet and outlet regions therefore extremely high resolutions should be easily

achievable, which should allow investigations of on effects that the smaller scales

beyond the 3rd iteration have on the flow.
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Appendix A

Fractals

A.1 Fractal Dimension

The Oxford dictionary defines a fractal as “a curve or geometrical figure, each part

of which has the same statistical character as the whole.” It is this self-repeating

pattern that distinguishes a fractal from a regular mathematical object, and thus

they may not be defined using the typical topological dimensions. A dimension

is defined as the number of coordinates necessary to specify a point within the

object. In the case of a mathematical object, when the topological dimension is a

positive integer, the number of coordinates necessary to define it is known as the

Euclidean dimension, as shown in Table A.1. For example, on a curve, a single

coordinate is required, i.e. X-coordinate, therefore it is said to have a Euclidean

dimension of one.

A critical feature that all objects defined by Euclidean dimensions must have

is that they are everywhere differentiable except in a set with dimension zero,

meaning that a derivative of the function exists at every point in the domain

with the exception of edges or similar. This property is violated by fractals,

for example the Von Koch curve, Figure A.2, can continue to infinity without

Table A.1: Euclidean Dimension

Object Eucledian Dimension SI Units

Point 0
Line/Curve 1 m
Surface 2 m2

Volume 3 m3
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Figure A.1: Visual representation of the box counting method. Covering a curve, a
surface, and a solid with cubes of edge length ‘r’.

ever being a smooth object. Therefore, a different dimension must be applied to

define them; the Hausdorff dimension is used instead. An advantage of using this

definition is that it may be used for any object. Whilst the Euclidean dimension

can only define the dimension as integers, the Hausdorff method uses a rational

number. A principal feature of a fractal is that it must have a similar geometry

in ever decreasing scales. It is this repetition of the same geometry that forms

the basis of the Hausdorff dimension.

An easy way to explain this is to use the box-counting method as shown in

Figure A.1. In order to cover the curve of unit length with boxes of length r,

the number of boxes needed, N, is 1/r. Similarly to cover the surface of unit

area with boxes of length r the number required is 1/r2 and for an object of unit

volume 1/r3 boxes will be needed. It should be noted that the exponent r matches

the Euclidean dimension of the object that needs to be defined; therefore, the

Hausdorff dimension, D, is expressed as in (A.1).

N(r) ∼ r−D

Taking the limit as r → 0 the constant A is defined as:

A = lim
r→0

N(r)

r−D

ln(A) = lim
r→0

(lnN(r) +Dln(r))
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D = lim
r→0

ln(A)− ln(N(r))

ln(r)

D = − ln(N(r))

ln(r)
(A.1)

Note that the constant term ln(A) disappears, this remains as a constant

and as r tends to 0 the denominator becomes infinite. The following shows an

example of how the Hausdorff dimension is calculated for the Von Koch curve,

shown in Figure A.2.

N(r) = 4nNo and r = 3−nr0

DF = − lnN
lnr

= − nln4

−nln3

=
ln4

ln3

∴

DF = 1.26

Figure A.2: Von Koch curve fractal geometry

Based on the dimension calculated, it can be seen that the Von Koch curve

is neither a surface nor a line, instead something in between.
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A.2 Self similarity

In addition to the conditions being nowhere differentiable and having a fractal

dimension, i.e. Hausdorff dimension. Falconer (2003) proposed that a fractal

must also have the following:

• Fine structure: A fractal is repeated over an infinity of scales.

• Local and global irregularities: A fractal cannot be described using

traditional Euclidean geometric language.

• Simple definition: A fractal is generally composed of the same pattern

repeated recursively; therefore, the fractal can be defined as function of the

repeating pattern.

• Self-similarity: This can occur in a number of ways:

– Exact self-similarity: The shape is identical on all scales (i.e Von Koch

curve, Figure A.2)

– Quasi self-similarity: Approximations of the pattern, or a copy of the

entire fractal, appears on different scales. (i.e Mandelbrot set) The

Figure A.3: Mandlebrot fractal

specific area shown in the Mandelbrot fractal is known as the elephant

valley because spiral shapes appearing resemble elephants, but in fact

they are a repetition of the whole macro geometry.

