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Abstract 

There is an epidemiological association between periodontitis and rheumatoid 

arthritis (RA). The subgingival microbiota may play an important role in the link 

between the two diseases. Porphyromonas gingivalis, which produces a peptidyl-

arginine deiminase (PPAD) capable of citrullinating proteins, is considered a key 

organism inducing the production of antibodies against citrullinated proteins 

systemically and may initiate the pathogenic autoimmune responses associated with 

RA. The overall aim of this study was to explore the role of PPAD in P. gingivalis 

physiology and to better understand the links between P. gingivalis, periodontitis 

and risk of developing RA.  

 

P. gingivalis W83 and the corresponding Δppad mutant were grown in batch and 

continuous culture, to assess pH regulation, bacterial growth, gene expression and 

arginine gingipain (Rgp) and dipeptidyl-peptidase (DPP) activities. In a 

collaborative clinical study, the shotgun metagenomic approach was used to observe 

subgingival microbial profiles in individuals with and without periodontitis, with 

and without RA, and in those with autoantibodies against citrullinated peptides 

(CCP) at risk of developing RA. 

 

Based on in vitro studies, PPAD may citrullinate Rgp and DPP11, impair their 

activities and subsequently affect the alkali-promoting activity of P. gingivalis. 

Furthermore, both environmental pH and PPAD deficiency were able to regulate P. 

gingivalis gene expression, promoting adaptation to environmental changes and 

facilitating bacterial growth. In the clinical study, periodontitis occurred more often 

in anti-CCP positive at-risk individuals than in healthy controls and the subgingival 
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microbiomes of those individuals were perturbed, indicating that periodontitis and 

related microbial dysbiosis precede the onset of RA. P. gingivalis and its PPAD in 

established periodontitis conditions may play an important role in the initiation of 

RA. Moreover, PAD or PAD-like enzymes present in bacterial species other than P. 

gingivalis, e.g. Prevotella spp. exhibited some citrullination activity in vitro in a 

similar manner to PPAD.  
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1.1 Overview of periodontal disease  

Periodontal disease, alongside dental caries, is one of the two most common and 

significant oral diseases contributing to the global burden of chronic disease 

(Pihlstrom et al., 2005, Bratthall et al., 2006). Periodontal disease is defined as the 

microbially-induced inflammatory conditions that causes damage to the gingivae 

(gums), periodontal ligament and alveolar bone, all of which form the supporting 

tissues of the teeth. The complex multi-factorial aetiology of periodontal disease is 

related to an imbalance between the resident subgingival microbial communities and 

the host responses to them. The bacterial biofilm (also called dental plaque) which 

forms on the surfaces of teeth, causes a chronic microbial stimulus that induces a 

local inflammatory response. In addition to pathogenic microorganisms in the 

biofilm, genetic and environmental factors such as smoking, contribute to the 

development of these diseases.  

 

The term periodontal disease describes a spectrum of inflammatory conditions. 

Gingivitis, the mildest form of periodontal disease, is an inflammatory response to 

the accumulation of dental plaque at the gingival margin. It is reversible and can be 

eradicated by maintaining good oral hygiene. Gingivitis acts as a precursor for the 

initiation of periodontitis which is a more advanced inflammatory form of 

periodontal disease, although not all gingivitis progresses to periodontitis (Schatzle 

et al., 2009). 

 

Unlike gingivitis, periodontitis causes irreversible tissue damage and gingival 

epithelial migration (Figure 1.1). Clinical manifestations of periodontitis include the 
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deepening of periodontal pockets and loss of attachment, progressively leading to 

loosening of teeth and, ultimately, to tooth loss.  

 

 

Figure 1.1 Diagram comparing a periodontally healthy site (left panel) 
with a periodontitis site (right panel) (adapted from Cheng et al. 2017) 
(Cheng et al., 2017). 
The activities of subgingival plaque and the host defences lead to inflammation 
and tissue damage. Clinical attachment loss (CAL) is the distance from the 
cemento-enamel junction (CEJ) to the base of the periodontal pocket. 

 

The most common form of periodontitis is chronic periodontitis, which is assessed 

as mild, moderate or severe depending on the extent of bleeding on probing (BOP), 

periodontal pocket formation, radiographic bone loss and clinical attachment loss 

(CAL). The prevalence of severe chronic periodontitis varies according to world 

regions, from 10% to 15% in adult populations based on World Health Organization 

(WHO) epidemiological data (Petersen and Ogawa, 2012). A systematic review 

revealed that between 1990 and 2010 the global prevalence of severe periodontitis 

increased gradually with age and reached the peak at approximately 40 years of age 

(Kassebaum et al., 2014). Aggressive periodontitis is a less common but severe form 

of the disease, characterised by rapid periodontal tissue destruction at a relatively 



- 4 - 

young age (under 25 years) in systematically healthy individuals who have a high 

genetic susceptibility (Armitage and Cullinan, 2010). 

 

It has long been accepted that systemic disease has an influence on the severity of 

periodontal disease, but recent studies also indicate that periodontitis can affect the 

pathogenesis of major systemic diseases (Cullinan and Seymour, 2013). 

Associations have emerged between periodontitis and a growing list of systemic 

diseases or conditions including cardiovascular disease, diabetes mellitus and 

rheumatoid arthritis (RA) (Lundberg et al., 2010, Genco and Van Dyke, 2010, Lalla 

and Papapanou, 2011). 

1.2 Microbiology of periodontal disease   

1.2.1 Dental plaque and microbial communities 

More than 700 bacterial species have been identified from the human mouth (Paster 

et al., 2006), but only 50-60% of these organisms can currently be cultured, possibly 

because they have evolved to live within a biofilm community rather than in 

monoculture (Wade, 2002). Oral microbial biofilms are three-dimensional structured 

bacterial communities attached to mucosal and dental surfaces and are embedded in 

an exo-polysaccharide matrix (Wood et al., 2000, Do et al., 2013). Living within a 

biofilm provides bacteria with significant advantages, i.e. protection from host 

defences and antimicrobial agents, broader habitat range, more efficient metabolism, 

and enhanced virulence (Marsh, 2005, Marsh et al., 2011).   

 

Dental plaque is a structurally- and functionally-organized biofilm that develops on 

the surface of the tooth and tooth root. Dental plaque forms in an ordered way by 



- 5 - 

means of early, intermediate, and late colonizing species and has a diverse microbial 

composition that, in health, remains relatively stable over time (Marsh, 2006). The 

early species that colonize teeth are predominantly Streptococci, particularly 

Streptococcus mitis and Streptococcus oralis. Early colonizers can serve as 

additional binding sites for intermediate and late colonizers after establishing 

themselves on the tooth surface (Kolenbrander et al., 2010). The supra-gingival 

plaque community grows above the gingival-tooth margin (Kolenbrander et al., 

2006) and subgingival plaque is derived from supra-gingival plaque that spreads 

down into the gingival sulcus (Kolenbrander et al., 2006, Aas et al., 2005).  

During the development of periodontitis, there is a transition from the 

predominantly Gram-positive facultative populations associated with health to 

plaque that is dominated by obligately anaerobic, proteolytic Gram-negative rods 

and spirochetes (Ellen and Galimanas, 2005, Marsh, 1994). Tissue damage and 

disease progression occur as a result of the combined activities of organisms within 

subgingival dental plaque and host responses to them (Dixon et al., 2004, Kirkwood 

et al., 2007). The generation of the deep periodontal pockets contributes to creating 

an anaerobic environment and the inflammatory processes in periodontitis also 

provide environmental and ecological stimuli (e.g. increased pH, lower redox 

potential, increased gingival crevicular fluid flow, increased availability of peptide 

nutrients and haemin sources) that drive bacterial successions within subgingival 

plaque and the emergence of populations associated with disease (Marsh, 2003). As 

described above, the “ecological plaque hypothesis” was proposed to explain the 

development of the periodontal disease (Marsh, 1994). 
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1.2.2 Identification of periodontal pathogens 

Periodontitis is a complex polymicrobial condition and many organisms have been 

implicated in its aetiology. Colonization of the pathogens triggers a response by the 

host's innate immune system. During the development of the disease, host defense 

pathways that were originally meant to protect against the bacterial challenge are 

derailed into an uncontrolled catabolic process that leads to damage of the 

supporting tissues, tooth mobility and ultimately tooth loss.  

 

In early studies, the microbial search for periodontal pathogens relied heavily on 

culture-based methods. Socransky et al. characterized periodontal microbial 

communities based originally on culture methods and subsequently extended by 

large scale DNA: DNA checkboard hybridization (Socransky et al., 1998). A group 

of red-complex bacteria (Porphyromonas gingivalis, Treponema denticola and 

Tannerella forsythia) were identified as associated with the severe form of 

periodontal disease. The red complex is, to some extent, dependent on earlier 

colonization of the pocket by a complex of somewhat less pathogenic organisms 

called the orange complex which includes Fusobacterium nucleatum, Prevotella 

nigrescens and Prevotella intermedia (Socransky and Haffajee, 2005).  

 

The advent of non-culture-based strategies, such as polymerase chain reaction 

(PCR), Sanger sequencing, the more recent developments in next generation 

sequencing (NGS), as well as metagenomics, has changed the scenario. Kumar et al. 

found that, in addition to species in the red or orange complexes, six unculturable 

novel phylotypes and eight recognized species were strongly associated with disease 

(Kumar et al., 2003). Further studies of unculturable organisms have indicated that 
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members of the TM7 phylum are associated with the early stages of disease (Brinig 

et al., 2003) and methanogenic bacteria with increasingly severe disease (Lepp et al., 

2004). Several recent studies based on pyrosequencing of 16S ribosomal RNA 

(rRNA) gene amplicons provided a much broader picture of the overall diversity of 

the subgingival microbiota and revealed new species strongly associated with 

periodontitis (Abusleme et al., 2013a, Griffen et al., 2012, Park et al., 2015). 

Spirochetes have long been recognized as key players in periodontal disease and 

many important species from this phylum cannot be cultured (Ellen and Galimanas, 

2005). In addition, it has been proposed that herpesviruses play a significant role in 

periodontal disease (Slots, 2005). A systematic review has suggested that there were 

17 newly identified species/phylotypes associated with periodontitis and four of 

these microorganisms are not-yet-cultivable (Pérez-Chaparro et al., 2014). 

However, some periodontal pathogens including the red-complex bacteria can also 

be found in healthy individuals which indicated that their presence alone is not 

responsible for disease (Kilian et al., 2006, Socransky and Haffajee, 2005). It is very 

difficult to allocate pathogenic roles to individual periodontal organisms within the 

complex communities that are associated with disease. The changes in microbial 

community associated with the transition from healthy to disease status has attracted 

intense research interest and the stability of the dental-plaque community may act as 

a good predictor of periodontal health (Kumar et al., 2006). Metagenomics (also 

referred to as environmental and community genomics) is the genomic analysis of 

microorganisms by direct extraction and cloning of DNA from an assemblage of 

microorganisms. These techniques have facilitated the study of the physiology and 

ecology of environmental microorganisms. Currently, the research endeavour based 

on culture-independent methods is expanding beyond asking “Who is there?” to 

include the more difficult question “What are they doing?”. Szafrański et al. utilized 
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metatranscriptomics to identify the functional shift from health to periodontitis as 

well as the response of individual species to dysbiosis (Szafrański et al., 2015).Yost 

et al. compared metatranscriptomic profiles of subgingival plaque from active and 

inactive sites in patients with chronic periodontitis and found metabolic changes in 

the microbial community associated with the initial stages of dysbiosis (Yost et al., 

2015). These studies are the starting point to explore microbial communities 

behaviours and will give insight into how environmental signals modify the 

behaviour of the community (Solbiati and Frias-Lopez, 2018).  

1.2.3 Keystone pathogens 

In contrast to predominant species that affect inflammation by their abundant 

presence, recently, a “keystone-pathogen hypothesis” has gained traction in which 

keystone pathogens, such as P. gingivalis, disproportionally influence the whole 

microbial community and lead to periodontitis. Studies in a murine model, suggest 

that even a low number of P. gingivalis can disrupt the complement system, 

impairing host defences, leading to overgrowth of oral commensal bacteria and 

compositional changes in the microbiota. These changes can result in complement-

dependent inflammation and consequently, trigger the development of periodontitis 

(Hajishengallis et al., 2011). The theory of keystone-pathogen was further developed 

giving rise to a polymicrobial synergy and dysbiosis (PSD) model of periodontitis 

aetiology, which suggests that periodontitis is initiated by a synergistic and dysbiotic 

microbial community (Hajishengallis and Lamont, 2012). After the initiation of 

pathogenicity by colonization with keystone pathogens such as P. gingivalis, 

communication between a keystone pathogen and other accessory pathogens, such 

as Streptococcus gordonii, enhances community virulence and facilitates the 

development of pathogenicity. However, the full range of interactions between P. 
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gingivalis and other periodontal microbial community members is yet to be revealed 

and these notions have been derived mainly from experimental animal models of 

disease. Environmental factors, such as smoking and diet may also manipulate the 

homeostatic balance (Divaris et al., 2013, Stabholz et al., 2010). 

1.2.4 Aggressive periodontitis and Aggregatibacter 

actinomycetemcomitans 

In addition to chronic periodontitis, there is evidence to suggest that A. 

actinomycetemcomitans plays a prominent role in the initiation and development of 

aggressive periodontitis and may function as a keystone pathogen in localized 

aggressive periodontitis (Fine et al., 2013, Shaddox et al., 2012). A. 

actinomycetemcomitans is a gram-negative rod which produces a leukotoxin that has 

lethal effects on human leukocytes including monocytes, polymorphonuclear 

leukocytes and T cells, and thereby facilitates A. actinomycetemcomitans evasion of 

the host defence system (Herbert et al., 2016). This organism displays significant 

genetic diversity. A JP2 genotype of A. actinomycetemcomitans, which is defined by 

a 530-bp deletion in the promoter region of the leukotoxin operon, is highly 

leukotoxic (Brogan et al., 1994). The JP2 genotype of A. actinomycetemcomitans 

has a particularly strong association with disease in people of North and West 

African descent (Kilian et al., 2006). It has been identified that the individuals 

infected by JP2 genotype strains of A. actinomycetemcomitans have a significantly 

higher risk of developing aggressive periodontitis than individuals infected by 

strains of the non-JP2 genotype (Hoglund Aberg et al., 2014). 
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1.2.5 Porphyromonas gingivalis 

P. gingivalis, formerly named Bacteroides gingivalis, is a non-motile, 

asaccharolytic, Gram-negative, rod-shaped, obligately anaerobic bacterium which 

forms black-pigmented colonies on blood agar plates. The abundance of P. 

gingivalis has been shown to increase in sites with periodontitis while it is present at 

lower levels or is non-detectable in periodontally healthy sites (Schmidt et al., 

2014). P. gingivalis has been demonstrated to constitute a higher proportion of the 

total microbiota in deep compared with shallow periodontal pockets (Ali et al., 

1996). 

 

P. gingivalis is known to produce a vast arsenal of virulence factors that could 

penetrate the gingivae and cause tissue destruction either directly, or indirectly by 

the induction of inflammation (Hajishengallis et al., 2012). Important virulence 

factors include LPS, capsular polysaccharide (CPS), fimbriae and gingipains.  

1.2.5.1 Capsule 

Capsule, also known as CPS or K-antigen, is a major virulence determinant of P. 

gingivalis because it is able to facilitate the evasion of host immune system 

activation, promote the invasion of the bacterium within host cells, and lift the 

virulence (Singh et al., 2011). Non-encapsulated strains have been shown to be less 

virulent, and mostly caused non-invasive, localized abscesses whereas encapsulated 

strains caused invasive, spreading infections in murine models (Laine and van 

Winkelhoff, 1998). Encapsulated P. gingivalis strains were shown to be able to 

modulate the host response to bacteria by decreasing the synthesis of cytokines 

interleukin-1 (IL-1), IL-6, and IL-8 by human fibroblasts, which enables P. 

gingivalis to limit any inflammatory response at stages of the infection when this 
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would be beneficial to its survival (Brunner et al., 2010). Based on the capacity of 

CPS to stimulate systemic immunoglobulin G (IgG) antibody responses, at least six 

distinct CPS serotypes have been described (K1-K6) (Laine et al., 1996). 

Differences in CPS serotypes stimulated differential capacities in chemokine 

production by murine macrophages (d'Empaire et al., 2006) and dendritic cells 

exposed to different P. gingivalis CPS serotypes elicited distinct T-cell responses 

(Vernal et al., 2014). A study based on an Indonesian population has shown that the 

K5 serotype of P. gingivalis within clinical isolates was detected with a higher 

prevalence than other serotypes while this distribution might vary with the study 

population (Van Winkelhoff et al., 1999).  

1.2.5.2 Fimbriae 

The fimbriae of P. gingivalis are thin, filamentous cell-surface protrusions involved 

in nearly all interactions between the bacterium and the host, as well as other 

bacteria (Hamada et al., 1998). The adhesive properties of fimbriae allow P. 

gingivalis to bind and invade host cells, which may subsequently help the bacterium 

escape the host immune surveillance (Zenobia and Hajishengallis, 2015, Amano, 

2010). P. gingivalis fimbriae are also vital to the biofilm formation. They are 

implicated in the cohesive interaction (coaggregation) of P. gingivalis with other 

bacteria other plaque-forming bacteria, such as Actinomyces viscosus, Treponema 

medium, T. denticola, and Streptococcus oralis (Amano, 2007).  

There are two types of P. gingivalis fimbriae which are encoded by fimA gene 

(major fimbriae) and mfa1 gene (minor fimbriae) separately. Based on the amino 

terminal and the DNA sequences, P. gingivalis major fimbriae were further 

classified into six types: types I–V and Ib (Nakagawa et al., 2000, Nakagawa et al., 
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2002, Amano et al., 1999). Studies have shown that P. gingivalis strains possessing 

type II were more predominant in periodontitis patients (Amano et al., 1999). 

1.2.5.3 Lipopolysaccharide (LPS)  

Like all Gram-negative bacterial species, P. gingivalis is sheathed by an outer 

membrane, an asymmetric lipid bilayer of which the outer leaflet is composed of 

LPS, which comprises an important component recognized by host cell receptors 

that then triggers intracellular signalling events. In general, bacterial LPS consists of 

a distal polysaccharide (or O-antigen), a non-repeating “core” oligosaccharide and a 

hydrophobic domain known as lipid A (or endotoxin) (Figure 1.2) (How et al., 

2016). P. gingivalis LPS exhibits unique structural features compared with the LPS 

of other species, especially the lipid A structures (Dixon and Darveau, 2005). The 

heterogeneous lipid A structures in the LPS of P. gingivalis have distinct and 

opposing effects on toll-like receptors (TLR) playing a critical role in the early 

innate immune response to invading pathogens (Olsen and Singhrao, 2018). Unlike 

well-studied LPS of Escherichia coli, which is recognised by TLR4 receptor and 

then lead to innate host defence mediator production, the receptors of P. gingivalis 

LPS have been reported to be either TLR4 or TLR2 (Darveau et al., 2004). In 

addition, the LPS of P. gingivalis is also able to antagonize TLR4 activation 

(Triantafilou et al., 2007). Furthermore, the heterogeneity of lipid A has also been 

related to the micro-environmental concentration of haemin (Al-Qutub et al., 2006) 

and to an extent to the environmental temperature, which in turn are influenced by 

inflammation (Curtis et al., 2011). Although conflicting results have been reported 

regarding whether TLR4 or TLR2, or both can be activated by P. gingivalis LPS, 

(possibly due to the use of different forms of LPS and different experiment models) 

(Nativel et al., 2017), the heterogeneity of lipid A from LPS may facilitate P. 
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gingivalis adaption and survival in different host environments through 

immunomodulation. P. gingivalis LPS also exhibits inhibition on osteoblastic 

differentiation and mineralisation in periodontal ligament stem cells, which is 

important in periodontal tissue regeneration (Kato et al., 2014). 

 

Figure 1.2 Schematic structure of lipopolysaccharide (LPS) of the outer 
membrane of P. gingivalis (adapted from How et al. 2016) (How et al., 
2016) 

 

1.2.5.4 Gingipains 

Gingipains are a group of cysteine proteinases, also described as “trypsin-like” 

enzymes, which are major virulence factors of P. gingivalis. They account for 85% 

of the total proteolytic activity of P. gingivalis (Potempa et al., 1997). Based on 

substrate specificity, gingipains are divided into arginine-specific (Rgp) and lysine-

specific (Kgp) gingipains, which cleave polypeptides at the C-terminus after an 

arginine or a lysine residues, respectively (Guo et al., 2010, Curtis et al., 2001). The 

Rgps are encoded by two homologous genes, rgpA and rgpB, and Kgp by kgp. The 
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translated products of rgpA and kgp both contain a catalytic and an adhesion domain 

while the adhesion domain is missing in the product of rgpB (Figure 1.3). 

Depending on P. gingivalis strains, gingipains are either predominantly attached to 

the bacterial surface or released into the medium in a soluble form. In strain HG66, 

non-glycosylated RgpB is released into the extracellular milieu in the soluble form; 

in all other strains, RgpB is glycosylated and remains bound to the cell-surface 

(Potempa et al., 1995). Several reports have indicated the presence of gingipains in 

outer membrane vesicles (OMV) which can be internalized into host cells and these 

OMV-associated gingipains may contribute to tissue destruction in periodontal 

diseases (Nakao et al., 2014). In general, gingipains play important roles in most 

phases of the pathogenesis of periodontal disease, from adherence and colonization 

through to nutrient acquisition and neutralization of host defences. 

 

 

Figure 1.3 Schematic diagram of the gingipains domain structure (adapted 
from Li and Collyer 2011) (Li and Collyer, 2011).  
The domains with high similarities are shown in the same colour. 

 

In the initial phase of infection, gingipains mediate adherence of P. gingivalis, either 

directly or indirectly, to different sites within the oral cavity and facilitate 

colonization of the bacterial biofilm in the gingival crevice (Guo et al., 2010). 
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Gingipains themselves, are potent adhesins that can bind several extracellular matrix 

proteins such as fibrinogen, fibronectin, laminin (Pathirana et al., 2006). Co-

aggregation among bacterial cells caused by the adherence of one bacterial species 

to another can be directly mediated by adhesin domains of RgpA and Kgp (Abe et 

al., 2004, Kamaguchi et al., 2003). P. gingivalis co-aggregation with selected oral 

bacteria is also mediated by the fimbrial adhesins and the Rgp is indispensable for 

maturation of fimbriae (Nakayama et al., 1996).  

 

Gingipains are involved in both the destruction of periodontal tissues and 

interrupting host-defence mechanisms through the degradation of immunoglobulins 

and complement factors leading eventually to disease progression. Gingipain 

activity promotes P. gingivalis survival through the degradation of antibacterial 

peptides, such as neutrophil-derived α-defensins, complement factors, such as C3 

and C4, T cell receptors, such as CD4 and CD8 (Hajishengallis et al., 2013). 

Gingipains are also suggested to contribute to the bleeding tendency at the diseased 

gingiva through degradation of fibrinogen and fibrin (Imamura, 2003). In human 

plasma, Kgp has the strongest effect on fibrinogen/fibrin, compared with the action 

of other types of gingipains (Imamura et al., 1995). Many experiments have also 

indicated that gingipains have seemingly contradicting actions on the innate immune 

responses, which can possibly be explained by the existence of a concentration 

gradient of gingipains in the tissue (Pathirana et al., 2010). In addition, in vitro 

experiments showed that Rgp gingipains cleave polypeptide chains at internal 

arginine residues, generating peptides with terminal arginines that are susceptible to 

citrullination by P. gingivalis peptidylarginine deiminase (to be discussed in detail 

in section 1.2.5.6) (McGraw et al., 1999, Wegner et al., 2010). 
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The major habitat of P. gingivalis is the subgingival plaque of the human oral cavity 

where sugar is scarce. P. gingivalis derives energy from the fermentation of amino 

acids for energy (Bostanci and Belibasakis, 2012). In P. gingivalis, nutritional 

extracellular proteins are initially degraded to oligopeptides by gingipains, these 

oligopeptides are then degraded by dipeptidyl peptidase (DPP), tripeptidyl 

peptidase, and acylpeptidyl oligopeptidase (AOP) generating di- and tri-peptides, the 

main incorporated forms in P. gingivalis (Nemoto and Ohara-Nemoto, 2016). The 

gingipain triple null (rgpA-, rgpB-, kgp-) mutant KDP136 was reported as unable to 

grow in defined medium with human albumin as the sole carbon source (Shi et al., 

1999).   

 

Like other anaerobes in the subgingival plaque, P. gingivalis also requires haem or 

haemin in its nutrient milieu for growth. Iron is utilized by P. gingivalis in the form 

of haem or haemin and has been shown to play a crucial role in its growth and 

virulence. By using chemostat cultures, Marsh et al. showed that P. gingivalis 

grown under conditions of haemin-excess, were always more virulent than when 

grown in haemin-limited conditions (Marsh et al., 1994).  

 

Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores 

which are small chemical structures synthesized intracellularly to transport iron 

across cell membranes. Instead it utilizes specific outer membrane receptors, 

particularly gingipains, to acquire iron/haem (Olczak et al., 2005). Haemoglobin is 

the most abundant reservoir of haem in the periodontal pocket and inflamed gingival 

crevice (Hanioka et al., 2005). The bacterium is able to agglutinate erythrocytes by 

the adhesion domains of Kgp and RgpA; and lyse the erythrocytes to release 
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haemoglobin. Gingipains can bind haemoglobin with high affinity, which is 

mediated by the haemagglutinin-adhesin-2 or haemoglobin receptor (Nakayama et 

al., 1998). Oxyhaemoglobin, a form of haemoglobin released from erythrocytes, is 

then oxidized to methaemoglobin mainly by Rgps and subsequently hydrolysed by 

proteases (mainly by gingipains) to release haem. Finally, liberated haem from 

haemoglobin can be captured with high affinity by hemagglutinin-adhesin-2 

(Paramaesvaran et al., 2003). In addition, gingipains can be utilized by P. gingivalis 

to degrade haptoglobin, transferrin, and hemopexin to get extracellular iron or 

released haem for growth in vitro. 

1.2.5.5 Exopeptidases 

P. gingivalis expresses various exopeptidases (DPP4, DPP5, DPP7, DPP11, prolyl 

tripeptidyl peptidase A (PtpA), and periplasmic AOP), which release di- and tri-

peptides from most oligopeptide substrates. These peptides are then hydrolysed in 

the cytoplasm into single amino acids and used by P. gingivalis for carbon and 

energy metabolism (Takahashi and Sato, 2001, Takahashi et al., 2000). Studies have 

shown that the triple-knockout mutant for DPP4, DPP7, and PtpA showed 

dramatically reduced growth on media supplemented with albumin and IgG as the 

only carbon sources and the growth was reverted by addition of purified 

exopeptidases, demonstrating the key role provided by the peptidases (Oda et al., 

2009). 

 

All four DPPs and AOP activities have been detected within P. gingivalis cells, but 

not in culture medium (Nemoto and Ohara-Nemoto, 2016). DPP5 and DPP11 are 

localized in the periplasmic space of the cell (Ohara-Nemoto et al., 2014, Ohara-

Nemoto et al., 2011). These exopeptidases have various substrate specificities which 



- 18 - 

benefit P. gingivalis in its need to obtain energy and carbon sources from the 

nutritionally limited subgingival environment (Nemoto and Ohara-Nemoto, 2016).  

 

DPPs generally cleave oligopeptides without N-terminal modification and the 

penultimate P1-position  residue from the N-terminus of the substrate is critical for 

the recognition by DPPs and the N-terminal P2-position residue additionally affects 

the activity (Ohara-Nemoto et al., 2011). The substrate specificity or preference of 

the DPPs that have been identified so far are listed in Table 1.1. The crystal 

structures and the amino acid residues, critical for hydrolysing activity and substrate 

specificity of the DPPs, have been investigated and this information provide a 

starting point for the development of DPP inhibitors. All those exopeptidases 

contribute to bacterial growth but there is no more information about the regulation 

of their gene expression. Although there were studies which reported that the 

substrate specificity of P. gingivalis DPP11 is primarily mediated by Arg673 , it is not 

known yet if P. gingivalis can regulate the enzyme activity by citrullination of those 

arginine residues.  

 

Table 1.1 Summary of P. gingivalis DPPs. 

 Substrate specificity Family  Crystal structure or 

determinant of 

substrate specificity 

Ref. 
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1.2.5.6 P. gingivalis peptidylarginine deiminase (PPAD) 

Recently, considerable interest has been focused on peptidylarginine deiminase 

(PAD) expressed by P. gingivalis (PPAD) which is able to modify proteins by 

deimination of peptidylarginine residues to produce peptidylcitrulline and ammonia 

(Figure 1.4). This posttranslational modification (PTM) leads to a reduction of 

positive charge, reduction in hydrogen-bonding ability and subsequently affects 

conformation and function of the protein (Vossenaar et al., 2003, Anzilotti et al., 

2010). For a long time, PPAD was considered unique among prokaryotes, with P. 

gingivalis being the only bacterium known to produce and secrete such an enzyme. 

However, it has recently been shown that PPAD homologues was found in other 

DPP4 Pro at the P1 position; 

biologically active peptides 

(substance P, fibrin inhibitory 

peptide, and ß-casomorphin) 

S9 

 

Ser593, His700 and 

Asp668 make up the 

catalytic triad 

(Rea et al., 2017, 

Banbula et al., 

2000) 

DPP5 Ala and hydrophobic residues 

at the P1 position 

S9  - (Ohara-Nemoto 

et al., 2014) 

DPP7 Aliphatic or aromatic residue 

at the P1 and P2 positions 

S46 

 

Gly673 is critical but 

unique determinant of 

the substrate 

specificity 

(Rouf et al., 

2013) 

DPP11 Acidic P1 residues (Asp> Glu)  

 

S46 

 

The acidic P1-position 

preference is 

primarily mediated by 

Arg673 

(Sakamoto et al., 

2015) 
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Porphyromonas species (Gabarrini et al., 2018). The structure of PPAD  is 

composed of four domains (Figure 1.5) (Montgomery et al., 2016) and the enzyme 

has both a secreted and a cell or OMV-associated forms (McGraw et al., 1999). 

PPAD is a substrate of  type IX secretion system (T9SS) (Sato et al., 2013). During 

export N-terminal signal peptide (SP) directs the protein to the general secretion 

system and conserved C-terminal domain (CTD) will be recognized by T9SS. After 

translocation through the inner membrane CTD directs the protein for further 

translocation across the outer membrane through T9SS. Finally, CTD is cleaved off 

by PorU sortase and a secreted protein is modified by adding a A-LPS anchor 

allowing attachment to the cell surface (Lasica et al., 2017). 

 

Unlike mammalian PADs, which act only upon arginine residues within the 

polypeptide chain in a calcium-dependent manner, PPAD functions in the absence 

of calcium and primarily citrullinates C-terminal residues and is able to modify free 

L-arginine (Bicker and Thompson, 2013, Abdullah et al., 2013). In addition, the 

proteolytic activity of the arginine gingipains secreted by P. gingivalis (section 

1.2.5.4) were shown to be necessary for α-enolase citrullination. Rgp is able to 

cleave polypeptide chains at internal arginine residues, exposing carboxyl-terminal 

arginine residues, which are the preferential targets of PPAD (Wegner et al., 2010). 
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Figure 1.4 The process of citrullination by P. gingivalis peptidylarginine 
deiminase (PPAD).  
PPAD converts peptidylarginine to peptidylcitrulline in a process called 
citrullination that also produces a free ammonia. 

 

 

Figure 1.5 Schematic diagram of the PPAD domain structure (adapted 
from Montgomery et al., 2016).  
The PPAD comprises four domains, from N- to C-terminal end: the signal 
peptide (SP), the catalytic domain, the Ig-like fold (IgLF), and the C-terminal 
domain (CTD). 

 

 

PPAD is regarded as a virulence factor because citrullination by PPAD abrogates 

epidermal growth factor (EGF) which is important in periodontal repair and 

regeneration (Pyrc et al., 2013), interferes with complement activity (Bielecka et al., 

2014) and contributes to infection of gingival fibroblasts and induction of 

prostaglandin E2 synthesis (Gawron et al., 2014). Additionally, a side effect of 

citrullination is ammonia production, which has a negative effect on neutrophil 

function and is protective for the bacteria during the acidic cleansing cycles of the 

mouth (McGraw et al., 1999, Abdullah et al., 2013).  
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P. gingivalis has attracted much interest of late as its PPAD enzyme has been 

reported to be able to citrullinate both bacterial and host proteins, thus providing a 

molecular mechanism for generating antigens that may drive the autoimmune 

response in RA (to be discussed in detail in section 1.5.1) (Montgomery et al., 2016, 

Wegner et al., 2010). A PPAD-deficient mutant of P. gingivalis W83 was created by 

replacement of the entire ppad-encoding DNA sequence with an antibiotic cassette 

and was used to assess the role of the enzyme in human and bacterial protein 

citrullination (Wegner et al., 2010, Bielecka et al., 2014, Stobernack et al., 2016). 

