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Abstract 
 

Efficient use of available water resources to meet demand, whilst maintaining the 

quality of the aquatic environment has become increasingly important. Water quality 

challenges associated with diffuse agricultural pollutions have also become widely 

recognized problems globally. This thesis presents the development of new 

approaches to improve surface water abstraction management with a view to mitigate 

the challenges associated with increasing pressures on availability of water resources 

for public water supply and diffuse agricultural pollution. The first part of the thesis 

presents the development of a real-time surface water abstraction management 

scheme that integrates a conceptual rainfall-runoff model, a Bayesian inference based 

uncertainty analysis tool and a water resources management model that incorporates 

various operating rules to represent real-world operational constraints. The developed 

approach enables efficient utilization of available water resources and thus provides 

improved capability to deal with emerging issues of increasing demand, climate 

adaptation planning and associated policy reforms. 

The second part of the thesis describes the development of a new travel time based 

physically distributed metaldehyde prediction model, which enables water 

infrastructure operators to consider informed surface water abstraction decisions. 

Metaldehyde is a soluble synthetic aldehyde pesticide used globally in agriculture 

and has caused recent concerns due to high observed levels in surface waters utilized 

for potable water supply. The model provides new approach to represent spatially 

and temporally disaggregated runoff generation, routing and build-up/wash-off 

processes using a grid based structure in a GIS environment. Furthermore, a state-of-

the-art Monte Carlo based spatial uncertainty analysis tool is employed to assess 

uncertainties in the metaldehyde prediction model. The structure of the metaldehyde 

model combined with the availability of high spatiotemporal resolution data has 

enabled the application of spatial uncertainty analysis of the catchment scale 

metaldehyde model, which is currently lacking in water quality modelling studies. 
 

Keywords: Surface water abstraction, Diffuse pollution modelling, Metaldehyde, 

Rainfall-runoff, Hydrological forecasting, Water resources, Uncertainty analysis 
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  Chapter 1

Introduction 

This research has been motivated by water quantity and quality challenges associated 

with operational surface water abstraction management. The focus of this thesis is to 

develop new approaches to help in informing surface water abstraction management 

with a view to tackle the challenges associated with increasing pressures on 

availability of water resources for public water supply and diffuse pollution 

problems. Thus, the study is compartmentalized into two major parts with distinct 

objectives. The first part focuses on the development of real-time water resources 

management model with the aim of improving resilience to existing water resources 

infrastructure. The second part focuses on understanding the dynamics of diffuse 

pollutant transport processes in catchments and developing a pollutant prediction 

model with a view to inform surface water abstraction management. Thus, the 

following two sections are used to individually discuss the background information 

and problem statements associated with each part.    

1.1 Abstraction management – Water resources 

Global availability of freshwater is more than adequate to meet all current and 

foreseeable water demands. However, its spatial and temporal distributions pose 

challenges in providing adequate supply to meet demands while minimizing 

environmental consequences. These challenges are raising concerns, especially with 

the changing and uncertain future climate, increasing demand from a rapidly growing 

population and associated impacts on the environment (Cosgrove & Loucks 2015). 

Surface water and groundwater are the principal sources of drinking water in the UK. 

The variability in the occurrence of rainfall events at different places and periods 

raises the need for careful management of water resources to ensure sustainable 

supply. In England and Wales, two-thirds of drinking water comes from surface 

water, including reservoirs, lakes and rivers (Gray 2008). Water abstraction for 

public water supply or other uses are currently putting water resources in parts of 

England and Wales under pressure. Twenty-five percent of rivers and groundwater in 
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England and seven percent in Wales are currently unable to provide water for new 

consumptive abstractions reliably (EA 2011). Environment regulators in the UK are 

working with the water industry to implement a list of environmental improvement 

schemes through the Water Industry National Environment Program (WINEP) and 

the Restoring Sustainable Abstraction (RSA) program, which are both aimed at 

ensuring water courses in the UK meet European and national targets related to 

water. Through these programs water companies are required to undertake 

environmental improvement schemes which will bring about investments to resolve 

historical abstraction sustainability issues and investigations to prevent future 

environmental impacts from abstraction. Abstraction licences are likely to be 

revoked or reduced in cases where abstractions are identified to cause environmental 

problems, in which case water companies are required to find alternative source of 

supplies to meet future demands. Cost effective and sustainable solution that enable 

efficient utilization of existing water resources play an important role in offsetting 

the loss of available water and minimizing the amount of investment needed to build 

alternative source of supplies.   

Two main factors are known to control surface water abstractions from rivers 

depending on flow levels in the river. During low flows, abstraction licence 

conditions are likely to limit the amount of surface water abstraction volumes; 

whereas hydraulic capacities and/or storage levels in reservoirs determine abstraction 

levels during high flow periods. Abstraction licences often include constraints with 

the aim of maintaining a minimum daily flow in the river. Thus, during low flow 

periods the amount of water available for abstraction on a particular day varies with 

flow availability in the river. There are flow rate measurements at the abstraction 

site, which Environment Agency use to control abstraction volumes. However, flow 

measurement data isn’t available to abstraction decision makers on a real-time basis. 

Hence, abstraction decisions are not currently supported by information on the daily 

availability of water in the river and abstraction decisions are often made focusing 

only on avoiding a breach of licence conditions. As a result, significant amount of 

opportunities to sustainably abstract more water are missed. Enabling to use 
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opportunities to abstract more water, especially during low reservoir storage periods 

can have significant impacts in terms of raising storage levels and avoiding the need 

to trigger drought management actions. Drought permits, which reduce the level of 

constraints imposed by abstraction licences, are triggered during dry periods when 

reservoir storages are low. Thus, effective implementation of real-time abstraction 

management scheme to abstract more water provides a potential to avoid or delay 

triggering drought permits, hence providing a double benefits of reducing impacts of 

drought on the water resources production system and the environment.  

The use of flow forecasting models for abstraction management application has 

specific modelling requirements such as incorporating uncertainty methods and 

integration with the available water resources infrastructure. Hence, the development 

of water resources management model to enable real-time abstraction management 

focuses on two parts. The first part investigates the development of a suitable real-

time stochastic flow forecast model by combining a conceptual rainfall-runoff model 

with Bayesian based uncertainty analysis method. The second part focuses on 

devising a water resource management model and integrating it with the flow 

forecast model to enable efficient implementation of real-time abstraction 

management scheme and understanding implications of the scheme on water 

resources system. 

1.2 Abstraction management – diffuse pollution     

Historically, water quality issues have received less attention than water quantity in 

general. However, in recent decades policy makers, scientists and the public have 

begun to recognize the significant role water quality plays in economic, social and 

environmental developments and has consequently attracted a lot of attention (du 

Plessis 2017). Over the past few decades, improvements have been observed in the 

quality of river waters in UK. Nonetheless, diffuse pollutants such as fecal indicator 

organisms (FIOs) and pesticides originating from farmlands remain a problem for the 

management of river systems and can have serious financial consequences for water 

companies due to increased cost of drinking water treatment and compliance to 
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drinking water quality standards. The National Audit Office (NAO) has estimated the 

cumulative cost of water pollution to be between £700million and £1.3 billion a year 

(OFWAT 2011). Intensified pesticide application rates and new emerging products 

on the market have increased pesticide levels found in raw drinking water (Carvalho 

2017). Weather impacts can also have a dramatic impact on pesticide runoff or 

application e.g. heavy rain at key planting period increases application of the slug 

control chemical metaldehyde. Most of this pollution is in the form of diffuse 

pollution from farmlands with insensitive agricultural practices, which contaminates 

surface and ground water supplies of drinking water. Treatment of contaminated 

water to comply with drinking water standards imposes considerable capital and 

operating costs on water companies and contributes significantly to the industry's 

carbon footprint. In the European Union (EU), the Drinking Water Directive (DWD; 

98/83/EC) sets out the maximum allowed concentration (MAC) in treated drinking 

water for an individual pesticide as 0.1 μg/l (EC 1998). The DWD also states that 

total concentration of all pesticides should not exceed 0.5 μg/l. 

Diffuse agricultural pollution is widely recognized as a significant threat to the 

quality of water resources, including in catchments used for drinking water supply 

(Castle et al. 2017). Metaldehyde is a soluble synthetic aldehyde pesticide used 

globally in agriculture which has caused recent concern due to high observed levels 

(exceeding the European and UK standards for pesticides in drinking water value of 

0.1µg/l) in surface waters utilized for potable water supply (Kay & Grayson 2014). 

This study describes the development of a new travel time based physically 

distributed metaldehyde prediction model which aims to describe the short term 

fluctuations of metaldehyde concentrations in surface waters caused by rainfall 

runoff events. This will enable water infrastructure operators to consider informed 

control decisions in order to improve the quality of abstracted surface water. Several 

studies in the literature have revealed the significant role runoff plays in transporting 

pesticides and the occurrences of short lived peak pesticide concentrations following 

rainfall events (Huber et al. 1998; Huber et al. 2000; Bach et al. 2001; Wu et al. 

2004; Heathwaite et al. 2005). Development of  metaldehyde prediction model that 
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aims to predict short lived concentrations with a view to inform surface water 

abstraction management requires  detailed understanding of the short-term dynamics 

involved in runoff based pesticide generation and transport processes, which include 

transport of event water through surface runoff and drains. Thus, the development of 

the metaldehyde prediction model in this study mainly focuses on the following 

points. 

 Enabling physically distributed representation of runoff and metaldehyde 

generation thoughtout the catchment 

 Improved representation of spatiotemporal variability of pollutant transport 

 Understanding temporal dynamics of short lived peak pollutant levels at 

catchment scale 

 Investigate spatial representations of diffuse pollutant generation areas and 

associated risks to water supplies at catchment scale  

 Collection of new high resolution water quality dataset in study catchment 

1.3 Aims and objectives 

The overall aim of this study is to develop an advanced surface water management 

scheme based on real-time information and modelling approaches. This enables 

surface water abstraction volumes to be adjusted based on predicted availability of 

water and metaldehyde concentrations in the river at abstraction sites. Additionally, 

uncertainties associated with the developed real-time models will be analysed and 

presented to help in making risk aware decisions. Sub-aims and corresponding 

objectives of this study are presented in Table 1.1. 

Table 1.1. Sub-aims and corresponding objectives 

Sub-Aims Objectives 

a) Investigate the use of 

hydrological forecasting in order 

to maximize the amount of water 

I. Identify a rainfall-runoff 

modelling approach, data 

assimilation and uncertainty 
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abstracted in surface water 

catchments and develop smarter 

abstraction management scheme 

that enables to vary abstraction 

volumes based on availability of 

water in the river.  

analysis methods suitable for 

real-time abstraction management 

and assess and enable operational 

suitability.  

II. Develop a real-time stochastic 

flow forecast model by 

combining a conceptual rainfall-

runoff model with Bayesian based 

uncertainty analysis method. 

III. Develop a water resources 

management model and integrate 

it with flow forecast model with a 

view to assess the potential 

benefits of the real-time 

abstraction management scheme 

and investigate implications on 

water resources. 

b) Develop a new travel time based 

physically distributed catchment 

scale metaldehyde prediction 

model and improve 

understandings of short term 

fluctuations in metaldehyde 

concentrations at surface water 

catchment outlets caused by 

rainfall runoff events. 

I. Assess currently available water 

quality modelling practices and 

water quality datasets with 

regards to their applicability for 

describing short term fluctuations 

in pollutant concentrations at 

catchment scale. 

II. Enable physically distributed 

representation of runoff and 

metaldehyde generation 

throughout the catchment and 

develop improved representation 

of spatiotemporal variability of 

pollutant transport. 
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III. Calibrate and validate the 

metaldehyde model using newly 

collected high resolution water 

quality data in the study 

catchment and assess operational 

suitability of the model to enable 

smarter abstraction management. 

c) Investigate propagation of 

catchment scale spatially 

distributed input and parameter 

uncertainty in the metaldhyde 

prediction model and enable risk 

aware abstraction management 

decision making. 

I. Define and parametrize 

probability distribution functions 

of identified model input and 

parameter uncertainties, and 

generate realizations from 

predefined probability 

distributions to represent 

uncertainties in inputs and 

parameters.   

II. Analyse propagation of spatially 

distributed input and parameter 

uncertainties in the metaldehyde 

prediction model.   

III. Summarize results from 

uncertainty analysis using various 

statistical variables and asses 

relative uncertainty contributions 

from each input and parameter. 
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1.4 Thesis structure 

The structure of the thesis is illustrated in Table 1.2. The thesis begins by providing 

an introduction to the research in this chapter. This describes mainly the problem 

statements and the motivations driving the research work. It also details the aims and 

objectives that this study addresses and presents the objectives in parallel with the 

chapters where they are addressed in the thesis.   

Chapter 2 provides a review of a literature and discusses identified knowledge gaps 

and research questions. Chapters 3 - 5 are the three core chapters of the thesis and 

describe the development of real-time abstraction management schemes to enable 

smarter surface water abstraction management. Chapters 2 - 5 are briefly summarised 

and their association with the research objectives are shown in Table 1.2. Chapter 6 

is the business case and implementation chapter which aims to set out a business case 

for implementation and discusses potential exploitation of the developed real-time 

abstraction management scheme in catchments throughout Severn Trent Water Ltd 

(STW) region. Chapter 7 is the final chapter which provides an over-arching 

summary and conclusion of the work described in the thesis. Limitations of the study 

and recommended future works in the area of surface water abstraction management 

are described in this chapter.  

1.5 Publication and research dissemination 

Findings from this study have been disseminated in several academic and industrial 

platforms. The publications from this work include: 

• Asfaw, A., Maher, K. & Shucksmith, J.D., 2018. Modelling of metaldehyde 

concentrations in surface waters: A travel time based approach. Journal of 

Hydrology, 562, pp.397–410. doi: 10.1016/j.jhydrol.2018.04.074 

• Asfaw, A., Shucksmith, J. & Macdonald, K., 2016. Parameter Uncertainties in a 

Conceptual Rainfall-runoff Model and Implications on Surface Water Management 



9 

 

and Planning Decisions. Procedia Engineering, 154, pp. 299–307. doi: 

10.1016/j.proeng.2016.07.479 

Findings from the study have also been presented in several academic and industrial 

events including the European Geosciences Union General Assembly 2015 (April 

2015, Vienna, Austria), International Conference on Hydroinformatics 2016 (August 

2016, Incheon, South Korea), Institute of Water annual conference (July 2016, 

Birmingham), TWENTY65 Annual Conference (April 2018, Manchester). Findings 

of the study have also been presented on numerous occasions within Sheffield 

University and at Severn Trent Water Ltd. 

Authorship 

I hereby confirm that I am the primary contributor in the writing of each of the above 

listed papers including the design and conduct of the reported research in each paper. 
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Table 1.2. Descriptions of Chapters 2- 5 and objectives addressed under each chapter 

                                                                                                                                                      Objectives 

 a 

(I) 

a 

(II) 

a 

(III) 

b 

(I) 

b 

(II) 

b 

(III) 

c 

(I) 

c 

(II) 

c 

(III) 

Chapter 2 - Literature Review 

This chapter presents a review of the literature on a range of areas associated with real-time 

rainfall-runoff modelling, uncertainty analysis methods and modelling of pollutants to 

assess existing works and set out research gaps that need to be addressed in this study.  

 

  

   

  

     

Chapter 3 - Flow Prediction to Inform Surface Water Abstraction 

This chapter presents investigations on the use of hydrological forecasting in order to 

maximize the amount of water abstracted in surface water catchments and development of 

smarter abstraction management scheme that enables to vary abstraction volumes based on 

availability of water in the river. 

 

  

 

  

 

  

      

Chapter 4 - Modelling of Metaldehyde Concentrations in Surface Waters 

This chapter presents the development of a new travel time based physically distributed 

catchment scale metaldehyde prediction model and improvements in our understandings of 

short term fluctuations in metaldehyde concentrations at surface water catchment outlets 

caused by rainfall runoff events. 

    

  

 

 

  

 

  

   

Chapter 5 - Uncertainty in Metaldehyde Prediction Model 

This chapter presents investigations of propagation of catchment scale spatially distributed 

input and parameter uncertainty in the metaldhyde prediction model. This enables risk 

aware abstraction management decisions. 
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  Chapter 2

Literature Review 

This chapter presents a review of the literature on a range of areas associated with 

real-time rainfall-runoff modelling, uncertainty analysis methods and catchment 

scale modelling of diffuse pollutants. It starts with a brief overview of the regulatory 

changes associated with the changing water environment and implications on water 

resources management in the UK. The chapter then presents the various 

methodologies used in the literature to represent hydrological processes in rainfall-

runoff models and their suitability for real-time modelling applications. Furthermore, 

various applications of real-time models in the literature and associated challenges 

are discussed. More focus has been given to identifying specific requirements of real-

time models for abstraction management applications, and assessing the performance 

and suitability of available rainfall-runoff flow forecasting modelling approaches for 

use in real-time abstraction management (RTAM) applications. The water quality 

section in this chapter presents a review of the literature on the occurrence and 

monitoring of emerging pollutants, catchment scale modelling of diffuse pollutants 

and assessment of uncertainty associated with catchment scale diffuse pollution 

models. The main focus is assessing existing catchment scale modelling approaches 

and identifying their suitability and capabilities to model short term dynamics 

associated with runoff driven pollutant generation and transport suitable to inform a 

real-time abstraction scheme. Assessment of uncertainty associated with catchment 

scale water quality models is also discussed. 

2.1 Challenges of the changing water environment and regulatory 

reforms 

Effective management and utilization of available water resources is fundamental to 

society in terms of public health, commercial activity and environmental protection. 

In recent years, population growth, climate change and increasing pressures from 

emerging pollutants have become key water resource issues facing the water sector. 

Moderate drought events have been observed in the UK with an unusual frequency 
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over the last twenty years (Kendon et al. 2013). The 2010 – 2012 periods have been 

remarkable in climatic terms with the occurrences of unusual rainfall events, which 

have characteristically departed from the typical seasonal rainfall patterns in most 

parts of the UK. Particularly in 2012, a dry period followed by one of the wettest 

spring and summer on record have caused widespread water quality and quantity 

challenges for water supply utilities (CEH 2012). Due to the impacts of climate 

change, more severe and frequent droughts and changes to rainfall patterns are 

expected in the future. By the 2050s, it is anticipated that under the medium 

emissions scenario of UK Climate Projections (UKCP09) summer temperatures will 

increase and summer rainfall will decrease in most parts of the UK with more 

frequent occurrences of short duration drought conditions (OFWAT & EA 2011). 

Increased occurrences of short term dry periods cause challenges in infilling water 

resource reservoirs and are likely to trigger drought management actions more 

frequently. This indicates the need to improve the existing management of water 

resources to make operations more resilient to these challenges. In 1999 the 

Restoring Sustainable Abstraction (RSA) program was set out to investigate the 

extent of environmental damage on rivers and wetland sites suspected of being 

affected by over-abstraction in England and Wales, with the aim of finding and 

implementing remedial solutions. In recent years, this has caused sustainability 

reductions to abstraction licences with a view to protect international/national 

designated conservation sites (Habitats Directive, Sites of Special Scientific Interest 

or Biodiversity 2020 sites), and deliver Water Framework Directive (WFD) 

objectives. Furthermore, changes in demand due to population growth and impacts of 

climate change are likely to deteriorate the status of licences currently deemed 

sustainable. Environment regulators in the UK are working with the water industry 

through WINEP to implement schemes that are aimed at ensuring water courses in 

the UK meet European and national targets related to water (section 1.1).  

Furthermore, the UK Department for Environment, Food and Rural Affairs (DEFRA) 

recently published the Natural Environment White Paper that set out an evidence-

based case for change in water abstraction management in the context of a future in 
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which there will be less water available for people, businesses and the environment 

(DEFRA 2011a). This document made clear the UK Government’s intention to 

reform the current water abstraction management system with a view to enabling a 

more responsive and flexible approach to abstract water. 

The Water White Paper (DEFRA 2011b) set out a proposed direction, principles and 

processes for water abstraction management reform aiming to promote resilient and 

sustainable use of water while protecting the environment. This paper identified that 

the way we manage water resources needs to be reconsidered to ensure continued 

protection of future water ecosystems and make water available for abstraction. 

While demand management was stated to have an important role to play, tackling 

unsustainable abstraction and development of new water resources have been 

identified as key actions to tackle these water resource challenges (DEFRA 2011b). 

As a significant stakeholder in the water environment, it was recommended that 

water companies adopt more dynamic, flexible and innovative approach to carry out 

water abstraction.  

The UK Environment Agency investigated  current and future water availability and  

supported a proposal to reform abstraction licensing (EA 2011). As a result, DEFRA 

worked with key stakeholders to identify two options of abstraction reform which are 

named ‘Current System Plus’ and ‘Water Share’. Different approaches and methods 

were used to link abstraction to water availability in each of these reform options. 

The Current System Plus option is similar to the current system in using daily and 

annual volumetric constraints (i.e. periodic daily constraints and annual volumetric 

constraints in current licences), but it is modified to further restrict abstraction during 

low flows and allow more water to be abstracted when more is available in the 

source. The Water Share option aims to achieve shared responsibility for water 

resources in the catchment. This option gives abstractors a share of the available 

water in the catchment rather than an absolute amount (DEFRA 2014). Both options 

aim to increase the amount of water available for use by linking abstraction to water 

availability in surface waters whilst protecting the environment during periods of low 

flow. The Water Share option allows more active water trading as compared to 
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Current System Plus, though both options are believed to make water trading 

between abstractors quicker and easier. Following the dissemination of the proposed 

options for water abstraction licensing reform, the UK Government has conducted a 

series of open consultation and workshops throughout the country. Responses from a 

range of abstractors and other stakeholders supported most of the proposals in 

principle (DEFRA 2014). The Water companies’ main concern has focused on the 

resulting uncertainty of the reforms on their deployable output, defined as the overall 

output of a water source or a group of sources as constrained by environment, 

abstraction licence, water quality and infrastructure capacities. The complexities of 

operation and increased implementation costs mainly associated with the Water 

Share option have also been raised as concerns. As major water abstractors, water 

companies are highly vulnerable to the challenges of climate change, increased 

demand and associated abstraction reforms, so there is a need to look for innovative 

ways to improve their abstraction management. Increasing availability of data 

capturing technologies and computational capabilities provide potential to devise 

catchment level models with a view to help prepare abstraction management systems 

for these challenges.  

In addition to  abstraction reform, a proposal to increase competition across 

wholesalers, part of water companies that governs water production infrastructures, 

has also been introduced in the Water White Paper to help in stimulating a more 

dynamic wholesale market for alternative water resources (DEFRA 2011b). This 

reform is also believed to incentivise water companies to look for innovative options 

to secure future water resources rather than adopting capital intensive projects (such 

as developing alternative water resources) to meet future demands. Moreover, 

upstream competition in the water sector helps to maximize the economic value of 

available water resources by giving more value to water, whereas values in the 

current system only reflect works done to get the water to the tap. The draft water bill 

was published in 2012 with the main objective of delivering the key commitments set 

out in the Water White Paper and is likely to facilitate the transition to a resilient and 

sustainable water sector (DEFRA 2012). Technological advancements in capturing 
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hydro-meteorological data, computational capabilities and improved theoretical 

understandings have boosted the development of real-time monitoring and modelling 

methods, which the water industry can exploit to meet the demands imposed by these 

reforms and efficiently manage water resources. Suitable flow forecasting models 

that are capable of informing surface water abstractions can be developed by 

employing uncertainty analysis and data assimilation techniques on rainfall runoff-

models. Operationally suitable real-time abstraction management scheme can then be 

enabled by coupling these models with water resource management models that 

represent licence conditions, infrastructure capacities and reservoir operation rules.     

2.2 Rainfall-runoff modelling 

Rainfall-runoff models are widely used in water resources management for a wide 

range of applications and play a significant role in informing water resources 

management and planning decisions in catchments (Beven 2012). Complex non-

linear hydrological processes, which exhibit high spatial and temporal variations, are 

commonly represented using relatively simple structures in rainfall-runoff models. 

The purpose of model application, available data and the effort required for model 

development and application determine the level of hydrological system to be 

described in the model (e.g. spatiotemporally distributed detail or in a more 

aggregated way) (Beven 2012). For this reason, there is no a unique and seamless 

rainfall-runoff model fit for all purposes, but there are several descriptions of the 

hydrological system (rainfall-runoff models) each of which may be suitable for 

addressing different set of scientific questions. Different rainfall-runoff models differ 

in their aggregation level of the structure and processes of the hydrologic system, 

process representations and mathematical structures and formulations. 

 Types of rainfall-runoff models 2.2.1

Given the wide range of rainfall-runoff models detailed in the literature and their 

increasing availability as software modelling packages, the key questions relates to 

deciding which are the most suitable models and what are the limitations of these 

models. To answer these questions, it is primarily important to look into the generic 
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classifications of available rainfall-runoff models. Many different ways of 

categorizing rainfall-runoff models is available in the literature, but this section 

focusses on the two major classification methods, assessing suitability and 

limitations of model types in these categories. Rainfall-runoff models can be 

categorised into three main groups, namely: distributed physical based models, 

conceptual models and input-output or black-box models (Beven 2012). The 

methodologies used to represent hydrological processes in each of these model types 

and their suitability and limitations for use in a range of applications are discussed 

below.   

Distributed physical based models are based on our current best understanding of 

hydrological processes and try to represent real world physical processes in 

catchments. These models are also called mechanistic models as they incorporate 

principles that govern physical processes in the catchment. System states in the 

catchment are represented using state variables, which are measurable and are 

spatially and temporally distributed (Devia et al. 2015). The spatiotemporal dynamics 

of water movement in the catchment are often represented using Saint-Venant 

equations in models used for theoretical and applied studies. Finite difference method 

is commonly used to numerically solve these governing equations in models (Bell & 

Moore 1998a). Large numbers of parameters employed in physically based models 

are derived from various temporally and spatially distributed measured variables 

such as soil moisture content, initial water depth, topography, soil type and 

dimensions of river networks in the catchment. As a result, evaluation of the 

parameters that are used to describe catchment characteristics in the model is often 

an extensive task (Feyen et al. 2000). Parameters used to describe catchment 

characteristics in physically based models have direct physical interpretations, which 

provide useful information for modellers and enable direct measurements of most of 

the parameters.      

In contrast, conceptual models are developed based on data and use mathematical 

concepts to represent hydrological processes in a suitable structure and parameters 

set. In these models, hydrological process components are represented using a 
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number of interconnected reservoirs (Lan Anh et al. 2008). The conceptual reservoirs 

are recharged using rainfall, infiltration and percolation processes and are emptied by 

evaporation, drainage and surface and sub-surface runoff processes. Semi-empirical 

equations are mainly used to describe the interaction between the conceptual 

reservoirs (Siebert 1999). Calibration procedures are used in models to adjust model 

parameter values by forcing them with in the required margin of uncertainty to obtain 

representation of modelled process that satisfy pre-agreed goodness-of-fit criteria 

(Gan & Biftu 1996). Unlike physically based distributed models, most parameters in 

general conceptual models lack physical basis and thus cannot be inferred from direct 

measurements (Beven 2012). Hence, calibration procedures that require extensive 

hydrological and meteorological data are often used to estimate these parameters. 

The calibration process involves solving an inverse problem of estimating parameter 

values using recorded data on system responses such as discharge and water level 

data (Zhang et al. 2015). Different set of discharge or water level data is required to 

validate calibrated models, which is a process performed to verify that models are 

performing as expected in line with their design, objective and intended application 

(Gan & Biftu 1996; Zhang et al. 2015). Conceptual rainfall-runoff models are 

developed at different degrees of complexity with varying number of parameters 

depending on the intended application of the model. Over the past few decades, a 

wide range of applications have used conceptual rainfall-runoff models as it provides 

modellers a potential to achieve a reasonable accuracy in modelling hydrological 

processes with relatively simple computational complexity (Zhang et al. 2015; Devia 

et al. 2015). However, the amount of effort in developing conceptual rainfall-runoff 

models and the complexity of these models seem to have increased continually with 

the expanding availability of high computational power and advanced computational 

methodologies (Beven 2012),          

In contrast, black-box models only consider hydrologic input and output data from 

catchments and do not attempt to represent internal hydrologic processes. These are 

highly empirical observation based models that use information derived from 

existing system input and output data to estimate the behaviour of the system. As a 
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result, catchment characteristics and hydrological processes are not considered at all 

and hence these models are also called data driven models (Sitterson et al. 2017; Xu 

2002). These models use information derived from system input and output time-

series data to derive a set of mathematical equations that are used to emulate the 

physical processes involved in the system. Black-box models are not suitable for 

application outside the calibrated boundary as they lack hydrological processes 

representations (Knapp et al. 1991). Artificial neural network and fuzzy logic models 

developed using machine learning techniques are typical examples of black-box 

models. Statistical models that derive functional relationship between input data and 

system responses using regression or correlation techniques can also be categorised 

as data driven or black-box models (Rajurkar et al. 2002). 

A second consideration is whether to use these models in deterministic or stochastic 

setup, which is a model choice based on the output types delivered by the models. 

Deterministic models use one set of inputs and parameters and produce a single 

output for each time-step, whereas stochastic models produce a set of output values 

at each time step, which can be presented using various summary statistics (Shaw et 

al. 2017). Variations in stochastic model outputs are fundamentally generated due to 

model input, parameters and structural uncertainties. The vast majority of rainfall-

runoff modelling applications have commonly used deterministic models due to its 

relatively simple setup and lesser computational demand. However, the growing 

interest in identifying the impact of model prediction uncertainties on water resource 

management decisions has led to an increase in use of stochastic models in recent 

years (Voge 2016). Moreover, rapidly advancing computational capability has 

enabled users to implement various uncertainty analysis methods (e.g. Bayesian 

methods) to enable stochastic model predictions. Variances or other measure of 

model output dispersion resulting from stochastic models provide additional 

information to water resource managers and enables them to make risk-aware 

decisions (Jonsdottir et al. 2006).  
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 Real-time applications of rainfall-runoff models 2.2.2

In real-time modelling, models are applied to make predictions about future system 

states and outputs based not only on historical data but also using newly received 

and/or forecasted data. Knowledge on future state systems and outputs are valuable 

for pro-active water resource management and planning. Thus, real-time modelling is 

employed in a wide range of geo-science and environmental fields including 

hydrology (Seo et al. 2003; Cloke & Pappenberger 2009) and meteorology (Golding 

2000; Thorndahl et al. 2010). Typical application of real-time modelling in these 

areas include providing warning systems of  future events such as flooding (Penning-

Rowsell et al. 2000). Amidst an intense period of real-time model development and 

application, several studies have focused on employing real-time modelling in urban 

drainage system and distribution networks (Henonin et al. 2013). In addition, most of 

the published studies on real-time rainfall-runoff modelling have examined its 

application for flood forecasting (e.g. Seo et al. 2009; Rogelis & Werner 2018). Less 

attention is given on applying real-time models for managing human interventions to 

the river systems, which is partially due to old perceptions on the availability of 

water and limited understanding of the changing water environment and impacts of 

our interventions (e.g. abstractions) on it. In recent years, there has been a significant 

improvement in our understanding of the needs of ecosystems in water and an 

increase in realization of the combined effects of climate change and a growing 

population (Morrison et al. 2009). As a result, abstraction management systems have 

been/are being reformed in a number of countries including United States, South 

Africa, Australia, Russia, England and Wales (Erfani et al. 2014). Fundamentally, the 

reforms aim to minimize impacts of abstraction on the environment while 

maximizing the use of available water resources.  

A comprehensive study on utilizing available advanced hydro-meteorological data 

capturing technologies (e.g. radar rainfall and sensors) combined with real-time 

modelling capability to enable dynamic abstraction management is lacking. The use 

of flow prediction models for abstraction management application has specific 

modelling requirements due to a number of operational issues associated with 
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abstraction management. These challenges can be categorized into two main areas of 

abstraction management as follow: 1) Real-time models for abstraction management 

application need to accurately predict a variety of flow conditions, which requires the 

models to have flexibility to increase the capability of simulating the full range of 

service flows (flow range between minimum environmental flows and maximum 

abstraction capacity). As a result, the divergence of the models, which is defined as 

the relative accuracy of the model during the calibration and validation processes, 

needs to be measured over the service flow range rather than at high flows as used in 

flood forecasting applications (Vaze et al. 2011). Moreover, to keep the balance 

between enabling to abstract more water and avoid breaching abstraction licence 

conditions, uncertainties associated with forecast service flow range needs to be 

carefully analysed and presented to enable risk aware abstraction management 

decisions. 2) Effective implementation of real-time abstraction management scheme 

requires integrating water resource systems (such as reservoir operation rules, 

abstraction licence conditions, available storage volumes and pump and water main 

capacities) and forecasted flow data to determine the amount of water that can be 

abstracted at any specific period in real-time. This requires development and 

integration of a water resources management model with flow forecast models.    

