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Abstract 

In the past few years, the demand for data traffic has increased explosively, in 

order to meet such a demand in traffic volume, small cell networks have been 

introduced. With the wide adoption of small cells, the densification of small cell 

deployment has become an unavoidable trend. However, such density in small cell 

deployment brings various problems for the network operators, among which the 

handover issue is one of the most critical. In order to tackle the handover problem in 

heterogeneous networks (HetNets), this thesis was mainly concerned with the system-

level handover control parameters optimisation. 

The research work of this thesis is divided into three parts. The first part 

introduced two self-optimisation handover algorithms, which aimed to optimise the 

average system performance in terms of signal to interference and noise ratio (SINR), 

energy efficiency, and ping-pong handover ratio. Through a simulation of a HetNets 

scenario, the proposed two handover optimisation algorithms significantly enhanced 

the system performance. The second part of the research was a performance 

evaluation of handover control parameters combined with cell range expansion (CRE), 

through the modelling of a HetNets handover scenario in a Markov chain process 

(MCP). By establishing the mathematical method to model the relationship of the 

hysteresis margin (HM), CRE, and time-to-trigger (TTT), the coordination of these 

three parameters was achieved, which further optimised the network performance. 

The last part of this thesis proposed an adaptive HM and TTT selection scheme based 

on the individual user equipment’s (UE’s) mobility states. Based on the target of 

minimising unnecessary handover probability and maintaining a certain radio-link-
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failure (RLF) ratio, a pair of appropriate handover control parameters were assigned 

for individual pieces of UE. 
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Overview 

In this chapter, first, the background knowledge of this thesis is introduced. 

The explosion in data traffic demand has led to a densification in cell deployment 

which caused various problems, and, as handover is one of the most critical issues, the 

motivation of this thesis is to investigate the optimisation of handover control 

parameters. Next, the main objectives of this thesis will be proposed, followed by the 

structure and main contribution of the thesis. 
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1.1. Background 

The first mobile phone was manufactured by Motorola in 1973 [1], and, after 

several decades of developing communication technologies, mobile phones have 

become an indispensable part of our lives. The mobile networks not only shorten the 

distance between people, but also makes people’s lives colourful. The function 

diversification of mobile terminals is no longer just designed for voice services, but 

also for different data services; for example, mobile games and live video steaming. 

According to [2], the mobile data traffic has grown dramatically in the past few years; 

the data traffic in 2016 is 18 times that of 2011, and in 2021 it is expected to have a 

seven-fold growth compared with 2016, which is a 128-fold increase in only ten years. 

Therefore, major enhancements are expected in the capacity of future networks to 

reasonably accommodate the increasing traffic volume[3]. In order to support the 

rapidly increasing data demands, the network operators are also dedicated to updating 

the network from 2G to 3G, then 4G, and then 5G. In order to meet the expected 

traffic demands and relieve the pressure on macro cells, small cell networks have been 

introduced. 

The adoption of small cells succeeded in solving the conflict between limited 

radio resources and the data traffic demands [4], [5]. In the Cisco VNI report of 2017 

[2], 60% of the data traffic has been successfully offloaded through the small cells or 

Wi-Fi. The system’s total capacity and user quality of service (QoS) has been 

significantly promoted via the employment of small-sized base stations; the 

deployment of small cells will improve the existing network capacity as these low-

power base stations overlap the existing macrocell networks, such a multi-tier 

network structure is known as heterogeneous networks (HetNets). The HetNets 



Chapter 1 Introduction   

3 

 

scenario is an important concept that has been widely used in the Long-Term 

Evolution Advanced (LTE-A) networks. Small cells are normally understood to be 

microcells, picocells, or femtocells. The range of small cells can be from ten to 

several dozen meters. With the interference issues being well addressed, the number 

of small cells can even linearly increase the network capacity. As a trend, the 

densification of small cells deployment will become popular in future network 

planning. 

1.2. Motivation 

The growing density of cell numbers and the shortening in the cell radius has 

created various communications problems, among which the handover issue is one of 

the most challenging issues. In a traditional network, the main function of handover is 

to maintain the connected user equipment’s (UE’s) quality without interruption, 

which aims to guarantee the connectivity of the service; this circumstance is triggered 

by the problem that a single base station cannot provide good coverage in its whole 

service area [6]. With the introduction of overlaid HetNets, the function of handover 

has evolved, from not only maintaining connectivity but also enhancing the entire 

network’s performance and quality of service (QoS). Furthermore, due to the small 

coverage and low transmission power, the handover procedure in HetNets is much 

more complicated and needs to be more intelligent. 

Thus, this thesis mainly focuses on the optimisation of the system-level 

handover control parameters. Interference management, system energy efficiency, and 

frequent handovers are hot issues under the premise of small cell deployment. Taking 

these constraints into consideration, two self-optimisation algorithms based on 

dynamically changing handover control parameters have been proposed and 
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investigated. In order to simplify the model for the HetNets scenario and evaluate the 

handover performance affected by the control parameters combined with cell range 

expansion (CRE), the Markov chain process (MCP) is utilized. To resolve the 

inappropriate arrangement of handover control parameters for UE, a selection scheme 

for adaptive control parameters was studied, based on individual UE’s mobility states. 

1.3. Objective of the Thesis 

As a result of the motivation for this study, the main objectives of this thesis 

can be summarized into the following points: 

 To review the state of the art of small cell networks; handover procedures, 

especially the handover procedure in LTE network; handover control parameters; 

and handover decision algorithms, and to discuss and evaluate the status of current 

research. 

 To develop new handover decision algorithms aimed at optimizing the average 

SINR and ping-pong handover ratio. 

 To implement system energy efficiency and optimisation of the ping-pong 

handover ratio through dynamically adjusting the handover control parameters. 

 To map the HetNets scenario into an MCP, in order to represent the handover 

process in a statistical method and investigate the handover performance affected 

by the hysteresis margin (HM) and CRE. 

 To create a new selection scheme for handover control parameters, such that all 

UEs in the network no longer share the same handover parameters; the selection 

of new parameters should be based on individual UE’s mobility states. 
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1.4. Main Contributions and Structure of the Thesis 

The structure of this thesis is organized as follows: 

 Chapter 2: Literature review 

In chapter 2, first, basic knowledge of small cell networks and detailed 

handover procedures are introduced, followed by the introduction of two important 

handover control parameters. Moreover, five different categories of handover decision 

algorithms are classified, and a literature review of the corresponding research is 

summarized and evaluated. 

 Chapter 3: Two self-optimisation handover decision algorithms 

In chapter 3, two mechanisms for handover self-optimisation are introduced. 

The first self-optimisation mechanism is based on the system’s average SINR and 

ping-pong handover ratio. Through detecting system performance in every time slot, 

the system will automatically optimise the selection of handover control parameters. 

Similarly, the second self-optimisation mechanism is based on the feedback from the 

system’s energy efficiency states and ping-pong handover ratio. 

Contributions: 1) The interference-aware handover decision algorithm is 

investigated and implemented through SINR control in HetNets, as interference is one 

of the key issues of concern in the HetNets scenario. 2) The energy-efficiency-aware 

algorithm is currently lacking in the handover decision algorithm, especially taking 

UE power consumption into consideration; most handover decision algorithms only 

consider from the operators’ perspective, but the UE actually is an important part that 

consumes power over the whole network. 
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 Chapter 4: An MCP based performance analysis of handover and load 

balancing in HetNets 

In chapter 4, an MCP-based handover performance analysis is proposed. The 

main idea is to analyze the impact of HM and CRE through modelling HetNets in an 

MCP. Through mapping the HetNets handover process in an MCP, all the phases of 

the handover can be calculated and analyzed through a probability calculation, so that 

further predictions and simulations can be realized. By establishing the mathematical 

method to model the relationships among HM, CRE, and time-to-trigger (TTT) in 

HetNets, the coordination of these three important parameters is achieved to obtain 

system optimisation. 

Contributions: 1) How handover performance is affected by both HM and 

CRE is modelled and analyzed. 2) The HetNets handover scenario into MCP is 

mapped to statistically analyze handover performance. 3) The total network 

throughput is optimised by the coordination through HM and CRE. 

 Chapter 5: Adaptive HM and TTT selection scheme 

In chapter 5, an adaptive HM and TTT selection scheme is proposed. The 

main idea of this chapter is to assign a pair of the most suitable handover control 

parameters for arbitrary UE inside the network. Based on the target of minimising 

unnecessary handovers while maintaining ideal cell coverage, an adaptive HM 

selection scheme is proposed. Through detecting the UE distance to the serving cell, 

the adaptive HM is selected based on the user-location information. As any UE 

mobility model consists of two parameters, location and velocity, based on the UE 

velocity status, the other handover control parameter TTT can be determined. While 

ensuring a certain radio-link-failure (RLF) threshold, the maximum TTT is selected. 
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After deciding the criteria in adaptive HM and TTT, a joint self-optimisation 

mechanism is proposed for the optimisation of system-level handover performance. 

Contributions: 1) An adaptive HM selection scheme is proposed based on the 

UE location in the network. 2) An adaptive TTT selection scheme is proposed based 

on the UE velocity. 3) An entirely new selection scheme for handover control 

parameters is created because in the traditional network the HM and TTT assigned for 

all UEs are the same value, but in this work an arbitrary UE is assigned along with the 

most appropriate individual HM and TTT. 4) A new self-optimisation mechanism is 

proposed. 

 Chapter 6: Conclusion and future works 

In this chapter, the conclusion of this thesis is presented, followed by research 

directions for future works. 
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Overview 

This chapter firstly provides a review of small cells in HetNets and the 

fundamental concept of a detailed handover procedure. Secondly, To explain the 

handover mechanism more specifically, two handover control parameters, HM and 

TTT, are presented. The third section provides an overview of the handover decision 

algorithms with respect to received-signal-strength-based handover, speed-based 

handover, cost-function-based handover, interference-based handover, and energy-

efficiency-based handover decision algorithms.  
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2.1. Review of Small Cell Networks 

Nearly two thirds of calls and 90% of data services happen indoors. This has 

led to the issue of how to provide high quality voice, video, and high-speed data 

services [7]. Small cells are expected to be one of the most important technologies in 

5G and will help satisfy the traffic demand through spatial reuse [8]. Although there 

has been a rapid increase in mobile data traffic, in the short term, a large proportion of 

indoor mobile data traffic can be offloaded from cellular networks through the 

adoption of small cells. As we all know, the reduction of cell size is the most effective 

and easiest way to improve system capacity. Small cell networks (SCN) are a new 

network design concept that can provide different cost- and energy-efficient solutions 

to cope with the forecast traffic growth [9]. 

2.1.1. Review of Small Cells 

Small cells
 
refer to low power radio access nodes that can operate in either a 

licensed or unlicensed spectrum. As mentioned previously, the types of small cells 

can be divided into femtocell, picocell, and microcell depending on the cell’s range. 

In [10], the third-generation partnerships (3GPP) introduced a new small range and 

low power base station that is known as Home eNB (HeNB). This small base station 

is used for providing indoor and outdoor broadband services [7], and in users’ offices 

and houses they act like a common Wi-Fi access point that connects to the operator 

network through a digital subscriber line (DSL).  

Through small cell deployment, several benefits can be achieved. Firstly, 

network capacity can be increased. According to [11], an effective way to enhance the 

capacity of a single wireless link is to reduce the distance between the transmitter and 

the receiver, as in the rationale of LTE small cells. In this context, it is also possible to 
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efficiently offload from macrocells since the small cells are expected to provide a 

relevant quota of traffic. Secondly, from an economic perspective, as an operator can 

accurately identify the traffic generated/received in each small cell, it can offer 

personalized fees and discounts that would be very attractive to consumers. The 

support of small cell is an integral part of existing International Mobile 

Telecommunications (IMT) advanced standards and would play an increasingly 

important role in their wider usage on a broad scale.  

With the deployment of small cells, several problems inevitably appear. Firstly, 

with the deployment of a large number and high density of small cells, this is unlikely 

to be scalable to the broadcasting of small cell information in the network. This 

increases the network signalling overhead. Secondly, compared with macrocells, the 

neighbouring cell list of the small cell is dynamic as the small cell is dynamically 

powered on or off at any location depending on consumers’ needs. Thirdly, variant 

access methods are used in small cells that result in different authorization. Finally, 

user/operator preferences can lead to different priorities for the utilization of small 

cells [12]. 

Handover refers to the transfer of a UE’s connection from one radio channel to 

another (this can be within the same cell or between different cells) while maintaining 

QoS [13]. In a conventional network, UE typically uses the same set of handover 

parameters (e.g. HM and TTT) through the network. In a HetNet, however, using the 

same set of parameters may degrade mobility performance. Moreover, high-mobility 

macrocell UE may run deep into small cell coverage areas before the TTT timer is 

expired for this handover, thus incurring handover failures due to degradation in 

signal to interference plus noise ratio (SINR)[14].  
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In [15], handover from a non-closed subscriber group (CSG) cell to an 

allowed CSG cell is not within the scope of Release 8, but this changed in 3GPP 

Release 9 [16]. Release 9 proposed three new aspects of the UE handover to an 

eNB/HeNB compared to the normal handover procedure: proximity estimation, 

PSC/PCI (personal cell ID) confusion, and access control. More changes were made 

in Release 12 [17], where the public land mobile network (PLMN) report was added 

as the fourth aspect that is different from normal handover procedure. 

In [18], the specification lists the basic mobility functionality (including 

access control, cell selection/ reselection) for the support to HeNB and HeNB. 

Whereas [15] covers the specification of the functions for UE that does not support 

CSG and UE that does supports CSG. It also covers Home NodeB specific 

requirements for operations and maintenance (O&M). Two critical modifications 

were made in terms of in-bound mobility and HeNB-to-HeNB mobility in Release 9 

[8]. Furthermore, a new element, the local gateway (LGW), is proposed in the 

network structure [19]. 

In [7], we can find the benefits of small cell listed as follows: 

1. Assuming that good isolation can be achieved, small cells can significantly 

improve the total network capacity by reusing radio spectrum indoors. 

2. The demand for higher and higher data rates. 

3. Small cells can provide effective power saving for UE. 

4. Small cells are ‘greener’ than macrocells from the perspective of energy 

consumption. 

5. Users will pay to install small cells, which indicates a new direction for 

operators when building or updating networks. 



Chapter 2. Literature Review  

12 

 

According to [9], the challenges of small cells can be summarized as follows: 

1. Coverage and performance prediction: Dense and unplanned deployment of 

small cells in SCNs will result in unpredictable interference patterns and 

possibly patchy coverage.  

2. Interference management: With public access, due to full frequency reuse and 

the increasing density of small cell deployments, the interference between 

small cells, as well as the interference between small cells and macrocells, 

dramatically increases and needs to be well addressed.  

3. Mobility: Due to the range of small cells, it can be difficult to solve user 

mobility problems in SCNs. 

2.1.2. Two-Tier Evolved-Universal Terrestrial Radio Access Network (E-

UTRAN) Architecture 

LTE is a new radio access technology that was proposed by the 3GPP. The 

aim of the LTE network is to provide a peak downlink rate of at least 100 Mbps and 

an uplink rate of at least 50 Mbps [20]. The main purpose of LTE is to improve the 

capacity, speed, and coverage of mobile networks [21]. The two main components of 

the LTE system are: 1) the air interface (i.e. the E-UTRAN), and 2) the packet 

switched core network, also known as the Evolved Packet Core (EPC). 

The E-UTRAN consists of eNBs, which can provide the user plane and the 

control plane protocol terminations to the UE. Through the X2 interface, the eNBs 

can connect to each other and can also interconnect to the Evolved Packet Core (EPC) 

through the S1 interface. More specifically, the eNBs can communicate to the 

Mobility Management Entity (MME) by means of the S1-MME interface and to the 

SGW (Serving Gateway) via the S1-U interface. 
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As we can see from Figure 2-1, two of the EPC network entities are involved 

in supporting the HeNBs with respect to the SGW and the MME. The MME is used 

for the implementation of the functions of the core network signalling for system 

mobility management between 3GPP access networks, i.e. idle state mobility handling, 

tracking area list management, roaming, bearer control, security control, and 

authentication. Meanwhile, the SGW can provide the following functions: charging, 

accounting, packet routing, forwarding, and even mobility anchoring for inter and 

intra core network mobility management. 

