
 

 

 
 
 
 
 
 
 
 

The Effects of Oxidative Stress on 
Synapse Development in Drosophila. 

 
 

Valerie Milton 
 

PhD  
University of York 

Department of Biology 

September 2011



Abstract 

 

Mutations in spinster, a late-endosomal/ lysosomal protein have been shown to 

cause overgrowth of the Drosophila neuromuscular junction, coupled with 

impaired synaptic transmission (Sweeney and Davies, 2002). Oxidative stress is 

implicated in many neurodegenerative disorders; however, its effects on 

development are still unclear. 

In this thesis, it is shown that oxidative stress is implicated in the development of 

the spinster phenotype; overgrowth of the NMJ is rescued by over-expression of 

superoxide-dismutase (SOD) and catalase, components of the anti-oxidant 

defence system.  Overgrowth can also be caused by oxidative stress in the 

absence of lysosomal dysfunction; synapse overgrowth is also observed in 

mutants defective for protection from ROS, and animals subjected to excessive 

ROS.  

The data shown here also indicate that spinster and oxidative stress induced 

overgrowth requires ASK/JNK/AP-1 signalling pathways, attenuating 

ASK/JNK/AP-1 activity reduces overgrowth.  Genes required for autophagy 

(Atg1 and Atg18) are also required for overgrowth, thus it is suggested that 

autophagy and JNK signalling are linked in NMJ development and dysregulated 

JNK/AP-1 signalling is involved in the generation of the neuronal phenotype 

observed in spinster. 

spinster and oxidative stress mutants also have impaired physiology showing 

reduced crawling speed and impaired synaptic transmission. AMPK is also 

required for spinster overgrowth, suggesting an energy deficit, supported by the 

presence of aberrant mitochondria. 
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1. Introduction 
The main aim of this investigation is to elucidate the effects of oxidative stress 

on synapse development. Oxidative stress can be broadly defined as an 

imbalance between the oxidant and reductive capacity of the cell, in favour of 

pro-oxidants.  Oxidative stress occurs when generation of reaction oxygen 

species (ROS) overcome the reductive capacity of the cell (Sies, 1997).  This 

leads to increased cellular damage and activation of the cellular stress 

response. This is an interesting area for research as little is currently known 

about how oxidative stress impinges on neuronal development. ROS are 

important signalling molecules throughout physiology, and are used to signal 

developmental changes (Vieira et al., 2011) and are important in immune 

responses (E.g. Tennenberg et al., 1993) and long term potentiation (Klann et 

al., 1998); they are also implicated in a vast number of pathologies, most notably 

in neurodegenerative diseases (Buhmann et al., 2004). This means that when 

ROS levels are increased they can act as highly potent signalling molecules 

leading to aberrant activation of signalling pathways, in addition to cellular 

damage. ROS are potent and far-reaching in their damaging effects and require 

close regulation, consequently there is a well-characterised stress response 

mounted by the cell upon detection of pathological levels of ROS. 

1.1. Oxidative Stress 

1.1.1. Reactive Oxygen Species  

There are a number of ROS that are produced within the cell, including the 

principal ROS, superoxide anions (O2
-.), hydrogen peroxide (H2O2), hydroxyl 

radicals (OH.) and hydroxyl anions (OH.-).  Generally, ROS formation begins 

with the generation of superoxide anions.  These are formed by the addition of 

an electron to molecular oxygen. They are highly unstable molecules and rapidly 

dismutate to form hydrogen peroxide.  This reaction is catalysed by superoxide 
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dismutase (SOD) (McCord and Fridovich, 1968 and 1969a and b), which allows 

this reaction to occur 10000x faster than in the absence of the enzyme.  

Hydrogen peroxide is not a radical although it is still highly reactive and in the 

presence of superoxide anions accepts electrons from transition metals to 

produce hydroxyl radicals (.OH) and hydroxyl anions (OH-), a process termed 

the Fenton reaction (Fe2+ + H2O2 → Fe3+ + OH. + OH−).     

 

Figure 1.1. The addition of electrons to oxygen 
Molecular oxygen O2 is reduced to superoxide anions O2

-..  Addition of a further 
electron in the presence of hydrogen produces hydrogen peroxide (H2O2).  This 
is further reduced to form hydroxyl radicals and hydroxyl anions (OH. and OH.- 
respectively).   

1.1.2. Generation of ROS 

ROS are a natural by-product of normal cellular metabolism; the most notable 

source is believed to be mitochondrial respiration. There are also many other 

sources of ROS within the cell (reviewed by Brown and Borutaite, 2011)  

including peroxisomes, the endoplasmic reticulum, nicotinamide adenine 

dinucleotide phosphate (NADPHs) (McNally et al., 2003; reviewed in Bedard et 

al., 2007) and xanthine oxidase (Gonzalez-Mateos et al., 2004). Some ROS are 

generated as a by-product but they are also produced as signalling molecules. 
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1.1.2.1. Mitochondrial Generation of ROS 

Mitochondria are oval shaped organelles approximately 1-2µm long and 0.5-

1µm wide, with inner and outer membranes that form two compartments; firstly 

the intercristal space, between the outer and inner membrane, otherwise known 

as the intermembrane space and secondly the matrix, enclosed by the inner 

membrane; the matrix is also known as the intermembrane space (Palade, 

1953).  During mitochondrial respiration electrons are donated from electron 

donors such as nicotinamide adenine nucleotide (NADH) and FADH2 and are 

transferred along the mitochondrial electron transport chain (ETC) between 

electron carriers, complexes I-IV, located in the inner membrane.  The final 

electron acceptor is O2, the most electronegative acceptor in the chain.   

Transfer of electrons along the ETC releases energy and these exergenic steps 

are coupled with the transport of protons into the intermembrane space to create 

a proton gradient. The flow of protons down the concentration gradient, back 

into the matrix provides the free energy for the production of ATP from ADP, 

through the actions of ATP synthase, otherwise known as complex V (Lehninger 

Chap 19)(Fig. 1.2).  Electrons can leak prematurely from the electron transport 

chain to bind to O2 to form O2
-. (Fig 1.3) (Boveris and Chance, 1973).   

Ordinarily, the electron carrier NADH donates electrons to complex I, NADH 

dehydrogenase, which transfers the electrons to the lipophilic electron shuttling 

molecule coenzyme Q (ubiquinone).  This process is coupled to transport of H+ 

into the intermembrane space.  Conenzyme Q also receives electrons from 

complex II, succinate dehydrogenase, which oxidises succinate via FAD. 

Succinate is a Kreb’s/ citric acid cycle intermediate.  This process is not coupled 

to the movement of H+. Therefore, e- entering the ETC at this point yields less 

free energy.  Coenzyme Q is freely diffusible within the membrane and 

transports electrons to complex III, coenzyme QH2-cytochrome c reductase. 

Electron transfer is coupled to proton movement into the intermembrane space.  
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Figure 1.2 The mitochondrial respiratory chain 
Electrons are transported along the electron transport chain, protons are transported 
across the inner mitochondrial membrane into the intermembrane space creating a 
proton gradient.  Protons are transported back across the membrane through complex 
V of the mitochondrial transport chain, ATPase, converting ADP to ATP.    
 
At complex III electrons are transferred from coenzyme Q to cytochrome c, 

another electron shuttling molecule, which binds to the outer face of the inner 

membrane and transports electrons to complex IV, cytochrome oxidase.  

Complex IV, cytochrome c oxidase transfers electrons to O2, which together with 
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H+ results in the formation of water; once more this transfer of electron coincides 

with the movement of protons into the intermembrane space. The 

electrochemical gradient is harnessed by ATP synthase, which comprises two 

components F0 and F1.  F0 acts as a proton channel, through which protons flow 

from the intermembrane space to the matrix, down the electrochemical gradient.  

This drives the rotation of F1 which catalyses the synthesis of ADP from ATP.  

This process is termed oxidative phosphorylation.  

ROS are produced when electron transfer to oxygen results in the generation of 

superoxide anions (O2
-.).  Traditionally it is reported that 1-2% oxygen molecules 

used in mitochondria are converted to superoxide anions (Boveris and Chance 

1973), however this is most likely an overestimation as, this figure was derived 

from isolated mitochondria in the presence of a complex III toxin (antimycin) with 

saturated levels of substrate and oxygen.  More recent estimations put the figure 

at 0.15% oxygen being converted to superoxide anions (St-Pierre et al., 2002).  

ROS formation was originally identified at two points of the electron transport 

chain; in an unknown site of complex I and  conenzyme Q at complex III 

(Turrens and Boveris, 1980; Turrens et al., 1985, Cadenas et al., 1977).  

Subsequently, more sites of ROS generation have been identified, although 

none are fully characterised, and the relative contribution of each site is likely to 

be tissue and species specific.  There is evidence to support the presence of 

two ROS producing sites in complex I, the ubiquinone binding site and the flavin 

mononucleotide group (FMN) (Liu et al., 2002). Succinate linked ROS 

generation is inhibited by rotenone, a complex I inhibitor, suggesting ROS 

production actually occurs via reversed electron transfer between succinate and 

NAD+ to form NADH (Liu et al., 2002), however there is still much debate 

concerning ROS production at complex I (reviewed by Andreyev et al., 2005). 

.   
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Figure 1.3 The mitochondrial respiratory chain can leak electrons to create 
superoxide anions. 
As electrons are transported along the electron transport chain, leaking can occur 
resulting in the formation of superoxide anions. Rotenone and paraquat are two 
electrotoxins that increase the rate of superoxide anion formation. Rotenone acts at 
complex I whereas paraquat acts at complex I and complex III. 

1.1.2.2. Non-mitochondrial sources of ROS 

Although mitochondria are commonly accepted to be the greatest producers of 

ROS within the cell it has also been suggested that non-mitochondrial sources 

of ROS could contribute more to ROS production than previously thought, 

dependent on cell type (Brown and Borutaite, 2011).  There are many non-

mitochondrial sources of ROS, for example the endoplasmic reticulum (ER) (Liu 

et al., 2004; Park et al., 2010), peroxisomes, cytosolic enzymes and plasma 

membrane bound enzymes.  In the ER the main sources of ROS are p450 

(Bondy and Naderi, 1994) enzymes and ERO1 (Tu et al., 2002).  Cytochrome 

p450 enzymes are heme-thiolate enzymes that form part of the membrane-

bound microsomal monooxygenase system (MMO), located in the ER, where 

lipophillic substrates are oxidised (Capedevila et al., 1981; for review see 

Zanger et al., 2004).  Superoxide anions are formed when the electrons are 

transferred to oxygen rather than the substrate, and it has been indicated that 

this route may contribute to ROS generation in vivo (Kuthan and Ullrich, 1982).  
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Furthermore the ER requires an oxidising environment to allow the formation of 

disulphide bonds (Hwang et al., 1992; reviewed Gaut and Hendershot, 1993).  

ERO1, a thiol oxidase enzyme catalyses the formation of disulphide bonds in the 

ER (Tu et al., 2002).  Electrons are transferred from dithiols to molecular oxygen 

yielding hydrogen peroxide (Gross et al., 2006).   

Peroxisomes, single membrane bound organelles, are an important site of ROS 

generation (Boveris et al., 1972). Peroxisomes break down long chain fatty 

acids, whereby β-oxidation of fatty acids occurs resulting in the shortening of 

fatty acids and conversion to acetyl CoA, to enter the citric acid cycle and 

provide energy for the cell.  Therefore in the peroxisome hydrogen peroxide is 

produced as organic substrates are oxidised:  

RH2 + O2  R +H2O2  

Peroxidation of subsequent substrates occurs, through the actions of catalase, 

as it uses hydrogen peroxide to oxidise further substrates, in the process, 

turning reactive hydrogen peroxide into less harmful water:  

H2O2 + R’H2  R’ + H2O 

Excess hydrogen peroxide is broken down by catalase to produce oxygen and 

water (Albert et al., 2008).  

Membrane-bound NADPH oxidases, such as nitric oxide synthase, catalyse the 

formation of superoxides.  NADPH oxidases are activated through assembly in 

the membrane in the respiratory burst (otherwise termed oxidative burst), where 

superoxides are released from immune cells to kill bacteria or fungi (Bokock and 

Knaus, 2003).  

Xanthine oxidases (XO) are another source of ROS within the cell (Gonzalez-

Mateos et al., 2001). Xanthine oxidases catalyse the oxidation of hypoxanthine 
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to xanthine and thence to uric acid: hypoxanthine + H2O + O2  xanthine + 

H2O2 and xanthine + H2O + O2   uric acid + H2O2.  

1.1.3. ROS and Iron/Transition Metals 

Transition metals are essential for most forms of aerobic life, but they are also 

dangerous pro-oxidants, especially iron. The role of iron in oxidative stress is an 

important one (Missirlis et al., 2003; Kurz et al., 2008a and b) as iron is the most 

abundant transition metal in the body and is essential for the function of many 

enzymes. Iron can undergo the Fenton reaction with hydrogen peroxide to 

generate hydroxyl anions and hydroxyl radicals: 

Fe2+ + H2O2  Fe3+ + HO. +OH- 

Furthermore, iron can potentiate lipid peroxidation (Gutteridge, 1982) and 

catechols such as dopamine can be converted to highly reactive semiquinones 

(Schipper, 2004a and b). Iron concentration has been shown to increase with 

age in rats, humans and mice (Cook and Yu, 1998; Sohal et al., 1999; Donahue 

et al., 2006). Hydrogen peroxide can induce activity of heme-oxygenase-1 (HO-

1) increasing degradation of heme thereby liberating more free iron, potentially 

inducing a vicious cycle. Therefore levels of iron are tightly regulated. 

Dysregulation of iron metabolism is an important contributor to Alzheimer’s 

Disease (AD) pathology through the generation of oxidative stress (for review 

see Puntarulo, 2005). 

1.1.4. Oxidative Stress 

Oxidative stress has been implicated in the aetiology of numerous pathologies, 

including many neurodegenerative disorders such as Alzheimer’s disease 

(Papolla et al., 1992), Parkinson’s disease (Castellani et al., 1996, Buhmann et 

al., 2004), Creutzfeldt–Jakob Disease (Arlt et al., 2002) and lysosomal storage 

disorders (Deganuto et al., 2007, Fu et al., 2010).  ROS are natural by-products 

of many cellular processes, most notably mitochondrial respiration (Loschen et 
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al., 1971; Boveris et al., 1972).  Low levels of ROS are required as cell-signalling 

molecules in many processes including long-term potentiation (LTP), the 

biological correlate of learning and memory (Bindokas et al., 1996; Klann et al., 

1998), differentiation (Vieira et al., 2011) and cytokine secretion (Kina et al., 

2009). ROS are involved in neutrophil recruitment and lymphocyte activation, 

key to the immune response (Smith and Ford, 1983; Marriott et al., 2008; Reth 

et al., 2002). ROS have also been implicated in autoimmune conditions 

including inflammatory bowel diseases (Leiper et al., 2001).  ROS are normally 

maintained at these low physiological levels by a system of ROS scavengers, 

otherwise termed anti-oxidants.  The balance between the generation and 

neutralisation of ROS is normally tightly regulated; oxidative stress occurs when 

the generation of ROS overpowers the antioxidant defence system.  Oxidative 

stress can be caused either by increased generation of ROS or impaired 

neutralisation of ROS.  The consequences of oxidative stress comprise two 

main facets: random cellular damage and the activation of the cellular stress 

response signalling pathways. Firstly, oxidative stress involves random cellular 

damage as chain reactions occur causing lipid peroxidation, DNA and protein 

damage.  Secondly, oxidative stress entails the organised cell stress response 

that can lead to the many different outcomes, such as proliferation, growth arrest 

or cell death (For review see Barnham et al., 2004).   

1.1.5. Oxidative Damage 

ROS cause random cellular damage through chain reactions, resulting in the 

further formation of ROS.  Oxidative damage can be defined as “the 

biomolecular damage caused by attack of reactive species upon the 

constituents on living organism” (Halliwell and Whiteman, 2004). ROS cause 

addition of double bonds to DNA bases, with the removal of a hydrogen atom 

from thymine and deoxyribose.  ROS can also cause strand breaks and base 

and nucleotide modifications, as well as changes in DNA conformation that may 

cause inaccurate replications.  Furthermore, ROS can alter methylation status  
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Figure 1.4: Sources of ROS, primary cellular defences, and signalling responses. 
Reactive oxygen species (ROS) can be generated from various sources in the cytosol 
or mitochondria. The cell is protected from ROS by superoxide dismutase (SOD), 
catalase (Cat), thioredoxin reductase (TrxR), glutathione peroxidase (GPx), and 
Glutathione S-transferase (GST). GSH represents monomeric glutathione, and GSSG 
represents glutathione disulfide, GSSG is reduced to GSH by glutathione reductase 
(GR). The cellular response to excessive ROS, via the activation of the ASK/JNK/AP-1 
pathway, is autophagy. ASK and JNK are inhibited by reduced thioredoxin and 
glutathione, respectively, demonstrating that their activation state is directly affected by 
redox status. JNK/AP-1 activation is known to regulate synaptic responses. ERK is also 
activated in response to oxidative stress while also known to regulate synapse 
development through AP-1 and autophagy gene activation. AP-1 has also been 
implicated in the generation and maintenance of LTP. 
 

resulting in changed gene expression levels (Weitzman et al., 1994).  ROS are 

known to alter protein activity in a number of ways. The presence of ROS can 

result in changes in oxidation state of transfer metals, vital to protein function.  

An example of this is aconitase, a constituent of the citric acid cycle, which 
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contains [Fe4S4]2+, required for catalytic activity.  In the presence of superoxide 

anions this is converted to [Fe4S4]+, rendering it inactive (Gardner and Fridovich, 

1991b).  OH.- ions cause H+ abstraction, for example of tyrosine, forming tyrosyl 

radicals, resulting in dityrosine linkages, altering protein structure and activity.  

Cysteine and methionine are particularly susceptible to oxidation due to their 

sulphur content, resulting in disulphide cross-linking.  This is reversible through 

the actions of reductases; a built in ROS scavenger mechanism (Berlett and 

Stadtman, 1997).      

ROS also oxidatively degrade fatty acids, they react with double bonds of 

unsaturated fatty acids.  This is termed lipid peroxidation and results in the 

formation of lipid peroxyl radicals, or lipid peroxides.  Formation of these species 

begins a chain reaction resulting in the breakdown of these peroxides resulting 

in the formation of end products such as 4-hydroxy-2,3-nonenal (HNE) and 

malondialdehyde (MDA), acrolein and F2-isoprostanes.  These breakdown 

products can cause further problems, by interacting with DNA (Marnett, 1999).   

The initial cause of oxidative stress is often hard to determine due to the positive 

feedback loop, as the presence of ROS increase their generation.  ROS impair 

mitochondrial function thereby further increasing levels of ROS.  ROS also act to 

destabilise the lysosomal membrane, which can cause lysosomal dysfunction 

leading to increased ROS generation from the lysosomes, releasing iron from 

this iron-rich environment (Seehafer and Pearce, 2006; Terman and Brunk, 

2006).  

1.1.6. Reactive Nitrogen Species 

Reactive nitrogen species (RNS) are also another causative component of 

cellular stress, the stress generated by ROS and RNS together is termed 

‘nitrosative stress’ (Reviewed in Knott and Bossy-Wetzel, 2009).  Nitric oxide 

(NO.) is a biological messenger, important in neuronal transmission and 

inflammatory responses (Lipton et al., 1993).  It is produced by nitric oxide 
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synthase (NOS), which catalyses the formation of NO from arginine and NADPH 

(Palmer and Johns, 1998). NO acts as a good transient messenger, as it is 

highly reactive and only persists for a few seconds. It can react with superoxide 

to form peroxynitrite (ONOO-). This can react with proteins that require transition 

metal centres, resulting in protein modification. In mammalian systems there are 

three NOS isoforms, neuronal nNOS, inducible iNOS and endothelial eNOS 

(Nelson et al., 2003).  In Drosophila there is only one NOS isoform, which is 

expressed both in the nervous system and elsewhere.  NO has been implicated 

in long term potentiation (Maffei et al., 2003; Hopper et al., 2006), but also in 

neurodegeneration (Ferrante et al., 1997), showing again how signalling 

pathways can become pathological in certain situations if activation is not 

suitably regulated. It is unclear how this signalling system is compartmentalised 

and controlled to prevent cellular damage 

1.1.7. Cellular Anti-oxidant Systems 

In light of the damage ROS can cause it is not surprising that there is a system 

in place to keep ROS at low physiological levels; the cell’s anti-oxidant defence 

system. The cell has direct and indirect defences against oxidative stress. Direct 

defences combat oxidative stress through dissipating reactive oxygen species. 

The indirect defences constitute cellular signalling responses to increased levels 

of ROS. There are a number of cellular redox sensors that detect increased 

levels of ROS and activate intimately coupled anti-oxidant defences. The source 

and level of the ROS detected determine the response elicited. Drosophila are 

highly useful for studying these pathways as the mammalian systems are 

complicated and involve a certain level of redundancy, whereas the system in 

Drosophila is simpler and therefore easier to study though can still elucidate 

mechanisms conserved in mammals. Coupled with the short generation time 

and powerful genetic armoury this makes Drosophila a highly useful tool.  
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1.1.7.1. Cellular Anti-Oxidants: Endogenous and Derived 

Constitutive anti-oxidant defences are employed to maintain low levels of ROS. 

These comprise a battery of anti-oxidants to convert harmful reactive oxygen 

species into relatively harmless products. Halliwell and Gutteridge (1989) 

defined an anti-oxidant as “any substance that, when present at low 

concentrations compared with that of an oxidizable substrate, significantly 

delays or inhibits oxidation of that substrate”. There are a number of ways in 

which anti-oxidants can be categorised, for example chemical or enzymatic, 

hydrophilic vs. hydrophobic, whether they are synthesised de novo or absorbed 

from the diet/atmosphere. They can also be categorised by their method of 

action, these being prevention, enzymatic diversion/ neutralisation, scavenging 

and quenching.  The actions of the anti-oxidant system is complex and must be 

tightly regulated; as well as low levels being required to prevent harm, ROS are 

also important signalling molecules, and therefore levels of ROS must be closely 

monitored and controlled. The main anti-oxidants are superoxide dismutase, 

which converts superoxide anions to hydrogen peroxide and catalase, 

thioredoxin and glutathione, which are involved in the conversion of hydrogen 

peroxide to oxygen and water (Fig. 1.4).  

Superoxide dismutase (SOD) is an enzyme that begins the channelling of ROS 

into relatively harmless products.  It catalyses the conversion of superoxide 

anions, which are highly unstable to the more stable, but diffusible and longer-

lived hydrogen peroxide (H2O2) (McCord and Fridovich, 1968 and 1969).  There 

are three main families of SOD depending on the metal ion used as a cofactor in 

the conversion of superoxide to hydrogen peroxide.  In Drosophila there are only 

two SOD isoforms.  SOD1, otherwise known as SOD [Cu-Zn] is predominantly 

cytosolic, but also found in the mitochondrial intermembrane space, the 

mitochondrial periplasm (Missirlis et al., 2003).  It functions as a homodimer 

(Kirkland and Phillips, 1987).  SOD2, otherwise known as SOD [Mn], acts 

predominantly in the mitochondria in eukaryotes.  SOD2 is found as 
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homotetramers in the mitochondrial matrix, where each subunit is bound to its 

cofactor Mn (Duttaroy et al., 1994 and 1997).  In higher animals there is a third 

SOD orthologue, SOD3, otherwise known as EcSOD, due to its extracellular 

localisation.  Unlike the other SOD isoforms, which are ubiquitously expressed, 

SOD3 shows specific-tissue localisation (Fattman et al., 2003).  

Hydrogen peroxide, produced by the action of SOD, is then enzymatically 

degraded to, relatively harmless, oxygen (O2) and water (H2O) through the 

actions of catalase (May, 1901).  Catalase contains an Fe3+ at its active site, as 

do many peroxidases.  The reaction occurs in two steps that are dependent on 

Fe3+.  One molecule of hydrogen peroxide binds and is split apart, water is 

released and oxygen is bound to Fe3+ to combine with a second hydrogen 

peroxide molecule to form another water molecule and oxygen gas.  Hydrogen 

peroxide can also be degraded by the thiol-reducing systems involving either 

thioredoxin or glutathione.  Thiols are compounds that contain a carbon-bonded 

sulphydryl, this acts as a reducing agent, which can be reversibly oxidised and 

reduced (Sies, 1997).  Thioredoxin is oxidised during the degradation of 

hydrogen peroxide and is then reduced by thioredoxin reductase, using 

electrons donated from NADPH.  Breakdown of hydrogen peroxide using 

glutathione requires the actions of glutathione peroxidase (Mills, 1957).  

Oxidised glutathione is then reduced by glutathione reductase, to regenerate 

reduced glutathione, once again using NADPH as an electron donor.  

Glutathione S-transferases are also important in anti-oxidant defence, they 

catalyse the conjugation of lipophilic substrates with reduced glutathione 

(Sheehan et al., 2001); the conjugates are more easily excreted.    

In addition to this directed enzymatically driven degradation of ROS, there are 

many molecules that act in a similar way to glutathione and theioredoxin, 

collectively termed ROS scavengers. There are many non-enzymatic ROS 

scavengers some obtained from the diet and some are synthesised. Examples 

of these include α-tocopherol (vitamin E), ascorbic acid (vitamin C), β-carotene, 
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uric acid and melatonin. α-tocopherol is the most widely studied vitamin E, and 

is a very important lipid-soluble antioxidant.  Tocopherol reacts with lipid radicals 

preventing the propagation of further radicals; it can then be recycled by being 

reduced by other anti-oxidants, such as ascorbic acid (Brigelius-Flohe and 

Traber, 1999).  Ascorbic acid is a redox catalyst, it is oxidised by free-radicals 

and consequently becomes a free radical itself, however the ascorbyl radical 

formed is relatively stable and unreactive.  Upon the loss of another electron 

dehydroascorbic acid is formed, both ascorbyl radical and dehydroascorbic acid 

can be reduced or metabolised (Reviewed in Paddayatty et al., 2003).  Another 

antioxidant is melatonin, which cannot undergo redox cycling, and has hence 

been termed a terminal anti-oxidant; upon oxidation it forms stable products. 

There exists an orchestration to this multifaceted protection system. Expression 

of SOD alone would generate a burden of hydrogen peroxide. The balance of 

antioxidants must therefore be tightly regulated if efficient protection from 

oxidative stress is to be achieved. Upon increased levels of ROS these 

responses need to be upregulated and this is performed by cellular signalling 

pathways indirectly combating oxidative stress by upregulating the direct 

defences and can lead to a vast array of cellular outcomes, including apoptosis, 

proliferation, growth arrest etc. 

1.1.7.2. Cellular Signalling in Response to Oxidative Stress 

ROS activate the cell’s stress response mechanism, that is to say there are 

sensors in place to detect increased levels of ROS, which, in turn, activate the 

cellular stress response.  These responses entail the activation of MAPK 

signalling pathways including extracellular signal regulated kinase (ERK), p38 

mitogen activated kinase (p38MAPK) c-Jun N-terminal kinase (JNK) signalling 

cascades (Reviewed in Davis, 2000; Paul et al., 1997).  

JNK was originally identified as a stress activated kinase (Hibi et al., 1993; 

Derijard et al., 1994). It forms the central point of an important signalling 

cascade, allowing the cell to respond to a variety of intracellular and extracellular 
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cues; and one that will form a main focus of this investigation.  It has been 

shown to be activated in response to ROS and differentially been shown to both 

promote (Tournier et al., 2000) and prevent (Minamino et al., 1999) apoptosis.  

JNK contains a Thr-Pro-Tyr motif, when JNK is activated it undergoes dual 

phosphorylation of threonine and tyrosine.  This phosphorylation level is 

controlled by upstream kinase activity (See table 1).  Directly upstream of JNK 

are two JNKK, hemipterous (hep)/MKK7 and MKK4 (Tournier et al., 1999).  

MKK7 has been implicated in oxidative stress responses in both Drosophila and 

mammals.  Overexpression of MKK7 in Drosophila neurons confers increased 

resistance to paraquat toxicity (Wang et al., 2003).  In addition to this, mutations 

in JNK or MKK7 result in increased sensitivity to paraquat, an electrotoxin used 

to generate oxidative stress in animal models, further indicative of their 

protective role. There is a further expansion in the number of molecules at the 

level upstream of this; there are at least 6 JNKKKs in Drosophila  and mammals. 

Apoptosis signal regulating kinase (ASK) is a JNKKK (Drosophila orthologue 

also termed Pk92B) that is activated in response to oxidative stress to drive 

apoptosis (Wassarman et al., 1996; Kuranaga et al., 2002; Cha et al., 2005).  

Wallenda has been implicated in regeneration following axonal injury although a 

role in the oxidative stress response has not been confirmed (Xiong et al., 

2010).  Upstream of these many JNKKK is the JNKKKK, termed misshapen in 

Drosophila.  The mammalian orthologues are MINK, NIK/HGK, and TNIK.  

JNK activity is tightly regulated by its upstream signalling components, though 

the components through which specificity is maintained are not fully understood.  

In addition to this JNK has a vast number of targets including activator protein-1 

(AP-1). This is a dileucine zipper transcription factor formed of dimers of Fos 

and Jun (kayak and jun-related-antigen respectively in Drosophila). Upon 

phosphorylation of AP-1 its activity is upregulated leading to increased 

tranascription of targets of AP-1 such as sulfiredoxin (Wei et al., 2008b). 

Biochemical and genetic data both suggest that, although in mammals only Jun 
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can homodimerise, Fos can homodimerise as well in Drosophila (Perkins et al., 

1990; O’Shea et al., 1992). JNK-derived AP-1 activity is crucial for the stress 

response (Yang et al., 1997).   

Activity Drosophila Gene Mammalian 
Orthologue 

JNKKKK misshapen (msn) MINK, 
NIK/HGK, 
TNIK 

JNKKK Pk92B ASK 
 Tak1 TAK 
 Tak12 TAK 
 slipper (slpr) MLK 
 wallenda (wnd) DLK, ZPK 
 Mekk1 MEKK1-4 
JNKK hemipterous (hep) MKK7 
 mkk4 MKK4 
JNK basket (bsk) JNK 
Transcription Factor jra  JUN 
 kayak (kay) FOS 
Table 1. Components of the JNK signalling cascade 

There are a number of ways in which JNK signalling pathway activity is 

determined by redox state using redox regulatory proteins such as thioredoxin 

(Trx).  Trx has redox-sensitive cysteine residues within its active centre.  

Reduced Trx binds to, and inhibits, ASK-1, thus limiting activation of 

downstream MAPKs.  Oxidative stress, hence the oxidation of Trx, results in the 

dissociation of this complex, activating ASK-1 (Saitoh et al., 1998).   

The activation of JNK under conditions of oxidative stress is also enhanced by 

reducing the interaction between JNK and glutathione S-transferase (GSTp).  

When reduced GSHp monomers inhibit JNK, whereas under cellular stress 

dimers and multimers can form, which are no longer capable of binding JNK; 

thus oxidative stress results in the disinhibition of JNK (Adler et al., 1999).  

Although originally identified as a stress response, JNK signalling has been 

shown to be crucial in learning and memory, and furthermore a role in the 
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development of the nervous system (Sanyal et al., 2002 and 2003).  AP-1 

activity is also modified directly depending on redox potential, depending on the 

oxidation state of certain cysteine residues.  Upon oxidation AP-1 is no longer 

able to bind DNA, and thus can no longer act as a transcription factor.  There 

are, however, mechanisms in place to preserve AP-1 activity by maintaining its 

reduced state and thus its ability to bind DNA.  Firstly, multiprotein bridging 

factor-1 (MBF1) prevents oxidation by interacting with the basic region of Jun 

and inhibiting S-cystenal cystenylation (Jindra et al., 2004).  Secondly, the 

nuclear protein redox factor 1 (Ref-1), originally identified as DNA base pair 

exision repair and so-called apurinic/apyramidic endonuclease (APE-1) reduces 

oxidised AP-1 thus reactivating it.  Ref-1 levels are changed in response to 

oxidative stress; reducing ROS production causes a decrease in Ref-1 levels, 

which is reversed by the application of hydrogen peroxide (Ando et al., 2008). 

Furthermore it has also been suggested that Ref-1 itself is regulated by its redox 

state (Walker et al., 1993). 

ERK has been widely shown to be activated in response to oxidative stress 

(Garg and Chang, 2003,; Yamane et al., 2009).  Upon activation, ERK 

phosphorylates p66schA, at ser36.  Knocking out p66schA in mice increases 

longevity and resistance to oxidative stress (Migliaccio et al., 1999), with ser36 

being vital to the pro-apoptotic effects of pp66schA.  p66schA in turn acts on 

downstream signalling molecules such as the phosphorylation/inactivation of 

Foxo3A.  Hence in p66schA knock-outs, Foxo3A activity is increased leading to 

increased transcription of ROS scavengers (Nemoto and Finkel, 2002), and has 

been shown to be neuroprotective in models of motor neuron disease 

(Mojsilovic-Petrovic et al., 2009).   

The nuclear factor eyrthroid 2-related factor 2 (NRF2)/Kelch-like ECH-

associated protein 1 (KEAP-1) pathway is also involved in adaptation to 

oxidative stress. Nrf2 is a cap’n’collar transcription factor that regulates the 

transcription of a number of anti-oxidant transgenes such as heme-oxygenase I 
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and periredoxin (Ishii et al., 2000) and glutathione S-transferase (Hayes et al., 

2000). Activity of Nrf2 is regulated by KEAP-1, which is a cytoplasmic actin 

binding protein that binds Nrf2 and promotes its proteosomal degradation hence 

preventing translocation to the nucleus to act as a transcription factor  

(Motohashi and Yamamoto, 2004). ROS and electrophiles stimulate the 

dissociation of Nrf2 and KeAP-1 allowing Nrf2 to translocate to the nucleus to 

bind to the anti-oxidant response element (ARE) to promote the transcription of 

antioxidant stress proteins and detoxifying enzymes. Cap’n’collar transcription 

factors, like other bZip transcription factors function as dimers. Potential binding 

partners include Maf (Motohashi et al., 2002) proteins and Jun (Venugopal and 

Jaiswal, 1998; Jeyapaul and Jaiswal, 2000) as the ARE sequence has high 

homology with the AP-1 binding consensus. Putatively as a consequence of 

Jun/Nrf2 binding, Fos can inhibit Nrf2 directed transcription (Venugopal and 

Jaiswal, 1996). This indicates how complex these pathways are and how output 

from oxidative stress responses can be so varied depending on the relative 

levels of activation of various components of the signalling pathways.  

1.2. Autophagy 

1.2.1. What is autophagy? 

Autophagy literally means self-eating, and can be described as a stress induced 

catabolic process through which, components of the cell can be degraded and 

recycled, following fusion with the lysosome. Autophagy is generally non-specific 

but can be selective as well for example the degradation of mitochondria known 

as mitophagy. Primarily, autophagy occurs to protect cells against stress, hence 

autophagy genes are upregulated by AP-1 and NRF2, stress response genes 

(Jegga et al., 2011). In addition to its primary role in the stress response, 

autophagy is involved in development, aging and immunity. Autophagy can 

promote longevity; conversely, overactivation of autophagic degradation can 

lead to autophagic cell death, otherwise known as type II programmed cell death 
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(PCD). Genes involved in autophagy (atg genes) were identified in a screen in 

yeast (Tsukada and Ohsumi, 1993; Thumm et al., 1994, Klionsky et al., 2003), 

and orthologues have been found and characterised in a variety of higher 

organisms.  These studies are indicative of the conserved molecular machinery 

between species. There are three different types of autophagy: micro-

autophagy, macro-autophagy and chaperone mediated autophagy. Henceforth 

autophagy will refer to macroautophagy (unless otherwise stated).  Autophagy 

involves the formation of double-membrane vesicles around the components to 

undergo autophagy.  These vesicles are called autophagosomes and ultimately 

fuse with lysosomes to allow the contents of the autophagosome to be degraded 

by acid hydrolases contained in the lysosome.  

1.2.2. The Regulation of Autophagy 

The regulation of autophagy is highly complex (Fig. 1.5), and context dependent. 

It occurs normally at a basal level to degrade long-lived proteins and old or 

superfluous organelles. Autophagy has shown to be activated in response to 

starvation; cellular components that are deemed unnecessary are recycled to 

compensate for limited nutrition (For Review see Chen and Klionsky, 2011). 

TOR is a major regulator of autophagy.  TOR activity inhibits autophagy. TOR is 

a protein kinase that is activated in nutrient-rich conditions, to inhibit autophagy. 

When TOR is inhibited, for example through starvation or rapamycin treatment 

autophagy is induced. Many signalling pathways that regulate autophagy 

converge to control TOR. TOR, in fact, functions as part of two complexes 

termed TOR complex 1 and 2 (TORC1 and 2). Only TORC1 is inhibited by 

rapamycin and it also regulates translation through phosphorylation of S6K 

(RSK). One upstream regulator or TOR is Rheb. Rheb is a GTPase that binds to 

and activates TOR (Patel et al., 2003). Rheb activity is, in turn, controlled by the 

tumour sclerosis complexes 1 and 2 (TSC1/2), which act as dimer to negatively 

regulate Rheb (Inoki et al., 2003) (Fig. 1.5) TSC1/2 is activated by AMPK, which 

can directly inhibit TOR (Gwinn et al., 2008). AMPK is activated by increased 
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AMP:ATP (Hardie and Carling, 1997) and increased ROS (Han et al., 

 

Fig. 1.5: The regulation of autophagy: Normal arrows () denote direct activation; 
perpendicular lines denote direct inhibition (⎯|); dashed lines denote indirect regulation. 