 Comparison of rainfall-runoff models for real-time applications 2.2.3

Extensive research has been conducted in hydrology on the development of various 

types of hydrological models to represent the rainfall-runoff processes and their wide 

range of applications. While the main scientific objective of most works have been to 

obtain better understanding of the complexity of catchment responses and informing 

strategic water resources management and planning, some of the researches have 

been motivated by the need to apply these models for short term water resource 

management and informing operational decisions (Burn et al 1999; Vaze et al. 2011). 

Given the wide range variability of rainfall-runoff models, a question arises as what 

type of model is the most suitable for real-time use to inform short term water 

resource management and operational decisions. The use of any of the rainfall-runoff 

model types in real-time application requires consideration of factors such as 
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computational requirement, implementation of real-time updating and forecasting, 

and operational suitability (Burn et al 1999). Due to the high number of parameters 

involved and the associated level of complexity, the use of physics-based models 

such as Systeme Hydrologique Europeen (SHE) (Abbott et al. 1986) and HYSIM 

(Manley 1978) are computationally intensive and require large datasets. Furthermore, 

these models do not readily lend themselves to having their forecasts updated in real-

time in a computationally efficient manner. Consequently, the choice of a rainfall-

runoff model for most real-time applications currently rests between conceptual and 

black box models.  

Considerable number of studies to assess the suitability of rainfall-runoff models and 

compare them for use in real-time forecasting under various conditions have been 

conducted (Shamseldin & O’connor 2003; Todini 2005; Jorgeson & Julien 2005). 

Furthermore, a number of studies have compared available rainfall-runoff models for 

operational flow forecasting purposes (Goswami et al. 2005; Te Linde et al. 2008). 

However, most of these studies are focused on large catchments (with an area of 

more than 1000 km
2
) and coarse time resolution (6-12 hrs time steps), which makes 

them less relevant for a typical situation in the UK, where flow estimations are 

required at the outlet of relatively small catchments and thus finer time resolutions 

(in the region of 1-2hrs). The studies conducted by the Institute of Hydrology to 

compare various rainfall-runoff models for flood forecasting purposes across UK 

catchments (Moore et al. 1992; Moore & Bell 2001; Young 1997) are of much 

greater relevance to this study. These studies have assessed EA operational models 

including Thames Catchment Model (TCM) (Moore & Bell 2001), the Midlands 

Catchment Runoff Model (MCRM) (Moore & Bell 2001), the Probability Distributed 

Moisture model (PDM), the Isolated Event Model (IEM), the ISO-function model 

and black-box models (e.g. Transfer Function, TF and Physically Realizable Transfer 

Function, PRTF) (Beven 2012), and other rainfall-runoff models such as the US 

National Weather Service Sacramento Model (Burnash 1995), the NAM model 

(Agrawal & Desmukh 2016), the Grid Model (Bell & Moore 1998b). These studies 

highlighted that the type of catchment processes explicitly represented (such as 
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infiltration, percolation, surface runoff, subsurface and groundwater flow processes) 

or the effectiveness of representing aggregated processes (such as semi distributed, 

lumped, black-box and various conceptual model representations) are the main factor 

which determine the appropriate level of complexity in the models. Otherwise, the 

reviewed conceptual rainfall-runoff models are found to be similar despite the 

various ‘brand names’ (Moore & Bell 2001). Consequently, the overall conclusions 

of the model reviews have been informative rather than judgemental giving further 

useful information associated with performances of each model rather than providing 

preferences. 

Though forecast accuracy has been used as the main criteria of comparison, model 

configuration, initialization and calibration are also considered in the reviews. 

Overall, no one model is found to consistently outperform all the other models across 

all catchments in these reviews. Peak flows in extreme flood events such as the 

Easter 1998 flood in the UK Midlands are underestimated by most of the models 

with NWS underestimating more than most and Grid Model performing best. TCM is 

found to perform better when the R
2
 statistic is used to compare models in forecast 

mode. Although and PDM is in the second tier of models, it performed very well 

when threshold critical success index (CSI) statistic is used for comparison, 

indicating its suitability in forecasting flows at different peak levels. TCM is 

suggested to be more applicable to more complex catchments where flow responses 

come from heterogeneous areal response zones. The reviews identified PDM and 

MRCM as models which provide good balance between simplicity and complexity. 

PDM’s capability to represent a large range of catchment behaviour through the wide 

selection of model structures it accommodates has helped its wide range of 

application as a flow forecasting model. The R
2
 performance of black-box models TF 

and PRTF are found to be poor, but improved significantly when error-prediction 

updating is used. IEM has performed particularly well as compared to other simple 

models mainly in terms of threshold CSI. Grid Model was found to be slow to run 

and calibrate when applied to large catchments and is suggested that its primarily use 

is as a research tool (Bell et al. 2001). Following this review of the models and 
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discussions with staffs at Severn Trent Water Ltd, we have decided to use the PDM 

model in this study.  

2.3 Probability distributed model 

The Probability Distributed Model (PDM) is a conceptual rainfall-runoff model 

principally based on probability distributed moisture capacities and routing of runoff 

and drainage through routing stores. The design of the model algorithm enables the 

representation of a range of catchment responses in different ways. A series of 

publications (Moore 1985; Moore & Bell 2002; Moore 2007) provide detail of the 

theoretical background of the model.  

The search for models that are parsimonious of parameters and are capable of 

accurately predicting various range of flows has been the source of PDM rainfall-

runoff model. With this aim, Moore & Clarke (1981) have conceptualized the 

representation of runoff production from catchments using a probability distribution 

of moisture capacity rather than the usual catchment averaged single soil moisture 

store representation. This led to a more realistic representation of runoff production 

over the catchment and enabled optimization of the variability in soil moisture 

storage distribution across the catchment. Moore (1985) has further simplified the 

theory with a view to improve the representation of runoff generation and routing 

processes. The major improvement being the development of a procedure to enable 

interaction between the soil moisture storages to equalize water depth across the 

distributed storages throughout the catchment (Moore 1985), which has led to the 

formulation employed in the current PDM model. In the previous setup of the model, 

probability distributed time of travel (considered as instantaneous unit hydrograph) 

has been used to route direct runoff to catchment outlet using convolution operation. 

The parallel routing formulation, which uses soil moisture feedback to separate direct 

runoff and groundwater flow of total runoff and enable non-linear runoff routing 

procedure has been used in the current model. This method has initially been 

developed based on concepts from  Dooge (1973) and Dooge & O’Kane (2003). The 

use of non-linear routing procedure instead of convolution to route runoff has 
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enabled real-time updating much easier. Moreover, improvements made by Moore 

(1985) to PDM have also included addition of parameter interdependence to the 

model, introduction of parallel configuring of routing stores and inclusion of more 

complex recharge functions, which are incorporated to represent a wide range of 

catchment processes. This raised the need to rely on manual calibration with the use 

of visual support and only use automatic optimization for refinement of selected 

parameters. In recent years, PDM has evolved as a fairly general conceptual rainfall-

runoff model well suited for real-time flow forecasting with relatively few 

parameters. Currently, PDM has widespread application throughout the world 

(Teuling et al. 2004; McIntyre et al. 2005; Cabus 2008) and earned a solid reputation 

as a real-time flow forecasting model in the UK. 

2.4 Data assimilation        

Real-time modelling provides an opportunity to incorporate new observed system 

response data thereby increasing the calibration dataset with a view to improve 

model predictions, which is known as data assimilation. It mainly functions by 

comparing model outputs with new independent observations in order to modify 

certain states/parameters of the model and by considering the discrepancy between 

the latest observed data and model outputs as feedback to mitigate real-time model 

uncertainties (Moradkhani & Sorooshian 2009). Data assimilation is a widely used 

technique in different areas of geosciences with most applications involved in 

meteorological and hydrological forecasts. Advanced telemetry systems, increased 

availability of hydrological data observations (e.g. from radar and satellite) and the 

need for better forecast accuracy have contributed to the increased use of data 

assimilation as a powerful tool in flow forecasting techniques (Brocca et al. 2013). 

Over the past twenty years, considerable research has been carried out on the use of 

data assimilation techniques to improve hydrologic model predictions. Lee et al. 

(2011) and Lee et al. (2012)  reviewed the main developments in the area including 

assimilation of a range of in-situ and remotely sensed observations into hydrological 

models. Flow, water level or soil moisture data can be used in data assimilation 

techniques implemented in rainfall-runoff models depending on data availability and 
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model structure and output types. The most relevant studies in the context of the 

hydrologic application in this study are assimilation of observed flow to improve 

rainfall-runoff forecasts (e.g. Seo et al. 2003; Weerts & El Serafy 2006; Clark et al. 

2008; Seo et al. 2009; Lee et al. 2012; McMillan et al. 2013). Different types of data 

assimilation techniques are available in the literature that can be used to assimilate 

observed flow data to improve flow predictions. In this section, the state correction 

and error forecasting methods that are employed in the PDM rainfall-runoff model 

are discussed (Adediran 2015). 

 State correction method 2.4.1

The state correction method focusses on updating state variables in the model that 

define the initial state of the model before making forecasts. The term state in the 

state correction model refers to these variables in the model which define the state of 

the system and mediate between model input and outputs(Szollosi-Nagy 1976). The 

type of state variables and their physical interpretations vary depending on the 

structural formulation of models. For example, typical state variables in conceptual 

rainfall-runoff models such as PDM are surface water and groundwater stores, which 

represent storage components in the hydrologic process (Moore 2007). In the state 

correction method, mismatches between model predicted and observed values are 

assumed to have been caused by incorrect state variables. Hence, the feedback 

derived from the error between observed and predicted values is used to correct the 

state variables (Adediran 2015). State correction method is fundamentally applied 

based on the Kalman filter algorithm as detailed in a number of literatures (Jazwinski 

1970; Gleb 1974; Wang et al. 2009). An extended form of Kalman filter based on a 

linearization approximation is often implemented in non-linear dynamic models such 

as PDM. This enables adjustment of state variables using a simpler and more 

intuitive scheme than the more complex and formal extensions of the Kalman filter 

implementation in non-linear dynamic models (Clark et al. 2008). The PDM rainfall-

runoff model provides an option to use the linearization approximation scheme, 

which is also called empirical state adjustment scheme that enables to make sensible 

physical interpretations of state variable adjustments (Moore et al. 2007). A typical 
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simple implementation of Kalman filter using a linearization approximation is used 

in the PDM rainfall-runoff model. In this method, proportions of the error between 

observed and simulated flows are used to adjust surface and groundwater stores 

based on their contribution to the total flow (Moore et al. 2007; Adediran 2015). This 

is mathematically expressed as 

 𝑞𝑏
∗ = 𝑞𝑏 + 𝛼𝘨𝑏𝜀 (2.1) 

 

 𝑞𝑠
∗ = 𝑞𝑠 + (1 − 𝛼)𝘨𝑠𝜀 (2.2) 

where 

 𝛼 = 𝑞𝑏/(𝑞𝑠 + 𝑞𝑏) (2.3) 

qb – groundwater contribution to total flow, qs – surface water contribution to total 

flow, 𝑞𝑏
∗  – adjusted groundwater contribution to total flow, 𝑞𝑠

∗  – adjusted surface 

water contribution to total flow, gb - gain coefficient to groundwater contribution and 

gs - gain coefficient to surface water contribution, ε – error in predicted flow (Q – q) 

where Q – observed flow and 𝑞 = 𝑞𝑠 + 𝑞𝑏.  

When values of gain coefficients (gb and gs) are equal to one, the combination of 

adjusted surface and groundwater contributions matches observed flow values. 

Different adjustments to the gain coefficients allow varying proportions of errors 

attributed to surface water and groundwater contributions, thus gb and gs can be used 

as forecast model calibration parameters that can be used to achieve best-fit between 

observed flows and forecasts. This can be implemented by using a more general 

expression for α as 

 𝛼 =
𝑞𝑏

𝛽1𝑞𝑠 + 𝛽2𝑞𝑏
 

(2.4) 
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where, β1 and β2 are weight parameters that can be used to allocate the error 

distribution towards or away from one of the flow contributions. Computation of 

parameter α and the flow contribution adjustments are carried out at each new data 

point. Based on the method used to compute the value of α, three different flow 

adjustment schemes can then be defined as the proportional adjustment scheme 

(equation (2.3)), super-proportional adjustment scheme (equation (2.4)) and the 

simplest non-proportional adjustment scheme, which involves replacing α and (1- α) 

in equation (2.3) and equation (2.4) by one. The fundamental Kalman filter 

adjustment technique, which is based on updating system states based on new 

information derived from new observations (model error combined with gain 

coefficients), is used in all of these adjustment schemes.  

 Error prediction method 2.4.2

The error prediction method focuses on analysing error structures with a view to 

enable future error predictions, which can then be used to improve forecasts. As a 

result, model errors are not attributed to any of the model components in this method 

and no adjustments are made to model variables. The development of error 

prediction models is based on the persistence of error characteristics from conceptual 

rainfall-runoff models, which results in sequences of positive or negative errors and 

identifiable trends (Casale & Margottini 2012). Information on structural 

dependences of these error sequences are used to develop error prediction models. 

The error prediction method is developed totally external to models and thus is 

suitable for use in conjunction with any types of models. The PDM rainfall-runoff 

model has incorporated the error prediction method as an option for updating forecast 

simulations (Moore et al. 2007).  

Moore et al. (2007), Casale & Margottini (2012) and Adediran (2015) have described 

the details of the procedures involved in the operation of error prediction method to 

update flow forecasts based on predicted errors, which are summarized below. 

Observed flow (𝑄𝑡𝑜|𝑡)  and forecasted flow (𝑞𝑡𝑜+𝑡) made using the rainfall-runoff 
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model in simulation mode with lead time t can be related using the following 

expression 

 𝑄𝑡𝑜+𝑡 = 𝑞𝑡𝑜+𝑡 + 𝜀𝑡𝑜+𝑡 (2.5) 

A better forecast accuracy can be achieved if the error (𝜀𝑡𝑜+𝑡) can be predicted using 

a forecast model and used to adjust predicted flow (𝑞𝑡𝑜+𝑡). Considering 𝜀𝑡𝑜+𝑡|𝑡 as the 

predicted error at lead time t made using error prediction model, then the forecasted 

flow using a forecast-mode rainfall-runoff model at lead time t can be expressed as 

 𝑞𝑡𝑜+𝑡|𝑡 = 𝑞𝑡𝑜+𝑡 + 𝜀𝑡𝑜+𝑡|𝑡 (2.6) 

and the forecast-mode model error is expressed as 

 𝑒𝑡𝑜+𝑡|𝑡 = 𝑄𝑡𝑜+𝑡 − 𝑞𝑡𝑜+𝑡|𝑡 (2.7) 

Depending on the performance of the error prediction model used, error from 

forecast-mode model at lead time t (𝑒𝑡𝑜+𝑡|𝑡) should be less than the error from the 

simulation-mode model at lead time t 

 𝜀𝑡𝑜+𝑡 = 𝑄𝑡𝑜+𝑡 − 𝑞𝑡𝑜+𝑡 (2.8) 

thus improving flow forecast performances. 

The autoregressive (AR) and autoregressive moving average (ARMA) models are 

typically used error prediction models used to improve model performances as they 

provide a suitable structure to incorporate dependences on historical errors from 

simulation models. In general, ARMA model is considered as a more parsimonious 

choice as it provides the same level of approximation as AR but with less number of 
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parameters. The error prediction method in PDM is implemented using ARMA. 

ARMA parameters that are used to adjust and improve flow forecasts are estimated 

using automatic optimisation in PDM (Moore 2007). 

2.5 Uncertainty analysis in rainfall-runoff modelling  

Accurate and reliable flow forecasting is critical as it governs the reliability of water 

management decisions, and hence impacting on the associated benefits or losses 

which accrue from them. Calibrated parameter values are often used in hydrological 

models without considering parameter uncertainties and their implications in 

decisions based on uncertain model outputs are not assessed. Flow prediction 

uncertainties originating from inaccurate structural and parametric representation of 

catchments in models have a major influence on the reliability of forecasts (Beven & 

Freer 2001). Other factors that bring uncertainties in real-time forecasting include 

inputs, initial conditions (e.g., soil moisture states) and observed flow data used for 

model calibration (Hutton et al. 2014). Several studies have analysed these sources of 

uncertainties and developed various methods of dealing with them. These include 

first-order approximations and multi-normal distributions (Kuczera & Mroczkowski 

1998), simple uniform random sampling over feasible parameter space (Uhlenbrook 

et al. 1999), parameter sampling using Markov chain Monte Carlo methods 

(Campbell 2001; Vrugt 2003; Feyen et al. 2007).  

The choice of an uncertainty analysis tool to be used in rainfall-runoff models 

depends on the following four main factors: i) the type of rainfall-runoff model used; 

ii) uncertainty source to be dealt with; iii) uncertainty representation (e.g. probability 

theory); iv) the purpose of uncertainty analysis; v)  data and resource availability 

(e.g. computational power) (Reichert 2014). Pappenberger et al. (2006) has described 

the processes involved in selecting a suitable uncertainty analysis tool using a 

decision tree. First-order approximations and multi-normal distributions, which are 

uncertainty analysis methods based on traditional statistical theory (X. Zhao et al. 

2011), are not effective in dealing with non-linear and complex rainfall-runoff 

models. Explorations of parameter space using simple uniform random sampling 
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methods  are relatively easy but are not efficient in arriving at satisfactory solutions 

that are able to identify the shape of the resulting uncertainty distribution (Tomassini 

et al. 2007). In contrast, Markov chain Monte Carlo (MCMC) methods use adaptive 

Markov chains to efficiently sample from the target posterior distribution and thus 

enable application of inferences and optimisations that require highly efficient 

sampling methods (Reichert 2014). The posterior parameter distribution is used to 

quantify model parameter uncertainty and its formulation varies depending on the 

type of uncertainty representation or inference used. Bayesian inference, which is a 

statistical inference method based on Bayes’ theorem that is used to update 

probability of prior beliefs/hypothesis as more data is available, provides an ideal 

framework to analyse parameter uncertainties of conceptual rainfall-runoff models 

by combing prior knowledge of model parameter values with model outputs and 

observed flow data (Feyen et al. 2007). This is done by conditioning the joint 

distribution of model parameters (prior) and model outputs (likelihood) by observed 

data. 

 
𝑝(𝜃|𝐷) =

𝑝(𝐷|𝜃)𝑝(𝜃)

𝑝(𝐷)
∝ 𝑝(𝐷|𝜃)𝑝(𝜃) 

(2.9) 

Where, p(ϴ|D) is posterior probability, p(D|ϴ) is likelihood probability, p(ϴ) is prior 

probability, D is observed data and ϴ is parameter.   

Thus, the posterior distribution of the parameter is formulated as the direct 

proportion of the product of prior and likelihood function (equation (2.9)) with 

observed data used in the likelihood function as shown in Figure 2.1. Difficulties 

involved in efficient sampling of the resulting posterior distribution or estimating its 

parameters have hindered the widespread application of Bayesian inference in 

hydrology. However, recent advances in the development of MCMC methods that 

enable efficient sampling from the posterior distribution have enabled to overcome 

these difficulties. Application of such MCMC techniques requires tuning algorithmic 

parameters to improve the convergence rate of the chain and careful diagnosis of 
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convergence (Marshall et al. 2004). Detailed description of a state-of-the-art 

uncertainty analysis tool based on Bayesian inference is given in section 2.5.2.  

 

Figure 2.1. Formulation of posterior distribution using Bayes’ theorem  

 Markov chain Monte Carlo method 2.5.1

There are only a small number of posterior distributions and models for which 

Bayesian inference can be conducted analytically. For this reason, numerical 

techniques are very important for implementation of Bayesian inference and most 

applications are based on Monte Carlo simulation (Reichert 2014). In Monte Carlo 

based methods, a sample is drawn from the posterior distribution and properties of 

the population distribution are approximated based on properties of the sample. Of 

particular importance to application of Bayesian inference are Markov Chain Monte 

Carlo (MCMC) techniques, which are a special type of random process, that 

construct a Markov chain which asymptotically converges to the posterior 

distribution. MCMC methods use Markov chain, which contains a sequence of 

random variables that is characterised by the probability density of each random 

variable in each chain conditional on the immediate predecessor and independent of 

any other random variable of the chain (Campbell 2001). A Markov chain can be 

characterised by its transition probability density function, 𝑓𝑡𝑟𝑎𝑛𝑠(𝜃𝑛𝑒𝑤, 𝜃𝑜𝑙𝑑) , which 

is the conditional probability density for reaching a new state 𝜃𝑛𝑒𝑤 given a previous 

state of 𝜃𝑜𝑙𝑑. Homogeneous Markov chains, which have similar transition probability 

density for the whole chain, result in a stationary distribution 𝑓𝑠𝑡𝑎𝑡, which is invariant 

for each step (Reichert 2014): 
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∫ 𝑓𝑠𝑡𝑎𝑡 (𝜃′)𝑓𝑡𝑟𝑎𝑛𝑠(𝜃, 𝜃′)𝑑𝜃′ = 𝑓𝑠𝑡𝑎𝑡(𝜃) 

(2.10) 

Equation (2.10) is used to show that if a Markov chain has a stationary distribution 

and it is aperiodic and recurrent, then the Markov chain will converge to its unique 

stationary distribution. This stationary distribution is also often referred as 

equilibrium or invariant distribution. The condition of detailed balance can be used 

as a sufficient but not a necessary condition to check if a Markov chain has a 

stationary distribution and is expressed as 

 𝑓𝑠𝑡𝑎𝑡(𝜃)𝑓𝑡𝑟𝑎𝑛𝑠(𝜃′, 𝜃) = 𝑓𝑠𝑡𝑎𝑡(𝜃′)𝑓𝑡𝑟𝑎𝑛𝑠(𝜃, 𝜃′) (2.11) 

In equation (2.11), the expression 𝑓𝑡𝑟𝑎𝑛𝑠(𝜃′, 𝜃) represents the probability of Markov 

chain, which has a stationary distribution of 𝑓𝑠𝑡𝑎𝑡(𝜃), moving from 𝜃 𝑡𝑜 𝜃′. Hemce, 

the equation of detailed balance shown in equation (2.11) will be met when the 

probabilities of Markov chain moving from 𝜃 𝑡𝑜 𝜃′ and  𝜃′ 𝑡𝑜 𝜃 is the same. As a 

result, equation (2.11) represents the reversibility that for every two parameter 

states 𝜃 𝑎𝑛𝑑 𝜃′, the probabilities of transitioning to one of the parameter states or the 

other are the same. A Markov chain will converge to a unique stationary distribution 

given that it is periodic, recurrent and has a stationary distribution. Tierney (1994) 

and Gamerman (1997) have showed that most of chains in MCMC simulations fulfill 

these characteristics and thus can be used as a representative samples from a 

stationary distribution. The main objective in the use of MCMC simulations in 

Bayesian inference is to generate a Markov chain that has a posterior distribution as 

its stationary distribution as shown in Figure 2.2. A sample of this Markov chain can 

thus be used to estimate characteristics of the posterior distribution.  
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Figure 2.2. Markov chain and its convergence into stationary distribution 

Some MCMC methods split the transition density function, 𝑓𝑡𝑟𝑎𝑛𝑠(𝜃′, 𝜃)  into 

proposal density function, 𝑓𝑝𝑟𝑜𝑝(𝜃′, 𝜃), and an acceptance probability, 𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝜃′, 𝜃) 

(Tierney 1994; Gelman et al. 2014). Hence, the probability of staying at the same 

state 𝜃 is given by 

 
𝑃𝑠𝑡𝑎𝑦(𝜃) = 1 − ∫ 𝑓𝑝𝑟𝑜𝑝(𝜃′, 𝜃) 𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝜃′, 𝜃)𝑑𝜃′ 

(2.12) 

Denoting the transition density function as 

 𝑓𝑡𝑟𝑎𝑛𝑠(𝜃′, 𝜃) = 𝑓𝑝𝑟𝑜𝑝(𝜃′, 𝜃)𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝜃′, 𝜃) + 𝑃𝑠𝑡𝑎𝑦(𝜃)𝛿(𝜃 − 𝜃′) (2.13) 

For a given proposal density function, application of the condition of detailed 

balance (equation (2.11)) mean that the following condition has to be fulfilled by the 

acceptance probability 

 
𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝜃′, 𝜃) =

𝑓𝑠𝑡𝑎𝑡(𝜃′)

𝑓𝑠𝑡𝑎𝑡(𝜃)

𝑓𝑝𝑟𝑜𝑝(𝜃, 𝜃′)

𝑓𝑝𝑟𝑜𝑝(𝜃′, 𝜃)
𝑃𝑎𝑐𝑐𝑒𝑝𝑡(𝜃, 𝜃′) 

(2.14) 

If this condition is fulfilled by the acceptance probability, the transition density 

(equation (2.13)) fulfils the stationary condition (equation (2.10)). Hence, the use of 

any proposal distribution combined with an acceptance probability, which fulfils the 
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condition expressed in equation (2.14), results in a Markov chain that can be used as 

a sample from a given stationary distribution (Gelman et al. 2014). Only the ratio of 

the stationary density is needed in equation (2.14) and thus a numerical scheme can 

be applied even if all other parameters used for normalization are not known 

(Reichert 2014). This characteristic is very important in application of Bayesian 

inference as most of posterior distribution functions normalization factors are not 

known. Two different implementations of this general method are Metropolis 

sampling and Metropolis-Hastings sampling which are discussed in detail by Hasting 

(1970), Gamerman (1997) and Gelman et al. (2014).   

Slow convergence is a main issue in the application of MCMC methods to sample 

from posterior distributions, particularly when implementing Bayesian inference. 

Optimization of the proposal distribution in several initial runs does not often 

alleviate this problem (Reichert 2014). A number of adaptive MCMC methods are 

developed over the past few decades to avoid slow convergence, which are all based 

on continuously adapting the proposal distribution during simulation runs (Tierney & 

Mira 1999; Haario et al. 2001; Green & Mira 2001; Haario et al. 2006; Vihola 2012). 

In recent years, adaptive MCMC methods based on the use of several Markov chains 

run in parallel and that couple them adaptively have received a lot of attention (Ter 

Braak 2006; Vrugt et al. 2009; Laloy & Vrugt 2012). The procedure discussed in the 

next subsection is a particular implementation of these adaptive methods.        

 Differential evolution adaptive Metropolis method 2.5.2

Recognizing the limitations associated with existing MCMC methods, Vrugt et al. 

(2009) presented the Differential Evolution Adaptive Metropolis (DREAM) method. 

The DREAM technique is fundamentally based on the Differential Evolution-

Markov Chain (DE-MC) method developed by Ter Braak (2006). The main 

extensions incorporated in DREAM to improve the search efficiency of DE-MC 

include: i) generate proposals by using higher order pairs to improve diversity in the 

searching process; ii) subspace sampling that helps to modify each dimension with a 

crossover probability; iii) detect an outlier chain during burn-in and remove them 
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using Inter Quartile Range; iv) estimate crossover probability distributions during 

burn-in and allow larger jumps, which helps to speed-up convergence. These 

extensions are observed to improve the overall performance of the MCMC algorithm, 

sometimes dramatically (Vrugt et al. 2009).  

In DREAM, N different Markov chains {𝑥𝑖, 𝑖 = 1, … , 𝑁} are run simultaneously in 

parallel. At initial stage a population of 𝑁𝑥𝑑 is formed, where N denotes number of 

chains and d is dimension of parameter space. The state of the i
th

 chain can be 

represented using a d -dimensional vector xi (i=1,…,N) and the j
th

 element of xi  can 

be referred using 𝑥𝑖
𝑗

 (j=1,…,d). The procedures involved in generating parallel 

Markov chains using the DREAM algorithm are detailed below (Vrugt et al. 2009): 

i) Initiate the parallel chains using a population {𝑥𝑖, 𝑖 = 1, … , 𝑁}  sampled 

from the prior distribution. 

ii) Compute the density π(xi) for i=1,…,N , where π(.) denotes probability 

distribution function of the target distribution. 

For i = 1,…,N, do chain evolution  

iii) Generate a candidate point, zi in chain i.  

 
𝑧𝑖 = 𝑥𝑖 + (1 + 𝑒)𝛾(𝛿, 𝑑𝑒𝑓𝑓) [∑ 𝑥𝑟1(𝑗)

𝛿

𝑗=1
− ∑ 𝑥𝑟2(𝑛)

𝛿

𝑛=1
] + 𝜀 

(2.15) 

where δ signifies the number of pairs of chains used to generate a proposal, 

ϒ is jump rate and r1(j) & r2(n) € {1,…,N}; r1(j) ≠ r2(n) ≠ i.   The value of ϒ 

depends on the number of pairs used to create the proposal. Random Walk 

Metropolis (RWM) guidelines suggest that, a good choice of    𝛾 =

2.38/√2𝛿𝑑𝑒𝑓𝑓 , where deff denotes the number of dimensions that will be 

updated. The value of e is drawn from Ud(-b, b) where |b|< 1 and white 

noise ε is drawn from Nd(0,b*) where b* is small compared to the width of 

the target distribution. 
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iv) Replace each element of the proposal, zi
j
 ( j=1,…,d) with xi

j
 using a 

binomial function using crossover (CR) probability of 1-CR. When CR=1 

all dimensions are updated together (d’=d). 

 
𝑧𝑖

𝑗
= {

𝑥𝑖
𝑗
          𝑖𝑓 𝑈 ≤ 1 − 𝐶𝑅,    𝑑′ = 𝑑′ − 1

𝑧𝑖
𝑗
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

 
(2.16) 

v) Compute π(zi) and α(xi,zi) of the candidate point and apply Metropolis 

selection rules to decide whether these proposals should be rejected or not, 

where α(xi,zi) denotes acceptance probability of the candidate point.     

vi)  If the candidate point is accepted xi=zi , otherwise remain at xi. 

      End of chain revolution 

vii) Use Inter Quartile Range (IQR) statistic, which is a measure of statistical 

dispersion that covers the range between the 75
th

 and 25
th

 percentiles, to 

remove outlier chains during burn-in. In MCMC procedures, burn-in is a 

practice of throwing away some samples at the beginning of MCMC run 

with a view to give Markov Chain time to reach its equilibrium 

distribution, which is particularly important if the Markov Chain started 

from a point far from the equilibrium distribution.     

viii) Diagnose the convergence of the chains using Gelamn-Rubin, Ȓ𝑗, for each 

dimension 𝑗 = 1, … , 𝑑  using the last 50% of the sample in each chain. 

Gelman–Rubin is used to evaluate MCMC convergences by comparing the 

estimated between-chains and within-chain variances and analysing the 

difference between multiple Markov chains for each model parameter. 

Large differences between the variances indicate non-convergence.  

ix)   Stop if Ȓ𝑗 < 1.2 for all j, otherwise go to chain evolution. 

Application of DREAM in different case studies, which involved a wide range of 

complex problems in terms of nonlinearity, dimensionality and multimodality, have 

showed that it generally outperforms existing MCMC methods (Vrugt et al. 2009; 

Laloy & Vrugt 2012; Shi et al. 2012; Mara et al. 2016a). Its efficiency in dealing 
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with complex problems, ergodicity and detailed balance make it a preferable tool to 

handle uncertainties in rainfall-runoff models. 

2.6 Diffuse pollution 

The aim of this section is to provide a review of the literature on the occurrence and 

monitoring of pesticides, existing catchment scale water quality models and 

uncertainty analysis associated with water quality models. The main focus is on the 

occurrence and modelling of diffuse pollutions in storm water runoff at catchment 

scale and thus the section is not intended to be a full review of pollutant fate and 

transport models at various scales.      

 Occurrence and monitoring of pesticides 2.6.1

Pesticides are widely used in modern agricultural practices with a view to increase 

production quantity and quality. As a result, water travelling through surface and 

groundwater pathways in agricultural catchment may be exposed to these pesticides 

and leaves the catchment mostly with its quality deteriorated. Most of this pollution 

is in the form of diffuse pollution from farmlands with insensitive agricultural 

practices (Bach et al. 2001), which contaminates surface and ground water bodies 

posing significant water quality issues for drinking water sources. Treatment of 

contaminated water to comply with drinking water standards imposes considerable 

capital and operating costs on water companies and contributes significantly to the 

industry's carbon footprint. In the European Union (EU), the maximum allowed 

concentration (MAC) in treated drinking water set out by the Drinking Water 

Directive (DWD; 98/83/EC) for an individual pesticide is 0.1μg/l (EC 1998). The 

DWD also states that total concentration of all pesticides should not exceed 0.5μg/l.  

EU member states are required to implement these standard limits as minimum 

requirements in their national legislations and can adopt even tighter water quality 

standards of choice. The value of 0.1μg/l MAC set by DWD is based on the typical 

limit of detection for most pesticides when the DWD was set out in 1980. Thus, the 

limits are not based on health risk considerations (i.e. combination of toxicological 

exposure and effects on human health) but represent a precautionary surrogate zero 
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to reflect the principle that drinking water should be free from pesticides. 