This mutant has also been utilized to investigate the contribution of PPAD to human 

gingival fibroblast infection, activation of prostaglandin E2, as well as development 

of collagen-induced arthritis in a mouse model (Gawron et al., 2014, Maresz et al., 

2013). However, it is not known yet if the PPAD deficiency has any influence on the 

growth or gene expression profile of P. gingivalis. 

1.3 Roles	of	neutrophils	in	periodontal	diseases		

Neutrophils act as a first protective barrier in periodontal diseases and are important 

regulators of both innate and adaptive immunity. Neutrophils account for 90% of the 

leucocytes in gingival crevicular fluid (GCF), and their concentration increases 15-

fold in periodontally diseased sites (Pisano et al., 2005). Impaired neutrophil 

chemotaxis has been reported in periodontitis, and various strategies are employed 

by periodontal pathogens to disrupt neutrophil chemotaxis and/or function 

(Hajishengallis et al., 2015). Neutrophils generate neutrophil extracellular traps 

(NETs), which are web-like structures of DNA, histones, the contents of 

intracellular granules and antimicrobial peptides. Increased NET (Brinkmann et al., 

2004) formation, or delayed NET clearance, may contribute to inflammatory 

responses as NETs provide an extracellular reservoir of inflammatory components, 
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such as LL-37, bacterial components, ds-DNA and hypercitrullinated proteins 

(White et al., 2015). In addition to their importance in periodontal diseases, 

neutrophils and periodontal bacteria have been implicated in mechanisms that 

increase the generation of autoantibodies that are important in the development of 

RA (to be discussed in detail in section 1.5.2).  

1.4 Rheumatoid arthritis (RA)  

RA is a systemic autoimmune disease characterized by chronic joint inflammation 

leading to destruction of bone and cartilage causing a reduction of functional 

capacity. RA affects 0.5%–1% of the overall population (Silman and Pearson, 2002) 

and the peak age of incidence is during the fifth decade of life (Tedeschi et al., 2013, 

Goemaere et al., 1990). RA disproportionately affects females compared with males, 

with a higher prevalence in women (Alpízar-Rodríguez et al., 2017, Goemaere et al., 

1990). Moreover, the disease activity and progression of RA tend to be more severe 

in females compared with males (Sokka et al., 2009). 

 

The aetiology of RA is multifactorial, complex and not fully understood. Known 

risk factors include certain genetic profiles (e.g. the presence of human leukocyte 

antigen [HLA]-DR), environmental factors (e.g. smoking) and the presence of 

autoantibodies (e.g. rheumatoid factor [RF] and anti-citrullinated protein antibodies 

[ACPA]). 

1.4.1 HLA-DR  

The most strongly associated genetic risk factor for RA is the presence of the HLA-

DRB1 allele, which encodes common amino acid sequences (the shared epitope 

[SE]) in the third hypervariable region of the DRB1 molecule (Gregersen et al., 
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1987). SE is found in numerous alleles and in this set of alleles the SE is a sequence 

of amino acids in the peptide binding groove of this type of major histocompatibility 

complex (MHC) Class II molecule (Raychaudhuri et al., 2012). Approximately up to 

40% of risk for RA has been attributed to this genetic risk factor (Deane et al., 

2017). A recent meta-analysis has confirmed the association of the SE with 

susceptibility in ACPA-positive RA patients while no robust associations were 

found in ACPA-negative RA patients (van der Woude et al., 2010). However, 

controversy exists regarding the possible protective effects of certain HLA–DRB1 

alleles (van der Woude et al., 2010, Mattey et al., 2001). 

1.4.2 Smoking 

Smoking is the best characterized environmental risk factor for RA (Vessey et al., 

1987). The increased risk was reported to occur after smoking for a long duration 

(equal or more than 20 years) and persisted for 10-19 years after cessation (Stolt 

et al., 2003, Svendsen et al., 2017). The association between smoking and RA was 

greatly enhanced in the presence of the SE and was dependent on the amount of 

smoking (Kallberg et al., 2011, Padyukov et al., 2004). In a recent Swedish 

population-based case-control study, smoking increased the risk of both ACPA-

positive and ACPA-negative RA with a more pronounced influence on the risk of 

the former (Hedstrom et al., 2018).   

1.4.3 Autoantibodies associated with RA 

The lack of immunological tolerance in RA represents the first step toward the 

development of autoimmunity. Genetically susceptible individuals, under the 

influence of environmental factors, develop autoimmune phenomena that result in 

the presence of autoantibodies.  
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Protein citrullination is essential for many physiological processes (Gyorgy et al., 

2006). However, citrullination may alter the three-dimensional architecture of the 

proteins and their solubility in aqueous solutions, and may lead to the generation of 

neo-epitopes, thus breaching immunological tolerance to citrullinated proteins. 

There are at least five isotypes of human PADs capable of citrullinating mammalian 

proteins (PAD1, 2, 3, 4 and 6), among which PAD2 and PAD4 are associated with 

the production of citrullinated proteins in RA (Foulquier et al., 2007). Neutrophils 

express several isoforms of PADs, and calcium-associated hyper-activation of 

neutrophil PADs can promote intra- and extracellular citrullination (Konig and 

Andrade, 2016). ACPA are detectable in approximately 70% of RA patients and are 

highly specific to this disease (Schellekens et al., 2000, Payet et al., 2014). In 

clinical practice, ACPA-positivity is defined by measuring antibodies against 

synthetic cyclic citrullinated peptide (CCP). Anti-CCP antibodies have been 

reported to be more specific markers for RA than RF, although both types of 

autoantibodies have been detected in the sera of asymptomatic individuals more than 

10 years prior to disease onset (Nielen et al., 2004, Rantapää-Dahlqvist et al., 2003). 

Testing for both these types of antibodies has been included as a serologic criterion 

in the recently published 2010 RA classification criteria (Aletaha et al., 2010).  

 

The information regarding ACPA-negative RA however is limited and other potent 

biomarkers need to be characterized for this manifestation of RA. Recently, a new 

protocol detecting autoantibodies against carbamylated proteins (anti-CarP) has 

been described (Shi et al., 2013) but has not yet been implemented for commercial 

use. Carbamylation is an enzyme-independent PTM in which cyanate binds to the 

primary amine of lysine, forming carbamyl groups, generating peptidyl-

homocitrulline against which autoantibodies are subsequently induced (Trouw and 
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Mahler, 2012). Neutrophil myeloperoxidase (MPO) can enhance protein 

carbamylation by promoting the generation of cyanate from thiocyanate (Figure 1.6) 

(Wang et al., 2007). Similar to citrullination, carbamylation may result in changes to 

the functioning of proteins, e.g. carbamylation of IgG can inhibit the classical 

pathway of complement activation (Koro et al., 2014). It has been reported that anti-

CarP autoantibodies were present in approximately 45% of RA patients, and 

importantly, detected in up to 30% of ACPA-negative RA patients (Shi et al., 2011). 

In a longitudinal study, presence of anti-CarP was shown to be able to predict the 

development of RA independently of anti-CCP antibodies (Shi et al., 2012). 

 

 

Figure 1.6 Illustration of carbamylation (adapted from Shi et al. 2011) (Shi 
et al., 2011).  
Carbamylation is an enzyme-independent posttranslational modification (PTM) 
in which cyanate binds to the primary amine of lysine, forming carbamyl 
groups, generating peptidyl-homocitrulline. Urea is a source of cyanate in host 
and is in equilibrium with ammonium cyanate. During inflammation, 
neutrophil myeloperoxidase (MPO) can enhance protein carbamylation by 
promoting the generation of cyanate from thiocyanate 

 

1.4.4 Individuals at risk of developing RA 

RA-related autoantibodies such ACPA and markers of systemic or local subclinical 

inflammation (e.g. magnetic resonance imaging parameters) can be present months 
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or years before diagnosis of the disease (Nam et al., 2016, Deane et al., 2017). The 

development of RA is a multistep process. The European League Against 

Rheumatism (EULAR) study group differentiated the following phases: (1) presence 

of genetic and environmental risk factors for RA, (2) systemic autoimmunity 

associated with RA, (3) symptoms such as joint pain but without clinical arthritis 

(arthralgia), (4) unclassified arthritis and finally (5) RA (Gerlag et al., 2012). 

It is thought that early treatment with disease-modifying anti-rheumatic drugs 

(DMARDs) and anti-inflammatory steroids can prevent progression of the disease 

and may even change or prevent the development of erosive joint damage (Heidari, 

2011). The phase of arthralgia preceding clinical arthritis is the first opportunity to 

clinically recognize patients who are at risk for progression to RA and these high-

risk individuals may be identified for preventive interventions (Hunt and Emery, 

2014, Mankia and Emery, 2016). In contrast to the other phases that have been 

studied extensively, this phase is less well explored. Previous studies have shown 

that the risk for developing RA is even higher when the arthralgia is combined with 

ACPA positivity (Bos et al., 2010). 

1.5 The relationship between periodontitis and RA  

RA and periodontitis display some pathogenic similarities, such as the host immune 

response leading to soft tissue inflammation with subsequent hard tissue destruction, 

and certain shared risk factors, including smoking, the HLA-DRB1 allele and 

obesity (Chaffee and Weston, 2010, Marotte et al., 2006, Cheng et al., 2017). 

Periodontitis and RA are known to be significantly associated at the epidemiological 

level (Mikuls et al., 2016, Fuggle et al., 2016, Araujo et al., 2015), although the 

alternative conclusion has been drawn in some studies, possibly due to inconsistent 

diagnosis of periodontitis (Mikuls et al., 2016, Eriksson et al., 2016). A recent 
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systematic review has confirmed an increased risk of periodontitis in RA patients 

compared with systemically healthy controls (Fuggle et al., 2016).  

 

The link between the two diseases was further highlighted in a recent study where 

patients with periodontitis and arthralgia who later developed RA had higher levels 

of disease activity and were more likely to receive methotrexate at RA diagnosis 

compared to patients without periodontitis (Hashimoto et al., 2015). Furthermore, a 

recent meta-analysis showed non-surgical periodontal treatment in patients with 

periodontitis and RA could lead to improvements in markers of disease activity in 

RA (Kaur et al., 2014). Understanding the common mechanisms that underlie 

periodontitis and RA could present new possibilities for the treatment and 

prevention of RA.  

1.5.1 P. gingivalis, RA and autoantibody production  

P. gingivalis, a keystone pathogen for periodontitis, has attracted a lot of attention 

from researchers exploring the link between these two diseases as it can express its 

unique PPAD, which is capable of citrullinating both bacterial and host 

protein/peptides (Wegner et al., 2010). PPAD activity has been detected in GCF 

from periodontitis patients and at lower levels in healthy controls (Laugisch et al., 

2016). Human fibrinogen and α-enolase, two of the proteins targeted by ACPAs in 

RA (Wegner et al., 2010), are also substrates of PPAD and antibodies against auto-

citrullinated P. gingivalis proteins cross react with citrullinated human α- enolase 

autoantibodies (Bright et al., 2015).  

 

Recombinant PPAD has been reported to be capable of auto-citrullinating some of 

its 18 arginine residues (Quirke et al., 2014), although there is evidence that anti-
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PPAD antibodies are not directed against the citrullinated form of PPAD and that N-

terminal processing protects PPAD expressed by P. gingivalis from auto-

citrullination (Konig et al., 2015).  

The hypothesis that P. gingivalis is crucial in the aetiology of RA is supported by 

studies in animal models. Inoculation with P. gingivalis expressing PPAD 

accelerated progression and enhanced severity of collagen-induced arthritis in mice 

and was associated with higher levels of citrullinated proteins at diseased sites 

(Maresz et al., 2013). 

 

To better understand the role for P. gingivalis in the development of RA, a limited 

number of studies have been performed on individuals at risk of RA. An increased 

level of anti-P. gingivalis antibodies were found in individuals at genetic risk of 

developing RA (Mikuls et al., 2012). Furthermore, higher anti-RgpB IgG levels, 

indicating the presence of this P. gingivalis virulence factor, were reported in the 

blood of both individuals at risk of and those with established RA, compared with 

healthy controls; while ACPA levels increased with time, anti-RgpB antibody levels 

did not and they decreased following diagnosis (Johansson et al., 2016). In contrast, 

no association between anti-RgpB and risk of RA was found in another study of a 

Southern European cohort (Fisher et al., 2015). 

 

Although different approaches have been used to investigate the association between 

presence of P. gingivalis and RA, the results are equivocal (Cheng et al., 2017). In a 

recent study, periodontitis, but not the subgingival presence of P. gingivalis, was 

more prevalent in patients who later progressed to classifiable RA (Hashimoto et al., 

2015). Similarly, De Smit et al concluded that, while there was evidence that 

periodontitis may precede symptomatic RA, there was insufficient evidence to 
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confirm a role specifically for P. gingivalis in disease progression (de Smit et al., 

2015). Thus, while the link between periodontitis and RA is established, the specific 

roles of P. gingivalis or PPAD are less clear. 

1.5.2 Other oral pathogens and multiple mechanisms underlying the 

link  

Apart from P. gingivalis, another periodontal pathogen A. actinomycetemcomitans, 

has emerged as a candidate bacterial trigger of autoimmunity in RA. The 

leukotoxin-A (LtxA) produced by A. actinomycetemcomitans has been implicated in 

inducing leukotoxic hypercitrullination (protein citrullination spanning the broad 

range of molecular weights), and exposure to A. actinomycetemcomitans was 

associated with ACPA and RF (Konig et al., 2016). A recent study has reported that 

the periodontal pathogen P. intermedia, not but not P. gingivalis, was associated 

with antibody responses to a novel citrullinated peptide related to RA (Schwenzer et 

al., 2017).   

 

Neutrophils are important in both RA and periodontitis pathogenesis. The 

production of RA-related autoantibody can be mediated by neutrophils via multiple 

routes. Immune dysregulation and tissue damage associated with periodontitis also 

in part attributed to the action and the function of neutrophils. Interference with the 

neutrophils is employed by many periodontal bacteria as an important pathogenic 

strategy, and some of these species may in turn promote neutrophil-mediated 

autoantibody production, e.g. via the pore-forming leukotoxin of A. 

actinomycetemcomitans (Konig and Andrade, 2016); Filifactor alocis promotion of 

neutrophil degranulation (Armstrong et al., 2016); and P. gingivalis, A. 
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actinomycetemcomitans and F. nucleatum triggering the release of neutrophil 

extracellular traps (White et al., 2016).  

 

Periodontitis is a complex disease, mediated by a consortia of co-operating bacteria 

and the host responses to them. It is, therefore, logical to widen consideration of the 

influence of the microbiota beyond that of a single, albeit important, bacterium. 

With the help of NGS techniques, the changes of oral microbial composition have 

become a target for analysis from health to disease. Using 16S rRNA sequence 

analysis of the entire subgingival microbiome, Scher et al. found that the 

microbiome of RA patients was similar to healthy subjects with similar periodontal 

status, but, specific Prevotella and Leptotrichia operational taxonomic units (OTUs) 

were only found in new-onset RA patients, and Anaeroglobus geminatus was 

correlated with the presence of ACPA and RF, and with periodontitis (Scher et al., 

2012). Another large-scale study using metagenomic shotgun sequencing identified 

compositional and functional alterations in RA-associated oral microbiomes, which 

were partly resolved by DMARD treatment; thus, this big data approach suggests 

that the oral microbiome composition could be important in the prognosis and 

diagnosis of RA (Zhang et al., 2015). However, the oral microbiome’s contribution 

to the individuals at risk of development of RA has not been investigated yet.  

1.6 Aims of this study 

With the overall aim of better understanding the links between P. gingivalis, 

periodontal disease and risk of developing RA, as well as understanding the role of 

PPAD in P. gingivalis physiology, there were two main arms of the research project: 

in vitro studies and analysis of clinical samples.  
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1.6.1 The aim of the in vitro study  

To investigate the role of PPAD in P. gingivalis physiology, beginning with testing 

the hypothesis that PPAD contributes to maintaining an environmental pH that 

favours P. gingivalis growth. 

1.6.2 The aims of study of clinical samples  

The main aim was to characterise the subgingival microbiome related to the 

development of RA or underlying the link between RA and periodontitis, which may 

lead in the long term to identifying potential markers for early diagnosis and 

treatment of RA. To do this, I used a shotgun metagenomic approach to compare the 

microbial composition and functional capability of subgingival biofilms in patients 

with and without periodontitis, with and without RA, and in individuals identified as 

anti-CCP positive and at risk of developing RA.  
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Chapter 2                                                  

Materials and Methods 
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2.1  Bacterial strains, storage and batch culture conditions 

All the bacterial strains used in this study were listed in Table 2.1. The P. gingivalis 

W83 Δppad mutant (Wegner et al., 2010) was kindly gifted by Prof. Jan Potempa 

(University of Louisville). The ΔrgpA+rgpB mutant of P. gingivalis W50 (E8) 

(Aduse-Opoku et al., 2000) was kindly gifted by Prof. Michael A. Curtis (King’s 

College London).  

 

For long term storage, the colonial growth of a pure culture was innoculated in a 

Microbank cryovial (Pro-Lab Diagnostics, Canada) containing cryopreservative 

solution and beads. The bacteria were bound to the porous beads after inverting the 

vials 4-5 times. The excess cryopreservative was aspirated and the cryovials were 

kept at -80 °C for extended storage. 

 

For batch culture, all the strains were grown on Columbia blood agar base (CBA) 

plate (Oxoid, UK) and in brain heart infusion (BHI) broth (Oxoid, UK) at 37°C in 

an A45 anaerobic work station (Don Whitley Scientific, UK) under 80% N2, 10% H2 

and 10% CO2 . To prepare CBA plates, Columbia agar base was autoclaved at 

121°C for 15 minutes and 5% (v/v) defibrinated horse blood  (Oxoid, UK) was 

added. All the media were pre-reduced by placing in the anaerobic workstation at 

least overnight prior to use. A bacterial strain was revived by streaking a bead from 

the cryovial on CBA plates and grown for 3 days. Bacterial strains were inoculated 

from CBA plates into BHI broth enriched with 5 mg/L haemin (Sigma-Aldrich, 

America) and 1 mg/L menadione (Sigma-Aldrich, America). The batch culture in 

BHI broth at different growth stages was used for further measurments. 
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Table 2.1 List of strains used in the study. 

Strains Source 

Porphyromonas gingivalis W83 Gifted by Prof. Jan Potempa, type 
strain, parent strain of the Δppad 
mutant,  
 

Porphyromonas gingivalis W83 Δppad 

mutant 

Gifted by Prof. Jan Potempa 

(Wegner et al., 2010) 

Porphyromonas gingivalis W50 Gifted by Prof. Michael A. Curtis, 

type strain parent strain of E8 

mutant,  

Porphyromonas gingivalis ΔrgpA+rgpB 

mutant (E8) 

Gifted by Prof. Michael A. Curtis 

(Aduse-Opoku et al., 2000) 

Prevotella corporis A818 Stored clinical isolates (Conrads et 

al., 1997) 

Prevotella intermedia ATCC 25611 Stored type strain 

Prevotella intermedia OMZ 326 Stored clinical isolate from 

subgingival plaque 

Prevotella nigrescens OMZ 227 Stored clinical isolate from 

subgingival plaque 

Prevotella melaninogenica NCTC 12963 Stored type strain 
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2.2 Continuous culture of P. gingivalis W83 and its Δppad 

mutant using a chemostat 

2.2.1 Assembly of the chemostat  

To determine the potential role of PPAD in pH regulation and its effect on the 

bacteria growth, P. gingivalis W83 and its Δppad mutant were grown in a chemostat 

(Applikon, the Netherlands) separately, under the same conditions. The chemostat 

vessel was attached to an Applikon ADI Biocontroller (Applikon, the Netherlands) 

which was able to monitor and record the temperature, pH and redox potential by 

probes. A motor controller was also mounted on the vessel to power a rotor 

submersed within the culure allowing agitation (Figure 2.1).  

 

Figure 2.1 Diagram of chemostat. 
A 2-liter-capacity chemostat was operated at a working volume of 700 mL. 
Fresh medium was continuously added and culture liquid was continuously 
removed at the same rate by pumps to get the dilution rate of 0.05/h. The pH of 
the culture was controlled by the automatic addition of 1 M NaOH and 0.5 M 
HCl, and the temperature was controlled at 37 ± 0.1°C. The culture vessel was 
sparged with a gas mixture of N2 (95%, v/v) and CO2 (5%, v/v) to maintain 
anaerobic conditions. A motor controller was mounted on the chemostat vessel 
allowing agitation. The temperature, pH and redox potential were monitored 
and recorded by corresponding probes.  
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2.2.2 Operation of the chemostat 

The medium used was BHI broth supplemented with 5 mg/L of haemin (Sigma-

Aldrich, America) to achieve excess haemin levels. The inoculum was prepared by 

growing the bacteria to late log phase in BHI broth, and 100 mL of this batch culture 

was used to inoculate the chemostat containing 300 mL of the same medium. A 10- 

L reservoir of medium feed was conrolled via a Watson Marlow 101U pump 

(Watson Marlow, UK) with a very slow rate (15 mL/h) initially; this rate was 

maintained overnight to reach the required working volume of 700 mL; once this 

volume was attained, the medium flow rate was increased to 35 mL/h. An outflow 

reservoir was also attached to the vessel via a Watson Marlow 120S/DM2 pump 

(Watson Marlow, UK) and its flow rate was adjusted to give the desired dilution rate 

of 0.05/h (dilution rate is calculated by dividing the flow rate  by the culture 

volume).  

 

The culture vessel was sparged with a filter-sterilized gas mixture of 95% (v/v) N2 

and 5% (v/v) CO2 to maintain anaerobic conditions. The temperature was controlled 

at 37 ± 0.1°C and the culture was agitated at 40 rpm. The pH of the culture was 

maintained initially at 7.25 ± 0.05 by the automatic addition of 1 M NaOH and 0.5 

M HCl and the chemostat was allowed to achieve a steady state, defined as at least 

three optical density at a wavelenghth of 600 nm (OD600) measurements varying by 

around ±10% or less during at least two or three consecutive residence times 

(1/dilution rate). After three days at the first steady-state, the pH control was 

removed and the culture was left to reach the second steady-state. Redox potential, 

pH and temperature of the culture were measured by means of the BioXper software 

package (Applikon, the Netherlands).  
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The purity of the culture was checked daily by Gram staining and viable culture on 

CBA plates to confirm that there was no contamination from any other 

microoganism. 

2.2.3 Sampling and analyses of the chemostat culture 

Samples of the chemostat culture were taken daily from each steady state and the 

transition stage between the two steady states for analysis, by using a syringe at the 

end of the air filter connected to the sampling port. Viable counts were determined 

after 1 mL fresh culture was transported to an anaerobic cabinet quickly and 10-fold 

serial dilutions were prepared in BHI broth to a dilution of 10-10. Aliquots (100 µL) 

of 10-7, 10-8, 10-9 and 10-10 diluted cultures were spread on separate CBA plates in 

triplicate. Colony forming units (CFU) on the plates were counted after incubation 

for 3-5 days. Only plates with 30-300 colonies were counted. 

The enzyme activities of the chemostat cultures were assessed as described in 

sections 2.3.1 and Error! Reference source not found.. Samples were also stored 

to allow subsequent analysis of RNA. For this, 12 mL bacterial culture was mixed 

with 8 mL RNA bacterial protect reagent (Qiagen, Germany). Aliquots of 2 mL 

sample were centrifuged at 10000 g for 2 min to remove supernatant and then stored 

at -80 °C.  

2.3 Measurement of bacterial enzyme activities 

2.3.1 P. gingivalis peptidylarginine deiminase (PPAD)  

PPAD enzymatic activity was measured using a colorimetric assay that detects 

formation of the ureido group of citrulline (Knipp and Vasak, 2000). PPAD activity 

buffer was prepared by dissolving 2.07 g 2-(Ncyclohexylamino)-ethanesulfonic acid 
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(CHES) (Sigma-Aldrich, America) and 0.308 g dithiothreitol (DTT) (Sigma-

Aldrich, America) in 200 mL of deionized water, providing 50 mM CHES 

containing 10 mM DTT; the pH was adjusted to 9.5 using 1 M NaOH and HCl. N-a-

benzoyl-L-arginine ethyl ester (BAEE) was used as the substrate which was 

dissolved in the buffer to get 6 mM substrate working solution.  

 

Early stationary phase cultures of P. gingivalis W83 and W50 were diluted 1:10 in 

BHI broth and were incubated anaerobically overnight. Aliquots of the culture were 

collected at two-hourly intervals. Samples were also collected from the chemostat as 

described in section 2.2.3. Cell-free supernantants were obtained from 1 mL cultures 

by centrifugation at 10000 g for 2 min; the cellular pellets were re-suspended in 1 

mL PPAD activity buffer after washing twice using the same buffer. 50 µL cells 

suspension in buffer or 50 µL cell-free supernatant was mixed with 50 µL substrate 

working solution in a 0.5 mL micro-centrifuge tube, and incubated for 30 min at 

37 °C in a heating block (VWR® Analog Dry Block Heaters; VWR International, 

America). A 200 µL portion of freshly prepared colour developing reagent, 

containing 1 volume of Solution A and 3 volumes Solution B, was used to quench 

the reaction. Solution A contained 80 mM diacetyl monoxime (DAMO) (Merck, 

Austria) and 2 mM thiosemicarbazide (TSC) (Sigma-Aldrich, America). It was 

prepared as follows: 1.62 g DAMO and 36 mg TSC were dissolved in 200 mL of 

deionized H2O and stored in the dark at 4°C. Solution B containing 3 M H3PO4, 6M 

H2SO4, and 2 mM NH4 Fe(SO4)2 (Alfa, UK) was prepared as follows: 200 mL of 

85% (w/v) H3PO4 was slowly added to 450 mL of deionized H2O with gentle 

stirring. To this solution, 330 mL of 98% (w/v) H2SO4 was slowly added. 750 mg of 

NH4 Fe(SO4)2•12H2O was dissolved in this mixture. Upon cooling to room 
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temperature, the solution was carefully adjusted with deionized H2O to a final 

volume of 1 L. 

The mixtures containing cells or cell-free supernatants were incubated at 95 °C for 

15 min in the heating block, and cooled for 3 min on the bench top. They were 

centrifuged at 10000 g for 2 min and the absorbance at 540 nm of the supernatant 

was then measured (using a Varioskan plate reader (Thermo Fisher Scientific, 

America). A standard curve was created using 0, 10, 50, 100, 200 and 400 µM L-

citrulline (Alfa, UK) in PPAD activity buffer. A control reaction containing bacteria 

but no substrate was included. Another control of substrate alone was also included. 

All activity measurements were performed in triplicate. 

 

The enzymatic activity, V, was calculated using the following equation, where Acit 

is the measured absorbance, A0 is the absorbance of controls (substrate along was 

used as the blank for the activity in cells, bacterial supernatant was used as the blank 

for activity in supernatant), B is the slope of the standard curve and T is the time of 

enzymatic reaction. 

V= 
Acit-A0

B×T
 

 

2.3.2 Citrullination activity in different species  

The potential citrullination activity was assessed in the cell pellets of a range of 

Prevotella species and P. gingivalis. Different substrates were used to investigate 

the substrate specificity of those enzymes. PPAD and human PADs have different 

calcium requirements but the calcium dependency is not clear for activity in 
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Prevotella species. Therefore, the dependence on calcium for the citrullination 

activity was also analysed by using reaction buffer with or without calcium.  

 

P. gingivalis W83, W83 Δppad mutant, W50, E8, P. corporis A818, P. intermedia 

ATCC 25611, P. nigrescens ATCC25261, P. nigrescens OMZ 227 and P. 

melaninogenica NCTC 12963 were grown in BHI until the late log phase. The 

OD600 of the culture was adjusted to 1.0 using BHI broth. The cell pellet was 

collected from 1 mL culture by centrifugation at 10000 g for 2 min, washed twice 

using PPAD activity buffer, pH 7.5, and re-suspended in 1 mL same buffer. The 

colorimetric assay for enzyme activity was used as described above (section 2.3.1), 

but a variety of substrates were employed: 3mM synthetic arginine substrate BAEE 

(Sigma-Aldrich, America), 3mM synthetic peptides Arg-Gly-Glu, Met-Arg-Phe, 

Gly-Arg (Bachem, Switzerland) or 50 mg/mL bovine serum albumin (BSA). When 

using BAEE and BSA as substrate, the buffer with or without 10 mM CaCl2 was 

included in the experiment to assess the effect of calcium on the enzyme activity. 

 

The activity of Rgp was determined in the whole culture and cell-free supernatant of 

chemostat cultures using the substrates carrying chromogenic leaving group p-

nitroanillide (pNA; Sigma-Aldrich, America). Gingipain assay buffer was prepared 

on the day of use, by adding 0.2 mL of 1 M L-Cysteine•HCl stock solution to 10 mL 

200 mM Tris•HCl-20 mM CaCl2. L-Cysteine•HCl solution was neutralized before 

being added to the buffer by mixing 9 volumes of 1 M cysteine solution with 1 

volume of 8 M NaOH.  

 

Samples from the chemostat were also collected as described in section 2.2.3. The 

supernatant was obtained by centrifugation 0.5 mL culture at 10000 g for 2 min. 50 



- 42 - 

µL sample was added to 100 µL buffer in each well of a 96-well plate, and was 

mixed well by pipetting up and down a few times. The volume in each well was 

adjusted to 190 µL by adding deionized water. The plate was then incubated for 10 

min at 37 °C allowing warming of the samples and reduction of the cysteine 

residues.  

 

10 µL 10 mM Bz-L-arginine-pNA (L-BAPNA; Sigma-Aldrich, America) in 

dimethyl sulfoxide (DMSO) was added to the reaction at a final concentration of 0.5 

mM and mixed thoroughly. Activity was measured in 0.1 M Tris-HCl-10 mM L-

cysteine-10 mM CaCl2, pH 8.0, containing 0.5 mM L-BAPNA at 30°C using a 

Varioskan plate reader supplied with an incubation function. The reaction was 

monitored by the increase in the OD405 nm  over 30 min. A standard curve was 

prepared using pNA concentrations of 0, 30, 60, 125, 250 and 500 µM. A control 

reaction containing bacteria but no substrate was included. Another control of 

substrate alone was also included. All activity measurements were performed in 

triplicate.  

2.3.3 Dipeptidyl-peptidase (DPP) activity 

P. gingivalis W83 and the W83 Δppad mutant were grown in BHI until they reached 

the late log phase. The OD600 of the sample was adjusted to 1.0 using BHI broth. 

Cell pellets were collected from each 1 mL sample by centrifugation at 10000 g for 

2 min. They were washed twice in ice-cold phosphate buffered saline (PBS), pH 7.4, 

and re-suspended in 1 mL same PBS. 

 

Peptidase activity was measured as previously reported (Nishimata et al., 2014). 

Gly-Pro-, Lys-Ala-, Met-Leu-, and Leu-Asp-α-(4-methylcoumaryl-7-amide) (MCA) 
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were used as substrates (PeptaNova, Germany). 50 µL cell suspension was added to 

199 µL reaction buffer composed of 50 mM sodium phosphate, 5 mM EDTA, pH 

7.0. Then 1 µL of substrate working solution (5 mM) was added, providing a final 

substrate concentration of 20 µM. A reaction mixture containing bacteria but no 

substrate (50 µL cell suspension + 200 µL buffer) was included. Another control for 

substrate alone (1 µL substrate + 249 µL buffer) was also performed. After 

incubation for 30 minutes at 37°C, fluorescence intensity was measured with 

excitation at 380 nm and emission at 460 nm. A standard curve was created using 0, 

1.25, 2.5, 5, 10 and 20 µM 4-Methyl-Coumaryl-7-Amide (AMC; PeptaNova, 

Germany) in reaction buffer. For each bacterial strain, three biological repeats were 

performed. DPP activities toward Gly-Pro-, Lys-Ala-, Met-Leu-, and Leu-Asp-MCA 

were defined as the rate of hydrolysis (µM/min). 

 

2.4 Analysis of gene expression 

2.4.1 P. gingivalis DPP 5 and DPP 11  

The expression of the genes for DPP5 and DPP11by P. gingivalis W83 and its 

Δppad mutant was assessed using quantitative real-time polymerase chain reaction 

PCR (qRT-PCR). 

2.4.1.1 RNA extraction  

P. gingivalis W83 and its Δppad mutant were grown in BHI until they reached the 

late log phase. RNA was extracted from 1 mL culture of each strain using TRIzol 

Max Bacterial RNA Isolation Kit (Thermo Fisher Scientific, America) according to 
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the manufacturers’ instructions and the quantity of RNA was estimated by using a 

Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific, America).  

 

2.4.1.2 DNase treatment 

549.13 ± 236.51 ng/µL RNA was obtained from batch culture sample. Two µg RNA were 

mixed with 3 µL DNase I (New England Biolabs, America) and 2 µL Alu I (New 

England Biolabs, America) in 2 µL 10•DNase I reaction buffer (New England 

Biolabs, America). Additonal diethyl pyrocarbonate (DEPC) treated water was 

added to make the final reaction volume 20 µL and the mixture was incubated at 

37°C for 2 h to digest and eliminate contaminating genomic DNA. The reaction was 

inactivated by incubation at 80 °C for 20 min.  

