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Abstract 

Pairing of cancer genome and transcriptome data has revealed that heterozygous mutations 

aren’t always expressed in cells. The potential for point mutation or genomic rearrangement to 

alter tumour allelic expression has implications for understanding cellular heterogeneity and 

application of treatments. Mutation of SPOP, PTEN and IDH-1 was assessed in 51 primary prostate 

cancer cultures to establish allelic heterozygosity and ascertain whether oncogenic change to 

coding regions altered allelic expression. No mutations were detected in the three genes, 

although 18% of tested cultures had loss of heterozygosity in PTEN. The TMPRSS2-ERG fusion, 

present in half of all prostate cancers, is selectively expressed at an allelic level by cancer stem 

cells. Monoallelic expression didn’t correlate with TMPRSS2 promoter hypermethylation. Prostate 

cultures expressed fusion transcript, however epigenetic features of monoallelically expressed 

genes were not investigated in the epithelial subpopulations. Understanding of allelic chromatin 

states may inform treatment strategies that permit tumour suppressor expression or oncogenic 

protein repression. 

Inability to predict indolent or aggressive progression of organ-confined prostate cancers has 

created the problem of surgical overtreatment. Focal therapies targeting the tumour core are 

being met with increasing rates of recurrence, necessitating development of novel treatments. 

The anti-cancer properties of Low Temperature Plasma (LTP) are being explored in prostate 

models where it produces autophagy and necrosis through generation of reactive species. Initial 

gene expression response to LTP and the activation of upstream transcription factors were 

analysed. LTP activated Nrf2, AP-1 and Notch signalling in patient matched prostate normal and 

cancer cultures. The progenitor-containing cell fraction was more responsive to LTP than 

differentiated epithelial cells in both transcription of response genes and nuclear accumulation of 

active Notch1. When linked to cell-fate outcomes, these immediate molecular responses of 

prostate cancer to LTP could be used as hallmarks of resistance or treatment efficacy in patients. 
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1.1 - The Prostate; Anatomy and Cellular Hierarchy  

1.1.1 – Prostate Anatomy 

Situated below the bladder, the prostate is a walnut sized organ that surrounds the descending 

urethra (Figure 1). In the adult male, the prostate is an accessory sex organ that secretes 

proteolytic fluid into the ejaculatory duct. This exocrine exudation contains classical markers of 

the luminal epithelial cell population such as prostatic acid phosphatase (PAP) and prostate 

specific antigen (PSA), alongside proteases and nutrients that afford sperm greater motility. The 

alkaline nature of the fluid neutralises the acidic environment of the vaginal canal to increase 

sperm viability (1).  

The prostate itself is made up of distinct heterogeneous tissues surrounded by a vascularised 

stromal capsule. Four separate prostatic zones have been classified (Figure 1); 

• Peripheral Zone (PZ) – makes up ~70% of the glandular prostate and is situated at the 

posterior of the gland. This is the region where prostatic intraepithelial neoplasia (PIN), 

(the supposed precursor to cancer) and the majority of adenocarcinomas form. 

• Central Zone (CZ) – ~25% of the glandular prostate tissue. The CZ surrounds the vesicular 

seminalis ductal tube to where it meets the urethra (verumontanum). This section of the 

prostate is rarely implicated in disease with ~3% of tumours originating in the CZ (2). 

• Transitional Zone (TZ) – constitutes ~5% of the glandular prostate and is found at the 

anterior of the gland. It surrounds the transitional urethra, immediately below the 

bladder. This region continually grows in a hormone dependent manner and is the tissue 

in which benign prostatic hyperplasia (BPH) arises. Population studies have indicated that 

~25% of prostate cancers initiate in this zone of tissue (3). 

• Anterior Zone (AZ) - lacks any glandular structure and consists of fibromuscular stroma (1, 

4). 

1.1.2 – Prostate Development 

The generation of this anatomically complex organ begins with coordinated tissue development 

from the urogenital sinus (UGS) in a process called branching morphogenesis. Here, epithelial 

buds from the UGS invade the surrounding mesenchyme with subsequent elongation and 

branching, forming the epithelial ducts and acini of the adult prostate (5). 
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FIGURE 1 – Zonal anatomy and situation of the prostate 

The prostate is situated directly below the male bladder, and surrounds both the descending 

urethra and the junction with the ejaculatory duct from the seminal vesicles. The human prostate 

can be divided into four zones; peripheral (PZ), central (CZ), transitional (TZ) and anterior (AZ). 
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Morphogenesis proceeds through paired differentiation of the UGM (mesenchyme) and UGE 

(epithelia). This occurs upon contact and in conjunction with the seminal vesicle epithelia and 

mesenchyme (6). 