Consequently, the standard limit is considerably lower than the concentration level at 

which it is considered to cause any health impact. For example, the World Health 

Organization has set the concentration limit of 0.9mg/l for AMPA (Alpha-Amino-3-

Hydroxy-5-Methyl-4-Isoxazole Propionic Acid) alone or in combination with 

glyphosate based on health impacts (Breach 2010). In addition to concerns associated 

with drinking water quality standards, high pesticide concentrations in water bodies 

can cause impacts to the water ecology (Warren et al. 2003). However, only 

concentrations significantly higher than 0.1μg/l are likely to cause any considerable 

eco-toxicological damage (Crommentuijn et al. 2000).  

Observed levels of emerging pollutants in raw drinking water have increased as 

agricultural pesticide application rates have intensified, detection methods have 

improved and new products emerge onto the market (Geissen et al. 2015). The 

characteristic behaviour of these pollutants such as pesticides (e.g. metaldehyde and 

quinmerac) mean that existing drinking water treatment processes are inadequate to 

reduce levels to drinking water regulation limits and thus have become of rising 

concern to UK water companies (Kay & Grayson 2014). These pollutants can enter 

river systems via diffuse sources through a number of pathways including surface 

runoff, tile drains, drift, and groundwater flow. A number of studies have shown that 

rapid runoff in the form of overland and drain flows are the pathways considered to 

be the major non-point source of pollutants in most catchments (Huber et al. 1998; 

Dils & Heathwaite 1999; Huber et al. 2000; Bach et al. 2001; Harris & Catt 2006; 

Moore 2016). The proportion of diffuse pollutants transported through overland flow 

and drain flow varies in different catchments depending on meteorological 

conditions, soil type, land slope, agricultural practices and network of drains in the 

area (Bach et al. 2001). In catchments that consist network of drains, preferential 

water flow through macropores to tile drains plays an important role in the rapid 

transport of pesticides to water bodies (Tang et al. 2012).   The importance of drain 

flows caused by a rainfall event water in transporting diffuse pollution to water 

courses is highlighted in a number of literatures (Harris & Catt 2006; Granger et al. 
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2010; Tiktak et al. 2012). The transport of pollutants in both surface runoff and drain 

flows, which form the dominant pathway for diffuse pollution transport into water 

bodies, is storm-driven and the initial storm after pesticide application produces 

higher flux of pollutants than subsequent storms (Stone & Wilson 2006). Thus, the 

combined event water contribution to water bodies transported via overland and 

drain flows can be referred as rapid runoff/ runoff. Catchment characteristics 

combined with hydro-meteorological parameters determine the amount and rate of 

runoff generated following a particular rainfall event. During rainfall events, the 

impact of raindrops and overland flow detach soil particles and cause the transport of 

pesticides both found in solution and adsorbed by sediment particles. Transport of 

highly soluble pesticides such as metaldehyde through runoff is considered far more 

important than transport via soil erosion (Holvoet et al. 2007). Migration of 

pollutants through erosion is considered significant only for highly adsorbing 

substances with a sorption coefficient of active ingredient to organic carbon (KOC) 

value greater than 1000 L kg
−1

 (Kenaga 1980). The time interval between pesticide 

application and a rainfall event combined with application doses over this period 

determine the accumulation of pesticide in the active zone at the soil surface (Müller 

et al. 2003). This directly affects the amount of pesticide transported to water bodies 

through runoff. 

UK water companies currently use grab sampling methods to monitor pesticide 

pollutant levels in catchments to help in the planning and development of catchment 

management strategies. The use of appropriate sampling methods in water quality 

monitoring studies determine the ability of collected data to reflect the actual 

conditions at the study sites and the validity of conclusions made based on the data 

(Ort et al. 2010). Sampling regimes can fail to provide good set of data which 

adequately represent catchment processes and can be a significant source of error 

misleading management decisions. In a research recently conducted in the Cherwell 

catchment, UK, the Metaldehyde Stewardship Group has indicated that a 

significantly large amount of metaldehyde losses occur during the rainfall event 

following metaldehyde applications, thereby highlighting the importance of 
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capturing the impacts of individual rainfall events (Kilburn 2010). Currently, grab 

samples are collected days or weeks apart by water companies and the pesticide 

concentrations in between sample collection times are unknown. Consequently, there 

is a concern regarding the suitability of water quality data collected through the 

existing grab sampling methods to inform the development of catchment 

management strategies. Moreover, model development activities to enable prediction 

of potential exposure to pesticide concentrations can be hampered by the inability to 

capture short term fluctuations in diffuse pollution concentrations caused by rainfall 

driven runoff. Recent studies have indicated the use of automatic water samplers as a 

step forward towards addressing this problem (Petersen et al. 2005; Rabiet et al. 

2010). High resolution data generated by auto-samplers can be used to better inform 

the planning and development of catchment management strategies. Furthermore, 

these datasets also provide a potential to establish relationships between 

concentrations of pollutants and catchment hydro-meteorological parameters which 

can be measured more easily in real-time. Studies which exploit this potential to 

formulate catchment dynamics that relates catchment attributes with diffuse pollutant 

fluxes to water bodies are lacking. This is mainly due to lack of water quality 

datasets adequately describing the levels, fate and transport of such pollutants 

through runoff driven by rainfall events in the catchment. However, this is now 

becoming more accessible due to recent advances in the sampling and spatial data 

collection technologies. 

 Water quality modelling approaches       2.6.2

Water quality models that predict dynamic behaviour of pollutant sources, fate and 

transport have widely been used to inform water quality management decisions 

(Wang et al. 2013). A study of the literature reveals that considerable amount of 

work has been conducted on the development of water quality models that are 

capable of operating at different scales (Quilbé et al. 2006; Köhne et al. 2009). A 

choice of suitable water quality model for prediction of selected pollutants involves 

assessing the models based on the following criteria i) ability to accurately represent 

the fate and transport process of selected substances, ii) appropriateness to the 
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complexity of the catchment system and available data, iii) ability to incorporate 

methods to estimate prediction errors and report prediction uncertainty, iv) sufficient 

flexibility to allow updates and improvements based on new information and 

monitoring data (Loucks & Beek 2005). Additionally, practical suitability of the 

models for the intended specific application needs to be considered. 

There is a wide variety of water quality models in the literature that represent 

processes involved in pollutant fluxes from land to water bodies and pollutant 

transport in channel networks at various levels of detail and structure. Quilbé et al. 

(2006) and Wang et al. (2013) have provided wide ranging reviews of these pollutant 

fate and transport models. Detailed water quality models such as MACRO (Larsbo & 

Jarvis 2003) have large data requirements and are known to be computationally 

intensive. As a result, these models are typically applied at small spatial scale and are 

more suitable to run with larger time-steps. In contrast, large scale models such as the 

European scenario models FOCUS 2000 and FOCUS 2001 do not provide the level 

of spatial details required to apply at catchment scale. Catchment scale water quality 

models, which are able to predict pollutant concentrations at outlets of catchments, 

are of particular interest for applications aimed at informing short term water quality 

management decisions such as surface water abstraction management. Catchment 

scale water quality models widely applied in the literature to predict diffuse pollution 

exposure in surface water bodies include the Soil and Water Assessment Tool - 

SWAT (Neitsch et al. 2002), Hydrological Simulation Program Fortran - HSPF 

(Donigian, A. S. et al. 1995) and AnnAGNPS (Bingner & Theurer 2005). Pullan et 

al. (2016) has also introduced a new integrated model for pesticide transport (IMPT) 

focused on operational application, which enabled to predict pesticide concentrations 

and hydrograph responses at different catchment scales. However, most of these 

models predict diffuse pollution exposure in surface water bodies and are developed 

with a view to analysing long-term effects of catchment management practices such 

as impacts of land use and agricultural activities on river water qualities (Nguyen et 

al. 2017) and thus predict pollutant concentrations with large time scales (daily, 

weekly, fortnightly, and monthly). As a result, these models are not considered to be 
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suitable for applications mainly used to enable operationally suitable short-term 

surface water abstraction management decisions. SWAT provides an option to run 

with small time-steps and a number of studies have applied it in a range of 

catchments to predict daily pesticide concentrations (e.g. Kannan et al. 2006; Holvoet 

et al. 2008; Luo & Zhang 2009). However, application of SWAT at catchment scale 

requires large amount of data and contains large number of parameters that need to 

be calibrated (Benaman et al. 2005).  

Models capable of predicting pollutant loadings and transport from single rainfall 

events and run at small time-steps are of particular interest to model applications 

aimed at informing short-term water quality management (e.g. surface water 

abstraction management). The Dynamic Watershed Simulation Model - DWSM 

(Borah et al. 2002), the Agricultural Nonpoint-Source Pollution Model – the AGNPS 

(Young et al. 1989) and MIKE SHE (Refshaard et al. 1995) are some of the typical 

rainfall event based models available in the literature, which are widely used to 

simulate pollutant fate and transport throughout the catchment following rainfall 

events. A number of studies have shown that peak concentrations of pesticides from 

agricultural lands are observed following rainfall events, which emphasizes an 

important role runoff plays in generating and transporting pesticides from application 

areas to the outlet of the catchment (Borah et al. 2003; Sangchan et al. 2012; 

Bundschuh et al. 2014). Hence, rainfall event based occurrences of peak 

concentrations of some pesticides, which are of particular concern to water quality 

managers, are major factors when making short-term water quality management 

decisions. However, existing catchment scale models lack detailed representation of 

spatiotemporally distributed runoff based pesticide generation and transport 

processes throughout the catchment, which is required for accurate prediction of the 

arrival of short-term peak pesticide concentrations at catchment outlets following 

rainfall events. This is mainly due to the scarcity of high resolution model input and 

validation data that supports development of models that represent short-term 

dynamics in runoff based pesticide generation and transport throughout the 

catchment (Bach et al. 2001). The numerical structure of existing models combined 



43 

 

with their lack of spatially distributed representation of model inputs/parameters also 

limit the capability of analysing uncertainties associated with spatial variabilities of 

model inputs/parameters such as pollutant build-up and rainfall. However, detailed 

assessment of uncertainties in water quality models is required when using these 

models to inform water quality management decisions, particularly to inform 

decisions associated with short-term fluctuations of pollutant concentrations. In 

recent decades, technological advancements in data collection techniques such as 

satellites, rainfall radars and auto-samplers have enabled to collect good quality data 

with high temporal and spatial resolution. This provides a potential to develop water 

quality models capable of representing short-term dynamics in runoff based pesticide 

generation and transport and use these models to predict the arrival of peak pesticide 

concentrations at catchment outlets following rainfall events.   

 Uncertainty analysis in water quality modelling 2.6.3

Surface water quality models are developed with the ultimate purpose of making 

reliable predictions to assist in water quality management and decision making. 

However, there are a number of uncertainty sources in catchment scale water quality 

models and sometimes the model output uncertainty can be too high to draw 

meaningful conclusions (Lindblom et al. 2007; Vandenberghe et al. 2007). 

Uncertainties associated with water quality models or other hydrological models are 

typically introduced through the assumptions associated with: 1) the ability of the 

model to adequately represent the governing physical processes and states (model 

structural error), 2) the model parameters (calibration and identification error), 3) the 

input data (Vandenberghe et al. 1987; Beven 2001). 

Most model formulations represent components of physical processes using 

parameters. The uses of parameters in models enable to define relations between 

system components in the model and help to clearly structure these relations. But, the 

values of some model parameters have to be estimated using calibration to make the 

model a good representation of the system  (Beven 2001). The process of estimating 

these parameters should not only provide best estimates of model parameters but also 
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estimates of their uncertainty (Briggs et al. 2012). Similarly, uncertainties associated 

with model inputs obtained from measurements or estimated based on collected data 

and information needs to be analysed. Quantified uncertainties can then be 

propagated to water quality prediction results, which can be used by water quality 

managers to make well informed and risk-aware decisions (Hall & Borgomeo 2013).   

Environmental systems, which exhibit variable natural processes, are often poorly 

monitored due to lack of resources and the expensive procedures involved in 

collecting and analysing datasets, which also often require careful handling and 

analysis in laboratories (McIntyre et al. 2002). For example, collection of hourly 

metaldehyde data that can be used to capture short term fluctuations of metaldehyde 

concentration in rivers requires implementation and continuous operation of 

automatic samplers during runoff periods and laboratory analysis of sampled water, 

which is quite an expensive and resource intensive process. As a result, high 

resolution data to support development of surface water quality model that are 

capable of predicting short term fluctuations of pollutant concentrations in rivers are 

generally scarce (Bach et al. 2001). In addition, a significant proportion of these data 

are prone to high noise levels and bias due to the various procedures involved in 

collecting, handling and measurement of samples (Keith 1990). The resulting lack of 

water quality data thus limits the ability to adequately formulate model structures, 

accurately assign model inputs and precisely identify model parameters often causing 

large uncertainty in water quality model predictions (Hankin et al. 2016). The 

consequences of water quality management decisions based on these model results 

thus become much more difficult to predict (Briggs et al. 2012). In decision making 

associated with water quality problems, understanding average system responses 

from deterministic models are often not sufficient and uncertainties incorporated in 

models are becoming increasingly important (O’Hagan 2012). Water quality 

management decisions aim to keep the right balance between socio-economic 

development and socio-environmental protection, which often involves a trade-off 

between maximizing the human benefit while minimizing the risk of harm caused to 

the environment and society (Dietz 2003; Reichert & Borsuk 2005). Evaluating the 
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nature and extent of model output uncertainties can help to explicitly define these 

risks associated with management decisions and provides a well-informed picture of 

the possible outcomes, hence enabling to make risk-aware decisions (Burgman 

2005). Thus, information on uncertainties of water quality model predictions that 

enable probabilistic modelling and decision analysis are indispensable for water 

quality management and decision making. 

Several studies have analysed the different sources of uncertainties in water quality 

models mainly focusing on quantifying uncertainties associated with the values of 

model inputs and parameters (Reckhow 1994; Sangchan et al. 2012; Rangel-Peraza 

et al. 2016). A number of studies have also focused on developing new methods of 

handling model uncertainties. These methods include first order error analysis, which 

is based on first order terms in the Taylor series expansion of variable dependency 

relations (X Zhao et al. 2011), Monte Carlo simulation, which draws large samples 

from distributions of uncertain variables and use them for stochastic simulations to 

establish model uncertainty (Tomassini et al. 2007), MCMC, which is a special type 

of random process discussed in detailed in section 2.5.1, generalized likelihood 

uncertainty estimation (GLUE), which assess global uncertainty based on Monte 

Carlo and likelihood measures (Beven & Binley 1992). A number of factors need to 

be considered when choosing an uncertainty analysis tool as discussed in section 2.5. 

Monte Carlo simulation based on selection of several representative samples of 

uncertain variables is a preferred method to provide a better estimate of uncertainties 

in water quality models that have high computational demand and when 

implementation of other methods is not feasible (Reichert 2014). Most of uncertainty 

analysis approaches in the literature focus on quantifying uncertainties associated 

with the value of model inputs, parameters and structures. Studies that assess 

uncertainties due to spatial aggregation of model input and parameters in catchment 

scale water quality models are lacking in the literature. This is mainly due to the 

scarcity of catchment scale high spatiotemporally distributed data and lack of 

suitable modelling structure in catchment scale models. The absence of structurally 

suitable physically distributed catchment scale water quality models, which are 
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required for implementation of spatial uncertainty analysis techniques, has also 

restricted the progress of spatial uncertainty analysis studies of catchment scale water 

quality models. These analyses also require computationally efficient spatial 

uncertainty analysis tools that can be used to deal with uncertainties associated with 

spatially variable model inputs and parameters.  Integration of structurally suitable 

physically distributed model with a spatial uncertainty analysis tool can help to 

quantify the significant levels of uncertainties in catchment scale runoff based 

models, which are caused by representing spatially variable model inputs and 

parameters using  spatially aggregated values (Andréassian et al. 2004). Particularly, 

water quality models that aim to predict short-term fluctuations in pesticide 

concentrations following rainfall events need to consider uncertainties associated 

with parameters that represent pesticide application locations in the catchment. 

2.7 Identified knowledge gaps 

Following review of the literature, scientific knowledge gaps have been identified in 

the area of real-time abstraction management and its use to address increasing 

pressures on the environment. The use of real-time flow prediction models to inform 

surface water abstraction decisions can help to effectively utilize available water 

resources and adapt to water scarcity challenges. In a wide range of existing flow 

forecasting studies, models have been developed in isolation to serve the needs of 

flood warning and protection systems focused on prediction of exceedance of certain 

flow thresholds. However, the use of real-time modelling methods for surface water 

abstraction management purpose needs to focus on service flow ranges, which is the 

variety of flow conditions ranging between the extreme dry and flood conditions. 

Effective application of flow forecast models in a real-time surface water 

management scheme thus raises specific modelling requirements and provides 

unique challenges. Firstly, the flow forecast model needs to accurately forecast a 

variety of flow conditions and provide uncertainties associated with forecasted flow 

values to avoid the risk of breaching abstraction licence conditions due to model 

errors and thus enable making risk-aware surface water abstraction decisions. 

Secondly, a water resource management model needs to be developed and coupled 
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with the flow forecast model to enable to inform surface water abstraction 

management decisions on the daily volume of water that can be abstracted 

sustainably. The coupling of water resources management model and a real-time 

rainfall-runoff model enables to combine forecasted flow data with reservoir 

operation rules, abstraction licence conditions, available storage volumes and pump 

and water main capacities to determine the amount of water that can be abstracted at 

any specific period in real-time. A study that utilises real-time modelling capabilities 

combined with these modelling requirements to enable dynamic surface water 

abstraction management is lacking. 

To enable operationally suitable real-time abstraction management scheme, the 

probabilistic forecast model enabled through the uncertainty analysis method needs 

to be integrated with water resources management model that incorporates various 

operating rules to represent real-world operational constraints such as reservoir 

control curves, abstraction licence conditions and minimum flow requirements. 

Reservoir operational rules are particularly required to be encompassed in water 

resource models to determine the amount of water available for use to meet demands. 

These rules define the percentages of reservoir capacity that are reserved for flood 

control, drought monitoring and dead storage buffer zones (Ajami et al. 2008). 

Control curves are subjectively developed by water resource planners to enable 

effective management of impounding reservoir storages and are used to identify 

these zones. The drought monitoring curves define the minimum storage level 

required to be maintained in the reservoir at the beginning of each month in order to 

ensure continuous and reliable supply of water is provided to meet full demand 

(Ajami et al. 2008). Studies that integrate these kinds of water resources management 

models with suitable probabilistic flow forecast techniques to develop advanced 

surface water abstraction management scheme are currently lacking.  

In recent years, the presence of emerging pollutants such as metaldehyde in raw and 

treated drinking water has become a concern for the water industry. Several studies 

in the literature have shown the occurrences of peak pesticide concentrations 

following rainfall events and revealed the significant role runoff plays in transporting 
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pesticides. However, appropriate data which can be used to sufficiently describe 

pollutant presence in the aquatic environment is notably lacking. Non representative 

water quality data, which do not reflect dramatic short duration variations in 

pollutant concentrations, can lead to mis-interpretation of river water quality status 

and may result in undermining associated risk to the environment and public water 

supplies. Most existing water quality datasets come from sampling campaigns set out 

to collect samples with frequency and spatial density suitable for regulatory and 

long-term catchment management purposes (Berthouex & Brown 2002; Ward et al. 

1986). These datasets fail to capture dynamic responses of catchments as required for 

successful development of catchment scale water quality models that are capable of 

predicting pollutant concentrations with high resolution and are of high importance 

to inform short-term water quality management decisions. Consequently, most 

existing catchment scale models do not sufficiently represent the short-term 

dynamics involved in runoff based pesticide generation and transport processes, 

which is mainly responsible for the occurrences of short-term peak pesticide 

concentrations at catchment outlets following rainfall events. Furthermore, the 

numerical structure and the processes represented by existing rainfall event based 

models such as MIKE SHE make these models computationally expensive and their 

structure does not allow for implementation of suitable uncertainty analysis methods. 

Concentrations of pollutants such as metaldehyde, which are mainly transported 

through runoff following rainfall events, at catchment outlets are heavily dependent 

on the rate of runoff generation from high risk areas throughout the catchment. Thus, 

accurate representation of spatial variability of rainfall is essential when using 

catchment scale models to predict concentrations of pollutants at catchment outlets 

following rainfall events. Furthermore, a suitable modelling structure that combines 

identified high risk areas in a catchment with spatially variable rainfall data is 

required to accurately represent spatiotemporally variable generation and transport of 

pollutants across the catchment. The increasing usages of automatic samplers in 

recent years combined with high resolution catchment data capturing technologies 

provide a potential to improve the descriptions of short-term pollutant dynamics in 

models based on high spatiotemporal representation of pollutant loadings and 
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transport throughout the catchment. However, a study that exploits this potential to 

develop runoff based water quality model that enables to predict the arrival of short-

term peak pesticide concentrations at catchment outlets following rainfall events with 

enough level of complexity and practical model structure is missing. With the 

growing concern associated with emerging pollutants such as metaldehyde in recent 

years, the use of these models is becoming increasingly important to inform short-

term water quality management decisions. 

Spatially and temporally distributed catchment scale model inputs and model 

parameters such as the amount of metaldehyde applied on high risk areas are often 

difficult to acquire. So, it is often a challenge to accurately represent these spatially 

distributed data in catchment scale models.  Catchment average data are commonly 

estimated and used in models, which may cause significant uncertainties. Spatially 

distributed catchment scale models provide the potential to assess and quantify these 

uncertainties and compare them with uncertainties associated with inputs and 

parameters values. However, a study on the assessment and quantification of 

uncertainties in water quality models caused due to spatial mis-distribution of model 

input and parameters in catchment scale water quality models is lacking in the 

literature. Uncertainty analysis studies in water quality models in the literature have 

mainly focused on quantifying uncertainties in model input and parameters values 

and development of various methods of dealing with these uncertainties as discussed 

in section 2.5. Quantifying uncertainties associated with spatial distribution of water 

quality model inputs and parameters such as pesticide applications on farmlands 

throughout the catchment is particularly important when using models to forecast the 

arrival of peak pesticide concentrations in runoff following rainfall events. 

Comparison of uncertainty contributions from different sources can also help to 

improve future model development and data collection activities. 
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  Chapter 3

Flow Prediction to Inform Surface Water Abstraction 

3.1 Introduction 

Resilience in public water supply has improved since privatization. However, 

population growth and the impacts of climate change such as frequent occurrences of 

drought are likely to stretch this capacity. Increased periods of low flow within 

surface waters mean that abstraction restriction such as ‘hands off’ flow conditions 

could be activated more frequently, increasing the pressure on water supply-demand 

management systems. A recent study on predicted availability of water and demand 

growth in the Severn Trent Water (STW) region indicated that if nothing is done to 

address the problem, there will be significant deficits of water by 2040 due to 

changes to abstraction licensing and climate change impacts on water resources 

(Water Forum 2015). Thus, there is a need to consider a sustainable solution to tackle 

the problems associated with keeping the increasingly delicate balance between 

public water use and the environment.   

Surface water abstraction licensing system in the UK was initially designed in the 

early 1960s when there was believed to be surplus of water in most areas. However, 

our understanding of the impact of abstraction on the environment has grown over 

time and the perceived surplus water has significantly decreased. Consequently, the 

licensing system has gone through updates mainly during the Water Resources Act 

1991 and the Water Act 2003, particularly to better protect the environment 

(OFWAT & EA 2011). However, the basic principles which form the licensing 

system remain unchanged. The current licences allow abstractors to take fixed 

volumes of water and occasionally include further conditions to restrict abstractions 

with a view to protect the aquatic environment. These conditions restrict daily 

abstraction volumes based on specified daily flow values at abstraction sites, which 

are often known as ‘hands off’ flow conditions referring to a fixed flow in the river 

below which abstraction is proscribed. Thus, during low flow periods, the amount of 

available water for abstraction directly varies with river flow. However, current 
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abstraction decisions are not informed on the amount of predicted daily flows in 

rivers and usually a conservative approach is taken when making daily abstraction 

decisions to avoid the risk of breaching licence conditions. This results in missing a 

certain amount of water daily, which could be abstracted without breaching the 

licence conditions and potentially help avoid the need to trigger drought management 

actions during dry periods. In particular, during dry periods reservoir levels drop 

below target storage alert curves and thus as much water as possible is needed to be 

pumped into reservoirs. Initial assessment of historical and simulated abstraction data 

has shown that a significant amount of opportunities to sustainably abstract more 

water without breaching abstraction licence conditions have been missed at 

abstraction sites. Enabling to abstract extra amount of available water can help raise 

reservoir storage levels and particularly in dry periods it can help to avoid the need to 

trigger drought management actions. In addition to enabling to minimize future 

investments (estimated as £1M per Ml/d), increase resilience, and avoid drought 

actions, this can play an important role in minimizing impacts on the environment. 

Efficient use of available water resources to meet increasing demand, whilst 

maintaining the quality of the aquatic environment has become increasingly 

important (section 2.1). This has raised the need to develop improved techniques to 

assist in the sustainable use and management of water resources. The increasing 

presence of hydrological and meteorological data from advanced radar and sensor 

technologies combined with high computational capabilities provide a potential to 

use real-time monitoring and modelling to tackle these problems by better informing 

abstraction decision making. A RTAM scheme that enables surface water abstraction 

decisions to account for water availability in the source in real-time by employing 

real-time flow forecasting models combined with water resources management 

model is proposed in this study. This enables to optimise the use of available surface 

water sources and provides a sustainable solution to tackle water resources problems 

associated with emerging issues of increasing demand, impacts of climate change 

and associated policy reforms.  
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In real-time modelling, models are applied to make predictions about future system 

states and outputs based not only on historical data but also using newly received 

and/or forecasted data. Knowledge on future state systems and outputs are valuable 

for pro-active management and planning. Thus, real-time modelling is employed in a 

wide range of geo-science and environmental fields including hydrology (Seo et al. 

2003; Cloke & Pappenberger 2009) and meteorology (Golding 2000; Thorndahl et al. 

2010). Typical application of real-time modelling in these areas include providing 

warning systems of  future events such as flooding (Penning-Rowsell et al. 2000). 

Amidst an intense period of real-time model development and application, several 

studies have focused on employing real-time modelling in urban drainage system and 

distribution networks. In addition, most of the studies on real-time rainfall-runoff 

modelling have examined its application for flood forecasting. However, less 

attention is given on applying real-time models for managing human interventions to 

the river systems, which is partially due to old perception on the availability of water 

and limited understanding of the changing water environment and impacts of our 

interventions (e.g. abstractions) on the environment. In recent years, there has been a 

significant improvement in our understanding of the needs of ecosystems in water 

and an increase in realization of the combined effects of climate change and a 

growing population. Real-time modelling provides a potential to inform water 

management decisions with a view to minimize impacts of interventions on the 

environment and optimise the use of water resources infrastructures. 

The current study investigates the use of integrated hydrological forecasting with 

water resources management model in order to maximize the amount of water 

abstracted in a trial catchment. A model has been developed to enable probabilistic 

prediction of flows over a prediction period of 24 hours, which can be used to inform 

daily abstraction decisions. A Bayesian based uncertainty analysis method is 

implemented in the model to assess hydrological uncertainties and enable 

probabilistic flow predictions, which will allow risk-aware decision makings and 

minimize the risk of breaching licence conditions. The RTAM scheme thus aims to 

increase the resilience of the water supply system in the catchment and minimize 
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impacts on the aquatic environment by dynamically linking abstraction volumes to 

actual availability of water in the source. The developed approach provides a novel 

technique to develop and integrate probabilistic flow forecast models and water 

resources management models that incorporate various operating rules to represent 

real-world operational constraints. 

3.2 Methodology 

This section describes the calibration and validation of the PDM rainfall-runoff 

model using a Bayesian inference method and the integration of the calibrated model 

with a water resource management model to forecast flows with a view to inform 

surface water abstraction management is described.  First, the study catchment and 

the conceptual rainfall-runoff model, PDM, used in this study are presented. The 

second part of this section details the Bayesian inference method used to calibrate the 

PDM rainfall-runoff model and techniques used to implement the method. Model 

input, calibration and validation data as well as model parameterization and model 

performance evaluation criteria are also detailed in this section. Data assimilation 

techniques employed to use the PDM in forecast mode for real-time flow forecast are 

also described in this section. Furthermore, this section details about the development 

and application of a water resources management model that is used to assess the 

implications of employing the real-time abstraction management scheme on reservoir 

levels and associated water resources management decisions in the study catchment.   

 Study area 3.2.1

The Dove catchment used in this study is a sub catchment of the Trent catchment 

located in the UK Midlands. The Dove catchment drains an area of approximately 

1,020km
2
 and includes Churnet, Tean, Manifold and Hamps sub-catchments. The 

elevations in the catchment range between 550m to 50m above sea level from its 

source to its confluence to the River Trent. The Dove River is 45 miles (72 km) in 

length flowing generally south to its confluence with the River Trent and is the major 

river of the southwestern Peak District, in the Midlands of England. In the 

downstream part of the catchment, the River Dove flows through a wide floodplain 
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which contains extensive flood embankments constructed to protect villages and 

farmland in the area. 

 

 Figure 3.1. (A) Location of the River Dove catchment. (B) The River Dove 

catchment and location of flow gauge and abstraction site. (Goodson et al. 2002)  

The normal flow depth of the River Dove at the gauging station located at the outlet 

of the catchment is between 0.43m and 0.83m. In extreme weather conditions the 

water level rises and ranges between 0.49m and 1.75m. A UK Environment 

Agencies’ flow gauging station is situated at the outlet of the catchment to monitor 
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daily volumes of water abstracted at the public water supply abstraction site 

downstream (Figure 3.1). The abstraction site is used by a water utility operator to 

pump water to impounding reservoirs for water supply purposes. Data from the flow 

gauging station (at 15 min temporal resolution) have been used to calibrate and 

validate the hydrological model used in this study. The data used have been collected 

continuously over the period 2004 - 2013. 

 Description of flow prediction model  3.2.2

In this study, we used a conceptual rainfall-runoff probability distributed model 

(PDM), which has widespread application throughout the world, both for operational 

and design purposes (Young & Reynard 2004; Cabus 2008). PDM describes runoff 

production from a catchment mainly as a function of rainfall, evaporation and 

absorption capacity of soil columns, which are represented as a succession of soil 

moisture storages. It is widely recognized that the soil moisture storage capacity 

widely varies throughout the catchment and this variation is represented in PDM 

using a probability distributed function. This is based on the fact that on discrete 

basis, there are more soil moisture storages of one capacity than another and the 

actual runoff produced from a catchment can be obtained by weighting runoff 

produced by a store, which is a soil moisture storage column, of a given capacity by 

its frequency of occurrence. The model provides various modelling options including 

different probability density functions to enable the representation of a range of 

catchment responses in different ways. A series of publications (Moore 1985; Moore 

& Bell 2002; Moore 2007) provided details of the theoretical background of the 

model.The PDM model initially expresses runoff produced by a store of a given 

capacity mathematically by using the following equation:  

 
q′ = {

P − E − (c′ − So)        P > c′ + E

0                                       P ≤ c′ + E 
 

(3.1) 

where So is the initial depth of water in storage, and P, E, c’ and q’ represent the 

depth of rainfall, potential evaporation, storage capacity and direct runoff produced 
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over the interval being considered respectively. If c is a storage capacity at any point 

in the catchment, then it can be described using a random variant f(c) so that the 

proportion of the catchment storages with capacity between c and dc will be f(c)dc. 

At the end of a unit duration at which a rain falls at a net rate P-E, shallowest stores 

in the catchment with available capacity (C’ – So) less than net rate P - E start to 

produce runoff (Figure 3.2). Let C*denotes this critical store capacity below which 

all stores produce runoff. Thus, proportion of the catchment containing stores of 

capacity less than or equal to C* is 

 
Prob(c ≤ C∗) = F(C∗) = ∫ f(c)dc

C∗

0

 
(3.2) 

This is also the proportion of catchment area generating runoff (runoff contributing 

area).  Thus, the value of F(C*) (cumulative distribution function of store capacities 

evaluated at C*) in equation (3.2) above varies between 0 and 1 depending on the 

proportion of store capacities that are above/ below C*. Consequently, at any 

particular time the instantaneous direct runoff per unit area q(t) from a catchment 

generated by net rainfall π(t) can be calculated from 

 q(t) = π(t)F(C∗(t))  (3.3) 
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Figure 3.2. Runoff production from a population of stores in the PDM model and the 

model interacting components (a) Point representation of runoff production by a 

single store (b) Catchment representation by storage elements of different depth and 

their representation using probability density function (Noto 2014).   

Runoff generation during rainfall events occur as a result of two main processes 

called Hortonian and Dunnian runoff processes. Hortonian Runoff also known as 

infiltration excess overland flow, occurs when the rate of rainfall is faster than the 

rate at which the soil can absorb the water. Saturation excess runoff also often known 

as Dunnian runoff, occurs when the soil is fully saturated and all the rainfall during 

this period causes runoff. During rainfall events these runoff generation processes 

control how much of the rainfall water gets into water bodies and flows downstream 

to the catchment outlet. During dry periods actual evaporation depletes the water 

content of soil moisture storage. In PDM, the dependence of actual evaporation loss 

on soil moisture content is introduced by assuming the following simple function 

between actual and potential evaporation ratio, catchment level soil moisture deficit 
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(𝑆𝑚𝑎𝑥 − 𝑆(𝑡)), where  𝑆𝑚𝑎𝑥  represents maximum catchment soil moisture storage 

capacity and 𝑆(𝑡)  represents catchment soil moisture content at the start of the 

interval.     

