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Abstract 

ATL proteins are highly conserved homologues of the direct DNA 

damage reversal proteins O6-alkylguanine-DNA-tranferases (AGTs). AGTs 

repair highly toxic and mutagenic O6-alkylguanine lesions in DNA by transfer 

of the alkyl group to an active site cysteine, which in ATL proteins is replaced 

by tryptophan or alanine. ATL proteins bind tightly to DNA containing O6-

alkylguanine lesions but cannot engage in direct repair. Complexes formed 

between ATLs and damaged DNA are thought to be processed via the 

nucleotide-excision repair (NER) pathway. This thesis investigates the 

recognition of O6-alkylguanine-containing DNA by two ATL proteins, Atl1 from 

S.pombe and TTHA1564 from T.thermophilus.  

Oligodeoxyribonucleotides (ODNs) bearing a 5!-fluorescent (SIMA-

HEX) label and containing a wide range of O6-alkylguanine and related 

modified purine bases have been prepared by post-synthesis displacement 

chemistry from a synthetic ODN precursor containing 2-amino-6-

methylsulfonylpurine. Using fluorescence anisotropy and fluorescence 

intensity measurements, dissociation constants (KD values) of complexes with 

Atl1 and TTHA1564 were determined. Both ATL proteins recognise ODNs 

containing a wide range of O6-alkylguanine lesions with high affinity (KD 

values range between 0.3 and 3.6 nM) including many that are poorly or not 

repaired by the human AGT protein MGMT. Atl1 displays an approximate 10-

fold difference in its affinity for ODNs containing O6-alkylguanines with large, 

bulky lesions compared to O6-methylguanine and in general shows a much 
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higher discrimination between O6-alkylguanine and guanine compared to that 

achieved by TTHA1564. In contrast the ability of TTHA1564 to distinguish 

between O6-alkylguanines and guanine is decreased and furthermore this 

ATL recognises these ODNs containing O6-alkylguanines with similar affinity 

regardless of the size of the alkyl group. Both ATL proteins recognise ODNs 

containing 2,6-diaminopurine, whilst an ODN containing 6-methoxypurine (O6-

methylhypoxanthine) is a very poor substrate for Atl1.  

Structural studies (X-ray crystallography) were carried out with Atl1 and 

ODN duplexes containing 2,6-diaminopurine and 2-aminopurine. These 

structures display base-flipping, DNA bending and characteristics largely 

identical to previous structures of Atl1 in complex with O6-alkylguanine-

containing DNA. A key feature of these structures is a cationic-! interaction 

between the pyrimidine ring of the flipped purine base and an active site 

arginine residue (R69). Atl1 R69A and R69F mutants show a decreased 

ability to distinguish between O6-alkylguanines and guanine, consistent with a 

key recognition element in which R69 acts as a molecular probe of the 

electrostatic potential of the flipped-base within the active site of the protein.  

In an attempt to isolate Atl1 along with interacting proteins, affinity 

chromatography (pull-down) assays with a number of double-stranded ODNs 

prepared by different approaches were performed, with subsequent analysis 

by mass spectrometry-based proteomics. In addition, molecular beacon 

ODNs were used in the development of a novel, non-radioactive AGT activity 

assay, and Dickerson dodecamers containing O6-carboxymethylguanine 

residues were prepared for use in structural studies of lesion-containing DNA. 
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Finally, a number of routes have been explored to incorporate a reactive 

chemical group at the O6-position of guanine, in an attempt to prepare an 

ODN capable of forming a covalent crosslink with the Atl1 W56C mutant 

protein.     
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1.0 Introduction 

1.1 DNA Structure 

Deoxyribonucleic acid (DNA) is a polymeric molecule present in all 

living systems, existing as the chemical store of genetic information. The 

blueprint for every constituent part of any organism is encoded for by the DNA 

in its genome and, as such, DNA is essential for the existence and 

continuation of life. 

DNA is made up of monomer units known as nucleotides. Each 

nucleotide is composed of a heterocyclic base (guanine, cytosine, thymine or 

adenine), a sugar ring (2-deoxy-"-D-ribose) and a phosphate diester group 

which joins one nucleotide to the next one in the chain. The sugar and the 

base are attached to each other by a "-glycosidic linkage (figure 1.1). The 

nature of the sugar-phosphate backbone leads to a directionality of the DNA 

strands (from C-5! to C-3!of the ribose). 

 

 

 

                      

 

 

 

 

 

 

Figure 1.1: A nucleotide monomer unit (containing guanine) 
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Each of the four bases in DNA selectively hydrogen bond with only one 

of the other bases; cytosine interacts with guanine and thymine pairs with 

adenine. This is known as Watson-Crick base pairing (figure 1.2) and it is 

these interactions that form and stabilise the secondary structure of DNA, the 

double helix, where two polymeric chains are lined up against each other.(1) 

The way in which the phosphate backbones twist around each other in the 

double helix forms the major (wider) and minor (narrower) grooves (figure 

1.3). 

 

 

 

 

 

 

 

 

 

Figure 1.2: Watson-Crick base-pairing of guanine and cytosine (top) and adenine and 

thymine (bottom). dR is 2-deoxyribose 

 

The DNA double helix can exist in three forms: the most predominant 

form at physiological conditions is right-handed B-DNA, with a major groove 

12Å wide and a minor groove 6Å wide. Other structures include A-DNA, which 

is also a right-handed helix but differs from B-DNA by the width and depth of 

the grooves (due to the puckering conformation of the ribose sugars in the 

backbone), and much less common, left-handed form known as Z-DNA. 
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Whilst Watson-Crick base pairs are primarily responsible for the 

formation of the double helix, additional stability is provided by hydrophobic !- 

! interactions between the aromatic rings of the bases that are stacked up 

perpendicular to the helical axis. One of the DNA strands runs in a 5!#3! 

direction and the other runs anti-parallel to it (3!#5!). The length of one full 

turn of the B-DNA helix is approximately 34Å which corresponds to 10 

nucleotides on each strand. The distance of the Watson-Crick hydrogen 

bonds is 2.80-2.95Å and since the base pairs always consist of a pyrimidine 

and a purine the width of the helix is constant. This is a distance of 

approximately 10.6Å from the C1! atom on one ribose sugar to the C1! atom of 

the ribose in the nucleotide opposite.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The DNA double helix. Note the bases paired up opposite each other and the 

major and minor grooves 

Major 
Groove 
(12Å) 

Minor 
Groove 
(6Å) 
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1.2 DNA Replication 

 Every time a cell divides, a copy of the genetic code must be passed 

on to each of the nascent cells. This is achieved by DNA replication, which 

relies on the specificity of base pairing to maintain the integrity of the code. C 

always pairs with G, and A with T, meaning that each strand of the double 

helix can act as a template to allow specific enzymes known as DNA 

polymerases to generate complementary copies, thus giving rise to two new 

identical double helices. This process is said to be semi-conservative as each 

new DNA double helix is comprised of one ‘new’ strand and one ‘old’ one. For 

example, a sequence 5!-GATCGTCA will have the complementary sequence 

3!-CTAGCAGT.   

The first stage of DNA replication is the unwinding of the strands by 

enzymes known as helicases to create a replication fork.(2) This is followed 

by binding of single-stranded binding proteins which stabilse the separated 

DNA strands and allow access by a DNA polymerase. The DNA polymerase 

synthesises the new strands by incorporating ‘free’ deoxyribonucleotide 

triphosphates (dNTPs) into the growing chain using the opposite strand as a 

template. Replication can only proceed in a 5!#3! direction owing to the 

requirement of DNA polymerase for a free ribose 3!-OH to join the nucleotides 

together. The process of DNA replication is shown in figure 1.4 and highlights 

the key features: unwinding of the helix, replication fork formation, and the two 

distinct modes of DNA synthesis. Leading strand synthesis, performed by 

Pol", is continuous as it can advance in a 5!#3! direction towards the fork. 

However, due to the direction of the template sequence as the fork opens, the 
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lagging strand must be synthesised discontinuously in a series of short 

stretches of nucleotides, known as Okazaki fragments.(3) Before lagging 

strand synthesis can occur, a short piece of RNA known as a primer must be 

added to each segment by DNA primase. As a result, after synthesis the 

Okazaki fragments are left with an 5!-single-stranded RNA flap that must be 

cleaved by a structure-specific flap-endonuclease (FEN-1 in humans).(4) 

Finally, the resolved fragments are sealed together by DNA ligase to complete 

production of the new strand. 

 

Figure 1.4: A schematic showing the process of DNA replication (taken from 

replicationfork.com) 

1.3 Transcription and Translation 

The central dogma of molecular biology, which explains the movement 

of information in biological systems, is shown in figure 1.5.(5) As mentioned 

previously, more copies of DNA are produced by replication. The process of 

transcription creates RNA molecules from the DNA template, whilst translation 

of the RNA completes the synthesis of proteins from the genetic code. 
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Figure 1.5: The central dogma of molecular biology 

 

 Transcription produces a strand of RNA that is complementary to the 

sequence of the DNA template. The process is carried out by RNA 

polymerase, which unzips the DNA double helix, synthesises the new RNA 

strand and then releases it. If the DNA sequence being transcribed codes for 

a protein (i.e. it is a gene) then messenger RNA (mRNA) is produced. This 

mRNA is transported to the ribosome, which is a complex structure composed 

of hundreds of sub-units of both RNA and proteins. The ribosome is 

essentially the cellular ‘factory’ of protein biosynthesis. The mRNA is then 

used by the ribosome as a template for protein synthesis, with each three 

bases in the sequence forming a codon that specifies an amino acid. These 

amino acids are brought to the ribosome by transfer RNA (tRNA) molecules 

and joined together by the ribosomal machinery to form the long polypeptide 

chains that subsequently fold around themselves to become active proteins. 

Proteins are the structural and functional building blocks of all living things and 

as such are responsible for a multitude of essential biological roles. 

 Suppose that a chemical change occurs to one of the DNA bases such 

that it no longer only interacts with the complementary base in the double 

helix, for example if guanine is alkylated at the O6-position such that it  

hydrogen bonds not exclusively with cytosine but also thymine. When 

replication or transcription takes place, the incorrect complementary dNTP is 
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likely to be incorporated by DNA polymerase into the growing strand of 

nucleotides so that the new DNA or RNA produced will not be the same as the 

original template DNA. This leads to mutations in the genetic code and leads 

ultimately to changes in the amino acid sequences of the proteins made. This 

can impair the function of the proteins and affect the regulation of protein 

synthesis and other biochemical pathways within the cell.  

 

1.4 Protein Structure 

Proteins are long polypeptide chains composed of amino acids joined 

together by peptide (amide) bonds. It is the identity of these amino acids that 

affect the structure and hence the function of the protein. Individual amino 

acids have different side chains which in turn gives them different properties 

(hydrophobicity, charge, chemical reactivity etc.). The twenty one naturally 

occurring amino acids are shown with their abbreviated names, letter codes 

and side chains in figure 1.6. The primary structure of a protein is the 

sequence of amino acids it is composed of, and proteins have two termini: an 

N-terminus (which is the ‘start’ of the protein during biosynthesis and consists 

of an amino group) and a C-terminus (which is the end that contains a 

carboxylic acid group). The amino acid chains form characteristic, local 

secondary structures such as $-helices and "-sheets by donating and 

accepting hydrogen bonds. $-helices are right-handed coil conformations 

formed when every amino group (N-H) of a polypeptide chain donates a 

hydrogen bond to the carbonyl group (C=O) of the amino acid four residues 

earlier in the sequence. "-sheet are formed when N-H to C=O hydrogen 

bonds are donated between different polypeptide strands which causes them  
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Figure 1.6: Structures of amino acids (taken from http://en.wikipedia.org/wiki/ 

File:Amino_Acids.svg)  

 

to become laterally connected. "-sheets have a directionality from N-terminus 

to C-terminus that is depicted as an arrow in protein structures. If the adjacent 

strands run in the same directions, the "-sheet is described as parallel; in 

opposite directions, as anti-parallel. The tertiary structure of a protein is the 

complex folding of these secondary structures in relation to each other, to 
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form a biologically active protein (figure 1.7). Protein folding is incredibly 

complex and is mediated by factors such as hydrophobicity, formation of H-

bonds and disulphide linkages, and packing of amino acid side chains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Increasing complexity of protein structure (taken from http:// en.wikipedia.org/wiki/ 

File:mainproteinstructurelevels.en.svg) 

 

Proteins that catalyse chemical reactions are known as enzymes and 

promote catalysis by binding substrate molecules in a distinct region called 

the active site. The nature of the amino acid residues in this active site affects 

the recognition of substrate molecules and is usually highly specific for a 
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certain enzyme. Proteins also have structural regions that are known as 

domains: they are often named for the biological function that they perform 

and are often found in many different proteins, e.g. a DNA-binding domain 

(DBD). A related concept is the motif, a distinctive sequence or structural fold 

found in proteins, e.g. the helix-turn-helix (HTH) motif, a structural feature 

which is implicated in DNA recognition. Often function can be elucidated or 

predicted from consideration of these structural elements and they are 

frequently common to many proteins. Finally, the quaternary structure of a 

protein describes the amalgamation of proteins or polypeptides into higher 

order structures. If a protein engages in interactions with other proteins to 

form a complex, it becomes referred to as a sub-unit and the group of proteins 

a complex. 

1.5 DNA Damage and Mutation 

 There are various ways in which DNA can become damaged. It can be 

caused by UV light, radiation and both endogenous and exogenous chemical 

agents. DNA damage is a physical abnormality in the DNA, which can usually 

be repaired by specific enzymes that recognise that form of lesion. If not 

repaired, DNA damage can lead to mutations by causing errors during 

replication. Mutations are changes in the base sequence of the DNA and 

hence a corruption of the genetic code. Once incorporated, such changes are 

replicated into new cells and cannot be repaired. 

 Some types of DNA damage will eventually result in cell death, known 

as apoptosis. Apoptosis is a method of regulation by which cells that pose a 

risk to the survival of the organism as a whole can be eliminated. If the cell 

does not perish and the damage causes mutations in the DNA code, there are 
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a variety of effects that it can have on the cell. Some mutations are neutral, 

that is they cause no ostensible problems for the cell. The majority of 

mutations have a detrimental effect on the cell concerned, causing these cells 

to undergo apoptosis and thus be lost from the organism. However, 

occasional mutations confer a survival advantage on the cell such that it 

expands at the expense of neighbouring cells. Changes that result in these 

cells undergoing rapid and unregulated cell division can cause cancer. 

 

1.5.1 DNA Alkylation Damage 

 One of the more biologically significant types of DNA damage is 

alkylation. This chemical modification can take place at a number of sites on 

the purine and pyrimidine nucleobases and at the phosphates of the DNA 

backbone, occurring with varying frequencies in the cell (figure 1.8). Alkylation 

can be caused by SN1 agents (such as methylnitrosurea (MNU)) that react via 

a  carbocation,  or  SN2  agents  (such  as  methane  methylsulfonate   (MMS))  

 

Figure 1.8: Sites and frequency of base alkylation damage by SN1 and SN2 agents (6) 
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which react in a bimolecular mechanism. Different alkylation products have a 

range of biological consequences, for example N7-alkylation of guanine 

(which is the most frequently occurring form of damage) is not directly 

mutagenic, although it can lead to spontaneous depurination, creating an 

apurinic (AP) site which must be repaired to prevent mutations occuring. In 

contrast, N1-alkylpurines are considered extremely cytotoxic lesions due to 

their ability to block DNA replication. Alkylation of the O6-position of guanine 

occurs relatively frequently (approximately 5000 events per cell per day (7)) 

and is a highly problematic form of damage. When this chemical modification 

occurs, it locks the modified guanine base in the enol-tautomeric form, rather 

than the keto-form. This effectively means that rather than the exclusive base 

pairing that is observed between guanine and cytosine, O6-methylguanine 

(O6-MeG) can mispair with thymine and form a wobble base-pair with cytosine 

(figure 1.9).  O6-MeG   residues  fail   to  block   replication   by   various   DNA  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: G·C base-pair (left), O6-MeG·T base-mispair (right), O6-MeG·C wobble base-pair 

(bottom) 
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polymerases, and since O6-MeG·T base-mispairs have a more Watson-Crick-

like geometry than O6-MeG·C wobble base-pairs, thymine becomes 

incorporated preferentially in place of cytosine during DNA replication.(8) This 

preference leads to a GC#AT (or G#A) transition (figure 1.10) and O6- 

alkylguanines are hence known as mutagenic lesions.(9) These lesions are 

also highly cytotoxic (10) for reasons that will be explained in section 1.6.3. 

Whilst O6-alkylguanine adducts can occur endogenously, they can also be 

specifically induced by the action of SN1 alkylating agents, such as alkyl 

nitrosureas (e.g. MNU, ENU, PNU, BzNU) and N-alkyl N!-nitro-N-

nitrosoguanidines (e.g. MNNG, ENNG), some of which are used in cancer 

chemotherapy to deliberately induce cell death in tumours.  

 

 

Figure 1.10: A schematic showing a GC#AT transition 

 

1.6 DNA Repair 

 The presence of damaged DNA can have extremely serious 

consequences for living cells and therefore various mechanisms and repair 

systems have evolved to process DNA lesions. For the many types of DNA 

damage that have adverse biological effects, different enzymatic pathways 
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exist to repair this damage.(11) Figure 1.11 gives a summary of DNA damage 

in cells and the pathways by which they are repaired. 

 

 

Figure 1.11: Causes, types and repair of DNA damage in cells 

 

1.6.1 Homologous Recombination (HR) and Non-homologous End 

Joining (NHEJ) 

Double-strand breaks (DSBs), which are particularly hazardous to the 

cell as they can cause rearrangements of the genome and/or cell death, are 

repaired by two different mechanisms: homologous recombination or non-

homologous end joining.(12) DSBs can be caused by X-ray radiation, or by 

the collapse of replication forks, and are extremely serious in biological terms. 

In homologous recombination repair (HR), which is considered to be an error-
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free mechanism, an almost identical enzyme machinery to that responsible for 

chromosomal crossover during cell meiosis uses the DNA template from a 

sister chromatid to repair the break. As such, HR can only take place during 

the S and G2 phases of the cell cycle when these chromatids are present. In 

contrast, non-homologous end joining (NHEJ) can take place at any time in 

the cell cycle but is considered an error-prone mechanism. In NHEJ, a 

specialised DNA ligase directly joins the ends of the strands back together.  

 

1.6.2 Direct Repair (Damage Reversal) 

Direct repair (or damage reversal) is a mechanism used to dealkylate 

bases that have undergone chemical damage. Although the most abundant 

alkylated DNA lesion is N7-methylguanine, it is not directly mutagenic or 

cytotoxic (13) and is not repaired by direct transfer (N7-MeG is repaired by 

base-excision repair along with N3-MeA, see section 1.6.4). However, O6-

alkylguanine lesions are highly mutagenic, recombinogenic and cytotoxic and 

as such are repaired by O6-alkylguanine DNA-alkyltransferase (AGT) proteins: 

those best studied are the Ada and Ogt proteins in E.coli and O6-

methylguanine-DNA methyltransferase (MGMT) in humans.(14) AGTs repair 

damage by transfering the alkyl group from the modified base to an active site 

cysteine residue. Ogt and MGMT also have the ability to repair O4-

methylthymine residues (15), though these lesions are much less abundant 

and mutagenic than O6-methylguanine. The structure and function of MGMT 

are described in detail in section 1.7. Direct damage reversal is also the 

mechanism of repair of N1-methyladenine and N3-methylcytosine which are 

highly cytotoxic lesions owing to their ability to inhibit or block DNA replication. 
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These adducts are repaired by 1-methyladenine-DNA dioxygenases, such as 

AlkB in E.coli, and ABH2 and ABH3 in humans, using a reaction known as 

oxidative dealkylation.  

AGT proteins are effectively the first line of defence against O6-

alkylguanine damage; if the damage persists and leads down the path toward 

a mutation (e.g. a GC-AT transition mutation) then the resolution of the 

problem becomes the responsibility of the post-replication mismatch repair 

(MMR) system.(10)  

 

1.6.3 Mismatch Repair (MMR) 

It is the role of mismatch repair (MMR) to detect when incorrect bases 

are paired with each other in the double helix, usually as a result of bases 

being inserted or deleted during DNA replication but also due to mutagenic 

events such as O6-alkylguanine: thymine mismatches. It is a highly conserved 

process from prokaryotes to eukaryotes, as loss of MMR results in greatly 

increased rates of spontaneous mutation.(16) In E.coli, a homodimer of the 

protein MutS recognises the mismatched base, and then in concert with MutL 

recruits the endonuclease MutH, which makes an incision in the newly 

synthesised DNA strand containing the error. Aided by MutL, helicase II finds 

the nick and unwinds the helix which exposes the single-strand to digestion by 

exonucleases (such as ExoI but there are also many others). This leaves a 

gap of between 1000-3000 nucleotides which is then repaired by DNA Pol III 

and DNA ligase to restore the DNA to the correct sequence.(17) 

In eukaryotes, the pathway is largely the same with some small 

differences. Rather than being homodimers, MutS and MutL are heterodimers 
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made up of two subunits (e.g. MutS$ is composed of MSH2 and MSH6, 

MutS" of MSH2 and MSH3). The selection of these subunits changes the 

substrate specificity and cellular function of the complexes allowing greater 

flexibility.(16) In addition, the eukaryotic MMR system is not as well 

characterised as that of prokaryotes.  

In fact, it is the MMR pathway that is responsible for the cytotoxicity of 

O6-alkylguanine lesions (figure 1.12). Whilst the MMR machinery has the 

ability to recognise the O6-alkylguanine: thymine mismatch and remove 

thymine from the newly replicated strand, it cannot remove the O6-

alkylguanine lesion itself. This leads  to  repeated  cycles  of MMR recognition, 

 

 

 

Figure 1.12: Toxic and mutagenic effects of O6-alkylguanine residues in DNA 
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excision and DNA resynthesis, a process referred to as the futile repair 

pathway.(10,18,19) In fact, the requirement of the MMR system for the toxicity 

of these lesions has been demonstrated in S.cerevisiae, where inactivating 

MMR genes reduced toxicity of the cells to MNNU (an agent which induces 

O6-methylguanine lesions in DNA).(20) 

 

1.6.4 Base-Excision Repair (BER) 

The base-excision repair (BER) pathway mainly repairs base damage 

caused by deamination, oxidation (such as 8-oxoguanine) and alkylation 

(such as N1-methyladenine and N3-methylcytosine).(21) There are two types 

of BER: short patch, where just one nucleotide is removed during repair, and 

long patch, where a single-stranded section of between 2-13 nucleotides is 

removed. The process is initiated by a DNA glycosylase, which recognises the 

damaged base and then cuts the N-glycosidic bond (between the base and 

the sugar-phosphate backbone) to generate an apurinic/apyridinimic (AP) site. 

The AP site, which is itself a form of DNA damage that can be generated 

spontaneously, is then cleaved by an AP endonuclease to leave a gap of 

varying length. For short patch repair, the missing nucleotide is filled in by 

DNA polymerase ", which also removes the 5!-moiety so that the remaining 

nick can be sealed by DNA ligase. For long patch repair, removal of the strand 

containing the AP site generates a flap structure, which must be cleaved by 

the endonuclease FEN-1 before ligation.  

    The recognition factors in BER, DNA glycosylases, are a large and 

disparate family of proteins that, although structurally diverse have a single 

functional role: binding certain damaged bases and cleaving the N-glycosidic 
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bond to create an AP site and thus initiate BER. In common with AGTs, they 

flip damaged bases out of the helical stack into their active site in order to 

bring the base in close enough proximity to the residue/s that perform the 

cleavage reaction (transfer of the alkyl group for AGTs, glycosidic bond 

cleavage for DNA glycosylases). Examples of DNA glycosylases include AlkA 

in E.coli which repairs a wide variety of nucleobase alkylation products (N7-

MeG, N7-MeA, N3-MeG, N3-MeA, O2-MeC and O2-MeT lesions),(22) AlkD in 

B.cereus which repairs N7-MeA and N3-MeG (23) and hoGG1 in humans 

which repairs 8-oxoG residues.(24) 

 

1.6.5 Nucleotide-Excision Repair (NER)  

 It is the responsibility of the NER system to deal with bulky, helix 

distorting types of DNA damage, such as cyclobutane pyrimidine dimers 

(CPD) and 6,4-photoproducts (6,4-PP) that are induced by exposure to UV 

radiation. There are two partially overlapping pathways of NER that remove 

UV-induced photolesions: global-genome repair (GGR) and transcription-

coupled repair (TCR). In GGR, enzyme complexes constantly scan the 

genome looking for signs of damage, whereas in TCR recognition is instigated 

by the stalling of RNA polymerase during transcription on reaching a bulky 

lesion.(25-27)  

NER in E.coli is carried out by the UvrABC endonuclease enzyme 

complex. Briefly, the UvrA-UvrB complex scans the DNA and recognises any 

distortions, after which UvrA ‘loads’ UvrB onto the damaged site and 

subsequently dissociates from the complex, processes that are regulated by 

ATP.(28) UvrB remains bound to the damage and recruits the endonuclease 
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UvrC which cleaves the phosphodiester backbone either side of the 

damage.(29,30) Once incision has taken place UvrD removes both the 

damage-containing oligonucleotide patch and UvrC, whilst UvrB remains 

attached to the non-damaged strand and recruits DNA polymerase I to 

synthesise a new complementary strand. Repair is completed when DNA 

ligase seals the nick, restoring the DNA to its original sequence.(31) TCR in 

E.coli is identical except that the initial step is the recognition of stalled RNA 

polymerase III by the Trancription-Repair Coupling factor Mfd, which displaces 

the polymerase and recruits UvrA.(32) 

The situation in eukaryotic organisms is rather more complex, although 

the general features of repair are maintained. Figure 1.13 (Hoejimakers et al. 

(33)) shows the complexity of repair in human cells. This figure shows the 

human NER machinery with the homologous proteins in S.pombe being 

labelled in pink. As there is convincing evidence to suggest a link between 

ATL proteins and the NER system (and part of this project will be to 

investigate this in S.pombe) it is useful to be aware of them. Unfortunately, 

NER has not been well characterised in S.pombe, although it has been 

extensively studied in S.cerevisiae and humans. NER is of fundamental 

importance to organisms, as evidenced by the three known human syndromes 

that arise from a non or partially functional NER pathway: Cockayne's syndrome 

(CS), Trichothiodystrophy (TTD) and Xeroderma Pigmentosum (XP), the 

symptoms of which include hypersensitivity to UV light and increased cancer 

risk.(33) 

 In eukaryotes, GGR and TCR differ in their initial recognition steps 

before proceeding along the same repair mechanism. In GGR in humans, the 
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UV-DDB complex binds to damaged DNA and induces repair by recruiting the 

XPC-hHR23b complex (Rad4-Rad23 in S.cerevisiae). It has been suggested 

that UV-DDB recognises structural abnormalities in the DNA induced by 

photolesions rather than the damage itself, acting as a sensor for 

conformational changes in DNA.(34) This could explain how, in addition to 

CPD and 6,4-PP lesions, UV-DDB can recognise apurinic sites and 2-3 base 

pair mismatches.(34) It has also been shown that large enough helical 

distortions (e.g. 6,4-PP) can be  recognised by the XPC  complex  without  the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

      

Figure 1.13: NER repair in humans (with S.pombe protein homologues shown in pink), taken 

from Hoeijimakers et al. (33) 
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involvement of UV-DDB, (35) although the UV-DDB complex is thought to 

mediate efficient targeting of the XPC complex and other NER factors to sites 

of DNA damage, and to accelerate repair.(36,37) Recent structural studies of 

Rad4 (the XPC orthologue in S.cerevisiae) show that it binds to CPD-

containing DNA via the undamaged strand opposite the lesion, and uses a "-

hairpin to flip the damaged bases out of the helix.(38) 

In TCR, the first step is recognition of the stalled RNA polymerase by 

the protein CSB. CSB (functional homologues Rad26 in S.cerevisiae and 

Rhp26 in S.pombe) has been shown to transiently associate with RNA 

polymerase III whilst transcription takes place.(39) However, when RNA Pol III 

reaches a bulky lesion and stalls, CSB increases its association (40) and 

recruits CSA and the 9 sub-unit complex Transcription Factor II H (TFIIH).(41) 

It is not fully understood what happens to RNA Pol III after binding of TFIIH 

and CSA: whilst some studies have suggested that it is degraded before 

repair continues,(42) other evidence would indicate that the TCR process can 

continue without the removal of RNA Pol III.(43,44) 

Once these damage recognition steps have taken place in GGR and 

TCR, the helicases XPB and XPD (which are part of the TFIIH complex) 

unwind the helix in either direction adjacent to the damage. XPA is then 

recruited which binds to the lesion and keeps the DNA unwound, along with 

RPA which binds to single-stranded DNA on the damaged and undamaged 

strands. Further recruitment of 3!-endonuclease XPG causes an incision to be 

made 2-8 nucleotides away from the lesion, after which the 5!-endonuclease 

XPF-ERCC1 cuts the DNA 15-24 nucleotides 3! of the lesion.(26) This leads 

to excision of a patch of 24-32 nucleotides including the lesion. Subsequent 
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recruitment of PCNA by XPA and RPA targets DNA polymerase and allows 

synthesis of the new fragment to take place, after which DNA ligase 

completes the repair by sealing the nick.(45) This restores the DNA to its 

undamaged, original sequence and maintains the integrity of the genome.   

 

1.7 O6-Methylguanine-DNA Methyltransferase (MGMT) 

O6-Methylguanine-DNA methyltransferase (MGMT) is a protein that 

removes alkyl groups from the O6-position of guanine bases by direct 

transfer.(46) It is the human form of a representative family of direct transfer 

DNA repair proteins, the alkylguanine transferases or AGTs, which are 

ubiquitous across all three domains of life (Prokaryotes, Eukaryotes and 

Archaea). Despite having markedly low primary sequence homology, crystal 

structures show that the topology and overall structure of alkylguanine 

transferases has been remarkably conserved, including a helix-turn-helix 

(HTH) motif involved in DNA binding coupled by an asparagine-hinge to a 

cysteine-containing active site.(47) AGT proteins irreversibly transfer the O6-

alkyl group from the guanine base to an active site cysteine residue in a 

stoichiometric reaction. Once this transfer has taken place, the alkylated 

protein is rendered inactive and is subsequently destroyed by proteolysis in 

the cell. The process is therefore non-enzymatic and AGTs are thus 

sometimes referred to as suicide proteins.  

E.coli has two AGTs, the constitutive Ogt protein and the inducible Ada 

protein.(48) They differ in their substrate specificities, in that O6-MeG is 

repaired most efficiently by the C-terminal domain of Ada, and O4-MeT and 
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larger O6-alkylguanine adducts by Ogt.(49) The N-terminal domain of Ada is 

also able to repair methylphosphotriester residues.(50)  

The mechanism of alkyl transfer by MGMT from O6-alkylguanine, 

based on data from the Tainer group, is shown in figure 1.14.(47) It is thought 

that an H-bond network increases the reactivity of the cysteine residue, with 

His146 acting as a general base which deprotonates a water molecule and in 

turn Cys145. This Cys145 then acts as a nucleophile, removing the alkyl 

group from the O6-position of guanine. It could be that the reaction is also 

promoted by an H-bond from Tyr114 to N3 of guanine, which may reduce the 

negative charge on the repaired guanine base.(51)     

 

 

Figure 1.14: Mechanism of alkyl transfer in the MGMT active site 
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 The crystal structure of the MGMT C145S mutant bound to its DNA 

substrate, published by Daniels et al. (figure 1.15), gives profound insights 

into the structure and function of this protein.(51) The DNA-binding helix-turn-

helix motif is located on the C-terminal domain of the two domain $/"-fold, 

adjacent to which is the active site of sequence PCHR (containing the 

cysteine nucleophile). The helix-turn helix motif is itself composed of a first 

helix (Tyr114-Ala121), which interacts with the phosphate backbone, and a 

second helix (Ala127-Gly136), known as the ‘recognition’ helix, which binds 

deep within the minor groove of the DNA. This is unprecedented as previously 

HTH motifs have only been observed to bind through the major groove.(52) 

The binding of the recognition helix widens the minor groove  by  >3Å  relative  

 

Figure 1.15: Crystal structure of MGMT C145S bound to O6-methylguanine containing DNA 
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to typical B-DNA and also bends the DNA ~15˚ away from the protein. In 

order to repair the damaged guanine, it is necessary for the protein to flip the 

nucleotide out of the base stack. The recognition helix also contains Arg128 

(the so-called ‘arginine finger’) which intercalates via the widened minor 

groove and is thought to push out the nucleotide whilst also stabilising the 

extra-helical DNA conformation by forming a charged H-bond with the 

remaining unpaired cytosine. In addition, the Tyr114 residue induces rotation 

of the 3!-phosphate into the centre of the DNA helix by both charge and steric 

repulsions.(51) In the crystal structure shown above (figure 1.15) the results of 

this base-flipping mechanism can clearly be seen, along with the arginine 

finger protruding into the DNA double helix. 

 The other domain of the protein, the N-terminal domain, consists of two 

helices and a three-stranded anti-parallel "-sheet separated by a disordered 

loop. The human protein (MGMT) also has a zinc ion binding site which is 

absent in the bacterial and hyperthermophilic proteins.(47) The role of the N-

terminal domain appears to be structural in the sense that it maintains the C-

terminal domain in an active configuration. Thus, truncation of the protein to 

leave only the C-terminal domain results in a loss of alkyltransferase 

activity.(53) In addition, it has been found that substitution of the cysteine 

residue in the active site also inactivates the protein, as would be expected 

given the mechanism of repair.(54)     

The repair of O6-alkylguanine lesions by MGMT is crucial for the 

maintenance of healthy cells in humans. However, this type of DNA damage 

is also deliberately induced by the administration of alkylating agents during 

cancer chemotherapy. The therapeutic aim is to cause significant damage to 
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the tumour cells, preferentially over healthy cells, and hence destroy the 

cancer. MGMT reverses the clinical benefits of these alkylating agents, and as 

such increased expression of MGMT can confer resistance of tumours to 

chemotherapy.(14) The selective inhibition of MGMT in tumour cells might 

therefore improve the effectiveness of alkylative anti-cancer treatments, and 

indeed there is much interest in developing agents which inhibit or inactivate 

MGMT.(55)  

   Although AGTs have been found to occur in organisms in all three 

domains of life there are some notable absences. No AGT genes have been 

identified in plants, Schizosaccharomyces pombe or Deinococcus radiodurans 

amongst others.(53) This fact is all the more intriguing given that distinct 

homologues of AGT, namely alkyltranferase-like (ATL) proteins, have been 

found in several organisms (including E.coli and S.pombe). These proteins 

possess a similar active site to that of AGT proteins but the sequence PWHR 

(and occasionally PAHR) is found, rather than the conserved PCHR in AGTs. 

(14,56) Some organisms such as E.coli have genes for both AGT and ATL, 

some just for AGT and others only for ATL.(14) 

 

1.8 Alkyltransferase-Like (ATL) proteins   

 Alkyltransferase-like (ATL) proteins were first described by Margison et 

al. in a manuscript reviewing the known genes in different organisms that 

encode alkyltransferases (AGTs).(14) In silico analysis of genetic databases 

indicated that many prokaryotes and lower eukaryotes would have this 

homologue (figure 1.16). E.coli has two genes encoding  AGTs (ogt  and  ada)  
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Figure 1.16: In silico analysis of genetic databases discovered a number of ATL protein 

sequences in many different organisms 

 

and one encoding an ATL product. It was subsequently found that the ATL 

protein in E.coli (eAtl, though also known as Ybaz), which has a tryptophan 

replacing the cysteine in the putative active site, has no alkyltransferase 

activity despite binding to substrate DNA containing O6-methylguanine (O6-

MeG).(56) Site-directed mutagenesis of the active site tryptophan into a 

cysteine residue (W83C) does not restore the ability to transfer the methyl 
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group from O6-MeG, as perhaps would be expected given that this mutation 

appears to return the active site motif (PCHR) to the same sequence as that 

of the AGT proteins (Ogt, Ada and human MGMT). The W83A mutant also 

has no alkyltransferase activity but is still observed to bind substrate DNA 

containing O6-MeG. It was also shown that eAtl has no glycosylase or 

endonuclease activity, suggesting that this protein has no direct role in the 

classical base-excision repair (BER) or nucleotide-excision repair (NER) 

pathways. In addition, it was shown by electrophoretic mobility shift assay 

(EMSA) that eATL binds to short single- and double-stranded 

oligodeoxyribonucleotides (ODNs) containing O6-MeG, but not other types of 

damaged DNA (i.e. DNA containing O4-methylthymine, 8-oxoguanine, 

ethenoadenine or 5-hydroxycytosine). ATL was also shown to strongly, but 

reversibly, inhibit the transfer of methyl groups to MGMT which indicates that 

these two proteins are in competition for the binding of O6-MeG in substrate 

DNA.(56) 

The analogous ATL protein in Schizosaccaromyces pombe (S.pombe), 

known as Atl1, also has a tryptophan residue in its active site (W56) and, like 

eAtl, has no known alkyltransferase, glycosylase or endonuclease activity.(57) 

Atl1 was shown to bind tightly to single-stranded DNA substrates containing a 

number of different O6-alkylguanine lesions (figure 1.17), such as O6-

methylguanine (O6-MeG), O6-benzylguanine (O6-BnG), O6-(4-

bromothenyl)guanine (O6-4-BTG) and O6-hydroxyethylguanine (O6-

HOEtG).(57) Interestingly, the latter adduct is poorly repaired by MGMT. Atl1 

is also observed to inhibit the transferase activity of MGMT in the same 

manner as the E.coli protein.(57) 
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Figure 1.17: Alkylguanine adducts; (left to right, top to bottom) O6-MeG, O6-BnG, O6-4-BTG 

and O6-HOEtG 

 

The S.pombe deletant strain %atl1 lacks the gene that encodes Atl1 but 

grows at a similar rate to wild-type, which would indicate that the atl1 gene is 

non-essential. In addition, the crude cell extracts from this deletant strain have 

an inability to bind ODNs containing O6-MeG, suggesting that the ability to 

bind this adduct is due to the presence of Atl1 in the cell. The S.pombe %atl1 

mutants, which also lack any indigenous AGT gene and hence have no 

alkyltransferase protein, were shown to have a much greater susceptibility to 

the toxic effects of methylating and other alkylating agents. The results of a 

cell survival assay are shown in figure 1.18 and clearly demonstrate that cells 

of the deletant S.pombe strain  %atl1 are much more prone to cell death than 

wild-type when exposed to increasing amounts of MNU, an SN1 alkylating 

agent that induces O6-methylguanine lesions.(57) This would indicate that Atl1 

is protecting S.pombe cells from the deleterious effects of the O6-alkylguanine 

lesions created by these agents despite its lack of transferase activity. These 
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observations have led to the suggestion that Atl1 may act by binding O6-

alkylguanine lesions and signalling them to be processed by other DNA repair 

pathways.(57) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18: Results of survival assays with methylating agent MNU and S.pombe cells 

 

1.9 Structure of Atl1 and Atl1-DNA Complex 

The publication of crystal structures of Atl1-DNA complexes by Tubbs 

et al. in 2009 have contributed hugely to the understanding of Atl1. Structures 

were determined for pure Atl1 protein, and in complex with short 13-mer ODN 

substrates containing O6-methylguanine (O6-MeG) or O6-[4-(3-pyridyl)-4-

oxobutyl]guanine (O6-PobG) (figure 1.19).(58) O6-PobG is a biologically 

important and toxicologically relevant adduct as it is a product of the 

nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a 
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compound present in tobacco.(59) ODNs containing O6-PobG are known to 

be substrates for MGMT, but are repaired at a much slower rate by the protein 

than ODNs containing O6-MeG.(60) The elucidation of crystal structures has 

established that Atl1 shares the MGMT catalytic domain fold (figure 1.20). 

Almost all residues that are required for alkyltransferase activity and DNA-

binding are conserved. Those that promote phosphate rotation and nucleotide 

flipping of the damaged base, Tyr25 and Arg39 are present. One significant  

 

 

 

 

 

Figure 1.19: Structure of O6-4-(3-pyridyl)-4-oxobutylguanine (O6-PobG) (above) and Atl1 in 

complex with O6-PobG-containing DNA substrate (below) 



Chapter 1 

 33 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20: Crystal structure overlay of Atl1 (yellow) and MGMT (cyan) without DNA:the 

active site and DNA binding motifs are highly conserved. 

 

difference between the structures of MGMT and Atl1 is that the latter lacks the 

nucleophilic cysteine residue, which is replaced with tryptophan in the active 

site fold. The asparagine hinge that joins the helix-turn-helix (HTH) motif to the 

active site is also not present in Atl1. In addition, whereas MGMT has a large 

N-terminal domain consisiting of two helices and a three-stranded anti-parallel 

"-sheet separated by a disordered loop, Atl1 has a comparatively small N-

terminal domain that consists of one helix and as such has a lower molecular 
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weight.(58) However, the N-terminal domain helix of Atl1 is a few residues 

longer than the corresponding helix in MGMT. 