Initial development of the prostate is hormone dependent (7). Transduction of proliferative 

signalling through binding of androgens to the androgen receptor (AR) is well characterised in the 

somatic luminal cells of the prostate, however AR also plays a role in early prostatic development. 

Both the UGM and UGE are AR+ yet only the mesenchymal component requires the nuclear 

receptor for synchronous development of both tissues into the characteristic acinar structure. 

This suggests that an enforced paracrine signalling loop is established which transmits the 

downstream proliferative effects of AR from the mesenchyme to the epithelium (8, 9). The UGE 

progresses into the hierarchal basal and luminal epithelia whilst the UGM forms the surrounding 

stromal capsule of smooth muscle cells and fibroblasts (10). It would be reasonable to 

hypothesise that due to the distinct nature and phenotype of the UGM and UGE, both tissues 

have separate stem cell populations which are heavily involved in the early stages of branching 

morphogenesis.  

The initial surge of androgens in the neonatal prostate mirrors that of pubescent hormone levels 

in the organ, and has the effect of “imprinting” a proliferative response to androgens. 

Consequently this may explain the androgen-dependence of early cancers in the adult prostate. 

Imprinting effects have also been shown with estrogens. In the early prostate; variance in 

estrogen levels have long term consequences on both adult organ size and function (5). Estrogen 

receptor (ER) expression in the early prostate follows after the initial spike in AR levels. This 

transient ER peak temporally coincides with a rise in the levels of progesterone (PR) and retinoid 

receptors (RAR/RXR) hinting at a hormonal switch in development. Exposure of rat prostate to 

estrogen caused down-regulation of genes that promote epithelial differentiation. Among these 

were the homeobox genes; NKX3.1 and HOXB13, as well as SHH (sonic hedgehog) and FGF-10 

(fibroblast growth factor). Elevated neonatal estrogen also maintained anti-proliferative BMP4 

levels. Typically, expression of BMP4 becomes reduced in the post-natal prostate to allow for 

branching morphogenesis (11). Hormonal control of organ development is thus extremely 

important, with imprinting of the tissue influencing latter malignancy.  

To understand prostate cancer aetiology and development it is first necessary to understand the 

cellular components and the hierarchical organisation of the glandular prostate epithelium. 
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1.1.3 - Cells of the Prostate 

The glandular prostate of transitional, peripheral and central zones is further organised into 

bundles of exocrine acini. These structures are composed of stroma and epithelium separated by 

the basement membrane (BM). This is a complex mesh of cellular adhesion molecules (CAMs) and 

structural proteins including; collagen IV, laminin and heparin sulphate proteoglycans (12, 13). 

The stroma originates from the UGM and is composed of smooth muscle cells, myo-fibroblasts 

and fibroblasts (Figure 2F). These cells aid epithelial growth and differentiation through androgen-

dependent expression of a range of growth factors (GFs) including; epidermal (EGF), insulin-like 

(IGF1), platelet-derived (PDGF) and vascular endothelial (VEGF) (14). The composition of stromal 

cell-types is altered in malignancy, with almost complete loss of smooth muscle (15). In prostate 

cancer, the stroma exhibits genetic instability alongside aberrant epigenetic regulation of genes 

involved in stress response and cellular growth (16-18).  

The prostate epithelium itself contains 3 cell types; neuroendocrine, secretory luminal and 

undifferentiated basal cells. The latter two are organised into distinct luminal and basal layers 

(Figure 2A-D). These cells are classically characterised by immunophenotypic markers such as 

cytokeratins (CK), with the normal prostate showing a 60:40 luminal to basal cell ratio (Figure 

2G)(19). 

Luminal cells are the largest cellular population in the prostate and are terminally differentiated, 

existing in a state of senescence. They function as secretory cells that exocytose PSA and PAP into 

the prostatic ducts. Classic luminal cytokeratin markers are CK8 and CK18, and these cells also 

express AR, CD24, CD57 and ALOX15B (Figure 2D)(20, 21). Luminal hyperplasia results in the 

precursor lesion PIN, and a continued expansion of this epithelial layer in cancer skews the 

epithelial hierarchy to a stage where the tumour cell population is typically ~99% luminal (22). 

These cells are dependent upon androgens for survival. 

Neuroendocrine cells are the other terminally differentiated cell-type in the adult prostate and 

exist scattered throughout the epithelium. Cellular function is unclear but they canonically lack AR 

and are identified through staining for chromogranin A (23). Expression of another marker; 

neuropeptide Y, which is thought to promote angiogenesis through mitogen activated protein 

kinases (MAPKs), has been used to show increased numbers of neuroendocrine cells in tumours. 