 𝐸𝑖
′

𝐸𝑖
= 1 − {

(𝑆𝑚𝑎𝑥 − 𝑆(𝑡))

𝑆𝑚𝑎𝑥
}

𝑏𝑒

 
(3.4) 

Usually a linear (𝑏𝑒 = 1), thus 𝐸𝑖
′ = (𝑆(𝑡) 𝑆𝑚𝑎𝑥⁄ )𝐸𝑖 or a quadratic form (𝑏𝑒 = 2) is 

used.  

Further loss to ground water is introduced by assuming the rate of percolation over 

an interval (di) varies depending on catchment soil moisture content at the strat of the 

interval as shown below.  

 
𝑑𝑖 =

(𝑆(𝑡) − 𝑆𝑡)𝑏𝑔

𝑘𝑔
 

(3.5) 

where 𝑘𝑔  is drainage time constant and 𝑏𝑔  is recharge function exponent and is 

usually set to 1, 𝑆𝑡 is threshold storage below which water gets held by soil tension 

and no drainage occurs.  

Ground water recharge from soil water drainage is routed through subsurface storage 

that represents subsurface flow paths often referred as slow response system. This 

system is defined in PDM using a variety of non-linear storage reservoirs. The non-

linear storage model is defined by the Horton-Izzard equation (Moore 2007). 

 𝑑𝑞

𝑑𝑡
= a(𝑢 − 𝑞)𝑞𝑏,         𝑞 > 0, −∞ < 𝑏 < 1 

(3.6) 

 where u is the rate of inflow and q is the rate of out flow per unit area, a and b are 

parameters that are given by 𝑎 = 𝑚𝑘1 𝑚⁄  and 𝑏 = (𝑚 − 1) 𝑚⁄  where k is the storage 
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rate coefficient and m is the store exponent. PDM provides recursive solutions of the 

Horton-Izzard equation for a choice of various non-linear storage forms such as 

linear, quadratic, cubic, exponential and general non-linear. A cubic for is often 

considered the most appropriate to represent ground water storage (Moore 2007). 

When the Horton-Izzard equation is used to represent ground water storage in PDM, 

the rate of percolation (di) will be used as input u and the output q will be the 

baseflow component of total flow.    

In recent years, PDM has evolved as a fairly general conceptual rainfall-runoff model 

well suited for various flow prediction applications with relatively few amount of 

parameters. Currently, PDM has widespread application throughout the world 

(Teuling et al. 2004; McIntyre et al. 2005; Cabus 2008) and has earned a solid 

reputation as a flow forecasting model in the UK (Bell et al. 2001). PDM’s suitability 

to represent a wide range of flow characteristics, widespread application in the 

scientific community, suitability for industrial operational application and well-

structured model concepts are some of the main factors considered when choosing 

the modelling tool (Cabus 2008; Bell et al. 2001). 

 Uncertainty analysis 3.2.3

The use of hydrological models in water resources management introduces parameter 

uncertainties regardless of the complexity and structure of models used. These 

uncertainties in the model parameters are likely to impact water resources planning 

decisions. Calibration or inverse problems use observed system response data to 

estimate unknown quantities incorporated in mathematical models. In the case of the 

PDM these unknown quantities are hydrological properties of the catchment (e.g. soil 

moisture capacities, surface and ground water storages and routing properties), which 

are represented in the model using parameters (Moore & Clarke 1981; Moore 2007). 

In non-linear calibration, the Bayesian approach serves the purpose of transferring 

information from collected data on system responses to the unknown variables, thus 

updating the posterior probability distributions that describe uncertainty about the 

unknown variables (Feyen et al. 2007). When more observations become available, 
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this posterior distribution can be used as a prior to be updated again, which then leads 

to a logically consistent representation of a sequential learning process. There are 

only a small number of probability distributions and models for which Bayesian 

inference can be done analytically. For this reason, numerical techniques for 

Bayesian inference are very important. The most important of these techniques are 

based on Monte Carlo simulation. This means that a sample is drawn from the 

posterior distribution and properties of the distribution are approximated by 

properties of the sample. The numerical implementation of Bayesian techniques 

usually requires computationally demanding Monte Carlo techniques. Of particular 

importance are Markov Chain Monte Carlo (MCMC) techniques that construct a 

Markov chain which asymptotically covers the posterior distribution. Application of 

such techniques requires tuning algorithmic parameters to improve the convergence 

rate of the chain and careful convergence diagnosis (Smith & Marshall 2008). 

Statistical emulators that interpolate the solutions of computationally demanding 

simulation models can be useful to shorten computation time.  

A state-of-the-art Markov chain Monte Carlo (MCMC) technique entitled 

Differential Evolution Adaptive Metropolis (DREAM) is used in this chapter to 

estimate parameter uncertainties in the PDM model (Vrugt et al. 2009). The 

Differential Evolution Markov Chain (DE-MC) technique initially developed by Ter 

Braak (2006) forms the building block of DREAM. DREAM is a multi-chain 

MCMC technique and has excellent performance in sampling complex, multi-modal 

and high dimensional target distributions. In recent years, DREAM has found 

widespread application and use for estimation of optimal parameter values and their 

underlying posterior probability density function on a wide range of model 

calibration and uncertainty analysis studies. DREAM is basically an adaptation of the 

Shuffled Complex Evolution Metropolis algorithm (Vrugt 2003). In DREAM, a 

number of predefined chains are run in parallel to search the parameter space. Latin 

hypercube or covariance-based sampling methods are used to sample from a prior 

parameter space with uniform distribution to initialize a specified number of Markov 

Chains. These parallel chains at the initial stage form an N x d matrix, where N 

denotes number of chains and d dimension of parameter space. At each stage, 
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differential evolution as genetic algorithm creates multivariate proposals to evolve 

the chains and Metropolis selection rules are applied to decide whether these 

proposals should be rejected or not (equation (3.7)). 

 
z𝑖 = 𝑥𝑖 + (1 + 𝑒)𝛾(𝛿, 𝑑𝑒𝑓𝑓) [∑ 𝑥𝑟1(𝑗)− ∑ 𝑥𝑟2(𝑛)

𝛿

𝑛=1

𝛿

𝑗=1
] + 𝜀 

(3.7) 

where δ signifies the number of pairs of chains used to generate a proposal, ϒ is jump 

rate and r1(j) & r2(n) € {1,…,N}; r1(j) ≠ r2(n) ≠ i.   The value of ϒ depends on the number 

of pairs used to create the proposal. Random Walk Metropolis (RWM) guidelines 

suggest that, a good choice of γ=2.38/√(2δdeff ), where deff denotes the number of 

dimensions that will be updated. The value of e is drawn from Ud(-b, b) where |b|< 1 

and white noise ε is drawn from Nd(0,b*) where b* is small compared to the width of 

the target distribution. The chain moves from Xi to Zi depending on the Metropolis 

selection criteria and forms a Markov chain, whose stationary distribution is the 

posterior distribution of the parameters. Ter Braak & Vrugt (2008) have shown that 

this Markov Chain converges to the posterior distribution. R statistics of Gelman & 

Rubin (1992) can be used to monitor convergence of the Markov chain after the 

Differential Evolution – Markov Chain (DE-MC) becomes independent of its initial 

values (after burning Period). The generated posterior population can be used to 

communicate uncertainties in model parameters and model predictions. Vrugt et al. 

(2009) have provided a detailed description of DREAM.  

 Model input, calibration and verification data 3.2.4

Rainfall is considered the main driving force in the catchment and river systems. 

Good information on rainfall intensity is of great importance for hydrological 

modelling. In recent years, advances in data processing, communications and display 

technology have enabled the use of meteorological radars to produce rainfall data, 

which provides better representation of spatial variability of rainfall across 

catchments (Rabiei & Haberlandt 2015). In this study, composite radar rainfall data 

with spatial and temporal resolution of 1km
2
 and 5 minutes respectively were 
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acquired from the UK Met-Office and used for the calibration and validation of the 

flow forecast model (Met Office 2003). A computer program has been developed to 

process the 1km
2
 composite radar rainfall data from the Met-Office website and 

compute catchment averaged time series rainfall data for the study catchment. 

Missing values in radar rainfall data are mainly caused by the absence of radar image 

at a specified time for all of the UK. Thus, infilling methods which use data from 

nearby locations are not feasible to infill the missing data as these data are not 

available for all catchments covered by the radar rainfall range. However, the 

original data is provided as 5 minutes interval data, where consecutive values are 

highly related to each other. The moving average method was found to be the most 

suitable technique for infilling the missing values in the rainfall data. Six hours 

moving average rainfall data have been applied to infill the missing data in the 

processed time series rainfall data. Daily potential evaporation data are acquired from 

the UK Met-Office’s MORECS system and also used as an input to the PDM model 

(Hough & Jones 1997). Historical flow data with time intervals of 15 minutes 

collected over the period of 2004 to 2013, from a flow gauging station situated at the 

outlet of the catchment and upstream of the surface water abstraction site, were 

obtained from the UK Environment Agency and are used for calibration and 

validation of the flow forecast model. 

 Model Parametrization 3.2.5

Most parameters in general conceptual models such as PDM lack physical basis and 

mostly cannot be inferred from direct measurements. To reduce the dimensionality of 

the model calibration in this study some of the PDM parameters are estimated from 

initial assessments and databases. Prior to calibration, the model was run with default 

parameter values and water balance outputs are examined to find initial estimates of 

parameters which control runoff volumes (rainfall factor f and exponent in actual 

evaporation function be). Common and catchment specific values are assigned for 

some parameters such as a parameter that controls the type and distribution of spatial 

variability of store capacity (b), soil tension storage capacity (St) and constant flow 

parameter to represent returns or abstractions (qc), which are all believed to be less 
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significant in changing runoff outputs in the study catchment. Eight parameters were 

identified in this study for calibration using measured flow data (Table 3.1). Bayesian 

based uncertainty analysis methods including DREAM have been used in the 

literature to solve inverse problems involving similar scale of calibration parameters 

(Feyen et al. 2007; Bilondi et al. 2013; Muleta et al. 2013; Mara et al. 2016b). 

Uniformly distributed priors for the identified calibration parameters are provided 

with upper and lower bounds for use in DREAM (Table 3.1). The PDM model 

guidelines and previous modelling works are used to define prior parameter ranges to 

make sure the parameter values remain hydrologically realistic. Minimum depth 

(Cmin) and maximum depth (Cmax) parameters are used in PDM to define the ranges 

across which storage depth is distributed with a particular distribution. Pareto 

distribution, which is a skewed, heavy tailed power law probability distribution, is 

the most commonly used distribution (Moore & Bell 2002).  The cumulative 

distribution and the probability density function for the pareto distribution used in 

PDM are: 

 F(𝑐) = 1 − (1 −
𝑐

𝑐𝑚𝑎𝑥
)

𝑏

,         0 ≤ 𝑐 ≤ 𝑐𝑚𝑎𝑥 (3.8) 

 

 
f(𝑐) =

𝑑𝐹(𝑐)

𝑑𝑐
=

𝑏

𝑐𝑚𝑎𝑥
(1 −

𝑐

𝑐𝑚𝑎𝑥
)

𝑏−1

,         0 ≤ 𝑐 ≤ 𝑐𝑚𝑎𝑥 
(3.9) 

The pareto distribution can take different forms based on parameter b. More deep 

stores than shallow stores exist when b is small (between 0 and 1) whereas greater 

frequency of shallow stores occurs when b is greater than one. Parameters k1 and k2 

are time constants, which are used to determine the rate of flow from two linear 

stores that constitute PDM’s surface storage and they control the level of peaks in 

hydrographs. Ground water recharge time constant (kg) along with soil moisture 

storage contents control rate of aquifer recharge in a nonlinear function. Base flow 

time constant kb= k
-1

 controls rate of flow from subsurface storage and thus 

determines length of recession in a hydrograph. Exponent of recharge function (bg) 

represents the sensitivity of recharge rate to soil dryness. Horizontal shift of 
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hydrograph along time axis is adjusted in PDM using a time delay parameter (Tdly). 

Elements of the inverse problem are passed to the DREAM algorithm using the 

following equation   

 

Dream_Object 

=  dreamCalibrate(FUN, FUN. type, pars, measurement, control)  (3.10) 

where FUN is model function with argument of a vector of parameter values, 

FUN.type is type of value FUN returns, pars is a list of variable ranges, measurement 

is required parameter for FUN.type (i.e. observed system response data), control is 

list of settings for the DREAM algorithm. In this study FUN = call_PDM is used 

where call_PDM is a function set up to run the PDM model with sampled parameters 

from the DREAM algorithm and returns the residual vector to be compared with 

measurement. The sum of squared residuals option from the DREAM algorithm was 

used as FUN.type to calculate the likelihood. A list of parameter ranges was passed 

as pars = list("cmin"=c(0,50),"cmax"=c(100,400),"k1"=c(1,70),"k2"=c(1,70), 

"kb"=c(1,400),"kg"=c(60000,120000),"bg"=c(1.4,1.8),"tdly"=c(0,0.5)). Control = 

list(nseq=8,ndraw=2500) is used where nseq = number of of parallel chains to 

evolve in DREAM and ndraw is the number of function evaluations. 

Table 3.1. Prior ranges and description of the PDM parameters used in DREAM 

Parameter Description Minimum Maximum 

Cmin (mm) Minimum store capacity  0 50 

Cmax (mm) Maximum store capacity 100 400 

k1 (h) Time constant of surface 

storage 1  

1 70 

k2 (h) Time constant of surface 

storage 2 

1 70 

Kb (h
1/3

 mm
2/3

) Baseflow time constant  1 400 

Kg (h mmbg
-1

) Groundwater recharge time 

constant  

60000 120000 

bg Exponent of recharge function 1.4 1.8 

Tdly (h) Time delay 0 0.5 
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 Model evaluation criteria 3.2.6

The performance of the PDM rainfall-runoff model in the stochastic model 

calibration and validation method employed in this chapter is evaluated using P-

factor and R-factor values. P-factor represents the percentage of observations that fall 

within a given prediction uncertainty bounds, whereas R-factor is used to represent 

the average width of prediction uncertainty bounds divided by the standard deviation 

of the observations. These statistical parameters are commonly used to quantify the 

fit between stochastic simulation outputs, which are commonly expressed using 95 % 

prediction uncertainty bounds, and observation data expressed in single signals. A P-

factor value of 1 and R-factor value of 0 indicate an absolute match between 

simulated and observed values with model structure and parameter values perfectly 

representing modelled systems in the catchment under study. Achieving an optimum 

value for both factors requires keeping the balance between capturing most of 

observations within a specified uncertainty bound and keeping the width of 

prediction uncertainty bound as small as possible. In addition, the deterministic 

model’s flow prediction efficiency using optimum parameter values, which are 

parameter values that are found to give the best fit between simulated and observed 

flows over the entire hydrograph, was evaluated using the Nash-Sutcliffe model 

efficiency coefficient (NS) given by:  

 
𝑁𝑆 = 1 −

∑ (𝑄𝑚
𝑡 − 𝑄𝑜

𝑡 )2𝑇
𝑡=1

∑ (𝑄𝑜
𝑡 − 𝑄𝑜

̅̅̅̅ )2𝑇
𝑡=1

 
(3.11) 

where 𝑸𝒎
𝒕  is modelled flow at time step t, 𝑸𝒐

𝒕  is observed flow at time step t and 𝑸𝒐
̅̅ ̅̅  

is average observed flow.      

 Model updating and data assimilation 3.2.7

Calibration of the PDM is undertaken in simulation mode where rainfall and 

potential evaporation form the model inputs and calculated flow forms the model 

output. Data assimilation techniques can be incorporated into calibrated models to 
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enable to use new observed flows data to improve model performance. Models that 

incorporate data assimilation techniques are commonly used in real-time application 

and are often referred as in forecast mode. Data assimilation techniques employed in 

forecast mode are mainly required to continuously update the model using current 

and past flow data to improve the model forecasts for different lead times from the 

forecast origin. The PDM used in this study provides state correction and error 

prediction data assimilation techniques, which use a set of rules for adjusting model 

states and predicting future errors respectively based on new incoming observed flow 

data (Moore 2007). The term state in the state correction technique is used to 

describe a variable in the model which mediates between inputs and the model 

outputs. In the case of PDM the main state variables are the water contents of the 

surface and ground water stores, and the probability distributed soil moisture storages 

(Table 3.1). The performance of error prediction model in providing improved 

forecasts depends on the degree of persistence in model errors, which is discussed in 

detail in Chapter 2. In the case of flow prediction, errors show a tendency to oscillate 

rapidly and most widely in the vicinity of the rising limb and peak of predicted flow 

hydrographs (Casale & Margottini 1999), which are considered important part of the 

hydrograph in terms of informing surface water abstraction. In contrast, state 

variables are key hydrological variables in conceptual rainfall-runoff models such as 

PDM and are known to largely influence the partition of rain between runoff and 

infiltration, hence control model output flows (Moradkhani et al. 2005). 

Consequently, the state correction technique, which is discussed in detail in Chapter 

2, is found to be more suitable for use in this study and is employed in the PDM 

forecast model. Figure 3.3 illustrates the process of incorporating new incoming 

observations using data assimilation technique, where model forecast are corrected 

based on estimated errors from a set of observed data and forecasted outputs. As 

shown in Figure 3.3, when observed data is available the difference between the 

forecast and the observation are used as feedback to correct the model states in 

earlier time steps and the corrected model is used to make forecast.   
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Figure 3.3. Implementation of data assimilation technique in flow forecasting model  

 Water resource management model  3.2.8

A simple water resource management model is developed and used to propagate 

simulated surface water abstractions through a water resource system to assess 

implications of real-time abstraction management scheme on reservoir levels and 

associated water resources management decisions in the catchment. This involved 

the simplification of the water resource system as an isolated, self-contained unit 

served by the storage reservoir which is supplied by the streamflow. A historical 

analysis is conducted in which actual water supply data from the catchment water 
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source over the 2011 dry period are used as water demand from the system. This 

enabled an assessment of the benefit of using real-time abstraction management 

during a period when abstraction of extra amount of water is highly beneficial. At 

each time-step, volume in the storage reservoir is calculated based on historical 

demand, abstraction from the surface water and the operational constraints of the 

reservoir. Abstraction of water from the river at each time-step is constrained by the 

intake capacity, the total storage capacity (19845 m
3
) and abstraction licence 

conditions (streamflow should be maintained at prescribed flow of 159Ml/d at the 

abstraction site in this catchment). In this study, the intake capacity is set based on 

the average of daily maximum abstraction volumes achieved during wet periods as 

computed using historical abstraction data. Given these constraints, abstraction is 

defined within the model as the maximum permissible value at each time-step.  

The total reservoir capacity is divided into four operational zones as shown in Figure 

3.4 below and different operational policies are applied when available storage is in 

each of these zones. The flood control zone occupies the top 2% of the total reservoir 

capacity and is maintained only for use in extreme rainfall events to provide storage 

for runoff and avoid flooding of nearby areas (i.e. limiting capacity to 98% of the 

total storage). The dead storage zone occupies the bottom 13% of the total reservoir 

capacity and is maintained as inactive storage, where the water is not used for 

operational purposes. A control curve is used to split the remaining capacity into two 

zones called conservation zone and buffer zone. The control curve defines the 

storage volume required to be maintained in the reservoir at the beginning of each 

month in order to ensure continuous and reliable supply of water is provided to meet 

full demand. Control curves are developed by water planners based on design 

drought inflows and demands, which can be converted in to required storage volume 

by the process of balancing inflow and outflow.  

At each time-step, if the storage volume is above the control curve, the model allows 

free release of water from the reservoir to meet demand in full. However, if the 

storage volume in the reservoir drops below the control curve, a step-wise restriction 

of water release from the reservoir is also applied depending on percentage drops in 
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storage volume. These procedures represent drought management actions such as the 

use of demand restrictions (e.g. hosepipe bans, nonessential use bans and severe 

water rationing) which are adopted by water resource managers to maintain adequate 

supply of water during dry periods. In addition, the model allows for relaxation of the 

abstraction licensing constraint allowing additional water intake from the river 

despite a drop in river flow beyond the original minimum flow requirement specified 

in the abstraction licence. This accounts for drought permits, which are implemented 

by water utility operators in agreement with Environment Agency to reduce 

abstraction licence restrictions during drought periods. A control curve currently 

being used for the operation of the reservoir in the study catchment is used in this 

study as shown in Figure 3.4. If the storage level drops to dead storage zone now 

water is released from the reservoir. The water resources management model 

accounts for all these real-world operational constraints and determines daily volume 

of abstraction with certain level of risk using forecasted flow at the abstraction site 

and the associated uncertainty information, which are both derived from the 

probabilistic flow forecast model. 
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Figure 3.4. Reservoir storage components and control curve for reservoirs in the 

River Dove catchment 

3.3 Results and Discussion  

 Runoff modelling and uncertainty analysis 3.3.1

The DREAM method was employed to randomly generate 2500 samples from 

posterior probability distribution function of the model parameters. Initially the 

parallel MCMC chains in DREAM are initialized using the Latin hypercube 

sampling, which is used to sample from the uniformly distributed prior parameter 

ranges specified in Table 3.1. Convergence of the parallel MCMC chains to the 

posterior distribution is monitored using the R-statistics of Gelman & Rubin (1992). 

The posterior probability distributions of PDM parameters provided the required 

information to summarize simulated flow variability caused by parameter 

uncertainty. Following convergence of the chains to a stationary distribution, PDM is 
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evaluated for each set of parameter draws derived from DREAM to propagate the 

parameter uncertainties through the model and obtain simulated flow distribution.  

These values are summarized using 95 percentiles to reflect the impact of parameter 

uncertainty on the model prediction (Figure 3.5). Five years of data are used for 

model calibration using DREAM over the period spanning from April 7, 2004 to 

April 7, 2009 and the remaining four years of data are used for validation purposes.  

Simulated river flows and error statistics over the calibration and validation period 

are shown in Figure 3.5 and Table 3.2 respectively. The Nash-Sutcliff coefficient 

computed for the best fitted flow simulation resulted from optimal parameter set for 

the calibration and validation period are found to be 0.72 and 0.7 respectively.  

Moriasi et al. (2007) has reviewed performance ratings of catchment scale 

hydrological models in the literature and in general Nash-Sutcliff coefficient values 

greater than 0.7 are rated as acceptable performance. However, the intended 

application of the model and the extent at which model output errors impact on water 

resource management decisions need to be carefully considered. In this study, the 

model output is intended to inform abstraction management decisions that focuses on 

service flow ranges as discussed in section 2.2.2. Thus, impacts of out layers at both 

high and low flows on abstraction management decisions are considered to be 

relatively low and the Nash-Sutcliff coefficient values of 0.72 and 0.7 are considered 

acceptable. The R-factor values in the two periods are found to be 0.87 and 0.84 as 

shown in Table 3.2, which indicated the average width of the 95% uncertainty band 

is reasonable as compared to the distribution of observed flow data. The P-factor 

values in the calibration and validation period are found to be 0.89 and 0.71 

respectively, i.e. 89 % of the observed flow values fall within the 95 % prediction 

uncertainty bounds of the ensemble flow simulation in the calibration period, 

whereas 71 % fall within the bound in the validation period. It is observed that both 

in the calibration and validation period significant proportions of low flow 

observations lie at the tail end of the uncertainty band. This indicates the model is 

more susceptible to errors when predicting low flows as compared to medium range 

and high flows, which indicates the models relative limitation in terms of adequately 
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representing base flow contributions during non-runoff periods. Most of the 11% of 

observations during calibration period and 29% of observations during validation 

period that lie outside the 95% prediction uncertainty bound are observed to occur 

during low flows. Comparison of observed flow data and simulated flow ensembles 

over the entire calibration and validation period also showed that some level of 

deviations between the observed and simulated flow ensembles during high flows, 

which are not of particular importance with respect to the main objective of this 

work. As discussed above, capability of the model to accurately predict service flow 

ranges is considered more important for the intended purpose of the model to inform 

abstraction management, hence the outliers during very low and high flow periods 

will have less impact on abstraction decisions and the P-factor values of 0.89 and 

0.71 computed for calibration and validation periods respectively are considered 

acceptable. , i.e In general, the simulated and observed flow hydrographs are 

observed to agree well with acceptable levels of error statistics and the calibrated and 

validated model can be considered fit for the intended practical purpose of informing 

surface water abstraction management. 

 

 

 



73 

 

 

 

Figure 3.5. Streamflow prediction uncertainty ranges derived with DREAM for a 

representative portion of the calibration and validation period. The grey shaded area 

represents 95% prediction interval, whereas the black dots denote recorded 

streamflow observation data. 
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Calibration 
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Table 3.2. The values of evaluation criteria in calibration and validation period 

 
NS 

Coefficient 
P-factor 

R-

factor 

Calibration 

Period 
0.72 0.89 0.87 

Validation 

Period 
0.7 0.71 0.84 

 

 Flow forecasting 3.3.2

Following the calibration and validation of the model, data assimilation techniques 

are employed into the model and flow forecasts are generated. To assess the flow 

forecasting capability of the model, a number of fixed origin forecasts are made over 

the model calibration and validation period, and are compared with observed flows. 

Fixed origin forecast used here is defined as time series of forecasted flow values 

computed from a single forecast time origin. Each forecast value is associated with a 

lead time, which specifies the difference between the times of the forecasted value 

and forecast origin. The applicability of a flow forecast model to inform surface 

water abstraction is dependent on the catchment response time, which is influenced 

by meteorological, hydrological and catchment  variables (land use, soil type, 

storages, catchment and channels geomorphology). Catchment response time is 

estimated in this study using lag time (LT) parameter, which is defined as the time 

from the centroid of rainfall to the peak discharge time of total runoff (Gericke & 

Smithers 2014). This method is employed as shown in Figure 3.6 to estimate lag time 

in the study catchment using a rainfall event. Relatively long lag time of 26 hours is 

estimated for the study catchment as shown in Figure 3.6. This indicates that rainfall 

events that occur after the time of forecast (forecast origin) are less likely to affect 

flows at the outlet of the catchment within 26 hours of the rainfall occurrence; hence 

forecasted flows with lead time of up to 24 hours can be effectively used to inform 

surface water abstraction. However, forecasted rainfall data can be used if prediction 

time of longer than 24 hours is required. 
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Figure 3.6. Lag time estimated as time between the centroid of rainfall and peak 

discharge time. 

Deterministic and stochastic flow forecasts are performed over four different rainfall 

events (rainfall events 1-4) and are compared with observed flows to assess the flow 

forecasting performance and suitability of the calibrated PDM rainfall runoff model 

to inform surface water abstraction. Optimum parameter values are used to make 

deterministic flow forecasts over these four rainfall events which produced runoff 

events of various scales. These forecasts provide information on the availability of 

water at the abstraction site and enable abstraction operators to make informed 

decisions. The lead time in Figure 3.7 and Figure 3.8 below specify the time interval 

between the arrival time of the forecasted flow and time of forecast started (the 

origin).  The performance of the deterministic model in forecasting the four rainfall-

runoff events of varying magnitude with up to 24 hour lead time is found to be 

practically acceptable, considering the level of errors in these forecasts and their 

impacts on abstraction volumes. However, in real-time it is advisable to use the 
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probabilistic forecast model to provide additional information on the level of model 

forecast errors and enable abstraction operators make risk aware decisions as 

discussed below. 

    

 

(a) Deterministic flow forecast for rainfall event 1 (on June 12, 2006) with 

different lead times (h) from forecast origin of 12/06/2006 06:00AM    
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(b) Deterministic flow forecast for rainfall event 2 (on August 12, 2005) with 

different lead times (h) from forecast origin of 12/08/2005 05:45PM 
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(c) Deterministic flow forecast for rainfall event 3 (on May 13, 2007) with 

different lead times (h) from forecast origin of 13/05/2007 05:15AM 
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(d) Deterministic flow forecast for rainfall event 4 (on January 10, 2006) with 

different lead times (h) from forecast origin of 10/01/2006 03:45PM 

Figure 3.7. Deterministic flow forecasts using optimum parameter values for four 

different rainfall events. 

The set of parameter values sampled from the posterior distribution resulted from 

DREAM are used to make probabilistic flow predictions as shown in Figure 3.8 

below. On average, about 75% of the observations fall within the 90% uncertainty 

band of the probabilistic predictions over the four rainfall events. Moreover, the 

observations that lie outside the 90% prediction uncertainty are mostly observed to 

lie close to the boundaries of the uncertainty bounds. Thus, the overall performance 

of the probabilistic model is considered to be practically acceptable for the intended 

purpose of abstraction management application. Abstraction volumes are regulated 

using a set of abstraction licence conditions, which water resource operators need to 

carefully consider when making abstraction decisions. Thus, the use of the 

probabilistic flow prediction enables to make risk aware abstraction decisions and 
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thus helps to avoid the risk of breaching abstraction licence conditions that can occur 

due to model errors. Furthermore, the data assimilation feature of the model enables 

to include newly observed flow data that helps to improve flow predictions using the 

state updating method discussed in section 3.2.7.   

 

(a) Probabilistic flow forecast for rainfall event 1 (on June 12, 2006) with 

different lead times (h) from forecast origin of 12/06/2006 06:00AM 

 

(b) Probabilistic flow forecast for rainfall event 1 (on August 12, 2005) with 

different lead times (h) from forecast origin of 12/08/2005 05:45PM 

Rainfall Event 1 

Rainfall Event 2 
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(c) Probabilistic flow forecast for rainfall event 1 (on May 13, 2007) with 

different lead times (h) from forecast origin of 13/05/2007 05:15AM 

 

(d) Probabilistic flow forecast for rainfall event 1 (on January 10, 2006) with 

different lead times (h) from forecast origin of 10/01/2006 03:45PM 

Figure 3.8. Probabilistic flow forecasts resulted from a set of parameter values 

sampled from posterior distribution (90 % prediction uncertainty). 

Rainfall Event 3 

Rainfall Event 4 
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Forecasted flows with acceptable level of risk will feed into the water resources 

management model to calculate the daily amount of water available for abstraction at 

the surface water abstraction site in the catchment. The water resource management 

model, which will be used to inform abstraction decisions and also discussed in detail 

in section 3.3.3, takes into account a range of real-time operational constraints in 

addition to the availability of water at the abstraction site. The proposed method 

enables to make informed surface water abstraction decisions with a view to 

providing a potential to abstract more water, which otherwise could be missed due to 

lack of data and information on the daily amount of available water that can be 

abstracted without breaching licence conditions (section 3.1).  

 Implications on water resources management 3.3.3

The potential benefits of the real-time abstraction management scheme, which uses 

hydrological forecasting in order to maximize the amount of water abstracted in the 

study catchment, is investigated in this section. Following the calibration and 

validation of the rainfall-runoff model, daily simulated abstraction volumes are 

generated from simulated flows over a period of ten years (2004 – 2014). 

Comparison of these daily amounts of simulated abstractions with abstraction record 

data (historical abstraction data) over the same period have shown that on average 67 

ML of water per day have been missed at the abstraction site, which could have been 

abstracted sustainably without breaching abstraction licences (Figure 3.9). The 

missed volume of water shown in Figure 3.9 and Figure 3.10 for each day is 

calculated by subtracting the daily volume of water historically abstracted (recorded 

daily abstraction volume)  at the abstraction site from the daily volume of water that 

could have been abstracted on that day as estimated by the model (simulated 

abstraction volume). Figure 3.10 includes model simulated abstraction, historical 

abstraction and missed volume of water calculated over the 2011 dry period and 

provides a graphical explanation of the computation of missed volume of water 

discussed above. The restrictions imposed by the licence conditions and hydraulic 

capacities have been applied to determine the amount of water that could have been 

abstracted, which is named as simulated abstraction. Water treatment works are 
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assumed to work at their achievable maximum capacity during the computation of 

simulated abstraction. 

However, only some part of the 67 Ml/d water found to be missed at the abstraction 

site is believed to have occurred during low flow periods, during which as much 

water as possible is required. Surface water abstraction is mainly driven by two main 

factors. During low flows, surface water abstraction volumes are restricted by the 

availability of water in the river (based on abstraction licence conditions), whereas 

demand and/or storage levels in reservoirs determine abstraction levels during high 

flow periods. The amount of water identified here as missed over the analysis period 

is primarily resulted from the following two main factors, which are both associated 

with abstraction management.  

1. Abstraction licences include conditions to protect the aquatic 

environment and restrict daily abstraction volumes based on specified 

daily flow values at abstraction sites. These are often known as ‘hands 

off’ flow conditions referring to a fixed flow in the river below which 

abstraction is proscribed. Thus, during low flow periods, the amount 

of available water for abstraction directly varies with river flow. 

However, current abstraction decisions are not informed on the 

amount of predicted daily flows in rivers and usually a conservative 

approach is taken when making daily abstraction decisions to avoid 

the risk of breaching licence conditions. This results in missing a 

certain amount of water daily that could have been abstracted without 

breaching the licence conditions.  