From the crystal structures of Atl1 with DNA substrate, it can be seen 

that Atl1 flips the damaged base into the active site in a similar fashion to 

MGMT. Arg39 intercalates into the DNA base stack via the minor groove, 

flipping out the base and stabilising the extrahelical conformation by hydrogen 

bonding with the estranged cytosine, whilst Tyr25 induces the rotation of the 

phosphate to facilitate base-flipping.(58) In fact, the importance of these 

residues for binding to O6-methylguanine-containing DNA has been shown for 

another ATL protein, vpATL from Vibrio parahaemolyticus, whereby site-

directed mutagenesis of the corresponding Tyr23 and Arg37 abolished the 

ability of the protein to inhibit binding of MGMT to damaged DNA.(61) Rather 

unexpectedly, SDM of these highly conserved residues (Tyr88 and Arg100) in 

the T.thermophilus ATL (TTHA1564) did not seem to impair the ability of the 

protein to repair MNNG-induced mutations in vivo.(62) However, this result 

warrants further investigation and explanation, as it was previously shown that 

TTHA1564 flips O6-methylguanine residues upon binding,(63) and these 

conserved Tyr and Arg residues appear to be extremely important for the 

nucleotide-flipping mechanism in other ATL proteins. Unfortunately, no 

structural studies have ever been performed with TTHA1564 so the 

implications of these results are not clear.   

A closer look at the active site pocket highlights some of the important 

interactions between the protein and the damaged bases (figure 1.21). The 

tryptophan residue (Trp56) acts in a hydrophobic packing interaction with the 

alkyl group while the side-chain of the arginine residue (Arg69) stacks against 
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Figure 1.21: Close-up of Atl1 active site with DNA substrate: containing O6-PobG (above) 

and O6-MeG (below) 
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the guanine base in a cation-! interaction. These interactions are not found in 

MGMT and so appear to be unique to Atl1. However, the other active site 

interactions are conserved from MGMT to Atl1: the tyrosine (Tyr25) hydroxyl 

group hydrogen bonds with the alkylguanine N3, whilst the alkylguanine N2 

amino group donates hydrogen bonds to the main chain carbonyl oxygen 

atoms of Trp56 and Val59.(58)  

The Atl1 active site is approximately three times larger than that of 

MGMT. This is, in part, due to the fact that the residues 65 to 73 in the loop 

which constitute one wall of the pocket are further from the protein core than 

the corresponding residues in MGMT. In addition, the proline (Pro50) residue 

in Atl1 is further out than the comparable proline (Pro140) residue in MGMT, 

which is important for interacting with larger alkyl groups. Any potentially 

unfavourable steric clashes with Trp56 are also reduced by the substitution of 

tyrosine (Tyr158) of MGMT with the smaller glycine (Gly68) in the active site 

loop of Atl1.(58) Furthermore, NMR structural studies of vpATL revealed that 

this alkyltranferase-like protein has a recognition cavity that is smaller than 

that of Atl1 but larger than that of MGMT, and in addition exhibits a significant 

degree of conformational flexibility that may facilitate the binding of larger O6-

alkylguanine lesions.(61)   

 Like MGMT, Atl1 binds DNA via the minor groove using a helix-turn-

helix (HTH) motif. However, for Atl1 there are some additional contacts with 

DNA from residues in the active site loop (Ser67 and Lys70) and another loop 

(Thr92 and Ser93) that are not found in MGMT. It has been calculated that 

there is a more extensive binding interaction between Atl1 and DNA than that 
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of MGMT, with DNA binding accounting for 1050 Å2 and 788 Å2 of the buried 

surface area respectively.(58)  

Other structural features of the Atl1-DNA complex provide insights into 

the proposed role of Atl1. The helix that composes the Atl1 N-terminal domain 

is a few residues longer then the corresponding helix in MGMT and this 

elongation gives the N-terminus of Atl1 the ability to push against the 

phosphate backbone of the strand opposite the flipped nucleotide in the 

bound DNA.(58) In addition, the active site loop of the protein is able to switch 

between an ‘open’ and ‘closed’ conformation depending on whether DNA is 

bound. The gating action of the active site loop of Atl1, which switches 

between an open or closed conformation depending on the presence of DNA 

substrate, can be seen in figure 1.22. This mechanism was proposed for 

MGMT in computer simulations of binding (64) but never seen in crystal 

structures.(51,65) These structural changes cause the DNA to become bent 

by a large degree upon Atl1 binding (approximately 45˚ in relation to the 

helical axis of B-DNA) (58) whilst for MGMT the bound DNA is only bent by 

about 30˚. It follows that a greater distortion of DNA by Atl1 could have the 

effect of aiding recognition of the damage by a pathway such as NER, which 

is designed to find bulky, distorted regions of DNA. 

   

 

 

   

 

 

Figure 1.22: The ‘gating’ action of Atl1 upon DNA binding 
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Whilst this conformational switch of the Atl1 active site loop works in 

concert with the extended N-terminal helix to cause significant bending of the 

bound DNA, it appears that this movement also exposes the C-terminal loop 

by moving arginine and isoleucine side-chains that would otherwise be 

covering it.(58) It is an intriguing possibility that after the switch, the unveiled 

loop may become free for possible intermolecular interactions and could play 

a role in signalling to other proteins. 

 

1.10 Substrate Specificity of ATL Proteins 

 It has been demonstrated in studies with MGMT that as the size of the 

alkyl group on the O6-position of guanine increases, the ability of MGMT to 

remove it decreases: that is, the repair is less efficient with larger adducts.(66) 

It was thought that a larger alkyl group creates a bulkier DNA lesion which 

could be recognised and processed preferentially by the nucleotide-excision 

repair (NER) system rather than by direct repair. However, some non-bulky 

lesions are not effectively repaired by MGMT. For example, O6-

hydroxyethylguanine (O6-HOEtG) is a very poor substrate for MGMT (66-68) 

and O6-carboxymethylguanine (O6-CMG) is not repaired by MGMT at all (69), 

although there is evidence that it is repaired by the NER pathway.(70)  

In contrast, Atl1 has been shown to bind to oligodeoxyribonucleotides 

(ODNs) containing a number of different O6-alkylguanines.(71) The alkyl 

groups vary in size, polarity and charge and it seems that Atl1 has the ability 

to bind a wider range of O6-alkylguanine lesions in DNA and hence has less 

substrate specificity than MGMT. It would appear that the reason for this may 

be the presence of the enlarged active site cavity which is able to recognise 
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and accommodate a broad range of adducts. The same protein structure, 

active site side-chains and DNA conformation are observed for Atl1 whether 

binding DNA containing O6-MeG or the significantly larger O6-PobG.(58) The 

observation that O6-PobG is repaired at a much slower rate by MGMT than 

O6-MeG may be explained by the fact that O6-PobG does not fit so well into 

the MGMT active site due to its larger size. This does not seem to be the case 

for Atl1, where it has been shown that O6-PobG is tightly bound by the 

protein.(58)  

The substrate specificity of Atl1 has been examined previously by the 

Margison group. The binding constants for Atl1 with DNA substrates 

containing various adducts were measured by surface plasmon resonance 

(SPR) and enzyme-linked immunosorbent assay (ELISA). SPR involves 

immobilising the ODN of interest onto a gold sensor chip and then exposing 

the reverse of the chip to polarised light from a laser. As protein binds to the 

ODN, the accumulation of protein on the surface of the chip results in a 

change in the angle of the reflected light, and this can be measured over the 

whole time course of the reaction. Data derived from SPR analysis can be 

used to calculate the association (kass) and dissociation (kdiss) rates of the 

DNA-protein complex, which can in turn be used to generate a value for the 

dissociation constant (KD). Using this technique, it has been determined that 

Atl1 binds single-stranded (ssDNA) and double-stranded (dsDNA) containing 

O6-MeG with similar affinity, though with a slight preference for dsDNA (1.8nM 

and 0.91nM respectively). This is in contrast to MGMT, which has been shown 

to bind single-stranded DNA with more affinity than double-stranded DNA but 

to transfer the alkyl group more rapidly from dsDNA than ssDNA.(72)   
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It was also shown by electrophoretic mobility shift assay (EMSA) that 

Atl1 binds to double-stranded and hairpin ODNs containing all of the lesions 

shown in figure 1.23 ((57) and unpublished data). As noted, these substrates 

vary in the size, polarity and charge of the alkyl group and include O6-

alkylguanine lesions that are refractory to or poorly repaired by MGMT. 

 

Figure 1.23: Alkyl adducts known to be bound by Atl1 (from S.pombe) 

 

The affinity of binding for each adduct has also been quantified using 

direct ELISA and competition ELISA. The former technique involves 

immobilising the various adduct-containing ODNs (of identical sequence) on 

the surface of the wells of a microtiter plate. Incrementally increasing 

concentrations of Atl1 protein are added to each well, and the amount of 

bound protein is quantified by measuring the chemiluminescence produced by 

addition of a reagent that interacts with the antibodies that have bound 
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specifically to the protein (figure 1.24). The latter method is similar, but this 

time Atl1 protein is pre-incubated with the ODN of interest, and then added to 

plates with O6-methylguanine-containing ODNs already bound. The binding is 

quantified in the same manner; this time giving a measure of how much each 

adduct is inhibiting the binding of Atl1 to the O6-MeG on the plate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.24: Principles of a direct ELISA. 

 

The assays produced largely the same results (table 1.1) and 

demonstrated that Atl1 binds tightly to ODNs containing a range of O6-

alkylguanine adducts. Whereas MGMT has difficulty repairing O6-PobG (59) 

and O6-HOEtG (66), and will not repair O6-CMG (69,70), it is clear from these 

results that Atl1 recognises these lesions and in fact appears to bind them 
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with more affinity than smaller lesions such as O6-MeG. This lack of substrate 

discrimination and possible preference for lesions not readily repaired by 

MGMT, combined with its lack of alkyltransferase activity, indicates that Atl1 

may have a role in signalling to other DNA repair pathways. It has been 

suggested that Atl1 binds a wide range of adducts with high affinity to form 

bulky, relatively stable Atl1-DNA complexes that are suitable for recognition by 

nucleotide-exicision repair (NER) proteins. In the NER pathway, repair is 

initiated by the identification of large distortions in DNA caused by bulky 

adducts. Therefore, the role of Atl1 may be to recognise DNA containing a 

wide range of O6-alkylguanine lesions to form a common, more substantial 

structure that could be more easily located by the NER apparatus than O6-

alkylguanine residues alone and hence increase the efficiency of repair.   

 

Assay Rank Order of Binding 

 

Competition 

ELISA 

 

O6-PobG > O6-BnG > O6-BTG > O6-HOEtG > O6-MeG ~ O6-CMG 

 

Direct ELISA 

 

O6-PobG ~ O6-BnG ~ O6-BTG ~ O6-HOEtG > O6-CMG ~ O6-MeG  

         

Table 1.1: Binding data for various O6-alkylguanine adducts in duplex DNA with Atl1 

(Margison laboratory, unpublished data) 

 

 eATL, the ATL protein from E.coli which is also known as Ybaz (after 

the gene which encodes it), has been shown to bind double-stranded DNA 

containing an abasic site.(73) This finding is intriguing as it may indicate a link 
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between the E.coli ATL protein and the base-excision repair (BER) pathway. 

Furthermore, Ybaz has been found to interact with HelD, a type IV helicase in 

E.coli, which is known to be involved in the repair of methylation-based DNA 

damage.(74) However, it was recently shown that Atl1 does not recognise 

abasic sites in DNA and so is unlikely to be involved in BER.(58) 

 

1.11 ATL Proteins and Nucleotide-Excision Repair (NER) 

TTHA1564, the ATL homologue from Thermus thermophilus TTHB8, 

possesses a PAHR active site motif rather than the PWHR sequence seen in 

most ATL proteins. In common with eAtl and Atl1, TTHA1564 binds O6-MeG-

containing DNA by flipping the damaged nucleotide but has no 

alkyltransferase activity.(63) In addition, mutation of the active site to the 

sequence PCHR does not confer alkyltransferase activity to the protein.(62) 

Deletion of the TTHA1564 gene results in mutants that grow at the same rate 

as the wild type (WT) strain but display a significantly increased spontaneous 

mutation rate, which is exacerbated 5-to-8 fold by the presence of methylating 

agents (MNNG). Thus, ATL proteins clearly seem to have a role in protecting 

DNA from damage and the deleterious effect this has on cells.(56,57,63) It 

has been suggested that these proteins, with their ability to bind but not 

remove lesions in DNA, must be signalling to a known repair pathway. The 

current hypothesis is that ATL proteins are involved in the NER pathway, and 

there is an increasing amount of evidence to vindicate this. 

Pulldown assays have demonstrated the interaction of TTHA1564 with 

several proteins, the most significant being with UvrA and RNA polymerase. 

UvrA is a nucleotide-excision repair (NER) protein, responsible for damage 
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recognition (along with UvrB). The observation that TTHA1564 interacts with 

UvrA would seem to provide tentative evidence that ATL proteins are capable 

of communicating with the NER system and signalling damaged DNA for 

repair. Interestingly, the additional interaction of TTHA1564 with RNA 

polymerase may indicate that it is involved in the transcription-coupled repair 

(TCR) pathway. In TCR, in which repair is initiated by the stalling of RNA 

polymerase at lesions in DNA, transcription-coupled repair factor (TCRF, or 

Mfd) acts to remove the stalled RNA polymerase and recruit UvrA.(32) The 

fact that both TTHA1564 and TCRF are seen to interact with RNA polymerase 

and UvrA (63,75) may indicate that the ATL protein recruits UvrA to the site of 

DNA damage and initiates NER in a similar manner to TCRF. Alternatively, 

TTHA1564 may cause RNA polymerase to stall at the site where it is bound to 

DNA and thus initiate repair of a lesion that would otherwise be bypassed by 

the enzyme. Direct interaction of TTHA1564 with purified RNA polymerase 

holoenzyme has been demonstrated very recently, which would strengthen 

the argument for a role for TTHA1564 in TCR.(76) 

 

 

 

 

 

 

Figure 1.25: 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG), an SN1 alkylating agent 

 

Further evidence for the involvement of ATL proteins in the NER 

pathway is provided by experiments with S.pombe deletants (figure 1.26).(58) 
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Inactivation of Atl1 (%atl1) causes a nine-fold increase in MNNG-induced 

mutation rates, with a similar increase being seen for cells missing Rad13 

(%rad13). Rad13 is the S.pombe homologue of mammalian XPG, an NER 

pathway endonuclease that cleaves at the site 3! of the DNA lesion.(77) 

MNNG is a SN1 methylating agent (figure 1.25) known to produce a  

significant number of O6-MeG lesions in DNA.(78) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.26: Effect of gene deletion in S.pombe on MNNG-induced (top) and spontaneous 

(bottom) mutation rates 

 

An interesting observation is that the double deletant strain 

(%atl1%rad13) does not show any increased mutation rate when exposed to 

MNNG than the single deletants. This demonstrates that there is an epistatic 

relationship between Atl1 and Rad13 (i.e. knocking out one gene disrupts the 

Spontaneous 

0.025 µg/ml  MNNG 
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repair system as much as removing both genes) and provides evidence that 

Atl1 is involved in the same DNA repair pathway as Rad13 (i.e. NER).  

The effects of inactivation of Atl1 and Rad13 on spontaneous mutation 

rates are also extremely interesting. The wild-type (WT), Atl1 deletant (%atl1) 

and the double deletant (%atl1%rad13) have similar rates of spontaneous 

mutation, with the Rad13 deletant (%rad13) showing a significantly higher rate. 

It is possible that there is a build-up in the cell of stable DNA-Atl1 complexes 

that are hard to repair in the absence of Rad13 (i.e. NER cannot take place). 

The observation that the double deletant returns to wild-type levels of 

mutation could indicate that when there is no Atl1 in the cell, the stable 

complex does not form and the damaged DNA can be repaired by another 

pathway. 

 Similar experiments in T.thermophilus have demonstrated that ATL 

proteins and NER are mutually involved in the repair of O6-methylguanine 

lesions.(62) Compared to wild-type, the %uvrA mutant and the %uvrA %atl 

double mutant were equally mutable to MNNG whilst the %atl mutant showed 

mutation rates that were intermediate between WT and the aforementioned 

mutants. This would seem to indicate that NER is still capable of repair of O6-

methylguanine lesions in the absence of ATL, but the repair is much more 

efficient when ATL is present to assist in the recruitment of UvrA. In addition, 

the increased spontaneous mutation frequency observed in the %uvrA mutant 

was reduced back to wild-type levels in the double deletant %uvrA %atl. This is 

similar to the result observed in S.pombe, and it has been suggested that the 

in the absence of ATL or NER, responsibility for recognition and repair of O6-
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methylguanine lesions may fall to MutS of the mismatch repair system, which 

has been shown in E.coli to recognise MeG:T mispairs.(79)    

 The role of eATL (also known as Ybaz) in the repair of O6-alkylguanine 

adducts has been studied in E.coli by Mazon et al.. It was demonstrated, 

using various AGT, eATL and NER deficient mutants, that there is a division 

of labour whereby smaller lesions (such as O6-methylguanine and to an extent 

O6-hydroxyethylguanine) were repaired efficiently by alkyltranferase proteins 

(Ada and Ogt) whilst the repair of larger alkyl groups (such as O6-1-hydroxy-

propylguanine and O6-2-hydroxypropylguanine) was the responsibility of the 

NER pathway.(80) Furthermore, it was shown that repair by NER of these 

larger adducts was enhanced significantly by the presence of eATL in the 

cells, suggesting that eATL facilitates recognition of the lesion by the NER 

machinery. Pulldown assays showed an interaction with UvrA (the NER 

protein that is responsible for recognition of bulky, distorting lesions in DNA), 

which is in agreement with the finding by Morita et al. that TTHA1564 interacts 

with UvrA in T.thermophilus and further implicates ATL proteins in the role of 

damage sensors for NER. These results support the suggestion that eATL 

has a similar role to Mfd, recruiting UvrA to the site of damage and hence 

enhancing the efficiency of NER. This enhancement would be especially 

important for lesions that are otherwise poor substrates for NER or for 

alkyltransferase (AGT) proteins, such as O6-1-hydroxy-propylguanine and O6-

2-hydroxypropylguanine. They could be considered to be ‘stuck in the middle’: 

too large for efficient repair by AGTs, but too small to be recognised with high 

affinity by NER factors or to cause stalling of RNA polymerase. eATL could 
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thus be providing crosstalk between distinct repair pathways, as is suggested 

for Atl1 in S.pombe.(58)  

The proposed role of ATL proteins is shown in figure 1.27, whereby 

they facilitate in the recruitment of NER factors and increase the efficiency of 

repair of relatively small lesions such as O6-methylguanine. This function 

would seemingly be even more important in organisms such as S.pombe and 

T.thermophilus which cannot process these lesions by direct damage repair. 

However, the exact function of ATL proteins and the mechanisms by which 

they recruit NER factors or increase the repair efficiency of smaller O6-

alkylguanine lesions is presently unknown and warrants further investigation.  

 

   

 

 

 

 

 

 

 

Figure 1.27: Proposed role of ATL proteins in repair of O6-alkylguanine lesions. The NER 

factors shown are labelled with the names of the S.pombe and human homologues 
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In addition, eATL has also been found to prevent the mismatch repair-

mediated toxicity induced by certain O6-alkylguanine residues in E.coli.(81) 

Using strains with a deficient AGT (!ogt, !ada) and NER (!uvrA) 

background, Mazon et al. confirmed that the toxicity of O6-alkylguanine (O6-

MeG) residues was due to activity of the mismatch repair (MMR) system. It 

was shown that repeated recognition of O6-MeG: T mispairs by MMR in the 

so-called futile cycle (see 1.6.3) led to toxicity of O6-alkylguanine adducts, and 

that this toxicity was strongly dependant upon the function of both MutS and 

MutH (i.e. it involved steps beyond MutS binding). Cells containing O6-MeG, 

O6-HOEtG, O6-1-HOPrG and O6-2-HOPrG lesions had an & 80% survival rate 

compared to WT in the absence of MMR (!mutS) whereas when the MMR 

system was restored in the absence of eATL (!ybaz) the survival rates for all 

adducts dropped to <10%. Whilst eATL had little effect on survival rates of 

cells containing O6-MeG (it remained <10%), for the larger lesions there was a 

significant increase in survival rates (50-60%) showing that eATL prevented 

these adducts from causing MMR-mediated toxicity. Furthermore, the authors 

demonstrated by EMSA that eATL and MutS compete for binding of O6-MeG: 

T mispairs in double-stranded ODNs, and that O6-MeG was only very weakly 

bound by eATL compared to the other O6-alkylguanine adducts.  These 

results suggest an intriguing and hitherto unsuspected role for eATL in E.coli. 

It will be interesting to see if other ATL proteins perform this cellular function in 

their respective organisms, especially in the cases where there is no AGT 

protein present (e.g. S.pombe and T.thermophilus).      
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1.12 Evolution of Alkyltransferases 

 It is interesting that a group of ATL proteins exist that have extensive 

homology and topology to alkyltransferases (AGTs), and that recognise the 

same or similar lesions in DNA but lack the ability to repair them. It is also 

intriguing that E.coli has two AGTs and an ATL protein, S.cerevisiae and 

mammals only an AGT, and S.pombe only an ATL protein.(82) It would seem 

to suggest that the presence of AGT (and hence the direct repair of alkyl 

adducts in DNA) is not essential for the survival of living organisms. The 

observation that mice lacking AGT are phenotypically normal would also seem 

to suggest this.(83)  

It may be that in divergent organisms, a different range of DNA lesions 

are generated in vivo, and that these substrates are processed most 

effectively either by a direct repair protein (AGT) or by a protein that signals to 

other DNA repair pathways (ATL). Even if the spectrum of lesions in the cells 

of different organisms is the same, it could be that some species survived by 

having a single protein with a broad substrate specificity range, and others by 

developing a number of proteins, each with their own niche, that worked 

together to remove genotoxic damage.  

It is possible that AGTs evolved from proteins that had the ability to 

bind O6-alkylguanine lesions but were unable to remove the alkyl group. 

Mutations in these proteins, including the generation of a cysteine residue in 

the active site, could have led to the acquisition of alkyltransferase activity. It 

is conceivable that this new pathway then became the dominant pathway for 

the repair of DNA alkylation damage in some organisms. On the other hand, 

ATL proteins may be the result of substitutions in an AGT that caused the loss 
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of alkyltransferase activity but left the ability to bind O6-alkylguanine adducts. 

It is difficult to exclude one or the other of these two possibilities without 

further evidence.  

An ATL sequence has recently been found in the genome of the starlet 

sea anemone Nematostella vectensis.(58) The N.vectensis genome is 

surprisingly more similar to vertebrates than to nematodes or fruit flies.(84) 

This discovery of an animal ATL sequence could give an indication that there 

is a possibility of finding ATL proteins in other eukaryotes, including humans. 

It is also possible that in higher eukaryotes and mammalian systems, proteins 

exist that perform the same role as ATL proteins, for example it has been 

suggested that UV-DDB, the NER DNA damage binding complex may act as 

a functional homologue of ATL in humans.(81) 

There are still many unanswered questions about the role of 

alkyltransferase-like proteins. It is reasonable to suppose that the study of 

ATL proteins will allow us to gain insight into the mechanisms of O6-

alkylguanine lesion recognition, to identify any interacting protein partners and 

to discover if there are connections between direct repair and other seemingly 

distinct repair pathways.                
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2.0 Research Aims 

 

The general aim of this project is to investigate the function of ATL 

proteins, with particular emphasis on Atl1 from S.pombe and TTHA1564 from 

T.thermophilus. S.pombe (budding yeast) and T.thermophilus (extremophile 

bacterium) do not have an alkyltransferase (AGT) protein and therefore these 

organisms are especially interesting models for attempting to elucidate the 

function of ATL proteins.  

 

2.1 DNA Recognition by ATL Proteins 

 A systematic study of the range of DNA substrates recognised by Atl1 

and TTHA1564, including detailed binding affinities, will be carried out using 

fluorescence anisotropy or similar fluorescence-based methods. This will be 

the first study to measure a series of accurate KD values in solution and under 

true equilibrium conditions for ODNs containing a broad range of O6-

alkylguanine adducts, and will be complementary to and extend upon the 

studies already conducted using ELISA and SPR. In addition, these 

measurements will allow direct comparisons to be made between ATL 

proteins from markedly different organisms (the prokaryote T.thermophilus 

and eukaryote S.pombe) and with different active site motifs (PAHR and 

PWHR respectively). If insight is gained into the preference of ATL proteins for 

binding certain types of modified bases, it should facilitate in the elucidation of 

the mechanism of lesion recognition and may give some clues as to the 

biological function of ATLs. 
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 The ODN substrates containing a wide variety of O6-alkylguanine and 

related analogues will be prepared using post-DNA synthesis chemistry using 

synthetic ODNs containing the reactive base 2-amino-6-methylsulfonylpurine. 

  

2.2 ATL Proteins and NER 

It has been proposed that the relatively stable Atl1-DNA complex acts 

as a molecular signal to proteins in other repair pathways. Pull-down assays 

have been used with other ATL proteins (TTHA1564 and eATL) to find 

interacting proteins, such as UvrA which links ATLs to nucleotide-excision 

repair (NER).(63,80) Therefore, we will attempt to isolate Atl1 in complex with 

any interacting proteins which we hope will give more information about its 

specific cellular function. Mass spectrometry-based proteomics will be used to 

identify any bound proteins and thereby give an indication of the possible 

repair pathways with which Atl1 is involved.  

Although the Atl1-DNA complex is relatively stable the binding is 

reversible and therefore attempts shall be made to obtain a covalently cross-

linked Atl1-DNA complex as it will be more robust and possibly more suitable 

for use in this assay. To this end, a chemical moiety that is capable of reacting 

specifically with the active site cysteine (in the Atl1 W56C mutant) will be 

synthesised and introduced into an ODN substrate. Isolation of Atl1 with its 

binding partners may provide further evidence of whether the Atl1-DNA 

complex is involved in the NER pathway as proposed or an alternative repair 

mechanism. The stable Atl1-DNA complex appears to be suitable to block 

RNA polymerase during transcription and also large enough to be recognised 

as a bulky lesion by the NER machinery and therefore these experiments may 
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clarify whether Atl1 is involved in transcription-coupled repair (TCR), global 

genome repair (GGR) or both sub-pathways.      
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3.0 Synthesis and Modification of O6-
alkylguanine-containing 

Oligodeoxyribonucleotides (ODNs) 

 

In order to investigate the properties and behaviour of AGT and ATL 

proteins, it was necessary to synthesise and chemically modify various 

oligodeoxyribonucleotides (ODNs) for use in biochemical assays and 

structural studies. This chapter describes the synthesis and characterisation 

of the ODNs that were made for this project.   

 

3.1 Introduction to ODN Synthesis and Modification 

3.1.1 Synthesis of Oligodeoxyribonucleotides 

Oligodeoxyribonucleotides (ODNs) are short pieces of single-stranded 

DNA, where each nucleoside unit is joined to the next by a phosphodiester 

linkage to comprise a strand that is typically less than one hundred and fifty 

nucleotides in length. Oligodeoxyribonucleotides are usually chemically 

synthesised in order to generate a DNA strand of specific sequence; the 

method used most commonly utilises phosphite triester (or phosphoramidite) 

chemistry, which was developed by Caruthers into an automated process.(85) 

At the heart of the synthesis is a highly efficient (greater than 99%) coupling 

reaction between the 5!-hydroxyl group of a 2!-deoxyribonucleoside bound to a 

solid support and a 5!-DMT-(N-protected)-2!-deoxyribonucleoside 3!-O-(N,N-

diisopropyl) O-alkyl phosphoramidite.  
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 The solid-phase synthesis of oligodeoxyribonucleotides is generally 

carried out in the 3!#5! direction, the reverse of the biosynthetic pathway 

during DNA replication. It is extremely efficient due to the fact that a large 

excess of the soluble phosphoramidite can be used to drive the reaction to 

high yield. In addition, the heterogenous nature of the reaction allows for a 

simple washing step to remove excess reagents and byproducts from the 

solid support-bound polymer at each step. The solid support is made of 

controlled pore glass (CPG) beads which are rigid, non-swellable and inert. 

When the synthesis is complete, the ODN can be cleaved from the beads by a 

thirty minute treatment with concentrated aqueous ammonia. 

The synthesis itself consists of a cycle of chemical reactions that 

extend the nucleotide chain by one residue at a time. The cycle (figure 3.1) is 

repeated until the specific sequence of nucleotides is incorporated into the 

ODN of desired length. The basic steps of this cycle are as follows: 

 

1. Detritylation (removal of the 5!-DMT group); 

2. Activation of the appropriate phosphoramidite by a coupling agent; 

3. Addition of the activated phosphoramidite to the growing chain; 

4. Capping to block the chains that have not reacted during the coupling; 

reaction 

5. Oxidation of the phosphite to a phosphate triester.     

 

Initial removal of the trityl group on the CPG-bound protected 

nucleotide is carried out by reaction with trichloroacetic acid in methylene 

chloride  (i.e.  acid  deprotection).  The  dimethoxytrityl  cation  (DMT+)  that  is  



Chapter 3 

 57 
 
 

 
 

 
Figure 3.1: The cycle of steps in phosphoramidite synthesis of oligonucleotides 

 
 

released into solution has a bright orange colour: comparison of the intensity 

of this colour with that of the previous cycle can be used to calculate the 

coupling efficiency. The phosphoramidite to be added to the growing 

nucleotide chain is activated by mixing with 5-ethylthiotetrazole in acetonitrile 

solution: the tetrazole protonates the diisopropylamine group of the 

phosphoramidite which then reacts to give an activated 

tetrazolophosphoramidite. This then reacts with the 5!-OH group of the 

support-bound nucleotide resulting in the formation of a new P-O bond and 

the expulsion of the NiPr2 leaving group. The efficiency of coupling is excellent 

(>99%) and the only side reaction is phosphitylation of the O6-position of 
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guanine, which is completely reversed by the conditions in the capping step. 

Capping involves treatment with acetic anhydride and N-methylimidizole in 

THF to block any chains that have not reacted during coupling, in order that 

they cannot react any further and lead to failure sequences (i.e. ODNs one, 

two etc. nucleotides shorter than the desired full length sequence). Finally, the 

intermediate phosphite is oxidised to the phosphate triester by treatment with 

iodine and 2,6-collidine in aqueous THF. The hydrogen iodide that is 

generated during the oxidation reaction is neutralised by pyridine. After 

washing, the cycle can start again which introduces the next nucleotide to the 

growing chain.     

Once the synthesis is complete, and the required ODN cleaved from 

the CPG beads, the base and phosphate protecting groups are removed by 

treatment for 6 hours with aqueous ammonia at 50˚C. The oligonucleotides 

can then be purified by polyacrylamide gel electrophoresis (PAGE) or 

reversed-phase high performance liquid chromatography (RP-HPLC). 

Reversed-phase HPLC, which separates according to hydrophobicity, is a 

common technique and useful for purifying ODNs with and without the 5!-

terminal DMT group left on. The advantage of leaving the 5!-DMT protecting 

group on is that the impurities (e.g. shorter length ODNs) lacking this 

hydrophobic group have much shorter retention times by RP-HPLC and can 

therefore be easily removed. The purified oligonucleotide can then be treated 

with acetic acid in order to remove the 5!-DMT and subsequently de-salted 

using a gel filtration column. 

 In addition to being able to synthesise a specific sequence of single-

stranded DNA by the phosphoramidite method, it is also possible to use this 
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approach to introduce a variety of reporter groups at the terminal end of the 

chain.(86) Reporter groups are chemical entities that functionalise the 

oligomer so that it can be used for certain applications. For example, a 

fluorophore can be introduced, such as fluorescein or hexachlorofluorescein 

(figure 3.2), which effectively labels the DNA in order that it can be used for 

fluorescence studies (e.g. fluorescence anisotropy).(87) Also useful is the 

introduction of a biotin molecule onto the 5!-end of an ODN by use of a 

phosphoramidite reagent. The presence of the biotin group allows the ODN to 

be separated from other molecules by a highly selective affinity step, 

exploiting the extremely high affinity interaction of biotin with streptavidin, 

which itself can be immobilised on beads.      

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Hexachlorofluorescein, a fluorescent reporter group 

 

ODNs are useful substrates for proteins that bind DNA. Using reporter 

groups such as those mentioned above, they can be used as probes in many 

types of assay. Whilst they are usually in the single-stranded form after DNA 

synthesis, two complementary ODNs can be annealed together to form 
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double-stranded DNA duplexes. It is also possible to deliberately incorporate 

modified bases into ODNs, using specific phosphoramidites, in order that they 

can be used as substrates for proteins that recognise those modifications. For 

example, the phosphoramidite reagent is commercially available that can be 

used to place an O6-methylguanine-containing nucleotide residue at a specific 

site in the synthesised ODN. These ODNs could then be used in assays with 

alkyltransferase (AGT) and alkyltransferase-like (ATL) proteins that recognise 

DNA containing this modified base. 

3.1.2 Post-DNA Synthesis Modification of ODNs 

 As mentioned, ODNs with specific modifications such as O6-

methylguanine can be synthesised using specific base-modified 

phosphoramidite reagents. One of the methods that can be used to introduce 

these modifications into ODNs (other than generating a specific 

phosphoramidite to place it into the oligonucleotide during synthesis) is that of 

post-synthesis modification. This strategy involves first synthesising an ODN 

with a reactive base that is stable to the conditions of DNA synthesis but 

which can be subsequently modified in a simple chemical transformation 

following this process.  

 

 

 

 

 

 

 

Figure 3.3: Sulfone phosphoramidite 
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Figure 3.4: Scheme for post-DNA synthesis modification of oligonucleotides, as used for the 

preparation of SIMA-labelled 13-mer ODNs (see section 3.2) (68) 

 

Whilst a number of strategies have been described (88-90) the 

Williams group have developed a simple and efficient route to the preparation 

of ODNs containing any O6-alkylguanine modification. In this procedure, 2-

amino-6-methylsulfonylpurine is introduced to an ODN during DNA synthesis 

using a unique phosphoramidite (figure 3.3).(68) Following DNA synthesis, 

treatment with an alcohol under basic conditions can be used to yield a variety 

of modified O6-alkylguanines. Complete cleavage of the ODN from the CPG 

beads and base deprotection is achieved by treatment with aqueous ammonia 

to yield an ODN with an O6-alkylguanine base (figure 3.4). Alternatively, an 

amine can be used in the displacement step to yield an N6-alkylpurine base.  

It is worth mentioning that cleavage of the ODN from the CPG and removal of 

the phosphate diester protecting groups is likely to occur during the first step 

of this post-DNA synthesis chemistry. The natural bases are likely to be 

deprotected after approximately one day in aqueous ammonia, although the 
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modified base forms an N2-formylamino analogue which requires three days 

for full deprotection.(68) 

 This route has been used previously to make ODNs containing O6-

methylguanine (O6-MeG), O6-benzylguanine (O6-BnG), O6-(2-

hydroxyethyl)guanine (O6-HOEtG), O6-(4-bromothenyl)guanine (O6-BTG) (68) 

and more recently O6-carboxymethylguanine (O6-CMG) and O6-[4-oxo-4-(3-

pyridyl)butyl]guanine (O6-PobG).(71) These ODNs have been used to probe 

the substrate specificity of Atl1, an alkyltransferase-like (ATL) protein from 

S.pombe. There is scope for the method to be used to create a whole range 

of modified ODNs that could be used in experiments to probe the mechanisms 

of DNA repair involving ATL proteins.  

 

3.2 ODN Substrates for ATL-DNA Binding Assays 

It was our intention to conduct the first comprehensive, quantative and 

comparative study of the substrate specificity of two ATL proteins, Atl1 from 

S.pombe and TTHA1564 from T.thermophilus. It was decided that determining 

dissociation constants (KD) by titration using fluorescence-based methods, 

such as fluorescence anisotropy or total fluorescent emission intensity, would 

be desirable (section 4.2). To this end, we required a series of ODNs, labelled 

at the 5!-terminus with a fluorescent reporter group and of identical sequence 

but containing different O6-alkylguanine residues at a specific position. This 

would allow us to make direct comparisons of the binding affinities of ATL 

proteins with ODNs containing various interesting and relevant lesions.  
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3.2.1 Selection of Fluorescent Dye 

As previously mentioned (section 3.1.1), hexachlorofluoroscein (HEX) 

is a useful reporter group that allows dissociation constants in the low nM 

range to be measured accurately using fluorescence-based methods. Indeed, 

we were able to show that we could quantatively measure the interaction of 

MBP-Atl1 with an ODN containing O6-methylguanine using changes in total 

fluorescent emission intensity (section 4.2). The problem when planning the 

study as a whole was the chemical stability of the HEX label. In order to 

produce the range of substrates necessary for these experiments, post-

synthesis displacement chemistry must be utilised. Having considered the 

data available from Glen Research (the manufacturer of HEX), as well as a 

recent manuscript by Chuvilin et al. (91) regarding the instability of HEX under 

basic conditions, it was not certain whether this tag would be robust enough to 

survive the treatment with aqueous ammonia for 3 days. Recently, Glen 

Research have produced a new fluorescein-based dye, SIMA (HEX) (figure 

3.5), that is available as a suitable phosphoramidite reagent for 5!-labelling of 

ODNs. This fluorescent reporter group has very similar fluorescent properties 

to HEX whilst displaying a much greater stability at high pH. For example, a 

HEX-labelled ODN deprotected with aqueous ammonia at 55°C overnight 

showed considerable degradation, while the SIMA (HEX) equivalent showed 

no decomposition (http://www.glenresearch.com//GlenReports/GR21-

110.html). Although the deprotection step used for our reactions is milder than 

these conditions, it seemed prudent to opt for the fluorescent label that is 

more chemically robust. The standard deprotection conditions for HEX are 

treatment  for  24h  in  aqueous  ammonia  at  room temperature and it follows  
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that SIMA is likely to be more suitable for the 3 day deprotection that is 

required in the post-synthetic modification (PSM) chemistry. It was therefore 

decided that the SIMA tag would be used in our experiments after we 

confirmed that, like HEX, we could use ODNs labelled with it to accurately 

measure dissociation constants (see section 4.2). 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Structure of SIMA (HEX) fluorescent label 

 

3.2.2 Synthesis of 5!-SIMA-labelled ODNs  

  

 

 

Figure 3.6: Single-stranded 13-mer ODN for use in binding assays 

 

A short sequence of DNA (13-mer ODN) was selected for modification 

and subsequent use as a substrate for studying the binding of ATL proteins 

(figure 3.6). This sequence was chosen as it had been shown to form 1:1 
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complexes with Atl1 by sedimentation analysis, and in addition is the 

sequence of the substrate used in the published crystal structures of the Atl1-

DNA complex that were solved by Tubbs et al. (58). The 5!-SIMA-labelled 

ODN containing O6-methylguanine was synthesised by DNA Technology (by 

the standard phosphoramidite method), and once it was established that 

accurate and repeatable dissociation constants could be measured using 

substrates bearing this probe, ODNs containing a full range of modifications at 

the same position (X) in the sequence were prepared using the post-synthesis 

modification (PSM) chemistry developed by Shibata et al. (92). This allowed 

us to incorporate a wide range of adducts at the 6-position of guanine using 

both alcohols and amines (figure 3.4).  

For liquid alcohols, a ratio of 9: 9: 2 (alcohol: acetonitrile: DBU) was 

used, whilst for solid alcohols the displacement was performed with a 5M 

solution in acetonitrile in a 9:1 ratio with DBU (section 9.3). For some of the 

bulkier alcohols (where the deprotonated nucleophile will be more sterically 

hindered) the two day incubation period was increased in length, or the 

reactions performed at elevated temperatures, the full details of which are 

discussed in greater detail later in this section. For reactions using 

fluorescently-labelled ODNs, the incubations were carried out in the dark to 

protect the SIMA dye, though in the case of reactions with unlabelled ODNs 

this was not necessary.   

It is extremely important that the reaction is dry during this 

displacement step so that no hydroxide ions compete with the alkoxide ions 

as the displacing nucleophile (which would result in guanine as the product). 

Therefore, all reagents used in these reactions were dried over molecular 
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sieves, and the tips used to transfer the reagents dried in a vacuum desiccator 

for one hour prior to use. In addition, the acetonitrile was dried and purified 

using Grubbs apparatus and the reaction vessel was flushed with nitrogen 

prior to incubation in order to drive out air and moisture. After this 

displacement step, treatment in aqueous ammonia (33%) for 3 days at room 

temperature resulted in full deprotection of all the bases of the ODN. The 

oligonucleotides were evaporated to remove the ammonia, redissolved in 

water, extracted with ether, and pre-purified by NAP-10 column if necessary. 

The ODNs were subsequently purified by reverse phase HPLC (RP-HPLC) in 

TEAB buffer (see section 9.4) 

 

Figure 3.7: An RP-HPLC trace of reaction mixture from the synthesis of OW18 (O6-CMG). 

The main peak at retention time T = 20.7 min is the product. 

