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Abstract

Structural health monitoring (SHM) is emerging as a crucial technology for the as-

sessment and management of important assets in various industries. Thanks to the

rapid developments of sensing technology and computing machines, large amounts

of sensor data are now becoming much easier and cheaper to obtain from moni-

tored structures, which consequently has enabled data-driven methods to become

the main work forces for real world SHM systems. However, SHM practitioners soon

discover a major problem for in-service SHM systems; that is the effect of environ-

mental and operational variations (EOVs). Most assets (bridges, aircraft engines,

wind turbines) are so important that they are too costly to be isolated for testing

and examination purposes. Often, their structural properties are heavily influenced

by ambient environmental and operational conditions, or EOVs. So, the most im-

portant question raised for an effective SHM system is, how one could tell whether

an alarm signal comes from structural damage or from EOVs?

Cointegration, a method originating from econometric time series analysis, has

proven to be one of the most promising approaches to address the above question.

Cointegration is a property of nonstationary time series, it models the long-run re-

lationship among multiple nonstationary time series. The idea of employing the

cointegration method in the SHM context relies on the fact that this long-run rela-

tionship is immune to the changes caused by EOVs, but when damage occurs, this

relationship no longer stands. The work in this thesis aims to further strengthen

and extend conventional linear cointegration methods to a nonlinear context, by

hybridising cointegration with machine learning and time series models. There are

three contributions presented in this thesis:

The first part is about a nonlinear cointegration method based on Gaussian process
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(GP) regression. Instead of using a linear regression, this part attempts to establish a

nonlinear cointegrating regression with a GP. GP regression is a powerful Bayesian

machine learning approach that can produce probabilistic predictions and avoid

overfitting. The proposed method is tested with one simulated case study and with

the Z24 Bridge SHM data.

The second part concerns developing a regime-switching cointegration approach.

Instead of modelling nonlinear cointegration as a smooth function, this part sees

cointegration as a piecewise-linear function, which is triggered by some external

variable. The model is trained with the aid of the augmented Dickey-Fuller (ADF)

test statistics. Two case studies are presented in this part, one simulated muliti-

degree-of-freedom system, and also the Z24 Bridge data.

The third part of this work introduces a cointegration method for heteroscedastic

data. Heteroscedasticity, or time-dependent noise is often observed in SHM data,

normally caused by seasonal variations. In order to address this issue, the TBATS (

an acronym for key features of the model: Trigonometric, Box-Cox transformation,

ARMA error, Trend, Seasonal components) model is employed to decompose the

seasonal-corrupted time series, followed by conventional cointegration analysis. A

simulated cantilever beam and real measurement data from the NPL Bridge are

used to validate the proposed method.
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Chapter 1

Introduction to Structural

Health Monitoring

Industry never sleeps. Important assets and infrastructure, such as power generators,

aircrafts, wind turbines, roads and bridges, are so fundamental to society, that people

always demand them to be well functioning both safely and constantly. However,

in reality, damage, fatigue, degradation or corrosion are always developing inside

materials and structures, and it is simply too costly to isolate them for testing

and examinations. Many of these assets and infrastructures are near or already

exceeding the end of their original design life spans. Consider the road bridges and

railway bridges in the United Kingdom for example, as illustrated in Figure 1.1, a

great portion of the bridges in the UK has already surpassed 100 years, whereas the

standard design working life for bridges in the UK is usually 100 ∼ 120 years [1].

This is where the technique of Structural Health Monitoring (SHM) comes to the

remedy. Intuitively, SHM systems are like doctors for structures that can provide

diagnostic and even prognostic information about the health state of the structures

through collecting and analysing sensor data collected from the structures, except

that these “doctors” are on duty 24/7 throughout the years.

A fairly recent example comes from the Forth Road Bridge in Scotland, as pictured

in Figure 1.2, which was opened in 1964 and was the largest suspension bridge

in Europe at the time. Unfortunately, originally designed to last for 120 years, the

bridge was forced to be fully closed for a few months in 2016 due to structural defects

found in the bridge truss, which the engineers believed were caused by a seized pin

1
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Figure 1.1: An illustration the ageing of some of the bridges (including
road bridges, railway bridges and viaducts) in the UK.1

[2][3]. However, the good news is, a new bridge called the Queensferry Crossing

Bridge, also pictured in Figure 1.2, has already started to service the public as a

replacement for the Forth Road Bridge, and a full SHM system has been installed

and is fully operational [4][5], in an effort to detect any kind of structural degradation

as early as possible.

The term “SHM” embodies a multitude of techniques which are constantly evolv-

ing themselves, perhaps it is only feasible to provide a definition of the general

framework for SHM. It normally involves implementing damage detection strategies

for civil, aerospace and mechanical structures, which consists of data acquisition

1Data acquired from the Wikipedia web pages: 1. https://en.wikipedia.org/wiki/List_

of_bridges_in_the_United_Kingdom 2. https://en.wikipedia.org/wiki/List_of_railway_

bridges_and_viaducts_in_the_United_Kingdom

https://en.wikipedia.org/wiki/List_of_bridges_in_the_United_Kingdom
https://en.wikipedia.org/wiki/List_of_bridges_in_the_United_Kingdom
https://en.wikipedia.org/wiki/List_of_railway_bridges_and_viaducts_in_the_United_Kingdom
https://en.wikipedia.org/wiki/List_of_railway_bridges_and_viaducts_in_the_United_Kingdom
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through sensors or sensor networks, damage-sensitive feature extraction, statistical

or machine learning algorithms. Limited to the length of the thesis, it is formidable

to give a full account on all the subjects related, so instead, this chapter will aim to

provide a quick tour of the important topics around SHM, which includes a history

overview of SHM, the data acquisition and sensing technology, damage-sensitive

feature extraction and damage detection algorithms.

Figure 1.2: The Forth Road Bridge (front) alongside the
Queensferry Crossing Bridge (back), image downloaded from
https://www.theforthbridges.org/forth-road-bridge/.

1.1 Motivations for SHM

The application of SHM may provide various kinds of industry with enormous ben-

efits, which can be either short-term or long-term [6].

In the short term, SHM can:

• detect the onset of damage as early as possible, in order to prevent catastrophic

events caused by structural damage;

• aid to reduce time and cost of scheduled inspection;

• help to maximise the efficiency of operation and maintenance;

• minimise the risk of human error, if the whole process of SHM is automated.
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In the long term, SHM has the potential to

• shift the maintenance strategy from time-based to condition-based, becoming

more efficient;

• revolutionise the design philosophy, which is to integrate the concept of SHM

into the whole life span of the structures.

In general, the practice of damage detection aims to answer the following five ques-

tions established by Rytter [7]:

1. Detection: is there any damage existing in the structure?

2. Localisation: where is the location of the damage?

3. Classification: what specific type of damage is present?

4. Quantification: how severe is the damage?

5. Prognosis: how long will the structure last before it cannot function safely

any more?

1.2 Overview of Some Related Research Topics

There are a few closely related research fields, all centred around the task of find-

ing damage/failure/novelty; some of them are overlapping with each other. It is

desirable to first distinguish some of these research topics.

Novelty detection often refers to methods that are established under normal condi-

tions, capable of classifying test data that are different from the training data in some

respect. It has a very broad range of successful application areas, including medi-

cal diagnostics [8], malware detection [9], video surveillance [10], structural damage

[11], etc. Novelty detection is very suitable for areas where data under abnormal

conditions are relatively scarce compared to data under normal conditions. For a

comprehensive review of this multidisciplinary research area, readers are encouraged

to refer to [12].

Condition monitoring (CM) is a terminology mostly used in vibration analysis of

rotating machinery [13], where ‘rotating machinery’usually refers to machines like
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turbines, gearboxes, reciprocating machinery, centrifugal machinery, etc. Accelerom-

eters are often used to measure the dynamic response of these machines, i.e vibration

signals, which contain the information about frequency components that are sensi-

tive to structural damage. Fourier-based spectral analysis is widely used in CM [13];

wavelet analysis can also be useful as it analyses both time and frequency informa-

tion [14]. Some other signal processing techniques include the Hilbert transform,

the cepstrum analysis; one can refer to [15] for a systematic review. Condition mon-

itoring has been probably one of the most successful and mature research fields that

has been adopted widely. In comparison with SHM however, CM normally studies

relatively small machinery that is operating in a restrained environment, whereas

SHM aims at much larger structures (bridges, buildings, wind turbines for example),

which are operating in an open and changing environment.

Non-destructive Testing (NDT) or Non-destructive Evaluation (NDE) is another

emerging technology that has been widely employed in evaluating the health state

of material, component or system without inducing any damage to them. Due to the

rapid advances made by sensing technology, researchers have developed a full arsenal

of methods tailored for specific sensing technology and the material to be inspected:

acoustic emission [16], electromagnetic testing [17], microwave imaging [18], ultra-

sonic testing [19], the list goes on. Comparing to SHM, NDT is normally conducted

in an off-line manner, subject to the working conditions of the instruments.

Figure 1.3: The relationship between SHM, NDT, CM and PHM.

Prognostic Health Management (PHM) has drawn increasing amounts of interest

from both industry and academia; it is the study of system behaviour focusing on

predicting how long the system will last before it fails to deliver its desired perfor-
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mance. PHM has been studied extensively, particularly in the aerospace industry,

where system failure might lead to catastrophic accidents and prohibitive economic

loss. Potential applications of PHM are to support decision making for contingency

mitigation, and to develop condition-based maintenance strategies. Physical mod-

els, data-driven models and hybrids of these two are extensively studied in PHM. A

thorough review of this topic can be found in [20].

Figure 1.3 can approximately summarise the relationship of these terms, although

there may be a few exceptions. NDT can be used during a manufacturing process to

ensure the quality of the product; when the product is in service, CM can provide

ongoing monitoring and evaluation of its performance; while SHM can be regarded

as the general aim for these practices, and SHM can integrate all the available

information from manufacturing to service life; PHM is concerned with forecasting

the remaining useful life of the product.

1.3 Data Acquisition and Sensing Technology

How to accurately measure the property of a system is obviously one of the most

fundamental and essential components for SHM. With the rapid development of

sensor technology, there have been many new sensing technologies being developed

that are suitable for the application of SHM. However, it is beyond the scope of the

thesis to review all of them, only a few of them are selected here for illustration

purposes.

Vibration Sensors

Vibration sensing has been arguably the most popular sensing technology in SHM

applications, as dynamic response from structures encodes the information of dy-

namical properties such as natural frequency, damping ratio, which can be very

sensitive to damage in the structure. To measure dynamic responses, strain gauges,

displacement transducers and piezoelectric accelerometers are three commonly-used

types of sensors, but generally, strain and displacement are relative measurements to

some references, while accelerometers can provide absolute measurements of accel-

erations. Nowadays, accelerometers are being made more and more sophisticatedly,

with on-board signal conditioning modules, multi-axis orientation, and high preci-
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sion measurements [6].

Guided Wave Sensing

As an active sensing technique, guided wave testing has quickly emerged as a very

useful tool for damage detection, classification and localisation. Guided waves nor-

mally refer to the techniques which enforce stress waves to propagate through a

path which is defined by material boundary conditions [21]. In the SHM setting,

typically a high-frequency pulse signal is generated by an actuator, and then trav-

els through the material, when it hits some structural discontinuity (which can be

crack or delamination), the guided wave will be scattered in all directions. Two

kinds of approaches are commonly used to decipher the information in the guided

wave, pulse-echo and pitch-catch, depending on the locations of actuator and re-

ceiver sensors, the actuator and receiver are collocated in the former and in different

positions for the latter.

Piezoelectric wafer transducers are the most widely-used sensors in guided wave

SHM, which is due to the piezoelectric and inverse piezoelectric principles of this

unique material. That is, when the piezoelectric material is under stress, an elec-

tric charge signal is generated on the surface of the material; conversely, when an

electric filed is applied to the piezoelectric material, mechanical strain is generated

in the material. These properties make piezoelectrics perfectly suitable for both

actuators and sensors. Lead zirconate titanate (also known as PZT) and polyvinyli-

dene fluoride (PVDF) based sensors are now probably the most commonly-adopted

piezoelectric materials in guided wave SHM applications [22][23].

Acoustic Emission

Acoustic Emission (AE) is a passive non-invasive monitoring and evaluation tech-

nique, which has several successful applications especially in bridge monitoring

[24][25]. AE monitoring usually represents the method to detect potential flaws in

structures by measuring high-frequency sound waves that propagate within struc-

ture, which are often emitted from defects in the structure. Generally speaking,

there are two kinds of AE forms, primary AE and secondary AE, where primary AE

are typically generated from the material of interest, while secondary AE refers to

those generated from external sources [26].



1.3. DATA ACQUISITION AND SENSING TECHNOLOGY 8

Thanks to its passive nature, AE monitoring can be adopted as an in situ moni-

toring technique, which is hugely beneficial for the operation of structures; signal

processing methods have improved greatly in recent years, detection and localisa-

tion algorithms are now available for SHM practices. However, AE monitoring is a

highly application-specific technology, the variability of the types of structure and

their operational conditions make it difficult for the wide adoption of this technique

[26].

Fibre-Optic Sensors

Fibre-Optic Sensing has been extensively exploited in recent decades for conduct-

ing SHM. Fibre-optic sensors have a few advantages that traditional mechanical-

electrical sensors do not possess; for example, fibre-optic sensors are robust to elec-

tromagnetic interference and corrosion, they are also light-weight and economically

affordable. These nice properties make them broadly used in measuring strain, stress

and temperature in civil engineering [27]. Generally, a fibre-optic sensing system is

composed of a light transmitter, an optical fibre, a receiver sensor, a modulator and

a signal processing unit, they are normally mounted or embedded in a structure,

when the strain of the structure varies, the optical fibre will deform its shape accord-

ingly, thus the light travelling inside the optical fibre will change its property, which

can be detected by signal processing and post processing [28]. Fiber Bragg Grat-

ing (FBG) sensors [29], Extrinsic Fabry-Perot Interferometric (EFPI) sensors [30],

Optical Time-Domain Reflectometry (OTDR) sensors [31] are three of the main-

stream fibre-optic sensors adopted in the market. For a systematic review on this

technology, one can refer to [32] and [33].

Summary

One can easily see from the sensing technologies listed above, SHM is quickly evolv-

ing with the advancement of sensing technology; better tools always lead to better

diagnosis. However, the list above is far from exhaustive and represents only a

fraction of all the available sensing technologies; other useful measurement methods

used in the SHM community include: corrosion sensors [34], wireless sensor net-

work (WSN) [35], (embedded) magnetostrictive sensors [36], and even video-based

measurement [37].
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1.4 Damage-Sensitive Feature Extraction

Once data have been collected from structures using sensors, the next question

becomes how to make use of them and ultimately make decisions about the health

state of the structure. Damage-sensitive feature extraction is a vital step of SHM

to answer this question. According to the fourth axiom of SHM concluded in [38],

damage cannot directly be measured by sensors, feature extraction is a necessary

step for converting sensor data into damage information. In the literature, feature

extraction is often accomplished by fitting either a physics-based model or a data-

based model to the measurement data from sensors.

Physics-based features

In terms of physics-based models, modal properties are probably the most successful

features used in SHM. Basic modal properties, including resonance frequencies and

mode shapes, can work as characteristics of a structure, such that when damage

alters the properties of a structure, these modal properties will also change accord-

ingly. With the input and output data readily measured, modal analysis can then

be applied to these data using frequency response functions or impulse response

functions, these basic modal properties can then be easily extracted. Sometimes,

input data cannot be acquired, and associated output-only modal analysis methods

have been developed [39], although they are not guaranteed to be able to identify

all the frequency band due to unknown input exciting sources [6].

Despite their practical use in engineering applications, extracting modal properties

has some fundamental challenges to overcome. Firstly, damage is often known as

a local phenomenon, which does not necessarily have a significant reflection on the

low-frequency response. The other difficulty comes from the basic assumptions of

modal analysis: that the structure is linear and invariant with time, and shows

reciprocity [6]. These assumptions may be violated when there is onset of damage

in the structure, for example, a damaged structure can become a nonlinear one,

making the linear parametric model fitted to the data immediately invalid; any

modal parameters estimated from them are thus inaccurate.

Other features derived from modal properties are also available in the literature:

mode shape curvature [40], structural flexibility [41], modal strain energy [42], etc.
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Data-based features

In general, data-based methods are aiming to lower the dimension of raw measure-

ment data, which are often prohibitive to deal with directly, to condensed features

that still maintain sensitivity to damage. Summary statistics like the mean, variance,

skewness, kurtosis are some of the common choices for damage-sensitive features.

Fourier-based algorithms have also proved to be useful for feature extraction. Fast

Fourier transform (FFT) and power spectral density (PSD) function are frequently

used to extract the system resonance frequencies, which can then be used as a low-

dimensional feature vector. For qualitative comparison between two signals, some

of the time-domain and frequency-domain methods can be adopted, for example the

coherence function, the PSD and cross-spectral density. Moreover, features can also

be extracted from the time series models. The family of autoregressive moving aver-

age (ARMA) models can be fitted to the measurement time series, the ARMA model

is able to characterise how time series evolve dynamically over time. The estimated

ARMA model coefficients are treated as damage-sensitive features, applications in

SHM can be seen in [43][44][45].

1.5 Damage Detection Algorithms

At this point, data have been measured from structures, and meaningful features

can also be extracted from measurements; the next challenge becomes to assess and

make decisions about the health state of a structure. This decision making pro-

cess is well fitted in the discipline of statistical pattern recognition. According to

Rytter’s hierarchy as stated previously, the first level of decision making is to ascer-

tain whether damage has occurred; the higher levels for SHM include localisation

of damage, and classification of damage types. These can all possibly be addressed

by statistical pattern recognition, which can be largely classified into two methods,

supervised learning and unsupervised learning.

Supervised Learning

Supervised learning is a class of machine learning algorithms that is capable of

learning a function mapping inputs to outputs, based on annotated training input-

output pairs. In the context of SHM, supervised learning is essential for damage
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localisation and classification.

The Artificial Neural Network (ANN) is an excellent framework for fitting nonlinear

functions, making it an ideal choice for performing damage localisation [46] and dam-

age classification [47][48] in SHM; support vector machines are also widely adopted

in the same tasks [49][50]; other algorithms include decision tree based methods [51],

hidden Markov models [52].

However in actual practices of SHM, it is often a luxury to have labelled damage

data for training a supervised learning algorithm, as obviously in most cases, it is

highly uneconomic and unacceptable to perform a damage test on a real operational

structure. A potential solution has been proposed by researchers; that is to develop

a high-fidelity digital model - digital twin - working as a proxy for real physical

systems, and able to generate high-quality labelled annotated data [53].

Unsupervised Learning/Novelty Detection

As mentioned above, due to the lack of labelled data, unsupervised learning algo-

rithms have been the mainstay in most SHM applications. In the context of damage

detection, unsupervised learning can be seen as a two-class classifier, which sepa-

rates data with damage from those data in normal conditions. This framework is

also known as novelty detection, which has been briefly reviewed in Section 1.2.

‘Outlier analysis’refers to methods to calculate the discordance between data points

and a baseline model, if the discordance exceeds some threshold, then these data

points are marked as outliers. Various applications can be found in the SHM liter-

ature [54][55], where different assumptions about the baseline model and different

types of discordance metrics are used.

Statistical process control (SPC) is also widely used in SHM to detect damage.

The premise for adopting SPC in SHM is that when the system is under normal

conditions, its statistical properties including the mean, the variance and possibly

others, should remain largely stationary; when damage occurs however, these sta-

tistical properties will consequently undergo some changes; when they surpass the

control limits, a damage alarm can be signalled. Different types of control charts are

available in the literature, tailored to monitoring certain statistics. Some examples

include the X-bar chart for the mean [56], the S control chart for the variance [57],

the CUSUM chart for change detection [58].
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However, one important remark at this point is that often extracted features are

heavily affected by the confounding influence of environmental and operational vari-

ations; the structure may have even larger responses to the variations caused by

temperature than the variations caused by damage. This problem has be be ad-

dressed before any sensible decision can be made. In fact, the work of the whole

thesis is building around this issue. The following chapters will attempt to review

the current literature on this issue, and propose new algorithms to effectively solve

the problem.

1.6 Scope of the Thesis

This thesis is structured as follows:

• Chapter 2 reviews the special topic of the issue of environmental and oper-

ational variations, and also presents a literature review of machine learning

methods and time series methods.

• Chapter 3 gives an overview of the benchmark study of the Z24 Bridge, as it

is repeatedly utilised as case studies later in Chapter 5 and Chapter 6. The

experimental setup and system identification of the Z24 Bridge are reviewed,

also a short review of recent research efforts on this bridge is given.

• Chapter 4 introduces some of the basic theory for nonstationary time series:

the unit root test and cointegration; two kinds of cointegration framework are

reviewed in detail; in addition, a review on the cointegration method for SHM

is provided.

• Chapter 5 proposes a nonlinear cointegration method based on Gaussian pro-

cess (GP) regression; the basics of GP regression is presented, and the detailed

procedures to perform the proposed methods are also demonstrated. The pro-

posed methods are tested with two case studies, one synthetic dataset and the

Z24 Bridge data.

• Chapter 6 introduces a regime-switching cointegration approach, which is a

nonlinear cointegration method. The timing for switching regimes is controlled

by external variable, which is learnt by using the ADF statistic. Proposed

methods are illustrated with case studies, a synthetic dataset and the Z24
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Bridge.

• Chapter 7 explores how to apply cointegration methods on a heteroscedastic

dataset. The proposed method is to first apply the TBATS model to decom-

pose the original signal into different components, and then build a cointe-

gration model on the long-term components. The method is validated with a

simulation study and also the real data from the NPL Bridge.

• Chapter 8 summarises the findings of the thesis and discusses some of the

future directions for this research work.



Chapter 2

Literature Review on

Environmental and Operational

Variations

As previously alluded to, arguably the greatest challenge obstructing SHM transi-

tioning from a laboratory technology to commercial application comes from the ef-

fect of environmental and operational variations (EOVs). Once the damage-sensitive

features have been extracted from data, the next step is to find the underlying re-

lationship between these features and damage information. Unfortunately in many

cases, the more sensitive the features are to damages, the more sensitive they are

to the EOVs [6]. Addressing the effects of EOVs is the central focus of this thesis,

therefore it is sensible to review some of the attempts made by researchers, espe-

cially the articles published after the comprehensive review done by Sohn in 2007

[59]. This chapter will mainly focus on machine learning and time series methods,

as they are closely related to the methods to be presented in later chapters.

14
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2.1 Sources of EOVs

Temperature

Temperature affects almost all structures, no matter whether they are in the labora-

tory environment or in a real world environment. Many properties of materials are

temperature dependent; for example, the Young’s modulus and the mass densities,

which sometimes can lead to the formation of thermal stress inside structures, caus-

ing elastic deformation and even change of boundary conditions. For example, it

was observed in the modal testing experiments on the Alamosa Canyon Bridge that

the modal frequency can vary up to 5% in just 24 hours of temperature variations

[60]. Also, Xu et al. [61] discovered that the displacement of the bridge deck was

linearly related to the changes of ambient temperature, after conducting a six-year

monitoring on the Tsing Ma Bridge in Hong Kong, which is illustrated in Figure 2.1.

Similarly, in [62], Moser and Moaveni found that the identified natural frequencies

of the Dowling Hall Footbridge varied by 4% to 8% in a 16-week time span, where

in the same period, temperature fluctuated between -14 ◦C and 39 ◦C.

Figure 2.1: Comparison of the ambient temperature and the three-
direction displacements of the Tsing Ma Bridge deck in 2005 [61].



2.1. SOURCES OF EOVS 16

However, the field measurements of temperature are not always straightforward,

especially for large-scale structures. While investigating the thermal effects on the

Zhenjiang Bay Bridge (a cable-stayed bridge with a 480m main span) in China, Cao

et al. discovered that temperature distributed differently in different parts of the

bridge, and that the temperature in the concrete was 5∼6 hours lagged from the

ambient air temperature, which is illustrated in Figure 2.2 [63]. Also in the Tamar

Bridge in the UK, the monitoring campaign observed that the identified temperature

of the structure was 10 to 60 minutes delayed to the air temperature, depending on

which part of the bridge was measured [64].

Figure 2.2: Ambient air temperature VS temperature measured in dif-
ferent parts of the Zhanjiang Bay Bridge: (a) the thermal sensor used;
(b) temperature measured over a three-day period [63].

The change in temperature can sometimes vary the properties of materials as well.

Watson and Rajapakse [65] investigated how the material properties of pavements

varied with the temperature; the study showed that the stiffness of the asphalt layer

increased dramatically in the sub-zero regime, while it showed much smaller decrease

in the above-zero regime. The findings were later validated in a bigger structure,

bridges: in Moser and Movaveni’s research on the Dowling Hall Footbridge [62], the

modal frequency of the bridge saw a significant rise when the temperature dropped

below 0◦C; a very analogous condition can be observed in the Z24 Bridge[66], which

will be extensively reviewed and studied in this thesis.

The effect of temperature is also vital for guided-wave SHM [67], impedance-based

SHM [68], fibre-optic sensing [69], and so forth, temperature affects almost all the
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techniques in SHM studies.