The enrichment of this cell-type suggests a role in cancer progression, supported by findings that 

the cells also secrete VEGF, another angiogenic protein (24, 25). These neuroendrocrine or 

anaplastic prostate cancers arise in late-stage disease. They are innately castrate resistant due to 

the cells lacking AR, and are therefore androgen-independent pre-ablation therapy (Figure 

2E)(26). Androgen blockade may therefore select for the neuroendocrine lineage or development 
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of this neuroendocrine phenotype from the resistant cells could be a reflexive adaptation 

following treatment (27). 



20 

 

FIGURE 2 - Organisation of the normal prostate epithelium 

A-F) The cell populations of the prostate, with identifying immunophenotypic markers (13, 20, 21, 

23, 28). G) Constituent representation of the prostate epithelial cells in a normal gland. H) 

Diagrammatic schematic of a normal acinus with epithelial bilayer surrounded by fibromuscular 

stroma.   



21 

 

The basal cellular compartment is heterogeneous and contains several distinct populations 

(Figure 2A-C). Canonical basal cell markers include; CK5, CK14, p63, CD44 and Bcl-2 (29). These 

cells adhere to the BM as their name suggests and contain ~70% of total proliferating cells in the 

prostate (30). This, along with other compelling evidence, suggests that the adult epithelial stem 

cells reside in the basal layer of the human prostate. Prospective populations of these stem cells 

(SC) (CD133+ α2β1
hi AR-), alongside transit amplifying (TA) (CD133- α2β1

hi AR+) and committed basal 

(CB) cells (CD44+ α2β1
lo ARlo) have been identified within this monolayer (13, 20, 28). Low levels of 

AR protein have been observed in the CD133+ population (31), yet this report conflicts with work 

in which no AR transcript or protein were detectable in the epithelial stem cells (13). Basal 

populations can focally express other hormonal nuclear receptors such as ER and PR that aid the 

androgen independence of the epithelial layer (32). 

Other groups have also identified markers that define prostate epithelial stem cells and cancerous 

equivalents. CD166/ALCAM is found to enrich for murine progenitors (33) and enhances 

metastatic potential in end-stage disease (34). Like CD166, ALDH1 was initially identified as a 

marker for murine prostate stem populations (both normal and cancerous) (35) and has been 

significantly associated with human prostate cancer through large patient cohort studies (36, 37). 

1.1.4 - Prostate Epithelial Stem Cells 

Stem cells are defined by both their ability to produce cells that are committed to separate 

lineages of differentiation and their enhanced self-renewal capacity. A single adult stem cell thus 

has the innate ability to reconstitute and populate its originating organ or cellular lineage. 

Self-renewal is the maintenance of stem cell population number whilst also generating non-stem 

daughter cells that are committed to a differentiation path, a phenomenon that occurs by 

asymmetric mitosis. Stem cells can also commit to symmetrical division to produce either two 

stem daughter or two non-stem daughter cells, (Figure 3) (38) allowing for expansion or deletion 

of the stem cell pool respectively.  
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FIGURE 3 – The stem cell niche and the role it can play in division choice 

The prostate epithelial stem cell niche is likely to reside on the basement membrane in close 

proximity to the stromal compartment. Heterotypic signalling in this environment is likely to 

determine self-renewal decisions.   
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Replication choice is dependent upon both intrinsic and niche-related factors. Intrinsic effectors 

that govern stem cell asymmetric division include transcription factors (such as Notch, Hedgehog 

and Wnt) and other cellular proteins/nucleic acids within the progenitors themselves that 

produce asymmetric accumulation of fate determining polypeptides and mRNA transcripts that 

subsequently promote asymmetric division (38, 39). 

The niche or microenvironment is the cocktail of GFs and cellular contacts that surround a stem 

cell (Figure 3). In the prostate, the niche is probably situated on the basement membrane of acini 

due to high stem cell expression of α2β1 integrin that binds collagen (40, 41). This positions the 

stem cells in close proximity to the underlying stromal compartment that through heterotypic 

signalling may play an important role in stem cell self-renewal choices. TGFβ and Wnt are 

examples of ligands that are consistently present in niches that self-renew tissues through stem 

cell asymmetric division and are seen to be dysregulated in prostate cancer to promote 

tumourigenesis (38, 42). Cell surface molecules are the other determining extrinsic factor that 

governs division choice. An example of this would be Notch signalling; Numb regulation of Notch 

receptors facilitates exclusive formation of asymmetric contacts to promote self-renewal of the 

stem cell (43).  

Adult or somatic stem cells are found in all tissues where they have an important role in 

population homeostasis and in situations of wound healing or tissue replacement (38). 