 

 A typical RP-HPLC trace is shown in figure 3.7. The SIMA-labelled 

ODNs were purified on a 0-40% gradient (buffer A= 0.1M TEAB, 5% MeCN, 

buffer B= 100% MeCN) over 30 min (section 9.4). This is a steeper gradient 
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than for unlabelled ODNs which were typically purified on a 0-10% or 0-15% 

gradient. This modified gradient is required due to the hydrophobic nature of 

the fluorescent tag (which increases the affinity of the ODN for the column). 

All ODNs purified had similar retention times (approximately 19-21 min) 

despite having different guanine adducts (section 9.4). The 5!-SIMA label 

gives the ODNs a characteristic reddish-pink colouration. The ODNs were 

kept in the dark (as far as possible) throughout the purification process to 

minimise any potential damage to the dye.    

After removal of the buffer salts by evaporation, the purified ODNs 

were redissolved in distilled water and stored at -20˚C. The identity of the 

adduct-containing ODNs were confirmed by mass spectrometry (figure 3.9) 

and the DNA concentrations calculated by measuring the absorbance at 

260nm (typically ODN concentration was in the range 100-300 µM). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Electrospray TOF mass spectrograph of purified OW18 (O6-CMG). 

The mass ion at 4791 is the product. 

[M-H]- 
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Using different alcohols and amines as reactants in the displacements, 

a broad range of O6-alkylguanine and other purine lesions that vary in size, 

charge, hydrophobicity and polarity were introduced into ODNs. Many were 

selected that are biologically relevant and others were chosen as they are 

known to be poorly repaired by MGMT (or not repaired at all). The 

modifications incorporated into ODNs will be examined in some detail in the 

pages to follow (all the modified bases prepared are shown in figure 5.9). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Lesions introduced to ODNs in the first batch of of PSM reactions 

 

The first ODNs to be made were those shown in figure 3.10. The 

synthesis was successful in all cases, as demonstrated by HPLC analysis and 

subsequent identification of the modified ODNs by mass spectrometry. They 

are all biologically relevant lesions: O6-ethyl, O6-propyl and O6-benzylguanine 

adducts are common products arising from endogenous and exogenous 

alkylating agents (including those used in cancer chemotherapy), whilst O6-
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hydroxyethylguanine lesions are generated by exposure to ethylene oxide 

(93) and also produced endogenously by certain metabolic processes such as 

oxidation of methionine and lipid peroxidation.(94)  

 

Figure 3.11: Lesions introduced to ODNs in the second batch of of PSM reactions 

 
The next reactions performed were a little more adventurous: the 

modified bases that were introduced are shown in figure 3.11. The syntheses 

of O6-pyridyloxobutylguanine (O6-PobG), O6-carboxymethylguanine (O6-

CMG), O6-aminoethylguanine (O6-AEG) and N6-hydroxypropylguanine (HOPr-

DAP) all worked well to give the expected products. For preparing O6-AEG, 

trifluoroacetyl (TFA) N-protected ethanolamine was used to ensure that the 

desired product would be formed (i.e. displacement of the methylsulfonyl 

group by the less nucleophilic alcohol function). The TFA-protecting group is 

base labile and was therefore removed under the standard deprotection 

conditions (three days in aqueous ammonia). In order to form the HOPr-DAP, 
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unprotected aminopropanol was used which reacts via the amino group. The 

synthesis of O6-methyladamantylguanine (O6-MAG) required the duration of 

the displacement step to be increased (5 days at 37˚C instead of the standard 

2 days), which is likely to be due to its large size and hence greater steric 

hindrance when acting as a nucleophile. The synthesis of O6-

carboxymethylguanine (O6-CMG) by reaction of sulfone-modified ODN with 

methyl glycolate also requires a slight modification to the procedure. Thus, 

after the initial displacement step, the product must be treated with 1M NaOH 

for one day before the addition of aqueous ammonia for 3 days. This step is 

necessary to convert the methyl ester into a carboxylate moiety as direct 

treatment with ammonia would produce the O6-carboxamido analogue. 

Deprotection of the nucleobases then proceeds as usual.  

 O6-CMG and O6-PobG were prepared as they are both highly relevant 

types of biological damage. These lesions have been shown to occur by the 

action of exogenous chemical agents on DNA: by nitrosamines present in red 

and preserved meats, and by NNK present in tobacco smoke, respectively. 

O6-MAG was made due to its large size which it was thought may prevent it 

from being bound efficiently by a base-flipping protein such as Atl1. To 

examine the effects of charge on recognition, O6-AEG and O6-CMG were 

prepared: the O6-AEG residue will be positively charged at pH 7.5, whilst O6-

CMG will carry a negative charge. For HOPr-DAP, the substitution of nitrogen 

for oxygen at the 6-position of guanine, whilst still having an alkyl chain, made 

it an interesting analogue to incorporate into the study.          

Subsequently, attempts were made to synthesise ODNs containing the 

analogues  shown  in  figure  3.12. Unfortunately  there  were some difficulties  
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Figure 3.12: O6-alkylguanine adducts that failed to be introduced to ODNs using PSM 

chemistry with t-butanol and hexadecanol 

 

with the synthesis of both O6-hexadecylguanine (O6-HDG) and O6-tert-

butylguanine (O6-tBuG) and the desired products could not be formed. 

Hexadecanol is poorly soluble in acetonitrile, and after addition of all the 

reagents there was clearly undissolved solid alcohol in the reaction mixture. 

After the first attempt using the standard reaction conditions failed, more 

aggressive conditions were used (7 days at 50˚C) which improved the 

solubility of the alcohol but still did not give the required product. These 

conditions were the same used for the other reaction shown, of sulfone-

modified ODN with tert-butanol, as this latter reaction suffers from using a 

poorly nucleophilic tertiary alcohol. The HPLC traces and mass spectra of the 

product mixtures from these reactions are shown in figure 3.13. The HPLC 

traces show more peaks than would be expected to be observed for a clean 

and successful synthesis, with a cluster of peaks occurring close to the 

expected retention time of the product (approximately 19-21 mins). The 

calculated masses of the ODN products are 4789 Da for the ODN containing 

O6-(t-butyl)guanine and 4957 Da for ODN containing O6-(hexadecyl)guanine. 

There are no peaks in the spectra corresponding to these masses or even any  
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Figure 3.13: HPLC traces and ESI mass spectra of the product mixtures formed from PSM 

reactions of ODN with t-butanol (a, c) and hexadecanol (b, d). Calculated mass of ODN 

containing O6-tBuG = 4789 Da (c) and of ODN containing O6-HDG = 4957 Da (d) 

a b 

c 

d 
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that are close to these values. 

For the synthesis of ODNs containing 2,6-diaminopurine (figure 3.14), 

ammonia gas was bubbled through dry acetonitrile for one hour, and the 

resulting solution (containing no DBU) added to the solid support-bound 

sulfone modified ODN with the reaction then incubated at 37˚C for 2 days. 

Following this, aqueous ammonia treatment was performed as normal (3 days 

at r.t.). This provided the desired product as confirmed by mass spectrometry. 

It was of interest to look at ODNs containing 2,6-DAP as substrates for ATL 

proteins due to the presence of a 6-amino group, rather than a methoxy (in 

O6-methylguanine) or a carbonyl in the case of guanine. 

 

 

 

 

 

 

 

Figure 3.14: Lesion introduced to ODNs by PSM reaction with ammonia in acetonitrile 

 

In addition, an ODN containing O6-methylhypoxanthine (O6-MHx) was 

prepared by post-DNA synthesis displacement using a commercially available 

6-chloropurine containing ODN (figure 3.15). The modified ODN was treated 

for 4 days at 37˚C with MeOH and DBU in acetonitrile instead of the 2 days 

used for sulfone modified DNA. After treatment with aqueous ammonia for 

three days to remove the fast/mild deprotection groups on the other bases in 

the sequence, we recovered our desired product, which was purified by RP- 

HPLC in the same manner as for other ODNs. The reason we were interested 
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in using an ODN containing this modified base was to observe how important 

the N2-amino group is for recognition of O6-alkylguanines by Atl1. 

 

Figure 3.15: PSM reaction using a reactive 6-chloropurine base and methanol to prepare O6-

methylhypoxanthine (O6-MHx) 

 

The other ODNs that were used in the substrate recognition study of 

ATLs were made by the standard method, i.e. by incorporation of the 

appropriate phosphoramidite into the chosen position in the sequence during 

DNA synthesis (section 3.1). The lesions introduced into ODNs in this manner 

are shown in figure 3.16. ODNs containing guanine (G), O6-methylguanine 

(O6-MeG), S6-thioguanine (ThioG) and 2-aminopurine (2-AP) were obtained 

from DNA Technology A/S. The ODN containing guanine at the same position 

as the modified base is the control sequence. ODN containing ThioG was 

prepared to investigate the effect of substitution of the oxygen by sulfur (a 

larger and less electron dense atom) on recognition by Atl1. The thiocarbonyl 

group of ThioG forms weaker H-bonds than that of a carbonyl group (due to 
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the reduced polarity of the C=S bond) and this could probe whether the 

protein recognises guanine by donation of an H-bond to O6. Similarly, the 

ODN containing 2-AP allowed the investigation of the role of the O6-alkyl 

group in recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Modified bases incorporated into ODNs by standard phosporamidite method 

 

The ODNs containing the tricyclic guanine analogue were made in 

Sheffield using a phosphoramidite that was synthesised by Kabir Abdu of the 

Williams group as part of his PhD project. This modified base was originally 

conceived as a possible crosslinker for MGMT (the human AGT protein) but 

was also included in the current study. It is an interesting analogue as it is 

‘locked’ in the anti- rather than the syn-conformation (relative to the purine ring 

and the alkyl group). It has been previously reported that alkyl groups in the 

anti-conformation are repaired very slowly (or not at all) by MGMT (95) and 
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thus it was of interest to examine whether a substrate with an alkyl group 

locked in the anti conformation would be recognised by Atl1.        

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Modified bases incorporated into ODNs for SPR-based binding studies with Atl1 

 

As part of a collaboration with the Margison group, ODNs containing 

O6-ethyl, O6-n-propyl, O6-benzyl and O6-n-butylguanine were prepared for use 

as substrates for Atl1 in SPR-based binding studies (figure 3.17). Whilst most 

of the reactions worked well as expected, the reaction with isopropanol was 

not successful under the standard conditions. HPLC analysis of the reaction 

mixture indicated that the expected product peak appeared fine when the 

DMT group was intact. However, after purification of the main peak and 

subsequent deprotection to remove DMT, the ODN product showed multiple 

peaks in the HPLC trace which made it impossible to purify any further (see 
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figure 3.18). As a result, the reaction was repeated but the duration of the 

displacement step was increased from 2 to 7 days at 37˚C. However, even 

under these conditions the reaction was still unsuccessful and resulted in 

HPLC data that was almost identical. Therefore, another variation was 

attempted which involved addition of DABCO as well as DBU in the reaction 

(at the same concentration, section 9.1 for details)  in  the hope that this would 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: HPLC traces of the product from the reaction of ODN with isopropanol, DMT on 

(top) and DMT off (bottom) 



Chapter 3 

 78 
 
 

increase the efficiency of the displacement. DABCO would be expected to 

initially displace the methylsulfonyl group on the purine base to produce an 

intermediate that is more reactive towards alcohols, due to DABCO being a 

better leaving group than the methylsulfonyl group (see figure 3.19). However, 

despite the longer incubation time and higher temperature this reaction also 

failed to give the desired product and produced an HPLC trace that displayed 

a multitude of unresolvable peaks akin to those from the previous reactions.  

 

  

Figure 3.19: Displacement reaction with isopropanol using DABCO 

 

3.3 ODN Substrates for S.pombe Affinity Purification Assays 

 A number of ODN substrates were prepared that could be used as 

‘bait’ in pulldown assays. The intention was to attempt to isolate Atl1, along 

with other interacting proteins, from whole-cell extracts of S.pombe in order to 

elucidate more information about the role of Atl1 in the NER pathway. The 

pulldown experiments are described in detail in section 6.3, whilst the 

preparation of the ODNs is discussed here. 

 It is known in both humans and S.cerevisiae that during NER a patch of 

between 25-30 nucleotides including the damage is excised from the 

DNA.(26,96) Consequently it was considered that substrates significantly 
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longer than this would be required in order to have a good chance of detecting 

any protein-DNA and protein-protein interactions related to NER. If the ODNs 

were too short it could hamper the formation of any nascent repair complexes 

on the DNA. Traditional DNA synthesis by the standard phosphoramidite 

method is limited to making ODNs of no more than around 100-150 

nucleotides in length, as the inefficiences of the process with each 

progressive step are incorporated into the final yield. In addition, with this 

method one is restricted to incorporating base lesions for which there are 

commercially available phosphoramidites. This effectively means only O6-

methylguanine can be used with this approach: indeed, two of the 102-mer 

ODN substrates (those containing O6-methylguanine and guanine) were made 

this way. However, different strategies were required to make the others, as 

described below.  

 

3.3.1 Preparation of 219-mer ODN Substrates by Primer Extension 

Due to the limitations mentioned above, it was decided to make two 219-mer 

ODNs by the following approach: standard phosphoramidite synthesis of two 

120-mer ODNs with short terminal regions complementary to each other, 

hydridisation of these regions to form an overlapping ‘template’, and then 

primer extension by a DNA polymerase I Klenow fragment to give the full-

length double-stranded ODN (figure 3.20). Full details of the procedure are 

given in section 9.6. This approach successfully produced two 219-mer ODNs 

that were identical except for one key difference: one (OW61) had an O6-

methylguanine residue in the overlapping region, and the other (OW60) simply 

had a guanine residue at the same position in the sequence. The products 
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were analysed on a PAGE gel, which showed bands of the correct size for 

219-mer ODNs and demonstrated that the process had been successful 

(figure 3.21). In addition, duplex 102-mer ODNs OW62 and OW63 that were 

synthesised commercially and annealed to their complementry ODN (section 

3.3.2 and figure 3.22) were analysed on the same gel, and an EMSA was also 

performed to show that Atl1 would bind to OW61 (containing O6-MeG) but not 

to OW60 (the control ODN) (figure 3.21). 

 

Figure 3.20: Synthesis of double-stranded 200-mer ODNs by primer extension 



Chapter 3 

 81 
 
 

 

 

Figure 3.21: PAGE analysis of double-stranded 200-mer ODNs prepared by primer extension 

 

3.3.2 Preparation of 102-mer ODN Substrates by Annealing and Ligation  

 

 

Figure 3.22: Annealing of single-stranded ODNs made by standard DNA synthesis to form 

duplex DNA substrates (sequences of ODNs and code names are in section 9.2)  

 

The single-stranded 102-mer ODNs containing O6-methylguanine 

(OW74) and guanine (OW73) were synthesised using the standard 

phosphoramidite method, along with the 5!-biotinylated 102-mer ODN 

  +     -     +      -    +     -     +     -         Atl 
(10"M) 

OW60     OW61      OW62       OW63 
   G          MeG           G            MeG 

102-mer 
dsDNA 

219-mer 
dsDNA 
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complement (OW70). These ODNs could simply be annealed together to form 

the double-stranded substrates for use in the pulldown assays (figure 3.22, 

OW73+OW70 = OW62 and OW74+OW70 = OW63). However, an analogous 

double-stranded substrate containing an O6-benzylguanine residue was also 

required. It was not possible to have this ODN made commercially (a 

phosphoramidite for incorporating O6-benzylguanine is not available),  and  so  

    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: Synthesis of double-stranded 102-mer ODN by annealing followed by ligation 
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it was decided to prepare it by ligation: by joining shorter, phosphorylated 

ODN fragments together with DNA ligase, using the 102-mer complement as 

a template. This approach is shown in figure 3.23. Three short ODNs (OW72, 

OW36 and OW73) that were complementary to sequential regions of the 

biotinylated 102-mer (OW70) were synthesised. For the ligation to be 

successful, it was necessary that OW36 and OW72 contained a phosphate 

group on the 5!-terminus, which is required by DNA ligase to form the 

phosphodiester linkage of the DNA backbone and thus make a continuous 

strand. After mixing together, the four single-stranded ODNs were hybridised 

together by heating to 90˚C for 3 min in 50mM NaCl and being allowed to cool 

slowly. After the efficiency of annealing had been checked by PAGE, DNA 

ligase was added and the reaction incubated at 16˚C for 16h. This produced a 

double-stranded 102-mer ODN product (OW64), as confirmed by PAGE 

analysis (by comparison to OW63, the dsODN containing O6-methylguanine 

which was made by a standard annealing process). EMSA also demonstrated 

that OW64 (and also OW36 annealed to its complement) were bound by Atl1 

(figure 3.24). Of course, to produce the modified, double-stranded DNA 

substrate described above it was necessary to make the appropriate ODN 

containing an O6-benzylguanine residue and a 5!-phosphate group (OW36, 

shown in red in figure 3.23). In order to do this, an ODN containing the 2- 

amino-6-methylsulfonylpurine phosphoramidite was prepared, also using a 

CPRII phosphoramidite (Glen Research) at the 5!-terminus. This CPRII group 

was later converted into a 5!-phosphate (figure 3.25). The displacement 

chemistry is described in detail earlier in this chapter and proceded here with 

no  difficulty  to  give  the expected ODN product containing O6-benzylguanine 
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Figure 3.24: PAGE analysis of the ODN product (OW64) of the ligation reaction 

 

 

Figure 3.25: Deprotection and conversion of the CPRII reagent to a yield a 5!-phosphate 
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and the CPRII group with the 5!-DMT still intact. This was purified by HPLC 

(DMT-ON), the DMT protecting group removed by treatment with 20% (v/v) 

acetic acid for 1h and the DNA dried to a pellet. In order to eliminate the 

remainder of the 5!-CPRII group the pellet was simply treated with aqueous 

NH3 (33%) for 15 min at room temperature. The product ODN (OW36, figure 

3.26) was then purified by RP-HPLC and characterised by ES-MS. 

 

 

 

 

 

 

Figure 3.26: 5!-phosphorylated 23-mer ODN containing O6-benzylguanine (OW36) 

 

3.4 ODNs for Fluorescence-based MGMT Activity Assay 

 In a different part of the project, we wished to develop a non-

radioactive, fluorescence-based assay for measuring the inhibition of MGMT 

alkyltransferase activity by various modified ODN substrates. To this end, an 

assay was devised (section 4.5) using probes that exploit the properties of 

ODNs known as molecular beacons (section 4.1.4). The molecular beacon 

ODNs OW31 and OW39 are shown in figure 3.27. These were synthesised 

using a 3!-BHQ-label (Black Hole Quencher 2, Glen Research) on the CPG. 

BHQ-2 is compatible with ammonia deprotection and exhibits an excellent 

coupling efficiency (http://www.glenresearch.com/GlenReports/GR17-

14.html). The O6-methylguanine residue (in OW31) is placed in the sequence 
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Figure 3.27: Molecular beacon ODNs for use in fluorescence-based MGMT activity assays 

 

using the appropriate phosphoramidite; in the control sequence (OW39) this is 

simply replaced with guanine. The ODNs were also labelled at the 5!-terminus 

with a Cy3 fluorescent dye. These sequences have been deliberately 

designed so that the ODNs will self-hybridise into hairpin stems (i.e. fold back 

on themselves so that single-stranded structure becomes double stranded). 

The formation of this secondary structure will also bring the 5!-Cy3 and 3!-

BHQ-2 labels into close proximity. 

 The principles of molecular beacons are described in 4.1.4. Briefly, 

BHQ-2 is a dark quencher molecule produced by Biosearch Technologies Inc. 

that is completely non-fluorescent (figure 3.28). It produces its quenching 

effect by having a large absorbance maximum (and correspondingly high 

extinction coefficient) at a similar wavelength to the emission maximum of 

various fluorophore dyes, including Cy3 (BHQ-2 Amax = 579nm, Cy3 Emax = 

563nm). In essence, these ODNs were designed based on the properties of 

molecular beacons so that when the terminal labels are close to each other, 

‘loop’ 
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BHQ-2 will quench the fluorescent signal of Cy3. In fact, this contact 

quenching is 93% efficient for this dye-quencher pair.(97) When they become 

separated from each other, for example if the DNA were cut with a nuclease 

and the strands dissociated from each other, this quenching effect would no 

longer take place and the fluorescent emission signal of Cy3 should increase 

accordingly.  

    

  

 

 

 

 

 

 

Figure 3.28: Structure of dark quencher molecule BHQ-2 at the 3!-terminus of an ODN 

 

3.5 ODNs for Structural Studies of O6-carboxymethylguanine-

Containing DNA  

O6-carboxymethylguanine (O6-CMG) lesions in DNA are caused by the 

endogenous intestinal N-nitrosation of glycine and are associated with 

increased risk of gastrointestinal cancer.(69) Therefore, it was desirable to 

investigate the pairing geometry of duplexes containing O6-CMG. In 

collaboration with Professor Akio Takenaka and co-workers of Iwaki Meisei 

University, Japan, two ODNs that were suitable for use in structural studies of 

double-stranded DNA containing O6-CMG were prepared. The sequences 
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used are the well-characterised Dickerson dodecamers: they are 12-mer 

ODNs that will hybridize to form self-complementary duplexes.(98-100) ODNs 

containing the convertible base 2-amino-6-methylsulfonylpurine were 

synthesised by the standard phosphoramidite method, and were then 

modified using the displacement chemistry described in 3.2 to form ODNs 

containing (O6-CMG) (figure 3.29). They were purified by RP-HPLC and 

characterised by ES MS as described previously. The ODNs were then sent 

to Japan so Prof. Takenaka and co-workers could crystallise them and solve 

the X-ray structures.  

 

 

 

 

 

 

 

 

 

Figure 3.29: Modified Dickerson dodecamers containing O6-CMG for use in structural studies 

 

Both modified dodecamers formed a right-handed double helix with B 

form conformation similar to those of unmodified duplexes. The O6-

carboxymethyl group on the damaged nucleotide protrudes into the major 

groove and as such does not disrupt the DNA conformation. In OW29, O6-

CMG (X) is wobble-base paired with cytosine (C) as expected, with two 

hydrogen bonds present between N1(X)…N4(C) and N2(X)…N3(C).  
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Interestingly, there is also an additional hydrogen bond between the carbonyl 

of the X group and N4 of cytosine which stabilises this base pair (figure 3.30 

and 3.31). In OW30, X forms a pair with thymine (T) (with hydrogen bonds 

between N2(X)…O2(T) and N3(X)…N3(T)) that has a Watson-Crick type 

geometry, with propeller twisting to release the unfavourable O6(X)-O4(T) 

interaction. In addition, there is an interaction between the hydroxyl hydrogen 

of X and the O4 of T (figure 3.30).  

   

 

Figure 3.30: Base-pair interactions between O6-carboxymethylguanine (O6-CMG) and 

cytosine (a) and thymine (b) observed in crystal structures 

 

When DNA polymerase was modelled in complex with OW29 and 

OW30, it suggested that both pairing modes would be acceptable to the 

enzyme. Hence, the presence of O6-CMG in a DNA template is capable of 

directing the incorporation of both dCTP and dTTP into the newly synthesised 

DNA and leads to GC#AT transition mutations. This corroborates existing 

evidence of the mutagenic effects of these lesions and is likely to be, in part, 

the origin of increased risk of gastrointestinal cancer.   
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Figure 3.31: Stabilisation of the O6-CMG: T base-pair by an H-bonding interaction between 

the carboxymethyl carbonyl group and the thymine N4 atom  
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4.0 Fluorescence-based Methods for 
Studying ATL and AGT Proteins 

 
 
 There are many techniques for studying and quantifying protein-DNA 

interactions. It was decided to primarily use fluorescence-based methods, 

such as fluorescence anisotropy (FA), total fluorescent emission intensity 

(TFEI) and Förster resonance energy transfer (FRET) for this project. All 

these methods involve the labelling of an ODN with a fluorescent tag, which 

can then be monitored using a fluorimeter: changes in its signal provide 

information about the environment or properties of the label. In terms of 

protein-DNA interactions, fluorescent assays such as FA and TFEI are 

solution-based, real time, true-equilibrium techniques and as such may give 

them certain advantages over other methods of calculating dissociation 

constants (such as electrophoretic mobility shift assays (EMSA), surface 

plasmon resonance (SPR) or enzyme-linked immunosorbent assay 

(ELISA)).(101) Compared to SPR or ELISA, where typically one of the 

partners in the interaction is immobilised, steric or entropic factors that may 

affect the value of the KD will be less of an issue and in this sense assays of 

this type may give more accurate and relevent binding data. The theoretical 

aspects of these fluorescence-based methods and experimental design are 

examined in more detail in this chapter. 
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4.1 Introduction to Fluorescence-based Methods 

4.1.1 Fluorescence Anisotropy (FA) 

 Fluorescence anisotropy is a technique often used to monitor protein-

DNA interactions, having been first utilised in this context by Heyduk and Lee 

in 1990.(102) It has since been used to evaluate a variety of interactions 

between proteins including EcoKI methyltransferase, EcoRV restriction 

endonuclease and Archael family B DNA polymerases and their DNA 

substrates.(87,103,104) The principles of the method are based on the fact 

that fluorescent molecules have an excitation and an emission dipole, and 

that there is a short time lapse (the fluorescent lifetime) between the 

absorbance of a photon that excites the fluorophore and the subsequent 

emission of a fluorescent photon. Polarised light will only excite molecules in 

the solution that have the correct orientation; that is, their dipole is aligned 

with the incident light. Fluorophores will continuously be tumbling into 

alignment with the polarised light, being excited, and then emitting photons at 

an angle based on their position after the fluorescent lifetime has elapsed. If a 

molecule is rotating faster, this angle will be greater relative to the original 

position of the fluorophore. When a number of molecules are moving quickly 

the emitted light is depolarised more effectively which leads to a larger 

difference in the angle between the incident and emitted light. This leads to a 

low anisotropy measurement as less of the emitted light is still polarised. 

When molecules are moving at a slower rate, there is more retention of 

emission polarisation, and the anisotropy value will be correspondingly higher 

(figure 4.1). The spectrometer allows measurement of how much polarised 
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light is emitted in the vertical and horizontal plane and then the anisotropy is 

calculated from these measurements. Anisotropy is defined by: 

 

anisotropy = (IVV – IVH) / (IVV + 2IVH) 

 

where IVV and IVH are the intensities of the vertical and horizontal components 

of the emitted light using vertical polarised excitation.  

 

 

Figure 4.1: Principles of fluorescence anisotropy: free fluorescently-labelled DNA in solution 

has low anisotropy, which increases as DNA becomes bound by protein 

 

Fluorescence anisotropy can be used to measure protein-DNA 

interactions due to the fact that a DNA-protein complex is larger and bulkier 

than a free DNA molecule and hence will tumble more slowly in solution. This 

means when all the fluorescently-labelled DNA is unbound (and therefore 

tumbling quickly) the anisotropy value will be relatively low, and as the DNA is 

bound by protein the value will become higher as the complex tumbles more 
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slowly and a larger proportion of the emitted light remains polarised or 

anisotropic.  The change in anisotropy thus gives a measure of the fraction of 

the DNA that is bound, and can be used to calculate the dissociation constant 

(KD). 

 Oligodeoxyribonucleotides (ODNs) can be labelled with fluorescent 

labels in order to be used for this purpose. Hexachlorofluorescein (HEX) is a 

useful dye as it is available commercially as a phosphoramidite for labelling 

the 5!-terminus of the ODN and has a sensitivity that allows KD values in the 

low nanomolar (nM) range to be measured.(87) A range of ODNs containing 

both a HEX tag and one of the many O6-alkylguanine lesions would allow 

dissociation constants of various different DNA-Atl1 complexes to be 

measured. This would give information about the binding preferences of Atl1 

for various types of O6-alkylguanine adducts in DNA, allowing a systematic 

and quantative study of Atl1 substrate recognition.  

 Dissociation constants (KD) have been reported for Atl1 bound to ODNs 

containing various O6-alkylguanine lesions using enzyme-linked 

immunosorbent assay (ELISA) and surface plasmon resonance (SPR). As 

described earlier, these methods involve immobilising the ODN of interest 

onto a surface before binding the protein and measuring data from which the 

KD can be derived. Fluorescence anisotropy has the advantage of being a 

solution-based equilibrium technique which therefore should provide more 

reliable values for the dissociation constants for the binding of Atl1 to DNA.  

4.1.2 Total Fluorescent Emission Intensity (TFEI) 

A related fluorescence-based technique that can also be used to 

quantify molecular interactions involves measurement of changes in total 
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fluorescent emission intensity upon titrating protein into a solution containing 

the labelled ODN. It is important to note that this method can only be used if 

the specific interaction between the protein and DNA substrate causes an 

effect on the fluorescent label, either quenching or enhancing its fluorescent 

signal. If, for instance, addition of protein into a solution containing fluorescent 

ODN causes a concentration-dependent change in total fluorescent emission 

intensity (TFEI) then this type of titration may be used rather than 

fluorescence anisotropy (figure 4.2). Typically this change will involve a  

quenching effect caused by the change in the local environment of the 

fluorophore, from a hydrophilic environment when unbound in solution to a 

more hydrophobic one when bound by and therefore in close proximity to the 

protein.  

 

 

Figure 4.2: Principles of using total fluorescent emission intensity to measure protein binding 

to ODN substrates. 

 

The advantage of this method is that lower concentrations of ODN may 

be used as the corresponding fluorescent signal is greater than that of FA, 

which is useful if the KD values that are being measured are in the low 

nanomolar-to-picomolar range. The titrations can also be performed on any 

fluorimeter, rather than one that is equipped to permit FA measurements to be 
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taken: hence the experiments are somewhat more versatile. Finally, the 

experiments themselves require less time to complete. 

4.1.3 Förster Resonance Energy Transfer (FRET) 

Förster Resonance Energy Transfer, or FRET, is a process of nonradiative 

energy transfer between two chromophore molecules. During this process, 

one chromophore acts as the donor and transfers excitation to the other (the 

acceptor) without the emission of a photon. The theory was developed by 

Theodore Förster in the late 1940s, and it has since become widely used for 

biological applications. The efficiency of energy transfer is dependant on 

distance (1 / r6, where r = distance between donor and acceptor) which 

effectively means that it operates over about 10-100 Å, of similar dimensions 

to many biological macromolecules. This makes it a useful tool for studying, 

for example, protein-protein, protein-DNA interactions and RNA structure. The 

efficiency of FRET is determined by the following factors: 

 

1)  the proximity of donor and acceptor (these need to be in 10-100 Å    

distance range) 

2)  the overlap of the absorption spectrum of the acceptor with the 

emission spectrum of the donor (figure 4.3) 

3) the relative orientation of the transition dipoles of donor and acceptor  

 

If these conditions are correctly satisfied, then FRET occurs: that is, the 

fluorescent excitation of the donor is transferred to the acceptor, quenching 

the  fluorescence  of   the  donor  whilst  increasing  the  fluorescent  emission 
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Figure 4.3: Spectral overlap required for FRET to occur between a donor-acceptor pair 

 

intensity of the acceptor. The closer the donor and acceptor are to each other, 

the greater the transfer, and vice versa. This is given by the equation: 

 

 

 

E = FRET efficiency 

r = distance between donor and acceptor 

R0 = Förster distance (the distance where the FRET efficiency is 50% for a 

specific donor-acceptor pair) 

 

 In practice, when using FRET to study biomolecules, the donor and 

acceptor pair are usually fluorophore dyes, such as fluoroscein, cyanine etc. 

There are many such commercially available dyes which have the required 

overlapping emission/excitation spectra to be suitable for FRET studies. When 

covalently attached to proteins or DNA they can be used to detect 
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conformational changes or bimolecular interactions, due to the fact that 

changes in their proximity will cause relatively predictable changes in the 

FRET signal. For example, if two complementary ODNs of a suitable length 

(i.e. less than 30 base pairs) have appropriate dye molecules at their 5!-

terminii, then annealing them together should cause them to become close 

enough to each other to observe FRET. 

4.1.4 Molecular Beacons 

 There are ways other than FRET that a fluorophore can be quenched 

of its fluorescent emission energy. For example, static quenching involves the 

formation of a non-fluorescent ground state complex between a dye molecule 

(such as FAM, Cy3 etc.) and a so-called dark quencher chromophore (such 

as DABCYL, BHQ-2 etc.). The complex is stabilised by induced dipole and 

hydrophobic interactions and as such is efficient only when the dye-quencher 

pair are in close proximity. This static quenching effect is utilised in 

functionalised ODNs known as molecular beacons. 

     Molecular beacons were first reported by Tyagi et al. in 1996.(105) 

They designed nucleic acid probes that recognised and reported the presence 

of specific nucleic acid sequences in solution. The molecular beacons are 

ODN hairpin stem structures with a 5!-fluorophore (EDANS) and a 3!-quencher 

(DABCYL) (figure 4.4). They also contain a single-stranded loop region, which 

contains a sequence that is complementary to the target nucleic acid. When in 

the hairpin conformation, which is held together by 5-8 base pairs forming a 

stem structure, the fluorophore and quencher are close enough together for 

the emission energy of EDANS to be transferred to DABCYL and dissipated 

as heat, therefore generating no fluorescence. 
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Figure 4.4: Molecular beacon ODNs used as probes for sequence detection by Tyagi et al. 

 

However, once the molecular beacon encounters the complementary 

target sequence the loop region hybridises to it, driven by the thermodynamic 

forces inherent in the formation of many more base pairs than are present in 

the stem. Consequently, EDANS and DABCYL become estranged and this 

leads to removal of the quenching effect and a corresponding increase in the 

fluorescent emission signal of EDANS. Quantifying this increase allows the 

degree of hybridisation to be monitored easily and accurately. 

 There are now many dye-quencher pairs available (97) and molecular 

beacons are used in a huge range of biological applications.(106) For 

example, molecular beacons have subsequently been used to detect 

enzymatic activity in vitro. Li et al. developed a highly sensitive and 

convenient fluorescence-based assay to monitor the cleavage of single-

stranded ODN substrates by single-strand-specific DNA nucleases (107). In 
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addition, a molecular beacon assay has been developed by Maksimenko et 

al. to measure the base-excision repair activities of DNA glycosylase and AP 

endonuclease enzymes.(108) Both these assays have in common that 

cleavage of a molecular beacon ODN substrate causes the fluorophore-

quencher pair to become separated in space and hence lead to a 

corresponding rise in the fluorescent signal of the dye. In this way, the 

enzymatic reactions can be monitored in real time.   

It was decided to exploit some of the unique properties of molecular 

beacons to develop an assay that could assess the alkyltransferase activity of 

MGMT (section 4.5).           

 

4.2 Measurement of ATL-DNA Dissociation Constants (KD 

values) 

Fluorescence anisotropy has been used successfully by several groups 

to study protein-DNA interactions and accurately measure dissociation  

constants (KD values) (87,103,104). The Connolly group have used 

oligonucleotides (ODNs) labelled with hexachlorofluorescein (HEX) to 

measure KD values in the low nanomolar range by direct titration. This is due 

to the sensitivity of HEX which allows ODN concentrations of as low as 1 nM 

to be used in the assay (87), in contrast to fluorescein (FAM) where higher 

ODN concentrations must be used. Consideration of the available data (based 

on SPR experiments conducted by the Margison group) for Atl1-DNA 

interactions led us to initially select HEX as the label of choice as it was 

expected that the dissociation constants would be in the low nanomolar 

range.  
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The binding curves were generated by plotting protein concentration 

against anisotropy (see section 1.16 for definition), and the data was fit to the 

following equation: 

 

A = Amin + [ (D+E+KD) – ( (D+E+KD)2 – (4DE) )0.5 ] (Amax - Amin) / 2D 

 

A = the anisotropy measured at a specific concentration of enzyme (E) 

D = the oligonucleotide concentration 

Amin = the lowest measured anisotropy (i.e. when no protein is added) 

Amax = the highest measured anisotropy (i.e. when the binding is saturated) 

KD = the dissociation constant 

 

Initially, problems were encountered when using this technique to 

measure Atl1-DNA interactions. In the first experiments MBP-Atl1 fusion 

protein was used with a single-stranded HEX-labelled 23-mer ODN containing 

O6-methylguanine, O6-MeG (OW55, table 9.1 has full details of all ODN 

names and sequences). Fusion protein was initially used in the titration since 

it was reasoned that a larger protein (Atl1 = 12,600 Da, MBP-Atl1 = 54,600 

Da) would result in a complex with a slower rotation in solution when bound to 

the DNA substrate and hence cause a greater change in the anisotropy. The 

23-mer ODN was the same sequence as that used in the SPR binding assays 

by the Margison group. However, when we conducted the assay the data 

points (i.e. anisotropy values) were extremely erractic and deviated markedly 

from the fitted curve (figure 4.5). This was the case when using both single-

stranded (ss) and double-stranded (ds) ODNs in the titrations, and also when 
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using wild-type Atl1 rather than MBP-Atl1 fusion protein. In addition, the value 

of KD calculated from this plot (88nM) was significantly higher than that 

determined by SPR measurements (1.8nM). Consequently a number of 

modifications were made to the experiments. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Plot to show titration of MBP-Atl1 protein with 5!-HEX-labelled 23-mer ODN 

containing O6-methylguanine 

 

 A shorter, 13-mer ODN (OW53) was used to see if this would make 

any difference. The reasoning here was similar to that for using the fusion 

protein: a shorter ODN would have greater movement in solution when 

unbound and would therefore be affected more by protein binding, leading to 

greater changes in the anisotropy values. The assays performed with OW53 

generated slightly less erratic plots, but they were still not acceptable and 

continued to give comparatively large values for the KD (&100nM). It may be 

that this was due to the limitations of the fluorimeter that the assays were 

performed on (LS-50B Perkin Elmer), which does not possess a photon-

[OW55] = 20nM 
 

KD = 88nM 

5!-HEX-GAA CT MeG CAG CTC CGT GCT GGC CC     (OW55) 
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counting detector and could therefore be considered too insensitive for 

measurements at low DNA concentrations (in the initial experiments an ODN 

concentration of 20nM was used which is actually reasonably high). As a 

result, experiments were undertaken in Newcastle using a fluorimeter (SLM-

Aminco 8100) in the group of Professor Bernard Connolly. This instrument 

was much more sensitive and calibrated specifically for assays of this type 

which allowed an ODN concentration of 5nM to be used (a lower DNA 

concentration is preferable in experiments of this kind so that any error in DNA 

concentration is not extrapolated into the final KD value) and the plots 

generated with the data were clearly an improvement on the previous ones 

(figure 4.6).  

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Plot to show titration of MBP-Atl1 with 5!-HEX-labelled 13-mer ODN containing 

O6-methylguanine. The arrow indicates the initial levelling out of the binding curve (see text) 

 

However, the value of the dissociation constant was 87 nM, which was 

still considerably larger than the value determined previously using SPR. 

[OW53] = 5nM 
 

KD = 87nM 

5!-HEX-GCC ATG MeG CTA GTA       (OW53) 
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Furthermore, there appeared to be an initial levelling out of the curve (around 

50-80 nM, see arrow on figure 4.6) which occurs before a larger change in the 

anisotropy takes place. This occurred consistently in repeats of the same 

experiment in Newcastle and was interpreted as initial tight binding of Atl1, 

followed by subsequent non-specific binding interactions. When a plot was 

made and the dissociation constant derived from this initial binding event, a 

KD of 15nM was obtained. It was decided that if saturation of the protein-DNA 

complex formed from the specific binding interaction (to reach an end-point in 

the plot) cannot be achieved without further non-specific binding interactions 

affecting the anisotropy measurement then it would be difficult to calculate 

accurate KD values. Hence, an alternative way of quantifiying the protein-DNA 

interaction was pursued, by using total fluorescent emission intensity (TFEI) 

measurements rather than fluorescence anisotropy.  

 TFEI can be used to monitor protein-DNA interactions if the binding 

causes a change in the fluorescent signal of labelled ODN. When a saturating 

amount of MBP-Atl1 was added to HEX-labelled 13-mer ODN containing O6-

methylguanine (OW53) the fluorescent intensity decreased by approximately 

20-25%. Presumably this is due to the proximity of the protein to the HEX 

label which causes a quenching effect on its fluorescent signal. By measuring 

fluorescent intensity changes as protein concentration increases, a plot can 

be generated and used to calculate the dissociation constant. The data is 

plotted and fit in a similar way to the anisotropy measurements, using the 

following equation: 

 

I = Imax + [ (D+E+KD) – ( (D+E+KD)2 – (4DE) )0.5 ] (Imin - Imax) / 2D 
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I = the intensity measured at a specific concentration of enzyme (E) 

D = the oligonucleotide concentration 

Imin = the lowest measured intensity (i.e. when the binding is saturated)  

Imax = the highest measured intensity (i.e. when no protein is titrated)  

KD = the dissociation constant 

 

 

 

 

 

 

 

 

 

Figure 4.7: Plot to show titration of MBP-Atl1 with 5!-HEX-labelled 13-mer ODN containing 

O6-methylguanine 

 

The plot for the initial experiment with OW53 is shown in figure 4.7. The 

data points show reasonably good agreement with the fit, and the binding 

constant was calculated to be 7.4nM, with a very similar value of 6.9nM for 

double-stranded ODN (i.e. OW51 annealed to its unlabelled complement). 