Humidity

Humidity is a subtle environmental factor which normally does not vary significantly,

but it is certainly an important one that cannot be neglected when performing SHM

practices. To find out how humidity may affect the dynamic behaviour of structures,

Xia et al. conducted an experiment on a reinforcement concrete slab; they concluded

that as the humidity increased, the concrete absorbed more water and thus increased

its mass, its natural frequencies increased as a consequence [70]. Another example

comes from the condition monitoring of gas turbines, where a twin shaft industrial

gas turbine was tested for performance monitoring; Mathioudakis and Tsalavoutas

[71] found that the lack of humidity measurements may cause a significant increase in

the uncertainty bands of the measured quantities, the situation may get worse if the

relative humidity increased. Their observations also confirmed that the variations

caused by humidity changes may actually be at the same level of the variations

caused by faults.

Wind

Wind-induced vibration is a critical factor for the design and maintenance of tall

and slender structures like wind turbines, skyscrapers, and long-span bridges. The

energy that wind-induced vibration can input to structures may excite the funda-

mental modes of structures, causing the structure to fatigue or fail. Li et al. [72]

monitored the wind effect of a super tall building (370m) located in Hong Kong dur-

ing a typhoon event. The wind speeds, wind direction, and the dynamic responses of

the building were continuously collected. After spectral analysis, it was discovered

that the first and second natural modes of the building had been excited by the

typhoon, and the values of the first two modes were about 20% different from the

original design. A suspension bridge in Japan was tested by Mahmoud et al. [73];

they found that the natural frequencies, mode shapes and damping ratios were all

related to the variations of the ambient wind [74]. Similar findings can also be seen

in ??, where Zhou et al. concluded that, apart from temperature, wind was another

important factor to explain the variations of the modal properties of a bridge. Cross

et al. [75] observed that the modal frequencies of the Tamar Bridge in the UK were
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not significantly related to wind speed when the wind speed was relatively slow,

but when the wind hit the bridge with speeds above 25 mph, the modal frequencies

showed a clear relationship with the wind speed.

Boundary Conditions

Boundary conditions of structure are places where the structure interacts with

the external environment through external forces or constraints on displacements.

Boundary condition may change over time, implying that it may have significant

influence on the dynamic response of the structure. Quek et al. [76] performed a

numerical study on a beam, and examined how their damage detection algorithm

worked under different boundary conditions and different crack characteristics. Two

kinds of boundary conditions were simulated: simply-supported and fixed, they

found that the damage-sensitive features were relying on the type of boundary con-

dition, that the simply-supported case was about one-third of the fixed case. Also,

in the context of impedance-based SHM, boundary conditions can be a critical factor

for damage detection, for example in [77], Park and Inman used impedance-based

technique to detect damage (loosening bolts) in a scaled-down steel bridge sec-

tion, the experiment was designed for three different boundary conditions to mimic

real-life variations. As illustrated in Figure 2.3, responses from two PZT sensors

are plotted; the first 14 bars for each PZT sensor represents 14 different boundary

conditions, the following three bars are from damage scenarios. As one can see,

especially for PZT 1, the changes of damage metric that are caused by the bound-

ary conditions are close to the magnitude of the changes caused by Damage 1 and

Damage 2.

Operational Conditions

Operational conditions in SHM can be considered to be a broad terminology that

may include factors like traffic loading, flight conditions, operating speed and pay-

loads, which may vary with time, resulting in significant influences on the response

and dynamic properties of interested structures. In his PhD thesis [78], Gong pre-

sented a numerical study on how vehicles loads may interact with the dynamic

properties of long-span bridges. He concluded that traffic load may have positive or

negative impact on the dynamic response of bridges, and the impact could result in
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Figure 2.3: The variations of the damage metric under different bound-
ary conditions in comparison with the damage metric under damage
conditions [77].

significant variations in the response. In general, long-span bridges were more pro-

nounced to traffic loadings than short-span bridges. Besides, the dynamic response

of bridges tended to increase when vehicle speed increased. The findings from Gong

were quite consistent with the experimental study on the Tamar Bridge; Westgate

et al. [79] found that the modal properties of the Tamar Bridge were dependent on

the level and spatial distribution of the traffic loads; also, the effect of traffic loads

had a different role in different dynamic modes, as temperature appeared to be more

dominant in some modes than traffic loads. Similar conclusions about the Tamar

Bridge can also be found in [75].

For condition monitoring, operating conditions also play an important role, espe-

cially for gas turbines and aircraft engine monitoring. For example, the vibration

analysis during the start-up and shut-down periods of an aircraft engine is very

crucial for it safety and reliability, as it may frequently repeat the start-up and

shut-down process. Therefore, transient analysis of the dynamic properties becomes

necessary for damage detection, for reviews and application studies, one can refer
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to [80][81][82].

2.2 Machine Learning Methods

The process to distinguish changes caused by damage from those caused by EOVs

is called data normalisation. However, there is no panacea for data normalisation in

SHM, most methods available are problem-specific. In this section and the following

section, machine learning and time series methods for data normalisation will be

briefly reviewed.

Neural Networks

Neural networks represent a large family of parametric methods that can perform

nonlinear regression and classification tasks. When the measurements of EOVs are

available to the researcher, then one can use a neural network model to fit the lin-

ear or nonlinear relationship between EOV variables and responses from structures.

For example in [83], Ni et al. employed a two-layer back-propagation neural network

(BPNN) model on 770 hour worth of monitoring data from the Ting Kau Bridge

in Hong Kong. The model formed was a regression model with temperature mea-

surements from multiple sensors as inputs and modal frequency as output. The

whole dataset was divided into three parts for training, validation and testing re-

spectively. The purpose of the study was to examine the generalisation ability of

the BPNN, therefore the selection of training data needed to be carefully done. In

the paper, a full cycle of temperature variation was utilised to form the training

dataset. The number of hidden nodes was determined optimally using the valida-

tion dataset. They had also proposed to train the BPNN with tricks including early

stopping and Bayesian regularisation, in an attempt to improve the generalisation

capability. Once a proper BPNN model was trained, the model was used to make

predictions of modal frequency with temperature data as inputs; once the prediction

deviated from real measurements, then one could say the status of the bridge had

changed. For the case study of the Ting Kau Bridge, the BPNN model can produce

quite accurate predictions, and the Bayesian regularisation helped to improve the

performance of the BPNN on the test dataset.

What if the measurements of EOVs were not easy to obtain? The solution proposed
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Figure 2.4: The schematic representation of an auto-associative neural
network [47].

by Sohn et al. [47] was to train an auto-associative neural network (AANN) model.

An auto-associative neural network is different from a conventional neural network,

the above BPNN for example, that the target outputs are simply its inputs, as shown

in Figure 2.4. An AANN normally consists of five layers: mapping, bottleneck,

de-mapping and output layer namely. The bottleneck layer, usually contains fewer

nodes than the input layer, and works as a concentration function in order to extract

the most informative features from the inputs. The idea of employing AANN to

the data normalisation in SHM is based on the assumption that the underlying

dependency on EOVs can be captured by the nonlinear mapping functions trained

in AANN; once the structure experiences damage, the prediction error produced by

AANN will be expected to grow as a result, which can be regarded as a damage

indicator. In [47], they first extracted features from measurement data using an

autoregressive and autoregressive with exogenous inputs (AR-ARX) model, then

the estimated coefficients in the model were used to train the AANN model. More

recently, Dervilis et al. [84] proposed to improve the robustness and efficiency of

AANN by adopting an auto-association with Radial Basis Function (RBF). The

main difference between a traditional multi-layer perceptron (MLP) network and
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an RBF network is that instead of representing the nonlinear transfer function with

the scalar products of the input vector and the weight vector, the RBF network

adopts a nonlinear function of the distance (Euclidean distance in this case) between

them, which is hugely advantageous because an RBF network does not require a

cumbersome nonlinear optimisation for the model parameters. The RBF network

was examined with an experimental case study to detect damage in a wind turbine,

and was proved to be an fast online damage detection algorithm.

Singular Value Decomposition

Singular Value Decomposition (SVD) has been used as a data normalisation method

in SHM so as to distinguish between changes caused by EOVs and changes caused

by damage [85]. The concept was based on the premise that once one had assembled

a feature matrix under normal conditions, the rank of the matrix was supposed to

remain constant if the structure stayed intact; when new data was observed, the

new feature vector was concatenated to the feature matrix, if there was the onset of

damage, the rank of the new matrix would increase by 1, otherwise, the rank stayed

constant. This method works relatively well if the features are properly selected,

and the damage feature is orthogonal to the feature space expanded by the baseline

feature vectors. Later, Vanlanduit et al. proposed a more robust SVD method to

deal with EOVs [86]. In the case where data under the intact condition is available,

the SVD method can be trained appropriately, but when there is an outlier in the

data or when the damage data and normal data are actually mixed together, then

the SVD method would tend to fail. Vanlanduit et al. proposed a robust SVD

method to find the feature matrix representing the underlying normal condition, by

applying an exhaustive search for the singular value decomposition with the smallest

cost function.

A different direction of using SVD was proposed by Ruocci et al. [87], where the aim

was to assess damage of a pre-stressed beam. The interpretation in [87] was that the

variability from EOVs can be mostly expressed by the singular value matrix, and

the contributions were ranked by the singular values. In their case study, Ruocci

et al. found that the first singular value could account for 99.8% of the variability,

thus they removed the first singular value, as they believed most of the variations

were from EOVs. The remaining three singular value were then used for damage

detection.



2.2. MACHINE LEARNING METHODS 23

Principal Component Analysis

Principal component analysis (PCA) is a statistical method for dimension reduc-

tion, a set of N−dimensional variables is orthogonally projected into a new set

of uncorrelated p−dimensional (p < N) variables, which are called the principal

components. Traditionally, in a damage detection context, PCA has been used as a

feature extraction method; for example in [88], Zang and Imregun used the principal

components that accounted for most of the variations to reconstruct the frequency

response function (FRF), and then applied a back propagation neural network to

train these features under normal conditions. However in order to eliminate the

effect of EOVs, PCA needs to be applied differently. Cross et al. attempted to find

features that were sensitive to damage but insensitive to temperature variations

in [89]; PCA was applied to the training data first, and then the higher principal

components that could explain the maximum variance were discarded, based on the

assumption that temperature variations were accounting for most of the variance

in the data. Therefore, the space that these minor components projected to could

represent the feature space under the normal conditions, when damage happened,

the projected minor components would deviate from the baseline space, which could

be captured using a proper distance metric. The case study used in [89] was to de-

tect damage through Lamb waves propagating within a composite plate. PCA was

applied to 50 spectral lines to obtain 20 principal components. Only the 10 principal

components, which only explained 0.005% of the variance, were used for construct-

ing a new feature; the result is shown in Figure 2.5. There are three sections in the

plot separated by two vertical lines; temperature is steady in the first section, and

cyclic in the second, the last section introduces damage to the plate. The minor

component projection is not influenced by the temperature variation in the second

section, and damage indication is clear and efficient. Also in [89], the PCA method

and a few other novelty detection methods were reviewed and compared with the

cointegration method, which is the main theme of this thesis.

Gaussian Processes

The Gaussian process (GP) is a Bayesian nonparametric model that can perform

both regression and classification tasks. Due to its excellent performance in nonlin-

ear regression, in the areas of machine learning and statistics, GP regression has been

widely adopted for prediction, interpolation, optimisation and uncertainty quantifi-
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Figure 2.5: Results of damage detection using the minor components
from PCA [89].

cation. More technical details will be reviewed in Section 5.2, where GP regression is

hybridised with cointegration. However, for the sake of this literature review, some

of the applications of GPs in SHM are reviewed first.

As mentioned above, GP regression is an excellent nonlinear regression framework;

due to its Bayesian nature, it can produce a probabilistic prediction rather than a

single value prediction, which is very advantageous for quantifying the uncertainty of

model predictions. For example in Chapter 5.2 of [90], GP regression was employed

to model the relationship between environmental variables (temperature, wind, traf-

fic) and the natural frequencies of the Tamar Bridge. The changes in the natural

frequencies were mostly caused by EOVs, which can be accurately modelled by a

GP regression, the model error could then be used as a damage indicator. GP is

normally characterised by its mean function and covariance function, most of which

are functions of distances in the input domain; as such, most of the GP are actually

stationary processes. When dealing with nonstationary processes however, one good

idea is to combine the idea of Classification and Regression Trees (CART) with the

GP. Gramacy and Lee [91] have established the method of Treed Gaussian Process

(TGP); the idea is to partition the input domain into different regimes (leaves) us-

ing a Bayesian CART algorithm, and the specifications of GP are different in each
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regime. The TGP model has been adopted to the Tamar Bridge and the Z24 Bridge

in [92], where the switching behaviour of the interested structure were modelled.

The GP can also be extended to the heteroscedastic context (the variance of the

noise is time dependent); see for example [93].

Kernel Methods

Kernel-based methods, often based on support vector machines (SVMs), have been

widely used for classification and regression especially in the context of supervised

learning, applications in SHM can be seen in [94] and [95]. However in the context

of EOVs, unsupervised learning methods are more favourable as labelled damage

data are normally not easy to obtain. To review unsupervised kernel-based meth-

ods in SHM, it suffices to refer to a recent article by Santos et al. [96], where four

kinds of unsupervised kernel methods were used for damage detection under chang-

ing environmental and operational variations. The four methods were: the one-class

SVM, support vector data description (SVDD), kernel principal component analysis

(KPCA) and greedy kernel principal component analysis (GKPCA). These four algo-

rithms are all concerned with projecting the original data into a higher-dimensional

space, and the SVDD and SVM manipulate data in this high-dimensional space,

whereas the KPCA and GKPCA map the high-dimensional features back into the

original space for damage detection.

2.3 Time Series Methods

Naturally, sensor data can be treated as time series, as they are often acquired and

recorded in equidistant time intervals. Therefore, many of the mature time series

modelling methods can be readily used in the context of SHM. The review presented

here intends to gain some insights about how to understand the effect of EOVs from

a time series perspective. However, under the umbrella of time series, there is a

very broad range of methods, and many of them are overlapping with some of the

machine learning methods just reviewed. Thus in this section, some of the popular

time series models suitable for addressing EOV issues are reviewed.
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ARMA Models

The Autoregressive Moving Average (ARMA) model is perhaps the most classical

stationary time series model in the time series field. Before finding the link between

ARMA models and SHM, it is worthwhile to briefly review the form of an ARMA

model. Consider a time series xt, it can be referred to as an ARMA(p,q) model, if

xt has the following form:

xt =

p∑
i=1

φixt−i +

q∑
j=1

θjεt−j + εt + c (2.1)

where xt is expressed as a sum of p autoregressive terms xt−i, q moving average term

εt−j, a Gaussian noise term εt and a constant term c; φi and θj are the coefficients for

the autoregressive terms and the moving average terms respectively. To determine

the orders p and q, one can either use the autocorrelation function and partial

autocorrelation function or use the Akaike Information Criteria (AIC) [97]. ARMA

model can parsimoniously capture the dynamical behaviour of a time series, therefore

the coefficients of ARMA models have been widely used in SHM as features. For

example in [43], Carden and Brownjohn trained an ARMA model with measurement

data from the Malaysia-Singapore Second Link Bridge and the Z24 Bridge; the

ARMA coefficients were used to train a damage classifier in an unsupervised manner.

The method worked relatively well for the Singaporean bridge, but did not classify

some of the damage in the Z24 Bridge case, probably because of the nonlinear

behaviour of the latter bridge.

To improve the performance of the ARMA model, Chen and Yu [98] attempted to

explicitly model the residual error with a Generalised Autoregressive conditional

heteroscedasticity (GARCH) model. The idea of a GARCH model is straightfor-

ward; it assumes the conditional variance of a time series follows an ARMA process

[99]. The ARMA-GARCH algorithm proposed worked as follows: first a baseline

ARMA model was fitted to the measured acceleration time series; then if the resid-

ual series presented heteroscedasticity, then a GARCH model would be used for

the residual series; the fitted GARCH model was then used to form damage sensi-

tive features. An experimental study was then presented, which was a three-story

building structure from the Los Alamos Laboratory (LANL); the ARMA-GARCH

model could outperform the ARMA model in terms of damage sensitivity, and the

new framework was also robust to the changes in the environmental and operational
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conditions.

Sohn and Farrar proposed an unsupervised damage diagnosis method based on a

AR-ARX (AR with exogenous input) model [100]. The experiments were conducted

under different types of environmental and operational conditions; to normalise the

data, they first started to build a “pool ”of signals that contained various system

responses under normal states but in different EOVs. In their proposed algorithms,

an autoregressive (AR) model was first fitted to all the signals in the pool to form a

so-called reference database. Once one received a new measurement signal, an AR

model was fitted, then the closest AR model needed to be selected as a reference

model, based on a difference metric. Then, a prediction model (a two-stage method

combining an AR model and an ARX model) was developed, in an attempt to

reconstruct the signal using the reference model. The prediction error between

the original signal and the reconstructed signal was used as a damage-sensitive

feature. The proposed method was validated on a multi-degree-of-freedom mass-

spring system, the residual series could be used to detect the onset of damage, while

immune to the changes caused by EOVs.

Another way of extending the ARMA model is to extend the univariate model into

a multivariate context - that is the vector ARMA (VARMA) model or vector AR

(VAR) model. One advantage of adopting vector variants of the ARMA model is

that it can possibly incorporate the spatial information of the measured signals,

implying that a VAR or VARMA model can potentially be used to localise dam-

age. For instance, Bodeux and Golinval [101] used a VARMA model to fit to the

vibration response from the Steel-Quake structure, and used the natural frequen-

cies derived from the VARMA model for damage detection purposes. Mosavi et al.

[102] proposed a damage detection and localisation algorithm in steel beams under

ambient vibrations. The VAR model was fitted to the multiple time series of ac-

celeration measurements, from a number of accelerometers deployed on the beam,

so as to model the spatial information about the damage. The damage sensitive

features were derived from the coefficient matrix in the VAR model, and the Maha-

lanobis distance was used as a distance metric for identifying outlier/damage from

the data. They concluded that those sensors with the largest Mahalanobis distances

were identified as closest sensors to the damage locations. Similar research work

can be seen in [103], where a functionally-pooled VAR model was used to extract

damage sensitive features.

More recently, Liu et al. [104] investigated the switching VAR model (SVAR) for
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robust damage detection under various EOVs. The concept of SVAR is to combine

a Markov-switching model with a VAR model. A Markov process refers to a pro-

cess whose current observation is only dependent on the recent observations, it is of

order 1 if it is only correlated to the last observation, of order p, if related to the

past p observation(s). A schematic representation of the SVAR model is shown in

Figure 2.6, where the hidden state variable st follows a first-order Markov process,

the observation variable xt is an AR(2) process, which is dependent both on the

hidden state variable st and the previous two observations. The hidden state st was

designed to model the phenomenon of the regime-switching behaviour of some struc-

tures under the influence of EOVs, and within each regime, there lived a different

AR model that could capture the dynamic behaviour of the interested structure in

that regime. It is also worth pointing out that this SVAR model did not necessarily

require the measurements of EOVs, however if the EOVs were available, it would

greatly ease the estimation of the parameters. In the case where the EOV measure-

ments were not available, the model parameters were learnt through a expectation

maximisation (EM) algorithm, which is an iterative learning algorithm converging

on the local maximum likelihood [105]. The proposed method was examined with a

simulated time series and a laboratory experimental study.

Figure 2.6: A graphical representation of the SVAR model, st stands for
the hidden state variable, xt represents the observation. [104].
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State Space Models

State space models subsume a large family of sequential models which are capable

of unveiling the underlying dynamic evolution of the observing variables measured

over time. Hidden Markov Models (HMMs) and Linear Dynamical Systems (LDSs)

are the two most important state space models; they are both based on the same

premise that noisy measurements can be made from a set of hidden state variables

which evolve with Markovian dynamics, as depicted in Figure 2.7. p(st|st−1) is often

termed as a transition probability distribution, and p(xt|st) is an emission distri-

bution. When the hidden state variable is assumed to be a discrete variable, the

model in Figure 2.7 is an HMM; if the state variable is continuous, it represents an

LDS model. Specially, when the transition and emission distribution are assumed

to be Gaussian, then it becomes the well-known Kalman filter. The filtering and

smoothing of state space models are normally achieved using the backward-forward

propagation algorithm and Rauch-Tung-Streibel smoothing algorithm [106], which

are already well-studied in the literature. For an unifying review on inference algo-

rithms of HMM and LDS, one can refer to [107]; for parameter learning algorithms,

one can refer to [105]. For a thorough treatment of the state space model and its

variants, one can refer to Part IV in [106].

Figure 2.7: A diagram plot for a state space model. [107].

Ocak and Loparo developed a fault detection algorithm with HMMs using vibration

signals from a bearing [108]. They first extracted features - coefficients of linear

autoregressive function in this case - from vibration signals collected under normal

conditions; then an HMM was trained to obtain the most probable sequence of

states under normal conditions; the fault detection was accomplished by compar-

ing the likelihood of a newly-observed signal with the trained baseline signal, if it

stayed below a pre-determined threshold, then the bearing was undamaged, other-

wise it was damaged. Miao and Makis [109] presented a similar study, where the
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most probable HMM was also used to identify damage for rotating machinery, ex-

cept that the damage-sensitive feature they used was based on the wavelet modulus

maxima distribution derived from vibration signals. In a supervised learning man-

ner, Lin and Makis recently investigated a condition-based maintenance policy and

early fault detection algorithm, where a three-state HMM was employed to form a

reference baseline model [110]. The three states consisted of healthy, warning and

failure, which are trained with labelled vibration signals from a gearbox. The other

contributions of the paper were to develop a residual life prediction algorithm and

a Bayesian optimal decision making process.

Kalman filters, on the other hand, have been widely used for the task of system

identification, based on which further damage detection algorithms can be devel-

oped. Yang et al. [111] used a nonlinear Kalman filter - an extended Kalman filter

(EKF) - to adaptively track the change of system parameters, which were used for

damage detection. The EKF framework was suitable for systems exhibiting abrupt

changes in the parameters. Similarly in [112], the EKF was used to identify system

parameters of a highway bridge which were changing because of the variations in

temperature. The EKF method was used in conjunction with the neural network,

for creating a baseline model which is capable of detecting damage.

If the state space model has nonlinear transition and emission functions, and its noise

is also non-Gaussian, then the particle filter (PF) or sequential Monte Carlo (SMC)

comes to the rescue. PF employs a generic mutation selection sampling method,

using a series of particles (samples) to approximate the posterior distribution of a

random process. One can refer to [113] for an overview on PF. In the context of

SHM however, Chatzi and Smyth [114] have developed a PF with mutation (MPF)

scheme to improve the sampling efficiency; the proposed MPF was examined with

a nonlinear system identification case study, and the variations of the system pa-

rameters were accurately captured. Also in [115], Chen et al. combined Lamb waves

with the particle filter, in order to predict crack growth.

Mixture Models

Mixture models are models consisting of a mixture of components, each compo-

nent can be represented by a certain parametric form. When these components are

Gaussian distributions, then it is termed a Gaussian mixture model (GMM). Mix-

ture models are generally good at modelling multi-modal data, and are suitable for
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clustering and classification. Banerjee et al. [116] used a GMM as a damage classi-

fier, based on features extracted from a newly-proposed discrete-time energy model.

In terms of the damage detection under the effects of EOVs, Qiu et al. developed an

online updating GMM algorithm to address this issue [117]. Their damage detection

method was based on a piezoelectric transducer and Lamb waves. Features were first

extracted from Lamb wave signals, and reduced to only two dimensions using PCA;

a GMM was then fitted to the features under undamaged conditions in order to

construct a baseline GMM. They also proposed an online updating algorithm for

estimating a new GMM in real time. Lastly, damage quantification was performed

by comparing the newly estimated GMMs with the baseline GMM, using two kinds

of distance metrics - Mahalanobis distance and Kullback-Liebler divergence. The

proposed framework was tested for damage quantification of edge crack growth in

an aircraft wing spar, which was subjected to time-varying boundary conditions.

Similar research can also be seen in [118].

2.4 Summary

The current chapter provides an overview of the important developments in the

structural health monitoring literature, with an emphasis on the effect of environ-

mental and operational variations. First, the main sources of EOVs are reviewed,

and each source of EOV is also accompanied with examples in the research field.

The next two sections are concerned with a literature review of data normalisation

in SHM; it is intended to primarily focus on two big categories of methods, namely

machine learning and time series methods, for the reason that the methods proposed

later in this thesis can also largely fall into these two categories.

One can see a clear trend from the literature in SHM, that this research field is in-

creasingly drawing attentions from engineering practitioners, SHM is quickly trans-

ferring from a laboratory technique to real-world commercial applications. There-

fore, in this thesis, the author will not only focus on developing novel algorithms to

address the effect of EOVs, but also will attempt to validate the applicability of the

algorithms proposed on real engineering dataset.

From the articles listed above, it is probably safe to conclude that the research

in SHM is rather interdisciplinary, and algorithms have to be carefully designed

to specific problems. Admittedly, limited to the author’s knowledge, the review
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provided here is rather biased and can only touch some of the basics on these topics.

Moreover, with the rapid developments in data science, sensing technology and

cloud computing, research in SHM is almost certain to evolve with these emerging

technologies, and more powerful and efficient algorithms will be seen in the field.