To introduce the small cells, the eNBs, HeNBs, and HeNB gateways (HeNB 

GW) are included inside the E-UTRAN architecture. The eNBs not only provide the 

UE with control plane protocols, they also support the modules for radio resource 

management, admission control, the scheduling and transmission of broadcast 

messages, and the measurement configuration for the mobility and routing of user 

plane data towards the SGW. The HeNBs support the same functions as those 

supported by eNBs, while the same procedures are applied between the HeNBs and 

the EPC. The function of the HeNB GW is to support a large number of HeNBs at the 

same level. The deployment of the HeNB GW is optional, but if it is deployed, it acts 

as an MME for the EPC, similar to an MME for the eNBs [22]. 
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Figure 2-1 Overall E-UTRAN architecture with deployed HeNB GW and X2 

GW [23]. 

2.2. Review of Handover Procedures 

Handovers can be divided into two categories: hard handovers, also known as 

break before connect (BBC), and soft handovers, also known as connect before break 

(CBB) [24]. In the following three subsections, soft and hard handovers and 

handovers in LTE are introduced. 

2.2.1. Soft Handovers: Connect-Before-Break 

A soft handover is a type of handover model where the radio links are added 

and abandoned in such a manner that the UE will always keep at least one radio link 

to the network [13]. Soft and softer handovers were introduced in WCDMA 

architecture. The centralized controller, which is called the radio network controller 

(RNC), is used to perform handover control for each UE in the architecture of 

WCDMA. It is possible for one piece of UE to connect to two or more cells or 
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different cell sectors during one data transmission session simultaneously [25]. A 

softer handover refers to the UE, which is connected from the same physical site. A 

soft handover is suitable for preventing voice call dropping, maintaining an active 

session, and resetting a packet session. However, the soft handover will result in more 

complicated signalling procedures and system architecture, , e.g. WCDMA networks. 

2.2.2. Hard Handover: Break-Before-Connect 

A hard handover refers to new radio links being established after all the old 

radio links in the UE are disconnected [26]. Hard handovers are widely used in 

traditional wireless communication systems. They require users to abandon the 

existing links with the current serving cell (the source cell) and establish a new 

connection to the target cell. 

2.2.3. Handovers in LTE 

A handover inside the LTE system can be summarized as three steps: 

measurement, handover decision, and handover execution (Figure 2-2). The 

measurement step is completed on the UE side with the UE needing to periodically 

report measurement ID, serving eNB measurement results (including Reference 

Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), path 

loss, etc.), and neighbouring eNBs measurement results (optional). eNBs control their 

measurements through the notification of measurement objects, cell lists, report 

modes, measurement metrics, measurement parameters, etc. When the measurement 

condition changes the eNB should notify the UE of the new measurement conditions. 

Table 2-1 shows the measurement report events. The events starting with A are used 

for intra-LTE systems and those starting with B are events that happen under IRAT 

(Inter-Radio Access Technology) conditions. 
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Table 2-1 Event entry conditions [27]. 

Event Definition 

A1 Serving cell better than threshold (can stop IF/IRAT measurement). 

A2 Serving cell worse than threshold (can start IF/IRAT measurement). 

A3 Neighbor cell better than serving cell + offset (used for handover). 

A4 Neighbor cell better than threshold (Used for load balancing). 

A5 Neighbor cell worse than threshold (used for load balancing). 

A6 Neighbor cell better than secondary serving cell + offset. 

B1 Neighbor cell better than threshold (used for IRAT). 

B2 Serving cell worse than threshold (used for IRAT). 

The handover decision and handover execution are based on the measurements, 

which include the relocation of the EPC node and the UE handover process. The 

relocation of the EPC also means the relocation of the MME and the SGW. The 

handover process is always initiated by the source eNB through the evaluation and 

control of the source eNB and UE measurement report results. The decision whether 

or not to make the handover will take the area restrictions of the UE into 

consideration. The reservation resource should be allocated by the target eNB after 

receiving the handover execution command. After the UE synchronizes to the target 

eNB, the network will release resources in the source eNB. 
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Figure 2-2 LTE handover. 

When the UE is in active mode, there are two types of handover in LTE 

downlink: S1 and X2. Active mode refers to the UE transmitting or receiving data 

packets from the core networks. The X2 handover is typically used for network load 

balancing and interference prevention among eNBs, but if there is no X2 interface 

existing between two eNBs, or if the eNB is configured to perform a handover 

directly to a special target eNB through the S1 interface, the S1 handover will be 

triggered [28]. S1 handovers are normally performed for non-3GPP technologies, 

such as the CDMA2000/HRPD [29]. Table 2-2 shows the X2 handovers related to 

HeNBs that are allowed.  

Table 2-2 X2-based handover support [23]. 

Serving Target Notes 

eNB or any HeNB Open access HeNB  

eNB or any HeNB Hybrid access HeNB  

Hybrid access HeNB or 

closed access HeNB 
Closed access HeNB 

Only applies for the same 

CSG ID and PLMN and 
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if the UE is a member of 

the CSG cell. 

Any HeNB eNB  

In Table 2-2, we can see three different access control mechanisms. The first 

is open access HeNBs, which are normally deployed by the operators. All UEs can 

connect to the HeNBs for the offered data services. The second is the closed access 

HeNBs, which are normally deployed privately. These HeNBs are defined as the CSG 

cells and their access control is located in the GW. The last type is hybrid access 

HeNBs, which offer open access to all UE, but the subscribed UE gets priority over 

unsubscribed UE when utilizing the resources [30]. 

Three phases exist in the S1 and X2 handovers: preparation, execution, and 

completion [23]. During the preparation phase, measurement reports are sent to the 

serving eNB periodically by the UE [31], while the serving eNB will make the 

handover decision to determine which target eNB is suitable for the UE according to 

these reports. In addition to the measurement reports, other criteria are also considered 

before the handover control messages is sent to the target eNB. After receiving the 

handover control message from the serving eNB, the target eNB should prepare a 

buffer for the UE.  

After completing the handover preparation phase, the handover execution 

phase starts. During this phase the serving eNB sends a handover command message 

to the UE to notify the UE that it is going to be forwarded to another eNB. Once the 

UE receives this message, the link between the serving eNB and the UE will be 

disconnected and a request for new connection establishment to the target eNB will be 

sent. The serving eNB will also send all data packets belonging to this UE to the 

target eNB simultaneously. The data packets are queued by the target eNB in the UE 
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buffer and are ready to be transmitted to the UE once the connection between the UE 

and the target eNB is successfully established. At the end of the execution phase, the 

UE sends a ‘handover complete’ message to the target eNB to confirm the handover is 

finished. 

The final phase is the completion phase, which involves communication 

between the eNBs and the upper layers. These communications focus on the release of 

resources in the serving eNB and tell the upper layer to switch the following packets 

to the target eNB. As a result, the target eNB needs to notify the serving eNB to 

release the resources for the UE, and the MME needs to switch the path to the target 

eNB. 

Figure 2-3 illustrates the detailed handover procedures in detail. The three 

handover phases with respect to handover preparation, handover execution, and 

handover completion are clearly displayed, and the handover procedures are divided 

into 18 steps. Detailed explanations can be found in [23], [32]. 



Chapter 2. Literature Review  

20 

 

 

Legend

packet data packet data

 UL allocation

2. Measurement Reports

3. HO decision

4. Handover Request

5. Admission Control

6. Handover Request Ack

7.
RRC Conn. Reconf. incl. 

mobilityControlinformation

DL  allocation

Data Forwarding

11. RRC Conn. Reconf. Complete

17.  UE Context Release

12. Path Switch Request

UE Source eNB Target eNB Serving Gateway

Detach from old cell 

and 

synchronize to new cell

Deliver buffered and in transit 

packets to target eNB

Buffer packets from 
Source eNB

9. Synchronisation

10. UL allocation  + TA for UE

packet data

packet data

L3 signalling

L1/L2 signalling

User Data

1. Measurement Control

16.Path Switch Request Ack

18. Release 
Resources

H
a
n
d
o
ve

r 
C

o
m

p
le

tio
n

H
a

n
d
o
ve

r 
E

xe
c
u

tio
n

H
a
n

d
o
ve

r 
P

re
p
a
ra

tio
n

MME

0. Area Restriction Provided

13. Modify Bearer

Request

15. Modify Bearer

Response

14. Switch DL path

SN Status Transfer8.

End Marker

End Marker

packet data

 

Figure 2-3 Intra-MME/Serving Gateway handover [23]. 

2.2.4. Handover Control Parameters 

The LTE hard handover decision algorithm consists of two control parameters: 

HM and TTT. HM is a constant variable that represents the threshold of the difference 

in received signal strength between the serving and target base stations. TTT value is 

the time interval that is required for satisfying the HM conditions. A handover will be 

initiated if the two conditions are fulfilled: 1) if the RSS of a potential target cell is 
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greater than the RSS of the current serving cell plus the HM value, and 2) if condition 

1 is satisfied for at least the time specified in the TTT parameter.  

 

Figure 2-4 The handover variation trend according to different HM values. 

Figure 2-4 shows the variation in handover numbers affected by different HM 

values and highlights the impact of HM on handover numbers. We did not choose the 

random UE moving model for this figure, but instead use the straight line moving 

model. As we can see from Figure 2-4, as the value of HM increases, the number of 

handovers decreases, e.g. when the HM is 0dB, over 3,600 handovers take place in 

the 100-transmission time interval (TTI). In contrast, when HM is 10dB, only 400 

handovers happen in the same amount of time.  
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Figure 2-5 The handover variation trend according to different TTT values. 

Figure 2-5 shows the number of handovers that happen in the 100 TTI and 

how this is affected by different selections of the TTT. Compared to the effect of HM, 

changing the TTT causes a much more severe reduction in handover numbers. When 

the TTT is set to 0ms, the handover will initiate whenever the RSS of the target cell 

exceeds that of the serving cell. If a 40ms period is added to the TTT, the number of 

handovers drops by more than 75%. As the TTT increases, the number of handovers 

decreases. 

Various researches have been done by analysing handover performance in 

terms of HM and TTT. Work in [33] proposed a self optimisation mechanism based 

on the optimisation of handover parameter through the checking of network feedback. 

The system will automatically check the call drop ratio and ping-pong handover ratio 

in each optimisation step, through modification of HM and TTT, to dynamically 

control the network performance. However, the proposed algorithm is only tested in a 
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limited simulation scenario, in order to prove the advantages of this algorithm, it 

should be tested in a more general scenario. 

A comprehensive analysis of handover control parameters was proposed in 

work [34]. The authors firstly analysed the sensitivity of HM and TTT under different 

cell loading circumstances, the result suggested that the HM is more efficient for the 

network performance controlling. Hence, secondly, a fuzzy logic adaptive HM 

selection scheme was proposed to optimise the system handover performance. The 

main reason that TTT was not suggested for this paper is caused by the network 

evaluation parameters selected by the authors. However, in the evaluation of  

handover quality, TTT is the main controller of ping-pong handover effect, if the TTT 

is ignored, a handover phase is incomplete. As a result, the combination of TTT and 

HM should both taken into consideration.  

Through the handover performance evaluation in terms of radio link failure 

ratio and  ping-pong handover ratio, work in [35] proposed a TTT selection scheme. 

In the condition of maintaining a certain radio link failure ratio, the optimal TTT 

value can be determined through curve fitting for UE with any speed. However, the 

same reason as above, the analyses of handover is suggested taken both HM and TTT 

into consideration, the second problem worth mentioning is the selection of TTT is 

unreliable as the detailed the curve fitting method is not introduced.  

Theoretical analysis of handover failure and ping-pong handover ratio 

according to user velocity and TTT is introduced in detail in work [36], by taking 

HetNets into consideration, the ping-pong handover probability and handover failure 

probability are represented as a function of TTT and UE velocity under the 

assumptions that the small cell coverage and radio link failure areas are circular 

regions, and the UEs are moving as linear trajectories. Similar work is also 
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investigated in [37], among which, an adaptive TTT selection scheme is added into 

the theoretical analysis.  

In [38][39], the authors focus on the evaluation of radio link failure, ping-pong 

handover ratio caused by inter-site distance, TTT and UE velocity. A closed form 

expressions for the handover performance probabilities were derived as a function of 

inter site distance and speed of the UEs. Although the expression is clearly, but the 

assumption that small cell coverage is a circular shape need to be discussed, because 

in a HetNet scenario, due to asymmetry transmit power of different tiers, the entry 

point of a handover condition is different when UE enter from different directions of a 

small cell. 

2.3. Review of Handover Decision Algorithms 

In this section, five different handover decision algorithms based on different 

parameters are discussed. As introduced in the previous section, the decision part of a 

handover referred to as the handover decision phase. In heterogeneous networks, the 

decision phase is always performed at the serving cell part. The vast majority of the 

discussed algorithms use a combination of different parameters to get the final 

decision. The main decision parameters for handovers between cells can be divided 

into five categories: 1) received-signal-strength-based, 2) speed-based, 3) cost-

function-based, 4) interference aware, and 5) energy-efficient-based. 

2.3.1. Received-Signal-Strength-Based Handover Decision Algorithms 

The handover decision algorithms in this category are based on the RSS. The 

handover control parameter HM is used here to compare the RSS of the serving cell to 

the RSS of the target cells. The ping-pong handover ratio and handover probability 
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can be significantly improved by the system dynamically adjusting the HM. As shown 

in Figure 2.6, the cell range expansion (CRE) is always used in SCNs as a virtual bias 

to expand the small cell coverage. In handover decisions, it can also be understood as 

the cell individual offset (CIO) as introduced in the previous A3 handover event. 

Assuming the UE is moving from macrocell to small cell, when the received signal 

strength and HM meet the criteria, the handover will execute.  

A new RSS-based handover decision algorithm was proposed in [40], [41]. 

The main idea of this work was to combine the RSS of macrocells and small cells to 

generate a new RSS criterion that compensates for the uneven RSS levels of 

macrocells and small cells. An exponential window function is utilised in the 

algorithm to mitigate the fluctuation of RSS. Through the combination of macrocell 

and small cell RSS, an adaptive cell offset is generated to perform a better handover 

performance. A further research of this handover decision is taken by work [42], 

based on the RSS and cell loading criterion, the authors proposed a new handover 

policy not only included the UE’s perspective but also taken network load into 

consideration. However, the authors only take two parameters as the system 

performance evaluation, which are the number of handovers and UEs assignment 

probability to different cells. These two parameter is insufficient in system level 

evaluation. 

Similar to the previous RSS-based handover decision algorithm, an RSS and 

pathloss-based handover decision algorithm was proposed in [43] where the analysis 

and simulation is also tested under a single macro-small cell scenario. Although the 

actual loss is added to the previous algorithm, this decision algorithm still got great 

difference in real life scenario. In heterogeneous network, the small cells are normally 
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dense deployed, not only macro-small cell scenario, but also small-small cell scenario 

should also take into consideration.    

 

 

Figure 2-6 Received-signal-strength-based handover. 

The authors of [44] proposed an intra-cell handover method that can be used 

for the handover between sub-channels. This handover decision criterion not only 

considers the avoidance of interference, but also takes the RSS handover decision into 

consideration. Further analysis of this approach is presented in the work of [45]. 

Through the detection of UE’s cross tier interference, the algorithm will decide 

whether it should perform an intra-cell handover or initiate it in the small cell cell list.  

Alexandris et al. [42] proposed an RSS based load aware handover decision 

algorithm. By considering both the UE and networks perspectives, the network load 

and RSS of UE are taken as the handover constraints. The proposed algorithm 
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outperforms the conventional RSS handover and distance-based handover in terms of 

user service delay and cell assignment probability. However, a more complex  

scenario should taken into consideration, the number of UEs need to be increased for 

the study of user distribution that will affect the system handover performance. 

Kalbkhani et al. [46] proposed a handover algorithm based on the prediction 

of RSS and SINR. Through the prediction of future SINR performance, the candidate 

cell list effectively shortened, after the prediction, base station with highest 

throughput will be assigned for the UE in order to achieve a better system 

performance. Although this algorithm seems to provide the best solution of system 

performance, the authors haven’t consider the time of stay for UEs , especial in small 

cells, since the small cell coverage is very limited. 

2.3.2. Speed-Based Handover Algorithms 

UE speed is used as the primary handover decision criterion in this class of 

algorithm. The handover decision is made by comparing the UE speed with an 

absolute threshold, which in most cases is arbitrarily picked. Speed-based algorithms 

are normally incorporated into other handover decision constraints, such as the RSS 

level constraint, the type of UE traffic, the available bandwidth on the target cells, and 

the UE membership status. 