– Statistical self-similarity: Patterns are repeated stochastically, such

that statistical measures are preserved. (i.e. The coastline of Great

Britain) This is a well documented example for a statistical fractal,

because the measuring object (orange line) appears to repeat itself

in a random fashion, also changing the dimension of the measuring
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Figure A.4: Approximating the perimeter of the UK using a fractal

object increases the length of the coastline. If this process were to

be continued as the measurement length decreases the total length of

the coastline would seem to increase. This was first documented by

Mandelbrot and is known as the coastline paradox.

– Qualitative self-similarity: Like in a time series Repeating patterns

Figure A.5: A time series

in a time series like the stock market, or cardiac response signals can

be considered as fractal objects. It is in fact these repeating patterns

that allow us to extract useful information from the signal and not

attribute it to random noise.

– Multi-fractal Scaling: A fractal that displays two or more of the ex-

pressed self-similarity forms above.

Since nature does not produce exact and perfect, geometries, all fractal shapes
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that occur in nature tend to be statistically self-similar, whilst mathematical

fractals tend to follow either exact or quasi self-similarity conditions



Appendix B

Derivation of the distribution

functions

B.1 Boltzmann Distribution

A simplified proof for the derivation of the Boltzmann distribution is given here.

Consider a small system of particles, A, in a large thermal reservoir, B at a

fixed temperature T. Hence. the total energy of the system can be defined as

Etot = EA + EB (B.1)

When the system is at equilibrium every microstate of the combined system

has energy, Etot, so there is an equal chance of observing any microstate. To find

the number of microstates in system B for a given energy state of system A, EA

we start with the Boltzmann entropy formula

S(EB) = klog(Ω(EB)) (B.2)

Thus the number of microstates is

Ω(EB) = e
S(EB)

k (B.3)

This can be rewritten as

Ω(Etot − EA) = e
S(Etot−EA)

k (B.4)

This shows that the number of microstates of B is dependent on the microstate
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of A. Therefore, it can be stated that the probability of A being in state EA, f(EA)

is

f(EA) ∝ f0e
S(Etot−EA)

k (B.5)

where f0 is the value of f(EA) when EA = 0. Since EA � Etot, then the entropy

of the system B can be expanded to;

SB(Etot − EA) ≈ SB(Etot)− EA
dSB
dEB

(B.6)

The term dSB
dEB

is just the inverse of the temperature as per the Gibbs entropy

formula. Introducing this term into the above formula for f(EA) and normalising

the probability yields the Boltzmann distribution:

f(E) = Ae
−E
kT (B.7)

B.2 Maxwell Distribution

The Maxwell distribution can easily be arrived from the Boltzmann distribution.

Since the Maxwell distribution considers the velocity distribution of the particles,

considering a one-dimensional kinetic energy the Boltzmann distribution can be

rewritten as

f(ξx) = Ae
−mξx2
2kT (B.8)

In order to find A, the above function is normalised,∫ ∞
−∞

f(ξx)d(ξx) = 1 (B.9)

It is also known that the above definite integral takes the form∫ ∞
−∞

e−ax
2
dx =

√
π

a
(B.10)

Therefore, the constant A can be evaluated to be

A =

√
m

2πkT
(B.11)

So that the probability f(ξx) becomes,
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f(ξx) =

√
m

2πkT
e
−mξ2x
2kT (B.12)

Now, if all Cartesian directions are considered,and assuming that the motions

in all three directions are independent, i.e. the probability of finding a particle

with x component velocity is not dependent on the probability of finding the par-

ticle’s y component velocity. The probability is now the product of each velocity

component independently, which gives the three dimensional energy distribution

f(ξx, ξy, ξz) = f(ξx).f(ξy).f(ξz) (B.13)