Chapter 3

The Z24 Bridge Benchmark

The Z24 Bridge is now a well-studied benchmark in the community of SHM, many

research papers related to the Z24 Bridge have been published. This chapter will

review some of the unique properties of this bridge which have attracted much

research interest; also, some of the research articles are reviewed. As in the later

chapters of this thesis, the Z24 Bridge will be used in case studies; thus the aim of

this chapter is also to provide some references for comparison between the existing

methodologies and the author’s proposed methods.

3.1 Overview of SHM of the Z24 Bridge

The Z24 Bridge was built in 1963; it was designed to connect Koppigen and Utzen-

storf in Switzerland, overpassing the A1 Bern-Zürich Motorway. The bridge struc-

ture was a classical post-tensioned concrete box-girder bridge, consisting of three

spans (30m main span and two 14m side spans), as illustrated in Figure 3.1. The

main piers were made of concrete diaphragms, which were clamped into the bridge

girder. Both ends of the deck were extended in order to protect the anchor heads

[119].

33
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Figure 3.1: Front view, top view and cross-section of the Z24 Bridge
[119].

Test Setup

The bridge was scheduled to be demolished in the end of 1998 to allow the con-

struction of a new railway track adjacent to the motorway, albeit in relative good

conditions. The monitoring campaign continuously monitored the bridge for about

one year, from 11th November 1997 to 11th September 1998. To identify its dynamical

characteristics, the Z24 Bridge was heavily instrumented with both accelerometers
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and environmental sensors (temperature, humidity, wind speed, wind direction). In

order to accurately measure the mode shapes, nine setups of accelerometers were

placed on the deck of the bridge, along three parallel lines, two sidelines and one

central line, as shown in Figure 3.2.

In the later stage of the monitoring test, progressive damage scenarios were intro-

duced to the bridge by the researchers. One can refer to Table 5.4 in Chapter 5. As

damage detection is the priority task for the studies in this thesis, the first damage

scenario is of particular interest, which was the settlement of the bridge pier. The

pier settlement was conducted by gradually cutting the pier near the Koppigen side

by 0.2m, 0.4m, 0.8m and 0.95m, and the pier was later restored. The lowering and

lifting of the pier were done by six hydraulic jacks, as illustrated in Figure 3.3.

Figure 3.2: Measurement grid of the accelerometers placed on the bridge
deck[119].

System Identification

Dynamical properties of bridges are often deemed as damage sensitive features, as

can be seen from the papers reviewed in the last chapter. Modal properties like

natural frequencies, mode shapes and damping ratios have been identified for the

Z24 Bridge for damage detection studies [58]. The stochastic subspace identification

(SSI) was employed for system identification; the modal properties were identified

from ambient vibrations, especially those coming from the traffic of the A1 motorway

underneath the Z24 Bridge. To avoid repetition, the first four natural frequencies

which were identified using SSI can be seen in Figure 5.6 in Chapter 5 and Figure

?? in Chapter 6. The identified mode shapes of the bridge are plotted in Figure 3.4,

where the first is a bending mode, the second is a transverse mode, the third and
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Figure 3.3: The hydraulic system used for settling the pier [119].

fourth are coupled torsion and bending modes.

The Effect of EOVs

On observing Figure ??, the time series of the first four natural frequencies are ob-

viously nonstationary, especially when the temperature drops below freezing point,

when the magnitude of natural frequency tends to increase significantly. Moreover,

one can visualise the relationship between temperature and natural frequency, as

in Figure 3.5; the natural frequency is a nonlinear function, or bilinear function to

be precise, of the temperature, the natural frequency shows an obvious rise below 0

degree Celsius. According to Peeters and De Roeck [66], that may be explained the

the stiffening of the asphalt layer of the bridge, causing the stiffness of the deck to

increase. This example may showcase the effect of EOVS, temperature specifically

in this case, can have a negative influence on the development of damage detection

algorithms, the major challenge would be to distinguish the difference between a

variation caused by EOVs and a change caused by real structural damage.
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Figure 3.4: The identified modal frequencies and mode shapes of the
Z24 Bridge before and after damage [120].

3.2 Damage Detection Algorithms

To overcome the issue of EOVs of the Z24 Bridge, many research articles have

been produced in the SHM community. This section will review some of the recent

damage algorithms developed for the Z24 Bridge benchmark.

Reviewed in the last chapter, the machine learning methods to tackle the issue of

EOVs are mainly in two categories, supervised learning and unsupervised learning;

likewise in the literature of the Z24 Bridge.

Temperature measurements are available in this benchmark study, thus most of

the supervised learning methods applied are to find the regression relationship be-

tween dynamic properties and temperature. For example, Worden and Cross [92]
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Figure 3.5: The bilinear relationship between the first natural frequency
and temperature.

trained a Gaussian process regression and a Treed Gaussian process regression to

the Z24 data (previously reviewed in Section 2.2). Baldacchino et al. [121] pre-

sented a variational Bayesian mixture of experts model for this nonlinear map-

ping problem. Mixture of experts (MoE) models can be expressed as the following:

y =
∑M

i=1 gi(x, πi, θi)fi(x,wi), where x represents the input vector and y is the

output target, temperature time series and the natural frequency time series respec-

tively in this case; gi(∼) and fi(∼) are the ith gating function and expert function

respectively; M is the number of experts. The gating function used in the paper

was a normalised Gaussian function, making the gating a Gaussian mixture model

(GMM). The expert function was expressed as a linear input vector, although they

could take on higher-order polynomial form. MoE models can partition the input

domain into separate regions, where each region is represented by a different expert.

To perform inference and model selection, Baldacchino et al. adopted a variational

Bayesian expectation maximisation (VBEM) algorithm for maximum likelihood es-
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Figure 3.6: Red line is the second natural frequency of the Z24 Bridge;
blue line is the prediction from the VBEM MoE model with three ex-
perts; the black lines are the 99% confidence intervals [121].

timates. As for the case study of the Z24 Bridge, a MoE model with three experts

were employed, the input domain (temperature) was split into three regions, below

0.42◦C, between 0.42◦C and 13.4◦C, and above 13.4◦C. Interestingly, the TGP paper

[92] and the work presented later in Chapter 6 have both introduced split points in

temperature, TGP had two split points both near 3◦C, whereas Chapter 6 splits at

one point (0.98◦C) or at two points (2.36◦C and 3.95◦C). The fitting and prediction

performance of MoE model can be seen in Figure 3.6, where the blue line is the

identified second natural frequency time series of the Z24 Bridge, the red line is

the prediction from the VBEM MoE model with three experts, and the black lines

represent the 99% confidence interval. The fit is reasonably good and the damage

is detected where the blue line goes beyond the black line.

Spiridonakos and Chatzi [122] introduced a novel damage detection framework using

the combination of a polynomial chaos expansion (PCE) and independent compo-
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Figure 3.7: Schematic diagram of the proposed PCE method [122].

nent analysis (ICA). The key concept herein is to express the dynamic property

variable, natural frequency in this case, as an expansion in polynomial chaos (PC)

basis functions, which are orthogonal to the probability space spanned by the input

variables, temperature in this case. The PCE can be expressed in the following

form: Y = S(Ξ) =
∑

d(j) θjφd(j)(Ξ), where Ξ denotes the input random variable,

different temperature sensor measurements herein; Y denotes the output variable,

the natural frequencies in this case; θj are the undetermined coefficients, φd(j)(Ξ) are

the PC functions, which are orthogonal with respect to the probability distribution

of the input variables P (Ξ). The PC basis function was selected as the Legendre

polynomial function, because it was associated with the uniform distribution which

the input variables were transformed into. However before the PCE could be done,

the ICA algorithm needed to be applied to the temperature measurements, which

are highly correlated, in order to obtain the most informative and independent input

variables. The full procedures of their proposed method are illustrated in Figure 3.7.

As for the Z24 case study, they reconstructed the first four natural frequency time

series using the PCE model; the fitting was quite good, the standard deviations of

the expansion error ranged from 0.027Hz to 0.13Hz. For the second natural fre-

quency series, one can see in Figure 3.8, the residual series maintains stationarity

before damage, meaning the effect of EOVs have been effectively eliminated; when
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damage is introduced (black vertical line), the residual series indicates a prompt

abnormal trend.

Figure 3.8: Upper plot: the estimated series using a PCE model (red and
green) in comparison with the real series of the second natural frequency
(blue) [122].

To gain insights into the meanings of outliers in the dataset, Dervilis et al. [123]

proposed a robust analysis method to explore the EOV conditions in SHM data.

The method used a combination of the least trimmed squares (LTS) regression and

the minimum covariance determinant (MCD), which could ultimately distinguish the

difference between leverage points and outliers, aiming to understand the effects from

EOVs. The MCD method was designed to find the optimal subset of observations

whose covariance matrix had the lowest possible determinant, such that the newly-

obtained subset could be immune to the effect of outliers. The LTS estimator was

used to classify the types of points: good or bad leverage points, or outliers. The

results could be presented in a 2D map, as illustrated in Figure 3.9, where different

regions represent different types of points; regions one and five are outliers, regions

two and six are bad leverage points, region three is normal points, and region four is
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good leverage points. Correspondingly in the plot of the LTS residual versus MCD

index of the second natural frequency, most of the points fall into the third and fourth

region; the green points however, represent those points in freezing temperatures,

and are classified as outlier points in the first region, whereas the points caused

by damage fall into the sixth region. This visualisation is obviously beneficial for

further decision making, one can develop a more robust algorithm unaffected from

the effect of EOVs.

Figure 3.9: LTS residual outlier map (upper); LTS residual plotted
against MCD for regression between temperature and the second natural
frequency of the Z24 Bridge (lower) [123].
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3.3 Summary

This chapter reviews SHM studies of the Z24 Bridge, which has been an unique

benchmark in the research community. The monitoring practices and the progressive

damage implementation are reviewed, the system identification studies further reveal

that this bridge inherited a nonlinear effect from the environmental conditions. This

chapter has also reviewed some of the latest efforts to model the behaviour of this

bridge, which provides a reference for later chapters of this thesis.



Chapter 4

Cointegration Overview

Cointegration has emerged as an efficient modelling approach to deal with environ-

mental and operational variations in structural health monitoring in recent studies

[124][57]. This chapter will outline the key aspects of the cointegration theory, in-

cluding the motivations for using cointegration in a engineering context, statistical

tests for nonstationary time series, different frameworks to implement cointegration

analysis and a literature review on cointegration methods in the domain of SHM.

4.1 Why Cointegration

As a routine method for dealing with nonstationary time series in econometric stud-

ies, cointegration is now widely used in statistical arbitrage, macroeconomic analysis,

and fiscal policy research. However, what is the link between an econometric method

and structural health monitoring? The answer is the existence of stochastic common

trends.

Consider Figure 4.1 for example; the upper panel shows two normalised price indices

(heating oil and crude oil in the US) during a certain time period; the lower panel

exhibits two time series of two hanger displacements of the Tamar Bridge measured

during a certain time history [75]. By visual inspection of these two images, two

common characteristics can be observed immediately: each pair of time series is

nonstationary; each pair shares some long-term common trend. These characteristics

are not hard to understand, that economic time series are simultaneously affected

44
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Figure 4.1: Upper panel: normalised price index of crude oil price and
household heating oil price of US; Lower panel: normalised series of
displacement measurements from the Tamar Bridge.

by markets, monetary policies etc., while the displacement of each bridge hanger

is significantly influenced by temperature, traffic etc., or in the terminology of this

thesis - Environmental and Operational Variations (EOVs). Nonstationary series are

said to be cointegrated if there exists a linear combination of them that is stationary.

Denote the two time series in the upper panel of Figure 4.1 by xt and yt ; they can

be found to be cointegrated if some linear combination of them:

εt = xt + αyt (4.1)

is stationary (confirmed by performing a stationarity hypothesis test, which will be

reviewed shortly). The residual series for the oil price series and the displacement

series are plotted in Figure 4.2, which shows that the residual series are purged of

common trends and become largely stationary. Once the underlying equilibrium

between the displacement series is built, the stationary residual series can serve as

a damage indicator that is immune to EOVs. It is worth noting at this point that

the cointegrated residual series of the oil series seems to behave differently before

and after approximately point 5000. This interesting phenomenon can be seen as

a regime change in the market, which will be elaborated more in the latter part of

this thesis.

In conclusion, cointegration can be regarded as a data normalisation procedure [6]
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Figure 4.2: Cointegrated residual series plotted with normalised price
index of crude oil price and household heating oil price of US.

for structural health monitoring, aiming to establish a normal or undamaged baseline

feature for structures, based on which anomaly detection algorithms can be devel-

oped. Conventionally, regression-based methods are employed to deal with EOVs.

Distinct from these methods, cointegration models the endogenous relationship of

variables, instead of the correlating/causal relationships between systems and vari-

ables. This makes cointegration naturally advantageous, for the fact that the ground

truths of exogenous variables are not always easy to obtain. Before reviewing the

recent literature of cointegration in SHM, this chapter will first attempt to cover the

basic theories and implementing procedures for cointegration.

4.2 Nonstationary Time Series and Unit Roots

4.2.1 Nonstationarity

A time series can be regarded as a stationary one if its statistical properties like

the mean, variance and autocorrelation, etc. stay constant over time. In other

words, a stationary time series can be treated as samples from the same probabilistic

distribution. On the contrary, nonstationary time series are those time series whose

statistical properties are time dependent.
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Most of the classical time series modelling approaches, including ARMA modelling,

spectral analysis etc., are based on the assumption of stationarity [97]. This as-

sumption has a few advantages:

Firstly, stationary time series are relatively predictable, in the sense that their sta-

tistical properties will always revert to certain values, no matter what their current

values are. Therefore, many time series modelling methods will convert a nonsta-

tionary time series into a stationary one using some kind of mathematical trans-

formation, prior to further statistical analysis. The popular ARIMA model is one

of these methods; one can stationarise a nonstationary time series via differencing

(once or multiple times wherever necessary), then the conventional ARMA model

can be fitted to the differenced stationary series.

Secondly, a time series can be well characterised by its sample mean, sample variance

and other statistical variables if and only if this time series is stationary. It is easy to

see that the sample statistics of a nonstationary time series are time varying, which

implies no meaningful insights into its future behaviours. Therefore, one needs to

be cautious when doing regression analysis with nonstationary variables. Because

the estimates of the mean and variance of the nonstationary variables cannot be

trusted, neither can their correlations, such that any statistical evidence suggesting

linear relationships between independent nonstationary variables may be spurious.

4.2.2 Trend-Stationary VS Difference-Stationary Time Se-

ries

Most nonstationary time series have some kind of trend, either deterministic or

stochastic. Two kinds of nonstationary time series models are popular in the econo-

metrics literature, namely trend stationary and difference stationary time series.

Next, this section will illustrate the difference between these two kinds of models,

and why this is important to implement a statistical test to distinguish them.

Trend-Stationary Time Series

Consider a univariate time series xt, {t = 1, 2, ...N}, which can be written as a

stationary AR(1) model with a deterministic linear trend:

xt = θxt−1 + δ + γt+ εt (4.2)
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where |θ| < 1, x0 is the initial value for xt, γt is the linear trend term, δ is a

constant, and εt is i.i.d. Gaussian noise: εt ∼ N (0, σ2). One can convert (2.2) into

a moving average (MA) representation:

xt = θNx0 + (θN−1γ + ...+ θγ)t+ {δ + (θδ − θγ) + ...+ [θN−1δ − (N − 1)θN−1γ]}+

εt + θεt−1 + ...+ θN−1ε1

= θNx0 + µt+ µ0 + εt + θεt−1 + ...+ θN−1ε1
(4.3)

where µ = θN−1γ + ... + θγ is the coefficient of the linear trend term, µ0 = {δ +

(θδ− θγ) + ...+ [θN−1δ− (N − 1)θN−1γ]} is a constant. Therefore, one can find the

mean of xt is:

E(xt) = θNx0 + µt+ µ0 (4.4)

given that |θ| < 1, thus E(xt) will converge to µt+ µ0 as N approaches +∞, which

is a linear trend plus a constant term. As for the variance of xt:

E[xt − E(xt)]
2 = E[εt + θεt−1 + ...+ θN−1ε1]

2

= σ2 + θ2σ2 + θ4σ2 + ...+ θ2N−2σ2

=
σ2

1− θ2

(4.5)

which does not vary with time. xt is obviously nonstationary as its mean grows

with time, however apart from the linear trend term, the remaining components are

stationary, therefore series like xt are called trend-stationary time series (processes).

The most important property of trend-stationary time series is mean reverting. As

can be seen from the derivation of the mean in (4.3) and (4.4), the stochastic compo-

nent of its mean is stationary, which means that any short-term deviations from the

mean will gradually converge to its expected mean. Naturally, in practice, one would

normally de-trend a trend-stationary process a priori, with time series decomposi-

tion or mathematical transformation techniques, before conducting any subsequent

analysis.

Difference-Stationary Time Series

Consider a univariate time series xt, {t = 1, 2, ...N}, which has the following AR(1)

form:
xt = xt−1 + δ + εt or

∆xt = δ + εt
(4.6)
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where x0 is the initial value for xt, δ is a constant, εt is i.i.d. Gaussian noise: εt ∼
N (0, σ2), and ∆ is a differencing operator such that ∆xt = xt − xt−1.

Note that ∆xt is a stationary process, therefore xt is called a difference-stationary

time series (process), or a unit root process. If a series is nonstationary while its

first difference is not, then it can be said to be integrated of order 1, or denoted

as I(1); if it requires d times differencing to achieve stationarity, then the series is

integrated of order d or I(d). In the context of SHM, it is not common to observe

time series integrated of 2 or more, a detailed discussion on this can be found in

[125]. Therefore, nonstationary series are treated as I(1) processes in this thesis, if

not explicitly stated otherwise.

One can re-formulate (4.6) in an MA representation as follows:

xt = x0 +Nδ + εt + εt−1 + ...+ ε1 (4.7)

hence, the mean of xt is:

E(xt) = x0 +Nδ (4.8)

and the variance of xt is:

E[xt − E(xt)]
2 = E[(x0 +Nδ + εt + εt−1 + ...+ ε1)− (x0 +Nδ)]2

= E(εt + εt−1 + ...+ ε1)
2

= Nσ2

(4.9)

As the mean and variance of xt both grow with time, xt is obviously nonstationary.

However, difference-stationary series are different from trend-stationary series in a

few aspects: Firstly, one can notice in (4.8), the effect of the initial value stays in the

mean, while the mean of trend-stationary series is not dependent on its initial value.

Secondly, from the MA representations in (4.7), one can notice that the noise term

εt has accumulated to a random walk process, which implies a stochastic trend is

embedded in a unit root process, while for the trend-stationary process in (4.3), the

effect of εt quickly decays as the time lag increases; Thirdly, the variance of a unit

root process is increasing with time, but the variance of a trend-stationary process

is time-invariant.

Because of all these differences, unit root processes are normally differenced, once

or multiple times if necessary, to a stationary one, and then fitted with ARMA
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models; these are the basic procedures of fitting an ARIMA (Autoregressive Inte-

grated Moving Average) model. Also, because the trend in the unit root process is

stochastic, this implies that de-trending a unit root process probably will not pro-

duce a stationary residual. Therefore, it is crucial to distinguish unit root processes

from trend-stationary processes, before performing any subsequent procedures, de-

trending or differencing. However in practice, these two kinds of processes are not

always easy to discriminate. The key to this question is through performing statis-

tical tests for unit roots.

4.3 Statistical Tests for Unit Roots

As illustrated in the last section, unit root processes may explain a crucial share of

all the nonstationarities observed in real time series. To test the presence of unit

roots, econometricians have developed various statistical testing tools (a good survey

of the ongoing research on unit roots can be found in [126] and [127]). The unit root

test adopted in this thesis is perhaps the most commonly used, the Dickey-Fuller

(DF) test. To illustrate how the DF test works, a natural starting point would be

to impose a hypothesis test on the coefficient α of the simplest AR(1) model of the

form:

xt = αxt−1 + ξt, (t = 1, 2, ...N) (4.10)

where ξt is a stationary process with zero mean and variance σ2, α is a real number

that determines the stationarity of xt: if |α| < 1, xt is stationary; if |α| > 1, then xt

is nonstationary, and its variance grows explosively with time; if |α| = 1, then the

variance of xt will be tσ2, which will grow with time, such a process is a unit root

process, or an I(1) process.

Equation (4.10) can also be reformulated as:

∆xt = (α− 1)xt−1 + ξt = πxt−1 + ξt, (t = 1, 2, ...N) (4.11)

where π = α − 1. Based on this form, testing the null hypothesis H0 : π = 0 is

equivalent to testing the hypothesis α = 1; the alternative hypothesis H1 is π < 0.

The test for the null is simply a t test:

τ̂ =
π̂

se(π̂)
(4.12)



4.3. STATISTICAL TESTS FOR UNIT ROOTS 51

where π̂ is the least-squares estimate of π, and se(π̂) is the standard error of π̂. How-

ever, Dickey and Fuller investigated that under the null, the least-squares estimation

π̂ is not consistent with the true value, thus the usual t test would be inappropriate

for testing the null. They further investigated the asymptotic distribution of the

t−statistic, and gave corrected tables based on Monte Carlo simulations [128][129].

One may notice that in (4.10) and (4.11), the disturbance term ξt is a zero-mean

stationary series, which is still a strong assumption for many cases. To allow poten-

tial serial correlation in the disturbance term, the augmented Dickey-Fuller (ADF)

test was developed, which is based on the following form:

∆xt = πxt−1 +
m∑
j=1

γj∆xt−j + εt (4.13)

where the γj are the coefficients of the autoregressive terms, and m is the lag number.

In this regression, a sufficient number of lags should be included to achieve a white

noise residual term εt; an information criteria is a common choice for determining

the lag number. Clearly, the ADF test has greater robustness and flexibility than

the DF test, thus it is most widely used in unit root testing [126].

Similarly to the previous, the null of the ADF test is H0 : π = 0 with alternative:

H1 : π < 0. The t−statistic is the same form as in (4.12), critical values are given in

[129]. The null hypothesis is rejected if τ̂ is smaller than the corresponding critical

value, and accepted otherwise. The ADF test can also be easily extended by adding

shift terms and/or trend terms:

∆xt = µ+ νt+ πxt−1 +
m∑
j=1

γj∆xt−j + εt (4.14)

where µ and νt are the shift and trend terms respectively. Details of the model

(4.14) and further extensions can be found in [126].

Having reviewed the fundamentals of unit root processes and their statistical tests,

one can now ascertain the nonstationarity of a series through these procedures. In

this thesis, the ADF test will not only be used to build cointegration models, but

also the test statistic will be explored as a measure of the degree of stationarity,

such that the best possible model form can be determined.
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4.4 Cointegration

As illustrated in Section 4.1, cointegration is a powerful tool to understand non-

stationary data: individual nonstationary time series might be difficult to predict,

but a linear combination of them could be possibly predictable. To further explore

and understand cointegration in mathematical context, two important cointegration

estimation approaches will be reviewed and compared in this chapter, they will be

the basic building blocks for the development of nonlinear cointegration approaches

in the latter chapters.

4.4.1 Cointegration I: the Engle-Granger Approach

In fact, the example in (4.1) is a very special case for nonstationary time series.

Assume the stationarity of xt and yt are in fact unknown, there are three possible

scenarios: i) both are stationary, I(0); ii) one of them is I(1); iii) both of them are

I(1). For the first scenario, normal stationary modelling methods can be applied.

For the second case, (4.1) will obviously result in a nonstationary I(1) residual, no

cointegration exists in this case. While for the last scenario, xt and yt are both I(1)

series, hence they both contain unit roots or stochastic trends, they can be expressed

in the following form:

xt = (stochastic trend)x + (stationary process)x

yt = (stochastic trend)y + (stationary process)y
(4.15)

In the more likely case, the stochastic trend terms in xt and yt are completely unre-

lated, xt+αyt will still produce a nonstationary residual; if and only if the stochastic

trends are identical up to a scaling factor α, i.e. xt and yt have a common trend,

(stochastic trend)x +α(stochastic trendy) can then cancel out, such that a station-

ary residual εt = xt + αyt can be obtained. xt and yt are said to be cointegrated,

and (1, α)′ is called a cointegrating vector, where ′ denotes the transpose of a vector.

Now the problem is to test and estimate the cointegrating vector. In their seminal

paper [130], Engle and Granger proposed a simple framework for estimating and

testing this long-run equilibrium relationship (cointegration), which consists of four

steps:
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1. As cointegration requires that all the variables involved are integrated to the same

order, it is necessary to ascertain the order of integration of each variable. The ADF

test examined in Section 4.3 can be applied here; there are three possible outcomes:

i) the variables xt and yt are both I(0), then the conventional regression methods

can be used. ii) xt and yt are integrated to different orders, then one can conclude

that there is no cointegration relationship between them. iii) both variables are

integrated to the same order (usually I(1) in SHM data), one can proceed to the

second step.

2. Run a cointegrating regression yt = α + βxt + et, using ordinary least squares

(OLS) methods. One important note here is that because xt and yt are nonsta-

tionary, standard t tests cannot be applied for inference. If xt and yt are proved

to be not cointegrated in the subsequent analysis, then this regression is called a

spurious regression; however, if xt and yt are cointegrated, then OLS can produce an

unbiased and ‘super-consistent’estimator β̂ for the cointegrating coefficient β, which

essentially means that the variance of the estimator β̂ will reduce very rapidly as

data sample size increases. The asymptotic properties of the estimator are beyond

the scope of this thesis, interested readers can find a formal introduction and proof

from [130] or [126].