The work of Ulvan et al. [47] proposed a QoS and speed-based handover 

decision algorithm, with the authors dividing the speed into three categories: 0-15, 15-

30, and >30km/h. Moreover, the traffic type is also divided into real-time traffic and 

non-real-time traffic. Through the comparison of the UE speed and the speed 

threshold, the algorithm will decide whether the UE should be handed over to a small 

cell or not. In addition, if the speed threshold is satisfied after the UE’s traffic type 
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detection, a further handover decision will be made (i.e. proactive handover or 

reactive handover). However, they only consider the UE speed without the UE 

moving direction, which will significantly affect the accuracy of potential target cell 

selection. The authors expand their work into mobility prediction through the 

adoption of the Markov chain process in [48]. By predicting the UE’s potential target 

cell, the performance of the proposed algorithm is better than normal handovers in 

terms of handover latency and the link establishment delay. Similarly, if they taken 

UE moving direction into consideration, a better performance should be expected.  

In [49], the authors proposed a low complexity handover optimisation 

algorithm. Similar to the previous algorithm, this also uses speed as the constraint to 

decide whether the UE should handover to a small cell. The performance evaluation 

of the proposed algorithm is conducted by comparing the traditional handover 

algorithm in terms of the handover signalling overhead. The results show that with a 

higher proportion of high speed users, the proposed handover algorithm has a much 

lower signalling overhead than the traditional one. This paper only consider two kinds 

of  UEs moving model, low speed and high speed, a more comprehensive UE moving 

model is needed when verifying the heterogeneous networks performance. 

In [50], a more complicated speed-based handover decision algorithm is 

introduced. Several parameters are combined in this algorithm and the author takes 

the RSS, the UE speed, the UE type (CSG user or non-CSG user), and the interference 

level into consideration. However, in the interference detection phase, the authors 

didn't take co-layer interference in to consideration, which will result in the 

inaccuracy of interference management, meanwhile, the small-small cell handover is 

also neglected.  
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Work in [51] proposed a UE speed and traffic type based handover decision 

algorithm, by categorising the UEs into four categories, the handover control 

parameters is independently assigned for each category. The proposed algorithm 

outperforms the single category traditional handover algorithms. Although the idea of 

categorise handover control parameters into four kind is novelty, but two problems 

need to be considered. First is the selection scheme of handover parameters, since the 

combination of the parameters are varied, second is the UEs speed categorising, a 

standard need to be found or established to support this paper.  

In [52], the authors proposed an unnecessary handover minimisation scheme 

based on monitoring the UE distance to the small cell, the moving speed and moving 

direction. Through the detection of these parameters, the candidate cell list is 

shortened, which effectively decreased the signalling cost and enhanced the system 

total capacity. However, in this paper, the assumption that small cell coverage is a 

circle need to be reconsidered, as the small cell coverage will significantly affected by 

its distance to macrocell.  

By considering the location of candidate cells and the moving direction of UEs, 

Kishida et al. proposed a new cell selection mechanism aimed at reducing 

unnecessary handovers [53]. The authors examined the proposed mechanism in a 

metropolitan scenario through the comparison of conventional maximum SINR based 

scheme, 30% handovers decreased without any degradation in call flow time.   

The work in [54] proposed a cell selection scheme based on the UE moving 

speed and interference signal level. Based on the neighbouring cell location 

information and UE moving status, the handover probability to each candidate cell 

can be formulated. However, the simulation taken place in a street scenario, which is 

very limited for small cell handover evaluation, in addition, the most important 
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variable in this paper is predefined by the authors, which seems to be not sufficient 

enough for this algorithm.  

2.3.3. Cost-Function-Based Handover Algorithms 

The aim of this type of handover decision algorithm is to integrate a wide 

range of different handover decision parameters, such as traffic type, battery lifetime, 

RSS, cell load, and UE speed, into one single cost function. 

 In the work of [55], a weighted performance handover decision algorithm was 

proposed. The main system performance indicator consists of three handover 

performance indicators: 1) the handover radio link failure ratio indicator, 2) the 

handover failure ratio indicator, and 3) the ping-pong handover ratio indicator.  

By combining the parameters w1, w2, and w3, the system will automatically 

optimize the handover control parameters HM and TTT in each time slot with 

handover performance parameter HP. The system handover performance significantly 

improves through this algorithm and several similar works also adopt this algorithm 

as the basic cost function [56], [57]. However, the selection of weight combination w1, 

w2 and w3 is predefined by the authors, which is lacking of adequate proof that these 

combination is the optimised one.  

                               Equation 2-1 

In [58], a cost-function-based adaptive HM algorithm is proposed to minimise 

the handover failure rate. This algorithm also uses different weightings, but each 

parameter in the weighted equation is a normalized function that consists of the load 

difference between the target and serving cells, the UE speed, and the service type. By 

comparing different combinations of weight parameters in the proposed algorithm, the 
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authors achieve an improved handover failure rate. Although the  performance is 

optimised, the simulation only takes macrocells into consideration, whether this 

algorithm is suitable for heterogeneous networks is not testified.   

Xu et al. [59] proposed a UE traffic type and SINR cost-function-based 

handover decision algorithm based on UE speed, UE traffic type, SINR performance 

of the serving and target cells, and the RSS level. The authors combined the UE 

traffic type and speed with a binary multiplication function by comparing the logical 

variable     with a certain threshold in order to decide whether the UE should make 

a handover. The parameters      and     shown below represent the function of 

speed and the traffic type, respectively. Parameters v and vth represent the UEs 

moving speed and system predefined handover speed threshold. Considering the 

simulation model, the authors need to consider the UEs moving direction, since the 

probability that a handover happened at small cell boundary is significantly different 

if the UEs are moving towards or away from the small cell. 

                           

      
       
       

        
         
         

  
Equation 2-2 

Vondra and Becvar [60], [61] presented a new handover control parameters 

selection mechanism, the authors introduced a new parameter CINR to instead of the 

RSS compared with [62] to calculate the actual value for handover control parameters. 

The parameter CINR is based on the serving cell’s transmitter power, path loss, noise 

power, and interference power. By simulating specific scenarios, optimal values for 

handover performance in terms of downlink throughput and handover amounts were 

achieved. However,  if these papers need to improve, two main points are 
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nonnegligible. First, similar to the previous references, the authors didn't consider 

heterogeneous network environment, only macrocells are considered, the 

effectiveness of this algorithm with small cell included need to be testified.  Second, 

the authors didn't takes TTT into consideration, as handover happened in a moving 

system, the time domain parameter TTT will also affect the handover probability.  

2.3.4. Interference Aware Handover Algorithms 

In the HetNet scenario, interference is a very important aspect that needs to be 

considered. The main parameters are the signal quality, e.g. the SINR performance, 

the received interference power level, the received signal quality, and the cell site 

interference constraints.  

A double threshold handover decision algorithm is proposed by [63] that aims 

to reduce unnecessary handovers. The authors not only considered the RSS level of 

UE, but also the interference signal level and capacity. Similar work is proposed in 

[64], where the proposed call admission control mechanism effectively reduces the 

number of unnecessary handovers by checking the UE’s quality of service. However, 

these two algorithms only checked by the unnecessary handover numbers, whether or 

not these reduction will decrease the system capacity is not stated. 

Alhabo et al. [65] proposed an interference-based handover algorithm that 

aims to improve the system throughput and load balancing in small cells. The authors 

incorporated the interference level with the neighbor cell list to reduce the candidate 

cells by checking SINR and time of stay before making the handover decision. The 

optimal result is presented in terms of UE mean throughput and system throughput. 

Although the proposed algorithm outperformed the other handover mechanisms, the 
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assumption that small cell coverage is a circular maybe not rigorous, since the small 

cell coverage is an irregular ellipse that affected by its distance to macrocells.  

Dionysis et al. [66] proposed an interference and energy efficiency-based 

handover decision for HetNet. The two main parameters in this algorithm are the UE 

transmitter power and an adapted HM. A wide range of constraints are introduced in 

this algorithm, including UE membership state, the transmitter power at both cell sites, 

the interference limitation, the bandwidth limitation, and the operating frequency. By 

measuring these parameters, an optimised result was achieved in terms of mean UE 

received interference power and mean UE consumed energy when delivering certain 

data bits. However, the high interference signal level typically affect the UEs that 

positioning at cell boundary or with high moving speed, the parameter mean 

interference power maybe not suitable for evaluate the network performance.  

An interference mitigation and handover management scheme combined with 

cloud RAN (C-RAN) was proposed by Zhang et al. [67]. The interference and 

signalling overhead of cell boundary UEs effectively mitigated through the adoption 

of coordinated multiple points (CoMP) clustering scheme.  Moreover, combining with 

self-optimisation mechanism, the interference power control and handover 

performance will be enhanced. 

Antoro et al. [68] proposed an interference and distance-based handover 

decision algorithm. By combine the nearest small cell distance with the RSS of 

different tier cells, a pre-handover mechanism is proposed. An SINR threshold is set 

to mitigate the cross tier interference. However, the interference power level is also 

distance dependent,  to simplify the proposed algorithm, the distance and interference 

should be consider into one constraint.  
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2.3.5. Energy Efficient-Based Handover Algorithms 

This type of algorithm aims to increase the system’s energy efficiency by 

utilizing small cells. Several criteria can be set as the primary constraints in this type 

of handover decision, such as the UE mean transmitter power, the UE power 

consumption, and the system’s power consumption. As the power consumption of the 

UE and the network are both strongly dependent on the interference signal strength, 

energy efficiency-based handover decision algorithms are similar to interference-

based handovers.  

Compared with the four-decision criteria mentioned earlier, only limited 

literature can be found in this area. The work from Boujelben et al. [69] proposed a 

green handover algorithm that aimed to save system energy through the optimal 

selection of candidate cell lists based on the UE speed and the cell loads. A 

remarkable effect is gained from the offloading of macrocells. In addition, the authors 

didn't consider the interference power, to improve this algorithm, inter cell 

interference power level should be added as a constraint.  

Araniti et al. [70] proposed a green handover algorithm based on the detection 

of UE moving speed and overall transmit power of small cells. Similar to the speed-

based handover, any UE with high moving speed will be rejected to handover into the 

small cells, only the handovers that will not increase the overall base station transmit 

power will be accepted.  Through the adoption of this algorithm, the number of 

unnecessary handovers and system energy efficiency improved. However, a possible 

solution to improve the proposed algorithm is to complicate the simulation 

environment, as the authors only consider single macrocell in their simulation. 



Chapter 2. Literature Review  

35 

 

In conclusion, various handover decision algorithms have been investigated in 

recent years. Based on different optimisation target, different criterion are set. The 

main aim when designing a handover decision algorithm is to optimize the handover 

control parameters to improve the system’s handover performance.  

2.4. Review of the Markov Chain Process 

The Markov Chain Process (MCP) is a stochastic process that is widely used 

in wireless communication systems [71]. When a stochastic process is provided by its 

current state and past state, and its future state probability distribution is only 

dependent on its current state, it is said to satisfy the Markov property. In other words, 

when the present state is provided, the future state is independent of the past states 

[72]. Assuming {Xk} is a stochastic process and {E} is the state space, for any In∈ E, 

its conditional probability represented by Prob can be expressed as the equation 

shown below: 

                                                  

                        
Equation 2-3 

2.4.1. Discrete Time Markov Chain 

The Discrete Time Markov Chain (DTMC) is used for heterogeneous network 

structures. If the transition probability of a DTMC from one state to another is 

independent of the time, it is called a stationary DTMC. Otherwise, it is a non-

stationary DTMC.  
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2.4.2. Probability Transition Matrix 

The probability transition matrix describes a Markov Chain in finite state 

space [73]. In a specific time-step, the probability of transfer from state    to    can be 

described as              . This can be represented by the transition matrix in the nth 

row and jth column as shown in the following matrix: 

1,1 1,2 1, 1,

2,1 2,2 2, 2,

n,1 ,2 , ,

,1 ,2 , ,

[ ]

j E

j E

n n j n E
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  
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 
  

 
Equation 2-4 

It should be noted that any Pn,j appearing in the matrix should satisfy 1≥Pn,j≥0 

and the summation of each row should be equal to 1, as for any given state n the next 

state must be one of the possible states. 

, 1n j

j E

P


  
Equation 2-5 

2.4.3. Related Works 

As mentioned previously, MCP is widely adopted in the modelling of wireless 

communication networks, and the work of [74] proposed a UE mobility prediction 

model in the macro-small cell scenario using MCP. The authors set each state as the 

UE’s potential target cell and the probability of the UE moving to the next cell is 

dependent on the UE’s current location, direction, and speed. The unnecessary 

handover numbers are minimised by the prediction of UE movement. 
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Another Markov-based HetNet mobility modelling and analysis work is 

proposed in [75], [76]. The authors first build a UE trajectory model and derive the 

average UE capacity. Secondly, a DTMC handover model of a single macro-small 

cell scenario is built up. By using the proposed model, optimal system average 

capacity and cell load can be achieved. However, the detailed handover probability 

model is not accurate for small cell environment, since small cell normally assigned 

with a certain virtual bias to  increase the UEs assignment to small cells. This bias 

will play an opposite role if the UE is served by different cells when handover 

happened. 

 
2.5. Summary 

In this chapter, SCNs, LTE handover procedures, handover decision algorithm 

classification, and the Markov Chain Process are reviewed.  

As part of the review of SCNs, the history of small cell development is 

introduced, followed by the advantages and disadvantages of utilizing small cells. The 

two-tier E-UTRAN is introduced to explain how small cells connect to the core 

network.  

In the overview of handover procedures, handover classification is introduced, 

followed by the handover entry events summary and the introduction of handover 

implementation. The handover control parameters are emphasized as the TTT and 

HM directly influence the system handover performance.  

In the review of handover decision algorithms, five categories of algorithm are 

introduced. The current algorithms are summarized, and the lack of a system level 

energy efficiency algorithm is discussed.  
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Finally, in the review of the Markov Chain Process, the DTMC and 

probability transition matrix are introduced, followed by a literature review of MCP 

utilized in modelling the mobility of the HetNet scenario.   
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Chapter 3. Two Self-optimisation 

Handover Decision Algorithms 

 

 

 

 

 

 

 

 

Overview 

In this chapter, two handover decision algorithms are proposed. The first is 

based on the system SINR and ping-pong handover ratio, which can also be 

understood as a system self-optimisation mechanism, based on interference and ping-

pong handover ratio. Similarly, the second optimisation mechanism is based on 

system energy efficiency and ping-pong handover ratio status, which also provides a 

self- optimisation mechanism. The main concept of the proposed algorithms is that 

they dynamically select two handover control parameters: TTT and HM, based on the 

current network performance in terms of SINR, energy efficiency states, energy 

reduction gain (ERG), and ping-pong handover ratio, the system will automatically 

modify the handover control parameters to yield better network performance.  
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3.1. Introduction 

HetNets were first proposed in Release 10 of 3GPP [10]. Following the wide 

deployment of 4G, data rate was significantly increased. The upcoming 5G standard is 

expected to have between 10 and 50 Gbps data rates [77]. With such high demand in 

data traffic volume, the extremely high density of small cell deployment is inevitable 

[78]. With the wide adoption of small cells in networks, the user distance from base 

stations is much shorter compared to the one-tier macrocell only network, which 

strongly enhanced the network capacity. As stated in the previous chapter, another 

benefit that can be achieved by using small cells is good isolation, which can 

significantly improve the network spectrum reusing efficiency, by reusing radio 

spectrum indoors [7].  

While we benefit from the convenience brought by utilising small cells, 

several unavoidable problems arise. The complicated network structure leads to a 

severely challenging situation for mobility management, particularly the handover 

decision part. The smaller coverage compared to a macrocell will result in frequent 

handovers. Among these handovers, a number of them will be unnecessary handovers. 

If we can reduce the number of these handovers, the UEs will benefit from better 

quality of experience (QoE), and network burdens will be decreased. The interference 

issue is an important problem when applying densification deployment of small cells, 

not only in the case of macro-small cell interference, but also for small-small cell 

interference. Another issue is the energy consumption problem; the increasing density 

of base stations significantly increased the energy consumption in a cellular network, 

since 57% energy is consumed by the base stations [79], [80]. At the same time, 
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mobile switching occupied 20% energy cost [81]. Network energy efficiency will be 

severe affected by unnecessary handovers. 

In order to solve the first frequent handover issue, an algorithm that 

dynamically selects the handover control parameters TTT and HM is introduced. 