Furthermore, the negative control experiment with HEX-labelled but 

unmodified ODN (i.e. guanine in place of O6-methylguanine, OW52)) gave a 

binding constant that was significantly larger than that for OW53. This was 

consistent with the specific binding of MBP-Atl1 to ODNs containing 

alkylguanine lesions and suggested that it would indeed be possible to use 

[OW51] = 5nM 
 

KD = 7.43nM 

5!-HEX-GCC ATG MeG CTA GTA       (OW53) 
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these assays to carry out a study of the DNA substrate specificity of ATL 

proteins.  

From this point on, the assays were performed on a Horiba Jobin-Yvon 

Fluoro-Max3 fluorimeter, which continued to give us reasonably accurate and 

repeatable data. However, it was also decided to make a number of 

improvements to the experiment. Firstly, we changed the fluorescent label 

from HEX to SIMA(HEX) due to the instability of HEX under basic conditions. 

This was necessary as an ammonia deprotection step was required in the 

post-synthetic modifiction reactions used to produce a range of O6-

alkylguanine lesions in DNA (section 3.2.1). The ODN labelled with SIMA 

(OW51) gave a TFEI signal that was similar in peak intensity and wavelength 

to the HEX-labelled sequence. In addition, Atl1 (i.e. cleaved from MBP) was 

used in the experiments. Although controls had been performed to ensure 

there was no  interaction  between  the  substrate ODNs and MBP, it  seemed         

 

 

 

.  

 

 

 

 

Figure 4.8: Plot to show titration of wild-type Atl1 with 5!-SIMA-labelled 13-mer ODN 

containing O6-methylguanine 

5!-SIMA-GCC ATG MeG CTA GTA       (OW51) 

[OW51] = 5nM 
 

KD = 3.15nM 
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desirable to use native protein in the assays if possible. It was found that 

titration of wild-type Atl1 with OW51 resulted in a concentration-dependent 

reduction of TFEI, of similar magnitude to that observed using MBP-Atl1 

fusion protein (figure 4.8).  

Using SIMA label allowed the ODN concentration to be reduced to 1nM 

in the experiments. This was an advantage as it is desirable to have the DNA 

concentration below that of the KD value if possible to ensure true-equilibrium 

conditions in the assays and prevent stoichiometric binding. In addition, more 

data points at low protein concentrations were included to improve the 

accuracy of the assays. The plots of 13-mer ODN containing O6-

methylguanine (OW51) and guanine (OW50) using these conditions are 

shown in figure 4.9. In addition, it was decided to compare the binding of ATL 

proteins to ODNs containing different O6-alkylguanine lesions by using ssDNA 

 

 

 

 

 

 

 

 

Figure 4.9: Plots to show titration of wild-type Atl1 with 5!-SIMA-labelled 13-mer ODNs 

containing O6-methylguanine (left) and guanine (right) 

5!-SIMA-GCC ATG MeG CTA GTA       (OW51) 

[OW51] = 1nM 
 

KD = 2.33nM 

[OW50] = 1nM 
 

KD = 687nM 

5!-SIMA-GCC ATG G CTA GTA       (OW50) 
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in the assays: it meant that there was no need to anneal the substrates to 

form duplexes, which would introduce the possibility of variable annealing 

efficiency that could affect the experiment. Another advantage was that for 

assays using ssDNA rather then dsDNA the fit of the data to the curve was 

more precise (and hence the value of the error smaller).  

Once the titrations had been optimised, ODNs containing a variety of 

O6-alkylguanine and related modifications were synthesised (section 3.2.2). It 

is worth briefly mentioning a consideration relating to the titrations using the 

control sequence (OW50). At low protein concentrations, the TFEI of OW50 

(the guanine-containing control ODN) changed very little and the fluorescent 

intensity decreased only at much larger protein concentrations. A 

consequence of this behaviour was that the value of the KD was dependent on 

where the titration was stopped (i.e. the final concentration of protein) as the 

curve did not flatten out in the same way as for ODNs recognised with high 

affinity by ATL proteins. It was decided that in order for there to be a fair 

comparison between the bound substrates and the unbound control, protein 

would be added until the TFEI had decreased by the same amount as for the 

bound ODNs (i.e. around 25-30% of the initial value). This gave the value of 

KD for the control which was between two and three orders of magnitude 

larger than that of the bound substrates. The precise detail of recognition by 

ATL proteins of all the ODN substrates is discussed at length in Chapter 5.  

 Whilst carrying out the assays it was noticed that the initial fluorescent 

signal of the dilute DNA solution was changing by a small amount before any 

protein had been added to the cuvette. As a result, the fluorescent intensity of 

an  ODN  substrate  was  measured  over  20  min  in  the  absence  of  added  
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Figure 4.10: Plot to show the change in emission intensity of SIMA-labelled ODN over time 

before addition of Atl1. 

 

protein. The fluorescent intensity decreased steeply in the first 5 min before 

settling out after about 10-20 min (figure 4.10). This  change  in  intensity  was 

usually around 2-5% of the initial intensity value. In comparison, Atl1 binding 

an ODN to saturation typically changes the intensity by 25-35%. It was initially 

decided to allow a period of 20 min at the start of the experiment for the ODN 

to equilibrate, so to have as little effect on the fluorescent intensity reading 

during protein binding as possible. At first it was thought that this effect could 

be due to temperature (as the solution in the cuvette equilibrates in the 

thermostatically-controlled chamber) or that it may be caused by changes in 

the conformation of the dye-labelled DNA: the SIMA fluorophore contains 

biphenyl groups that may be prone to conformational preferences which may 

in turn depend on ODN concentration. It was also suggested that the effect 

may be caused by the presence of gases in the buffer which slowly diffuse out 

after initial mixing at the beginning of the titration. It was eventually found that 

by pumping the ODN solution gently in and out of a Gilson pipette (P200) 

OW51, 1 nM 
 
Overall change in fluorescent intensity = 3% 



Chapter 4 

 110 
 
 

once the cuvette was in the fluorimeter, this initial decrease in TFEI could be 

made to occur much faster than if simply left alone (i.e. as shown in figure 

4.10). This makes sense if the buffer is being actively degassed by pipetting 

rather than the gases being allowed to diffuse out slowly (i.e. over a 20min 

period). Henceforth, each titration was begun by mixing the ODN solution with 

a pipette three times and checking the TFEI reading after each mix. In 

practice, there would be a comparatively large drop in TFEI after the first mix, 

followed by little difference in the readings between the second and third mix. 

In this way we ensured the TFEI signal of the ODN solution was stable and 

unchanging before titrating protein and thus causing a deliberate decrease in 

fluorescent intensity.  

Finally, to confirm that the decrease in TFEI during the titration was due 

exclusively to binding of Atl1 protein to ODN, SDS was added to a final 

concentration of 0.1% v/v at the end of the titration (i.e. to saturated Atl1-DNA 

complex) to denature the Atl1 in the cuvette. This restored the fluorescent 

intensity to its initial value before any protein was added, and shows that the 

decrease in TFEI is due to the specific interaction of Atl1 with the ODNs.   

 
4.3 FRET Analysis of Atl1-DNA Binding 
 
 It has been determined by structural analysis of the Atl1-DNA complex 

that the DNA is bent by an angle of approximately 45˚ compared to free B-

DNA.(58) It is currently thought that this bulky, helically distorted complex is 

important for subsequent recognition by the NER machinery. It was therefore  

considered interesting to attempt to provide further evidence of this DNA 

distortion in free solution and under equilibrium conditions using FRET. It was 

hoped that changes in FRET between two dyes located at opposite ends of a 
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DNA duplex would allow us to observe the binding of Atl1 and subsequent 

bending of the DNA helix. The experiment is shown in figure 4.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: FRET-based experiment to measure DNA bending by Atl1 upon binding 

 

Briefly, two complementary 13-mer ODNs each labelled with a 5!-dye 

are annealed together to form a DNA duplex. In this conformation, the two 

chromophores should be a defined distance apart, and able to interact 

through FRET (as the length of the 13-mer ODN is approximately 45Å). As 

Atl1 is added and binds to the DNA, it should cause the helix to bend and 

hence bring the dyes in closer proximity to each other. As FRET efficiency is 

strongly affected by the distance between the donor and acceptor, this should 

cause a change in the FRET signal (section 4.1.3). The ODN OW56 is 
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labelled with a 5!-FAM dye and the sequence also contains an O6-

methylguanine residue which will be recognised by Atl1. Additionally, two 

ODNs complementary to OW56 were synthesised: OW57 which is labelled 

with 5!-Cy3, and OW58 is labelled with 5!-HEX (figure 4.11). The FAM 

fluorophore should engage in FRET with both Cy3 and HEX due to the 

overlap of its emission spectra with their absorption spectra (table 4.1). 

 

 

 

 

 

 

 

Figure 4.11: ODNs used in FRET-based experiments of DNA bending by Atl1 

 

 FAM Cy3 HEX 

Excitation #max 495nm 547nm 537nm 

Emission #max 521nm 563nm 556nm 

 

Table 4.1: Excitation and emission maxima for selected fluorescent dye molecules 

 

Initially, the experiment was attempted with ODNs OW56 (FAM) and 

OW57 (Cy3). The first step was to check that when the ODNs annealed 

together that FRET was occurring between the dye molecules at either end of 

the duplex (figure 4.12). A 50nM solution of OW56 (FAM) was placed in the 

cuvette and the FAM label excited at a wavelength of 490nm. This wavelength 
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FAM Em#max Cy3 Em#max 

was used because it is close to the absorption maximum of FAM but should 

cause minimal direct excitation of the Cy3 dye (table 4.1). The emission 

spectrum  for  the  experiment  is  shown  in  figure  4.12  with  the  initial FAM  

 

Figure 4.12: Plot to show occurance of FRET between FAM and Cy3 dyes as annealing 

takes place in solution to form duplex DNA 

 

emission peak shown as a yellow trace. Increasing amounts of OW57 (Cy3) 

was then added so that the ODNs would hybridise in the cuvette and cause 

FRET to occur from FAM to Cy3. As the concentration of OW57 increases a 

clear quenching of the FAM emission peak can be observed with a 

corresponding increase in the Cy3 emission peak, as FAM transfers its 

excitation energy to Cy3 by FRET. Initially 2 equivalents of the complementary 

sequence OW57 were added to make sure all the OW56 was in a duplex (as 

this ODN contains the O6-methylguanine residue that will be bound by Atl1). A 

10-fold molar excess of Atl1 protein was then added, a concentration of 

protein which had previously been shown to form a saturated Atl1-DNA 

complex. If the binding of Atl1 to the DNA involved it becoming bent by 45˚, 
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this was expected to cause the labels to become closer to each other and 

hence cause an additional change in FRET (i.e. the FAM emission peak being 

quenched further and an increase in the intensity of the Cy3 emission peak). 

Unfortunately, as can be observed in figure 4.12, there is a slight change in 

peak intensities after addition of Atl1 but additional FRET corresponding to a 

change in proximity of the dye molecules did not occur to any significant 

degree.  

  

 

 

 

 

 

 

 

 

 

 

Figure 4.13: FRET-based analysis of DNA bending by Atl1 protein 

 

It was decided to repeat the experiment, this time using OW56 (FAM) 

and OW58 which has the same sequence as OW57 but is labelled with HEX. 

The experiment was conducted in the same manner, adding increasing 

amounts of OW58 to see the FRET developing between the dye molecules at 

either end of the duplex as it hybridises. When a 1:1 ratio of OW56: OW58 at 

50nM concentration had formed, increasing amounts of Atl1 were then added 
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(figure 4.13). In common with the previous experiment, no change in FRET 

between the dye molecules was observed upon addition of protein. There is 

an equal decrease in fluorescent intensity of both the FAM and HEX signals 

that occurs after addition of Atl1; however this is almost certainly caused by 

quenching of the fluorescent dyes upon Atl1 binding (which is the effect 

observed in the binding assays discussed previously, i.e. the concentration-

dependent decrease in TFEI of a SIMA-labelled ODN by Atl1). 

The reason that the distortion of DNA could not be observed by FRET 

may be that binding of Atl1 is not causing the DNA to bend, which seems 

unlikely given that this conformation is clearly observed in crystal structures of 

Atl1 with DNA containing various O6-alkylguanine residues (and of the same 

sequence as our probe). It is more likely that either there is not enough of a 

change in distance when this bending occurs to be observed by FRET, or that 

the protein interacting with one of the labels changes its orientation and 

prevents a change in FRET occurring.  

  

4.4 FRET Analysis of ODN Hybridisation 

 Although the majority of the binding assays to investigate the 

interaction of O6-alkylguanine-containing ODNs with ATL proteins were 

performed with ssDNA, the recognition of selected O6-alkylguanine residues 

using dsDNA was also studied (section 5.2.3). The ODNs used in the assays 

are relatively short and as such the duplexes were calculated to have a fairly 

low melting temperature (Tm). For example, the 13-mer duplex of OW51 + 

OW6 in 50mM NaCl has a calculated Tm of approximately 40˚C (figure 4.14).  
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Figure 4.14: Duplex DNA used in the fluorescent binding assays 

 

The binding assays were carried out at 25˚C which is reasonably close 

to the Tm and could lead to a significant proportion of the duplex being in the 

single-standed form even after annealing. The standard method to assess 

whether DNA is single-stranded or double-stranded at a certain temperature is 

to perform a DNA melt (figure 4.15) where UV absorbance at 260nm is plotted 

as a function of temperature. The natural UV absorbance of the nucleobases 

is quenched when they are base-paired (i.e. in a duplex) and so as the 

strands unwind the absorbance at 260nm increases. Plotting absorbance 

against temperature gives an empirically-determined value of the Tm. The 

DNA duplex can be observed denaturing into single strands as the 

temperature increases and hybridising back to dsDNA as the temperature 

decreases. The Tm is the point at which 50% of the DNA is double-stranded. 

   

Figure 4.15: A typical DNA melting curve. Tm is the temperature at which 50% is duplex DNA 

Temperature (˚C) 

UV 
Absorbance 

(260nm) Tm 
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The problem was that our ODN concentration in the assays is very low 

(1nM). The DNA concentration required to give an accurate DNA melting 

curve is much higher than this in order that the Abs260 values are large 

enough to be measured. So whilst it was likely most of the ODNs were 

duplexes at high concentration at 25˚C, we also wanted to confirm that our 

ODN substrates were double-stranded after dilution to 1nM in the cuvette.  

Previously it had been shown that when two complementary FAM- and 

HEX-labelled ODNs (OW56 and OW58) were hybridised, FRET was observed 

between the dye molecules (section 4.3). Hence attempts were made to 

demonstrate by FRET that duplexes were formed under the experimental 

conditions used in the binding assays (1nM ODN concentration, 50mM NaCl, 

25˚C). The experiment involved measuring the emission spectra of OW56 and 

OW58 using an excitation wavelength of 490nm. As can be observed in figure 

4.16, this causes excitation of the FAM label and, to a lesser degree, the HEX 

label. The signals from these ODNs alone are shown, as well as those of the 

same HEX- and FAM-labelled ODNs mixed together but treated under 

different conditions. In one reaction, OW56 and OW58 were annealed (at 1µM 

ODN concentration and in 50mM NaCl) by heating to 80˚C for 5 min and 

being allowed to cool slowly (~1h). This dsDNA was then diluted to 1nM in the 

cuvette, left to equilibrate for a few minutes and its emission spectrum 

recorded ('ex = 490nm). In the other, OW56 and OW58 were simply mixed 

together (also at 1µM ODN concentration and in 50mM NaCl) at room 

temperature and then diluted to 1nM. The emission spectrum was then 

recorded in exactly the same way. In the case of the annealed substrates, 

there was  a decrease in the  intensity  of the FAM  emission  peak  whilst  the  
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Figure 4.16: FRET analysis of DNA hybridisation of complementary strands at 1nM ODN 

concentration 

  

emission peak of HEX increased in intensity as excitation was transferred by 

FRET. This was not the case for the mixture of OW56 and OW58 that was not 

annealed. In fact, the FAM emission peak was identical to that for OW56 

alone (no quenching through FRET), and the emission peak at 553nm had the 

same TFEI as the addition of the signals of the FAM- and HEX-labelled ODNs 

alone at this wavelength. This would strongly suggest that the ODNs were 

double-stranded under these conditions (i.e. [ODN] = 1nM, [NaCl] = 50mM, 

25˚C) after being annealed. 
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Figure 4.17: FRET analysis of DNA hybridisation of non-complementary strands at 1nM ODN 

concentration 

 

In order to provide further evidence that the ODNs had formed dsDNA, 

the experiment was set up exactly as before but this time OW56 was mixed 

with a HEX-labelled ODN with the same sequence as itself (OW53) so there 

was no possibility of hybridisation. Figure 4.17 demonstrates that the emission 

spectra are identical regardless of whether the ODNs were annealed together 

or not. In common with the previous experiment, the emission peak at 553nm 

is an additive intensity signal from the FAM and HEX emissions at this 

wavelength. This would suggest that it is the close proximity of FAM and HEX 

when OW56 and OW58 are in a duplex that causes FRET to occur, and that 
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this effect is not observed between the terminal dye molecules on non-

complementary sequences that are incapable of hybridising.       

 

4.5 Fluorescence-based MGMT Activity Assay  

MGMT is a protein that repairs DNA by removing O6-alkylguanine 

lesions in a stoichiometric, irreversible reaction (see 1.7).(47) It is an important 

drug target for cancer chemotherapy as selective inhibition of MGMT in 

tumour cells increases their sensitivity to the toxic effects of DNA alkylating 

agents.(14) It is therefore necessary to have a method for quantifying the 

effects of inhibitors on MGMT. Previously, MGMT inhibition by various O6-

alkylguanine-containing ODN substrates had been measured by a radioactive 

assay using [3H]-methylurea-methylated calf thymus substrate DNA.(68) 

MGMT was incubated for 1h at 37˚C with an ODN substrate, and then 

residual alkyltransferase activity was measured by relative levels of transfer of 

tritium from the radiolabelled substrate to the protein. IC50 values 

(representing a 50% inhibition of MGMT activity) were then derived from the 

dose-response curves for each ODN. However, a similar assay capable of 

quantifying MGMT inhibition by modified ODNs but without having to use any 

radioactive reagents would be advantageous as the assays would be cleaner, 

safer and easier to carry out. It was decided to design a fluorescent probe that 

would allow the monitoring of MGMT activity by exploiting the properties of a  

dye-quencher interaction using a molecular beacon (see 4.1.4).  

This ODN (OW31, figure 4.18) contains a 5!-Cy3 fluorescent label, a 3!-

BHQ-2 quencher molecule, and was self-complementary so that it folds into a 

hairpin  secondary  structure  which  brings  the dye and  quencher  into  close  
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Figure 4.18: The molecular beacon ODN OW31  

 

proximity. It has been shown that in this arrangement BHQ-2 will quench the 

fluorescence of Cy3 very efficiently.(97) The outline of the assay is shown in 

figure 4.19. Firstly, the molecular beacon (OW31) is denatured by heating and 

re-folds into its most stable conformation (i.e. a hairpin stem with Cy3 and 

BHQ-2 close together). This ODN also contains an O6-methylguanine residue 

in the middle of a PstI restriction site, which will effectively block the sequence 

from digestion by the PstI enzyme. It has previously been demonstrated that 

MGMT repairs DNA containing  O6-methylguanine (109)  and  therefore  when 

the alkyl transfer reaction takes place to produce guanine, the PstI site will be 

restored. If PstI is added to the molecular beacon ODN after treatment with 

MGMT, then any ODN that has been repaired will be digested by the 

restriction enzyme. This will cause the ODN to be excised and produce two 

fragments, one containing the Cy3 dye, and the other the BHQ-2 quencher. 

As a consequence, the strands will dissociate due to their lower Tm, and these 
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Figure 4.19: Outline of the fluorescent MGMT activity assay using a molecular beacon probe 

 

molecules will no longer be in close proximity. Correspondingly an increase in 

the fluorescence of Cy3 should result as it ceases to be quenched. Measuring 

the emission intensity of Cy3 throughout the assay should allow MGMT 

activity to be determined (as the amount of ‘free’ Cy3 at the end of the assay 

is dependant on the amount of repaired ODN substrate and hence upon the 

activity of MGMT). When MGMT is used in the assay without any pre-

treatment, it would be considered to have 100% activity. Therefore, if MGMT 

is pre-treated with an ODN containing a specific O6-alkylguanine lesion, this 

assay should allow the determination of an IC50 value (i.e. the concentration of 

inhibitor/inactivator at which MGMT activity is reduced to 50%). 

 Initially a control experiment was performed using the ODN OW39 

which is identical to OW31 but contains guanine at the same position as O6-

methylguanine, i.e. has an unhindered PstI restriction site. The ODN substrate 

was heated to 95˚C for 1 min and then cooled on ice for 5 min to ensure it was 
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folded correctly, and then diluted to 2nM and placed in the fluorescence 

cuvette. This was incubated at 25˚C for 10min, 20 units of PstI were added 

and the reaction continued to be incubated at 25˚C for a further 30min. The 

Cy3 dye was excited at a wavelength of 547nm (its excitation 'max) and the 

emission  intensity  measured  at  563nm  (its emission 'max) as  a  function of  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.20: Plots to show digestion of molecular beacon ODNs (2nM) by PstI (20 units); with 

OW39 which contains guanine so has an unhindered restriction site (a), and with OW31 

which contains O6-MeG and therefore the same restriction site is blocked (b). 

+ PstI 

+ PstI 

a 

b 
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time. The addition of PstI and incubation over 30 min caused a 4.8-fold 

increase in emission intensity of Cy3 which is a large and significant change 

(figure  4.20)  which  was   consistent   and   reproducible.   When   the   same 

experiment was undertaken using OW39 (which contains O6-MeG so the PstI 

site is blocked) in place of OW31, very little change in emission intensity was 

observed. Thus it seemed from the initial experiments that this molecular 

beacon may be useful for assaying MGMT activity. 

 

 

 

 

 

 

 

 

 

Figure 4.21: Plot to show digestion of OW31 (2nM) after treatment with MGMT (4nM) and 

PstI (20 units) 

 

In the next experiment, OW31 was folded and diluted to 2nM as before, 

and its emission intensity measured over time for 10 min. MGMT was then 

added to a final concentration of 4nM (2 molar equivalents) and this was 

incubated in the cuvette for 30 min at 25˚C. This caused no significant change 

in the emission intensity of the molecular beacon. Finally, 20 units of PstI was 

added as before and incubated for a further 30min. The emission intensity of 

Cy3 was measured throughout the experiment. Unfortunately, the emission 

+ PstI 
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intensity only increased by a small amount (1.2-fold) in this experiment (figure 

4.21).  

It was reasoned that the issue may have been the MGMT 

concentration being too low in the experiment. As an analogy, when Atl1 

binds O6-methylguanine-containing ODN at 1nM concentration, the binding 

becomes saturated at around 50nM. The experiment was therefore repeated 

but this time using an MGMT concentration of 100nM (50 molar equivalents). 

This was considered a sufficient amount of protein to demethylate a significant 

proportion of the molecular beacon ODN. The experiment was successful, 

with cleavage by MGMT and subsequent digestion by PstI causing a 3.2-fold 

increase of fluorescent signal (figure 4.22).  

Unfortunately due to time constraints this work was not able to be 

continued, however these preliminary results are promising and therefore this 

assay should be developed in the future.     

 

 

 

 

 

 

 

Figure 4.22: Plot to show digestion of OW31 (2nM) after treatment with MGMT (100nM) and 

PstI (20 units) 

+ PstI 



Chapter 5 

 126 
 
 

5.0 Damaged DNA Recognition by ATL 
Proteins 

 
 
5.1 Protein Recognition of DNA Damage 

Certain DNA binding proteins, such as alkyltransferases, 

alkyltransferase-like proteins and DNA glycosylases, process lesions by 

flipping damaged bases into an active site pocket, usually in order to perform 

the specific chemical reaction required for activity (but not in the case of ATL 

proteins). It is a unique mechanistic solution for damaged base recognition 

and repair, but the way in which damaged bases within in the helical stack are 

detected is still not fully understood. However, once the base has been flipped 

out into the protein active site, recognition is mediated by a number of 

interactions between residues in the active site fold and the damaged base. 

These interactions can take a number of forms, and bestow the protein with 

the ability to discriminate between the specific damaged base that it repairs, 

and undamaged bases or those with other types of damage. This introduction 

will briefly review the current understanding of damaged base detection, and 

examine the active site interactions of a selection of nucleotide-flipping 

proteins, based on structural studies.   

 

5.1.1 Detection of Damaged Bases by Nucleotide-flipping Proteins 

Detection of damaged bases has been best studied in a large family of 

structurally diverse enzymes, the DNA glycosylases, which initiate base-

excision repair. Although DNA glycosylases fall into different structural classes 

and are specialised for the removal of different types of damaged bases, they 
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engage in a single mechanistic solution for damaged base recognition and 

excision: flipping of the damaged base from the base stack into the protein 

active site (by rotation of the sugar-phosphate backbone) to facilitate cleavage 

of the N-glycosidic bond.(110) This is an improbable process in energetic 

terms: the considerable penalties that must be overcome by breaking the 

Watson-Crick base pairs and straining the sugar-phosphate backbone must 

be paid for by the binding energy of the protein. This can, for example, involve 

insertion of a protein residue into the DNA base stack to stabilise the 

extrahelical conformation of the base, as is seen for the DNA glycosylases 

UDG (111), AAG,(112) and hOGG1,(24) and also for Atl1 (58) and 

MGMT.(47) In addition, the ability to pick out damaged bases against a vast 

background of undamaged bases in the genome is also intriguing.   

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Model for recognition of damaged bases by DNA glycosylases, taken from 

Friedman and Stivers (113) 



Chapter 5 

 128 
 
 

Recent studies have elucidated the mechanism of detection of 

damaged bases by DNA glycosylases (figure 5.1).(113) The first stage is the 

formation of a ‘search complex’ (SC), a distinct conformation of the protein 

which slides along the DNA chain using non-specfic binding interactions. This 

sliding is frequently interrupted by the formation of a transient ‘interrogation 

complex’ (IC) in which the enzyme extrahelically inspects both damaged and 

non-damaged bases. When the enzyme encounters a normal base, the IC 

rapidly falls back to the SC, whereas a damaged base will be efficiently 

inserted into the active site to form the catalytically competent excision 

complex (EC). Here, the specific active-site interactions are crucial as they 

effectively hold the damaged base in the active site and are responsible for 

the discrimination between damaged and non-damaged bases.  

 Damaged base detection by the human AGT protein, MGMT (or 

hAGT), has also been studied in some detail. Meyer et al., after analysis of 

kinetic data, suggested a plausible mechanism for base recognition by 

MGMT. In this model, the protein binds non-specifically to DNA, subsequently 

binds the lesion and flips it out of the base stack before finally instigating 

repair in the active site pocket buried deep in the protein. This is described in 

the equation shown below, where ks is the rate of base flipping and kinact is 

the rate of repair.(114) This model is supported by kinetic data from Coulter et 

al. who also found that the nucleophilic displacement reaction (i.e. alkyl 

transfer) is the rate-limiting step.(95) 
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E = MGMT, S = O6-alkylguanine-containing DNA, ES = MGMT-DNA complex  

X = Repaired DNA , D = Alkylated MGMT, ks = rate of base flipping (binding) 

kinact = rate of repair (alkyl transfer) 

 

It has been proposed by Duigaid et al. that MGMT does not detect DNA 

lesions by searching for the adduct itself but rather by looking for small 

distortions or weaknesses in the duplex caused by the damaged base. They 

also suggest that, due to weakened base-pairing between a damaged base 

and its helical partner, the damaged base will sample the extrahelical 

conformation more frequently which may also enhance its detection.(65) They 

also suggest that the E. coli alkyltransferase, C-Ada, does not actively flip out 

every base for damage searching but locates damaged bases by simply 

capturing a lesion that is sampling the extrahelical conformation transiently 

due to its significantly weakened base-pairing ability. It is proposed MGMT is 

able to detect damaged bases that form unstable base pairs whilst also being 

able to extrude base lesions that are stabilized intrahelically in the DNA 

structure in a less efficient process. If both capturing an extrahelical base 

lesion and detecting the unstable nature of a damaged base pair followed by 

base-flipping can be used to locate damaged bases for repair it means that 

actively flipping a base out for damage searching may not be necessary in 

many cases.(115) 

More recently, Hu et al. have used computational methods to examine 

the recognition of damaged bases by MGMT. Nucleotide flipping is shown to 

proceed in a two-step mechanism, involving a metastable transition state.(64) 

The protein initially binds the DNA through a helix-turn-helix (HTH) motif, and 
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buries a second ‘recognition’ helix (Ala127-Gly136) deep in the minor groove. 

The O6-methylguanine and cytosine bases, whilst maintaining the orientation 

of the planes containing their aromatic rings, are fluctuating apart by shifting 

their pattern of hydrogen bonding. The arginine finger (Arg128) utilises this 

transient motion to form a structure in which it interacts comparably with both 

bases (this is the transition state). Arg128 then shifts its interaction to the 

cytosine residue which allows O6-MeG to diffuse into solution and form the 

extrahelical intermediate. (64) It is also suggested that Tyr114, rather than 

interacting sterically with the 3!-phosphate, acts electrostatically and affects 

repair in three ways: by stabilising binding before flipping, by providing 

hydrogen bonds during flipping, and by influencing the reactivity of the 

damaged base.(64)   

Free energy calculations have shown that in common with other DNA 

repair proteins, MGMT significantly stabilises the base separated state relative 

to the intrahelical conformation. Crucially, the free-energy barrier to flipping 

guanine rather than O6-methylguanine is much higher which suggests a ‘gate-

keeping’ strategy for lesion discrimination. Both G and O6-MeG would flip to 

the extrahelical state, but only the latter would have a significant chance to 

continue to the active site before flipping back. In common with that proposed 

for hOGG1,(116) this gate-keeping mechanism appears to be kinetic rather 

than thermodynamic in nature: there is only a 3-fold preference for O6-MeG 

over G once in the active site pocket of AGT (117). The rate for partial flipping 

for O6-MeG and G is comparable (~10-3 to 10-2 ps-1) but whereas O6-MeG 

proceeds rapidly to the active site (~10-1 ps-1), G is much slower (~10-6 ps-1). 
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Ada, a bacterial homologue of AGT from E.coli, has been shown by 

single-molecule tracking studies (DNS) to exhibit a helical sliding rate 

comparable to that of hOGG1, a human glycosylase (116). hOGG1 has been 

observed by high-speed imaging sliding along DNA at an extremely fast rate 

which would seem to exclude the possibility of flipping out every single base in 

the search for damaged bases. Instead, it is proposed that hOGG1 extrudes 

8-oxoG lesions into the active site at a higher rate than undamaged bases: 

thus the recognition is under kinetic control. For C-Ada and hOGG1, 

comparison of the rates for sliding with those of base flipping suggests that it 

the kinetic gate-keeping mechanism is feasible, and would allow the protein to 

scan the sequence rapidly compared with one requiring full flipping. 

 

5.1.2 Active-site Interactions of Nucleotide-flipping Proteins  

hOGG1 is a DNA glycosylase of HhH superfamily responsible for the 

recognition of 8-oxoguanine DNA lesions in humans. It has been shown in 

structural studies that discrimination between 8-oxoguanine and guanine 

(which differ by only two atoms) is a consequence of specific interactions 

between the active site and the base (figure 5.2). (118) (24) The Lys249 

(NH3
+) / Cys253 (S-) salt bridge forms a dipole which runs antiparallel to the 

local dipole of 8-oxoguanine and parallel to that of guanine (this is opposite 

due to charge inversion at positions 7 and 8). Thus, this interaction stabilises 

the interaction of 8-oxoguanine with the active site pocket whilst destabilising 

that of guanine. However, the crucial stabilising interaction in the active site is 

the formation of a hydrogen bond between the carbonyl oxygen of  Gly42  and  
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Figure 5.2: Active site of hOGG1 bound to ODN containing 8-oxoG with interactions shown 

 

the N7 hydrogen of 8-oxoguanine. This protonated N7 atom is not present in 

the natural base, and therefore the corresponding interaction with guanine is 

that of repulsion between the lone pairs, though this destabilising interaction is 

partly relieved by a local reorientation of Gly42 due to some conformational 

flexibility in the protein. The specificity of the protein for guanine over the other 

canonical bases is also mediated by active site interactions. Phe319 interacts 

with the !-face of the base, and Glu315 takes part in two interactions: its 

amide group in conjunction with a tightly-bound water molecule recognises 

O6, and the side-chain carbonyl forms H-bonds with N1 and N2H. These 

interactions are present with guanine and 8-oxoguanine, but absent for 

adenine, cytosine and thymine. 
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Figure 5.3: Active site of hUDG bound to ODN containing 6-aU showing interactions 

 

Human UDG is a DNA glycosylase of the UNG superfamily that 

exclusively recognises uracil and 6-aminouracil (6-aU).(119), (120) These 

bases have highly specific interactions with the active site pocket that result in 

discrimination between these residues and other bases (figure 5.3). The 

Asn204 side chain N"2 and O"1 atoms form hydrogen bonds with the O4 and 

N3 positions respectively of 6aU. The N3 atom of the base also forms an H-

bond with the backbone carbonyl oxygen of Asp-145. Both of the backbone 

amides of Asp-145 and Gln-144 form hydrogen bonds to the O2 atom of the 

base, which also forms an H-bond with the N2 atom of His-268 via a bridging 

water molecule. Thus recognition of 6-aU and U by hUDG is mediated almost 

entirely by hydrogen bonding interactions, with additional stability being 

provided by a !- ! interaction between Phe158 and the face of the base. 
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Figure 5.4: Active site of HhaI bound to ODN containing 5-MeC showing interactions 

 

HhaI is a cytosine-5-methyltransferase from H.haemolyticus.(121) 

Extensive interactions exist between the target cytosine and the active site 

that lead to the specificity of the enzyme (figure 5.4). Arg165’s non-terminal 

nitrogen forms a hydrogen bond with O2, the two side-chain carbonyls of 

Glu119 H-bond with N3 and N4 and the main-chain carbonyl of Phe79 H-

bonds with N4. These residues are invariant across the entire enzyme family. 

The interactions between Glu119 and the cytosine base are of particular 

importance for substrate specificity: in two nucleotide methylases with similar 

mechanisms to HhaI, mutation of an invariant asparagine (with contacts to N3 

and O2) to an aspartate or glutamate residue changes the activity of the 

R165 

E119 
F79 
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enzyme from processing dUMP to dCMP. Thus the nature of this residue and 

the contacts it makes are crucial for recognition of a certain nucleobase. 

 

 

Figure 5.5: Active site of AAG bound to ODN containing (A showing interactions 

 

Human alkyladenine glycosylase (AAG) repairs a variety of alkylated 

bases, such as 3-methyladenine (3-MeA), 7-methylguanine (7-MeG), 

hypoxanthine (Hx) and 1-N6-ethenoadenine ((A). The structure of AAG bound 

to DNA containing (A shows that in the active site (figure 5.5) there are 

multiple interactions with the flipped base: the !-faces of Tyr127 and His136 

are orientated towards the alkylated adenine residue, and the -OH group of 

Tyr159 also contacts the face of the base.(112) The selectivity for positively 

charged lesions, such as 3-MeA and 7-MeG is enhanced due to the potential 

for cation-! interactions between Tyr127 and His136 and the alkylated base. 
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In terms of discrimination between damaged and undamaged bases, the only 

H-bonding interaction is between the main chain nitrogen of His136 and the 

N6 of the alkylated base. In adenine, this N6 is an amine rather than an imine 

and so cannot act as a hydrogen bond acceptor with the main chain amido 

group of His136. Furthermore, binding of guanine is prevented because the 

exocyclic N2 amino group of guanine would clash with the highly constrained 

Asn169 side chain. It is thought that the other enhanced interactions due to 

the positive charge on 7-MeG must be enough to overcome this energetic 

barrier when this damaged base is bound.   

 

 

Figure 5.6: Active site of MGMT bound to ODN containing O6-MeG showing interactions 

 

MGMT is the human AGT protein which specifically recognises and 

repairs O6-alkylguanine lesions in DNA. In the MGMT active site (figure 5.6) 
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the following hydrogen bonding interactions occur: the main-chain carbonyl 

groups from Cys145 and Val148 accept a hydrogen bond from the N2 amino 

group of guanine, the Tyr114 hydroxyl donates a hydrogen bond to the N3 

atom on the base, and the main chain nitrogen from Ser159 donates to the 

O6 atom.(51) These active site interactions are sufficient for MGMT to 

discriminate between guanine and the other three canonical bases. However, 

there is only a slight preference for O6-MeG over G (values range from 3-fold  

(117) to 10-fold (114)) and this would seem to be due to the larger 

hydrophobic surface that is a consequence of alkylation. The Tyr158 side-

chain is seen in the structures to stack against smaller alkyl residues, whereas 

Pro140 would seem positioned to interact with larger ones. Perhaps 

surprisingly, AGT does not form an H-bond with the purine N1 atom, which 

could seemingly be used to discriminate between G and O6-MeG due to the 

difference in protonation state. 

Interestingly, it has been suggested that perhaps the inherent difficulty 

in discriminating between guanine and O6-alkylguanine has led to the unique 

direct damage repair pathway.(51) If DNA glycosylases mistakenly remove 

undamaged bases during the course of the more commonly occuring base-

excision repair, it can be deleterious to the organism.(122,123) However, this 

would not be the case for MGMT, where any lack of specificity is neither 

cytotoxic nor mutagenic as the undamaged base will simply go unrepaired 

and thus be flipped back into the DNA helix. 
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Figure 5.7: Active site of Atl1 bound to ODN containing O6-PobG showing interactions 

 

Atl1 is the alkyltranferase-like (ATL) protein homologue from S.pombe 

that also recognises O6-alkylguanine lesions. Whilst the active site (figure 5.7) 

is approximately three times bigger than that of MGMT, the major interactions 

present in the MGMT active site are conserved. The hydroxyl of Tyr25 forms a 

hydrogen bond with the N3 atom of guanine and the side-chain carbonyls of 

Val59 and Trp56 hydrogen bond with N2.(58) Trp56 (and possibly Ala117 in 

the active site of TTHA1564, although structural data is unavailable for this 

protein) forms a hydrophobic interaction with the O6-alkyl group, and Pro50 is 

seen to interact with larger O6-alkyl residues such as PobG. One of the crucial 

factors not observed in the MGMT active site is the presence of Arg69 which 

forms a cation-! interaction with the pyrimidine base (the corresponding 

residue in TTHA1564 is Phe130).  

R69 

P50 

W56 

V59 

O6-PobG 

Y25 



Chapter 5 

 139 
 
 

5.2 Base Recognition by ATL Proteins 

 In an attempt to understand the mechanisms of base recognition in 

greater detail, ODN substrates containing a variety of modified purine bases 

were used to quantify the binding affinity of two ATL proteins, Atl1 from 

S.pombe and TTHA1564 from T.thermophilus. The fluorescence-based 

assays that were performed are described in detail in Chapter 4. The KD 

values presented here are an average of those derived from three separate 

titrations, and the calculated error values are the standard error of the mean 

(SEM). The experiments were carried out with SIMA-labelled single-stranded 

(ss) ODNs, duplexes where the modified base was paired opposite cytosine 

(C), and duplexes where the modified base was paired opposite thymine (T) 

(figure 5.8). 

 

 

 

 

 

 

 

Figure 5.8: Sequences of ODNs used as substrates in the study of base recognition 

 

The modified bases that were incorporated into the study are shown in 

figure 5.9 and include many O6-alkylguanine lesions as well as a number of 

related purine bases. The O6-alkyl groups incorporated vary  in  size (from the  
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Figure 5.9: Modified bases incorporated into ODNs for the study. The lesions labelled with 

asterisks are known to be poorly or not repaired by MGMT 
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smallest, O6-MeG, to the very large, bulky residues O6-PobG and O6-MAG), 

charge (O6-AEG is positively charged and O6-CMG negatively charged at pH 

7.5), hydrophobicity (which increases with size of the alkyl group) and 

conformation relative to the O6-bond (TCA(O) is locked in the anti-

conformation whereas a bond in free rotation would be expected to orientate 

into the syn-conformation upon binding to MGMT).(95) In addition, the 

modified purine residues included in the study were 2-AP, 2,6-DAP, HOPr-

DAP and O6-MHx. These purine analogues were interesting due to the 

presence or lack of N2, N6 (or O6) atoms, and alkyl groups at the 6-position of 

the base. In combination with structural data, these experiments allowed us to 

discover the relative importance of the various interactions in the protein 

active site involved in base recognition and provided insights into the 

mechanism of lesion binding. (Complete tables of binding data with single-

stranded and double-stranded ODNs, and the Atl1 mutants, are shown at the 

rear of this chapter (section 5.7)). 