2010). Activity of TSC1/2 is also regulated by Akt, which is a mediator of insulin 

signalling that negatively regulates TSC1/2 (Potter et al., 2003). Protein Kinase 

A also acts to inhibit autophagy, either directly through phosphorylation of Atg8 

(Cherra et al., 2010), or indirectly through phosphorylation of TOR (Mavrakis et 

al., 2006). S6 kinase is another protein that is regulated by TOR. S6K is 

increased by TOR activity, as S6K is inhibited by atg1 (Lee et al., 2007), which 

is inhibited by TOR. S6K decreases ERK activation. ERK however, is also able 

to activate autophagy (Pattingre et al., 2003), showing the complex integration of 

many signalling pathways involved in the regulation of autophagy. MEK/ERK 

signalling has also been implicated as an intermediate step between AMPK and 

TSC (Wang et al., 2009). As discussed earlier JNK also regulates autophagy. 
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JNK signalling activates transcription of autophagy genes in response to 

oxidative stress (Wu et al., 2009). JNK also phosphorylates bcl2, which is known 

to bind to and thereby inhibit, beclin (atg6). Therefore, upon JNK 

phosphorylation Bcl2 and beclin dissociate leading to increased autophagy (Wei 

et al., 2008c). However, the regulation of autophagy by this pathway has also 

been shown to act in other ways. Jun can inhibit autophagy in mammals (Yogev 

and Shaulian, 2010; Yogev et al., 2010). JNK also negatively regulates FoxO 

dependent autophagy in neurons (Xu et al., 2011). The regulation of autophagy 

is normally tightly controlled due to the integration of many signalling pathways 

activated in response to many cellular factors and components. 

1.2.3. Molecular mechanism of autophagy 

A lot has been learnt about autophagy by studying an analogue of autophagy in 

yeast known as ‘cytoplasm to vacuole transport’ (cvt). This is how cellular 

components are targeted to the vacuole, the equivalent of the lysosome in 

yeast. The cvt pathway shows high homology to degradative autophagy 

(Harding et al., 1996; Scott et al., 1996). Starvation induced autophagy also 

occurs in yeast so the presence of both these pathways has helped to elucidate 

the mechanisms involved as there is a high level of conservation between both 

the molecules and mechanisms used in yeast and higher organisms such as 

Drosophila and mammals.  

The process of autophagy can be broken down into phases (Klionsky, 2005): 

(I) Induction and cargo selection 

(II) Isolation membrane and membrane nucleation 

(III) Vesicle elongation 

(IV) Retrieval 

(V) Vesicle docking and fusion 

(VI) Vesicle breakdown and degradation 
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Induction of autophagy is controlled by ATG1, ATG13 and ATG17. Only ATG1 

and ATG13 are present in Drosophila where ATG1 and ATG13 are 

phosphorylated by TOR in nutrient rich environments, thus phosphorylation 

decreases during starvation, or TOR inactivation. However, during starvation 

and hence initiation of autophagy TOR no longer phosphorylates ATG1 or 

ATG13, and ATG13 is phosphorylated by ATG1 (Suzuki et al., 2001). The 

precise mechanims varies across species although the prevailing feature across 

all species is that autophagy is inhibited in nutrient-rich environments when TOR 

is activated and directly phosphorylates ATG13 (Scott et al., 2000). Accordingly, 

TOR inactivation leading to the induction of autophagy changes the 

phosphorylation state of ATG13. In yeast and mammals ATG13 is 

hyperphosphorylated in nutrient rich conditions and therefore less 

phosphorylated during the induction of autophagy. Starvation increases affinity 

of ATG13 for ATG1. During induction of autophagy in Drosophila ATG1 

phosphorylates ATG13, resulting in hyperphosphorylation (Kamada et al., 2000). 

Following initiation of autophagy the phagophore, also known as the isolation 

membrane, engulfs the cytoplasmic material that is to undergo autophagy to 

form an autophagosome; whereby a double membrane is formed around the 

material (membrane nucleation). Mechanisms and molecular components 

involved in nucleation are not fully understood, however, in yeast it has been 

shown to involve formation of a complex between class III phosphatidylinositol 

kinase (PI3K)/Vps34, beclin/ATG6/Vps30, ATG14 and Vps15. Atg 7 and Atg8 

are also involved (Axe et al., 2008). In mammals, additional components and 

regulators of this complex have also been identified, but how the PI3K complex 

forms in Drosophila is unclear. This PI3K complex recruits other proteins 

required for autophagy and promotes their localisation to the phagophore, such 

as the Atg2-Atg18 complex; Atg9 is also recruited (Obara et al., 2008; 

Stromhaug et al., 2004; Xie and Klionsky, 2008). Elongation of the vesicle 

occurs in two ways, both using ubiquitination-like conjugation systems. The first 

system involves the conjugation of Atg5 and Atg12, through the catalytic activity 
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of Atg7, which has E1 like activity, hence activating the process. Atg10 then 

continues the ubiquitination-like process, catalysing the conjugation step, similar 

to an E2. No E3 like component has yet been identified in this system. The 

second elongation system involves the conjugation of Atg8 to phosphatidyl-

ethanolamine (PE). Atg4 cleaves Atg8 allowing it to be activated by Atg7 (E1-

like), and transferred to Atg3 (E2-like) to be conjugated to PE (Glick et al., 

2010). In this manner it is effectively inserted into the autophagosomal 

membrane. In many degradative pathways, retrieval of selected components 

occurs to allow recycling. Of all the proteins involved in vesicle formation and 

elongation, only Atg19 and Atg8PE are present in the completed vesicle. The 

mechanisms of retrieval are not well understood although the retrieval at Atg9 is 

known to involve and Atg18, 2 and PI(3)P. The completed autophagosome then 

undergoes maturation by docking and fusion with the lysosome (vacuole in 

yeast) for vesicle breakdown and degradation. This process, as with other 

vesicle fusion processes involves activity of SNARE proteins (Darsow et al., 

2007) and Rabs, notably Rab7 (Jager et al., 2004), members of the HOPS 

complex have also been implicated (Lindmo et al., 2006; Pulipparacharuvil et al., 

2005). LAMP1 and LAMP2 have been shown to be required for 

autophagosome-lysosome fusion (Gozalez-Polo et al., 2005).  

Increased lysosomal storage can result in impaired autophagic delivery to the 

lysosome leading to accumulation of autophagosomes, thereby identifying 

lysosomal storage disorders as having a block in autophagy leading to build up 

of polyubiquitinated proteins and dysfunctional mitochondria, the putative 

mediators of cell death in these disorders.  
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1.3. Autophagy, lysosomes and oxidative stress in 

neurodegenerative diseases 

1.3.1. Lysosomal Storage Disorders 

Lysosomal storage disorders (LSDs) are a collection of around 45 metabolic 

disorders, with a collective occurrence of approximately 1 in 8000 live births 

(Meikle et al., 1999). LSDs are characterised by enlargement and proliferation of 

lysosomes, with the identity of the stored material being determined by the 

trafficking pathway/protein that is causing the pathology.  LSDs have far 

reaching implications, and are multi-systemic, resulting in childhood 

neurodegeneration and severe heart and lung problems (Futerman and van 

Meer, 2004). 

As material is degraded it is moved to lysosomes either through autophagic or 

endocytic pathways.  The build up that occurs naturally during aging, of things 

that cannot be further degraded in the lysosome is termed lipofuscin.  This is 

otherwise known as ‘aging pigment’ and has been implicated in a number of 

neurodegenerative disorders, although how it impacts on neuronal function is 

not completely understood. Build up of a similar nature is a classical hallmark of 

LSDs.  This lipopigment is termed ceroid, when present in pathological states 

(Kurz et al., 2008b). 

1.3.1.1. Lysosomal storage disorders and oxidative stress 

LSDs have been shown to involve oxidative stress, similar to many other 

neurodegenerative disorders. Lysosomes are sensitive to oxidative stress, which 

can enhance the formation of hydroxyl radicals leading to permeabilisation of the 

lysosomal membrane leading to a vicious cycle between the generation of 

ceroid and the generation of ROS. 

Hydrogen peroxide diffuses into the lysosome, which does not contain catalase 

or glutathione peroxidase to break it down.  Furthermore, lysosomes have a low 
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pH and a high concentration of iron, making them susceptible to further 

generation of ROS/oxidative stress due to the conditions being conducive to the 

Fenton Reaction: 

Fe2+ + H2O2  Fe3+ + HO. +OH- 

Moreover, oxidative stress can cause peroxidation of the lysosomal membrane, 

and hence destabilisation.  This can cause the lysosome to leak and releases 

the acid hydrolases into the cytosol.  It has also been suggested that if 

lysosomal function is impaired organelles will not be adequately recycled and 

hence old mitochondria may build up, and hydrolases released from the 

lysosomes may attack the mitochondria, both though activation of 

phospholipases and activation of cytochrome c release, thus further adding to 

the generation of ROS.  Lysosomal permeabilsation has been shown to induce 

apoptosis (Nylandsted et al., 2004) although more severe rupture may cause 

necrosis, showing the potential role in neurodegenerative conditions.  However 

the importance of lysosomal function and how it is affected by ROS and 

oxidative stress in synaptic development is an area less well understood. 

1.3.2. Autophagy and Neurodegeneration 

Autophagy is generally considered cytoprotective, as aging cellular components 

are recycled (Arsham and Neufeld, 2009). It is activated through JNK signalling, 

which improves tolerance to oxidative stress (Wu et al., 2009; Wang et al., 

2003). Increasing basal levels of autophagy in the nervous system has in fact 

been shown to increase longevity in addition to improved resistance to oxidative 

stress (Simonsen et al., 2008).  Inducing autophagy through rapamycin or 

lithium is protective in a model of Huntington’s disease, as it upregulates the 

clearance of the disease causing aggregations (Sarkar et al., 2009). Inhibition of 

autophagy can lead to build up of old mitochondria and other damaged or old 

organelles and proteins. However, the situation is a complex one. In a model of 

ischaemia inhibiting autophagy and lysosomal function reduced neural cell death 
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(Kubota et al., 2010). Furthermore, inhibiting autophagy in a model of 

frontotemporal dementia that is caused by mutations in the endosomal sorting 

complex is protective against neural cell death (Lee and Gao, 2009). The role of 

autophagy in neurodegeneration is somewhat paradoxical because impairing 

autophagy can mimic LSD but can also rescue/ reduce an LSD phenotype 

because it prevents build up of autophagosomes and lysosomes, which lead to 

further generation of ROS. The effects of changing levels of autophagy in 

neurodegeneration depends somewhat on whether autophagy leads to the build 

up or degradation of the primary pathological component of the disease.  

1.3.3. Oxidative Stress, Ageing and Neurodegenerative 

Diseases 

Harman proposed the ‘free radical theory’ of ageing, and pathological 

degeneration of a similar kind to ageing (Harman 1956), first suggesting that 

constitutively produced ROS interact with cellular components exhibiting a 

deleterious effect that results in ageing.  It had already been noted for a long 

time that animals that have higher metabolic rates tend to have shorter lives, 

leading to the ‘rate of living’ hypothesis, although how metabolism and the 

ageing process were linked remained unknown.  Long-lived cells are particularly 

susceptible to oxidative stress, meaning the nervous system is prone to 

oxidative damage.  The inability of most neurons to divide means that as they 

die they are not replaced so neuronal death leads to neurodegeneration. 

Neurons have been suggested as the ‘weak link’ in defence against ROS as 

overexpressing SOD1 only in motor neurons significantly increases longevity 

(Parkes et al., 2008). Moreover, antioxidants are found at lower levels in the 

nervous system than other tissues (Halliwell, 1992; Halliwell, 2006).  ROS have 

been implicated in Alzheimer’s, Parkinson’s, Huntington’s, Gaucher’s (Deganuto 

et al., 2007) diseases, Friedrich’s ataxia and Amyotrophic lateral sclerosis. In 

fact amyloid-beta (Aβ), the protein involved in the pathology of AD, has been 

shown to interact directly with catalase (Milton, 1999) and inhibition of catalase 
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worsens Aβ-toxicity (Milton, 2001). In addition NADPH oxidase production of 

ROS has been strongly implicated in the pathology of Alzheimer’s disease (Park 

et al., 2008) due to Aβ-induction of ROS generation by NADPH oxidase 

(McDonald et al., 1997). ROS generation can occur as a result of normal 

signalling pathways being hijacked pathologically, often resulting in the 

generation of a vicious cycle. For example, NADPH oxidase derived ROS are 

vital for CLIC1, a Cl-channel, activation, but Aβ induced ROS generation is 

dependent on CLIC1 activation (Milton et al., 2008). ROS have been clearly 

implicated in cognitive decline and there is a large body of research into how 

ROS affect neuronal function to cause cognitive decline (Dröge and Schipper, 

2007; Guidi et al., 2006). However, the role of ROS in developmental 

pathologies has not been widely investigated, furthermore, neurodegenerative 

diseases as a result of pathological development is becoming an increasingly 

likely possibility. The role of ROS in normal physiology, as opposed to 

pathological states, is less well understood. Increasingly ROS are being 

highlighted as signalling molecules in embryonic development (Viera et al., 

2011; Le Belle et al., 2011; Kim and Wong, 2009) and synaptic plasticity.  ROS 

are important signalling molecules in long-term potentiation (LTP), the biological 

correlate of learning and memory (Bindokas et al., 1996; Klann et al., 1998). 

Hence the situation is complex; ROS are vital to learning and memory, yet also 

result in physiological decline with ageing.   

1.3.4. Using Drosophila to study LSDs 

Drosophila are very useful for studying lysosomal storage disorders, as 

mutations and transgenes are relatively easily produced. The powerful genetic 

toolbox coupled with the short generation time make the study of these 

disorders in Drosophila highly insightful, efficient and economical. A number of 

specific LSDs have been modelled in Drosophila including Juvenile Batten 

Disease, modelled through changing expression of the gene CLN3 (Tuxworth et 

al., 2009 and 2011), mucolipidosis type IV (Venkatachalam et al,. 2008) and 
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Niemann Pick type C (Huang et al., 2005). Generally, autosomal recessive 

LSDs are caused by compound heterozygote mutations, meaning that the 

mutations in the two alleles are different (E.g. Tylki-Szymańska et al., 2007). 

Coupled with other genetic and epigenetic differences means that there is great 

variation between development and progression of symptoms. However some 

clinical manifestations are highly characteristic. Even though present only in 

more severe cases neurological/neuronopathic symptoms are common to LSD. 

Therefore understanding how lysosomal dysfunction impacts on neuronal 

development and function could help elucidate general disease mechanisms. 

1.3.4.1. A model of lysosomal storage disorder: spinster 

The Drosophila mutant spinster was originally identified during a screen for 

mating phenotypes, where the female was identified as being reluctant to mate 

(Yamamoto and Nakano, 1999). In addition to this phenotype it was also noted 

that spinster, otherwise known as benchwarmer, have reduced longevity, 

impaired programmed cell death, neural degeneration and accumulation of 

aurofluorescent pigment in the neurons; all characteristic of LSDs (Nakano et 

al., 2001). Subsequently it was identified in a screen for synaptic growth 

(Sweeney and Davis, 2002). Further support for spinster as a model of a LSD 

was provided when Sweeney and Davis showed that spinster is localised to the 

late endosome/lysosome (Sweeney and Davis, 2002). Spinster encodes a 12 

transmembrane transporter that localises to the late endosome/ lysosome and is 

expressed both pre- and post- synaptically during synapse growth and 

development. The neuronal phenotype of spinster is an increase in synapse size 

and bouton number coupled with impaired synaptic transmission (Sweeney and 

Davis, 2002). Mutations in spinster lead to dysregulated TGFβ that is required 

for the overgrowth phenotype. Ectopic nerve growth has been demonstrated in 

models of LSDs (March et al., 1995), and the aim of this study is to identify other 

pathogenically activated signalling cascades that might be involved in the 

generation of overgrowth phenotypes. Endocytic defects were confirmed by 
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Dermaut et al., (2005), with possible tau toxicity. Both studies show mulitlamellar 

inclusions and accumulation of lysosomes (Nakano et al., 2001; Dermaut et al., 

2005) 

1.4. Neurotransmission 

1.4.1. Action Potential 

Neuronal activity was first shown to be electrical when Galvani (1791) observed 

contraction in the hind legs of frogs when a metal hooked attached to an iron 

railing was attached to the medulla (reviewed by Cowan and Kandell, 2003). 

Action potentials occur in excitable cells and are simply defined as when the 

electrical membrane potential of a cell rapidly rises and falls due to movement of 

ions across the membrane.  These nerve impulses are termed spikes, and the 

temporal sequence in which these occur is termed a spike train.  Voltage gated 

ion channels (VGICs), are channels that are shut when the cell is at resting 

potential (~-65mV) until threshold potential is reached (~-55mV), Na+ ions flow in 

increasing the membrane potential, and all the VGICs open and Na+ flow in until 

the membrane polarity is reversed, at which point the Na+ channels are 

inactivated, and hence close.  This results in Na+ ions being transported out of 

the cell, K+ channels are activated so K+ floods out of the cell; this results in a 

negative shift, otherwise termed afterhyperpolarisation (for review see 

Nachmansohn, 1971; Ginsborg, 1973). 

1.4.2. Synaptic Transmission 

Neurons communicate with other neurons and cells through synaptic 

transmission. Synaptic transmission briefly entails the release of chemicals, 

neurotransmitters, from the pre-synaptic terminal to act on receptors on the 

post-synaptic terminal.  

When the action potential reaches the presynaptic terminal depolarisation 

results in the opening of Ca2+ channels, leading to increased Ca2+ in the neuron.  
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Vesicles containing neurotransmitter are linked to calcium-sensitive proteins, 

upon calcium binding these proteins change protein conformation, thereby 

resulting in exocytosis, where the vesicle fuses with the plasma membrane 

releasing the neurotransmitter into the synaptic cleft. The neurotransmitter 

released binds to ligand gated ion channels (LGICs), resulting in an Na+ influx 

and K+ efflux.  Due to the permeability of the membrane more Na+ moves in than 

K+ out, resulting in local depolarisation.  Synaptic potentials are the local 

depolarisations, with measurable delay following synaptic input, linking the 

presynaptic terminal and the effects it has on the post-synaptic terminal.  The 

synaptic potential is distinct from action potentials in that they are graded 

responses rather than the all-in-one action potential.  The depolarisation 

spreads along the muscle fibre into transverse tubules, causing release of Ca2+ 

from the sarcolemma, consequently the muscle contracts (reviewed by Cowan 

and Kandell, 2003).  

1.4.2.1. Neurotransmitter release 

Clathrin coated vesicles are endocytosed and then recycled, and that each 

vesicular fusion is equivalent to one quantal release (Heuse and Rease, 1973 as 

reviewed by Cowan and Kandell, 2003). The presynaptic density is a specialised 

area in the presynaptic process, directly apposed to the postsynaptic density.  

The presynaptic density has a thicker denser membrane that the rest of the 

presynaptic terminal, with a presynaptic vesicular grid with pyramidal projections 

that extend into the synaptic processes.  Between these projections vesicles 

align prior to release, this led to the hypothesis of ‘docking sites’, these areas 

are now know as ‘active zones’ (Couteaux and Pecot-Dechavassine, 1970).  

Boutons are swellings in the presynaptic terminal containing bundles of 

intermediate or neuro-filaments, these filaments can also be clustered around 

mitochondria and other organelles and contain active zones. 
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1.4.2.2. Post-synaptic responses 

Neurotransmitter release is quantal in nature, this was first shown by Fatt and 

Katz (Fatt and Katz, 1951) established the quantal hypothesis when they 

observed spontaneous depolarising potentials, even in the absence of 

stimulation.  These are termed mini EPPs (mEPPs).  Drugs that enhance the 

action of the neurotransmitter cause prolonged potentials whereas drugs that 

inhibit the actions of the neurotransmitter abolish these mEPPs.  Depolarising 

the presynaptic terminal increases the frequency of mEPPs whereas, abolishing 

neuronal input causes mEPPs to disappear, indicative of mEPPs being 

presynaptic in origin.  mEPPs are Na+ dependent, but do not require Ca2+.  They 

were suggested to be caused by individual quanta being released from the pre-

synaptic terminal.  EPPs were shown to be whole integer duplicates of mEPPs.  

Release of quanta is probabilistic and an action potential increases the 

probability of neurotransmitter release.  This hypothesis was greatly supported 

when Palay and Palade (1955) and de Robertis and Bennett (1955) showed the 

presence of synaptic vesicles with the first high-quality EM of the synapse.  This 

led to the Ca2+ hypothesis (Katz and Miledi 1965), they subsequently showed 

that APs cause Ca2+ conductance to increase, but neurotransmitter release 

does not depend on Na+ or K+ (reviewed by Cowan and Kandell, 2003). 

1.5. Drosophila neuromuscular junction as a model of 

synapse development 

1.5.1. Drosophila as a model organism 

Drosophila melanogaster, the common fruit fly, has been used as a model for 

many years, since pioneering work by Thomas Hunt Morgan at Columbia 

University. Using Drosophila has elucidated many developmental and disease 

processes both at the cellular and molecular level. The short life cycle and high 

numbers of progeny make Drosophila a relatively cheap model animal. 
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1.5.1.1. Genetic Tools 

Drosophila are highly amenable to genetic manipulations and lend themselves 

to genetic investigation, as the males do not undergo recombination. Further to 

this, balancer chromosomes can be used to prevent recombination in females 

(Rubin and Lewis, 2000). Balancer chromosomes also carry markers, so 

mutations can be tracked. Mutations can readily generated in a number of ways 

such as P-elements whereby a large transposon can be inserted into the 

genomic DNA, impairing transcription and EMS, which produces point 

mutations. Transposon-mediated transformation can be used to generate 

transgenic flies (Takeuchi et al., 2007). This allows the implementation of the 

Gal4/UAS system, a tissue specific expression system, whereby specific 

transgenes can be expressed in different tissues through the use of two different 

transgenic strains of Drosophila (Brand and Perrimon 1993). Use of this system 

involves the generation of two lines of flies, the driver and the responder. The 

driver contains a Gal4 promoter, whereby the promoter element of a gene is 

linked to Gal4 expression. Therefore, Gal4 is co-expressed in the same 

localisation as promoter to which it is linked. The responder transgenic line 

contains an upstream activating sequence linked to the gene to be expressed. 

Gal4 is a yeast transcription factor that binds to UAS and activates transcription. 

A more recent development in the field of Drosophila genetics is the introduction 

of RNAi lines (Dietzl et al., 2007), to knock down gene expression by sequence-

specific gene silencing (For review see Paddison et al., 2002a and b). 

1.5.2. The Drosophila 3rd instar larval neuromuscular junction 

Each abdominal hemisegment of the larva contains 30 syncytial muscles that 

receive innervation by two motor neurons.  The dorsal muscles receive 

innervation from the anterior intersegmental nerve (ISN), and the ventral from 

the posterior segmental nerve (SN).  The transverse nerve (TN) innervates the 

lateral muscles of each hemisegment.  Axons leave these nerves to form highly 

characterised NMJs at each muscle.  A number of the neurons in each 
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hemisegment are well characterised, muscle 6/7 in hemisegment A3 is 

innervated by RP3, one of the RP neurons RP1-5.  RP1-5 send their axons out 

to the periphery through the anterior root of the anterior fascicle (Keshishian et 

al., 1996).  

There are two broad classes of NMJ in Drosophila.  Type I NMJs have short 

terminal branches and large boutons where as type II NMJs have long thin 

branches with very many small boutons.  Type I axons have thick axonal 

processes and the presynaptic portion of the NMJ is enveloped by the 

subsynaptic reticulum (SSR), a junctional membrane produced by the muscle.  

Type I NMJs innervate all body wall muscle and are predominantly 

glutamatergic and comprise 2 types of boutons, differentiated most notably by 

size, into type Ib (big) and type Is (small).  In addition to differences in size, type 

Is have less SSR and are generally further away from the branch. Type II NMJs 

determine excitation state, and transmit octopamine and glutamate. There are 

generally two motor neurons of this type per hemisegment, which innervate all 

but 8 muscles per segment, and do not have an SSR (Broadie and Bate, 1993; 

Keshishian et al., 1996).  This study focuses on type I NMJ development.   

1.5.3. Anatomy of the larval neuromuscular junction 

Prior to synaptic contact, between the synapse and the muscle, development of 

the two components in independent; neurons in twist mutants, which do not 

have body wall muscles, target correctly and presynaptic zones form normally to 

begin with.  Synapse formation begins approximately 13 hours after egg-laying 

(AEL), when the growth cone of the extending axons contacts the myopodia of 

the developing muscle; subsequent NMJ development requires input from both 

the muscle and the nerve (Broadie and Bate, 1993).  Varicosities develop in the 

presynaptic terminal, after they become confined to the synaptic area. Synaptic 

boutons, containing T-bars and active zones are visible three hours after the first 

contact.  Active zones are areas of the bouton that are neurotransmitter release 

sites; vesicles cluster here and then fuse with the membrane during synaptic 
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transmission.  T-bars are a morphology seen in some active zones, which are 

electron dense T-shaped areas thought to promote vesicle fusion.  Mutations in 

an active zone protein bruchpilot (BRP) result in T-bars not formed, although 

normal apposition between the pre- and post-synaptic membrane is maintained.  

The absence of T-bars is accompanied by impaired synaptic transmission (Kittel 

et al., 2006a and b; Wagh et al., 2006), showing that this protein is vital for 

active zone assembly and normal synaptic transmission. Active zone clustering 

is dependent from feedback from the muscle.  In mef2 mutants, where the 

myoblasts are unable to fuse, active zones do not cluster correctly, and remain 

evenly distributed along the presynaptic area.  

Following release from the pre-synaptic terminal glutamate binds to glutamate 

receptors GluRs in the post-synaptic membrane.  Muscular glutamate receptors 

in Drosophila are homologous to AMPA and kainite receptors in vertebrates 

(Featherstone et al., 2005; Marrus et al., 2004).  They are ionotropic receptors 

that is to say there are receptor-gated ion pores composed of four subunits.  

Currently 6 subunits have been identified in Drosophila; DGluRIIA and B have 

distinct physiological properties and either is required for the localisation of 

DGluRIII.  Receptor composition is determined by afferent input (Marrus and 

DiAntonio, 2005).   

Release of glutamate causes receptors to cluster in the post-synaptic membrane 

apposed to the presynaptic processes, and without this neuronal input the 

second increase in glutamate receptors does not occur and they remain 

homogeneously expressed throughout the muscle.  The need for synaptic 

transmission shows how dependent the two synaptic components are on each 

other for correct synaptic development.  One hour after initial contact synaptic 

currents can be detected, followed by muscle contractions two hours after first 

contact, thus 16-17 hours AEL the first functional NMJ is formed (reviewed by 

Featherstone and Broadie, 2000; and Keshishian et al.,1996).   
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1.5.4. Development of the Drosophila NMJ 

As with all developmental processes, growth of the synapse is dependent on the 

integration of many complex signalling pathways.  Development is controlled 

through bi-directional signalling between the presynaptic nerve-terminal and the 

post-synaptic muscle.  The larval NMJ is a dynamic system that changes 

throughout development.  The development of the muscle and the nervous 

components of the NMJ occur in tandem.  That is to say, expansion of the NMJ 

parallels the exponential muscle growth occurring during larval development.  

From 1st instar to 3rd instar the muscle grows 100x, and concurrently the 

presynaptic area expands as well (Atwood et al.; 1993, Schuster et al., 1996a 

Keshishian et al., 1993; Gorczyca et al., 1993). Muscle development, in terms of 

size and formation occurs relatively normally even in the absence of innervation, 

although receptor clustering is dependent on glutamate.   

Discs-large (dlg) is an important determinant of synaptic development in 

Drosophila.  It forms part of the post-synaptic density, and is involved in the 

clustering and stabilising of GluRIIB containing receptors (Chen and 

Featherstone, 2005).  In type I NMJs its expression is firstly pre-synaptic and 

then shifts to the post-synaptic side.  It is highly important in synapse 

development and is involved in the clustering of K+ channels (shaker) (Tejedor 

et al., 1997).  Mutations in dlg have reduced formation of the SSR and an 

increase in bouton size and with an increase in the number of active zones per 

bouton (Lahey et al., 1994).  Dlg colocalises with FasII, which is believed to aid 

bouton formation through a bidirectional signal between the muscle and the 

nerve (Thomas et al., 1997). Null mutants have normal synaptogenesis but then 

the boutons retract and the larvae die at 1st instar.  FasII regulates synaptic 

growth in a dose dependent manner. It is required both pre- and post-

synaptically to prevent synapse elimination.  In hypomorphs containing less than 

10% normal FasII levels bouton number is decreased but bouton size in 

increased and the number of active zones per bouton is increased.  FasII 
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hypomorphs with 50% normal expression have increased bouton number, with 

increased synaptic sprouting (Schuster et al., 1996a). In shaker and dunce 

mutants, which show a similar overgrowth to FasII hypomorphs, increased 

cAMP activity lead to a 50% decrease in FasII levels, required for this 

overgrowth phenotype (Schuster et al., 1996b). While FasII reduction accounts 

for structural changes, FasII hypomorphs do not show the hyperexcitability 

phenotypes. The electrophysiological changes in dunce are due to cAMP 

dependent increases in CREB (Davis et al., 1996). This shows how signalling 

pathways can diverge and converge resulting in a variety of phenotypes that 

share some commonality but differ in characteristics. Reduced levels of FasII 

have also been implicated in increased bouton number in hangover mutants 

(Schwenkert et al., 2008). There is no change in neuronal transmission in these 

mutants, again showing that mechanisms governing function do not always 

correlate with those determining growth. 

1.5.4.1. Morphogenic Signalling 

Two well characterised signalling pathways involved in synapse development 

are Wingless and TGFβ signalling.  Wingless is secreted by the motor neuron 

(Packard et al., 2002), thus an anterograde signal. Signalling is mediated by the 

postsynaptic receptor DFrizzled2 (DFz2). Upon activation DFz2 undergoes 

cleavage whereby the C-terminal domain translocates to the nucleus to modify 

gene transcription (Mathew et al., 2005); it is as yet unknown which genes are 

regulated by this pathway.  Concurrently during synapse development, 

retrograde signalling is mediated by Gbb released from the muscle (Marques, 

2005).  This activates TGF-β signalling, through the activation and dimerisation 

of a type I TGF-β receptors encoded by Thick Veins (Tkv) and saxophone (Sax) 

with type II TGF-β receptors, encoded by wishful thinking (Wit). Ligand binding 

and activation of these receptors effects the phosphorylation of  MAD.  Activated 

MAD putatively interacts with MED (Medea, a coSMAD), translocates to the 
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nucleus, determining gene transcription (McCabe et al., 2003; Sanyal et al., 

2003).   

1.5.4.2. MAPK signalling 

AP-1 has previously been shown to be important in the regulation of synapse 

size and strength during development (Sanyal et al., 2002 and 2003).  AP-1 is a 

transcription factor composed of homo- and hetero-dimers of Fos and Jun, basic 

leucine zipper proteins, that controls the transcription of numerous genes.  AP-1 

can be activated by Jun N-Terminal Kinase (JNK).  JNK is a serine/threonine 

kinase, traditionally known as a stress activated protein kinase (SAPK) due to its 

role in the cellular stress response.  The activity of this pathway is under the 

control of a negative feedback loop; one of the target genes of AP-1 is puckered, 

a phosphotase which inhibits JNK.  During synapse development AP-1 positively 

regulates synaptic strength and size; such that increased expression of Fos and 

Jun in the neurons but not the muscle increases bouton number (Sanyal et al., 

2002).   

The importance of the AP-1 pathway in synaptic development has been 

highlighted by studies on a number of mutants.  Highwire, an E3 ubiquitin ligase, 

localises to the presynaptic terminal.  Loss of Highwire results in synaptic 

overgrowth, thus highwire is believed to restrain synaptic overgrowth through 

downregulation of a growth-promoting signal. Highwire is believed to bind to 

DFsn to suppress synaptic overgrowth (Wu et al., 2007).  The overgrowth seen 

in highwire and DFsn can be suppressed by removing a MAPKKK known as 

wallenda, confirming the role of MAPK signalling in the regulation of growth.  

Furthermore, removing JNK or Fos also suppressed synaptic overgrowth in 

highwire, thus it is proposed that Highwire downregulates Wallenda 

consequently attenuating JNK/Fos signalling (Collins et al., 2006).  Thus the 

model proposed is that under normal physiological conditions Highwire inhibits 

MAPK signalling cascades involving wallenda/JNK/Fos consequently restraining 

synaptic growth.  In the absence of highwire this inhibition is released and the 
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overactivity of the JNK/Fos pathway results in synaptic overgrowth (Collins et 

al., 2006).   

ERK has also been shown to be involved in synapse development in the control 

of active zone density (Wairkar et al., 2009).  During synapse development ERK 

activity is inhibited by atg1 (unc-51). When ERK activity is disinhibited, increased 

activity leads to decreased functional synapse formation with synapses forming 

without active zones, vital for neurotransmitter release (Wairkar et al., 2009).  

Accordingly, with mutations in S6K where there is decreased ERK activity 

leading to increased bouton number as S6K negatively regulates bouton number 

through ERK signalling (Fischer et al., 2009). Focal adhesion kinase (Fak56) 

also restricts ERK signalling, suppressing NMJ growth.  When this restriction is 

released, such as in Fak66 mutants the synapses overgrow, and have increased 

branching (Tsai et al., 2008). ERK can modulate synaptic growth through 

regulation of the adhesion molecule FasII; levels of ERK and FasII are inversely 

correlated (Koh et al., 2002) 

1.5.4.3. Autophagy and synaptic growth 

Autophagy has been implicated in the control of synapse development, due to 

autophagic regulation of highwire (Shen and Ganetzky, 2009). Defects in 

autophagy lead to a build up of highwire, increasing the level of inhibition on 

wallenda/JNK/Fos signalling resulting in decreased synaptic growth. 

Accordingly, increased autophagy leads to potentiation of synaptic growth (Shen 

and Ganetzky, 2009). Other regulators of autophagy have also been implicated 

in synapse development, although the data from different studies are somewhat 

paradoxical. Increasing Rheb activity in the nerve results in synaptic overgrowth, 

however increased Rheb increases TOR activity reducing induction of 

autophagy. Conversely expression of Rheb in the muscle causes a slight 

reduction in synaptic growth. Supporting the role for Rheb as a potentiator of 

synaptic growth, mutations in rheb have significantly smaller NMJs than wildtype 

(Knox et al., 2007). The finding that inhibiting TOR with rapamycin increases 
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bouton number is consistent between these studies. The observation that 

rapamycin does not inhibit Rheb-mediated synaptic growth suggests that 

TORC1/S6K is not involved in the generation of this overgrowth, thus they 

suggest overgrowth is mediated by TORC2 (Knox et al., 2007). In addition 

Fischer et al. (2009) found that mutations in S6K result in potentiated synaptic 

growth through inhibition of ERK signalling (Fischer et al., 2009), suggesting that 

S6K negatively regulates bouton number.  

1.6. Oxidative Stress Autophagy and Synapse 
Development 

1.6.1. Oxidative Stress and Synapse Development 

In addition to its role in the stress response, JNK signalling has been shown to 

positively regulate synapse size and strength (Sanyal et al., 2002).  

Furthermore, presynaptic JNK signalling has been shown to be dysregulated in 

hiw mutants resulting in synapse overgrowth (Collins et al., 2006).  Synapses 

are areas of high energy demand thus have high numbers of mitochondria 

making them susceptible to oxidative stress.  Furthermore the fact that nerves 

are post-mitotic and do not generally degenerate meaning that degraded 

material builds up overtime, leading to the presence of ceroid in aged neurons 

and diseased neurons where degradation in impaired, such as lysosomal 

storage disorders (LSDs).  Furthermore there is great commonality between the 

pathways that are activated in oxidative stress and those involved in synapse 

development.  JNK has been shown to activate bouton number (Sanyal et al., 

2002), and has also been shown to be activated in response to oxidative stress.  

Furthermore autophagy is transcriptionally activated during oxidative stress, and 

autophagy drives synapse growth.  JNK signalling activates autophagy and hiw 

has been shown to be degraded by autophagy, thus resulting in increased 

activity of JNK signalling with defective autophagy, thus there is a feedback 

loop, indicative of the complexity of signalling involved in control of synapse 



1. Introduction 

41 

development. Autophagy has recently been shown to drive synapse growth 

(Shen and Ganetzky, 2009).  Driving autophagy increases synapse size; this 

was shown to require JNK signalling.  There is, however conflicting data on the 

role of regulators of autophagy in the control of synapse development.  Knox et 

al. (2007) showed that driving Rheb activity resulted in increased bouton 

number, which was not inhibited by rapamycin suggesting that Rheb is 

controlling synapse development through other mechanisms.   

Recently further indirect research into the effects of oxidative stress on synapse 

development has been investigated through analysis of NMJ development in a 

model of Parkinson’s disease caused by LRRK2 mutations, where synaptic 

overgrowth can be seen at the Drosophila NMJ.  In addition overexpression of 

LRRK2 causes undergrowth of the NMJ, these phenotypes have been shown to 

be due to specific interactions with both the pre- and post- synaptic machinery, 

resulting in dysregulation of protein synthesis and perturbed microtubule 

formation (Lee et al., 2010b). However the investigators did not investigate if 

oxidative stress had a causative role in the generation of these phenotypes.   