These two parameters are designed for the prevention of unnecessary handovers 

caused by sudden fluctuations in signal strength. As previously introduced, in order to 

perform a handover, both the HM and TTT constraints need to be satisfied [82]. For 

the purpose of solving system interference and energy efficiency issues, two self-

optimisation mechanisms are proposed. In order to solve the interference problem, 

another performance evaluation parameter system average SINR indicator is added to 

determine the handover control parameters. The system will make the decision of 

changing control parameters through the monitoring of average SINR and ping-pong 

handover ratio state. On the other hand, the network energy efficiency issue is also 

challenging, but can be solved by reasonably establishing the system power 

consumption model and checking the system energy status when making a change in 

handover control parameters.  

The detailed power consumption model for both base station and users are 

introduced in this chapter. It is worth mentioning that, in order to formulate a 

comprehensive model, when establishing the system power consumption model, we 

not only take base stations into consideration, but also mobile terminals. Many 

handover decision algorithms have been proposed to solve frequent handover 

problems, e.g., speed-based handover decisions, RSS-based, and interference aware-

based [22]. In conventional handover decisions, different constrains have been used to 

make handover decisions, but an energy efficiency-based handover decision algorithm 

has not been proposed. In this chapter, we propose an energy efficiency-based 
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handover decision algorithm which aims at self-optimizing the network system energy 

efficiency and system total ping-pong handover ratio. 

This chapter is organized as follows. In the first part, an SINR and ping-pong 

handover ratio-based self-optimisation handover decision algorithm is introduced, 

followed by simulation results and analysis. Part two introduces the three different 

power consumption models with respect to the UE, macro cell, and small cell, 

followed by three energy efficiency metrics. The proposed ping-pong handover ratio 

and system energy efficiency-based handover decision algorithm is described in detail, 

and simulation parameters and simulation results are presented.  

3.2. An average SINR and ping-pong handover ratio-

based handover decision optimisation algorithm 

3.2.1. Downlink SINR calculation 

Within the network, there are J macro cells and N small cells. Assume we 

have one UE, x, who is served by a macrocell, m; the distance between this user and 

the macrocell can be expressed as dmx,  if the UE is served by this macrocell, the 

downlink SINR of this UE can be calculated as Equation 3-1. In the following 

equation, αm and αf denote the path loss coefficient of the macrocell and small cell, 

respectively. Pjx and Pkx represent the transmit power from macrocell and small cell to 

this UE, Pmx denotes the transmit power of current serving macrocell, and n denotes 

the thermal noise. 

       
        

   

    
 
                  

 
      

     
 

Equation 3-1 
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Similarly, for a small cell serving user, we only need to change the serving cell, 

Pfx denotes the transmit power of current serving small cell, dfx represents the distance 

to this small cell, which is shown as Equation 3-2. 

       
        

   

    
 
              

 
          

     
 

Equation 3-2 

As the handover decision algorithm proposed here is constrained by system 

average SINR and ping-pong handover ratio performance. The average SINR is 

calculated as: 

            
       

 

 
 Equation 3-3 

            is the average SINR, which is calculated from the summation of each 

UE’s SINR, divided by the total number of UEs, which is represented by X in the 

system.  

3.2.2. Ping-pong handover ratio 

Ping-pong handover can be interpreted as a call being handed over to a new 

cell and then handed back to the original cell in less than critical time (  ). According 

to 3GPP TR36.839, the recommended    here is one second. Ping-pong handover 

ratio here is calculated using equation 3-4, inside the equation,       denotes the 

ping-pong handover number,         represents the total handover number, and 

         is the ping-pong handover ratio. The ratio calculated here is the number of 

ping-pong handovers divided by the total number of handovers. 

         
     

      
 Equation 3-4 
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A special case of the first order auto regressive moving average (ARMA) filter 

is used in this instance to study the proposed handover decision algorithm.  

                                         
    Equation 3-5 

                                   Equation 3-6 

In the equations above,    represent the handover indicator.            and 

         are two parameters used here to indicate the system average SINR and ping-

pong handover performance.             
   is the average SINR value at time slot    , 

          and             are the filtered              value at time slot     and time slot 

     . Similarly,        represents the ping-pong handover ratio at time slot    , 

             and            are the filtered     value at time     and time     ), 

where           and          are set to            
    and        when the first 

measurement results are received. Parameter   here is known as the forgetting factor 

and is used for deciding the weight given to current value and previous value    

    . The closer the value of   gets to zero, the higher the proportion for which the 

current             and     depend on the filtered value in the previous time interval. On 

the other hand, the closer the forgetting factor gets to one, the higher the proportion 

for which the current filtered             and     depend on the current value. Figure 3-1 

is a 200 ms simulation that shows the           affected by forgetting factor  . From 

the figure, we can see when      the           is the instantaneous value of            ; as 

  decreases, the          becomes smooth. The set of   used here aims to prevent a 

sudden variation in variables. 
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Figure 3-1   variation vs           

3.2.3. System model 

A 19-hexagonal macrocell closely deployed environment, in which the small 

cells are randomly distributed. Figure 3-2 (a) and (b) display the 3D view and top-

down view of the entire simulation network system, which comprises a two-tier 

macro-small cell network SINR map. As stated in the previous, there are 19 macro 

cells and 91 small cells in the entire simulation system. In the top-down view of this 

map, we can see that the different signal strengths created differential BS coverage, 

different position of same type of BS result in a different coverage as well (as the two 

small orange windows displayed in the figure, the small cells are assigned with the 

same transmit power, but they are offering different SINR coverage).  

Figure 3-2 (c) and (d) shows the interference map of the entire network system. 

It can clearly be seen that the denser the deployed cells, the higher the interference 

will be. The processes of SINR and interference maps calculated here are shown 

below. The entire map was divided into 100*100 pixels, note that, the x axis and y 

axis of these figures are represented by pixel numbers. RSS was used to determine the 

current serving cell in each pixel. The RSS of rest 109 BSs was considered to be 

interference power. The entire map was scanned to create the SINR and interference 

maps. 
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(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 3-2. 3D view and top-down view of SINR map and interference map. 

3.2.4. UE mobility 

The SINR and interference maps that calculated in section 3.2.3 were created 

in a static process. The cell that provides the maximum RSS is considered as the 

serving cell, while the remaining RSS are considered as interference power. However, 

handover is a dynamic process, which means even if the user moved out of the cell 

serving region and the maximum RSS is from a different cell, it can still be served by 

the original cell.  

The number of UEs in the simulation totalled 1,000. The UEs are initially 

randomly dropped onto the simulation map, and the direction for each UE is randomly 



Chapter 3. Two self-optimisation handover decision algorithms  

47 

 

chosen from zero to 2π. Each UE moves in a straight line with a constant speed, 

which in this case ranged from 30km/h, 60km/h, and 120km/h. When the UE was 

almost outside of the simulation environment (4000m×4000m square area), the UE 

was set to change movement into the opposite direction. 

3.2.5. SINR and ping-pong handover ratio optimisation mechanism 

Figure 3-3 represents the flow chart for the detailed handover optimisation 

step, which was used in the proposed handover algorithm. Following the initial phase, 

data was collected from the network, six threshold values are represented as follows: 

                                        and         . Among these six values, 

the subscript ending with    refers to threshold, with   referring to good performance 

value,       means bad performance value. Parameters starting with    refers to 

handover indicators, while those starting with      represents the current value 

of    . The decision-making part can mainly be divided into four steps, as shown in 

Figure 3-3. The first two decisions are to check the HO ping-pong ratio; steps three 

and four are based on SINR judgment. 

Step 1. Compare the          and        , if                    the left 

branch, Step 2a, Step 3a and Step 4a will be executed, otherwise, execute Step 2b, 

Step 3b and Step 4b.  

Step 2. a.(left branch) Compare the         and       , if         

      , decrease the current threshold and good performance value, which means the 

current data is of good performance, the current threshold is not suitable for filtering. 

Step 2. b(right branch) Compare the          and       , if               , 

similarly, increase the          and       . 
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Step 3. a(left branch) Compare          and         , if                   , 

execute step 4. a, otherwise, go to next optimisation step. Step 3.b(right branch), if  

                  execute step 4. b, otherwise, go to next optimisation step. 

Step 4. a(left branch) Compare the          and        , if          

        increase the HM and TTT. Step 4. b(right branch) if                 , 

decrease the HM and TTT. 

The main idea of this optimisation including two directions which shown as 

the two branches in the figure, in each direction, four steps are included. The first two 

steps are the checking of ping-pong handover performance, step 3 and step 4 are the 

SINR checking progress. Since ping-pong handover ratio is the priority issue that we 

concern, therefore, the SINR performance checking will start only when ping-pong  

ratio criterions are satisfied. 

Left branch: The handover control parameters HM and TTT will be reset only 

when                   and                  are satisfied, which means current 

ping-pong handover ratio and SINR performance are both in very good condition, in 

order to have better system performance, the system will automatically decrease HM 

and TTT.  

Right branch: similarly as left branch, the HM and TTT will be increased, only 

when both ping-pong handover ratio and SINR performance are in bad performance 

condition, which shown as the                and                 . The target 

of this branch is to decrease the ping-pong. 

In step 2, 3 and 4, other six cases will also possibly happen, the reason that 

these cases happened is because the current system feedback value is better than the 

threshold value, but haven’t reach the good or bad performance condition, under such 
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circumstance, the system will hold on and keep waiting for the next time slot 

feedback. 

 

Figure 3-3 SINR and PPHO ratio self-optimisation flow chart 

Figure 3-4 introduced the optimisation direction of the handover control 

parameters; 20 different possible parameter combinations were considered to assist in 

resetting HO control parameters when optimisation was undertaken. Figure 3-4 shows 

two optimisation directions (red arrows). The higher the step value, the lower the 
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handover ping-pong rate and SINR performance. Contrarily, a lower step value will 

result in a higher ping-ping ratio and better SINR performance.  

 

Figure 3-4 Optimisation direction of TTT and HM. 

The parameters employed are listed in Table 3-1. Detailed network layout and 

user deployment are introduced in section 3.2.2. According to 3GPP TR 36.842 [83], 

we use two different path loss models for the macro and small cells. 

Table 3-1 Simulation parameters. 

Parameters Values 

Macrocell layout 19 Cells, hexagonal grid, wrap-around 

Femtocell layout 91 cells randomly deployed  

Carrier frequency 2 GHz 

Bandwidth 10 MHz 

Macrocell path loss 128.1+37.6*log10(d/1000) d in [m] 

Femtocell path loss 147 + 36.7*log10(d/1000) d in [m] 

Macrocell Tx power 46 dBm 

Femtocell Tx power 20 dBm 

User deployment 1000 Users randomly deployed 

User velocity [km/h] 30/60/120 
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Simulation time 500TTI 

TTI 10 ms 

Forgetting factor   0.25 

TTT [ms] 0/40/64/80/100/128/160/256/320/480 

HM [dB] 1/2/3/4/5/6/7/8/9/10 

3.2.6. Simulation result 

In this section, the performance evaluation of the proposed handover decision 

algorithm is discussed from a different perspective. 

3.2.6.1 Optimisation under UE velocity v=120km/h 

Figure 3-5 shows the overall ping-pong handover ratio variation in a 500 TTI 

simulation. The overall ping-pong handover ratio is calculated from the number of 

ping-pong handovers occurred, divided by the number of handovers occurring up to 

the current time slot. From the figure, it is clear that with more time spent in the 

simulation, the value of the no-optimisation-based curve (blue) turns out to be smooth 

at roughly 0.17. Similarly, the optimised ratio stabilized and fluctuated at roughly 

0.14; 3% of ping-pong handover ratio was optimised in this condition. There is a 

crossover at roughly 190; prior to this time point, the ratio of the optimised algorithm 

is higher than the non-optimised algorithm. The reason for this can be observed in 

Figure 3-4. Following the check for the ping-pong handover ratio stage, the check for 

SINR performance resulted in the resetting of handover control parameters. 

According to Figure 3-5, bad SINR performance will cause optimisation direction to 

drop to a lower stage of control parameters, where the lower value of control 

parameters will function at a reduced ping-pong handover performance. 
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Figure 3-5 Overall ping-pong handover ratio v=120km/h. 

3.2.6.1.Optimisation under UE velocity v=60km/h 

Compared to Figure 3-6, no overlapping of two curves exist, and the value of 

the non-optimised-based curve stabilized at roughly 0.33; optimised curve was 

smooth at 0.285. The optimised ping-pong handover ratio was roughly 4.5%. 

 

Figure 3-6 Overall ping-pong handover ratio v=60km/h. 
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3.2.6.2.Optimisation under UE velocity v=30km/h 

From Figure 3-7, it is clear that no optimisation occurred from 0~80 TTI. Two 

reasons for this are the stable SINR and ping-pong handover ratio. After time slot 80, 

optimisation is clearly shown in the figure; the ratio of the non-optimised curve 

fluctuated at 0.34, and the optimised curve stabilized at 0.28; optimised ratio was 

roughly 6%. If we consider Figure 3-5, Figure 3-6, and Figure 3-7 together, it is not 

difficult to see that with a decrease in UE velocity, the ping-pong handover ratio 

became larger, and the optimised ratio increased.  

 

Figure 3-7 Overall ping-pong handover ratio v=30km/h. 

 

3.2.6.3.Average SINR value optimisation 

Table 3-2 lists the average SINR value for a comparison of the optimised and 

non-optimised algorithms. The average SINR is the mean value of            
   .  
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Table 3-2 average SINR optimisation result. 

UE velocity Non-optimised average SINR [dB] Optimised average SINR [dB] 

120km/h 5.1090 5.4310 

60km/h 5.3181 5.7880 

30km/h 6.0531 6.4716 

The optimisation for SINR is not significant compared with the optimisation 

of ping-pong handover ratio, with respect to 0.322, 0.4699, and 0.4185 dB. 

3.3.  An energy efficient and ping-pong handover 

ratio-based handover decision optimisation 

algorithm 

3.3.1. Handover model 

In a conventional cellular network, assuming the UE is moving away from its 

serving base station, if the RSS of the target base station exceeds that of the serving 

base station for a certain threshold, HM, and satisfies the TTT constraint, a handover 

will start. The handover decision is given by the following equation, where      

represents the RSS of target base station and      represents the RSS of serving base 

station.  

             Equation 3-7 
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3.3.2. UE Power Consumption Model  

 

Figure 3-8 UE power consumption model. 

In order to more effectively reflect the impact of LTE physical layer energy 

consumption, which affects the UE power consumption, a simplified energy 

efficiency model is adopted here [84], [85]. Figure 3-8 introduces the four power 

consumption parts following the simplification, which can be summarized as follows: 

1). Transmit baseband part PTXbb 

2). Transmit radio frequency part PTXrf 

3). Receive baseband part PRXbb 

4). Receive radio frequency part PRXrf  

Assume that any user can be defined as being in one of two states, idle mode 

or busy mode; the four aforementioned power consumption parts are only considered 

for the user busy mode. Following these conditions, the UE power consumption 

model can be defined as:  

                      Equation 3-8 

In the above equation,     denotes the UE power consumption model,       

and       represent the power consumption model when UE in idle or busy condition. 
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When the UE is in busy mode, the power consumption model can be further detailed 

as follows: 

                                         
        

Equation 3-9 

Here, α and β are both logical variables that define the UE working state. The 

parameter, P, indicate different power consumption levels using different subscripts in 

each part, PTX and PRX represent the transmit power and receive power when the UE is 

in busy mode. 

3.3.3. Base station power consumption model 

 

Figure 3-9 Macro cell power consumption model. 

Two different power consumption models are adopted here to describe the 

macro and small cells in the HetNets system. For a typical macrocell [86]–[88], the 

main power consumption parts can be described as in Figure 3-9, which can be further 

derived as the following equation [89]: 

       
            

    
   

         

                             
 Equation 3-10 
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In the above equation, Nsec and NPA/sec represent the number of sectors in 

one base station, and the number of power amplifiers in each sector. The parameter, γ, 

is the load factor that represents the current loading of this cell; μPA denotes the power 

amplifier efficiency. The three power consumption factors in the molecular, which is 

represented by PPA, PRF, and PBB, are the indicators of power consumption in the 

power amplifier, radio frequency, and baseband parts. The parameter, β, in the 

denominator, is a loss factor; three different loss factors are considered in this power 

consumption model: the DC converter factor, the mains electricity supply factor, and 

the cooling loss factor. Detailed small cell power consumption parts are shown in 

Figure 3-10.  