 

5.2.1 Recognition of Single-Stranded ODN Substrates by Atl1 

 It was demonstrated that Atl1 specifically recognises ODNs containing 

all of the O6-alkylguanine lesions that were evaluated. The results are shown 

in figure 5.10 (the result for the control ODN containing guanine in place of the 

modified base is omitted for clarity: KD=741nM). Atl1 has a preference for 

binding bulky, hydrophobic lesions which can be seen in the greater binding 

affinites (and correspondingly lower values of the disscociation constant, KD) 

for O6-benzylguanine (O6-BnG), O6-propylguanine (O6-PrG) and O6- 

methyladamantylguanine  (O6-MAG). This  is  likely  to  be  in  part  due to  the 
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Figure 5.10: Plot to show dissociation constants between Atl1 and single-stranded ODNs 

containing modified bases 

 

increased hydrophobic interactions with the Atl1 active-site tryptophan residue 

(W56) which would favour larger hydrophobic groups. The difference in affinity 

of Atl1 for ODN-containing O6-benzylguanine compared with O6-

methylguanine is almost ten-fold, a significant difference which may have 

profound implications in terms of which type of repair Atl1 initiates (section 

5.6). It has also been shown that ODNs containing O6-carboxymethylguanine 

(along with O6-methylguanine) is one of the poorer substrates for Atl1 despite 

the moderate size of the alkyl group: this may be due to the presence of a 

negative charge, though ODN containing the positively-charged O6-

aminoethylguanine lesion is recognised with reasonably high affinity making it 

difficult to draw any firm conclusions with regard to the effect of charge on 
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recognition. More interestingly, a significant number of lesions that are poorly 

repaired or refractory to repair by MGMT are recognised by Atl1. This includes 

O6-CMG-containing ODNs in addition to those containing O6-AEG, O6-MAG, 

O6-PobG and O6-HOEtG. It is not clear whether these lesions are poorly 

repaired by MGMT because they are not bound with high affinity, or because 

of a subsequent slow rate of alkyltransfer reaction after recognition. It is 

possible the smaller active-site pocket of MGMT does not accommodate the 

larger lesions such as O6-MAG and O6-PobG effectively and hence the 

protein cannot repair them very efficiently. Furthermore, these results would 

seem to be consistent with the recent findings in E.coli that ATL proteins 

mediate efficient repair of O6-alkylguanine lesions that are not processed by 

AGT proteins.(80)  

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Plot to show dissociation constants between Atl1 and single-stranded ODNs 

containing modified bases 
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The results for some of the modified purine bases with O6-BnG and O6-

MeG as references are shown in figure 5.11. Perhaps surprisingly N6-

hydroxypropyl-2,6-diaminopurine (HOPr-DAP) was bound by Atl1 with high 

affinity, with a KD approximately midway between that of O6-BnG and O6-

MeG. This would suggest that the O6 atom itself is not important for 

recognition (i.e. it can be replaced with N and not cause significant disruption 

to the interactions). Remarkably, 2,6-diaminopurine and 2-aminopurine are 

bound with high affinity compared to control ODN (c.f. KD= 741nM), though 

with slightly less affinity than any of the O6-alkylguanine lesions. It seems 

clear from these results that the presence of an alkyl group affects 

recognition: HOPr-DAP is recognised with 5-fold more affinity than 2,6-DAP 

(where the alkyl group is replaced with an NH2) and 9-fold more affinity than 

2-AP (where there is an absence of any group). The observation that Atl1 

recognises these purine residues, along with subsequent structural studies of 

Atl1 in complex with ODNs containing 2,6-DAP and 2-AP (section 5.5), has 

led to the proposal of a unique and unprecedented method of base 

recognition by Atl1. Thus, the active-site residue Arg69 appears to act as a 

molecular probe by scanning the electrostatic potential of the base (section 

5.4). 

 The dissociation constants of various other modified purine bases are 

shown in figure 5.12. All of these bases are considered to be poorly bound  or 

not recognised by Atl1. The control ODN containing guanine is also included 

in the plot and as expected has the largest KD value of all the substrates. The 

importance of the N2-amino group for recognition by the protein can be clearly 

seen: O6-methylhypoxanthine (O6-MHx) differs from O6-methylguanine only by 
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Figure 5.12: Plot to show dissociation constants between Atl1 and single-stranded ODNs 

containing modified bases 

 

the absence of the 2-amino group, however ODN containing O6-MHx is bound 

with 150-fold less affinity than the ODN containing O6-MeG and only 2-fold 

more affinity than the control ODN. This is almost certainly due to the inability 

of the Atl1 active-site residues Val59 and Trp56 to hydrogen-bond with the 

missing N2-amino group. These interactions are conserved between MGMT 

and Atl1 and are likely to have the role of aiding in discrimination between 

guanine and the other canonical bases.  

Also of interest is the inability of Atl1 to recognise ODNs containing the 

tricyclic alkylguanine analogue (TCA (O)). As previously mentioned, this 

modified base is locked in the anti-conformation, but apart from this it has the 
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other features of O6-alkylguanine residues. It has been reported that MGMT 

will not repair O6-alkylguanine bases when the alkyl group is in the anti-

conformation as this orientates it away from the reactive cysteine residue.(95) 

It is also suggested that MGMT favours alkyl groups in the syn-conformation 

as they are better able to fit into the hydrophobic binding pocket. Perhaps the 

reason for the lack of recognition of ODN containing TCA (O) by Atl1 is that 

the locked anti-conformation of the alkyl group prevents the initial inclusion of 

the residue in the active site binding pocket. If this is the case, a consequence 

of its exclusion from the binding cavity would be that it is unable to be 

recognised by the specific active-site interactions mentioned previously. 

Indeed, in all available structures of Atl1 in complex with ODNs containing a 

wide variety of O6-alkylguanine residues, the alkyl group is always orientated 

in the syn-conformation. It would therefore seem likely that this conformation 

is required for Atl1 binding (and possibly also for MGMT).  

The ODN containing 6-thioguanine (ThioG) is also poorly recognised, 

though intriguingly it would appear to be bound with around 7-fold more 

affinity than the ODN containing guanine. The reasons for this are unclear at 

present and warrant further investigation. 

 

5.2.2 Recognition of Single-Stranded ODN Substrates by TTHA1564 

   In a set of identical experiments, the dissociation constants of 

TTHA1564 from T.thermophilus with various modified DNA substrates were 

measured. In common with Atl1, this protein recognised all the ODNs 

containing O6-alkylguanine residues that were evaluated. The results are 

shown in figure 5.13 (as for the previous plot, the result for the control ODN 
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containing guanine is omitted for clarity: KD=103nM). Whilst TTHA1564 

recognises all these substrates with relatively high affinity compared to the 

control, it does not appear to show any preference for binding ODNs 

containing large, bulky O6-alkylguanine lesions. In fact, the substrate 

recognised with the highest affinity is that containing O6-methylguanine, which 

is the poorest bound of the O6-alkylguanine substrates for Atl1. It may be that 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Plot to show dissociation constants between TTHA1564 and single-stranded 

ODNs containing modified bases 

 

the presence of alanine rather than tryptophan in the TTHA1564 active site 

motif (it has the sequence PAHR, compared to PWHR in Atl1) limits the ability 

of the protein to engage in such an extensive hydrophobic interaction with 

larger O6-alkyl groups (such as O6-benzylguanine and O6-propylguanine). 
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Certainly, there appears to be little variation in the dissociation constants of 

the majority of the ODN substrates containing O6-alkylguanine lesions 

regardless of the identity of the alkyl group. The exceptions to this are the 

ODNs containing O6-carboxymethylguanine (O6-CMG, which was also bound 

with relatively poor affinity by Atl1) and O6-aminoethylguanine (O6-AEG). 

Whether this is due to the charged nature of these modified bases is open to 

speculation, however O6-AEG was bound with moderately high affinity by Atl1. 

  

   

 

 

 

 

 

 

 

 

 

Figure 5.14: Plot to show dissociation constants between TTHA1564 and single-stranded 

ODNs containing modified bases 

 

It was also demonstrated that TTHA1564 was able to recognise N6-

hydroxypropyl-2,6-diaminopurine (HOPr-DAP) and 2,6-diaminopurine (DAP) 

(figure 5.14). Whilst the ODN containing HOPr-DAP was bound with a similar 
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affinity to the O6-alkylguanine-containing substrates, the ODN containing DAP 

was bound with around 8-to-10 fold less affinity than the O6-alkylguanine-

containing substrates (for comparison, DAP was recognised with around 5 

fold less affinity by Atl1 than most of the O6-alkylguanine-containing 

substrates). These results reinforce the observation that the presence of an 

alkyl group at the 6-position on the purine base aids recognition by ATL 

proteins, and also that these proteins are able, seemingly inexplicably, to 

recognise other modified purines such as DAP (but not adenine). The 

experiment with an ODN containing 2-AP using TTHA1564 protein was not 

able to be carried out due to the unavailability of this ODN in Japan, but it 

would be expected to be recognised with less affinity than DAP (in common 

with Atl1).  

  

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Plot to show dissociation constants between Atl1 and TTHA1564 and single-

stranded ODNs containing modified bases 
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For the same reasons mentioned above, it was not possible to carry 

out assays with O6-MHx and thioguanine using TTHA1564. However, the KD 

was measured for the tricyclic analogue (TCA (O)) and it found to be only very 

weakly recognised by TTHA1564. Selected results are shown in figure 5.15. 

An observation that becomes immediately apparent from these results 

is that TTHA1564 has much more affinity for the control sequence containing 

guanine than Atl1. This means that TTHA1564 appears to have far less ability 

than Atl1 to discriminate between an ODN containing an O6-alkylguanine 

lesion and one that does not, though obviously TTHA1564 is still capable of 

specifically recognising O6-alkylguanine lesions (see table 5.3). Whilst it is 

true that both ATL proteins have some affinity for unalkylated DNA, which is 

likely to be due to the presence of the helix-turn-helix (HTH) binding motif that 

binds the minor groove, it is unclear why the T.thermophilus protein would 

bind unmodified DNA more tightly than Atl1. It is reasonable to suggest that 

general recognition of DNA is advantageous for ATL proteins in order to bring 

them in close contact with potential substrates which are then bound tightly if 

an O6-alkylguanine residue is present, in an analogous manner to DNA 

glycosylases (section 5.1). It may be that the difference between the high 

temperatures in which the T.thermophilus resides (~75˚C) may necessitate a 

stronger affinity of the protein with DNA per se than is needed for Atl1.  

The difference in the ability of the two ATL proteins to discriminate 

between DNA containing O6-alkylguanine residues and undamaged DNA can 

clearly be seen in table 5.1. The comparisons (i.e. 2-fold etc.) are calculated 

by comparing the KD of each substrate with the KD of the ODN bound with the 

greatest affinity for that protein. For example, for Atl1, the control  substrate  is  
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 BnG MeG DAP TCA (O) G 

Atl1 0.3 ± 0.01 2.4 ± 0.08 4.9 ± 0.25 432 ± 41 741 ± 91 

TTHA1564 1.63 ± 0.15 1.23 ± 0.13 11.1 ± 0.45 64.7 ± 2.6 102.6 ± 2 

Atl1 1-fold 8-fold 16-fold 1450-fold 2500-fold 

TTHA1564 1.3-fold 1-fold 9-fold 50-fold 80-fold 

 

Table 5.1: Discrimination between ODNs containing various modified bases and guanine by 

Atl1 and TTHA1564 compared to the substrate bound with the highest affinity  

 

recognised with 741nM / 0.3nM = 2500-fold less affinity than O6-BnG, and  for 

TTHA1564 the control substrate is recognised with 102.6nM / 1.23nM = 80-

fold less affinity than O6-MeG. The reasons for these differences will be 

considered in section 5.6. 

 

5.2.3 Recognition of Double-Stranded Substrates 

 In general, it was found that both Atl1 and TTHA1564 recognised 

single-stranded (ss) and double-stranded (ds) ODNs containing the same 

lesions with similar affinity. Rather than evaluating every single substrate as 

dsDNA, we chose a selection of the SIMA-labelled ODNs containing modified 

bases and annealed them to complementary sequences to form duplex DNA. 

As mentioned previously, two forms of duplex were made: one where the 

modified base (X) was base-paired with cytosine (C) and the other where X 

was paired with thymine (T) (figure 5.8). The annealing process was analysed 

by FRET to confirm that the substrates were duplexes at a concentration of 

1nM in 50mM NaCl solution and at room temperature, the  conditions  used  in  
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Figure 5.16: Plots to show binding of Atl1 and TTHA1564 to double-stranded ODNs 

containing various modified bases 
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the assay (section 4.5).  O6-benzylguanine  (O6-BnG),  O6-methylguanine (O6- 

MeG), 2,6-diaminopurine (DAP), and guanine (G) were evaluated and the 

results are shown in figure 5.16. For O6-BnG, and O6-MeG, there is little 

preference of either ATL protein for single- or double-stranded DNA, and little 

difference in KD value whether the modified base (X) is opposite C or T. In the 

case of DAP, there is a pronounced and significant effect which is seen for 

binding of both Atl1 and TTHA1564 proteins. The double-stranded ODN 

where DAP is base paired with C is bound with approximately the same 

affinity as the corresponding single-stranded ODN. However, the double-

stranded ODN where DAP is base paired with T has a dissociation constant 

that is far larger than for when DAP is paired with C (9-fold larger for Atl1, 3.5-

fold larger for TTHA1564). This result may be explained by the nature of the 

base pairing in these duplexes and the mechanism of recognition by ATLs. 

ATL proteins flip damaged nucleotides into an active site pocket where 

recognition takes place. When DAP is base paired with cytosine there are two 

hydrogen bonds between the bases, whereas when it is paired with thymine, 

there  are  three  (figure 5.17).  For  O6-alkylguanine  residues,  there  are  two 

 

Figure 5.17: Base pairing of 2,6-diaminopurine with cytosine (left) and thymine (right) 
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hydrogen bonds in the base-pair regardless of whether C or T is the partner. 

This additional hydrogen bond between DAP and T will stabilise the base pair 

and is likely to provide an additional thermodynamic barrier to active flipping of 

the modified base by ATL proteins. Alternatively, the more stable DAP:T base 

pair is likely to sample the random extra-helical conformation less frequently 

than DAP:C and so will be less exposed and hence less prone to detection by 

ATL proteins. In either case, this is reflected in the reduced affinity of Atl1 and 

TTHA1564 for DAP when it is paired with T in a duplex. These results are 

consistent with the base-flipping mechanism seen in crystal structures for Atl1 

(58) and demonstrated using fluorescent assays for TTHA1564.(63)   

  

 

 

 

 

 

 

 

 

 

 

Figure 5.18: Plot to show Atl1 and TTHA1564 weakly binding to control ODNs 
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Finally, the results with the control ODNs (figure 5.18) showed that ATL 

proteins do not specifically recognise mismatches. Atl1 and TTHA1564 

showed little preference for double-stranded over single-stranded DNA and 

also did not appear to discriminate between the duplexes whether guanine 

was paired with cytosine or thymine.    

 

5.3 Mutagenesis Studies of Atl1 

 It was decided to evaluate the importance of the Arg69 residue in Atl1 

for recognition of O6-alkylguanine and related purine residues by performing 

the experiments with mutant Atl1 proteins. In collaboration with the Margison 

laboratory, Atl1-R69F and Atl1-R69A were prepared by site-directed 

mutatgenesis (section 9.10) and overexpression in E.coli (see section 9.9). 

Identical assays to those with wild-type (WT) Atl1 were conducted to measure 

the dissociation constants of the mutant proteins with a selection of the ODNs. 

The results for Atl R69A are shown in figure 5.19 where they are compared 

with the Atl1 WT values. Here it is demonstrated that substitution of the Arg69 

residue for Ala has a profound effect on the ability of Atl1 to recognise ODNs 

containing O6-alkylguanine and related purine lesions. The values of the 

dissociation constant for the Atl1 R69A mutant compared to WT are on 

average approximately 50-fold greater for the bound substrates, although 

surprisingly the control ODN is recognised with 5-fold more affinity by the 

mutant than WT. It may be that the interaction of Arg69 with the base in the 

active site is attractive for O6-alkylguanine lesions and related purine residues, 

but  repulsive  for  guanine,  and  so  when  Arg69  is  not  present, the protein 
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Figure 5.19: Plot to show Atl1 R69A mutant and wild-type Atl1 binding ODNs containing 

modified bases 

  

cannot adequately discriminate between the damaged and undamaged 

bases. Clearly, non-conservative mutation of Arg69 to Ala severely disrupts 

the ability of Atl1 to recognise lesions and shows the importance of this key 

residue. 

In addition, it was decided that the Atl1 R69F mutant would be studied. 

Comparison of the sequences of Atl1 and TTHA1564 indicated that the 

residue corresponding to Arg69 in Atl1 would be phenylalanine (Phe130, or 

F130) in the T.thermophilus protein. Whilst this residue is not positively 

charged like Arg69 (figure 5.20) and so cannot engage with the bound 

nucleobase through a cation-! interaction, it is hydrophobic in nature and as 

such  could  have  the  ability  to  form  a !- ! stacking interaction  that may be  
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Figure 5.20: Amino acid side chain structures at position 69 of Atl1 wild-type (Arg) and 

mutants (Phe and Ala) 

 

involved in recognition,assuming that the TTHA1564 active site loop is folded 

in a similar manner to that of Atl1. Of course, without any structural data it is 

impossible to draw any firm conclusions. However, it has already been 

demonstrated that TTHA1564 displays less ability to discriminate between O6-

alkylguanine and guanine residues than Atl1 and it was therefore interesting 

to see if this was also the case for the Atl1 R69F mutant. The results of the 

binding assays using the Atl1 R69F mutant are shown in figure 5.21.  

Compared to Atl1 WT, the ODNs containing bulky, hydrophobic O6-

alkylguanine residues are recognised with around 5-fold less affinity, whereas 

for ODNs containing O6-methylguanine and 2,6-diaminopurine this difference 

is around 15-fold. Possibly, the contribution from the hydrophobic interaction 

between the active site Trp56 and the O6-alkyl group becomes more 
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significant when Arg69 is missing. Table 5.2 shows the differences in binding 

affinity  of  the  mutant  Atl1 proteins  compared  to  wild-type. It can clearly be  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Plot to show Atl1 R69F mutant and wild-type Atl1 binding ODNs containing 

modified bases 

    

 BnG MAG MeG DAP 2-AP G 

Atl1 WT 1-fold 1-fold 1-fold 1-fold 1-fold 1-fold 

Atl1 R69A 47-fold 28-fold 40-fold 50-fold 60-fold 0.2-fold 

Atl1 R69F 5.5-fold 4.2-fold 15-fold 16-fold 21-fold 1-fold 

TTHA1564 5.5-fold 3.4-fold 0.5-fold 2.3-fold N/A 0.15-fold 

 

Table 5.2: Difference in affinity of the mutant proteins and TTHA1564 for ODNs containing 

selected modified bases compared to wild-type Atl 
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seen that R69A only weakly recognises the O6-alkylguanine-containing 

substrates compared to WT, whilst R69F recognises them with moderate 

affinity. Therefore it would seem that Phe69 is still able to mediate recognition, 

albeit with less precision than Arg69. If the data is analysed to calculate the 

relative affinities of each protein individually for each of the modified 

substrates, then the discrimination that Atl1 and each mutant has for different 

modified bases and guanine can be displayed. The data is shown in table 5.3.  

 

 BnG MAG MeG DAP 2-AP G 

Atl1 1-fold 2-fold 8-fold 16-fold 31-fold 2500-fold 

Atl1 R69A 1-fold 1.1-fold 7-fold 17-fold 40-fold 10-fold 

Atl1 R69F 1-fold 1.4-fold 7-fold 50-fold 120-fold 450-fold 

TTHA1564 1.3-fold 1.5-fold 1-fold 9-fold N/A 80-fold 

 

Table 5.3: Difference in affinity of Atl wild type and mutant proteins and TTHA1564 for ODNs 

containing selected modified bases compared to the tightest bound substrate for each protein 

(i.e. the discrimination of each individual protein between different bases) 

 

Interestingly, the R69A mutant and the R69F show similar levels of 

discrimination between O6-BnG, O6-MAG and O6-MeG to wild-type Atl1. This 

may be explained by the fact that mutation of Arg69 does not affect the 

hydrophobic interaction between the O6-alkyl group and Trp56, which would 

be more extensive for the larger chains and therefore affect the value of KD. In 

addition, whilst R69A shows comparatively little discrimination between O6-

alkylguanine residues and guanine, R69F still has the ability to recognise 

ODNs containing O6-BnG with 450-fold more affinity than ODN containing G, 
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and ODN containing O6-MeG with 65-fold more affinity than that containing G. 

Intruigingly, this latter discrimination between O6-MeG and G is similar to that 

shown by TTHA1564 (approximately 80-fold). 

 

5.4 Molecular Electrostatic Potentials of Nucleobases 

 Insights were given into the mechanism of Atl1 base recognition by the 

calculation of the molecular electrostatic potential (MEP) of different modified 

and unmodified bases. The MEPs describe the relative attractive and 

repulsive forces between the atoms in a heterocyclic base and a cation 

interacting with them. They are calculated by placing a positive charge (the 

cation, in this case the charged N-terminus of the Arg69 residue) at a certain 

distance from the base (this distance was calculated from the positions of 

Arg69 and the base in the crystal structures which was approximately 3.5Å). 

The MEP calculations allow subtle differences in the electronic nature of the 

bases to be examined that may help explain the discrimination and selectivity 

of the Atl1 active site, and provide a mechanistic basis for ‘proof-reading’ by 

Arg69 in its proposed role as a molecular probe of electrostatic potential. 

In collaboration with Prof. Chris Hunter, the molecular electrostatic potentials 

for a selection of the modified bases were calculated and are shown in figure 

5.22. Comparison of the MEP values for O6-methylguanine (which is 

representative of all O6-alkylguanine residues for the purposes of this 

analysis) and guanine highlights some clear differences between them. 

Consider the C2 atom of the heterocyclic rings: for O6-MeG there is a positive 

interaction with a relative value of +50, whereas for guanine the interaction is 

negative with  a  value of -10. Therefore, according  to  these  calculations, the 
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presence of Arg69 will cause O6-alkylguanine residues to be held in the 

binding pocket by the attractive force, whilst guanine residues will be repelled. 

By the same measure, the greater attraction of Arg69 for N1 in O6-MeG (MEP 

values for N1 of +90 for O6-MeG, and +20 for G) is highly likely to contribute 

to the Arg69-mediated selectivity of the active site for O6-alkylguanine 

residues.  

 

Figure 5.22: Molecular electrostatic potentials of selected modified purine bases. Numbers in 

red indicate an attractive interaction with a cation, and blue a repulsive one: therefore these 

values are related to electron density. Larger numbers indicate more extensive interactions. 
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Figure 5.23: Increased hydrogen bonding interactions due to polarisation caused by changes 

in molecular electrostatic potentials induced by Arg69 

 

In addition, the presence of a cationic charge on Arg69 in proximity to 

the heterocyclic ring leads to differences in electrostatic potential between 

some of the other atoms in the bases. For O6-MeG, N2 has a value of +140 

whilst for G this value is +80. Similarly, the MEP values for N3 between O6-

MeG and G are +80 and +60 respectively. Given that these MEP values 

represent the interaction of each atom in the base with a positive charge, a 

larger value effectively means increased polarisation. This in turn means 

increased electrostatic charge ("-) on this atom which will affect hydrogen 

bonding. As previously shown in Atl1-DNA structures, the crucial interactions 

in the active site are H-bonds between the N2 hydrogens and the carbonyl 

groups of Trp56 and Val59, and an H-bond between N3 and the side chain 

hydroxyl H of Tyr25 (figure 5.23). It follows that if the "- of the N2 and N3 

atoms increases, then all of these H-bonding interactions will be strengthened. 
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For 2,6-diaminopurine (DAP) and 2-aminopurine (2-AP) the MEP 

values are far more similar to those of O6-methylguanine than to guanine (see 

table 5.4 for MEP values of the more important atoms on the bases). 

Therefore, the observation that these residues are also recognised by Atl1 

can be explained by the similar interactions that Arg69 has with these purine 

bases. The MEP values for adenine are also similar to those of O6-MeG, but 

crucially adenine lacks the N2 atom. It would seem that the hydrogen bonding 

interactions between the active site residues Trp56 and Val59 are essential 

for discrimination between a guanine base (modified or otherwise) and the 

other canonical bases. Only when this interaction is present are the other 

aspects  of  recognition important, i.e. the probing  of  electrostatic potential  of  

 

 N1 C2 N2 N3 

O6-MeG +90 +50 +140 +90 

DAP +110 +70 +150 +110 

2-AP +90 +40 +130 +80 

G +20 -10 +80 +60 

A +90 +40 Not Present +80 

 

Table 5.4: Molecular electrostatic potentials of some of the modified bases 

  

the base by Arg69. The lack of recognition of O6-methoxyhypoxanthine (O6-

MHX, which also lacks an N2 atom) also provides evidence that this is the 

case.  

 However, it is difficult to explain the observation that ODNs containing 

6-thioguanine are recognised with more affinity than ODNs containing 
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guanine. The MEP calculations suggest that ODNs containing ThioG would be 

recognised with an affinity similar to that of the natural sequence and this is 

not entirely consistent with the binding data where the KD value was around 7-

fold less for the ODN containing ThioG than the control. There may be other 

factors involved that affect the binding of ThioG that are not presently known. 

However, what would seem to be more important is that ODNs containing 

ThioG are recognised with low affinity compared to ODNs containing O6-

alkylguanine, 2,6-diaminopurine and 2-aminopurine residues.   

 The same MEP calculations were performed for 8-oxoguanine and the 

findings were found to be in agreement with previous results concerning the 

recognition of 8-oxoguanine by hOGG1.(118) It was proposed that in the 

hOGG1 active site a Lys249 (NH3
+) / Cys253 (S-) salt bridge forms a dipole 

which runs antiparallel to the local dipole of 8-oxoguanine and parallel to that 

of guanine (section 5.1.2). Comparison of the MEP calculations for guanine 

and 8-oxoguanine (figure 5.22) show that the dipole between C8 and N9 is 

indeed running in different directions for these residues: the MEP values are 

C8 (0) # N9 (20) for 8-oxoguanine and N9 (10) # C8 (30) for guanine, where 

a larger number denotes more electron density and therefore the dipole runs 

positive to negative from the atom with the smaller value to that with the 

larger. This, in addition to our own findings, is to our knowledge the only other 

example of a DNA recognition protein using electrostatic interactions to 

distinguish between natural and modified bases. However, for hOGG1 the key 

features of recognition are mediated by hydrogen bonding interactions; for 

Atl1 there is no recognition of the absent N1 proton whereas for hOGG1 the 

protein recognises protonation of N7 of 8-oxoG compared to the natural base. 
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In summary, it has been proposed that there is a two-fold basis for 

Arg69-mediated recognition of O6-alkylguanine and related purine residues, 

and their discrimination from guanine in the Atl1 active site: firstly, by 

interacting with the base, Arg69 holds O6-MeG in the binding cavity whilst 

repelling G, and secondly this cation-! interaction increases the strength of 

the H-bonds between the active site residues and O6-MeG but not G. In this 

way, Arg69 acts as a molecular probe of electrostatic potential and is crucial 

for Atl1 function. 

 

5.5 Structural Studies of Atl1 

 In order to provide additional evidence that Atl1 recognises DAP and 2-

AP, and to support our hypothesis that Arg69 acts as a molecular probe of 

electrostatic potential and is a key part of recognition of O6-alkylguanines and 

related purine bases, Atl1 was co-crystallised with short ODNs containing 

DAP and 2-AP residues. This work was undertaken in collaboration with Dr. 

Julie Tubbs and Prof. John Tainer at the Scripps Institute. It was confirmed 

that ODNs containing DAP and 2-AP are bound by Atl1 in the same manner 

as those containing O6-alkylguanines: the modified base is flipped out of the 

base stack and into the protein active site, with Arg39 protruding into the helix 

to stabilise the flipped conformation (figure 5.24). The solving of these 

structures demonstrates that Atl1 recognises ODNs containing DAP and 2-AP 

with reasonably high affinity and is consistent with the data generated by our 

fluorescence-based binding assays. In order to further examine the details of 

recognition, the active sites are shown in figure 5.25. As expected, the 

interactions  are  the  same  for  all  the  structures  shown: Atl1 binding ODNs  
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Figure 5.24: Full structures of Atl1 binding to 13-mer ODNs containing ((a) O6-MeG (b) O6-

BnG (c) DAP (d) 2-AP, showing the Arg39 finger and active site residues Trp56 and Arg69 

 

containing O6-MeG, O6-BnG, DAP and 2-AP. The importance of the N2 and 

N3 atoms can clearly be seen, as well as the Arg69 residue which appears to 

be hovering over the bases in all cases, consistent with its role as a molecular 

probe that ‘reads’ the electrostatic potential of the base. It can be seen in the 

active site structures that the Arg69 residue is tilted at a slightly different angle 

when DAP and 2-AP are in the active site pocket than when O6-MeG and O6- 

 

a b 

c d 
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Figure 5.25: Atl1 active site interactions with selected bases ((a) O6-MeG (b) O6-BnG (c) DAP 

(d) 2-AP 

 

BnG are bound (figure 5.25). In addition, Arg69 is in a slightly different 

position when associated with O6-BnG rather than O6-MeG, whereby it 

appears to be marginally closer to N1. Table 5.5 gives the distances between 

the Arg69 N+ cation and some selected ring atoms on the base for the 

different residues, and figure 5.26 gives close up views of the bases in the 

active site to make the variations in position of the Arg69 residue clearer.   

a b 

c d 
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Figure 5.26: Close-up views of the interaction between Arg69 and selected bases ((a) O6-

MeG (b) O6-BnG (c) DAP (d) 2-AP 

 

 

 

 

 

 

a b 

c d 
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 N1 C2 N2 N3 

O6-MeG (a) 3.8 Å 3.5 Å 3.9 Å 3.4 Å 

O6-BnG (b) 3.7 Å 3.5 Å 4.0 Å 3.4 Å 

DAP (c) 3.7 Å 3.4 Å 4.1 Å 3.2 Å 

2-AP (d) 4.1 Å 3.8 Å 4.4 Å 3.4 Å 

 

Table 5.5: Inter-atomic distances between the Arg69 N+ cation atom and selected atoms of 

the heterocyclic ring for modified guanine and purine bases 

 

 

5.6 Mechanism of Base Recognition by ATL Proteins 

It has been demonstrated that the substrate specificity of Atl1 and 

TTHA1564 is relatively broad, with a wide range of O6-alkylguanine residues 

in DNA being recognised with high affinity compared to the control sequence 

which contains guanine in place of the modified base. Whilst Atl1 clearly 

displays a preference for ODNs containing large, bulky O6-alkylguanine 

lesions, this is not the case for TTHA1564 which binds most O6-alkylguanines 

with similar affinity regardless of size. Of all the O6-alkylguanine lesions, the 

ODN containing O6-carboxymethylguanine (O6-CMG) is recognised with the 

least affinity by both ATL proteins. The ability to discriminate between O6-

methylguanine and guanine is approximately 300-fold for Atl1 and 80-fold for 

TTHA1564 and between O6-benzylguanine and guanine around 2500-fold for 

Atl1 and 60-fold for TTHA1564. Interestingly, the ODN containing a tricyclic 

guanine analogue, in which the O6-alkyl group is locked in the anti-

conformation, was recognised with fairly poor affinity (i.e. similar to control) by 
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both ATL proteins. This may be evidence of a requirement by ATL proteins to 

orientate the alkyl group into the syn-conformation in order to bind the 

damaged base, analogous to the lack of repair of O6-alkyl groups by MGMT 

when they are in the anti-conformation.(95)  

Surprisingly, an ODN containing 2,6-diaminopurine (DAP) was 

recognised with high affinity by both ATL proteins compared to control ODN 

but with less affinity than any of the O6-alkylguanine residues. In addition, it 

was also shown that Atl1 recognises ODN containing 2-aminopurine (2-AP) 

with similar affinity to DAP. This observation was unexpected and demanded 

an explanation: hence, structural studies of Atl1 bound to ODNs containing 

DAP and 2-AP were conducted. Thus, it started to become clear that the 

Arg69 residue of Atl1 was intimately involved in recognition of these bases. 

The importance of the active site interactions involved in recognition 

was investigated by performing the same fluorescence-based binding assays 

using ODNs containing a number of modified bases. It was previously shown 

that Atl1 does not specifically recognise adenine or guanine residues (as both 

these bases are present in the control sequence). Using an ODN containing 

the modified base O6-methylhypoxanthine (O6-MHx) which differs from O6-

MeG only in that it does not possess an N2-amino group, it was shown that 

Atl1 binds poorly to ODN containing this modified base. Thus, the H-bond 

interactions in the active site from the main chain carbonyl groups of Trp56 

and Val59 to the N2 atom are absolutely essential for recognition. This means 

that cytosine, thymine and adenine are all unsuitable for recognition in the 

Atl1 active site. However, both guanine and O6-alkylguanine residues have an 
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N2-amino group and therefore there must be some other basis of 

discrimination between these residues by Atl1. 

It may be that this discrimination is more important for Atl1 than for 

AGT proteins such as MGMT, which has the same H-bonding interactions in 

its active site as Atl1 but only a 3- to 10-fold ability to discriminate between 

O6-MeG and G. If MGMT transiently binds to a guanine residue in DNA rather 

than an O6-alkylguanine lesion, the repair reaction cannot be performed and 

so the undamaged base simply flips back out of the active site. However, if 

Atl1 were unable to discriminate so effectively between guanine and O6-

alkylguanine residues (300- to 2500-fold), either these lesions in DNA would 

not be specifically recognised by Atl1 and go unrepaired, or complexes would 

be formed between Atl1 and undamaged guanine bases. If these ‘false’ Atl1 

recognition complexes were to instigate repair of DNA by nucleotide-excision 

repair proteins then this would presumably have deleterious effects, akin to 

those resulting from the unwanted removal of non-damaged bases by DNA 

glycosylases during base-excision repair.(122,123) Furthermore, whilst 

MGMT can perform the repair reaction alone, it is likely that Atl1 needs to form 

stable, bulky complexes that persist long enough to be recognised by factors 

from the NER machinery that can continue to process the lesion.  

Hence, Atl1 has an Arg69 residue that is not present in MGMT and 

which can be seen in crystal structures to be interacting with the !-face of O6-

alkylguanine and certain purine bases when they are in the active site. Arg69 

carries a positive charge on its terminal nitrogen atom, and calculation of the 

molecular electrostatic potentials of the bases when interacting with a cation 

clearly show that there are more extensive attractive interactions between 
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Arg69 and O6-methylguanine than between Arg69 and guanine. In fact, in 

addition to the more modest attractive forces between Arg69 and guanine 

there is also a slight repulsion between Arg69 and the C2 atom of guanine. 

Therefore, the Arg69 residue is the main basis for discrimination between 

guanine and O6-alkylguanine residues by Atl1, based on differences in the 

molecular electrostatic potential of the atoms in the damaged and undamaged 

bases. This is consistent with the results of the binding assays, where a 

difference in the ability of Atl1 to recognise ODNs containing O6-alkylguanine 

lesions compared to those containing guanine of between 300-fold (for O6-

MeG) and 2500-fold (for O6-BnG) was observed. In addition, site-directed 

mutagenesis of Arg69 to an alanine residue (Atl1 R69A) disrupted the ability 

of the protein to recognise O6-alkylguanine lesions (around 47-fold for O6-BnG 

compared to Atl1 WT), and almost completely destroys the ability of the 

protein to discriminate between O6-MeG and G (1.5-fold difference) and O6-

BnG and G (10-fold difference). This lack of discrimination is due in part to the 

R69A mutant not recognising ODNs containing O6-alkylguanines with as 

much affinity as wild-type, but also due to the control sequence being bound 

with greater affinity by the mutant protein (for ODN containing G, KD = 741nM 

(Atl1), KD = 115nM (Atl1 R69A)). This difference in affinity for control substrate 

between WT and R69A may be caused by the absence of the repulsive 

interaction between Arg69 and C2 of guanine in the R69A active site. 

Intriguingly, mutation of Arg69 to phenylalanine (Atl1 R69F) does not 

seem to impair the ability of the protein to recognise O6-alkylguanine lesions 

to the same degree as for the R69A mutant, although it is still disrupted 

compared to wild-type (around 5.5-fold for O6-BnG). Similarly, the ability of 
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Atl1 R69F to discriminate between O6-alkylguanine and guanine is not as 

disrupted as for R69A, with the difference between O6-BnG and G being 450-

fold and between O6-MeG and G around 65-fold. It is difficult to explain why 

this is the case: possibly the Phe69 residue is able to take part in a !-! 

interaction with the face of the base that is more extensive for O6-alkylguanine 

than for guanine residues, due to differences in the electrostatic potentials of 

the bases. In fact, in the active site of hOGG1 there is an interaction of this 

kind (between Phe319 and 8-oxoG), although it does not appear to be one of 

the crucial interactions for discrimination between guanine and 8-

oxoguanine.(24) Interestingly, the residue corresponding to Arg69 in 

TTHA1564 is Phe130 (figure 5.26), though due to a lack of structural data it is 

hard to draw any conclusions about which interactions may be important for 

recognition in the active site of the T.thermophilus ATL. 

It has been suggested by Latypov et al. (in a recently submitted 

manuscript) that the difference in the affinity of Atl1 for large, bulky O6- 

alkylguanine lesions (such as O6-benzylguanine) and smaller lesions (such as 

O6-methylguanine) is extremely important and determines the fate of the 

lesion (i.e. the subsequent repair pathway that processes the damage). Using 

SPR-based methods (Biocore©) to measure dissociation constants, it was 

found that there was around an 11-fold difference in the affinity of Atl1 for 

ODNs containing O6-BnG (KD = 0.08nM) and O6-MeG (KD = 0.91nM). This is 

consistent with our data in which we observed a difference of around 8-fold 

(O6-BnG (KD = 0.3nM) and O6-MeG (KD = 2.4nM)). It was also shown for all of 

the ODNs containing O6-alkylguanine lesions that were evaluated, that the 

association rates (kass) were largely similar, and that it  was the  differences  in 
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   1) Atl1 
   2) TTHA1564 

 
                   
1) MRMDEFYTKVYDAVCEIPYGKVSTYGEIARYVGMPSYARQVGQAMKHLHPETHVPWHRV  59 
2) --LSPARLRLYERVRLVPYGRTVSYGALGRELGLSP--RAVGAALRACPFFLLVPAHRV 120 
 
1) INSRGTISKRDISAGEQRQKDRLEEEGVEIYQTSLGEYKLNLPEYMWKP 108 
2) IHADGRLGGFQGQEGLKLWLLRFEGA----------------------- 146 
 
         

Figure 5.27: Sequence alignment of ATL protein homologues Atl1 from S.pombe and 

TTHA1564 from T.thermophilus generated using Sequoia.(124) The highlighted amino acids 

correspond to key residues.  

 

 

dissociation rates (kdiss) that affected the final value of KD. It is likely that the 

more extensive hydrophobic interactions between Trp56 and larger O6-alkyl 

groups are responsible for retaining these lesions in the Atl1 active site and 

increasing the binding affinity for residues such as O6-BnG.  

The KD values measured using fluorescence-based assays are on 

average approximately three times larger than those derived from SPR-based 

experiments. This may be due to the experimental conditions: for SPR 

measurements the ODNs are immobilised on a sensor chip, whereas for the 

fluorescence-based assays the binding takes place in free solution under true-

equilibrium conditions. More importantly, the relative differences in affinity 

between ODNs containing O6-alkylguanine residues are broadly similar and 

so the results by these different methods are complementary and consistent. 

In a series of elegant experiments Latypov et al. demonstrated in vivo 

that the type of NER repair initiated by Atl1 is dependent on the size of lesion 

and the relative binding affinity for that lesion. Using various S.pombe 
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deletants, it was shown that repair of smaller lesions such as O6-

methylguanine was performed by global genome repair (GGR) and that of 

larger lesions such as O6-benzylguanine by transcription-coupled repair 

(TCR). Therefore, it has been proposed that O6-MeG lesions are recognised 

by Atl1 but that the weaker affinity of binding facilitates dissociation of the 

protein and allows GGR factors to continue repair, whilst O6-BnG lesions are 

recognised and bound with stronger affinity and therefore cause stalling of 

RNA polymerase which subsequently initiates repair by the transcription-

coupled repair (TCR) pathway. It has thus been suggested that this difference 

in affinity for various lesions leads to different processing pathways for the 

DNA damage. 
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5.7 Tables of Binding Data 

 

   

Table 5.6: Dissociation constants of single-stranded ODNs containing modified bases with 

Atl1 and TTHA1564 proteins 
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Table 5.9: Dissociation constants of double-stranded ODNs containing selected modified 

bases with Atl1 and TTHA1564 proteins 

 

Table 5.10: Dissociation constants of single-stranded ODNs containing modified bases with 

Atl1 wild-type, and mutant proteins Atl1 R69F and Atl1 R69A
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6.0 Isolation and Identification of Atl1 and 
Interacting Proteins 

 
 ATL proteins are thought to be involved in the nucleotide-excision 

repair (NER) pathway, with their proposed role being damage sensors that 

signal O6-alkylguanine lesions for repair. Whilst there is some genetic and 

biochemical evidence to suggest that this is the case, their exact function is 

still unknown. In order to produce evidence that Atl1 (or the Atl1-DNA 

complex) interacts directly with proteins in the NER machinery, a series of 

affinity purification (pull-down) assays were carried out that it was hoped 

would allow the isolation of Atl1 and its binding partners. Mass spectrometry-

based proteomic analysis was then used to identify any associated proteins. 