Mutations in SOD1 in a mouse model of amyotrophic lateral sclerosis (ALS) 

have been investigated and it has been put forward that SOD1 mutations could 

result in problems in maturation of motor neurons and networks (Durand et al., 

2006), with problems in axonal transport detectable well before the onset of 

symptoms (Williamson and Cleveland, 1999).  Amendola et al. (2004) found 

motor deficits very early on, in mice only 1 week old, which could be indicative of 

developmental abnormalities.  In addition to pathologies caused by loss of 

SOD1 function, overexpression of SOD1 has also been implicated in neuronal 

pathology (Avraham et al., 1988).  In Down’s syndrome there are 3 copies of 

chromosome 21 present, which is where the gene for SOD1 is located.  By 

transgenically overexpressing SOD1, it is possible to dissect which aspects of 

DS pathology might be caused by the increased gene dosage of SOD1, as 

increased SOD could lead to increased levels of hydrogen peroxide.  It has been 
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shown that rat cells with increased SOD1 show decreased levels of 

neurotransmitter uptake (Elroy-Stein and Groner, 1988).  Mice with elevated 

levels of human SOD1 were noticed to have terminal axon degeneration in the 

NMJ of the tongue, coupled with changes in the endplate (Avraham et al., 1988).  

The role of increased SOD1 is complex, highlighting the anti-oxidant paradox:  

Increased levels of SOD1 cause increased levels of peroxidated lipids, indicative 

of oxidative damage yet also increased resistance to paraquat (Elroy-Stein et 

al., 1986).  Mutations in sod2 in Drosophila also cause reduced longevity and 

movement however these phenotypes affect the muscle prior to neuronal 

dysfunction (Godenshwege et al., 2009). In addition longevity is improved when 

SOD2 function is restored in the muscle but not the nerve. Conversely, reduced 

longevity in sod1 mutants was rescued by motor neuron expression of SOD1 

(Parkes et al., 1998) and therefore it is necessary to dissect neuronal and 

muscular components of effects of increased ROS on synapse development and 

function.  This demonstrates how the source of ROS is important to the 

generation of the phenotype it produces, not just the identity of the species and 

its level. sod1 mutations seem to affect neurons more whereas sod2 mutations 

have more severe and earlier effects in the muscle. 

In a model of encephalopathy, caused by mutations in succinate dehydrogenase 

A (sdhA) ROS have also been shown to cause synapse loss in a study of 

synapse development. (Mast et al., 2008).  Synapse loss is rescued by 

tocopherol (vitamin E, an anti-oxidant) indicative of oxidative stress having a 

causative role in synapse loss.  

More recently Fos signalling has also been implicated in the synaptic overgrowth 

seen in the mutant spinster, a model of lysosomal storage disorder that shows 

aberrant TGFβ signalling (Bowers and Sweeney, personal communication). In 

addition to synaptic overgrowth spinster has an accumulation of ceroid 

lipopigment (lipofuscin) in lysosomes throughout the nervous system (Nakano et 

al., 2001), this is indicative of the generation of ROS, and used as a marker of 
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oxidative stress and ageing.  From this, it is postulated that spinster is suffering 

from oxidative stress.     

1.6.2. Oxidative Stress and Synaptic Function 

Components of the molecular machinery involved in synaptic transmission are 

affected by oxidative stress.  Hydrogen peroxide has been shown to have dual 

action at the frog NMJ depending on the concentration.  At micromolar 

concentrations H2O2, EPPs were increased but at higher concentrations EPPs 

were inhibited.  The facilitation seen at lower concentrations was not affected by 

the presence of Fe2+, a pro-oxidant species, conversely the presence of 

increased of Fe2+ did increase the inhibition of transmission caused at higher 

concentrations, this is indicative of the involvement of hydroxyl radicals in this 

inhibition (Giniatullin and Giniatullin, 2003). Both evoked and spontaneous 

quantal release are reduced through the reactions between ROS and SNAP25, 

a component of the SNARE complex required for membrane fusion (Giniatullin 

et al., 2006).  During high levels of activity in skeletal muscle ATP and ROS, 

generated intracellularly, can be released.  Extracellular ATP has been shown to 

cause pre-synaptic inhibition, which can be reduced by the presence of anti-

oxidants, such as extracellular catalase.  NO was also shown to prevent 

synaptic transmission however, inhibiting NO production did not prevent ATP-

dependent depression, whereas preventing P2 activation reduced ROS 

production (Giniatullin et al., 2005).  The role of PKC in the effects of ROS on 

synaptic transmission has been shown as PKC inhibitors prevent both the 

facilitation and the depression caused by H2O2.  Conversely, overactivation of 

PKC using PMA also prevents the facilitation but has no effect on the 

depression (Giniatullin and Giniatullin, 2003).  

LTP is purported to be the biological correlate of learning and memory and it is a 

form of synaptic plasticity that is defined as ‘long-lasting increase in the efficacy 

of synaptic transmission’ (Bliss and Lomo, 1973).  ROS are becoming 

increasingly seen as important signalling molecules in many biological 
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processes, with an important function in central synapses in the generation of 

LTP (Klann, 1998; Klann et al., 1998). The general principle of both hippocampal 

and spinal cord LTP are similar, repeated activity leads to increased 

responsiveness dependant on NMDA receptors.  Application of ROS induces 

LTP and while NMDA receptor activity is required for the induction but not the 

maintenance of LTP, depleting ROS through the application of ROS scavengers 

inhibited both the induction and maintenance of LTP.  These data suggest that 

high frequency stimulation of neurons leads to NMDA receptor activation 

resulting in increases in endogenous ROS (Lee et al., 2010a). Activation of 

NMDA receptors results in generation of superoxide anions (Bindokas et al., 

1996) furthermore, LTP is blocked by superoxide scavengers (Klann et al., 

1998). The effector of superoxide in LTP is most likely PKC, which is activated 

due to oxidation of a cysteine rich area, a cofactor binding area of PKC; 

oxidation causes zinc to be released from the zinc finger domain (Knapp and 

Klann, 2002), furthermore the presence of superoxide scavengers that prevent 

LTP accordingly prevent superoxide induced rises in PKC activity.  Increasing 

the level of superoxide anions by the X/XO system in hippocampal slices 

increases PKC activity (Knapp and Klann, 2000).   Superoxide induced LTP, 

although still dependent on increased [Ca2+], does not require Ca2+ influx 

through NMDA-Rs, superoxide anions activate type 3 ryanodine receptors and 

L-type Ca2+ channels. ERK signalling is also required for superoxide induced 

LTP (Huddleston et al., 2008).   

Conversely H2O2 prevents normal LTP (Pellmar et al., 1991; Auerbach and 

Segal 1997), the reduction in LTP caused by SOD (Halliwell et al., 1992b) may 

be due to the increased levels of H2O2, as this reduction is partially rescued by 

catalase, which converts H2O2 to water and oxygen (Knapp and Klann, 2002).  

Thus it seems the relative balance and localisation of action of different ROS 

may be the key to understanding the role of ROS in LTP. The effects of ROS on 

synaptic transmission are varied suggesting a high level of context dependence, 



1. Introduction 

45 

determining the signalling pathways and effectors involved. The Drosophila 

NMJ, as a glutamatergic synapse, could be highly useful to elucidate the effects 

of ROS on synaptic transmission and how pathogenic activation of signalling 

pathways involved in the control of synaptic development and function, such as 

JNK/AP-1 can be affected during oxidative stress. This could help to understand 

both developmental and neurodegenerative conditions.  
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1.7. Aims 
• To establish whether spinster is incurring oxidative stress and determine 

whether oxidative stress is contributing to the synaptic overgrowth 

phenotype. 

• Can oxidative stress cause synaptic overgrowth independently of 

lysosomal dysfunction? 

• Are ASK/JNK/AP-1 activation and autophagy required for synaptic growth 

observed under conditions of oxidative stress? 

• Oxidative stress is known to impair mitochondrial function. Does oxidative 

stress/ spinster cause an energy deficit resulting in impaired physiological 

output? If this is the case, are compensatory metabolic pathways induced 

in spinster?  
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2. Materials and Methods 

2.1. Drosophila Husbandry and Techniques 

2.1.1. Drosophila Stocks 

Drosophila stocks used in this research were obtained from the Bloomington 

Stock Centre (Indiana University: http://flystocks.bio), donated from other labs or 

created using stocks already contained within the lab.  A full list of stocks used 

in this investigation is shown in table 2.1. 

2.1.2. Drosophila Husbandry 

Drosophila were maintained in 25cm3 plastic vials containing 7-8ml standard 

yeast-sugar-agar media composed of 25g/l sugar, 3.75g/l agar, 0.125 CaCl2, 

0.125g/l FeSO4, 0.125g/l MnCl, 0.125g/l NaCl 2g/l potassium-sodium tatrate, 

0.0015g/l Bavistine and 0.2g/l p-hydroxybenzoic acid methyl ester (Nipagin) 

(Carpenter, 1950). Apple juice agar plates (16g/l agar, 40g/l sucrose and 200ml 

apple juice per litre) were used for egg collection, using a cage, and moved from 

this to instant fly food using forceps.  Formula 4-24 (Carolina Biological 

Supplies) instant fly food was prepared by mixing equal volumes of fly food and 

water (containing any pharmacological agents as required) with a pinch of yeast 

per vial.  Vials were topped with cotton wool to allow air-flow and prevent 

escape.   

Stocks were maintained at 180C, where they were ‘turned over’ into new vials 

every 4 weeks, or at 250C, where they are turned over every week.  Flies at 

250C used for experimental crosses to obtain larvae were turned over every 2-3 

days to increase the number of progeny and prevent overcrowding of larvae. To 

allow selection of flies they were anaesthetised with CO2 via a porous pad 

connected to a compressed gas cylinder (Dutscher Scientific, UK) and using a 

dissection microscope (Zeiss Stemi 2000 Dissection Microscope).   
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STOCK Chromosome Description  Source 

WILDTYPE     

w-1118 N/A Wildtype (white 
eyes) 

Sweeney lab 
stock 

Canton S N/A Wildtype (red eyes) Sweeney lab 
stock 

BALANCER 
STOCKS 

   

FM6-GFP/- First First Chromosome 
Balancer 

Sweeney lab 
stock 

CyOGFP/Sco Second Second 
Chromosome 
Balancer 

Sweeney lab 
stock 

CyOGFP/If; 
TM6b/MKRS 

Second and 
third 

Second and Third 
Chromosome 
Balancer 

Sweeney lab 
stock 

CyOtubGAL80/If; 
TM6b/MKRS 

Second and 
third 

Second and Third 
Chromosome 
Balancer with 
GAL80 

Sweeney lab 
stock 
(unpublished) 

GAL4 DRIVERS    

spinGAL4/TM6b Third Spinster promoter: 
Pre- and post- 
synaptic driver (low 
level ubiquitous)  

Nakano et al. 
(2001) 

MHCGAL4/TM6b Third Myosin heavy chain 
promoter: Muscle 
specific driver 

Corey Goodman 
lab stock 
(donation) 

elavGAL4/TM6b Third Embryonic lethal 
abnormal vision 
promoter: Pan 
neuronal driver 

Corey Goodman 
lab stock 
(donation) 

tubGAL4/TM6b Third Tubulin promoter: 
Global driver 

Lee and Luo 
(2001) 
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UAS STOCKS    

UAS-fos Second Wildtype Fos Bloomington 
Stock Centre 

UAS-fos-RNAi/TM6b Third RNAi to reduce Fos 
expression 

Vienna 
Drosophila 
Resource Centre 

UAS-fosDN Second and 
Third 

Impaired 
transcription activity 

Eresh et al. 
(1997) 

UAS-junDN Second and 
Third 

Impaired 
transcription activity 

Eresh et al. 
(1997) 

UAS-junRNAi/FM6-
GFP 

First RNAi to reduce Jun 
expression 

Vienna 
Drosophila 
Resource Centre 

UAS-jnkDN Second and 
Third 

JNK without kinase 
activity (K53R) 

Weber et al. 
(2000) 

UAS-askDN Second ASK without kinase 
activity 

Kuranaga et al. 
(2002) 

UAS-AMPKT184D Third Pseudo-
phosphorylated 
AMPK 

Jay Brennan 

UAS-AMPK-
RNAi(1827) 

Third RNAi to reduce 
AMPK subunit-α 
expression 

Vienna 
Drosophila 
Resource Centre 

UAS-AMPK-
RNAi(106200) 

Third RNAi to reduce 
AMPK subunit-α 
expression 

Vienna 
Drosophila 
Resource Centre 

UAS-hSOD1 Second Human SOD1 Parkes et al. 
(1998) 

UAS-cat Second Wildtype Catalase Missirlis et al., 
(2001) 

UAS-trxR1CYTO Third Wildtype 
cytoplasmic 
thioredoxin 
reductase 

Missirlis et al., 
(2002) 
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UAS-trxR1MITO Third Wildtype 
mitochondrial 
thioredoxin 
reductase 

Fannis Missirlis 

UAS-gst81A Second Wildtype glutathione Whitworth et al. 
(2005) 

UAS-atg168 Third Wildtype ATG1 Neufeld 

UAS-atg1CG Third Wildtype ATG1 Neufeld 

UAS-atg5-RNAi First RNAi to reduce atg5 
expression 

Vienna 
Drosophila 
Resource Centre 

UAS-spin Third Wildtype spinster Sweeney lab 
stock 

MUTANT STOCKS    

spin4/CyOGFP Second Loss of function of 
spinster due to P-
element excision 

Nakano et al. 
(2001) 

spin5/CyOGFP Second Loss of function of 
spinster due to P-
element excision 

Nakano et al. 
(2001) 

spin∆58/CyOGFP Second Loss of function of 
spinster 

Bloomington 
Stock Centre 

sod1n1/TM6b Third Loss of function of 
sod1 EMS point 
mutation 

Parkes et al. 
(1998) 

sod1n64/TM6b Third Loss of function of 
sod1 EMS point 
mutation 

Parkes et al. 
(1998) 

sod2DELTA/CyOGFP Second Loss of function of 
sod2 due to P 
element 

Zheng et al. 
(2009) 

sod2∆02/CyOGFP Second Loss of function of 
sod2 due to P 
element 

Zheng et al. 
(2009) 
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sdhBEY/CyOGFP Second Loss of function of 
succinate 
dehydrogenase B (P 
element insertion) 

Walker et al. 
(2006) Bellen et 
al. (2004) 

sesB9ED1/FM7GFP First Stress sensitive B 
loss of function 
(mitochondrial 
nucleotide 
transporter) EMS 
point mutation 

Janca et al. 
(1986) 

cat1/TM6b Third Catalase loss of 
function EMS point 
mutation 

Mackay et al.  
(1989) 

atg1DG/TM6b Third atg1[DG23110] 
ATG1 loss of 
function (P-element) 

Bloomington 
Stock Centre 

atg1PZ/TM6b Third atg1[00305] 
ATG1 loss of 
function (P-element) 

Bloomington 
Stock Centre 

atg18KG/TM6b Third atg18[KG03090] 

ATG18 loss of 
function (P-element) 

Bloomington 
Stock Centre 

pucE69/TM6b Third puckered LACZ 
reporter as 
heterozygote (P-
element) 

Ring and 
Martinez Arias 
(1993) 

loe/TM6b Third Loss of one isoform 
of AMPK γ subunit 
function unit 

Deak et al. 
(1997) 

OTHER 
TRANSGENES 

   

gst-D-GFP/CyOGFP Second GFP reporter of 
glutathione 
expression using 
cap’n’collar 
(Nrf2/KeAP-1) 
transcription factor 

Skyotis and 
Bohmann (2008) 
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Table 2.1: Drosophila stocks used in this investigation 

 

2.1.3. Crossing Schemes 

2.1.3.1. Crosses 

Crosses were set up by combining virgin females and males of the required 

genotypes, in the same vial.  Virgin females were selected based on the well-

regarded observation that females reject courtship for the first 8 hours after 

eclosion.  Young female flies were selected in two ways: firstly, for two hours 

following eclosion the meconium can be seen through the abdominal cuticle, as 

well as being light in pigment and still having unexpanded wings; secondly, once 

a vial was emptied of adults, 8 hours later any females collected will be virgins.  

Once probable virgins were collected they were kept isolated from males and 

their virginity confirmed by observing that any eggs they laid did not hatch.   

2.1.3.2. Balancer Chromosomes 

Mutant alleles in Drosophila can be easily tracked through the use of balancer 

chromosomes.  These are chromosomes that carry dominant phenotypic 

markers with large chromosomal insertions that prevent recombination.  The 

balancer stocks used in this investigation were FM6, on the first chromosome 

(with or without GFP), which presents a bar eye phenotype; CyO (with or without 

GFP) on the 2nd chromosome which has curly wings; TM6b on the 3rd 

chromosome which has ‘humoral’ as its dominant marker in adults, which can be 

seen as increased hairs on the ‘shoulders’ of the adult and ‘tubby’ in larvae, a 

significantly shortened and fattened and TM3 on the 3rd, identified by ‘stubble’, a 

shortening of the hairs on the thorax.  When expressed in the same animal TM3 

and TM6b (TM3/TM6b) show the ‘ebony’ phenotype, a blackening of the whole 

fly.  Markers are also used when double balancing Drosophila stocks, Sco on 
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the second, which can be identified by a lack of hair on the scutellum and MKRS 

on the third, which also shows stubble.   

2.1.3.3. Recombination 

To obtain a fly with two required genetic components on the same chromosome 

were created by allowing recombination to occur in the female.  This was 

achieved by mating the parent stocks with each other and selecting the females 

that carried both genetic components.  These were then crossed to the balancer 

stock for the relevant chromosome, and potential recombinants selected based 

on eye colour when possible.  The presence of each mutation or transgene was 

then confirmed by PCR when necessary.   

2.2. Immunohistochemistry and Imaging 

2.2.1. Third Instar Larval Dissection 

Wandering 3rd instar larvae were taken, once they had crawled out of the food 

and up the side of the vial, and selected based on genotype.  The required 

larvae were transferred to a Sylgard dish (Silicone elastromere kit, Dow 

Corning), and dissected in either PBS or haemolymph-like buffer (HL3: (70mM 

NaCl,5mM KCl, 1mM CaCl2.2H2O, 10mM NaHCO3, 5mM trehalose, 115mM 

sucrose and 5mM BES)) (Stewart et al., 1994).  The anterior and posterior ends 

of the larvae were pinned down with minuten pins (Austerlitz Insect Pins 0.1mm 

diameter, Fine Science Tools), scissors were used to cut laterally at the 

posterior and dorsal end of the larvae, and a cut made up the dorsal side.  The 

gut, fat bodies, salivary glands and internal organs were removed using forceps, 

and the muscle wall pinned back.   

2.2.2. Larval Fixation and Immunohistochemistry 

Larvae were fixed either for 7 minutes in 3.7% formaldehyde in PBS, or 2 

minutes in Bouin’s solution, the pins removed and the larvae transferred to 1.5ml 
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eppendorf tubes and washed 3 times in PBS-T (0.1% Triton X-100 in PBS).  

Antibody incubations were carried out in the desired concentration in of 

antibody, see table 2.2.2.2 in PBS-T, at 40C overnight on a rocker, or for two 

hours at room temperature.  3 x 5 minute washes were performed at room 

temperature before application of the secondary antibody, for 1 hour at room 

temperature, before washing 3 times for 5 minutes.  Preparations were then 

transferred to 70% glycerol in PBS to eradicate air from the larval preparations.  

Following 2 hours in this solution the larvae were mounted onto microscope 

slides in Vectashield (Vector Laboratories).  Coverslips were placed on top of 

the preparations and sealed with nail varnish.   

ANTIBODY STAINS CONC HOST 
SPECIES 

SOURCE 

Anti-Horseradish-
peroxidase-Cy3 
(HRP-Cy3) 

Neuronal 
Tissue 

1:200 Goat Jackson 
Laboratories 

Anti-synaptotagmin 
(Anti-SYT) 

Synaptic 
Boutons 

1:1000 Rabbit Sweeney Lab 

Anti-Bruchpilot Active Zones 1:50 Mouse Developmental 
Studies Hybridoma 
Bank (DSHB),   
Iowa, US 

Table 2.2: Antibodies used in this investigation. 
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2.2.3. Microscopy and Analysis 

2.2.3.1. Bouton Counts Normalisation to Muscle Surface Area, and Imaging 

Bouton number was analysed by counting each singular spherical structure 

stained with anti-synaptotagmin at the NMJ, using a Leica DMLA fluorescence 

microscope with a 40x objective lens.  Muscle surface area (MSA) was 

calculated by imaging hemisegment A3 with a 10x objective, in phase mode and 

a Leica DC500 digital camera.  Images were analysed using ‘imageJ’, by 

measuring the length and width of the muscle in pixels.  This measurement was 

then converted to µm using an image taken of a haemocytometer to measure 

the number of pixels in 1µm.  The mean muscle surface area of wildtype was 

then used for normalisation; the bouton number being normalised was divided 

by its MSA and multiplied by the mean wildtype MSA.  This in effect gives the 

number of boutons at the NMJ if it were a wildtype size (Lnenicka and 

Keshishian, 2000; Schuster et al., 1996a).   

NMJs were imaged using a Zeiss Axioplan 2 confocal microscope (Technology 

Facility, Biology Department, The University of York); taking z-stacks using 63x 

objective (oil immersion lens).  Generally, two z-stacks were needed due to the 

size of the NMJ, these were merged using Adobe Photoshop (Adode Systems 

Uxbridge, UK) 

2.2.3.2. Bouton size analysis 

Confocal images were taken as described in 2.2.3.1 and opened in imageJ and 

measured across the widest part. The measurement was converted from pixels 

to µm by multiplying by the number of pixels in a µm.  

2.2.3.3. Analysis of GFP Transgene Expression (Confocal) 

Adult flies were dipped briefly in ethanol to reduce surface tension, and pinned 

dorsal side down through the abdomen.  Dissections were performed in 4% 

paraformaldehyde/PBS and incubated in this solution with primary antibodies 
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overnight in the dark, washed for 3 hours then incubated in secondary antibody 

overnight, and mounted in Vectashield.   

2.3. Adult Head Sectioning and Electron Microscopy 

2.3.1. Embedding of Drosophila Adult Heads in Spurr’s Resin 

Flies were submerged in 30% EtOH to reduce surface tension and transferred to 

fixative (4%PFA, 1% gluteraldehyde in 0.1M sodium phosphate buffer, pH 7.4).  

The proboscis and air sacs were removed as much as possible and the 

dissected heads transferred to glass vials containing the fixative.  The remaining 

air sacs and cuticle were removed as much as possible by applying vacuum 

pressure to the vials.  The preparations were transferred to 1.5ml eppendorf 

tubes containing 500µl fresh fixative.  Submersion of the preparations was 

ensured by trapping them in the bottom of the tube; using a slimline cigarette 

filter tip (Swan) held in position with a 0.2ml PCR tube with the bottom cut off.  

Preparations were incubated in fixative overnight at 40C on a 3600 rotator.  3x 10 

minute washes with 0.1M sodium phosphate buffer were performed to remove 

excess fixative from the preparations.  Preparations were incubated in 250µl 1% 

osmium tetroxide (OsO4) on 0.1M sodium phosphate buffer for 1 hour, and 

washed 3x 10 minutes in 0.1M sodium phosphate buffer and 3x 10 minute 

washes in distilled water.  Incubations in increasing concentrations of acetone 

(30, 50, 70 and 90%) for 20 minutes each and 3 x 30 minute incubations in 

100% acetone (dehydrated using a molecular sieve) were performed to 

dehydrate the preparations.  The preparations were incubated in increasing 

concentrations of Spurr’s resin in acetone; 25, 50, 75, 90 and 3x 100% resin for 

45 minutes with rotation (Spurr, 1969; 5g vinylcyclohexene dioxide, 3g diglycidyl 

ether of polypropylene glycol, 13g nonenyl succinic anhydride, 0.25ml 2-

dimethylaminoethanol.  Incubations in 100% resin were performed at 370C to 

reduce viscosity. The head preparations were embedded in moulds (Silastic J 

Kit, Dow, USA) half-filled with resin, semi-polymerised by incubation at 700C for 
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3.5-4 hours.  Heads were orientated as required (dorsal end against one end of 

the well) and covered with unpolymerised resin to fill the well, and 

polymerisation completed by incubation at 700C for 24 hours.  Resin blocks 

were left to cool and removed from the moulds once cooled. 

2.3.2. Head Sectioning 

Blocks were trimmed to near the preparation using a fine-bladed hacksaw.  

Blocks were then secured in chuck and trimmed using a razor blade to expose 

the cuticle.  The block was then trimmed around the head to reduce cutting area, 

leaving a truncated pyramid containing the head.  1µm sections were cut on the 

microtome (Leica Ultracut UCT) using glass knives.  Sections were placed on 

microscope slides in drops of water, dried on a hot plate at 800C and stained 

(0.6 toluidine blue in 0.3% sodium carbonate) for ~5seconds, rinsed in distilled 

water and dried.  Sections were imaged using Zeiss Axiocam HRm camera and 

Zeiss Axiovert 200 microscope to locate regions to section for TEM. 

2.3.3. Transmission Electron Microscopy (TEM) and Image 

Analysis 

Once the area to investigate using EM was reached in thick sections, thin 

sections (60-70nm) were made (carried out by Meg Stark, Technology Facility, 

York).  Sections were incubated in uranyl acetate in 50% ethanol in 10 minutes 

and then submerged in distilled water.  Sections were stained for 10 minutes in 

lead citrate with sodium hydroxide pellets, and then washed in distilled water.  

Images were taken using a TECNAI G2 (version 2.18) TEM (120kV) using 

analySIS software.   
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2.4. Molecular Biology 

2.4.1. Polymerase Chain Reaction (PCR) and DNA Agarose Gel 
Electrophoresis 

2x PCR mastermix (Promega, UK) was used in a 20µl reaction volume 

containing (final concentrations) 1µM primers and <250ng DNA template.  

Primers were either designed manually or using Primer Designer, Net Primer.  

The melting temperature (Tm) calculated using NetPrimer or Primer3 software or 

{4(No Guanine and Cytosine)+2(No of Adenine and Thymine)}.  The elongation 

time for a particular fragment is calculated based on the knowledge that taq 

polymerase produced 1kb DNA a minute.  Standard PCR cycling conditions 

were: initial denaturation at 940C for 10 minutes; cycles of 940C for 30secs, Tm 

for 60secs, 720C for elongation; cycles were followed with a final elongation 

period at 720C for 5 minutes. Reactions were then cooled to 40C to prevent DNA 

decomposition.  Analysis of PCR products was analysed using agarose gel 

electrophoresis.  Appropriate volumes of PCR product and 6x loading dye 

(Promega, UK) were mixed and loaded onto a 1% agarose gel in TAE buffer 

(Tris-Acetate and 0.05M EDTA) with 0.1% SyberSafe and leaving to polymerise 

in the gel tank, once polymerised the gel is submerged in TAE.  1kb or 100kb 

ladder (Invitrogen or Promega) was also loaded onto the gel to allow 

determination of the size of the PCR product.  The gel was run for 45 minutes at 

a potential difference of 100v.  For visualisation of DNA the gel was transferred 

to a blue-light box and imaged. 

Oligos:  

SOD1_F:catcccgtccacagagc  

SOD1_R:ggtgcgtccgatgatgct 

GAL4_F:gcagcgtaccacaacaggtccc 

GAL4_R:ggcgtgactgagcgatgcga 
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2.4.2. Genomic DNA extraction 

Single flies were ruptured in squishing buffer (10mM Tris pH 8.2, 1mM EDTA, 

25mM NaCl, 200µg/ml proteinase K) using a pipette tip, and incubated at 370C 

for 1 hour, followed by a 2 minute incubation at 950C.  The preparation can be 

stored at -200C until needed, when 1µl is used as DNA template for PCR. 

2.4.3. Gel Extraction 

DNA extraction from excised gel bands were carried out using QIAquick gel 

extraction kit (Qiagen) according to the manufacturer’s protocol.  The gel 

fragment was dissolved in 3x volume of buffer QG (100mg gel ≅ 100µl buffer) at 

500C, 1 volume of isopropanal added and transferred to QIAquick spin column 

and centrifuged for 1 minute at 13000g to bind the DNA to the column.  To 

remove the excess agarose the column was washed with 500µl buffer QG and 

then with 750µl buffer PE to remove salts. Residual ethanol was removed by 

centrifugation and the DNA eluted with 30µl nucleotide free water. DNA 

concentration and quality was determined with an ND-1000 spectrophotometer 

(NanoDrop; Thermo Scientific, DE, USA). 

2.4.4. DNA Sequencing 

DNA sequencing was used to confirm the presence of mutations in potential 

recombinants.  The area including the mutation was amplified using PCR and 

the product purified through gel extraction.  Sequencing reactions were sent to 

Technology Facility, University of York.  3-10ng/µl of PCR product and 3.2µM 

primer were required.  Sequencing results were analysed using Chromas 

(Version 1.45, Conor McCarthy, Australia) and NCBI bl2seq software.   
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2.5. Biochemical Analysis 

2.5.1. Bradford Assay 

Protein concentration was determined by measuring absorbance at 595nm in 

the presence of Bradford reagent which contains Coomassie; this changes 

absorbance upon its binding with protein. 30µl protein solution was added to 

900µl Bradford reagent (Sigma), left for 15 minutes and the absorbance 

recorded. 

2.5.2. Quantification of Oxidative Stress 

2.5.2.1. Lipid Peroxidation Assay 

Levels of peroxidated lipids were analysed using Bioxytech LPO-586  

(OxisResearch, Oxis International, California, USA) according to the 

manufacturer’s instructions.  Standards were made up of 0-20µM 1,1,3,3-

tetramethoxypropane (TMOP), which is hydrolysed in the assay to produce 

standards of 0-4µM malondialdehyde (MDA) (final concentration).  30 flies of 

each genotype were ruptured/ homogenised (on ice) in 750µl 5mM butylated 

hydroxytoluene in 20mM PBS pH 7.4 and centrifuged at 3000g for 10 minutes at 

40C, using 3x 200µl aliquots of the supernatant for the assay.  A Bradford assay 

was carried out to ensure equal protein concentrations.  650µl diluted reagent 

R1 (N-methyl-2-phenylindole in acetonitrile diluted with ferric iron in methanol) 

was added to each tube including the standards and vortexed.  150µl reagent 

R2 (methanesulphonic acid) was added and the preparations incubated to 450C 

for 60 minutes.  The samples were centrifuged (15000g for 10 minutes) and the 

supernatant absorbance measured at 586nm. 

2.5.2.2. Quantification of gst-D-GFP Expression (Fluorimetry) 

10 flies of each genotype were ruptured/ homogenised in 100µl lysis buffer 

(150mM NaCl, 20mM Tris-HCl pH8.0, 2mM EDTA, 0.5% (v/v) Igepal and 1 mini 
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protease inhibitor cocktail tablet (Roche)).  Preparations were incubated on ice 

for 20 minutes, centrifuged at 13000g for 10 minutes, the supernatant 

transferred into a new tube and centrifuged again for 10 minutes at 13000g.  

The supernatant was removed, 300µl PBS added and the fluorescence 

quantified by measuring emission at 490-600nm (following excitation at 480nm) 

using a Fluoromax4 (Horiba Scientific) and the accompanying software 

Fluorescence V3.   

2.6. Physiological Analysis of Larvae 

2.6.1. Crawling Speed Analysis 

Larvae were selected based on genotype and transferred to HL3 saline.  Larvae 

were transferred, using a paintbrush, to 90mm diameter petri-dishes containing 

agar, and left to recover on the agar plate until they started to move.  Larvae 

were recorded for 45s (CAMERA and VirtualDub).  The videos were 

decompressed, and analysed using ImageJ.  The speed of each larval recording 

was calculated using median and thresh track plug-ins for ImageJ, to give the x 

and y changes in the video, this was then converted to a larval speed based 

using Excel (based on the fact that 226 frames were recorded in 45 seconds 

and using conversion of pixels:mm).     

2.6.2. Intramuscular Recordings 

Larvae were dissected in HL3 solution as described in section 2.2.1, except only 

the middle of the ventral sides are pulled out, using one pin in each side (rather 

than 2 which facilitates imaging).  Glass electrodes were pulled from 1mm 

borsosilicate glass to form a sharp pipette (resistance 10-20mOhms) (Flaming 

Brown micropipette puller model P-97, Sutter Instrument Co) with the following 

settings: P=200, heat=240-260, pull=100, vel=100, time=132.  Electrodes were 

loaded with 3M Potassium Acetate, and the recording taken from muscle 6/7 in 

hemisegment in A3.  Recordings were taken in DasyLab and the resting 
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membrane potential calculated by subtracting the initial recording before entry 

into the muscle and post entry to the muscle. Mean EJPs were calculated by 

overlaying 5-6 EJPs and taking the mean values for each animal.
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3. Oxidative Stress Contributes to Synaptic 
Overgrowth in spinster, a Model of a Lysosomal 
Storage Disorder 

3.1. Introduction 
Oxidative stress, as discussed earlier is caused by an imbalance between the 

generation and dissipation of ROS.  There is a high correlation between 

oxidative stress and neurodegeneration; oxidative stress is believed to be 

partially causative to neurodegeneration and is also a consequence of 

neurodegenerative disease processes (Patten et al., 2010).   

Lysosomal storage disorders, as described earlier (1.3.1) are a group of 40-50 

metabolic disorders caused by impaired turnover of cellular constituents, as a 

result of lysosomal dysfunction. Most LSDs have a neurodegenerative 

component amongst many other cellular and multi-systemic symptoms. 

However, it is unclear how lysosomal dysfunction leads to neurodegeneration 

but lysosomal storage disorders have recently been shown to exhibit markers of 

oxidative stress (Deganuto et al., 2007; Fu et al., 2010; Wei et al., 2008a; 

Filippon et al., 2011).  

Firstly oxidative stress has been implicated in Niemann Pick type C, an 

autosomal recessive LSD caused by abnormal function of NPC1 or 2, which 

leads to the build up of unesterifed cholesterol and glycosphingolipids (Zampieri 

et al., 2009; Fu et al., 2010). Secondly, Gaucher’s disease (Deganuto et al., 

2007), one of the most common LSDs, which is caused by a build up of 

glucocerebroside, due to defective glucocerebrosidase, has an oxidative 

component. Fibroblasts from patients with Gaucher’s disease have impaired 

redox status and are sensitive to oxidative stress as they are unable to mount an 

appropriate response to oxidative insults. Thirdly, oxidative stress has been 
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implicated in juvenile neuronal ceroid lipofuscinosis (JNCL). Mutations in CLN3, 

the gene known to cause JNCL, result in hypersensitivity to oxidative stress and 

the protein has been shown to interact with stress signalling pathways   

(Tuxworth et al., 2011). 

In addition LSDs have been shown to cause ectopic synaptic growth (Purpura 

and Suzuki 1976; Walkley et al., 1985 and 1988a and b). Swainsonine is a 

plant-derived product that inhibits alpha-mannosidase, a lysosomal hydrolase, 

and can be used to model mannosidase disorders, a type of LSD (Dorling et al., 

1980, Hartley et al., 1971). This model was shown to cause ectopic axon Hillock 

neurite outgrowth in the cortical pyramidal and multipolar cells of the amygdala 

in cats (Walkley et al., 1985 and 1988a and b). However, it is not known whether 

this ectopic growth is caused by a direct effect of lysosomal dysfunction or due 

to downstream signalling of the oxidative stress generated by lysosomal 

dysfunction.  

Spinster is a protein with 12 transmembrane domains that localises to the 

lysosome and shows high homology to sugar transporters.  Mutations in spinster 

provide a good model of a lysosomal storage disorder, with increased numbers 

of enlarged endosomal/lysosomal compartments, coupled with 

neurodegeneration and synaptic overgrowth (Nakano et al., 2001; Dermaut et 

al., 2005; Sweeney and Davis, 2002). Mutations in spinster have previously 

shown to cause 100% overgrowth of the neuromuscular junction (Sweeney and 

Davies, 2002). However, the presence of increased reactive oxygen species/ 

oxidative stress has not been determined, nor the relationship between oxidative 

stress and synaptic overgrowth.  

Here, increased levels of oxidative cellular damage and activation of the cellular 

stress response are identified in spinster. In addition, it is shown that relieving 

oxidative stress, through the expression of anti-oxidant transgenes, partially 

rescues the level of synaptic overgrowth.  Moreover, another overgrowth 
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phenotype, highwire, is rescued by expression of antioxidants suggesting that 

the relationship between oxidative stress and synaptic overgrowth is causative 

not just correlative.  