 

Figure 3-10 Small cell power consumption model. 

Similarly, the small cell power consumption model [90] can be described as 

the equation shown below: 

               
   
   

       Equation 3-11 

Compared to the macrocell power consumption model, the small cell model is 

simplified. Generally, the small cell is considered as having an omnidirectional 

antenna, which means only one sector is included. As the power consumption in the 

small cell is much lower than that of the macrocell, the cooling loss and DC-DC loss 

are not considered. The parameter, PMP, is the power consumption of the 

microprocessor, which can also be regarded as the power consumed by the baseband 
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part. The only extra part here is the FPGA (field programmable gate array), which is 

used for authentication and encryption. A detailed power consumption model is 

shown in Figure 3-10.  

3.3.4. Energy efficiency metrics 

The energy consumption ratio (ECR), energy consumption gain (ECG), and 

energy reduction gain (ERG) are three metrics that are generally used for the 

evaluation of network system energy efficiency performance [91]. 

The ECR metric is used for the evaluation of energy consumed (E) when the 

system delivers (M) bits of data. This can be further derived as the ratio of system 

power consumption (P) over the system average throughput (R). 

    
 

 
 

   

 
 

 

 
 Equation 3-12 

The ECG metric is generally used in the comparison of two different systems, 

which is represented by E1 and E2 in the equation below. When we substitute 

E=M∙ECR into the ECG definition, the following function can be obtained: 

    
  
  

 
       

       
 Equation 3-13 

In order to compare two different systems more directly, the ERG metric was 

introduced, which can also reflect the gap in energy consumption between different 

systems in percentage. Both ECG and ERG was developed from the ECR metric. 

       
 

   
       Equation 3-14 

The three models proposed in this section will be combined to evaluate system 

performance in the following section. 
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3.3.5. Energy efficiency and ping-pong handover self-optimisation algorithm 

As handover occurs in a moving system, we can regard different time slots as 

different system states. Assuming the entire process comprising N time slots, which 

can be defined as N different systems, the energy variation of different time slots can 

be obtained. e.g., the energy consumption difference of time slot one to two can be 

expressed as ERGtimeslot1-2, which can be calculated as follows: 

               
               

       
      Equation 3-15 

The total energy consumed by the system is composed of the base station part 

and the UE part, which can be calculated as the summation of Pue, Pmacro, and 

Psmall, as follows: 

                       Equation 3-16 

The core mechanism of the proposed algorithm can be described as follows: 

two threshold parameters can be obtained (system ERG and ping-pong handover ratio 

performance) through the sample of power consumption and SINR performance in 

each time slot. During each time slot, the network will feedback the conditions of 

ERG and ping-pong handover ratio, and compare them with the two threshold 

parameters. Following the comparison, the system will decide the optimisation 

directions of the next time slot (increase or decrease TTT and HM) to deliver better 

system performance. 

Table 3-3 List of abbreviations. 

Indicators Explanations 

HIHPPth The threshold of ping-pong handover ratio 

HIERGth The threshold of ERG value 
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C_HIHPP 
Current time slot ping-pong handover ratio 

indicator 

HIHPPg 
Ping-pong handover ratio good performance 

indicator 

HIHPPb 
Ping-pong handover ratio bad performance 

indicator 

C_HIERG Current time slot ERG value indicator 

HIERGb ERG value bad performance indicator 

HIERGg ERG value good performance indicator 

 

Figure 3-11 presents a flow chart of the detailed handover optimisation step 

that is used in the proposed handover algorithm. Table 3-3 introduces the 

abbreviations of handover indicators that are used in the proposed algorithm. 

Following the initial phase, data are collected from the network to establish six 

threshold values as follows: HIHPPth, HIHPPg, HIHPPb, HIERGth, HIERGg, and HIERGb. 

Among these six values, the subscript ending in th refers to threshold, g refers to good 

performance value, and b refers to bad performance value. 

In Figure 3-11, parameters beginning in HI refers to a handover indicator, 

while those beginning in C_HI represent the current value of HI. The decision-making 

part can be divided primarily into four parts, as indicated in Figure 3-11. The first 

decision is the comparison of C_HIHPP and HIHPPth; then, the second part is carried out. 

If C_HIHPP < HIHPPth, and C_HIHPP < HIHPPg, we decreased the current threshold and 

good performance value, indicating that the current network status had good 

performance. The current threshold may not have been suitable for filtering; of this 

was not the case, the next optimisation step was initiated. Similarly, if C_HIHPP > 

HIHPPth, and C_HIHPP > HIHPPb, HIHPPth and HIHPPb were increased. The first two 

decisions checked ping-pong handover ratio; steps three and four decided system 
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energy efficiency, which was based on current system energy efficiency status. If both 

the condition C_HIERG > HIERGth and C_HIERG > HIERGg were fulfilled, we increased 

HM and TTT. On the contrary, if C_HIERG < HIERGth, and C_HIERG < HIERGb, TTT and 

HM needed to be decreased. After resetting the handover control parameters, the 

process moved to the next time slot. 

 

Figure 3-11 ERG and PPHO ratio self-optimisation flow chart. 
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3.3.6. Simulation and analysis 

In this section, the simulation is analyzed to establish the proposed energy 

efficiency and ping-pong handover optimisation algorithm. The algorithm was tested 

in a 19-hexagonal macro base stations closely deployed environment, in which the 

small cells were randomly distributed. The detailed simulation parameters are listed in 

Table 3-4. the simulation environment was similar to that presented in section 3.2.3. 

1000 UEs were randomly distributed in the scenario, and each UE assigned an initial 

speed and moving direction. At the start of each time slot, the UE will be randomly 

assigned a new moving speed and direction.  

The entire simulation process comprised 200 TTIs, and each TTI lasts 10ms. 

In the initial phase, the system will collect basic data from network feedback, which 

included the system average SINR, system average throughput, system power 

consumption status, and the six handover performance indicators. Following data 

collection, the system will automatically check the system status and make 

comparisons with previous system feedback, following the proposed algorithm to 

make the decision of whether the system should change the handover control 

parameters for better system performance. After new parameters have been defined, 

the system will automatically enter a new optimisation step. The indicators will also 

be updated, which includes the most recent TTI information, the self-optimisation 

working mechanism is shown as this. 

Figure 3-12 displays the ping-pong handover ratio optimisation results. In the 

beginning phase, there are nearly four TTI where no ping-pong handover occurs; this 

is because a ping-pong handover is defined as two separate handovers, during which 

the hand-in and hand-out cell must be the same serving cell. While the handover 

checking process waits for the TTT confirmation report, the two curves nearly 
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coincide, as previously noted; this is the data collection process. The first turning 

point appears near TTI 10, which is just about the first optimisation step working, 

both curves becoming stable in TTI 15. This happens because both UEs are becoming 

relatively stable. From TTI 15 to TTI 50, after the first reset of handover control 

parameters, the optimised curve moves gradually closer to the non-optimised curve; 

this is because according to the premise of ensuring the ping-pong handover ratio, the 

system will start optimizing system energy efficiency. At TTI 50 and TTI 70, two 

rapid decline points occur; however, tuning value differs slightly. This is caused by 

the self-optimisation mechanism of the system ping-pong handover threshold 

indicators. From a global perspective of the entire ping-pong handover ratio 

optimisation, the proposed algorithm provides an obvious optimisation effect. 

Table 3-4 List of simulation parameters.  

Parameters Values 

Macrocell transmit power Ptxm 46dBm 

Small cell transmit power Ptxf 24dBm 

Macrocell power amplifier efficiency μPAm 31.1% 

Small cell power amplifier efficiency μPAf 22.8% 

Macrocell power amplifier power PPAm 128.2W 

Small cell power amplifier power PPAs 2.4W 

DC-DC power supply loss Βel/DC 7.5% 

Main supply loss Βel/M 9% 

Cooling loss Βel/C 10% 

Macrocell baseband power PBB 29.5W 

Macrocell RF power PRF 13W 

Microprocessor power consumption PMP 3.2W 

FPGA power consumption PFPGA 4.7W 
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Figure 3-12 Ping-pong handover ratio optimisation result. 

 

Figure 3-13 System energy efficiency optimisation result. 

Figure 3-13 illustrates the optimisation result for system energy efficiency, 

which uses the ERG to create the result. As introduced in the previous section, the 

ERG is a comparison value of two different time slots (Equation 3-15). We 

considered the data collected from first TTI as the initial data. In TTI 0, the ERG 
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value is 0; from TTI 1 to 10, the ERG values are even negative; this is because the 

system is still in the data collecting phase. From TTI 10, when the first optimisation 

takes place, after checking the ping-pong handover ratio, when all conditions have 

been fulfilled, the resetting of system control parameters significantly increases the 

system energy efficiency in the next 40 TTI, and ERG value is positive. From the 

derivation in section two, it is easy to understand that when delivering the same bits, 

the optimisation system consumes much less energy. When system optimisation 

becomes stable, the value of ERG clearly approaches 0; when new optimisation steps 

start again at 50 and 60 TTI, the current system energy efficiency again increases 

significantly. 

3.4.  Summary 

Two ping-pong handover ratio based control parameters self-optimisation 

mechanisms are proposed in this chapter. The process, from system setup to 

simulation results, was clearly introduced. The first algorithm aims to achieve 

optimisation of ping-pong handover ratio and the system average SINR performance. 

Various UE speeds were tested and via simulation, 3%, 4.5%, and 6% ping-pong 

handover optimised ratios were achieved, with respect to UE speeds of 120km/h, 

60km/h, and 30km/h. The system average SINR also achieved improved performance. 

The second algorithm is an energy efficiency and ping-pong handover ratio self-

optimisation algorithm. By applying this algorithm to the simulation, the system ping-

pong handover ratio and energy efficiency was clearly optimised. The ping-pong 

handover ratio dropped nearly 5% and the system energy efficiency increased nearly 

4%.  
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Overview 

HetNets have the advantage of assembling various cells into networks and 

enhancing users’ QoS within the system. However, its development is constrained by 

two main issues: 1) load imbalance caused by different transmission powers for 

various tiers and 2) the unbalanced transmission power may result in unnecessary 

handovers. In order to solve the first issue, CRE can be applied to the system. This 

will benefit lower-tier cell range during the user association phase; while, the 

coordination of CRE, HM and TTT will be utilized to solve the second issue. 

However, the relationship of these parameters can be complicated and even reduce 

QoS if they are chosen incorrectly. This chapter evaluates the advantages and 

disadvantages of all three parameters and proposes an MCP based method in order to 

find optimal HM, CRE and TTT values. Subsequently, the simulations are carried out 

to obtain an optimal system total throughput.   
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4.1.  Introduction 

With the wide adoption of small cells, due to the shorter distance between the 

UE and the network, the weakening of signal strength due to path loss is improved. 

Another advantage of HetNets is that the data transfer rate is significantly increased, 

as spectrum reuse efficiency is improved [92]. However, HetNets come with a 

number of challenges as discussed in the following. 

The first issue is load imbalance, which is caused by the different transmission 

powers of various tiers. Due to the structure of HetNets, UEs within the network may 

receive signals not only from the same tier, but also from higher tiers. Since UEs 

prefer to choose a signal with higher receiving power to obtain better user QoS, they 

may stick to higher tier cells and refuse to offload to lower tier cells. As a result, 

HetNets cannot operate efficiently if a higher tier cell is overloaded but there is a 

lower tier cell that is not being utilized [93]. The second issue is the handover 

problem. As mentioned earlier, different transmit power in different tiers may cause 

frequent handover, among which unnecessary handovers occupy a considerable 

proportion. System throughput is severely affected by unnecessary handovers. 

In order to solve the first issue, 3GPP first introduced CRE in release 10. This 

parameter can be considered as a virtual bias that added to the actual UE received 

power part, which allows a UE to be served by a cell with lower received power, it is 

simple and typical one of alternative cell associations to enhance offloading, but on 

the other side, the adoption of CRE will cause downlink  interference issue in not only 

data and also control channels. The CRE has became a practical power control 

technique in 3GPP standardization [94]. In a multi-tier network, most UEs are served 

by the macro cell due to its higher transmitting power and wider coverage area. 
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Compared to the macrocell, the transmitting power of a small cell is much lower; 

typically, the transmitting power of a macro and a small cell is 40 watts and 0.24 

watts, respectively [95]. As a consequence, if traditional user association is adopted, 

most UEs will be allocated to the macrocell, which may lead to a macrocell overload 

and much worse QoS experience. With the utilization of CRE, the UEs’ small cell 

receiving power strength is added with a CRE bias, which forces the UEs to be more 

likely to offload to small cells. This virtual bias limits macrocell load and stabilizes 

the UE when it travels around the cells’ edges. At the same time, the unnecessary 

handover probability is also reduced, which increases network capacity [96]. However, 

CRE only focuses on the load balancing issue and does not take interference issues 

into consideration. Nevertheless, CRE will also change the UEs’ handover position 

due to the coverage change by the small cells. 

The second issue can be solved by the reasonable selection of different HM 

values to control the handover rate (HOR). As introduced in the previous section, the 

utilization of CRE will have a large impact on handover procedures. The determinant 

of CRE is normally based on cell load and network system performance and HOR is 

not considered when a CRE is chosen [32], [97]. As introduced in Chapter 2, a 

handover only occurs when the HM condition and TTT condition are both satisfied 

[98]. In a HetNets handover scenario, the two virtual biases, HM and CRE will each 

play a different role if the user is served by different cell types, namely a macrocell or 

a small cell. As introduced before, the HM parameter is permanently added on the 

serving cell side and as a result, when a UE is served by a small cell, the virtual bias 

that is added on the serving cell RSS should be HM + CRE and if a UE is served by a 

macro cell, the virtual bias should be HM - CRE. Figure 4-1 and Figure 4-2 depict the 

two virtual bias working mechanisms. In these two figures, the gray circle is the area 
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served by a small cell, which can be understood as where RSSm = RSSs happens. The 

blue circle represents the area served by a small cell plus CRE, which can be defined 

as RSSm = RSSs + CRE. The orange circle illustrates the HM bias added to the RSS 

of the cell providing service. As shown in the figure, when the UE moves from a 

macrocell to a small cell, the two virtual biases will cancel each other out. Whereas, if 

the UE is served by a small cell, when it is moving towards the macro cell serving 

area, the orange circle depicting the HM bias, which can be regarded as the real 

handover initializing position, greatly increases the area served by the small cell. 

Both HM and CRE are virtual biases added to networks, but the directivity of 

these two parameters is different. A good combination of HM and CRE can not only 

increase system throughput, it can also reduce the HOR.  

 

Figure 4-1 Handover from a macrocell to a small cell 
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Figure 4-2 Handover from a small cell to a macrocell 

The remainder of this chapter is organized as follows: in Section 4.2, the 

methodology of mapping HetNets into MCP is introduced, in Section 4.3, the system 

model is illustrated, after which the transition probability is calculated, and lastly, the 

simulation results are introduced in Section 4.4.  

4.2. Methodology  

4.2.1. Discrete Time Markov Chain (DTMC) 

As introduced in Chapter 2, the DTMC is defined as a Markov stochastic 

process with countable states space, which only changes with the time step [99].  If 

the DTMC probability in state transfer process is not variable in accordance with a 

change of time, the DTMC is called stationary. However, if the transit probability is 

dependent on time variables, the MCP will have non- stationary transition probability, 

which is utilized in our modelling of a HetNets scenario. 

4.2.2. Two-Tier HetNets Handover Model with MCP 

The MCP is applied here for the model of the handover process and is further 

used to analyze the relationship of CRE, HM and TTT and their effects on UE 
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handover rate. Firstly, we applied DTMC to the model handover process so that all of 

the UEs’ states could be represented by Markov States. TTT was divided into several 

TTIs and each TTI was defined as one step in the MCP. For each step, UEs will 

follow their mobility model and generate a new distance relationship to nearby cells, 

as with the transition matrix and status vector. According to the definition of TTT, a 

UE will not initiate the handover process unless its RSS is below the predefined 

threshold during the whole TTT. As a result, M states are considered as the status 

where UE is linked to a macrocell and S states are considered as the status where UE 

is linked to a small cell. Similarly, I and I’ states represent the fact that an UE is 

undergoing the handover process, either from a macrocell to a small cell or from a 

small cell to a macrocell. Finally, this handover process loop can be transferred into 

an MCP, which is shown in Figure 4-3. 