3. From the second step, one can obtain an estimated residual series, denoted as

êt. To check whether xt and yt are in fact cointegrated, one needs to determine the

order of integration of the residual êt, with the ADF test for example. If êt is found

to be stationary, then xt and yt are cointegrated.

4. If there exists a cointegration relationship between variables, one can further es-

tablish an Error Correction Model (ECM) between xt and yt, utilising the estimated

êt from step 3. The ECM has the following form:

∆yt = φ0 +

p∑
j=1

φj∆yt−j +

q∑
k=0

θk∆xt−k + αêt−1 + εt (4.16)

where φ0 is a constant term, φj and θk are the coefficients of the lagged differenced

terms, and α is the adjustment coefficient. What ECM represents is that the long-

term error êt−1, inherited from the last time step will have a impact on the current

short-term dynamics, the speed of adjustment is characterised by α. Intuitively, if

yt deviates from its long-term equilibrium with xt (cointegration), the large error

will force the following yt to quickly adjust to the “norm”. Additionally, one can
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observe that every term in the ECM is stationary, indicating that any conventional

hypothesis testing methods, for example the t−test, are therefore appropriate. The

derivation of ECM from the AR model is omitted in this chapter, as the vector-form

ECM and its derivations will be shortly examined in the next section.

The four steps reviewed above are the basics of the Engle-Granger (EG) approach,

it is also called Engle-Granger two-stage method sometimes, which treats the first

three steps as the first stage, the fourth step as the second stage. The EG approach

is simple in its forms and easy to interpret, and has been excessively popular in

econometrical and financial applications. In the context of structural health mon-

itoring, cointegration is used as a data normalisation method, thus the stationary

residual from the third step is of most interest, which can be used as a system health

indicator. The ECM from step 4 depicts the dynamics of the cointegrating system,

it can be used as a powerful tool for on-line time series prediction, which, however,

is not explored in the context of SHM in this thesis, and is deferred to the author’s

future work.

Despite all the merits mentioned above, the EG approach has a few important

drawbacks:

1. The choice of regression model forms is rather arbitrary, i.e. the EG approach

does not provide a guide for selecting regressing target or regressor(s), one has

to arbitrarily choose one particular variable and place it on the left-hand side of

the equation. One can imagine that this problem can get even more complicated

when multiple variables are involved. Nevertheless, with the help of the information

criteria, for example, this issue might be mitigated.

2. Another important problem comes from the fact that the EG approach does

not tell us how many possible cointegration relationships exist between variables,

especially when there are more than two variables.

3. Additionally, when conducting the OLS regression in Step 2, the EG approach

assumes et to be a stationary and uncorrelated residual. However, in the following

step, this assumption can be defied if the unit root test is accepted under the null

hypothesis, where et is in fact nonstationary [131].

All these problems can be well resolved using a maximum-likelihood based method

- the Johansen procedures - which will be reviewed in the next section.
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4.4.2 Cointegration II: the Johansen Procedures

The Johansen procedure offers an efficient framework that not only estimates mul-

tiple cointegrating vectors at the same time, but also produces a test statistic for

determining the number of cointegrating vectors. In the SHM context, it is more of

interest to estimate the cointegrating vectors than to perform tests on the number of

cointegrating vectors, because it is the most stationary combination that one looks

for to eliminate the EOV-induced nonstationary components in the data. For the

sake of simplicity, this section will only give details of the estimation part of the

procedure, readers who are interested in the cointegration statistical test can find

reviews and details from [132].

To perform the Johansen procedure, one starts from a vector autoregressive (VAR)

model, which has the form:

Xt = Φ1Xt−1 + Φ2Xt−2 + ...+ ΦpXt−p + ut =

p∑
j=1

ΦjXt−j + ut (4.17)

where Xt is a m−dimensional vector time series, Φj is a m×m coefficient matrix,

ut is a m−dimensional vector Gaussian noise series, and the autoregressive order

p can be determined via information criteria. From a VAR(p), there will always

exist a corresponding vector error correction (VEC) model (by substituting Xt =

Xt−1 + ∆Xt,Xt−1 = Xt−2 + ∆Xt−1, ...,Xt−p = Xt−p−1 + ∆Xt−p into (4.17) and a

few rearrangements), which has the following expression:

∆Xt = ΠXt−1 +

p−1∑
j=1

Ψj∆Xt−j + ut = ABTXt−1 +

p−1∑
j=1

Ψj∆Xt−j + ut (4.18)

where Π = −(I − Φ1 − ...− Φp), Ψj = −(Φj+1 + ...Φp), and ut is a m−dimensional

vector Gaussian noise series, ut ∼ N (0,Ω). A and B are two m× r matrices, where

r is the rank of the matrix Π. Matrix B is the cointegration vector matrix to be

found, consisting of r cointegrating vectors. Matrix A is the adjustment matrix.

Expression (4.18) is also referred to as the Granger representation theorem, which

explicitly depicts the dynamics between the long run equilibrium (cointegration) and

short term adjustments. Because ∆Xt, ∆Xt−j and ut are stationary, in order to

make both sides of (4.18) equivalent, ΠXt−1 has to be stationary as well. When the

matrix Π is full rank, r = m, Xt will be a stationary vector series, which violates the
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pre-assumption of nonstationarity; When Π is zero rank, then Π = 0, which means

Xt has no cointegration. Consequently, matrix Π has to be rank deficient such that

0 < r < m [126].

To find B, Johansen proposed a maximum likelihood method. One can first break

the VEC regression in (4.18) into the following three smaller regressions:

∆Xt =

p−1∑
j=1

Cj∆Xt−j + r0t (4.19)

Xt−1 =

p−1∑
j=1

Dj∆Xt−j + r1t (4.20)

r0t = Πr1t + ut = ABT r1t + ut (4.21)

where A and B are equivalent to those in (4.18). Based on the regression in (4.21)

and the assumption that ut is iid Gaussian noise ut ∼ N (0,Ω), one can have the

logarithm likelihood function:

lnL(A,B,Ω | Xt) = −mN
2

ln(2π)− N

2
ln |Ω| − 1

2

N∑
t=1

uTt Ω−1ut (4.22)

= −mN
2

ln(2π)− N

2
ln |Ω| − 1

2

N∑
t=1

(r0t − ABT r1t)
TΩ−1(r0t − ABT r1t)

(4.23)

where N is the sample size.

The next step is to find the parameters that maximise the log likelihood function

(4.22) and to estimate the residuals r0t and r1t. However, the details of derivation

are omitted here, one can find the theory and proofs behind it in [132].

Finally, the optimisation problem turns into solving the following characteristic

equation: ∣∣λiS11 − S11S
−1
10 S01

∣∣ = 0 (4.24)

where Shk = 1
N

∑N
t=1 rht · rkt, (h, k = 0, 1). Assuming that (λ1, λ2, ...λr) are the r

eigenvalues of equation (4.24), and they are arranged in the order λ1 ≥ λ2 ≥ ... ≥
λr, then the corresponding eigenvectors v1,v2, ...,vr can form the estimate of the
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cointegrating vector matrix as follows:

B̂ = (v1,v2, ...,vr) (4.25)

As the first cointegrating vector v1 corresponds to the largest eigenvalue λ1, so it

is natural to select v1 as the “most stationary” cointegrating vector, so as to make

the stationary residual series.

So far, the background theory of cointegration has been reviewed. Although it is far

from thorough, it is sufficient for the method that will be proposed in the subsequent

chapters, which will largely be built around the theories above. As they are already

relatively mature methods in the field of econometrics, the implementation of the

unit root test and the Johansen procedure is fully integrated in various software

platforms, such as Matlab (Econometric Toolbox), R and Eviews.

4.5 A Review of Cointegration Method on SHM

Since its first introduction to the field of SHM in 2011 [124], the cointegration

method has attracted an increasing amount of attention from SHM researchers.

Most of the related research work has fallen into two categories: firstly, to broaden

the width of the applications of cointegration, for example, it has been successfully

used in vibration-based SHM, Lamb-wave-based damage detection, wind turbine

condition monitoring and so on. On the other hand, some efforts have been invested

in exploiting the depth of this approach, by combining cointegration with other

analysis methods, like wavelets and the Empirical Mode Decomposition for example.

The work of this thesis is mainly focused on the second aspect, which is to further

develop and strengthen the algorithms in nonlinear and heteroscedastic contexts.

As this work will be thoroughly examined in the following chapters, the published

papers [133][134][135][136] of the author(s) will therefore not be reviewed in this

section.

In [124], Cross et al. linked the cointegration method from econometrics with the en-

vironmental trends observed in numerous SHM contexts for the first time; they also

laid out the general framework for applying cointegration in the SHM context, and

the efficient Johansen procedures were employed to estimate cointegration relation-

ship. A simple multi-degree-of-freedom mass-spring system affected by a decreasing
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temperature trend was simulated, to illustrate that dynamical properties of systems

could be heavily influenced by temperature, and this influence could be deceiving

for damage detection. The cointegration method could help to build a stationary

residual, that was insensitive to temperature variations but still sensitive to damage.

The second case study, the DAMASCOS project, was an experimental study, which

was to measure the propagation of Lamb waves inside a composite plate under a

cyclic temperature field. The features extracted from the Lamb wave signals were 50

spectral lines, which were essentially nonstationary, both in mean and covariance.

Cointegration successfully established the normal condition indicator, a stationary

residual, and efficiently detected the occurrence of damage when the residual series

exceeded the confidence intervals. As an important development in addressing the

EOVs in SHM, cointegration is proved to be simple in its forms, but powerful in

its performance, it does not require measurements from the environment, which is

vastly advantageous comparing with regression-based methods. The case studies

employed in this paper, however, were either simulated or experimental, which were

both highly deterministic environments. Besides, they also pointed out that training

dataset needed to be carefully selected, such that a cointegration relationship could

be accurately estimated, to avoid false positive indications.

In [125], Cross and Worden further validated the cointegration approach with a real

world dataset, the displacement measurement data from the Tamar Bridge; they also

re-examined the theoretical set-up for cointegration and discussed the general appli-

cability of cointegration in the context of SHM. The dataset employed in this paper

was the displacement measurements of the bridge hangers over two different time

scales, a three-day period and a two-month period. Using cointegration, these dis-

placement time series, obviously nonstationary in both cases, could be cointegrated

to stationary residual series for both time scales. This proved that cointegration

worked well as a data normalisation tool for real engineering data. They draw some

analogies between econometric time series and SHM time series, that they may be

regarded as a function of fluctuating external conditions, which are normally infea-

sible to quantify in both contexts. This was where the autoregressive (AR) model

came into play; instead of modelling the external function, AR models reveal how

the internal dynamics of time series evolves with time. The unit root process, which

is based on the AR model, is used as a building block in cointegration modelling.

They found that the increasing variance property of the unit root did not suit for

most engineering variables, nonetheless, the unit root may well model the short-term

behaviour of engineering variables, which were normally nonstationary. Therefore,
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cointegration is naturally a good modelling framework to swiftly detect structural

degradation over a short time period.

Studying the same benchmark dataset, from the DAMASCOS project, Cross et

al. compared three different damage detection algorithms, namely outlier analysis,

Principal Component Analysis (PCA) and cointegration, in [89]. Despite its popu-

larity in SHM and condition monitoring, the outlier analysis method is not reliable

to account for environmental variations. In this case study, the Mahalanobis dis-

tance was used as a measure for discordancy between sample points, but it had

failed to classify environmental changes as normal conditions. PCA is normally

used as a dimension reduction tool in many applications; however in this work,

they took the opposite direction to extract the least principal or minor components

from data, as an insensitive feature to environmental variations. They argue that

the variance of the data mostly come from environmental variations, as the princi-

pal components can explain most of the variance, therefore discarding the principal

components and keeping the minor components can be seen as a feature which is

insensitive to environmental variations but sensitive to damage. They then com-

pared cointegration with the PCA method, which are seemingly similar, both create

a linear combination of the original variables. However, as the PCA algorithm finds

principal components (or minor components in this case) by projecting the original

variables onto orthogonal axes, which means that after the majority of the variance

is explained by the principal components, it will become more restrictive to find

orthogonal axes to find those minor components. Cointegration, on the contrary, is

guaranteed to find the most stationary combination of the original variables, char-

acterised by the cointegrating vectors using the Johansen procedures. In the their

findings, cointegration was found to be superior than the other two methods, both

in algorithm and performance.

Dao and Staszewski presented an interesting interaction between cointegration and

wavelet/fractal signal processing [137]. The case study employed in this paper was

the same benchmark dataset, the DAMASCOS project, as the previous two papers

reviewed here. The signals they analysed were 20 Lamb wave responses propagated

through a composite plate, subjected to different temperature and damage scenar-

ios. Fractal signal processing was first used to understand the characteristics of the

Lamb waves on different time scales, and the characteristics were quantified using

logarithm variance at each time scale. Due to the influences of temperature, the

characteristics from undamaged and damaged groups were not immediately separa-
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ble. As these Lamb waves shared a common trend, they therefore applied cointe-

gration before fractal signal processing. Taking a different direction, however, they

utilised all of the cointegrating vectors estimated using the Johansen procedures (19

cointegrating vectors in this case), and performed fractal signal processing on all

the cointegrated residuals, then estimated the log variance at each time scale. By

applying these steps, the temperature effects were successfully eliminated, and the

characteristics of damage could be observed easily. As is known that, cointegration

is not unique in multivariate context, the method in this paper utilised all the pos-

sible cointegrating vectors to make full use of the Johansen procedures, a natural

issue that may arise is the increase of computational cost, which gets even more in-

tense when fractal signal processing is employed on every residual series. They also

argued that after performing the ADF tests, the Lamb waves were found to be I(0)

series, thus they were integrated to the same order, which satisfies the condition of

cointegration. According to the theory reviewed slightly earlier, cointegration is a

property for nonstationary time series, i.e. cointegration only exists in series that are

integrated to the order 1 or higher. I(0) series, or stationary series, can be analysed

using conventional time series modelling methods.

Worden et al. took steps even further by presenting an exploratory study into the

connection between cointegration and multi-resolution analysis (MRA)/ wavelet

[57]. In this paper, Worden et al. made an important argument that effects of

environmental variations tended to manifest themselves on much longer time scales

than those associated with the damage-sensitive signals, normally vibration-based

signals. Based on this observation, MRA decomposition may therefore be applied

to the raw signal first, such that components at different time scales could be ex-

tracted. Cointegration was used for all the components at the same time scale. As

the damage information tended to manifest on the low-frequency/large-time-scale

components, cointegration may therefore easily detect the changes in the structure.

This provided the possibility of extracting the most nonstationary components from

variables, and then constructing an enhanced cointegrating relationship. The idea

was validated in two case studies, one simulated a multi-degree-of-freedom system

and the DAMASCOS benchmark data, damage information was both visually evi-

dent, but different statistical process control tools are employed. The X-chart was

used in the first case study in order to detect changes in the mean, while the S-bar

chart was applied to expose changes in the variance. Despite the fact that the result

in this study was very encouraging, the decomposed components from the MRA were

mostly smooth. This may be contradicted a prerequisite of the Johansen procedure,
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which requires the noise in the variables to be iid, and in this case the variables

becomes “noise-free”after MRA decomposition. Therefore it required appropriate

regularisation to the decomposed component, by adding a small amount of noise to

them.

In the thread of multi-resolution analysis methods, [138] proposed to use the Em-

pirical Mode Decomposition (EMD), a different MRA approach, to enhance the

cointegration method. Antoniadou et al. chose the EMD method in an attempt to

address some of the issues coming with the wavelet-based approach, for example the

conditioning problem for the Johansen procedure, and also the selection of wavelet

levels. This paper produced similar residual results with the previous research, the

residuals had damage indication in variance changes at lower time scales, and mean

shifts at higher time scales. The EMD decomposition addressed the issue of ill-

conditioning, that it became unnecessary to add noise to decomposed signals before

applying the Johansen procedures. However, the residual had unsatisfying early

indications of damage. They suggested that this was caused by the off-line nature of

the EMD method, that it processed data in batches, thus the EMD method needed

to be further adapted to an on-line method to genuinely fix this issue.

Cross and Worden presented a study on a nonlinear cointegration approach in [139].

As cointegration is essentially a linear method, however in SHM, linearity is not

always guaranteed. This paper started with two kinds of data generating processes,

a deterministic linear trend model and a deterministic quadratic trend model. These

two were apparently nonstationary, but the relationship between these two was

nonlinear, therefore, cointegration was anticipated to be limited in this case. A

nonlinear optimisation algorithm called Differential Evolution (DE) was utilised in

this experiment to estimate the nonlinear relationship. The results turned out to

be encouraging especially when a variance-based cost function is used in the DE

algorithm, a stationary residual may be obtained. This article has pointed out

a promising direction for nonlinear cointegration, that is to accurately model the

nonlinear cointegrating relationship, which has led to some of the work in this thesis.

Furthermore, the benchmark Z24 Bridge data was examined with a cointegration

approach. They suggested a “locally linear”cointegration method, which basically

captured the cointegration relationship only under 1◦C where the bridge exhibited

a distinct regime from others. The residual produced was largely stationary, but the

damage information was unfortunately overwhelmed as well. This may be explained

by the fact that using the cointegration relation under cold temperature to project
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onto warm and even hot temperature regimes cannot accurately reflect the changes

of cointegration in regimes. Inspired by this paper, part of the work in this thesis will

attempt to model cointegration differently in different regimes, and use temperature

as a instrumental variable to guide the regime shifts, which ultimately lead to an

accurate damage alarm.

Focusing on the problems with the nonlinear cointegration method framed in [139],

Zolna et al. proposed a modified nonlinear cointegration approach and also a statis-

tical test method for the significance of heteroscedastic residuals [140]. A nonlinear

cointegration would normally have the form such as yt = f(Xt) + εt, where Xt can

be either univariate or a multivariate vector. They find that the nonlinear function

f(∼) can cause input-dependent or heteroscedastic noise in the residual term εt. By

employing a first-order Taylor expansion on f(Xt), they derived the approximated

form of the variance of the residual, which was correlated with f(Xt). Therefore,

based on the derivations, they proposed a modified residual term which has the

following form: (f(Xt)− yt)/
√

1 + [f(Xt)]2, which may effectively cancel out some

of the variance changes caused by the nonlinear manipulation on Xt. The next

step was to impose a statistical test, named the Breusch-Pagan test, on the residual

term, if the test was passed then there was no heteroscedasticity, if the test failed,

then there existed heteroscedasticity. The proposed method was tested on three

case studies: the first one was the synthetic dataset used in [139], the second be-

ing a simulation case mimicking the behaviour of the Z24 Bridge, which displays a

piecewise linear relationship. This method managed to eliminate the heteroscedastic

noise associated with the two datasets, and create accurate indication of damage.

The third case study employed was from an operational wind turbine: the active

power of the wind turbine was found to be nonlinearly related to the rotor speed,

or bi-linearly to be more precise. The conventional cointegration method produced

a residual series whose variance was greater when the turbine was at a transitional

rotor speed. Using their proposed method, the residual series had significantly re-

duced its variances. However, this method did involve some assumptions that may

limit its generalisation to broader applications. The Taylor expansion on f(∼) im-

plied that this nonlinear function was a parametric function, which normally led to

another problematic issue with parametric regressions, that was how to determine

the form of the parametric model, whether it was quadratic or cubic, or even higher

orders. They recommended to use a local regression algorithm, which fitted a linear

regression model to each point using its neighbouring 12 points. This method may

be good at nonlinear trend catching, but it may also be prone to outliers. This may
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partly explain the variance increase in the last case study, where the rotor speed

was at transitional phase and the outliers were significantly more than other phases.

To investigate how the selection of lags may affect the nonstationarity test, Dao et al.

have reviewed some of the existing practices in the literature and proposed their own

resolution to this issue in [141]. As reviewed in Section 4.3, the ADF test is a widely-

used method for testing the existence of unit roots. One can observe from equation

(4.14), the selection of the lag number m can have a significant influence on the test

itself, if m is perfectly chosen, the residual term εt becomes a Gaussian white noise.

The paper reviewed some of the model selection algorithms, which largely fall in two

categories: information criteria based methods like the Akaike information criteria or

the Schwarz-Bayesian criteria; and also likelihood ratio based methods, which finds

the optimal lag by monotonically decreasing the lag number and comparing the

likelihood ratios between two consecutive lag specifications. Based on these reviews,

they proposed a exhaustive searching method to find the optimal lag number, which

involved 4 main steps: 1. fix a range for possible lag number ranges; 2. form a

cointegration for each of these possible lags and obtain their respective residuals; 3.

Calculate the ADF statistics for each of these lag specification; 4. Find the optimal

lag which corresponds to the most negative test statistics. Furthermore, they also

used the ADF statistics as status indicators for damage detection purposes, such

that once the system status deviated from its norm, the cointegrated residual was

expected to become nonstationary, the ADF statistics would also change accordingly.

The ideas were validated using several case studies, including Lamb wave data and

vibroacoustic data. Some of the results had proved positive outcomes, yet some

were not completely convincing at the moment. In summary, Dao et al. have

pointed out a subtle yet crucial issue for the implementation of cointegration, and

has developed a feasible approach for optimal lag selection in engineering context.

One may also notice that apart from the lags, the ADF statistics are also dependent

on the selection of sample data, which may render the proposed method restricted

to an off-line approach. If the data are received in real time, even though there

were occurrence of damage in the data, the power of ADF statistics may not be low

enough to alarm damage in time.

There is other literature published attempting to use cointegration as a data normal-

isation tool. Liu et al. [142] combined the cointegration approach with a statistical

control chart called the multivariate exponentially weighted moving average control

chart, such that an adaptive confidence interval may be built with it. They also
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proposed that by repeatedly dropping out one sensor data and re-evaluating coin-

tegration, one can potentially find the “damaged”sensor. In [143], Michalak et al.

found cointegration useful when dealing with cyclo-stationary time series, which was

commonly observed in damage detection of gearboxes. A cyclo-stationary signal, as

the name suggests, was periodically stationary, its mean and covariance repeated

itself in every T time steps. Therefore, they firstly decomposed the original signal

into T sub-signals by extracting every point at each sub-cycle. The sub-signals were

then used to build cointegration relationship, embedded damage information may be

effectively detected from the residual series. Very interestingly, the cyclo-stationary

signals described in this paper had many common features with the seasonal time

series observed in the economical and financial literature; the method proposed was

a fundamental form of the seasonal cointegration model, for example in [144]. It

is really intriguing to see interactions between these two remotely-related research

areas. Dao et al. has introduced a complete framework for the on-line condition

monitoring of wind turbines using the cointegration method [145]. The method was

consistent with the previous literature reviewed here, cointegration was used as an

efficient on-line algorithm to detect damage in streaming SCADA data. Cointe-

gration has also been applied in damage detection of a real aeronautical structure

[146]. As the strain of the structure was measured through a fibre Bragg grating

(FBG) sensor network, which was very sensitive to temperature variations, cointe-

gration was used to remove the undesired stress variations caused by temperature.

In the automatic defect detection process of composites, ultrasonic guided waves

were normally acquired from sensors; a major challenge for processing such signals

is the underlying cumulative trend. Fuentes et al. have employed the cointegra-

tion method to remove such long term trend, which was hugely beneficial for rapid

damage detection [147]. Comanducci et al. have presented a paper reviewing and

comparing several of the state-of-the-art vibration-based damage detection methods

using multivariate statistical algorithms [148]. The methods they have reviewed

included dynamic regression models, linear and local principal component analysis,

the combination of dynamic multiple linear regressions and local principal compo-

nent analysis, which was proposed by them and finally, the cointegration method.

All these algorithms were evaluated and compared based on real monitoring vibra-

tion data collected from an arch bridge in Portugal. Some artificial damage was

simulated, they also tweaked the original dataset to create some nonlinearity in it.

According to the performance measures defined in the paper, all these algorithms

were effective in removing environmental and operational variations in the data. An
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interesting finding in the paper was that, comparing to the other methods, coin-

tegration required much less training data, which may be advantageous especially

in the beginning period of the monitoring process. A more recent review paper is

presented by Worden et al. [149], they reviewed some of the latest developments

in algorithms based on nonstationary time series analysis. Statistical control chart

methods, cointegration and Bayesian mixture of experts models were reviewed with

examples; they were proved to be efficient in removing benign environmental changes

and detecting anomalies. They also brought forward two open issues in cointegra-

tion analysis, which were heteroscedasticity and nonlinearity, and this thesis will

attempt to address these two issues.

4.6 Conclusions

This chapter has reviewed the basic theories of cointegration. The link between

cointegration - an econometric method - and SHM is illustrated with examples;

cointegration is naturally suitable for dealing with the environmental and operational

variations often found in SHM data. The different kinds of nonstationarity, trend-

stationary and unit root series, are examined. The statistical tests for the existence

of a unit root is also reviewed with derivations; the most commonly adopted method

is the ADF test, which is a fundamental element of cointegration analysis. The

Engle-Granger method and the Johansen procedures are two theoretical frameworks

for testing and estimating cointegration relationships, the derivations of these two

methods are also given in detail. Finally, a comprehensive literature review of the

cointegration method in SHM is presented in the last section.