3.2. Results 

3.2.1. spin carries an oxidative stress burden 

Increased levels of reactive oxygen species lead to a number of forms of 

oxidative damage. One of the most common markers of oxidative stress is 

increased levels of peroxidated lipids. This can be determined by measuring the 

levels of certain aldehydes, such as malondialdehyde (MDA), that are the end 

products of lipid peroxidation. The spinster mutants previously indentified as 

having synaptic overgrowth (Sweeney and Davies, 2002) are 

transheterozygotes (the allelic combination spin4/spin5) that rarely survive to 

adulthood. Consequently for analysis of lipid peroxidation levels, where a large 

number of flies are needed, transheterozygotes of spin∆58/spin4 and spin∆58/spin5 

were used, an allelic combination that survives regularly to adulthood, but with a 

shortened lifespan (Nakano et al., 2001; Dermaut et al., 2005). In spinster 

mutants the level of peroxidated lipid end product is increased by 83% 

compared to wildtype (p<0.001, ANOVA) (Fig. 3.1) whereas the level of 

peroxidated lipids is significantly reduced by expression of the human form of 

superoxide dismutase (UAShSOD1), the enzyme that converts highly reactive 

superoxide anions to hydrogen peroxide, under the control of spinGAL4 

(p<0.001, ANOVA). This suggests that spinster mutants incur increased levels 

of oxidative damage that are reduced by increasing the level of anti-oxidant 

defence. Expression of this transgene in a non-mutant background did not 

change the levels of peroxidated lipids, suggesting that any increase in  
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Figure 3.1 spinster mutants have increased levels of peroxidated lipids. This is 
reduced by expressing an antioxidant transgene. (A) Two different spinster mutant 
combinations both have significantly increased levels of peroxidated lipids compared to 
wildtype flies. Levels are increased from 0.65±0.033µM TMOP to 1.1±0.07µM and 
0.94±0.01µM TMOP in spin4/spinIn Δ58 and spin5/spinΔ58 respectively (p<0.05, ANOVA). 
(B) Wildtype flies show a mean level of MDA equivalent to 0.34±0.02µM TMOP. In 
spinster mutants (spin5/spinΔ58) the level of peroxidated lipid end product increases by 
83% to 0.64±0.1µM (p<0.05, ANOVA). Expression of UAShSOD1 under the control of 
spinGAL4 reduces the level of peroxidated lipids to 0.44±0.01µM significantly reduced 
compared to spinster (p<0.001, Student’s t-test). It is no longer statistically different to 
wildtype (p>0.05, Student’s t-test and ANOVA). Expression of this transgene in a non-
mutant background did not cause any change in the levels of peroxidated lipids 
compared to wildtype: 0.31±0.03µM TMOP (p>0.05, ANOVA and Student’s t-test).  

hydrogen peroxide levels caused by increased SOD1 activity was maintained 

within normal limits by the actions of other anti-oxidant enzymes, that break 

down hydrogen peroxide.  The level of damage incurred suggests that ROS are 

increased in spinster and cause cellular damage due to insufficient levels of 

antioxidants to deal with the increased levels of ROS. In addition, augmented 
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ROS levels activate the cellular stress response, leading to increased 

transcription of anti-oxidants such as glutathione S-transferase-D (gst-D). 

Transcription of this gene is regulated by KeAP-1/Nrf2 signalling (Sykiotis and 

Bohmann, 2008). Nrf2 is a cap’n’collar transcription factor that regulates the 

transcription of a number of anti-oxidant transgenes such as heme-oxygenase I, 

peroxiredoxin (Ishii et al., 2000) and glutathione S-transferases (Hayes et al., 

2000). Activity of Nrf2 is regulated by KEAP-1, a cytoplasmic actin binding 

protein that binds Nrf2 and promotes its proteosomal degradation hence 

preventing translocation to the nucleus to act as a transcription factor  

(Motohashi and Yamamoto, 2004). ROS and electrophiles stimulate the 

dissociation of Nrf2 and KeAP-1 allowing Nrf2 to translocate to the nucleus to 

bind to the anti-oxidant response element (ARE) to promote the transcription of 

antioxidant stress proteins and detoxifying enzymes. Therefore, upon oxidative 

stress gstD is upregulated and, by means  of a reporter construct gstD-GFP, 

whereby the gstD promoter is fused to a GFP open reading frame, levels of gst-

D-GFP can be monitored. Hence, when the breakdown of Nrf2 is decreased by 

reduced activity of KEAP-1, less Nrf2 is broken down and the increased Nrf2 

translocates to the nucleus where it binds to the ARE increasing transcription. In 

this way, it also binds to the promoter fused to GFP and can therefore identify 

increased activation of the cellular stress response.  

Here, fluorimetry and confocal imaging were used to investigate increased 

transcription of this transgene in spinster. Five day old flies were used and the 

level of GFP analysed. The genotypes tested were gst-D-GFP in a wildtype 

background (gst-D-GFP/+), which was compared to gst-D-GFP levels in spinster 

(spin5, gst-D-GFP/ spin∆58). The levels of GFP are significantly increased in 

spinster compared to wildtype (p<0.001, ANOVA). This was shown by both 

fluorimetry and confocal microscopy (Fig. 3.2A and B respectively). A different 

spinster mutant combination was also investigated; (spin5, gst-D-GFP/ spin4)  
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Figure 3.2: The oxidative stress response is activated in spinster. (A) spin  mutants 
(spin5/spinΔ58 ) have  increased levels of gst-D-GFP (p<0.001, Student’s t-test) 
indicating activation of the stress response. Increased GFP is shown through 
fluorimetry, the graph shows emission at the peak amplitude of GFP emission, error 
bars show SEM (n=3). (B) Increased GFP can also be seen in z-stacks of adult heads 
(neuropil shown in magenta). (C) A different spinster mutant combination spin4/spin5  
also caused significant upregulation of gst-D-GFP. Expression of spin under the control 
of spinGAL4 rescues this phenotype. 

which is also shown to have significantly increased levels of GFP (Fig. 3.2C). 

The presence of this phenotype in two different spinster genotypes suggests it is 

caused by spinster mutations directly and not by other mutations that have 

arisen in the spinster lines. 

To confirm that this phenotype is caused by loss of function in spinster, and not 

by background mutations, expression of a wildtype spinster cDNA under the 
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UAS- mediated control of spinGAL4 was used. This completely rescues the 

increased levels of gst-D-GFP in a spinster mutant background demonstrating 

that the increased level of gst-D-GFP is in fact caused by loss of spinster. 

Although the level of ROS has not been directly assayed in spinster, taken 

together, the data suggest that ROS are present in spinster, since both main 

facets of oxidative stress have been demonstrated.   The presence of increased 

cellular damage and activation of the cellular stress response demonstrates an 

imbalance between the generation and breakdown of ROS, indicative of 

oxidative stress. However this association does not indicate the direction of 

causation with respect to the phenotypes seen in spinster.  To test this, the next 

step is to determine whether relieving oxidative stress rescues the 

neuromuscular junction phenotypes previously identified in spinster. 

3.2.2. Neuromuscular junction morphology is perturbed in 

spinster 

Mutations in spinster cause an increase in bouton number as identified by 

Sweeney and Davies (2002) indicating a synaptic overgrowth. Some of the 

mutant allele combinations used in this study were different to those published. 

It was therefore necessary to confirm that these less severe combinations also 

cause overgrowth of the neuromuscular junction. Sweeney and Davis used 7 

different allelic combinations and all showed a significant overgrowth.  Both 

mutant combinations that are viable through to adulthood show a significant 

increase in bouton number (Fig. 3.3A). The muscle surface area of the larvae is 

not significantly affected by these mutations (Fig. 3.3B). Consequently, a similar 

trend can be seen in bouton number prior to and following normalisation (Fig. 

3.3C). The normalisation step is carried out as increases in  
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Figure 3.3. spinster has increased bouton number with no change in muscle 
surface area. (A) Bouton numbers are wildtype of 85±3.3 (n=16) to 124±9.0 (n=8), 
117±7.7 (n=21) and 152±5.1 (n=32) for the mutant combinations spin5/spinΔ

58, 
spin4/spinΔ

58 and spin4/spin5 respectively (p<0.001; ANOVA). (B) The surface area of 
muscle 6/7 in segment A3 is 80801±2265µm2, and in spinster mutations it is 
82068±4538, 74129±1635 and 76580±2716µm2 for the combinations spin5/spinΔ

58, 
spin4/spinΔ

58 and spin4/spin5 respectively (p>0.05; ANOVA). (C) When normalised to 
muscle surface area the bouton number for spin5/spin∆58, spin4/spin∆58 and spin4/spin5 is 
126±13.4, 129±9.5 and 166±7.8 respectively. (D) Representative images of wildtype 
and spinster NMJs at muscle 6/7 segment A3. Nerves shown in magenta through α-
HRP staining. Synaptic boutons visualised in green by α-synaptotagmin staining. Scale 
bar = 20µm. 

bouton number during synaptic growth are proportional to muscle surface area 

(Schuster et al., 1996a). The trend seen is as expected: spin4/spin∆58 and 
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spin5/spin∆58 both show increased bouton number compared to wildtype but less 

of an overgrowth than the more severe mutant combination spin4/spin5.  

The remainder of the analysis of neuromuscular junction analysis was carried 

out in spin4/spin5, the most severe overgrowth phenotype and the genotype 

most extensively described in Sweeney and Davis (2002).  

The branch number was also analysed in spinster mutants and is significantly 

increased in spin4/spin5 compared to wildtype (p<0.001; ANOVA) (Fig. 3.4A). 

This is consistent with many other overgrowth phenotypes where branching 

tends to increase with bouton number showing spinster growth is consistent with 

a normal pattern of growth. 

 

Figure 3.4 Spinster mutants have increased branch number proportional to 
increase in bouton number. (A) Wildtype larvae have a mean branch number of 
5.31±0.44 (n=16). This is significantly increased in spinster to 10.82±1.33 (n=11; 
p<0.001 Student’s t-test). (B) When normalised to bouton number there is no significant 
difference between branch number in wildtype and spinster, which has a mean 
normalised branch number of 6.05±0.74 (n=11; p>>0.05 Student’s t-test). (C) When 
normalised to account for muscle surface area and bouton number when spinster has a 
mean branch number of 5.54±0.68 (n=11; p>>0.05 Student’s t-test).  
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Figure 3.5 spinster has reduced mean bouton width and a greater proportion of 
smaller boutons. (A) Mean bouton width in wildtype and spinster is 2.6±0.06 (n=468) 
and 2.35±0.04 (n=873) (p<0.001, Student’s t-test) respectively. (B) Bouton size in 
spinster is also displayed as % boutons at each µm width, the distribution of bouton size 
is significantly different, with spinster showing a higher proportion of smaller boutons. 
(p<0.001, Kolmogorov-Smirnov). (C) Cumulative % bouton numbers at each µm width 
in wildtype and spinster showing the difference in distribution. 

Branch number increases proportionately with bouton number as when branch 

number is normalised to wildtype bouton number there is no significant change 

between spinster and wildtype (Fig. 3.4B). As in spinster there is no significant 

change in muscle surface area the same trend is seen when muscle surface 

area is accounted for (Fig. 3.4C). 

During analysis of bouton number in a variety of phenotypes a difference in 

bouton size was indicated. Another overgrowth phenotype highwire (hiw) has 

been shown to have significantly reduced bouton size in comparison to wildtype 

(Collins et al., 2006). Mutations in spinster results in reduced mean bouton width 

compared to wildtype (Fig. 3.5A). However, due to the presence of different 

bouton populations at muscle 6/7 it is useful to look at the proportion of smaller 

boutons, (type1s) and larger boutons (type1b), although classification of these 

based on size varies greatly in different studies. They are clearly defined by 

innervation and morphology but for the purposes of this study size was 

investigated in µm increments to establish the distribution on bouton width. 

Bouton size was found to exhibit a different distribution of width between 

wildtype and spinster  (p<0.001; Kolmogorov-Smirnoff) with a greater proportion 

of smaller boutons in spinster mutants (Fig. 3.5B and C). Nonetheless, the 

spinster mutants have consistently overgrown synapses compared to wildtype.  

3.2.3. Relieving oxidative stress reduces overgrowth of the 

neuromuscular junction in spinster 

Increased levels of oxidative damage and activation of the cellular stress 

response in spinster are indicative of increased levels of ROS. Normally ROS 
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are maintained at physiological levels through a tightly regulated balance 

between their generation and a complex system of anti-oxidants. Given the 

indication that spinster is carrying an oxidative stress burden, it is proposed that 

such oxidative stress might be a causative factor in the generation of overgrowth 

at the neuromuscular junction. To test this hypothesis anti-oxidant transgenes 

were expressed under the control of spinGAL4. Thus, transgenes were 

expressed concurrently pre- and post- synaptically, in the nerve and muscle. 

Expression of the anti-oxidant transgene UAStrxCYTO relieves oxidative stress 

and prevents the increase in branch number seen in spinster, showing that 

oxidative stress causes increased branching in spinster (Fig. 3.6).  

Bouton number was investigated through the expression of four different 

antioxidant transgenes, UAShSOD1, UAScat, UAStrxRCYTO and UAStrxRMITO 

These were expressed concurrently pre- and post-synaptically and all 

significantly rescue synaptic overgrowth (Fig. 3.7; p<0.001, ANOVA).  

Expression of UAShSOD1 will promote the generation of hydrogen peroxide 

from superoxide anions.  This is the cytoplasmic and mitochondrial periplasm 

form of the enzyme (Missirlis et al., 2003). The other three anti-oxidant 

transgenes are involved in the conversion of hydrogen peroxide to water and 

oxygen, or neutralisation of other ROS, not superoxide anions; only SOD acts 

on superoxide produce hydrogen peroxide.  Catalase acts directly to convert 

hydrogen peroxide to water (May, 1901), whereas thioredoxin reductase (TrxR) 

acts to reduce oxidised thioredoxin, allowing it to be used again in the 

breakdown of hydrogen peroxide.  This process is coupled to the oxidation and  
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Figure 3.6 spinster has increased branching due to oxidative stress. The mean 
number of branches per neuromuscular junction was increased from 4.54 (n=11) in 
wildtype to 10.8 (n=11) in spinster (Fig. 3.4).  Expressing the anti-oxidant transgene 
UAStrxCYTO significantly reduces branch number to 4.4±0.35 (n=12, p<0.001, ANOVA) 
back to wildtype levels. Expression of this transgene in a wildtype background does not 
cause any significant change in branch number 4.07±0.29 (p>>0.05 compared to 
wildtype, ANOVA).  



3. Oxidative Stress Contributes to Synaptic Overgrowth in spinster, a 
Model of a Lysosomal Storage Disorder 

76 

 



3. Oxidative Stress Contributes to Synaptic Overgrowth in spinster, a 
Model of a Lysosomal Storage Disorder 

77 

Figure 3.7 Relieving the oxidative stress burden in spinster through expressing 
anti-oxidant transgenes reduces synaptic overgrowth. Expression of UAShSOD1, 
UAScat, UAStrxCYTO, UAStrxMITO, did not cause any significant change in bouton 
number in a wildtype background, with bouton numbers of 90±4.1 (n=24), 76±4.6 
(n=18), 78±2.9 (n=10) and 80±3.3 (n=16), Expression of these transgenes in spinster 
resulted in a reduction of bouton number from spinster with a bouton number of 152 
(n=32).  Bouton number is significantly reduced to 110±3.7 (n=46) by the expression of 
UAShSOD1, to 103±5.9 (n=17) by UAScat, 113±8.3 (n=10) by UAStrxCYTO and to 
103±6.8 by UAStrxMITO (p<0.001; ANOVA) respectively. Representative images of 
NMJs at muscle 6/7 segment A3 with nerves shown in magenta through α-HRP 
staining. Synaptic boutons visualised in green by α-synaptotagmin staining. Scale bars 
denote 20µm. 

reduction of NADPH (Holmgren, 1989).  Two UAStrx-R transgenes were used in 

this experiment; one that acts in the cytoplasm and one in the mitochondria 

(Missirlis et al., 2002).  

The similar effects of different anti-oxidants suggests that it is the level of 

oxidative stress that is significant in causing the overgrowth rather than the 

cellular localisation, or the proportion of superoxide anions in relation to 

hydrogen peroxide. This assumption is arrived at because it is immaterial to the 

level of rescue afforded, which ROS are acted upon; all the anti-oxidant 

enzymes expressed increase the breakdown of ROS and rescue synaptic 

overgrowth.  These data also indicate that the sub-cellular localisation of the 

anti-oxidant is of no consequence to the level of rescue provided, since 

expressing cytoplasmic or mitochondrial anti-oxidant transgenes afforded the 

same level of rescue, although as overexpression was used there may also be 

expression outside its normal localisation.  Unfortunately, this could not be 

further confirmed by comparing the effects of expression of UASsod2 in spinster 

as it was not possible to recombine this transgene with the spinster mutants, 

suggesting they are close together on the 2nd chromosome.  Although reducing 

oxidative stress rescues branch number and bouton number it is not known 

whether bouton size is also rescued by expression of these transgenes. 
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Figure 3.8 Expression of UAShSOD1 reduces synaptic overgrowth in spinster 
when expressed in either the nerve the muscle or both. Expression of UAShSOD1 
under the control of elaVGAL4, MHCGAL4, spinGAL4 and tubGAL4 in a wildtype 
background did not cause any change in bouton number from wildtype, 85±3.3 (n=16) 
to 79±4.0 (n=16), 83±6.4 (n=15), 90±4.1 (n=24) and 81±3.2 (n=8), respectively. 
Expression of hSOD1, under control of these GAL4 drivers significantly rescues 
synaptic overgrowth. Expression in the nerve reduces bouton number to 106±8.0 
(n=14), in the muscle 103±3.2 (n=14).  As already shown concurrent expression in the 
nerve and muscle, by spinGAL4, reduces bouton number to 110±3.7 (n=46) tubGAL4 
driven expression of UAShSOD1 in spinster rescued bouton number to 115±6.0 (n=22).  

Having established that relieving the oxidative burden pre- and post- 

synaptically, through the spinGAL4 driver, rescues synaptic overgrowth it was 

decided to determine whether input from the pre- and post- synaptic 

compartments alone can rescue bouton number. As spin cDNA expression is 

required both in the nerve and the muscle to fully rescue overgrowth in the 

spinster mutant. This will elucidate whether oxidative stress and resultant 

signalling from both the nerve and the muscle contributes to synaptic overgrowth 

in spinster.  To do this UAShSOD1 was expressed either pre- or post- 
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synaptically by elaVGAL4 or MHCGAL4 respectively.  UAShSOD1 was also 

expressed at high levels globally under the control of tubGAL4.  Expression of 

UAShSOD1 under the control of elaVGAL4, MHCGAL4, spinGAL4 and tubGAL4 

in a wildtype background did not change in bouton number from wildtype (Fig. 

3.8). However, expression of hSOD1, under control of these GAL4 drivers 

significantly rescues synaptic overgrowth in a spinster mutant background. 

Expression in the nerve, muscle or both concurrently provided the same level of 

rescue.  Global high level expression also afforded a similar level of rescue.  

This suggests that there is a limit to the level of rescue hSOD1 can provide, 

possibly due the breakdown of hydrogen peroxide becoming the rate-limiting 

step in the anti-oxidant pathway. These data are consistent with Sweeney and 

Davis (2002), who showed that spinster induced overgrowth is caused by 

contribution from both the pre- and post- synaptic compartments of the 

neuromuscular junction.   

3.2.4. Oxidative stress contributes to overgrowth in highwire 

Highwire is an E3 ubiquitin ligase that regulates the development of the 

neuromuscular junction by limiting JNK signalling  (Collins et al., 2006).  

Mutations in hiw result in overactivation of this pathway leading to Fos- 

dependent synaptic overgrowth.  This occurs as highwire is required for the 

ubiquitination, and hence breakdown, of wallenda, a JNKKK. In highwire 

mutants, the level of wallenda is left unchecked and is increased leading to 

heightened activity in the downstream pathway. Depleting wallenda, JNK or Fos 

signalling in highwire mutants prevents this overgrowth, as the increased activity 

in this pathway is impeded. It is interesting to note that Jun was not involved 

suggesting that, as postulated, Fos can act independently of Jun in Drosophila 

(Perkins et al., 1990, O’Shea et al., 1992). Highwire is regulated by autophagy, 

suggesting one mechanism through which autophagy promotes synapse growth  
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Figure 3.9 Expression of UAShSOD1 rescues synaptic overgrowth in highwire. 
Wildtype males have a mean bouton number of 74±3.2 (n=12).  hiw mutants have a 
bouton number of 146±5.7 (n=20). hSOD1 did not cause any change in bouton number 
in a wildtype background; elaVGAL4, MHCGAL4 and spinGAL4 driving hSOD1 having 
bouton numbers of 71±2.6 (n=25), 72±3.6 (n=12), and 71±2.9 (n=21) respectively. 
When these transgenes were expressed in hiw mutants a significant rescue of bouton 
number was seen.  Neuronal expression of hSOD1 affords complete rescue of NMJ 
overgrowth to 75±9.5 (n=15), whereas expression of hSOD1 under control of 
MHCGAL4 and spinGAL4 both reduced bouton number to 108±7.0 (n=21) and 108±6.0 
(n=25) respectively. Representative images of NMJs at muscle 6/7 segment A3 with 
nerves shown in magenta through α-HRP staining. Synaptic boutons visualised in green 
by α-synaptotagmin staining. Scale bars denote 20µm. 

(Shen and Ganetzky, 2009).  In addition, JNK has been shown to activate 

autophagy transcriptionally (Wu et al., 2009) so the cyclical nature of this 

pathway is evident. Mutations in degradative pathways have been implicated in 

a number of neurodegenerative disorders and have been cited as a source of 

ROS. One of the genetic determinants of Parkinson’s disease is parkin an E3 

ubiquitin ligase, however it is now known whether the loss of ubiquitination that 

causes PD with this mutation, furthermore parkin is involved in regulation of JNK 

signalling (Cha et al., 2005).  It was therefore decided to investigate whether 

oxidative stress causes any of the overgrowth seen in hiw. As oxidative stress 

can lead to the increased activity of JNK signalling and could contribute to 

synaptic overgrowth.  The anti-oxidant transgenes UAScat and UAShSOD1 

were expressed in the nerve using elaVGAL4, in the muscle using MHCGAL4 

and concurrently in the nerve and muscle using spinGAL4 (Fig. 3.9 and 10).  

Analysis of NMJs in hiw was carried out in males, which are approximately 10% 

smaller than females and consequently have a lower number of boutons. As in 

the females, any expression ofUAShSOD1, whether in the nerves, muscles or 

both did not cause any change in bouton number in a wildtype background. 

However, when these transgenes were expressed in hiw mutants a significant 

rescue of bouton number was seen.  Neuronal expression of hSOD1 affords 

complete rescue of NMJ overgrowth whereas expression of hSOD1 under  
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Figure 3.10 Reducing oxidative stress through expression of UAScat fails to 
rescue synaptic overgrowth in highwire. UAScat did not cause any change in bouton 
number in a wildtype background.  elaVGAL4, MHCGAL4 and spinGAL4 driving 
UAScat having bouton numbers of 95±10 (n=12), 83±6.3 (n=15), and 67±4.3 (n=19) 
respectively .Expression of UAScat pre-synaptically in highwire caused a bouton 
number of 133±6.5 (n=16).  Expression in the muscle did not significantly affect bouton 
number 162±24.1 (n=16), and expression concurrently in the muscle and nerve under 
control of spinGAL4 resulted in a bouton number of 125±4.7 (n=16). These are not 
significantly different to bouton numbers in highwire (p>0.05, ANOVA).   

control of MHCGAL4 and spinGAL4 both significantly reduced bouton number, 

but only a partial rescue, not back to wildtype levels (Fig. 3.9). Previously 

highwire overgrowth was thought to be controlled entirely through the pre-

synaptic compartment.  This is somewhat inconsistent with the data shown here, 

although ROS can diffuse freely between cells and it therefore non-autonomous, 

unlike activity in some signalling pathways. The same GAL4 drivers were used 

to ascertain the effects of increasing levels of catalase using UAScat.  Once 

again (Fig. 3.10), similar to the females, expression of UAScat pre- (elaV) or 
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post (MHC) synaptically or both (spin) does not cause any significant change in 

bouton number in wildtype males.  Expression of UAScat in these tissues did not 

cause any significant change in bouton number in highwire (p>0.05 ANOVA).  

The observation that increasing the breakdown of hydrogen peroxide does not 

alter alleviate highwire induced overgrowth, suggests that the level of hydrogen 

peroxide is not contributing to the overgrowth phenotype. However, relieving the 

superoxide burden completely rescues the overgrowth phenotype suggesting 

that a misregulated component in the highwire mutants is sensitive to activation 

by superoxide specifically rather than other ROS.  

3.3. Discussion 
Mutations in spinster have been shown to cause aberrant carbohydrate storage 

in the lysosomes and accumulation of multilamellar membrane components.  

Endocytic defects and neurodegeneration are also observed (Dermaut et al., 

2005).  Oxidative stress has been implicated in a number of neurodegenerative 

conditions including a number of lysosomal storage disorders, so it was 

investigated whether spinster is carrying an oxidative stress burden. The data 

here demonstrate that mutations in spinster, a transmembrane lysosomal 

protein, result in oxidative stress.   Increased levels of peroxidated lipids and 

increased transcription of gst-D-GFP show that spinster incurs oxidative damage 

and activation of the cellular stress response. Increased levels of 

malondialdehyde were found in the blood of mucopolysaccharidosis type II 

patients, and this was found to be reduced following 6 months of enzyme 

replacement therapy (Fillipon et al., 2011), again suggesting the causative role 

of lysosomal dysfunction in the generation of oxidative stress. This is likely to be 

a result of the presence of lipofuscin, which is caused by and goes on to cause 

oxidative stress and is a common characteristic of LSDs (Yamamoto et al., 

1999). 
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In addition to the presence of oxidative stress the morphology of the 

neuromuscular junction was also analysed, and it is found that spinster mutants 

have increased branch number, coupled to increased bouton number. Bouton 

size shows a different distribution in spinster compared to wildtype.  There are 

more smaller boutons in spinster compared to wildtype; this is akin to but not as 

severe as the bouton size phenotype seen in highwire mutants. Having shown 

the presence of oxidative stress in spinster the question of whether oxidative 

stress is causative to the synaptic overgrowth phenotype remained. The 

regulation of synapse growth is a complex process involving the integration of 

many signalling pathways that act both anterogradely and retrogradely, thus 

signalling between the nerve and the muscle and the reverse is required for 

normal development (For review see Collins and DiAntonio, 2007). By 

expressing an anti-oxidant transgene UAS-hSOD1 the level of oxidative damage 

in spinster is reduced suggesting that ROS is impinging upon one of these 

growth pathways.  

All the anti-oxidants transgenes when expressed pre- and post-synaptically 

using spinGAL4 in spinster mutants cause a significant reduction in bouton 

number, but none provide a full rescue. These data suggest that there is a only 

certain level of rescue that can be obtained by reducing oxidative stress; there 

are other causative factors in spinster that are contributing to the overgrowth 

and further relieving oxidative stress is unable to combat these other causative 

factors.  For this to be confirmed a number of anti-oxidants would have to be 

expressed concurrently both pre- and post synaptically. To deal with the level of 

oxidative stress a number of different anti-oxidant might need to be expressed 

together to effectively convert superoxide anions to hydrogen peroxide and then 

degraded further to water and oxygen.  For example expressing SOD will 

increase the levels of hydrogen peroxide while dissipating the superoxide 

anions.  Conversely, all the other anti-oxidant transgenes expressed work by 

converting hydrogen peroxide to water and oxygen. However it has not been 
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investigated whether the change in bouton size is rescued by relieving the 

oxidative burden. 

Mutations in spinster have previously been shown to cause overgrowth of the 

Drosophila neuromuscular junction due to dysregulation of TGFβ signalling 

(Sweeney and Davies, 2002). The data shown here is consistent with TGF-beta 

being permissive for synapse growth.  Tissue specific expression of spinster 

cDNA showed that spinster is required both pre- and post- synaptically for 

normal synaptic development, there is 50% synaptic overgrowth contributed 

from each compartment (Sweeney and Davies, 2002).  Here, it is shown that 

pre- or post- synaptic expression of UAShSOD1 afford a similar level of rescue, 

which is the same as obtained by concurrent expression pre- and post- 

synaptically with spinGAL4 or tubGAL4. Once again a battery of anti-oxidants 

may be required to fully rescue this severe overgrowth phenotype, alternatively 

full rescue of overgrowth might not be possible with anti-oxidants alone due to 

the persistent increased presence of signalling molecules, normally down-

regulated through lysosomal systems. 

The involvement of oxidative stress in generating overgrowth of the 

neuromuscular junction was also investigated in highwire; differential 

involvement was found in spinster and highwire. Reducing oxidative stress 

through the expression of UAShSOD1 reduces synaptic overgrowth most 

efficiently when expressed pre-synaptically in highwire. Conversely there is no 

difference between the level of rescue seen in spinster between pre- and post-

synaptic expression of UAShSOD1. This is in keeping with published data that 

highwire and its downstream effector wallenda is expressed in the nerve (Wan 

et al., 2000) and that depleting presynaptic signalling is sufficient to rescue 

synaptic overgrowth (Collins et al., 2006), whereas in spinster mutants pre- and 

post-synaptic expression of UASspin was required to rescue the overgrowth 

phenotype (Sweeney and Davies, 2002). However post-synaptic involvement in 
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highwire-induced overgrowth been investigated, although there is an 

electrophysiological phenotype in highwire mutants (Wan et al., 2000).  

The data here also suggest that superoxide anions and hydrogen peroxide 

contribute to synaptic overgrowth in spinster but only superoxide anions 

contribute to overgrowth in highwire as overexpression of catalase to breakdown 

hydrogen peroxide did not change highwire-induced overgrowth. Although 

dendritogenesis and syanptogenesis have previously been identified in models 

of lysosomal storage disorders, the causes of increased synapse formation had 

not previously been identified. The data shown here clearly indicate that 

oxidative stress is having a causative role in increased synaptic growth in 

spinster, a model of a lysosomal storage disorder.  
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4. Oxidative Stress Causes Overgrowth of the 
Drosophila Neuromuscular Junction 

4.1. Introduction 
In chapter 3, it was shown that spinster is carrying an oxidative burden leading 

to increased oxidative damage and activation of stress response pathways. It 

was also observed that expressing antioxidant transgenes could prevent 

synaptic overgrowth in both spinster and highwire. This suggests that oxidative 

stress is causative of the synaptic overgrowth phenotype seen in these mutants. 

Due to these effects of oxidative stress on synapse development in these 

mutants it is postulated that oxidative stress can cause synaptic overgrowth. 

Consequently, to test this hypothesis it was investigated whether it is possible to 

recapitulate this overgrowth phenotype through the generation of oxidative 

stress independent of the lysosomal dysfunction arising in spinster. This would 

allow dissection of this phenotype and could elucidate what is caused as a result 

of oxidative stress and what is a direct result of lysosomal dysfunction. The 

effects of oxidative stress on synapse development were investigated by 

inducing oxidative stress in the developing larvae in a number of ways. Firstly, 

larvae were exposed to toxins known to cause oxidative stress, namely paraquat 

and rotenone. Secondly, mutations known to cause oxidative stress were used, 

there being two ways in which mutations can generate oxidative stress. Stress 

can be induced either by increasing the generation of ROS such as sesB or by 

reducing the animals capacity to breakdown ROS, through mutations in the anti-

oxidant defence system, such as sod1. 

Mutations in spinster were also shown to cause other changes in synaptic 

morphology, such as increased branch number and increased proportion of 

smaller boutons. To determine whether oxidative stress or other aspects of 
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spinster induce these changes these phenotypes were investigated in animals 

carrying an oxidative burden. 

4.2. Results 

4.2.1. Oxidative stress alters bouton number and muscle 

surface area 

4.2.1.1. Paraquat causes overgrowth of the neuromuscular junction  

Paraquat is an electrotoxin that impairs mitochondrial function and undergoes 

redox cycling within the cell (Bus et al., 1976a and b). Exposure to this toxin has 

been known to cause Parkinson’s disease in farm workers exposed to this 

pesticide (Tanner et al., 2011). It is also commonly used to cause oxidative 

stress in experimental systems. Paraquat undergoes redox cycling in the cell 

and also impairs mitochondrial function through acting at complex I or complex 

III (Fukushima et al., 1994 and 2002; Richardson et al., 2005; Ramachandiran et 

al., 2007). By feeding larvae paraquat through the larval stages of development, 

paraquat is seen to cause no change in bouton number, at 1mM, 5mM or 10mM, 

prior to muscle normalisation (Fig. 4.1A). Lower concentrations of paraquat do 

not cause any change in muscle surface. However, 10mM paraquat causes a 

significant reduction in muscle surface area (Fig. 4.1B). Given the observation 

that muscle size and bouton number share a proportional relationship (Schuster 

et al., 1996a; Lnenicka and Keshishian, 2000) it is common to normalise bouton 

number to muscle surface area. Consequently, when bouton number is 

normalised to account for these changes in muscle surface area 1mM and 5mM 

do not cause any change in bouton number whereas 10mM paraquat causes a 

significant increase in bouton number relative to muscle surface area (FIG 

4.1C), suggesting that oxidative stress, as a result of paraquat exposure, causes 

synaptic overgrowth. 
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Figure 4.1 Paraquat causes synaptic overgrowth relative to muscle surface area. 
(A) On instant food in the absence of paraquat wildtype larvae have a mean bouton 
number of 78±2.1 (n=28). When fed on 1, 5 and 10mM paraquat this is not significantly 
changed with mean bouton numbers of 80±3.5 (n=24), 77±3.5 (n=21) and 80±6.6 
(n=41) (p>0.05, ANOVA). (B) On instant food wildtype larvae have a mean muscle 
surface area of 72313±2837µm2. 1mM and 5mM paraquat cause no change with 
muscle surface areas of 73162±2665 µm2 and 78917±2120µm2 respectively (p>0.05, 
ANOVA). 10mM paraquat caused a significant reduction in muscle surface area to 
52003±2922µm2. (p<0.001, ANOVA). (C) When normalised to muscle surface area 1 
and 5mM paraquat do not cause any change in bouton number; 82±5.3 and 72±4.3 
respectively (p>0.05 ANOVA). 10mM causes a significant increase in normalised 
bouton number to 114±8.3 (p<0.001). (D) Representative images of wildtype NMJs at 
muscle 6/7 segment A3 in normal instant food and in 10mM paraquat. Nerves shown in 
magenta through α-HRP staining. Synaptic boutons visualised in green by α-
synaptotagmin staining. Scale bar = 20µm (E) Representative images of muscles 
showing length and width (red lines). 
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Figure 4.2. Rotenone reduces synaptic growth with no change in muscle surface 
area. (A) 0.01mM and 0.1mM Rotenone did not cause any change in bouton number; 
70±5.01 (n=14), 70±5.69 (n=12) no significantly different from wildtype: 78±2.1 (n=28), 
(p>0.05, ANOVA). 0.5mM and 1mM rotenone cause a significant reduction in bouton 
number with 57±3.74 (n=13) and 61±4.04 (n=13), (p<0.05, ANOVA). (B) 0.01mM, 
0.1mM, 0.5mM and 1mM rotenone have muscle surface areas of 77142±2994µm2, 
75513±4880µm2, 68243±3700µm2 and 78154±4262µm, respectively. (C) Following 
normalisation the bouton numbers shown the same trend as prior to normalisation as 
the muscle surface areas were not significantly altered; 67±4.92, 69±6.43, 61±8.2 and 
60±7.7 for 0.01, 0.1, 0.5 and 1mM rotenone.  Normalised bouton numbers in larvae 
exposed to 0.5 and 1mM rotenone were significantly reduced compared to wildtype 
(p<0.05). (D) Representative images of wildtype NMJs without rotenone and in 1mM 
rotenone at muscle 6/7 segment A3. Nerves shown in magenta through α-HRP staining. 
Synaptic boutons visualised in green by α-synaptotagmin staining Scale bar = 20µm. 
(E) Representative images of muscles showing length and width (red lines). 

4.2.1.2. Rotenone causes undergrowth of the neuromuscular junction 

Rotenone is also known to cause oxidative stress and is commonly used as a 

model of Parkinson’s disease (Betarbet et al., 2000; Sherer et al., 2003). It 

impairs mitochondrial complex I function (Sherer et al., 2003). Low doses of 

rotenone (0.01mM, 0.1mM) did not cause any change in bouton number, 

however, higher doses of rotenone do cause changes at the neuromuscular 
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junction. 0.5mM and 1mM rotenone cause a significant reduction in bouton 

number (p<0.05, ANOVA) (Fig. 4.2A). No change in muscle surface area is seen 

at any concentration of rotenone (p>0.05, ANOVA) (Fig. 4.2B). Following 

normalisation, a similar pattern of changes in bouton number persists as prior to 

normalisation; higher concentrations of rotenone cause a significant reduction in 

bouton number, even relative to muscle surface area (FIG. 4.2C). 