=
( m

2πkT

)3/2
e
−m(ξ2x+ξ

2
y+ξ

2
z)

2kT (B.14)

=
( m

2πkT

)3/2
e
−mξ2
2kT (B.15)

The above equation only considers one particle in the system, in order to get

the Maxwell distribution all the particles in the system must be considered. This

can be easily achieved by visualising the distribution of the particles in a velocity

space, therefore, all the particles with the same speed will fall on the surface of a

sphere where the area is 4πc2. Finally multiplying this to the three-dimensional

energy distribution yields the Maxwell distribution.

f(ξ) = 4πξ2
( m

2πkT

)3/2
e
−mξ2
2kT (B.16)
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Appendix C

LBM Lattice Types

In here the various lattice types available for use in LBM schemes will be pre-

sented. The lattices follow, by convention, the naming standard: DnQb where n

is the dimension of the lattice and b is the numer of discrete velocities.

The key factor in the design of each lattice is the weight associated with

discrete velocity, as they are necessary for the computation of the equilibrium

distribution functions as demonstrated earlier in chapter 2

feqi = Φwi

[
A+Bci · u+ C(ci · u)2 +Du2

]
(C.1)

Two general rules are usually adopted in each lattice. The central velocity is

always labelled as c0, and in order to maintain isotropy in the model the total

number of discrete velocities must be odd.

In the following sections a detailed description of the most common lattice

types for one, two and three dimensions will be given. For clarity and ease vectors

of the with the equal weight will be coloured the same.

C.1 D1Q3 - cs = 1/3

c0 = (0, 0) w0 = 4/6

c1 = (1, 0) w1 = 1/6

c2 = (−1, 0) w2 = 1/6

c0 c1c2
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C.2 D1Q5 - cs = 1

c0 = (0, 0) w0 = 6/12

c1 = (1, 0) w1 = 2/12

c2 = (−1, 0) w2 = 2/12

c3 = (2, 0) w3 = 1/12

c4 = (−2, 0) w4 = 1/12

c0 c1c2 c3c4

C.3 D2Q7 - cs = 1/4

c0 = (0, 0) w0 = 6/12

c1 = (1, 0) w1 = 2/12

c2 = (−1, 0) w2 = 2/12

c3 = (−1/2,
√

3/2) w3 = 1/12

c4 = (1/2,−
√

3/2) w4 = 1/12

c5 = (1/2,
√

3/2) w5 = 1/12

c6 = (−1/2,−
√

3/2) w6 = 1/12

c0
c1c2

c3

c4

c5

c6

C.4 D2Q9 - cs = 1/3

c0 = (0, 0) w0 = 4/9

c1 = (1, 0) w1 = 1/9

c2 = (−1, 0) w2 = 1/9

c3 = (0, 1) w3 = 1/9

c4 = (0,−1) w4 = 1/9

c5 = (1, 1) w5 = 1/36

c6 = (−1,−1) w6 = 1/36

c7 = (−1, 1) w7 = 1/36

c8 = (1,−1) w8 = 1/36

c0
c1c2

c3

c4

c5

c6

c7

c8
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C.5 D3Q15 - cs = 1/3

x

y

z

c0
c1

c2 c3

c4

c5

c6

c7

c8
c9

c10

c11

c12

c13

c14

c0 = (0, 0, 0) w0 = 2/9

c1 = (1, 0, 0) w1 = 1/9 c8 = (−1,−1,−1) w8 = 1/72

c2 = (−1, 0, 0) w2 = 1/9 c9 = (1, 1,−1) w9 = 1/72

c3 = (0, 1, 0) w3 = 1/9 c10 = (−1,−1, 1) w10 = 1/72

c4 = (0,−1, 0) w4 = 1/9 c11 = (−1, 1, 1) w11 = 1/72

c5 = (0, 0, 1) w5 = 1/9 c12 = (1,−1,−1) w12 = 1/72

c6 = (0, 0,−1) w6 = 1/9 c13 = (−1, 1,−1) w13 = 1/72

c7 = (1, 1, 1) w7 = 1/72 c14 = (1,−1, 1) w14 = 1/72
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C.6 D3Q19 - cs = 1/3