Chapter 5

Gaussian Processes for

Nonlinear Cointegration

As reviewed in the last chapter, the cointegration approach finds possible linear

combination of nonstationary time series which makes the residual series stationary;

thus cointegration is normally deemed as a linear modelling method. A natural

question will arise, when the underlying relationship is in fact nonlinear, will the

conventional cointegration modelling framework still suffice?

5.1 Nonlinear Cointegration

Although there has been a great deal of work aiming to tackle the problem within

econometrics, it is fair to say that there is currently no general theory of nonlinear

cointegration. It is probably helpful to briefly look into the econometric literature

at this point, where a wealth of theories and methods have been developed. The

book [150] covers much of the historical work carried out within the community of

econometrics. However in general, there are three important questions to answer

[151]:

1. What properties have changed or have not changed after performing nonlinear

transformation on integrated series? For example in [152], Granger and Hallman

finds that integrated series are generally not cointegrated with the nonlinear trans-

formation of themselves; however, if the same transformation is applied to a pair of

66
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cointegrated series, the transformed series may be still cointegrated. Another paper

has also looked at the same question, but they focus on fractionally integrated se-

ries [153]. One of the interesting findings from the paper is that every integer power

transformation of a nonstationary I(d) series will result in a deterministic trend in

mean and variance.

2. How to estimate the nonlinear transformation function? There are two campaigns

on this question: parametric and nonparametric. Parametric transformations can be

classified into several classes: integrable functions, asymptotic homogeneous func-

tions, exponential functions and super exponential functions. As the parameter

estimation is heavily dependent on the form of nonlinear transformations, thus the

literature has been focused on deriving the asymptotic distribution of these nonlinear

estimators; for example in [154], Park et al. developed convergence and asymptotic

theory for integrable and homogeneous functions, and in [155], Chang et al explored

the model that accommodates linear time trend and stationary regressors. As for

nonparametric transformations, Karlsen et al developed a Markov chain method to

approximate the asymptotic theory of a kernel regression estimator [156]; As the

joint dependence of variables in nonparametric regression is a major issue that can

induce bias in estimation, Wang and Phillips proposed a local time density argu-

ment to relax the condition [157]; based on this argument, Chen et al proposed a

nonparametric M -estimator, and they also developed its corresponding consistency

and asymptotic distribution.

3. How to test for the existence of a nonlinear cointegration relationship? Breitung

proposed a rank test for nonlinear cointegration, which is based on the difference

between the sequences of ranks; if the difference tends to converge then there exists

cointegration, and no cointegration if otherwise [158]. In [159], Choi and Saikkonen

developed a testing method for nonlinear cointegration of I(1) variables, which is

to divide the model residual into subsamples, and apply a unit root test on these

subsamples. They proved that as the sample size approached infinity, the limiting

distribution of the test statistics are independent from the form of the nonlinear

transformations.

In the context of SHM, however, the need for a nonlinear theory made itself clear

quite quickly after the introduction of the method. Many engineering systems have

nonlinear relationships between the measured features of interest, the Z24 Bridge

data discussed in this thesis is a classic example. There have been a few attempts

to exploit the adoption of nonlinear cointegration in SHM, [139][90][140] tried to
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approach the problem through methods like evolutionary optimisation and statistical

tests. These methods, as reviewed in Section 4.5, all exhibit some pitfalls. This thesis

will further pursue investigation of nonlinear cointegration, via machine learning

methods, as in this chapter, and time series methods in later chapters.

A potentially straightforward approach to nonlinear cointegration, as discussed in

[150] (and partially adopted in [139]), is to simply extend the second step of the

Engle-Granger framework reviewed in Section 4.4.1, to a nonlinear regression, e.g.

yt = f(xt) + εt (5.1)

with f(∼), some regression function estimated in a parametric or nonparametric

manner; xt can also easily be extended to multivariate context. Neural networks

were suggested for the representation in [150], but any appropriate machine learning

algorithm could be used in principle and this idea is where a proportion of the recent

nonlinear cointegration literature has concentrated its attention. One recent paper

uses least-squares support vector machines to good effect [160], and incorporated

a Bayesian approach. Motivated by a desire to increase the Bayesian element in

the nonlinear regression, the current chapter will adopt Gaussian Process (GP)

Regression in order to learn the required relationship in equation (5.1) from data.

This brings the immediate advantage of providing natural confidence intervals for

the regression model. To illustrate the use of the GP regression cointegration model,

this chapter will re-examine the data from the simulation case study from [139] and

[140], the proposed method will also be examined with a new synthetic dataset

and the well-known Z24 Bridge SHM benchmark exercise. Before proceeding to a

discussion of the GP regression approach and then to the case study, the next section

will provide some background theory on Gaussian process.

5.2 Gaussian Process Regression

Gaussian process regression is a Bayesian machine learning approach that can deal

with nonlinear regression problems in such a way that confidence intervals for predic-

tions are produced in a natural way. Generally speaking, a GP can be considered to

be a distribution over functions, any finite samples from which are jointly Gaussian

distributed [161]. Just as a Gaussian distribution can be fully specified by its mean

and variance, analogously, a GP can be fully defined by its mean function m(x)
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and covariance function k(x, x′). This means that for any given inputs, the corre-

sponding outputs are normally distributed, which gives possibilities for predicting

unknown observations. Next, the essential technical details of GP regression will be

given in a Bayesian inference manner.

First, define some notations: assume observation data is D = {X,y}, where X =

{x1,x2, ...,xN} is an N × d input variable matrix, d is the dimension of xi, and

N is the number of observations, y is the output vector. Also, denote the random

functions induced by input variables as f = {f(x1), f(x2), ..., f(xN)}. Note that

unlike traditional parametric regression method, f here is defined as a set of random

variables indexed by continuous variables, instead of a fixed-form function. As such,

the aim of Bayesian regression here is to determine the posterior distribution of f

and to make predictions based on posteriors.

Prior

As a GP is a distribution over functions, therefore it is legitimate to assign a GP

prior to f, which takes the form:

f ∼ GP(0, K) (5.2)

the mean function of GP is taken to be 0 here for notational convenience, although

it is not necessary to do so. If one wishes, the mean function can incorporate one’s

domain knowledge, a deterministic trend for example [162][161]. The covariance

matrix K is an N ×N matrix composed of the kernel functions or covariance func-

tions, such that [K]i,j = k(xi,xj), where xi and xj are two vectors of the input

variables. The isotropic squared-exponential (SE) kernel will be used in this context

as a running example, which has the following form:

k(xi,xj) = σ2
f exp(−1

2
(xi − xj)

T l−2(xi − xj)) + σ2
nI (5.3)

where σf , l and σn are the undetermined hyperparameters of GP. The covariance

function is really the heart of GP, as it dictates various properties of the GP, and

more details on the selection and estimation will be covered shortly. As any finite

samples from a GP are jointly Gaussian distributed, thus f(X), with a finite length,

follows a multivariate Gaussian distribution:

p(f(X)) = p(f |X) = N (0, K(X,X′)) (5.4)
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Likelihood

The observation data can be viewed as realisations of the underlying Gaussian pro-

cess; for input X, f(X) are their corresponding realisations. Knowing that y is the

noisy version of f(X), with an iid additive Gaussian noise N (0, σ2
nI). The likelihood

of y given X and f is:

p(y|X, f) = N (f(X), σ2
nI) (5.5)

Posterior

The posterior can now be readily computed according to the Bayes’ rule [161]:

p(f |y,X) =
p(y|X, f)p(f |X)

p(y|X)
=

p(y|X, f)p(f |X)∫
p(y|X, f)p(f |X)df

(5.6)

the numerator is the product of the prior and likelihood, the denominator is the

likelihood with f marginalised out. One can substitute (5.4) and (5.5) into the

above equation, after a few manipulations, the posterior distribution reads:

p(f |y,X) = N (K(K + σ2
nI
−1)y, K −K(K + σ2

nI)−1K) (5.7)

This gives the distribution of the underlying function evaluated at the given set of

inputs X where noisy realisations y are observed. Furthermore, the bottom part of

(5.6), called the marginal likelihood or model evidence, plays an important role in

estimating the model hyperparameters, it has the following form:

p(y|X) = N (0, K + σ2
nI) (5.8)

which is normally easier to calculate after logarithm transformations:

log p(y|X) = −1

2
log |K + σ2

nI| −
1

2
yT (K + σ2

nI)−1y − N

2
log 2π (5.9)

Prediction

Now all the essential elements for GP are on the table, one can perform predictions

for any input data points. Denote a test input vector as x∗, and its corresponding

test output as f ∗. The prior f can now be extended to the test set, as the GP

prior is placed on the whole function, not just a few specific points. Therefore, the

observation output and the test output are also jointly Gaussian distributed, which
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can be written as:[
y

f ∗

]
= N

(
0,

[
K(X,X) + σ2

nI K(X,x∗)

K(x∗,X) K(x∗,x∗)

])
(5.10)

where K(x∗,X) denotes a covariance matrix evaluated at every pair of all the ob-

servation and test points, and similarly applies to K(x∗,x∗), K(X,x∗). Using the

standard results of the Gaussian conditioning property on equation (5.10), one can

arrive at the crucial posterior predictive distribution for GP regression:

p(f ∗|y) = N (m(x∗), cov(x∗)) (5.11)

where
m(x∗) = K(x∗,X)[K(X,X) + σ2

nI]−1y

cov(x∗) = K(x∗,x∗)− [K(X,X) + σ2
nI]−1K(X,x∗)

(5.12)

Note that the computation process requires the inverse of K(X,X) + σ2
nI, which

has O(N3) computation complexity; this may be prohibitive for the application of

GPs to large data sets, although one can resort to sparse versions of the GPs, see

an overview of sparse GPs in [163].

Learning

To learn the hyperparameters embedded in the covariance function, one maximise

the marginal likelihood (5.8) or the log marginal likelihood (5.9) with respect to

the hyperparameters, which in this case, can be formed in a vector θ = (σ2
n, σ

2
f , l).

Taking the partial derivative of log p(y|X) with respect to θj, one has:

∂

∂θj
log p(y|X, θ) = −1

2
Tr[(Kθ)

−1 +
∂(Kθ)

∂θj
] +

1

2
yT (K + σ2

nI)−1
∂(Kθ)

∂θj
(K + σ2

nI)−1y

(5.13)

where Kθ = (K + σ2
nI). Generally speaking, the marginal likelihood function of

the GP tends to be a non-convex function, meaning that it may have multiple

local maxima, which normally leads to a numerical optimisation algorithm, gradient

ascent for example. One method to mitigate this problem is to start from different

initialisation points. But to fully integrate the uncertainty of hyperparameters in

the GP, one can perform a full Bayesian inference on the hyperparameters. A prior

can be assigned to the hyperparameters, which is p(θ), therefore the posterior of θ

is p(θ|y) ∝ p(θ)p(y|θ), where p(y|θ) is given in (5.8). If one wishes to do prediction
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now, the new predictive distribution will then take the following form:

p(f∗|y) =

∫
p(f∗|y, θ)p(θ|y)dθ (5.14)

Although this integral is likely to be non-analytical, one would normally resort to an

approximation method like MCMC sampling method or variational inference [161].

Model Selection

The SE kernel function is used to demonstrate how the GP works, but the choices for

kernel function is far more than the SE kernel, the Matérn class kernels, the neural

network kernels, the rational quadratic kernels, to name a few. One can even create

new kernels from existing kernels by summation or multiplication, as long as they

are symmetric positive semi-definite functions. The selection of a kernel is normally

empirical, dependent on the prior knowledge of the time series to be modelled,

whether it is stationary or nonstationary, does it contain a deterministic trend, or

are there any underlying periodic patterns, etc. Recent work on automatic pattern

discovery with kernel functions has been promising to address this issue, interested

readers are encouraged to refer to an intriguing work by Wilson and Adams [164],

where they constructed a kernel that is the Fourier transform of a Gaussian mixture,

named a spectral mixture kernel, which has good performance in pattern discovery

and extrapolation.

Summary

To summarise, this section has reviewed most of the key elements for performing

a GP regression, detailing all the procedures involving training and learning a GP

model. The GP regression is a nice and elegant framework, where one has great

flexibility to create and modify model forms according to their demands. The GP

also deep connections with many classical models, Bayesian linear regression models

for instance, GPs can also be regarded as an infinite number of basis functions [161].
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5.3 GP Regression as A Nonlinear Cointegration

Function

Gaussian process regression is used in this thesis to estimate the nonlinear cointe-

grating function f(∼) as in (5.1). To estimate and test the nonlinear cointegration

relationship, a sequence of steps should be followed.

1. Select suitable monitored variables for the model and calculate the order of

the variables, which should be integrated to the same order. The ADF test is

implemented on the variables to determine the integration order.

2. Separate the data sets into two parts: a training and test data set. Training

data are used to train the GP regression model; the test data set is employed

for the aim of monitoring potential system variation. The training data should

not contain any data corresponding to damage, but should as far as possible

span the range of EOVs anticipated.

3. Use the training data to train the GP regression model, then apply the ADF

test again to testify whether the model residual series is integrated to a lower

order than the original variables. Once this goal is achieved, one can say that

the nonlinear cointegrating relationship is established successfully, the common

trends are purged; therefore, the model residual series may be a potentially

good indicator of damage-induced variations.

4. As the nonlinear cointegrating regression may have multiple model forms, the

last step is to investigate all possible model forms, evaluate and select the

best form as the final result. In order to measure the “goodness”of a model,

one can use model fitness metrics, or information criteria, or test statistics to

quantify the performance of different models.

5.4 Case Studies

In this section, the proposed method will be examined with two case studies, one

synthetic case study originated in [139], the second one is a well-known benchmark

study in SHM - the Z24 Bridge.
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Figure 5.1: Simulated samples of xt and yt from equation (5.15).

5.4.1 Case Study I: Linear Trend-Stationary Series Versus

Quadratic Trend-Stationary Series

It is not uncommon to see situations where damage-sensitive features are in fact

nonlinearly related to some kind of external disturbances, therefore it becomes in-

valid for conventional linear cointegration to accurately model this relationship. To

mimic such behaviour, Cross and Worden simulated two trend-stationary time series

in [139], one with linear trend and the other with quadratic trend. To be explicit,

assume xt and yt are two system variables observed, they are both affected by the

same kind of external variations. But xt is linearly related to the variations of

temperature while yt is quadratically related:

xt = αT + εt

yt = βT 2 + εt
(5.15)

where α and β are two constants, εt and εt are two iid stationary measurement

noises, T represents external disturbances, temperature in this case. 1000 data

points are simulated, α and β are made equal to 1 for convenience, εt and εt are
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Figure 5.2: Residual series (black) of the linear cointegration model
between xt and yt.

ADF t-statistic
Critical Values

Results
1% 5% 10%

xt -0.7227 -3.437 -2.865 -2.568 Nonstationary
yt 10.2604 -3.437 -2.865 -2.568 Nonstationary
∆xt -11.5427 -3.437 -2.865 -2.568 Stationary
∆yt -4.6829 -3.437 -2.865 -2.568 Stationary

Table 5.1: ADF test results for xt, yt, ∆xt and ∆yt

simulated as two independent N (0, 1) noise processes, and T is a monotonically

increasing series from 0 to 10. Simulated samples of xt and yt are shown in Figure

5.1.

If one follows the conventional cointegration method - the Engle-Granger method

as reviewed in Section 4.4.1 - a linear regression model can be formed between yt

and xt, the model residual series is plotted as a black line in Figure 5.2. It is ob-

vious to see that the residual is not stationary in the mean; [139] attempted to

address this issue by forming a quadratic regression: yt = θx2t +ψt, but this method

introduces unwanted heteroscedastic noise in the residual as a side effect of the

quadratic transformation. Later, Zolna et al. modified the residual estimator by
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Figure 5.3: True values of xt are plotted in blue, GP regression predic-
tions are shown in red, the black lines are the three standard deviation
confidence interval of GP prediction.

dividing a correction term, which can suppress the changing variance in the residual

[140]. However, there has not yet any discussion on how to choose a proper non-

linear transformation method, possible candidates including logarithm, exponential,

polynomial, or Box-Cox transformation, and additionally, it is very difficult to tell

whether a model has been overfitting or underfitting.

Now, following the procedures summarised in Section 5.3, one first employs the ADF

test on xt and yt, to see whether they are nonstationary or not; if nonstationary how

many orders of integration are they. The results are summarised in Table 5.1, it

suggests that xt and yt are nonstationary series, but they both turn stationary after

differencing, or in other words they are both I(1) series. Next, one forms a GP

regression model. A different regression model from [139] will be used here, which is

xt = GP(yt), the other possible model is going to be compared later. The aim here

is to see whether the GP can produce a stationary residual series, therefore, there

are no partitioning of training and testing dataset, ie. the whole dataset is used to

train the GP regression model, and the squared-exponential kernel function (5.3) is

selected.
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Figure 5.4: The residual series from the GP regression model, the black
lines overlaid are the three standard deviation confidence intervals.

The GP regression prediction is shown in Figure 5.3; one can see that the upward

trend of xt is very well captured by the GP, although the underlying trend is a

straight line, the GP misinterprets very little portion of the noise as the signal,

which causes the unsmooth prediction. But given that this is just a one-regressor

model, and the regressor yt is nonlinearly related to the regression target xt, the

model seems to be quite accurate. Moreover, the confidence intervals the GP has

produced are bounding quite tightly around xt; to visualise the difference between

them, one can refer to the residual series plot, as shown in Figure 5.4. From visual

inspection, the residual series seems steady in both mean and variance, and the

heteroscedastic phenomenon observed in [139] is effectively eliminated.

To confirm whether there exists a nonlinear cointegration between xt and yt, one

needs to perform the ADF test on the residual series, the test results are presented in

Table 5.2, the t-statistic is safely below the critical value, suggesting that the residual

series is indeed stationary, which further indicates that xt and yt are nonlinearly

cointegrated. One can also visualise the nonlinear relationship, as shown in Figure

5.5; the horizontal axis is yt and the vertical axis is xt, the blue dots are true data

and the red asterisks are from GP prediction. This Figure can provide an intuitive
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ADF t-statistic
Critical Values

Results
1% 5% 10%

Residual -28.7488 -3.437 -2.865 -2.568 Stationary

Table 5.2: ADF test results for the GP model residual.

Model Form Residual t-statistic
Critical Values

MSE MAE
1% 5% 10%

yt = GP(xt) + εt -28.7488 -3.437 -2.865 -2.568 0.9634 0.7858
xt = GP(yt) + εt -4.4544 -3.437 -2.865 -2.568 101.0864 7.1755

Table 5.3: GP regression model comparison results.

view of how the GP is fitting the nonlinearity in the data, which helps explain why

conventional cointegration fails.

The last step is to compare all the possible model forms and select the one having the

best performance. As the model only has two variables, there are only two possible

model forms; the other one is yt = GP(xt), so the same procedures are repeated for

this model. For comparison, the mean squared error (MSE) and the mean absolute

error (MAE) of the predictions, also the ADF t-statistics are used as metrics here; the

results are summarised in Table 5.3. Both models have rejected the test, suggesting

that the residual is stationary, but the first model has much smaller t-statistic,

which means that it produces much a more “nonstationary”residual series; In terms

of the MAE, the first model has slightly better mean fitting performance; for the

MSE, the first model outperforms the second completely, it has much better variance

explainability.

In summary, this case study is a demonstration of how the proposed procedures

should be implemented. The synthetic dataset also comes from previous studies in

the field, the proposed method can effectively eliminate the heteroscedastic variance

in the residual, and produce a stationary residual purged of underlying trends. It is

also important to note that, these two series xt and yt are in fact trend-stationary

series, as examined in Section 4.2.2. A common practice in the time series literature

is to first remove the deterministic trend and then proceed to standard stationary

time series modelling procedures. However, in this study, the underlying trend in

xt and yt are assumed unknown a priori, they are treated as stochastic trends as a

result. This also confirms that GP regression is a robust estimation method, that

can deal with all kinds of nonlinearity.
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Figure 5.5: The nonlinear relationship between xt and yt, the blue dots
are true values, and the red asterisks are GP predictions.

5.4.2 Case Study II: the Benchmark Z24 Bridge

Introduction

As reviewed in Chapter 3, the Z24 Bridge benchmark shows a nonlinear behaviour

to the change in the temperature. Figure 5.6 shows the first four natural frequencies

with respect to observation numbers, the black dashed line shows the time when

the first of the damage scenarios was implemented. However, due to the influence of

environmental conditions, the natural frequencies show no significant sign of struc-

tural degradation. Furthermore, after nine months of monitoring of the normally

functioning bridge, six kinds of damage scenarios were artificially employed on dif-

ferent parts of the bridge. All damage scenarios, with the corresponding date and

data points are listed in Table 5.4. For more details about the monitoring systems

and the progressive damage tests, the interested reader can refer to [66].

On further observation of Figure 5.6, it is obvious that the natural frequencies were

affected by some external driver to a great extent, and this turned out to be temper-
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Figure 5.6: The first four natural frequency time series identified from
the Z24 Bridge, the vertical dashed line indicates where first damage is
introduced.

Date Damage Scenario Day Index Data Points
10/08/98 Settlement of Pier, 20 mm 272 4918∼4941
12/08/98 Settlement of Pier, 40 mm 274 4966∼4989
17/08/98 Settlement of Pier, 80 mm 279 5084∼5107
18/08/98 Settlement of Pier, 95 mm 280 5108∼5131
19/08/98 Tilt of Foundation 281 5132∼5155
20/08/98 3rd Reference Point 281 5156∼5179

Table 5.4: Progressive damage test scenarios and test dates [165].
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f1 f2 f3 f4
f1 Nonlinear Linear Linear
f2 Nonlinear Nonlinear Nonlinear
f3 Linear Nonlinear Linear
f4 Linear Nonlinear Linear

Table 5.5: Relationships between the first four natural frequencies

ADF t-statistic 5% critical value Stationarity
f1 -0.317481 -1.940880 N

∆f1 -14.37213 -1.940880 Y
f2 -0.741687 -1.940880 N

∆f2 -17.09163 -1.940880 Y
f3 -0.418102 -1.940880 N

∆f3 -28.57986 -1.940880 Y
f4 -0.423898 -1.940880 N

∆f4 -26.46857 -1.940880 Y

Table 5.6: ADF test of the first four modal frequency time series and
their difference series.

ature. See data points from 1800 to 2200 for example, the corresponding test dates

were 28/01/1998 to 15/02/1998, when air temperature was mostly below zero during

this period. There emerged a large peak of the natural frequencies approximately at

data numbers 1800-2200; this may be explained by the nonlinear behaviour of the

natural frequencies caused by stiffening of the asphalt. It seems that the effect of

temperature may result in nonlinear relations between natural frequencies. Figure

5.7 plots the relationships between each of the extracted frequencies. With visual

inspection, it can be seen that the second frequency is not linearly related with the

other frequencies, while f1, f3 and f4 appear to be mutually linearly related [90].

The results of the mutual relationships between frequencies are summarised in Table

5.5.

GP Regression as Nonlinear Cointegration

Following the procedures in Section 5.3, the orders of integration for the time series of

the four natural frequencies are determined using the ADF test; the results are given

in Table 5.6, and show that these four natural frequency series are nonstationary at

the 95% confidence level and integrated of order one, i.e. they are I(1) series.
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Figure 5.7: Mutual relationships of the first four natural frequencies.
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Figure 5.8: Gaussian process regression model f2 = GP(f1, f3, f4) pre-
dictions are in red, the real values of f2. are plotted in blue, and the
black horizontal lines are three standard deviation confidence intervals,
the dashed vertical line indicates damage occurrence.

It might be difficult to find the specific physical meaning of a regression model

between natural frequencies; however, from the view of cointegration, once the coin-

tegration relationship of variables is built, the equilibrium relationship may indicate

that the system is functioning under normal conditions, hence the model error may

be sensitive to system variation induced by damage; if the model error tends to

be stationary, the underlying common trends of the original data are successfully

removed. To train a GP regression model properly, the training dataset has to cover

as many variations of the data as possible, as the monitoring data contains at least

three seasons before damage is introduced. Thus, one of every two points from point

1 up to 3000 are used to train the GP model, the rest of the data set is used for

testing. As the system has 4 variables, therefore theoretically it has 28 possible

model forms. f2 = GP(f1, f3, f4) is chosen to be the running example for now, and

the rest of the model forms will be compared later in the section.

The trained GP model is used to predict on the whole dataset, and the prediction

performance is shown in Figure 5.8, where for most of f2, the GP has well captured its
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Figure 5.9: Zoomed-in view of data points from 1000 to 2000 in Figure
5.8.

fluctuations, it not only predicts the mean of f2 when the temperature is not too cold

(points 1 to 500 for example), and warm (point 2500 to 3000 for example), but also

successfully follows the spikes where temperature is below zero (points 1200 to 1500

for example). Most importantly, as soon as the damage is introduced, the prediction

of the GP starts to diverge from the measurements, and the measurements also

immediately exceed the lower confidence interval. Figure 5.9 provides a zoomed-in

view for the data points between 1000 to 2000, one can see that the small spikes in the

beginning are very accurately predicted by the GP, and the GP is also showing a good

fit when the mean suddenly starts to peak starting from point 1200, the variations

of f2 are also safely bounded by the GP’s confidence intervals. However, when the

frequency starts to descend from peak to normal, the predictions of the GP seem

to be underestimated, and some of the blue lines even exceed the upper confidence

interval. The most likely cause of this is perhaps the slope of the ascending and

descending part is very different, the declination from point 1400 to 1500 is much

steeper than the rising from point 1200 to 1400.