4.2.1.3. Mutations that increase generation of ROS or reduce protection 
from oxidative stress tend to cause overgrowth of the neuromuscular 
junction 

In addition to the effects of environmental causes of oxidative stress, the effects 

of oxidative stress on synapse development were investigated further through 

the use of mutations that cause oxidative stress. Three mutants in the anti-

oxidant defence system were analysed: sod1, sod2 and cat.  Additionally, two 

mutants known to cause hypersensitivity to oxidative stress, through increased 

generation of ROS were analysed: succinate dehydrogenase B (sdhB) and 

stress sensitive B (sesB).  SdhB is a component of complex II of the 

mitochondrial respiratory chain, mutations in this protein result in hypersensitivity 

to ROS and reduced longevity (Walker et al., 2006).  sesB encodes a 

mitochondrial adenosine nucleotide transporter. Mutations in this gene cause 

increased sensitivity to oxidative stress and increased bouton number (Trotta et 

al., 2004). The morphology of the neuromuscular junction in these mutants was 

examined and it was found that sdhB causes a reduction in bouton number prior 

to normalisation Mutations in sesB cause an increase in bouton number 

(p<0.05, ANOVA).  Mutations in the anti-oxidant defence system were also 

analysed.  cat mutants, which have a reduced capacity to break down hydrogen 

peroxide, and thus are prone to oxidative stress have a normal bouton number 

prior to  
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Figure 4.3. Mutations that cause oxidative stress tend to cause synaptic 
overgrowth. (A) sdhB has a significant reduction in bouton number 59±4.4 (n=16), 
(p<0.05, ANOVA) whereas sesB has an overgrowth 109±4.0 (n=13), (p<0.05, ANOVA). 
cat does not cause any change in bouton number 83±4.8 (n=17), (p>0.05, 
ANOVA).sod1 and sod2 have significantly increased bouton numbers of 108±4.9  
(n=33, p<0.001, ANOVA) and 107±5.9 (n=17, p<0.05,ANOVA) (B) All the mutations 
cause a significant reduction in muscle surface area, sdhB, sesB, cat, sod1 and sod2  
have muscle surface areas of 67668±3238µm2, 63699±2222µm2, 63334±3229µm2, 
59272±2744µm2 and 61909±3000µm2 respectively. (*p<0.05, **p<0.01 and ***p<0.001, 
ANOVA). (C) Following normalisation to muscle surface area sdhB and cat show no 
significant change in bouton number (p>0.05, ANOVA), sesB has a significant increase 
in normalised bouton number 107±5.9 (p<0.01, ANOVA) and sod1 and sod2 have an 
even greater increase in normalised bouton number 156±9.6 and 147±11.6 
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respectively. (D) Representative images of wildtype and oxidative stress mutants at 
muscle 6/7 segment A3. Nerves shown in magenta through α-HRP staining. Synaptic 
boutons visualised in green by α-synaptotagmin staining. (E) Representative images of 
muscles showing length and width (red lines). 

normalisation. Conversely, mutations in superoxide dismutase, the enzyme that 

catalyses the conversion of superoxide anions to hydrogen peroxide, cause 

synaptic overgrowth. Both forms of the enzyme, sod1 and sod2, cytoplasmic 

and mitochondrial have significantly increased bouton number (p<0.001 and 

p<0.01 ANOVA, respectively) (Fig. 4.3A).  All of the mutations investigated 

cause a significant reduction in muscle surface area, with varying significances 

(Fig. 4.3B). Due to the changes in muscle surface area, bouton number was 

normalised for muscle surface area, as the relationship between muscle size 

and bouton number is well documented (Schuster et al., 1996a).  When muscle 

surface area is accounted for there is no change in normalised bouton number 

in sdhB and it is statistically similar to wildtype (p>0.05, ANOVA).  sesB has an 

increased normalised bouton number compared to wildtype (p<0.01, ANOVA).  

Mutations in the anti-oxidant defence system also had different effects on 

bouton number.  cat did not cause a significant difference in normalised bouton 

number (p>0.05, ANOVA). Whereas, sod1 and sod2 cause a significant 

increase in bouton number proportional to muscle surface area (Fig. 4.3C).  

However, when statistical analysis is performed without sod mutants the 

overgrowth seen in cat relative to muscle surface areas is significant (p<0.05, 

ANOVA).  

4.2.2. Oxidative stress causes changes in synaptic branching 

Synapse growth is most normally quantified in terms of addition of boutons. 

However branching is also used as a common read-out of neuromuscular 

junction development. Mutations in spinster were shown to have increased 

branching in proportion to increased bouton number (Fig. 3.4) so branching was  
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Figure 4.4. 10mM paraquat causes an increase in branch number. (A) Wildtype 
NMJs have a mean branch number of 4.38±0.42 (n=8). This is significantly increased in 
paraquat to 6.17±0.6 (n=6) (p<0.05, Student’s t-test). (B) When normalised to bouton 
number 10mM paraquat has a mean branch no of 6.01±0.6 (n=6; p<0.05, Student’s t-
test). (C) When normalised to normalised bouton number and therefore accounting for 
muscle surface area, there is no change in branch number between no paraquat and 
10mM paraquat: 4.22±0.4 (p>0.05 Student’s t-test). 

 

Figure 4.5. Mutations in sod1 and sod2 cause different effects in branch number. 
(A) sod1 causes an increase in branch number from 5.3±0.44 (n=16) to 7.25±0.92 (n=7) 
(p<0.05, ANOVA). Conversely, mutations in sod2 caused a significant reduction in 
branch number to 3.5±0.32 (n=17) (p<0.05, ANOVA). (B) When normalised to bouton 
number sod1 mutants have statistically similar branch number to wildtype 5.66±0.5 
(n=16; p>0.05, ANOVA) and sod2 mutants have significantly reduced branch number 
relative to bouton number of 2.76±0.3 (n=17; p<0.001, ANOVA). (C) When taking into 
account muscle surface area and bouton number both sod1 and sod2 have significantly 
reduced branch numbers of 3.92±0.3 (n=16; p<0.05, ANOVA) and 2.01±0.2 (n=17; 
p<0.001, ANOVA). 
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investigated in the overgrowth phenotypes identified above.  10mM paraquat 

causes an increase in branching (Fig. 4.4A). When normalised to bouton 

number, 10mM paraquat also causes a significant increase in branch number 

(Fig. 4.4B) as raw bouton number is not increased by 10mM paraquat. However, 

when normalised to take account of muscle surface area there is no significant 

difference between no paraquat and 10mM paraquat (Fig. 4.4C). This suggests 

that the change in branching has more to do with muscle surface area than 

bouton number in paraquat fed animals. Mutations in sod also caused changes 

in branch number. sod1 causes a significant increase in the number of branches 

where as sod2 causes a significant reduction in the number of branches (Fig. 

4.5A). When normalised for bouton number sod1 shows similar branching in 

proportion to bouton number, whereas the reduction seen in sod2 is made more 

severe when accounting for bouton number (Fig. 4.5B).  Having taken account 

for muscle surface area by comparing branch number to normalised bouton 

number both sod1 and sod2 have a significant reduction in branch number (Fig. 

4.5C). This suggests once again that ROS cause different effects depending on 

the cellular source of the ROS. This is because sod1 would presumably lead to 

predominantly cytoplasmic derived ROS whereas sod2 is more likely to lead to 

mitochondrial derived increases in ROS, thus differing effects can be seen on 

NMJ morphology depending on the source of the ROS. Although this does not 

entirely fit with paraquat, which purportedly acts to increase ROS generation by 

increasing superoxide generation by the mitochondria and leads to an increase 

in branch number, akin to that seen in sod1. However, the possibility of paraquat 

acting cytoplasmically as well cannot be overlooked. 

4.2.3. Oxidative stress causes changes in bouton size 

10mM paraquat causes a significant reduction in mean bouton size (Fig. 4.6A). 

However what can also be important is the proportion of type Ib and type Is 

boutons at the NMJ. Even though each type of bouton is clearly defined by their 
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innervation then are more loosely defined by their size however the range 

considered to be type Ib as compared to Is varies somewhat between studies. 

Therefore to compare bouton size the width of boutons in 1µm increments was 

analysed. Paraquat exposure results in increased proportion of smaller boutons 

compared to larger boutons (Fig. 4.6B). There are more boutons sized 0-2µm 

than in wildtype (Fig. 4.6B). The distribution of bouton size in paraquat fed 

animals is different to wildtype animals on normal food, with a higher proportion 

of smaller boutons in paraquat fed animals than in controls (p<0.001, 

Kolmogorov-Smirnov).  sod1 mutants have significantly reduced mean bouton 

size compared to wildtype (p<0.001, ANOVA) whereas sod2 mutants have the 

same mean bouton width as wildtype (Fig. 4.7A). As mentioned for previous 

genotypes and phenotypes, it is not just the mean bouton width that is important 

to analyse but the frequency of different sized boutons and hence the 

distribution width. Both sod1 and sod2 mutants show different distributions of 

bouton size compared to wildtype. sod1 mutants have more boutons sized 0-

3µm, than in wildtype, whereas sod2 mutants have an increased proportion of 

boutons sized 3-4µm (Fig. 4.7B). When plotted as cumulative percentages In 

addition when compared to each other sod1 and sod2 also show different 

distributions of bouton size (p<0.001, Kolmogorov-Smirnov) (Fig. 4.7C).  sod1 

seems to cause a similar change in distribution to paraquat, with an increase in 

the proportion of smaller boutons (p<0.001, Kolmogorov-Smirnov). However, as 

mentioned earlier, sod1 would probably result in predominantly cytoplasmic 

oxidative stress, where as paraquat has been suggested to be mainly 

mitochondrial oxidative stress. Conversely, mitochondrial increases in 

superoxide caused by sod2 mutations causes different effects. This suggests 

that oxidative stress does not uniformly alter bouton size, and depends exactly 

on the form of the insult incurred, but does not correlate well with differential 

effects of mitochondrial and cytoplasmic sources of ROS. 
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Figure 4.6. Paraquat causes changes in bouton size. Bouton widths were taken from 
7 NMJs for each condition (A) Paraquat causes a significant reduction in mean bouton 
width from 2.82±0.068µm (n=557) to 2.41±0.052µm (n=607 (p<0.001, Student’s t-test). 
(B) This shows the % of boutons in at each µm width, showing the increased proportion 
of smaller boutons in 10mM paraquat; this difference distribution is significant (p<0.001, 
Kolmogorov-Smirnov). (C) This shows the cumulative percentage of boutons in each 
µm width. 
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Figure 4.7. Mutations in sod cause changes in bouton size. Bouton widths were 
taken from 5 NMJs for wildtype and sod2, and 6 NMJs for sod1 (A) sod1 has a 
significantly reduced mean bouton width compared to wildtype; reduced from 
2.62±0.064µm (n=468) in wildtype to 2.2±0.042µm (n=610) (p<0.001, ANOVA). sod2 
mutants have a mean bouton width of 2.65±0.053 µm, not statistically different to 
wildtype (p>0.05, ANOVA). (B) This shows the % of boutons in at each µm width, 
showing the increased proportion of smaller boutons in sod1; this difference distribution 
is significant (p<0.001, Kolmogorov-Smirnov). sod2 mutants also show a difference in 
the distribution of bouton sizes (p<0.001, Kolmogorov-Smirnov) with an increased 
proportion of medium-sized boutons. (C) This shows the cumulative percentage of 
boutons in each µm width. 
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4.2.4. Growth of the neuromuscular junction in animals carrying 

an oxidative burden is reduced by expressed anti-oxidant 

transgenes. 

The data above show that bouton number is significantly increased in proportion 

to muscle surface area in a number of conditions of oxidative stress introduced 

by a number of different methods. This is highly suggestive of oxidative stress 

driving synaptic growth. To confirm this, oxidative stress was relieved through 

the expression of anti-oxidant transgenes to see if this prevented the growth 

seen in these conditions. This was further to the results seen in the previous 

chapter where expression of anti-oxidant transgenes reduced the growth seen in 

spinster and highwire mutants. 

4.2.4.1. Paraquat induced growth is reduced by expression of hSOD1 
concurrently pre- and post-synaptically 

To establish whether the overgrowth caused by paraquat is due to oxidative 

stress, or other cellular effects of paraquat, an anti-oxidant transgene was 

expressed to reduce oxidative stress levels. UAShSOD1 was expressed under 

the control of spinGAL4, so it was expressed concurrently pre- and post- 

synaptically. Expression of spinGAL4>UAShSOD1 causes no change in bouton 

number (Fig. 4.8A) or muscle surface area (Fig. 4.8B) in the absence of 

paraquat. However, this transgene in the presence of 10mM paraquat causes a 

significant reduction in bouton number (Fig. 4.8A). This is significantly different 

from wildtype in the presence and absence of paraquat and the expression of 

the transgene in the absence of paraquat (p<0.001, ANOVA). No difference in 

muscle surface area is observed between wildtype and 

UAShSOD1/+;spinGAL4/+ in the presence of 10mM paraquat (Fig. 4.8B). This 

suggests that oxidative stress is not involved in the reduced muscle surface area 

caused by paraquat. Accordingly, normalised bouton number is rescued back to  
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Figure 4.8. Paraquat induced synaptic growth, but not reduced muscle surface 
area, is rescued by antioxidants. (A) Expression of UAShSOD1 under control of 
spinGAL4 did not cause any change in bouton number 76±5.6 (n=21) compared to 
wildtype. However expression of this transgene combination in animals fed 10mM 
paraquat caused a significant reduction in bouton number 57±2.6 (n=41) compared to 
wildtype both with and without paraquat (p<0.001). (B) Expression of this transgene 
combination does not rescue the reduced muscle surface area caused by 10mM 
paraquat; with muscle surface areas of 52003±2922µm2 in wildtype and 
59332±1937µm2 in spinGAL4>UAShSOD1 both fed on 10mM paraquat. Expression of 
spinGAL4>UAShSOD1 on normal food did not alter muscle surface area; 
75308±3996µm2 compared to 72313±2837µm2 in wildtype. (C) Following normalisation, 
spinGAL4>UAShSOD1 doesn’t cause any change in bouton number 74±4.1 compared 
to wildtype 78±2.14. Expression of hSOD1 in 10mM paraquat prevents the increase in 
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normalised bouton number seen in wildtype, with a bouton number of 72±4.1 in the 
transgenic larvae (p<0.001 ANOVA compared to wildtype 10mM). (D) Representative 
images of wildtype and spinGAL4>UAShSOD1 NMJs at muscle 6/7 segment A3in 
normal instant food and in 10mM paraquat. Nerves shown in magenta through α-HRP 
staining. Synaptic boutons visualised in green by α-synaptotagmin staining. Scale Bar = 
20µm. (E) Representative images of muscles showing length and width (red lines). 

wildtype levels by the expression of this antioxidant transgene; this is not 

statistically different to wildtype in the absence of paraquat and UAShSOD1/+; 

spinGAL4/+ in the absence of paraquat (p>>0.05, ANOVA), and significantly 

different to wildtype with 10mM paraquat (p<0.001, ANOVA) (Fig. 4.8C).  

4.2.4.2. sod mutant induced growth is rescued by expression of anti-
oxidant transgenes 

Increased bouton number in sod1 mutants is rescued by expressing either 

hSOD1 or cat pre- and post-synaptically both in terms of raw bouton number 

(Fig. 4.9A) and normalised bouton number (Fig. 4.9C) (p<0.001, compared to 

sod1 and p>>0.05 compared to wildtype, ANOVA). Expression of these 

transgenes did not cause any difference to bouton number (Fig. 4.9A) or muscle 

surface area in the wildtype (Fig. 4.9B). Expression of these transgenes 

significantly rescues the reduction in muscle surface area seen in sod1 mutants 

(Fig. 4.9B). Expression of these transgenes also rescues the increased 

branching seen in sod1 mutants (Fig. 4.10).  

sod2 induced overgrowth is rescued by expression of UAStrxR1CYTO, both in 

terms of raw bouton number (Fig. 4.11A) and when normalised to muscle 

surface area (Fig. 4.11C). In contrast to the data shown for sod1 expression of 

an antioxidant did not rescue muscle surface area (Fig. 4.11B). As shown earlier 

(Fig. 4.5), sod2 mutants have significantly reduced branching. With 

spinGAL4/UAStrxR1CYTO the branch number is no longer significantly different 

from wildtype, this could be interpreted as a partial rescue (Fig. 4.12). 
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Figure 4.9. Synaptic overgrowth and reduced muscle surface area in sod1 
mutants is rescued by antioxidants. (A) spinGAL4>UAScat and 
spinGAL4>UAShSOD1 have bouton numbers statistically similar to wildtype; 90±4.12 
(n=24) and 76±4.6 (n=18) (p>0.05, ANOVA) respectively. Expression of these anti-
oxidant transgenes in a sod1 background fully rescues bouton number back to wildtype 
levels with expression of hSOD1 and cat reducing bouton number to 75±5 (n=17) and 
66±2.14 (n=16) respectively (p<0.001, ANOVA compared to sod1 and p>0.05 
compared to wildtype). (B) Expression of hSOD1 and cat did not cause any change to 
muscle surface area in wildtype background; 85387±2237µm2 and 75369±2744µm2 
respectively. Expression of these transgenes in sod1 transheterozygotes rescues 
muscle surface area back to wildtype level; 79112±3990µm2 and 74703±1805µm2 for 
hSOD1 and cat respectively (**p<0.01, ***p<0.001, ANOVA compared to sod1 
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transheterozygotes and p>0.05, ANOVA compared to wildtype). (C) Following 
normalisation expression of the anti-oxidants transgenes hSOD1 and cat does not 
cause any change in bouton number; 85±3.32 and 88±8.67. Expression of these 
transgenes in sod1 transheterozygotes significantly reduces bouton number from 
156±9.95 to 79±5.85 and 72±1.81 for hSOD1 and cat respectively (p<0.001, ANOVA, 
compared to sod1 mutants and p>0.05 ANOVA compared to wildtype). 

 

Figure 4.10. Change in branch number in sod1 mutants is rescued by 
antioxidants (A) spinGAL4>UAScat and spinGAL4>UAShSOD1 have branch numbers 
statistically similar to wildtype; 4.9±0.44 (n=16) and 4.7±0.38 (n=15) (p>0.05, ANOVA) 
respectively. sod1 mutants have increased branching with a mean of 7.2±0.64 (n=16) 
(p<0.05, ANOVA). Expression of these anti-oxidant transgenes in a sod1 background 
fully rescues branch number back to wildtype levels with expression of hSOD1 and cat 
reducing branch number to 5±0.49 (n=12) and 4.75±0.31 (n=16) respectively (p<0.05, 
p<0.01 ANOVA compared to sod1 and p>0.05 compared to wildtype).  
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Figure 4.11. Synaptic overgrowth, but not reduced muscle surface area, in sod2 
mutants is rescued by antioxidants. (A) spinGAL4>UASTrxRCYTO doesn’t cause any 
change in bouton 78±8.01 (n=10) in a reduction in bouton number from 107±5.59 
(n=17) to 82±5.31 (n=24) (p<0.01); this rescue is significantly similar to wildtype 
(p>0.05, ANOVA). (B) spinGAL4>UASTrxRCYTO doesn’t affect muscle surface area; 
81684±2755 compared to wildtype 80801±2265µm2 (p>0.05, ANOVA). sod2 mutations 
result in decreased muscle surface area; 61909±3000µm2 (p<0.001, ANOVA). This is 
not affected by TrxRCYTO expression; 69271±2378µm2 (p>0.05, ANOVA compared to 
sod2 transheterozygotes). (C) Following normalisation spinGAL4>UASTrxRCYTO  has a 
bouton number of 78±7.93, similar to wildtype 85±3.32 (p>0.05, ANOVA). Expression of 
TrxRCYTO  in sod2 mutants reduced bouton number from 147±11.6 to 97±6.39 (p<0.001, 
ANOVA), this is not significantly different to wildtype (p>0.05, ANOVA). 
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Figure 4.12: Reduced branching in sod2 mutants is rescued by antioxidants. 
spinGAL4>UASTrxRCYTO doesn’t cause any change in branch number (n=13) but does 
increase sod2 branch number from 3.5±0.32 (n=17) (p<0.01, ANOVA compared to 
wildtype) to 4.55±0.39 (n=19) (p>0.05, ANOVA, compared to wildtype). 

4.3. Discussion 
The general trend of the data above is that oxidative stress causes an increase 

in bouton number coupled with a decrease in muscle surface area.  Paraquat 
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causes overgrowth of the synapse, which is rescued by expressing UAS-hSOD1 

pre- and post-synaptically. This however does not rescue muscle surface area, 

suggesting that oxidative stress is the causative factor in synapse overgrowth 

whereas the reduction in muscle surface area is not relieved at all by expression 

of this transgene suggesting that it is an energy deficit, or some other cellular 

effect of the paraquat that results in the significant reduction of muscle surface 

area. Alternatively, the level of anti-oxidant expresision was not sufficient to 

rescue this phenotype, or the cells were suffering from increased levels of 

hydrogen peroxide, due to increased SOD activity. Expression using a stronger 

promoter such as tubulinGAL4 or expression of a battery of antioxidants could 

answer these questions. However, this was not investigated in this study as 

synaptic overgrowth is the focus of this investigation and this was fully rescued 

by expression of spinGAL4>UAShSOD1.  

All the mutations investigated that cause oxidative stress cause a significant 

reduction in muscle surface. However rotenone did not cause any reduction in 

muscle size. This could be due to a number of reasons, such as the dose of 

rotenone not causing the threshold level of oxidative stress required to result in 

impaired muscle development. It would be interesting to analyse the 

comparative levels of oxidative stress in the conditions studied here and 

investigate the correlation between oxidative damage, activation of stress 

response and synaptic phenotypes. Not all the mutations cause changes in 

bouton number, relative to the muscle surface area. This, taken together with 

the data shown above that rotenone, in fact, causes a significant decrease in 

normalised bouton number; suggest that oxidative stress does not always cause 

synaptic overgrowth. This shows that the effects of oxidative stress can vary 

greatly and depend on the level, source and species of ROS involved. There 

could be a number of reasons for the differential effects observed.  Firstly 

activation of different cellular signalling pathways could cause the different 

effects.  Another reason for rotenone causing synaptic undergrowth could be 
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through the effects of rotenone on microtubule formation.  Rotenone impairs the 

formation and generation of microtubule networks (Brinkley et al., 1974; 

Srivastava and Panda, 2007).  Autophagy and many other cellular processes 

depend on normal microtubule function/form.  Autophagy has been shown to 

drive synapse growth (Shen and Ganetzky, 2009), and normal synaptic 

formation can be impaired by cytoskeletal disruption (Koch et al., 2008) hence 

this could explain the effects of rotenone on synapse development.   

sod1 and sod2 mutants show very similar muscle surface area and bouton 

number however the other phenotypes investigated differ greatly. As discussed 

earlier, sod1 is predominantly cytoplasmic but also expressed in the inner 

mitochondrial membrane, whereas sod2 is expressed in the mitochondria.  This 

suggests that the bouton number and muscle surface area are determined by 

the general presence of oxidative stress in these mutants, while the bouton size 

and branch number may be determined by the origin of the oxidative stress. This 

could indicate that different pathways are involved in the generation of certain 

neuromuscular junction phenotypes. However mutations that are known to 

cause oxidative stress do not always cause synaptic overgrowth, sdhB and cat 

both cause oxidative stress but without any significant synaptic overgrowth, in 

fact sdhB shows a significant undergrowth prior to normalisation.  The role of cat 

requires more investigation as it does cause a significant increase in bouton 

number relative to muscle surface area, when statistical analysis is carried out 

without sod. The consistent phenotype is the reduction in muscle surface area, 

but conclusions can also be drawn that oxidative stress can cause synaptic 

overgrowth as suggested by the data that show the effects of relieving oxidative 

stress in these mutations.   

Mutations in SOD would lead to increased level of superoxide anions, and it is 

somewhat counter-intuitive that overgrowth in both sod1 and sod2 can be 

rescued by expressing anti-oxidants that catalyse the conversion of hydrogen 
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peroxide. However, this does suggest that it is the overall level of oxidative 

stress that drives synaptic growth. This however is somewhat paradoxical 

because as discussed earlier not all cases of increased ROS lead to synaptic 

overgrowth suggesting specificity dependent on ROS species and source. It 

might be significant to note that expressing predominantly cytoplasmic 

antioxidants in primarily mitochondrial forms of oxidative stress  (paraquat and 

sod2) rescues bouton number but not muscle surface area. Perhaps indicative 

of the signalling caused by oxidative stress leading to increased bouton addition, 

whereas reduced muscle size could be due to energy deficit and metabolic 

defects caused by mitochondrial dysfunction, or due to differential activation of 

signalling pathways in response to cytoplasmic and mitochondrial derived ROS. 
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5. JNK/AP-1 Signalling and Autophagy are 
Required for Overgrowth of the Neuromuscular 
Junction 

5.1. Introduction 
JNK/AP-1 signalling is activated in response to oxidative stress (Klintworth et al., 

2007, Wang et al., 2003); in fact JNK was originally identified as a stress 

activated protein kinase (SAPK). In addition this pathway has been seen to 

regulate synaptic development (Sanyal et al., 2002 and 2003). Increased 

neuronal expression of Fos and Jun together as AP-1 increases bouton number, 

whereas depleting activity of either one in the neuron has been shown to reduce 

bouton number and synaptic strength (Sanyal et al., 2002). Furthermore, 

neuronal expression of wallenda, a JNKKK, and its downstream effectors, JNK 

and Fos are necessary for synaptic overgrowth in highwire (Collins et al., 2006). 

Given the commonality in the pathways involved in synaptic development and 

the oxidative stress response it was investigated whether JNK/AP-1 signalling is 

upregulated in spinster and other conditions involving oxidative stress and 

whether this is causing the synaptic overgrowth seen to be caused by oxidative 

stress. More recently, activation of autophagy has been shown to drive NMJ 

expansion (Shen and Ganetzky, 2009). Increased neuronal expression of Atg1, 

involved in the initiation of autophagy, drives synapse overgrowth, and neuronal 

expression of Atg1 rescues the reduction in bouton number seen in atg1 

mutants (Wairkar et al., 2009; Shen and Ganetzky, 2009). Autophagy mutants 

are believed to cause a reduction in bouton number due to accumulation of 

highwire. As discussed earlier Highwire, is an E3 ubiquitin ligase that is involved 

in the breakdown of wallenda, a JNKKK (Collins et al., 2006). Thus when 

autophagy is defective highwire builds up so there is an elevated level of 
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breakdown of wallenda leading to reduced activity in the downstream signalling 

pathway. This in turn reduces JNK signalling.  Accordingly, with increased 

neuronal expression of atg1 there is an increased level of synaptic growth, as 

more highwire is broken down, disinhibiting wallenda and downstream 

signalling, promoting synaptic growth. Hence, wallenda and JNK are required for 

synaptic overgrowth in the presence of increased autophagy (Shen and 

Ganetzky, 2009). This suggests that wallenda and JNK are acting downstream 

of both autophagy and highwire to promote synapse growth. This is supported 

by the observation that autophagy is not required for highwire induced 

overgrowth, as mutations in autophagy do not prevent the highwire overgrowth 

phenotype. Although this is indicative of autophagy being upstream of JNK 

signalling, oxidative stress activates autophagy through JNK signalling (Wu et 

al., 2009). Autophagy is activated in response to oxidative stress to protect the 

cell by degradation of damaged proteins, lipids and organelles (Li et al., 2006; 

Ogata et al., 2006; Arsham and Neufeld, 2009). Oxidative stress can also 

activate autophagic cell death (Higgins et al., 2011; Chen et al., 2008; Cheng et 

al., 2009). This suggests that oxidative stress could be activating JNK signaling 

leading to synaptic overgrowth and it was reasoned that activation of autophagy 

would be critical to the process of synaptic overgrowth induced by oxidative 

stress. It is possible that activation of these pathways is cyclical as autophagy is 

known to act upstream of JNK signalling but also be activated by JNK signalling. 

Moreover, JNK activity directly regulates autophagy through regulation of Beclin; 

otherwise known as atg6 (Park et al., 2009) and JNK regulates FoxO dependent 

autophagy (Pattingre et al., 2006).  
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5.2. Results 

5.2.1. Oxidative stress and spinster overgrowth share the same 
genetic pathway; spinster and sod1 induced overgrowth act 

synergistically  

Firstly, it was determined whether spinster and sod1-induced overgrowth were 

acting through the same genetic/signalling pathway. This was done analyzing 

heterozygote mutations of sod1 and spin. Heterozygotes of two spinster 

mutants, spin4/+ and spin5/+ have bouton numbers similar to wildtype. 

 

Figure 5.1: Mutations in sod1 and spin act synergistically to cause synaptic 
overgrowth. Larvae carrying heterozygous mutations for both sod1 and spin are 
significantly overgrown compared to the heterozygous mutations alone. Wildtype, 
sod1n1/+, sod1n64/+, spin4/+ and spin5/+ are not statistically significantly different 
(p>>0.05) with bouton numbers of 103±4.4 (n=18), 92±4.3 (n=92), 91±6.5 (n=12) and 
94±4.1 (n=31) respectively. In all combinations, mutants of spin and sod1 are 
overgrown compared to wildtype or the constituent heterozygotes alone (p<0.001 
ANOVA). 

Similarly, sod1 mutant heterozygotes (sod1n1/+ and sod1n64/+) do not lead to 

significant overgrowth (ANOVA p>0.05). However, combining these mutations in 
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a single animal by removing one functional copy of spinster and one copy of 

sod1 so that each larva only has one wildtype copy and one mutant copy of 

each gene generates a significant increase in bouton number when compared to 

relevant heterozygotes (ANOVA p<0.001). Animals carrying heterozygous 

mutations in both sod1 and spinster have a synaptic overgrowth that resembles 

the spin or sod1 full mutant phenotypes suggesting a shared genetic pathway 

(Fig. 5.1). Having established that spinster and sod1 act synergistically, with 

mutations in both causing a certain threshold to be reached at which synaptic 

overgrowth occurs, the next step was to determine which signalling pathways 

are activated in spinster and oxidative stress to contribute to synapse 

overgrowth.  

 

5.2.2. JNK signalling is upregulated in spinster 

JNK/AP-1 is a pathway widely known to be activated by oxidative stress (Wang 

et al., 2003); it is also a known regulator of synaptic growth (Sanyal et al., 2002). 

To test whether the JNK signalling pathway has been activated in spinster a 

puckered LacZ enhancer trap was used. Activation of the AP-1 pathway is 

known to directly transcriptionally activate puckered, a phosphatase inhibitor of 

JNK that mediates a feedback loop to regulate JNK signalling (Martin-Blanco et 

al., 1998). Larval muscles in spinster were examined for the activation of the AP-

1 pathway using the pucE69
 enhancer trap by comparing β-galactosidase (ß-gal) 

expression to ascertain the relative activation of JNK/AP-1 signalling.  
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Figure 5.2: puckered is upregulated in spinster: Expression of pucLacZ, an enhancer 
trap reporter of JNK/AP-1 activation, is increased in the muscle in spin compared with 
wildtype, nerves shown in magenta, LacZ in green. Scale bar = 40µm. 

Greatly increased expression of ß-gal is seen in spinster compared to wildtype 

this was observed by immunofluorescence (keeping the settings the same for 

both genotypes) indicating an activation of the AP-1 pathway in muscles of 

spinster (Fig. 5.2). Having established that JNK/AP-1 signalling is upregulated in 

spinster the next line of investigation was to establish whether over activity of 

this pathway is causative in the generation of synapse overgrowth in spinster. 

5.2.3. Components of AP-1 modify synapse development 

To establish how AP-1 regulates synapse growth and the GAL4/UAS system 

was used to overexpress Jun and Fos either separately or together as AP-1 in 

the nerve, muscle or both. The presynaptic functions of Fos and JNK are 

relatively well documented. It has previously been shown that neuronal 

overexpression, of both Jun and Fos leads to increased growth (Sanyal et al., 

2002), and depletion of either through expression of a dominant negative 

reduces bouton number, suggesting they are acting as a heterodimer. 

Overexpression of AP-1 in the muscle was not shown to increase bouton 

number (Sanyal et al., 2003). However, only Fos is implicated in highwire-
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induced overgrowth, suggesting that Fos is able to act as a homodimer in a 

model of synapse overgrowth (Collins et al., 2006).  

The data shown here (Fig. 5.3) are somewhat at odds with this previously 

published data. Fig. 5.3 shows that expression of Jun or Fos in the neuron or the 

muscle alone does not alter bouton number significantly compared to wildtype, 

in agreement with Sanyal et al. (2002). However, expression of Jun 

simultaneously in the nerve and muscle with spinGAL4 causes a 26% increase 

in bouton number (p<0.05, ANOVA). This is the only significant difference when 

all the values shown in the graph are compared using ANOVA. However, more 

differences can be seen when comparing only one driver or one UAS construct. 

When expression of UASFos under control of the MHCGAL4, elaVGAL4 and 

spinGAL4 are compared alone, simultaneous expression of Fos in the muscle 

and nerve results in a significant reduction in bouton number (p<0.05, ANOVA). 

Expression of Fos and Jun, together as AP-1, does not cause any change in 

bouton number with any of these GAL4 drivers. This is at odds with the 

published data but correlates with Jun providing an overgrowth and Fos an 

undergrowth with spinGAL4. Expression of these transgenes in any combination 

does not significantly affect muscle surface area (Fig. 5.3B). However, when 

normalised for muscle surface area there is a slight change in the level of 

significance of overgrowth caused by overexpression of Jun. Following 

normalisation, neuronal expression still does not significantly affect bouton 

number, however both muscular and simultaneous expression in the nerve and 

muscle cause a significant overgrowth (p<0.05, ANOVA). Expression of Fos or 

AP-1 controlled by these three drivers does not significantly affect normalised 

bouton number (Fig, 5.3C). 
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Figure 5.3: Fos and Jun can alter synapse growth. (A) Neuronal or muscular 
overexpression of JUN does not alter bouton number; 98±6.8 (n=12) and 107±10.2 
(n=14). Concurrent expression with spinGAL4 causes significant overgrowth 
111±4.1(n=19) (p<0.05, ANOVA). Neuronal or muscular expression of FOS did not 
cause any change in bouton number, 78±5.7 (n=15) and 98±5.2 (n=14). Expression 
pre- and post-synaptically causes a reduction in bouton number to 69±2.9 (n=21, 
p<0.05, ANOVA). Expression of AP-1 in either the muscle or the nerve or both causes 
no change in bouton number, 84±5.9 (n =17). (B) Expression of any of these 
transgenes causes no change in muscle surface area (p>>0.05, ANOVA). (C) Following 
normalisation for muscle surface area, neuronal expression did not significantly change 
bouton number: 98±9.0 (n=12) whereas MHCGAL4>JUN or spinGAL4>JUN have 
significantly increased bouton numbers of 114±10.1 (n=14) and 112±5.3 (n=19), 
respectively. Expression of FOS pre- or post-synaptically or both causes no change in 
normalised bouton number: 83±7.1 (n=15), 95±7.6 (n=14) and 68±3.4 (n=21) 
respectively (p>0.05, ANOVA). Expression of FOS and JUN together also causes no 
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change in normalised bouton number when expressed pre- or post-synaptically or both 
with normalised bouton numbers of 85±5.5 (n=17), 83±6.5 (n=18) and 94±9.2 (n=15) 
(p>0.05, ANOVA). 

 

5.2.4. Reducing JNK/AP-1 signalling rescues spinster induced 

overgrowth 

Once again the GAL4/UAS system was employed, this time to dissect the 

signalling pathway involved in the generation of synaptic overgrowth. Dominant 

negative transgenes for components of ASK/JNK/AP-1 signalling were 

expressed simultaneously pre- and post- synaptically (using spinGAL4). These 

dominant negative transgenes act to reduce normal activity through competing 

with the endogenously produced protein. The ASK dominant negative transgene 

is UAS-askK618M and is kinase dead and can therefore not activate its 

downstream signalling partners through phosphorylation (Kuranaga et al., 2002). 

UAS-jnkK53R is also a kinase dead form of the enzyme (Madhani et al., 1997; 

Weber et al., 2000). The Jun and Fos dominant negatives act in a different 

manner. Jun and Fos are B-Zip domain transcription factors, this family of TFs 

act as dimers and they contain a B-Zip domain that comprises a sequence 

specific DNA binding domain and a leucine zipper domain that is needed for the 

dimerisation of two DNA binding domains. The dominant negative transgenes of 

Jun and Fos, originally known as Jbz and Fbz respectively, only contain a bZIP 

fragment which means they act in a dominant negative fashion as they are able 

to bind DNA but unable to initiate transcription (Bohmann et al., 1994; Eresh et 

al., 1997).  

As discussed earlier, ASK is a JNKKK that has been identified for its role in the 

stress response, however it has not previously been identified as having a role 

in synapse development. The role of ASK in the synaptic phenotypes identified 

was investigated due to its important role in regulating the stress response.  
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Figure 5.4: ASK/JNK/AP-1 signalling is required for spinster overgrowth. 
Expression of spinGAL4>UASjunDNor UASjnkDN in a wildtype background did not cause 
any change in bouton number compared to wildtype with bouton numbers of 64±3.24 
(n=18) and 75±3.31 (n=23). spinGAL4>UASfosDN or UASaskDN cause a significant 
reduction in bouton number from 85 in wildtype to 56±2.3 (n=18) and 60±4.18 (n=15) 
respectively. Expression of junDN in a spinster  background does not rescue overgrowth 
with a bouton number of 148±7.19 (n=22), not significantly different to spinster 152±5.1 
(n=32) (p>0.05, ANOVA). Expression of fosDN reduces spinster-induced overgrowth to 
74±1.92 (n=19) (p<0.001, ANOVA) back to wildtype levels (p>0.05, ANOVA, compared 
to wildtype). Whereas  jnkDN and askDN only partially rescue bouton number to 117±5.79 
(n=16) and 128±6.37 (n=16) (p<0.001 and 0.05, ANOVA) respectively, both significantly 
different to wildtype (p<0.001, ANOVA). Bouton counts of spinster with junDN and fosDN 
carried out by Kate Gowers. 

ASK, JNK, Fos and Jun dominant negative transgenes were expressed in 

spinster to establish which components of this signalling cascade are involved in 

the generation of synaptic overgrowth in spinster. As a control the dominant 

negative transgenes were expressed in a wildtype background. Expression of 

junDN and jnkDN did not significantly affect bouton number, whereas expression 
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of fosDN or askDN result in reduced bouton number. This is the first time that ASK 

has been suggested to have a role in synapse development in Drosophila. 

The data here show that synaptic overgrowth in spinster is significantly reduced 

by depleting Fos, JNK and ASK signalling while reducing Jun activity did not 

reduce overgrowth. Reducing JNK or ASK signalling only provided a partial 

rescue, with the bouton numbers still significantly different to wildtype (Fig.5.4).  