 

Figure 4-3 Markov Chain 

In order to achieve the optimisation values for HetNets, the probability 

formula should be obtained using this MCP. Consider that an UE’s initial state is M1, 
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which represents that it is bounded to a macro cell right now. Its probability of 

moving to the next state, M2 is PM(x); meanwhile, its probability of moving back to 

itself is 1 - PM(x). The same rule applies for all M states until Mn transfers to I1, 

which means that a handover is triggered. Within I states, there is a 100% chance that 

it will move to the next I state until the handover process is finished and the UE has 

been reallocated to a small cell that is in the S1 state. The rules for S and I’ states are 

the same as for M and I states; thereby, the whole MCP loop is established. One 

important property for I and I’ states is that traffic signals play a dominant part in 

guaranteeing the handover process during these phases. Consequently, an UE can 

barely receive an information signal during handover states and too many handover 

phases dramatically reduces an UE’s QoS. 

Transfer Matrix T can be obtained following the MC process after its 

transition probability has been defined. Table 4.1 lists the transition probability used 

for our simulation. It is a four-state transition matrix.  

Table 4-1 Markov Transition matrix (T) 

   

   

   

   

             M1             M2          M3          M4              I1       I2   I3  I4  S1
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

I1 0 0 0 0 0 1 0 0 0

I2 0 0 0 0 0 0 1 0 0

I3 0 0 0 0 0 0 0 1 0

I4 0 0 0 0

1

1
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1
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   

   

   

   

' ' ' '

'

'

'
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           S1           S2           S3         S4           I 1      I 2  I 3  I 4 M1
S1 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0

S4 0 0 0 0 0 0 0

I 1 0 0 0 0 0 1 0 0 0

I 2 0 0 0 0 0 0 1 0 0
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The transition matrix shown in Table 4-1 is the detailed transition probability, 

in which the leftmost column is the current state and the top row represents the next 

state. For example, in the matrix, the state S4 got a probability of 1- Ps(x) of moving 

back to S1 and a probability of  Ps(x) of moving towards  I’1.  The probability of 

moving to rest 14 state is 0. In the matrix, this is clearly displayed with a row and 

column value. The sum of each row equals 1. The two matrixes should be connected 

together to form a 16 by 16 state transition matrix.   

After the setup of the probability transition matrix, the state probability vector 

V at x-th step can be calculated as Equation 4-1 

=
1

1

x
V V T

x i
i



 

Equation 4-1 

In Equation 4-1, the V1 is the probability of the UE’s initial state, which is 

expressed as 1 in the vector. For example, if a macro cell’s UE is in the state M1 in 

time 1, then its initial probability vector will be expressed as [1,0,0...0]. When the 

TTI increases, the UE moves, which causes the probability of Pmx and Psx to change 
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in the Markov Transition matrix (T). According to Equation 4-1, the vector V will also 

change. As a result, the vector for any UE at any step x can be calculated, so that the 

HOR in each state is obtained. 

4.3.  System Model 

 

Figure 4-4 Two-Tier HetNets System Model 

Figure 4-4 displays the system model used in this chapter. As we can see from 

it, a single macro-small cell scenario is adopted here. The cell radius of the macro cell 

is set to be 1 kilometer and the total simulation area is set to be a two by two square 

kilometer field. From the figure, it can be seen that a small cell is placed at a distance 

of D from the macro cell. For any UE inside the coverage, three parameters are 

assigned to it: the distance to the macro cell (Dm), the distance to the small cell (Ds), 

and an initial moving speed (v).  

Using the aforementioned three parameters, the mobility model of the UE can 

be determined. The fact that each UE has an initial location information, moving 

speed and moving direction that is associated with the current serving cell from time 

slot 1, which is represented by TTI 1, is considered. The current serving cell at TTI 1 

is decided by the receive signal strength (RSS) from different cells, RSSm and RSSs. 
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After TTI 1, the UEs will begin to move as its assigned mobility model until TTI 

reaches 100. Due to the change of locations, the UE’s distance to the macrocell (Dm) 

and the small cell (Ds) will change accordingly. When the UE moves towards the 

small cell boundary and the RSS of the serving and target cells, represented by RSSS 

and RSST, satisfy the Equation 4-2 concerning TTT time, a handover will occur. 

Target Serving
RSS RSS HM 

 Equation 4-2 

Note that, as mentioned before, the CRE is always added to the small cell side; 

therefore, the handover condition should change further to two different conditions, 

which can be described by the following equations: Equation 4-3, which represents 

the handover from small cell to macrocell, and Equation 4-4, which is the handover 

from macrocell to small cell. 

acroM Small
RSS RSS HM CRE  

 Equation 4-3 

acroSmall M
RSS CRE RSS HM  

 Equation 4-4 

Due to the HetNets scenario applied in this chapter, two different pathloss 

models were adopted for different tier UEs. The pathloss models for the macro cell 

and the small cell UEs can be expressed as Equation 4-5 and Equation 4-6, 

respectively. The distance (d) is in kilometers. 

, , 10 , ,
= 128.1 37.6 ( )

M t k M t k
log D 

 Equation 4-5 
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, , 10 , ,
= 140.7 36.7 ( )

S t k S t k
log D 

 Equation 4-6 

The δM, t, k can be understood as the pathloss of k UE at time slot t with macro 

cell M. Similarly, the small cell pathloss is represented as δS, t, k. Based on Equation 

4-5 and Equation 4-6 (in dB scale), the RSSi,t,k of a certain UE allocated to a certain 

cell at each time slot can be calculated. 

=, , , , , , , ,i t k i t k i t k i t kRSS Pt    Equation 4-7 

Note that, the above equation is calculated in linear scale, the Pt represents the 

base station transmit power, while ξM, t, k and ξS, t, k are the shadow fading components. 

As stated before, here, only single macrocells and single small cells are being 

considered. The SINR expression is as follows: 

, , , , , ,

2
, , , , , ,

=, ,
i t k i t k i t k

j t k j t k j t k

Pt
SINRi t k Pt

 

    
Equation 4-8 

In Equation 4-8 (linear scale), the numerator represents the receiving signal 

strength, which is affected by variables i, t, and k. Similarly, the interference is the 

summation of the surrounding cells’ signal strength and is expressed by the first part 

of the denominator, while the second part, σ
2 

is the thermal noise. 

 

4.3.1. Defining the Transition Probability 

Since all the states’ physical meanings and the system model are understood, it 

is possible to establish a transition probability formula, which is PM(x) and PS(x) in 



Chapter 4.  An MCP-based performance evaluation of handover and load 

balancing in HetNets 

77 

 

Figure 4.3 (x is the number of TTI). In MCP, this represents the chance to continue 

checking handover status. As long as a UE receives signals from both a macro cell 

and a small cell, the probability will move to the next state until the handover process. 

Therefore, the MCP transition probability is defined as follows: consider a small cell 

UE stays in the S state, it will receive signals not only from a macrocell (RSSM,x,k), but 

also from a small cell (RSSS,x,k). These two signal powers will compete to transfer the 

UE from the S state to the I’ state. When RSSM,x,k becomes greater than RSSS,x,k plus 

the threshold, it will lead to a situation where the UE has the intention to initiate the 

handover process and is reluctant to stay in a small cell network. The opposite will 

occur if RSSS,x,k is larger. At this time, HM bias, α and CRE bias, β will increase the 

weight of RSSS,x,k and constrain the UE from moving back to the macrocell, which is 

depicted in Equation 4-12. In Equation 4-13, however, they may play the opposite 

role, as CRE has another function, namely offloading the UEs from the macrocell to 

the small one.  

The condition for a handover from a macrocell to a small cell is defined in 

Equation 4-9, considering the transition matrix, which is also the transition probability 

for a UE to move from a current M state to the next states. The condition for handover 

is expressed by the following probability equation: 
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Equation 4-9 

In the system model, ξM and ξS are defined as the shadow fading, which follows 

the Rayleigh distribution with a unit mean and are independent, which are exponential 
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random variables. In Equation 4-9, the right side, S S

MM

Pt

Pt

 

 
can be regarded as a 

constant whenever it is being mapped into a system, as the UE distance to a macrocell 

and a small cell is pre-defined as known variables, which are expressed as Dm and Ds. 

S S
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Pt

Pt

 

 
is a constant, which when simplified, is expressed as B. 
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4-10 

Then, the probability of [ ]SM MSSP R SRS   can be obtained, which is: 

1
[ ]  = 1 = 

1+ 1+

                                     

SM M

B
P SS RSSR

B B
  

   

 
Equation 

4-11 

As we substitute 

=S

M M

SPt

Pt
B

 

 
 for PM, the transition probability of PM(x) to 

PM (x+1) can be calculated as follows: 
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Similarly, the transition probability of Ps(x) to Ps(x+1) is: 
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4-13 

After the two important transition probabilities of Transition matrix T are 

obtained, the model of UEs’ handover process affected by HM and CRE is established.  

4.4.  Performance Evaluation 

In this section, a simulation is completed to analyze the CRE, HM and TTT 

under different combinations. The simulated parameters are summarized in Table 4-2. 

All the simulations were performed by the MATLAB. 

Table 4-2. List of Simulation Parameters 

Parameters Value 

Carrier frequency 1800 MHz 

Bandwidth 1 MHz 

Cell layout Single macro cell and small cell  

Transmit power of macro cell 40 W/46 dBm 

Transmit power of small cell 0.25 W/24 dBm 

Noise power -174 dBm 

Number of TTI 100 

CRE 1-10 dB 

HM 1-10 dB 

TTT 40, 60, 80, 100 ms 

Firstly, the conventional user association combining with CRE to offload UEs 

scenario is tested. Whenever a macrocell UE satisfies the handover condition, it will 
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be directly offloaded to small cell without considering handover phases (there will be 

no 0 capacity during any TTI, but also no buffer time for UE, only result is focused). 

Figure 4-5 displays how system total capacity affected by CRE when considering 

cross-tier interference. It is obvious that CRE has negative effect on system capacity, 

since it only focus on solving load balancing issues, and even increase the cross-tier 

interference. This effect is mild in the initial phase and will be severe with CRE value 

increases, especially after 9 dB. This shows that less macro UEs will be affected in 

low CRE value condition, and those remain in macrocell may ignore cross-tier 

interference due to high transmit power. However, more UEs are forced to offload 

towards small cell with CRE grows, and even central UEs of macrocell will be 

affected. These UEs are more vulnerable to cross-tier interference and will suffer 

huge QoS loss. The system total capacity for different CRE values are shown below, 

curve fitting is adopted to continuous plot, which can display the variation trend. 

 

Figure 4-5 Total Capacity vs. CRE for conventional model 

  Y=-0.004561x
2
+0.0002939x+4.739 

Secondly, the proposed MCP handover model is adopted to analyse how CRE 

affects handover rate for the system. Since the positive effect of CRE mainly reflects 

on the reduction of UE’s HOR (which means less I or I’ states during the process), we 
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keep the UE partition with 1 dB CRE to ignore its effects on offloading even if CRE 

bias increases. And then combine the capacity of each UE with its HOR obtained 

through MCP under current CRE (we suppose there is no data rate during I and I’s 

states). Figure 4-6 displays the system total capacity changes with CRE when MCP is 

adopted. The result of MCP model is obviously opposite to the previous model, CRE 

will take positive effects on capacity due to its ability of controlling ping-pong 

handover. However, Figure 4-9 also shows its effect will fade with the increasing of 

CRE. This phenomenon is caused by the property of ping-pong handover. According 

to MCP, if CRE is large enough, the unnecessary handover probability will be 

significantly minimized, therefore less ping-pong handover will occur and the benefit 

of CRE will be diminished. The system total capacity for different CRE values when 

using MCP model is shown below, to display the variation trend, curve fitting also 

adopted to continuous plot. 

 

Figure 4-6 Total Capacity vs. CRE for MCP model  

Therefore, the optimal CRE can be obtained with the help of the two curves. 

As we plot two curves according to their expression on the same graph, in Figure 4-7, 
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and the equilibrium point can be represented by the intersection of the HOR effect 

curve and the cross tier interference curve. Before the point, the positive effect of 

CRE is not fully exploited, after this point, the negative effects of CRE will be 

enlarged, since even core UEs may be affected. As a result, the point CRE =7 is the 

nearest one to equilibrium point and is presumed to be the optimal CRE bias for 

offloading. 

 

Figure 4-7 Combination of conventional model and MCP model curves 

After the analysis of CRE effect for the system offloading performance, the 

handover performance is evaluated. Figure 4-8 and Figure 4-9 show how handover 

rates react to CRE and HM when TTT equals 60 ms. 
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Figure 4-8 Handover Rate Versus CRE in TTT = 60 ms 

 

Figure 4-9 Handover Rate Versus HM in TTT = 60 ms 

 

In general, it can be summarized as, the handover rate will decrease with the 

increasing in HM or CRE. However, their degree of influence may differ in many 

aspects. Firstly, the effect of CRE decreases rapidly and can be neglected when it 

reaches 9 dB, where handover rate stands still. While HM’s effect on handover rate 

keeps increasing and achieves its limitation when HM reaches 7 dB. Secondly, the 

starting and ending point of CRE and HM is different. HM can reduce a handover rate 

from 9% to almost 0%, while CRE can only reduce it to around 3%. All of these 

phenomena display the superiority of HM in handover control and the reason can be 
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obtained from the MCP probability formula and the physical meaning of two 

parameters. As explained in the Section 4.1, the main target of HM is to bind the UE 

to its original serving cell, which includes both the handover from macrocell to small 

cell or from small cell to macrocell. On the other hand, the CRE has another function, 

namely offloading UE serving by macrocell to small cells, so that decent HetNets 

network efficiency can be maintained. As a consequence, the HM and CRE might 

have the counter influence in handover control when UE handover from a macrocell 

to a small cell. This also explains why the handover rate will remain 3% no matter 

what CRE value the network has. However, the HM’s effect on the increasing total 

throughput is limited due to its lack of offloading effect on HetNets. Its rapid effect on 

handover control also restricts HM bias so that it may not reach a large value. 

Therefore, an optimal combination of CRE and HM value is required for HetNets. 

 

Figure 4-10  Handover Rate Versus CRE Under Different TTTs 

Figure 4-10 presents the handover ratio variation trend according to different 

TTT values. It can be observed that four curves all have the same trend. With an 

increase in CRE bias, the handover ratio gradually decreases. The reason for this is 

that with the increase in CRE bias, the virtual coverage of the small cell grows as well 
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and the UEs originally at the small cell boundary are restrained to handing over from 

a small cell to a macrocell. With the increase in TTT value, the beginning handover 

ratio drops significantly from 24% to 7%. The suggestion of TTT that can effectively 

control the handover ratio is displayed. The end point of each curve nearly coincides, 

as the handover ratio controlled by CRE reaches a limit of around 5%. This can be 

explained by Equation 4-12, as the CRE can only affect the offloading from a 

macrocell to a small cell by increasing the weight in the equation. 

 

Figure 4-11 Handover Rate Versus HM Under Different TTTs 

Figure 4-11 demonstrates how handover rate changes with HM Bias for 

different TTT values. It shows that TTT has a significant effect on handover rate 

control, which follows the prediction of MCP as well. It can be reflected by two 

aspects: initial point and reaching-zero bias. When TTT equals 40 ms, the handover 

rate’s initial point is up to 18%, after which it drops rapidly to below 2% when the 

TTT is set to 100 ms. Besides this, HM's reaching-zero point is further limited as TTT 

increases. It is only 2 dB when the TTT is 100 ms. In other words, using a selected 

TTT value, HM's side effect on system total throughput may be mitigated. Compared 

to the influence in handover ratio affected by CRE (3.5% to 24%), the range of 

handover ratio variation is relatively narrow (0 to 18%).   
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Figure 4-12 System Total Throughput Versus CRE and HM 

By analyzing the relationship between CRE, HM and TTT, how the handover 

ratio is affected by the three parameters is identified. Figure 4-12 displays the 

influence that HM and CRE have on the system total throughput. The minimum point 

can be easy observed as the HM and CRE values equal 0. At this point, no vital biases 

are added to the serving cells and frequent unnecessary handovers significantly 

decrease system performance. In addition, the maximum value is not achieved by 

CRE and HM, which are both set at 10 dB. This is because a handover setting that is 

too large significantly constrains and affects system SINR performance; hence, the 

system total throughput is reduced. According to this figure, when HM and CRE are 1 

dB and 6 dB, the optimal total throughput is obtained.  