Although this model is a three-regressor model, which means that visualisation of

the regression is not possible for three dimensions below, one can single out each
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Figure 5.10: The predicted f2 of GP model paired with its corresponding
inputs, red crosses are true values of f2, blue dots are GP’s predictions,
and the grey circles show GP’s confidence intervals.
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Figure 5.11: The residual series of the GP regression model f2 =
GP(f1, f3, f4), with three standard deviation confidence interval over-
laid.

pair of inputs and outputs, and observe how each input variable is behaving inside

the GP regression, as shown in Figure 5.10. In these three figures, the red crosses

in the lower left corners are actually corresponding to the data where damage was

introduced, as they are clearly moving towards a different direction, which results

in their successful detection by GP. What is more interesting is the red crosses in

the top right corners, where are in fact under freezing conditions. Comparing to

other regions, samples in the freezing zones tend to have larger variance, but as is

known that normal GP regression assumes a iid noise condition, which makes the

GP model underestimate the local variance, it helps to explain the prediction error

spotted in Figure 5.9.

Furthermore, one can examine the difference between predictions and measurements,

e.g. the residual plot in Figure 5.11. The result is quite consistent with the obser-

vations above; most of the changes induced by environmental variations have been

effectively removed, except the region where temperature transits from peak to nor-

mal (points around 1500), causing the residual in this region to exceed the upper

confidence bound. Most crucially, the damage detection in the residual series is
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imminent, and even after the first damage instance, one can see that the residual is

progressively moving downwards, indicating that system status has changed several

times. After computing the ADF statistic of the training residual series, the t-

statistic obtained is -4.7354, which is significantly below the critical value -1.940880

(as shown in Table 5.6), therefore the training residual series is a stationary one, and

the nonlinear cointegration relationship can be said to be successfully established.

Model Selection

In the current case study, there are four system variables, meaning that there are

possibly 28 kinds of GP regression forms, as listed in Table 5.7. Therefore, in order

to find the optimum model form, the last step is to evaluate the performance of all

these models. The performance metrics used in this context is the mean squared

error (MSE), mean absolute error (MAE) and the ADF statistics. The first two are

used to measure the model fitting in the variance and mean respectively, whereas

the last one is utilised as a measure of stationarity; that is the lower the statistic,

the more stationary the series is.

Repeating all the procedures conducted above on all the rest of the models, and com-

puting the above-listed metrics on the data points from 0 to 3000, the performances

of all the models are illustrated in Figure 5.12. The horizontal axis represents the

model indexes listed in Table 5.7, the left vertical axis is for the ADF statistic, and

the right axis is for the MSEs and the MAEs. Overall, models with indexes from 7

to 13 outperform others especially in terms of ADF statistics, indicating that they

have produced the most stationary residuals; besides, they also have quite low MSE

and MAE scores. One can simply pick Model No.12, f2 = GP(f3, f4),for it has the

smallest ADF statistic. But Model No.13, f2 = GP(f1, f3, f4), has slightly lower

MSE and MAE scores, although it does have a marginally larger ADF statistic than

No.12, and more importantly, it contains all the available system variables. As a

result, model No.13 is chosen to be the best GP regression model for this Z24 Bridge

case study.
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Model Index Regression Model Form Model Index Regression Model Form
0 f1 = GP(f4) 14 f3 = GP(f1)
1 f1 = GP(f3) 15 f3 = GP(f4)
2 f1 = GP(f2) 15 f3 = GP(f2)
3 f1 = GP(f4, f3) 17 f3 = GP(f1, f4)
4 f1 = GP(f4, f2) 18 f3 = GP(f1, f2)
5 f1 = GP(f3, f2) 19 f3 = GP(f2, f4)
6 f1 = GP(f4, f3, f2) 20 f3 = GP(f1, f2, f4)
7 f2 = GP(f1) 21 f4 = GP(f1)
8 f2 = GP(f4) 22 f4 = GP(f3)
9 f2 = GP(f3) 23 f4 = GP(f2)
10 f2 = GP(f1, f4) 24 f4 = GP(f1, f3)
11 f2 = GP(f1, f3) 25 f4 = GP(f1, f2)
12 f2 = GP(f3, f4) 26 f4 = GP(f2, f3)
13 f2 = GP(f1, f3, f4) 27 f4 = GP(f1, f2, f3)

Table 5.7: All the GP regression model forms and their corresponding
model indexes.

Figure 5.12: The MSE, MAE and ADF statistic of all possible models
of the GP regression, the left axis is for the ADF statistic, the right axis
is for the MSE and MAE, the horizontal axis is the model indexes listed
in Table 5.7.
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5.5 Conclusions

Cointegration has been used to model the long-run equilibrium relationships in eco-

nomic series, it now can be utilised in SHM problems to find some linear combination

of nonstationary variables sharing the same trend to construct a stationary resid-

ual, purged of common trends, which may serve as a damage indicator. As an

extension of previous work, a nonlinear cointegration approach based on Gaussian

process regression is proposed in this chapter, aiming to build nonlinear cointegrat-

ing relationships between variables. The idea is based on the framework of the

Engle-Granger cointegration, except for using GP regression as the cointegrating

function. The ADF test is implemented both before and after the cointegrating re-

gression to determine the order of integration, and furthermore to examine whether

a nonlinear cointegration relationship has been built. Two datasets are used to val-

idate and examine the proposed method, the first dataset is a synthetic case study

coming from the previous literature. Using the proposed method, one can success-

fully model the nonlinear relationships between variables, and build a stationary

residual series purged of influences from the underlying trend. Real data from the

Z24 Bridge is also used to validate this method, the results show that the model

error series created from the model mostly stays stationary during normal operating

conditions, which means that the trends induced by EOVs are effectively eliminated,

yet the model series still maintain sensitive to structural damage.

One obvious advantage of implementing cointegration, comparing with other ap-

proaches like linear regression, is that it is clear that no direct measure of environ-

mental or operational variations are necessary. This may provide great convenience

for SHM, because the scale of structures of interest are growing massively, it is some-

times difficult to acquire measures of ambient variations accurately. And further-

more, GP is a very powerful framework, one can easily build things on GP models:

one example would be to use a sparse GP to enable analysis on a large dataset [163],

or one can discard the iid noise assumption, and adopt a input-dependent noise

condition, then the heteroscedastic GP will come to the remedy [166][167]; or if the

noise and also the mean are both input dependent, there is Bayesian CART-based

Treed GP that can be exploited [91], where the input domain can be partitioned

into different regimes. Throughout this chapter, the GP model was entirely built

upon the Engle-Granger cointegration framework; one may also recall from the the-

ory reviewed in Chapter 4, the Johansen procedure is sometimes a more appealing
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framework for cointegration. The GP regression method can be adapted into a mul-

tiple output model [161], which potentially can be developed under the Johansen

framework. The list goes on, if one wishes to encode their problem-specific problem

in this method, and it will also be the direction of the author’s future work.



Chapter 6

A Regime-Switching

Cointegration Approach

6.1 Introduction

The last chapter focused on estimating a nonlinear cointegration model using Gaus-

sian process regression, which treats the underlying nonlinear cointegration as a

smooth function. This chapter however, will take a different direction to model the

nonlinearity. Rather than modelling the original series as a whole, this chapter will

pursue to separate the time series into segments, where conventional cointegration

can be applied within each segment.

Regime switching is not an uncommon issue in the economic world; for instance,

cointegrated stock indexes might change their inner dynamics from a “bull market”

to a “bear market” because of external influences, e.g. monetary policy interven-

tion, financial crisis or the latest unexpected event e.g. “Brexit”. A large body of

the econometric literature concerning this falls in the extension to threshold cointe-

gration, first proposed by Balke and Fomby in 1997 [168]. In their framework, the

adjustment term in the cointegrating regression is allowed to shift once some indi-

cation variable exceeds a threshold. Furthermore, there are several other variants

built on the vector error correction (VEC) model, as expressed above in equation

(4.18); in [169] and [170] for example, they allow a threshold effect on the lag terms

and the intercept term respectively. Gregory and Hansen [171], however, take the

91
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Figure 6.1: A four-DOF spring mass system.

opposite direction for allowing a cointegrating relationship to change, or in their

terms, shift regime. More specifically, the cointegrating vector can change its value

after a certain breakpoint, after which the system will stabilise itself at another long

term equilibrium. The position of the breakpoint is unlikely to be determined in

advance, thus they calculate the unit root statistic for each possible regime shift,

and evaluate the smallest values across all possible breakpoints.

Inspired by Gregory and Hansen’s work, a regime-switching cointegration method

will be adopted to address the nonlinearity issue in this chapter. Different from their

method however, instead of using the Engle-Granger framework, the more efficient

Johansen procedure is implemented to estimate cointegrating vectors. The chapter

is organised as follows: first a synthetic case study is presented to illustrate the

concept of regime switching, and then the procedures of the proposed method are

introduced; followed by a second case study, the Z24 Bridge data; this chapter will

end with some discussions and conclusions.

6.2 A simulated spring-mass system

As discussed in the previous chapters, the conventional cointegration method may

sometimes fall short because of the involvement of nonlinearity. To illustrate the

issue more specifically, a simple system is simulated, and the proposed new method

will be illustrated with it.

Consider a four degree of freedom (DOF) spring-mass system, where four lumped

masses (2kg each) are in a chain with both ends connected to ground, as shown in

Figure 6.1. To mimic the effect of EOVs, temperature particularly in this case, a

changing thermal field is applied to the system. 10000 real temperature measure-

ments from the SHM campaign of the Tamar Bridge are used as the thermal field.

The temperature data ranges approximately from -10◦C to 20◦C, which is fully dis-

played in the lower panel of Figure 6.2, representing readings from about one year

[75]. To introduce artificial nonlinearity to the system, the springs in the system
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Figure 6.2: Upper panel: the four natural frequency series of the system
in Figure 6.1 plotted as a function of time; Lower panel: temperature
series plotted against time. Red dashed line indicates damage introduc-
tion.

Figure 6.3: Residual series obtained using the conventional cointegration
method, the red dashed line indicates where damage occurs.
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are all set to have nonlinear influences from temperature, the third spring is set to

have a slightly different effect from temperature. The explicit expressions of their

stiffness versus temperature T are given as follows:

k1 = k2 = k4 = k5 =

{
−0.15× T + 4, if T < 0

−0.05× T + 4, if T ≥ 0
(6.1)

k3 =

{
−0.15× T + 5, if T < 0

−0.25× T + 5, if T ≥ 0
(6.2)

Because of the different behaviour of k3, the nonlinear effect is introduced into

the vibration modes in which the third spring is participating - the second and the

fourth mode to be specific. Damage is simulated by letting the stiffness of the second

spring k2 decrease by 20%, at datapoint 5000 in the simulation. The four natural

frequencies of the system are obtained at each time instant by solving the equations

of motion. Additionally, a small amount of Gaussian white noise N(0, 0.02) is added,

to simulate measurement errors.

The upper panel of Figure 6.2 shows the identified four natural frequency series,

plotted as a function of time. The dashed vertical line indicates where damage

is introduced. It is clear from Figure 6.2 that the effect of temperature is signif-

icant. When the damage level is not high enough, damage information may be

overwhelmingly masked by the changes caused by temperature. Following the con-

ventional cointegration procedures proposed in [124], the data points ranging from

point number 2000 to 4000 are used for establishing the cointegrating vector. From

this data one can obtain the residual series as shown in Figure 6.3; here one can

clearly see that the residual series is not very sensitive to the damage occurrence -

the underlying cointegration relationship has not been accurately modelled and any

conclusion drawn from this may therefore be misleading. Because of the nonlinear

effect of the third spring, the mutual correlation between the four natural frequen-

cies will shift from one regime to another, as soon as the temperature crosses the

zero degree point. This regime switching may be evidently observed from Figure ??,

which shows that the mutual correlations among the four natural frequencies have

a distinct bilinear relationship, the knee points in the images correspond to the zero

temperature points.
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6.3 A regime-switching cointegration method

The situation in the four-DOF system above is very similar to the phenomenon of

regime switching, as it enters another regime as soon as the temperature drops be-

low zero degrees. Thus in this section, a regime-switching cointegration model will

be exploited to address this issue. The idea here is to split the original data into

two halves, one of which consists of data points that are greater than 0, and the

other half less than 0. As a result, in each of the subsample, the underlying relation-

ship becomes linear again. Loosely speaking, the aim is to build a piecewise linear

cointegration model, or more rigorously, a regime-switching cointegration model.

Firstly only a small amount of the data are needed for estimating the model, data

points from point 2000 to 4000 are extracted for establishing the cointegrating vec-

tors and breakpoints. The training series are rearranged according to the order of

temperature, the rearranged series ft = (f1t, f2t, f3t, f4t), t = 1, 2, ...N , where N is

the sample size, is shown in the upper panel of Figure 6.4 , indexed by the temper-

ature in the lower panel. Even though a breakpoint was simulated to occur at zero

degrees (around point number 900 in Figure 6.4), there is no clear sign of a shifting

regime in the figure.

The next step is to ascertain the position of the break point from the training

data with the help of a unit root statistic - the ADF t−statistic. Assume the

current breakpoint is at position τ , then ft(1 : N) is split into two sets: f1τ (1 : τ),

f2τ (τ + 1 : N). One then uses the Johansen procedure presented earlier to estimate

the cointegrating vector of each set, say β1τ and β2τ , and to construct the residual

series at this breakpoint, eτ = (β1τ f1τ ;β2τ f2τ ), where “;” is used to concatenate these

two vector series; the subscript τ denotes the fact the residual series depends on the

position of the breakpoint. From the residual series eτ , the ADF statistic can be

calculated using (4). Note that not all positions are valid for τ because calculating

the ADF statistic demands a small number of samples, therefore in practice, the data

sets in the interval ([0.15N ], [0.85N ]) are used to evaluate the possible breakpoint.

Following the procedures above, the ADF statistic of the four-DOF system is plotted

in Figure 6.5, as a function of the training sample points. The blank space in the

beginning and the end of the figure represents the fact that ADF statistics are only

evaluated in the interval ([0.15N ], [0.85N ]). The smallest value of the curve is at

data point 976, corresponding to the temperature 0.4767◦C, which is quite close to
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Figure 6.4: Upper panel: natural frequency series rearranged in the
order of temperature; Lower panel: temperature series rearranged in
the order of magnitude.

the simulation assumption. Furthermore, with the estimated best breakpoint and

cointegrating vectors correspondingly, one can have the following regime-switching

cointegration relationship which is indexed by the value of temperature:

εt =

{
147.90× y1t − 107.29× y2t − 122.96× y3t + 10.69× y4t − 3.54, if T ≤ 0.4767

−4.51× y1t − 84.87× y2t − 127.87× y3t − 165.07× y4t − 24.19, if T > 0.4767

(6.3)

Plotting the residual series from equation (6.3), as shown in Figure 6.6, it is clear

that the series is stationary before damage introduction, any effect from temperature

is effectively eliminated, and the nonlinear behaviour of the frequency response is

precisely captured. After 5000 data points, the magnitude of the residual sees a

sudden jump, which indicates strongly the occurrence of damage; the overlaid grey

areas show where cointegration switches from one regime to the other. The result

can be interpreted by the fact that the regime-switching cointegration is estimated

with training data under normal condition, the healthy state of the system has been

accurately modelled. Whenever damage occurs, the long term relationship of the

variables no longer holds, thus the residual series turns nonstationary immediately.
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Figure 6.5: ADF statistics plot of the training sample points, the lowest
point position determines the breakpoint position for the regime switch.

Figure 6.6: Residual series of the cointegration model, the vertical red
dashed line indicates damage introduction, the two horizontal red lines
represent the three standard error bars; the grey shaded areas show
where cointegration switches regimes.
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Despite the fact that the method suggests very good results, one may still argue that

reordering the original series may break the underlying cointegrating relationship,

therefore the estimation procedure might be ill-conditioned. This argument is partly

true, that rearranging the order of series will surely break the underlying error

correction mechanism, but the long term relationship stays the same, or in other

words, the rearranged series have the same cointegrating vectors as the original

series, because the cointegrating relationships are stacking pointwise in time. One

should bear in mind that the final goal here is fundamentally different from the

aim of the econometricians, the concern is more about the long term relationship

between variables, the short term adjustments are less of interest for the moment.

Therefore, it is legitimate to use temperature as a reference series to rearrange the

original series, and estimate the cointegrating vectors of the yielded series.

Next, the proposed method will be briefly summarised and then a real engineering

example will be used to examine the effectiveness of this method.

6.4 A brief summary of the proposed method

The procedure of the method is summarised as follows:

1. Rearrange the monitored series in the order of environmental or operational

variable.

2. Insert a breakpoint at a position ranging from ([0.15N ], [0.85N ]), where N is

the sample size.

3. At each possible breakpoint, split the series into two halves, use the Johansen

procedure to estimate the cointegrating vectors for each half.

4. With the estimated cointegrating vectors, calculate the residual series of both

halves and then merge them into one series, and determine the ADF t−statistic

of the merged residual series.

5. Repeat procedures from step 2 to 4 at each point from [0.15N ] to [0.85N ], and

construct a plot of all ADF statistics with respect to the breakpoint positions.

Pick the minimum value of the curve; the corresponding position represents

the optimal breakpoint.
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Figure 6.7: Upper panel: the first four natural frequency series of the
Z24 Bridge, the red dashed line indicates damage introduction; Lower
panel: the air temperature measurement during this time period.

6. With the optimal results from 5, using the environmental or operational vari-

able as an index variable, construct a switching cointegration relationship and

a stationary residual series, which should be purged of EOVs and still have

the power to detect damage.

This regime switching cointegration method is suitable for dealing with nonstation-

ary SHM data corrupted by EOVs, where system response may have two distinct

behaviours with respect to EOVs. For example, bridges may have very different dy-

namic responses in hot and cold weather because of change of stiffness or boundary

conditions. The current approach however, assumes that the measurements of the

EOVs are accessible and only one kind of EOV is driving the nonlinear behaviour

of the structure. Likewise, any engineering system with similar behaviour may be

suitable for the proposed method, systems that accommodate more regimes can be

possibly addressed by inserting more breakpoints in the proposed model.
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Figure 6.8: Mutual relationships of the first four natural frequencies.

6.5 An application to the SHM of the Z24 Bridge

The Z24 Bridge is now a benchmark study in the SHM community. The monitoring

campaign spanned one year before the bridge was dismantled, before dismantling,

several damage scenarios were implemented [66]. The monitoring campaign also

recorded various environmental parameters including temperature, wind speed and

humidity. In order to obtain the dynamic properties of the bridge, the natural

frequencies were identified from acceleration measurements. The upper panel of

Figure 6.7 illustrates the first four natural frequency series, f1 to f4, plotted with

respect to time history; the vertical dashed line indicates the position where the first

damage scenario was implemented. The temperature readings for this time period

are plotted in the lower panel. Note that there are some missing data in the original

dataset, thus the points corresponding to time instants when data missing occurs

are all removed as a data pre-processing procedure.

On further examining the mutual relationship between the four natural frequen-
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Figure 6.9: Residual series obtained using the conventional cointegration
method, the red dashed line indicates where damage occurs.

cies, as shown in Figure 5.7 in Chapter 5, the second natural frequency f2 has a

clear bilinear relationship with the other three. As discussed above, it is a quite

similar situation to the four-DOF system, the conventional cointegration method

may therefore fail to model this phenomena. Following the cointegration approach

proposed in [124], one out of every two from the first 3000 data points are used to

estimate the cointegration model, and a residual series is obtained, as demonstrated

in Figure 6.9. Even though the residual becomes largely stationary, the underly-

ing cointegrating relationships are not accurately modelled, therefore the damage

information has been smoothed out as well.

The aim is to build a damage indicator based on the healthy state of the bridge,

so only the data before the dashed line are used for estimation; the same training

data set from above (one out of every two from the first 3000 data points) are

used for training purpose. Following the procedures in the last section, firstly the

training series are rearranged in the order of the corresponding temperature series,

as exhibited in Figure 6.10. Then the ADF statistics of all possible breakpoints

are plotted in Figure 6.11, the lowest point of the curve is selected as the best

breakpoint, the estimate is 0.98◦C, and the estimated switching cointegration has
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Figure 6.10: Upper panel: natural frequency series rearranged in the
order of temperature; Lower panel: temperature series rearranged in
the order of magnitude.

the following form:

εt =

{
28.54× f1 + 6.53× f2− 5.56× f3− 9.62× f4 + 13.07, if T ≤ 0.98

23.02× f1− 21.86× f2− 1.00× f3− 12.01× f4 + 161.15, if T > 0.98

(6.4)

Substituting the original series into (6.4), creates the residual series, which is plotted

in Figure 6.12. The effect of EOVs has been mostly eliminated, the residual series

before the dashed line is stationary. Three-sigma error bars are overlaid in the

figure; one can see that the undamaged residual series lies predominantly within

the confidence intervals; immediately after the damage introduction, the level of

the residual has shifted drastically. To illustrate when the system enters another

regime, the cold regime (when temperature drops below 0.98◦C) is overlaid with

shaded areas, the same shaded areas are duplicated on Figure 6.7. One can see

during winter time that the bridge may switch frequently between two regimes;

this may help to explain why conventional linear cointegration fails to model the

relationships between the natural frequencies.

However, note that in Figure 6.12, there are several blips before the dashed line,

nonetheless they will not affect the global stationarity. Several reasons may account
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Figure 6.11: ADF statistics plot of the training sample points, the lowest
point position determines the breakpoint position.

for these blips. Firstly, as the Johansen procedure is a maximum likelihood method,

the cointegrating vectors are all point estimates, thus it is naturally prone to outliers.

This may be further improved by putting the cointegration approach in a Bayesian

framework, so as to give the posterior distribution of all the parameters. Another

possible reason is the effect of the missing values referred to earlier; it may be that

this has biased the estimation. Because of sensor faults, a small proportion of the

original data are invalid, all the time instants when missing data occurs have been

removed, which might bias the estimation of the breakpoint position, causing a small

number of data points to enter the wrong regime.

Moreover, despite the fact that most parts of the residual series manifest safely

within the error bars, there is a potentially upward trend between data points 3000

to 3500, before damage happens. There may be two main reasons to explain this

trend: firstly, this trend might be a local behaviour of the stationary residual series,

the local mean value may deviate from global mean sometimes, but it will eventually

revert back to the global mean. One may observe that near data point 3500, the

residual series has already started to drop back. Another possible explanation for

this trend is that the training data used above are from cold seasons, while data
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Figure 6.12: Residual series of the cointegration model, the red vertical
dashed line indicates damage introduction, the two horizontal red lines
represent the three standard error bars; the grey shaded areas show
where cointegration switches regimes.

point 3000 to 3500 correspond to hot seasons, thus there might be another regime

in the hot season. Unfortunately, due to the limited length of data (10 months),

the behaviour of the regime-switching cointegration method cannot be evaluated in

hotter months.

Three-regime cointegration results

It is straightforward to apply the proposed method to a three-regime case, it is

attempted here as at least one of the relationships shown in Figure 6.8 could be

described as being more complex than bilinear (particularly that between f1 and

f2). In the procedures of the last section, one should insert two breakpoints instead

of one breakpoint in step 2; and then make the first breakpoint fixed and evalu-

ate the second breakpoint at every possible position; subsequently, move the first

breakpoint to the next position, and evaluate the second breakpoint again at every

possible position; repeat the previous steps until every possible breakpoint position

is evaluated. This is essentially an exhaustive search; it is feasible in the situation

considered here as the size of the training set is not too large. In general problems,
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it would be necessary to use a more sophisticated optimisation/search routine.

Data points 1 to 3000 shown in Figure 6.7 are used as training samples to estimate

the two breakpoints, results are presented in Figure 6.13, where the vertical and

horizontal axes represent the positions of the first and the second breakpoints, the

colour indicates the magnitude of the ADF statistic evaluated at the corresponding

breakpoints. The darkest point is selected as the optimal breakpoint position. Ac-

cording to Figure 6.13, two breakpoints are selected at 2.36◦C and 3.95◦C, and the

estimated regime-switching cointegration has the following form:

εt =


−4.80× f1 + 1.14× f2 + 11.31× f3− 9.27× f4− 1.12, if T ≤ 2.36

27.76× f1 + 13.35× f2 + 8.26× f3 + 7.82× f4− 348.94, if 2.36 < T < 3.95

−20.41× f1 + 14.40× f2 + 19.28× f3− 5.64× f4− 127.03, if T ≥ 3.95

(6.5)

Substituting the original series into (6.5), one can obtain a residual series, as shown in

Figure 6.14. The blue and grey areas show the first and second regimes respectively,

and the left areas are the third regime. As expected, the three-regime-switching

cointegration produces a stationary residual series which is still sensitive to dam-

age. Interestingly, the residual shown in Figure 6.14 appears more stationary during

the undamaged period than the results from one switching point. The two break-

points estimated in this model coincide well with the switching response surface

model estimated in [92], where a Bayesian treed linear model is fitted. Compar-

ing to the previous chapter where Gaussian process regression is used to build the

nonlinear cointegration relationship using an Engle-Granger approach, this chapter

implements a cointegration method using the more powerful framework of the Jo-

hansen procedure. A more stationary residual is obtained in this chapter; a more

interpretable model is presented, and the model itself is even easier to implement in

practice.