2. During high flow periods, abstraction volumes are not limited by 

licence conditions, and thus water can be abstracted using maximum 

abstraction capacities. However, during these periods abstraction is 

mainly driven by demands and/or drops in storage levels in reservoirs. 

Consequently, some amount of water is missed daily at abstraction 

sites, which could have been abstracted if intakes and water treatment 

works operate at their achievable daily maximum capacities. Even 
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though there may not be any need for additional water during these 

periods in the study catchments, enabling to use these missed 

opportunities to abstract more water can help to reduce abstractions 

from other more strained and/or more expensive sources in the region. 

 

Figure 3.9. Amount of water missed over the period of 2004 – 2014 at abstraction 

site. 

To investigate the real-time abstraction management scheme’s capability to minimize 

the amount of water missed during low flow periods, similar assessment was 

required to be performed over a specified dry period. Thus, the calibrated rainfall-

runoff model was coupled with the water resources management model to generate 

daily simulated abstraction volumes using outputs from the deterministic flow model. 

These are compared with historical abstractions over the 2011 dry period in the study 

catchment. This comparison has showed that on average a total of 30 Ml of more 

water per day could have been abstracted using the real-time abstraction management 

scheme during this period (Figure 3.10). The spikes in the missed volume of water 
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graphs in Figure 3.9 and Figure 3.10 can occur as a result of two main operational 

constraint and management decisions. During dry periods, the spikes on the missed 

volume of water graphs are likely to have been caused due to shut down or 

restrictions on some or all intake pumps due to operational outages, whereas during 

normal periods the spikes can be caused by either intake pump outages or operational 

management decisions to reduce or suspend abstractions, which is often made during 

high storage levels in the reservoir to reduce power consumption, due to water 

quality issues or low demand on the reservoir. 

The integrated flow forecast and water resource management models are employed 

to assess implications of the use of real-time abstraction management on reservoir 

levels and associated water resource management decisions. The results have showed 

that rapid decline in reservoir levels during dry periods such as the one in 2011 can 

be avoided by using the real-time abstraction management scheme proposed in this 

study (Figure 3.11). The decline of reservoir storages beyond the control curve 

during dry periods activates drought management actions such as imposing water use 

restrictions, which affect the service level of water suppliers. These conditions also 

lead to drought permit applications to reduce restrictions in abstraction licence 

conditions, which allow abstraction of more water beyond the normal licence 

conditions. This exacerbates impacts of dry periods on the water environment 

downstream of the abstraction site. Thus, the extra amount of water that can be 

abstracted using RTAM scheme can also help to minimize impacts on the water 

environment in addition to ensuring adequate water supply during dry periods.  
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Figure 3.10. Comparison of simulated and historical abstraction and amount of water 

missed over the 2011 dry period at the abstraction site. 
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Figure 3.11. Observed reservoir levels over the 2011 dry period and reservoir control 

curve. 

3.4 Conclusions 

A real-time abstraction management scheme was devised in this study by employing 

hydrological forecasting and water resource management model with a view to 

enable to abstract more water in the study catchment. Calibration of conceptual 

rainfall-runoff models such as PDM involves tuning the value of parameters that lack 

physical basis and thus cannot be inferred from direct measurements. Thus, assessing 

uncertainty associated with these parameters and their impacts on predicted flow is 

an important task when using these models to inform water resources management 

decisions. DREAM, a Bayesian uncertainty analysis tool based on Markov chain 

Monte Carlo method, is used in this study to calibrate the PDM model in the river 

Dove catchment in UK. Flow prediction results from the model using the parameter 
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observed flows with reasonable accuracy for the study catchment. Deterministic and 

stochastic flow forecasts from the calibrated model are observed to match well with 

observed flows, which showed the capability of the model for the intended practical 

purpose of forecasting available volume of water at surface water abstraction sites 

and informing abstraction decisions. Simulated flow derived from PDM model using 

optimum values of the calibration parameters are propagated through a water 

resource management model over the 2011 dry period in the study catchment. This 

has showed the significant role that the RTAM scheme proposed in this study can 

play in increasing resilience of the water supply system in the study catchment and 

minimizing abstraction impacts on the environment. Water resources planners are 

required to state the number of times a system will fail to meet full demands over a 

specified planning period, which forms the level of service defined by water 

suppliers. Effective implementation of the RTAM system in surface water 

catchments used for water supply can help to achieve these specified levels of service 

by minimizing the probability of failing to meet demand during dry periods. 

Moreover, by dynamically linking abstraction volumes to actual availability of water 

in the source, the RTAM scheme helps to make surface water abstraction 

management systems ready for future potential abstraction reforms discussed in 

Chapter 2 and challenges associated with climate change and increasing demand 

from a growing population. This work has demonstrated a new approach to develop 

and integrate a probabilistic flow forecast model with water resources management 

model with a view to providing operationally suitable and sustainable solution to 

tackle emerging issues of increasing demand, climate change and associated policy 

reforms.  
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  Chapter 4

Modelling of metaldehyde concentrations in surface waters:  A 

travel time based approach 

4.1 Introduction 

Diffuse pollution is a significant threat to the quality of surface water systems, with 

agricultural runoff commonly recognised as posing the greatest risk (Grayson et al. 

2008). Observed levels of diffuse agricultural pollutants in surface water have 

increased as pesticide application rates have intensified in most countries (Wilson & 

Tisdell 2001), detection methods have improved and new products emerge in the 

market (Loucks et al. 2005). The characteristic behavior of some of these pollutants 

(e.g. pesticides such as metaldehyde) mean that existing drinking water treatment 

processes are inadequate to reduce levels to within drinking water regulation limits 

and thus have recently become a recognized problem to water infrastructure 

operators (Lu et al. 2017). D’Arcy et al. (1998) recommends that efforts to mitigate 

diffuse pollution problems are best taken at catchment scale (as promoted by the 

Water Framework Directive) using approaches such as catchment management 

practices and abstraction management, which can help to avoid or reduce the need 

for energy and cost intensive engineered treatment solutions. However, the complex 

nature of the processes involved in diffuse pollutant generation and transport in 

rainfall runoff, along with high temporal and spatial variations in pesticide 

application and rainfall/runoff events pose challenges for the development and 

establishment of accurate and reliable modelling and mitigation strategies (Ouyang et 

al. 2017).  Current understanding of short term pollutant dynamics in catchments 

caused by rainfall/runoff processes is limited due to the scarce availability of water 

quality data at suitable temporal resolutions (Bach et al. 2001).    

The aims of this chapter are to; 1. Develop a new model to describe the fluctuation of 

a diffuse agricultural pollutant (metaldehyde) in surface waters caused by rainfall 

driven runoff; 2. Validate the model against new high resolution datasets of 

metaldehyde concentration within the catchment following rainfall and runoff events.  
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It is anticipated that the new model can be used to forecast metaldehyde 

concentrations and inform short term abstraction decisions such that runoff 

containing high levels of metaldehyde can be avoided.  

Metaldehyde is an organic compound with the formula C8H16O4 and has low sorption 

coefficient (KOC) of active ingredient to organic carbon  value that ranges between 34 

- 240 L kg
−1

 (Kay & Grayson 2014). It is a soluble molluscicide that is used heavily 

in a range of agricultural products to control slugs and snails (Li et al. 2010) and has 

a relatively long half-life in soil that ranges between 3.17 – 223 days. In recent years 

high levels of metaldehyde exceeding the European and UK standards for pesticides 

in drinking water value of 0.1µg/l have been observed in surface waters during the 

application season (NFU 2013). Peak concentrations in surface waters are observed 

particularly following rainfall events (Kay & Grayson 2014). Water quality 

assessments carried out by the UK water industry on more than 2300 raw water 

abstraction sites in England and Wales have identified that 110 abstraction sites are 

at risk of metaldehyde pollution (Water UK 2013).  Metaldehyde is not effectively 

removed using conventional drinking water treatment options such as granular 

activated carbon and ozone due to its high inherent stability resulting from a unique 

molecular structure (Webber 2014), and is hence a particular concern for water 

infrastructure operators.  

Diffuse pollutants such as metaldehyde present on farmlands can enter river systems 

via a number of pathways including surface runoff, drains and groundwater flow. 

The dominant pathway for any particular pollutant is mainly dependent on its 

properties, weather conditions, soil type, land slope and network of drains in the area 

(Bach et al. 2001). However a  number of studies have shown that runoff is the 

dominant pathway for most diffuse agricultural pollutants (Huber et al. 2000; 

Heathwaite et al. 2005; Huber et al. 1998; Bach et al. 2001). Migration of pollutants 

through erosion is considered significant only for highly adsorbing substances with 

KOC values greater than 1000 L kg−1 (Kenaga, 1980). Hence metaldehyde tends not 

to be adsorbed by suspended solids and sediments due to its low KOC value.  This 

suggests that the transport of metaldehyde through runoff in dissolved form is more 
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significant than transport via soil erosion. Hence, the amount and rate of runoff 

generated from specific farmlands in the catchment where metaldehyde is applied 

combined with runoff travel time along flow paths are likely to be critically 

important in determining metaldehyde concentrations and dynamics in surface 

waters. Several studies have  emphasized the significant impacts of rainfall induced 

runoff in mobilizing pesticides into streams (e.g., Vryzas et al. 2009; Taghavi et al. 

2011; Du Preez et al. 2005; Ng & Clegg 1997). However, studies quantifying peak 

pollutant loads in runoff and potential exposure to downstream receivers resulting 

from individual rainfall events are lacking due to the need for high resolution water 

quality datasets, which are rarely available. Most available water quality data are in 

daily or coarser time resolutions that fail to capture short term fluctuations in diffuse 

pollution concentrations caused by individual rainfall driven runoff events. Lack of 

high resolution validation data has also limited the development of stormwater 

quality models that are capable of predicting pollutant concentrations in runoff at 

small time intervals, and hence be utilised in abstraction management systems. The 

use of automatic water samplers has been identified as a step forward towards 

addressing this problem ( Berenzen et al. 2005; Rabiet et al. 2010).   

In this study, automatic samplers were used to collect hourly surface water samples 

following rainfall events within a UK catchment known to be subjected to high 

metaldehyde concentrations. This enabled the validation of a new operationally 

suitable stormwater quality prediction model within the catchment. The new model 

aims to enable the prediction of short term fluctuations in metaldehyde 

concentrations arriving at a surface water abstraction site which is used for drinking 

water supply. Whilst a complete understanding of the transport and fate of pesticide 

in catchments requires consideration of numerous processes such as groundwater 

transport and reaction/degradation processes, the nature of the organic compound 

(methalydyde) as well as the focus on forecasting short term fluctuations in response 

to rainfall events lead us to propose a modelling approach based on the aggregation 

of overland surface flow travel times over the catchment, allowing a simpler and 

more practical model structure than a model incorporating numerous longer term 
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processes such as groundwater transport or erosion. The model is therefore based on 

the identification and routing of spatially distributed metaldehyde loads in runoff 

using build-up, wash-off and runoff travel time techniques. The approach proposed 

here provides an improvement to existing stormwater quality models by using high 

resolution radar rainfall data and identifying application risk areas in the catchment, 

which enables the consideration of spatiotemporal variations of pollutant generation 

and transport in the catchment. A raster based data structure is employed in the 

model and thus various spatially distributed catchment characteristics such as 

elevation, soil type, land use and rainfall are described in the model using grids. The 

use of the developed model in water supply catchments can help quantify potential 

exposures to peak metaldehyde concentrations at surface water abstraction sites with 

the aim of enabling better surface water abstraction management. Given the 

inadequacy of existing water treatment processes in removing metaldehyde, smarter 

abstraction management informed by predicted arrival of peak pollutant levels at 

abstraction sites proposed in this study provides a cost-effective and sustainable 

solution to tackle problems caused by diffuse pollutants.    

4.2 Methodology 

This section describes the study catchment as well as the development of a new 

process based metaldehyde transport model to forecast short term fluxes of 

metaldehyde in surface waters in response to individual rainfall events. The 

catchment is divided into 12 million grid cells of 25 square metre each and runoff 

generation, routing and pollutant wash-off is calculated within each cell in response 

to time series rainfall data collected using radar. The model is calibrated and 

validated using monitored flow data as well as new high resolution datasets of 

metaldehyde concentrations collected following rainfall events using automatic 

samplers. 

 Study area 4.2.1

The study area, River Leam catchment, is located in the sub basin of River Severn in 

central England and drains an area of 300 km
2
 (Figure 4.1). Elevation within the 
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catchment ranges from 46m to 232m above sea level with a mean annual rainfall of 

649mm. A UK Environment Agency flow gauging station is situated at the outlet of 

the catchment that records flow data, which is used to assess abstraction licence 

conditions against daily abstraction volumes. The normal flow depth of the River 

Leam at the gauging station ranges between 0.24m and 1.16m with an average flow 

of 1.55m
3
/s. The most dominant land cover type within the catchment is arable 

farmland consisting of horticultural plants and cereals. Managed grassland is the 

second most common land use type with few urban, suburban and rural 

developments in the catchment. Hence, agriculture is the dominant land use in the 

catchment and is likely to have a significant influence on river water quality. The 

predominant soil types in the catchment are clayey and loamy soils, which make up 

approximately 65.5 % of the total area. Clay soils are vulnerable to compaction, 

remain wet for longer periods and have a slow natural drainage, leading to sheet 

runoff as opposed to channel erosion. The remainder of the catchment consists of 

freely draining slightly acid loamy soils or loamy and clayey soils which are not 

seasonally wet but suffer from impeded drainage. 

 

Figure 4.1. Location of River Leam Catchment, gauging stations and abstraction site. 
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The largest use of surface water in the catchment is for public water supply. A 

surface water abstraction site, located at the outlet of the study catchment as shown 

in Figure 4.1, is used by a water utility operator to pump water to impounding 

reservoirs for water supply purposes. The main water quality issues in the catchment 

are nutrients and pesticides from diffuse sources. Metaldehyde is typically applied in 

the catchment on arable farmlands that grow winter crops such as winter wheat, 

potatoes and oilseed rape, which usually cover about one third of the catchment area 

and is rotated on a seasonal basis. Because of favorable conditions for slugs during 

the usually wet autumn and winter seasons, metaldehyde applications are typically 

made between September and December. Routine monitoring conducted by the local 

water infrastructure operator shows that high levels of metaldehyde are present in the 

river during the application season (Figure 4.2) (STW 2017). The analyses in the 

current study focus on data collected in the catchment during the metaldehyde 

application season over the period 2014 -2017. 

 

Figure 4.2. Historic seasonal variation of metaldehyde concentration in the River 

Leam near the catchment outlet from routine monitoring (STW 2017). 
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 Development of metaldehyde prediction model  4.2.2

The model presented in this paper is comprised of three components: runoff 

generation, runoff routing and pollutant build-up/wash-off. Runoff is calculated 

based on overland flow generated from each grid cell in the catchment during 

monitored rainfall events. The travel time based runoff routing method estimates 

storm runoff transport from catchment grid cells to the outlet of the catchment based 

on geographic information system tools. The spatially distributed time variant direct 

runoff travel time technique employed in the model  accounts for spatial and 

temporal variability of runoff generation and flow routing through overland flows 

and stream networks (Melesse & Graham 2004; Du et al. 2009) following rainfall 

events. The pollutant model estimates metaldehyde build-up through pesticide 

applications on identified metaldehyde high risk areas and its wash-off to water 

courses during runoff processes. The travel time based runoff routing and build-up 

wash-off models are integrated to enable rainfall event based prediction of 

metaldehyde concentrations at the catchment outlet.   

 Runoff generation 4.2.3

The differential form of the Soil Conservation Service (SCS) curve number (CN) 

method (Mancini & Rosso 1989) is used to compute spatially distributed excess 

rainfall in each grid cell within the study catchment. The SCS-CN runoff volume 

prediction method was originally developed by the United States Department of 

Agriculture (USDA) Soil Conservation Service (Hjelmfelt 1991). Detailed 

procedures of the method were originally documented in the National Engineering 

Handbook, Sect. 4: Hydrology (NEH-4) in 1956 and subsequently revised in 1964, 

1971, 1985, 1993 and 2004 (Li et al. 2015). It is a widely used, well established 

technique owing to its computational simplicity and use of accessible catchment data. 

The differential form of the SCS-CN method to calculate cumulative excess rainfall 

depth 𝐼𝑡(mm) at time step t from each grid cell is given by:  
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𝐼𝑡 =

(𝑃𝑡 − 0.2𝑆)2

(𝑃𝑡 + 0.8𝑆)
     (𝑤ℎ𝑒𝑛 𝑃𝑡 > 0.2𝑆) 

(4.1) 

where 𝑃𝑡 (𝑚𝑚) is the cumulative depth of rainfall at time step t, calculated as 

 

𝑃𝑡 = ∑ 𝑝𝑖∆𝑡

𝑡

𝑖=1

 

(4.2) 

where pi is the rainfall intensity at the timestep i (mm/s), Δt is time step length (s). 𝑆 

is the maximum soil retention potential (mm), given by  𝑆 = 25400 𝐶𝑁 − 254⁄ . 

where  CN is the “curve number” ranging between 1 & 100 (Hjelmfelt 1991).  

When 𝑃𝑡 <= 0.2𝑆, rainfall is completely absorbed by soils with no overland flow 

generation and hence resulting in zero runoff depth. Initial CN values for each study 

year were first determined based on hydrologic soil group (HSG), land use and 

hydrologic conditions data (Mishra & Singh 1999). In addition to the soil type, which 

mainly identifies the soil water retention capacity, antecedent moisture condition 

plays an important role in runoff generation (Crespo et al. 2011). In the SCS-CN 

method, the effect of soil moisture on runoff generation is incorporated by adjusting 

CN values based on antecedent moisture condition (AMC) categories. No exclusive 

relations or formulas are available to calculate soil moisture from antecedent rainfalls 

of certain preceding days, but in general the term antecedent for soil moisture 

calculation purpose is taken to vary from 5 to 30 preceding days (USDA 1986). 

AMC categories in this study were determined for each rainfall event based on 

cumulative rainfall volumes of the preceding 5 days. The three AMC categories are: 

AMC-I for dry, AMC- II for normal, and AMC-III for wet conditions. Initially 

assigned CN values are adjusted for each rainfall event based on their AMC 

categories to account for the effect of soil moisture on runoff generation.  

Figure 4.3 shows a map of CN values over the River Leam catchment based on 

normal antecedent moisture condition (AMC – II) for the 2014 application season. 
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The spatially distributed CN values combined with the use of radar rainfall data 

enable the computation of spatially distributed runoff depths. 

Once the runoff depths are computed, the runoff rate 𝑄𝑡 (mm/s) from each grid cell 

at time step t can be calculated as 

 𝑄𝑡 = (𝐼𝑡 − 𝐼𝑡−1) ∆𝑡⁄  (4.3) 

 

Figure 4.3. Spatial distribution of runoff Curve Numbers based on normal antecedent 

moisture condition (AMC – II) for the year 2014. 

 Runoff routing 4.2.4

In natural conditions, over land and channel travel times vary based on availability of 

runoff and rainfall variation in time. This is accounted in the model by employing a 
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time variant travel time computation technique. To determine flow pathways, a GIS 

flow direction tool was used to determine the steepest descent from every cell in the 

catchment Digital Elevation Model (DEM) along which storm runoff flows. This 

created unique connections between cells that enabled to define flow paths to 

catchment outlet and identify storm runoff flow networks in the catchment. A 

threshold number was set to identify cells with high flow contributing areas that form 

concentrated flow and were used to delineate channel networks in the catchment (Du 

et al. 2009). The delineated channel network density and extents were compared with 

stream networks from topographic maps to adjust threshold number of cells. Any cell 

with less upstream flow contributing cells than the threshold was considered as 

overland flow cell and others with more flow contributing upstream cells were 

classified as channel cells. Travel time computation techniques were then employed 

to determine travel time for each overland and channel flow cells based on available 

runoff in the cells as described below.    

Cumulative travel times through each pathway computed from topographic data were 

used to route excess rainfall from each grid cell along flow paths to determine runoff 

hydrographs at the outlet of the catchment. First, kinematic wave theories suggested 

by Wong (1995, 2003) were used to derive travel time expressions for each grid cell 

depending on its classification i.e. overland flow cell or channel cell. For an overland 

flow grid cell with negligible flow backwater effect, the wave celerity (c) travelling 

down the grid cell was derived using kinematic wave equation and is given by 

(Eagleson 1970):   

 
𝑐 =

𝑑𝑥

𝑑𝑡
= 𝛼𝛽𝑦𝛽−1 

(4.4) 

where, α and β are parameters used in 𝑞 = 𝛼𝑦𝛽 to relate discharge per unit width (𝑞) 

to flow depth (𝑦) and 𝑥 is distance along flow direction.  

Re-writing equation (4.1) in terms of discharge per unit width (𝑞) gives 
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𝑐 =

𝑑𝑥

𝑑𝑡
= 𝛼1 𝛽⁄ 𝛽𝑞1−(1 𝛽⁄ ) 

(4.5) 

For small period of time, it can be assumed that overland grid cells receive constant 

and uniform excess rainfall, 𝑖  and constant upstream inflow, 𝑞𝑢 . Thus, the unit 

discharge at the downstream end of the grid cell over that period can be calculated as 

 𝑞 = 𝑞𝑢 + 𝑖𝑥 (4.6) 

Assuming α is independent of 𝑥, substituting equation (4.6) in equation (4.5) and 

solving the derivatives in equation (4.5) for t gives an expression for time of 

concentration, which is generally defined as the time required for runoff to travel 

along flow path from the hydraulically most distant point in the catchment to the 

outlet, for overland grid cells as: 

 
𝑡𝑐 =

1

𝛼1 𝛽⁄
[
(𝑞𝑢 + 𝑖𝐿)1 𝛽⁄ − 𝑞𝑢

1 𝛽⁄

𝑖
] 

(4.7) 

where 𝑡𝑐 the time of concentration and 𝐿 is the length of the grid cell in the direction 

of flow. In general, overland flow time of concentration for small grid areas such as 

that considered in this study are shorter than duration of excess rainfalls and equation 

(4.7) can thus be used to calculate the travel time (Eagleson 1970).  

The time of concentration formula can be written as: 

 

𝑡𝑐 = [
𝐿𝑖1−𝛽

𝛼
]

1 𝛽⁄

[(𝜆 + 1)1 𝛽⁄ − 𝜆1 𝛽⁄ ] 
(4.8) 

where 𝜆 relates upstream inflow and influx from excess rainfall as follows: 
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 𝜆 = 𝑞𝑢/𝑖𝐿 (4.9) 

Values of friction parameters α and β can be obtained using Manning’s equation as 

𝛼 = √𝑆 𝑛⁄  and 𝛽 = 5 3⁄  respectively. Thus, expression for overland flow time of 

concentration from equation (4.8) can be written as: 

 
𝑡𝑐 = 7 (

𝑛𝐿

𝑆0.5
)

0.6

𝑖−0.4[(𝜆 + 1)0.6 − 𝜆0.6] 
(4.10) 

where, the units of parameters in equations (4.9) and (4.10) above are given as 

minutes for 𝑡𝑐, m/m for 𝑆, m
2
/s for 𝑞𝑢, mm/h for 𝑖, and m for 𝐿. Manning’s 𝑛 values 

vary depending on the types of surface and can be selected from values 

recommended by Engman (1986).  

The equivalent of equation (4.8) for channel flow grid cells with negligible 

backwater effect, a constant upstream inflow, and a uniform lateral inflow is given as 

 

𝑡𝑡𝑐 = (
𝐿𝑐

𝛼𝑐𝑞𝐿
𝛽𝑐−1

)

1 𝛽𝑐⁄

[(𝜆𝑐 + 1)1 𝛽𝑐⁄ − 𝜆𝑐
1 𝛽𝑐⁄

] 

(4.11) 

where 𝑡𝑡𝑐  is time of concentration, 𝐿𝑐  is the length of the channel cell in flow 

direction, 𝑞𝐿  is the uniform lateral inflow, 𝛼𝑐  and 𝛽𝑐  are parameters relating the 

discharge (𝑄) in the channel to the flow area (𝐴); and 𝜆𝑐 relates the upstream inflow 

(𝑄𝑢) to the lateral inflow (𝑞𝐿) as follows: 

 𝑄 =  𝛼𝑐𝐴𝛽𝑐 (4.12) 

 

 
𝜆𝑐 =

𝑄𝑢

𝑞𝐿𝐿𝑐
 

(4.13) 
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Backwater effect occurs when a water body is obstructed at downstream by a tide or 

any structures such as dam or bridge, which causes the water to backup along the 

channel and limits or stops the downstream flow currents. There are no tides or 

obstructions along the river in the study catchment and thus, the assumption of  

negligible backwater effect in this chapter is considered reasonable.   

Replacing 𝛼𝑐 = √𝑆 𝑛⁄  and 𝛽𝑐 = 5 3⁄  friction parameter values determined from 

Manning’s equation and uniform lateral inflow (𝑞𝐿 = 𝑖𝐿𝑐) in equation (4.11) above 

gives the channel flow time of concentration as: 

 
𝑡𝑡𝑐 = 7 (

𝑛𝐿𝑐

𝑆0.5
)

0.6

(𝑖𝐿𝑐)−0.4[(𝜆𝑐 + 1)0.6 − 𝜆𝑐
0.6] 

(4.14) 

where, the units of parameters in equations (4.13) and (4.14) above are given as 

minutes for 𝑡𝑡𝑐, m/m for 𝑆, m
3
/s for 𝑄𝑢, mm/h for 𝑖, and m for 𝐿𝑐. 

To account for uncertainties introduced in the estimation of travel time, calibration 

parameters 𝐾𝑜 and 𝐾𝑐 are included in equation (4.15) and equation (4.16) as shown 

below to determine travel time in overland (𝑡𝑐) and channel flow (𝑡
𝑡𝑐

) respectively. 

 
𝑡𝑐 = 7𝐾𝑜 (

𝑛𝐿

𝑆0.5
)

0.6

𝑖−0.4[(𝜆 + 1)0.6 − 𝜆0.6] 
(4.15) 

 

 
𝑡𝑡𝑐 = 7𝐾𝑐 (

𝑛𝐿𝑐

𝑆0.5
)

0.6

(𝑖𝐿𝑐)−0.4[(𝜆𝑐 + 1)0.6 − 𝜆𝑐
0.6] 

(4.16) 

The value of 𝐾𝑜  and 𝐾𝑐  parameters are determined by calibration. Finally, travel 

times calculated for each grid cells using equation (4.15) and equation (4.16) above 

are summed along flow paths to determine cumulative travel time of runoff from 

each grid cell to the catchment outlet.     
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 Pollutant model 4.2.5

The pollutant model estimates metaldehyde build-up on high risk areas during dry 

days and wash-off to water courses during runoff following rainfall events. 

Metaldehyde risk areas in the catchment have been identified based on available land 

use data, which provides information on the likelihood of metaldehyde being applied 

to the land based on crop type during each growing season. Land growing winter 

crops such as winter wheat, potatoes and oilseed rape, where metaldehyde is 

commonly applied are identified as high risk areas. Data on land use derived from 

satellite imagery was acquired from the Centre for Ecology and Hydrology for each 

growing season used in the analysis (2014-2017). Figure 4.4 shows the identified 

high risk areas for the 2014 season. 

  

Figure 4.4. Identified Metaldehyde high risk areas in the catchment for the year 2014. 

Metaldehyde application doses on these high risk areas and frequency of applications 

over pesticide application periods determine the accumulation of metaldehyde in the 
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active zone at soil surfaces (Müller et al. 2003). Moreover, the time interval between 

metaldehyde application and a rainfall event directly affects the amount of 

metaldehyde transported to water bodies through runoff. These processes are 

represented using build-up and wash-off components in the model. As shown in 

Figure 4.4, farmland in the study catchment that have high likelihood of metaldehyde 

being applied (metaldehyde high risk areas) are spread-out in the catchment with 

some parts of the catchment containing more density of high risk areas than others. 

As a result, the metaldehyde concentration at the catchment outlet over a specific 

time period is heavily dependent on the density of high risk areas within the relevant 

travel time isochrones. High rate of runoff generation from high risk areas increases 

metaldehyde levels in the river, whereas high rate of runoff generation from low risk 

areas have a dilution effect and can lower concentration of metaldehyde in the river. 

Thus, metaldehyde concentration at the outlet of the catchment significantly depends 

on spatial variability of a rainfall event, in relation to the distribution of high risk 

areas. 

Pollutant build-up: Metaldehyde build-up on high risk areas occur through 

application of pesticides that contain metaldehyde as an active ingredient. Wet 

conditions during winter provide ideal environment for slugs to thrive and most 

metaldehyde applications are made during this period to control winter crops.  

Typical single slug pellet application based on guidelines from manufacturers is 5 

kg/ha. This is equivalent to 75g/ hectare (0.19 g per 5m
2
 grid size used in this study) 

of metaldehyde based on a commonly used 1.5% slug pellet.  The statutory legal 

requirement in the UK on metaldehyde application states that total application in a 

calendar year should not exceed a maximum of 700g/ha. Routine monitoring data 

collected by the local water infrastructure operator shows that almost all high levels 

of metaldehyde in the river have occurred during the September to December 

application season (Figure 4.2). Thus, it can be assumed that most of the 700g/ha 

statuary annual legal limit of metaldehyde is applied during the September to 

December period. Based on this assumption and the typical single metaldehyde 

application value of 75g/ha, a total of no more than nine applications are expected 
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during the winter crop growing season on any particular high risk farmland. This 

combined with the relatively long half-life of metaldehyde in soil suggest that 

metaldehyde presence on farmlands during this period is likely to be consistently 

high (Castle et al. 2017). In this study, it was initially assumed that metaldehyde was 

applied on all high risk areas 5 days before rainfall events, which was later adjusted 

using a calibration parameter.  

Pollutant wash-off: Metaldehyde wash-off is dependent on a number of rainfall, 

catchment and substance characteristics. In this study, pesticide loss equation based 

on the ‘‘simplified formula for indirect loadings caused by runoff’’ (SFIL) (Berenzen 

et al. 2005; Reus et al. 1999) is used to calculate percentage loss of metaldehyde at 

each timestep from high risk areas through runoff. 

 
𝐿𝑡 =  

𝑄𝑡

𝑃𝑡
𝑓𝑒

−𝑡𝑛∙
𝑙𝑛2

𝐷𝑇50𝑠𝑜𝑖𝑙
100

1 + 𝐾𝑑
 

(4.17) 

where:  

 𝐿𝑡  - Percentage of application dose that is washed by runoff water as a 

dissolved substance at timestep t,  

 𝑄𝑡 - Runoff depth generated at timestep t (mm),  

 𝑃𝑡 – Total precipitation depth (mm),  

 𝑓 - Correction factor, with 𝑓 = 𝑓1 𝑓2 𝑓3, 𝑓1 (Berenzen et al. 2005; Reus et al. 

1999) 

 Slope factor: 𝑓1 =  0.02153 ∗ 𝑠𝑙𝑜𝑝𝑒 +  0.001423 ∗ 𝑠𝑙𝑜𝑝𝑒2  if  𝑠𝑙𝑜𝑝𝑒  <

  20% or 𝑓1 = 1 if  𝑠𝑙𝑜𝑝𝑒 >   20% ,  

 𝑓2 - Plant interception factor: 𝑓2  =  𝑃𝐼/100,  

 𝑓3 - Buffer zone factor: 𝑓3 = 0.83𝑊 with 𝑊 - width of the buffer zone (m),  

 𝑡𝑛 - Number of days between application and a rainfall event,  

 𝐷𝑇50𝑠𝑜𝑖𝑙 - Half-life of active ingredient in soil (days),  
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 𝐾𝑑 - Ratio of dissolved to sorbed pesticide concentrations; with 𝐾𝑑  =  𝐾𝑂𝐶  ∗

%𝑂𝐶 ∗ 1/100, (Berenzen et al. 2005; Reus et al. 1999) 

 𝐾𝑂𝐶 - Sorption coefficient of active ingredient to organic carbon,  

 %𝑂𝐶 - Mass fraction of soil organic carbon content in percent.  

Runoff rate (Qt) at each model timestep and total precipitation depth (Pt) for each 

high risk cell are obtained from equation (4.2) and (4.3) and from rainfall data. The 

use of parameter Koc in equation (4.17) above has some limitations as it generally 

refers to sorption coefficient of pesticides into soil organic matrix and does not take 

into account adsorptions to clay particles, which is present in the study area. 

However, metaldehydes’ solubility and low Koc value mean that this limitation is 

likely to have negligible impact on model outputs as peak metaldehyde 

concentrations are likely to be mainly due to metaldehyde transport in dissolved 

form.    