x

y

z

c0
c1

c2 c3

c4

c5

c6

c7
c8

c9

c10

c11

c12

c13

c14 c15

c16

c17

c18

c0 = (0, 0, 0) w0 = 1/3

c1 = (1, 0, 0) w1 = 1/18 c10 = (−1, 1, 0) w10 = 1/36

c2 = (−1, 0, 0) w2 = 1/18 c11 = (1, 0, 1) w11 = 1/36

c3 = (0, 1, 0) w3 = 1/18 c12 = (−1, 0,−1) w12 = 1/36

c4 = (0,−1, 0) w4 = 1/18 c13 = (1, 0,−1) w13 = 1/36

c5 = (0, 0, 1) w5 = 1/18 c14 = (−1, 0, 1) w14 = 1/36

c6 = (0, 0,−1) w6 = 1/18 c15 = (0, 1, 1) w15 = 1/36

c7 = (1, 1, 0) w7 = 1/36 c16 = (0,−1,−1) w16 = 1/36

c8 = (−1,−1, 0) w8 = 1/36 c17 = (0, 1,−1) w17 = 1/36

c9 = (1,−1, 0) w9 = 1/36 c18 = (0,−1, 1) w18 = 1/36



Appendix D

Turbulence Modelling: RANS

Following his original work, Reynolds (1894) introduced the notion of a decom-

position for the flow variables into mean and fluctuating components,

u = u+ u′, (D.1)

where u represents the instantaneous velocity as a sum of the mean, u and

the fluctuating component, u′. This decomposition can be then introduced into

the Navier-Stokes equation ((2.5)) to give the Reynolds Averaged Navier Stokes

(RANS)
∂u

∂t
+ (u · ∇)u = −1

ρ

∂p

∂x
+ ν

∂2u

∂x2
− ∂

∂x
(u′iu

′
j) (D.2)

where u′iu
′
j are known as the Reynolds stresses and represent the changes in the

fluid’s momentum caused by the fluctuating component of the flow.

What (D.2) shows, is that by time averaging the Navier-Stokes equations a

new term, Reynolds stresses, has been introduced. This is what is referred to

as the closure problem in turbulence, since there are no new equations for the

variables introduced in the RANS equations, a modelling approach has to be

adopted in order to close the system. In order to solve these equations using

numerical methods a model for the Reynolds stresses has to be introduced.

Most turbulence models for the RANS equations are based upon the Boussi-

nesq hypothesis of 1877 (Boussinesq 1877, Schmitt 2007). In these methods the

Reynolds stresses are approximated as:

− ρu′iu′j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij

(
ρk + µt

∂uk
∂xk

)
(D.3)
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where µt and k are the turbulent viscosity and kinetic energy respectively.

D.0.1 Two Equation Models

The most commonly used model is the Standard k − ε of Launder & Spalding

(1974), which improved upon the previous mixing length model of Prandtl (1925)

by introducing two additional transport equations for turbulent kinetic energy,

k, and the turbulent dissipation, ε. In this model the eddy viscosity is given by

µt = Cµ
k2

ε
(D.4)

where the turbulence constant Cµ = 0.09, is an accepted value obtained empiri-

cally (Launder & Spalding 1974).

D.0.2 One Equation Model

A one equation model was introduced in Spalart & Allmaras (1992). In this case

the transported variable is ν which is a modified eddy viscosity (It is identical

to the kinematic viscosity except in the near-wall region). Thus the turbulent

viscosity is

µt = ρνfv1 (D.5)

where fv1 is a damping function dependent on ν/ν. It should be noted that since

this model does not calculate k the Reynolds stresses can only be approximated

as per the Boussinesq equation (D.3). This model can be applied to the LBM

by taking the total viscosity to be the sum of the molecular viscosity and the

turbulent viscosity. (Chen 2012, Shu et al. 2006)
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