Conversely, reducing Fos signalling in spinster mutants gives a bouton number 

not statistically different to wildtype; a full rescue. To reaffirm these results 

JNK/Fos signalling was depleted in a different manner, namely, by expressing 

RNAi lines to reduce transcription of the target genes (Fig. 5.5). In a wildtype 

background expression of FosRNAi does not reduce bouton number like 

expression of the dominant negative transgene does. Depleting JNK signalling 

through expression of RNAi in a wildtype background showed a significant 

reduction in bouton number, disparate to the effect of reducing signalling with 

the dominant negative. Expressing FosRNAi and JNKRNAi in a spinster mutant 

background similarly reduced bouton number consistent with the reduction 

observed using the dominant negative constructs. However the rescue observed 

with UASfosRNAi was not as strong as the rescue with UASfosDN, suggesting 

that the reduction in the level of Fos signalling is not as much with RNAi. This is 

supported by the observation above that FosDN causes a significant reduction in 

bouton number where as FosRNAi does not. This would be expected as it is well 

known that some RNAi constructs deplete their cognate targets with variable 

preference (Dietzl et al., 2007) and reduction of target mRNA is rarely total.  
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Figure 5.5: JNK/Fos signalling is required for spinster-induced overgrowth. 
spinGAL4>UASfosRNAi causes no change in bouton number 82±4.24 (n=17).  
Expression of jnkRNAi causes a significant reduction in bouton number to 65±3.44 
(n=22). Expression of these transgenes in spinster causes a reduction in bouton 
number from 152±5.06 to 119±3.81 (n=16) and 121±3.45 (n=19) (p<0.001, ANOVA). 

5.2.5. Fos is required both pre- and post- synaptically for 

spinster induced overgrowth 

As discussed earlier, expression of fosDN simultaneously pre- and post-

synaptically under the control of spinGAL4 provides a full rescue of spinster-

induced overgrowth. Expression either pre- or post- synaptically using either 

elaVGAL4 or MHCGAL4 respectively affords partial rescue, with a bouton 

number between that of the mutant and simultaneous expression (Fig. 5.6). This 
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suggests that signalling is required both from the muscle and the nerve and that 

overactivation of Fos signalling in both leads to overgrowth seen in spinster.  

 

Fig. 5.6: Fos signalling is required pre- and post- synaptically for spinster 
induced synapse overgrowth. Expression of fosDN pre-synaptically and post-
synaptically causes no change in bouton number in a wildtype background 68±3.3 
(n=20) and 79±3.68 (n=22). Expression in spinster reduces synaptic overgrowth to 
113±9.49 (n=9) and 120±8.42 (n=11) respectively (p<0.001, ANOVA). Bouton counts in 
spinster with dominant negative transgenes performed by Kate Bowers 

5.2.6. JNK signalling is upregulated by paraquat 

The transgene pucE69 was used to investigate puckered transcript levels in 

paraquat fed animals. There is an upregulation compared to wildtype; indicative 
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of increased JNK/AP-1 activity (Fig. 5.7). This suggests that similar pathways 

are involved in the generation of synaptic growth caused in paraquat, as those 

shown to be involved in spinster induced overgrowth. 

 

 

Figure 5.7: puckered is upregulated in paraquat-fed animals: Expression of pucLacZ, 
an enhancer trap reporter of JNK/AP-1 activation, is increased in the muscle paraquat 
fed animals compared with controls, nerves shown in magenta, LacZ in green. Scale 
bar = 40µm. 
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5.2.7. Reducing ASK/JNK/AP-1 signalling reduces paraquat 

induced overgrowth  

The same transgenes used in the spinster experiments were also used to 

dissect the signalling pathways involved in synaptic growth in paraquat fed 

animals. All components of the signalling pathway investigated, jun, fos, JNK 

and ASK, were found to be required for the synaptic growth induced by this 

treatment.  

In the absence of paraquat, prior to normalisation fosDN and askDN cause a 

significant reduction in bouton number expressed simultaneously pre- and post- 

synaptically under the control of spinGAL4. This indicates that Fos and ASK are 

important in normal synaptic development. Depleting Jun or JNK signalling in 

the absence of paraquat does not alter bouton number (Fig. 5.8A). Expression 

of any of these transgenes doesn’t alter muscle surface area in the absence of 

paraquat (Fig. 5.8B). Following normalisation only spinGAL4>UASaskDN has a 

significantly reduced bouton number in the absence of paraquat. (Fig. 5.8C). 

In the presence of 10mM paraquat, prior to normalisation for muscle surface 

area, depletion of Jun or Fos significantly reduces bouton number. Expression of 

jnkDN or askDN with exposure to 10mM paraquat results in a bouton number not 

significantly different to wildtype in the presence of 10mM paraquat (Fig. 5.8A). 

spinGAL4>UASjunDN partially rescues the reduction in muscle surface area 

caused by 10mM paraquat, so that it is significantly different to the muscle 

surface area of wildtype in 10mM paraquat. However, the muscle surface areas 

of spinGAL4>UASjnkDN and UASaskDN in 10mM paraquat are not significantly 

reduced compared to wildtype (Fig. 5.8B). Having accounted for changes in 

muscle surface area through normalisation expression of all any of these 

transgenes significantly rescues paraquat induced growth, so it is not 

significantly different to wildtype in the absence of paraquat (Fig. 5.8C).  
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This data is recapitulated through expression of jnkRNAi. Expression of this 

transgene causes no reduction in bouton number or muscle surface (Fig. 

5.9Aand B) area but does reduce paraquat-induced growth (p<0.01, ANOVA) 

back to wildtype levels (p>0.05, ANOVA) (Fig. 5.9C). The above data clearly 

show that ASK, JNK/AP-1 signaliing is required for paraquat-induced growth. 

The involvement is similar to that seen in spinster, in that ASK/JNK/AP-1 are 

required for both spinster and paraquat-induced growth. However, there is 

differential involvement of Fos and Jun; depletion of Jun signalling does not 

prevent synaptic overgrowth in spinster whereas Jun is required for paraquat 

induced growth.  
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Figure 5.8: ASK/JNK/AP-1 signalling is required for paraquat-induced growth. (A) 
Prior to normalisation spinGAL4>UASfosDN and spinGAL4>UASaskDN cause a 
significant reduction in bouton number with mean bouton numbers of 55±2.7 (n=13) 
(p<0.05, ANOVA) and 54±3.64 (n=19) (p<0.001, ANOVA). spinGAL4>UASjunDN and 
spinGAL4>UASjnkDN cause no change in bouton number 70±6.2 (n=20) and 80±3.64 
(n=19). As shown earlier 10mM paraquat causes no change in bouton number: 74±4.1 
(n=21). spinGAL4>UASjunDN and spinGAL4>UASfosDN cause a significant reduction in 
bouton number in 10mM paraquat; 56±1.93 (n=55) (p<0.001) and 59±3.23 (n=19) 
(p<0.05) respectively. spinGAL4>UASjnkDN and spinGAL4>UASaskDN don’t cause any 
change in bouton number in 10mM paraquat 64±3.92 (n=17) and 73±8.29 (n=20) 
respectively (p>0.05, ANOVA).  
(B)Expression of junDN, fosDN, jnkDN and askDN doesn’t cause any change in muscle 
surface area: 66897±3089 µm2, 62919±4114 µm2, 78220±3408 µm2 and µm2 
81124±2992µm2 respectively (p>0.05, ANOVA). As stated earlier 10mM paraquat 
causes a significant reduction in muscle surface area. Expression of junDN, causes a 
significant increase in muscle surface area in 10mM paraquat to 64243±1950µm2 

(p<0.05). This is not significantly different to wildtype in the absence of paraquat 
(p>0.05, ANOVA). fosDN, jnkDN and askDN cause no significant change in muscle surface 
area compared to wildtype in 10mM paraquat: 57525±2346 µm2, 64027±4759 µm2, 
61032±2433µm2 respectively (p>0.05, ANOVA). Only spinGAL4>UASfosDN in 10mM 
paraquat has a muscle surface area significantly different to wildtype in the absence of 
paraquat (p<0.05, ANOVA).  
(C)change in normalised bouton number; 77±6.05, 56±5.77 and 75±3.59 respectively 
(p>0.05, ANOVA). spinGAL4>UASaskDN causes a significant reduction in normalised 
bouton number 48±3.2 (n=19) (p<0.001, ANOVA). The overgrowth caused by 10mM 
paraquat is significantly reduced by expression of junDN to 65±2.64 (p<0.001, ANOVA), 
by fosDN to 75±5.26 (p<0.001, ANOVA), by jnkDN to 76±4.49 (p<0.001, ANOVA) and by 
askDN to 86±5.4 (p<0.01, ANOVA). These are not significantly different to wildtype in the 
absence of paraquat (p>0.05, ANOVA). 
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Figure 5.9: JNK signalling is required for paraquat-induced overgrowth.  
(A)Expression of jnkRNAi causes no change in bouton number either in the absence or 
presence of paraquat with bouton numbers of 70±3.20 (n=21) and 64±3.73 (n=19) 
(p>0.05, ANOVA). (B)Expression of jnkRNAi causes no change in muscle surface area 
in the absence of paraquat: 78429±2837µm2; not significantly different to wildtype 
(p>0.05, ANOVA). jnkRNAi does not rescue muscle surface area compared to wildtype 
in 10mM paraquat (p>0.05, ANOVA). (C)spinGAL4>UASjnkRNAi causes no change in 
normalised bouton number 66±4.2 compared to wildtype (p>0.05, ANOVA). Expression 
of jnkRNAi significantly reduces overgrowth in 10mM paraquat (p<0.05, ANOVA), this is 
not significantly different to wildtype in the absence of paraquat (p>0.05, ANOVA). 
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5.2.8. Reducing JNK/AP-1 signalling in sod mutants reduces 

synaptic overgrowth 

Prior to normalisation spinGAL4>UASjunDN or UASfosDN causes a significant 

reduction in bouton number compared to wildtype (p<0.01 and 0.001, ANOVA, 

respectively). Expression of junDN does not cause any change in bouton number 

in a sod1 mutant background, whereas fosDN reduces bouton number in sod1 

(p<0.001, ANOVA) so that it is not significantly different to wildtype (p>0.05, 

ANOVA) (Fig. 5.10A). That is to say only depleting Fos signalling not Jun 

rescues the increase in bouton number. Expression of both these transgenes in 

sod1 significantly rescues muscle surface area (p<0.001, ANOVA) (Fig. 5.10B). 

As a result of this change in muscle surface area, when normalised for muscle 

surface area bouton number in sod1 mutants is significantly reduced by 

expression of junDN and fully rescued back to wildtype levels by expression of 

fosDN (Fig. 5.10C). Changes in branch number seen in sod1 are also rescued by 

expression of junDN and fosDN under the control of spinGAL4. Depleting Jun 

signalling does rescue as much as depleting Fos signalling, following a similar 

pattern to the rescue in bouton number.  

In sod2 mutants, junDN, fosDN and jnkDN significantly rescue bouton number prior 

to normalisation (p<0.001, 0.001 and 0.01,respectively ANOVA) (Fig. 5.12A). 

junDN
 does not rescue muscle surface area whereas fosDN completely rescues 

muscle surface area and jnkDN does not have a muscle surface area significantly 

different to sod2 however, it is no longer significantly different to wildtype muscle 

surface area(Fig. 5.12B). In terms of normalised bouton number, expression of 

any of these transgenes significantly rescues normalised bouton number back to 

wildtype levels (Fig. 5.12C). Expression of any of these transgenes rescues the  
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Figure 5.10. AP-1 signalling is required for sod1-induced overgrowth.  
(A)Prior to normalisation spinGAL4>UASjunDN spinGAL4>UASfosDN and cause a 
significant reduction in bouton number with mean bouton numbers of 64±3.24(n=18) 
(p<0.05, ANOVA) and 56±2.29 (n=18) (p<0.001, ANOVA) respectively. Expression of 
junDN in a sod1 background does not rescue bouton number 104±3.69 (n=18), (p>0.05 
compared to sod1; p<0.01 compared to wildtype, ANOVA) whereas fosDN expression 
significantly reduces sod1 overgrowth to 59±3.7 (n=21), back to wildtype levels 
(p<0.001 compared to sod1; p>0.05 compared to wildtype). (B) Expression of junDN or 
fosDN doesn’t cause any change in muscle surface area: 73243±3578 and 
75297±3820µm2 respectively (p>0.05, ANOVA). As stated earlier sod1 mutants show a 
significant reduction in muscle surface area. Expression of junDN or fosDN causes a 
significant increase in muscle surface area in sod1 mutants to 69466±2060 and 
71978±2063µm2 (p<0.01, ANOVA). These are not significantly different to wildtype 
(p>0.05, ANOVA). (C) Following normalisation, expression of junDNor fosDN  does not 
cause any change in normalised bouton number; 76±7.02 and 65±6.25 respectively. 
Expression of these transgenes in a sod1  mutant background causes a significant 
reduction in normalised bouton number 122±3.88 (p<0.05, ANOVA) and 67±4.62 
(p<0.001) respectively. fosDN expression in a sod1 background is not significantly 
different to wildtype bouton number (p>0.05), where as junDN in a sod1 background is 
still significantly different to wildtype (p<0.05, ANOVA). 
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Figure 5.11. AP-1 signalling is required for changes in branching in sod1 
mutants. Expression of JunDN and FosDN caused no change in branch number both 
having branch numbers of 4.9±0.31 and 4.9±0.44 and (n=13 and 14 respectively, 
p>0.05, ANOVA). Expression of these transgenes in a sod1 background significantly 
reduces branch number to 6±0.26 (n=18, p<0.05, ANOVA) and 4.20±.36 (n=19, 
p<0.001) respectively. These are not significantly different to wildtype (p>0.05, 
ANOVA).   
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Figure 5.12: JNK/AP-1 signalling is required for sod2-induced overgrowth.  
(A)As shown previously, prior to normalisation spinGAL4>UASjunDN 
spinGAL4>UASfosDN and cause a significant reduction in bouton number with mean 
bouton numbers of 64±3.24(n=18) (p<0.05, ANOVA) and 56±2.29 (n=18) (p<0.001, 
ANOVA) respectively spinGAL4>UASjnkDN causes no change in bouton number 
75±3.31 (n=23) (p>0.05, ANOVA). Expression of these transgenes, junDN, fosDN or jnkDN 
in a sod2 mutant background significantly reduces overgrowth  to 72±3.77 (n=20) 
(p<0.001, ANOVA), 65±4.25 (n=23) (p<0.001, ANOVA) and 84±4.28 (n=19) (p<0.01, 
ANOVA). (B)Expression of junDN, fosDN or jnkDN doesn’t cause any change in muscle 
surface area: 73243±3578, 75297±3820 and 76823±2153µm2 respectively (p>0.05, 
ANOVA). As stated earlier sod2 mutants show a significant reduction in muscle surface 
area. Expression of junDN in a sod2 background did not significantly change surface 
area of the mutant 59037±3609µm2 whereas fosDN causes a significant increase in 
muscle surface area in sod2 mutants to 76877±2881µm2 (p<0.01, ANOVA compared to 
sod2). Expression of jnkDN in a sod2 background resulted in a muscle surface area of 
73878±2423µm2 (p>0.05, ANOVA; compared to both wildtype and sod2). (C)Following 
normalisation, expression of junDNor fosDN  does not cause any change in normalised 
bouton number; 76±7.02 and 65±6.25 respectively. Expression of these transgenes in a 
sod1  mutant background causes a significant reduction in normalised bouton number 
122±3.88 (p<0.05, ANOVA) and 67±4.62 (p<0.001) respectively. fosDN expression in a 
sod1 background is not significantly different to wildtype bouton number (p>0.05), 
where as junDN in a sod1 background is still significantly different to wildtype (p<0.05, 
ANOVA). 

 

reduction in branch number seen in sod2 mutants, so that they are not 

significantly different to wildtype (Fig. 5.13). 

The data above show that there is slightly different pathway activation 

depending on the source or specific level of increased superoxide, as there is 

different involvement of AP-1 seen in sod1 and sod2 mutants. There is different 

involvement in the generation of both bouton number and muscle surface area 

as well as branch number. However this could be due to the effects of oxidative 

stress other than oxidative stress induced signalling, such as energy deficits. 

Having established that sod mutants have Fos dependent overgrowth, in a 

fashion similar to spinster it was investigated whether Fos signalling was 

required from both the nerve and muscle, as with spinster (Fig. 5.6). To test this 

Fos signalling was depleted in either the nerve or the muscle using elavGAL4 or 
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MHCGAL4 to drive UASfosDN. Reducing Fos signalling in either the nerve or the 

muscle was enough to completely rescue sod2-induced overgrowth (Fig. 5.14A). 

This is at odds with the data seen in spinster where depletion of Fos is required 

both in the nerve and the muscle, i.e. under the control of spinGAL4 for  

 
 
Figure 5.13: Changes in branch number in sod2 mutants require JNK/AP-1 
signalling. As shown above spinGAL4>UASjunDN or fosDN does not change branch 
number, nor does spinGAL4>UASjnkDN, with a branch number of 4.9±0.55 (n=10). The 
reduction of branch number in sod2 mutants to 3.5±0.24 (n=17, p<0.05, ANOVA) is 
rescued by the expression of junDN, fosDN and jnkDN have branch numbers of 5.2±0.44 
(n=10), 4.8±0.43 (n=14) and 4.8±0.40 (n=13) so that it is no longer significantly different 
to wildtype (p>0.05, ANOVA). 
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Figure 5.14: Fos signalling is required either from the muscle or the nerve for 
sod2 induced overgrowth. (A) Expression of fosDN in the nerve with elaVGAL4 causes 
no change in bouton number to 74±6.4 (n=17) but reduced sod2 bouton number to 
73±4.2 (n=27). Expression in the muscle with MHCGAL4>UASfosDN causes no change 
in bouton number 77±3.3 (n=17) but rescues sod2 induced overgrowth to 78±4.5 (n=20) 
(B) As shown sod2 has reduced muscle surface area expression of fosDN in either the 
nerve or the muscle causes no change in muscle surface area with 77640±2888µm2 
and 82593±17712µm2 respectively. Expression of these transgenes in a sod2 mutant 
background results in muscle surface areas of 79692±2919µm2 and 81371±3621µm2, 
respectively, all statistically similar to wildtype (p>>.05, ANOVA) and significantly 
different to sod2 (p<0.05, ANOVA). (C) When normalised to account for muscle surface 
area neuronal depletion of Fos signalling results in a bouton number of 78±6.9, and in 
sod2 77±4.9. Muscular expression of UASfosDN has a normalised bouton number of 
76±3.1 whereas in sod2 with muscular expression of UASfosDN has a normalised 
bouton number of 81±6.4, all statistically similar to wildtype (p>>0.05, ANOVA) and 
statistically different to sod2 (p>0.05, ANOVA) 

 

full suppression of overgrowth. However, the sod2 overgrowth is not as severe 

as the overgrowth seen in spinster suggesting that Fos overactivation might not 

be as great therefore reducing signalling in only one synaptic compartment is 

enough to reduce synaptic overgrowth. Intriguingly, expression of fosDN in either 

the muscle or the nerve or both fully reverses the reduction in muscle surface 

area seen in sod2 mutants (Fig. 5.14B).  

5.2.9. Autophagy gene function affects synapse development 

Autophagy has previously been shown to regulate synapse development. 

Increasing levels of Rheb, one of the controllers of autophagy, in the neuron was 

shown to increase bouton number and EJP amplitude. Mutations in Rheb 

showed the opposite phenotype with decreased bouton number and EJPs (Knox 

et al., 2007). Rheb acts upstream of TOR, which inhibits autophagy. 

Consequently, increased Rheb activity is proposed to decrease autophagy, 

through activation of TOR. However, inhibition of TOR through exposure to 

rapamycin does not prevent overgrowth. In addition, later studies have shown 
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Figure 5.15: Changing levels of autophagy alters synaptic size. (A) Mutations in 
atg1 and atg18 cause significant reductions in bouton number: 60±3.2 (n=19, p<0.01, 
ANOVA) and 54±4.0 (n=28, p<0.001, ANOVA).  Depleting atg5 in the muscle or the 
nerve with UASatg5RNAI does not cause a significant change in bouton number; 
81±4.7 (n=17) and 98±6.0 (n=16) respectively (p>0.05, ANOVA). Driving atg1CG in the 
nerve or muscle doesn’t change bouton number significantly with bouton numbers of 
81±4.7 (n=17) and 70±4.4 (n=17). Driving atg168 in the nerve causes a significant 
reduction in bouton number to 59±2.9 (n=29, p<0.001, ANOVA). Expression in the 
muscle causes no change in bouton number 72±4.7 (n=14, p>0.05, ANOVA). (B) atg1 
mutants have statistically normal muscle surface area, 86857±3659 (n=19, p>0.05, 
ANOVA) mutants have significantly reduced muscle surface area 67737±2439 (n=28, 
p<0.05, ANOVA), other manipulations of atg genes shown here cause no change in 
muscle surface area. (C) When normalised for muscle surface area, atg1 have 
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significantly reduced bouton number 59±5.8 (n=19), when atg18 is normalised there is 
no significant change in bouton number 68±6.3 (n=28). Atg5RNAi in either the nerve or 
the muscle causes no change in normalised bouton number 78±4.8 (n=17) and 87±6.6 
(n=17) (p>0.05, ANOVA). Driving atg1 activity in the nerve or muscle causes no change 
in bouton number with UASATG1CG 81±5.5 (n=17) and 67±5.0 (n=18), Using 
UASATG168 expression in the nerve causes a reduction in normalised bouton number, 
51±4.3 (n=17, p<0.01, ANOVA), whereas expression in the muscle does not 
significantly alter bouton number 74±5.9 (n=14). 

 

that rapamycin exposure results in increased bouton number (Shen and 

Ganetzky, 2009). This is consistent with the increase in bouton number caused 

by rapamycin as seen by Knox et al. (2007). However the mechanism 

suggested by Shen and Ganetzky (2009), whereby autophagy drives synapse 

growth is somewhat incompatible with other published data. As increased Rheb 

would lead to a decrease in autophagy but still leads to increased bouton 

number. Autophagy gene regulation of bouton number and how this compares 

to the previous data published was investigated. As, although driving Rheb in 

the muscle was shown to cause a slight reduction in bouton number the effect of 

driving atg1 in the muscle has not been fully investigated. This is because in the 

first study driving atg1 in muscle (Wairkar et al., 2009) did not show any change 

in NMJ morphology. However, neuronal expression of this construct did not 

provide full rescue of the atg1 mutant phenotype (Wairkar et al., 2009), 

suggesting that it is not expressing highly enough to rescue the phenotype seen. 

Using a different UASatg1 construct Shen and Ganetzky fully rescue the atg1 

mutant phenotype with neuronal expression of this transgene. This suggests 

that their transgene is expressing more efficiently. It is this transgene that 

affords overgrowth when expressed neuronally in a wildtype background. 

However, this transgene has not been expressed in the muscle to determine any 

effects that this might have. The data in this area is, therefore, incomplete. It 

was investigated whether altered levels of autophagy in either the nerve, the 

muscle or both can impact on synapse development. Autophagy is occurring 
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globally in all cells. To this end, bouton number was compared between atg 

mutants that would presumably be defective for autophagy both pre- and post- 

synaptically. Autophagy function was also manipulated by employing a UAS-

atg5-RNAi expression to allow comparison between mutants and RNAi depletion 

with UAS-Atg1 expression, using two independently generated transgenes. 

The data shown here (Fig. 5.15A) agree with published data that mutations in 

the autophagy genes atg1 and atg18 (Wairkar et al., 2007; Shen and Ganetzky, 

2009) show a significant deficit in synaptic growth, shown here by a reduction in 

bouton number compared to wildtype. atg1 mutants show no significant change 

in muscle surface area, however atg18 mutants have a significantly reduced 

muscle surface area (Fig. 5.15B). Consequently, when normalised for muscle 

surface area (Schuster et al., 1996a), only atg1 has significant undergrowth 

compared to wildtype (Fig. 5.15C). Depleting atg5 activity in either the nerve or 

the muscle using elaVGAL4 or MHCGAL4, respectively to drive UASatg5RNAi, 

did not significantly affect bouton number, muscle surface area or normalised 

bouton number (Fig. 5.15A,B and C respectively). Overexpression of UASatg1+ 

has previously been shown to drive autophagy (Scott et al., 2007; Shen and 

Ganetzky, 2009). The data shown here show contrary results to those 

published, where increased autophagy caused increased bouton numbers. 

Over-expression of atg1CG in the nerve or the muscle causes no change in 

bouton number. However, expression of UASatg168 in the nerve with elaVGAL4 

results in a significant reduction in bouton number whereas expression in the 

muscle with MHCGAL4 results in a bouton number statistically similar to 

wildtype. This trend is the same following normalisation (Fig. 5.15C) for muscle 

surface area as there is no change in muscle surface area (Fig. 5.15B). 

5.2.10. Autophagy is required for spinster induced overgrowth 

When introduced into a spinster mutant background, mutations in atg1 or atg18 

rescue synapse overgrowth resulting in a significant reduction in bouton number. 
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Heterozygous combinations of atg1 and atg18 similarly restrict synaptic growth 

in spinster mutants (Fig. 5.16). Although a general decrease in branching in the 

atg1 mutant combination (not quantified) was observed, the data demonstrate 

that an atg mutation can restrain spinster synapse overgrowth. In agreement 

with Shen and Ganetzky (2009) the data here suggest that autophagy functions 

to regulate synaptic growth and that this process is critical to synaptic 

overgrowth induced by oxidative stress. 

5.2.11. Autophagy is required pre- and post- synaptically for 

spinster induced overgrowth 

As shown earlier, functional autophagy is required for spinster-induced 

overgrowth. However, previously autophagy has only been shown to be involved 

presynaptically in synaptic development. To confirm this tissue specific inhibition 

of autophagy was used. Reducing autophagy through expression of 

UASatg5RNAi  in the nerve, using elaVGAL4, or in the muscle,  using 

MHCGAL4 does not alter bouton number. However, expression of these 

transgenes in a spinster background reduces overgrowth significantly and 

equally (Fig. 5.17). This is the first time autophagy genes acting post-

synaptically have been implicated in synaptic development. 

5.2.12. Autophagy is required for paraquat induced overgrowth 

Importantly, feeding of paraquat to atg1 mutants failed to induce the expected 

synaptic overgrowth. Even prior to normalisation atg1 mutants show a significant 

reduction in bouton number in 10mM paraquat (Fig. 5.18A). atg1 mutants have a 

significantly increased muscle surface area but presence of this mutation in  
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Figure 5.16: spinster induced overgrowth requires autophagy genes. 
(A)Autophagy is required for spin-induced synapse overgrowth.  Mutants for autophagy 
genes Atg1 (atg1PZ/atg1DG) and Atg18 (atg18KG/Df) and animals heterozygous for both 
alleles (atg1PZ/atg18KG) have a reduction in bouton number to 59±5.8 (n=19), 54±4.0 
(n=28) and 68±6.3 (n=28). These mutations also reduce spin-induced overgrowth, to 
72±4.9 (n=28), 75±6.7 (n=16) and 76±5.8 (n=15) respectively  (p>>0.05 compared to 
wildtype and atg1PZ/atg1DG ANOVA and p<0.001 compared to spin). (B) Representative 
images of NMJs at muscle 6/7 nerves shown in magenta with anti-HRP and boutons 
shown in green with anti-synaptotagmin. Scale bar =20µm 
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Figure 5.17: Autophagy genes are required both in the nerve and the muscle for 
spinster-induced overgrowth. Expression of atg5IR in the nerve or muscle partially 
rescues bouton number in spinster to 127±5.57 (n=16) and 126±6.51 (n=16) 
respectively (p<0.001 ANOVA). 
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Figure 5.18: paraquat induced overgrowth requires autophagy genes. Mutations in 
atg1 prevent paraquat-induced overgrowth. (A) Atg1 mutants have significantly reduced 
bouton number compared to wildtype both in the absence and presence of 10mM 
paraquat. In the absence of paraquat atg1 mutants have a bouton number of 60±3.2 
(n=19, p<0.01, ANOVA). With 10mM paraquat these mutants have a bouton number of 
35±1.8 (n=19, p<0.001, ANOVA compared to both wildtype with and without paraquat) 
(B) Paraquat induced reduction in muscle surface area still occurs in atg1 mutants. 
There is no difference in muscle surface area in wildtype and atg1 mutants in 10mM 
paraquat; 52003±2922 (n=21) and 46302±2580 (n=19) (p>0.05, ANOVA). Both are 
significantly reduced compared to wildtype without paraquat (p<0.001, ANOVA) (C) 
Mutations in atg1 prevent paraquat induced increases in normalised bouton number. 
When normalised to muscle surface area atg1 mutants in paraquat have a bouton 
number of 54±1.4 (n=19) significantly different to wildtype on 10mM paraquat (p<0.001, 
ANOVA). 
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10mM paraquat does not rescue muscle surface area(Fig. 5.18B). atg1 mutants 

have a decreased normalised bouton number and also rescue overgrowth 

caused by 10mM paraquat (Fig. 5.18C). 

5.3. Discussion 

5.3.1. ASK/JNK signalling is required for oxidative stress 
induced overgrowth 

The synergy seen between spinster and sod1 heterozygotes to induce synapse 

overgrowth suggests a common signalling pathway. As JNK is known to be 

activated in response to oxidative stress this pathway was investigated for 

increased activity and found to be upregulated in both spinster and paraquat fed 

animals, as shown by increased expression of a puckered reporter. Depleting 

ASK and JNK signalling both rescue spinster and paraquat induced overgrowth. 

Activation of ASK occurs through the dissociation of thioredoxin under 

conditions of oxidative stress (Saitoh et al., 1998) whereupon ASK is known to 

then activate JNK (Chen et al., 2002; Cha et al., 2005). JNK is also activated by 

oxidative stress as its activity is increased when glutathione is oxidized 

preventing its binding and inhibiting JNK. Thus in oxidative stress, the activity of 

this signalling pathway is upregulated both by direct activation and increased 

downstream activity due to phosphorylation. ASK has not been previously 

identified in having a role in synapse development. Here ASK is identified as 

having a role in normal synaptic development and the overgrowth caused by 

spinster and paraquat exposure (Fig.5.4 and 8 respectively) suggesting a role 

for ASK in the regulation of synaptic growth which may define responses to 

different cellular sources of oxidative stress. JNK has been shown to drive 

synapse development (Sanyal et al., 2002) and is required for overgrowth in 

highwire mutants (Collins et al., 2006) and in the presence of increased 

autophagy (Shen and Ganetzky, 2009). Here it is now shown that spinster (Fig. 
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5.4), sod2 (Fig. 5.12) and paraquat (Fig. 5.8) induced overgrowth are all-

dependent on functioning JNK. This was shown both by using a dominant 

negative transgene in all three conditions and confirmed using RNAi knockdown 

in spinster and paraquat treatment (Fig. 5.5 and 5.9 respectively). It remains to 

be investigated whether JNK is involved in sod1-induced overgrowth. However, 

even in the absence of this data it is clear that JNK activity is required for 

oxidative stress induced increases in bouton number. 

5.3.2. Fos/Jun involvement in synaptic growth is context 

dependent 

The requirement for Fos and Jun activity for overgrowth is found to be different 

between spin mutants, paraquat treated animals and sod mutants. This 

suggests differential activation of components of the AP-1 components in each 

condition. Depleting Jun signalling pre- and post- synaptically using 

spinGAL4>UASjunDN does not affect spinster induced overgrowth (Fig. 5.4), 

however paraquat, sod1 and sod2 overgrowth are all rescued by depleting Jun 

signalling. It is interesting to note that sod1 overgrowth is only rescued by junDN 

following normalisation, and then only partially compared to the full rescue seen 

with expression of fosDN. In addition the rescue in branching seen by depleting 

Jun and Fos in sod1 is more significant with Jun than Fos (Fig. 5.11). Where as 

the reduction in branching and the increase in bouton number seen in sod2 is 

rescued by to the same extent by depleting Jun, Fos or JNK signalling. This is 

suggestive of differences between the relative levels of signalling of Jun and Fos 

depending on the source/type of ROS. Although in mammals only Jun can 

homodimerise, in Drosophila, Fos can also homodimerise and is known to act 

independently of Jun in synapse overgrowth in hiw mutants and conditions of 

cytoskeletal disruption (Collins et al., 2006; Massaro et al., 2009). Jun and Fos 

can also dimerise with other signalling components, such as Smad and Nrf2. 

Smads are important proteins in synapse development (Dudu et al., 2006; 
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McCabe et al., 2004; Rawson et al., 2003; Sweeney and Davis, 2002); they are 

activated by phosphorylation in response to TGFβ signalling. In other contexts, 

Smad and AP-1 proteins are known to physically interact (Liberati et al., 1999) 

and this signalling is known to converge at AP-1 sites to determine transcription 

activation (Zhang et al., 1998; Liberati et al., 1999). This links two important 

developmental pathways, AP-1 and TGFβ (Wong et al., 1999). This provides an 

attractive explanation for the potentiation of synapse growth by AP-1 at the 

Drosophila NMJ. Only Fos, not Jun, has been implicated in the overgrowth seen 

in highwire although it is unknown as to whether Fos is homodimerising or acting 

with other binding partners. The mutations and treatments used in this study to 

produce oxidative stress lead to ROS generation from different subcellular 

sources. It is postulated that spinster and sod1 produce ROS predominantly 

from non-mitochondrial compartments while paraquat treatment and sod2 would 

generate ROS primarily from the mitochondria. spinster, paraquat and sod 

induced oxidative stress produce synapse growth via activation of JNK. 

However downstream of JNK there is differential involvement of Fos and Jun. 

The data shown here suggest that Fos is important for responses to both 

mitochondrial and non mitochondrial sources of ROS whereas Jun appears to 

be involved in the generation of overgrowth from predominantly mitochondrial 

sources of ROS. However, this distinction is currently only a hypothesis as it is 

hard to distinguish between different sources of ROS. Additionally, it is not 

known whether different abundances of RO species in each of the models used 

in this study. It is suggested that superoxide is the most potent activator of 

autophagic responses (Chen et al., 2009) and this would be consistent with 

much of the data presented here. In spinster the source of ROS is probably 

predominantly non-mitochondrial, putatively deriving more from the lysosomes. 

However, mitochondrial recycling might be impaired leading to build up of old 

dysfunctional mitochondria resulting in increased levels of ROS being produced 

from the electron transport chain. In a similar manner, sod1 is traditionally 
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thought of as the cytoplasmic form of SOD, however it is also expressed in the 

periplasm of the mitochondria, thus higher levels of ROS could also be derived 

from the mitochondria in this model. Activation of differential signalling modules 

by different sources and species of oxidative stress is therefore an attractive 

avenue of investigation for the future.  

5.3.3. Autophagy and Synapse Development 

Oxidative stress is a potent activator of autophagy. Recent work has shown that 

autophagy genes are directly activated by oxidative stress in a JNK dependent 

manner (Wu et al., 2009). Activation of autophagy has been shown to drive 

synapse growth in Drosophila (Shen and Ganetzky, 2009) and the data in this 

study support this proposal. However, in the Shen and Ganetzky model, JNK 

was suggested to be downstream of activation of autophagy. This was proposed 

because the overgrowth in highwire mutants is not affected by mutations in 

autophagy genes. Autophagic downregulation of hiw protein (and subsequent 

activation of the JNKKK wallenda) has been proposed as a mechanism to 

regulate synaptic growth (Shen and Ganetzky, 2009). These data seem to be 

somewhat at odds with the observation that oxidative stress leads to 

upregulation of autophagy through the activation of JNK. Consistent with the 

findings of Wairkar (2007) and Shen and Ganetzky (2009) atg1 and atg18 

function are required for oxidative stress and spinster induced synapse 

overgrowth. The experiments carried out to date are not targeted enough to 

suggest whether autophagy is acting upstream or downstream of JNK signalling 

in this instance. However, the findings here are different to Shen and Ganetzky 

(2009) insofar as overexpressing atg1 in the nerve does not cause synaptic 

overgrowth. In fact, it results in significant undergrowth. This leads to the 

suggestion that dysregulation of autophagy at the NMJ, whether up or down in 

the absence of oxidative stress results can result in synaptic undergrowth. 

Conversely, in the presence of oxidative stress and functioning autophagy there 
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is an increase in growth. It is also possible that there is a distinct output of 

ASK/JNK/AP-1 activity other than autophagy that leads to overgrowth. However 

as soon as autophagy is impaired there is an even greater undergrowth caused 

by the build up of highwire leading to inhibition of JNK signalling and hence 

fewer boutons. However, it has been shown that spinster overgrowth is due to 

loss of spinster in both the pre- and post- synaptic compartments, as shown by 

full rescue requiring transgene expression in both of these compartments. This 

is different to highwire, which was shown to be expressed only pre-synaptically. 

However highwire overgrowth has not been shown to be rescued by only 

presynaptic expression of wildtype highwire, as it was not possible to make a 

rescue construct at the time of the original paper (Wan et al., 2000) although 

localisation data suggests that highwire is expressed presynaptically only.  

5.3.4. Muscular and Neuronal Input 

The hiw protein and its target wallenda (wnd) are both found presynaptically 

(Collins et al., 2006) while JNK/AP-1 signalling and autophagy are contributing 

to synapse overgrowth in both the muscle and nerve. Furthermore, spinster 

overgrowth requires pre- and post-synaptic expression of the rescue construct to 

reverse the overgrowth, showing a clear role for the muscle in this phenotype. 