The amount of metaldehyde available at soil surfaces during a rainfall event, which is 

determined by applications and the number of days between applications and a 

rainfall event, has significant impact on the overall wash-off load that dissolves in 

runoff. However, lack of data on the specific timing of metaldehyde application 

makes this difficult to determine. Consequently, build-up and wash-off rate 

parameters are difficult to be inferred from direct measurements in the catchment and 

are known to commonly introduce significant uncertainties in pollutant prediction 

models (Wijesiri et al. 2016). To account for these uncertainties an additional 

parameter (K), which depends on initial metaldehyde concentrations 𝐶𝑜 in the river at 

the outlet of the catchment prior to rainfall events, was used in the model. The 

metaldehyde concentration trend in the river prior to a rainfall event provides a 

general indication of the level of metaldehyde application in the catchment during a 

particular pesticide application period (Ryberg & Gilliom 2015). Consequently, the 

trend is therefore used in this study to adjust computations of metaldehyde load in 

runoff based on measured metaldehyde presence in the catchment. 
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Hence, metaldehyde load in runoff from each high risk cell at each timestep is 

determined by 

 𝑀𝑡 = 𝐾𝐿𝑡𝐵 (4.18) 

where: 𝑀𝑡  - metaldehyde load in runoff at timestep t(g), 𝐾 =  𝐶𝑜  ∗  𝐾𝑏𝑤 , 𝐶𝑜  is 

metaldehyde concentration in the river prior to each rainfall event (µg/l), 𝐾𝑏𝑤 is a 

calibration parameter (l/µg), 𝐿𝑡  - Percentage of application dose that is present in 

runoff water as a dissolved substance, 𝐵  - metaldehyde build-up on soil surface 

through applications (taken as 0.19g per 5m
2
 based on typical application of 5kg/ha 

using 1.5% slug pellet). 

 Model Integration 4.2.6

For a given rainfall event over the catchment, rate of runoff generation and travel 

times are computed using equation (4.3) and equations (4.15) and (4.16). The 

calculated travel time from each high risk cell is then used to route metaldehyde load 

to the outlet of the catchment.  Time series of runoff (m
3
/s) and metaldehyde load in 

runoff (g) can then be used to determine metaldehyde concentrations in runoff water 

arriving at the outlet of the catchment. Since metaldehyde transport in ground water 

is not included in the modelling structure, a measured metaldehyde concentration in 

the river prior to a rainfall event is used to indicate base flow concentration. 

Metaldehyde concentrations in base flow (Co) during the storm runoff period is 

assumed to be constant whereas a constant slope method is used to increase the 

amount of base flow (Qb) over the runoff period (Blume et al. 2007). These are then 

combined with time series of simulated concentrations in runoff and quantity of 

runoff water to determine total metaldehyde concentrations in the river. Accurate 

estimation of the arrival time of peak metaldehyde concentration at the abstraction 

site is important in terms of enabling smarter surface water abstraction management 

to avoid peak metaldehyde concentrations. Thus, time to peak (ΔT), prediction error 

of peak flow (ΔPF) and concentration (ΔPC) are used to evaluate the model 



107 

 

performance along with other commonly used criteria as shown later in sections 4.4.1 

and 4.4.2. 

Figure 4.5 shows runoff travel time from 2015 high risk areas computed based on a 

constant and uniform rainfall intensity of 1mm/hr applied for 1 hour over the whole 

catchment. The map of travel times from high risk areas in the catchment presented 

in Figure 4.5 shows that the travel time is mainly dependant on the distance of high 

risk areas both from the outlet of the catchment and from near by streams. Different 

high risk areas produce runoff depending on the rainfall amount in their local area 

and hence the proportion of high risk areas contributing runoff at different intervals 

following a rainfall event depends both on the travel time and the nature of localized 

rainfall events. The sum of histograms in Figure 4.5 is found to be 74.5km
2
 and is in 

agreement with the sum of the total high risk areas in the catchment (74.5km
2
), 

which has occurred due to the assumption of uniform rainfall over the whole 

catchment.  
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Figure 4.5. Runoff travel time and runoff contributing areas from 2014 high risk areas in the catchment based on a constant and spatially uniform 

1mm/hr rainfall of one hour duration. (a) Map of travel time from high risk areas (b) Runoff contributing metaldehyde high risk areas in every 5 

hours intervals following rainfall event. 
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4.3 Model input, calibration and verification data 

 Land use, soil type and DEM 4.3.1

Land use, soil type and DEM of the catchment were pre-processed to derive various 

spatial input datasets to the model. Direct model inputs derived from these data are 

land slope, flow direction, flow accumulation, length of flow pathways, Manning’s 

coefficients (n), curve numbers (CN) and high risk areas. A vector layer of land use, 

which was derived from satellite imagery, was obtained from the Centre for Ecology 

and Hydrology, UK for each study year. The land use map classifies crop types and 

grassland at field level and was used to assign metaldehyde high risk areas (section 

4.2.5) as well as Manning’s roughness coefficient (n) values for each grid cells based 

on values published in the literature (Montes 1998; Brater & King 1976). Manning’s 

roughness values assigned for overland surfaces varied between 0.06 – 0.15 whereas 

roughness values assigned for channel surfaces (based on the nature of the channels) 

varied between 0.035 - 0.04. The spatially distributed Manning’s coefficient values 

and high risk areas were changed for each study year based on changes in land use in 

the catchment. The soil map for the study catchment was obtained from the UK 

National Soil Resources Institute (NSRI) database (NSRI 2009) for the calculation of 

curve numbers (see section 4.2.3). Soils in the catchment were categorized into four 

hydrologic soil groups (A, B, C, and D) based on the soil's runoff generating 

potential (USDA 1986). Hydrologic soil group A generally have the lowest runoff 

potential and group D have the highest potential. Hydrologic parameters for the 

calculation of runoff such as slope, flow direction, flow accumulation, drainage basin 

and stream network delineation were derived in ArcGIS using the OS Terrain 5 

digital elevation model, which was obtained from the Ordnance Survey, UK 

(Ordnance survey 2017).  

 Rainfall 4.3.2

Radar rainfall data were acquired from the UK met-office’s NIMROD system with 

spatial and temporal resolution of 1km
2
 and 5 minutes respectively (Met Office 

2003). The radar rainfall data were resampled to a 5m
2
 grid and aggregated to one 
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hour resolution to match with the model grid and time resolution. This dataset was 

used as input for the calculation of runoff generation and pollutant wash-off (sections 

4.2.3 and 4.2.5). Initially four rainfall events in the catchment were selected to 

calibrate and validate the travel time based runoff model developed in this study. 

Summary statistics and temporally averaged spatial variation of each rainfall event 

are provided in Table 4.1 and Figure 4.6. The temporal variations of each rainfall 

event are presented in Figure 4.8. Significant rainfall events with temporal and 

spatial average rainfall intensities ranging from 0.5mm/hr to 1.5mm/hr and durations 

ranging from 10hr to 30hr were selected to represent rainfall conditions that are 

likely to cause metaldehyde spikes at the outlet of the catchment. The peaks of the 

rainfall events used for runoff model calibration and validation varies widely 

between 1.5mm/hr and 5.4mm/hr. The spatial distribution of temporally averaged 

rainfall for the rainfall events used in runoff model calibration and validation 

presented in Figure 4.6 show the relatively wide variation of rainfall occurrences 

across the catchment area. Historical radar rainfall data was used to compute 

antecedent soil moisture conditions for each grid cell over the duration of rainfall 

events and were used to adjust grid cell curve number values. 

Table 4.1. Summary statistics of rainfall events used for runoff model calibration and 

validation 

Rainfall 

Event No. 

Rainfall Event 

Date 

Duration 

(hr) 

Temporal and 

Spatial Average 

Rainfall Intensity 

(mm/hr) 

Temporal and 

Spatial Peak 

Rainfall 

Intensity 

(mm/hr) 

A1 October 28, 2013 21 1.1 4.5 

A2 November 3, 2012 30 0.6 4.3 

A3 
September 24, 

2012 
10 1.5 5.4 

A4 
November 22, 

2014 
23 0.5 1.5 
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Figure 4.6. Spatial distribution of temporally averaged rainfall for the rainfall events 

used in runoff model calibration and validation. 

Following the validation of the runoff model, radar rainfall data observed during the 

four metaldehyde data collection events were used to drive the metaldehyde 

prediction model simulations. Summary statistics and temporally averaged spatial 

variation of each rainfall event used for calibration and validation of the metaldehyde 

prediction model are provided in Table 4.2 and Figure 4.7 below. The temporal 

variations of each rainfall event are presented in Figure 4.9. Rainfall events with 

temporal and spatial average rainfall intensities ranging from 0.2mm/hr to 0.81mm/hr 
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and peak rainfall intensities ranging from 1.21mm/hr to 3.3mm/hr (Table 4.2) are 

used for the metaldehyde model calibration and validation. These rainfall events are 

selected based on the timings of the four metaldehyde data collection events. As 

shown in Figure 4.7, relatively small spatial variations across the catchment is 

observed, which is mainly due to temporal averaging over the longer durations and 

characteristics of the rainfall events.   

Table 4.2. Summary statistics of rainfall events used for metaldehyde model 

calibration and validation 

Event No. Event Start Date 
Duration 

(hr) 

Temporal and 

Spatial Average 

Rainfall Intensity 

(mm/hr) 

Temporal and 

Spatial Peak 

Rainfall 

Intensity 

(mm/hr) 

B1 October 8 - 9, 2014 34 0.2 2.21 

B2 
December 12 - 13, 

2015 
35 0.38 1.21 

B3 February 6, 2017 9 0.81 1.73 

B4 
November 21 - 22, 

2016 
35 0.55 3.3 
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Figure 4.7. Spatial distribution of temporally averaged rainfall for the events used in 

metaldehyde model calibration and validation. 

 Flow 4.3.3

Historical hourly flow data from a flow gauging station situated at the outlet of the 

catchment was obtained from the UK Environment Agency. The flow hydrographs 

for each rainfall events were separated into base flow and direct runoff using straight 

line method (Reddy 2006). A straight line is drawn from the point where the sharp 

rise in hydrograph occurs to the end of recession limb, which is used to separate the 
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hydrograph into two distinct components: a fast intermittent runoff response and a 

slow continuous base flow response of the catchment. The fast response runoff 

hydrographs resulting from the selected rainfall events were used to calibrate and 

validate the runoff model.  

 Water sampling and metaldehyde data 4.3.4

We have collected water samples from river Leam using auto-samplers installed at 

surface water abstraction site used for drinking water supply. The use of auto-

samplers enabled the continuous collection of hourly water samples during storm 

runoff events, which successfully captured the short term fluctuations of 

metaldehyde concentrations at the abstraction site. The auto-samplers were manually 

triggered before the arrival of forecasted rainfall events, which were judged likely to 

cause metaldehyde peaks due to runoff.  For each event sampling was carried out for 

a period of 3 - 5 days, which enabled the acquisition of water samples during the full 

runoff period following the rainfall events. The data collection campaign was carried 

out over a period of three metaldehyde application seasons between September 2014 

and February 2017. Collected water samples were analysed by Severn Trent Water 

Ltd laboratory to determine metaldehyde concentrations. Details on the metaldehyde 

detection method used are provided by Li et al. (2010).  

4.4 Results and Discussion  

This section presents the calibration and verification results of runoff and 

metaldehyde concentration prediction models for the rainfall events presented in 

Table 4.1 and Table 4.2. Comparison of simulated model results with measured flow 

data at the catchment outlet and metaldehyde concentration data from four water 

quality sampling events are discussed using various error statistics. 

 Runoff model  4.4.1

The accuracy of metaldehyde prediction model is dependent on runoff travel times 

from high risk areas to the outlet of the catchment. Thus, the runoff model, which 

consists of runoff generation and runoff routing components, needs to be calibrated 
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and validated before it is integrated to the pollutant build-up/wash-off model. Flow 

data recorded by a gauging station located at the outlet of the catchment is acquired 

from Environment Agency and is used to calibrate and validate the travel time 

computation technique used in the runoff model. Runoff generation and transport 

from the entire catchment is considered for the calibration and verification of runoff 

computation approach. Observed flow data from rainfall event A1 was used to 

calibrate parameters 𝐾𝑜 and 𝐾𝑐 (equation (4.15) and (4.16)), which were used in the 

computation of travel times in over land and channel flow cells respectively. 

Simulation of the runoff prediction model was carried out using eleven different 

combinations of 𝐾𝑜 and 𝐾𝑐 values (Table 4.3). The accuracy of the runoff model was 

evaluated using the prediction error of peak flow rate (ΔPF), prediction error of time 

to peak (ΔT) and volume conservation index (VCI), which was calculated using 

equation (4.19). In addition, the overall model prediction efficiency over the entire 

hydrograph was evaluated using model efficiency coefficient (E) as shown in 

equation (4.20). Prediction error of peak flow rate (ΔPF) is defined here as the 

difference between observed and simulated peak flows, whereas prediction error of 

time to peak (ΔT) is defined as the time difference between the arrival of simulated 

and observed peak flows.  

 

𝑉𝐶𝐼 = ∑ 𝑄𝑚
𝑡

𝑇

𝑡=1

∑ 𝑄𝑜
𝑡

𝑇

𝑡=1

⁄  

(4.19) 
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̅̅̅̅ )2𝑇
𝑡=1

 
(4.20) 

where 𝑄𝑚
𝑡  is predicted flow at discrete times 𝑡 (m

3
/s), 𝑄𝑜

𝑡  is observed flow at discrete 

times 𝑡 (m
3
/s) and 𝑄𝑜

̅̅̅̅  is mean of observed flow values over the entire period (m
3
/s). 

The runoff model prediction results and error statistics for rainfall event A1, which 

was used for model calibration, are summarized in Table 4.3. The volume 

conservation index (VCI) for rainfall event A1 is found to be 0.87. The results 
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indicated that 𝐾𝑐 = 1 and 𝐾𝑜 = 0.8 provide the optimum solution considering all the 

four evaluation criteria. The calibrated parameter value of Kc = 1 shows that the 

Manning’s roughness coefficient values assigned to channels based on values from 

literature and other parameters used to compute channel travel time required no 

adjustment. Overall, the calibration results showed that model performance in 

predicting runoff is more sensitive to the computation of channel travel time than 

overland travel time. This is mainly due to the longer flow path that runoff travels 

along channels as compared to relatively much shorter flow paths of overland flows 

that span from runoff generating areas to the nearby water bodies. Moreover, the 

faster rate of flow in channels as compared to much slower flows in overland flows 

also mean that changes in channel travel time would have a much bigger impact on 

the arrival of runoff at the catchment outlet. 

Table 4.3. Error statistics for rainfall event A1 with different values of 𝐾𝑐 and 𝐾𝑜 

Kc Ko ΔPF (m
3
/s) ΔT (h) E 

0.8 0.8 1.16 -7 0.67 

0.9 0.8 1.07 -3 0.86 

1 0.8 0.98 1 0.85 

1.1 0.8 0.91 4 0.69 

1.2 0.8 0.85 8 0.47 

0.8 1 1.14 -6 0.72 

1 1 0.96 1 0.83 

1.2 1 0.83 8 0.43 

0.8 1.2 1.11 -6 0.77 

1 1.2 0.94 1 0.82 

1.2 1.2 0.82 8 0.39 

These calibrated parameter values were used in the runoff model simulations for the 

three remaining rainfall events. Table 4.4 summarizes the results of model simulation 
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and error statistics for the three rainfall events used for runoff model validation. It 

was observed that model simulations of all three rainfall events have efficiencies 

greater than 0.80 and prediction error of peak flow rate less than 10%. In addition, 

volume conservation index of more than 80% and time to peak error of less than 6 

hours have been observed for all rainfall events. With an average efficiency of 0.87 

for the rainfall events used for validation, the overall performance of the calibrated 

travel time based runoff model can be considered reasonable. The runoff model 

performed better for rainfall events with higher AMC as compared to rainfall events 

with low AMC. Comparison of observed and simulated runoff hydrographs for all 

four rainfall events are shown in Figure 4.8. The spatially averaged hourly rainfall 

data presented in Figure 4.8 show that various levels of rainfall intensity and 

durations over the four rainfall events, which are observed to cause different impacts 

on the runoff hydrograph characteristics. High intensity and short duration rainfall 

event is observed to cause large volume of runoff with significant peak as shown in 

Figure 4.8b, whereas low intensity and long duration rainfall is observed to cause 

smaller volume of runoff and peak. However, it is also necessary to note that 

antecedent soil moisture conditions play an important role in the rate of runoff 

generation and thus can significantly impact on the level of peak runoff arriving at 

the catchment outlet.  In general, the levels of error statistics observed are practically 

acceptable and predicted runoff hydrographs agree well with the simulated 

hydrographs. Consequently, the calibrated travel time approach can be used for 

estimation of metaldehyde transport from high risk areas in the catchment. 

 Table 4.4. Model simulation results for three rainfall events 

Rainfall 

Event no. 
VCI 

Peak 

flow 

(m
3
/s) 

ΔPF 

(m
3
/s) 

Time to 

peak (h) 
ΔT (h) E 

A2 0.98 24.5 -2.07 45 5 0.91 

A3 0.99 8.0 -0.15 38 4 0.83 

A4 0.82 7.3 0.5 63 5 0.86 
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Figure 4.8. Comparison of observed and simulated runoff hydrographs and spatially 

averaged rainfall over the catchment (T = 0 at start of recorded rainfall). (a) Rainfall 

event A1 that is used for model calibration (b) Rainfall event A2 (c) Rainfall event 

A3 (d) Rainfall event A4. 

 Metaldehyde prediction model  4.4.2

The rainfall event based operation of the automatic samplers to collect hourly water 

samples enabled the capture of high resolution metaldehyde concentrations arriving 

at the outlet of the catchment following rainfall events. Results of the analysis of 

metaldehyde concentrations from the collected water quality samples for each event 

are presented in Figure 4.9. The analysis shows that relatively short lived 

metaldehyde peaks with event durations ranging from 12 to 48 hours occur following 

rainfall events (Figure 4.9). The size and nature of these short lived metaldehyde 

spikes are highly variable between events. For example, recorded metaldehyde 

concentrations rise by approximately 500% during event B2, but only by 150% 
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during event B3, however averaged rainfall is of the same order of magnitude for 

both events. The datasets therefore emphasise that runoff generation from high risk 

areas has a significant impact on metaldehyde concentrations in the catchment 

surface waters, and that pollutant dynamics is highly sensitive to temporal and spatial 

distributions of rainfall and land use. Moreover, soil type on the land where 

metaldehyde is applied combined with chemical characteristics of metaldehyde such 

as solubility and sorption coefficient play an important role in the process of 

mobilizing metaldehyde into water courses. 

The metaldehyde concentration prediction model represents metaldehyde transport in 

runoff from high risk areas in the catchment by coupling the travel time technique 

calibrated in section 4.4.1 with build-up/wash-off component. This enabled 

forecasting of metaldehyde concentration levels following rainfall events at the outlet 

of the catchment, where the surface water abstraction site is located. Metaldehyde 

concentration data collected over data collection event B1 was used to calibrate the 

value of parameter 𝐾𝑏, which was used to account for uncertainties associated with 

the estimation of metaldehyde build-up and wash-off rate. Different values of 

parameter 𝐾𝑏 ranging from 1 to 3.5 were set in the metaldehyde prediction model to 

simulate metaldehyde concentrations during data collection event one. The model 

performance was evaluated using four criteria i.e. prediction error of time to peak 

concentration (ΔTc), prediction error of peak metaldehyde concentration (ΔPC), 

coefficient of determination (R) of observed and simulated metaldehyde 

concentrations and model prediction efficiency (E). However, due to the assumption 

of uniform application of metaldehyde on all high risk areas (section 4.2.5), changes 

in parameter Kbw result in an overall proportional increase or decrease of predicted 

metaldehyde concentrations across the prediction period, hence calibration has no 

impact on the proportion of the variances between predicted and observed 

concentrations. As a result, coefficient of determination (R) values between predicted 

and observed concentrations are found to be insensitive to changes in parameter Kbw. 

The metaldehyde prediction model results for data collection event B1 and associated 

error statistics are summarized in Table 4.5. The results indicated that optimum 
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solution is attained with 𝐾𝑏  =  1.6  considering the remaining criteria for data 

collection event B1. Initial concentration (Co), which represents metaldehyde 

concentration in the river prior to each rainfall event, value of 0.067µg/l is used for 

the calibration event B1. Co values for each event used for metaldehyde model 

validation are presented in Table 4.6.  

 

Figure 4.9. Spatially averaged rainfall and comparison of observed and simulated 

metaldehyde concentrations at the catchment outlet for events B1 - B4. (a) Rainfall 

event B1 that is used for model calibration, (b) Rainfall event B2, (c) Rainfall event 

B3, (d) Rainfall event B4. 
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Table 4.5. Error statistics for data collection event B1 with different values of 𝐾𝑏 

Kbw ΔTc (h) 

Peak 

Metaldehyde 

Concentration 

(µg/l) 

ΔPC 

(µg/l) 
R E 

1 2 0.11 -0.04 0.77 0.10 

1.3 2 0.12 -0.03 0.77 0.42 

1.5 2 0.13 -0.01 0.77 0.55 

1.6 2 0.14 -0.01 0.77 0.60 

1.7 2 0.14 -0.01 0.77 0.54 

2 2 0.15 0.01 0.77 0.47 

2.5 2 0.16 0.01 0.77 0.42 

3.5 2 0.20 0.05 0.77 -0.77 

 

Verification 

Metaldehyde model simulations were carried out for other three metaldehyde data 

collection events using calibrated parameter values. Table 4.6 summarizes model 

simulation results and error statistics for all three data collection events. It was 

observed that simulation for all three events have correlation coefficient of 0.70 or 

more, prediction error of peak metaldehyde concentration less than 5% and time to 

peak concentration error of 6 or less hours. Observed and predicted metaldehyde 

concentrations are shown in Figure 4.9 for all four data collection events. Figure 4.9 

also shows the spatially averaged rainfall over the catchment, which is observed to 

have various characteristics ranging from high intensity and short duration rainfall 

events to low intensity and longer duration rainfall events. As shown in Figure 4.9, 

high intensity with short durations of rainfall and low intensity with longer durations 

of rainfall have been observed to cause different levels of metaldehyde peaks. Low 

intensity and long duration rainfall events are observed to cause high peak 
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metaldehyde concentrations as shown in , whereas the high intensity and short 

duration rainfall event in has resulted in relatively smaller peak metaldehyde 

concentration. But, in addition to the rainfall characteristics, the important role 

antecedent moisture conditions play in metaldehyde generation and routing needs to 

be noted as discussed in section 4.4.1. In general, metaldehyde concentrations are 

predicted well for all events with practically acceptable levels of errors in terms of 

both concentration levels and prediction of peak arrival times. The results showed the 

capability of the model developed in this study for the intended practical purpose of 

predicting the arrival of peak metaldehyde concentrations and informing surface 

water abstractions.  Discrepancies in the prediction of the peak arrival time are likely 

to be caused mainly by uncertainties associated with estimation of channel travel 

time, antecedent conditions and the assumption of uniform metaldehyde application 

throughout the high risk areas in the catchment. Some of these errors may be reduced 

in future via the use of more calibration data and a more detailed consideration of 

metaldehyde applications informed by data from farmers (i.e. real time application 

data). 

Table 4.6. Simulation results for three data collection events 

Data 

Collection 

Event no. 

Co (µg/l) ΔTc (h) 

Peak 

Metaldehyde 

Concentration 

(µg/l) 

ΔPC 

(µg/l) 
R E 

B2 0.05 -3 0.32 0.01 0.81 0.45 

B3 0.03 2 0.07 -0.003 0.7 0.48 

B4 0.4 6 1.7 -0.06 0.74 0.45 
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4.5 Conclusions 

Diffuse agricultural pollution is known to be a significant concern to the quality of 

surface water, with implications for drinking water supply. Smarter management of 

water resources including forecasting and prediction of pollutant spikes is a possible 

means to avoid contamination of drinking water supplies and reduce the cost of water 

treatment. This requires a detailed understanding of pollutant processes in the 

catchment in response to rainfall events. The occurrence, sources, transport and fate 

of organic compounds in the environment involve a variety of processes that 

determine how the compounds are initially distributed, move and react. 

Consequently, assessing fate and transport of contaminants in the environment is a 

complex issue. This chapter focuses on predicting the arrival of peak metaldehyde 

concentrations in runoff at abstraction sites with a view to inform surface water 

abstraction decisions, hence a model has been developed to describe short term 

dynamics and transport, primarily driven by rainfall driven runoff, rather than longer 

term reactions/degradation or groundwater processes. Runoff generation and routing 

is spatially and temporally variable and hence surface water quality responses are 

dependent on the spatial distribution of pesticide within the catchment (a function of 

land use) and the dynamics of individual rainfall events. To date the quantification 

and understanding of the pollutant dynamics that drive short term fluctuations has 

been hindered by a paucity of high resolution water quality sampling data. The 

physically-based distributed metaldehyde prediction approach developed in this 

chapter combines runoff and build-up wash-off concepts in a GIS environment, 

enabling the full consideration of spatially and temporally variable rainfall and land 

use patterns. Model parameters and input data are extracted from radar rainfall data, 

soil type, land use and DEMs. To address the paucity of current data we attempt to 

utilize automatic samplers which were triggered during rainfall events to capture the 

impact of forecasted rainfall events on the concentrations in surface waters. The 

variation in the metaldehyde concentration response between the rainfall events 

demonstrates the importance of a full consideration of spatiotemporal rainfall and 

metaldehyde application data. 
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In terms of practical application, it is noted that the accurate forecasting of arrival 

time of peaks is of more value than forecasting of the peak concentration value, as 

this enables surface water abstraction decision makings such as suspending 

abstractions temporarily in order to avoid the entrance of high metaldehyde levels 

into water supply systems. Given the inability of existing treatment techniques to 

remove high metaldehyde levels from water and the absence of direct metaldehyde 

detection methods, the model developed in this study provides a cost-effective and 

sustainable solution. When applied to the trial catchment the model was able to 

predict peak concentrations to within 6 hours in all cases, given the availability of 

water storage infrastructure in the catchment this would enable the operator to 

suspend abstraction for this period to allow likely periods of high concentration to 

pass. Given the effective utilisation of storage, such a suspension would not have a 

significant negative impact on water resources, especially if abstraction was 

increased at other times to compensate. The increasing availability of catchment 

scale spatial datasets combined with the relatively simple GIS based application of 

the model makes it suitable for use in various catchments, where prediction of 

metaldehyde exposures are required. 
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  Chapter 5

Uncertainty in Metaldehyde Prediction Model 

5.1 Introduction 

The reliability of water quality management decisions and the associated benefits 

which accrue from them are dependent on the accuracy of water quality prediction 

models used to inform them. Calibrated parameter values and inputs are often used in 

deterministic water quality models without considering uncertainties and overlooking 

implications of this on decisions that are made based on water quality model outputs. 

However, uncertainties in water quality predictions can be very high due to the non-

linearity and multi-dimensional nature of the process represented by models. A 

measure of the significance of these uncertainties in water quality model outputs is 

necessary to enable to inform the level of confidence in these models (Viviani 2009).   

Particularly, lack of measured data on spatially variable inputs and parameters are 

known to cause significant level of uncertainties in catchment scale water quality 

models. Thus, reliable water quality management decisions that aim to generate 

positive social, environmental and economic benefits have to carefully consider 

information on uncertainties of water quality models. Uncertainties in water quality 

predictions originate mainly from errors in model structures, inputs and parameters 

that inaccurately represent the various processes involved in pollutant generation and 

transport (Beven & Freer 2001). Numerical methods used to solve model equations 

and observed water quality data used for model calibration are also other factors that 

bring uncertainties in water quality predictions. Parameters are used in models to 

represent various components of hydrological processes represented by the model. 

Some of the parameters used in models have direct physical interpretations and can 

be measured, whereas values of some model parameters have to be estimated using 

various methods (Beven 2001). However, estimation of parameter values should 

preferably provide information on their uncertainties in addition to optimum 

parameter values (Briggs et al. 2012). Similarly, uncertainty analysis needs to be 

incorporated when estimating model inputs. Water quality predictions that 

incorporate information on the level of model uncertainties enable to make risk-
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aware water quality management decisions (Hall & Borgomeo 2013). Moreover, 

uncertainty quantification and sensitivity analysis can help in understanding 

contributions of the various sources of uncertainty, which will be instrumental in 

planning uncertainty reduction efforts (Viviani 2009).  

In this chapter, uncertainty propagation analysis of the metaldehyde prediction 

model, which is introduced in chapter 4, is performed with a view to enabling well 

informed and risk aware decisions when using the model outputs. The uncertainty 

analysis outputs can also potentially used to inform catchment scale data collection 

strategies. Monte Carlo methods are commonly used to quantify uncertainties in 

diffuse pollution models and analyse sources of model output uncertainties. Monte 

Carlo method’s general applicability, easy implementation and ability to represent 

model output uncertainties using probability distributions make it attractive for use in 

uncertainty quantification and analysis (McIntyre et al. 2004). A state-of-the-art 

Monte Carlo based spatial uncertainty analysis tool is employed to enable efficient 

sampling of spatially variable model inputs and parameters. The numerically simple 

and physically distributed structure of the metaldehyde model combined with the 

availability of catchment scale high spatiotemporal resolution data have enabled the 

application of spatial uncertainty analysis of the metaldehyde model. A study that 

investigates spatial uncertainties associated with catchment scale water quality 

models is currently lacking in the literature. The uncertainty analysis in this chapter 

is focused on input and parameter uncertainties. Quantification of model structural 

uncertainty requires comparison of performance of different modelling tools and is 

not the subject of this chapter.   

5.2 Methodology 

Following calibration and validation of the metaldehyde prediction model (chapter 

4), uncertainty quantification and analysis are performed to assess propagation of 

model inputs and parameters uncertainties to model outputs. Stochastic and 

deterministic sensitivity analyses are carried out to analyze the sensitivity of the 

model output to different model input and parameter uncertainties. This enabled to 
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identify contributions of individual sources of uncertainty to the output uncertainty. 

The following five major steps are followed when performing the uncertainty 

quantification and analysis.  

1. Select model inputs and parameters to be included in uncertainty 

quantification 

2. Define and parametrize probability distribution functions of input and 

parameter uncertainties 

3. Generate model inputs and parameters realizations from predefined 

probability distributions to represent uncertainties in inputs and parameters 

4. Run metaldehyde prediction model for each model input and parameter 

realization to propagate uncertainties through the model 

5. Summarize model output uncertainties resulted from Monte Carlo runs using 

various measures  

The metaldehyde prediction model is a catchment scale physically distributed model 

and thus involves large number of inputs and parameters. Consequently, there are 

likely to be various sources of uncertainty in the model. But, only few inputs and 

parameters are believed to cause larger uncertainties and are considered in the 

uncertainty analysis in this chapter. This may lead to underestimation of the 

quantified model output uncertainty as there are likely to be uncertainty contributions 

from other inputs and parameters to the overall uncertainty. However, inclusion of all 

inputs and parameters in the uncertainty analysis will make the process more 

complex and time consuming, while the extra quantified uncertainty is likely to be 

small as compared to the uncertainties caused from the major sources. Thus, 

information from literatures on main sources of uncertainty in stormwater quality 

models (chapter 2) and existing knowledge on the underlying techniques used to 

develop the metaldehyde model are used to select few inputs and parameters for 

consideration in the uncertainty assessment in this chapter. Results from the runoff 

prediction component of the metaldehyde model (discussed in section 4.4.1) have 

shown that only small uncertainties were originated from the rainfall input data. 

Thus, input uncertainties arising from radar rainfall data are not considered in this 
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study. As a result, metaldehyde applied high risk areas (B), time interval between 

applications and a rainfall event parameter t, build-up/ wash-off calibration 

parameter Kbw, channel flow travel time calibration parameter Kch and overland flow 

travel time calibration parameter Ko are selected and considered in the uncertainty 

quantification and analysis of the metaldehyde model.  

 Uncertainty quantification of selected model inputs and parameters 5.2.1

Quantifications and representations of uncertainties of the five selected model inputs 

and parameters are discussed in this section individually. Depending on the nature of 

these selected input and parameters, different techniques are employed in this section 

to represent uncertainties associated with each.   

Metaldehyde build-up (B): build-up of metaldehyde on high risk areas occurs 

through slug pellet applications mainly during the autumn and winter seasons. 

Typical single slug pellet application based on guidelines from manufacturers is 5 

kg/ha (Metaldehyde Stewardship Group 2012a). This is equivalent to 75g/ hectare 

(0.19 g per the 25 square meter grid used in the model) of metaldehyde based on a 

commonly used 1.5% slug pellet.  The statutory legal requirement in the UK on 

metaldehyde application states that total application in a calendar year shouldn’t 

exceed a maximum of 700g/ha (Metaldehyde Stewardship Group 2012b). 