 

 

 



Chapter 4.  An MCP-based performance evaluation of handover and load 

balancing in HetNets 

87 

 

4.5.  Summary 

In this chapter, handover performance is evaluated by modelling the HetNets 

scenario into an MCP. With a combination of MCP, handover phases can be 

represented as a probability mode. As a result, the handover ratio and system total 

throughput can be realized and simulated. With a combination of CRE, HM and TTT, 

the handover performance index of the handover ratio is analyzed in detail. The 

relationship between CRE and HM is clearly identified and through the coordination 

of CRE and HM, optimal system total throughput is achieved.  
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Overview 

Handover decisions and initiation depend on various situations, which mainly 

include the system parameters and environmental problems. The vast majority of 

these decisions are based on the RSS, and the HM plays a key role in mitigating 

unnecessary handovers. The decision of HM not only affects the handover 

performance in the system, but also significantly influences the serving cell coverage. 

In order to achieve a better coverage and handover probability, a dynamic HM 

selection scheme based on UE distance to serving cell is proposed. Another handover 

control parameter, the TTT, can effectively control the system’s ping-pong handover 

performance but, in the meantime, larger value of TTT selection may result in radio 

link failure (RLF). In order to control the system RLF performance and provide a 

relative good ping-pong performance, an adaptive TTT selection scheme based on UE 

moving speed is proposed. By combining the two adaptive selection schemes, a new 
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system self-optimisation  mechanism based on individual UE mobility status is 

proposed.  
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5.1.  Introduction 

In traditional systems, the HM and TTT are normally assigned a fixed value 

for all UEs, even if they are in different mobility states. Various studies have been 

carried out that focus on optimisation through dynamical controlling of the parameters 

[100]. In Chapter 3 and 4, fixed control parameters for all UEs have already been 

investigated for handover decisions and handover performance. However, fixed 

parameters for an arbitrary UE in the entire network is not reasonable, as different 

UEs have different mobility states. In this chapter, the aim is to generate a pair of 

proper HM and TTT for any UE at any time.  

In order to make a decision about selecting the proper HM and TTT, it is 

important to define the UE moving states since, in modern networks, most cellular 

phones are already embedded in global positioning system (GPS) services. The status 

of the UE moving speed and that of the distance to each base station are easy to 

identify. Based on the UE’s distance to its serving cell, the HM can be adaptively 

selected. The main idea behind the adaptive HM selection scheme is to formulate a 

function that is related to the distance between the UE and its serving cell; the further 

the UE is to the serving cell, the smaller the HM that is chosen. As this mechanism 

can efficiently control the handover probability within the cell serving area, the UE 

linked to its serving cell is strongly enhanced while the UE is inside the coverage.  

It is hard to control the handover parameter TTT through detecting the UE’s 

location, as TTT is a parameter related to the time domain. In order to formulate an 

adaptive TTT selection scheme, the UE moving velocities are taken into consideration. 

As the same TTT value will have a different effect according to different UE moving 

speeds, too small a TTT will result in frequent ping-pong handovers, but too large a 
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TTT can cause severe RLF [101]. In order to form a suitable TTT selection scheme, 

under the premise of maintaining certain RLF performance, the TTT is selected as the 

largest value to ensure the ping-pong handover performance.  

Based on the adaptive HM and TTT selection mechanism, a network can 

simply decide the individual parameters for arbitrary UEs inside its coverage 

according to the mobility status of the UE.  

The work in this chapter is organized as follows. In Section 5.2 an adaptive 

HM algorithm is proposed and verified in two scenarios. Section 5.3 introduces the 

adaptive TTT selection mechanism. Joint optimisation through a combination of 

adaptive HM and TTT is proposed in Section 5.4. 

5.2.  Adaptive HM selection scheme 

5.2.1. Adaptive HM mechanism in macrocell only scenario 

The definition of HM has been introduced in Chapter 2, and this is adopted for 

the minimisation of unnecessary handovers. In typical handover system models, the 

value of the HM is normally chosen as a constant for the entire system; however, this 

may be unreasonable for the actual scenario. For example, when a higher value of HM 

is chosen for the system, the mobility performance of UEs at the cell centre may not 

be affected, but the cell boundary UEs will be significantly influenced by the HM 

value. Even if the UEs have already moved into a good coverage of the neighbouring 

cells, it is still bound to the original serving cell.  

The chosen of adaptive HM values are based on considering the UE’s distance 

to its serving cell and the distance to the cell boundary. The purpose of the chosen 

HM mechanism is to bind the UE to its serving cell if it is inside the serving cell 
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coverage. In other words, the value of the HM should follow this principle: when the 

distance from the serving cell to the UE is increased, the HM value should decrease 

until the UE reaches the cell boundary, which leads to the minimum value when the 

UE is on the cell boundary or exceeds the cell serving region. 

adaptive max minmax 1
serving

cell

d
HM HM HM

R

    
    

     

，
 Equation 5-1 

The above equation interprets the HM chosen mechanism. In the equation, the 

indicators HMmax and HMmin determine the variation interval for the HM values; 

normally, the value of HMmax is 10dB and HMmin is predefined as 0. The distance 

between UE and its serving cell is represented by dserving, and Rcell is the predefined 

cell serving distance, which will be clearly defined in the later simulation part.  

 

Figure 5-1 HM variation vs. α 
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The index α applied here is for deciding the trend for the HM variation. Figure 

5-1 displayed the HM variation trend when index α with different values. We can see 

from figure that, with the increasing of UE distance to serving cell, the variation trend 

of HM is mild when the UE is near serving cell, and rapid decreasing will appear 

when UE approaching the serving cell boundary. with the increasing of α value, the 

rapid turning point of HM will getting closer and closer to the cell boundary. in order 

to easy calculate the handover probability, we set 4 as the default value of α. As the 

HM decrease progressively with the increasing of UE distance to serving cell, by 

applying this equation to an RSS-based handover decision, the effect of the adaptive 

HM mechanism can be achieved.  

5.2.2. HO probability optimisation based on adaptive HM 

5.2.2.1. RSS calculation 

The handover here is regarded as being based on the received signal strength; 

as mentioned in the previous sections, the handover will be initiated if the RSS 

constraints are satisfied. The RSS (in dBm) is calculated using the following equation. 

=, , ,+ +i j i i j i jRSS PT    Equation 5-2 

Here RSSi,j represents the received signal strength from the ith cell at place j, 

the index PTi represents the transmit power from the ith cell and δi, j can be regarded 

as the path loss from the ith cell at place j, where shadowing is considered in the RSS 

calculation. The shadowing is represented as ξi, j, and the shadowing considered here 

follows a log-normal distribution with a zero mean and a standard deviation, σ, 

between 4 and 6 dB.  

5.2.2.2. Handover probability calculation 
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Assuming the RSS of the serving cell is represented by RSS1, the RSSs of 

other cells can be represented as RSSi, i∈{2, 3…n}, in a certain place indexed by j; a 

handover will be initiated if the following equation is satisfied. 

, 1, 2,3, ,i j jRSS RSS HM i n  ，  Equation 5-3 

Therefore, the handover probability can be defined, for position j. If there 

exists an RSSi that satisfies the handover equation, a handover will occur, which can 

be further calculated as the handover probability. In other words, the handover 

probability can be expressed as 1-P[no handover occurs] , which is shown below. 

n

, 1,

2

1-P[no handover occurs] 

          =1- P[ ],   [2,3, , ]

HO j

i j j

P

RSS RSS HM i n



  

，

 
Equation 5-4 

In the above equation, capital P represents the probability indicator, and the 

calculation of 
, 1,P[ ]i j jRSS RSS HM  can be detailed as follows. 

1

1, 1, 1[ ]= [ ( ) ]
RSS HM

i j j RSS RSSP RSS RSS HM E f u du



    Equation 5-5 

The E displayed in the above equation indicates the expectation, from which a 

double integral can be further derived. 

1

1 11[ ( ) ] ( ) ( )
i

RSS HM v HM

RSS RSS RSS RSSE f u du f v f u dudv
  
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Equation 5-7 
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 The 
1
( )RSSf v  and ( )

iRSSf u  denote the probability density function (PDF) of 

RSS1 and, where the ( )
iRSSf u can be replaced by the cumulative distribution function 

(CDF) of RSSi, as mentioned before, the shadowing follows the log-normal 

distribution.   

1
= 1 erf
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Equation 5-8 

Here the erf shown in the above equation is the error function, which can be 

displayed as follows. 
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Equation 5-9 

Finally, the handover probability for the ith cell can be expressed in the 

following equation. 
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Equation 5-10 

The E displayed in the above equation indicates the expectation, from which 

can be further derived a double integral, then, PHO can be calculated.  

5.2.3. System model and simulation results 

In order to clearly display the handover probability affected by the adaptive 

HM mechanism, a seven macrocell scenario is considered. The six cells are closely 

wrapped around the central cell, and the central cell handover probability situation is 

the main parameter that needs to be observed. The related simulation parameters are 

listed in Table 5-1.  
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Table 5-1 List of the simulation parameters 

Parameters Values 

Macrocell Tx power: 46 dBm 

Macrocell coverage: 1000m 

Smallcell Tx power: 24dBm 

Macrocell pathloss [3GPP TR 36.842]: 128.1+37.6*log10(d/1000) d in [m] 

Femtocell pathloss [3GPP TR 36.842]: 147 + 36.7*log10(d/1000) d in [m] 

HMmax:  10 dB 

HMmi:n: 0 dB 

Fixed HM values used for simulation: 0 dB, 5dB and 10dB 

Shadow fading stand derivation: σ = 6dB 

The whole simulation map is divided into 100*100 pixels and the handover 

probability for each pixel is calculated. Note that the handover probability calculation 

for the entire simulation map considers the central macro cell to be the serving cell, 

and the handover probability from the central cell to adjacent cells follows the 

calculation introduced in the previous section.  

Figure 5-2, Figure 5-3, Figure 5-4,and,Figure 5-5 illustrate the variation in the 

handover probability according to different HM values, and the central macro cell is 

placed at position (50,50) in each figure. Figure 5-2, Figure 5-3 and Figure 5-4 

display the impact of the HM value turning from 0dB to 10dB, which will severely 

influence how the handover probability changes in the cell boundary. As we define 

the probability from 0.3 to 0.7 as indicating that there is a high potential for a 

redundant handover to happen (which can be regarded as the region in the light blue 

to orange colour), as the HM value increases, the radius of the handover region also 

increases, but the width of the handover region circle does not show obvious changes. 

The width of this ring region significantly changes with the adoption of an adaptive 

HM system. If we compare Figure 5-5 with Figure 5-2, Figure 5-4, it is not hard to 
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make this inference. The peripheral area of the adaptive HM is similar to that of  

Figure 5-2, which is a dark red hexagonal region (formed by the handover probability 

= 0.9). On the other hand, the internal dark blue region (where the handover 

probability < 0.1) of an adaptive HM approaches the same area when the HM is fixed 

as 10dB. The width of the ring-shaped handover region is significantly reduced.  

As a result, the effectiveness of an adaptive HM in terms of minimising the 

handover region is outstanding, which can be regarded as a reduction in unnecessary 

handovers, while, at the same time, an adaptive HM can increase the probability that 

the UE is bound to the cell, which provides the coverage.  

 

Figure 5-2 Handover probability in a macrocell scenario with HM = 0 dB 
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Figure 5-3 Handover probability in a macrocell scenario with HM = 5 dB 

 

Figure 5-4 Handover probability in the macro cell scenario with HM = 10 dB 
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Figure 5-5 Handover probability in a macrocell scenario with the adaptive HM 

selected 

 

 

Figure 5-6  Handover probability with adaptive HM in different α value 
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Figure 5-6 displayed the handover probability when using different index α, 

we can see from figure that, with the increasing of α, the width handover circular ring 

become narrower and narrower. This phenomenon can be explained by the nature of α, 

with α increased, the turning point of sharp changing in HM value will getting closer 

to the cell boundary.  

5.2.4. Adaptive HM mechanism in a macro-small cell scenario 

In a one-tier macro cell scenario, the cell boundary is easy to define, while in 

the two-tier HetNet scenario, the small cells are normally deployed in the existing 

macro cells, and it is hard to decide the cell coverage. As a result, the set of cell radius 

R in the Equation 5-1 is not suitable for this scenario. Under these conditions, the 

decision to have an adaptive HM value should result in some changes.   

The RSS is a distance-based variable, as shown in Equation 5-2. The main 

idea of an adaptive HM is to let the HM achieve a minimum value when the UE is 

approaching the cell boundary. In a small cell, the so-called cell boundary can be 

defined as the RSS of a small cell and a macro cell are of the same value and, as a 

consequence, the distance-based adaptive HM can be rewritten as follows. 

4

ser
adaptive max min

tar

max 1 ;
RSS

HM HM HM
RSS

    
    

     
 Equation 5-11 

Assuming an UE is moving from the serving macro cell to the target small cell, 

the HM will reach a minimum value when the RSS of the target and small cell is the 

same. The simulation scenario is shown as follows: the original serving cell is 

considered to be a macrocell, which is placed at (50,50) in each figure. Six small cells 

are placed as two columns. Out of these, the two mid small cells are placed 250 
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meters away from the macro cell, and the other four small cells in the corners are at a 

distance of 353.55 meters away. 

Figure 5-7, Figure 5-8 and Figure 5-9display the handover probability when 

the HM is picked as a fixed value. As the HM values vary, the potential handover 

region significantly changes, as stated in the previous section. A handover probability 

from 0.3 to 0.7 suggests there is a high potential for a redundant handover region to 

occur. In the HetNet scenario, the region is no longer displayed as a regular shape, 

which is due to the asymmetry in the macro cell RSS in each direction around the 

small cells. In order to clearly display the different handover probability regions, 

another color combination is chosen; the redundant handover region is in green and 

light yellow. As the HM value increases the small cell coverage significantly drops, 

and the central region (which can be regarded as the blue circle) is also reduced.  

By applying the adaptive HM system, nearly the same result can be achieved 

compared with in the macrocell scenario. Under the conditions that maintain the 

handover probability for the small cell central region, the redundant handover region 

significantly decreased. Figure 5-10 displays the variation in the handover probability 

through adopting an adaptive HM. Figure 5-11 illustrates the trend in the HM 

variation in this simulation scenario. It is obvious that the macrocell centre UEs are 

given a higher HM value. With movement towards the small cells, the HM value 

decreases, and in the small cell central coverage region, the HM equals zero, which 

strongly binds the small cell covered UE to this cell.  

In order to verify the adaptive HM, Monte Carlo simulation is adopted, as we 

divide the simulation map into 100*100 pixels. In each pixel, 10000 samples of the 

RSSs from seven cells are generated. For each sample. if there exists one RSS from 

the small cells that exceeds the macro cell RSS, it is thought that a handover would 
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take place. After 10000 samples are taken, the summation of the handover occurs, and 

if this is divided by the number of samples, a handover probability of one pixel can be 

calculated. Figure 5-12 displays the results for the Monte Carlo simulation. In order to 

clearly display the deviation between Figure 5-10 and Figure 5-12 a 3D deviation map 

is build, which is calculated using the difference between the two maps; most of the 

deviation is under 0.2% but, when approaching the small cell boundary, the maximum 

deviation reaches 1.5%, which can be considered acceptable.  

 

Figure 5-7 Handover probability in a macro-small cell scenario with HM = 0 dB 
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Figure 5-8 Handover probability in a macro-small cell scenario with HM = 5 dB 

 

Figure 5-9 Handover probability in a macro-small cell scenario with HM = 10 dB 
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Figure 5-10 Handover probability in a macro-small cell scenario with an 

adaptive HM selected 

 

Figure 5-11 Trend in the variation in an adaptive HM system 
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Figure 5-12 Adaptive HM using Monte Carlo simulation 

 

Figure 5-13 Deviation between theoretical and Monte Carlo simulation 
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5.3.  Adaptive TTT selection scheme 

For any UE inside a network, the main characteristics for its mobility are the 

distance to the base stations and its moving velocity. In the previous section, the UE 

distance related to the HM has been discussed and optimised. In this section the UE 

velocity related handover decision parameter TTT will be discussed. As the handover 

is related to a moving scenario, in order to evaluate the TTT we need to first build a 

time-varying system.  