2.4.1.3 Precipitating RNA 

Twenty µL of the RNA sample after DNase treatment was mixed with 2 µL sodium 

acetate (Alfa, UK) and 55 µL cold 95% ethanol. The mixture was incubated at -

20 °C for 20 min. Then the supernatant was removed after centrifuging at 800g for 

30 min. The pellet was washed using cold 70% (v/v) ethanol and was allowed to air 

dry after centrifuging at 800 g for 10 min. Finally, the RNA was dissolved in 10 µL 

nuclease-free water. 

2.4.1.4 Assessment of genomic DNA contamination  

PCR was performed to determine if there was any detectable genomic DNA in the 

RNA samples. The primers of 16S ribosomal RNA (rRNA) were used : PgF (5’-

TGGTTTCATGCAGCTTCTTT-3’) and PgR (5’-TCGGCACCTTCGTAATTCTT-

3’). Each reaction mixture contained 1 µL of template mixed with 10 µL of Dream 
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Taq Green PCR MasterMix (Thermo Fisher Scientific, America), 2 µL of each 

primer (final concentration of each was 0.1 µM) and 5 µL of PCR water. The PCR 

was performed as follows: 95°C 10 min; 95°C 30 sec; 53°C 30 sec; 72°C, 35 sec; 35 

cycles, and a final extension step of 10 min at 72°C. Reactions were also performed 

using water and DNA of P. gingivalis as the template, providing negative and 

positive controls, respectively. A 10 µL aliquot of the PCR product was run on a 3% 

(w/v) agarose-SB gel (protocol for preparing SB buffer: see Appendix A) at 200V 

for 5 min. 

2.4.1.5 cDNA synthesis and qRT-PCR 

One µg purified total RNA was mixed with Randon Hexamer primer (final 

concentration is 60 µM) for cDNA synthesis by using Transcriptor First Strand 

cDNA Synthesis Kit (Roche, Switzerland). The concentration of cDNA was 

quantified by using a Nanodrop 2000 Spectrophotometer. Custom Taqman primers 

and probes were ordered for P. gingivalis DPP 5, DPP 11 and 16S rRNA (Thermo 

Fisher Scientific, America) (Table 2.2). The cDNA was diluted in nuclease-free 

water over a 100-fold range (0.01~1). A 1 µL sample of dilutied cDNA sample was 

mixed with 10 µL TaqMan PCR Master Mix and 1 µL primers with TaqMan probe 

(Thermo Fisher Scientific, America). The mixtures were prepared in a 96-well 

reaction plate with additional nuclease-free water to provide a final volume of 20 µL 

for each cDNA concentration in each well. The reaction was run on a LightCycler 

480 II (Roche, Switzerland) as follows: incubation at 50 °C for 2 min, ezyme 

activation at 95 °C for 10 min and then 40 cycles of 95 °C for 15 sec and 60 °C for 1 

min. The average threshold cycle (Ct) value was calculated for the target gene (DPP 

5, DPP 11) and reference gene (16S rRNA).  
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Table 2.2 TaqMan primers and probes. 

Target Sequence of probe 

(reporter) 

Sequence of primer 

P. g 16S rRNA CCTGCTTCGCTCC

CC 

 

F: GTATCAAACAGGATTAGATACCCTGGTAG 

 

 R: TGACGGTATATCGCAAACTCCTAGT 

 

P. g DPP 5 TCAGCGTAATCTC

CC 

 

F: TGTAAGGAGGCAGAGACCAATCT 

 

 R: CTGTCCCTGCGTGATCTGA 

 

P. g DPP 11 TCCACGCAGTAA

ACG 

 

F: GTCAAAACAAACAGGCGATGCA 

 

 R: GTATCAAACAGGATTAGATACCCTGGTAG 

 

P. g = P. gingivalis; F = forward; R = reverse. 

 

2.4.1.6 Relative quantitation 

To use the relative quantitation, the assumption that amplification efficiencies of the 

target and reference were approximately equal was checked (Livak and Schmittgen, 

2001). The ΔCt (Ct target - Ctreference) was determined and a plot of the log cDNA 

dilution versus ΔCt was made. If the absolute value of the slope was close to zero, 

the efficiencies of the target and reference genes were similar. For both DPP 5 and 
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DPP 11, Ct value was normalized to that of 16S rRNA gene and the ΔCt were 

compared between P. gingivalis W83 and Δppad mutant. 

 

2.4.2 RNA sequencing of P. gingivalis W83 and its Δppad mutant 

growing in chemostat 

2.4.2.1 RNA extraction from stored samples 

Frozen continous-culture samples of P. gingivalis W83 and its Δppad mutant were 

thawed on ice. Three biological repeats of two steady states, early and late transition 

stage were evaluated for each strain. RNA was extracted from each sample using the 

TRIzol Max Bacterial RNA Isolation Kit and the quantity of RNA was estimated by 

using Quant-iT™ RiboGreen™ RNA Reagent (Thermo Fisher Scientific, America). 

Genomic DNA was digested and checked as described above (section 2.4.1). 

2.4.2.2 Library preparation 

Ribosomal RNA was removed from 2 µg of total RNA using the Ribo-Zero rRNA 

Removal Kit (Gram-Negative Bacteria; Illumina, America) according to the 

manufacturer’s instructions. High Sensitivity RNA Screen TapeThe concentration of 

ribosome-depleted RNA was quantified by using Quant-iT™ RiboGreen™ RNA 

Reagent (Thermo Fisher Scientific, America). Based on the RIN (RNA integrity 

number) value of the RNA samples (4.03 ± 0.72) , fragmentation, synthesis of first- 

and second- strand cDNA, the RNA-seq barcode ligation, and other steps of library 

construction were performed using the NEBNext® UltraTM RNA Library Prep Kit 

for Illumina (New England Biolabs, America) according to the manufacturer’s 

protocol. The concentration of DNA libraries were quantified for each sample using 
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the Quant-iTTM PicoGreen ® dsDNA Reagent and Kits (Thermo Fisher Scientific, 

America). The size distribution of 4-fold diluted samples was evaluated on the 

Agilent 2200 TapeStation (Agilent, America) controlled by Agilent 2200 

TapeStation Software, using the Agilent High sensitivity D1000 ScreenTape & 

Reagents. The samples were finally sequenced by using the NextSeq 500 

sequencing system (Illumina, America), with single-end 75 bp reads. 

2.4.2.3 Reads preprocessing and data analysis 

Quality assessment was peformed on the raw data by using the FastQC (version 

0.11.5). The adaptor at the 3’ end was removed using Cutadapt (version 1.14) 

(Martin, 2011) and the reads were trimmed using Sickle (version 1.33) with cutoff 

of 28 and 15 for phred score and length. Reads after quality trimming were mapped 

to P. gingivalis W83 genome sequence by using Burrow-Wheeler Aligner (Li and 

Durbin, 2010). Reads in different features were counted by using htseq-count 

(Anders et al., 2015). Differential gene expression analysis was performed on 

DESeq2 R package (Love et al., 2014). Differentially expressed genes were 

annotated to the gene ontology (GO) terms by using R package topGO. A Fisher 

exact test implemented in the package was used to define the GO terms enriched in 

these up- and down regulated genes. The results of enrichment analysis were 

summarized and visualized by REVIGO (Supek et al., 2011). The scripts are 

attached in the Appendix B. 
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2.5 Metagenomic study of subgingival plaques in relation to 

RA 

2.5.1 Ethical approval 

Ethics approval from the local National Research Ethics Service (NRES) committee 

was sought and gained by the Leeds Musculoskeletal Biomedical Research centre 

(LMBRC), led by Prof. Paul Emery, application number 06/Q1205/169. R&D 

approval from the Leeds Teaching Hospital Trust (LTHT) was also gained. All 

participants provided informed written consent prior to study enrolment.  

2.5.2 Study participants 

Four groups of participants were recruited in this study in Leeds including: 1) 32 

non-RA volunteers (healthy controls), 2) 48 anti-citrullinated protein antibodies 

(CCP) positive individuals with no clinical synovitis, 3) 26 new-onset RA patients 

(NORA) who are anti-CCP positive and within 3 months of commencing DMARD 

therapy, 4) 10 chronic RA patients who had at least 6 months DMARD therapy. The 

four groups of participants were age, gender and smoking status matched during the 

recruitment process. All participants underwent a periodontal examination. 

Diagnosis of gingivitis or periodontitis was given by the dentists based on their 

consensus decision.  

2.5.3 Collection and processing of subgingival dental plaque 

samples 

Sample collection sites were identified by research dental practitioners during the 

periodontal examination. Periodontally diseased sites were defined as sites with 
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pockets of 4 mm depth or more with bleeding on probing. Healthy sites were 

defined as sites of 3 mm depth or less with no bleeding on probing. Sites selected 

were those that were accessible and where saliva contamination could be controlled. 

Supragingival plaque was removed with cotton wool pledgets prior to sample 

collection. Two sterile paper points (Maillefer Pro Taper Paper Points F3; The 

Dental Directory, UK) were used to collect subgingival plaque from each site 

avoiding bleeding, and immediately placed in a labelled cryovial containing 0.5 mL 

of RNA protect Bacteria Reagent. Cryovials containing the paper points were 

vigorously vortexed and then centrifuged at 8000 g for 1 min. Supernatants were 

removed by pipetting and cryotubes containing pellets were stored at -80 °C.  

2.5.4 DNA extraction from subgingival plaque 

Subgingival plaque samples were thawed on ice from -80°C. For each patient, the 

plaque samples from diseased sites or healthy sites were pooled together, separately. 

DNA was extracted from pooled samples using the UltraClean® Microbial DNA 

Isolation Kit (Qiagen, Germany) as per manufacturer’s instructions and quantified 

by using PicoGreen ® dsDNA Reagent and Kits (Thermo Fisher Scientific, 

America). 

2.5.5 DNA library preparation and sequencing 

The DNA was sheared to 200 bp in a small glass vial (microTUBE AFA Fiber Pre-

Slit Snap-Cap 6x16mm) by using a S220 Focused-ultrasonicator (Covaris, UK). The 

size distribution of 4-fold diluted samples was evaluated on the Agilent 2200 

TapeStation controlled by Agilent 2200 TapeStation Software A.01.05, using the 

Agilent High sensitivity D1000 ScreenTape & Reagents.  
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Depending on the concentration of sheared DNA in the samples, either NEBNext® 

Ultra™ DNA Library Prep Kit for Illumina® or NEBNext® Ultra™ II DNA Library 

Prep Kit for Illumina (New England Biolabs, America) was used for library 

construction including end preparation, adaptor ligation and PCR enrichment. 

AxyPrepTM Mag PCR Clean-up beads (Corning, America) were used for the clean-

up steps during and after the library preparation to remove unincorporated adaptors, 

primers, adaptor dimers, primer dimers and other contamintants. The size 

distribution and the quantity of the DNA libraries were checked using the method 

described above. DNA libraries tagged with different index primers were pooled 

together and paired-end sequenced on the Illumina Hiseq 3000 machine (Illumina, 

America).  

2.5.6 Metagenomic analysis using an in-house pipeline 

An in-house pipeline was used to do the analysis locally where every step and 

parameter can be strictly controlled. Each sample’s raw paired read data were 

processed with Cutadapt (version 1.14) to remove the adaptor at the 3’end and then 

quality trimmed using Sickle (version 1.33) in paired-end mode with the cut-off of 

28 and 15 for phred score and length, respectively. Trimmed reads of each sample 

were de novo assembled using MEGAHIT (version 1.1.2) (Li et al., 2016). 

Assembled contigs were aligned against the NCBI non-redundant (NR) protein 

database (ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr. gz, November 2017) using 

DIAMOND (version 0.9.14) in sensitive mode with 95% identity and an e-value of 

0.001 (Buchfink et al., 2015). The lowest common ancestor approach implemented 

in MEGAN6 (L.C.A., version CE.6.10.10) was used to assign aligned reads at 

different taxonomic levels with default parameters. For functional capability 

analysis, aligned reads were also assigned to clusters of orthologous genes (COGs) 
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using EggNOG functional identifier implemented in MEGAN6. The scripts used in 

the analysis are attached in appendix B.  

2.5.7 Statistical analyses 

Taxonomic and functional count data were exported from MEGAN6 in the biom 

format and imported as phyloseq objects (phyloseq, R). Microbial communities 

were characterized using alpha-diversity indices (i.e., number of observed species 

and Shannon diversity indices) and beta-diversity (Bray–Curtis dissimilarity) at 

species level. Alpha-diversity indices were calculated based on raw count data for 

each sample and compared between groups using the Kruskal-Wallis Test. The 

Dunn-Bonferroni correction of the P value was performed for multiple testing. 

Raw count data were converted to relative abundances using the number of 

annotated sequence reads as a denominator on a per-sample basis. β-diversity was 

determined by Bray-Curtis dissimilarity based on relative abundance after taxa 

filtering (prevalence equal or more than 3, total counts more than 10). The results 

were plotted using principal coordinates analysis (PCoA). Permutational 

multivariate analysis of variance (PERMANOVA) statistical test (Adonis function, 

vegan package, R) was used to test the significantly different β-diversity between 

groups. Homogeneity of multivariate dispersions was also tested by using betadisper 

function to ensure PERMANOVA assumptions (significant result is not due to 

differences in group dispersions). The permutation test (One-sided signassoc 

function, indicspecies R-package) was used to test statistical significance of taxa-

group association based on relative abundance data. Sidak’s correction was applied 

for multiple testing. 
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The core microbiome of each group was identified based on the threshold of 50% 

prevalence, 0.2% relative abundance by using microbiome R package. Co-

occurrence network analyses were performed using an R script based on vegan, 

igraph and Hmisc packages as described previously (Ju et al., 2014). Co-occurrence 

of the species with the occurrence in at least 20% of samples in each group from 

periodontally healthy or diseased sites were investigated by Spearman’s rank 

correlation and the P values were adjusted with a multiple testing correction using 

the Benjamini-Hochberg. Network visualization was conducted on the platform of 

Cytospace (Shannon et al., 2003). Spearman’s coefficient (q) < -0.5 or > 0.5 and 

adjusted P < 0.05 were considered to be a strong and significant correlation between 

species. Topological features for each node were calculated for the networks. For 

functional capability analysis, raw count data was imported into DESeq2 and 

normalized by the estimated size factors. The significant difference of the functional 

capability between groups were tested by the Wald test in DESeq2.  

2.5.8 Scan of PAD in subgingival plaque samples using the shotgun 

sequencing data 

Each sample’s raw paired read data were trimmed and de novo assembled as 

described in the section 2.5.6. Assembled contigs were aligned against the NCBI NR 

protein database (ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr. gz, November 2017) 

using DIAMOND (version 0.9.14) with 70% identity and an e-value of 0.001 to get 

a list of proteins accession number for each sample. The definition and annotation 

information of the identified proteins were retrived by searching agains the NCBI 

protein database with the proteins accession number. The protein information were 

recorded if the the names contain PAD on the NCBI database. 
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Chapter 3                                                     

Results 
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3.1 Growth	of	P.	gingivalis	W83	and	its	Δppad	mutant	in	

batch	culture		

P. gingivalis W83 and its Δppad mutant were inoculated separately into BHI broth 

containing 5 mg/L haemin and 1 mg/L menadione, and incubated in an anaerobic 

cabinet (as described in section 2.1). Samples of culture were withdrawn every two 

hours and the optical density was measured at 600 nm (Figure 3.1). The rates of 

growth were similar between the two strains in BHI broth. Culture samples were 

collected at late log phase for enzyme activity assays.  

 

 

Figure 3.1 Growth curves of P. gingivalis W83 and its Δppad mutant in 
batch culture.  
Each strain was grown anaerobically at 37°C in BHI broth containing 5 mg/L 
haemin and 1 mg/L menadione. The OD600 was recorded every 2 hours. Log 
phase sampling time point is indicated. Results are expressed as 
means ± standard deviations (n=3). 
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3.2 PPAD activity associated with cells and cell-free 

supernatant of P. gingivalis batch culture 

To investigate whether PPAD activity in the strains used in this study is cell 

associated or secreted, or both, and to inform the forthcoming experimental design, 

PPAD activity was measured in both cells and supernatant which were obtained 

from the batch culture of P. gingivalis W50 or W83 every two hours after 

inoculation. The OD600 of the culture was also monitored for both strains. PPAD 

activity was detected in both cells and supernatant, but only the activity in the cells 

was increasing in line with the growth of the bacteria indicating that the majority of 

PPAD activity was associated with bacterial cells (Figure 3.2). Therefore, in 

forthcoming experiment the PPAD activity were mainly measured in the cells 

allowing me to identify any difference in the enzyme activity of different P. 

gingivalis strains.  
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Figure 3.2 PPAD activity in the cells and cell-free supernatant from batch 
culture.  
(a) P. gingivalis W50 and (b) W83 were grown in BHI broth anaerobically. 
Samples were withdrawn at the two-hourly intervals. The OD600 of the sample 
was measured and plotted agains the inoculation time (lines). Culture 
supernatant and the cellular suspension in the buffer were assayed for PPAD 
activity at the indicated time points (orange bar: PPAD activity in the 
supernatant; green bar: activity in the cells). Results are expressed as means ± 
standard deviations (n=3).  
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stored at -80°C for two and three weeks. The results showed that there was no 

significant loss of activity when the bacterial cells were suspended in the PPAD 

enzyme activity assay buffer (as described in method section 2.3.1) and kept frozen 

for a maximum of three weeks (P=0.051, Kruskal-Wallis test) (Figure 3.3). 

Therefore, the cells suspension samples stored at -80°C within three weeks were 

used for PPAD activity assay in the subsequent experiments. 

 

 

Figure 3.3 Comparison of PPAD activity between fresh and stored 
samples.  
Bacterial cells of P. gingivalis W83 were grown in BHI, harvested and re-
suspended in the PPAD enzyme activity assay buffer. PPAD activity was 
measured in the fresh cells suspension samples as well as the samples kept 
frozen (-80°C) for 2 weeks and 3 weeks. No significant difference was found in 
the PPAD activity of fresh and stored samples.  
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system, allowing the pH and other environmental conditions to be monitored and 

controlled. Three stages of the continuous culture were observed for each strain 

including two steady states, early and late transition stages situated between the two. 

The steady states of the continous culture in the chemostat were defined by 

monitoring the OD600 which varied by around ±10% or less during three consecutive 

residence time (the time it takes to entirely exchange the volume of the reactor). 

3.4.1 First steady-state (pH controlled at 7.25 ± 0.05)  

During the first steady-state culture the pH was externally controlled at 7.25 ± 0.05 

by the automatic addition of acid or base as described in the method section 2.2.2 for 

both strains (Figure 3.4a). No significant difference was found when comparing the 

growth (OD600 and viable cell numbers) between the two strains (P > 0.05, t test) 

(Table 3.1). The redox potential of the culture was similar during growth of the two 

strains (P = 0.20, Mann-Whitney test) (Table 3.1) (Figure 3.4b). 

3.4.2 Second steady-state (without pH control) 

To test if P. gingivalis can regulate the local pH through PPAD, the external pH 

control was removed after 3 days of the first steady-state for both P. gingivalis W83 

and its Δppad mutant. The pH of the culture decreased after removing the pH 

control for both strains (Figure 3.4a) but the pH of the mutant culture (6.90 ± 0.06) 

was higher than that of the wild-type strain (6.69 ± 0.03) (P < 0.001, Mann-Whitney 

test) during the second steady-state. Thus, the present data demonstrated that PPAD 

had an effect on the pH of the culture although not in line with my hypothesis, 

which was that PPAD enzyme activity helps P. gingivalis W83 maintain an alkaline 

environment. There must be other strategies P. gingivalis can utilize to adjust the 

environmental pH, on which PPAD may have the negative effect. The redox 
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potential of the mutant culture decreased in the second steady-state and was 

significantly lower than that of the culture of the wild-type strain in the second 

steady state (Table 3.1) (Figure 3.4b) (P < 0.001, t test). More interestingly, the 

OD600 of the cultures of both strains increased after removing the pH control (P < 

0.001, t test) and both strains had an increase in cell numbers in the second steady-

state compared with the first steady-state although only in the wild-type the 

difference was significant comparing the log10 values of the cell numbers between 

the two steady-states (P < 0.001, t test). In the second steady-state, the OD600 of the 

mutant was significantly higher than that of the wild-type strain (P <0.001, t test), 

indicating better growth of the bacteria. This result also supports the evidences that 

higher environmental pH and lower redox potential were found in the mutant culture 

compared with the wild-type strain, which may favour P. gingivalis growth. 

However, no significant difference was found comparing the cell numbers between 

the two strains (P > 0.05, t test) (Table 3.1).  
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Figure 3.4 Environmental pH and redox potential of the continuous 
culture of P. gingivalis W83 and its Δppad mutant in the chemostat system.  
(a) The pH and (b) redox potential of the culture were monitored for P. 
gingivalis W83 (black line) and its Δppad mutant (grey dashed line). pH was 
controlled at 7.25 ± 0.05 by automatic addition of acid or base during the first 
76 hours (red dash: endpoint of pH control). 
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#: significant difference (P < 0.05) betw
een the first and second steady-states (t test), ##: P < 0.01; ###: P < 0.001. 

***: significant difference betw
een the tw

o strains (t test), P < 0.001. 

R
esults are expressed as m

eans ± standard deviations. 

 

Table 3.1 Evaluation of the grow
th and environm

ental conditions of the continuous culture of P. gingivalis W
83 and its Δppad m

utant 

during the first (pH
 controlled at 7.25 ± 0.05) and second steady-states (w

ithout pH
 control). 

  
          P. gingivalis W

83 
           Δppad m

utant 

Stage 
1

st steady-state 
2

nd steady-state 
1

st steady-state 
2

nd steady-state 

C
ell num

ber  

(C
FU

/m
L, log

10 scale)   

10.04 ± 0.22 
# 10.47 ± 0.11 

9.89 ± 0.25 
10.30 ± 0.17 

O
D

600  
1.08 ± 0.03 

##*** 1.15 ± 0.02 
1.15 ± 0.08 

### ***1.82 ± 0.03 

pH
 

7.21 ± 0.01 
### ***6.69 ± 0.03 

7.24 ± 0.04 
### *** 6.90 ± 0.06 

R
edox potential (m

V
) 

-354.08 ± 6.55  
### ***-338.42 ± 3.05  

-355.68± 6.80 
### *** -419.60 ± 3.70 
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3.5 PPAD activity 

To further investigate the potential effect of PPAD on the environmental pH 

regulation, PPAD activity was measured in the cell suspensions of each strain within 

first and second steady-states. The activity was normalized to viable cell counts. No 

detectable PPAD activity was observed in the samples of Δppad mutant. PPAD 

activity of P. gingivalis W83 wild-type was significantly decreased in the second 

steady-state compared with the first steady-state (P < 0.001, t test) (Figure 3.5). 

 
  

 

Figure 3.5 PPAD activity in the cells of P. gingivalis W83 and its Δppad 
mutant sampled from the first (pH controlled at 7.25 ± 0.05) and second 
steady-states (without pH control).  
Stored cells suspension in the enzyme activity buffer were thawed and used to 
measure the PPAD activity. Results are normalized to viable cell counts and 
expressed as means ± standard deviations (n=3). No detectable PPAD activity 
was observed in the samples of Δppad mutant. PPAD activity of P. gingivalis 
W83 wild-type was significantly decreased in the second steady-state compared 
with the first steady-state. ***: P < 0.001 (t test).  
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3.6 Rgp activity of P. gingivalis 

In order to understand the mechanism of how PPAD can influence the 

environmental pH and the growth of P. gingivalis, the activity of P. gingivalis Rgp, 

which is important for its energy metabolism and growth, was investigated using the 

continuous culture samples of P. gingivalis W83 and Δppad mutant. Whole culture 

samples from the first (pH controlled at 7.25 ± 0.05) and second steady-states 

(without pH control) were used to detect the Rgp activity with the chromogenic 

substrate L-BAPNA as described in method section 2.3.3. In order to compare the 

Rgp activities between the two strains, the activity in the whole culture sample was 

further divided by the cell number to normalize all values per 107 CFU (Figure 3.6) 

as the OD600 reflected very different viable cell counts in the present data. For both 

strains the normalized Rgp activity decreased in the second steady-state with lower 

environmental pH, compared with the first steady-state with a control of 

environmental pH. Within the second steady-state, normalized Rgp activity in the P. 

gingivalis W83 wild-type was significantly lower than that in the Δppad mutant.  

The data present here suggested that amount of Rgp may be reduced (or, less likely 

but possible, the Rgp produced is less active) due to the changes of environmental 

pH. Further experiments are required to confirm if the environmental pH influences 

the related gene expression causing the decrease of the Rgp activity.  
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Figure 3.6 Rgp activity in the whole culture of P. gingivalis W83 and its 
Δppad mutant sampled from the first (pH controlled at 7.25 ± 0.05) and 
second steady-states (without pH control).  
Rgp activity in the whole culture samples from the first steady-state (pH 
controlled at 7.25) and the second steady-state (without pH control) of the 
continuous culture was divided by the cell number of each strain to normalize 
all values per 107 CFU. Activity values are shown as the mean ± standard 
deviations (n=3). *: P < 0.05 (t test). 

 

3.7 DPP activities in P. gingivalis W83 and its Δppad 

mutant from batch culture 

DPP is another enzyme that is important for the metabolism of asaccharolytic P. 

gingivalis, the enzyme activity of which might be influenced by PPAD through 

citrullination. Due to the time constraints during the operation of chemostat culture 

system, the DPP activity could not be measured in the fresh samples from chemostat 

culture. To avoid any potential activity loss, instead of using stored chemostat 

culture samples, DPP activity was investigated in fresh batch cultures samples of P. 

gingivalis W83 and its Δppad mutant which were collected from late log phase. 

Cells suspensions in PBS were tested for DPP activities against Gly-Pro-, Lys-Ala-, 

Met-Leu-, and Leu-Asp-MCA, which are specific or preferential substrates of DPP 

4, DPP 5, DPP 7, and DPP 11, respectively (method section 2.3.3). DPP activity to 
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Leu-Asp-MCA was significantly higher in the Δppad mutant compared with that in 

the wild-type (P < 0.05, t test) (Figure 3.7), suggesting that PPAD can impair the 

enzyme activity or gene expression of DPP 11. 

 

 

Figure 3.7 DPP activities of P. gingivalis W83 and its ∆ppad mutant grown 
in batch culture. 
Bacterial cells were collected from late log phase of batch cultures and re-
suspended in PBS. DPP activities were measured toward Gly-Pro-, Lys-Ala-, 
Met-Leu-, and Leu-Asp-MCA which are specific or preferential substrates of 
DPP 4, DPP 5, DPP 7, and DPP 11, respectively. The activity was quantified 
through release of MCA groups in a fluorometric assay. Activity values are 
shown as mean ± standard deviations (n=3). DPP activity against Leu-Asp-
MCA, which is the preferential substrate for DPP 11, was significantly higher 
in the P. gingivalis W83 Δppad mutant compared with that in the wild-type 
strain (*: P < 0.05, t test).  

 

3.8 Gene expression of P. gingivalis DPP 5 and DPP 11 

To further investigate if PPAD had an effect on the gene expression of DPP, which 

may cause the difference in the DPP activity identified above, the gene expression 
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of DPP 5 and 11 were analysed by qRT-PCR as described in the method section 

2.4.1. Samples were collected from the batch culture of P. gingivalis W83 and its 

Δppad mutant during late log phase. The gene expression of the target gene was 

normalized to the 16S rRNA gene. No significant difference was found in the gene 

expression of DPP 5 and 11 between the two strains (P > 0.05, Mann-Whitney test) 

(Figure 3.8), indicating that PPAD has no influence on the gene expression of DPP 5 

and 11 but it may impair the enzyme activity of DPP 11 by citrullination. 

 

 

Figure 3.8 Gene expression of DPP 5 and DPP 11 in P. gingivalis W83 and 
its Δppad mutant.  
The gene expression was normalized to 16S rRNA and results are expressed as 
means ± standard deviations (n=5). No significant difference was found in the 
gene expression of DPP 5 and 11 between the two strains (Mann-Whitney test).  

 

3.9 RNA sequencing of P. gingivalis W83 and its Δppad 

mutant growing in the chemostat system. 

To better understand the role of PPAD in the physiology of P. gingivalis and the 

interaction with the environmental pH, RNA was extracted and sequenced using the 

samples of both P. gingivalis W83 and its Δppad mutant from different stages with 

different pH conditions of the continuous culture.  
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3.9.1 Principal Component Analysis (PCA) 

PCA was performed to identify the first (PC1) and second principal component 

(PC2), which can be used to explain the most and second most variations in the gene 

expression of all the samples. The PC1 results showed that samples of P. gingivalis 

W83 and its Δppad mutant were distinctly separated regardless of different stages of 

the continuous culture (Figure 3.9). The PC2 demonstrated that gene expression in 

both strains was related to the different continuous-culture stages (from first steady-

state to the second steady-state). Moreover, the samples of wild-type strain were 

more clustered than those of the mutant according to the PC2, although in a similar 

pattern. This result indicated that to remove pH control had less influence on gene 

expression in P. gingivalis W83 wild-type strain than its Δppad mutant.  
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Figure 3.9 Principal Component Analysis (PCA) on the gene expression 
profiles of P. gingivalis W83 and Δppad mutant samples from different 
stages of the continuous culture.  
The first component (PC1) showed that samples of P. gingivalis W83 (dot) and 
the Δppad mutant (triangle) were distinctly separated in all culture stages. The 
second components (PC2) demonstrated that genes expression in both strains 
were strongly related to the different culture stages (represented by different 
colours). 

 

3.9.2 Differentially expressed genes between the two strains 

In order to identify any differences in gene expression between P. gingivalis W83 

wild-type and its Δppad mutant, which may explain the observed difference in the 

properties between the two strains in continuous culture, the gene expression 

profiles of the two strains were compared using DESeq2 R package based on the 

RNA sequencing data. There were 119, 103, 101 and 155 differentially expressed 

genes identified in the Δppad mutant culture compared with the wild-type at first 

steady-state, early transition stage, late transition stage and second steady-state, 

respectively (log-fold change > 1, adjusted P < 0.01). The number of up-and down-
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regulated genes in the mutant at different culture stages is shown in Figure 3.10. In 

the first steady-state, where the pH was controlled at 7.25 ± 0.05, there were more 

down-regulated genes identified in the Δppad mutant. When the pH control was 

removed, more up-regulated genes were found at the transition stage and the second 

steady-state. Thus, it appears that PPAD deficiency can regulate the gene expression 

of P. gingivalis but the regulation may be affected by the environmental pH of the 

culture. By overlap analysis, the expression of 25 genes were significantly different 

between the two strains independent of pH conditions, indicating that the changes of 

the expression of these genes were mainly caused by the PPAD deficiency (Figure 

3.11). Twenty-two of these genes were up-regulated and three were down-regulated 

in the mutant including the one encoding PAD (Table 3.2). 

  

 

Figure 3.10 Number of genes differentially expressed in P. gingivalis W83 
Δppad mutant compared with the wild-type when grown under similar 
conditions in a chemostat. 
Numbers of up-and down-regulated genes are displayed (one-fold or more, 
adjusted P < 0.01, DESeq2). Totals of differentially expressed genes in each 
stage are shown in brackets. 
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Figure 3.11 Venn diagram of the differentially expressed genes in P. 
gingivalis W83 Δppad mutant compared with the wild-type when grown 
under identical conditions in a chemostat.  
The number of differentially expressed genes during different culture stages 
were summarised. Stage denotation: blue: first steady-state (pH externally 
controlled at 7.25 ± 0.05), red: early transition stage, green: late transition 
stage, yellow: second steady-state (the steady-state without pH control). 

 

 

Table 3.2 Differentially expressed genes in P. gingivalis W83 Δppad mutant 

compared with its wild-type strain throughout the stages of the continuous 

culture (one-fold or more, adjusted P < 0.01, DESeq2). 

Locus name Protein name log2 Fold Change 

	  	  a first    

steady  

b early 

transition  

c late 

transition 

d second 

steady 

PG_1424 peptidyl-arginine deiminase -7.7118  -7.1763  -7.25969  -6.8408  

PG_0432 SAM-dependent methyltransferase -2.7387  -2.6091  -2.6657  -3.0575  

PG_0195 rubrerythrin family protein -1.4932  -2.0349  -1.6448  -1.6310  

PG_1543 acyl-CoA thioesterase 1.3225  2.2099  2.4115  2.4270  

htrA DegQ family serine endoprotease 1.3790  1.8235  2.2980  2.4807  
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folD bifunctional 

methylenetetrahydrofolate 

dehydrogenase/methenyltetrahydrof

olate cyclohydrolase 

1.3808  1.3661  1.3832  1.3289  

PG_0646 ABC transporter ATP-binding 

protein 

1.4939  2.1504  3.3110  3.6830  

PG_1178 hypothetical protein 1.5818  3.5586  3.0720  2.5988  

PG_0555 MULTISPECIES: histidinol 

phosphate phosphatase 

1.7143  1.6896  2.2802  1.8662  

PG_1868 MULTISPECIES: membrane 

protein 

1.9063  2.8092  1.3983  1.8054  

PG_0275 thiol reductase thioredoxin 1.9981  2.4441  2.2229  1.9293  

PG_0645 adenosylcobinamide 

amidohydrolase 

2.0561  3.5614  4.2718  4.3406  

PG_1124 cob(I)yrinic acid a,c-diamide 

adenosyltransferase 

2.1543  2.1754  1.9001  2.2796  

PG_0421 DUF2807 domain-containing 

protein 

2.1807  2.4253  2.5650  2.9259  

PG_1180 membrane protein 2.2476  3.8918  2.5050  2.8005  

PG_0707 TonB-dependent receptor 2.3806  3.3058  2.4387  2.5354  

PG_1553 cobaltochelatase subunit CobN 2.5101  3.5516  2.2061  1.7080  

PG_0495 T9SS C-terminal target domain-

containing protein 

2.5792  4.5655  2.8550  1.4768  

PG_0686 DUF1858 domain-containing 

protein 

2.8048  3.1056  2.9973  2.8858  

hmuR TonB-dependent receptor 2.8326  3.7629  1.9374  1.6697  

PG_0173 DNA-binding protein 3.1840  3.1625  2.1381  1.2681  

PG_1179 outer membrane lipoprotein-sorting 

protein 

3.2196  3.8016  2.3684  3.2893  
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a First steady-state: the steady-state under pH control at 7.25 ± 0.05; 

b Early transition-stage: the first day after removing the pH control; 

c Late transition-stage: the last day after removing pH control and before reaching 
the second steady-state; 

d Second steady-state: the steady-state without pH control. 