Metaldehyde Stewardship Group guidelines promote autumn restriction on 

metaldehyde applications, which runs from 1 August to 31 December. These 

restrictions recommend a maximum total metaldehyde application rate of 210g/ha 

during this period (Metaldehyde Stewardship Group 2012b). However, actual 

applications vary based on the occurrence and size of slug population during a 

particular period, which varies from time to time depending on wet conditions on 

farmlands. Lack of data on actual metaldehyde applications makes it difficult to 

determine which farmlands received new metaldehyde application before a particular 

rainfall event. In the deterministic metaldehyde prediction model it was assumed that 

all high risk farmlands have received new metaldehyde application before a 

particular rainfall event (section 4.2.5). However, only a proportion of high risk areas 
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are likely to receive new metaldehyde application at any one time. Metaldehyde 

build-up input (B) is used to represent build-up through applications before a 

particular rainfall event in the model. To account for uncertainty in estimation of 

metaldehyde build-up, B is considered as uncertain categorical variable, which takes 

binary values to represent whether metaldehyde is applied or not on a particular land. 

Hence, categorical variable B takes values of either 0.19 or 0, where 0.19 represent 

the amount of metaldehyde in grams resulted from a typical single application per the 

5 square meter grid area used in the model and 0 represents no metaldehyde 

application on that specific farmland. The overall amount of metaldehyde application 

in the catchment prior to a particular rainfall event is represented using parameter K 

as discussed in section 4.2.5. Thus, the probability of metaldehyde application on 

each farm land prior to a specified rainfall event is represented based on parameter K. 

The probability that B takes a value of 0.19  or 0 (metaldehyde is applied or not) for  

a particular land prior to a specified rainfall event thus varies from one event to 

another depending on values of parameter K, which is derived from  metaldehyde 

concentration in the river prior to each rainfall event (𝐶𝑜) and calibration parameter 

(𝐾𝑏). The use of values of parameter K to estimate probabilities used in generating 

realizations from B has enabled to reflect the fact that different proportions of 

farmlands in the catchment receive metaldehyde application at different periods 

(Figure 5.1). 
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Figure 5.1. Examples of high risk area realizations with new metaldehyde 

applications. 

Time interval between applications and a rainfall event (t): Recorded data on time 

interval parameter t (number of days), which is used to express the interval between 

metaldehyde application and a rainfall event (Figure 5.2), is rarely available and an 

assumed value of 5 days for all high risk farmlands in the catchment was used in the 

deterministic model (section 4.2.5). The values of all other parameters used in the 

wash-off equation were derived from measured variables. As a result, a significant 

proportion of uncertainty in the wash-off equation is derived from the parameter t. 

For the uncertainty analysis study in this chapter, t was considered as a uniformly 
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distributed variable between 1 and n, where n is the number of days between two 

consecutive slug pellet applications on high risk farmlands during the application 

period. In general, most of metaldehyde applications are made during September to 

December period as the wet soils during the autumn and winter seasons provide 

favorable conditions for slugs. Routine monitoring data collected by the local water 

infrastructure operator shows that more than 90 % of high levels of metaldehyde in 

the river have occurred during the September to December application season 

(Figure 4.2, Chapter 4). Accordingly, it is assumed that approximately 90% of the 

700g/ha statuary annual legal limit of metaldehyde is applied during the September 

to December application period. Based on this assumption and considering the 

typical single slug pellet application amount of 5kg/ha (75g/ha based on a commonly 

used 1.5% slug pellet), frequency of application on high risk farmlands during this 

period is estimated to be around 14 days. This indicates that time interval between 

any new metaldehyde application and a rainfall event, t, for a particular farmland 

ranges between 1 to 14 days. 

 
Figure 5.2. Time interval between application and rainfall events.  

Build-up/ wash-off calibration parameter (Kbw): Parameter Kbw is calibrated in the 

model and used in combination with metaldehyde concentration trends in streams to 

represent the ratio of actual metaldehyde application in the catchment to the 

application of metaldehyde on all high risk areas. It is considered as continuous 

variable normally distributed with mean of the calibrated value of the parameter.     
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Channel travel time calibration parameter (Kch): Parameter Kch is used to 

represent uncertainties in channel surface roughness (n) and slopes used in the 

estimation of runoff travel time in channel networks thorough out the catchment. 

Uncertainty in estimated channel roughness and the digital elevation model used to 

generate channel slope directly propagates to parameter Kch as it is used to account 

for these errors in the model. It is considered as continuous variable normally 

distributed with mean of the calibrated value of the parameter. 

Overland flow calibration parameter (Ko): Overland flow calibration parameter Ko 

is used in the model to account for travel time estimation errors in overland flows. 

These errors occur due to uncertainties in DEM and land use data used to drive land 

slopes and roughness coefficients respectively. Hence, uncertainty in the digital 

elevation model and land used data used to derive roughness coefficients and land 

slope propagates to parameter Kch as it is used to account for estimation errors in 

these parameters. It is considered as continuous variable normally distributed with 

mean of the calibrated value of the parameter. 

 Uncertainty representations 5.2.2

Uncertainties in selected model inputs and parameters are represented using 

probability distribution functions. The estimation of probability distribution function 

used to characterize the uncertainties depends on the spatiotemporal representations 

and the measurements scale of the uncertain inputs and parameters. The type and 

characteristics of probability distribution functions used to quantify each input and 

parameter analyzed in this study are described below.  

Metaldehyde build-up (B) is represented in the model as a spatially variable 

categorical model input with two categories to represent that metaldehyde is applied 

or not applied on a particular farm land. The uncertainty in metaldehyde application 

on any specific farmland in the catchment before a particular rainfall event is 

characterized by a discrete probability distribution function as 



133 

 

 𝑃[𝐶(𝑋) = 𝑐𝑖] = 𝜋𝑖(𝑋) (5.1) 

where 𝑃(𝐶(𝑋) = 𝑐𝑖) is the univariate probability that variable C falls in category ci 

at high risk farmland X, or shortly πi(X). The numerical values that will be used in the 

model for the two categories for metaldehyde build-up (B) are 0 (metaldehyde not 

applied) and 0.19 (representing thethe typical metaldehyde application).  

Time interval between applications and a rainfall event parameter (t) is considered in 

this study as a numerical constant variable that doesn’t exhibit spatiotemporal 

variation. Consequently, continuous probability distribution function, which 

quantifies the probability at which a variable takes a value in any given interval, is 

used to represent uncertainties in parameter t. The likelihood of metaldehyde 

application during any dry day between two rainfall events during the application 

season is reasonably assumed to be equal to the likelihood on any other day. Thus, a 

uniform probability distribution function is used to represent uncertainties parameter 

t as follow 

 

𝑃(𝑡) = {

1

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛
                   𝑓𝑜𝑟  𝑡𝑚𝑖𝑛 < 𝑡 < 𝑡𝑚𝑎𝑥               

0                                       𝑓𝑜𝑟   𝑡 < 𝑡𝑚𝑖𝑛    𝑜𝑟    𝑡 > 𝑡𝑚𝑎𝑥

 

(5.2) 

where P(t) - the univariate probability that metaldehyde is applied t days before a 

particular rainfall event,tmin – the shortest possible time interval (in number of days) 

between an application and a rainfall event, tmax – the longest possible time interval 

(in number of days) between an application and a rainfall event.    

Build-up/ wash-off calibration parameter Kbw, channel travel time calibration 

parameter Kch and overland flow calibration parameter Ko are all numerical constants 

that have been considered invariable both spatially and temporally. Variations in 

values of these parameters are mainly due to natural processes and thus the 

commonly used normal distribution function is used to represent uncertainties in 

these parameters as follow 
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𝑃(𝑉 = 𝑣𝑖|𝜇, 𝜎2) =

1

√2𝜋𝜎2
𝑒

−
(𝑣𝑖−𝜇)2

2𝜎2  
(5.3) 

where 𝑃(𝑉 = 𝑣𝑖|𝜇, 𝜎2) – the univariate probability that the value of parameter V = 

vi, µ– base value of parameter V and σ– standard deviation of parameter V. 

 Uncertainty propagation through the model 5.2.3

Propagation of uncertainty through the model requires conducting a serious of model 

simulations with samples of inputs and parameters generated from predefined 

probability distributions. The sampling tool used to generate well representative 

realizations from the assigned probability distributions to model inputs and 

parameters depends on the nature of the distribution function. Hence, different tools 

and techniques are used to sample from the predefined probability distributions. A 

spatial uncertainty analysis tool called SPUP (spatial uncertainty propagation) (K. 

Sawicka 2016) is used to generate spatially distributed ensembles based on 

categorical vaues for B, which is represented as a spatially variable categorical model 

input as discussed in section 5.2.1. The SPUP package provides various functions to 

characterize uncertainties and generate realizations from uncertain spatially variable 

categorical and continuous model variables. Initially, quantified uncertainties of the 

selected model inputs and parameters are described in the SPUP tool using a function 

called defineUM(), which is given by  

For categorical variables 

 𝑑𝑒𝑓𝑖𝑛𝑒𝑈𝑀(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (5.4) 

For continuous variables 

 𝑑𝑒𝑓𝑖𝑛𝑒𝑈𝑀(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (5.5) 

where uncertain - logical value (True or False) to indicate if a spatial uncertainty of a 

variable is considered or not, categories – categorical values to be assigned to 

uncertain variables, category probability – probability corresponding to each 
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categorical value, distribution - type of probability distribution function assigned to 

characterize the uncertain variables, distribution parameters – list of parameters used 

to describe the probability distribution function. E.g. in case of normal distribution a 

mean and standard deviation of the distribution are required. 

A function called genSample() is used to generate samples from these predefined 

probability distribution functions. Various sampling techniques are incorporated to 

the genSample() function to enable sampling from the predefined probability 

distribution functions accounting for spatial variability and autocorrelation. The 

genSample() function in SPUP is expressed as: 

 𝑔𝑒𝑛𝑆𝑎𝑚𝑝𝑙𝑒(𝑈𝑀𝑜𝑏𝑗𝑒𝑐𝑡, 𝑁, 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑀𝑒𝑡ℎ𝑜𝑑)  (5.6) 

where UMobject - quantified uncertainty of model variables defined using the 

defineUM() function as shown in equation (5.4) or (5.5), N - number of realizations 

required, Sampling_Method - type of sampling technique to be used.   

All model grids (25 square meter grids) in a single field are considered to receive 

similar amount of metaldehyde application at the same time. This indicates that the 

spatially variable model input B, which represents metaldehyde build-up on high-risk 

areas through applications, is positively spatially auto-correlated at farmland level. 

Thus, Monte Carlo sampling for model input B is made using vector map that 

consists all high-risk farmlands in the catchment. This insures that at every sampling 

run a single value is allocated to each polygon representing a high-risk farmland in 

the catchment. The vector maps with sampled values are later converted into gridded 

data to be used in the grid based model. This allowed to assign similar values for all 

grids in a single farmland and thus to adequately account for the auto-correlation 

between grids in a single farm land during sampling. However, spatial 

autocorrelation between any two farmlands is assumed to be zero.    

Equation (5.4), which is a SPUP function used to define categorical variables, is first 

employed to define the metaldehyde application on high risk areas variable, B. 
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Categories of (0,1) and categorical probability is assigned based on parameter K as 

discussed in section 5.2.1. The spatial based sampling function of the SPUP package, 

genSample(), is then used to generate metaldehyde application on high risk areas 

ensembles (Figure 5.1). The Latin Hypercube method (McKay et al. 1979), which 

uses stratified random procedure to provide an efficient way of sampling, is 

employed to sample from probability distributions of model inputs and parameters. 

Following the sampling procedure, the model was run for each of model input and 

parameter realizations to propagate their uncertainties through the model. Due to the 

long metaldehyde model simulation time, 100 realizations of each uncertainty 

variable are used to evaluate the model and propagate uncertainties. This has resulted 

in an equal number of model output values, which in this case are multiple time 

series values of metaldehyde concentrations for each Monte Carlo run. Overall, five 

model uncertain variables are considered in the uncertainty analysis in this chapter as 

discussed in section 5.2.1.       

 Influence of model input and parameter uncertainties on model output 5.2.4

To study the overall influence of model input and parameter uncertainty on the 

predicted metaldehyde concentrations, samples were generated from the model input 

and parameter distributions discussed in section 5.2.2 using a series of forced 

perturbations.  To do this, all previously selected model input and parameters were 

represented in the Monte Carlo simulations using ensembles generated from the 

corresponding distributions with five different ranges of probability distributions. 

This involved varying the characteristics of the distribution by changing its 

coefficient of variation. The use of coefficient of variation, which is defined as the 

ratio of standard deviation to the mean and often expressed as percentages, provided 

a suitable measure for the relative variability of the assigned input and parameter 

probability distributions. Mean and standard deviation of the input and parameter 

distributions are varied to result in five different levels of coefficient of variations 

(2.5%, 5%, 7.5%, 10% and 12.5%), which introduced different levels of dispersion in 

the input and parameters distributions. This enabled to analyze the overall influence 

of the selected model input and parameters uncertainties on model outputs and assess 
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characteristics of the output uncertainty at different levels. Calibrated values of the 

parameters in the deterministic model (as discussed in chapter 4) were used as base 

values for perturbation and Monte Carlo simulation. 

Uncertainty in predicted metaldehyde concentrations (model output ensembles) are 

analyzed by computing various summary statistics such as confidence interval (90%) 

and coefficient of variation. The 90% confidence interval used here to present the 

results is defined as the difference between the 95
th

 and 5
th

 percentile values under 

the cumulative distribution curve of the predicted metaldehyde concentration. Both 

confidence intervals and coefficient of variation are evaluated for each series of 

perturbations for comparison. Gain factor (G), which is the ratio of predicted 

metaldehyde concentration coefficient of variation to the input and parameter 

coefficient of variation, is used to quantity the degree of amplification or attenuation 

in the perturbation transferred from the model input and parameters to the predicted 

metaldehyde concentration. 

 Sensitivity Analysis 5.2.5

Due to its catchment scale physical base and distributed nature, relatively large 

number of inputs and parameters are employed in the metaldehyde prediction model. 

Sensitivity analysis was carried out to analyze the sensitivity of the metaldehyde 

prediction model to selected model inputs and parameters. Quantifying uncertainty 

contributions from model inputs and parameters helps to identify the weakest link in 

the model; hence it can be used to prioritize efforts aimed at minimizing uncertainties 

in model predictions. In this study, three different types of sensitivity analyses were 

carried out to determine uncertainty contributions from different model inputs and 

parameters. The first two were performed using stochastic sensitivity analysis 

approach, which required generating and using realizations from input and parameter 

distributions in successive simulations. To compare uncertainty contributions from 

different model inputs and parameters, model output uncertainty from the first two 

sensitivity analyses are summarized using summary statistics such as confidence 

interval (CI=90%) and coefficient of variation. The level of uncertainty in model 
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output resulting from Monte Carlo simulations depends on the variances used in 

inputs and parameters distributions. Using a fixed value for one of the inputs or 

parameters enables to remove uncertainty contribution from that particular input or 

parameter. In the first stochastic sensitivity analysis approach, Monte Carlo 

simulation was performed initially using a full stochastic model, which considers all 

inputs and parameters of interest as random variables. Then, the inputs and 

parameters are kept constant progressively converting inputs or parameters to fixed 

variables through successive Monte Carlo simulations in a cumulative manner. In the 

first sensitivity analyses, an order of Kbw, t, B, Ko, Kch is used when inputs and 

parameters are converted to fixed variables. This order is then reversed when 

performing the second stochastic sensitivity analysis, which otherwise is performed 

similar to the first sensitivity analysis. This insured the analysis of the relative impact 

of uncertainty contribution from each input and parameter considered in the 

uncertainty analysis. In addition, combining the outputs from the two sensitivity 

analyses help to identify any correlations between model inputs and parameters 

(Benke et al. 2008).  

A third sensitivity analysis is conducted, which involved increment and decrement of 

each input or parameter from their base values while holding all other inputs and 

parameters constant. A classical “spider plot” is used to analyze outputs from this 

deterministic sensitivity approach (Eschenbach 1992), which shows the percentage 

change in model input and parameters versus percentage change in predicted 

metaldehyde concentrations. The five different plots included in the spider plot 

revealed the level of predicted metaldehyde concentration sensitivity to each of the 

five model inputs and parameters on individual bases.   

 Assessment of uncertainty contributions 5.2.6

Based on the nature of physical processes involved and the type of mathematical 

structures used to represent them in the model, uncertainties in different model inputs 

and parameters are likely to impact on various attributes of the model output. In 

addition to the magnitude of uncertainty contribution, model inputs and parameters 
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roles in defining  the characteristics of output uncertainty is crucial in making well 

informed and riskware decisions. Stochastic simulation of the model is carried out 

individually for each input and parameter while keeping all others constant to assess 

exclusive contributions to different attributes of output uncertainty. Start time, end 

time and the magnitude of predicted peak metaldehyde concentrations recorded in 

response to the variation in model inputs and parameters are considered when 

assessing the uncertainty contributions.   

5.3 Results and discussions 

 Uncertainties in prediction of metaldehyde concentrations  5.3.1

Uncertainty analysis of metaldehyde prediction model carried out in this study is 

mainly focused on assessing input and parameter uncertainty. Model structural 

uncertainty is also known to cause model prediction uncertainty, but it has not been 

the subject of this study. The negligible difference resulted from the comparison 

between the output of a reference run with optimum parameter and input values and 

the average of outputs from Monte Carlo runs indicated that the input and parameter 

uncertainties have not caused systematic model errors. This is likely to be due to the 

approximately linear description and representation of the metaldehyde generation 

and transport processes used in the model.  
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Figure 5.3. Event averaged 95
th

 percentile metaldehyde prediction.  

In general, predicted metaldehyde concentrations are found to be moderately tolerant 

to significant variations in the combined model input and parameter values. The rate 

of increase in the average 95
th

 percentile of predicted metaldehyde concentrations 

against increases in input and parameter uncertainties represented as CV (%) is 

presented in Figure 5.3.  Changes in the coefficients of variation of the model input 

and parameters have resulted in relatively small changes in the average 95
th

 

percentile value of predicted metaldehyde concentrations for the event as shown in 

Figure 5.3. An increase of 0.005µg/l in the average 95
th

 percentile value of predicted 

metaldehyde concentrations is observed in response to the corresponding 10% rise in 

the coefficient of variations of all five inputs and parameters. Moreover, a very small 

gradient value of 0.0005 for the well fitted (R
2
 = 0.9777) linear trend line to the data 

in Figure 5.3 demonstrates that the average 95
th

 percentile of predicted metaldehyde 

concentrations is tolerant to significant variations in model inputs and parameters. 

The rate of increase in coefficient of variation and the 90% confidence interval of 
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predicted metaldehyde concentrations are also compared with increases in coefficient 

of variation of model input and parameter uncertainties as shown in Figure 5.4 and 

Figure 5.5 below. 

  

 

Figure 5.4. Predicted metaldehyde concentration variation in response to forced 

perturbations in model inputs and parameters. 
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Figure 5.5. Uncertainty in predicted metaldehyde concentration (90% CI) in response 

to forced perturbations in model inputs and parameters.  

A relatively small value of the gain factor (G = 0.4658), which is the slope of the plot 

in Figure 5.4 and measures the amplification or attenuation of output distribution as a 

result of change in input distributions, is observed. This further demonstrates the 

small changes in the scale of predicted metaldehyde concentration uncertainties as 

compared to significant change in input and parameter distributions. The 90% 

confidence interval of predicted metaldehyde concentrations is observed to increase 

by 0.006µg/l in response to the corresponding 10% rise in the coefficient of 

variations of all five inputs and parameters. This showed the reasonably acceptable 

overall sensitivity of the 90% confidence interval of predicted metaldehyde 

concentrations to changes in input and parameter uncertainties. Overall, the relatively 

small amplification of model input and parameter uncertainties observed in the 

metaldehyde model uncertainty propagation ensures that the model is reasonably 

tolerant of increases in the levels of input and parameter uncertainties. 
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 Sensitivity Analysis  5.3.2

Results from all three sensitivity analysis performed in this study are presented and 

discussed in this section. The various techniques adopted to analyse uncertainty 

contributions from model inputs and parameters (discussed in section 5.2.5) have 

enabled to clearly identify the main source of output uncertainties in predicted 

metaldehyde concentrations. Two significant drops in output uncertainty (Figure 5.6) 

are observed when the width of the 90 % confidence interval output uncertainty 

dropped by 47.3% and 48.62% in response to holding the model input B and 

parameter Kch constant respectively. This has demonstrated that the largest 

uncertainty is originated from parameter Kch (48.62%) followed by the uncertainty in 

metaldehyde build-up through application B (47.3%). In comparison, less 

contribution to the uncertainty in predicted metaldehyde concentration are observed 

from parameters t, Kc and Kbw both in the forward and backward stochastic 

sensitivity analysis. The small uncertainty contribution from time interval between 

applications and a rainfall event parameter, t, is attributed to the relative longevity of 

metaldehyde in soil. The significant uncertainty contribution from the metaldehyde 

build-up (B), which represents metaldehyde build-up through applications on high 

risk areas in the catchment, indicates that more emphasis needs to be given to collect 

more accurate metaldehyde application data in the catchment. Accurate estimation of 

runoff travel time in channel networks are also required to significantly reduce 

uncertainties in the metaldehyde prediction model. In comparison, efforts to improve 

catchment data used in the computation of runoff travel time are less significant in 

terms of reducing the overall uncertainty in predicted peak metaldehyde 

concentration values. However, accurate prediction of arrival times of metaldehyde 

spikes is vital in terms of practical application of the model to inform surface water 

abstraction; hence reducing uncertainties in travel time should receive full attention. 

On the other hand, the results have shown that less effort is needed in improving data 

used to estimate the time interval between metaldehyde application and a rainfall 

event. 
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Figure 5.6. Forward sensitivity analysis.  

Similar rate of change in output uncertainty is observed when the model inputs and 

parameters are kept constant in the reverse order during the backward stochastic 

sensitivity analysis. The similar pattern of output uncertainty variation observed in 

Figure 5.6 and Figure 5.7 revealed that no significant correlation exists between these 

model input and parameters. The findings that showed the two main uncertainty 

contributions are from metaldehyde application areas (B) and channel travel time 

parameter Kch and the lack of significant interactions observed between model 

parameters appear to be reasonable when considering the mathematical structure of 

the model and associated assumptions (discussed in Chapter 4). Outputs from the 

deterministic sensitivity analysis (Figure 5.8) have shown that significant change in 

event averaged predicted metaldehyde concentration occur only for metaldehyde 

application areas (B). Event averaged concentration, which is used in the absence of 

any other objective function that enables to adequately show uncertainties caused 

from all the five inputs and parameters, is not suitable to estimate the level of 
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uncertainty caused by parameter Kch. This is due the fact that uncertainties in 

parameter Kch mainly impacts on the overall distributions of metaldehyde 

concentrations, particularly affecting the arrival time of peak concentrations. As a 

result, the significant level of uncertainty originated from channel travel time 

parameter Kch , which has been showed in the stochastic uncertainty analysis method, 

was not observed in the deterministic sensitivity analysis output. The observed high 

sensitivity of the model to the metaldehyde application area (B) is mainly owing to 

its importance in determining the proportion of metaldehyde generated from areas 

bounded by a serious of isochrones in the catchment. The impact of parameter Kch on 

the model output uncertainty, which is demonstrated in the stochastic sensitivity 

analysis, is attributed to its critical importance in determining the distribution of the 

predicted metaldehyde pollutograph across time. 

   

Figure 5.7. Backward sensitivity analysis. 
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Figure 5.8. Deterministic sensitivity analysis (spider plot).  

Various summary statistics including coefficient of variation are used to compare 

uncertainty contribution results in this chapter. However, computation of coefficient 

of variation based only on the selected inputs and parameters that are considered 

uncertain mean that its use to compare the uncertainty contributions has some 

disadvantages. This is because fixed values are used for the other inputs and 

parameters despite the uncertainty in their values and thus may have an impact on the 

output coefficient of variation resulted from variations in inputs and parameters. 

Consequently, impacts of any correlations that may exist between the selected inputs 

and parameters being considered and the rest of inputs and parameters on the overall 

output uncertainty are ignored. Various techniques can be used to tackle this problem 

as suggested by Jansen (1999) and Saltelli (2002), however the implementation of 

these techniques are computationally intensive and do not avoid these disadvantages 

completely. 
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 Characteristics of uncertainty contributions  5.3.3

Identifying the characteristics of uncertainty contributions from selected model 

inputs and parameters will provide useful information to efficiently plan and employ 

efforts to reduce model uncertainties. Uncertainties in different inputs and parameters 

of the model are observed to dominate different features of the model output 

uncertainty. This section discusses outputs from the stochastic simulations of the 

metaldehyde model that are carried out individually for each input and parameter and 

used to assess exclusive contributions to different attributes of output uncertainty. 

Figure 5.9 showed that in general uncertainties in parameters used in the 

metaldehyde build-up and wash-off calculations have mainly impacted uncertainties 

in the level of predicted peak metaldehyde concentrations. Whereas, uncertainties in 

parameters used in the calculation of runoff travel times have largely impacted on the 

arrival time of peak metaldehyde spikes following rainfall events. Despite exhibiting 

high spatial variability, uncertainty in metaldehyde build-up through applications was 

observed to mainly impact on uncertainties in metaldehyde peak levels than arrival 

time of peaks as shown in Figure 5.9(c). The overall output uncertainty originated 

from uncertainties in estimation of parameter t (time interval between metaldehyde 

application and a rainfall event) is observed to be small. This is due to the relatively 

slow degradability of metaldehyde in soil, which is represented in the model using 

half-life value. This minimizes the impact of uncertainties in estimation of 

metaldehyde application times before a rainfall event on the model output as shown 

in Figure 5.9(b). 
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Figure 5.9. 90 % prediction uncertainty 

bounds of metaldehyde concentrations. 

(a) uncertainty due to parameter Kbw (b) 

uncertainty due to parameter t (c) 

uncertainty due to metaldehyde 

application on high risk area B (d) 

uncertainty due to parameter Ko (e) 

uncertainty due to parameter Kch and (f) 

combined uncertainty.  
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Overall, the model is found to be much more sensitive to channel travel time 

parameter Kch than overland travel time parameter Ko as shown in Figure 5.9(d) and 

Figure 5.9(e). This is due to the significantly higher rate of runoff that occurs in 

channel networks as compared to in overland flow. Uncertainties originated from 

travel time parameter Kch is observed to mainly impact on estimation of the amount 

of runoff arriving at the catchment outlet per unit time during runoff periods 

following rainfall events. This has direct influence on the estimation of metaldehyde 

loads in runoff arriving at the catchment outlet per unit time following rainfall 

events. Hence, variations in parameter Kch are likely to cause direct influence on the 

timely distributions of model predicted metaldehyde concentration values. Increase 

in the value of Kch is observed to cause a widely dispersed metaldehyde 

concentration prediction across time with the metaldehyde spikes starting early and 

staying for longer. On the other hand, lower values of travel time parameter Kch have 

caused narrowly distributed metaldehyde concentration predictions with spikes that 

are relatively short lived and start late. It is evident from Figure 5.9(e) that 

uncertainties in travel time parameter Kch have influenced uncertainties of both 

arrival time and peak levels of predicted metaldehyde concentrations. However, the 

impact on the arrival time uncertainty is observed to be larger as compared to 

impacts on peak level uncertainty. These results have demonstrated that accurate 

representations of runoff transport processes in channel networks throughout the 

catchment is important in models used for prediction of storm water pollutions at 

catchment outlets.  

5.4 Conclusions 

Catchment scale hydrological models such as the metaldehyde prediction model 

developed in this study are known to incorporate many model inputs and parameters. 

Some of these inputs and parameters are estimated statistically whereas others have 

physical significance and are usually measured using resource intensive field 

exercises. Due to lack of sufficient data these model inputs and parameters are often 

estimated via calibration with no sufficient level of information on the scale of their 

influence on the model prediction (Beven & Binley 1992). This study has primarily 
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focused on assessing uncertainty propagation in the metaldehyde prediction model 

and establishing the relative importance of model inputs and parameters uncertainty 

in improving prediction accuracy. Results from uncertainty analysis conducted on the 

metaldehyde prediction model indicated that metaldehyde concentrations are 

moderately sensitive to variations (likely greater than errors during calibration) in 

input and parameter values. All three sensitivity analyses have clearly shown that 

metaldehyde application area (B) has the main influence on the model output. The 

stochastic sensitivity analysis has also clearly shown the significant level of model 

output uncertainty originated from parameter Kch. Identification of inputs and 

parameters with the most influence on predicted metaldehyde concentration would 

help in the planning and design of field exercises to collect data, which would result 

in significant reductions in costs and effective utilization of limited resources 

(Kuczera & Mroczkowski 1998). Furthermore, uncertainty quantification and 

analysis has enabled probabilistic presentation of predicted metaldehyde 

concentrations, which summarizes model outputs using various statistical quantities 

such as percentiles and confidence levels. Unlike point estimates provided by 

deterministic predictions, this provides more information on model prediction error 

and enables risk-aware abstraction management decision making (Briggs et al. 2012). 

The work discussed in this chapter provides a new approach to assess spatial 

uncertainties associated with catchment scale water quality models, which is 

currently lacking in the literature. The grid based physically distributed structure of 

the metaldehyde model combined with the use of high spatiotemporal resolution data 

and efficient spatial uncertainty analysis tool have enabled us to assess spatial 

uncertainties of inputs and parameters in the catchment scale water quality model.   
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  Chapter 6

Business Case and Implementation 

6.1 Introduction 

Abstraction from surface water accounts for 67% of STW's production. The 

development of a new approach to water abstraction therefore represents a major 

opportunity to make significant improvements to STW business. During dry weather, 

the amount of water available for abstraction is restricted by the need to maintain a 

minimum daily flow in the river. This regulatory monitoring often includes a variety 

of abstraction licence conditions, which are provided with the aim to meet 

environmental demands downstream of the abstraction point. Lack of data on flow 

arriving at the abstraction point mean that particularly during low flow periods water 

resource operators often face with uncertainty when deciding on how much water can 

be abstracted per day. The real-time abstraction management scheme developed in 

this study predicts the availability of flow in the river at the abstraction point. The 

approach can further be applied to other catchments in the STW’s region and could 

help to offset the loss of 150Ml/d of abstraction by 2025 due to the WFD Restoring 

Sustainable Abstraction (RSA) scheme and climate change (STW 2014). 

Replacement of lost abstraction by developing a new water resource costs £1-2 

million per Ml/d (Canal and River Trust 2015). The developed approach can also 

provide potential for immediate benefits from increased flexibility to further 

maximise the use of sources with the lowest cost to serve. 

Metaldehyde is a pesticide that is poorly removed using conventional activated 

carbon. Water companies in the UK currently have a Department of Water 

Inspectorate (DWI) Section 19 undertaking relating to metaldehyde at a number of 

water treatment works. Although STW have an extensive catchment management 

programme, high levels of metaldehyde observed in rivers following rainfall events 

in recent years have indicated that compliance cannot be guaranteed through 

catchment management only. Consequently, additional investment in specialised 

Advanced Oxidation Processes (AOPs) and/or modified carbon adsorption 
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technology is planned. The model developed in this study predicts the concentration 

of metaldehyde in the River Leam catchment at abstraction site and enables 

abstraction to be suspended to avoid failures. As a result, the application of the model 

will reduce the scale of capital expenditure (CAPEX) outlay and the associated risks 

of a higher level of initial investment. By reducing the level of metaldehyde in water 

resource reservoirs, the scheme will also help to significantly reduce operational 

expenditures (OPEX) required for metaldehyde removal using the new treatment 

methods. The nature and operationally suitable structure of the developed model 

enables its application in other catchments. This chapter details the implementation 

of these models developed in this study at Severn Trent water Ltd and discusses the 

various benefits that accrue from the real-time abstraction management scheme.  

6.2 Business case for exploiting the outcome of the project 

In this study two different models outlined above have been developed in two 

different study catchments. This section aims to set out a business case for 

implementation and exploitation of the developed modelling approaches in 

catchments throughout STW region. This involves assessing the benefits of 

implementing the new RTAM system within a range of abstraction sites at Severn 

Trent Water. Additional benefits expected to emerge will include the use of the 

model to inform catchment management strategies. The successful implementation of 

the project outputs will transform the capability, flexibility and costs associated with 

STW’s existing abstraction protocols. This is expected to lead to significant capital 

and operating cost savings for the company, thus generating further investment and 

R&D funding, and an enhancement of strategical planning. The expertise STW and 

Sheffield University have developed in real-time abstraction management during the 

course of this study is an area they may be able to exploit and sell on to other 

utilities. Works on implementation and system integration of the developed models 

in STW region is currently going on. 
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 Water resource model 6.2.1

It is difficult to estimate the financial benefit of the water resources associated 

abstraction management scheme, as the development of new sources of abstraction is 

a complex process with a 25 year planning horizon. However, monetary benefits of 

enabling to abstract more water can be quantified in terms of reducing future water 

resource development investment CAPEX. When the licensing system was designed 

by the precursor to the Environment Agency in the early 1960s and issued to existing 

abstractors, there was a surplus of water in most areas. This has now decreased as our 

understanding of the impact that abstraction has on the environment has improved. In 

future, pressures on water availability will increase because of climate change. By 

the 2050s, it is anticipated summer temperatures may increase and rainfall may 

decrease and short duration drought conditions (12-18 months) are likely to become 

more frequent. Therefore the challenge faced by water resource operators is a 

potential shortage of future water supply and how to maximise abstraction. As shown 

in chapter 3, preliminary simulations using the model in the River Dove catchment 

identified the potential to increase abstraction by an average of 30 Ml/d during 

periods of low river flow. This is of strategic importance to STW as current forecasts 

suggest that STW will lose the ability to abstract 150Ml/d by 2025 due to new 

regulations and hydrological climate change effects (Figure 6.1). Assessment of 

water resources in STW’s region over the period of twenty years shows that the scale 

of the supply/ demand challenge could be as much as 150Ml/d by 2025, 300Ml/d by 

2030 and 340Ml/d by 2040. Replacement of these reduced water availability for 

abstraction by developing a new water resource infrastructure costs £1-2M per Ml/d. 