 

6.1 Introduction to Affinity Purification 

 The study of protein-protein interactions is extremely valuable in 

molecular biology. In cells, proteins participate in interactions with one 

another, forming complexes that function in various biological pathways. 

Identification of the binding partners of a specific protein facilitates the 

determination of which cellular pathways that protein is involved in, and can 

assist in the elucidation of its function. The pull-down assay is a technique that 

is often used to identify the binding partners of a protein of interest. The term 

pull-down assay can be used to describe two related methods, co-

immunoprecipitation and affinity purification, which differ in the strategy for 

removing the target protein complexes from the protein mixture. 

Immunoprecipitation exploits the highly specific interaction between a target 
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protein (antigen) and its antibody. Incubation of an immobilised antibody (the 

‘bait’) with the protein mixture results in removal of the target protein, 

potentially with other interacting proteins still attached. Affinity purification is 

very similar but uses another molecule rather than an antibody as the bait.     

A pull-down approach that could be utilised in the context of this project 

involves the protein of interest being expressed as a fusion protein with an 

attached affinity label (such as GST, MBP, His etc.), then immobilised onto a 

solid-support using the highly specific interaction between the affinity tag and 

a ligand on the support. A mixture of proteins is then passed over the 

immobilised protein of interest (which acts as the bait) in the hope that that 

any protein binding partners will specifically interact with the bait, and after 

washing to remove any non-interacting proteins, subsequently co-elute (figure  

 

Figure 6.1: Principles of a protein-immobilised pull-down assay 
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6.1). The intact protein-protein complexes can be cleaved from the solid-

support using a competitor. These protein complexes are then separated and 

analysed by SDS-PAGE (SDS-polyacrylamide gel electrophoresis) and the 

identity of the proteins present in the sample established using a combination 

of mass spectrometry and in silico analysis.(125) 

This method could be used to identify which proteins in S.pombe 

interact with Atl1. Atl1 has previously been overexpressed in E.coli and 

purified as a fusion protein tagged with maltose-binding protein (MBP-

Atl1).(57) This fusion protein could subsequently be immobilised on amylose 

resin and the pull-down assays performed using whole cell extracts (WCEs) of 

S.pombe to attempt to identify the binding partners of Atl1 in vitro. This is a 

similar approach to that used by Morita et al. to identify and demonstrate the 

interaction between TTHA1564 and UvrA, the NER recognition factor.(63) 

Alternatively, the experiment may be more successful using the Atl1-

DNA complex as bait, as NER factors may recognise this complex rather than 

Atl1 per se. One option would be to use a biotinylated duplex ODN 

immobilised on streptavadin-coated beads. The ODN would be expected to be 

recognised by Atl1 and hence remove it from the WCE, potentially bringing 

with it any interacting proteins. Another possibility would be to pre-form the 

Atl1-DNA complex by treating the ODN-coated beads with purified 

recombinant Atl1, and then use this as the bait in a pulldown with S.pombe 

WCE. If it is found that the Atl1-DNA complex is not stable enough to be used 

for this purpose, another option would be to use a covalently cross-linked Atl1-

DNA complex (section 7.1). 
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6.2 Introduction to Protein Identification by Mass 

Spectrometry 

6.2.1 Mass Spectrometry-based Proteomics 

Mass spectrometry (MS) is an analytical technique which involves 

generating ions from a sample and accelerating them in an electric field, to 

produce a spectrum by measurement of the mass-to-charge (m/z) ratio of the 

molecules. It is a valuable tool for the characterisation and identification of 

proteins, either by introduction of an intact protein and subsequent analysis 

(‘top-down’ proteomics) or by the introduction of peptides from a pre-digested 

protein sample that can then be identified (‘bottom-up’ proteomics). A mass 

spectrometer by definition consists of three parts; an ion source which creates 

gaseous phase ionised analytes, a mass analyser which separates the ions 

based on the m/z ratio, and a detector which interprets the data into mass 

spectra, including  abundance measurements (figure 6.2).(125)  

 

 

Figure 6.2: Overview of a mass spectrometer 

 

The most commonly used techniques to create ions are matrix-assisted 

laser desorption/ionisation (MALDI) and electrospray ionisation (ESI). MALDI 

involves using laser pulses to sublimate and ionise a sample from a dry 

crystalline matrix, whereas ESI involves ionising the sample from solution and 

so can be integrated with an on-line sample fractionation step such as liquid 

chromatography (LC). The mass analyser is the most integral part of the 
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experimental set-up as it is responsible for generating mass spectra that are 

rich in information. There are four types generally used in proteomics: ion trap, 

time-of-flight (TOF), quadrupole and Fourier transform ion cyclotron (FT-MS), 

and they vary in their performance in terms of sensitivity, mass accuracy and 

resolution.(125) MALDI is usually coupled with a time-of-flight mass analyser 

(MALDI-TOF) which allows the masses of intact peptides to be measured, and 

matching of this data with theoretical masses in a database allows proteins to 

be identified in a procedure known as peptide mass fingerprinting (PMF).(126) 

ESI is more frequently coupled to ion-trap, triple quadrupole or quadrupole-

TOF mass analysers which allow tandem mass spectrometry (MS/MS) 

experiments to take place.(127) Tandem mass spectrometry (MS/MS) has the 

advantage of revealing more information as it incorporates a fragmentation 

step before the second analyser measures m/z values of the resulting 

fragments (figure 6.3). 

 

 

Figure 6.3: Principles of a tandem mass spectrometry (MS/MS) experiment 
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More specifically, MS/MS experiments are comprised of three stages: 

the initial MS which separates the peptides on the basis of m/z ratio, and then 

a second MS step which involves the selection and further fragmentation of 

selected peptides in the sample. This generates a spectrum in the third stage, 

the analysis of which allows the masses and sequences of peptides and 

peptide fragments to be elucidated and hence the proteins in the original 

sample identified.(128) For the analysis of complex mixtures comprised of 

peptides from a large number of proteins (e.g. from whole cell extracts) 

integrated liquid chromatography ESI-MS (or LC-MS) systems coupled with a 

quadrupole ion trap (Q-TRAP) is an appropriate choice.(129) This is because 

the LC can fractionate (i.e. simplify) the mixture before ionisation and then 

allow subsequent MS/MS analysis to take place. The quadropole ion trap is 

shown in figure 6.4. The peptide ions are first separated on the basis of m/z 

ratio, and then precursor ions of a particular m/z are selected and fragmented 

  

 

 

 

 

 

 

Figure 6.4: Principles of a quadrupole ion trap mass analyser (from Saw Yen Ow, ChELSI) 
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in the ion trap. The fragments (product ions) are then separated before 

passing to the detector. This process leads to the creation of collision-induced 

dissociation (CID) spectra which can be subsequently analysed using peptide 

databases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: MS (blue) and MS/MS spectra (yellow) with an expansion of the collision-induced 

fragmentation pattern 
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A typical spectra is shown in figure 6.5. The top window contains the 

crude spectra, with the MS trace shown in blue and the MS/MS shown in 

yellow. Selection of a time point in the experiment allows the fragmentation 

patterns at that moment to be viewed, as shown in the bottom window. It is 

the information contained within these fragmentation patterns that are 

compared with theoretical patterns when in silico analysis and peptide 

matching takes place. 

For the analysis of the affinity-based isolation of Atl1 and interacting 

proteins, a ‘bottom-up’ proteomics approach was used. After separation of the 

proteins in the sample by 1-D gel electrophoresis and subsequent digestion 

with trypsin, tandem mass spectrometry (MS/MS) experiments were used to 

analyse the peptides in the sample (section 6.3). The samples were initially 

fractionated by on-line reverse phase liquid chromatography (LC), after which 

electrospray ionisation coupled with a quadropole ion trap (ESI-TRAP) was 

used in order to ionise, separate and fragment the peptides and produce CID 

spectra for subsequent analysis and protein identification. 

 

6.2.2 Interpretation of MS Data 

 The data generated by MS/MS experiments must be converted into 

peptide identifications in order to produce meaningful results. For MS/MS, the 

peak patterns in the CID spectrum corresponding to fragment ions provide 

information about the peptide sequences as well as the masses. The types of 

product ion produced by MS/MS depends on a number of factors including the 

internal energy, primary structure and charge state and are shown in figure 

6.6.(130). Ions that retain the charge on the N-terminus are labelled a,b,c and  
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Figure 6.6: Peptide fragment ions generated by MS/MS experiments 

 

those on the C-terminus x,y,z. Certain fragmentation techniques generate 

characteristic types of ion; in this instance (i.e. using ESI-TRAP), CID 

generates b and y ions which result from specific cleavage of the peptide 

bonds. Alternatively, the softer ionisation technique electron transfer 

dissociation (ETD) produces c and z ions.   

Treatment of the spectral data with specific algorithms followed by 

comparison to databases which contain theoretical fragmentation patterns 

allow the identity of the peptides to be elucidated.(131,132) Furthermore, if a 

number of unique peptides corresponding to those from a known protein are 

found, the presence of that protein in the original sample is inferred with some 

certainty. Due to the nature of the matching process the peptides must 

correspond to those from known proteins, in the sense that their sequences 

are in a protein database (such as Swiss-Prot (http://www.uniprot.org/uniprot/) 

or NCBI Protein Databank (http://www.ncbi.nlm.nih.gov/protein)). Due to the 

potential for false positives within this method (i.e. mis-identification of 

proteins based on erroneous analysis) a number of filtering criteria are used 

which gives the protein a database search identification score. This score, 
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which is based on the Mowse algorithm (126), is a measure of how reliable 

and significant the peptide product ion identifications are, based on various 

parameters such as product ion abundance, favored cleavage sites, product 

ion type, precursor ion charge state and polarity. It is usually accepted within 

the proteomics field that a match of two or more unique peptides is sufficient 

for accurate protein identification. However in the case where only one 

peptide is found then two good quality MS/MS spectra must be produced and 

the peptide must not be shared (i.e. not occur in any other known protein) 

(detailed in the Molecular and Cellular Proteomics journal at mcponline.org).   

 

6.3 Affinity-based Isolation of Atl1 and Interacting Proteins   

In an attempt to isolate Atl1 along with any associated proteins from a 

whole-cell extract of S.pombe, an immobilised ODN containing an O6-

alkylguanine residue was used as bait in a classical pull-down assay (figure 

6.7). It was reasoned that any interacting proteins would be more likely to 

recognise the Atl1-DNA complex, rather than Atl1 alone, because it is the 

damaged DNA that will be involved in the next stage of NER repair. The ability 

to affinity purify any proteins that interact with Atl1 assumes that a molecular 

‘handoff’ between Atl1 and NER proteins takes place during the repair 

process, and that these protein-protein interactions are non-transient and of 

sufficient affinity to survive the conditions of the assay. The ODNs used were 

biotinylated at the 5!-terminus, in order that they could be immobilised on 

streptavadin beads which facilitated separation of the ODNs and any proteins 

isolated from the WCE after the incubation period used in the assay. Once the 

beads had been removed from the WCE they were washed to remove any 
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non-specifically bound proteins. The proteins of interest were then cleaved 

from the beads, separated by 1-D PAGE, digested with trypsin and analysed 

by ESI-TRAP mass spectrometry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Pull-down assay using immobilised ODNs as bait 

 

 The ODNs used to isolate Atl1 in the assay contained an O6-

alkylguanine residue in order that they would be specifically bound by the 

protein. It has been previously shown that Atl1 recognises both single-

stranded and double-stranded DNA with similar affinity but it is likely that 

dsDNA would be preferable for use in these assays. The proteins that 

associate with the Atl1-DNA complex may not interact directly with Atl1 but 

with the DNA itself, and it is also possible that the repair proteins recognise 
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the undamaged strand opposite the lesion, which is the case for Rad4, the 

XPC orthologue in S.cerevisiae.(38) In addition, using dsDNA allowed 

placement of the O6-alkylguanine residue in one ODN, and the biotin label in 

the other, which was more convenient in terms of the preparation and 

synthesis of the ODNs. It has been shown that during repair of UV-induced 

DNA damage, the NER machinery of S.cerevisiae excises a patch of between 

24 and 27 nucleotides in length.(96) Therefore, it was considered likely that an 

ODN longer than this would be more successful at pulling down any NER 

protein complexes.  

 Three stratagies were chosen for making the modified ODN substrates 

used in these pull-down assays: standard DNA synthesis using the 

phosphoramidite method to produce 102-mer ODNs; ligation of overlapping 

single-stranded ODNs followed by primer extention using a Klenow fragment 

(a highly tolerant DNA polymerase) to form 219-mer double-stranded ODNs; 

and ligation of three short ODNs after annealing to a 102-mer complementary 

strand to produce 102-mer duplex ODN. The synthesis and modification of 

these ODN substrates has been described in detail in section 3.3.  

The 219-mer ODNs shown in figure 6.8 were initially used in the 

pulldown assays. OW61 contains O6-methylguanine which is known to be 

bound with high affinity by Atl1 and therefore this ODN was expected to 

isolate Atl1 from the mixture of proteins in the WCE. OW60 was used as the 

control sequence as Atl1 should have very little affinity for this ODN. The 

ODNs OW60 and OW61 were already duplexes by the nature of their 

synthesis (i.e. using a Klenow fragment, see section 3.3) and therefore no 

annealing  step  was  required. The  binding  of  the ODNs  to  the  beads was 
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Figure 6.8: Double-stranded 200-mer ODNs used in the pull-down assays 
 

performed in binding buffer (section 9.12), where 500pmols of each ODN was 

incubated with pre-equilibrated streptavadin beads for 2 hours at room 

temperature. The binding efficiency was quantified by measurement of relative 

DNA concentration in the supernatant before and after incubation using UV 

absorption at 260nm. In both cases 250-300 pmols of ODN was successfully 

bound to the beads which gave a binding efficiency of between 50-60%. This 

was considered a reasonable quantity of bound ODN and sufficient substrate 

to remove a suitable amount of Atl1 from the WCE for subsequent MS 

analysis. The beads were then washed with binding buffer and pre-

equilibrated with extraction buffer (section 9.12).  

The next stage was the preparation of S.pombe whole-cell extracts 

(WCE). Two separate cultures of S.pombe were cultivated: a wild-type strain 

(WT) and an Atl1 deletant strain (%Atl1). Both were treated identically during 

growth (in YES media, harvested at OD595 & 0.6), and were subsequently 

made into small cryogenically frozen pellets by dripping resuspended cell 

extract into liquid nitrogen. After storage at -80˚C, these pellets were ground 

into a fine powder (using a pre-cooled grinding press) and this was 
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immediately used to make the WCEs by resuspension in extraction buffer. 

The proteins were extracted from the powder almost immediately to avoid 

potential degradation of proteins in the ground cells: if there is a need to keep 

the S.pombe cells for any length of time, they should be stored at -80˚C as 

small cryogenically frozen pellets and only ground into a powder when 

required for experiments. 

Approximately 8g of each powder was resuspended in cold extraction 

buffer by mixing for one hour at 4˚C. The cells were centrifuged and the 

supernatant (i.e. the WCE) removed. The total protein concentration was 

determined by Bradford assay (~30mg/mL) and hence the extracts were 

ready to be used in the pull-down assays. The pre-equilibrated beads were 

then added to the extracts in the following combinations: 

 

• Wild-type extract (WT WCE) with OW61 (MeG) (Pd1) 

• Wild-type extract (WT WCE) with OW60 (G) (Pd2) 

• Atl1 deletant extract (%Atl1 WCE) with OW61 (MeG) (Pd3) 

• Atl1 deletant extract (%Atl1 WCE) with OW60 (G) (Pd4) 

 

These reactions (Pd1-4) were then incubated for one hour at room 

temperature, after which the beads were separated from the WCEs using a 

magnetic rack. The selective removal of Atl1 from the WT WCE by OW61 but 

not by OW60 was demonstrated and quantified by ELISA (approximately 80% 

of total Atl1 in the wild-type WCE was bound to OW61). The collected beads 

were washed three times with 100uL of extraction buffer, and then boiled in 
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1X Laemelli buffer to cleave all the proteins from the DNA. Finally, the 

samples were separated and analysed by 1-D SDS PAGE (figure 6.9). 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: 1-D PAGE gel of the protein mixtures isolated during the pulldown assays. The 

dotted lines indicate the excision of the lanes into gel pieces for MS sample preparation 

 

The PAGE analysis demonstrates the presence of many proteins in the 

samples, as perhaps would be expected when using WCEs. In order to 

prepare the samples for analysis by MS,(133) it was necessary to excise the 

bands from the gel. Two lanes were initially analysed: those containing the 

proteins from the assays Pd1 (with OW61 (MeG)) and Pd2 (with OW60 (G)) 

that had been incubated with wild-type whole-cell extract (WT WCE). To gain 

the maximum amount of information from the experiments, it was decided to 

attempt to identify all of the proteins in the samples and hence each lane was 

cut into eight separate pieces. After excision, the gel pieces were destained, 

digested (in-gel) overnight with trypsin at 37˚C and the peptides extracted 

from the gel bands by treatment with a number of solutions (section 9.13.1). 

 
250 
125 
 
100 
 
 
 
 75 
 
 
50
 
  
 
37 
 
 
25 
 
20 
15 
 
10
  

     KDa 



Chapter 6 

 193 
 
 

Finally, this solution of peptides was dried under vacuum to give a pellet which 

was stored at -20˚C until the mass spectrometer was available. Before 

loading, the peptides were resuspended in Switchos buffer (section 9.13.1) 

and sonicated. The samples were then placed on the mass spectrometer 

ready for loading to perform the MS/MS experiments. 

The exact details of the experimental set-up are described in section 

9.13.2. Firstly, the peptide solution enters a reverse-phase liquid 

chromatography column (C18) which fractionates the peptide mixture. The 

eluant is then ionised by electrospray (ESI) and enters a quadropole ion trap 

(Q-TRAP) mass analyser where the peptide ions are initially separated and 

selected according to m/z, fragmented by collision with an inert  gas  (N2)  and  

 

Figure 6.10: MASCOT MS/MS Ions search 
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separated again to generate a CID spectrum (section 6.2). This raw data 

needs to be processed before a database search for peptide matches can 

takes place and therefore the spectrum was converted to a generic MS 

interrogation file format (.mgf). Essentially, a number of the most intense 

peaks are selected (5000 in the case of these experiments) and then this data 

is converted to a format compatible with the software search engine. The 

search engine uses an algorithm to match experimental peptide fragmentation 

patterns with theoretical ones calculated from primary sequence databases.   

To search for peptide and protein matches from the data, the MASCOT 

algorithm (Matrix Science) was initially used. An MS/MS ions search was 

conducted using the parameters shown in figure 6.10. The software was set 

up to search all S.pombe protein sequences in the SwissProt databank for 

possible matches. The input parameters instructed the software that the 

proteins were digested with trypsin, the MS/MS experiment was run using 

ESI-TRAP (i.e. the peptide ion fragments will be of the type b and y), and that 

it should search for peptide fragment ions that carried +1, +2 and +3 charges. 

Methionine residues may have become oxidised during the process and this 

was accounted for in the variable modifictions input. In addition, a mass 

tolerance of ±0.6 Da was specified for the fragment ions, which was 

appropriate for the mass accuracy capability of the mass spectrometer.  

For the first searches, gel pieces from the bottom of the lanes 

corresponding to Pd1 and Pd2 were selected. Atl1 would be expected to be in 

one of the lowest bands in the gel as it has a low molecular weight (12.6 kDa) 

and the primary success of the assays could be evaluated by whether Atl1 
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had been isolated and then identified by these methods. The results for gel 

piece 1 from Pd1 are shown in figure 6.11. 

 

 

 

Figure 6.11: Protein hits from the MS/MS data for gel piece 1 (Pd1) (top) and peptide 

matches for Atl1 (bottom) 

 

The results show all the proteins identified in the gel band. Clearly, Atl1 

was identified in this lane, and whilst the other searches (for gel piece 2 from 

Pd1 and gel pieces 1 and 2 from Pd2) resulted in a similar number of protein 

hits, Atl1 was not present in these samples. Thus it was confirmed that Atl1 

was successfully isolated from the WCE in Pd1 (using the ODN containing 

O6-MeG (OW61)), and not in Pd2 (using the control ODN containing G 

(OW60)). Also shown in figure 6.11 (bottom window) are the peptide matches 

for Atl1. Four unique peptides were identified and their masses and 
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sequences are shown. The probability-based Mowse score was 117 for this 

hit which is reasonably high (section 6.2) and this means it can be concluded 

with some certainty that Atl1 was present in this sample (and not in the 

others).  

The other gel pieces were prepared and anaylsed in an identical 

manner. Although Atl1 was successfully and selectively isolated from Pd1 and 

not Pd2, there were none of the NER recognition factors in either sample 

(such as Rhp7 and Rhp16 (UV-DBD), Rhp41 and Rhp42 (XPC), Rhp23 

(hHR23b) or Rhp26 (CSB), see figure 1.13). Only one other protein of interest 

was found in the MASCOT search. This was Rad15 (the S.pombe homologue 

of human XPD), the NER helicase which forms part of the TFIIH core. 

Unfortunately this protein appeared as a significant hit in both lanes analysed 

(i.e. it was isolated from Pd1 and Pd2) and so was likely to have been isolated 

by affinity for the ODN and not specifically by interaction with Atl1. This finding 

is consistent with results from co-immunoprecipitation experiments performed 

by Andrew Marriot in the Margison laboratory, who found that Rad15 was 

isolated in the assay but further investigation showed that this was due to 

interaction with DNA and not Atl1 (unpublished results). 

The .mgf files were also analysed using an alternative search engine, 

Phenyx (Genebio). This also produced a significant hit for Atl1 in Pd1 (with 15 

unique peptides identified) which confirmed the previous result. However, in 

common with MASCOT, almost all of the other proteins found in this search 

were present in both samples and were abundant cellular proteins (such as 

ribosomal and mitochondrial proteins). The only protein of interest found in 

Pc1 and not Pc2 that was different to the MASCOT searches was rpc40, the 
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S.pombe homologue of RPAC1, which is part of the Pol core element of RNA 

polymerases I and III. However, only one unique matched peptide was found 

for this protein which questions the validity of the result (and in addition it did 

not appear in the MASCOT searches).  

One of the problems with these experiments was that there were a 

large number of proteins (approximately 200) isolated by both pull-down 

assays. Most of these proteins were present in both lanes, leading to the 

conclusion that they were isolated non-specifically by the ODN or beads under 

the assay conditions. Some proteins only appeared in the Pd1 or Pd2 lane but 

had no significance as they were not related in any way to DNA repair. It was 

possible that our proteins of interest (i.e. NER recognition factors) were not 

being detected or identified due to the sheer number of proteins in the 

background that were masking low abundance proteins. This is because the 

MS/MS experiment has limitations in detecting low abundance peptides.  

Hence, we decided to re-analyse some of the samples but using a 

slightly different MS/MS experiment, known as pseudo-selective reaction 

monitoring (pSRM), where certain peptides are targeted by the mass 

spectrometer for analysis. When looking for low abundance proteins, this 

technique can markedly enhance the sensitivity of the experiment and 

generate a low signal to noise ratio.(134) It essentially involves instructing the 

mass spectrometer to select for a number of predicted peptide ions from a 

protein of interest. The sequence of this protein must be known so that the 

expected masses and m/z values of the peptide ions that will be generated by 

the experiment can be calculated. The mass spectrometer then specifically 

isolates  precursor  ions  of  these  m/z  values  for  further fragmentation. This  
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       10         20         30         40         50         60  
MNLTFKNLQQ QKFVISDVSA DTKISELKEK IQTQQNYEVE RQKLIYSGRI LADDKTVGEY  
 
        70         80         90        100        110        120  
NIKEQDFIVC MVSRPKTSTS TPKSAASPAP NPPASVPEKK VEAPSSTVAE STSTTQTVAA  
 
       130        140        150        160        170        180  
AAPSNPDTTA TSEAPIDANT LAVGAQRNVA VENMVEMGYE RSEVERAMRA AFNNPDRAVE  
 
       190        200        210        220        230        240  
YLLTGIPEDI LNRQREESAA ALAAQQQQSE ALAPTSTGQP ANLFEQAALS ENENQEQPSN  
 
       250        260        270        280        290        300  
TVGDDPLGFL RSIPQFQQLR QIVQQNPQML ETILQQIGQG DPALAQAITQ NPEAFLQLLA  
 
       310        320        330        340        350        360  
EGAEGESALP SGGIQIQITQ EESESIDRLC QLGFDRNIVI QAYLACDKNE ELAANYLFEH  
 
 
GHESEDEP  
 

Figure 6.12: Primary amino acid sequence of Rhp23 protein 

 

Fragment sequence Fragment Mass m/z Value (+2 Ion) 

IQTQQNYEVER 1407.5 704.75 

SAASPAPNPPASVPEK 1519.67 760.835 

EQDFIVCMVSRPK 1551.84 776.92 

NVAVENMVEMGYER 1640.85 821.425 

AVEYLLTGIPEDILNR 1816.08 909.04 

 

Table 6.1: Peptide fragments from Rhp23 with masses and m/z values for +2 ions 

 

drastically reduces the background by cutting out all ions of other m/z values.  

This approach was used to search for the NER recognition factors 

Rhp7, Rhp23 and Rhp41. Rhp23 has a mass of 40,135Da and so would 

therefore be expected to be found in gel piece 4 (based on the gel marker, 

and the mass range (36,000-48,000) of the proteins identified in the previous 

MS/MS ions search for this gel piece). Input of the sequence of Rhp23 (figure 
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6.12) into a proteomics toolkit (expasy.org) allowed a list of the peptide 

fragments expected to be generated by ESI-TRAP to be calculated, and five 

peptide fragments were chosen with a RMM of between 1,400 and 2,000 Da, 

which are shown in table 6.1. These peptides were selected because their +2 

ions will have m/z values in the range 700-1000 which aids their selection as 

this is where the mass spectrometer is most sensitive. These m/z values are 

then programmed into the mass spectrometer during the MS/MS experiment, 

so that only peptides ions with the m/z values in table 6.1 (or very close to 

them) will be selected for fragmentation. The search then attempts to match 

the experimental and theoretical fragmentation patterns as before. 

Unfortunately none of the NER recognition factors were identified using 

this method. This may be because they are not present in the sample rather 

than a lack of detection due to low abundance. However, it may have been 

that the large number of non-specific interations from abundant proteins was 

preventing Atl1 from being co-purified with any interacting partners. Thus, it 

was decided to attempt the pull-downs again with some modifications to the 

procedure. 

 It seemed likely that many of the abundant proteins were binding non-

specifically to the DNA, and therefore shorter ODN substrates (100-mers) 

were used in order to provide less surface area for these interactions. In 

addition, ODNs containing O6-methylguanine, O6-benzylguanine and guanine 

were used to evaluate whether the Atl1-ODN complex containing O6-BnG 

would be more successful in isolating the proteins suspected of interacting 

with Atl1. The affinity of the interaction between Atl1 and ODNs containing O6-

BnG is around ten-fold greater than for ODNs containing O6-MeG and this 



Chapter 6 

 200 
 
 

could increase the efficiency of isolation of Atl1, or possibly affect recognition 

of the Atl1-DNA complex by NER factors. 

The three ODN substrates used in the assays are shown in figure 6.13. 

The single-stranded 100-mer ODNs containing either an O6-methylguanine or 

guanine residue were synthesised commercially along with the 5!-biotinylated 

complementary strand. These were annealed at a concentration of 10µM (in 

50mM NaCl solution) by heating at 98˚C for 5 minutes before being allowed to 

cool slowly to room temperature. The ODN containing O6-benzylguanine was 

already double-stranded by the nature of its synthesis (i.e. by three way 

ligation after annealing, section 3.3.2).  

  

 
 
 

 

 

Figure 6.13: ODNs used in the second set of pull-down assays 

 

 The ODN duplexes were bound to the streptavadin beads in exactly the 

same manner as described previously. This time, however, the WCEs were 

prepared in a variety of different ways before the pulldown assays were 

carried out. Firstly, the WCEs were sonicated (6 x 30s pulses) to disrupt the 

nuclei of the cells and attempt to destroy the chromatin structure. This step 

was performed in an attempt to release any chromatin-associated proteins 
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(such as DNA repair proteins) and make them more freely available in the 

supernatant. It was hoped that this would facilitate the detection of NER 

factors that may have affinity for the Atl1-DNA complex. The sonicated WCEs 

were now split into three equal aliquots, which were prepared differently for 

the assays. The first was used in the assays without any further treatment. 

The second had ATP added to a final concentration of 1mM. The reasoning 

behind this was that formation of the desired complexes may be ATP- 

dependent  and  so  by  providing a high concentration in the extract, complex  

 

Extract/ODN G MeG BnG 

WT + ATP 1 7 13 

WT - ATP 2 8 14 

WT + ATP + benzonase 3 9 15 

%Atl1 + ATP 4 10 16 

%Atl1 - ATP 5 11 17 

%Atl1 + ATP  + benzonase 6 12 18 

 

Table 6.2: Combinations of ODNs and treated WCEs used in the second set of pull-down 

assays 

 

formation may be promoted. The third was treated with benzonase and 

2.5mM MgCl2. This nuclease was added in order to digest all the DNA and 

RNA in the WCE, and thus cause the release of any DNA-associated proteins 

of interest. After clearing the supernatant, EDTA was added to a final 

concentration of 10mM to inhibit any residual nuclease activity (by chelating 

any Mg2+ ions required for activity) and prevent digestion of the bait ODNs.   
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 The pull-down assays were prepared by mixing the ODN substrates 

and WCEs in the combinations shown in table 6.2 and were then incubated at 

25˚C for 1 hour. The beads were then removed from the supernatant and 

washed twice with 750µL extraction buffer. This was a much larger volume 

than was used before, in an attempt to wash away more of the abundant and 

non-specifically bound proteins. The beads were then kept and stored at -20˚. 

In order to avoid the time-consuming process of extensive sample preparation 

(1-D gel PAGE separation, band excision, digestion and peptide extraction), it 

was hoped that the proteins could be dissociated from the beads, digested 

directly, and then pSRM experiments performed to search for proteins of 

interest. Hence, the beads from selected samples (2, 8 and 14) were boiled 

for 5 mins in 50mM ammonium bicarbonate with 0.1% SDS solution to 

dissociate the proteins and then the supernatant was treated with trypsin (the 

standard buffer for trypsin digestion is 50mM ammonium bicarbonate and the 

manufacturer stated that this concentration of SDS would not affect protease 

activity). After digestion overnight at 37˚C, the solution was dried down to a 

pellet, resuspended in Switchos buffer and analysed using the mass 

spectrometer as before.  

 Unfortunately this time no peptide identifications were made. It was 

difficult to tell at which stage the problem occurred: whether the proteins had 

not been cleaved from the beads efficiently, if there was a problem with the 

trypsin digestion, or if an unknown factor had been responsible. It was 

therefore decided to take samples 1, 7, 13 and 4, 10 and 16 (table 6.2) and 

prepare them for the MS/MS experiment according to the original method. The 

beads from these pulldown assays were boiled in 1x Laemelli buffer for 5 mins  
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Figure 6.14: SDS-PAGE gel of protein mixtures from selected pulldown assays 

     

and then separated and analysed by SDS-PAGE. The PAGE analysis of the 

samples is shown in figure 6.14. The gel appears to be similar to that from the 

first set of pulldown assays, possibly with slightly fewer proteins present. The 

lanes corresponding to experiments 1, 7 and 13 were each divided into eight 

pieces and then processed as before. However, this time a reduction and 

alkylation step were performed to irreversably block any cysteine residues 

present in the proteins. This prevents disulphide bridges forming which can 

interfere with trypsin digestion. Hence, the gel pieces were treated with 

dithiothreitol (DTT) and then iodoacetamide before the trypsin digest. The 

samples were then analysed by MS/MS in the same way as before. 

 A number of proteins were identified by matched peptides, and there 

appeared to be a fewer number of proteins present than in the previous 

experiment. However, Atl1 was not identified in any of the samples (including 

those from the pull-down assays using ODNs containing O6-MeG and O6-BnG 

lesions). The reasons for this are difficult to explain: it may be that more 

  M      1      7     13   BSA    4     10    16 
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extensive washing with a larger volume of buffer resulted in Atl1 dissociating 

from the ODN during this step and not being present in the final sample, or 

that the treatment of the WCEs somehow led to the failure of the experiments. 

Unfortunately, due to time constraints these experiments were unable to be 

continued any further. 
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7.0 Attempted Synthesis of a Crosslinker 

7.1 Introduction to Crosslinking of DNA to Proteins 

 Interactions between proteins and DNA are fundamental in biological 

systems and the understanding of them is important. There are various 

methods by which these interactions can be studied and one useful approach 

is that of cross-linking. Chemical cross-linking of protein to DNA involves 

forming a chemical bond between them, to generate a covalently bound DNA-

protein complex. The formation of a covalent complex of this kind is especially 

useful when the interaction between the protein and DNA is transient or of not 

particularly high affinity, and allows the complex to be studied in more detail. A 

specific, cross-linked protein-DNA complex can be further characterised or 

manipulated, as it is likely to be considerably more stable than the native 

complex.  

It is obviously desirable for the covalent complex to be as close in 

structure to the native complex as possible. If the disturbance of the true 

interaction can be kept to a minimum, then the information garnered from the 

studies will be more relevant. In this sense it is important that the cross-linking 

reaction is highly specific; that is, one covalent bond is made between the 

DNA and the protein, and that the interaction in the cross-linked complex 

reflects the actual interacting architecture.     

      The cross-linking reaction is generally achieved via nucleophilic or 

electrophilic substitution. As there are potentially many reactive sites in a 

protein or DNA molecule, it is desirable to create a unique site where the 

reaction will preferentially take place. In this way, a particular product can be 



Chapter 7 

 206 
 
 

generated, one that will be useful for further investigations. A useful approach 

is to exploit the nucleophilicity of a specific cysteine residue in the protein of 

interest. If a site is created in the DNA substrate that will be exclusively 

attacked by the cysteine residue, it is likely that the desired product will be 

formed.  

 In 1996, Sigurdson and Eckstein reported the synthesis of a 2!-urea-

modified oligoribonucleotide that is functionalised on an internal 2!-amino-2!-

deoxyuridine nucleoside with a disulfide-containing reporter group (figure 7.1). 

This oligomer reacts with glutathione to form a single product.(135) 

Glutathione is a cysteine-containing tri-peptide (of sequence )-Glu-Cys-Gly) 

and therefore this provides a demonstration of a site-specific chemical 

reaction involving a cysteine residue. In this case, the thiol group on cysteine 

is forming a disulphide bond with the modified decamer. 

 

Figure 7.1: 2!-Urea-modified oligoribonucleotide (top) and schematic of its reaction with 

glutathione (bottom) 

 

In addition, Xu has reported the preparation of an ODN containing 6-

methylsulphoxypurine (figure 7.2). The modified pentamer was observed to 
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react with glutathione, displacing the 6-methylsulphoxy group on the purine 

and forming a cross-link via the sulphur atom of cysteine.(90) A 12-mer with 

the same modification also reacted in the same manner. It is an example of 

nucleophilic substitution by a peptide cysteine residue on a modified DNA 

base and could possibly be used to cross-link DNA with larger peptides and 

proteins. 

 

 

Figure 7.2: 6-methylsulphoxypurine-containing oligodeoxyribonucleotide pentamer 

 

 MGMT, the human AGT protein homologue, removes O6-alkylguanine 

lesions from DNA by irreversible transfer of the alkyl group to a reactive 

cysteine residue in its active site.(48) The transfer is rapid, making 

observation of the DNA-protein complex extremely difficult under normal 

conditions. It was therefore useful to cross-link the MGMT with a DNA 

substrate to allow further biochemical and structural studies to take place. The 

first successful attempt at cross-linking to MGMT was published by Paalman, 

Noll and Clarke in 1997.(136) The covalent complex was formed using a 2!-

deoxy-6-(cystamine)-2-aminopurine (d6Cys2-AP)-containing oligonucleotide 

(figure 7.3) and it was shown that the active site cysteine reacts to form a 

disulphide bond with the 6-cystamine group in the oligonucleotide to give the 

desired MGMT-DNA complex.  
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Figure 7.3: 2!-Deoxy-6-(cystamine)-2-aminopurine (d6Cys2-AP) 

 

 Unfortunately, this cross-linking reaction was inefficient and the product 

unsuitable for structural studies. Therefore, Noll and Clarke went on to 

covalently capture MGMT using an oligodeoxyribonucleotide containing 

N1,O6-ethanoxanthosine (eX), an approach which resulted in cross-linking of 

MGMT to DNA in high yield.(137) The eX modified base is recognised for 

repair by MGMT, and subsequent nucleophilic attack by the active site 

cysteine on the O6-methylene carbon produces the covalent protein-DNA 

complex (figure 7.4). This cross-linked complex allowed the first crystal 

structure of MGMT bound to its DNA substrate to be elucidated and published 

which hugely increased understanding of the function and mode of action of 

the protein.(51)  

It would be useful to form a complex of Atl1 (from S.pombe) covalently 

bound to an O6-alkylguanine-containing oligodeoxyribonucleotide (ODN). 

Although the interaction between Atl1 and a DNA substrate was sufficiently 

stable to generate a crystal structure, a covalent Atl1-DNA complex might be 

more appropriate for pull-down assays (sections 6.1 and 6.3) in order to find 

any proteins that interact with this complex. Such complexes might also be of 
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value to evaluate how such interactions lead to the repair of O6-alkylguanine 

lesions in S.pombe.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Crosslink formation between an oligodeoxyribonucleotide containing N1,O6-

ethanoxanthosine (eX) and MGMT 

 

Therefore, for the purposes of biochemical investigation it was decided 

to create a covalently bonded Atl1-DNA complex. There were various 

possibilities as to how the desired chemical crosslink may be formed. The 

approaches described here consist of two main ideas for the development of a 

crosslinker: use of a disulfide linkage, and use of a maleimide moiety. The 
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hope with both approaches was that Atl1 would still recognise these modified 

bases as damaged DNA, bind the ODN accordingly, and finally react to 

generate a site-specific crosslink. This should result in an Atl1-DNA covalent 

complex that is close in nature to the usual bound state. 
  

7.2 Disulfide Crosslinkers 

 Based on previous work by various researchers,(135,136) it was 

considered viable that a functionalised ODN containing an alkylguanine 

residue which contains a disulfide linkage would be recognised as a substrate 

by Atl1, and would also have the ability to form a disulfide linkage with a 

cysteine residue in the active site of the Atl1 W56C mutant.  The first modified 

ODN (containing an N6-alkyl-2-aminopurine base) that was attempted to be 

synthesised was compound 1, shown in figure 7.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Structure of compound 1 
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The synthesis of 1 was based the post-synthetic modification chemistry 

developed and used extensively by the Williams group (20) (section 3.1.2 and 

figure 3.4). It was envisaged that S-(2-pyridylthio)cysteamine hydrochloride 

(PDA.HCl) (compound 2) (figure 7.6) could be used as the nucleophile in this 

reaction to displace the sulfone group from the 2-amino-6-

methylsulfonylpurine base in the ODN and give the desired product.  

 

 

 

 

Figure 7.6: S-(2-Pyridylthio)cysteamine Hydrochloride (PDA.HCl) (2) 

 

Thus 2 was prepared according to the literature procedure.(138) It has 

been documented that PDA (i.e. with a free amino group) is unstable (138) 

and so it was decided to use the hydrochloride salt (figure 7.6) in the reaction 

and deprotonate it in situ using DBU. Rather than a 2 day displacement at 

37˚C followed by a 3 day treatment with NH4OH at room temperature (which 

are the standard conditions for an ODN displacement reaction), it was instead 

decided that the reaction would be incubated at 37˚C for 5 days without any 

addition of aqueous ammonia. It was thought that these conditions would be 

sufficient to cause displacement, cleavage from the beads and deprotection of 

the nucleobases. In addition, due to the lack of solubility of PDA.HCl in 

acetonitrile, a total reaction volume of 600 µL was used which gave the final 

concentration of the amine as 0.83 M (usually 5M alcohol would be used in a 

displacement).  
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 The HPLC traces of the crude reaction mixture showed a peak at 

around 26 min on a 0-40% gradient (from 100mM TEAB with 5% MeCN to 

pure MeCN), but this was subsequently shown to be starting material 

(PDA.HCl). Mass spectrometry indicated that there was no DNA in the 

sample. The spectrum showed only a mass ion at 222 (PDA.HCl), and no 

mass ions were present corresponding to an ODN of large molecular weight, 

either the sulfone containing starting material, or the expected product. It is 

probable that the basic conditions used did not cause cleavage of the DNA 

from the CPG beads upon which they were immobilised. There was also the 

issue with the stability of PDA, which may not make it a suitable reagent in the 

displacement reaction. The degradation of PDA, like that of other 

unsymmetrical disulfides (139,140) occurs through an irreversible 

disproportionation reaction where PDA is converted into its symmetrical 

counterparts. It was therefore decided to attempt the displacement reaction 

again, but this time using standard conditions and a symmetrical disulfide. 