 

Within the second steady-state, 120 genes were up-regulated and 35 were down-

regulated in the mutant compared with the wild-type strain. These were annotated to 

the gene ontology (GO) terms related to the biological process, molecular function 

and cellular component by using R package topGO. A Fisher exact test implemented 

in the package was used to define the GO terms enriched in these up- and down 

regulated genes in the mutant. All GO terms with enrichment P < 0.05 were 

summarized and visualized by REVIGO (Figure 3.12). The GO term of cell division 

was enriched in the up-regulated genes, which is in accordance with the higher 

OD600 values found in the continuous culture of Δppad mutant in the second steady-

state (Table 3.1). This result indicated that PPAD deficiency could upregulate the 

expression of cell division related genes in the absence of additional pH control and 

then prompt bacterial growth. Moreover, the GO term of peptidase was also 

enriched in the up-regulated genes which can benefit P. gingivalis for obtaining 

energy and carbon sources. In addition, the GO term of oxidoreductase activity was 

enriched in the up-regulated genes which may explain at least in part, the decrease 

of the redox potential in the culture of mutant within the second steady-state. 

 

PG_0174 DUF1661 domain-containing 

protein 

3.9931  4.1327  3.6834  3.0286  

PG_1858 flavodoxin 4.0137  4.5150  1.8344  2.2097  

hmuY HmuY protein 4.9440  5.0379  2.2992  2.0669  
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3.9.3 Differentially	expressed	genes	after	removing	pH	control	

within	each	strain	

In order to investigate the effect of environmental pH on the gene expression of P. 

gingivalis W83 and its Δppad mutant, the gene expression profiles were compared 

between different stages of continuous culture within each strain using DESeq2 R 

package based on the RNA sequencing data. Differential expression analysis 

revealed that within the wild-type strain there were 52, 68 and 82 genes 

differentially expressed (one-fold or more, adjusted P less than 0.01) at the early 

transition-stage, late transition-stage and second steady-state compared with the first 

steady-state in which the pH was controlled at 7.25 ± 0.05 (Figure 3.13a). Within 

the Δppad mutant, 11, 64 and 151 genes were identified as differentially expressed 

at different stages after removing the pH control (Figure 3.13b). Remarkably, no up-

regulated genes were found in the transition-stages of the wild-type strain and only 

six were found in the second steady-state with the cut-off of one-fold or more, 

adjusted P < 0.01. In contrast, for the mutant, nine, 47 and 110 genes were identified 

as being significantly up-regulated at early-transition, late-transition and second 

steady-state, respectively.  
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Figure 3.13 Summary of differentially expressed genes after removing pH 
control within each strain.  
Differentially expressed genes (one-fold or more, adjusted P < 0.01) in the 
transition stages and second steady-state compared with the first steady-state 
(pH controlled at 7.25 ± 0.05) of the continuous culture were identified for (a) 
P. gingivalis W83 wild-type and (b) Δppad mutant using DESeq2 package. 
Numbers of up-and down-regulated genes are displayed. Totals of differentially 
expressed genes in each stage are shown in brackets.  
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53

68
76

0 0 60

10

20

30

40

50

60

70

80

N
um

be
r o

f g
en

es

down-regulated
up-regulated

(53)

(68)
(82)

2 17

41

9

47

110

0

20

40

60

80

100

120

N
um

be
r o

f g
en

es

down-regulated
up-regulated

(11)

(64)

(151)

a

b



- 77 - 

was performed on those genes differentially expressed in the early and late transition 

stages as well as the second steady-state, compared with the first steady-state. There 

were 39 genes in the wild-type strain that were found to be differentially expressed 

throughout the culture stages without pH control and they were all down-regulated 

(Figure 3.14a). Whereas the expression of four genes in the mutant were 

continuously altered after removing pH control including two up-regulated and two 

down-regulated genes (Figure 3.14b). 

 

In both the wild-type strain and the mutant, PG_1837(hagA), nrd and PG_0612，

encoding haemagglutinin A, ribonucleotide reductase and a hypothetical protein, 

respectively, were up-regulated in second steady-state compared with the first 

steady-state. PG_0090 encoding stationary phase protection protein was down-

regulated (Appendix C2&3). These genes were indicated to be mainly regulated by 

the changes of environmental pH in the present study and such regulation may 

possibly help P. gingivalis to adapt to the new environment conditions after 

removing pH control. 
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Figure 3.14 Overlap analysis of the differentially expressed genes after 
removing pH control within each strain  
Overlap analysis (Venn diagram) was performed on the differentially expressed 
genes (one-fold or more, adjusted P < 0.01) in the early transition, late 
transition and second steady-state compared with the first steady-state, to find 
genes that were differentially expressed throughout the continuous culture stage 
after removing pH control or only in a certain stage for (a) P. gingivalis W83 
(W) and (b) Δppad mutant (M). 

 

The top 20 differentially expressed genes with highest log2-fold change (absolute 

value) in the second steady-state compared with the first steady-state of P. gingivalis 

W83 were all down-regulated. The details of these genes are listed in Table 3.3. For 

the Δppad mutant, there were only three down-regulated genes in the list of the top 

20 differentially expressed gene comparing between the two steady-states (Table 

3.4). 
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Table 3.3 The top 20 differentially expressed genes with highest log2 fold 

change (absolute value) in the second steady-state compared with the first 

steady-state of P. gingivalis W83. 

 

Locus name Product log2FoldChange Adjusted P  

PG_0337 hypothetical protein -4.2217  4.91E-07 

PG_1489 relaxase -3.5555  1.08E-11 

PG_1482 DUF4133 domain-containing protein -3.4436  5.62E-05 

PG_2114 NA -3.0610  3.76E-05 

PG_1480 MULTISPECIES: DUF4141 domain-

containing protein 

-2.9307  3.06E-09 

PG_1479 conjugative transposon protein TraJ -2.8690  9.70E-08 

PG_2063 hypothetical protein -2.7277  4.54E-05 

PG_1478 MULTISPECIES: conjugative transposon 

protein TraK 

-2.7123  4.43E-06 

PG_1485 DUF3408 domain-containing protein -2.5879  6.23E-07 

PG_1486 ParA family protein -2.5554  1.56E-08 

PG_0718 hypothetical protein -2.5508  4.50E-12 

PG_0732 hypothetical protein -2.5498  1.46E-03 

PG_1020 TonB-dependent receptor -2.5457  2.31E-37 

PG_1490 conjugal transfer protein TraG -2.4133  3.48E-11 

PG_0283 RND transporter -2.3776  6.71E-11 

PG_1022 hypothetical protein -2.3482  2.70E-10 

PG_1398 hypothetical protein -2.3021  1.33E-03 

PG_1975 hypothetical protein -2.2371  3.54E-03 

PG_0285 TolC family protein -2.2360  2.51E-09 

PG_1481 TraG family conjugative transposon 

ATPase 

-2.2189  1.88E-09 
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Table 3.4 The top 20 differentially expressed genes with highest log2 fold 

change (absolute value) in the second steady-state compared with the first 

steady-state of P. gingivalis W83 Δppad mutant. 

 

Locus name Product log2FoldChange Adjusted P  

PG_1660 sigma-70 family RNA polymerase sigma 

factor -3.7961 1.78E-03 

PG_1659 hypothetical protein -2.5665 4.84E-03 

PG_0173 DNA-binding protein -2.3125 2.25E-16 

PG_2013 CRISPR-associated endonuclease Cas2 2.3056 6.41E-04 

PG_1982 CRISPR-associated endonuclease Cas1 2.3752 3.07E-16 

PG_0646 ABC transporter ATP-binding protein 2.3799 9.22E-11 

PG_0492 hypothetical protein 2.4021 1.69E-04 

PG_0611 hypothetical protein 2.4939 7.71E-44 

PG_1988 hypothetical protein 2.4972 5.03E-23 

PG_0411 T9SS C-terminal target domain-containing 

protein 2.5447 1.40E-65 

PG_1984 hypothetical protein 2.5449 2.99E-07 

PG_1514 glycerol dehydrogenase 2.5594 1.01E-06 

PG_1892 hypothetical protein 2.5650 8.51E-04 

PG_1989 hypothetical protein 2.5861 1.22E-07 

PG_0645 adenosylcobinamide amidohydrolase 2.6448 3.68E-08 

PG_1983 type III-B CRISPR module RAMP protein 

Cmr6 2.8422 8.52E-16 

PG_1837 hemagglutinin A 2.9884 5.42E-30 

PG_0613 hypothetical protein 3.3050 2.00E-33 

PG_0865 ISAs1 family transposase ISPg2 3.6163 5.32E-03 

PG_0612 hypothetical protein 4.0687 8.58E-44 
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Differentially expressed genes in the second steady-state compared with the first 

steady-state were annotated to the GO terms by using R package topGO. For the 

wild-type strain, there were 17, 27 and 25 differentially expressed genes involved in 

the biological process, cellular component and molecular function respectively. For 

the Δppad mutant, more differentially expressed genes were mapped to the GO term 

where 54 genes for the biological process, 47 for cellular component and 74 for 

molecular function. 

 

A Fisher exact test was used to define the enriched GO terms based on the 

differentially expressed genes between the two steady-states for each strain. GO 

terms enriched (P < 0.05) in up- or down regulated genes in the second steady-state 

of each strain were summarized and visualized by REVIGO. The enrichment 

analysis showed that genes related to the pathogenesis of the wild-type strain were 

up-regulated in the second steady-state when the bacteria were cultured without 

environmental pH control (Figure 3.15). Within the mutant, enrichment of GO terms 

of cell division, haemin binding and peptidase activity in the up-regulated genes was 

supportive for the evidence of increased OD600 and cell numbers in the second 

steady-state compared with the first steady-state. The overrepresented cell division 

related genes were only found in the mutant but not in the wildtype when comparing 

the two steady-states, which supports the result that OD600 of the mutant was 

significantly higher than that of the wild-type strains during the second steady-state 

(Table 3.1). Taken together, above data suggest that environmental pH of the culture 

can affect the growth of P. gingivalis W83 Δppad mutant via regulation of growth-

related gene expression (Figure 3.16). Main findings of the transcriptomic analysis 

of chemostat cultre were summarized in Table 3.5. 
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Table 3.5 Summary of the main findings of the transcriptomic analysis of 

chemostat cultre. 

Transcriptomic analysis results Description 

Δppad mutant vs. wild-type strain 

PG_0275 encoding thiol reductase 

thioredoxin was over-expressed in the Δppad 

mutant compared with wild-type strain. 

In accordance with the decrease in the redox 

potential of chemostat culture of the mutant. 

The GO term of cell division was enriched in 

the up-regulated genes of Δppad mutant in the 

second steady-state compared with the wild-

type strain.  

This result is in accordance with the higher OD600 

values found in the chemostat culture mutant 

compared with the wild-type strain, indicating 

that PPAD deficiency could upregulate the 

expression of cell division related genes in 

absence of additional pH control and then prompt 

the bacteria growth. 

Second steady-state vs. first steady state 

HmuY and hagA of P. gingivalis W83 wild-

type were significantly up-regulated in the 

second steady-state compared with the first 

steady-state 

Regulation of those genes related with haem 

acquisition of P. gingivalis may help the bacteria 

to adapt to the environmental changes and 

facilitate bacterial growth. 

CRISPR-associated genes of Δppad mutant 

were up-regulated in the second steady-state 

compared with the first steady-state 

CRISPR systems can protect bacterial against the 

foreign genetic elements, thus environmental 

changes can upregulate the expression of 

CRISPR-associated genes in Δppad mutant, 

which may lead to an increase in the defence 

capability of the Δppad mutant. 
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Type IX secretion system (T9SS) genes of 

Δppad mutant were up-regulated in the 

second steady-state compared with the first 

steady-state. 

Environmental changes can regulate the 

expression of some T9SS genes in the P. 

gingivalis Δppad mutant and may subsequently 

facilitate the secretion of virulence factors.  

 

3.10 Metagenomic	study	of	subgingival	microbiome	in	

relation	to	RA	

3.10.1 Optimization of DNA extraction from subgingival plaque 

samples and validation of DNA library preparation with 

low-yield samples  

Preliminary experiment of DNA extraction was conducted following the 

manufacturer’s instructions of Microbial DNA Isolation Kit on eight additional 

subgingival plaque samples. The average DNA yields was 5.67 ng and three of the 

samples had less than 5 ng DNA which is the minimum input requirement of 

NEBNext® Ultra™ DNA Library Prep Kit according to its protocol. Thus, the 

normal protocol of the kit was modified to increase the yields of DNA extraction. 

The paper-points carrying the plaque were thoroughly vortexed in the Micro-bead 

solution from the kit to re-suspend the cells and the samples were additionally 

incubated with lysozyme (10 mg/mL) at 37 °C for 10 minutes to break the cell 

walls. Then the extraction continued with combined chemical and mechanical lysis 

as described in the protocol of the kit. The DNA yields of each sample were 

quantitated by using the PicoGreen kit, which is varying between different plaque 

samples (mean is 8.13 ng, range from 0 to 76.25 ng). There was no significant 



- 86 - 

difference of the DNA between four groups either in healthy site or diseased site 

samples (Figure 3.17) (Kruskal-Wallis test, P > 0.05). Among total 196 samples, 

there were 154 samples with less than 10 ng DNA extracted (Figure 3.18). For those 

samples, NEBNext® Ultra™ II DNA Library Prep Kit was used for library 

preparation which has a broader range of input amounts (500 pg -1 µg). After clean-

up to remove unwanted adaptor dimers, primer-dimers and other contamintants, the 

average amount of DNA libraries is 888.98 ng (Figure 3.19). All the libraries 

obtained are ready for sequencing, which is also validated by checking the DNA 

size distribution on Tape-station (approximately 300 bp, data not shown).   
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Figure 3.17 DNA extracted from subgingival plaque samples.  
No significant difference of DNA quantity was found between four groups 
either in (a) healthy site  or (b) diseased site samples. n: number of samples 

a

b
(n=32) (n=48) (n=26) (n=10)

(n=18) (n=39) (n=16) (n=7)
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Figure 3.18 Histogram of DNA yields from subgingival plaque samples.  
Samples were thawed on ice from -80°C. The samples of diseased sites or 
healthy sites were pooled together for each participant. DNA was extracted 
from pooled samples using the modified UltraClean® Microbial DNA Isolation 
Kit and quantified by using PicoGreen ® dsDNA Reagent and Kits. 
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Figure 3.19 Histogram of amounts of DNA libraries.  
Either NEBNext® Ultra™ DNA Library Prep Kit (for DNA input > 10 ng) or 
NEBNext® Ultra™ II DNA Library Prep Kit (for DNA input < 10 ng) was used 
for library constructions. AxyPrepTM Mag PCR Clean-up beads were used for 
the clean-up steps during and after the library preparation. The amount of 
purifed DNA library of each sample was quntified by using PicoGreen ® 
dsDNA Reagent and Kits. 

 

3.10.2 General information of sequencing data 

A total of 1178 gigabases of sequence reads were generated from 196 subgingival 

dental plaque samples by paired-end sequencing, resulting in an average of 39.8 ± 

62.5 million reads per sample. In total 19.9 million reads passed quality control out 

of which 19.7 million reads were successfully assigned to NCBI taxonomy. Overall, 

69.81% of all annotated reads were identified as coming from bacteria. The 116 

samples from periodontally healthy sites and 80 from diseased sites were grouped 
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according to the classification of participants with respect of RA and periodontitis 

(Table 3.6). 

 

Table 3.6 Description of subgingival plaque samples. 

Group  

(number of participants) 

HC a 

(n=32) 

CCP b 

(n=48) 

NORA c 

(n=26) 

RA d 

(n=10) 

Age: mean (SD) 49.4 (15.3) 51.9 (11.4) 54.4 (16.7) 62.2 (14.6) 

Female: n (%) 19 (59.4) 31 (64.6) 14 (53.8) 7 (70.0) 

Ever smoker: n (%) 18 (56.3) 31 (64.6) 17 (65.4) 6 (60.0) 

Periodontitis patients e: n (%) 13 (40.6) 35 (72.9) 14 (53.8) 2 (20.0) 

Sample:      

Perio-healthy sites f: n 32 48 26 10 

Perio-diseased sites g: n 18 39 16 7 

a Healthy control. 

b Anti-CCP positive individuals who are at risk of RA development. 

c New onset RA patients (NORA) who are anti-CCP positive and within 3 months 
of commencing DMARD therapy.  

d Patients with chronic RA, defined as ≥ 6 months DMARD therapy. 

e Diagnosis of periodontitis was given by dentists based on their consensus 
decision.  

f Periodontally healthy sites were defined as sites of 3 mm depth or less with no 
bleeding on probing. 

g Periodontally diseased sites were defined as sites with pockets of 4 mm depth or 
more with bleeding on probing.  
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3.10.3 α-diversity 

The α-diversity (observed species and Shannon index) of each sample was 

calculated at species level using raw count data within bacteria domain. I first 

compared the α-diversity between periodontally healthy sites and diseased sites 

irrespective of RA status. Both observed species and Shannon index were 

significantly increased in diseased sites compared with healthy sites (Figure 3.20) 

(Mann-Whitney test, P < 0.05). 

 

Then I studied the impact of RA status on microbial diversity using samples from 

periodontally healthy sites and diseased sites separately, irrespective of periodontitis 

status of the patients (Figure 3.21). Within periodontally healthy sites, a 

significantly decreased species richness (observed species) was found in NORA 

group compared with CCP and HC groups (Kruskal-Wallis test, P < 0.05). When the 

Shannon index (which estimates the species evenness in a specific sample) was 

applied, a significant difference was only found between NORA and CCP groups (P 

< 0.05). No significant differences were found among the groups when analysing 

samples from diseased sites. Except for the RA group, the diversity in HC, CCP and 

NORA group displayed a decreasing trend in both healthy and diseased sites.  
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Figure 3.20 C
om

parison of α-diversity of sam
ples from

 periodontally healthy sites and diseased sites.  
A

 significantly increased α-diversity w
as found in periodontally diseased sites com

pared w
ith healthy sites by M

ann-
W

hitney test (P < 0.05). (a) O
bserved species as inferred from

 raw
 counts w

ere com
pared betw

een healthy sites and diseased 
sites. (b) Shannon index as inferred from

 raw
 counts w

ere com
pared betw

een sites. *: P < 0.05, **: P < 0.01. n: num
ber of 

sam
ples. 

P =0.042 *
P =0.002 **

n=116
n=80

n=116
n=80



- 93 - 

 

Figure 3.21 C
om

parison of α-diversity in different groups using sam
ples from

 healthy sites and diseased sites. 
(a) Significantly decreased α-diversity (observed species) w

as found in the N
O

R
A

 group com
pared w

ith C
C

P and H
C

 groups in 
periodontally healthy sites by K

ruskal-W
allis Test (P < 0.05). H

ow
ever, no significant difference w

as found betw
een the four groups in 

diseased site sam
ples. (b) The Shannon index only show

ed a significant difference betw
een C

C
P and N

O
R

A
 group in healthy site sam

ples, 
K

ruskal-W
allis test (P < 0.05). *: corrected P < 0.05 (B

onferroni correction). n: num
ber of sam

ples. 
 

 

P
 =0.019 *

P
 =0.046 *

P
 =0.036 *

(n=32)
(n=48)

(n=26)
(n=10)

(n=18) (n=39)
(n=16)

(n=7)
(n=32)

(n=48)
(n=26)

(n=10)
(n=18) (n=39)(n=16)(n=7)
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3.10.4 β-diversity 

Filtering was performed to remove taxa accounting for less than ten sequences in 

total and observed in less than three samples. β-diversity at species level was 

determined by Bray-Curtis dissimilarity based on relative abundance and plotted 

using principal coordinates analysis (PCoA). Permutational multivariate analysis of 

variance (PERMANOVA) statistical tests (Adonis function, vegan package, R) 

showed a significantly different β-diversity between groups in periodontally healthy 

site samples (P =0.002, R2 = 0.045) and in diseased site samples (P = 0.002, R2 = 

0.068) (Figure 3.22). Homogeneity of multivariate dispersions was tested by using 

the betadisper function to ensure PERMANOVA assumptions (significant result is 

not due to differences in group dispersions).
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Figure 3.22 β-diversity determined by Bray-Curtis dissimilarity and 
plotted using PCoA.  
Raw data were filtered to remove taxa accounting less than ten sequences in 
total and observed in less than three samples. A significantly different β-
diversity was found between groups in periodontally healthy sites samples (P 
=0.002, R2 = 0.045) and in diseased sites samples (P = 0.002, R2 = 0.068) by 
PERMANOVA test. 

 

3.10.5 Taxonomic profiles  

Overall, 14 bacterial phyla, 195 genera and 772 species were identified in this study. 

In an attempt to discriminate among study groups, I analysed the bacterial 

community composition and structure at the various taxonomic levels (phylum, 

genus and species). According to the average phylum assignment result within each 

group, Actinobacteria was the most predominant phylum in all groups. 

Bacteroidetes were the second followed by Firmicutes (Figure 3.23). Candidatus 

Kryptonia was only found in diseased sites. The permutation test (one-sided 

signassoc function, R) was used to test the significant differences of relative 
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abundance of each phylum between different groups in periodontally heathy sites or 

diseased sites. Spirochaetes was found with significantly higher relative abundance 

in the CCP group compared with other groups in healthy sites as well as diseased 

sites. Actinobacteria were more abundant in the NORA group compared with other 

groups in diseased sites (P < 0.05).  

 

The top 20 predominant bacterial genera were identified for healthy sites and 

diseased sites separately, based on relative abundance (Figure 3.24). Comparing the 

list of top 20 predominant bacterial genera between healthy and diseased sites, 19 

genera were in common. The differences of the two lists were that 

Methylobacterium was only in the list of healthy sites and Alloprevotella was only in 

diseased sites. Actinomyces was the most abundant genus in all participant groups, 

followed by Prevotella and Streptococcus, except within the RA group in diseased 

site samples where Streptococcus was more abundant than Prevotella. Within 

healthy sites or diseased sites, genera with significantly higher relative abundance 

between groups were investigated by using the permutation test (one-sided 

signassoc function, R). Capnocytophaga and Treponema were with significantly 

more abundant in periodontally healthy sites in the CCP group compared with other 

groups. Methylobacterium and Pseudopropinobacterium were more abundant in 

NORA. The RA group had more Bradyrhizobium than other groups (P < 0.05). 

Within periodontally diseased sites, Porphyromonas and Treponema were 

significantly higher in the CCP compared with other groups, while Corynebacterium 

was found to be more abundant in samples from NORA patients. Apart from these 

predominant genera, other genera were also found with significantly higher relative 

abundance between groups (Appendix C4). Within healthy sites, Peptostreptococcus 

was more abundant in the HC group than in other groups. Bacillus and Vibrio were 
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more abundant in the RA group. For diseased sites, Neisseria, Cardiobacterium, 

Haemophilus and Klebsiella were found with higher relative abundance in the 

NORA group. Stomatobaculum was significantly more abundant in the RA group. 
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Figure 3.23 Phylum
 com

position of different groups.  
The relative abundance of the oral m

icrobiota (phylum
 level) w

as com
pared betw

een different groups in (a) periodontally healthy sites and 
(b) diseased sites. The perm

utation test (one-sided signassoc function, indicspecies R
-package) w

as used to find the phyla w
ith significantly 

different relative abundances betw
een groups. *: corrected P < 0.05 (Sidak’s correction). n: num

ber of sam
ples. 
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Figure 3.24 Taxonom
ic profiles for the 20 m

ost abundant genera in healthy sites and diseased sites.  
R

elative abundance of the 20 m
ost abundant genera w

as plotted for each group w
ithin periodontally healthy sites (a) and diseased sites (b). 

The perm
utation test (one-sided signassoc function, indicspecies R

-package) w
as used to find the genera w

ith significantly different relative 
abundances betw

een groups. *: corrected P < 0.05 (Sidak’s correction). n: num
ber of sam

ples. 
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3.10.6 Bacterial species associated with different groups  

To identify bacterial species with significantly different relative abundance between 

groups, the permutation test (one-sided signassoc function) from indicspecies R-

package was used to test the statistical significance of species-group association. 

Within periodontally healthy sites, 19 CCP group-associated, four NORA-

associated, and two RA-associated bacterial species were identified based on 

relative abundance of assigned DNA reads (P < 0.05). No HC-associated species 

were found (Figure 3.25). However, in periodontally diseased site samples, there 

were six HC-associated, five CCP group-associated, 11 NORA-associated, and one 

RA-associated bacterial species identified (Figure 3.26). P. gingivalis and T. 

denticola were among the species associated with CCP, this would be consistent 

with the increased presence of periodontitis in the CCP group. These species of 

healthy or diseased sites were listed in Table 3.7 by their significance (corrected P 

value).  
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Figure 3.25 Bacterial species with significantly higher relative abundance 
in HC, CCP, NORA and RA groups in periodontally healthy site samples.  
Species-group association was tested by using one-sided signassoc function 
(indicspecies R-package) based on the relative abundance. Sidak’s correction 
was applied for multiple testing. Species with significantly higher relative 
abundance were selected for each group. Significantly associated species: 
green: HC, yellow: CCP, blue: NORA, red: RA. 
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Figure 3.26 Bacterial species with significantly higher relative abundance 
in HC, CCP, NORA and RA groups in periodontally diseased site samples.  
Species-group association was tested by using one-sided signassoc function 
(indicspecies R-package) based on the relative abundace. Sidak’s correction 
was applied for multiple testing. Species with significantly higher relative 
abundance were selected for each group. Significantly associated species: 
green: HC, yellow: CCP, blue: NORA, red: RA. 
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Table 3.7 Bacterial species with significantly higher relative abundance in HC, 

CCP, NORA and RA groups in periodontally healthy or diseased sites.  

Healthy site 
Species Group Corrected P*  
Capnocytophaga ochracea CCP 0.0040  
Capnocytophaga sp. ChDC OS43 CCP 0.0040  
Capnocytophaga sp. oral taxon 326 CCP 0.0040  
Capnocytophaga sp. oral taxon 335 CCP 0.0040  
Capnocytophaga sp. oral taxon 380 CCP 0.0040  
Capnocytophaga sp. oral taxon 412 CCP 0.0040  
Prevotella conceptionensis CCP 0.0040  
Prevotella sp. HMSC073D09 CCP 0.0080  
Prevotella sp. oral taxon 317 CCP 0.0080  
Treponema putidum CCP 0.0080  
Cardiobacterium hominis NORA 0.0119  
Actinomyces sp. HMSC062G12 CCP 0.0119  
Capnocytophaga sp. oral taxon 336 CCP 0.0159  
Cardiobacterium valvarum CCP 0.0159  
Methylobacterium mesophilicum NORA 0.0199  
Actinomyces meyeri CCP 0.0199  
Methylobacterium sp. GXF4 NORA 0.0238  
Capnocytophaga sp. oral taxon 323 CCP 0.0238  
Eikenella sp. NML03-A-027 CCP 0.0238  
Achromobacter xylosoxidans RA 0.0277  
Campylobacter rectus CCP 0.0316  
Leptotrichia sp. oral taxon 879 CCP 0.0433  
Bradyrhizobium sp. BTAi1 RA 0.0471  
Actinomyces massiliensis NORA 0.0471  
Treponema denticola CCP 0.0471  

Diseased site 
Treponema putidum HC 0.004 
Cardiobacterium hominis NORA 0.004 
Neisseria bacilliformis NORA 0.004 
Neisseria lactamica NORA 0.004 
Porphyromonas gingivalis CCP 0.008 
Treponema vincentii CCP 0.008 
Prevotella buccae HC 0.008 
Porphyromonas catoniae NORA 0.008 
Treponema denticola CCP 0.0119 
Leptotrichia trevisanii HC 0.0119 
Actinomyces israelii NORA 0.0119 
Actinomyces viscosus NORA 0.0119 



- 104 - 

Corynebacterium durum NORA 0.0119 
Prevotella sp. KH2C16 HC 0.0159 
Prevotella intermedia CCP 0.0199 
Prevotella disiens CCP 0.0238 
Actinomyces massiliensis NORA 0.0238 
Prevotella sp. MSX73 HC 0.0277 
Haemophilus parainfluenzae NORA 0.0277 
Haemophilus influenzae NORA 0.0316 
Fusobacterium sp. CM1 HC 0.0355 
Actinomyces sp. oral taxon 175 NORA 0.0471 
Prevotella salivae RA 0.0471 
*: Sidak’s correction was applied for multiple testing. 

 

3.10.7 Common and unique species in different groups 

Overlap analysis on species level was performed with Venn diagrams to provide the 

number of species for one, two, three or all investigated groups. By analysing 

samples from periodontally healthy sites, a total of 616 species were found, of which 

234 species were common to all groups. Every group was found to have its own 

unique species and CCP had the highest number while HC had the lowest (Figure 

3.27a). In diseased site samples, 609 species were found in total, of which 221 

species were shared between the four groups. Similarly, CCP had the highest 

number at 166 and HC had the lowest at 14 (Figure 3.27b). For the details of 

uniquely detected species in each group see Appendix C5 and C6.  
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Figure 3.27 Overlap analysis of the group specific and shared species.  
samples from healthy sites; (b) samples from diseased sites. Group denotation: 
green: HC, yellow: CCP, blue: NORA, red: RA. n: number of samples. 

 

3.10.8 Co-occurrence networks of bacterial species  

Co-occurrence networks of the species with occurrence in at least 20% of samples in 

each group were constructed to explore the topological and taxonomic 

characteristics of microbial co-occurrence patterns. Based on Spearman’s rank 

correlation analysis, 603, 571, 187 and 130 edges were identified as the strong and 

significant pairwise correlations between species (q < -0.5 or > 0.5 and adjusted P < 

0.05), in HC, CCP, NORA and RA groups in periodontally heathy site samples 

(Figure 3.28-3.31). In periodontally diseased site samples, there were 235, 720, 296 

and 65 edges identified in HC, CCP, NORA and RA groups (Figure 3.32-3.35). The 

edge/node ratio (density) of the network of CCP group is higher than that of other 

groups in periodontally diseased sites, reflecting a higher number of co-occurrence 

instances in the CCP group. Other network-level topological features were listed in 

Table 3.8 for each group, including the clustering coefficient (CC) and average 

shortest path length (APL). 
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In all groups, majority of the edges (> 87.5%) were identified as positive correlation 

(q > 0.5) (Table 3.8). There were 49 negative pairwise correlation between the 

species in HC group in periodontally heathy sites and Actinomyces species were 

involved in 63% of these correlation (Figure 3.28). Analogously, 57.8% of negative 

correlation in CCP group were between Actinomyces species and other species 

(Figure 3.29). In both groups, a negative correlation was found between 

Actinomyces naeslundii and P. gingivalis. In periodontally diseased site samples, 

NORA group had the highest number of negative pairwise correlation where 64.9% 

were between Actinomyces species and other species (Figure 3.34). In CCP group of 

the periodontally diseased site samples, P. gingivalis was negatively correlated with 

Actinomyces oris and three Veillonella species (Figure 3.33). Topological features of 

each node were also calculated for the networks (data not shown). Treponema 

socranskii has the highest degree (number of edges connected to node) and 

betweenness centrality (number of shortest paths going through a node) in the 

network of HC group in periodontally healthy sites, indicated a core location in the 

network. In the network of CCP group, T. socranskii has the highest degree while 

Campylobacter showae exhibits the highest betweenness centrality.  
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Figure 3.28 C
o-occurrence netw

orks of the species in H
C

 group from
 periodontally healthy site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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 Figure 3.29 C
o-occurrence netw

orks of the species in C
C

P group from
 periodontally healthy site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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Figure 3.30 C
o-occurrence netw

orks of the species in N
O

R
A

 group from
 periodontally healthy site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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Figure 3.31 C
o-occurrence netw

orks of the species in R
A

 group from
 periodontally healthy site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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Figure 3.32 C
o-occurrence netw

orks of the species in H
C

 group from
 periodontally diseased site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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 Figure 3.33 C
o-occurrence netw

orks of the species in C
C

P group from
 periodontally diseased site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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 Figure 3.34 C
o-occurrence netw

orks of the species in N
O

R
A

 group from
 periodontally diseased site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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 Figure 3.35 C
o-occurrence netw

orks of the species in R
A

 group from
 periodontally diseased site sam

ples.  
Spearm

an’s rank coefficients (q) betw
een species w

ith occurrence in at least 20%
 of sam

ples in the group w
ere calculated pairw

ise. Edge 
stands for a strong (q > 0.5 or q < -0.5) and significant (adjusted P < 0.05) correlation. R

ed edge is for the positive correlation and green for 
the negative. The size of each node is proportional to the relative abundance of the species. The species w

ere coloured by the genus-level 
taxonom

y. 
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Table 3.8 Topological properties of co-occurrence networks of species in each 

group. 