Assuming an UE is at the serving cell boundary with velocity V and it is 

moving away, when the handover triggering event A3 (Table 2-1) is satisfied, the 

TTT timer starts to count. After the TTT condition is satisfied, the distance that the 

UE moves is V*TTT, as the TTT is given for 16 values, as 3GPP specifies (0, 40, 64, 

80, 100, 128, 160, 256, 320, 480, 512, 640, 1024, 1280, 2560 and 5120 in [ms]), 

which will result in 16 different distances. This will hence cause different SINR 

variations. Figure 5-14 displays the effect of selecting different TTTs and how it may 

result in different SINRs after the TTT timer expires. As the UE with a longer TTT 

may run deep into the target cell, which will lead to a bad SINR situation, an RLF 

may occur. Although a large TTT value will result in a bad RLF performance, if the 

TTT is too small the system ping-pong handover probability will increase 

significantly, which will lead to a decrease in system performance.  
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Figure 5-14 SINR affected by TTT 

5.3.1. Simulation scenario 

In order to evaluate the handover performance parameters, the ping-pong 

handover probability and the RLF affected by TTT is presented in the simulation 

scenario. A two-tier HetNet is adopted here: the central macrocell is surrounded by 

six other macro cells, and the distance between the central macro cell and the other 

macro cells is 1000 meters. Inside the central macro cells, there are six small cells, 

located at a distance of 250 meters and 353.55 meters away, which is illustrated in 

Figure 5-7. The UEs are randomly distributed in the central cells, which will suffer 

two-tier interference. In order to discover how the UE velocities affects the handover 

performance, the UE velocities are divided into five categories (5km/h, 15km/h, 

30km/h, 60km/h and 120km/h). The rest of the simulation parameters are the same as 

those listed in Table 5-1.  

5.3.2. Ping-pong handover performance evaluation using TTT and UE velocity  

Figure 5-15 illustrates how the ping-pong handover probability is affected by 

the TTT. Four different TTT values are tested in the scenario, 40ms, 80ms, 160ms and 
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320ms respectively. It is obvious that the ping-pong handover probability would be 

significantly affected by a change in the TTT settings. In order to achieve a precise 

TTT comparison, the HM is set as 0. The same group of UEs is utilized here, and is 

assigned a fixed moving speed of 30km/h. When the TTT = 40ms, which is the 

minimum value that can be set, the ping-pong probability reaches a stable value at 

TTI around 40, and 40% of the handovers are ping-pong handovers. As the TTT 

increases, the ping-pong handover probability is significantly decreased when the 

TTT = 320ms, and the ping-pong handover proportion drops to nearly 8%. It is not 

hard to predict that, when the TTT is assigned a higher value, the ping-pong handover 

ratio will drop to zero.  

 

Figure 5-15 Ping-pong HO probability vs. TTT 

Figure 5-16 displays how the ping-pong handover ratio is affected by different 

UE velocities. In this comparison, the HM is considered to be 0 and the TTT is set at 

80ms. The same group of UEs is tested using different moving speeds. It can be 

concluded that, as the UE velocity increases, the ping-pong handover probability also 
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shows a decreasing trend but, compared with the influence of the TTT, the impact that 

the UE velocity has on the ping-pong probability is much lower. 120km/h is normally 

considered to be a highway speed but, even when the highest velocity is tested, the 

probability of a ping-pong handover only decreases by around 5%.  

 

Figure 5-16 Ping-pong HO probability vs. UE velocity 

5.3.3. RLF performance evaluation according to the TTT and UE velocity            

Figure 5-17 displays the RLF affected by different TTT values and UE 

velocities. From the perspective of UE velocity, it is not hard to find that, for the same 

TTT values, a higher moving speed will result in a higher RLF percentage. As 

explained before, the UEs with a higher speed will experience a longer distance when 

moving inside the TTT timer, which might cause a large amount of degradation in the 

SINR and result in a RLF. Similarly, from the TTT perspective, the UE with the same 

moving speed will achieve a higher RLF potential as it is assigned higher TTT values. 

When the UE is assigned a lower moving speed (5km/h, 15km/h and 30km/h), the 

variation trend in the RLF is very slow for lower TTT values (TTT < 640ms). At the 
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same time, a higher speed for the UE (60km/h and 120km/h) will lead to a relative 

stable RLF, but only before TTT < 256. Each curve obtains a significant turning point; 

the higher the velocity, the earlier the RLF turning points appear. For instance, when 

the TTT changes from 640ms to 1024ms, the RLF of an UE with a speed of 5km/h 

only increases from 27.18% to 27.44%, while the RLF of an UE with a speed of 

120km/h grows significantly from 37.28% to 46.16%.  

 

Figure 5-17 RLF affected by TTT and UE velocity 

5.3.4. Adaptive TTT selection scheme 

Based on the ping-pong handover and RLF analysis, the adaptive TTT 

selection scheme can be applied, as the ping-pong handover ratio is only affected by 

the lower TTT values. The decision about RLF can take all the TTT values into 

consideration. We take RLF as a constraint to selecting the optimal TTT values based 

on the UE velocity. If we set RLF to be < 27%, how the TTT satisfies the RLF 

condition can be seen in Table 5-2. 

Table 5-2 TTT selections under the condition RLF < 27% 
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UE velocity TTT [ms] 

V = 5 km/h 40/ 64/ 80/ 100/ 128/ 160/ 256/ 320/ 480 

V = 15 km/h 40/ 64/ 80/ 100/ 128/ 160/ 256/ 320 

V = 30 km/h 40/ 64/ 80/ 100/ 128/ 160/ 256 

V = 60 km/h 40/ 64/ 80 

V = 120 km/h 40 

As introduced in Chapter 2, the TTT seems to have great impact on handover 

probability control: the higher the TTT values chosen, the lower the handover 

probability that will be displayed. In order to minimise unnecessary handovers, when 

the RLF condition is satisfied, we select the largest TTT so as to apply the TTT 

selection scheme.  

 

Figure 5-18 Adaptive TTT selection based on UE velocity 

Figure 5-18 displays the TTT selection scheme based on RLF being < 27%. 

The actual TTT and V are shown as the red curve. By applying curve fitting, the TTT 

can be formulated as a function of the UE velocity. As a result, a proper TTT value 

for an arbitrary UE can be determined.  
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5.4.  Joint handover optimisation based on the 

optimisation of adaptive control parameters 

After defining adaptive HM and adaptive TTT selection schemes, joint 

optimisation can be initiated to optimize the system handover performance.  

 

Figure 5-19 Adaptive TTT selection based on UE velocity 

 Figure 5-19 illustrates the optimisation mechanism. In a certain network, the 

deployment position for the base station should be fixed. Under such conditions, the 

distance between the base stations is considered to be fixed. As discussed in section 

5.2, when the locations of the base stations are known, the adaptive HM assigned for 

each location can be calculated. According to the adaptive TTT selection scheme, 

when a UE is dropped into the network, and assigned a certain speed, a proper TTT 
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value can be calculated for this UE. Each UE inside the network is assigned an 

individual HM and TTT combination.  

Simulations are taken in order to verify the proposed selection mecahnism for 

the handover control parameters. The handover probability (calculated as the 

handover numbers/all UE numbers) is considered to be the evaluation metric. 1000 

UEs are uniformly dropped into the network (the same simulation scenario as in 

section 5.3), and assigned a random moving speed ranging from 0~120 km/h. Six 

cases are considered to compare the handover probability: 1) HM = 0 dB, TTT = 

40ms, 2) HM = 5 dB, TTT = 40 ms, 3)HM = 10 dB, TTT = 40 ms, 4) HM = 0 dB , 

TTT = 480 ms, 5) HM = 5 dB, TTT = 480ms and 6) HM = 10 dB, TT = 480ms.  

 

Figure 5-20 Handover probability in different cases 

Figure 5-20 displays the handover probability variation in 100 TTI simulation 

time. When TTTs are chosen with a minimum value of 40ms, the handover 

probability can reach a minimum value, around 0.1, as HM = 10. When the TTT is 
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fixed as 480ms, the effect of changing HM is not significant, as the range is from 0.01 

to 0.04. This can be considered a very low handover probability, as the 480ms setting 

for a small cell scenario is high enough. As we apply the adaptive HM and TTT 

selection scheme, a handover probability of roughly a curve of 0.02 can be found. In 

the figure, the handover probability curve is between case 4 and case 6, and the 

handover probability is significantly controlled. Although the minimum handover 

probability is achieved in this figure with case 6 (approaching zero), this is based on 

the suppression of all handover conditions, which will seriously affect the system’s 

performance.  

5.5. Summary 

In this chapter, an adaptive selection scheme in HM and TTT is introduced. 

The main target of this chapter is to find suitable handover control parameters based 

on the UE mobility situation, and the mobility states in this chapter are defined as the 

distance and the UE moving speed. Based on the UE distance to different cells the 

adaptive HM scheme is chosen, and the main purpose of the selection method is to let 

UE bind to its original serving cell if it is inside the cell coverage. Through an 

analysis of two different scenarios, the chosen adaptive mechanism in the macrocell 

only and two-tier HetNet scenarios is analyzed. At the same time, the other mobility 

parameter, UE velocity, can be decided by selecting reasonable TTT values. The TTT 

selection scheme is based on ensuring the RLF rate. Under such conditions, the 

highest TTT are considered to be the most suitable ones. Through curve fitting, a 

proper TTT can be found for arbitrary UEs. After the TTT and HM are selected, we 

propose a self-optimisation mechanism, which is only based on the UE mobility states.  
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Chapter 6. Conclusion and Future 

Works 

6.1. Conclusion 

In this thesis, the handover control parameters in LTE HetNets were mainly 

investigated under three aspects. First, two self-optimisation handover decision 

algorithms were proposed in order to achieve better system performance. Then, a 

model of a HetNets scenario, which used MCP to analyze the handover performance 

affected by HM, TTT, and CRE, was introduced. Finally, the adaptive HM and TTT 

selection scheme was investigated, in order to create a new selection scheme for 

handover control parameters for individual UE. 

In the first part of this research, two handover decision algorithms were 

proposed. The first algorithm is in the category of interference-aware handover 

decision algorithms, which aims to optimize the overall system’s average SINR and 

ping-pong handover ratio. Based on the current network states for SINR and ping-

pong ratio, the system will automatically change the control parameters HM and TTT 

to facilitate the system achieving better handover performance. UE of different 

velocities were tested, and the ping-pong handover ratio was significantly optimised. 

When UEs with high moving speed at v=120km/h, 3% ping-pong handover ratio is 

optimised, 4.5% optimisation is achieved at the v=60km/h condition, and 6%  

optimisation at v=30km/h.  At the same time, the system’s average SINR performance 

was also improved compared with a non-optimised system, the optimisation for SINR 

is not significant compared with the optimisation of ping-pong handover ratio, with 

respect to 0.322dB, 0.4699dB, and 0.4185dB. The second handover decision 
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algorithm is in the category of energy-efficiency-aware algorithms, and the proposed 

optimisation algorithm for energy efficiency and the ping-pong handover ratio has the 

same working mechanism as the previous algorithm. Through modelling the macro 

cell, small cell, and UE power consumption model, with the analysis of power 

consumption both on UE and BS, the dynamic power consumption of network can be 

obtained, hence, the entire network power consumption model is established. The 

adoption of ERG metric clearly reflected the network energy efficiency states in terms 

of percentage. By monitoring the network’s energy efficiency states and ping-pong 

handover ratio performance, the network dynamically chose the HM and TTT values 

for whole network to achieve system-level optimisation. The ping-pong handover 

ratio dropped nearly 5% and the system energy efficiency increased nearly 4%. 

In the second part of this research, an MCP-based model of the HetNets 

handover process was generated. By mapping the handover process into an MCP, the 

handover probability of each state was clearly identified. By establishing a 

mathematical method to model the handover procedures, the coordination of the 

working mechanism of HM, CRE, and TTT was realized and evaluated. Thus far, 

investigations of the handover process in a HetNets scenario has hardly taken CRE 

into consideration; however, the work in this thesis not only took traditional handover 

parameters HM and TTT into consideration but also included CRE to evaluate the 

handover performance. From the analysis, two result have been achieved. Firstly, 

from the load balancing perspective, by using curve fitting through comparison 

between traditional model and the MCP model, the optimal CRE value by 7dB is 

presumed to be the optimal CRE bias for offloading. Secondly, from the handover 

perspective, the result shows that CRE works as a similar mechanism to HM, or even 

has a stronger effect on the handover ratio. The handover ratio will change 
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significantly as a result of adjusting the CRE and HM, A good combination of CRE 

and HM will minimise the number of unnecessary handovers and will optimize the 

system’s total throughput. when HM and CRE pick 1dB and 6dB, the optimal total 

throughput is obtained. 

In the last part of this research, an adaptive HM and TTT selection scheme 

was proposed. The main purpose of this work was to find the most suitable pair of 

handover control parameters for any UE with any mobility state. Based on the 

distance from the UE to the serving cell boundary, the adaptive HM decision is made, 

which aims to bind the UE to its serving cell if it is inside the serving cell’s coverage. 

In a HetNets scenario, the cell edge is not easy to identify, so to solve this problem an 

evolved adaptive HM decision was made, which was based on the RSS comparison of 

a macro cell and small cell. After defining the adaptive HM selection method, an 

adaptive TTT was proposed. By analyzing the UE’s moving speed and the RLF 

variation caused by various TTT values, the deterministic condition of TTT was 

found. On the premise of guaranteeing the system’s RLF, the TTT was chosen as its 

maximum value to minimise the potential for unnecessary handovers. Based on the 

adaptive selection scheme for HM and TTT, a new handover self-optimisation 

mechanism was generated. In traditional networks, the UE is always assigned a fixed 

value of HM or TTT, even if they are in different locations or have varied velocities; 

however, the new mechanism will automatically assign a pair with the most suitable 

HM and TTT, which can significantly minimise the probability of unnecessary 

handovers in the system. 
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6.2. Future works 

As can be seen from chapter 3, the SINR, energy efficiency, and ping-pong 

handover ratio are optimised in the proposed handover decision algorithm. In the 

HetNets scenario, other handover metrics can also be taken into consideration, such as 

the handover failure ratio, RLF ratio, and handover probability. It is very complicated 

to include all handover metrics inside one optimisation algorithm, since the inner 

cooperation among handover metrics will significantly affect each other. The trade off 

based on different handover metrics needs to be studied in future analysis. Taking the 

nature of small cell networks into consideration, the other constraints can also be set 

as the handover decision algorithm constraints. For example, the handover decision 

can be made based on the minimum time of stay in a particular cell, through 

modelling or historical-data analysis based on UE behaviour. 

In chapter 4, an MCP was utilized to analyze the HetNets handover procedure. 

As MCP is a mathematical method widely adopted in wireless communications, it 

also can be used in other modelling from the perspective of handovers. For example, 

in modelling UE mobility prediction, which is because UE has a probability of 

moving in each direction, and, based on establishing the probability transition matrix 

for the UE movement model, the potential location of the UE after several moves can 

be predicted. From the load balancing perspective, the MCP model is more realistic in 

reflecting the UEs assignment probability to each cell, especially combining with the 

handover process and the CRE bias. Another future research direction can be  

combined with the chapter 3 energy efficiency perspective, as we know, each 

equipment inside the network has different energy consumption states, if using MCP 

model, we don't need to build up the detailed power consumption model for each 
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equipment, through the statistic analysis of historical data, the probability that each 

kind of equipments stay in each state can be easy calculated, by modelling these MCP 

models, an MCP model for network energy efficiency can be easy established, which 

should be much more efficient in simplify the network energy efficiency model.  

The research work presented in chapter 5 mainly investigated the UE’s 

individual mobility states depending on the selection scheme for handover control 

parameters, in which the location and UE movement speed were taken into 

consideration. However, there is another parameter that has not been investigated, 

which is the UE movement direction. By considering the UE movement direction, the 

adaptive HM selection needs further constraints. For instance, the HM assigned to a 

UE at a cell boundary might be different: if the UE is moving toward the outside area 

of the serving cell coverage, the HM value might be zero; on the contrary, UE moving 

toward the centre of the serving cell might be assigned a higher value, which binds the 

UE to the serving cell. From the perspective of the adaptive TTT selection scheme, 

through a combination of the UE movement direction and velocity, there should be 

existing a trade off between the UE’s handover potential to a certain target cell and 

the TTT adjustment; through this trade off, it can be decided to assign a specific TTT 

for a certain UE. 

Additionally, other recent technologies can be adopted in the handover 

decision area. For instance, by applying big data to the handover decision, based on a 

reasonable analysis of the historical data, the system can automatically make a 

handover decision. By adopting machine learning, the UE behaviour can be more 

realistic displayed, which is helpful in establishing simulation scenarios. 
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