The symmetrical disulphide selected was cysteamine dihydrochloride 

(figure 7.7). It was expected that this diamine could react with the sulfone-

containing ODN starting material through either terminal amine group to give 

rise to the same ODN product (compound 3) shown in figure 7.8. 

 

   

 

 

Figure 7.7: Cysteamine dihydrochloride 
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Figure 7.8: Structure of compound 3 

 

This time, a 1.2 M solution of amine in acetonitrile was used along with 

2 equivalents of DBU base (relative to the amine). After displacement and 

deprotection, the crude reaction mixture was purified by size-exclusion 

chromatography (NAP-5) to remove any amine present prior to being run on 

the HPLC. The product mixture, when analysed by RP-HPLC, gave a peak at 

21 min retention time on a 0-40% gradient (from 100mM TEAB with 5% MeCN 

to pure MeCN), which is where a successfully modified ODN would be 

expected to run. This is consistent with a displacement reaction and 

subsequent cleavage from the CPG beads having had occurred. 

Unfortunately, mass spectrometry was unable to clarify which reaction had 

taken place (figure 7.9): there were many peaks at corresponding to high 

molecular weight products (i.e. ODNs) present in the spectrum, none of which 

corresponded to the mass of the desired product (7439 Da) or that of the ODN 

starting material (7382 Da).  
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Figure 7.9: HPLC trace and MS spectrum of compound 3 

 

To further investigate what may have happened, a small amount of the 

sample was digested with snake venom phosphodiesterase (SVPDE) and 

treated with alkaline phosphotase (AP). HPLC analysis of this sample was 

expected to produce four distinct peaks (corresponding to dG, dC, dA and dT) 

and a small extra peak for the alkylguanine base (figure 7.10) which was 

7589 

7724 

7454 

7318 

7860 

7995 
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indeed observed in the HPLC trace. However, analysis of the sample by mass 

spectrometry, whilst showing peaks for dG, dC, dT and the cleaved 5!-DMT 

group, failed to detect a peak of correct mass for the expected alkylguanine 

base (X in figure 7.8, mass (dX) = 404 Da). It was thus decided at this point to 

temporarily abandon the pursuit of a disulfide crosslinker in order to 

concentrate on preparing one containing a maleimide function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: HPLC trace and MS spectrum of compound 3 after treatment with SVPDE and 

AP (which digests the ODN into its constituent nucleosides) 
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7.3 Maleimide Crosslinkers   

The second approach was to incorporate a maleimide moiety at the 6- 

position on a purine base contained within the ODN, so it could react via a 

Michael addition with the cysteine residue in the active site of the Atl1 W56C 

mutant. This would be expected to generate the necessary crosslink between 

the protein and DNA. N6-alkyl-2-aminopurine or O6-alkylguanine was 

considered suitable for this purpose, with the alkyl group being N-

ethylmaleimide (figure 7.11).  

   

Figure 7.11: Proposed crosslink formation between maleimide-functionalised bases and 

W56C mutant Atl1 active site cysteine residue 

 

The reaction scheme to produce the maleimide ethylamine (required 

for the ODN displacement reaction) is shown in figure 7.12. Briefly, it 

proceeds as follows: Boc-protection of the amino group on 2-aminoethanol 
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(55), condensation of the alcohol group with maleimide using the Mitsunobu 

reaction (56), and final deprotection with trifluoroacetic acid to give the product 

as its trifluoroacetate salt. The first step gave the protected amino alcohol 

(compound 4) in 53% yield. The Mitsunobu reaction also proceeded as 

expected, and after subsequent deprotection with TFAA gave the product 

(compound 5) as a yellow oil. The product was characterised by 1H NMR and 

mass spectrometry. The mass ions of the cation (141 Da) and anion (113 Da) 

were present in the electrospray (+ve and -ve) mass spectra, confirming that 

the synthesis was successful. In addition, the 1H NMR had all the signals 

expected for 5 (figure 7.13). However, there were additional peaks in the NMR 

spectrum that indicated the presence of impurities in the sample. After further 

1H NMR analysis it was confirmed that a significant amount of maleimide 

(seen at 6.9 ppm) was contaminating the product, and so it was decided to re-  

 

 

 

Figure 7.12: Reaction scheme for the synthesis of compound 5 
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purify the mixture using ion-exchange chromatography (DOWEX-50 H+ form). 

The negatively-charged resin bound the desired product whilst the neutral 

maleimide flowed through the column. The immobilised product was then 

eluted with trifluoroacetic acid to give the same salt as previously. 1H NMR 

confirmed the presence of 5 and the removal of the maleimide, but still had 

two additional peaks in the spectrum, corresponding to an ethyl group (-

CH2CH2-). These additional peaks (a triplet and a multiplet at 3.65 and 2.98 

ppm respectively) can be seen in the 1H NMR spectrum taken prior to the ion-

exchange purification (inset, figure 7.13). It is highly likely that this signal is 

due to the presence of the trifluoroacetate salt of 2-aminoethanol, which if still 

present in the sample would have co-eluted with 5 during the ion-exchange  

 

 

 

Figure 7.13: 1H NMR spectrum (d6-DMSO) of compound 5 

compound 4 

maleimide 

compound 4 
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purification. No further steps were taken at this stage to purify the product. 

Instead, attention was directed towards the synthesis of N-

(hydroxyethyl)maleimide (compound 6) (figure 7.14).The reaction was set up 

according to the literature procedure (57). After purification of the crude 

reaction mixture by flash column chromatography, the product was 

characterised by 1H NMR and mass spectrometry. The mass ion [M+H]+ at 

142 Da indicated that 5 had been synthesised successfully. In addition, the 1H 

NMR spectrum displayed the expected 2:1 ratio of CH2 (3.75 ppm) to 

maleimide (6.75 ppm) proton signals and also showed that the product had a 

sufficient degree of purity. 

  

 

Figure 7.14: Synthesis of N-(hydroxyethyl)maleimide (6) 

 

 The next stage was to incorporate this maleimide alcohol into an ODN 

using the displacement chemistry mentioned previously. It was considered 

prudent at this stage to attempt the displacement reaction using an analogous 

nucleoside base (rather than the ODN itself), as this could be more easily 

identified by mass spectrometry and also characterised by 1H NMR. Once this 

chemistry had been shown to be successful with the nucleoside, it could be 

performed on an ODN containing a S6-sulfonylpurine residue with more 

confidence. The first step of the process was to convert the N9-benzyl-S6-
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methylpurine base (7) by oxidation (40) into the corresponding S6-

methylsulfonylpurine (8) which is much more reactive (figure 7.15). 

 

Figure 7.15: Oxidation of S6-methylpurine to prepare S6-sulfonylpurine (8) and S6-

sulfonylpurine (9) 

 

This reaction gave a mixture of both sulfone (8) and sulfoxide (9) which 

was confirmed by mass spectrometry (peaks at 273 and 289 for [M+H]+) and 

by 1H NMR. Attempts to fully oxidize compound 6 to the sulfone (8) by 

addition of more MMPP were unsuccessful. However in practical terms, since 

both sulfoxide and sulfone are electrophilic they should be sufficiently good 

leaving groups for the displacement reaction to work, and will theoretically 

give rise to the same product.  

This purine analgoue (and the corresponding residue in the ODN to be 

used) is deliberately lacking the 2-amino group that would be present in 
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guanine. This is in order to make the reaction simpler: in a displacement 

reaction this group must be subsequently deprotected using aqueous 

ammonia and there may be an issue with stability of the product under basic 

conditions. Replacing the amino group with a hydrogen atom eliminates the 

need for this step of the reaction. Instead, purified, deprotected ODNs 

containing 6-methylsulfonylpurine could be oxidized and then a displacement 

performed as described by Xu et al.(90). 

  

Figure 7.16: Three reactions carried out in the attempted synthesis of compound 9 

 

Three different reaction conditions were investigated for the synthesis 

of N9-benzyl-O6-(maleimidoethyl)hypoxanthine (compound 10) (figure 7.16). 

All reactions were stirred overnight at room temperature. In reaction 1, 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) was used as the base. DBU was last to 

be added to the reaction mixture and immediately upon addition it was 

observed that the reaction turned a dark purple colour. This was unexpected 
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and would indicate that some change had instantaneously occurred to one or 

more of the reactants. A displacement reaction would not be expected to 

occur this fast. After the incubation period (overnight at RT) the crude reaction 

mixture was purified by column chromatography which resulted in separation 

of two compounds (Rf = 0.52 and 0.63). Unfortunately, the mass spectra 

(figure 7.17, Rf = 0.63) of these recovered products did not show a peak 

corresponding to the expected mass ion for compound 10 ([M+H]+ = 350) and 

the 1H NMR spectra did not show any evidence for the desired product. 

  

 

 

 

 

 

 

 

 

 

Figure 7.17: MS spectrum of compound10 (reaction using DBU) 

 

As a result of this, it was decided to repeat the reaction using a 

different base. If DBU was causing a problem in the reaction mixture, it was 

hoped that exclusion of it could resolve this difficulty. In reaction 2, N,N-

diisopropylethylamine (DIPEA) was used with the same reaction conditions. 

Upon addition of DIPEA, there was no colour change of the reaction though 
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after 18 h the reaction had turned a red/pink colour. The crude product was 

analysed by ESI +ve TOF mass spectrum which contained many peaks, one 

of which was of the correct mass for the expected product ([M+H]+ = 350.26) 

(figure 7.18). However, the 1H NMR spectra was highly complex and 

inconclusive as to whether the reaction had worked. It was conceivable that all 

the major signals in the spectra were from unreacted starting materials rather 

than the product, especially if the reaction was inefficient and the product 

formed only in very small quantities. 

 

 

  

Figure 7.18: MS spectrum of compound10 (reaction using DIPEA) 

 

Thus, the reaction was attempted once more using a mixture of 1,4-

diazabicyclo[2.2.2]octane (DABCO) and DBU. DABCO would be expected to 

initially displace the sulfonyl group (figure 3.19), before being itself displaced 

by the maleimide alcohol (6). As it is a better leaving group, it should make the 
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reaction more efficient and give the desired product (9). This time, the last 

component to be added to the reaction was 6, and upon its addition the 

mixture turned the same dark purple colour. This indicates that there is some 

initial reaction between DBU and the maleimide alcohol that is possibly 

causing the problem and resulting in the failure of the displacement. However, 

TLC analysis indicated that the sulfonylpurine was being consumed as the 

reaction progressed and showed the evolution of a new product spot. After the 

overnight incubation, the crude product mixture was purified by column 

chromatography, which gave rise to two separate products with different Rf 

values. The mass spectrum of the faster-running product showed a peak at 

mass 350, though strangely there were many peaks of greater mass, each 

separated from each other by masses of 44 (figure 7.19) .   

 

 

 

Figure 7.19: MS spectrum of compound 10 (reaction using DABCO and DBU) 
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However, the expected signals for 9 did not appear to be present in the 

1H NMR spectra. It appeared that all attempts to attach a maleimide-

containing alkyl group to the 6-position of the purine base had thus far been 

unsuccessful and therefore an alternative strategy was pursued. 

The final attempt that was made to introduce a maleimide group at the 

6-position of a purine base utilised some of the chemistry that had previously 

been successful: the reaction to prepare compound 6. It was hoped an ODN 

containing an aminoethyl group could be reacted with N-methoxymaleimide to 

produce the desired product (figure 7.20). An ODN containing an O6-

aminoethylguanine residue had already been prepared to be used as a 

substrate in the Atl1 study, and although this ODN is SIMA-labelled the 

presence of the dye is unlikely to affect this reaction.  

 

Figure 7.20: Synthesis of an ODN containing an O6-alkylmaleimide functional group 

       

The reaction was performed in the same manner as the previous 

synthesis but with the following modifications. 15nmols of ODN OW19 was 

evaporated to dryness, resuspended in 200µL of saturated sodium 

bicarbonate solution and cooled to 0˚C. N-methoxymaleimide was added 

(2.5mg, ~1000-fold excess) and stirred at 0˚C for 30 min, after which the 
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reaction was allowed to warm to r.t over a period of 10 min. The reaction 

mixture was purified by application to a size-exclusion column (NAP-5) and 

the eluate analysed by HPLC and MS. 

 

 

 

 

 

 

Figure 7.21: HPLC traces of the product of reaction (left) and a co-injection of the product 

with OW19 starting material (right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22: Mass spectra of the starting material (top) and product (bottom) 
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Although there was a peak corresponding to an ODN in the HPLC 

analysis the reaction appeared not to have been successful, demonstrated 

when co-injection of the product with OW19 (the ODN starting material) only 

showed one peak (figure 7.21). The product would be expected to have a 

different retention time to OW19 due to the presence of the maleimide group 

which will change the hydrophobicity of the ODN.  The mass spectrum also 

confirmed that the reaction had not taken place and that only the starting 

material OW11 was present (calculated mass of starting material = 4776 Da, 

experimental mass of starting material = 4776 Da, calculated mass of product 

= 4856 Da, experimental mass of product = 4777 Da, figure 7.22). The 

reasons for the failure of this reaction are presently unknown and due to time 

limitations this part of the project was not continued. 

 

7.4 Oxidation of ODN Containing S6-methylpurine 

  

 

 

 

 

 

 

 

Figure 7.23: Oxidation of ODN OW1 

 

The overall aim of this part of the project was to place a chemical group 

capable of reacting with cysteine into an ODN substrate. Since the oxidation 
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of the S6-methylpurine base to the more reactive sulphonyl form had been 

successful, a similar oxidation reaction was attempted with DNA (figure 7.22). 

The ODN sequence used contains exclusively thymine (apart from the 

modified base). This was because thymine is the only base that does not 

require base-catalysed deprotection (which is used during the second stage of 

the displacement process (section 3.2 and figure 3.4)) and therefore the 

treatment with ammonia could be omitted. This was considered an advantage 

as it was not certain that the displaced product (9) would be stable under 

basic conditions. For this reason, the 2-amino group usually present in 

guanine was also replaced with hydrogen on the modified purine base (as 

mentioned previously). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.24: HPLC traces to show oxidation of ODN OW1 

T= 45 
min 

T= 0 min 

T= 90 
min 

T= 20 h 
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The reaction was monitored by RP-HPLC, the traces from which are 

shown in figure 7.23. These traces show that the oxidation reaction proceeds 

at a reasonably fast rate. Pure OW1 at T=0 (just before the addition of MMPP) 

shows a single peak at retention time 20.9 min. After 45 min, two new peaks 

have appeared, at 20.5 and 20 min retention time, presumably corresponding 

to the sulfoxide and sulfonyl products. At T=90, the peak at 20 min has grown 

larger and that at 20.5 min smaller, as sulfoxide is oxidised further to sulfonyl. 

At this stage, the sulfonyl peak has an area of 62% and the sulfoxide 37% 

(which gives an indication of the relative amounts of each product). After 

overnight incubation at room temperature, the area of the peaks is 69% and 

31% respectively which shows that the reaction has only proceeded slightly 

further. It was found that even after incubation with additional MMPP, the ratio 

of these peaks (and hence the ratio of sulfonyl: sulfoxide) could not be made 

to exceed 69:31. The experiment was repeated a number of times with 

increasing amounts of MMPP and this was still found to be the case. At the 

end of the reaction, a co-injection of the reaction mixture with starting material 

(OW1) established for certain that these two peaks had evolved during the 

reaction and corresponded to products. However, although the correct mass 

was able to be established by MS analysis of OW1 (the starting material 

ODN), once the oxidation reaction had taken place the spectrum was very 

complex and it could not be established with any certainty whether the HPLC 

peaks observed were due to the desired products. The experiment was 

repeated a number of times with different quantities of MMPP but the results 

of the MS analysis was always highly inconclusive. It was therefore decided to 

abandon this approach. 
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8.0 Conclusions and Future Work 

8.1 DNA Recognition by ATL proteins       

 The most extensive study to date of the recognition of DNA containing 

O6-alkylguanine and related purine lesions by ATL proteins has been carried 

out and is described in this report. Investigation of ATL proteins is valuable 

and relevant as current evidence suggests that they provide crosstalk 

between two previously unrelated DNA repair pathways (base repair and 

NER).(58) Therefore, increased knowledge of the function of ATL proteins 

may have profound implications in understanding the repair of O6-

alkylguanine residues which are highly toxic, mutagenic and biologically 

relevant lesions. 

 Using evidence produced from fluorescence-based binding studies, 

along with analysis of new structures from Julie Tubbs and John Tainer, we 

have elucidated the mechanism by which Atl1, the S.pombe ATL homologue, 

is able to discriminate between guanine and O6-methylguanine (and other O6-

alkylguanine) residues in its active site. Alkylation of guanine at the O6-

position causes changes in the molecular electrostatic potentials of the atoms 

of the heterocyclic purine ring, and these differences are detected by an 

active-site arginine residue (Arg69), which forms positive interactions with the 

alkylated base and slightly repulsive ones with guanine. In addition, the 

hydrogen bonding interactions between the N2 and N3 atoms of the base and 

the Atl1 active site appear to be strengthened by the increased polarisation 

that accompanies the change in electrostatic potentials due to the presence of 

the O6-alkyl group and Arg69. Thus, Arg69 acts as a molecular probe of 
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electrostatic potential which acts in a novel and unprecedented mechanism to 

mediate discrimination between damaged and non-damaged guanine bases 

by Atl1. 

 In addition, Atl1 was shown to recognise with greater affinity bases that 

are large and hydrophobic. This is likely to be due to the presence of the 

active site tryptophan which can be seen interacting with bulky lesions in 

crystal structures. Further indirect evidence for this was provided by our 

results with the T.thermophilus ATL homologue TTHA1564 which has alanine 

replacing tryptophan in the putative active site and lacks the ability to 

discriminate between large and small O6-alkyl groups, whilst conserving the 

ability to recognise ODNs containing O6-alkylguanine residues with high 

affinity compared to the control. However, no structures exist of TTHA1564 

and so it is hard to draw any direct conclusions about the mechanism by 

which this protein recognises damaged bases. 

 Finally, we conducted mutagenesis studies with Atl1 to provide further 

evidence of the role of Arg69 in base recognition. The ability of the Atl1 R69A 

mutant to recognise O6-alkylguanine residues was profoundly disturbed, and 

in addition this mutant showed very little ability to discriminate between 

guanine and O6-alkylguanines. However, both these abilities were partially 

restored in the R69F mutant. Interestingly, comparison of the sequence of 

TTHA1564 with other ATL proteins indicates that the residue corresponding to 

Arg69 in Atl1 would be Phe130, and in fact TTHA1564 shows a similar ability 

to discriminate between guanine and O6-methylguanine as the Atl1 R69F 

mutant protein. This is an interesting finding and warrants further 

investigation. 
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8.2 Affinity-based Isolation of Atl1 and Interacting Proteins 

 A series of pull-down assays were performed using modified ODNs 

containing O6-alkylguanine residues as bait, in an attempt to affinity purify and 

isolate Atl in complex with any interacting proteins from whole-cell extracts of 

S.pombe. These experiments had been previously attempted by the Margison 

laboratory using short ODNs (23-mers) but were unsuccessful, with no 

proteins at all being identified by the mass spectrometry-based analysis. 

Therefore, the experiments were modified and performed with longer ODNs 

(219-mers) containing O6-methylguanine and guanine. Atl1 was successfully 

isolated from the wild type S.pombe whole-cell extract using ODNs containing 

O6-methylguanine, and subsequently identified using MS/MS experiments and 

peptide matching. It was also demonstrated that Atl1 was not isolated from the 

whole-cell extract by the control ODN containing guanine by the same 

method. However, both general searches and targeted peptide searches 

(pSRM) failed to identify any interacting partners of Atl1 from the NER 

machinery or any other DNA repair system. Rad15 (the yeast homologue of 

human XPD, an NER helicase which is part of the TFIIH core) was identified 

but was present in both samples (i.e. the pull-downs with ODN containing O6-

MeG and ODN containing G) and therefore would appear to have affinity for 

the DNA and not specifically for Atl1. The vast number of abundant proteins 

that were identified by MS methods appeared to be providing an unwanted 

background and so a second attempt at the pull-down assays was performed 

to rectify this. Shorter 100-mer ODNs were used in an attempt to reduce non-

specific binding by abundant proteins to the DNA itself, and in addition ODNs 

containing O6-benzylguanine, O6-methylguanine and guanine were used, as 



Chapter 8 

 233 
 
 

the interaction between Atl1 and ODN containing O6-BnG is of higher affinity 

then for O6-MeG. Furthermore, a more extensive washing stage was included 

to try and remove more of the unwanted proteins. However, the MS-based 

analysis of these samples was inconclusive (Atl1 could not be identified in any 

of the samples) and due to time constaints we could not optimise the pull-

down assays or MS/MS experiments any further. 

 It would be worthwhile to continue with these experiments, as 

identification of the interacting partners would be expected to provide 

meaningful information about its cellular role. However, no-one has managed 

to glean any information thus far using these methods. Given more time, 

further analysis of the samples with more extensive targeted peptide searches 

(pSRM) may be of use. Unfortunately, it may be that the interactions between 

Atl1 and other proteins, if they exist at all (as it is quite possible that any 

recruited repair factors interact directly with the distorted DNA rather than Atl1 

per se) are too weak or transient to be observed, certainly by in vitro methods 

such as were used here. It is still unclear whether our failure to produce 

results is because of a lack of detection of existing interactions, or whether 

they simply do not take place to be observed.  

  

8.3 Attempted Synthesis of a Crosslinker 

 In the early stages of the project, attempts were made to synthesise a 

modified guanine or purine base that would be capable of reacting with a 

cysteine residue in the active site of the Atl1 W56C mutant protein to generate 

a covalent crosslink. Two ways to achieve this were envisaged: by 

incorporation of a disulfide-containing group, or a reactive maleimide moiety, 
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at the O6-position of the base. Unfortunately neither route was successful and 

so this part of the project was abandoned to concentrate on the promising 

results we were acquiring from the binding studies with ATL proteins. In 

hindsight, the value of a crosslinked Atl1-DNA complex is questionable in the 

context of the pull-down experiments: Atl1 was able to be isolated using an 

ODN containing O6-MeG by exploiting the tight binding affinity of the protein 

for the substrate, and so it is unlikely the use of a crosslinked Atl1-DNA 

complex would have improved these experiments. Also, some more recent 

results from the Margison laboratory (unpublished data) demonstrated that the 

Atl1 W56C mutant binds to lesion-containing ODNs with far less affinity than 

wild-type protein and therefore it may have been difficult to form the covalent 

bond, even if an ODN containing a suitably modified base had been 

successfully prepared.    

    

8.4 Fluorescence-based Assays 

8.4.1 MGMT Activity Assay 

 Radioactive assays have been previously used to measure the effect of 

various inhibitors on the alkyltransferase activity of the human AGT 

homologue MGMT.(68,141) It was our intention to develop an equivalent non-

radioactive, fluorescence-based assay using molecular beacon ODNs. The 

assay involves using a hairpin ODN containing O6-MeG at a position in the 

sequence where it is blocking a PstI restriction site and thus prevents 

cleavage by the endonuclease. When MGMT demethylates the ODN, it 

unblocks the site and allows cleavage by PstI. The hairpin ODN has a dye-

quencher pair at the termini of the ODN and thus the fluorescence will 
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increase as the dye becomes estranged from the quencher after cleavage. If 

the activity of MGMT used in the assay is consistent and known, then pre-

incubation of MGMT with an inhibitor will decrease the activity of MGMT in the 

assay and therefore cause a more modest change in fluorescence after 

treatment with PstI. It was hoped that this change would be sensitive enough 

to accurately quantify the inhibitory effects on MGMT of various molecules 

and ODNs.  

 The preliminary findings were encouraging, as it was demonstrated that 

after treatment of ODN containing O6-MeG with MGMT and PstI the 

fluorescence significantly increased, whereas with PstI treatment only there 

was no significant change in fluorescence. However, due to time restrictions 

we were unable to optimise the assay. It is conceivable that with some more 

effort this assay can be made to work effectively, and it would certainly be 

worthwhile to do so. 

8.4.2 FRET Analysis of ODN Hybridisation 

 In order to show that the 13-mer ODNs used in the ATL protein binding 

assays were duplexes at 1nM concentration, 50mM NaCl and 25˚C, a series 

of FRET experiments were performed. Two complementary ODNs, one 

containing a 5!-FAM and the other a 5!-HEX label were annealed, and then 

cooled and diluted to 1nM under the same conditions as the binding assays. It 

was shown that the fluorescent signal of FAM was quenched and the signal of 

HEX enhanced when the duplex was annealed due to FRET occurring 

between the dye molecules in close proximity, and that this effect did not 

occur for non-complementary sequences containing the same dyes or for 



Chapter 8 

 236 
 
 

complementary ODNs that had not been annealed together. Thus it was 

demonstrated that the ODNs had formed a duplex under these conditions. 

 However, to be absolutely certain of duplex formation and measure an 

accurate Tm, we attempted to perform a fluorescence-based DNA melt by 

monitoring the change in fluorescence of FAM which would be expected to 

increase as the strands dissociate during denaturation and the FRET-based 

quenching by the proximal HEX label ceases to occur. However, for some 

reason there appeared to be no change in signal whilst heating the annealed 

ODN duplex from 10˚C to 70˚C. The reasons for this are unclear given the 

previous results. The fluorimeter used for this experiment was not as sensitive 

as the Horiba Jobin-Yvon Fluoro-Max3 which may be an issue at such low 

dye concentrations. It may be that the DNA melting experiment would be more 

successful if a dye-quencher pair (instead of a FRET pair) was used as the 

change in fluorescence would be much greater. A fluorescence-based method 

of DNA melting to measure Tm has been successfully demonstrated by 

Morrison et al. where two complementary ODNs, one with a 5!-FAM label and 

the other containing a 3!-rhodamine quencher were used.(142) 

 

8.5 Synthesis and Modification of ODNs 

 The work of Shibata, Millington and Williams was extended upon by 

using a synthetic ODN precursor containing 2-amino-6-methylsulfonylpurine to 

prepare a wide variety of novel O6-alkylguanine and related purine bases in 

DNA. Whilst it was demonstrated that this post-synthesis modification 

chemistry was highly versatile when using primary alcohols and amines, it 

became somewhat more complicated when trying to use secondary and 
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tertiary alcohols, as well as extremely large and hindered ones. Whether the 

method can be adapted and improved to resolve these problems is open to 

question, though this may be a useful pursuit in the future. In addition, it was 

shown that O6-alkylpurine analogues could be prepared using a synthetic 

ODN precursor containing 6-chloropurine by displacement with alcohols.  

 It was also demonstrated that ODNs longer than those produced by 

standard phosphoramidite synthesis (i.e. 219-mers) were able to be prepared 

by annealing followed by primer extension with a Klenow fragment. In 

addition, double stranded DNA substrates for ATL proteins were successfully 

produced by annealing of short phosphorylated ODNs to a full-length 

complememtary template strand, followed by treatment with DNA ligase to 

seal the nicks. 
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9.0 Experimental 

 
9.1 Chemical Synthesis 
 
All reagents were obtained from commercial suppliers and used without 

further purification. 

 

Column chromatography was performed using silica gel for flash column 

chromatography (particle size 30-70 µm). Thin layer chromatography (TLC) 

was performed on pre-coated Merck Keiselgel 60 F254 aluminium-backed 

plates. 

 

NMR spectra were recorded on a Bruker AC250 spectrometer and chemical 

shifts are reported in " values relative to tetramethylsilane as an external 

standard. 1H NMR spectra were recorded at 250 MHz and 13C NMR at 60 

MHz. 

 

All mass spectrometry was performed by the University of Sheffield 

Department of Chemistry Mass Spectroscopy Service. 
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S-(2-Pyridylthio)cysteamine Hydrochloride (2) 

 

 

 

 

Prepared according to the literature procedure (143) 

 

2-Pyridyl disulfide (4.0 g, 18.1 mmol) was dissolved in methanol (18 mL) and 

acetic acid (0.7 mL). A solution of cysteamine hydrochloride (1.03 g, 9.1 

mmol) in methanol (9 mL) was then added dropwise over 30 min. The reaction 

mixture was stirred under argon at room temp. for 48 h, then evaporated to 

give a yellow oil. The oil was triturated with diethyl ether (50 mL) and 

redissolved in methanol (10 mL). The product was precipitated by the addition 

of diethyl ether (50 mL) and filtered to give a white crystalline solid (1.32 g, 

65%) 

 

TLC: Rf (NH3OH: 95% ethanol 1:99 v/v) = 0.2 

 

1H NMR * (CDCl3): 2.95 (t, 2H), 3.2 (t, 2H), 7.15 (t, 1H), 7.55 (d, 1H), 7.65 (t, 

1H), 8.3 (d, 1H) ppm 

 

Mass Spec (ESI –ve): [M-H]- = 222 
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1-Boc-aminoethan-2-ol (4) 

 

 

 

  

Prepared according to the literature procedure (144) 

 

To a stirred solution of 2-aminoethanol (4 mL, 66.2 mmol) in dichloromethane 

(200 mL) was added triethylamine (9.28 mL, 66.2 mmol) and di-tert-butyl 

dicarbonate (14.4 g, 66.2 mmol). The reaction mixture was stirred at room 

temperature for 18 h, after which it was washed with saturated NaCl solution, 

and 1M aqueous HCl, then dried (MgSO4) and evaporated to give a colourless 

oil (5.56g, 53%). 

 

TLC: Rf (Petroleum ether: ethyl acetate 1:1 v/v) = 0.24 

 

1H NMR * (CDCl3): 1.45 (s, 9H), 3.25 (t, 2H), 3.7 (t, 2H), 5.1 (br s, 1H) ppm 

 

Mass spec (ESI +ve): [M+Na]+ = 184 
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N-(aminoethyl)maleimide hydrotrifluoroacetate (5) 

 

 

 

 

 

 

Prepared according to the literature procedure (145) 

 

To a dry round-bottomed flask was added maleimide (3.31 g, 34 mmol), 

triphenylphosphine (8.77 g, 33.4 mmol) and dry THF (160 mL). N-(tert-

butoxycarbonyl)ethanolamine (5 g, 31 mmol) and diisopropylazodicarboxylate 

(7.3 mL, 37.1 mmol) were then added, the mixture stirred under nitrogen at 

room temperature overnight, then evaporated. The crude product was filtered 

through a plug of silica gel using a 2:1 mixture of hexane: ethyl acetate as the 

eluent. The crude product was dissolved in 100 mL of a 60:35:5 mixture of 

dichloromethane: trifluoroacetic acid: water and stirred at room temperature 

for 2 h. The reaction mixture was then diluted with dichloromethane (50 mL) 

and water (50 mL), and the organic layer was extracted with water (3 x 25 

mL). The combined aqueous layers were further extracted with 

dichloromethane (3 x 50 mL) and the aqueous layers concentrated on a rotary 

evaporator to give a yellow oil (6.46 g, 82%). 

 

 TLC: Rf (petroleum ether: ethyl acetate 1:1 v/v) = 0.2 
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1H NMR * (DMSO-d6): 2.85 (m, 2H), 3.55 (t, 2H), 7.05 (s, 2H), 7.9 (br s, 3H) 

ppm 

 

13C NMR * (DMSO-d6): 21.7, 34.9, 115.8, 135.0, 158.5, 171.8 

 

Mass Spec (ESI +ve): [M+H]+ = 141  
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N-(hydroxyethyl)maleimide (6) 

 

 

 

 

 

Prepared according to the literature procedure (146) 

 

A stirred solution of 2-aminoethanol (0.6 mL, 10 mmol, 1 eq) in saturated 

aqueous sodium bicarbonate (50 mL) was cooled to 0˚C in an ice bath. N-

(methoxylcarbonyl)maleimide (1.55g, 10 mmol) was then added portionwise 

with rapid stirring. The resulting solution was stirred at 0 C for 30 min before 

the ice bath was removed and the solution allowed to warm to room temp. 

over 20 min. The aqueous layer was extracted with chloroform (3 x 25mL), the 

combined organic portions dried over MgSO4 and evaporated to give a white 

solid with droplets of clear oil also present. This crude product was purified by 

flash column chromatograpy, eluting with dichloromethane-ethyl acetate (3:2 

v/v) to give the product as a white solid (0.87g, 62% yield). 

 

TLC: Rf (Dichloromethane: ethyl acetate 3:2 v/v) = 0.29 

 

1H NMR * (CDCl3): 3.42 (t, 2H), 3.48 (t, 2H), 4.8 (t, 1H), 7.02 (s, 2H) 

 

Mass Spec: [M+H]+ = 142 
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N9-benzyl-(S6-methylsulfonyl)hypoxanthine (8) 

 

 

 

 

 

 

 

 

 

To a stirring solution of N9-benzyl-(S6-methyl)hypoxanthine (0.2 g, 0.8 mmol) 

in acetonitrile (4 mL) was added a solution of magnesium 

monoperoxyphthalate hexahydrate (MMPP, 0.99 g, 2 mmol) in water (4 mL). 

The reaction was stirred for 2 h, after which time more MMPP (0.16 g, 0.25 

mmol) was added. After 1 h, the reaction was extracted into dichloromethane 

(100 mL) and washed with sat. aqueous sodium bicarbonate solution (2 x 20 

mL). The organic layer was evaporated to give the product as a white solid 

(0.189 g, 86% yield) 

 

TLC: Rf (Dichloromethane: methanol 19:1 v/v) = 0.2 

 

1H NMR * (CDCl3): 3.5 (s, 3H), 5.52 (s, 2H), 7.35 (m, 5H), 8.38 (s, 1H), 9.1 (s, 

1H) 

 

Mass Spec: [M+H]+ = 289 
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This reaction gives a product mixture of sulfone (8) and sulfoxide (9). The 

sulfoxide has [M+H] = 273. Complete oxidation to completion to give 

exclusively sulfone product is very difficult (section 7.3).  

 

The starting material N9-benzyl-(S6-methyl)hypoxanthine was synthesised by 

Hend Ismail, University of Sheffield. 
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N9-benzyl-O6-(ethylmaleimide)hypoxanthine (10) 

 

 

 

 

 

 

 

 

 

To a stirring solution of N9-benzyl-O6-(ethylmaleimide)hypoxanthine 

(compound 8, 66mg, 0.23 mmol) in 0.5 mL acetonitrile was added 45 µL 1,8-

Diazabicyclo[5.4.0]undec-7-ene (DBU, 135µL, 0.69 mmol) and N-

(hydroxyethyl)maleimide (compound 6, 49mg, 0.35 mmol). The reaction was 

left stirring for 18 h after which it was extracted with 30 mL CH2Cl2 and 

washed with saturated NaHCO3 solution (2 x 10 mL). The crude product was 

purified by column chromatography using CH2Cl2: MeOH (19:1) as the eluent.  

 

It is uncertain whether this synthesis was successful (section 7.3). Another 

attempt was made exactly as above but using N,N-Diisopropylethylamine 

(DIPEA) (120µL, 0.69mmol) instead of DBU. A final attempt was made exactly 

as above but using DBU (67 µL, 0.35mmol) and 1,4-diazabicyclo[2.2.2]octane 

(DABCO) (52mg, 0.46mmol).  
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9.2 Synthesis of ODNs 

Oligonucleotides (ODNs) were synthesised on an Applied Biosystems 

394 automated synthesiser containing 4 column ports and 8 phosphoramidite 

ports. For the coupling steps, 0.1 M solutions of unmodified phosphoramidites 

and 0.15 M solutions of modified phosphoramidites in dry acetonitrile were 

used. The size of column used was always 1 µmol. Standard deprotection 

phosphoramidites (benzoyl-dA, benzoyl-dC and isobutyryl-dG) and columns 

were purchased from Cambio, while the ancillary reagents and the mild/fast 

deprotection phosphoramidites/columns (phenoxyacetyl-dA and dG, acetyl-

dC) were purchased from Glen Research. Fluorescently labelled 

phosphoramidites (FAM, HEX, Cy3 etc.) were also purchased from Glen 

Research. The SIMA-labelled ODNs including those containing 2-amino-6-

methylsulfonylpurine were made by ATB Biotech, and DNA Technology 

(Denmark). All ODNs which contained modified nucleotides were synthesised 

using mild/fast deprotection phosphoramidites for the natural bases of the 

sequence. The oligomers that were not 5'-labelled with a fluorophore were left 

with the 5!-dimethoxytrityl (DMT) group on for ease of purification unless 

otherwise stated. Standard cleavage of ODNs from the column was performed 

using concentrated aqueous ammonia (33%) on the DNA synthesiser. ODNs 

with standard deprotection groups were incubated overnight at 65˚C, while 

ODNs prepared with fast/mild deprotection reagents were treated overnight at 

room temperature. Some modified ODNs were left on the column in order that 

they could be used for post-DNA synthesis chemistry. The procedures 

associated with these are detailed in section 9.3. 
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ODN 
name 

 

Sequence 
 

 
OW1 

 

 
5!-TTTTTTTTTTTTTTTTTTTTTTXTTTTTTTTTTTTTTTTTTTTTT 

 
OW2 

 

 
5!-BiotinTTTTTTTTTTTTTTTTTTTTTTXTTTTTTTTTTTTTTTTTTTTTT    

 
 

 

where X=    
 

 
OW10 

 

 
5!-GCA TCA GCC ATG XCT AGT ACG G- FAM -3! 

 
OW22 

 

 
5!-GCC ATG X CTA GTA 

  

where X=   
 

 
OW6 

 

 
5!-TAC TAG C CAT GGC                     

 
OW10MeG  

 

 
5!-GCA TCA GCC ATG XCT AGT ACG G- FAM -3! 
 

  

where X=   
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ODN 
name 

 

Sequence 
 

 
OW11–21 

OW27 
OW40 
OW41 
OW49 
OW50 
OW51 

 

 
 
 
 
5!-SIMA-GCC ATG X CTA GTA 

 
 
 

 
where X= see figure 9.1 (pgs 253-254) 

 
OW28 

 

 
5!-TAC TAG T CAT GGC                     

 
OW29 

 

 
5!-CGC G X ATT TGC G 

 
OW30 

 

 
5!-CGC X AAT TCG CG 

 
 

 
 

where X=    
 

 
OW31 

 

 
5!-Cy3-GGT CT X CAG AAA TTG ATT TCT GCA GAC C-BHQ2 

 
 

 
 
 
 

where X=    
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ODN 
name 

 

Sequence 
 

 
OW39 

 

 
5!-Cy3-GGT CT G CAG AAA TTG ATT TCT GCA GAC C-BHQ2 

 
OW33 

 

 
5!-GAA CT X CAG CTC CGT GCT GGC CC 

 
 

 
 

where X=    
 

 
OW34 

 

 
5!-GAA CT X CAG CTC CGT GCT GGC CC 

 
 

 
 

where X=    
 

 
OW43 

 

 
5!-GAA CT X CAG CTC CGT GCT GGC CC 

 
 

 
 

where X=    
 

 
OW44 

 

 
5!-GAA CT X CAG CTC CGT GCT GGC CC 
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ODN 
name 

 

Sequence 
 

 
OW36 

 

 
5!-PO4-GAA CT X CAG CTC CGT GCT GGC CC 

 
 

 
 

where X=    
 
 

 
 

OW52 
 

 
 
5!-HEX-GCC ATG GCT AGT A 

 
OW53 

 

 
5!-HEX- GCC ATG XCT AGT A 

 
OW54 

 

 
5!-HEX- GAA CTG CAG CTC CGT GCT GGC CC 

 
 

OW55 
 

 
 
5!-HEX- GAA CT X CAG CTC CGT GCT GGC CC 

 
OW56 

 

 
5!-FAM- GCC ATG XCT AGT A 

 
OW57 

 

 
5!-Cy3-TAC TAG CCA TGG C 

 
OW58 

 

 
5!-HEX-TAC TAG CCA TGG C 
 

  

where X=    
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ODN 
name 

 

Sequence 
 

 
OW70 

 

 
5!-Biotin- CTT GAA TTC GGA AGC GTA ACT GGG AGT GAT TTC 

CCG GGG GCC AGC ACG GAG CTG CAG TTC CTC GTC 
TAC ATG CTT ATG CAG TCA TAC CTA ACT GGA TCC 
TGG 

 
 

OW71 
 

 
5!-CCA GGA TCC AGT TAG GTA TGA CTG CAT AAG CAT GTA GAC 

GAG  
 

 
OW72 

 

 
5!-PO4-C CGG GAA ATC ACT CCC AGT TAC GCT TCC GAA TTC 

AAG 
 

 
OW73 

 

 
5!- CCA GGA TCC AGT TAG GTA TGA CTG CAT AAG CAT GTA GAC  

GAG GAA CTG CAG CTC CGT GCT GGC CCC CGG GAA ATC 
ACT CCC AGT TAC GCT TCC GAA TTC AAG 

  
 

OW74 
 

 
5!- CCA GGA TCC AGT TAG GTA TGA CTG CAT AAG CAT GTA GAC  

GAG GAA CTX CAG CTC CGT GCT GGC CCC CGG GAA ATC 
ACT CCC AGT TAC GCT TCC GAA TTC AAG 

 
 

OW75 
 

 
5!-CTG GAT CCA TGG CAC ATC TCT AGT GTC GAC ATA CAC ATC 

GAC AAC CTG GGA GTG ACT CAA CAA GTG CAA TGG TGT TCC 
AGG TAC AAG CCA AGG CGC CTT CTC GAA TAG CAC TCA CTG 
CAG 

 
 

OW76 
 

 
5!-CTG GAT CCA TGG CAC ATC TCT AGT GTC GAC ATA CAC ATC 

GAC AAC CTG GGA GTG ACT CAA CAA GTG CAA TGG TGT TCC 
AGG TAC AAG CCA AGG CGC CTT CTC GAA TAG CAC TCA CTX 
CAG 

 
 

OW77 
 

 
5!-GG-Biotin dT- TCG GAT CCA CCG CGT CGA CAA TAG TTC GAC 

CAT AAG AAT ACA A GA TTG ATA GAC TCT CTA TCC ATC AGT 
CGA GAG ACC AAC CAA ATT CGG CGC CGG  

               CTG CAG TGA GTG CTA TTC GAG 
 

 
OW78 

 

 
5!-GAA CT X CAG CTC CGT GCT GGC CC 
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where X=    
 

 
OW79 

 
5!- Biotin-GGG CCA GCA CGG AGC TGC AGT TC 
 

 
Table 9.1: Code names and sequences of ODNs synthesised, modified and described in this 

report 
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Figure 9.1 (continues): Modified bases incorporated into ODNs (see table 6.1) 
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Figure 6.1: Modified bases incorporated into ODNs (see table 6.1) 
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Figure 6.2: Reporter groups used to labelled ODNs 
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Figure 9.2 (continued): Reporter groups used to labelled ODNs 
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9.3 Post-DNA Synthesis Modification Chemistry – Chemical 

synthesis of ODNs containing O6-alkylguanine and related 

modified bases. 