Group E a (positive%) N b Density c CC d APL e 

Heathy site      

HC 603 (91.9) 163  3.70  0.47  3.65  

CCP 571 (92.1) 162 3.52  0.49  3.84  

NORA 187 (98.9) 100 1.87  0.51  4.77  

RA 130 (98.5) 99 1.31  0.68  2.25  

Diseased site      

HC 235 (96.6) 138 1.70  0.68  4.46  

CCP 720 (94.4) 188 3.83  0.50  3.86  

NORA 296 (87.5) 118  2.51  0.53  4.85  

RA 65 (100) 64  1.02  1.00  1.00  

a E, number of edges;  

b N, number of nodes;  

c Density, ratio of edges to nodes;  

d CC, average clustering coefficient;  

e APL, average shortest path length. 
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3.10.9 Core microbiota of each group 

The core microbiota, defined as the set of taxa that are detected in a remarkable 

fraction of the population above a given abundance threshold was identified for each 

group based on the threshold of 50% prevalence, 0.2% relative abundance. In 

healthy site samples, 36, 53, 22 and 33 species were described as core bacterial 

species for HC, CCP, NORA and RA groups, respectively. Similarly, 48, 44, 37 and 

48 species were identified as core species for HC, CCP, NORA and RA groups in 

diseased site samples. By overlap analysis, 17 species were found to be the core 

species commonly for all groups in periodontally healthy site samples and 25 in 

diseased site samples (Figure 3.36). There were three, five, one and four species 

identified as the core species only for HC, CCP, NORA and RA groups respectively, 

in healthy site samples. Three, two, six and four species were identified as the core 

species only for HC, CCP, NORA and RA groups respectively, in diseased site 

samples. Different to the overlap analysis in section 3.10.7, the rare species with low 

relative abundance were removed from each group in this analysis. The species 

found to be core species only for one group (species exceeding a given detection 

threshold in one group but below the threshold in other groups) in healthy site 

samples or diseased site samples are listed in Table 3.9. The full lists of core species 

of each group are in Appendix C7 and C8. 



- 117 - 

 

Figure 3.36 Overlap analysis of of the group specific and shared core 
species. 
Core species in each group of healthy site and diseased site samples were 
identified, respectively (> 50% prevalence, > 0.2% relative abundance). 
Number of group specific and shared core specie were visulized in (a) healthy 
site samples; (b) diseased site samples. Group denotation: green: HC, yellow: 
CCP, blue: NORA, red: RA. n: number of samples. 
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Table 3.9 List of core species specific for each group in healthy site samples or 

diseased site samples. 

Site Species * Core of   

Healthy site Actinomyces sp. oral taxon 849 HC 

 Prevotella denticola HC 

 Streptococcus mitis HC 

 Campylobacter rectus CCP 

 Campylobacter showae CCP 

 Prevotella sp. oral taxon 317 CCP 

 Selenomonas sp. CM52 CCP 

 Treponema vincentii CCP 

 Porphyromonas gingivalis NORA 

 Alloprevotella tannerae RA 

 Bradyrhizobium sp. BTAi1 RA 

 Candidatus Bacteroides periocalifornicus RA 

 Porphyromonas endodontalis RA 

Diseased site Mogibacterium sp. CM50 HC 

 Prevotella conceptionensis HC 

 Prevotella sp. HMSC073D09 HC 

 Bradyrhizobium sp. BTAi1 CCP 

 Prevotella intermedia CCP 

 Actinomyces sp. HMSC08A09 NORA 

 Cardiobacterium hominis NORA 

 Porphyromonas gingivalis NORA 

 Streptococcus mitis NORA 

 Streptococcus pneumoniae NORA 

 Streptococcus sanguinis NORA 

 Kingella oralis RA 
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 Leptotrichia wadei RA 

 Oribacterium sp. oral taxon 078 RA 

 Selenomonas noxia RA 

* Core species in each group of healthy site and diseased site samples were 
identified, respectively (> 50% prevalence, > 0.2% relative abundance). 

 

In order to characterize the functional capability of the microbiome, aligned reads 

were also assigned to the EggNOG database using the functional identifier mapping 

as implemented in MEGAN6. Overall, 8253 functional units were identified for 

healthy site samples and 7964 for diseased sites. Abundances of functional units 

were normalized and compared between groups using DESeq2 for healthy sites and 

diseased sites. Twenty-nine functional units were significantly under-represented in 

the NORA group compared with the CCP group (Table 3.10) (adjusted P < 0.05, 

Wald test, FDR adjusted), out of which 14 were involved in metabolism, seven in 

information storage and processing, and eight in cellular processes and signalling. 

The three most under-represented functional units (log2FoldChange < -1) were 

COG0399, COG3842 and COG0402, which are involved in amino acid and 

nucleotide transport and metabolism. No significant difference was found in 

diseased site samples. Those functional units with significant differences were 

mapped to Kyoto Encyclopaedia of Genes and Genomes (KEGG) metabolic 

pathway maps by using Interactive Pathways Explorer (iPath3) for visualization 

(Figure 3.37). Pathways are sized by the log fold changes of the functional units 

calculated by DESeq2.  
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Table 3.10 Functional units that were significantly under-represented in the 

NORA group compared with the CCP group in periodontally healthy site 

samples (adjusted P < 0.05, Wald test, FDR adjusted). 

Functional category EggNOG functional unit log2FoldChange 

[E] Amino acid transport 
and metabolism 

COG0399 DegT DnrJ EryC1 StrS 
aminotransferase 

-1.25 

COG3842 Part of the ABC transporter 
complex PotABCD involved in spermidine 
putrescine import. Responsible for energy 
coupling to the transport system (By 
similarity) 

-1.21 

COG0028 acetolactate synthase -0.68 

[F] Nucleotide transport and 
metabolism 

COG0402 deaminase -1.12 

[G] Carbohydrate transport 
and metabolism 

COG0395 Binding-protein-dependent 
transport systems inner membrane component 

-0.98 

COG1621 Hydrolase -0.79 

COG1653 transporter activity -0.76 

COG2017 converts alpha-aldose to the beta-
anomer. It is active on D-glucose, L-
arabinose, D-xylose, D-galactose, maltose and 
lactose (By similarity) 

-0.97 

[H] Coenzyme transport and 
metabolism 

COG1154 Catalyzes the acyloin condensation 
reaction between C atoms 2 and 3 of pyruvate 
and glyceraldehyde 3-phosphate to yield 1-
deoxy-D-xylulose-5-phosphate (DXP) (By 
similarity) 

-0.82 

[I] Lipid transport and 
metabolism 

COG0304 Catalyzes the condensation reaction 
of fatty acid synthesis by the addition to an 
acyl acceptor of two carbons from malonyl-
ACP (By similarity) 

-0.78 

[J] Translation, ribosomal 
structure and biogenesis 

COG0024 Removes the N-terminal 
methionine from nascent proteins (By 
similarity) 

-0.81 

COG0532 One of the essential components 
for the initiation of protein synthesis. Protects 
formylmethionyl-tRNA from spontaneous 
hydrolysis and promotes its binding to the 30S 
ribosomal subunits. Also involved in the 
hydrolysis of GTP during the formation of the 
70S ribosomal complex (By similarity) 

-0.70 
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COG0621 Catalyzes the methylthiolation of 
N6- (dimethylallyl)adenosine (i(6)A), leading 
to the formation of 2- methylthio-N6-
(dimethylallyl)adenosine (ms(2)i(6)A) at 
position 37 in tRNAs that read codons 
beginning with uridine (By similarity) 

-0.78 

[K] Transcription COG1309 Transcriptional regulator -1.00 

[L] Replication, 
recombination and repair 

COG0210 helicase -0.69 

COG0322 The UvrABC repair system 
catalyzes the recognition and processing of 
DNA lesions. UvrC both incises the 5' and 3' 
sides of the lesion. The N-terminal half is 
responsible for the 3' incision and the C-
terminal half is responsible for the 5' incision 
(By similarity) 

-0.77 

COG0587 DNA polymerase III (alpha 
subunit) 

-0.63 

[M] Cell 
wall/membrane/envelope 
biogenesis 

COG0859 heptosyltransferase -1.08 

COG0463 Glycosyl transferase, family 2 -0.75 

[O] Posttranslational 
modification, protein 
turnover, chaperones 

COG1404 peptidase (S8 and S53, subtilisin, 
kexin, sedolisin 

-0.70 

[P] Inorganic ion transport 
and metabolism 

COG0601 Binding-protein-dependent 
transport systems inner membrane component 

-0.86 

COG0370 Ferrous iron transport protein b -0.82 

COG0841 acriflavin resistance protein -0.90 

COG0168 Low-affinity potassium transport 
system. Interacts with Trk system potassium 
uptake protein TrkA (By similarity) 

-0.93 

[T] Signal transduction 
mechanisms 

ENOG410XNMH Histidine kinase -0.97 

COG0664 transcriptional regulator, crp fnr 
family 

-0.75 

COG0745 regulatoR -0.70 

COG1217 gtp-binding protein typa -0.71 

[V] Defense mechanisms COG1680 Beta-lactamase -0.96 
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Figure 3.37 M
etabolic pathw

ay m
aps of significantly different functional units betw

een the C
C

P and N
O

R
A

 groups in healthy site 
sam

ples.  
M

apped pathw
ays are highlighted by different colours and sized by the log fold changes of the functional unit that have been identified as 

significantly different by W
ald test using D

Eseq2. The m
ap w

as generated using Interactive Pathw
ays Explorer (iPath3).  



- 123 - 

3.10.10 Analysis	of	periodontally	healthy	site	samples	from	

individuals	without	periodontitis	

To avoid the potential influence of periodontitis on the subgingival microbiome, I 

only used the samples from healthy sites from individuals without periodontitis to 

identify the possible impact of RA status. The α-diversity was compared between 

groups and no significant difference was found either by observed species or 

Shannon index (ANOVA, P > 0.05) (Figure 3.38). β-diversity at species level was 

determined by Bray-Curtis dissimilarity based on relative abundance after taxa 

filtering (prevalence equal or more than three, total counts more than ten). The 

results were plotted using PCoA. PERMANOVA statistical tests (Adonis function, 

vegan package, R) showed a significantly different β-diversity between groups (P = 

0.0039, R2 = 0.078) (Figure 3.39). Homogeneity of multivariate dispersions was 

tested by using the betadisper function to ensure PERMANOVA assumptions 

(significant result is not due to differences in group dispersions). 
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Figure 3.38 Comparison of α-diversity in the different groups using 
healthy site samples from individuals without periodontitis.  
No significant difference was found between groups either in (a) Observed 
species or (b) Shannon index (ANOVA, P > 0.05). n: number of samples.  
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Figure 3.39 β-diversity in healthy site samples from individuals without 
periodontitis.  
β-diversity was determined by Bray-Curtis dissimilarity and plotted using 
PCoA. Raw data were filtered to remove taxa accounting for less than ten 
sequences in total and observed in less than three samples. A significantly 
different β-diversity was found between groups (P = 0.0039, R2 = 0.078) by 
PERMANOVA test. 

 

At phylum level (Figure 3.40), only Spirochaetes were found with significantly 

higher relative abundance in the CCP group compared with other groups, this was 

also the case when I tested healthy site samples regardless of periodontal disease 

status (P < 0.05, permutation test, one-sided signassoc function, indicspecies R-

package). Within the top 20 most abundant genera (Figure 3.41) in healthy site 

samples from individuals without periodontitis, Methylobacterium exhibited 

significantly higher relative abundance in NORA patients and Bradyrhizobium was 

more enriched in the RA group compared with other groups (P < 0.05). Other less 

abundant genera were also significantly different when stratified by RA status 

(Appendix C9). Relative abundance of Mogibacterium was significantly higher in 

the CCP group compared with other groups. Cardiobacterium and Sphingomonas 
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were higher in NORA patients. Relative abundance of Staphylococcus, Bacillus, 

Escherichia, Achromobacter, Delftia and Stenotrophomonas were higher in the RA 

group compared to other groups (P < 0.05). 
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Figure 3.40 Phylum composition of different groups in periodontally 
healthy site samples from individuals without periodontitis. 
Phyla with significantly higher relative abundance were determined using the 
permutation test (one-sided signassoc function, indicspecies R-package) 
between groups. *: corrected P  < 0.05 (Sidak’s correction). n: number of 
samples. 
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Figure 3.41 Taxonomic profiles for the 20 most abundant genera in 
healthy site samples from individuals without periodontitis. 
Genera with significantly higher relative abundance were determined using the 
permutation test (one-sided signassoc function, indicspecies R-package) 
between groups. *: corrected P < 0.05 (Sidak’s correction). n: number of 
samples. 
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associated with the HC group (P < 0.05) (Figure 3.42). Fourteen species were 

significantly associated with the CCP group. Among these species, six 

Capnocytophaga species, three Prevotella species, Leptotrichia sp. oral taxon 879 

and Treponema putidum were identified as associated with the CCP group when I 

tested healthy sites samples regardless of periodontal disease status. F. nucleatum, 

Fusobacterium sp. HMSC064B12 and T. socranskii only emerged in this test based 

on the restricted criteria of individuals without periodontitis. Among four species 

significantly associated with NORA, only Methylobacterium oryzae was new in this 

test. Seven species were identified for the RA group, of which five species were 

restricted to this test.  
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Figure 3.42 Bacterial species with significantly higher relative abundance 
in HC, CCP, NORA and RA groups in periodontally healthy site samples 
from individuals without periodontitis.  
Species-group association was tested by using one-sided signassoc function 
(indicspecies R-package) based on the relative abundaces. Sidak’s correction 
was applied for multiple testing. Species with significantly higher relative 
abundances was selected for each group. Group denotation: green: HC, yellow: 
CCP, blue: NORA, red: RA. 
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By overlap analysis on species level, 118 species were found to be common for all 

groups in the in periodontally healthy site samples from individuals without 

periodontitis. There were 23, 60, 33, and 30 species found to be unique for HC, 

CCP, NORA and RA group, respectively (Figure 3.43, Appendix C10).  

 

 

 

Figure 3.43 Overlap analysis of group specific and shared species in 
periodontally healthy sites samples from individuals without periodontitis.  
Group denotation: green: HC, yellow: CCP, blue: NORA, red: RA. n: number 
of samples. 
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A core microbiota of each group was identified based on the threshold of 50% 

prevalence, 0.2% relative abundance. By overlap analysis, specific and shared core 

species were identified for each group (Figure 3.44, Table 3.11). 
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Figure 3.44 Overlap analysis of group specific and shared core species.  
Core species in each group of periodontally healthy site samples from non-
periodontitis individuals were identified, respectively (> 50% prevalence, > 
0.2% relative abundance). Group denotation: green: HC, yellow: CCP, blue: 
NORA, red: RA. n: number of samples. 
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Table 3.11 List of core species specific for each group in periodontally healthy 

site samples from individuals without periodontitis (> 50% prevalence, > 0.2% 

relative abundance). 

Group * Species 

HC Prevotella denticola 

 Corynebacterium durum 

 Actinomyces meyeri 

 Prevotella pleuritidis 

 Rothia aeria 

CCP Campylobacter showae 

 Campylobacter rectus 

 Prevotella sp. HMSC073D09 

 Selenomonas sputigena 

 Treponema denticola 

 Selenomonas sp. CM52 

 Veillonella dispar 

 Prevotella conceptionensis 

NORA Actinomyces sp. HMSC08A09 

 Porphyromonas gingivalis 

RA Bradyrhizobium sp. BTAi1 

 Alloprevotella tannerae 

 Porphyromonas endodontalis 

*: Core species in each group was identified based on the threshold of 50% 
prevalence, 0.2% relative abundance.  
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3.10.11 Detection of PAD in the subgingival plaque samples using 

the shotgun sequencing data. 

By aligning the DNA sequencing reads to NCBI NR protein database with at least 

70% identity, PAD from different bacterial species as described in NCBI database 

were identified in my sequencing data (Table 3.12). Apart from P. gingivalis, PAD 

from Campylobacter concisus, Porphyromonas gulae, Prevotella melaninogenica 

and Prevotella veroralis were also found. There were also sequences matched with 

hypothetical proteins related to PAD, PAD-like proteins and human PAD 

 

Table 3.12 Annotated PAD and related proteins in subgingival plaque samples 

based on NCBI protein database. 

Protein name Organism aa length Accession number 

PAD Porphyromonas gingivalis 556 AKV57251.1 

PAD Porphyromonas gingivalis 556 WP_061156921.1 

PAD Porphyromonas gingivalis 556 WP_077112131.1 

PAD Porphyromonas gingivalis 556 WP_004585430.1 

PAD Porphyromonas gingivalis 556 WP_005873463.1 

PAD Porphyromonas gingivalis 556 WP_013816581.1 

PAD Porphyromonas gingivalis 556 WP_021662880.1 

PAD Porphyromonas gingivalis 556 WP_021665004.1 

PAD Porphyromonas gingivalis 556 WP_023847729.1 

PAD Porphyromonas gingivalis 556 WP_053444041.1 

PAD Campylobacter concisus 265 WP_021084474.1 

PAD Porphyromonas gulae 556 WP_018964406.1 

PAD Prevotella melaninogenica 511 WP_013265317.1 

PAD Prevotella veroralis 512 WP_004383428.1 
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hypothetical protein 

A343_2192; PAD_porph; 

pfam04371 

Porphyromonas gingivalis 

JCVI SC001 

353 EOA10175.1 

hypothetical protein 

HMPREF0649_00225; 

Porphyromonas-type PAD; 

pfam04371 

Prevotella buccae D17 353 EFC76913.1 

PAD-like protein Homo sapiens 694 AAS07634.1 

PAD family protein Campylobacter concisus 

UNSW2 

223 ERJ31051.1 

PAD family protein Prevotella oris C735 349 EFI48643.1 

PAD family protein Prevotella sp. CAG:891 378 CDE86775.1 

PAD type 6 Homo sapiens 694 AAR38850.1 

PAD type I Homo sapiens 663 BAA85771.1 

PAD-like enzyme Porphyromonas gingivalis 353 AKV63383.1 

protein-arginine deiminase 

type-1 

Homo sapiens 663 NP_037490.2 

protein-arginine deiminase 

type-3 

Homo sapiens 664 NP_057317.2 

protein-arginine deiminase 

type-4 

Homo sapiens 663 NP_036519.2 

putative arginine deiminase Porphyromonas gingivalis 

TDC60 

312 BAK24590.1 
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3.11 Potential citrullination activity of PAD/PAD-like 

enzyme in Prevotella species 

To further examine the presence of PAD or PAD-like enzyme in the bacterial 

species other than P. gingivalis, the citrullination activity was measured in the cells 

of a range of Prevotella spp. using colorimetric assays with different substrates and 

with varying calcium concentrations. The synthetic arginine substrate BAEE, which 

is a standard substrate for both PPAD and human PAD, was used in the presence or 

absence of calcium to detect any enzyme activity of citrullination and assess the 

dependence of any enzyme activity upon calcium ions. The activity in P. gingivalis 

W83, its Δppad mutant, P. gingivalis W50 and its Δrgps mutant were also 

measured, and the data included for comparative purposes. Although the levels of 

activity were low, some citrullination was observed in all Prevotella spp. However, 

only the genome of P. intermedia ATCC25611 

(https://www.ncbi.nlm.nih.gov/protein/1132728393) and P. melaninogenic NCTC 

12963 (https://www.ncbi.nlm.nih.gov/protein/WP_013265317.1) are available on 

NCBI and these contain sequences annotated as PAD. Citrullination activities in the 

cellular samples of P. gingivalis W83 Δppad mutant and Prevotella spp. were 

observed only in the assay using buffer without calcium (Figure 3.45) and they were 

significantly lower than those of P. gingivalis W83, P. gingivalis W50 and its Δrgps 

mutant (ANOVA test). No significant difference was found comparing the activities 

of the W83 Δppad mutant and Prevotella spp. Integrated with the findings of PAD 

or PAD-like enzyme sequences in P. gingivalis and a range of Prevotella spp. as 

described in the Results section 3.10.11, these citrullination activities indicate that 

Prevotella spp. can express a type of active PAD or PAD-like enzyme, albeit with a 

low level of activity compared with PPAD, and P. gingivalis also harbours a type of 
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PAD or PAD-like enzyme which provides a low level of citrullination activity even 

when the PPAD activity is depleted by mutation. Higher activity was observed in 

the reaction without calcium compared with that containing calcium for P. 

gingivalis W83, P. nigrescens OMZ227 and P. intermedia OMZ326 (P < 0.05, t 

test), while other differences observed did not reach the statistical significance 

(Figure 3.45 ) (P > 0.05, t test). This result suggests that unlike human PAD, the 

potential PAD or PAD-like enzyme in these bacterial species is more like PPAD, in 

that the enzyme activity is not dependent on the presence of calcium. More 

interestingly, the presence of calcium with the concentration of 10 mM in this study 

impaired the PPAD activity of P. gingivalis W83 (activity decreased 46.3%).  
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Figure 3.45 Detection of citrullination activity in P. gingivalis and 
Prevotella species using BAEE as substrate.  
Each species was grown in BHI until the late log phase and the OD600 of the 
culture was adjusted to 1.0 using BHI broth. Bacterial cells were re-suspended 
in activity buffer with or without calcium for the colorimetric assay for 
citrullination activity. Results are expressed as means ± standard deviations 
(n=3). Blue bar: buffer with calcium; orange bar: buffer without calcium. 

 

To examine above results in a more physiologically relevant context, citrullination 

activity against protein substrate was assessed by using bovine serum albumin 

(BSA) as substrate. Citrullination was detected in all species regardless of the 

presence of calcium in the buffer. There was no significant difference in activity 

between the assays with and without calcium for each species (P > 0.05, t test) 

(Figure 3.46). The activity in P. gingivalis W83 and P. gingivalis W50 was 

significantly higher than that of other species in both reaction conditions 

(calcium+/-) (P < 0.05, ANOVA test followed up with Bonferroni correction). The 

significant decreased activity in the Δrgps mutant compared with P. gingivalis W83 
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significant difference in activity was found between the Prevotella spp. and the two 

P. gingivalis mutants (P > 0.05, ANOVA test).  

 

 

Figure 3.46 Detection of citrullination activity in P. gingivalis and 
Prevotella species using BSA as substrate.  
Each species was grown in BHI until the late log phase and OD600 of the 
culture was adjusted to 1.0 using BHI broth. Cell pellets of the bacteria were 
re-suspended in the activity buffer with or without calcium for the colorimetric 
assay for citrullination activity. Results are expressed as means ± standard 
deviations (n=3). Blue bar: buffer with calcium; orange bar: buffer without 
calcium. 

 

To examine the substrate specificity of potential PAD/PAD-like enzyme in 

Prevotella spp., compared with PPAD, colorimetric detection of citrullination was 

performed with three short peptides containing arginine at different positions. 
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the multiple comparisons and the significance level was set at 0.05. Activities were 

observed in all species, albeit at low levels for Prevotella spp., but varied with 

arginine residue position. P. nigrescens OMZ227 and P. intermedia 

ATCC25611showed no preference for any arginine residue positions (Figure 3.47), 
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while all other species including P. melaninogenica NCTC 12963, P. corporis A818 

and P. intermedia OMZ326 had higher citrullination activity for C-terminal arginine 

peptides (Gly-Arg) than that for internal (Met-Arg-Phe) and N-terminal (Arg-Gly-

Glu) arginine peptides (ANOVA test). This result showed that, besides the 

independency on calcium, the substrate specificity of the potential PAD or PAD-like 

enzyme in Prevotella spp. is also more like that of PPAD which has a preference for 

C-terminal arginine residues. Again, there was no significant difference in the 

citrullination activity comparing Prevotella spp. and the P. gingivalis Δppad mutant 

for any of the substrates I used. Rgps deficiency in the P. gingivalis W50 had no 

effect on its PPAD activity, irrespective of the arginine residue position in the 

substrate. 

 

In the assay using C-terminal arginine peptides as the substrate, the activities were 

significantly lower in the Prevotella spp. compared with that in P. gingivalis W83, 

P. gingivalis W50 and its Δrgps mutant. For the internal arginine peptide, the 

activity in P. gingivalis W83 was significantly higher than that in P. corporis A818 

and P. intermedia ATCC25611. No significant difference was found in the activities 

when comparing P. gingivalis W83 with other Prevotella spp. In contrast, there was 

no significant difference in activity when comparing P. gingivalis W83 with any of 

the Prevotella spp. investigated for the N-terminal arginine peptides. 
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Figure 3.47 Detection of citrullination activity in P. gingivalis and 
Prevotella species using substrates with different positions of arginine 
residues. 
 Each strain was grown in BHI until the late log phase and OD600 of the culture 
was adjusted to 1.0 using BHI broth. Cell pellets of the bacteria were re-
suspended in the activity buffer with calcium for the colorimetric assay for 
citrullination activity. Synthetic peptides containing C-terminal (green), 
internal (purple), N-terminal (red) arginine residue were used as substrate. 
Results are expressed as means ± standard deviations (n=3). 
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Chapter 4                                             

Discussion 
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4.1 In	vitro	study	of	PPAD	in	P.	gingivalis	physiology	

4.1.1 Effect of P. gingivalis and PPAD on the local environmental 

pH 

During the development of periodontal disease, the local environmental parameters 

change such as pH and redox potential. In health the pH of the gingival sulci is 6.90, 

whereas in disease that can rise to between 7.20 and 7.40 (Eggert et al., 1991, Marsh 

and Devine, 2011). The changes in the local environmental pH has an effect on the 

growth as well as the metabolic properties of the microbial community. P. gingivalis 

can be grown stably in pure culture in a chemostat, with an optimum growth 

between pH 7.00 and 8.00 (McKee et al., 1988). Significant virulence factors of P. 

gingivalis, such as gingipains (Rangarajan et al., 1997, Scott et al., 1993) and PPAD 

(Abdullah et al., 2013) also showed a preference for slightly alkaline conditions. 

However, the influence of P. gingivalis and its virulence factors on the local 

environmental pH is less known. P. gingivalis was shown to be able to raise the 

growth pH slightly in batch culture, although the mechanism was not clear 

(Takahashi and Schachtele, 1990). Because the process of citrullination produces 

ammonia, PPAD was hypothesized to be able to assist in the maintenance of the 

alkaline conditions required for P. gingivalis. The hypothesis was disproved in the 

present study as the P. gingivalis W83 PPAD deficient mutant exhibited a 

significantly higher growth pH compared with the wild-type strain in the chemostat 

culture without additional pH control, although the pH following growth of both 

strains was below 7.00 (Figure 3.4a, Table 3.1). The present data suggest that there 

must be an alternative strategy P. gingivalis utilizes to adjust the environmental pH 

and PPAD may have a negative effect on the maintenance of an alkaline 
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environment, despite the fact that it can generate the ammonia through citrullination. 

Takahashi et al. have shown that cell suspensions of P. gingivalis in the presence of 

amino acid or dipeptide raised the pH from 5.50 to 6.55～6.70 after a six-hour 

incubation and this acid-neutralizing activity was due to base generated from amino 

acid degradation (Takahashi, 2003). In the present study, P. gingivalis W83 wild-

type, the identical strain used in their study (Takahashi, 2003), showed a more acidic 

growth pH compared with the mutant without any PPAD activity, indicating that 

PPAD may impair the acid-neutralizing activity or alkali promoting activity of P. 

gingivalis by affecting amino acid fermentation, which is possibly due to the 

citrullination of related enzymes by PPAD.  

4.1.2 Effect of P. gingivalis on the local environmental redox 

potential 

Redox potential is another vital environmental parameter affecting the growth and 

properties of P. gingivalis (Leke et al., 1999). During the development of 

periodontitis, the formation of periodontal pockets is associated with a significant 

decrease in redox potential, thus, resulting in a reduced environment favourable for 

the multiplication of anaerobic periodontal pathogens such as P. gingivalis. From 

healthy gingival sulci to periodontal pockets, the redox potential decreased from 

approximately +74 mV to -157~ +14 mV(Kenney and Ash, 1969), although lower 

values have also been claimed (ca. -300 mV) (Marsh, 2016). Similar to the pH, oral 

bacteria are also able to modify the redox potential of the environment. Previous 

study has shown that P. gingivalis decreased the redox potential from -74 mV to -

360~ -333 mV, in batch culture under anaerobic conditions (Leke et al., 1999), 

although the mechanism of such modification is not clear. 
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In the present study, the redox potential was well controlled for both strains at 

approximately -350 mV and anaerobic conditions were maintained during the first 

steady-state by gassing the culture vessel with a mixture of N2 and CO2. However, in 

the second steady state without pH control, the redox potential of the medium 

following growth of the mutant was significantly lower than that following growth 

of the wild-type, indicating a more reduced environmental condition (Figure 3.4b, 

Table 3.1). It is possible that the redox potential was affected by the environmental 

pH as the pH can modify the driving force of reactions involving protons/hydroxide 

ions and subsequently influence the redox potential. Furthermore, P. gingivalis is 

likely able to modify the local redox potential by regulation of related gene 

expression. By comparing gene expression between the two strains using the 

chemostat culture samples, PG_0275 encoding thiol reductase thioredoxin was 

found over-expressed in the mutant, which may cause a decrease in redox potential 

as described above. The thioredoxin family of proteins constitutes a disulfide-

reducing system present in a variety of bacteria, in which they are involved in 

oxidative stress protection (Lewis et al., 2009). Although the mechanism for the 

regulation of this gene is still not clear, the present data indicated that PPAD 

deficiency can affect the expression of the gene encoding thioredoxin family 

proteins, which may subsequently influence the redox potential of the local 

environment. 
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4.1.3 Effect of environmental pH and redox potential on Rgp 

activity  

P. gingivalis is an asaccharolytic organism that utilizes amino acids as sources of 

energy, carbon and nitrogen. Gingipains are major P. gingivalis virulence factors 

which can degrade many human proteins (Potempa and Travis, 1996). In my study, 

the Rgp activity of both wild-type and mutant strains significantly decreased in the 

chemostat cultures in which pH was not controlled (Figure 3.6), suggesting that Rgp 

activity can be affected by the growth pH and the alkaline culture condition leads to 

a higher Rgp activity. In agreement with the data presented here, Rgp activity 

decreased with the reduction of growth pH in a previous study (McKee et al., 1988). 

By comparing the wild-type and the mutant, the significant difference of the Rgp 

activity was only identified when the growth pH was also significantly different 

between the two strains and the effect of growth pH on Rgp activity accords with the 

previous data. 

 

It has been illustrated that a positive redox potential (1.5 mM) can inhibit Rgp 

activity (Leke et al., 1999), but it is not clear whether the different redox potential in 

the present study can affect the Rgp activity as they were all negative (-338.42 mV~ 

-419.60 mV). 

4.1.4 Effect of PPAD on Rgp and DPP activity 

Apart from the effect of those environmental parameters on Rgp activity, PPAD 

may decrease Rgp activity via citrullination. It has been shown that PPAD is able to 

citrullinate endogenous proteins of P. gingivalis (Wegner et al., 2010, Bickel and 

Cimasoni, 1985). Intriguingly, by mass spectrometry analysis, a recent study 
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demonstrated that six proteins of P. gingivalis, especially the RgpA of P. gingivalis 

W83, were citrullinated dependent on the presence of PPAD (Stobernack et al., 

2016). Although it is unknown whether the activity of the citrullinated proteins were 

changed in their study, citrullination, as a post-translational modification of proteins, 

can alter the charge and structure of the respective target proteins and may 

consequently change their functions (Gyorgy et al., 2006). Of note, gingipains 

account for 85% of the total proteolytic activity of P. gingivalis (Potempa et al., 

1997) and they are crucial in amino-acid utilization by P. gingivalis, as nutritional 

extracellular proteins are initially degraded to oligopeptides by the gingipains for 

further metabolism (Nemoto and Ohara-Nemoto, 2016). Therefore, it is conceivable 

that citrullination of Rgp may lead to a decrease in proteolytic activity of P. 

gingivalis and subsequently affect the generation of alkali end products during 

amino acid fermentation, which contributes to lowering the environmental pH. Kgp, 

which also contributes to the total proteolytic activity of P. gingivalis although to a 

lesser extent (Potempa et al., 1997), was not included in my study. 