Hence, potentially reducing or avoiding this cost through implementation of the 

developed water resource modelling approach represents a significant benefit to 

STW. Moreover, the flow model will be essential to ensure that lost abstraction, 

during periods of high pesticide concentration, can be recovered by maximising 

abstraction during periods when pesticide (metaldehyde) concentration is low. 
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Figure 6.1. Reduction of available water for water supply use due to climate change 

and reduction of unsustainable abstractions to protect the environment. (STW 2017) 

In addition, the water resource model enables to increase STW’s performance 

associated with the restrictions on use outcome delivery incentive (ODI), which can 

generate a substantial ODI reward or penalty depending on the number of water use 

restrictions put on customers due to low storage levels in reservoirs. The exact 

amount of the penalty and reward varies depending on the timing, extent and 

duration of the imposed restriction on water use. However, avoiding the reputational 

damage associated with imposing restriction on water use is the main incentive for 

water companies. By enabling to improve reservoir storage levels during dry periods, 

the water resource model provides a potential to minimize or avoid the need to 

impose such restrictions on water use. As a result it helps to generate significant 

benefits in terms of restriction on water use ODI rewards/ penalty and avoiding 

reputational damages to STW. 
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 Metaldehyde model 6.2.2

Recent years have seen increasing concentrations of pesticide in water supplies and 

treatment techniques are forecast to be a significant expense to STW.  Of particular 

concern is metaldehyde which is not currently removed by existing treatment 

processes. Implementing the metaldehyde forecasting model at abstraction sites will 

allow stopping abstracting water when concentrations of metaldehyde are high. This 

will improve the quality of the water abstracted for supply and generates a number of 

business benefits to STW. In this section, the financial benefit of the developed 

model is derived based on the avoidance of investment in installing and operation of 

new treatment and online monitoring options. To comply with the regulatory 

standard for metaldehyde, STW have an option to install new advanced treatment 

processes at twelve treatment works, which are all at risk of failing regulatory 

standard for metaldehyde, or install monitoring equipment to detect metaldehyde and 

enable abstraction to be suspended during peak concentrations caused by rainfall 

events. Installation of the new advanced treatment processes throughout the region 

cost STW £60M CAPEX and £1M OPEX.  The option to install new monitoring 

equipment, which is currently being trialled by Affinity water, is expected to require 

investment of £0.335M CAPEX and £00.065M p.a. OPEX per abstraction point. The 

implementation of the metaldehyde prediction model will avoid the need for 

investment in on-line monitoring at 12 points of abstraction and would save £4.02M 

CPAEX and £0.78M p.a. OPEX. Table 6.1 below shows comparison of installing 

and running costs of advanced oxidation process at different sites with and without 

the implementation of the metaldehyde model. The names of the sites are 

anonymously mentioned using alphabets due to STW security policy. 
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Table 6.1. Feasibility cost summary for Advanced Oxidation Treatment of 

metaldehyde with and without the implementation of the metaldehyde prediction 

model – Data supplied by STW innovation team 

     Treatment costs current peak 

metaldehyde 

Treatment costs using model to 

reduce peak metaldehyde  

 

Site  Produ

ction 

(Ml/d) 

Build 

Cost/yr 

Electricity 

Cost /yr 

H2O2 Cost Build 

Cost/yr 

Electricity 

Cost /yr 

H2O2 Cost  

A 62 £11,070,321 £393,901 £99,514 £4,812,500 £309,494 £99,514  

B 34 £6,070,821 £112,543 £55,542 £875,000 £56,272 £55,543  

C 24 £4,285,285 £140,679 £55,542 £1,750,000 £112,543 £55,543  

D 58 £10,356,106 £337,629 £138,857 £3,500,000 £225,086 £138,857  

E 27 £4,820,946 £84,407 £64,800 £437,500 £28,136 £64,800  

F 55 £9,820,446 £225,086 £127,285 £2,187,500 £140,679 £127,286  

G 105 £18,748,124 £675,259 £266,142 £7,374,500 £478,309 £266,143  

H 160 £28,568,570 £984,753 £386,485 £11,375,000 £731,531 £386,486  

Total 525 £93,740,621 £2,954,259 £1,194,171 £32,312,000 £2,082,050 £1,194,172  

 

In addition, the implementation of abstraction management using the metaldehyde 

model contributes to the following two ODIs associated with providing good quality 

drinking water.  

1. Compliance with drinking water quality standards ODI is associated with a 

penalty of £2119.7 for every 0.01% below the target percentage of water 

quality compliance level per year.   

2. Successful catchment management schemes ODIs is associated with a 

reward/penalty of £1,271,600 per scheme. 

Apart from staff time, the only additional cost associated with the implementation of 

the model will be the availability of real-time radar rainfall data. This has been 

arranged to be accessed at a cost of £4K per year for the current study catchment. 
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When rolling out the model to other catchments in the region, additional cost for the 

real-time radar rainfall data per catchment will be much less than £4K per catchment 

per year. 

 Business risk and feasibility of implementations 6.2.3

The risk of implementing the real-time abstraction management models developed in 

this study is relatively low as the models generally inform abstraction decisions 

without needing any modification of the existing system. However, the metaldehyde 

application season coincides with the infilling period for impounding and pumped 

storage reservoirs. As a result,   suspension of abstractions during this period poses a 

risk of missing opportunities to abstract more water to increase storage availability to 

meet demands over the summer season. Metaldehyde samples collected over the 

2014-2016 application periods have been analysed to assess the extent of this impact 

on water resources.  Based on the data collected using auto-samplers over the three 

application periods, metaldehyde spikes observed at abstraction point in the river 

leam catchment have showed durations ranging from 12 hours to about 48 hours 

depending on rainfall intensity and durations. But on average 12-24 hours can be 

considered as the average time period that intakes need to be shut down to avoid 

peak metaldehyde levels occurring following a typical rainfall event. The number of 

times these metaldehyde spikes occur during September - December (and the 

prediction model would suggest to shutdown intakes) is dependent on the frequency 

of significant rainfall events during these months. Based on the data collected over 

the past three years, a rainfall event with approximate intensity of more than 

0.5mm/hr and with duration of more than 3 hours is likely to cause peak metaldehyde 

levels. It should be noted that this is very rough estimation as occurrence of peak 

metaldehyde levels is highly dependent on where in the catchment it rained and 

antecedent moisture conditions – which are all considered in the prediction model. 

To estimate the average number of times such kind of rainfall events occur, analysis 

of 12 years of radar rainfall data (2004-2015) for the River Leam catchment has been 

carried out, which also enabled to assess impacts on the water resource availability in 

reservoirs.  This analysis showed that on average there will be 20 rainfall events that 
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are likely to cause metaldehyde peaks and require intake shutdowns over the period 

of 1
st
 September to 31

st
 December. The year 2012 would have needed the highest 

intake shutdowns of the 12 years analysed with 30 events (on average 23 days 

shutdown) and 2007 would have needed the least intake shutdowns with 17 events 

(Figure 6.3 & Figure 6.4). Considering an average duration of metaldehyde spike 

caused by a single rainfall event to be 18hrs, a rough average of 15 days intake 

shutdown period over the September – December period is estimated based on these 

assessments. Thus, abstraction management in this catchment is likely to cause an 

overall maximum storage reduction of 6.5% in Draycote reservoir at the end of the 

metaldehyde application season assuming the 100Ml/d achievable capacity of the 

intake at this abstraction site (Maximum capacity is 115 Ml/d) is consistently used 

(Figure 6.2). 

 

Figure 6.2. Draycote reservoir storage and drought management trigger zones (STW 

2018). 
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Figure 6.3. Rainfall events in the 2012 metaldehyde application season that would 

have required intake shutdowns.  
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Figure 6.4. Rainfall events in the 2007 metaldehyde application season that would 

have required intake shutdowns. 

With a view to minimize impacts on water resource availability, an abstraction 

management decision making framework that enables temporal suspensions of 

abstraction based on storage levels in the reservoir has been developed. Information 

on storage levels are used to determine the maximum length of period that 

abstraction can be suspended at a specified time. A tool to align this period to the 

arrival of the highest level of metaldehyde has been developed to enable to avoid the 

peaks while minimizing impacts on storage levels and is agreed with water resource 

managers at STW (Table 6.2). Figure 6.5 shows the trigger zones set out in Draycote 

reservoir where different levels of abstraction decision is required based on storage 

availability. 
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Table 6.2. Draycote reservoir trigger levels for the metaldehyde model based 

abstraction management  

 Control curves Maximum number of hours 

abstraction can be suspended (h) 

 Top of 

Drought 

Management 

Trigger Zone 

B 

Tope of 

Drought 

Management 

Trigger Zone C 

12 24 36 48 60 

Date Storage levels in Draycote reservoir (Percentage full) 

04/09/2017 83.5 58.5 63.5 68.5 73.5 78.5 83.5 

11/09/2017 83.1 58.1 63.1 68.1 73.1 78.1 83.1 

18/09/2017 82.8 57.8 62.8 67.8 72.8 77.8 82.8 

25/09/2017 82.5 57.5 62.5 67.5 72.5 77.5 82.5 

02/10/2017 83.5 58.5 63.5 68.5 73.5 78.5 83.5 

09/10/2017 84.8 59.8 64.8 69.8 74.8 79.8 84.8 

16/10/2017 86.0 61.0 66.0 71.0 76.0 81.0 86.0 

23/10/2017 87.3 62.3 67.3 72.3 77.3 82.3 87.3 

30/10/2017 88.6 63.6 68.6 73.6 78.6 83.6 88.6 

06/11/2017 90.0 65.0 70.0 75.0 80.0 85.0 90.0 

13/11/2017 91.5 66.5 71.5 76.5 81.5 86.5 91.5 

20/11/2017 92.9 67.9 72.9 77.9 82.9 87.9 92.9 

27/11/2017 94.3 69.3 74.3 79.3 84.3 89.3 94.3 

04/12/2017 95.0 70.4 75.4 80.4 85.4 90.4 95.4 

11/12/2017 95.0 71.5 76.5 81.5 86.5 91.5 96.5 
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18/12/2017 95.0 72.6 77.6 82.6 87.6 92.6 97.6 

25/12/2017 95.0 73.6 78.6 83.6 88.6 93.6 98.6 

  Max. water 

loss (ML) 

50 100 150 200 250 

  Max. water 

loss (%) 

0.22 0.43 0.65 0.87 1.09 

 

 

Figure 6.5. Draycote reservoir allocated trigger zones to control metaldehyde model 

based abstraction management.   

6.3 Conclusions 

Assessment of the potential benefits associated with water resources management of 

the real-time abstraction management scheme has demonstrated that the scheme can 

significantly increase resilience in surface water catchments. The sustainability and 

cost effectiveness of the proposed solution mean that water companies, which usually 
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incur high capital expenditure to increase water resources resilience to meet service 

levels, can generate significant financial and environmental benefits through the 

implementation of the scheme. The ability to predict the concentration of 

metaldehyde in water courses across the water sector will improve the efficiency of 

catchment based solutions for this problematic pesticide. The assessments presented 

in this chapter have demonstrated that implementation of the metaldehyde model 

based abstraction management scheme will avoid significant amount of unnecessary 

investments in new treatment processes; thus saving the cost and embodied carbon 

associated with their construction and operation. The fundamental research behind 

the development of the model and research outputs have been shared with the water 

industry via presentations at varies events and published paper.  
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  Chapter 7

Summary and Conclusions 

7.1 Meeting the aim and objectives 

The overall aim of this study is to develop an advanced surface water abstraction 

management scheme that enables smarter control of surface water abstractions based 

on forecasted availability of water in the river, metaldehyde concentration levels in 

the river at abstraction sites and current storage levels. Original sub-aims and 

objectives of the study which are stated in Table 1.1 in section 1.3 were addressed in 

this study as discussed below.  

a) Investigate the use of hydrological forecasting in order to maximize the amount 

of water abstracted in surface water catchments and develop smarter abstraction 

management scheme that enables to vary abstraction volumes based on 

availability of water in the river. 

I. Identify a rainfall-runoff modelling approach, data assimilation and 

uncertainty analysis methods suitable for real-time abstraction 

management and assess operational suitability. 

II. Develop a real-time stochastic flow forecast model by combining a 

conceptual rainfall-runoff model with Bayesian based uncertainty 

analysis method. 

III. Develop a water resource management model and integrate it with 

rainfall-runoff model to assess the potential benefits of the real-time 

abstraction management scheme and investigate implications on water 

resources. 

A real-time abstraction management scheme is devised that is composed of a 

hydrological forecasting and water resource management model with the objective of 

enabling to abstract more water at surface water abstraction sites. A Bayesian based 

uncertainty analysis method is used to stochastically calibrate and validate a 

conceptual rainfall-runoff model. The performance of the model in the stochastic 

model calibration and validation method is evaluated using P-factor and R-factor 
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values. In addition, optimum parameter values are used in the model to evaluate its 

overall prediction efficiency using Nash-Sutcliffe model efficiency coefficient. 

Stochastic calibration and validation of the PDM is undertaken in simulation mode 

where the only model inputs are rainfall and potential evaporation. State correction 

data assimilation technique, which uses a set of rules for adjusting model states, is 

applied to enable to run the flow model in forecast mode and improve forecast 

accuracies.  A water resource management model is developed to assess implications 

of real-time abstraction management scheme on reservoir levels and associated water 

resources management decisions. The integrated model outputs have showed that on 

average 30 Ml of more water per day could have been abstracted in the study 

catchment using the real-time abstraction management scheme during the 2011 dry 

period (Figure 3.10). The approach has also demonstrated that the implications of the 

additional amount of water abstracted in terms of helping to avoid the rapid decline 

of reservoir storage levels during dry periods (Figure 3.11). 

b) Develop a new travel time based physically distributed catchment scale 

metaldehyde prediction model and improve understandings of short term 

fluctuations in metaldehyde concentrations at surface water catchment outlets 

caused by rainfall runoff events. 

I. Identify the limitations of current water quality modelling practices with 

regards to their applicability for describing short term fluctuations in 

pollutant concentrations at catchment scale. 

II. Enable physically distributed representation of runoff and metaldehyde 

generation throughout the catchment and develop improved 

representation of spatiotemporal variability of pollutant transport. 

III. Calibrate and validate metaldehyde model using newly collected high 

resolution water quality dataset in the study catchment and assess 

operational suitability of the model to enable smarter abstraction 

management. 

A review of the literature on water quality models has showed the limitations of 

existing catchment scale pollutant models in representing short-term dynamics that is 
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responsible for the occurrences of peak pesticide concentrations following rainfall 

events. A runoff travel time based metaldehyde prediction model is developed in a 

GIS environment to enable prediction of short term fluctuations in metaldehyde 

concentrations at surface water catchment outlets. The model integrates 

spatiotemporally distributed runoff generation, routing and build-up/wash-off of 

pollutant in the study catchment. A grid based travel time computations in a GIS 

environment enabled an improved representation of spatiotemporal variability of 

pollutant transport in runoff. Water quality data collection campaign has been 

conducted over a period of 3 years (2014 – 2016) in the study catchment. Automatic 

samplers were used to collect hourly surface water samples following rainfall events, 

which enabled the calibration and validation of the metaldehyde prediction model. 

The model performance is evaluated using a set of error statistics, which showed the 

models’ suitability for the intended purpose of quantifying potential exposures to 

peak metaldehyde concentrations and enabling smarter abstraction management. 

c) Investigate propagation of catchment scale spatially distributed input and 

parameter uncertainty in the metaldhyde prediction model and enable risk aware 

abstraction management decisions. 

I. Define and parametrize probability distribution functions of identified 

model input and parameter uncertainties and generate realizations from 

predefined probability distributions to represent uncertainties in inputs 

and parameters.   

II. Analyse propagation of spatially distributed input and parameter 

uncertainties in the metaldehyde prediction model.   

III. Summarize results from uncertainties analysis using various measures and 

asses the relative significance of each input and parameter. 

Large number of spatially distributed inputs and parameters are involved in the 

catchment scale metaldehyde prediction model. Inputs and parameters for 

consideration in the uncertainty analysis method are selected based on existing 

knowledge on the underlying techniques used to develop the model and information 

gathered from literatures on main sources of uncertainty in storm water quality 
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models. The selected parameters are believed to cause the majority of uncertainties 

associated with model inputs and parameters. Different techniques are employed in 

representing uncertainties associated with each input and parameters considered in 

the uncertainty analysis using probability distributions. Assigned probability 

distributions are parameterized using various catchment datasets and calibrated value 

of parameters in the deterministic metaldehyde model. Monte Carlo based 

uncertainty analysis tool is used to generate realizations of model input and 

parameters using the predefined probability distributions. This has been used to 

propagate inputs and parameters uncertainties of the model, which enabled to assess 

the influence and relative significance of each input and parameter uncertainty on 

model outputs. Uncertainty analysis results presented in probabilistic prediction 

graphs and summarised using coefficient of variation, confidence levels and gain 

factor have enabled to efficiently compare the various level of uncertainties. The 

additional information presented on uncertainties associated with the metaldehyde 

predicted outputs are important to enable making risk-aware decisions. 

7.2 Summary of findings 

This section summarizes the main research findings of the study. Initial 

Investigations of real-time abstraction management implications on water resources 

has showed that a cost effective and sustainable solution to address the growing 

concerns associated with the increasing pressures on the water environment can be 

addressed by developing and integrating a suitable flow forecast modelling approach 

and a water resources management model. The majorities of existing flow 

forecasting studies are set out with the main objective of meeting the requirements of 

flood warning and protection systems. As a result, wide ranges of existing real-time 

rainfall-runoff modelling approaches are focused on forecasting the exceedance of 

certain flow thresholds in rivers. However, applications of flow forecasting models to 

enable real-time abstraction management are required to be capable of forecasting 

service flow ranges, which is the variety of flow conditions ranging between the 

extreme dry and flood conditions. This raises specific modelling requirements and 

provides unique challenges due to a number of operational issues associated with 
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abstraction management, but these challenges can be categorized in to two main 

areas of abstraction management. Firstly, smarter abstraction management is required 

to keep the balance between enabling to abstract more water and avoid breaching 

abstraction licence condition, Thus, uncertainties associated with flow forecast 

models need to be carefully analysed and presented to enable risk aware abstraction 

decision making. Findings of this research have shown that, an integrated 

hydrological modelling framework that combines a conceptual rainfall-runoff model, 

Bayesian based uncertainty analysis method and data assimilation technique can be 

used to develop a flow forecast model suitable for surface water abstraction 

management purposes. The posterior probability distributions of flow forecast model 

parameters provided the required information to summarize simulated flow 

variability caused by parameter uncertainty over the entire service flow range. The 

probabilistic forecasts enable water resource operators to assess the risks associated 

with using model outputs to make abstraction decisions. Secondly, a water resource 

management model, which represents real-world operational constraints such as 

reservoir operation rules, abstraction licence conditions, available storage volumes 

and pump and water main capacities, was devised and integrated with the flow 

forecast model. This was found to enable effective implementation of real-time 

abstraction management scheme that helps water resource operators to quantify daily 

volume of water available for abstraction based on a specified level of risk. The real-

time abstraction management approach developed in this study has contributed 

towards addressing the challenges of using flow forecast models to improve surface 

water abstraction decisions. An investigation of implications of the developed 

approach on water resources in the study catchment has demonstrated the significant 

role that the scheme can play in terms of recovering reservoir levels during dry 

periods. 

The significant role runoff plays in transporting pollutants in catchments and the 

occurrences of peak pollutant levels at catchment outlets following rainfall events 

have been covered in a wide range of studies in the literature. However, most 

existing catchment scale pollutant models do not sufficiently represent the short-term 
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dynamics involved in runoff based pesticide generation and transport processes, 

which is mainly responsible for the occurrences of short-term peak pesticide 

concentrations at catchment outlets following rainfall events. This is mainly due to 

lack of high resolution water quality data and challenges associated with representing 

spatiotemporally variable distribution of pollutant generation and  transport in 

catchments. High resolution water quality data collected in this study and the 

development of physically distributed metaldehyde prediction model have enabled to 

address these challenges. Findings of this research showed that runoff travel time 

based approaches can be combined with the increasing availability of catchment 

scale spatial datasets to quantify and understand catchment dynamics that drive short 

term fluctuations of pollutant concentrations following rainfall events. The approach 

has also showed that the likelihood of a high risk land in a catchment contributing to 

pollutant peak levels varies depending on the density of high risk areas available 

within the same travel time isochrones. This can help catchment management 

planners to identify and focus on high risk areas that frequently contribute to peak 

pollutant concentration levels arriving at catchment outlets. Spatial variation of 

rainfall, which governs the distributions of runoff generating across the catchment, 

was also found to play a significant role in determining the behaviour of peak 

concentration levels at catchment outlets.  

Data on build-up of diffuse pollutants on high risk areas throughout the catchment 

are often difficult to acquire. As a result, catchment average data is commonly used 

despite the high spatial distribution of pollutant build-ups throughout the catchment. 

The physically distributed and grid based structure of the metaldehyde model 

enabled implementation of a Monte Carlo based spatial uncertainty analysis tool, 

which is used to assess uncertainties in the model associated with spatial distribution 

of metaldehyde build-up through applications on high risk areas. Results of the 

spatial input and parameter uncertainty analysis of the metaldhyde model in this 

study have showed that spatial variabilities in metaldehyde build-up across high risk 

areas in the catchment can cause significant uncertainty in predicted concentration 

levels. This indicates the need to carefully consider representations of pesticide 
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applications across the catchment in models, which are often assumed uniform 

throughout the catchment due to the difficulties associated with finding actual 

application data. It’s also noted that uncertainties associated with metaldehyde 

transport throughout the catchment is mainly dominated by inaccurate 

representations of pollutant travel times in channels as compared to overland 

pollutant transport. Hence, improvements in channel travel time estimation technique 

combined with near real-time metaldehyde application data from farmers would 

significantly improve model performance. Identification of these inputs and 

parameters with the most contribution to uncertainties in predicted metaldehyde 

concentration helps to plan and design future field exercises to collect more data. 

Furthermore, probabilistic presentation of predicted metaldehyde concentrations are 

found to be important to investigate the various level of risks associated with 

different peak concentration levels and making risk aware abstraction decisions. 

Ensuring compliance of water quality standards for metaldehyde requires supporting 

abstraction management with catchment management schemes and development of 

new treatment processes depending on the level of metaldehyde problem in the 

catchment. One of the catchment based approaches being adopted by catchment 

managers is replacing the use of metaldehyde with ferric phosphate, which is 

considered an alternative active ingredient to tackle slug problems in farmlands. 

However, ferric phosphate is considered less effective as compared to metaldehyde 

and it needs to be applied at higher rate, which results in its use to be more expensive 

than that of metaldehyde. In addition, a range of on-farm mitigation measures are 

being employed by water utilities in UK with a view to cost effectively reduce 

metaldehyde peaks in water courses whilst maintaining food production capacity. 

The metaldehyde model developed in this study can help to evaluate how effective 

different catchment management measures would be to reduce metaldehyde peak 

concentrations at the catchment outlet with a view to informing planning of 

catchment management schemes. 
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7.3 Conclusions 

The research presented in this thesis has focused on developing a new real-time 

abstraction management scheme for surface water abstraction management. A 

hydrological forecasting and water resource management model are developed and 

integrated with a view to enable to abstract more water in the study catchment. 

Uncertainty associated with the model is also analysed and presented to help in 

making risk aware decisions. By dynamically linking abstraction volumes to actual 

availability of water in the source, the developed scheme helps to make surface water 

abstraction management systems ready for various challenges associated with 

climate change and increasing demand from a growing population.  

A metaldehyde prediction model is also developed in this study that integrates 

spatially and temporally disaggregated runoff generation, routing and build-up/wash-

off using a runoff travel time based approach in a GIS environment. With relatively 

few parameters, more practical model structure and quick simulation time, the 

developed model provides a suitable level of complexity for operational purposes. 

Given the inability of existing treatment techniques to remove high metaldehyde 

levels from water and the absence of direct metaldehyde detection methods, the 

model developed in this study provides a cost-effective and sustainable solution. 

7.4 Limitations and future works 

Application of the metaldehyde prediction model to inform abstraction management 

requires accurate representations of land use data across the catchment. Comparison 

of historical land use data in the study catchment has indicated the annual 

occurrences of land use changes across the study catchment. However, there is 

usually a delay in providing updated land use data which causes considerable amount 

of uncertainties associated with the extent and location of high risk areas used in the 

model for a particular metaldehyde application season. STW are currently looking 

into ways to acquire timely updated land use data during metaldehyde application 

seasons for the catchments where the metaldehyde model is planned to be applied. 

As discussed in chapter 4, a number of assumptions were necessary during the 
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development of the metaldehyde prediction model. Each of these assumptions could 

potentially introduce errors into the analysis. This is particularly true for the uniform 

metaldehyde application used across all high risk areas in the deterministic model. It 

is therefore advised to use the probabilistic metaldehyde prediction model to enable 

making risk aware abstraction decisions. Furthermore, sensitivity of the metaldehyde 

model is analysed in this study using five model input and parameters that are 

associated with metaldehyde build-up and runoff travel time processes. However, a 

full sensitivity analysis on a wider range of model parameters would be beneficial to 

assess the model’s response to variations in parameters associated with a range of 

catchment and metaldehyde characteristics (e.g. Koc). The nature of the organic 

compound (metalydyde) such as solubility and low sorption coefficient combined 

with the focus on forecasting short term fluctuations in response to rainfall events has 

been the drive for the development of runoff travel time based metaldehyde 

prediction approach in this study. Thus, further applications of the model for 

simulating the transport of other organic compounds needs to carefully investigate 

the property of the compounds and accordingly incorporate additional techniques 

into the model to enable accurate representation of transport processes. Furthermore, 

complete understanding of the transport and fate of pesticide in catchments requires 

consideration of numerous processes such as groundwater transport and 

reaction/degradation processes. Thus, applications and interpretations of the 

metaldehyde model outputs should be used with in context. 

 SCS-CN method has widespread application throughout the world and has earned a 

solid reputation as a well-established rainfall-runoff technique mainly due to its 

computational simplicity and use of accessible catchment data (Li et al. 2015). 

However, the method also has a number of limitations mainly owing to its empirical 

origins (Beven 2012; Burns et al. 2016). The SCS-CN method assumes areas with 

similar curve numbers as homogenous surfaces that exhibit spatially uniform runoff 

process (Hawkins et al. 2001). Moreover, the method doesn’t provide a wide range of 

choice to adjust curve numbers based on antecedent soil moisture conditions, which 

may result in undermining effects of antecedent soil moisture conditions on runoff 
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generations (Boughton 1989). The use of high resolution data combined with the 

physically distributed technique incorporated in the metaldehyde model has helped to 

minimize the impact of these limitations on the metaldehyde model accuracy. The 

wide ranging distribution of available soil moisture capacities throughout the 

catchment and the variation in their runoff generating capabilities during rainfall 

events has been highlighted well in the PDM model as discussed in section 3.2.2. 

However, the PDM model represents the distribution in runoff generation across the 

catchment without any reference to the location of runoff generating areas in the 

catchment, whereas location of runoff generating areas is considered to play a 

significant role in simulating concentration levels of diffuse pollutants at the 

catchment outlet. The use of radar rainfall and development of the grid based 

spatially distributed catchment scale metaldehyde model in this study has enabled to 

provide a suitable catchment scale metaldehyde prediction model that represents both 

the location and rate of runoff generation. 

Drain flows during rainfall events are known to significantly contribute to 

transportation of diffuse pollutants from farmlands to water courses in catchments 

that have network of tile drains (Harris & Catt 2006; Granger et al. 2010; Tiktak et 

al. 2012). This is mainly due to preferential water flow through macropores, which 

enables runoff water bypassing the soil matrix and reaching to tile drains below the 

ground (Y. Yuan et al. 2001; Tang et al. 2012). Section 2.6.1 above has discussed the 

wide range of literatures that highlighted the importance of drain flows in 

transporting diffuse pollution from farmlands to channel networks. In this study, the 

runoff computed using the SCS-CN method is assumed to be the source for rainfall 

event water transported at field levels both through overland (surface runoff) and 

drain flows. In addition, the travel time computation at field level (overland flow 

travel time) presented in section 4.2.4 is assumed to represent travel time of event 

water both in surface runoff and drains. In comparison to flow length along channel 

networks at catchment scale, the relatively short distances runoff flow covers at filed 

level is very short and is unlikely to cause significant impact on the transport of 

diffuse pollution as discussed in sections 5.3.2 and 5.3.3. Thus, the assumption 
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adopted in the development of metaldehyde model in this study to jointly represent 

overland and drain flow is considered a reasonable approach. 

Below are several recommendations for future research to be undertaken in this area: 

Future data collections and model improvement: Development of a suitable 

scheme for collection of near real-time metaldehyde application data from farmers 

can help to further improve the performance of the metaldehyde model. This can be 

achieved by 1) Assessing and devising a suitable technique for gathering near-real 

time pesticide application data from farmers. For example, a mobile application that 

enables to collate the exact location of farm land and time of pesticide application 

can be developed. 2) Developing a suitable method to update the spatially distributed 

model input data based on newly obtained pesticide application data with a view to 

improve model prediction accuracy.  

Moreover, spatially distributed sampling using multiple samplers installed at 

optimum locations throughout the catchment can also be used to provide data that 

can be used for development of detailed sub-catchment scale models. Outputs from 

sub-catchment scale models can then be routed along the channel networks to 

provide metaldehyde concentrations arriving at catchment outlets. The detailed 

sampling data at catchment level can also be used to identify sub-catchments that 

suffer from high metaldehyde levels in a particular application season, which helps to 

inform the planning and implementations of catchment management practices.  

However, distributed sampling at sub-catchment level using multiple samplers can be 

expensive and time taking.     

Enable effective catchment management practices: The techniques incorporated 

in the metaldehyde prediction model provide potentials to evaluate the likelihood of 

high risk farmland in the catchment to contribute to peak metaldehyde concentrations 

at catchment outlets. This involves integrated assessment of travel time and 

distributions of risk map locations throughout the catchment. Enabling the 

identification of high risk areas that frequently contribute to peak concentrations at 



175 

 

the outlet of the catchment on a particular pesticide application season can help to set 

out well targeted and effective catchment management practices. In addition to its 

contribution towards reducing peak concentration levels arriving at abstraction sites, 

it also generates immense benefits in terms of saving time, cost and resources used in 

catchment management.    

Extend the pollutant model to capture a range of pesticides: The relatively simple 

structure and operationally suitable complexity of the metaldehyde model mean that, 

further improvements of the model to predict other compounds can generate multiple 

benefits. To enable this, properties of other compounds of interest needs to be 

investigated first. Then suitable techniques (e.g. sediment transport, reactions/ 

degradations, groundwater process) need to be incorporated into the model 

accordingly.  

Enable real-time data assimilation technique: Real-time modelling provides an 

opportunity to incorporate newly observed data to models with a view to improve 

model predictions, which is known as data assimilation. In the presence of real-time 

metaldehyde monitoring at abstraction sites, a suitable data assimilation technique 

can be developed to optimally combine collected real-time meatldehyde data with 

model outputs to assess model errors and use the feedback to update certain states of 

the model. In addition to high costs associated with online monitoring techniques 

(costs associated with techniques that are currently in trials is discussed in chapter 6), 

their benefit to abstraction management is restricted by issues associated with 

practical operation of abstraction management. However, integration of these 

techniques with the metaldehyde model provides opportunities to reduce 

uncertainties in model forecasts while enabling to provide sufficient prediction time 

for operational abstraction management. 

Optimisation of grab sampling: Data collected by grab sampling methods are 

commonly used by the water industry to monitor pesticide pollutant levels in 

catchments to help in the planning and development of catchment management 

strategies. Typically, grab samples are collected with days or weeks apart and 
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pesticide concentrations in between sample collection times are unknown. The ability 

of collected data to reflect the actual conditions at the study sites determine the 

validity of conclusions made based on the data. The techniques used in the 

metaldehyde model combined with high resolution water quality data can be used to 

identify optimal locations and timings for grab sampling collection. A suitable This 

involves the development of techniques to combine rainfall variability captured by 

radar rainfall data and runoff travel time technique with a view to identify strategical 

locations and timings to capture metaldehyde peaks using grab samples. This enables 

to address concerns regarding the suitability of grab sampling data to develop and 

evaluate catchment management practices. 
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