6.6 Discussions and conclusions

The contents of this chapter are mainly about an exploratory approach aiming to

enhance the conventional cointegration method in the context of structural health

monitoring. Conventional cointegration methods can be used to remove the common

trends in SHM data induced by environmental and operational effects; however, in
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Figure 6.13: ADF statistic plot of the training sample points, the vertical
axis represents the positions of the first breakpoint, the horizontal axis
represents the positions of the second breakpoints; the colours in the plot
indicate the value of the ADF statistic evaluated at the corresponding
breakpoints.

Figure 6.14: Residual series of the regime-switching cointegration model,
the red vertical dashed line indicates damage introduction, the two hori-
zontal red lines indicate the three standard error bars; the grey and blue
shaded areas show where cointegration switches regimes.
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some circumstances, nonlinearity in the system may undermine the cointegrating re-

lationship; as such, a regime-switching cointegration method has been introduced in

this chapter to address both nonlinearity and nonstationarity in SHM data. System

responses may become nonstationary because of the effect of environmental varia-

tion, while sometimes the effect can simultaneously induce a nonlinear relationship

between features. The proposed method allows the cointegrating relationship to

switch according to the variation of environmental variables, the switching point is

called a breakpoint. The position of the breakpoint is not likely to be known before-

hand, thus all possible positions are evaluated by inserting a breakpoint at a time

and assessing the global nonstationarity property of the residual series, the proce-

dure is repeated throughout all possible breakpoint positions, and the test statistics

are compared to find the most probable breakpoint position. The proposed method

is employed here in two case studies, a simulated four-DOF system and the bench-

mark study of the Z24 Bridge; they both give very promising results, showing that

all the benign environmental effects have been successfully removed. Once dam-

age occurs, the underlying cointegration relationship no longer holds, therefore the

residual series shows a very significant indication of damage, as the residual series

become nonstationary again. However, it is important to note that there are still

some restrictions of the current approach, which will be future directions for the

authors:

• The Johansen procedure implemented is a maximum likelihood method, which

gives a crisp estimate of the cointegrating vector. It is known that the maxi-

mum likelihood approach can be greatly affected by outliers and dependent on

the selection of training data. A possible solution to this issue might be using

cross validation to ascertain the model, but the variation of noise level and

data missing can be difficult to deal with. Another possible direction would

be to put the Johansen procedure in a Bayesian framework, instead of giving

point estimates of cointegrating vectors, one could ideally have the whole pos-

terior distribution of them; however, the complexity of Johansen procedure

will present a big challenge.

• In this chapter, environmental measurements of temperature have been used

to direct the regime shift of the system. One of the main benefits from the

previous cointegration framework is that the measurements of EOVs are un-

necessary. However, conventional cointegration is linear in nature, and may

not suffice to account for the nonlinear behaviour observed in this chapter. To
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address this, the measurement of temperature is taken into account to build

a nonlinear model which still maintains a simple form. In this situation, tem-

perature is the main driving variable of the nonlinear relationship between

the natural frequencies, and other EOVs including wind speed, humidity are

unnecessary in the analysis.

Strictly speaking, the method presented here should be considered a hybrid

regression/cointegration approach. In using measurements of the temperature

in order to construct the cointegration regimes, the approach represents a step

forward, followed by a small step back; however, there are overall advantages.

It is important to note that, if a linear switching behaviour is present, any

global model polynomial or otherwise is likely to be input-dependent, and

may not generalise well away from the training data. On a related issue, global

models may need more parameters to explain piecewise-linear behaviour and

will be less parsimonious.

An ideal enhancement here would be to allow the choice of a switching point

without measurement of the environmental variable. One possible direction

would fall in the domain of change point detection, a good reference can be

found in [172], where a Bayesian online change point detection algorithm is

developed, which might be helpful to identify a switching point purely based

on data. Another interesting possibility is provided by the idea of inferential

parametrisation [173]. As in [173] one could in principle, infer a proxy for the

temperature measurement directly from the natural frequencies themselves.

In fact, a preliminary study has shown that this can be accomplished for the

Z24 data; however, there is an important issue to overcome before those results

can be shown with confidence. The point is this; if the switching parameter

(temperature) in this case is learned from data, it has to be learned from

training data unaffected by damage. This means that there is no guarantee

that, when damage occurs, the previously learned inferential parameter is still

accurate. The Z24 data itself is not sufficient to validate the approach because

the full range of environmental conditions were not available for any of the

damage states of the bridge. The inferential parameterisation approach is a

work in progress.

• Another possible enhancement of this method is to incorporate more regimes

in the cointegration. In the current method, only two and three regimes are

used, which captures well the nonlinear property of icing of the bridge. How-
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ever in many other cases, there are possibly more than three regimes. The

approach itself can be easily extended to the multiple regime context, how-

ever the difficulty is how to determine the number of regimes. More specific

hypothesis test methods can be developed accordingly.

• Away from the example presented here, it is possible, or indeed likely, that a

structure may be influenced by multiple EOVs at the same time. However,

not every EOV may induce nonlinear (regime-switching) behaviour in the fea-

tures of interest. Observing the phenomena of stiffening of the asphalt in the

Z24 case, this chapter assumes that temperature is the main EOV driving

the regime-switching behaviour of that particular structure. This assumption,

however, may be violated in more of an operational environment, if, for ex-

ample, the bridge had been opened to traffic. A challenging scenario in this

context would be if multiple EOVs with multiple regimes induced a nonlinear

relationship between features of interest. In such a case, an entire embedded

submanifold of switching points might be present within the space of EOVs.

A possible solution to this issue may be to put the model in the framework

of decision tree learning [174], where a high-dimensional input space can be

partitioned into finite discrete domains, each domain representing a class of

features determining the regime in which the structure is behaving. Again,

research is in progress on this matter.



Chapter 7

The TBATS Model for

Heteroscedastic Cointegration

With the rapid advancement of sensing technology, the availability and accessibility

of all kinds of data from structures has been greatly improved. As the duration

of recorded data grows, seasonal effects become inevitably important, especially

for long-term monitoring. Meteorological variations and human activities might

couple with the behaviour of the structures, making the modelling of underlying

states of the structure extremely difficult. More specifically, the seasonal effects

may produce input-dependent noise in the measurements of the structure, or het-

eroscedastic noise as in the statistical literature. As is well known, many statistical

and machine learning estimation methods are based on ordinary least squares (OLS)

or maximum likelihood; thus heteroscedastic noise may bias the estimation of the

model, causing misleading judgements of the health state of the structure. There-

fore, this study seeks to further strengthen the practice of the cointegration method;

a well-established method from the time series literature, called the TBATS model,

is explored to deal with seasonal effects in SHM data. After suppressing the het-

eroscedasticity in the series, cointegration analysis is performed to build a damage

sensitive residual series.

This chapter begins with a motivating example, followed by brief theoretical intro-

ductions to the exponential smoothing method and the TBATS model. A synthetic

case study will be presented in the fifth part to illustrate the proposed method.

Another case study of the National Physical Laboratory (NPL) Bridge with the

110
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Figure 7.1: Data collected from all the 8 tilt sensors installed on the
NPL Bridge.

proposed method is presented in the same section, the last part includes summary

and some discussions.

7.1 A Motivating Example

Nowadays, many long-term SHM studies have continuously collected years, if not

decades, worth of sensor data from structures. When time span and resolution of

available data are sufficient, seasonality or periodicity is becoming crucial for data

modelling.

Consider the National Physical Laboratory (NPL) Bridge for example; the NPL

Bridge was monitored for an extensive time span, covering a wide range of seasonality

induced by environmental variations. The monitoring campaign also introduced

several kinds of damage scenarios to the bridge. However, observing time series of

measured tilt data, as shown in Figure 7.1, no immediate damage information is

available as it is overwhelmed by the environmental variations. These time series

are clearly nonstationary, both in mean and variance, unfortunately, few methods

are valid for such kinds of time series. Worden et al. [175] attempted to model

the tilt sensor data using the linear cointegration method (theories of which will be

reviewed shortly).
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Figure 7.2: Cointegrated residual series from the 8 tilt sensor signals
acquired from the NPL Bridge; the vertical black line indicates the end
of the training data for cointegration.
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Figure 7.3: X-bar chart plot of the cointegrated residual.

Cointegration was applied to the eight tilt sensor time series, in order to form a

stationary residual for damage detection purposes. As demonstrated in Figure 7.2,

the vertical black line shows the end of the training samples for cointegration, which

accounted for a full year of environmental variations. The residual series clearly pos-

sesses time-varying variance, the underlying seasonality has severely undermined the

effectiveness of the algorithm. With the help of the Statistical Process Control (SPC)

chart, the “X-bar chart”in this case [176], the situation can be somewhat alleviated.

The measurements of the tilt sensor were hourly-based, every 24 measurements

were averaged to obtain a daily representative sample, the resulting residual series

is shown in Figure 7.3, the horizontal dashed lines indicate ±3σ (standard devia-

tion) control limits, the vertical blue line marks where the first damage scenario

was implemented. Despite the nonstationarity in the residual variance, the algo-

rithm clearly retains the power of damage detection, such that after the damage

introduction, the mean of the residual gradually goes beyond the control limits.

In terms of seasonality/periodicity in the NPL Bridge data, the daily cycle is an
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apparent one (usually synchronised with the daily cycle of temperature). Another

important observation is that as time approaches the middle of a year, the ampli-

tude of the daily cycle gets bigger as well, it will then shrink towards the end of

a year. This might be caused by the fact that the tilt sensors may be sensitive to

temperature variations, such that their associative measuring errors may be am-

plitude dependent as well. Many econometric studies have attempted to integrate

seasonality into the original cointegration framework, most of them stem from [144],

where seasonal unit root tests and seasonal cointegration are developed. However,

this chapter will look in a different direction, which is to understand the different

components in the original time series, and apply cointegration on the decomposed

long-term trend components. This is partly inspired by [57], which finds that cointe-

gration tends to manifest itself on longer time scales. Thus, it can be advantageous to

decompose the original time series into long-term trend components, heteroscedas-

tic seasonality components and noise, and then apply cointegration on the trend

components, which contain information that is of most interest. In the subsequent

sections, the decomposition framework adopted in this chapter, the TBATS model,

will be reviewed in detail; the NPL Bridge will be re-examined with the proposed

method in the later section.

7.2 Exponential Smoothing and The TBATS Model

7.2.1 Introduction

To decompose a time series, there are many possible solutions offered by various re-

search communities: From the perspective of signal processing, Fourier-based trans-

forms, the discrete wavelet transform (DWT), the empirical mode decomposition,

etc. are some of the mainstream methods adopted. Consider the DWT for example,

it passes a raw signal through a series of quadratic mirror filters, both high-pass

and low-pass filters. The high-pass filter produces details and the low-pass produces

approximations. The process is repeated on the detailed signal until the last level

is reached, the detail at each level expresses how the signal manifests itself at that

level (scale band). In the wavelet context, each level is expressed by a number of

wavelets which can be fitted to the interval of interest [57]. While in the time series

domain, time series data are normally considered to be combinations of different

components which exhibit distinct behaviours, examples of such components are
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trend components, seasonal components, and error components, and the forms of

combination can be additive, multiplicative, or both.

Studying the characteristics of the motivating example above, this chapter chooses a

time series decomposition method over a signal processing method for the following

reasons. First, as the magnitude of the daily cycle in the NPL data is time-varying,

filter-based methods will struggle to separate this out, whereas time-series-based

methods can have greater flexibility in specifying the seasonal components. Sec-

ondly, the TBATS model is chosen to be used in this chapter, because it is good

at dealing with multiple seasonality in time series models, and also able to model

multiplicative seasonal components, whereas other conventional time series decom-

position methods, the STL decomposition for instance [177], tend to incorporate

just one time-invariant seasonal component. Finally, the TBATS model is built

using state space models, which enable probabilistic predictions rather than point

estimates.

Exponential smoothing methods have been amongst the most widely-used and suc-

cessful time series methods for decomposition and forecasting, since they were es-

tablished in the late 1950s. Generally, predictions with exponential smoothing are

made with weighted averages of the past observations, with the weights exponen-

tially decaying as the observations move away from the current time instant. Recent

developments have established that exponential smoothing methods can be greatly

enhanced within the framework of an innovations state space model [178]. They

can not only generate the same point estimate, but also calculate the prediction

intervals. The innovations state space model differs from its conventional analogue,

the state space model, such that it only allows a single source of error (innovations)

for both state and measurements equations, but it is more robust, and it has fewer

undetermined parameters; a thorough investigation on this topic can be found in

[179].

7.2.2 TBATS Model Forms

Complex seasonal patterns exist in real engineering applications, for example multi-

ple seasonality, dual-calendar effects (the coupling effect of the solar calendar and the

Chinese calendar for instance). To overcome this issue, De Livera et al. have intro-

duced a novel approach based on an innovations state space model called the TBATS
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model [180]. The acronym ‘TBATS’ represents their key features: Trigonometric

seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal compo-

nents. Consider a time series {yt}Nt=1, the TBATS model has the following form:

y
(ω)
t =


y
(ω)
t −1
ω

; ω 6= 0

log yt; ω = 0

(7.1)

y
(ω)
t = lt−1 + φbt−1 +

T∑
i=1

s
(i)
t−1 + dt (7.2)

lt = lt−1 + φbt−1 + αdt (7.3)

bt = (1− φ)b+ φbt−1 + βdt (7.4)

s
(i)
t =

ki∑
j=1

s
(i)
j,t (7.5)

s
(i)
j,t = s

(i)
j,t−1 cosλ

(i)
j + s

∗(i)
j,t−1 sinλ

(i)
j + γ

(i)
1 dt (7.6)

s
∗(i)
j,t = −sj,t−1 sinλ

(i)
j + s

∗(i)
j,t−1 cosλ

(i)
j + γ

(i)
2 dt (7.7)

dt =

p∑
i=1

ϕidt−i +

q∑
i=1

θiεt−i + εt (7.8)

Equation (7.1) is the Box-Cox transformation of the series yt, which is designated

to eliminate skewness of the distribution of the data, such that the data becomes

more normally distributed, making it easier to implement maximum likelihood in the

estimation part. This can be particularly beneficial for SHM data, as this mostly

tends to be non-normally distributed. Like many other transformation methods,

the Box-Cox transformation may raise some concerns about its applicability. Given

the fact that the aim of SHM is to detect the presence of outliers, would that be

undermined by the Box-Cox transformation? The author argues that one need not

worry too much, as the idea here is to create series for cointegration, and damage

will manifest itself by breaking the cointegration relationship when damage occurs.

This is fundamentally different from the conventional metric-based outlier detection

methods.

Equation (7.2) is the main representation of the TBATS model, where y
(ω)
t is the

transformed series of yt, lt−1 is the local level at time t− 1, and bt−1 is the short-run
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trend at time t − 1, s
(i)
t−1 is the seasonal components, i is the index of the type of

seasonality (as the model may allow multiple types of seasonal components), and T

is the total number of types of seasonality, dt is an ARMA process disturbance.

Equations (7.3) to (7.8) explain the corresponding components in detail. Equation

(7.3) explains that the current level of the series is determined by the previous level

and the short run adjustment bt−1 times a damping parameter φ; α dictates the

smoothness of the level series. Equation (7.4) indicates the fact that the short-

run trend consists of effects from the long-run trend b and the left over short-run

effect from the previous time step, the damping parameter φ is the same as the

one in equation (7.3). In practice, the short-run adjustments can sometimes be

omitted if one only wants the smooth trend series. Equations (7.5) to (7.7) are

seasonal components based on a Fourier series with ARMA errors. Equation (7.8)

is a stationary ARMA residual.

7.2.3 Innovations State Space Model Forms

To derive the model likelihood and subsequently estimate the model parameters, one

can first rewrite the TBATS model into an innovations state space model form. For

the sake of parsimony of this illustrations, only two seasonal patterns are considered

here, and each seasonal component consists of only one harmonic (one frequency

component); the error process is set to be an ARMA(1,1) process, i.e. T = 2, k1 =

1, k2 = 1, p = 1, q = 1. Therefore, equation (2) can be reorganised as:

y
(ω)
t = lt−1 + φbt−1 +

2∑
i=1

s
(i)
t−1 + ϕ1dt−1 + θ1εt−1 + εt (7.9)

The corresponding innovations state space model has the following form:

y
(ω)
t = w′xt−1 + εt, (7.10)

xt = Fxt−1 + gεt (7.11)

where the state vector xt = (lt, bt, s
1
t , s

2
t , dt, dt−1, εt, εt−1)

′, where s1t = (s
(1)
1,t , s

∗(1)
1,t ),

s2t = (s
(2)
1,t , s

∗(2)
1,t ); the emission vector w equals (1, φ, 1, 0, 1, 0, ϕ1, θ1)

′, and ′ is a
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transpose operator; the transition matrix F has the following form:

F =



1 φ 0 0 0 0 αϕ1 αθ1

0 φ 0 0 0 0 βϕ1 βθ1

0 0 cosλ
(1)
j sinλ

(1)
j 0 0 γ

(1)
1 ϕ1 γ

(1)
1 θ1

0 0 − sinλ
(1)
j cosλ

(1)
j 0 0 γ

(1)
2 ϕ1 γ

(1)
2 θ2

0 0 0 0 cosλ
(2)
j sinλ

(2)
j γ

(2)
1 ϕ1 γ

(2)
1 θ1

0 0 0 0 − sinλ
(2)
j cosλ

(2)
j γ

(2)
2 ϕ1 γ

(2)
2 θ2

0 0 0 0 0 0 ϕ1 θ1

0 0 0 0 0 0 0 0


and g = (α, β, γ

(1)
1 , γ

(1)
2 , γ

(2)
1 , γ

(2)
2 , 1, 1)′. Since TBATS models can be converted into

standard innovations state space model forms, they can be nicely fitted into the

framework of the Kalman filter. However, the unknown parameters, including the

initial conditions, are computationally heavy to estimate, the authors in [180] used

a smart algorithm to significantly reduce the computational burden, which will be

briefly introduced in the following section. It is also worth noting that the above

specifications are just for the simplest form of the TBATS model, one can adapt the

above matrices according to specific model settings, comprehensive notations and

derivations can be found in [180].

7.2.4 Parameter Estimation

After the Box-Cox transformation, a maximum likelihood estimation method is then

used to estimate all the parameters in the model. One can immediately see that the

main obstacle here is the large number of parameters, which includes all the damping

parameters, the smoothing parameters, the Box-Cox transformation parameter, the

ARMA coefficients, and also the initial conditions of the innovations state space

model. The trick that the paper [180] employed is to make use of the single error term

εt, and concentrate the initial conditions out of the likelihood: substituting (7.10)

into (7.11), one can have xt = Fxt−1 + g(y
(ω)
t − w′xt−1) = (F− gw′)xt−1 + gy

(ω)
t ;

then, by substituting xt back to x0 in equation (10), one can have,

εt = y
(ω)
t −w′xt−1

= y
(ω)
t −w′

t−1∑
j=1

(F− gw′)j−1gy
(ω)
t−j −w′(F− gw′)x0
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From above, one can see that the initial condition x0 can be regarded as linearly

related to the error term εt, therefore x0 can be estimated using an ordinary least

squares method and substituted into the likelihood. This is one of the advantageous

features of innovations state space models in comparison to the conventional state

space model alternatives, it leads to savings on parameter estimation and perhaps,

more accurate predictions. The representation and derivation of the likelihood is

cumbersome and omitted here, readers can find the full details in [180].

7.2.5 Model Selection

For most applications, seasonal periods are known a priori. In the motivating exam-

ple, a daily cycle seems an obvious choice, as the measured tilts are aligned with the

daily temperature cycle. Additionally, the yearly cycle is also a common seasonal

period, unfortunately in the NPL data, only one year worth of data can be used

for training, making it hard to single out the yearly components from the training

data. In cases where seasonal periods are unknown, one can apply a Fourier analysis

on the series first to identify significant frequency components. In the scenario of

multiple seasonality, one can use the Akaike Information Criteria (AIC) to evaluate

every possible seasonal model, and choose the optimal model based on AIC values.

To determine the number of harmonics ki in the seasonal components in equation

(7.5), appropriate de-trending algorithms need to be applied to the original series

first; then one fits the linear regression
∑T

i=1

∑(ki)
j=1 a

(i)
j cos(λ

(i)
j t) + b

(i)
j sin(λ

(i)
j t) to

the de-trended series. Starting from one harmonic and gradually adding more, one

applies an F-test to each number of harmonics, so as to find the most significant ki

for the ith seasonal component. The above procedure is repeated for every seasonal

component and one computes the corresponding AIC value, adding the number of

harmonics until the minimum AIC is achieved.

To determine the orders p and q of the ARMA models, first a TBATS model without

the ARMA error is fitted as a baseline model, the residual series of which will

be fitted with an ARMA(p, q) model; then a model is fitted again but with an

ARMA(p, q) error process. If the newly fitted model has a lower AIC value then the

baseline model, then the orders p and q will be accepted.
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7.2.6 Summary

TBATS can be viewed as a model decoupling the seasonality and trend components

which are often modelled together in many seasonal models (SARIMA for example

[181]). A few advantages that the TBATS model may offer are obvious: firstly,

time varying parameters in the seasonal components (equations (7.5) to (7.7)) are

suitable for describing changing variances in the data. Secondly, it allows for the

accommodation of possible multiple seasonal effects, for example the nested effect

of daily, weekly, monthly and annual periodicity, potentially suitable for analysis of

operational data. Lastly, it allows any autocorrelation in the residuals to be taken

into account.

However, the TBATS model can also cause trouble in a few ways: a large parameter

space is set to be estimated, including the initial state of the parameter space.

Furthermore, the Box-Cox transformation limits its application to only positive

time series; but possible pre-processing of data can overcome this difficulty. Note

that the Box-Cox transformation is an invertible transformation, one can easily

recover the original series after transformation. It is also worthwhile to explore

other forms of mathematical transformations, affine transformation for instance,

might be a good choice. Finally, irregular calendar effects, for example the Chinese

lunar calendar, might cause trouble, but this may also be addressed by introducing a

dummy variable [180]. Therefore, complex seasonal variations observed in long-term

monitoring data can be well modelled by the TBATS model, which can be hugely

beneficial for further research.

7.3 Case Studies

Normally, cointegration analysis requires the noise term to be i.i.d. stationary Gaus-

sian noise. In fact, i.i.d. stationary Gaussian noise assumption is ubiquitous in

many time series methods, which often employ ordinary least squares or maximum

likelihood estimation approaches. However, i.i.d. stationary Gaussian noise or ho-

moscedastic noise is not always the case in real world applications, the existence of

input dependent noise or heteroscedastic noise may therefore bias many estimation

algorithms. In the context of SHM, the existence of multiple seasonality/periodicity

is sometimes the source of heteroscedastic noise. Motivated by this, this section will
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first separate the seasonal components from the original time series, in a attempt

to suppress the associated heteroscedasticity. Cointegration is then applied to the

de-seasonalised series. The proposed idea will be tested on two case studies here, a

simulated cantilever beam and real monitoring data from a bridge.

Figure 7.4: Schematic plot of a cantilever beam with a force applied
on the end; the top and bottom of the beam are applied with different
temperature fields, the cross-section plot shows the gradient distribution
of temperature.

7.3.1 Case Study I: A Cantilever Beam

Consider a steel cantilever beam with a force applied to the free end, as shown in

Figure 7.4. Different thermal fields are applied onto the top and bottom of the beam,

so as to mimic the uneven distribution of the temperature profile of a structure

operating in a real environment. In addition, to mimic the daily and seasonal

patterns, and a linear trend of temperature in the real world, the temperature fields

T1 and T2 are imposed to be:

T1 = 10×
{

sin(12πt) + sin(4πt) + 3t× 10−3 − 2
}

(7.12)

T2 = 8×
{

sin(12πt− 0.5π) + sin(4πt) + 3t× 10−3 − 2
}

(7.13)
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As the beam is made from isotropic material, the temperature of the beam is mono-

tonically decreasing from the top to the bottom, with a linear gradient, which is

illustrated in the cross-sectional plot in Figure 7.4. 10000 sample points are simu-

lated, as shown in Figure 7.5. Because temperature is assumed to change over time,

the stress and deflection of the beam will also change accordingly. There are two

reasons why the beam’s deflection will change with temperature; firstly, the Young’s

modulus of steel is normally considered to be linearly correlated with temperature;

secondly, the temperature gradient of the beam will also change with time, thus the

thermal expansion of the beam will be varying with time. The angle of rotation of

the beam is therefore composed of two parts, mechanical and thermal rotation, as

expressed in the following equations:

Figure 7.5: Temperature of the top of the cantilever beam T1, and tem-
perature of the bottom T2.