 

DPP is another enzyme that is important for the growth of P. gingivalis. Among four 

DPPs tested in my study, only DPP 11 showed a significant reduction in activity 

against its major substrate (Leu-Asp-X) in the P. gingivalis W83 wild-type 

compared with its PPAD deficient mutant (Figure 3.7). Although this result was 

derived from the study on batch culture samples instead of chemostat culture of 

which all environmental parameters were measured, the two strains were grown and 

processed at same conditions to make the data comparable. This difference found in 

the DPP activity between the two strains was confirmed not to be due to changes in 

gene expression of DPP 11 (Figure 3.8). Interestingly, there are studies 

demonstrating that the substrate preference of P. gingivalis DPP11 is primarily 
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mediated by its Arg673 residue (Sakamoto et al., 2015). Therefore, it is highly 

possible that PPAD can citrullinate the DPP11 at Arg673 and alter the substrate 

preference of DPP11, which may subsequently cause the reduction of DPP11 

activity against the specific substrate.  

 

Taken together, my study suggests that PPAD may affect the Rgp and DPP activities 

through citrullination, although it is unclear why P. gingivalis would reduce the 

activity of its important peptidase by PPAD and further studies are needed to 

confirm the citrullination of these enzymes with the help of western blot or mass 

spectrometry. With respect to the development of RA, these citrullinated proteins of 

P. gingivalis may lift the total citrullination level in the human host in vivo and 

contribute to the aetiology of RA. 

4.1.5 Effect of environmental parameters on PPAD activity 

In the present study, PPAD activity in the cells of P. gingivalis W83 wild-type 

decreased when growth pH was not externally controlled and became slightly acidic 

(pH 6.69 ± 0.03) compared with activity from chemostat cultures grown in 

controlled conditions (pH 7.25 ± 0.05) (Figure 3.5); thus growth pH may affect 

PPAD activity and my results suggest that the optimal growth pH for cellular PPAD 

activity is neutral-alkaline rather than acidic. My findings are consistent with the 

results of Abdullah et al., who reported that optimal pH of assay buffer for cellular 

PPAD activity was alkaline (Abdullah et al., 2013). Using purified PPAD, a pH 

optimum for activity was also found to be 9.3 (McGraw et al., 1999).  

 



- 150 - 

4.1.6 Effect of environmental parameters on the growth and gene 

expression of P. gingivalis 

Viable cell numbers and OD600 of both strains increased in the chemostat cultures 

when the environmental pH decreased after removing pH control of 7.25 ± 0.05, and 

the difference in the wild-type strain was statistically significant (Table 3.1). My 

findings, differed from those of McDermid et al., who reported that the maximum 

yields were obtained between pH 7.00 and 8.00 by comparing the growth of P. 

gingivalis W50 in separate continuous culture experiments with differing 

environmental pH (McKee et al., 1988). In my study the bacteria were grown 

continuously and the external pH control was used and then removed, leading to 

different environmental conditions. Thus, it is possible that P. gingivalis in the 

present study may have had the opportunity to adapt to the changes in the 

environment and subsequently even promote its growth as found in my results. In 

the second steady-state the OD600 of the Δppad mutant samples was significantly 

higher than that of the wild-type strain indicating a better growth of the bacteria, 

which is in consistent with the findings of higher environmental pH and lower redox 

potential in the mutant culture, as those environmental conditions favours P. 

gingivalis growth. The OD600 of the Δppad mutant samples in the second steady 

state without external pH control was significantly higher than that in the first steady 

state in which the environmental pH was controlled at 7.25 ± 0.05, but the difference 

of viable cell number did not reach the significance, although it is also higher in the 

second steady state. It is not determined whether the cell size of the mutant in the 

present study was different between the two steady states, but it is possible that the 

mutant cells were larger in the second steady state, which may lead to the significant 

higher OD600 even though the viable cell number was not significantly increased. 
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Previous study has shown that atypical colony forms were observed during 

prolonged growth of P. gingivalis W50 in a chemostat, which had a reduced 

virulence (McKee et al., 1988). It is plausible that the Δppad mutant used in my 

study had a similar tendency to produce variants, and this might be a strategy by 

which P. gingivalis could persist adapting to the changes of environment. The cell 

sizes of the Δppad mutant at different culture conditions could be determined and 

compared by using atomic force microscopy in fulture study (Osiro et al., 2012).  

 

By analysing the RNA sequencing data, differentially expressed genes were 

identified in both P. gingivalis W83 wild-type strain and its Δppad mutant after 

removing pH control, which indicated that environmental pH can regulate the gene 

expression of both P. gingivalis strains. By annotating those up/down-regulated 

genes to GO terms, more GO terms were identified in the mutant (Figure 3.16) 

compared with the wild-type strain (Figure 3.15) and most of the up-regulated genes 

in the mutant were involved in molecular function. In agreement with the results of 

PCA analysis (Figure 3.9), the data presented here suggested that the removal of pH 

control had less influence on the gene expression in P. gingivalis W83 wild-type 

strain than its Δppad mutant.  

 

The expression of HmuY and PG_1837 (hagA), encoding HmuY protein and 

haemagglutinin A, respectively, were found significantly up-regulated in the non-pH 

controlled chemostat culture of P. gingivalis W83 wild-type, compared with the 

culture under the controlled pH of 7.25 ± 0.05 (Appendix C2). HmuY is a haem-

binding protein which is important in haem utilisation by P. gingivalis. HmuY 

captures free haem and delivers it to an outer-membrane transporter, the TonB-

dependent receptor HmuR, which transports haem into the bacterial cell (Wojtowicz 
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et al., 2009). A P. gingivalis hmuY deficient mutant grew slower compared with the 

parent strain in haem-limited conditions (Olczak et al., 2015). Haemagglutinin A 

also take parts in haem acquisition through haemagglutination of red blood cells 

(Han et al., 1996, Olczak et al., 2005). It is well established that growth and 

colonization of P. gingivalis are dependent on the ability to acquire haem (Schifferle 

et al., 1996) and P. gingivalis itself is not able to synthesize protoporphyrin IX, the 

precursor of haem (Roper et al., 2000). Therefore, despite the fact that in the present 

study the bacteria were grown in haem excess, the data present here suggest that 

environmental pH can regulate gene expression by P. gingivalis and up-regulated 

genes such as hmuY and hagA may help the bacteria to adapt to the decreased pH 

condition and facilitate bacterial growth.   

 

Within the Δppad mutant, clustered regularly interspaced short palindromic repeats 

(CRISPR) -associated genes such as PG_1982, PG_1983 and PG_2013, were up-

regulated in the second steady-state compared with the first steady-state (Table 3.4, 

Appendix C3). CRISPR systems can protect bacteria against the foreign genetic 

elements, such as viruses, plasmids, and transposons (Burmistrz et al., 2017). 

Therefore, the changes of environmental parameters in the second steady state can 

upregulate the expression of CRISPR-associated genes in Δppad mutant, which may 

lead to an increase in the defence capability of the Δppad mutant. Moreover, genes 

encoding PorT family protein and TonB-dependent receptor, which belongs to the 

type IX secretion system (T9SS), were up-regulated in the second steady-state 

chemostat culture of Δppad mutant, compared with the first steady-state (Appendix 

C3). T9SS is a robust secretion system facilitating secretion of up to 35 proteins 

bearing the CTD in P. gingivalis, many of which are potent virulence factors, such 

as gingipains and PPAD (Lasica et al., 2017). A two-component system 
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(PorX/PorY) and extracytoplasmic function sigma factor have been identified to 

exhibit regulatory effect on the essential genes of T9SS (Kadowaki et al., 2016). 

However, the information about T9SS regulation by any environmental signal is still 

limited. Intriguingly, the present data indicated that environmental parameters such 

as pH and redox potential can possibly regulate the expression of some T9SS genes 

in the P. gingivalis Δppad mutant and may subsequently facilitate the secretion of 

virulence factors. The mechanism of the regulation of those genes requires further 

study. 

4.1.7 Strengths and limitations 

Despite the difficulties associated with the setting up of chemostat cultures, they 

provided clear advantages over batch culturing. Single parameters can indeed be 

manipulated while others are held constant, and the steady-state can be maintained 

over long periods of time. More importantly, chemostat culture is able to provide us 

with reliable biological samples for analysis by RNA sequencing (Hoskisson and 

Hobbs, 2005). Combination of continuous culture with next generation sequencing 

techniques is a powerful means for exploration of microbial physiology and 

pathogenicity.  

 

In the current study, the effect of PPAD on the local environmental pH was 

determined as well as the influence of environmental parameters such as pH and 

redox potential on the growth and enzyme activity of P. gingivalis. However, oral 

bacteria such as P. gingivalis are part of a diverse, rich and complex microbial 

community and other bacteria may impact or contribute to the change in 

environmental conditions in vivo. The interactions between bacteria may help P. 

gingivalis to adapt to the changes of the environment. For example, P. intermedia 
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was identified be able to change the acidic subgingival environment toward more 

neutral pH levels which is suitable for the growth of P. gingivalis (Takahashi and 

Schachtele, 1990). F. nucleatum, Peptostreptococcus micros and S. mutans could 

decrease the redox potential, which may thus be beneficial for P. gingivalis (Leke et 

al., 1999). Therefore, clinical samples of subgingival biofilm or biofilm models 

including multiple species might be needed for future study to elucidate the role of 

PPAD for P. gingivalis and other bacterial species. 

 

It is also important to notice that the altered gene expression between different pH 

conditions or strains does not necessarily translate to differences in protein synthesis 

or activity. qRT-PCR analysis should be used to confirm the differences in gene 

expression found by RNA sequencing. Further proteomic analysis, using mass 

spectrometry or western blot would be helpful for elucidating whether up- or down-

regulated gene expression is actually changing the protein expression.  

4.2 Metagenomic study of subgingival microbiome in 

relation to RA  

Following the epidemiologic evidence of the link between periodontitis and RA, an 

accumulating body of studies has been conducted on the mechanism underlying the 

link. Especially, the role of the subgingival microbiota in these two diseases has 

been investigated with the help of NGS techniques. However, up to now it has been 

unclear whether or not local development of periodontitis and the alterations in the 

local microbial community precede the development of RA, although it has been 

hypothesized that the initiation of RA may occur at mucosal sites such as the 

periodontium. The present study targeting prospective cohorts of individuals at risk 
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for RA development (CCP) provides important insights into the pathogenesis of RA 

and lays the groundwork for finding potential markers for early diagnosis and 

prevention. 

4.2.1 Periodontitis-related subgingival microbial dysbiosis in the 

individuals at-risk of RA development. 

Alterations in the composition of the subgingival microbiome were observed in the 

CCP group, compared with the other groups including HC, when analysing 

subgingival plaque from deep periodontal pockets (4 mm or more) with bleeding on 

probing. At the genus level, Porphyromonas and Treponema were significantly 

higher in the CCP group compared with other groups and within top 20 most 

abundant genera in the CCP group (Figure 3.24b). Accordingly, P. gingivalis, 

Treponema vincentii, T. denticola, as well as P. intermedia and Prevotella disiens 

were found significantly associated with the CCP group (Figure 3.26). The increase 

of these red-complex organisms, such as P. gingivalis and T. denticola, and other 

periodontal pathogens in the CCP group is compatible with my clinical findings, 

which showed that the prevalence of periodontitis increased in anti-CCP positive 

individuals at-risk of RA development (Table 3.6). The present data indicate that 

periodontitis and relatively increased abundance of the major periodontal pathogens 

precedes the development of RA and may represent a risk factor for RA 

development. However, the mechanisms still remain to be further elucidated by 

which periodontitis or related pathogens may trigger or facilitate the development of 

RA. The prevailing speculation is that P. gingivalis acts as an environmental trigger 

for RA as it was shown to be the only organism capable of citrullinating both 

bacterial and host proteins, such as fibrinogen and α-enolase through its PPAD 

(Wegner et al., 2010). PPAD was shown to be omnipresent in P. gingivalis 



- 156 - 

(Gabarrini et al., 2015). PPAD genes were also identified in my data with the 

highest prevalence in the CCP group (data not shown). But they were not detected in 

all samples with presence of P. gingivalis, which could be due to the limitation of 

the shotgun sequencing method used in my study. The sample is just a fraction of 

the original environment and the limited sequencing reads may not be able to 

capture the PPAD gene in all samples in the present study. In addition, it is not 

known in the present data whether there is any difference in the expression or 

activity of PPAD between different groups, which may influence autoimmunity in 

RA. Analysis of PPAD activity in the clinical samples should be included in future 

studies to further determine if efficiency or amount of citrullination by PPAD is 

associated with the development of RA.  

 

Increased abundance and prevalence of P. gingivalis have been observed in RA 

patients compared with healthy controls in a different study (Hitchon et al., 2010), 

although there were inconsistent results which may be due to the different types of 

techniques and samples used for the measurements (de Smit et al., 2012). In a recent 

comprehensive study, P. gingivalis was found enriched in healthy controls rather 

than RA patients when analysing the microbiome of saliva and supra-gingival dental 

plaque using shotgun sequencing (Zhang et al., 2015). Although P. gingivalis can 

grow anaerobically as well as when exposed to low levels of oxygen (Diaz and 

Rogers, 2004), the influence of environment conditions such as redox potential, 

should be taken into consideration when interpreting the data of samples from 

different sources, such as sub- and supra-gingival environments (Daniluk et al., 

2006). In agreement with the present study, Mikuls et al. showed an increased level 

of anti-P. gingivalis antibodies in individuals at genetic risk of developing RA 

(Mikuls Ted et al., 2012). However, periodontal examination was not included in 
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their study and many other periodontal pathogens were not examined. Thus, the 

possibility cannot be excluded that RA related autoantibody production is a 

consequence of periodontal inflammation rather than of P. gingivalis activity alone. 

4.2.2 Subgingival microbial dysbiosis in the individuals without 

periodontitis but at-risk of RA development  

In the present study, I aimed to further determine if specific periodontal pathogen 

such as P. gingivalis, rather than the periodontitis status, is implicated in the 

development of RA. To preclude the effect of established periodontitis on the 

subgingival microbiome, metagenomics analysis was performed only on the 

subgingival plaque samples from shallow gingival sulci (3 mm depth or less) with 

no bleeding on probing from individuals without periodontitis. Alterations were also 

found in the composition of the subgingival microbiome, which distinguished the 

CCP group from others. At the phylum level, Spirochaetes were also found with 

significantly higher relative abundance in the CCP group compared with other 

groups (Figure 3.40). As expected, at the species level none of the prominent and 

red-complex periodontal pathogens were significantly present in any groups (Figure 

3.42). Intriguingly, I found that 14 other species were significantly associated with 

the CCP group including six Capnocytophaga spp, three Prevotella spp, two 

Fusobacterium spp, two Treponema spp and Leptotrichia sp. oral taxon 879. It is 

unknown if these species are involved in the pathogenesis of RA, but most of these 

species are associated with the development of periodontitis. Therefore, currently I 

can only speculate that these species found associated with the CCP group may be 

implicated in the onset of RA via facilitating the development of periodontitis. My 

speculation is supported by the recent study where gram-negative anaerobes were 
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significantly more abundant in RA patients who were periodontally healthy, 

indicating a preclinical phase of periodontitis (Lopez-Oliva et al., 2018).  

 

Among the predominant species in my study, F. nucleatum, a member of the orange 

complex and an important organism in plaque maturation, was found with the 

highest relative abundance in the CCP group. Previously F. nucleatum was detected 

in both the synovial fluid and dental plaque samples of RA patients diagnosed with 

periodontitis (Témoin et al., 2012) and was found in higher concentrations in anti-

CCP positive patients with RA (Schmickler et al., 2017). The presence of T. 

socranskii was reported to be associated with periodontitis (Takeuchi et al., 2001), 

although conflicting results exist which may be due to differences between assays 

and the study populations (Riviere et al., 1997). In the present study, 

Capnocytophaga spp. accounted for nearly half of those significant species in the 

CCP group (6/14) (Figure 3.42). The genus Capnocytophaga encompasses a group 

of fastidious capnophilic and facultatively anaerobic Gram-negative bacilli. These 

bacteria are involved in causing endocarditis as well as arthritis, osteomyelitis or 

periodontitis (Piau et al., 2013). Similar to P. gingivalis, the LPS of C. ochracea can 

act as antagonists for human TLR4, which may help the bacterium escape from the 

innate immune system (Yoshimura et al., 2002). Capnocytophaga spp. are also 

involved in the formation of dental biofilms related to periodontal health and 

disease; in particular, a diffusible soluble component released by C. ochracea was 

identified as important in biofilm formation during co-culture with F. nucleatum 

(Jolivet-Gougeon et al., 2004). More interestingly, clinical isolates of 

Capnocytophaga spp. including C. ochracea were reported to exhibit the resistance 

to beta-lactam antibiotics through the activity of beta-lactamases, which may act as a 

major reason for unsuccessful periodontal treatment to control subgingival 



- 159 - 

pathogenic organisms (Jolivet-Gougeon et al., 2004). The specific Leptotrichia 

species found in the present study has not been completely characterized yet, but the 

Leptotrichia genus is known to be a member of the oral commensal microbiota and 

may act as an opportunistic pathogen associated with periodontal diseases and oral 

cavity abscesses (Eribe and Olsen, 2017). Taken together, these species associated 

with the anti-CCP positive at-risk individuals are worth further study as they may 

have an important role in the development of RA. Investigations of these species 

may provide the opportunity of finding methods for early risk assessment, diagnosis 

or prevention of RA.  

4.2.3 Effect of RA and DMARD treatment on the subgingival 

microbiome 

Anti-CCP positive RA patients were included in the present study who had been 

diagnosed with RA and treated with DMARD therapy for no more than three 

months (NORA) or at least six months (RA). Differences in subgingival 

microbiomes were also observed comparing NORA and RA groups and others using 

healthy site samples from individuals without periodontitis (Figure 3.41), which 

may be related to the effect of development of RA over time. Similarly, a prior study 

showed that RA may act as a condition shaping the subgingival microbiome, 

particularly promoting the growth of certain organisms (Lopez-Oliva et al., 2018). 

However, in contrast to my results, the microbial profiles were identified similar 

between NORA and chronic RA previously (Scher et al., 2012). It is should be noted 

that the NORA patients in their study were treatment-naïve which is different to my 

study group and the differences in the subgingival microbiomes could also be 

explained by the effect of DMARD treatment and the duration of the treatment 

(Romero-Sanchez et al., 2017).  
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It is highly possible that RA therapy, particularly those with proposed antibacterial 

properties, such as methotrexate or hydroxychloroquine (Greenstein et al., 2007, 

Rolain et al., 2007), will influence the subgingival microbiome. Moreover, the major 

tissue destruction associated with periodontitis results from the immune-

inflammatory response to the bacterial challenge; thus it is possible that the 

immunomodulatory effects of the RA regime such as anti-tumour necrosis factor 

(TNF) therapy, can affect the development of periodontitis (Üstün et al., 2013), and 

may subsequently modify the subgingival microbiome. A recent study using shotgun 

sequencing identified alterations in the oral microbiome, which were partially 

restored by DMARD treatment (Zhang et al., 2015). However, the periodontal status 

of the participants was unknown, making the results somewhat ambiguous as 

observations might have been due to the effect of periodontal disease (Griffen et al., 

2012). Additional studies with treatment of naive individuals receiving periodontal 

examination will be needed in the future to clearly determine the effect of RA 

disease and DMARD treatment on the subgingival microbiome. 

4.2.4 Uniquely detected species including A. actinomycetemcomitans 

in the subgingival microbiome of individuals at-risk of RA 

Dysbiosis of the subgingival microbiome related to the development of RA was also 

supported by identification of unique species present in the CCP group (section 

3.10.7). Although each group had its own unique species, the number of the species 

was higher in the CCP group compared with other groups, either in healthy or 

diseased sites. Most interestingly, A. actinomycetemcomitans was only observed in 

the CCP cohort without periodontitis, with a prevalence of 15.4% (Appendix C10). 

A recent study demonstrated that A. actinomycetemcomitans can induce 
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hypercitrullination in host neutrophils through its leukotoxin-A and may act as a 

trigger of autoimmunity in RA (Konig et al., 2016). Different to the analysis of the 

unique species detected in each group, the core microbiota, referred to the species 

that were detected in at least 50% of samples above 0.2% relative abundance, was 

identified for each group (section 3.10.9). Although the size of a core species set is 

highly conditional, mostly depending on the detection threshold (Salonen et al., 

2012), A. actinomycetemcomitans was absent in the list of core species as it was 

below the threshold of prevalence in this analysis (Table 3.11). Thus the unique of 

A. actinomycetemcomitan in the CCP group could be explained by the shortcomings 

of present study including variances between clinical samples and limited 

sequencing depth. However, it is conceivable that A. actinomycetemcomitans was 

scarce in the present study as it is more related to aggressive periodontitis, which 

was not observed in the current study population (Shaddox et al., 2012). Considering 

the implication of A. actinomycetemcomitans in autoimmunity in RA and its unique 

presence in the CCP group in this study, further analysis of A. 

actinomycetemcomitans and its leukotoxin-A would be interesting and might be 

helpful to understand the pathogenesis of RA.  

4.2.5 Microbial diversity in the subgingival microbiome 

Consistent with several previous studies (Abusleme et al., 2013b, Griffen et al., 

2011), bacterial diversity (species richness and evenness) was higher in the 

periodontally diseased sites compared with the healthy sites, implying a shift from 

healthy to disease-associated subgingival microbiome (Figure 3.20). RA status had 

no significant influence on the bacterial diversity of periodontally diseased sites 

(Figure 3.21). Similar results were reported in another study using 454 

pyrosequencing, where no significant differences in microbial diversity were 
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observed between chronic RA, untreated NORA and healthy controls (Scher et al., 

2012). Interestingly, the diversity in HC, CCP and NORA group displayed a 

decreasing trend in both healthy and diseased sites, which might reflect an influence 

of the development of RA on the microbial diversity. However, I cannot exclude the 

potential effect of  DMARD therapy on the microbial diversity of NORA patients 

although the treatment  was less than 3 months. The findings that microbial diversity 

of RA patient did not follow the trend could also be explained by the potential effect 

of longer duration of DMARD treatment (> 6 months).  

 

Moreover, the current study revealed that within the periodontally healthy and 

diseased sites bacterial diversity was significant lower in NORA patients compared 

with the CCP group (Figure 3.21). This result could be explained by the highest 

prevalence of periodontitis in the CCP group. This explanation was confirmed by 

analysing the periodontally healthy site samples only from non-periodontitis 

individuals, where no significant differences in microbial diversity were observed 

between groups (Figure 3.38). My findings were also supported by a recent study 

showing no significant difference in the microbial diversity between RA and HC 

who were periodontally healthy (Lopez-Oliva et al., 2018). However, I cannot 

exclude the possibility that early DMARD therapy (< 3 months) may decrease the 

microbial diversity of NORA patients and it is possible that periodontal disease 

associated microbiome may exhibit resistance to the treatment as the significantly 

lower bacterial diversity of the NORA group was only found in the healthy site 

samples but not in the diseased sites. 

4.2.6 Co-occurrence network analysis 
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The present study also demonstrated that the CCP group harboured highly connected 

and more complex species inter-relationships by analysing the species co-occurrence 

in the diseased sites (Table 3.8). Among all the pair-wise correlations in the CCP 

group of diseased sites, 94.4% were positive, indicating that synergy of species in 

periodontitis may be related to the development of RA, rather than single species. 

 

In both HC and CCP groups in the samples from healthy sites, a negative correlation 

was found between A. naeslundii and P. gingivalis. In the CCP group periodontally 

diseased site samples, P. gingivalis was negatively correlated with Actinomyces oris 

and three Veillonella species. Understanding the mechanism behind these 

correlations by future study may help us to find a method to adjust and control the 

composition of the subgingival microbiome and subsequently, prevent the 

development of related disease. 

 

In summary, the present study demonstrates that dybiosis of the subgingival 

microbiome related with periodontitis precedes the onset of symptoms of RA and 

may drive the development of RA. Under the established periodontitis conditions, P. 

gingivalis and its PPAD may play an important role in the initiation of RA.  

4.2.7 Potential functional capability 

No significant difference was found when comparing the potential functional 

capabilities between groups in diseased site samples, implying that RA has no 

impact on the subgingival microbiome under periodontitis conditions. Twenty-nine 

functional units were significantly under-represented in the NORA group compared 

with the CCP group in the healthy sites (  
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Table 3.10), which could be the consequence of RA treatment. Additional caution 

must be taken when interpreting this output, because only the presence of the related 

sequences but not the actual expression could be determined by the method 

employed. Meta-transcriptomic analysis should be performed in future studies to 

provide information regarding any functional differences between groups, which 

would be more helpful for us to understand the mechanism(s) underlying the link 

between periodontitis and RA. 

4.2.8 Strengths and limitations  

To my knowledge, no prior study has assessed the profile of subgingival 

microbiomes from individuals at risk of development of RA. The periodontal status 

of every participant was examined thoroughly and the age, gender and smoking 

status of participants were well balanced between four groups in this study during 

the recruitment process. The small sample number of RA group represents a 

limitation of present study which could lead to more uncertainty when interpreting 

the results of comparison between RA and other groups. This also makes it difficult 

to compar with the data of other studies. Larger samples size will be needed to more 

clearly define the role of the subgingival microbiome in the development and 

progression of RA.  

 

The present study is the first to utilize shotgun metagenomics to comprehensively 

analyse the oral microbial mechanism underlying the link between periodontitis and 

the development of RA. The 16S rRNA gene sequencing method was utilized in 

most previous studies to analyse the oral microbiome of early or chronic RA 

patients. This is cost-effective and efficient to detect alterations in bacterial 

populations (Lopez-Oliva et al., 2018, Scher et al., 2012). However, a major 
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limitation of the 16S amplicon method is that only a single region of the bacterial 

genome can be sequenced and it is difficult to distinguish the species when their 16S 

rRNA gene sequences display high similarities (Větrovský and Baldrian, 2013). 

Thus, classifications using the 16S rRNA method often lack accuracy at the species 

level. The shotgun metagenomics approach employed in the present study has been 

identified with several advantages over the 16S amplicon method, such as, more 

confident identification of bacterial species, increased detection of diversity and 

prediction of genes (Ranjan et al., 2016). 

Data analysis after the sequencing is always a significant challenge for researchers 

because it is highly computationally demanding. In my study, sequencing reads were 

de novo assembled into contigs before downstream analysis, which is friendly to the 

hardware resources and has been proven to be more accurate for species 

identification (Ranjan et al., 2016). 

 

There are many different pipelines and bioinformatics tools available to use but no 

agreement has been reached to set a standard data analysing method. An in-house 

pipeline was used in my study where almost every parameter can be adjusted during 

analysis and has been validated by previous studies (Li et al., 2017, Belstrøm et al., 

2017). Particularly, DIAMOND, which was utilized in current study, has been 

identified as both fast and accurate (Ranjan et al., 2016). The identity cut-off was set 

at 95% in DIAMOND which is comparable to a similar study (Zhang et al., 2015), 

although the more stringent parameters decreases the annotation sensitivity (Ranjan 

et al., 2016).  

 

Sequence data generated by shotgun metagenomics are affected by multiple sources 

of systematic variability, of which the major one is the differences in sequence 
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depth. Thus, normalization is essential for meaningful comparisons between 

different samples using shotgun metagenomics and different normalization methods 

may result in differences of interpretation of the end results (Pereira et al., 2018). 

Rather than rarefying the data to get similar total counts across all the samples, 

which may lose some precious fractions (McMurdie and Holmes, 2014), the 

straightforward total count method was used for the normalization. The argument 

for using this method exists because the sample is just a fraction of the original 

environment and the total number of reads obtained is not equal to the absolute 

number of microbes present in that environment (Weiss et al., 2017). Since the 

relative abundances are constrained by the simplex (sum to 1), traditional statistical 

methods assuming bacterial abundance to be independent variables are not 

applicable. Thus, the permutation test, with no requirement for data distribution 

(Collingridge, 2012), was used to identify the taxa that had a significant differential 

abundance between the study cohorts. 

4.3 Detection of PAD or PAD-like enzyme in the bacterial 

species other than P. gingivalis  

For a long time, PPAD was thought to be unique among prokaryotes, with P. 

gingivalis being the only bacterium known to produce and secrete it (McGraw et al., 

1999, Gabarrini et al., 2015). This notion has recently been challenged by the 

evidence that PPAD homologues were found in other Porphyromonas species from 

non-human hosts, although the enzyme activity and substrate specificity have not 

been characterized yet (Gabarrini et al., 2018). In the present study, by aligning the 

DNA sequencing data to NCBI NR protein database with at least 70% identity, PAD 

from different bacterial species such as C. concisus, P. gulae, P. melaninogenica 
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and P. veroralis as described in NCBI database, were identified in the subgingival 

plaque samples (Table 3.12). There were also sequences annotated as hypothetical 

proteins related to P. gingivalis PAD-like proteins. Although errors in read mapping 

and incompleteness of the reference database may exist (Morgan et al., 2010) and 

the increased alignment sensitivity at 70% identity may lead to decreased precision 

(Ranjan et al., 2016), the present data suggest the presence of PAD or PAD-like 

enzymes in bacterial species other than P. gingivalis.  

 

To further examine the presence of PAD or PAD-like enzymes, citrullination 

activity was measured in the cells of a range of Prevotella spp. using colorimetric 

assays with different substrates and with varying calcium concentrations. Albeit 

with a low level of activity compared with PPAD (P < 0.05, ANOVA test) , 

citrullination was observed in all Prevotella spp. in my study, including P. 

nigrescens OMZ227, P. intermedia OMZ326, P. melaninogenica NCTC 12963, P. 

corporis A818 and P. intermedia OMZ326. Among these species, only the genome 

of P. intermedia ATCC25611 (https://www.ncbi.nlm.nih.gov/protein/1132728393) 

and P. melaninogenic NCTC 12963 

(https://www.ncbi.nlm.nih.gov/protein/WP_013265317.1) are available on NCBI 

and these contain sequences annotated as PAD. I did not, due to time constraints, 

determine the presence of PAD or PAD-like gene in those Prevotella spp. without 

the genome information used in the citrullination assay. To avoid any false positive 

results of the citrullination assay, control reactions containing only bacteria or 

substrate were included in my study. Although the details of the reaction and the 

exact substrate specificity are unknown, the present data also indicate that PAD or 

PAD-like enzymes in those Prevotella spp. are like PPAD in having a preference for 

C-terminal arginine residues (Figure 3.47), and the enzyme activity was not 
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dependent on the presence of calcium (Figure 3.45). The reaction conditions used in 

my study was optimal for PPAD, however, they might not be for the PAD or PAD-

like enzymes in Prevotella spp. Different conditions such as pH and temperature 

need to be tested for these PAD or PAD-like enzymes in future studies. 

 

For PPAD, there are mainly two forms as described previously (McGraw et al., 

1999). The dominant form is cell associated, which is delivered by the outer 

membrane vesicles (OMV) and the other form is soluble secreted PPAD which 

accounts for a smaller fraction. However, it is unknown if the PAD or PAD-like 

enzyme of Prevotella spp. is more cell associated. Further studies are needed to 

determine the potential citrullination activity in the supernatant samples of 

Prevotella spp and to compare it with P. gingivalis.  

 

Previous study has shown that endogenous citrullinated proteins were detected 

universally in P. gingivalis by western blot, but absent in other oral bacteria such as 

P. intermedia H13, Prevotella oralis ATCC 33269, Capnocytophaga gingivalis 

ATCC 33624, Capnocytophaga ochracea ATCC 27872, etc. (Gabarrini et al., 2015, 

Wegner et al., 2010). Apart from P. gingivalis, none of those species were included 

in my citrullination assay. Detection of the citrullinated proteins from these 

Prevotella spp. would be needed to confirm the presence of active PAD or PAD-like 

enzymes. PPAD is able to citrullinate the endogenous proteins of P. gingivalis 

(Stobernack et al., 2016). However, considering the potential differences between 

these PAD or PAD-like enzymes and PPAD, not only the endogenous citrullinated 

proteins, but also the human proteins such as fibrinogen and α-enolase should be 

examined.  
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Moreover, it has been reported that recombinant full-length PPAD (rPPAD) was 

auto-citrullinated in vitro and antibodies specific for citrullinated rPPAD were 

identified in RA patients (Quirke et al., 2014), although inconsistent results showed 

that auto-citrullination of PPAD might not occur in vivo due to N-terminal cleavage 

of the protein (Konig et al., 2015). It would be interesting to know if the PAD or 

PAD-like enzymes from other species are able to be auto-citrullinated by themselves 

or citrullinated by PPAD, especially when considering the role of auto antibody 

production in the aetiology of RA. 

 

Collectively, the PAD or PAD-like enzymes were detected in bacterial species such 

as Prevotella spp.by metagenomics studies, and representatives of Prevotella spp. 

were identified that exhibited some citrullination activity in vitro in a similar manner 

to PPAD. To my best knowledge, the present study is the first to highlight PAD or 

PAD-like enzymes in species other than Porphyromonas spp. Considering the 

predominant prevalence and abundance of these Prevotella spp. such as P. 

intermedia and P. nigrescens in the subgingival microbiome and their relationship to 

the periodontal disease (Zhang et al., 2017, Hong et al., 2015), the sum of their 

citrullination activity cannot be ignored and may contribute to the autoimmunity in 

of RA, even though the citrullination activity of these PAD or PAD-like enzymes is 

significantly lower than that of PPAD.  