  Post-DNA synthesis displacement chemistry using ODNs containing 

the reactive base 2-amino-6-methylsulfonylpurine was used to introduce a 

variety of alkyl adducts onto the O6-position of guanine. Five procedures are 

described in this report, the first two of which are general protocols that were 

used depending on whether the alcohol was in solid or liquid form. The third 

procedure is that for the specific reaction to produce O6-carboxymethylated 

guanine-containing ODNs, which requires an additional step. The fourth 

procedure describes the displacement reaction with ammonia gas to prepare 

2,6-diaminopurine and the fifth the displacement reaction of an ODN 

containing 6-chloropurine using methanol. The described reactions are 

suitable for use with both unlabelled and fluorescently labelled (SIMA-HEX) 

ODNs. When the displacement chemistry was undertaken with ODNs 

containing a fluorescent label these reactions were performed in the dark to 

preserve the integrity of the dye.  
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9.3.1 Synthesis of O6-alkylguanine containing DNA:   

displacement with liquid alcohols 

 

 

Prepared with modification to the literature procedure.(68) To a 1.5 ml 

eppendorf tube was generally added a third of a 1 µmol DNA synthesis 

column’s material (CPG). This was then treated with 200µL of dry MeCN/the 

appropriate alcohol/DBU in the ratio 9:9:2 (v/v/v) and in that order. If a whole 

column was used (1 µmol) then a total volume of 500 µL of the same solution 

was used. The eppendorf was then flushed with nitrogen and sealed and 

shaken for two days at 37˚C. After this stage, 0.5 mL of concentrated aqueous 

ammonia (33%) was added and the reaction shaken at room temperature for 

a further three days. The mixture was then evaporated with a speed vac. 

concentrator. 150µL of water and 500µL of diethyl ether were added to the 

eppendorf followed by vigorous shaking. The organic layer was removed with 

a pipette and this step was repeated twice more. After the extraction, the 

beads were washed three times with 200µL of water and the aqueous layers 

combined. This crude product was then purified by RP-HPLC (see section 

9.4). 
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9.3.2 Synthesis of O6-alkylguanine containing DNA:    

displacement with solid alcohols 

 

 

Prepared according to the same procedure used for liquid alcohols (section 

9.3.1) but instead using 180µL of a 5M solution of the solid alcohol in dry 

MeCN, and 20 µL DBU, in the displacement step. 

 

9.3.3 Synthesis of O6-alkylguanine containing DNA:    

displacement with methyl glycolate 

 

 

Prepared according to the same procedure used for liquid alcohols (section 

9.3.1) but after incubation for 2 days at 37˚C (i.e. the displacement step) was 

added 200µL of 0.5M NaOH and the mixture shaken for 1 day at room temp. 

After this stage was added 0.5mL conc. aq. ammonia solution. The procedure 

then continues as described in section 9.3.1. 
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9.3.4 Synthesis of 2,6-diaminopurine-containing DNA:    

displacement with ammonia gas 

 

 

Prepared according to the same procedure used for liquid alcohols (section 

9.3.1) but instead using 200µL of dry MeCN through which ammonia gas had 

been bubbled through for 1h in the displacement step. 

 

9.3.5 Synthesis of O6-methylhypoxanthine containing DNA:     

         displacement of 6-chloropurine with methanol 

 

 

To a 1.5 ml eppendorf tube was added a half of a 1 µmol DNA synthesis 

column’s material (CPG). This was then treated with 180 µL of a 5M solution 

of methanol in dry MeCN and 20 µL DBU in that order. The eppendorf was 

then flushed with nitrogen and sealed and shaken for four days at 37˚C. After 

this stage, 0.5 mL of concentrated aqueous ammonia (33%) was added and 

the reaction shaken at room temperature for a further three days. The mixture 
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was then evaporated with a speed vac. concentrator. 150 µL of water and 500 

µL of diethyl ether were added to the eppendorf followed by vigorous shaking. 

The organic layer was removed with a pipette and this step was repeated 

twice more. After the extraction, the beads were washed three times with 200 

µL of water and the aqueous layers combined. The sample was then desalted 

using a NAP-10 column. This crude product was then purified by RP-HPLC 

(see section 9.4). 

 

(The chloropurine phosphoramidite is available is available from ChemGenes) 
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9.4 Purification of ODNs 

 All samples were purified by RP-HPLC using a Gilson Preparative 

HPLC system equipped with a 500 µL injection loop. The system was used at 

a flow rate of 1 mL min-1 with a reverse phase column ACE-5 C18 (250 x 4.6 

mm) from Hichrom. The UV detector was set to a wavelength of 260 nm.  The 

following buffers were used in the purification: 

 

For unmodified DNA:  

Buffer A = 100 mM triethylammonium acetate, 5% MeCN, pH 6.5 

Buffer B = 100 mM triethylammonium acetate, 65% MeCN, pH 6.5 

 

For modified DNA: 

Buffer A = 100 mM triethylammonium bicarbonate, 5% MeCN, pH 7.5 

Buffer B = MeCN 

 

 The ODNs were purified over a 30 min period with an increasing 

percentage of buffer B as an eluting solvent with buffer A. The gradient of 

elution used was optimised for each oligomer, with the retention time ideally 

being around 20 min for maximum separation from impurities. After 30 min, 

the column was cleaned by ramping to 100% buffer B over 5 min, back to 

100% buffer A over 5 min, and finally re-equilibrating in buffer A for 5 min.  

Usually around 200 µL of DNA solution was injected per cycle. 

 The specific RP-HPLC conditions and retention times are shown in 

table 9.3. ODNs that were made or modified and subsequently purified in 

Sheffield are shown (i.e. ODNs purchased from commercial suppliers are 
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generally not shown unless they were re-purified here). In the case where the 

ODN was purified with DMT-ON, the dimethoxytrityl group was removed by 

treatment with 1 mL of aq. AcOH (20%) for 1h at room temp. and then the 

sample was evaporated to dryness. The ODN was then redissolved in water 

and desalted using a NAP-10 gel filtration column.  In the case of fluorescently 

labelled ODNs, the purifications were performed in the dark as far as was 

possible (e.g. using tin-foil to minimise light exposure etc.).  

 After RP-HPLC purification, the TEAB salts were removed under 

vacuum. The final concentration of the samples was determined by measuring 

the UV absorbance at 260 nm and using the Beer-Lambert equation: 

A260 = (260.c.l 

 

where  A280 = absorbance at 260 nm  

  (280 = extinction coefficicent at 260 nm (M-1cm-1) 

  c = concentration (M) 

  l = path length (cm) 

 

The (260 values used were as follows (units µM-1 cm-1):  

 

dA = 15400 

dG = 11700 

dC = 7300 

dT = 8800 

modified dG = 11700 
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ODN name RP-HPLC conditions Retention time (min) 

OW1 0-50% B, 30 min 20.4 (DMT-ON) 

OW2 0-50% B, 30 min 23.3 (DMT-ON) 

OW6 0-50% B, 30 min 21.8 (DMT-ON) 

OW10 MeG 0-20% B, 30 min 18.7  

OW11 0-40% B, 30 min 21.5 

OW12 0-40% B, 30 min 21.4 

OW13 0-40% B, 30 min 19.7 

OW14 0-40% B, 30 min 18.7 

OW16 0-40% B, 30 min 20.3 

OW17 0-40% B, 30 min 21.5 

OW18 0-40% B, 30 min 20.7 

OW19 0-40% B, 30 min 20.6 

OW20 0-40% B, 30 min 20.2 

OW21 0-40% B, 30 min 19.2 

OW27 0-40% B, 30 min 20.5 

OW28 0-50% B, 30 min 22.4 (DMT-ON) 

OW29 0-20% B, 45 min 31.4 

OW30 0-20% B, 45 min 31.3 

OW33 0-15% B, 30 min 19.9  

OW34 0-15% B, 30 min 21.3  

OW36 0-15% B, 30 min 20.4  

OW40 0-40% B, 30 min 21.6 

OW41 0-40% B, 30 min 20.8 
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ODN name RP-HPLC conditions Retention time (min) 

OW43 0-15% B, 30 min 20.3 

OW44 0-15% B, 30 min 21.3 

 

Table 9.2: RP-HPLC conditions and retention times for the ODNs that were purified and 

contained in this report 

 

9.5 Characterisation of ODNs 

Characterisation of the ODNs was performed by either MALDI-TOF or 

electrospray (ESI) mass spectrometry (MS). Only ODNs that were 

synthesised or modified in Sheffield are shown (i.e. ODNs purchased from 

commercial suppliers are not shown unless they were subsequently analysed 

by MS). This data is shown in table 9.3  

 

ODN name Calculated mass (Da) Determined mass (Da) 

OW1 13660 13666 

OW2 14065 14072 

OW6 3932 3934 

OW11 4761 4761 

OW12 4775 4775 

OW13 4823 4823 

OW14 4777 4777 

OW16 4790 4790 

OW17 4880 4880 

OW18 4791 4791 
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ODN name Calculated mass (Da) Determined mass (Da) 

OW19 4776 4776 

OW20 4881 4881 

OW21 4732 4732 

OW27 4772 4771 

OW28 3950 3950 

OW29 3721 3721 

OW30 3720 3720 

OW31 9665 9666 

OW33 7029 7029 

OW34 7057 7057 

OW36 7172 7172 

OW40 4731 4732 

OW41 4749 4749 

OW43 7044 7044 

OW44 7092 7092 

OW51 4747 4747 

OW50 4733 4733 

 

Table 9.3: Calculated and determined masses for selected ODNs that were synthesised or 

modified and described in this report 
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9.6 Preparation of Double-stranded ODNs 

9.6.1 Preparation of Long (219-mer) ODNs by Primer Extension 

Single-stranded ODNs with short regions of overlapping 

complementary sequence (see 6.2) were annealed by mixing 25pmols of 

OW75 (containing G) or OW76 (containing O6-MeG) with 25pmoles OW77 

(the biotinylated complement) in total volume of 50µL dH2O containing 5µL 

polymerase I Klenow fragment buffer (10X buffer, Roche) and 1µL 10 mM 

dNTP mix and heating in a dry-block for 5 minutes at 95°C, then allowing to 

cool to room temperature. To fill in the 5!-overhanging regions left after 

annealing, 0.5µL (2.5 units) polymerase I Klenow fragment (Roche) was 

added and reaction mixture incubated for 15 minutes at 37˚C. The double-

stranded 219-mer ODN product was analysed by PAGE. 

9.6.2 Preparation of 102-mer ODN by Ligation 

 5000pmols of single-stranded ODN OW70 in dH2O was heated to 96˚C 

and then cooled at RT for a few mins, after which 5000pmols each of OW71, 

OW72 and OW36 were added with 50µL 0.5M NaCl solution and dH2O up to 

a total volume of 500µL (so final conc. of dsODN = 10µM). The annealing 

reaction was heated for 5 min at 96˚C and then allowed to cool slowly to RT. 

To this was added 60µL DNA ligase 10X buffer and 40µL DNA Ligase 

(Roche, 5U/µL) and the ligation reaction was incubated for 16h at 16˚C. The 

double-stranded 102-mer ODN product was analysed by PAGE. 

9.6.3 Preparation of dsDNA Substrates for Fluorescence-based Assays 

 500pmols of the relevant single-stranded 13-mer ODN (e.g. OW51) 

was mixed with 600pmols of its ODN complement (e.g. OW6). To this was 

added 10µL 5X buffer (250mM Tris-HCl pH7.5, 250mM NaCl, 5mM EDTA) 
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and dH2O up to a total volume of 50µL (so final conc. of dsODN = 1µM). This 

annealing reaction was heated to 80˚C and cooled slowly to RT in the heating 

block for 1h, after which the reaction was mixed and centrifuged for 30s to 

give the dsODN in buffered solution. 

9.6.3 Preparation of dsDNA Substrates for EMSA 

 5000pmols of ssODN was mixed with 5000pmols of its ODN 

complement in 50mM NaCl in a final volume of 50µL ([ODN]=10µM). The 

reactions were heated to 95˚C for 5min and allowed to cool slowly to RT 

 

9.7 Other ODN Reactions 

9.7.1 ODN Digestion into Nucleosides 

2500pmol of ODN was dried to a solid by vacuum concentration and 

resuspended in 50µL 10mM TrisHCl pH7.5 solution to which was added 1µL 

snake-venom phosphodiesterase (SVPDE, 10 Units) and the reaction 

incubated for 1h at 37˚C. After this time, 2µL alkaline phosphotase (AP, 10 

Units) was added and incubated for 16h at 25˚C. The digested ODN was 

analysed by RP-HPLC and MALDI-TOF MS.  

9.7.2 Oxidation of ODN containing S6-methylpurine 

To a solution of ODN (OW1, 2500 pmol) in dH20 was added 12 

equivalents of MMPP (30,000pmol). The reaction was incubated at 25˚C and 

the progress monitored by RP-HPLC (see section 7.3) 

9.7.3 Reaction of ODN containing O6-aminoethylguanine with N-

methoxycarbonylmaleimide 

15nmols ODN OW19 (containing O6-aminoethylguanine) was 

evaporated to dryness and resuspended in 200µL of saturated sodium 
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bicarbonate solution. This was cooled to 0˚C and 2.5mg N-

methoxycarbonylmaleimide was added (1000-fold excess). The reaction was 

stirred for 30min at 0˚C and then allowed to warm to 25˚C over 10min. The 

product mixture was purified by SEC (NAP-5 column, GE Healthcare) and 

analysed by RP-HPLC.  

 

9.8 Polyacrylamide Gel Electrophoresis (PAGE) 

9.8.1 SDS-PAGE for Protein Analysis 

Protein samples were prepared for SDS-PAGE by addition of an equal 

volume of 2X laemelli buffer (200 mM Tris-HCl, pH 6.8, 8% (w/v) SDS, 0.4% 

bromophenol blue (w/v) 40% glycerol (v/v), 400 mM DTT) and heating for 5 

min at 100˚C. Samples were then loaded onto a two-step SDS-PAGE gel 

consisting of a 5% stacking gel (total volume 10mL: 6.88mL dH2O, 1.25mL 1 

M Tris, pH6.8, 1.66mL 30% Protogel (37.5:1 acrylamide: bisacrylamide, 

National Diagnostics), 100µL 10% SDS, 100µL 10% APS, 10µL TEMED) over 

a 10-15% resolving gel (for 12%, (total volume 10 mL: 4.5mL dH2O, 1.25mL 1 

M Tris, pH8.8, 4mL 30% Protogel (37.5:1 acrylamide: bisacrylamide, National 

Diagnostics), 100µL 10% SDS, 100µL 10% APS, 10µL TEMED). 

Electrophoresis was at 200 V for approximately 45 minutes in running buffer 

(25 mM Tris base, 192 mM glycine, 0.1% SDS). A broad range molecular 

weight marker (NEB) was used to determine protein size. For Coomassie 

staining, the resulting gel was immersed in 0.05% (w/v) coomassie Brilliant 

Blue R250, 30% (v/v) methanol, 10% (v/v) glacial acetic acid for 1h at 25˚C 

and subsequently de-stained in (30% (v/v) methanol, 10% (v/v) glacial acetic 

acid). 
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9.8.2 Non-denaturing PAGE for ODN Analysis 

 ODN samples were prepared for PAGE by addition of 1/6 volume of 6X 

DNA non-denaturing loading buffer (10% glycerol, 0.0025% (w/v) xylene 

cyanate, 0.0025% (w/v) bromothenol blue). Samples were then loaded onto a 

PAGE gel ((for a 15% gel, total volume 10mL: 4.75mL dH2O, 1.25mL 10X 

TAE, 3.75mL 40% Protogel (19:1 acrylamide: bisacrylamide, National 

Diagnostics), 0.5mL ethylene glycol, 75µL 10% APS, 7.5µL TEMED). 

Electrophoresis was at 200 V for approximately 45 minutes in running buffer 

(1X TAE, 0.05% (v/v) ethylene glycol). The gels were stained with Gel Red 

(3X solution) at 25˚C for 1h and visualised using a UV transilluminator 

('=300nm). 

9.8.3 Electrophoretic Mobility Shift Assays (EMSA) 

 ODNs (50pmol) were mixed with Atl1 protein (100pmol) in a total 

volume of 10µL 1X EMSA buffer (50mM TrisHCl pH8.3, 50mM NaCl, 1mM 

EDTA, 3mM DTT, 0.1 mg/mL BSA, 5% glycerol) and then incubated for 15min 

at 25˚C (final [ODN]= 5µM, [Atl1] 10µM). The samples were then mixed with 

2µL 6X DNA non-denaturing loading buffer and analysed by PAGE as 

described in section 9.8.2. 

 

9.9 Protein Expression and Purification 

9.9.1 Expression of Recombinant MBP-Atl1 Proteins in E.coli 

Atl1 and Atl1 mutants (R69F, R69A and W56C) were expressed as 

maltose binding protein (MBP) fusion proteins from a pMAL-2c expression 

vector construct as described by Pearson et al., (57) with minor modifications 

as follows. A single bacterial (DH5alpha) colony was inoculated into 100ml of 
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rich medium with glucose (w/v: 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 

0.2% glucose, supplemented with 100 µg/ml ampicillin (Sigma)) and 

incubated at 37oC overnight.  Twenty milliliters of this culture were then used 

to inoculate 4 litres of the same medium. The culture was grown to OD600= 0.6 

then isopropylthiogalactoside (IPTG) from a 1M stock solution was added to a 

final concentration of 0.4 mM to induce protein expression. Cells were 

incubated for 4 hours at 37oC, and then harvested by centrifugation at 2500 x 

g for 10min.  

9.9.2 Purification of Atl1 (Wild-type and Mutants) 

Cell pellets were washed with 20mM Tris-HCl (pH8.3), and re-

suspended in 20ml of binding buffer (BB: 20mM Tris-HCl (pH8.3), 200mM 

NaCl, 1mM EDTA). Extracts were prepared by sonication (four 20s pulses) 

with cooling on ice for 1 min between pulses. The extracts were then 

centrifuged at 20000 x g for 20min and the supernatants pooled. The protein 

concentration of the extract was determined by Bradford assay. 

Amylose resin (NEB, binding capacity 3mg/ml) was pre-equilibrated 

with BB. The bacterial extract was diluted to 2.5mg/ml in a total volume of 

50ml of BB, applied, washed with BB and eluted in 1ml fractions using BB 

containing 10mM maltose. The protein concentration of the eluted fractions 

was then determined by Bradford assay.  

MBP-Atl1 fusion protein (40 mg) was cleaved with 0.1%w/v of Factor 

Xa (1mg/ml, NEB); at room temperature for 2 hours. The efficiency of the 

reaction was assessed by resolving the cleavage products on a 15% SDS-

polyacrylamide gel. The cleavage reaction was then applied to a Superdex 

200 column (HiLoad 16/60, Superdex 200 pg; GE Heathcare) that was pre-
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equilibrated with 50 mM Tris-HCl (pH 8.3), 100 mM NaCl. The column was 

eluted at a flow rate of 0.8ml/ min and 1.6ml fractions were collected. Protein 

elution was monitored by absorption at 215 nm using a flow cell. Pooled Atl1 

containing fractions were further purified through amylose columns to remove 

remaining uncleaved MBP-fusion protein. 

 Protein concentrations were determined by measuring the absorbance 

at 280 nm and then using the Beer-Lambert equation: 

 

A280 = (280.c.l 

where  A280 = absorbance at 280 nm  

  (280 = extinction coefficicent at 280 nm (M-1cm-1) 

  c = concentration (M) 

  l = path length (cm) 

 

 Atl1 was stored at -20˚C in the SEC elution buffer (50 mM Tris-HCl (pH 

8.3), 100 mM NaCl) and defrosted immediately prior to use in any assay. 

(The mutant proteins were kindly purified by Gail McGown and Mary 

Thorncroft) 

9.9.1 Expression of Recombinant MBP-TTHA1564 Protein in E.coli 

TTHA1564 was expressed as maltose binding protein (MBP) fusion 

protein from a pMAL-2c expression vector construct as described by Morita et 

al.,(63) with minor modifications as follows. A single bacterial (Rosetta DE3) 

colony was inoculated into 10ml of rich medium with glucose (w/v: 1% 

tryptone, 0.5% yeast extract, 0.5% NaCl, 0.2% glucose, supplemented with 

100 µg/ml ampicillin (Sigma)) and incubated at 37oC for eight hours.  Twenty 
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milliliters of this culture were then used to inoculate 4 litres of the same 

medium. The culture was grown overnight (16h) with incubation at 37oC, and 

then harvested by centrifugation at 2500xg for 10min.  

9.9.2 Purification of MBP-TTHA1564 

Cell pellets were washed with and re-suspended in 20 ml of buffer I (50mM 

Tris–HCl (pH 8.0), 1mM EDTA, 1mM 2-mercaptoethanol) and sonicated on 

ice. The cell lysate was cleared by centrifugation at 30,000g for 20 min and 

the supernatant was then applied to an Amylose Resin column (15 ml) that 

had been pre-equilibrated in buffer I. After washing with 10 column volumes of 

buffer I, MBP-Atl1 was eluted in 1mL fractions using buffer I containing 10mM 

maltose. Fractions containing the MBP-TTHA1564 were pooled and applied to 

a TOYOPEARL-SuperQ column (15 ml) pre-equilibrated with buffer I. The 

proteins were eluted with a linear gradient of NaCl from 0 to 1.0M in a total 

volume of 200 ml of buffer I. Solid ammonium sulphate was added to the 

fractions containing MBP-TTHA1564 protein to a final concentration of 1.0 M. 

The protein solution was then applied to a TOYOPEARL-Ether 650M column 

(10 ml) pre-equilibrated with buffer I containing 1.0M ammonium sulphate. 

Proteins were eluted with a linear gradient of ammonium sulphate from 1.0 to 

0M in a total volume of 150 ml of buffer I. Fractions containing the MBP-

TTHA1564 were collected and pooled. The collected solution containing MBP-

TTHA1564was dialysed against buffer II [20mM Tris–HCl (pH 8.0), 50mM 

NaCl, 1mM EDTA, 1mM dithiothreitol (DTT), 5% (v/v) glycerol] at 4˚C.  
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9.10 Site-directed Mutagenesis of Atl1 

To introduce the Arg to Phe and Arg to Ala point mutations into the atl1 

gene of pMAL-2c-atl1 (57) vector, the Phusion site-directed mutagenesis kit 

was used (Finnzymes, NEB). Two 5’-phosphorylated primers atl1-R69F-M 

(CGTGGCACCATTTCTAAATTCGATATCTCTGCTGGTG) and atl1-R69A-M 

(CGTGGCACCATTTCTAAAGCTGATATCTCTGCTGGTG) were designed so 

that they would anneal “back to back” on the vector. The atl1-R69F-M primer 

contained AGA to TTC codon change (marked in bold) to create the atl1-R69F 

mutation, and the atl1-R69A-M primer contained AGA to GCT codon change 

(marked in bold) to create the atl1-R69A mutation. The 5’ phosphorylation of 

the primers allowed blunt end ligation of the linear PCR product to form a 

circular plasmid. 2 units of Phusion Hot start DNA polymerase was used for 

PCR amplifications in a total volume of 50 µL ddH2O containing 10 µL 5x 

Phusion HF buffer, 1 µL 10 mM dNTP mix (Invitrogen), 50 pmol of each 

primer, 100 pg of template DNA (pMAL-2c-atl1). Amplification conditions were 

as follows: 1 cycle for 30 seconds at 98oC, 25 cycles of 10 seconds at 98oC, 

30 seconds at 65oC and 3 minutes at 72oC and finally 1 cycle for 10 minutes 

at 72oC. Ligaton of the PCR products was carried out for a minimum of 5 

minutes at room temperature in a total volume of 10 µL containing 5 µL Quick 

T4 DNA Ligase buffer, 5 µL of PCR product and 0.5 µL Quick T4 DNA Ligase 

(NEB). The generated pMAL-2c-atl1-R69F and pMAL-2c-atl1-R69A constructs 

were expanded and purified. The correctness of the pMAL-2c-atl1-Y25F 

construct was verified by sequencing with commercial “MalE forward 

sequencing primer (NEB).  

(The majority of this work was performed by Vitaly Latypov) 
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9.11 Fluorescence-based Assays 

9.11.1 Fluorescnce-based ATL-DNA Binding Assays 

Fluorescence emission intensity and fluorescence anisotropy 

measurements were made at 25˚C on a Horiba Jobin Yvon FluoroMax-3 

fluorimeter. For the SIMA and HEX dyes, the excitation wavelength was 530 

nm (excitation slit width 5 nm), and the emission was detected at 560 nm 

(emission slit width 5nm). A 1 mL fluorescence cuvette with excitation and 

emission path lengths each of 10 mm, was used in the assays. A 1nM solution 

of ODN in titration buffer (50mM Tris–HCl (pH 7.5), 50mM NaCl, 1mM EDTA) 

was allowed 10 min to equilibrate with occasional mixing before small 

volumes of protein solution were added using a glass syringe (Hamilton) for 

added accuracy. The contents of the cuvette were mixed thoroughly with a 

pipette and left for 1 min before each reading was taken. For fluorescence 

emission intensity, 1 accumulation scan with an integration time of 1 sec was 

used for each measurement. For anisotropy, the time-trace function was used 

(total time = 60 sec with an integration time of 0.5 sec) to generate 5 data 

points which were averaged.  

The ODNs used in the experiments were labelled with either 5!-HEX or 

SIMA (HEX) (see table 9.1). This allowed ODN concentrations to be used in 

the range of 2-20 nM for anisotropy and 1-5 nM for intensity. The 

concentration used for each experiment is given in the title of the revelvent 

plot.  

 Anisotropy is defined by: 

anisotropy = (IVV – IVH) / (IVV + 2IVH) 
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where IVV and IVH are the intensities of the vertical and horizontal components 

of the emitted light using vertical polarised excitation.  

For these direct titrations the binding isotherms were generated by 

plotting protein concentration against anisotropy or fluorescent intensity and 

were fitted by nonlinear least-squares regression using KaleidaGraph to the 

standard equation describing the equilibrium  

 

D = ODN,  

E = enzyme  

DE = ODN-enzyme complex 

 

For anisotropy 

 

A = Amin + [ (D+E+KD) – ( (D+E+KD)2 – (4DE) )0.5 ] (Amax - Amin) / 2D 

 

A = the anisotropy measured at a certain concentration of enzyme (E) 

D = the oligonucleotide concentration 

Amin = the lowest measured anisotropy (i.e. when no protein is added) 

Amax = the highest measured anisotropy (i.e. when the binding is saturated) 

KD = the dissociation constant 

 

For fluorescent intensity: 

 

I = Imax + [ (D+E+KD) – ( (D+E+KD)2 – (4DE) )0.5 ] (Imin - Imax) / 2D 
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A = the intensity measured at a certain concentration of enzyme (E) 

D = the oligonucleotide concentration 

Amin = the lowest measured intensity (i.e. when the binding is saturated)  

Amax = the highest measured intensity (i.e. when no protein is titrated)  

KD = the dissociation constant 

Equations from (87) 

9.11.2 FRET Analysis of Atl1-DNA Binding 

 To a cuvette containing 1mL of a 50nM solution of ODN OW56 (FAM-

labelled) in 1X Buffer I (50mM TrisHCl pH7.5, 50mM NaCl, 1mM EDTA) was 

added increasing amounts of either OW57 (Cy3-labelled) or OW58 (HEX-

labelled) in the following increments: 12.5nM, 25nM, 50nM (final [ODN]). Once 

a 1:1 duplex was formed, Atl1 was added to a final concentration of 250nM, 

and then 1000nM. The FAM label was excited at 490nm and the fluorescent 

emission intensity measured between 510-650nm with excitation and 

emission slit widths of 5nm, and an integration time of 1s. The assays were 

carried out at 25˚C. 

9.11.3 FRET Analysis of ODN Hybridisation 

For the ‘hybridised’ ODNs: ODNs (e.g. OW56 and OW58) were mixed 

together in a solution of 1X Buffer I (50mM TrisHCl pH7.5, 50mM NaCl, 1mM 

EDTA) and incubated for 5 mins at 80˚C before being slowly allowed to cool to 

RT. The dsODN solution was diluted to 1nM and 1mL of this solution was 

placed in a cuvette. The FAM label was excited at 490nm and the fluorescent 

emission intensity measured between 510-650nm with excitation and 

emission slit widths of 5nm, and an integration time of 1s. The assays were 

carried out at 25˚C 
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For the ‘unhybridised’ ODNs: ODNs (e.g. OW56 and OW58) were mixed 

together in a solution of 1X Buffer I (50mM TrisHCl pH7.5, 50mM NaCl, 1mM 

EDTA) and immediately diluted to 1nM. 1mL of this solution was placed in a 

cuvette. The FAM label was excited at 490nm and the fluorescent emission 

intensity measured between 510-650nm with excitation and emission slit 

widths of 5nm, and an integration time of 1s. The assays were carried out at 

25˚C 

9.11.4 Fluorescence-based MGMT Activity Assay 

 ODN OW31 (containing O6-MeG) or OW39 (containing G) was diluted 

to a concentration of 1µM in 1X NEB Restriction Digest Buffer 3 (New 

England Biolabs) and folded by heating at 95˚C for 1min and cooling rapidly 

on ice for 5min. The ODN solution was diluted to 2nM in 1X NEB Restriction 

Digest Buffer 3 (New England Biolabs) to which was added MGMT to a final 

concentration of 100µM and incubated for 30min at 25˚C. 1µL of PstI (20 

Units, NEB) was added and the reaction incubated for 30min at 25˚C. The 

emission intensity of the Cy3 dye was measured as a function of time 

throughout the reactions (excitation '= 547nm, emission '= 563nm, slit width= 

5nm, integration time= 1s). 

 

9.12 Affinity-based Isolation of Atl1  

9.12.1 S.pombe Growth 

S.pombe cultures were grown at 30˚C in liquid rich media (YES, which 

consists of 0.5% yeast extract, 3% glucose, 225 mg/ml adenine, uracil, 

histidine, leucine and lysine). The cells were harvested at an OD600 of 

approximately 0.5-1, centrifuged and the pellet resuspended in stop buffer. 
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This cell suspension was dripped into liquid nitrogen to make small 

cryogenically frozen pellets, and these stored unsealed overnight at -80˚C to 

allow the liquid N2 to evaporate. 

9.12.2 Preparation of Streptavadin Beads (ODN Binding) 

 An aliquot (500µL) of straptavadin (SA) beads was washed three times 

with an equal volume (500µL) of 2X binding buffer (10mM Tris HCl pH7.5; 

1mM EDTA; 2M NaCl) and then resuspended in half the volume of the same 

buffer (250µL). To this was added an equal volume (250µL) of 2µM dsODN in 

dH2O and the binding reaction incubated for 2h at RT (i.e. final conc.= 1µM of 

ODN, 1X buffer). The supernatant was removed and the binding efficiency 

measured by comparison of ODN concentration (A260) before and after 

incubation with the beads. Finally the ODN coated SA beads were 

resuspended in 500uL 1X extraction buffer (20mM Tris-HCl pH 7.2; 100mM 

NaCl; 1mM DTT, 0.1mM PMSF, + protease inhibitor cocktail (Roche)) ready 

for use in the pull-down assay. 

9.12.3 Pulldown Assays (1) 

 Pellets of S.pombe cells were ground into a powder using liquid 

nitrogen grinding apperatus. This powder (~8g) was added to 20mL 1X 

extraction buffer (20mM Tris-HCl pH 7.2; 100mM NaCl; 1mM DTT, 0.1mM 

PMSF, + protease inhibitor cocktail (Roche)), resuspended by mixing at 4˚C 

for 1h and then centrifuged (20,000g, 10min, 4˚C). The cleared supernatant 

was removed, mixed and the total protein concentration measured by 

Bradford assay (approx. 30mg/mL). 

 This whole-cell extract was divided into the appropriate number of 

aliquots and the relevant SA beads pre-coated with ODN were added. The 
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pull-down assays were incubated for 1h at 25˚C, after which the beads were 

removed from the supernatant and washed three times with 100µL 1X 

extraction buffer. The beads were then resuspended in 40 µL Laemelli buffer 

and boiled at 100˚C for 5min in preparation for SDS-PAGE separation and 

analysis.       

9.12.4 Pulldown Assays (2) 

 Pellets of S.pombe cells were ground into a powder using liquid 

nitrogen grinding apperatus. This powder (~8g) was added to 20mL 1X 

extraction buffer (20mM Tris-HCl pH 7.2; 100mM NaCl; 1mM DTT, 0.1mM 

PMSF, + protease inhibitor cocktail (Roche)), resuspended by mixing at 25˚C 

for 10min, sonicated at 4˚C with 6 x 30sec pulses and centrifuged (12,000g, 

20min, 4˚C). The cleared supernatants (~15mg/mL total protein concentration) 

divided into aliquots and treated in the follow manner: 

-ATL = no further treatment 

+ATL = adenine triphosphate added to 1mM final concentration 

+ATL (benz) = to 6mL extract was added MgCl2 to 2.5mM final concentration 

and 11,000 Units Benzonase. After incubation for 1h at 25˚C, EDTA was 

added to a final concentration of 10mM, and adenine triphosphate added to 

1mM final concentration. 

 These whole-cell extracts were divided into the appropriate number of 

aliquots and the relevant SA beads pre-coated with ODN added. The pull-

downs were incubated for 1h at 25˚C, after which the beads were removed 

from the supernatant and washed twice with 750µL 1X extraction buffer. The 

beads were then stored at -20˚C. 
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9.12.5 Atl1 Quantification by ELISA 

ODNs OW78 and OW79 were annealed together in 50mM NaCl solution 

([ODN]=10µM) by incubation at 95˚C for 5min and were allowed to cool slowly 

to RT. The dsODN solution was diluted to 10nM, added to each well of a 96 

well streptavadin-coated micorotitre plate (Thermo) and incubated for 2h at 

RT. Plates were washed 4 times with 400µL PBS and blocked using 300uL of 

PBS/3% BSA for 2h at room temperature on a rotating platform. 100µL of a 

1/500 dilution of the primary antibody (anti-Atl1) was added to the wells and 

incubated for 1h at room temperature on a rotating platform. The plates were 

then washed 4 times with 400µL of PBS and 100µL of horse-radish 

peroxidase-linked secondary antibody (goat-anti-rabbit, 1/2000 dilution, Dako) 

was added. The plates were incubated at room temperature for 1h on a 

rocking platform then washed 4 times with PBS. Western Lightning reagent 

(Perkin Elmer) was added and chemiluminescence measured as relative 

luminescence units using a TECAN GENios plate-reader. 

  

9.13 Tandem Mass Spectrometry (MS/MS) Experiments 

9.13.1 Sample Preparation 

 The protein samples from the affinity chromatography assays were 

separated and analysed by 1-D SDS PAGE (see section 9.7.1). The relevant 

bands were excised from the gel and destained by incubating at 37˚C for 

30min with solution 1. This step was repeated until all the coomassie blue was 

visibly removed. The gel piece was dried for 10min in a spin-vacuum 

concentrator, after which solution 4 was added with trypsin (20µg/mL) so that 

the approximate ratio of total protein: trypsin was 20:1 and the reaction 



Chapter 9 

 283 
 
 

incubated overnight (16h) at 37˚C with mixing. The supernatant was collected 

and kept aside, and then solution 5 was added to the gel piece, vortexed for a 

few seconds and incubated for 15min at 37˚C. This supernatant was removed 

and then solution 6 was added to the gel piece, vortexed for a few seconds 

and incubated for 15min at 37˚C. This supernatant was removed and then 

solution 7 was added to the gel piece, vortexed for a few seconds and 

incubated for 30min at 37˚C. All the supernatants were pooled together and 

then evaporated to dryness by vacuum concentration to give the peptides as 

a solid. 

Solution 1: 200mM ammonium bicarbonate in 40% acetonitrile 

Solution 2: 10mM DTT solution 

Solution 3: 5mM Iodoaceamide solution 

Solution 4: 40mM ammonium bicarbonate in 9% acetonitrile 

Solution 5: 100% MeCN 

Solution 6: 5% Formic acid 

Solution 7: 5% Formic acid in 50% acetonitrile 

Switchos: 0.1% Formic acid in 3% acetonitrile 

 

 In the case where the alkylation and reduction steps were carried out, 

the gel piece was treated after de-staining but prior to trypsin digestion in the 

following manner: the gel piece was incubated with Solution 2 for 1h at 56˚C, 

after which the solution was discarded. The gel piece was then incubated with 

Solution 3 for 30min at 25˚C in the dark, after which the solution was 

discarded. The gel piece was then washed twice with Solution 2 for 15 mins at 
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25˚C, washed with Solution 3 for 15 mins at 37˚C and then dried in a vacuum 

concentrator. 

9.13.2 LC MS/MS Experimental Set-up 

An Ultimate 3000 capillary HPLC operating in reverse-phase (RP) 

separation (Dionex, Surrey UK) was interfaced in tandem to an HCT Ultra 

PTM Discovery Q-IT MS (Bruker Daltonics, Coventry UK). Vacuum 

concentrated prefractionated samples were resuspended into transport buffer 

Switchos (3% acetonitrile, 0.1% formic acid), injected and captured onto a 

0.35 mm trap column (3 m C18, Dionex-LC Packings). The trapped samples 

were then eluted onto a 0.075 150 mm analytical column (3 mm C18, Dionex-

LC Packings) using an automated binary gradient with a flow of 300 nL min 

from 97% buffer I (3% acetonitrile, 0.1% formic acid) to 45% buffer II (97% 

acetonitrile, 0.1% formic acid) over 40 min followed by 90% buffer II for 5 

minutes. Samples eluted from the high resolution RP separation were 

transferred onto a Bruker low-flow electrospray needle operating at 3600 V 

(Bruker Daltonics, Coventry UK) 

  Operating scan range for IT-MS was set from 300–1800 m/z using a 

dynamicion charge threshold (ICC) of 200 000 or a time-dependent 

accumulation no more than 200 ms using ‘standard enhanced’ scans. 

Operation of the IT-MS/MS threshold was set at 60–2700 m/z at an ICC of 

200 000 with fragmentation energy of 0.5 V Data was acquired using Bruker 

software suite Compass v3.6 with Hystar DCMS-link v2.0 on a dual processor 

online workstation. 

For the experiments where the aim was to identify specific peptides, ion 

trap pSRM measurements were designed and qualified under Ultrascan mode 
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operated under selective ion monitoring (Selective ion monitorting zooming (3 

amu) and pSRM-MS/MS mode for intact and full fragment mass scan. Ion 

charge control was operated at 150,000 ions at pSRM-MS/MS conditions with 

a maximum accumulation time of 200 ms and 3 microscan averages. 

9.13.3 MS/MS Data Analysis 

Data analysis LC-MS data was collected and curated using Bruker 

Data-Analysis v4.0 into generic MS interrogation file format (.mgf). Further 

analysis was performed on an in-house Phenyx Search server (Genebio, 

Geneva) running on an 8-node Linux cluster and the remote access Phenyx 

vital-it multi-cluster server, or alternatively using an in-house MASCOT 

algorithm (Matrix Science, Boston). Analysis was performed by a variable 

modification of oxidation of methionines on a collective Swiss-Prot (Apr. 2011) 

S.pombe database. Mass threshold for interrogation of Q-IT data was set at 

1.2 Da MS and 0.6 Da MS/MS. Acceptance parameters for search data was 

set at az-score of 6.0, p-value of 10_4 and a minimum peptide length of six 

amino acids.  
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