Thermal : θT =
α(T1 − T2)x

d
(7.14)

Mechanical : θM =
F (−Lx+ 1

2
x2)

EI
(7.15)

Overall : θ = θT + θM (7.16)

where α is the thermal expansion coefficient, and x is the position of the beam from

the fixed-point at the left end.
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Simulations

The thermal field in Figure 7.5 is applied to the cantilever beam, and the angles of

rotation of four positions on the beam, (0.25L, 0.5L, 0.75L,L), are evaluated. 4 ×
10000 samples points are therefore obtained. It is not uncommon in engineering, that

measurement noise can be input-dependent, or in econometric terms heteroscedastic

noise. To simulate this situation, an amplitude-dependent Gaussian noise is added

to the theoretical results, as expressed by the following:

θ̂ = θ + 0.1× θ × εt (7.17)

where θ̂ is the measured rotation, εt is Gaussian noise with εt ∼ N(0, 1). The

measurements with heteroscedastic noise corruption are plotted in Figure 7.6.

To simulate damage, the stiffness of the beam is reduced by 50% after data point

7500, as illustrated by a black vertical line in Figure 7.6. Although damage is

introduced, only a slight shift in amplitude is visible; changes due to temperature

variations are still dominant.

Figure 7.6: The angles of rotation measured at the four
positions(0.25L, 0.5L, 0.75L,L) of the beam, corrupted with het-
eroscedastic noise; the black vertical line indicates where damage is
simulated.
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Figure 7.7: The residual series obtained using the conventional cointe-
gration method.

Results

If one uses the conventional cointegration method to cointegrate the four series with

the training set ranging from point 1 to 5000, the cointegrated residual series is

shown in Figure 7.7. As expected, the heteroscedastic noise sabotages the required

condition of normally-distributed noise, which comes from the fact that the Johansen

procedure is a maximum likelihood method.

The TBATS decomposition is therefore applied, in order to extract the daily and

seasonal components first, and apply the cointegration method is applied. A repre-

sentative result of the decomposition of X1 is shown in Figure 7.8. One can see the

seasonal and daily patterns have been accurately identified, and most of the noise is

left in the level term. Damage information can also be clearly discerned in the level

term.

Although damage information is clear in this case, it is likely that in other scenar-

ios, the trend term itself is great enough to disguise the damage information. The

de-seasonalised series are subsequently fed to cointegration, and the cointegrated

residual series is now shown in Figure 7.9. With the three standard deviation confi-

dence interval overlaid, the plot is much clearer than Figure 7.7, the residual stays

mostly stationary in the mean, and the nonstationary level in the variance has also

been somewhat suppressed; most importantly the damage information is evident
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Figure 7.8: Decomposition results from the TBATS model.

Figure 7.9: Cointegrated residual series of the de-seasonalised series;
red horizontal lines indicate three standard deviation intervals; black
vertical line marks the damage introduction point.

immediately after it is introduced.

7.3.2 Case Study II: The NPL Bridge

Having briefly reviewed the NPL Bridge in Section 7.2, this section will present

more details of the SHM of the NPL Bridge, and revisit the heteroscedastic issue
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concerned with the data, the subsequently attempt to address it with the proposed

method.

The SHM of the NPL Bridge

The NPL Bridge is 20 m long and 5 m high, weighing around 15 tonnes, as illustrated

in Figure 7.10. After it was in service for nearly 50 years, the bridge was moved to a

new location to conduct long-term monitoring experiments with a variety of different

sensors, during the years 2009 to 2011. The monitoring covered an extensive time

period consisting of at least two full seasonal variations. The monitoring campaign

implemented several testing events, the respective time lines are summarised in

Figure 7.11. The bridge was subjected to a series of static short-term and sustained

loading tests, starting from March 2009. Loading was employed with water tanks

of different weights, at the edge of the bridge deck, as illustrated in the left end of

Figure 7.10. Apart from loading tests, a few damage scenarios were also realised on

the bridge; on 18th October 2010 for example, artificial damage was introduced by

cutting the rebar on the top of the bridge deck, so as to represent the decrease of

the cross section. A number of other test events were also implemented, readers can

find details from [182].

As mentioned above, this bridge was heavily instrumented with many kinds of sen-

sors, but only the tilt sensor data will be analysed in this study. The tilt sensors

were installed by the ITMSOIL instrumental company in December 2008; Figure

7.10 shows the schematic of all the locations of the 8 tilt sensors. Tilt sensors are

used to measure the local inclination of the structure, therefore they can potentially

be used to indicate the onset of damage in the structure. The data was originally

collected at a five-minute time interval except for a number of days of special tests.

Consequently, before doing any analysis, the first thing is to make the data regularly

sampled. As the data were carefully labelled with a time stamp, the data on the

hour were used to form a new time series, a representative example of the tilt sensor

1 (TL1) data is shown in Figure 7.11, the time stamps for the important test events

are summarised in Table 7.1.

Notice that in the original study of the monitoring campaign, thermal sensors were

also installed on multiple positions of the bridge. However, after investigating the

origins of measurement uncertainty, Barton and Esward [183] found that the tem-

perature measurements at different locations of the bridge might have a lagged effect
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Figure 7.10: Layout of all tilt sensors on the bridge and the loading
implementation position.

Index Time Test Event
1 2009.03.24 Static loading
2 2009.06.29 Static loading
3 2009.08.03 Static loading
4 2010.06.30 Static/Dynamic loading
5 2010.10.08 Static loading
6 2010.10.18 Damage: removing rebars
7 2010.11.01 Repairing damage

Table 7.1: Important test events and their corresponding time stamps.

due to the temperature gradients caused by heating from the sun. In this study,

temperature data will not be used, as cointegration is able to remove environmental

variations without the measurements of the environmental variables.

Results and Discussion

It is not difficult to see from Figure 7.11 that the tilt sensor measurements are quite

nonstationary, both in mean and variance. The changes in mean could be caused

by environmental variations or destructive test implementation, and obviously any

potential changes induced by damage are overwhelmingly masked by environmen-

tal variations. While the changes in the variance are a bit more complex, one can

roughly observe that the volatility level in the winter time is significantly smaller

than that in the summer time, and the volatility level has a repeated pattern re-

sembling seasonal variations. As the measurements were taken in a time period of

two years and eight months, two complete seasonal cycles can be visualised; the first
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Figure 7.11: Time table of the respective destructive tests implemented
on the NPL Bridge and hourly data of tilt sensor 1 (TL1) during Febru-
ary 2009 to September 2011.

ranges from February 2009 to February 2010, the second seasonal cycle starts in

February 2010 and ends in February 2011. Barton and Esward found that the ther-

mal expansion of this bridge was unexpectedly large and complex, it could produce

almost the same strain level that was caused by a two-tonne loading [183].

As mentioned above, cointegration has been developed to deal with environmental

and operational variations, and the Johansen procedure is normally used to estimate

cointegration relationships. However, the Johansen procedure is a likelihood-based

method, which would naturally require the residuals to be an i.i.d. process; marked

seasonality in the data would therefore sabotage this condition and underestimate

the variance level. In this chapter, the TBATS time series decomposition method

will be employed first, in order to concentrate out the underlying complex seasonal

components; subsequently, a normal cointegration analysis will be carried out to the

de-seasonalised series.

A representative example of the TBATS decomposition of the sixth tilt sensor data

is shown in Figure 7.12. The top plot is the original time series, the decomposed

components are shown in the middle and bottom plots, and they are the level and

seasonal series respectively. The level series can be thought to be the extracted

trend of the original series, purged of observation noise and seasonality. One can

see that the level series is much smoother than the original series, most of the
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fluctuations have been removed, and the long-term trend is well preserved. The

seasonal pattern is set to be 24 hours (daily cycle), as expressed in equations (7.5)

to (7.7), which means that the seasonal series has a daily pattern whose magnitude

changes over time. Comparing the shape of the envelope of the seasonal series

with the original series, most of the time-varying daily cyclic components have been

accurately singled out, potential damage information is manifested in the long-run

component, the trend component, hence cointegration can be subsequently applied

for damage detection.

After conducting TBATS decompositions to all the eight tilt sensor datasets, one

can obtain eight de-seasonalised trend series and error series. The data ranging from

February 2009 to February 2010 are used to form a training set, as this period covers

a full seasonal variation. The Johansen procedure is then applied to the eight trend

component series using the training data set, in order to estimate a cointegration

relationship. A residual series is then formed using the whole data set, as shown

in Figure 7.13. The shaded area in the figure indicates a 95% confidence interval.

The region between the beginning of the series and the first black vertical line

consists of the training set. Apart from a few occurrences of alarms, the series

stayed mostly stationary, and the changes caused by environmental variations are

largely eliminated. The blue vertical line at around June 30th 2010 indicates when a

major static test was conducted. One can see that after this date, the residual series

has a major shift in the mean and also exceeded the lower confidence boundary,

which can be regarded as a clear alarm signal. This can be explained by the fact

that once the health state of the structure has changed, the underlying cointegration

relationship may no longer hold, and consequently the cointegrated residual will no

longer stay stationary.

From Figure 7.11, it is also known that after June 30th, the campaign implemented a

few other events on this bridge. It is worth noticing that on May 6th 2011, the cam-

paign introduced a severe damage (removing the damaged concrete) to the bridge.

Correspondingly on Figure 7.13, the mean level of the residual series undergoes a

significant increase after this date, which is an indication that the bridge is experi-

encing a change of state. Although the mean of the residual seems to return to the

mean of the training set, it certainly does not mean that the bridge is recovering to

its healthy state. In order to further detect any damage after June 30th, one would

possibly need to re-evaluate the latest cointegration relationship of the bridge, and

form a new state of normal condition.
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Figure 7.12: A single seasonal TBATS decomposition of the tilt sensor
6 (TL6) data.

Figure 7.13: Cointegrated residual with confidence intervals marked with
black horizontal lines; the black vertical line indicated the end of the
training data; the blue line shows when a static and dynamic test was
conducted; the red lines imply damage introduction.
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Comparison with the linear cointegration method

Comparing the results in Figure 7.13 with the cointegrated residual plotted in Figure

7.2, one can draw the following conclusions:

First of all, the heteroscedastic noise in the residual has been significantly sup-

pressed, the residual series before the first blue line is quite stationary both in mean

and variance, the environmental variations have been largely purged; this confirms

the assumption that most of the heteroscedasticity is manifested in the seasonal

components;

Secondly, Figure 7.13 has accurately captured the long-term trend component; any

information about structural changes to the bridge is well reflected in the residual

series. For example, on June 30th 2010, the monitoring campaign conducted both

static loading and dynamic loading on the bridge, the residual in the figure presents

a sudden rise in the mean and exceeds the upper confidence interval soon after the

time mark. In contrast, in Figure 7.2, the underlying trend is overwhelmed by the

heteroscedastic noise. Interestingly, the residual series behaves quite differently even

after it goes beyond the control limit; for example, points between the two red lines

and the points after the second red line show distinct characteristics. However, one

needs to notice that once the cointegration relationship has “broken”, it is necessary

to update with a new cointegration relationship, and a new cointegrated residual

needs to be estimated as well.

The TBATS model above has successfully dealt with heteroscedastic noise, but if

one also wishes to apply the X-bar chart, similar to the one used in [175], it is trivial

to obtain the plot, shown in Figure 7.13. Comparing with Figure 7.11, one obvious

improvement is that the time varying variance has been eliminated here, the residual

during the undamaged condition maintains stationary. Although, near the first blue

line, the residual gives early alarms, this is probably because that the TBATS model

is an off-line method in nature, meaning that it has to decompose the series as a

whole, which may smooth out sharp changes in the trend component.

Moreover, from a practical perspective, if one wishes to apply the proposed algorithm

to a real world engineering practice, say the SHM of a bridge in operation, one would

first need to acquire sufficient amount of sensor measurements of the bridge under

healthy conditions; then, the proposed method can be used to build a baseline model

and a baseline residual series; as new data come in, the TBATS decomposition
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is applied on the whole dataset, including training data and newly-arrived data,

followed by the cointegration analysis; finally, the baseline model can be updated

on a regular basis, in order to improve computational efficiency.

7.4 Conclusions

In this chapter, an extension of previous studies of the cointegration method for

SHM has been explored. The TBATS model from the time series community has

been tested in order to project out the seasonality observed in SHM data. The

TBATS model is a flexible and robust state space model with a single source of

error, which has been widely adopted in the analysis of seasonal time series. As long-

term SHM data is inevitably affected by daily, seasonal and annual environmental

variations, and maybe in some cases the interactions of human activities, it will

be beneficial if the seasonal component can be extracted before doing subsequent

analysis. As cointegration has proved to be a powerful tool to deal with the issue of

environmental and operational variations in SHM, the TBATS model can be seen as

a pre-processing tool for cointegration analysis. Because by removing the seasonality,

one may potentially suppress the heteroscedastic noise caused by seasonality, as the

Johansen procedure for cointegration would normally require the noise to be an

i.i.d. process, this might help to rectify any ill-conditioned procedures. In the

fourth section of the chapter, two case studies are presented. A synthetic case

simulates a cantilever beam under varying temperature conditions; heteroscedastic

noise is added to the simulations. The TBATS model is first used to separate the

two seasonal components, and then the cointegration approach is applied, damage

information can then be visualised in the residual series. Another case study of

the NPL bridge is presented with the proposed method. The result is encouraging,

in that the TBATS model can elegantly extract the daily cycles from the original

series, most of the heteroscedasticity is accounted for by the seasonal components.

The long-term trend series is then applied with cointegration analysis, the residual

series is mostly stationary in the training set, most of the environmental variations

have been removed, the residual series remains sensitive to damage information.



Chapter 8

Conclusions and Future Work

8.1 Summaries

This thesis has aimed to address one of the fundamental challenges to the community

of structural health monitoring, that is to understand and alleviate the confounding

influence from the variations of environmental and operational conditions, which

is often referred to as the data normalisation problem. The thesis is titled with

“Nonlinear Cointegration Method”, thus the main methodology studied is centred

around cointegration, a systematic framework to tackle the data normalisation prob-

lem. Cross et al. [124] laid the groundwork for the application of cointegration in

SHM; this thesis intends to further strengthen the applicability of cointegration. In

the present work, cointegration methods have been exploited in directions of time

series analysis and machine learning, robust methods that can deal with nonlinear

and heteroscedastic data have been developed, and tested on both simulated and

real-world datasets.

This chapter seeks to conclude the thesis by summarising all the results and conclu-

sions of the previous chapters, and provide some discussions on some of the potential

directions in which one may extend the work of this thesis.

133
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Nonlinear Cointegration with Gaussian Process Regression

Chapter 4 gives a full account for the cointegration theories that are used in the

thesis. The reason that cointegration works for SHM is actually straightforward, as

cointegration is a econometric framework for modelling nonstationary time series,

and cointegration is a property of nonstationary time series who share the same

kind of stochastic trend. Analogously, environmental and operational variations si-

multaneously affect dynamic responses of structures, which can be deemed as the

“common trend”in the SHM context. The implementation of cointegration is not

difficult; the framework associated with this part is the Engle-Granger framework,

which is in fact linear regression in its simplistic form. To confirm the existence

of a cointegration relationship, one needs to impose statistical tests on the original

variable and the cointegrated residual. In the context of SHM, once the cointe-

gration relationship between variables is established, then the cointegrated residual

series, which is theoretically stationary, becomes a natural choice for a damage in-

dicator. When there is the onset of damage, the “old” cointegration relationship is

consequently breached, which shall be reflected in the cointegrated residual series

by presenting an imminent change of magnitude.

The novelty proposed in this part is concerned with a nonlinear cointegrating func-

tion expressed by a Gaussian process regression. As mentioned above, the Engle-

Granger framework is ultimately linear, hence it is not sufficient in cases where

EOVs have a nonlinear effect on the system responses. Chapter 5 proposed to use

GP to approximate this nonlinear relationship. The GP was selected for a few rea-

sons: (1) GP is a probabilistic modelling approach, which is especially favourable

if one wishes to quantify the uncertainty in the model prediction; (2) the GP is

also a Bayesian regression method, meaning that it can fully account for the un-

certainty in the model forms and even hyperparameters, making it much less prone

to overfitting, comparing with other machine learning regression methods; (3) the

GP is also a very flexible and powerful framework; for example, different types of

covariance function may have completely different properties, implying that the GP

can model various types of datasets. Possible extensions with the GP framework

will be discussed in the Future Work section shortly.

The proposed method was examined with two case studies. The first case study

was a simulation experiment from [139], where a linear trend-stationary series and

a quadratic-trend stationary series were simulated. The GP was capable of ap-
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proximating the underlying relationship between the two series. A model selection

scheme was also proposed in this section, which was to find the model form with

the smallest ADF statistic, MSE and MAE of the residual series. The second case

study was about the famous Z24 Bridge benchmark. As reviewed in Chapter 3, the

dynamic properties of the Z24 Bridge exhibited a bilinear relationship because of

the changes of temperature. The GP successfully modelled the underlying nonlinear

cointegration, and the model residual series showed little effect from the external

EOVs and maintained stationary until damage occurred. The assumption behind

this case study was that the cointegration relationship transitioned smoothly from

one regime to the other, the GP was utilised to capture this smooth transition

function.

Regime-Switching Cointegration

The GP modelled the nonlinear cointegrating function as a smooth function; Chapter

6 took a different approach by proposing a regime-switching cointegration method.

The idea was motivated by Gregory and Hansen’s regime-shift model [171], where

the cointegrating relationship shifted to another regime after the onset of a break-

point. Therefore, this chapter explored the method to find the breakpoint for regime

changes. In economic systems, regime shifts are normally caused by exogenous im-

pact, similarly in SHM systems, the nonlinear system behaviour stems from the

EOVs. Hence, this chapter adopted temperature as an exogenous variable to con-

trol the regime switching. To find the positions of regime switches (breakpoints), an

exhaustive searching algorithm was proposed, the procedures of which are roughly

listed in the following: (1) all the system variables need to be sorted with respect to

the values of EOV variable; (2) insert a breakpoint at 15% point of the training data;

(3) apply the Johansen procedures on both half of the series, and calculate the ADF

statistic for the combined residual series; (4) repeat (2) and (3) for every possible

breakpoint position; (5) evaluate the optimal breakpoint position with the smallest

ADF statistic. One important remark here is that the cointegration estimation used

in this chapter was the Johansen procedures, rather than the Engle-Granger frame-

work from the last chapter, the reasons are two-fold: firstly, the Johansen procedure

is a maximum likelihood estimation method, the estimated cointegrating vectors are

ranked according to the magnitude of the eigenvalues, thus the cointegrating vector

with the maximum eigenvalue can be chosen as a representative one. Secondly, be-

cause the cointegration relationship is expressed in a vector error correction form,
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it is not necessary to perform model selection like in the Engle-Granger framework.

The proposed method was tested on two case studies. The first one was a multi-

degree-of-freedom mass-spring system, which is a basic form of dynamic system.

To mimic the nonlinear effect from EOV, the spring was simulated to be a bilinear

function of temperature, which switched at 0◦C. The breakpoint searching algo-

rithm found the breaking temperature to be 0.4767◦C, which was quite consistent

with the simulation. A stationary residual series was produced, the residual series

went over the three-standard-deviation confidence interval immediately after dam-

age was introduced. The second case study was still the Z24 Bridge, the algorithm

found a break point at 0.98◦C, and also produced a damage-sensitive residual se-

ries. The chapter also went further to consider the three-regime-switching case.

The augmented algorithm was relatively straightforward, which was simply a two-

dimensional exhaustive search. The two breakpoints found were 2.36◦C and 3.95◦C,

which interestingly was near to the findings in the TGP regression in [92].

Heteroscedastic Cointegration

Chapter 7 focused on a different type of challenge arising in SHM data, which is

the time-varying noise, or heteroscedasticity. As it is known that many time series

and machine learning methods are based on maximum likelihood estimation, assum-

ing the observation noise is independently identically distributed; heteroscedasticity

may sabotage this assumption, resulting in biased estimation results. The method

proposed in this chapter was to first use a time series decomposition method, the

TBATS model, and then apply cointegration on the decomposed trend components.

The reason for decomposing a time series was mainly based on the observation that

most of the heteroscedasticity came from the changes in the cyclic/seasonal com-

ponents, the noise was associated with the magnitude of these cyclic components.

Therefore, these time-varying cyclic components needed to be isolated first. The

TBATS model, is a state space-based model which is capable of expressing time

series as structural components, including trend, seasonal (cyclic) and disturbances.

The seasonal component in particular is represented by a time-varying Fourier series,

which fits the situation herein very well. Once the raw time series were properly de-

composed, the heteroscedastic noise could be significantly suppressed, the standard

linear cointegration analysing method could then be applied.

Two case studies were presented to validate the proposed method. The first one
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was a cantilever beam, subjected to an uneven sinusoidal temperature field. Het-

eroscedastic noise was added to the simulated rotational angle signal. The TBATS

decomposition could accurately find the sinusoidal components embedded in the ob-

serving signal. Cointegration was then applied on the trend components only, and

the sensitivity to damage was successfully recovered. The second case study was a

real engineering situation, which used the SHM data from the NPL Bridge. The

data was dominated by the daily cycle caused by temperature variations, structural

degradation information was completely masked. The TBATS model was applied to

the raw tilt sensor data, in order to find the time-varying daily cyclic components.

The decomposition was applied to every sensor signal, cointegration was then ap-

plied to the trend components from the TBATS model. The bad influences from the

heteroscedastic noise was significantly reduced, and the damage detection became

effective.

8.2 Directions for Future Work

Nonlinear Cointegration with Gaussian Process Regression

As briefly alluded to in the conclusions of Chapter 5, the GP regression can be

extended to a series of variants. For instance, one can readily replace the normal

GP regression with a treed GP (TGP) regression. The TGP algorithm partitions

the input space using a Bayesian CART, within each independent region, a GP

model is fitted. Recalling the Z24 Bridge case, the data in cold regime and warm

regime indicate totally distinct statistical properties, hence, this regime-switching

cointegration can be potentially modelled with the treed partition, then a number

of GPs can be used to model the different mean and variance properties in each

independent input space.

Also, note that the covariance function in GP almost controls all the characteristics

of a GP. One can explore different types of covariance functions and how they might

affect the fitting of the model. Particularly, the automatic relevance determination

(ARD) covariance, with the form k(x, x′) = σ2
0exp[−1

2

∑D
d=1(

xd−x′d
λd

)], can be used

to understand the importance of each input dimension by assigning and learning a

different length scale hyperparameter to each individual input dimension. This can

be potentially beneficial for variable selection, especially in cases where the number
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of input variables is large.

The other direction for GP is about the scalability to big data applications. It is

known that a normal GP requires O(N3) computational cost and O(N2) memory

cost, which can be problematic if the number of observation N is large (10000 is often

deemed as a practical maximum N for performing a normal GP). Many scalable GP

methods have been developed to address this issue, the FITC method [163] and

variational sparse GP [184] are two excellent frameworks that have made scalable

GPs practical.

So far, it is all about GPs; however, there exists a diverse set of methods in the

econometric literature for modelling nonlinear cointegration. Cointegration with

smooth transition regression (STR) has been neglected in this thesis, one can use

a parametric function form, for example a logistic function or exponential function,

to approximate the regime switching [126].

Regime-Switching Cointegration

The regime-switching method proposed in Chapter 6 used temperature as an exoge-

nous variable that controlled the timing of regime switches. Naturally, it is tempting

to develop an algorithm whose regime switches are determined endogenously, that

is to take the EOV measurements out the cointegration model. One way to achieve

this is to construct a Markov-switching cointegration model which has a latent state

variable deciding what hidden state current observation is in, and the hidden states

may evolve with time, following a Markov process. This framework may resemble

the famous hidden Markov model (HMM), except that it is in the regression context.

One can also approach this problem by making the vector error correction (VEC)

model switch in different regimes. But reflecting on the complex procedures of the

Johansen procedures, one can foresee that this direction may not be trivial at all; one

obvious obstacle is that the cointegrating rank may actually be different in different

regimes, the number of parameters may hence dramatically increase, making the

parameter estimation extremely cumbersome.
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Heteroscedastic Cointegration

The proposed method first decomposed a time series into different components, and

then applied cointegration to the trend components. One obvious direction for deal-

ing with heteroscedastic cointegration is to adapt the GP nonlinear cointegration

method into heteroscedastic context. As Lázaro-Gredilla and Titsias have proposed

in [166], a variational approximation of heteroscedastic GP can be used in the coin-

tegration context, seeking to obtain a time-varying confidence interval, which can

be hugely advantageous for reducing false positive alarms.

The other direction of work can be adapted from the seasonal cointegration literature

[144]. Taking the NPL Bridge for instance, because the tilt sensor measurements

were hourly recorded, the daily cycle of temperature has a huge influence on the

estimation of cointegration. Like the seasonal cointegration model, one can estimate

a cointegration model for every hour mark, therefore 24 cointegration models can

be built for the NPL Bridge, associated anomaly detection algorithms wait to be

investigated.

8.3 Concluding Remarks

At the time being, SHM has quickly drawn considerable interests from diverse groups

of research disciplines and industry sectors. This has been fuelled by the fact that

the costs of sensors, data storages and computing machines have been brought down

significantly, while the computing power, data infrastructures and communication

technologies have advanced dramatically in the same time period, and SHM sits right

in the intersection of these global trends. SHM is at a critical stage, transitioning

from laboratory to real world usage; commercial applications of SHM can already be

seen in the market. SHM systems are often installed on critical structures including

but not limited to bridges, aircraft, wind turbines, and nuclear plant, they have to be

reliable and effective. Therefore, any algorithms developed have to be explainable,

robust to uncertainties, and tailor-designed for each individual system, these will be

the goals for the author to always remember and pursue in the future.
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