 

In addition to Prevotella spp., P. gingivalis was also found to harbour a gene 

encoding a type of PAD or PAD-like enzyme, in addition to PPAD, which provided 

a low level of citrullination activity even when the PPAD activity was depleted by 

mutation. More attention to its PAD-like enzyme might be needed when analysing 

the role of P. gingivalis in the link between periodontitis and RA. 
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Chapter 5                                        

Conclusions 
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By comparing the Rgp and DPP activity between P. gingivalis W83 wild-type strain 

and its PPAD deficient mutant, my study suggested that PPAD may citrullinate 

those enzymes in vitro and impair their activity, although further studies are needed 

to confirm the citrullination of those enzymes by using western blot or mass 

spectrometry. It is unclear why P. gingivalis would reduce the activity of its 

important peptidase such as Rgp and DPP 11 by PPAD. However, with respect to 

the development of RA, these citrullinated proteins of P. gingivalis may lift the total 

citrullination level in the human host in vivo and contribute to the aetiology of RA. 

 

By chemostat culture study, my results demonstrated that there must be an 

alternative strategy related to PPAD, which can be utilized by P. gingivalis to 

regulate the environmental pH, despite the fact that PPAD can generate ammonia 

through citrullination which may help neutralise acid. In vitro, PPAD may impair 

the acid-neutralizing activity or alkali-generating activity of P. gingivalis by 

affecting amino acid fermentation; this may be due to the citrullination of related 

enzymes, such as Rgp and DPP 11, by PPAD. Meanwhile, Rgp activity can be 

affected by the environmental pH, particularly, acidic culture conditions may lead to 

a lower Rgp activity.  

 

By RNA sequencing analysis, my data suggested that both environmental pH and 

PPAD deficiency can affect gene expression of P. gingivalis. Although the 

mechanisms for the regulation of those genes are still not clear, up-regulated genes 

in the conditions without external pH control, such as hmuY and hagA, may help the 

bacteria adapt to the changes of the environment and facilitate bacterial growth. 

Expression of essential T9SS genes were up-regulated after removing pH control in 

P. gingivalis Δppad mutant, the strategy of which could be utilised by the bacteria to 
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promote the secretion of virulence factors such as Rgp and PPAD. Moreover, PPAD 

deficiency leading to the over-expression of the gene encoding thioredoxin family 

proteins may consequently influence the redox potential of the local environment 

which benefits the growth of the mutant.  

 

In the clinical study, an increased prevalence of periodontitis was found in anti-CCP 

positive individuals who are at risk of RA development. Shotgun metagenomic 

analyses of subgingival dental plaque provided a detailed characterisation of the 

microbial communities in a large group of HC, CCP, NORA and RA patients. In 

conclusion, periodontitis and related dybiosis of the subgingival microbiome 

precede the onset of symptoms of RA and may drive the initiation of RA. Although 

the mechanisms still remain to be further elucidated by which periodontitis or 

related pathogens may trigger or facilitate the development of RA, P. gingivalis and 

its PPAD under the established periodontitis conditions may play an important role 

in the initiation of RA. 

 

Furthermore, the analysis of shotgun sequencing data suggested the presence of 

PAD or PAD-like enzymes in bacterial species such as C. concisus, P. gulae, P. 

melaninogenica, P. veroralis and P. gingivalis. Representatives of Prevotella spp. 

were identified that exhibited some citrullination activity in vitro in a similar manner 

to PPAD. The sum of their citrullination activity cannot be ignored and may 

contribute to the autoimmunity in of RA, even though the activity of the PAD or 

PAD-like enzyme in a single species is significantly lower than that of PPAD.  
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Future	Study	
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In order to confirm the citrullination of Rgp and DPP11 by PPAD, mass 

spectrometry or western blot analysis should be performed to identify the 

citrullinated forms of these enzymes in vitro. Kgp, which is also important for the 

amino acid metabolism of P. gingivalis but not covered by the present study, should 

be analysed to see if it can be citrullinated by PPAD. Furthermore, qRT-PCR 

analysis should be carried out to determine the differences in the gene expression 

found by RNA sequencing.  

 

To confirm the presence of PAD or PAD-like enzyme in the species other than P. 

gingivalis, the potential citrullinated proteins by these enzymes should be 

determined by using proteomic analysis. The reaction conditions of citrullination 

activity assays used in the present study were optimal for PPAD. Considering the 

potential differences between PPAD and PAD or PAD-like enzymes, different 

conditions such as pH and temperature need to be tested for the PAD or PAD-like 

enzymes. Both supernatant and different fractions of bacterial cells could be 

included to elucidate if those PAD or PAD-like enzyme is cell associated or 

secreted, or both. An appropriate bacterial strain without any citrullination potentials 

is also required as a negative control to confirm the activity of PAD or PAD-like 

enzymes in those species. 

 

For the study on the clinical samples, further investigations with larger samples size 

and technical replication on the unique species present in the CCP group who are at 

risk of developing RA would be useful to identify other species that may contribute 

to the initiation of RA. Comprehensive analysis on the co-occurrence networks of 

subgingival microbiome of each cohort will provide more information about the 

species inter-relationships and help to identify any consortia of co-operating bacteria 
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related to the aetiology of RA. Moreover, any antagonistic relationships between 

bacterial species can be possibly utilized to develop approaches to control the 

microbial dysbiosis related with disease. Longitudinally, monitoring the status of 

anti-CCP positive individuals who are at risk of developing RA and investigation of 

the subgingival microbiome of those who develop to symptomatic RA would be 

helpful to understand the pathogenesis of RA. Trials of periodontal treatment on the 

anti-CCP positive individuals at-risk of RA could be included in the future study, 

which will provide better understanding of the link between periodontitis and RA. 
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List of Abbreviations 

 

ATCC  American type culture collection  

ACPA Anti-citrullinated protein antibodies  

CAL Clinical attachment loss  

CCP Cyclic citrullinated peptide 

CFU Colony forming units 

DMARDs Disease-modifying anti-rheumatic drugs  

DPP Dipeptidyl peptidase 

EULAR European League Against Rheumatism  

GCF Gingival crevicular fluid 

HC Healthy control 

Kgp lysine gingipain 

LPS Lipopolysaccharide  

NGS Next generation sequencing 

NORA New-onset rheumatoid arthritis 

OUT Operational taxonomic units 

PBS Phosphate buffered saline 

PCoA Principal coordinates analysis  

qRT-PCR Quantitative real-time polymerase chain reaction  

PPAD P. gingivalis peptidylarginine deiminase  

RA Rheumatoid arthritis 

RF  Rheumatoid factor 

Rgp Arginine gingipain  

 



- 197 - 

Appendix A Recipes for Buffers Used 

Sodium boric acid (SB) buffer 

50x Stock: 

20 g NaOH 

pH 8.0 with 120 g H3BO3 (boric acid powder) 

bring to 1 L with deionized H2O 

 

1x Working Buffer: 

20 ml of 50x stock 

980 ml dH2O 
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Appendix B Scripts Used for Data Analysis 

B 1 Cutadapt  

cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A 
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT  -
o $1 -p $2 $3 $4 
#note: $1 is the output:  *_R1_trimmed.fastq.gz, $2 is *_R2_trimmed.fastq.gz,$3 is the 
input,*R1.fastq.gz, $4 is *R2.fastq.gz 
 
B 2 Sickle  
#note: $1 is the input, *_R1_trimmed.fastq.gz,$2 is *_R2_trimmed.fastq.gz,$3 is the output, 
*_R1_sickle.fastq, $4 is *_R2_sickle.fastq,$5 is *_single_sickel.fastq 
 
B 3 Burrow-Wheeler Aligner 
bwa index $1 
 
B 4 Samtools import 
samtools import pginw83.fna.fai $1 $2 
#note: $1 is the .sam file and $2 the .bam file 
 
B 5 Samtools sort 
samtools sort $1>$2 
#note: $1 should be the bam file to sort, $2 is the sorted bam file 
 
B 6 Htseq-count 
htseq-count -s no -f bam -t CDS --additional-attr=gene_name $1 $2 > $3 
#note: $1 is the sorted bam file, $2 is the gtf file (in this case pginw83.gtf) and $3 is the output as 
*_readcount.txt 
 
B 7 Megahit 
megahit -1 $1 -2 $2 -o $3 
#note: $1 is read1, $2 is read2 and $3 is the path to the directory where the results will be saved to. 
 
B 8 Diamond 
diamond blastx -p 47 -d /nobackup/dennttd/diamond/nr_prot_fasta/nr.dmnd  -q $1 -k 1 --id 95 --
more-sensitive --daa $2 
#note: $1 is the fastq or fasta file (either trimmed reads or the generated contigs from megahit), $2 is 
the *.daa ouput file 
 
B 9 TopGO (R script) 
#load gene to GO annotation txt file, (geneID GO1,GO2) 
geneID2GO <- readMappings(file = "~/Desktop/Readcount of 
Wildtype/results(4conditions/topGO/go2gene.map.txt") 
# build genelist including background gene list and significant genes, background genes are the name 
of the allgenes 
geneList <- factor(as.integer(allgenes%in%significantgenes)) 
names(geneList) <- go2gene$Gene 
#create Godata object 
GOdata <- new("topGOdata", ontology = "BP", allGenes = geneList,annot = annFUN.gene2GO, 
gene2GO = geneID_Go) 
GOdata 
#run the erichment test by classic fisher test 
resultFisher <- runTest(GOdata, algorithm = "classic", statistic = "fisher") 
resultFisher 
#generate results table 
allRes <- GenTable(GOdata, classicFisher = resultFisher, ranksOf = "classicFisher",topNodes = 
30,numChar=99) 
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allRes 
#Visualising the GO structure 
par(cex = 0.1)+showSigOfNodes(GOdata, score(resultFis), firstSigNodes = 5, useInfo = 'all') 
 
B 10 Network analysis (R script) 
#load phyloseq object of species raw count  and transfor to relative abundance 
library(phloseq) 
> load("/Users/Zijian/Desktop/Hsite_species.Rdata") 
rltdt_Hsite<-transform_sample_counts(Hsite_species,function(x) x/sum(x) ) 
#using microbiome package to filter species (relative abundance>0,prevalence>20%) 
library(microbiome) 
>rltdt_Hsite_filtered<-core(rltdt_Hsite, detection = 0,prevalence = 20/100) 
# generate the table as the input for network analysis (rowsnames are species, columns names are 
samples) 
write.csv(as.data.frame(otu_table(rltdt_Hsite_filtered)),file = "~/Desktop/input.csv") 
# network analysis using the 1.Pairwise_correlations.R and 2.Network_analysis.R 
(https://github.com/RichieJu520/Co-occurrence_Network_Analysis) 
# gml file generated from the script will be used for graph ploting in cytospace 
# abundance table and taxanomic table of species will also be generated and incorporated into 
cytospace for ploting (mapping with color and size of node). 
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Appendix C Supplementary Results 

C 1 Differentially expressed genes in P. gingivalis W83 Δppad mutant 

compared with the wild-type when grown under identical conditions in a 

chemostat (one-fold or more, adjusted P < 0.01, DESeq2). 

Culture stages Total Genes 

1st & 2nd steady-states, early transition stage, late transition stage 25 PG_0646 

  PG_0495 

  PG_1179 

  PG_0275 

  PG_1178 

  PG_1868 

  PG_0174 

  htrA 

  PG_1124 

  PG_0645 

  PG_0707 

  PG_0173 

  PG_1180 

  folD 

  PG_1858 

  PG_1543 

  PG_0555 

  PG_0195 

  hmuR 

  PG_0432 

  PG_1424 

  hmuY 

  PG_0686 

  PG_0421 



- 201 - 

  PG_1553 

1st & 2nd steady-states, early transition stage 6 PG_1181 

  PG_1641 

  PG_1556 

  PG_1421 

  PG_1019 

  PG_1554 

2nd steady-state, early transition stage, late transition stage 10 PG_0725 

  PG_0602 

  pgaA 

  PG_1491 

  PG_0047 

  PG_0906 

  PG_0739 

  porT 

  PG_0735 

  PG_0759 

1st steady-state, early transition stage 15 PG_1555 

  PG_1715 

  PG_1729 

  PG_1837 

  PG_1426 

  sodB 

  rplS 

  PG_1374 

  PG_1547 

  PG_2101 

  PG_1236 

  PG_2102 

  trx 



- 202 - 

  rpmE 

  ftn 

1st & 2nd steady-states 11 queA 

  PG_0283 

  PG_1869 

  PG_1514 

  PG_1982 

  tpr 

  PG_1983 

  PG_0554 

  PG_1485 

  PG_0433 

  folK 

early transition stage, late transition stage 8 nhaA 

  PG_0745 

  rpsR 

  PG_0598 

  PG_0009 

  topA 

  PG_2168 

  ribE 

2nd steady-state, early transition stage 4 PG_0737 

  PG_0708 

  PG_0624 

  PG_1020 

2nd steady-state, late transition stage 37 cutC 

  efp-1 

  ftsA 

  lpxK 

  PG_0161 
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  PG_0242 

  PG_0291 

  PG_0308 

  PG_0430 

  PG_0434 

  PG_0491 

  PG_0565 

  PG_0585 

  PG_0612 

  PG_0613 

  PG_0616 

  PG_0702 

  PG_0717 

  PG_0720 

  PG_0721 

  PG_0724 

  PG_0740 

  PG_0750 

  PG_0757 

  PG_0928 

  PG_0929 

  PG_1591 

  PG_1795 

  PG_1823 

  PG_1974 

  PG_1988 

  PG_2008 

  PG_2106 

  ppnK 

  prtC 
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  pruA 

  rplT 

1st steady-state 62 gmk 

  cas1 

  PG_2095 

  PG_1893 

  PG_1984 

  PG_0508 

  PG_0513 

  topB-2 

  PG_0451 

  cas4 

  PG_0510 

  PG_2100 

  PG_2131 

  PG_1663 

  PG_2134 

  PG_1679 

  PG_0060 

  PG_0411 

  PG_0117 

  PG_0871 

  PG_1015 

  PG_0509 

  PG_0458 

  PG_0218 

  PG_0682 

  PG_0216 

  PG_1738 

  PG_1478 



- 205 - 

  yngK-1 

  PG_1986 

  PG_1359 

  PG_1486 

  PG_1490 

  cas2-1 

  PG_0285 

  PG_1480 

  PG_0874 

  PG_1479 

  panE 

  PG_1987 

  PG_2103 

  PG_1594 

  PG_0215 

  PG_1746 

  PG_0018 

  PG_0546 

  cas2-2 

  PG_0511 

  PG_0293 

  PG_1817 

  PG_1857 

  PG_1662 

  PG_0972 

  PG_0917 

  PG_1874 

  PG_1481 

  PG_1969 

  PG_0274 



- 206 - 

  PG_1745 

  PG_0214 

  PG_0680 

  PG_1326 

early transition stage 35 PG_1021 

  PG_0710 

  PG_1492 

  PG_0865 

  PG_1482 

  PG_0749 

  PG_0839 

  PG_1008 

  PG_0617 

  PG_0569 

  PG_0786 

  rpsF 

  PG_1841 

  PG_1010 

  PG_0371 

  manC 

  PG_0444 

  PG_0799 

  PG_1975 

  PG_0752 

  PG_2225 

  rpmG 

  PG_0323 

  PG_2058 

  PG_0326 

  rplM 



- 207 - 

  PG_0685 

  PG_2120 

  PG_0619 

  PG_1842 

  PG_1196 

  typA 

  fur 

  PG_0039 

  PG_1667 

late transition stage 21 etfA-2 

  PG_1380 

  PG_1270 

  yaaA 

  PG_0179 

  PG_0633 

  PG_0718 

  PG_0756 

  mutA 

  PG_1164 

  feoB-2 

  PG_2064 

  PG_0734 

  PG_0020 

  PG_1069 

  rpoD 

  PG_0148 

  PG_0744 

  PG_1507 

  frdB 

  gcvH 



- 208 - 

2nd steady-state 62 PG_0068 

  PG_1709 

  PG_1273 

  dinF 

  PG_0562 

  PG_2017 

  PG_1684 

  cmk 

  rnhB 

  PG_1067 

  PG_0738 

  ftsz 

  PG_0382 

  PG_1666 

  PG_0424 

  PG_0987 

  PG_1085 

  map 

  murG 

  groEL 

  PG_0627 

  PG_0055 

  thiC 

  PG_1989 

  PG_0614 

  PG_0492 

  PG_2139 

  PG_0726 

  PG_1022 

  PG_0438 



- 209 - 

  PG_0611 

  sppA 

  PG_1285 

  PG_0747 

  PG_1271 

  PG_0712 

  fkpA 

  PG_0723 

  PG_0985 

  prtQ 

  PG_0575 

  ispH 

  thiL 

  PG_1108 

  cas3 

  PG_0864 

  rpmH 

  PG_0558 

  PG_0258 

  PG_0986 

  recF 

  PG_0447 

  clpB 

  PG_0579 

  PG_0182 

  PG_0610 

  rpoA 

  PG_2209 

  PG_0490 

  PG_0704 



- 210 - 

  PG_0647 

  PG_0932 
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C 2 Differentially expressed genes of P. gingivalis W83 wild-type after 

removing pH control (one-fold or more, adjusted P < 0.01, DESeq2). 

Culture stage (compared with the 1st steady-state) Total Genes 

early transition stage, late transition stage, 2nd steady-state 39 PG_0283 

  PG_1176 

  PG_1489 

  PG_1109 

  PG_1475 

  PG_1020 

  PG_1482 

  PG_1494 

  PG_1486 

  topB-2 

  lacZ-1 

  PG_1571 

  PG_1490 

  PG_1769 

  PG_1485 

  PG_1476 

  PG_1554 

  PG_0285 

  PG_0930 

  PG_2131 

  PG_1480 

  PG_2063 

  PG_0493 

  PG_1479 

  PG_1975 

  PG_2134 

  PG_1679 



- 212 - 

  PG_1481 

  PG_1594 

  PG_0337 

  PG_0281 

  PG_0717 

  PG_0718 

  PG_1022 

  PG_2133 

  PG_0282 

  PG_2114 

  PG_1478 

  PG_1178 

early transition stage, late transition stage 6 PG_1180 

  hslR 

  PG_1181 

  PG_0799 

  PG_1113 

  PG_0680 

early transition stage, 2nd steady-state 3 PG_1619 

  ribD 

  PG_1977 

late transition stage, 2nd steady-state 15 PG_1534 

  PG_0064 

  PG_0049 

  PG_0749 

  PG_1398 

  PG_0847 

  PG_2064 

  PG_0065 

  PG_0419 



- 213 - 

  PG_1296 

  PG_0871 

  PG_0090 

  PG_0215 

  PG_0214 

  PG_0216 

early transition stage 4 PG_0495 

  PG_2226 

  PG_1555 

  PG_0158 

late transition stage 8 pth 

  PG_1474 

  PG_0928 

  PG_1462 

  PG_1995 

  PG_0470 

  PG_0404 

  PG_1787 

2nd steady-state 25 PG_1572 

  PG_0180 

  PG_1270 

  recX 

  PG_0333 

  PG_1837 

  PG_0006 

  PG_0879 

  PG_1271 

  PG_0732 

  hmuY 

  PG_1175 



- 214 - 

  PG_1102 

  PG_1098 

  PG_0720 

  PG_0874 

  megL 

  PG_0985 

  PG_1666 

  nrd 

  PG_0612 

  PG_0063 

  PG_0429 

  PG_2116 

  PG_2040 
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C 3 Differentially expressed genes of P. gingivalis W83 Δppad mutant after 

removing pH control (one-fold or more, adjusted P < 0.01, DESeq2). 

Culture stage (compared with the 1st steady-state) Total Genes 

early transition stage, late transition stage, 2nd steady-state   4 PG_2017 

  fabG 

  PG_0090 

  PG_0612 

early transition stage, 2nd steady-state 1 PG_0865 

late transition stage, 2nd steady-state 51 PG_0611 

  PG_1819 

  PG_0646 

  PG_1374 

  PG_0410 

  PG_1497 

  PG_0585 

  epsD 

  PG_1988 

  PG_1858 

  PG_0565 

  PG_2018 

  efp-1 

  PG_1987 

  PG_0613 

  PG_0757 

  rnhA 

  PG_2071 

  PG_1908 

  rplY 

  PG_1664 

  PG_0232 



- 216 - 

  PG_1982 

  cas3 

  PG_1985 

  PG_1493 

  PG_0411 

  PG_1729 

  PG_0174 

  groEL 

  PG_1837 

  PG_0293 

  ribF 

  fabF 

  PG_1212 

  PG_0645 

  PG_0558 

  rplT 

  hmuY 

  PG_1999 

  PG_2048 

  ftsA 

  murC 

  PG_0614 

  htpG 

  PG_1211 

  PG_2019 

  PG_0173 

  hagE 

  gcvH 

  acpP 

early transition stage 6 PG_0009 



- 217 - 

  PG_1008 

  PG_0698 

  PG_2120 

  PG_1527 

  PG_0371 

late transition stage 9 PG_1164 

  PG_0133 

  PG_1380 

  mraY 

  tagD 

  PG_1507 

  mrr 

  dnaJ 

  PG_1742 

2nd steady-stage 95 yngK-1 

  PG_0461 

  PG_1492 

  sppA 

  PG_1986 

  PG_0068 

  PG_2127 

  PG_1893 

  PG_1984 

  nrfA 

  rplS 

  PG_0725 

  PG_0495 

  cas4 

  PG_0562 

  PG_1514 



- 218 - 

  PG_0491 

  PG_0906 

  cas2-1 

  PG_2100 

  cydA 

  PG_0345 

  PG_1684 

  PG_0737 

  oxyR 

  PG_1543 

  PG_1127 

  rnhB 

  PG_2161 

  PG_0971 

  PG_1067 

  PG_1663 

  ftsz 

  PG_0344 

  PG_1235 

  rpsO 

  PG_0575 

  PG_1014 

  nrd 

  PG_2020 

  lpxK 

  PG_0582 

  PG_1221 

  PG_0987 

  porT 

(PG_0751) 



- 219 - 

  PG_0226 

  PG_0450 

  murG 

  rpmH 

  cas2-2 

  PG_0183 

  PG_1983 

  PG_1891 

  PG_0291 

  PG_1817 

  thiC 

  PG_2149 

  PG_0109 

  PG_1989 

  PG_0986 

  PG_0441 

  PG_0447 

  clpB 

  PG_1659 

  PG_0579 

  PG_0492 

  PG_1660 

  PG_2139 

  pckA 

  dut 

  PG_0027 

  PG_1001 

  PG_1767 

  PG_0678 

  PG_0610 



- 220 - 

  PG_0724 

  purN 

  PG_0832 

  PG_0329 

  PG_0110 

  PG_1665 

  serS 

  PG_0438 

  rpmI 

  rpmB 

  PG_1358 

  PG_0704 

  infC 

  PG_1747 

  PG_2216 

  PG_1226 

  PG_0647 

  uvrC 

  PG_1892 

  PG_1326 
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C 4 Bacterial genera associated with different groups 

Group * Genera # Corrected P  

Healthy site   

HC Peptostreptococcus 0.0277 

CCP Capnocytophaga 0.0199 

 Treponema 0.0238 

NORA Methylobacterium 0.0159 

 Pseudopropionibacterium 0.0316 

RA Bacillus 0.0159 

 Vibrio 0.0394 

 Bradyrhizobium 0.0471 

Diseased site   

CCP Porphyromonas 0.0355 

 Treponema 0.0471 

NORA Neisseria 0.0040 

 Cardiobacterium 0.0040 

 Haemophilus 0.0119 

 Corynebacterium 0.0119 

 Klebsiella 0.0471 

RA Stomatobaculum 0.0040 

*: Genera with significantly higher relative abundance between groups were investigated by using the 
permutation test (one-sided signassoc function, R). 
#: Sidak’s correction was applied for multiple testing 



- 222 - 

C 5 Uniquely detected species in HC, CCP, NORA and RA groups from 

periodontally healthy sites. 

Number 

of unique 

species 

Species Number of 

infected 

samples 

%Prevalence Total 

counts 

H_HC (32 samples)   

 22 [Eubacterium] sulci 1 3.13% 26 

  Acidovorax delafieldii 1 3.13% 827 

  Capnocytophaga haemolytica 1 3.13% 1609 

  Granulicatella elegans 1 3.13% 106 

  Haemophilus sp. HMSC068C11 1 3.13% 72 

  Haemophilus sp. HMSC61B11 1 3.13% 42 

  Lactobacillus kimchicus 1 3.13% 1428 

  Mitsuokella sp. oral taxon 131 1 3.13% 1852 

 Mogibacterium pumilum 3 9.38% 799 

  Neisseria cinerea 2 6.25% 387 

  Neisseria polysaccharea 1 3.13% 39 

  Paracoccus sp. 228 1 3.13% 198 

  Paracoccus sp. PAMC 22219 1 3.13% 67 

  Paracoccus sp. S4493 1 3.13% 38 

  Piscicoccus intestinalis 1 3.13% 1219 

  Propionibacterium sp. 409-HC1 1 3.13% 15 

  Propionibacterium sp. 434-HC2 1 3.13% 20 

  Rhodopseudomonas palustris 2 6.25% 50 

  Selenomonas ruminantium 1 3.13% 18 

  Streptococcus sp. CCH8-G7 1 3.13% 123 

  Streptococcus sp. HMSC072D05 1 3.13% 18 

  Streptococcus sp. NLAE-zl-C503 1 3.13% 58 

H_CCP (48samples) 
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 91 Achromobacter sp. 

2789STDY5608615 

1 2.08% 21 

  Actinomyces graevenitzii 2 4.17% 441 

  Actinomyces sp. HMSC035G02 3 6.25% 229 

  Actinomyces sp. HPA0247 2 4.17% 152 

 Actinomyces sp. ICM54 4 8.33% 396 

  Afipia broomeae 1 2.08% 6 

  Alishewanella jeotgali 1 2.08% 23 

  Bifidobacterium adolescentis 1 2.08% 7 

  Bifidobacterium moukalabense 3 6.25% 111 

  Bilophila wadsworthia 1 2.08% 176 

  Bradyrhizobium liaoningense 1 2.08% 9 

  Bradyrhizobium sp. 1 2.08% 8 

  Campylobacter curvus 2 4.17% 158 

  Campylobacter sp. 10_1_50 1 2.08% 128 

  Corynebacterium aurimucosum 1 2.08% 197 

  Corynebacterium 

pseudogenitalium 

1 2.08% 248 

  Corynebacterium sp. OG2 1 2.08% 132 

  Corynebacterium 

tuberculostearicum 

1 2.08% 108 

  Eikenella sp. NML99-0057 1 2.08% 81 

  Enhydrobacter aerosaccus 1 2.08% 118 

  Enterococcus saccharolyticus 1 2.08% 18 

  Gardnerella vaginalis 1 2.08% 14 

  Kocuria sp. UCD-OTCP 1 2.08% 73 

  Lactobacillus acidophilus 1 2.08% 22 

  Lactobacillus amylovorus 1 2.08% 45 

  Lactobacillus casei 1 2.08% 48 

  Lactobacillus crispatus 1 2.08% 80 
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  Lactobacillus fermentum 2 4.17% 287 

  Lactobacillus gasseri 1 2.08% 1760 

  Lactobacillus kitasatonis 1 2.08% 35 

  Lactobacillus paracasei 1 2.08% 68 

  Lactobacillus rhamnosus 1 2.08% 897 

  Lactobacillus salivarius 2 4.17% 1946 

  Lactobacillus ultunensis 1 2.08% 27 

  Methylobacterium sp. MB200 1 2.08% 10 

  Microcella alkaliphila 1 2.08% 32 

  Micrococcales bacterium 73-15 1 2.08% 67 

  Micrococcus sp. HMSC31B01 1 2.08% 12 

  Moraxella osloensis 1 2.08% 93 

  Mycobacterium llatzerense 1 2.08% 28 

  Neisseria sp. HMSC03D10 2 4.17% 20 

  Neisseria sp. HMSC056A03 4 8.33% 181 

  Neisseria sp. HMSC065D04 3 6.25% 216 

  Neisseria sp. HMSC068C04 1 2.08% 33 

  Neisseria sp. HMSC069H12 3 6.25% 200 

  Neisseria sp. HMSC06F02 2 4.17% 48 

  Neisseria sp. HMSC072F04 1 2.08% 17 

  Neisseria sp. HMSC074B07 3 6.25% 93 

  Neisseria sp. HMSC15C08 2 4.17% 21 

  Neisseria sp. HMSC70E02 2 4.17% 103 

  Neisseria subflava 3 6.25% 115 

  Paracoccus tibetensis 1 2.08% 22 

  Paracoccus yeei 1 2.08% 127 

  Paraprevotella clara CAG:116 1 2.08% 8 

  Pectobacterium carotovorum 1 2.08% 5 

  Peptostreptococcaceae bacterium 

oral taxon 113 

2 4.17% 44 
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  Phyllobacterium sp. OV277 1 2.08% 20 

  Prevotella amnii 2 4.17% 29 

  Prevotella bryantii 1 2.08% 8 

  Prevotella jejuni 2 4.17% 136 

  Pseudonocardia sp. P2 1 2.08% 53 

  Pyramidobacter piscolens 1 2.08% 17 

  Ralstonia pickettii 1 2.08% 159 

  Rhodobacter sphaeroides 2 4.17% 283 

  Roseomonas aerilata 1 2.08% 115 

  Sanguibacter keddieii 3 6.25% 239 

  Staphylococcus capitis 1 2.08% 656 

  Staphylococcus sp. E463 1 2.08% 21 

  Streptococcus peroris 1 2.08% 439 

  Streptococcus sp. BS35b 1 2.08% 38 

  Streptococcus sp. CCH8-C6 2 4.17% 41 

  Streptococcus sp. CM6 1 2.08% 58 

  Streptococcus sp. F0441 1 2.08% 29 

  Streptococcus sp. GMD4S 1 2.08% 6 

  Streptococcus sp. HMSC062B01 1 2.08% 81 

  Streptococcus sp. HMSC066F01 1 2.08% 61 

  Streptococcus sp. HMSC073F11 1 2.08% 69 

  Streptococcus sp. HMSC076C09 1 2.08% 23 

  Streptococcus sp. HMSC077F03 1 2.08% 65 

  Streptococcus sp. HMSC34B10 1 2.08% 424 

  Streptococcus sp. HPH0090 1 2.08% 31 

  Streptococcus sp. SR1 1 2.08% 50 

  Streptococcus sp. VT 162 3 6.25% 65 

  Tepidiphilus thermophilus 1 2.08% 127 

  Thioflexothrix psekupsii 1 2.08% 6 

  uncultured bacterium 1 2.08% 22 
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  Veillonella sp. ACP1 1 2.08% 78 

  Veillonella sp. HPA0037 1 2.08% 48 

  Veillonella sp. ICM51a 1 2.08% 59 

  Xanthomonas campestris 1 2.08% 509 

  Xylanimonas cellulosilytica 1 2.08% 59 

H_NORA (26 samples) 

 74 [Eubacterium] minutum 1 3.85% 78 

  Acinetobacter guillouiae 1 3.85% 47 

  Acinetobacter pittii 1 3.85% 18 

  Acinetobacter sp. 479375 1 3.85% 33 

  Acinetobacter sp. Root1280 1 3.85% 21 

  Acinetobacter ursingii 1 3.85% 1525 

  Actinobacillus ureae 1 3.85% 2 

  Agrobacterium tumefaciens 1 3.85% 80 

  alpha proteobacterium L41A 1 3.85% 82 

  Bacillus subtilis 1 3.85% 3 

  Bacteroides stercoris 1 3.85% 2 

  Bradyrhizobium lupini 1 3.85% 101 

  Brevundimonas diminuta 1 3.85% 37 

  Brevundimonas nasdae 1 3.85% 46 

  Brevundimonas sp. BAL3 1 3.85% 21 

  Brevundimonas sp. DS20 1 3.85% 52 

  Brevundimonas sp. KM4 1 3.85% 26 

  Brevundimonas sp. Leaf280 1 3.85% 17 

 Brevundimonas sp. SH203 2 7.69% 527 

  Candidatus Saccharibacteria 

bacterium 32-49-12 

1 3.85% 2 

  Caulobacterales bacterium 

RIFOXYB1_FULL_67_16 

1 3.85% 18 

  Chryseobacterium balustinum 1 3.85% 76 



- 227 - 

  Chryseobacterium indoltheticum 1 3.85% 37 

  Chryseobacterium scophthalmum 1 3.85% 32 

  Delftia lacustris 1 3.85% 17 

  Enterobacter cloacae 1 3.85% 24 

  Enterococcus gallinarum 1 3.85% 152 

  Flavobacteria bacterium BBFL7 1 3.85% 2 

  Halothiobacillus sp. 28-55-5 1 3.85% 6 

  Helicobacter pylori 1 3.85% 4 

  Klebsiella michiganensis 1 3.85% 448 

  Klebsiella oxytoca 1 3.85% 149 

  Klebsiella sp. AS10 1 3.85% 28 

  Klebsiella sp. OBRC7 1 3.85% 41 

  Kocuria rhizophila 1 3.85% 38 

  Lachnospiraceae bacterium A4 1 3.85% 98 

  Lactobacillus murinus 1 3.85% 910 

  Lactobacillus reuteri 1 3.85% 99 

  Lactobacillus taiwanensis 1 3.85% 311 

  Methylobacterium salsuginis 1 3.85% 5 

  Methylobacterium sp. AMS5 1 3.85% 6 

  Methylobacterium sp. C1 1 3.85% 7 

  Methylobacterium sp. Leaf361 1 3.85% 5 

  Microbacterium barkeri 1 3.85% 761 

  Microbacterium maritypicum 1 3.85% 21 

  Microbacterium oxydans 1 3.85% 54 

  Microbacterium paraoxydans 1 3.85% 17 

  Microbacterium sp. Ag1 1 3.85% 20 

  Microbacterium sp. UCD-TDU 1 3.85% 36 

  Microbacterium sp. URHA0036 1 3.85% 18 

  Moorella glycerini 1 3.85% 7 

  Neisseria sp. HMSC15G01 1 3.85% 46 



- 228 - 

  Paenibacillus sp. St-s 1 3.85% 9 

  Paraprevotella clara 1 3.85% 2 

  Porphyromonadaceae bacterium 

COT-184 OH4590 

1 3.85% 4 

  Prevotella multisaccharivorax 1 3.85% 21 

  Prevotella sp. HMSC077E09 1 3.85% 12 

  Prevotella sp. KHD1 1 3.85% 3 

  Prevotella timonensis 1 3.85% 9 

  Raoultella ornithinolytica 1 3.85% 17 

  Rhizobium sp. IRBG74 1 3.85% 60 

  Rhizobium sp. UR51a 1 3.85% 20 

  Rothia sp. HMSC068F09 1 3.85% 34 

  Rothia sp. HMSC072B03 1 3.85% 50 

  Shuttleworthia satelles 1 3.85% 9 

  Sphingobacterium mizutaii 1 3.85% 24 

  Sphingobacterium sp. IITKGP-

BTPF85 

1 3.85% 651 

  Sphingobacterium sp. ML3W 1 3.85% 20 

  Sphingobacterium sp. PM2-P1-29 1 3.85% 46 

  Sphingobacterium spiritivorum 1 3.85% 2651 

  Sphingomonas sp. 67-36 1 3.85% 6 

  Streptococcus sp. oral taxon 056 1 3.85% 244 

  Williamsia muralis 1 3.85% 162 

  Williamsia sp. D3 1 3.85% 151 

H_RA  (10 samples ) 

27 Aerococcus sp. HMSC23C02 1 10.00% 140 

  Aeromicrobium sp. Leaf245 1 10.00% 203 

  Aeromicrobium sp. Leaf272 1 10.00% 50 

  Atopobium sp. ICM42b 1 10.00% 45 

  Bacillus azotoformans 1 10.00% 1464 
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  Beggiatoa sp. PS 1 10.00% 139 

  Candidatus Saccharibacteria 

bacterium RAAC3_TM7_1 

1 10.00% 2 

  Cloacibacterium normanense 1 10.00% 120 

  Janibacter indicus 1 10.00% 175 

  Klebsiella aerogenes 1 10.00% 174 

  Lactobacillus brevis 1 10.00% 2 

  Leuconostoc mesenteroides 1 10.00% 130 

  Pedobacter panaciterrae 1 10.00% 2 

  Porphyromonas sp. CAG:1061 1 10.00% 1 

  Prevotella sp. AGR2160 1 10.00% 1 

  Prevotella sp. CAG:1058 1 10.00% 1 

  Prevotella sp. oral taxon 299 1 10.00% 100 

  Prevotellaceae bacterium 

HUN156 

1 10.00% 1 

  Proteiniphilum acetatigenes 1 10.00% 121 

  Pseudomonas mendocina 1 10.00% 103 

  Pseudomonas syringae 1 10.00% 118 

  Solibacillus silvestris 1 10.00% 185 

  Streptococcus dysgalactiae 1 10.00% 170 

  Streptococcus sp. GMD6S 1 10.00% 118 

  Veillonella rodentium 1 10.00% 29 

  Veillonella sp. AS16 1 10.00% 117 

  Vibrio cholerae 1 10.00% 1 
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C 6 Uniquely detected species in HC, CCP, NORA and RA groups from 

periodontally diseased sites. 