The observations of muscular involvement in spinster and sod2 suggest a novel 

muscle derived JNK/AP-1 signal contributing to synapse growth that is likely to 

be independent of direct hiw/wnd regulation. Taken together, data from this 

study suggest that the highly conserved JNK/AP-1 signalling pathway, a well-

known mediator of synaptic growth and function, acting both in the muscle and 

the nerve, can be activated by oxidative stress to induce synaptic overgrowth. In 

addition, autophagy is also required for spinster and oxidative stress induced 

growth, however it is now known whether this is upstream or downstream of 

JNK signalling in these conditions. Many neurodegenerative disorders generate 

an oxidative stress burden in affected neurons. Investigating the effects of 
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oxidative stress on synaptic development and function, as well as identifying 

signalling pathways, in such a disease context provides a potentially important 

insight into the pathology of a number of neurodegenerative diseases. 
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6. Spinster and Oxidative Stress Mutants have 
Impaired Physiology  

6.1. Introduction 
The Drosophila larval NMJ is an ideal system for studying synapse plasticity and 

morphological development in normal and diseased states. This preparation is 

also amenable to physiological analysis allowing a description of synaptic output 

to be generated in disease models. It is relatively straightforward to measure 

physiological output for the larval NMJ in a number of ways for example, larval 

crawling, muscle contraction and using recording electrodes in the muscle to 

measure synaptic transmission directly. The nervous system requires a great 

deal of energy, and therefore neuronal cells have high levels of mitochondria, 

making them more susceptible to oxidative stress. Moreover, neurons are long-

lived cells that do not generally regenerate so old mitochondria can build up 

when degradation is impaired. In addition, ROS have been shown to affect 

synaptic transmission by a number of possible mechanisms (See 1.6.2). There 

are therefore, a number of aspects that remain to be investigated in spinster and 

sod mutants, such as the effects of these mutations on physiological output, and 

whether there is an energy deficit in spinster.  

Synaptic overgrowth has been previously shown to be coupled to 

hyperexcitability, for example in shaker mutants, there is increased transmitter 

release at the NMJ (Ganetkzy and Wu, 1983; Wu et al., 1983). Synaptic 

transmission defects have been previously observed in highwire and spinster 

mutants and in the preceding chapters synaptic overgrowth in these mutants 

have been shown to be partly due to oxidative stress. The next line of 

investigation was how oxidative stress affects physiological output and whether 

this is related to synaptic overgrowth. 
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Oxidative stress induces autophagy and autophagy is required for synaptic 

overgrowth. Another effect of oxidative stress is inefficiency in the electron 

coupling in mitochondria. This has the potential to reduce ATP production 

efficiency. A drop in ATP production is known to activate AMPK, a conserved 

pathway known to be activated when AMP:ATP ratio rises, inducing autophagy 

and metabolic pathways to generate more cellular energy. Decreased 

mitochondrial function leads to activation of a number of cell signalling pathways 

that can converge at a number of points, for example to regulate cell cycle 

transition (Owusu-Ansah et al., 2008). In this case, increased ROS leads to the 

activation of ASK/JNK/Foxo ultimately arresting transition through the cell cycle. 

Concurrently reduced mitochondrial function results in increased AMP:ATP 

leading to the activation of AMPK, which leads to the activation of p53, again 

ultimately inhibiting cell cycle transition. This shows how loss of mitochondrial 

function generates activation of two distinct pathways that both have the same 

physiological output. Based on this it was postulated that the AMPK pathway 

could be responding to metabolic deficit and contributing to synaptic overgrowth, 

in a parallel to JNK/AP-1 signalling. It has been well documented that autophagy 

is activated in response to starvation and energy deprivation through AMPK. 

Consequently, it was investigated whether AMPK could be another upstream 

regulator of autophagy during synapse development. The previous data on this 

are conflicting as Knox et al., (2007), suggested that autophagy negatively 

regulates synapse size as a downstream effector of Rheb, as oppsosed to 

autophagy positively regulting synapse development as shown by Shen and 

Ganetzky (2009). By driving Rheb in the motor neuron there is an increase in 

bouton number. Rheb activates TOR, which in turn inhibits autophagy through 

interactions with atg1.  Therefore by increasing Rheb, TOR activity is increased 

reducing the level of autophagy. However, the mechanism put forward is 

somewhat unclear. Rapamycin causes an increase in bouton number, through 

inhibition of TOR leading to an increase in autophagy, somewhat at odds with 

the putative mechanism that Rheb decreases autophagy leading to overgrowth 
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(Knox et al., 2007). Given the contradictory published data and the controversial 

results regarding increasing autophagy seen in the previous chapter the role 

AMPK in synapse development was investigated. This could potentially highlight 

how autophagy is regulated in spinster.  

The previous results chapters have shown that oxidative stress can contribute to 

synaptic growth, through activation of JNK signalling and autophagy. However, 

how this affects synaptic function has not been determined. Spinster has been 

shown to have overgrown synapses coupled with impaired synaptic 

transmission (Sweeney and Davies, 2002). Quantal size, determined by 

measuring mini excitatory junction potentials (mEJPs) was shown to be normal. 

This means that the synaptic response to the release of neurotransmitter from a 

single synaptic vesicle was normal. However, quantal content, the number of 

effective vesicles released in response to a nerve impulse is reduced by 50% in 

spinster, as quantified by measuring the EJP and dividing it by the mEJP. This 

shows that fewer vesicles are released in response to an action potential. 

Mutations in highwire that cause synaptic overgrowth that is partially rescued by 

reducing ROS also cause physiological deficits. In addition to the reduced EJP 

amplitude and quantal content, highwire also displays reduced quantal size 

(Wan et al., 2000). Quantal size is generally considered a measure of post-

synaptic sensitivity to neurotransmitter rather than due to any change in the 

amount of neurotransmitter released in a single vesicle.  

The effects of sod mutations on synaptic transmission at the Drosophila larva 

neuromuscular junction have not yet been investigated. Mutations in sod2 result 

in reduced climbing ability in adults and the effects of mutations in sod2 have 

been investigated at the giant fibre system (Godenschwege et al., 2009). It was 

shown that amplitude of response to stimulation declined following eclosion but 

was completely rescued by muscular expression of UASsod2, suggesting that 

sod2 is required in the muscle for normal performance of the NMJ. Motor neuron 

output remained the same even after movement had ceased. However neuronal 
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output declined significantly compared to wildtype. Central circuitry was impaired 

but not as much as the defects seen at the NMJ, and changes in central circuitry 

occurred later. This suggests that muscle dysfunction is contributing more to the 

whole-organism phenotypes, such as impaired climbing, than neuronal 

dysfunction; neuronal dysfunction is severe but occurs later than muscle 

dysfunction. Hence neuronal function in adults is significantly impaired as a 

result of mutations in sod2. However, the effects of sod1 or sod2 mutations on 

synaptic transmission at the Drosophila larva NMJ are as yet unknown. Given 

that oxidative stress induces synapse overgrowth, the effects of oxidative stress 

on synaptic physiology were studied, by examining crawling behaviour and 

synaptic transmission. 

As well as investigating the effects of these mutations in physiological output the 

effects of other upstream regulators of autophagy and metabolism on synaptic 

size in spinster were examined. Previous data in the Sweeney laboratory has 

shown that AMPK is involved in synaptic growth in spinster. Mutations in löchrig 

(löe), an isoform of the gamma-subunit of AMPK (Tschäpe et al., 2002), prevent 

spinster-induced overgrowth. This mutation affects one isoform of one of the 

regulatory subunits of AMPK, which is involved in the regulation of autophagy. 

AMPK is known to be protective against neurodegeneration (Spasić et al., 

2008); in fact mutations in löe cause neurodegeneration (Tschäpe et al., 2002). 

AMPK has a wide variety of effectors, generally stimulating lipid carbohydrate 

and protein metabolism to provide fuel to rectify the energy deficit. AMPK can 

also putatively inhibit protein synthesis through activation of certain PI3 Kinases. 

AMPK can differentially affect cell growth and apoptosis depending on the level 

of activation and effectors involved (Reviewed in Jansen et al., 2009).  
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6.2. Results 

6.2.1. Mutations with overgrown larval NMJs have impaired 
physiology 

Drosophila larvae move around their environment in search of food or to escape 

predators by crawling (Mueller et al., 2005). Larval crawling is a rhythmical, 

cyclic set of movements. The muscles of the larvae contract peristaltically, as 

muscle contractions propagate from one end of the body to another, and as this 

occurs the larva is able to move along the surface (Wang et al., 1997). This is a 

complex physiological process involving central and peripheral synapses and 

effective muscle contraction (Song et al., 2007). It involves central control and 

appropriate communication between the CNS, PNS and muscles. Crawling 

speed is therefore used as in indicator of physiological function. Mutations in 

spinster, highwire, sod1 and sod2 all cause significantly reduced crawling 

speeds compared to wildtype. All mutants are reduced to a similar extent; with 

sod2 showing slightly further reduced crawling speed (Fig. 6.1). In addition to 

this, sdhB mutants were also investigated but only two larvae could be recorded 

crawling as such as a very high percentage of these larvae do not crawl. The 

reduction on crawling speed does not correlate with the level of overgrowth seen 

in these mutants. Due to the role of oxidative stress in spinster induced 

overgrowth it was examine whether this physiological phenotype is caused by 

oxidative stress. spinster has been shown to carry an oxidative stress burden, 

and the overgrowth phenotype is rescued by expression of antioxidant 

transgenes. highwire and sod1 overgrowth is also reduced by expression of 

antioxidant transgenes. Since relieving oxidative stress reduces synaptic growth 

phenotypes in these mutants it was investigated whether expressing antioxidant 

transgenes reduces the crawling (physiological) phenotype, seen consistently in 

these mutants. 
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Figure 6.1: Mutations in spinster, highwire, sod1 and sod2 result in reduced 
crawling speed. Wildtype larvae have a crawling speed of 0.90±0.06mm/s (n=15), this 
is significantly reduced to 0.60±0.06mm/s (n=19) in spinster (p<0.05, ANOVA). The 
crawling speed of highwire mutants is 0.58±0.07mm/s (n=16), significantly reduced 
relative to wildtype (p<0.01, ANOVA). Mutations in SOD also cause significant reduction 
in crawling speed to 0.61±0.07mm/s (n=20, p<0.05, ANOVA) and 0.41±0.05mm/s 
(n=21, p<0.001, ANOVA) for sod1 and sod2, the cytoplasmic and mitochondrial forms, 
respectively. 

 

6.2.2. Reduction in spinster crawling speed is not rescued 

through expression of anti-oxidants 

Expression of spinGAL4>UAShSOD1 does not significantly affect crawling 

speed, whereas expression of UAScat pre- and post-synaptically caused a 

significant reduction in crawling speed. This seems an anomalous result and is 

at odds with data from the Elliott lab (York) who find that global and higher levels 
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of overexpression of cat using actGAL4>UAScat has a normal crawling speed, 

not statistically different to wildtype (Vincent et al., 2012). However, even when 

repeated, in case contaminated food had caused any problems, 

spinGAL4>UAScat had significantly reduced crawling speed; the result was the 

same. Expression of cat pre- and post synaptically results in a reduction in 

crawling speed that is actually reduced to a level comparable to spinster. 

Expression of hSOD1 did not rescue the reduction in crawling speed seen in 

spinster suggesting that it is not only the level of oxidative stress causing the 

reduction in crawling speed, or the reduction in oxidative stress afforded by 

spinGAL4>UAShSOD1 is not sufficient to restore physiological function. 

Expression of spinGAL4>UAScat in a spinster background further reduces 

crawling speed (Fig. 6.2). Expression of these antioxidants both showed an 

ameliorative effect on bouton number in spinster suggesting that the effects of 

ROS on growth are different from those affecting physiological function 

depending on the ROS species present. 

6.2.3. Reduction in highwire crawling speed is not rescued by 

expression of hSOD1 pre- and post-synaptically 

As discussed earlier, expression of hSOD1 pre- and post-synaptically does not 

significantly affect crawling speed. Nor does it rescue the reduction in crawling 

speed seen in highwire mutants. This suggests that the reduction of crawling 

speed in highwire is either not caused by increased levels of reactive oxygen 

species or caused by more ROS than are dissipated by spinGAL4>UAShSOD1 

(Fig. 6.3). 

6.2.4. Reduction in crawling speed in sod1 mutants is not 

rescued by expression of hSOD1 

The reduction in crawling speed seen in sod1 mutants is not ameliorated by 

spinGAL4>UAShSOD1. Expression of hSOD1 fully rescued the increase in 
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Figure 6.2 Reducing ROS in spinster does not rescue crawling speed. As shown 
earlier spinster causes a reduction in crawling speed from 0.90±0.06mm/s (n=15) for 
wildtype to 0.61±0.06mm/s (n=19) (p<0.01, ANOVA). Expression if hSOD1 doesn’t 
change crawling speed, 1.1±0.07mm/s (n=10, p<<0.05, ANOVA), whereas 
spinGAL4>UAScat has a significantly reduced crawling speed of 0.54±0.06 (n=17, 
p<0.001, ANOVA). Expression of these transgenes in spinster does not significantly 
rescue crawling speed with speeds of 0.65±0.05mm/s (n=21) and 0.34±0.02mm/s 
(n=5). 
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Figure 6.3: Reducing ROS in highwire does not rescue crawling speed. As shown 
earlier highwire causes a reduction in crawling speed from 0.90±0.06mm/s (n=15) for 
wildtype to 0.58±0.07mm/s (n=16, p<0.01, ANOVA). Expression of hSOD1 does not 
change crawling speed, 1.1±0.07mm/s (n=10, p<<0.05, ANOVA), and expression of 
hSOD1 in highwire does not significantly rescue crawling speed 0.80±0.07 mm/s (n=18) 
compared to highwire however, it is no longer significantly different to wildtype (p>0.05, 
ANOVA). 
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Figure 6.4: Reducing ROS in sod1 does not rescue crawling speed. As shown 
earlier sod1 causes a reduction in crawling speed from 0.90±0.06mm/s (n=15) for 
wildtype to 0.61±0.07mm/s (n=20, p<0.01, ANOVA). Expression of hSOD1 doesn’t 
change crawling speed, 1.1±0.07mm/s (n=10, p<<0.05, ANOVA), and expression of 
hSOD1 in sod1 does not significantly rescue crawling speed 0.63±0.06mm/s (n=19) 
(p>>0.05, ANOVA). 

 

bouton number and reduction in muscle surface area caused by mutations in 

sod1. This suggests that the physiological deficit incurred requires greater levels 

of hSOD1 than is required to rescue the changes in form caused by these 

mutations (Fig. 6.4). Other studies in the Sweeney lab have shown that 

expression of UAShSOD1 by the promoter spinGAL4 only rescue viability by 

80% (Radhika Sreedhar-Ashwin, Sweeney lab, personal communication). 

Another possibility is that because sod1 mutants are semi-viable there is a 

chance that homozygous sod1 mutants have mated in the stock. These flies 

have high levels of DNA damage due to increased ROS and therefore the 
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possibility of a second site mutation is high. However it must not be overlooked 

that sod1 is highly expressed therefore spinGAL4 might not provide high enough 

expression to combat the reduction caused by the mutation.  

The observation that the reduction in crawling speed seen in spinster, highwire 

and sod1 mutants is not rescued by expression of antioxidants suggests that it is 

not oxidative stress causing this phenotype. However this phenotype is so 

consistent between the mutants analysed that it is likely to be an effect induced 

by oxidative stress such as mitochondrial dysfunction which can be caused by 

oxidative stress and go on to cause further oxidative stress as a vicious cycle 

ensues.  

6.2.5. The effects of sod1, sod2 and spinster on synaptic 

transmission 

As discussed earlier crawling is, physiologically, a complex process, involving 

complex nerve circuit pathways and muscle contraction. To establish how 

synaptic transmission itself is affected by mutations in spinster and sod to 

determine if impaired crawling correlates with impaired synaptic transmission at 

the neuromuscular junction, electrophysiological recordings were carried out. 

Previous data has shown that spinster has impaired synaptic transmission, with 

normal response to neurotransmitter from a single vesicle but with a reduced 

number of vesicles released in response to an elicited action potential. The 

Drosophila larval neuromuscular junction is a highly useful and well-established 

model for studying synaptic transmission and thus can be used effectively to 

study the effects of oxidative stress on synaptic transmission. By inserting 

microelectrodes into Drosophila muscle a lot can be learnt about the functioning 

of the neuromuscular junction in different conditions to allow deficits in synaptic 

transmission to be pinpointed. sod  and spinster mutants were examined for 

synaptic transmission deficits. The first electrophysiological aspect investigated 

was resting membrane potential. Resting membrane potential is determined by  
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Figure 6.5: spinster has a normal resting membrane potential, sod1 and sod2 
have increased resting membrane potentials. Wildtype muscles have a resting 
membrane potential of -57.39±2.59mV (n=31). The resting membrane potential in 
spinster is not significantly different -54.98±2.26mV (n=21). sod1 and sod2 have 
significantly increased resting membrane potentials of -41.32±1.64mV (n=16) and -
45.42±1.73mV (n=18) respectively (p<0.01, ANOVA). 

 

the difference between intracellular and extracellular ion concentrations. The 

Nernst and Goldman equations are used to calculate the potential difference 

between these components, this takes into account the relative concentrations 

of the different ions present. If the resting membrane potential is perturbed this 

suggests that ionic balance is impaired and thus normal excitability might be 

compromised. In agreement with previously published data spinster mutants 

show no change in resting membrane potential (Sweeney and Davies, 2002).  

sod1 and sod2 mutants both show increased resting membrane potentials 

suggesting abnormal electrochemical gradients between the intracellular and  
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Figure 6.6 spinster and sod2 have normal EJPs whereas sod1 have increased 
EJP amplitude. The amplitude of wildtype EJPs is 10.67±1.06mV (n=20). spinster  and 
sod2 have statistically similar EJP amplitudes of 9.77±1.26mV (n=13) and 8.01±1.13mV 
(n=17) (p>>0.05, ANOVA). sod1 muscles show increased EJP amplitudes of 
15.52±1.19mV (n=16, p<0.05, ANOVA).  

extracellular components (Fig. 6.5). The activity of the Na+/K+
 -pump could be 

impaired due to reduced levels of ATP, resulting in less sodium being pumped 

out leading to an increased resting membrane potential. An alternative reason 

for this could be that K+ leak out of the cell through non-gated channels leading 

to less K+ in the cell, increasing the resting membrane potential. As discussed 

earlier the EJP is the response of the muscle to an action potential in the nerve 

resulting in neurotransmitter being released from the nerve terminal. Changes in 

EJP result in impaired synaptic transmission and hence measuring EJPs can 

give insight into neuronal functioning.  Spontaneous EJPs in wildtype spinster, 

sod1 and sod2 were measured and the mean amplitude was only shown to be 
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different in sod1 mutants (Fig. 6.6), where it was shown to be increased 

suggesting that either more neurotransmitter is released in response to an 

action potential in the nerve or the muscle is eliciting increased response to the 

normal level of neurotransmitter released. This suggests that spinster and sod2 

mutants are showing a normal response to neurotransmitter release from the 

pre-synaptic terminal. This is at odds with previous spinster data (Sweeney and 

Davies, 2002), which showed a 50% reduction in EJP amplitude. However the 

methods of electrophysiological analysis were different, and the method used 

here might be less sensitive and therefore overlook changes in EJP detected in 

the published data, as here spontaneous EJPs rather than evoked EJPs were 

recorded.  

The amplitude of EJPs is dependent on the resting membrane potential (RMP). 

Generally speaking, the higher the RMP the smaller the EJP. Therefore, to take 

into account the changes in RMP seen in sod mutants the residual was 

calculated, based on what the EJP would be expected to be in wildtype for any 

given RMP. The difference between expected and actual EJPs is not 

significantly different to wildtype in spinster and sod2 suggesting that EJPs are 

only altered in sod1 (Fig. 6.7).  
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Figure 6.7: spinster and sod2 have normal EJPs for the resting membrane 
potential, whereas sod1 have a higher EJP amplitude than expected. (A) EJP 
amplitude is shown plotted against resting membrane potential, showing that EJP 
amplitude declines as the resting membrane potential decreases (B) When compared 
to the trend line for wildtype and calculating the residual only sod1 has a significantly 
different EJP to expected based on resting membrane potential.  
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6.2.6. Normal and aberrant mitochondria are seen to be present 

in the spinster mutant.  

We performed transmission electron microscopy (TEM) on the laminar area 

behind the optic lobe in 5-day-old adult flies. This area was chosen as it is 

neuronal and has a high level of mitochondria present. Normal mitochondria can 

be seen in both wildtype and spinster (Fig. 6.8 A -F). Normal mitochondrial 

morphology can be seen both in wildtype and spinster with regular outer and 

inner membrane morphology. However, there are also a number of damaged 

mitochondria only seen in spinster (Fig. 6.8 G-I). Multiple aberrant mitochondria 

were seen in every animal of spinster and none were seen in wildtype. In this 

damaged mitochondria the inner membrane is irregular and denser. In addition a 

mitochondrion that was unable to undergo mitophagy and became surrounded 

by many layers of membrane was also seen in spinster. This suggests that in 

addition to the build up of endosomes and lysosomes seen in spinster (Sweeney 

and Davis, 2002; Dermaut et al., 2005) that were present, mitochondrial 

recycling may be impaired. Mitochondrial impairment suggests that there could 

be an energy deficit in spinster, as mitochondrial respiration is impaired so 

energy is not produced efficiently leading to increased ROS generation. To test 

whether spinster is incurring an energy deficit HPLC was used to test the ratio of 

AMP:ADP:ATP, however the results of this were inconclusive. A mitochondrial 

function assay by investigating oxygen consumption using a Clarke electrode 

was carried out. However, it was not possible to optimise this technique within 

the time available, although this experiment would be highly informative and 

would elucidate the status of mitochondrial function and metabolism in spinster. 
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Figure 6.8: Aberrant mitochondria are present in spinster. Most mitochondria 
present in spinster show normal morphology. However there are also a number of 
diseased mitochondria (G and H)  and examples of impaired mitophagy (I) that are not 
seen in wildtype. 
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6.2.7. AMPK is required for spinster induced overgrowth 

Previous work has shown that mutations in subunit γ of AMPK prevent spinster-

induced overgrowth (Sean Sweeney, personal communication). This is one of 

the regulatory subunits of AMPK. Therefore it was examined whether AMPK is 

involved in synapse development and confirm its role in spinster. To do this 

RNAi transgenes to AMPK subunit α, the catalytic subunit of AMPK were 

expressed. Reducing AMPK activity pre- and post-synaptically using either of 

the RNAi transgenes causes a reduction in bouton number in a wildtype 

background with one transgene (106200) but not the other (1827). In a spinster 

mutant background expression of either transgene reduces synaptic overgrowth. 

Reducing AMPK levels did cause a significant reduction in muscle surface area 

in with 106200 but not 1827. Nonetheless, reduction of AMPK function in a 

spinster mutant background reduced synapse growth significantly prior to any 

normalisation procedure. When these trangenes are expressed in spinster, 

muscle surface area is the same as wildtype, hence normalised bouton number 

shows the same reduction in overgrowth as prior to normalisation. This suggests 

that AMPK may be partly responsible for the reduction in muscle surface area.  
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Figure 6.9: Spinster induced overgrowth requires AMPK. (A) Expression of AMPK-
RNAi106200 in a wildtype background causes a significant reduction in bouton number 
61±4.0 (n=14) (p<0.001, when compared to wildtype and other transgene control and 
p<0.05, when compared to all means in the graph, ANOVA) no significant change in 
bouton number is seen with AMPK-RNAi1827 74±4.6 (n=16). spinster induced 
overgrowth is significantly reduced from 152±4.74 (n=32) to 109±6.2 (n=19) and 
105±6.52 (n=19) (p<0.001, ANOVA). (B) Only UASAMPKRNAi106200 causes a 
significant change in muscle surface area, reducing it to 59153±2289, AMPKRNAi1827  
has a MSA of 706687µm2. In spinster these transgenes cause MSAs of 
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82971±3443µm2 and 79495±1919µm2 (p>0.05, ANOVA) (C) Following normalisation to 
muscle surface area UASAMPKRNAi significantly rescues spinster induced overgrowth 
from 165±7.5 (n=32) to 111±10(n=19) and 108±6.8 (n=19). The transgene controls 
have normlised bouton numbers of 86±7.45 (n=14) and 88±8.8 (n=16) (p>0.05, 
ANOVA). 

6.2.8. Increased activation of AMPK is required pre- and post- 

synaptically to drive synapse growth 

Having shown that AMPK is required for spinster-induced it was postulated that  

AMPK activity could drive synapse overgrowth. To determine the role of AMPK 

in synapse development a pseudo-phosphorylated AMPK transgene, 

UASAMPKT184D-, which simulates activated AMPK (Mirouse et al., 2007) was 

expressed. When this is expressed pre-synaptically with elaVGAL4 there is no 

change in bouton number compared to wildtype, nor is there any statistically 

significant change in bouton number when AMPK activity is increased in the 

muscle (Fig. 6.10A). However it must be noted that when expression in only the 

nerve or the muscle is compared to wildtype using ANOVA, bouton number is 

significantly reduced compared to wildtype with neuronal expression of AMPK-P. 

Conversely, increased activity of AMPK in the muscle causes a significant 

increase in bouton number. The increased bouton number seen with spinGAL4 

obscures these significances when included in statistical analysis. When 

expressed  
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Figure 6.10: Increased AMPK activity pre- and post- synaptically results in 
synaptic overgrowth. (A) Driving psuedo-phosphorylated AMPK in either the nerve or 
the muscle does not significantly change bouton number with means of 64±4.4. (n=16) 
and 107±7.1 (n=17). Concurrent expression with spinGAL4 causes a significant 
increase in bouton number to 114±4.6 (n=35) (p<0.05, ANOVA). (B) Expression of this 
transgene in either the nerve muscle or both does not significantly affect muscle surface 
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area with mean muscle surface areas of 85443±2265µm2 (n=16), 86061±3989µm2 
(n=17) and 77872±1933µm2. (C) When normalised to muscle surface area expression 
in either the nerve or the muscle does not significantly alter normalised bouton number 
with bouton numbers of 63±5.4 and 107±9.9 respectively (p>0.05, ANOVA). Concurrent 
expression under the control of spinGAL4 results in significantly increased bouton 
number 121±5.6 (p<0.001, ANOVA). 

simultaneously in the nerve and the muscle using spinGAL4, there is a 

significant increase in bouton number, when all conditions are compared by 

ANOVA. Expression of this transgene, pre- or post synaptically or 

simultaneously does not change muscle surface area, consequently when 

normalised, there is only a significant change in bouton number when AMPK-P 

is expressed simultaneously pre- and post- synaptically (Fig. 6.10C). The 

change caused by only neuronal or muscular expression is still not significant 

when normalised even when compared in the absence of simultaneous 

expression.  

6.2.9. AMPK activity is required for crawling 

Using löe mutations and the RNAi and pseudo-phosphorylated AMPK 

transgenes, the effects of AMPK activity levels on crawling speed were 

investigated (Fig. 6.11). Mutations in löe cause no change in larval crawling 

speed; the crawling speed is not statistically different to wildtype. löe is a 

mutation that causes neurodegeneration (Tschäpe et al., 2002). It is a mutation 

in one isoform of the γ-subunit of AMPK, one of the regulatory subunits of 

AMPK. Reducing AMPK levels through expression of AMPK RNAi to the α-

subunit of AMPK, which is the catalytic subunit causes a significant reduction in 

crawling speed. This suggests that under normal conditions activity of AMPK is 

required for normal physiological output. Expression of pseudo-phosphorylated 

AMPK causes no change in crawling speed.  
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Figure 6.11: AMPK is involved in determining crawling speed. Mutations in loë do 
not affect crawling speed, 1.03±0.07 (n=25). Depleting AMPK through expression of 
AMPK RNAi results in a significant reduction in crawling speed to 0.42±0.1 (n=16, 
p<0.01, ANOVA) and 0.51±0.05 (n=16, p<0.05, ANOVA) for the two different 
transgenes. Pseudo-active AMPK causes no change in crawling speed relative to 
wildtype 0.92±0.08 (n=21, p>>0.05, ANOVA). 
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6.3. Discussion 

6.3.1. Mutations causing oxidative stress can impair motor 
function 

All the mutations investigated in this study, spinster, hiw, sod1 and sod2 have 

impaired crawling speed compared to wildtype. It was postulated that if oxidative 

stress were causing this deficit expression of anti-oxidant transgenes would 

rescue this phenotype. However, reducing oxidative stress in any of these 

mutants did not rescue the reduction in crawling speed. Expression of these 

transgenes did however rescue synaptic overgrowth. This suggests that the 

mechanisms through which these mutations cause synaptic overgrowth are 

distinct from those that cause impaired motor function. It could be that function is 

more sensitive to oxidative stress than form, in so far as relieving oxidative 

stress enough to prevent overgrowth still leaves a high enough level of ROS to 

impair motor function. The driver used, spinGAL4, expresses pre- and post- 

synaptically as well as in the central nervous system, but at relatively low levels 

compared to other global drivers such as actinGAL4 and tubulinGAL4, therefore 

using these drivers might still afford a rescue of the reduction of crawling speed 

seen in these mutants.  

It is worth noting that tubGAL4 does not afford any greater rescue of bouton 

number in spinster than spinGAL4. This suggests that although reducing 

oxidative stress with spinGAL4>UAShSOD1 provides the maximum level of 

rescue seen with any driver in spinster bouton number there is still a significant 

reduction in motor function.  In hiw mutants spinGAL4>UAShSOD1 does not 

rescue the crawling speed even though it significantly rescues the increase in 

bouton number seen in hiw mutants, in a similar fashion to that seen in spinster 

mutants. This supports the theory that function might be more sensitive to 

oxidative stress than synaptic morphology, or there is a defect other than 

oxidative stress present in spinster and highwire that is leading to the decline in 
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motor output seen. Based on the observation that spinGAL4>UAShSOD1 in 

sod1 mutants fully rescues synaptic overgrowth yet does not rescue the deficit in 

motor function, it seems more likely that oxidative stress is not reduced enough 

to rescue synaptic function and thus supports the hypothesis that crawling 

speed is more sensitive to oxidative stress than synaptic function, rather than 

being caused by something else present in spinster, highwire and sod1. It is 

however, possible that build up of protein in these mutants, causing something 

other than oxidative stress, is the cause of the reduction seen in crawling speed, 

as mutations in sod1 have been postulated to cause disease through 

aggregation of mutant sod1 rather than reduction in antioxidant capacity 

(Vijayvergiya et al., 2005). This remains to be investigated through using 

stronger drivers and a variety of anti-oxidants, and investigating other mutations 

that cause oxidative stress. It can however be seen that level of overgrowth is 

not directly correlated with reduction in crawling speed. It is also interesting to 

note that overgrowth does not necessarily result in impaired crawling, as 

spinGAL4>UASAMPKT184D has significantly increased bouton number yet 

normal crawling speed. This is also supported by studies into overgrowth 

mutants that show hyperactivity and overgrowth (Budnik et al., 1990). The data 

here suggest that mutations that have oxidative stress induced changes in 

synaptic morphology show the general phenotype of impaired crawling speed, 

indicative of impaired synaptic function. This is supported by the 

electrophysiological data in sod1 and sod2. Although, rescues have not been 

performed to determine whether the changes in synaptic transmission 

phenotypes seen in these mutants are caused by oxidative stress. Synaptic 

transmission does not seem to be significantly impaired in spinster, at odds with 

previously published data, but this is likely to be due to differences between 

spontaneous EJPs investigated here and evoked EJPs in the published data. 

Studies carried out in collaboration with the Sweeney lab by the Robinson Lab in 

Plymouth have shown that spinster has normal EJPs, similar to the data shown 

in this study, but they have also found fatigue phenotype during repeated 
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stimulation, potentially due to an inability to recycle synaptic vesicles at a rate 

suitable to sustain normal synaptic transmission (Iain Robinson, personal 

communication; Milton et al., 2011), this phenotype was rescued by relieving 

oxidative stress through expression of hSOD1 with the promoter spinGAL4. This 

‘fatigue phenotype’ is consistent with other studies on mutants defective for 

endocytosis (Koh et al., 2004; Marie et al., 2004). A drosophila model of 

Parkinson’s disease, caused by mutations in pink1 also fails to maintain normal 

synaptic transmission during intense activity (Morais et al., 2009).   This does 

not explain why both sod1 and sod2 mutants show different phenotypes to 

spinster. Consequently, it is hard to determine which physiological phenotypes 

are caused by oxidative stress in spinster as sod mutations causes a significant 

increase in RMP that is not seen in spinster. This suggests that oxidative stress 

in sod mutations causes effects that are not seen in spinster, suggesting that 

something in spinster allows it to maintain its resting membrane potential despite 

the presence of oxidative stress. The other phenotypes seen in spinster, such as 

lipid peroxidation and increase in bouton number are rescued by expressing 

hSOD1 suggesting that superoxide is contributing to these phenotypes. 

Therefore it may seem counterintuitive that mutations in sod1 do not recapitulate 

this phenotype. However, there are other cellular defects in spinster that are 

unlikely to be present in either of the sod mutants. The decreased lysosomal 

degradation seen in spinster could lead to the prolonged and increased 

presence of cellular components that would otherwise be broken down during 

the cellular stress response to protect the cell from oxidative stress. This could 

also be the reason that spinster does not show a decrease in muscle surface 

area seen in all other cases of oxidative stress investigated.  

Mutations in both sod1 and sod2 could directly affect mitochondrial function and 

the impaired mitochondria in spinster could be responsible for impaired crawling 

speed. Mitochondrial morphology in sod mutants would be an interesting avenue 

for future research. sod2 mutations cause mitochondrial damage in muscles 
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(Godenschwege et al., 2009). Defective mitochondria could result in reduced 

ATP production, leading to increased AMP:ATP activating AMPK.  

6.3.2. Increased AMPK activity can cause synaptic overgrowth 

and is required for spinster induced overgrowth 

Due to the potential metabolic deficit in sod mutants and spinster, a signalling 

pathway likely to be activated by defective ATP production was investigated. 

AMPK has not as yet been directly implicated in synaptic growth and in this 

study it is shown that AMPK positively regulates bouton number and furthermore 

that it is required for spinster induced overgrowth. Previous data surrounding the 

role of upstream regulators of autophagy have been somewhat contradictory. 

However, it is clearly shown that the regulatory subunits of AMPK are required 

for spinster-induced overgrowth in addition to the catalytic subunits. This is 

somewhat at odds with the findings that Rheb drives synapse growth as 

increased AMPK would increase tuberous sclerosis complex activity and 

therefore increase the inhibition of Rheb. Therefore the data displayed here 

support more the findings of Shen and Ganetzky (2009) as increased inhibition 

could lead to increased autophagy, which they find to produce an overgrowth. 

However AMPK has a number of potential effectors and therefore any 

phenotype caused by increased AMPK does not necessarily depend on 

autophagy. Nonetheless, for the first time, AMPK has been implicated in 

regulation of synaptic growth response, suggesting that energetic status is 

important for correct synaptic growth responses. 
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7. Discussion and Future Research  

7.1. Introduction 
The aims this investigation were to answer the following: 

1. Do mutations in spinster cause oxidative stress and is oxidative stress 

contributing to the synaptic overgrowth phenotype? 

2. Can oxidative stress cause synaptic overgrowth independently of 

lysosomal dysfunction? 

3. Are ASK/JNK/AP-1 activation and autophagy required for synaptic growth 

observed under conditions of oxidative stress? 

4. Oxidative stress is known to impair mitochondrial function. Does oxidative 

stress/ spinster cause an energy deficit resulting in impaired physiological 

output? If this is the case, are compensatory metabolic pathways induced 

in spinster?  

The purpose of this chapter is to establish which of these aims have been 

fulfilled giving an overarching view of the data generated in this thesis and 

suggest future research questions that have arisen as a result of this study. 

7.2. spinster as a model of a lysosomal storage disorder 
Lysosomal storage disorders are characterised by impaired lysosomal 

degradation of cellular components, leading to accumulation of undegraded 

material in the lysosomal system (For review see Futerman and van Meer, 

2004). A number of LSDs have been shown to have oxidative stress (Deganuto 

et al., 2007; Fu et al., 2010; Fillipon et al., 2011), potentially due to the build up 

of lipofuscin. Lipofuscin is undegraded material that builds up during aging and 

pathological impairment of degradative pathways, as in lysosomal storage 

disorders. Lipofuscin potentiates the generation of ROS, thus further increasing 



7. Discussion and Future Research 

177 

oxidative stress. Lysosomes are rich in transition metals in a low pH and 

dysregulation in LSD produces an environment conducive for Fenton reactions 

generating ROS (Kurz et al., 2007, Kurz et al. 2008a and b). Oxidative stress 

induces autophagy (Higgins et al., 2011; Chen et al., 2009; Wu et al., 2009) 

contributing further to lysosomal build-up of undegraded material. A positively 

reinforcing cycle ensues: impaired lysosomal degradation increases oxidative 

stress and induces autophagy coupled with impaired autophagic clearance this 

results in build up of autophagosomes and autophagolysosomes. Oxidative 

stress, presence of lipofuscin and dysregulated autophagy (Settembre et al., 

2009; Fu et al., 2010) and mitochondrial aberrations are identified cellular 

hallmarks of LSD; excessive dendritogenesis and synaptogenesis are also 

observed (Walkley et al., 1985 and 1988a and b; March et al., 1995). Here 

spinster is confirmed as a model of LSD, as suggested by Dermaut et al., 2005; 

Sweeney and Davis, 2002; Nakano et al., 2001, as spinster is a late 

endosomal/lyososomal protein and mutations in spinster result in enlarged late 

endosomes/lysosomes, increased oxidative damage and activation of the 

oxidative stress response, increased synaptogenesis and mitochondrial 

aberrations.  