Number of 

unique 

species 

Species Number 

of 

infected 

samples 

%Prevalence Total counts 

D_HC (18 samples in total)   

14 Actinomyces polynesiensis 1 5.56% 1491 

 Actinomyces provencensis 1 5.56% 217 

 Actinomyces sp. ICM47 1 5.56% 56 

 Actinomyces sp. ICM54 1 5.56% 79 

 Actinomyces sp. ICM58 1 5.56% 54 

 Anaerobacillus alkalilacustris 1 5.56% 564 

 Bifidobacterium moukalabense 1 5.56% 26 

 Capnocytophaga haemolytica 1 5.56% 90 

 Neisseria sp. HMSC059F02 1 5.56% 77 

 Neisseria sp. HMSC070E12 1 5.56% 95 

 Peptostreptococcaceae bacterium 

AS15 

1 5.56% 126 

 Prevotella bergensis 1 5.56% 22 

 Prevotella multisaccharivorax 1 5.56% 27 

 Propionibacterium sp. oral 

taxon192 

1 5.56% 130 

D_CCP (39 samples in total) 

166 Acetobacter orientalis 1 2.56% 20 

  Achromobacter xylosoxidans 1 2.56% 155 

  Acidipropionibacterium jensenii 1 2.56% 1 

  Acidovorax delafieldii 1 2.56% 3259 

  Acidovorax sp. CCH12-A4 2 5.13% 1282 

  Acidovorax sp. KKS102 1 2.56% 1816 
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  Acidovorax sp. NO-1 1 2.56% 959 

  Acidovorax temperans 1 2.56% 1381 

  Acinetobacter johnsonii 1 2.56% 478 

  Afipia broomeae 1 2.56% 1863 

  Anaerococcus prevotii 1 2.56% 1 

  Aquabacterium sp. NJ1 1 2.56% 2 

  Atopobium sp. BS2 1 2.56% 65 

  Bacillus azotoformans 1 2.56% 605 

  Bacillus cereus 1 2.56% 1858 

  Bacteroides pyogenes 1 2.56% 4 

  Bacteroides stercoris 1 2.56% 15 

  Bacteroides uniformis 1 2.56% 1 

  Blastococcus sp. DSM 44268 1 2.56% 1 

  Brachybacterium 

paraconglomeratum 

1 2.56% 2 

  Brachybacterium sp. 

HMSC06H03 

1 2.56% 2 

  Brachybacterium sp. sponge 1 2.56% 2 

  Brachybacterium sp. SW0106-09 1 2.56% 8 

  Bradyrhizobiaceae bacterium SG-

6C 

1 2.56% 545 

  Bradyrhizobium liaoningense 1 2.56% 2 

  Bradyrhizobium manausense 1 2.56% 1 

  Bradyrhizobium sp. 1 2.56% 1 

  Bradyrhizobium sp. CCBAU 

43298 

1 2.56% 1 

  Bradyrhizobium sp. DFCI-1 1 2.56% 2 

  Bradyrhizobium sp. WSM3983 1 2.56% 1 

  Bradyrhizobium valentinum 1 2.56% 1 

  Brevibacterium casei 4 10.26% 3585 
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  Brevibacterium sp. VCM10 1 2.56% 1 

  Brevundimonas sp. DS20 1 2.56% 1 

  Brevundimonas sp. KM4 1 2.56% 2 

  Brevundimonas sp. Leaf280 1 2.56% 1 

  Brevundimonas sp. SH203 1 2.56% 4 

  Brevundimonas vesicularis 1 2.56% 1 

  Campylobacter curvus 1 2.56% 755 

  Campylobacter sp. FOBRC14 1 2.56% 281 

  candidate division TM7 

genomosp. GTL1 

1 2.56% 1 

  Candidatus Kryptobacter 

tengchongensis 

1 2.56% 106 

  Candidatus Saccharibacteria 

bacterium 32-49-10 

1 2.56% 526 

  Candidatus Saccharibacteria 

bacterium 32-49-12 

2 5.13% 469 

  Candidatus Saccharibacteria 

bacterium 32-50-10 

2 5.13% 1904 

  Candidatus Saccharibacteria 

bacterium 32-50-13 

1 2.56% 1 

  Candidatus Saccharibacteria 

bacterium GW2011_GWC2_48_9 

2 5.13% 762 

  Candidatus Saccharibacteria 

bacterium RAAC3_TM7_1 

2 5.13% 1286 

  Caulobacter sp. CCH5-E12 1 2.56% 796 

  Caulobacter vibrioides 1 2.56% 931 

  Cloacibacterium normanense 1 2.56% 1 

  Clostridiales bacterium 

1_7_47FAA 

1 2.56% 1 

  Clostridium sp. FS41 1 2.56% 492 
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  Clostridium sulfidigenes 1 2.56% 1 

  Corynebacterium ammoniagenes 1 2.56% 1 

  Corynebacterium falsenii 1 2.56% 2 

  Corynebacterium 

pseudogenitalium 

1 2.56% 685 

  Corynebacterium sp. 

HMSC08D02 

1 2.56% 5 

  Corynebacterium sp. 

HMSC28B08 

2 5.13% 6 

  Corynebacterium urealyticum 1 2.56% 1 

  Corynebacterium variabile 1 2.56% 1 

  Cupriavidus gilardii 1 2.56% 31 

  Cupriavidus sp. HPC(L) 1 2.56% 11 

  Cutibacterium granulosum 1 2.56% 193 

  Desulfovibrio fairfieldensis 1 2.56% 38 

  Desulfovibrio sp. 3_1_syn3 1 2.56% 70 

  Desulfovibrio sp. 6_1_46AFAA 1 2.56% 32 

  Eikenella sp. NML96-A-049 1 2.56% 33 

  Enhydrobacter aerosaccus 1 2.56% 2845 

  Enterobacter cloacae 1 2.56% 1 

  Gemella sp. oral taxon 928 1 2.56% 1 

  Granulicatella sp. HMSC30F09 1 2.56% 105 

  Granulicatella sp. HMSC31F03 1 2.56% 89 

  Herbaspirillum huttiense 2 5.13% 709 

  Herbaspirillum seropedicae 1 2.56% 936 

  Herbaspirillum sp. B39 1 2.56% 962 

  Janibacter indicus 1 2.56% 1 

  Kocuria palustris 1 2.56% 2 

  Kocuria rhizophila 3 7.69% 724 

  Kocuria sp. HMSC066H03 1 2.56% 12 
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  Kocuria sp. ICS0012 1 2.56% 3 

  Lactobacillus casei 1 2.56% 124 

  Lactobacillus crispatus 1 2.56% 221 

  Lactobacillus gasseri 1 2.56% 334 

  Lactobacillus oris 1 2.56% 749 

  Lactobacillus paracasei 1 2.56% 208 

  Lactobacillus rhamnosus 1 2.56% 864 

  Lactobacillus sakei 1 2.56% 526 

  Lactobacillus salivarius 1 2.56% 396 

  Lactobacillus vaginalis 1 2.56% 320 

  Leuconostoc mesenteroides 1 2.56% 734 

  Leuconostoc sp. DORA_2 1 2.56% 1 

  Methylobacterium sp. 77 1 2.56% 963 

  Methylobacterium sp. ap11 1 2.56% 1 

  Methylobacterium sp. Leaf123 2 5.13% 4 

  Methylobacterium sp. Leaf456 1 2.56% 924 

  Methylobacterium sp. Leaf90 1 2.56% 1 

  Methylobacterium sp. MB200 3 7.69% 2855 

  Methylobacterium sp. UNCCL110 1 2.56% 1 

  Methylobacterium sp. yr596 1 2.56% 8 

  Methylobacterium variabile 1 2.56% 2 

  Micrococcus luteus 4 10.26% 594 

  Micrococcus lylae 1 2.56% 1 

  Moraxella osloensis 1 2.56% 1390 

  Mycobacterium chelonae 1 2.56% 793 

  Mycobacterium gordonae 1 2.56% 1525 

  Mycobacterium mucogenicum 1 2.56% 593 

  Mycobacterium sp. Root135 1 2.56% 1 

  Mycobacterium szulgai 1 2.56% 3 

  Neisseria sp. HMSC055H02 1 2.56% 213 
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  Neisseria sp. HMSC074B07 1 2.56% 36 

  Paracoccus sp. 228 2 5.13% 711 

  Paracoccus tibetensis 1 2.56% 53 

  Peptoniphilus sp. oral taxon 386 1 2.56% 3 

  Porphyromonadaceae bacterium 

COT-184 OH4590 

1 2.56% 2 

  Porphyromonas cangingivalis 2 5.13% 3 

  Prevotella amnii 6 15.38% 595 

  Prevotella aurantiaca 7 17.95% 2413 

  Prevotella copri 1 2.56% 1 

  Prevotella jejuni 2 5.13% 278 

  Propionibacterium sp. CC003-

HC2 

1 2.56% 2 

  Propionibacterium sp. KPL1844 1 2.56% 144 

  Pseudoalteromonas luteoviolacea 2 5.13% 8 

  Pseudomonas fluorescens 1 2.56% 2 

  Pseudomonas sp. CB1 1 2.56% 16 

  Pseudomonas sp. FSL W5-0203 1 2.56% 1 

  Pseudomonas syringae 2 5.13% 5 

  Pseudonocardia sp. 73-21 1 2.56% 2 

  Psychrobacter cibarius 1 2.56% 2 

  Rhodobacter sphaeroides 1 2.56% 181 

  Rhodopseudomonas 

pseudopalustris 

1 2.56% 1 

  Rudaea cellulosilytica 1 2.56% 1 

  Schwartzia succinivorans 1 2.56% 17 

  Shewanella decolorationis 1 2.56% 1182 

  Sphingobium lucknowense 1 2.56% 1 

  Sphingobium sp. C100 1 2.56% 2 

  Sphingomonas hankookensis 1 2.56% 2 
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  Sphingomonas sp. 67-36 2 5.13% 858 

  Sphingomonas sp. CCH9-F2 2 5.13% 5175 

  Sphingomonas sp. Leaf10 1 2.56% 1 

  Sphingomonas sp. Leaf23 1 2.56% 2 

  Sphingomonas sp. Leaf257 1 2.56% 1 

  Sphingomonas sp. OV641 1 2.56% 1 

  Staphylococcus capitis 1 2.56% 1 

  Staphylococcus epidermidis 6 15.38% 1324 

  Staphylococcus saccharolyticus 1 2.56% 1 

  Stenotrophomonas sp. 

HMSC10F06 

1 2.56% 864 

  Streptococcus massiliensis 1 2.56% 182 

  Streptococcus peroris 1 2.56% 374 

  Streptococcus sp. 263_SSPC 1 2.56% 389 

  Streptococcus sp. AS14 1 2.56% 55 

  Streptococcus sp. CCH8-G7 1 2.56% 28 

  Streptococcus sp. CM6 1 2.56% 53 

  Streptococcus sp. HMSC056D07 1 2.56% 1 

  Streptococcus sp. HMSC071D03 1 2.56% 1 

  Streptococcus sp. HMSC34B10 1 2.56% 356 

  Streptococcus sp. oral taxon 056 1 2.56% 768 

  Streptococcus sp. SR1 1 2.56% 63 

  Streptococcus suis 1 2.56% 2 

  Tepidiphilus margaritifer 1 2.56% 1360 

  Tepidiphilus thermophilus 1 2.56% 3165 

  Tissierella praeacuta 3 7.69% 542 

  Treponema porcinum 1 2.56% 25 

  uncultured bacterium 1 2.56% 13 

  Veillonella sp. 

DORA_B_18_19_23 

2 5.13% 72 
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  Veillonella sp. oral taxon 158 2 5.13% 49 

D_NORA (16 samples in total) 

22 Alishewanella agri 1 6.25% 2 

  Alishewanella jeotgali 1 6.25% 2 

  Bacillus pseudomycoides 1 6.25% 2 

  Bacteroides vulgatus 1 6.25% 2 

  Bilophila sp. 4_1_30 1 6.25% 150 

  Bilophila wadsworthia 1 6.25% 135 

  Methylobacterium gossipiicola 1 6.25% 2 

  Methylobacterium platani 1 6.25% 2 

  Methylobacterium sp. B34 1 6.25% 4 

  Methylobacterium sp. C1 1 6.25% 2 

  Methylobacterium sp. Leaf125 1 6.25% 3 

  Methylobacterium sp. Leaf361 1 6.25% 3 

  Neisseria sp. HMSC077D05 1 6.25% 160 

  Porphyromonas sp. COT-052 

OH4946 

1 6.25% 60 

  Prevotella shahii 1 6.25% 3 

  Prevotella timonensis 1 6.25% 3 

  Pseudomonas psychrotolerans 1 6.25% 47 

  Streptococcus sp. HMSC066F01 1 6.25% 49 

  Tessaracoccus flavescens 1 6.25% 2 

  Tessaracoccus flavus 1 6.25% 2 

  Treponema phagedenis 1 6.25% 2 

  Verrucomicrobia bacterium 

IMCC26134 

2 12.50% 45 

D_RA (7 samples in total) 

29 Acidaminococcus sp. CAG:917 1 14.29% 2 

  Actinomyces graevenitzii 1 14.29% 454 

  Actinomyces radicidentis 1 14.29% 2 
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  Actinomyces sp. HPA0247 1 14.29% 229 

  Actinomyces sp. pika_113 1 14.29% 2 

  Bacteroides sp. CAG:709 1 14.29% 2 

  Cellulomonas sp. HZM 1 14.29% 1 

  Corynebacterium provencense 1 14.29% 1 

  Cryptobacterium curtum 1 14.29% 44 

  Cyanothece sp. CCY0110 1 14.29% 1 

  Dermacoccus sp. Ellin185 1 14.29% 2 

  Gallionellales bacterium 

RBG_16_56_9 

1 14.29% 2 

  Gramella forsetii 1 14.29% 1 

  Isoptericola variabilis 1 14.29% 93 

  Leptotrichia goodfellowii 1 14.29% 2 

  Moorella glycerini 1 14.29% 1 

  Moritella viscosa 1 14.29% 6 

  Olsenella sp. DNF00959 1 14.29% 1 

  Paenibacillus sp. FSL H8-0259 1 14.29% 1 

  Paenibacillus sp. St-s 1 14.29% 1 

  Propionibacterium freudenreichii 1 14.29% 1 

  Rhodococcus wratislaviensis 1 14.29% 2 

  Simonsiella muelleri 1 14.29% 2 

  Streptococcus sp. C150 1 14.29% 1 

  Streptococcus sp. HSISM1 1 14.29% 73 

  Veillonella sp. ACP1 1 14.29% 105 

  Veillonella sp. HPA0037 1 14.29% 68 

  Veillonella sp. ICM51a 1 14.29% 73 

  Xanthomonas citri 1 14.29% 2 
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C 7 List of core species (> 50% prevalence, > 0.2% relative abundance) of each 

group in periodontally healthy sites 

Groups Numbers of species Species 

 HC, CCP, NORA, RA 17 Prevotella nigrescens 

  Actinomyces massiliensis 

  Actinomyces oris 

  Actinomyces viscosus 

  Actinomyces naeslundii 

  Fusobacterium nucleatum 

  Actinomyces dentalis 

  Actinomyces israelii 

  Rothia dentocariosa 

  Actinomyces gerencseriae 

  Actinomyces sp. oral taxon 414 

  Actinomyces sp. oral taxon 175 

  Streptococcus pneumoniae 

  Streptococcus sanguinis 

  Tannerella forsythia 

  Corynebacterium matruchotii 

  Actinomyces sp. oral taxon 171 

HC, CCP, NORA 2 Streptococcus oralis 

  Pseudopropionibacterium 

propionicum 

HC, CCP, RA 6 Olsenella sp. oral taxon 807 

  Actinomyces sp. oral taxon 170 

  Treponema medium 

  Bacteroidetes oral taxon 274 

  Veillonella parvula 

  Campylobacter gracilis 

HC, NORA, RA 1 Actinobaculum sp. oral taxon 183 
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HC,  CCP 3 Capnocytophaga ochracea 

  Treponema socranskii 

  Prevotella oris 

HC, NORA 1 Actinomyces sp. HMSC08A09 

HC, RA 3 Actinomyces johnsonii 

  Tannerella sp. oral taxon HOT-286 

  Actinomyces sp. oral taxon 448 

CCP, RA 2 Treponema denticola 

  Veillonella dispar 

HC 3 Prevotella denticola 

  Streptococcus mitis 

  Actinomyces sp. oral taxon 849 

CCP 5 Prevotella sp. oral taxon 317 

  Campylobacter showae 

  Campylobacter rectus 

  Selenomonas sp. CM52 

  Treponema vincentii 

NORA 1 Porphyromonas gingivalis 

RA 4 Bradyrhizobium sp. BTAi1 

  Candidatus Bacteroides 

periocalifornicus 

  Alloprevotella tannerae 

  Porphyromonas endodontalis 
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C 8 List of core species (> 50% prevalence, > 0.2% relative abundance) of each 

group in periodontally diseased sites 

Groups number of 

species 

Species 

HC, CCP, NORA, RA 25 Prevotella nigrescens 

  Candidatus Bacteroides periocalifornicus 

  Olsenella sp. oral taxon 807 

  Actinomyces massiliensis 

  Actinomyces sp. oral taxon 448 

  Actinomyces oris 

  Actinomyces viscosus 

  Actinomyces naeslundii 

  Fusobacterium nucleatum 

  Treponema medium 

  Actinomyces dentalis 

  Bacteroidetes oral taxon 274 

  Actinomyces israelii 

  Rothia dentocariosa 

  Prevotella pleuritidis 

  Treponema denticola 

  Actinomyces sp. oral taxon 414 

  Actinomyces gerencseriae 

  Actinomyces sp. oral taxon 175 

  Treponema socranskii 

  Corynebacterium matruchotii 

  Alloprevotella tannerae 

  Tannerella forsythia 

  Prevotella oris 

  Campylobacter gracilis 

HC, CCP, NORA 1 Campylobacter showae 
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HC, CCP, RA 13 Prevotella denticola 

  Treponema maltophilum 

  Treponema lecithinolyticum 

  Fretibacterium fastidiosum 

  Campylobacter rectus 

  Capnocytophaga ochracea 

  Selenomonas sputigena 

  Selenomonas sp. CM52 

  Parvimonas micra 

  [Eubacterium] brachy 

  Porphyromonas endodontalis 

  Treponema vincentii 

  Treponema sp. OMZ 838 

HC, NORA, RA 2 Prevotella sp. oral taxon 317 

  Actinobaculum sp. oral taxon 183 

HC, CCP 1 Tannerella sp. oral taxon HOT-286 

HC, NORA 2 Actinomyces sp. oral taxon 171 

  Pseudopropionibacterium propionicum 

HC, RA 1 Dialister invisus CAG:218 

CCP, RA 2 Filifactor alocis 

  Veillonella parvula 

NORA, RA 1 Streptococcus oralis 

HC 3 Prevotella sp. HMSC073D09 

  Mogibacterium sp. CM50 

  Prevotella conceptionensis 

CCP 2 Bradyrhizobium sp. BTAi1 

  Prevotella intermedia 

NORA 6 Actinomyces sp. HMSC08A09 

  Cardiobacterium hominis 

  Streptococcus mitis 
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  Streptococcus pneumoniae 

  Porphyromonas gingivalis 

  Streptococcus sanguinis 

RA 4 Selenomonas noxia 

  Kingella oralis 

  Oribacterium sp. oral taxon 078 

  Leptotrichia wadei 
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C 9 Bacterial genera associated with different groups in periodontally healthy 

site samples from individuals without periodontitis 

Group * Genera # Corrected P 

CCP Mogibacterium 0.0277 

NORA Cardiobacterium 0.0277 

 Methylobacterium 0.0080 

 Sphingomonas 0.0394 

RA Achromobacter 0.0471 

 Bacillus 0.0316 

 Bradyrhizobium 0.0394 

 Delftia 0.0471 

 Escherichia 0.0394 

 Staphylococcus 0.0199 

 Stenotrophomonas 0.0471 

*: Genera with significantly higher relative abundance between groups were investigated by using the 
permutation test (one-sided signassoc function, R). 
#: Sidak’s correction was applied for multiple testing 
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C 10 Uniquely detected species in HC, CCP, NORA and RA groups in 
periodontally healthy sites samples from individuals without periodontitis. 

 
Number 

of unique 

species 

Species Number of 

infected 

samples 

%Prevalence Total 

counts 

HC (19 samples) 

23 [Eubacterium] sulci 1 5.26 26 

 Actinomyces cardiffensis 1 5.26 674 

 Granulicatella elegans 1 5.26 106 

 Haemophilus haemolyticus 2 10.53 436 

 Haemophilus sp. HMSC068C11 1 5.26 72 

 Haemophilus sp. HMSC61B11 1 5.26 42 

 Micrococcus luteus 1 5.26 12 

 Mogibacterium pumilum 2 10.53 456 

 Neisseria cinerea 2 10.53 387 

 Neisseria polysaccharea 1 5.26 39 

 Nitrincola lacisaponensis 1 5.26 78 

 Paracoccus sp. 228 1 5.26 198 

 Paracoccus sp. PAMC 22219 1 5.26 67 

 Paracoccus sp. S4493 1 5.26 38 

 Propionibacterium sp. 409-HC1 1 5.26 15 

 Propionibacterium sp. 434-HC2 1 5.26 20 

 Rhodopseudomonas palustris 2 10.53 50 

 Selenomonas ruminantium 1 5.26 18 

 Slackia exigua 3 15.79 650 

 Streptococcus sp. CCH8-G7 1 5.26 123 

 Streptococcus sp. NLAE-zl-C503 1 5.26 58 

 Streptococcus sp. oral taxon 058 2 10.53 134 

 Verrucomicrobia bacterium 

IMCC26134 

2 10.53 126 
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CCP (13 samples)   

60 Actinomyces graevenitzii 1 7.69 8 

 Actinomyces sp. ICM54 1 7.69 108 

 Afipia broomeae 1 7.69 6 

 Aggregatibacter 

actinomycetemcomitans 

2 15.38 1632 

 Bifidobacterium adolescentis 1 7.69 7 

 Bifidobacterium longum 1 7.69 8 

 Bifidobacterium moukalabense 1 7.69 7 

 Bifidobacterium sp. MSTE12 2 15.38 125 

 Bradyrhizobium liaoningense 1 7.69 9 

 Bradyrhizobium sp. 1 7.69 8 

 Eikenella sp. NML080894 1 7.69 81 

 Eikenella sp. NML99-0057 1 7.69 81 

 Lactobacillus casei 1 7.69 48 

 Lactobacillus fermentum 1 7.69 161 

 Lactobacillus gasseri 1 7.69 1760 

 Lactobacillus johnsonii 1 7.69 59 

 Lactobacillus paracasei 1 7.69 68 

 Lactobacillus rhamnosus 1 7.69 897 

 Lactobacillus salivarius 1 7.69 1923 

 Lactobacillus vaginalis 1 7.69 321 

 Neisseria sp. HMSC03D10 1 7.69 13 

 Neisseria sp. HMSC055H02 1 7.69 22 

 Neisseria sp. HMSC056A03 1 7.69 40 

 Neisseria sp. HMSC064E01 1 7.69 34 

 Neisseria sp. HMSC065D04 1 7.69 83 

 Neisseria sp. HMSC068C04 1 7.69 33 

 Neisseria sp. HMSC069H12 1 7.69 27 

 Neisseria sp. HMSC06F02 1 7.69 31 
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 Neisseria sp. HMSC072F04 1 7.69 17 

 Neisseria sp. HMSC074B07 1 7.69 43 

 Neisseria sp. HMSC077D05 2 15.38 182 

 Neisseria sp. HMSC15C08 1 7.69 15 

 Neisseria sp. HMSC70E02 1 7.69 72 

 Neisseria subflava 1 7.69 24 

 Paraprevotella clara CAG:116 1 7.69 8 

 Peptostreptococcaceae 

bacterium oral taxon 113 

1 7.69 6 

 Porphyromonas gulae 2 15.38 40 

 Prevotella bryantii 1 7.69 8 

 Prevotella jejuni 1 7.69 43 

 Prevotella shahii 1 7.69 21 

 Prevotella sp. C561 1 7.69 98 

 Prevotella sp. KH2C16 1 7.69 13 

 Prevotella sp. oral taxon 306 2 15.38 297 

 Pseudoramibacter alactolyticus 1 7.69 53 

 Pyramidobacter piscolens 1 7.69 17 

 Rhodobacter sphaeroides 1 7.69 64 

 Selenomonas sp. F0473 1 7.69 1110 

 Selenomonas sp. oral taxon 136 1 7.69 58 

 Selenomonas sp. oral taxon 478 1 7.69 99 

 Streptococcus downei 1 7.69 28 

 Streptococcus sobrinus 1 7.69 435 

 Streptococcus sp. 263_SSPC 1 7.69 56 

 Thioflexothrix psekupsii 1 7.69 6 

 uncultured bacterium 1 7.69 22 

 Veillonella sp. ACP1 1 7.69 78 

 Veillonella sp. 

DORA_B_18_19_23 

1 7.69 44 
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 Veillonella sp. HPA0037 1 7.69 48 

 Veillonella sp. ICM51a 1 7.69 59 

 Vibrio parahaemolyticus 1 7.69 6 

 Xanthomonas citri 1 7.69 7 

NORA (12 samples) 

33 Alkalibacterium thalassium 1 8.33 158 

 Fusobacterium sp. CM21 1 8.33 11 

 Halothiobacillus sp. 28-55-5 1 8.33 6 

 Methylobacterium aquaticum 1 8.33 5 

 Methylobacterium extorquens 2 16.67 40 

 Methylobacterium 

phyllosphaerae 

1 8.33 10 

 Methylobacterium 

pseudosasicola 

2 16.67 37 

 Methylobacterium salsuginis 1 8.33 5 

 Methylobacterium sp. 

285MFTsu5.1 

2 16.67 24 

 Methylobacterium sp. AMS5 1 8.33 6 

 Methylobacterium sp. ARG-1 2 16.67 45 

 Methylobacterium sp. B1 1 8.33 16 

 Methylobacterium sp. C1 1 8.33 7 

 Methylobacterium sp. Leaf361 1 8.33 5 

 Methylobacterium sp. Leaf456 1 8.33 6 

 Methylobacterium sp. 

UNC378MF 

2 16.67 44 

 Methylobacterium sp. 

UNCCL125 

1 8.33 20 

 Novosphingobium sp. Chol11 2 16.67 18 

 Olsenella profusa 1 8.33 330 
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 Peptostreptococcaceae 

bacterium AS15 

2 16.67 204 

 Prevotella aurantiaca 1 8.33 14 

 Prevotella bivia 1 8.33 12 

 Prevotella multisaccharivorax 1 8.33 21 

 Prevotella sp. HMSC077E09 1 8.33 12 

 Prevotella timonensis 1 8.33 9 

 Shuttleworthia satelles 1 8.33 9 

 Sphingomonas sp. 67-36 1 8.33 6 

 Sphingomonas sp. CCH9-F2 1 8.33 8 

 Streptococcus infantis 2 16.67 54 

 Streptococcus sp. oral taxon 056 1 8.33 244 

 Streptomyces 

purpurogeneiscleroticus 

2 16.67 42 

 Williamsia muralis 1 8.33 162 

 Williamsia sp. D3 1 8.33 151 

RA (8 samples) 

30 Aerococcus sp. HMSC23C02 1 12.50 140 

 Aeromicrobium sp. Leaf245 1 12.50 203 

 Aeromicrobium sp. Leaf272 1 12.50 50 

 Bacillus azotoformans 1 12.50 1464 

 Beggiatoa sp. PS 1 12.50 139 

 Candidatus Saccharibacteria 

bacterium RAAC3_TM7_1 

1 12.50 2 

 Cloacibacterium normanense 1 12.50 120 

 Clostridioides difficile 2 25.00 371 

 Delftia acidovorans 2 25.00 113 

 Enterococcus casseliflavus 1 12.50 221 

 Janibacter indicus 1 12.50 175 

 Klebsiella aerogenes 1 12.50 174 
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 Lactobacillus brevis 1 12.50 2 

 Leuconostoc mesenteroides 1 12.50 130 

 Pedobacter panaciterrae 1 12.50 2 

 Porphyromonas sp. CAG:1061 1 12.50 1 

 Porphyromonas uenonis 1 12.50 1 

 Prevotella sp. AGR2160 1 12.50 1 

 Prevotella sp. CAG:1058 1 12.50 1 

 Prevotella sp. oral taxon 299 1 12.50 100 

 Prevotellaceae bacterium 

HUN156 

1 12.50 1 

 Proteiniphilum acetatigenes 1 12.50 121 

 Pseudomonas mendocina 1 12.50 103 

 Pseudomonas syringae 1 12.50 118 

 Sanguibacteroides justesenii 1 12.50 227 

 Solibacillus silvestris 1 12.50 185 

 Staphylococcus epidermidis 1 12.50 10 

 Streptococcus dysgalactiae 1 12.50 170 

 Streptococcus sp. GMD6S 1 12.50 118 

 Vibrio cholerae 1 12.50 1 
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