7.2.1. Oxidative stress causes synaptic overgrowth  

The data shown in the previous chapters show that oxidative stress causes 

growth of the Drosophila neuromuscular junction and is a contributory factor in 

the overgrowth seen in spinster loss of function mutants, a model of a 

neurodegenerative LSD. This suggests spinster lysosomal dysfunction 

generates oxidative stress as seen in known LSDs (Fu et al., 2010). Oxidative 

stress is common in LSDs due to the pathological presence of undegraded 

material. Synapses are areas of high energy demand; hence they are rich in 

mitochondria, the greatest generators of ROS, making them susceptible to 

oxidative stress. Moreover, nerves are generally postmitotic and do not readily 

regenerate, thus they are predisposed to the accumulation of lipofuscin. The 



7. Discussion and Future Research 

178 

majority of the synaptic overgrowth in spinster is rescued by reducing the 

oxidative stress burden. The data in this study are supported by the observation 

that oxidative stress generated independently of lysosomal dysfunction 

promotes synapse growth.  A number of mutations identified by hyperexcitabilty 

phenotypes, due to mutations in potassium channels involved in terminating 

release from the presynaptic terminal, also cause synaptic overgrowth: shaker 

(sh), ether a go-go (eag) and hyperkinetic (hk) (Budnik et al., 1990). These, and 

another hyperexcitable mutant, quiver, were subsequently found to be 

hypersensitive to oxidative stress (Wang et al., 2000).  It would be interesting to 

see if this overgrowth is rescued by expressing antioxidants. Excitability 

determines neuronal morphology as electrical activity regulates plasticity, but 

how this happens in these mutants is unknown; it could be that increased 

synaptic activity leads to oxidative stress leading to overgrowth. It would be 

interesting to differentiate between function and morphology in these mutants to 

determine if oxidative stress is causing the overgrowth, secondary to the primary 

cause of hyperexcitability. Another known cause of overgrowth is impaired 

downregulation of signalling molecules due to defective degradation pathways 

as seen in spinster and ema (Sweeney and Davies, 2002; Kim et al., 2010). As 

shown in this study, spinster  overgrowth is also caused by oxidative stress as 

well as increased TGFβ signalling. It is possible that mutations in ema cause 

oxidative stress as a result of enlarged endosomal compartments, resulting in 

oxidative stress derived overgrowth. It is interesting to note that in this study the 

level of increase in raw bouton number seen in spinster and ema cannot be 

obtained purely through induction of oxidative stress, in the absence of 

lysosomal dysfunction. This suggests that defective endosomal downregulation 

of TGFβ signalling and oxidative stress contribute to overgrowth in spinster 

whereas in sod mutants and paraquat fed animals TGFβ downregulation by the 

endosomal system is unimpeded thereby limiting the level of overgrowth. 
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Even though the general trend of the data in this study is that oxidative stress 

contributes to synaptic growth, this is clearly not always the case. Rotenone is 

also thought to generate elevated levels of superoxide, through inhibition of  

complex I of the mitochondrial respiratory chain. However, rotenone can impair 

microtubule formation (Brinkley et al., 1974; Srivastava and Panda, 2007), which 

could impede autophagy, which is shown to be required for synaptic growth or 

overgrowth. This could be determined by looking at microtubule morophology in 

rotenone-fed animals compared to controls. It would also be interesting to 

determine the level of oxidative stress incurred by rotenone exposure for 

example using a lipid peroxidation assay or looking at expression of gst-D-GFP. 

Furthermore sdhB mutants do not show synaptic overgrowth, even though 

increased ROS generation has been demonstrated (Walker et al., 2006). 

Interestingly though mutations in sdhA, which also cause oxidative stress, result 

in oxidative stress dependent synapse loss in the Drosophila eye. Taken 

together these findings suggest that oxidative stress can contribute to synaptic 

overgrowth at the Drosophila neuromuscular junction, but can also lead to the 

generation of other phenotypes, depending on the source and level of ROS. 

7.2.1.1. Is oxidative stress induced synaptic morphology ROS specific or 
source specific?  

In terms of bouton number it is hard to determine any clear conclusions about 

the role of different ROS in the generation of overgrowth phenotypes. With 

respect to spinster the same level of rescue was achieved regardless of the type 

of antioxidant present. This suggests that it does not matter whether it is 

superoxide anions or hydrogen peroxide or other ROS that specifically cause 

synaptic overgrowth. However, mutations in catalase, which would decrease the 

breakdown of hydrogen peroxide, did not result in overgrowth whereas 

mutations in sod1 and sod2 and paraquat exposure, which increase levels of 

superoxide, did cause overgrowth. This might suggest that superoxide 

potentiates synaptic growth. However when the vast overgrowth in sod is 



7. Discussion and Future Research 

180 

removed from statistical analysis cat overgrowth is significant. sod is the only 

enzyme that can catalyse the conversion of superoxide anions to hydrogen 

peroxide whereas with catalase other enzymes could be compensating for the 

loss of cat. It was attempted to investigate the importance of different ROS using 

mutations in other proteins involved in the conversion of superoxide ions to 

hydrogen peroxide, such as thioredoxin reductase (TrxR), however these are 

not viable to 3rd instar as homozygotes or transheterozygotes in the conditions 

used in this study, even using apple juice agar plates and yeast mix. It might be 

possible to use animals lacking one copy of catalase and one copy of TrxR. 

Another alternative is to feed larvae hydrogen peroxide; this is currently being 

investigated in the Sweeney lab. It is hard to determine the proportionate levels 

of different ROS in living tissue with the current reporters available and therefore 

difficult at present to dissect which ROS are responsible for the generation of 

overgrowth phenotypes.  

Mutations in sod1 and sod2 have differential effects on branching and bouton 

size, this could suggest that the source of ROS is important in determining these 

phenotypes. Superoxide anions are short lived molecules, so these phenotypes 

could reflect the differential effects of ROS damage leading to diverse 

phenotypes. spinster, sod1 and paraquat all cause an increase in small boutons 

compared to wildtype whereas sod2 results in increased medium sized boutons. 

It can also be seen that sod2 is the only condition of oxidative stress that results 

in a decrease in branching, suggesting that something is different in this 

condition that is common to the other three, although it remains to be 

investigated what this might be, as it is probably not as simple as mitochondrial 

vs. cytoplasmic oxidative stress as paraquat causes predominantly 

mitochondrial generation of ROS.  

Another observation from this study is that sod2 and paraquat induced 

reductions in muscle surface area are not rescued by expression of hSOD1 and 

trxCYTO respectively. This could be due to mitochondrial dysfunction still being 
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impaired as both these antioxidants are cytoplasmic. Further tests need to be 

carried out with other antioxidants to confirm the specific effects of oxidative 

stress on bouton number and muscle surface area. sod1 reduction in muscle 

surface area is partially rescued by cat expression, suggesting that it is not a 

type of ROS that cause a decrease in muscle surface area but the general 

presence of oxidative stress.  

7.3. ASK/JNK/AP-1 signalling is required for oxidative 
stress induced synaptic overgrowth 
The synergistic effect on bouton number seen in heterozygotes of spin and sod1 

are indicative of a threshold at which overgrowth is induced indicating these 

mutations affect a common pathway generating overgrowth. An important 

suggestion that can be made as a result is that trafficking defects previously 

suggested to cause overgrowth through continued expression/disinhibition of 

signalling pathways of growth signals (Sweeney and Davis, 2002; Kim et al., 

2010; Korolchuk et al., 2007; Wang et al., 2007) may not be the only mechanism 

through which lysosomal dysfunction causes synapse overgrowth; oxidative 

stress may contribute to the activation of synaptic growth pathways. The 

‘pathogenic signalling cascade’ driving synapse growth in LSD has yet to be 

identified. The data here support the proposal that oxidative stress and the 

activation of JNK/AP-1, in spin mutants and other cases of oxidative stress, 

promotes the generation of synaptic overgrowth. 

7.3.1. AP-1 activity is differentially required for oxidative stress 

induced growth 

The requirement for Fos and Jun activity for oxidative stress induced synaptic 

growth is found to be different among spin, paraquat-fed, sod1 and sod2 

mutants treated animals. This suggests differential activation of components of 

AP-1 in each condition. In Drosophila, Fos can homodimerise and is known to 
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act independently of Jun in synapse overgrowth in hiw mutants and conditions of 

cytoskeletal disruption (Collins et al., 2006; Masaro et al., 2009). In sod2 

mutants and paraquat treatment oxidative stress is generated predominantly in 

mitochondria, and under these conditions a role for Jun in synapse growth is 

identified. Jun is not implicated in synapse overgrowth in spinster and in sod1 

depleting Jun signalling affords only a partial rescue. This potentially suggests a 

context dependent role for Jun in the regulation of synaptic growth, which may 

indicate divergent responses to different cellular sources of oxidative stress. 

That is to say Jun has a greater role when mitochondrial oxidative stress (Fig. 

7.1) is implicated which could suggest than Jun has a role in signalling an 

energy deficit arising from mitochondrial dysfunction.  

7.3.2. Fos is required both in the nerve and the muscle for 

synaptic overgrowth in spinster and sod2 

AP-1 signalling has previously only been studied acting pre-synaptically at the 

Drosophila neuromuscular junction, as its role in highwire is presynaptic as 

highwire is only expressed in the nerve (Collins et al., 2000), and Sanyal (2003) 

only investigated AP-1 activity in the nerve. Here a novel role has been identified 

for Fos acting in the muscle during synaptic development. 

7.3.2.1. AP-1 and muscle surface area 

Expression of ASK/JNK/AP-1 dominant negative in paraquat fed animals did not 

alter the reduction in muscle surface area caused by paraquat. Expression of 

junDN and fosDN in sod1 rescue muscle surface area, however junDN in sod2 

does not rescue muscle surface area whereas fosDN fully rescues muscle 

surface area. This could suggest a role for AP-1 signalling in determining muscle 

size. 
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7.4. Autophagy is required for synaptic overgrowth 

7.4.1. Autophagy is required for synaptic overgrowth 

Oxidative stress is a potent activator of autophagy. Furthermore, autophagy 

genes are required for spinster and paraquat-induced synaptic overgrowth, 

suggesting that autophagy promotes synaptic overgrowth in these phenotypes. 

However, the cellular process of autophagy at the neuromuscular junction during 

development has not been confirmed in this study, but genetically removing or 

reducing autophagy function implicates autophagy in overgrowth. The levels of 

autophagy in spinster were also investigated through the use of GFP-tagged atg 

constructs. Again however, the expression was not high enough to detect in the 

larvae even with tubGAL4 and α-GFP antibodies to amplify the signal. What 

might be possible in future studies is to analyse autophagy levels looking at 

these transgenes in the eye, or salivary glands where they have been used 

previously as a proxy for neuronal tissue. 

Activation of autophagy has been shown to promote synapse growth in 

Drosophila via degradation of an upstream inhibitor of the JNK signaling 

pathway (Collins et al., 2006). Autophagic downregulation of hiw protein has 

been proposed as a mechanism to regulate synaptic growth (Shen and 

Ganetzky, 2009). The major identified transcriptional output of the JNK/AP-1 

pathway is anti-oxidant and autophagic responses (Wu et al., 2009; Jegga et al., 

2011). Autophagy and oxidative stress may directly contribute to the regulation 

of synapse growth mechanisms. The function of the cell adhesion protein DE-

cadherin is sensitive to oxidative stress (DeGennaro et al., 2011) though the 

generality of this finding has yet to be defined. Autophagy has been observed to 

selectively phagocytose receptor proteins from an identified synapse (Rowland 

et al., 2006; Bamber and Rowland, 2006) suggesting a mechanism where 

autophagy can directly regulate the function and growth of the synapse 

independently of highwire degradation.  
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7.4.2. Autophagy is required in the muscle for spinster 

overgrowth 

This is a novel finding as previously autophagy has only been implicated in 

synapse development in the presynaptic compartment. The hiw protein and its 

target wallenda (wnd) are both found presynaptically (Collins et al., 2006) while 

in spinster autophagy activity contributes to synapse overgrowth in both the 

muscle and nerve (Fig. 7.1). This observation suggests a novel muscle derived 

JNK/AP-1/autophagy signal contributing to synapse growth that is likely to be 

independent of direct hiw/wnd regulation. A future line of investigation would be 

to look at the role of TOR in synaptic development.  

7.4.3. It is not known whether JNK is upstream of or 

downstream of autophagy in spinster and paraquat induced 
overgrowth 

As discussed above JNK can act upstream of autophagy, whereby activation of 

JNK transcriptionally activates autophagy (Wu et al., 2009). In addition 

autophagy was shown to be upstream of JNK signalling in highwire mutants, as 

highwire mutants still show synaptic overgrowth with impaired autophagy. 

However spin induced overgrowth is dependent on autophagy. It is hard to 

determine whether JNK is upstream of downstream of autophagy in spinster as 

qPCR comparing atg1 and atg18 transcripts in spinster with and without JNK 

activity were not informative, as the levels varied greatly even in wildtype. 

Investigating TOR in these contexts might elucidate the signalling involved in the 

regulation of autophagy. However many of these signalling cascades are 

cyclical, for example ROS activated Foxo and JNK are activated by TOR-

induced accumulation of ROS, this then leads to upregulation of sestrin, which 

acts as a negative feedback inhibitor to TOR (Lee et al., 2010). As shown in 

figure 7.1 JNK signalling is activated by ROS and is required for increases in 

bouton number but JNK can act both upstream (Wu et al., 2009) or downstream 
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of autophagy (Shen and Ganetzky, 2009) and where it is acting in spinster and 

oxidative stress to cause synaptic overgrowth remains to be seen. This means 

that genetic and biochemical analysis in tandem could identify the mechanisms 

involved. 

7.5. AMPK is implicated in synaptic growth 

7.5.1. AMPK can drive synaptic overgrowth 

Increased AMPK activity is required both in the nerve and the muscle to create a 

significant overgrowth, relative to muscle surface area. However it is likely that 

most of this overgrowth is due to activity in the muscle as expression in the 

muscle causes a significant overgrowth prior to normalisation. This suggests 

that the role of the muscle in synaptic overgrowth has been somewhat 

overlooked and requires further investigation. In addition AMPK was also 

required for overgrowth in spinster. It is as yet unknown whether AMPK derived 

overgrowth is dependent on autophagy as although AMPK activity is known to 

activate autophagy, it also has many other downstream effectors. To analyse 

the effectors of AMPK it is necessary to analyse AMPK induced overgrowth 

when genetically reducing autophagy, through mutations or expression of RNAi 

transgenes.  

7.5.2. AMPK is required for spinster induced overgrowth 

Given that the overgrowth caused by increased activation of AMPK requires 

activation both in the nerve and the muscle for significant overgrowth, though in 

all likelihood a great proportion of this overgrowth is caused by the muscle, and 

that autophagy is also required both pre- and post- synaptically for spinster 

overgrowth, it will be important to establish where at the synapse AMPK is 

required in for growth in spinster. This could be done through expression of 

RNAi transgenes, not only to knock down the regulatory subunits but also the 

catalytic subunit, pre and post-synaptically. The level of activation of AMPK in 



7. Discussion and Future Research 

186 

spinster was investigated using an antibody specific to phosphorylated AMPK 

(P-AMPK); unfortunately the affinity of the antibody to Drosophila P-AMPK was 

not sufficient to allow analysis. However the involvement of AMPK in spinster 

overgrowth is indicative of AMPK activation in spinster. Although it is not known 

whether this is through regulation of autophagy or through other mechanisms 

(Fig. 7.1)  

 

Fig. 7.1: Summary diagram of regulation of bouton number: ASK/JNK/Fos 
signalling is activated by ROS and leads to increased bouton numbers. Jun is 
also involved when ROS are a result of paraquat or mutations in sod2 
suggesting mitochondrial ROS generations. AMPK and autophagy are also 
required in for synaptic overgrowth. Autophagy genes and Fos are required both 
pre- and post-synaptically for overgrowth.  
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7.5.3. Mitochondrial defects in spinster  

A large number of neurodegenerative disorders have been shown to have 

mitochondrial aberrations. For example, some genetic forms of Parkinson’s 

disease are caused by mutations affecting mitochondrial networks, such as 

Pink1 and parkin (Clark et al., 2006, Morais et al., 2009). In addition to this some 

LSDs have mitochondrial aberrations. GM1-gangliosidosis leads to decreased 

levels of the mitochondrial enzyme cytochrome c-oxidase and morphologically 

abnormal mitochondria (Takamura et al., 2008). Furthermore, astrocytes 

extracted from mice with this defect showed increased sensitivity to oxidative 

stress that was reversed by increasing ATP, suggestive of an energy deficit. 

Another LSD, mucolipidosis type IV, results in mitochondrial fragmentation, 

putatively due to impaired recycling of mitochondria through the 

autophagolysosomal pathway as the mitochondrial defect was recapitulated 

through inhibition of autophagy (Jennings et al., 2006). The role of AMPK and 

oxidative stress in spinster suggests that spinster might be metabolically 

impaired, due to oxidative stress-mediated disruption of energy metabolism, 

resulting in reduced ATP. spinster appears to have impaired autophagosomal 

degradation of mitochondria, and previous studies have shown that spinster has 

increased levels of autophagolysosomes following starvation (Rong et al., 2011). 

The presence of morphologically abnormal mitochondria in spinster could 

suggest defective recycling of mitochondria, common to a number of LSDs and 

other neurodegenerative diseases. It is necessary to establish when during 

development mitochondrial aberrations become apparent as the mitochondria 

shown here are from adult flies. It is also necessary to determine whether these 

morphologically abnormal mitochondria result in defective mitochondrial function 

leading to an energy deficit as seen in the mouse model of GM1-gangliosidosis 

(Takamura et al., 2008). 
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7.6. Physiological output is more sensitive to oxidative 

stress than morphology of the neuromuscular junction 
Generally increased activity is believed to promote synapse growth.  This is 

seen in mutants with heightened neuronal activity such as shaker, a voltage-

gated potassium channel.  Mutations in shaker combined with other mutations 

that cause enhanced neuronal activity, such as ether-a-go-go (eag) and 

hyperkinetic (Hk) have an increase in bouton number (Budnik et al., 1990).  

Reducing neuronal excitability in animals expressing these mutations, by 

introducing mutations in no action potential (nap, a sodium channel defect) 

rescues these phenotypes.  Increased levels of cAMP cause synaptic 

overgrowth in dunce mutants; mutations in dunce reduce the breakdown of 

cAMP.  This increase in synaptic growth is reduced by the mutant rutabaga, 

which is a mutation in adenylate cyclase, and hence impedes the production of 

cAMP (Zhong and Wu 1991a and b; Zhong et al., 1992). Taken together these 

data suggest that hyperexcitablity or increased synaptic activity positively 

correlates with increased bouton number.  However, spinster has been shown to 

impair synaptic function (Sweeney and Davies, 2002; Dermaut et al., 2005), with 

reduced quantal content and normal quantal size.  Conversely, highwire mutants 

have both decreased quantal content and decreased quantal size (Wan et al., 

2000). Other overgrowth mutants such as hangover show no change in 

electrophysiology showing that the relationship between bouton number and 

synapse strength is a complex one.  It is interesting to note that hyperexcitability 

mutants show increased sensitivity to oxidative stress (Humphreys et al., 1996, 

Wang et al., 2000).  While this does not conclusively show that they have 

oxidative stress the relationship is an interesting one and may hinge upon 

energetic demand and resultant mitochondrial stress.   

The impaired crawling speed seen in spinster is not rescued through the 

expression of anti-oxidant transgenes suggesting that either oxidative stress is 

still at a high enough level to cause physiological dysfunction or the cause of 
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physiological impairment is distinct from oxidative stress. It must be noted that 

reducing oxidative stress does not afford a full rescue of overgrowth in spinster. 

However, other mutants investigated whose morphology was completely 

rescued by expression of antioxidants also showed impaired physiological 

output, shown by decreased crawling speed and this was not rescued by 

expression of antioxidants. This suggests that physiological output is more 

sensitive to oxidative stress than bouton number. 

7.7. Summary 
The key results and conclusions from this study can be summarised as follows: 

1. spinster is carrying an oxidative stress burden that contributes to synaptic 

overgrowth. 

2. Oxidative stress, independent of lysosomal dysfunction can cause 

overgrowth of the neuromuscular junction. 

3. ASK/JNK/AP-1 signalling is required for spinster and oxidative stress 

induced overgrowth. 

4. Autophagy genes are required for spinster and oxidative stress induced 

overgrowth. 

5. Fos and autophagy are required both in the muscle and the nerve in 

spinster overgrowth. 

6. spinster and oxidative stress result in physiological impairment. 

7. spinster have aberrant mitochondria. 

8. AMPK is required for spinster overgrowth suggestive of an energy deficit 

and AMPK can drive synapse growth. 
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Appendix 1: Bouton Numbers and MSA 
Genotype and Conditions Raw Bouton 

No±SEM 
MSA±SEM 
(µm2) 

Normalised 
Bouton 
Number 

N 

atg18KG/Df 54±3.9 67737±2439 68±6.3 28 
atg1PZ/atg1DG 60±3.2 86857±3659 59±5.8 19 
atg1PZ/atg1DG (10mM 
paraquat) 

35±1.8 46302±2580 54±1.4 19 

elaVGAL4> UASAMPKT184D 64±3.3 85443±3989 63±5.4 16 
elavGAL4> UASatg5RNAi 81±4.7 84374±1453 81±5.5 17 
elavGAL4> UASfosDN 68±3.3   20 
elaVGAL4>UASAP-1 84±5.9 80069±2277 94±9.3 15 
elaVGAL4>UASATG168 60±3.0 92288±4110 51±4.3 17 
elaVGAL4>UASATG1CG 81±4.7 82515±2447 81±5.6 17 
elaVGAL4>UAScat (male)     
elaVGAL4>UASFOS 78±5.7 78603±3610 83±7.0 15 
elavGAL4>UAShSOD1 79±4.0   16 
elaVGAL4>UAShSOD1 
(male) 

71±2.6   25 

elaVGAL4>UASJUN 98±6.8 84382±4108 98±9.0 12 
hiw  with elaVGAL4> 
UAScat (male) 

134±6.5   16 

hiw  with elaVGAL4> 
UAShSOD1 (male) 

75±9.5   15 

hiw  with MHCGAL4> 
UAScat (male) 

162±24.1   16 

hiw  with MHCGAL4> 
UAShSOD1 (male) 

108±7.0   21 

hiw  with spinGAL4> 
UAScat (male) 

125±4.7   16 

hiw  with spinGAL4> 
UAShSOD1 (male) 

108±5.9   25 

hiw (male) 146±5.7   20 
MHCGAL4> UASatg5RNAi 98±5.7 92440±3104 87±6.6 16 
MHCGAL4> UASfosDN 79±3.7   22 
MHCGAL4>UASAMPKT184D 107±7.1 85443±3231 107±5.6 17 
MHCGAL4>UASAP-1 86±6.7 84034±1800 83±6.5 19 
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Genotype and Conditions Raw Bouton 
No±SEM 

MSA±SEM 
(µm2) 

Normalised 
Bouton 
Number 

N 

MHCGAL4>UASATG168 72±4.7 80151±3015 74±5.9 14 
MHCGAL4>UASATG1CG 70±4.4 89057±3623 67±5.0 18 
MHCGAL4>UAScat (male)     
MHCGAL4>UASFOS 98±5.2 85714±3490 95±7.6 14 
MHCGAL4>UAShSOD1 83±6.4   15 
MHCGAL4>UAShSOD1 
(male) 

72±3.6   12 

MHCGAL4>UASJUN 107±10.2 76584±3738 114±10.0 14 
sdhB/sdhB 59±4.4 67668±3238 76±8.2 16 
sesB/sesB 109±4.0 63699±2222 139±4.0 13 
sod1n1/+ 100±3.2 78550±3655 103±4.42 18 
sod1n1/sod1n64 107±4.8 60421±4218 147±6.31 21 
sod1n1/sod1n64 with 
spinGAL4> UAScat 

66±2.1 74703±1805 72±1.8 16 

sod1n1/sod1n64 with 
spinGAL4> UASfosDN 

59±3.70 71978±2063 67±4.62 21 

sod1n1/sod1n64 with 
spinGAL4> UAShSOD1 

75±5.0 79112±3990 79±5.6 17 

sod1n1/sod1n64 with 
spinGAL4> UASjunDN 

104±3.69 69466±2060 
 

122±3.88 18 

sod1n64/+ 87±5.72 76112±2544 92±4.31 25 
sod2delta/sod2delta02 107±4.9 62477±3136 146±10.3 22 
sod2delta/sod2delta02 spin5 
with spinGAL4> UASfosDN 

65±4.25 76877±2881 70±5.98 23 

sod2delta/sod2delta02 spin5 
with spinGAL4> UASjnkDN 

84±4.28 73878±2423 94±6.30 19 

sod2delta/sod2delta02 spin5 
with spinGAL4> UASjunDN 

72±3.77 59037±3609 102±5.51 20 

sod2delta/sod2delta02 with 
elaVGAL4>UASfosDN 

73±4.2 79692±2919 77±4.9 27 

sod2delta/sod2delta02 with 
MHCGAL4>UASfosDN 

78±4.5 81371±3621 81±6.4 20 

sod2delta/sod2delta02 with 
spinGAL4>UAStrxCYTO 

82±5.3 69273±2378 97±6.4 24 

spin4/+ 
 

93±4.00 
 

80008±2321 94±4.10 31 
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Genotype and Conditions Raw Bouton 
No±SEM 

MSA±SEM 
(µm2) 

Normalised 
Bouton 
Number 

N 

spin4/+; sod1n1/+ 114±4.39 72512±4565 127±5.47 19 
spin4/+; sod1n64/+ 116±7.3 71662±6982 131±8.03 21 
spin4/spin∆58 117±7.7 74129±1635 129±9.5 21 
spin4/spin5 152±4.33 76580±2716 165±10.3 32 
spin4/spin5 with 
atg18KG/atg1DG 

76±5.83   16 

spin4/spin5 with atg18KG/Df 75±6.74   16 
spin4/spin5 with 
atg1PZ/atg1DG 

72±4.90   28 

spin4/spin5 with elavGAL4> 
UASatg5RNAi 

127±5.57   16 

spin4/spin5 with elavGAL4> 
UAShSOD1 

106±7.99   14 

spin4/spin5 with 
elavGAL4>UASfosDN 

113±9.49   9 

spin4/spin5 with 
MHCGAL4> UASatg5RNAi 

126±6.51   16 

spin4/spin5 with 
MHCGAL4> UASfosDN 

120±8.42   11 

spin4/spin5 with 
MHCGAL4> UAShSOD1 

103±3.166   14 

spin4/spin5 with spinGAL4> 
UASAMPK-RNAi1062 

109±6.2 82971±3443 111 19 

spin4/spin5 with spinGAL4> 
UASAMPK-RNAi1827 

105±6.52 79595±1919 108 19 

spin4/spin5 with spinGAL4> 
UASaskDN 

128±6.37   16 

spin4/spin5 with spinGAL4> 
UAScat 

103±5.9   17 
 

spin4/spin5 with spinGAL4> 
UASfosDN 

74±1.92   19 

spin4/spin5 with spinGAL4> 
UASfosRNAi 

119±3.81   16 

spin4/spin5 with spinGAL4> 
UAShSOD1 

110±3.7   46 
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Genotype and Conditions Raw Bouton 
No±SEM 

MSA±SEM 
(µm2) 

Normalised 
Bouton 
Number 

N 

spin4/spin5 with spinGAL4> 
UASjnkDN 

117±5.79   16 

spin4/spin5 with spinGAL4> 
UASjnkRNAi 

121±3.45   19 

spin4/spin5 with spinGAL4> 
UASjunDN 

148±7.19   22 

spin4/spin5 with 
spinGAL4>UAStrxCYTO 

113±8.3   10 

spin4/spin5 with 
spinGAL4>UAStrxMITO 

103±6.8   15 

spin4/spin5 with 
tubGAL4>UAShSOD1 

115±6.0   22 

spin5/+ 85±3.66 75229±2665 91±6.49 12 
spin5/+; sod1n1/+ 121±3.89 75440±2355 130±6.29 24 
spin5/+; sod1n64/+ 137±3.87 78594±2157 141±6.14 28 
spin5/spin∆58 124±9.0 82067±4538 126±13.3 8 
spinGAL4->UAShSOD1 
(10mM paraquat) 

57±2.64 59332±1937 72±4.07 41 

spinGAL4->UAShSOD1 
(instant food) 

76±5.56 75308±3996 74±4.13 21 

spinGAL4> UASAMPK-
RNAi1062 

61±4.0 70669±3618 86±7.5 14 

spinGAL4> UASAMPK-
RNAi1827 

74±4.6 76581±2552 88±8.8 16 

spinGAL4> UASAMPKT184D 114±4.6 77872±1933 121±5.6 35 
spinGAL4> UASfosRNAi 82±4.24   17 
spinGAL4> UASjnkRNAi 65±3.44   22 
spinGAL4> UASjnkRNAi 
(10mM paraquat) 

64±3.7 49061±1688 94±5.5 19 

spinGAL4> UASjnkRNAi 
(instant food) 

70±3.2 78429±2319 66±4.2 16 

spinGAL4>UASAP-1     
spinGAL4>UASaskDN  60±4.18 79476±4102 61±4.66 15 
spinGAL4>UASaskDN 
(10mM paraquat) 

86±7.80 59207±5602 86±7.81 19 
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Genotype and Conditions Raw Bouton 
No±SEM 

MSA±SEM 
(µm2) 

Normalised 
Bouton 
Number 

N 

spinGAL4>UASaskDN 
(instant food) 

54±3.64 81124±2338 63±4.45 16 

spinGAL4>UAScat 76±4.6 75369±4901 88±8.7 18 
spinGAL4>UAScat (male) 67±4.3   19 
spinGAL4>UASFOS 69±2.9 82460±2595 68±3.4 21 
spinGAL4>UASfosDN  56±2.29 75297±3820 65±6.25 18 
spinGAL4>UASfosDN 
(10mM paraquat) 

58±2.23 57525±2346 75±5.26 19 

spinGAL4>UASfosDN 
(instant food) 

55±2.70 62919±4115 56±5.77 13 
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Appendix 2: Branch Number and Normalisation 

Genotype Branch 
No±SEM 

Branch No 
Normalised 
to Bouton 
No±SEM 

Branch No 
Normalised 
To 
MSA±SEM 

N 

spinGAL4>UAShSOD1 4.86±0.44   16 
spinGAL4>UAScat 4.47±0.38   15 
sod1n1/sod1n64 7.19±0.64 5.66±0.50 3.92±1.74 16 
sod2delta/sod2delta02 3.47±0.32 2.76±0.26 2.01±1.35 17 
spin4/spin5 10.82±1.33 6.05±0.75 5.54±1.96 11 
Wildtype 5.31±0.44 5.31±0.44 5.31±0.44 16 
Wildtype (Instant Food) 4.38±1.19 4.38±1.19 4.38±1.19 8 
Wildtype 10mM Paraquat 6.17±0.60 6.01±0.59 4.22±0.41 6 
spinGAL4>UAStrxCYTO 4.08±0.29   13 
sod1n1/sod1n64 with 
spinGAL4>UAShSOD1 

5.00±0.49   12 

sod1n1/sod1n64 with 
spinGAL4>UAScat 

4.75±0.31   16  

sod2delta/sod2delta02 with 
spinGAL4> UAStrxCYTO 

4.55±0.37   19 

spin4/spin5 with spinGAL4> 
UAStrxCYTO 

4.41±0.36   12 

     

Appendix 3: Bouton Width 

Genotype Mean Bouton Width (µm) N No NMJs 
sod1n1/sod1n64 2.202±0.042 610 6 
sod2delta/sod2delta02 2.646±0.053 551 5 
spin4/spin5 2.350±0.040 873 5 
Wildtype 2.616±0.064 468 6 
Wildtype (Instant 
Food) 

2.82±0.068 
 

557 7 

Wildtype 10mM 
paraquat 

2.41±0.052 607 7 
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Abbreviations: 
Acetyl CoA Acetyl coenzyme A 
AD Alzheimer’s Disease 
ADP Adenosine Disphosphate 
AEL After Egg Laying 
ALS Amyotrophic Lateral Sclerosis (Lou Gehrig's Disease) 
AMPA Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid 
AMPK Adenosise Monophosphate- Activated Protein Kinase 
AP Action Potential 
AP-1 Activator Protein-1 
APE-1 Apurinic/apyramidic endonuclease-1 
ASK Apoptosis Signal Regulating Kinase 
ATG Autophagy Related Gene 
ATP Adenosine Triphosphate 
Aβ Beta-amyloid 

Bcl-2 B-cell lymphoma 2 
BRP Bruchpilot 
bZIP Basic Leucine Zipper Domain 
cAMP Cyclic Adenosine Monophosphate 
Cat Catalase 
CLIC1 Chloride Intracellular Channel Protein 1 
CLN Ceroid Lipofuscinosis, Neuronal  
CREB cAMP Responsive Element Binding (protein) 
cvt Cytoplasm to Vacuole Transport 
CyO CurlyO 
CYTO Cytoplasmic 
DFz2 DFrizzled2 
Dlg Discs-large 
DNA Deoxyribose Nucleic Acid 
ELAV Embyronic Lethal Abnormal Vision 
EM Electron Microscopy 
EMS Ethyl Methane Sulfonate 
EPP Excitatory Post-synaptic Potential 
ER Endoplasmic Reticulum 
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ERK Extracellular Signal Regulated Kinase 
ETC Electron Transport Chain 
EtOH Ethanol 
FADH2 flavin adenine dinucleotide (hydroquinone form) 
FasII Fasciclin II 
FM6 First Chromosome Marker (6) 
Gbb Glass Bottom Boat 
GFP Green Fluorescent Protein 
GluR Glutamate Receptor 
GPx Glutathione Peroxidase 
GSH Glutathione (monomeric) 
GSSG Glutathione Disulphide 
GST Glutathione Transferase 
GTP Guanosine-5'-triphosphate 
GTPases small guanosine triphosphatases 
H2O2 Hydrogen Peroxide 
hep Hemipterous (MKK7) 
Hiw Highwire 
HL3 Hemolymph-like Buffer 3 
HNE 4-hydroxy-2,3-nonenal 
HO-1 Heme-oxygenase-1 
HOPS homotypic fusion and protein sorting 
HRP Horseradish Peroxidase 
ISN Intersegmental Nerve 
JNK c-Jun N-terminal Kinase 
Kb kilo base pairs 
KEAP-1 Kelch-like ECH-associated protein 1 
LAMP Lysosomal-associated Membrane Protein 
LGIC Ligand Gated Ion Channels 
Loe Lochrig 
LRRK2 Leucine Rich Repeat Kinase 
LSD Lysosomal Storage Disorder 
LTP Long Term Potentiation 
MAPK Mitogen-Activated Protein Kinase 
MBF1 Multiprotein Bridging Factor 
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MDA malondialdehyde 
MED Medea 
Mef2 Myocyte Enhancer Factor-2 
mEPP Mini Excitatory Post-synaptic Potential 
MHC Myosin Heavy Chain 
MITO Mitochondrial 
MKK Mitogen-Activated Protein Kinase Kinase 
MKRS Stubble Marker 
MSA Muscle Surface Area 
NADH Nicotinamide adenine dinucleotide 
NADPH Nicotinamide adenine dinucleotide phosphate 
NCL Neuronal Ceroid Lipofuscinosis 
NMDA N-Methyl-D-Aspartate 
NMJ Neuromuscular Junction 
NO Nitric Oxide 
NOS Nitric Oxide Synthase 
NPC Niemann Pick Type C 
Nrf2 Nuclear factor (erythroid-derived 2)-like 2 
O2

-. Superoxide Anions 
OH. Hydroxyl Radicais 
OH.- Hydroxyl Anions 
ONOO- peroxynitrite 
PBS Phosphate Buffered Saline 
PBS-T Phosphate Buffered Saline-Triton 
PCD Programmed Cell Death 
PCR Polymerase Chain Reaction 
PD Parkinson’s Disease 
PI3K Phosphoinositide 3-kinase 
PKA Protein Kinase A 
PKC Protein Kinase C 
PMA phorbol 12-myristate 13- acetate (PKC Activator) 
Puc Puckered 
Ref-1 Redox Factor-1 
RNA(i) (Interfering) Ribose Nucleic Acid  
RNS Reactive Nitrogen Species 
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ROS Reactive Oxygen Species 
RSK Ribosomal S6 Kinase 
S6K S6 Kinase 
SAPK Stress Activated Protein Kinase 
Sax Saxophone 
Sbh Succinate Dehydrogenase 
Sco Scutella 
SesB Stress Sensitive B 
SN Segmental Nerve 
SNAP25 N-ethylmaleimide-sensitive factor attachment protein-25 
SNARE NAP (Soluble NSF Attachment Protein) Receptor 
SOD Superoxide Dismutase 
spin Spinster 
SSB Subsynaptic Reticulum 
TGFβ Transforming Growth Factor β 

Tkv Thick Veins 
TM6 Third Chromosome Marker 
TMOP 1,1,3,3-tetramethoxypropane 
TN Transverse Nerve 
TOR Target of Rapamycin 
TORC  Target of Rapamycin Complex 
Trx Thioredoxin 
TrxR Thioredoxin Reductase 
TSC Tuberous Sclerosis Complex 
TUB Tubulin 
UAS Upstream Activating Sequence 
Unc-51 Uncoordinated-51 
VGIC Voltage Gated Ion Channels 
VPS Vacuolar Protein Sorting 
Wnd Wallenda 
XO Xanthine Oxidase 
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