Haematopoietic stem cells are the most studied of these somatic populations and are well 

characterised, (CD34+ Lin- CD38+) giving rise to the myeloid and lymphoid lineages of the blood 

(44, 45). Adult stem cells have a number of defining features. They exist as a minute 

subpopulation in the tissue, situated in a specific niche. They have a large nuclear to cytoplasmic 

ratio, are structurally unspecialised with few organelles, are slow cycling yet have a rapid (and 

inducible) proliferative ability and give rise to a population of TA cells that proliferate clonally to 

ultimately yield a terminally differentiated cell population (46). Stem cells of epithelial tissues, 

such as the prostate, are characterised by a heightened in vitro and in vivo proliferative capacity 

and exist within a well-protected niche that is in contact with a mesenchymal compartment (46). 

 The case for a basally situated prostate epithelial stem cell pool began with the androgen 

depletion and replacement experiments in the rat prostate performed in the 1980s. Here, 

castration caused apoptosis of the androgen-dependent luminal cells whilst leaving an intact basal 

layer. Re-introduction of androgen at a later stage caused regeneration of the luminal cell layer 

(47). This lead to the hypothesis of a basal stem cell that produces an androgen-responsive TA 

population capable of self-expansion and reproduction of the terminally differentiated secretory 

layer (48). The relapse of human prostate cancer after hormonal castration by androgen 

deprivation therapy (ADT) mirrors this response, and highlights the phenotypic plasticity of the 
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progenitor basal compartment. Prospective prostate epithelial stem cells were isolated from 

within the total CD44+ basal population (49) on the basis of high α2β1 integrin expression. (21, 41). 

This α2β1
hi population was later found to contain both stem and TA cell subpopulations, with 

further enrichment of stem cells achieved by selection using the CD133 marker (28, 50). 

Biochemical evidence, further supporting the initial hypothesis proposed by Isaacs and Coffey in 

1989, (48) was obtained by interrogating AR expression in these fractionated cell populations. 

Prostate epithelial stem cells were found to be AR- or ARlo, TA cells had relatively high amounts of 

the nuclear receptor whilst CB cells had low to undetectable protein levels (13). This molecular 

evidence highlights the plausibility of the original hypothesis and strongly suggests that the 

somatic stem cells of the prostate may play a more sinister role in cancer development. 

In vitro cell growth experiments also suggest a basal stem cell. Spheroid culture of prostate 

epithelial cells only permitted clonal growth from cells of a basal phenotype, characterised by 

CK5, integrin α6, CD44 and p63 expression (51). These prostaspheres lacked AR and PSA luminal 

markers and could be formed from either CD133+ or CD133- fractions. Basal epithelia are also 

easier to grow in organoid culture systems. Organoids generated from single basal cells have a 

70% growth efficiency compared to those of luminal origin. Luminal cells could only successfully 

generate organoids in 1-2% of cases (52). The stark difference in clonogenicity of the epithelial 

populations in the normal prostate is clear. However, current work does suggest that a rare 

luminal progenitor also exists in the prostate, but that its contribution to the normal epithelial 

hierarchy and, by association, the initiation of cancer is comparably negligible to that of the basal 

stem cell (52, 53). 

Lineage analysis of these cells has further supported their status at the root of the epithelial 

hierarchy in the prostate (Figure 2). One study used lineage-tracking lentiviral vectors to 

incorporate fluorescent PSA reporter genes into basal epithelial cells. These cultures were then 

stimulated to differentiate and fluorescence was observed, as expected, as the cells developed 

into secretory luminal cells (54). Other studies have used mitochondrial DNA mutations to map 

cytochrome c oxidase (COX) deficiency in prostatic acini. These mutations are reasoned to 

accumulate in stem cells and become observable through lateral clonal propagation throughout 

the acinus. This can be tracked by immunohistochemical staining of COX deficient cells through 

sequential tissue sections. Deficiency presented in all three cell types; basal, luminal and 

neuroendocrine, dictating that a common originating cell must exist within the epithelium (55). 

Further in-depth tissue sectioning of COX deficiency in prostates located multipotent basal 

progenitor cells (53). These were situated in a niche proximal to the urethra and gave rise to 

bipotent basal cells from which the mitochondrial mutation could be simultaneously inherited; 

laterally, by the basal epithelia and through differentiation, by the luminal monolayer. These 
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multipotent basal progenitors expressed high levels of Delta homolog 1, DLK, integrin α6 and 

Notch1 and could generate differentiated spheroids. Like the generation of organoid cultures 

(52), this lineage tracing approach also identified a minor population of luminal epithelial stem 

cells (53).  

Telomeres are extended sequences of hexanucleotide repeats found at the end of the 

chromosomes and buffer the loss of genetic material caused by the end-replication problem after 

every mitotic S-phase. Telomeric regions get shorter as the cell ages, causing genomic instability 

and eventually replicative cell senescence (56, 57). These repeats are maintained in the germline 

by the telomerase enzyme (TERT) which is later silenced in development. Analysis of telomere 

lengths and congruent activation of telomerase allows for tracking of cell population progression. 

In BPH, the basal stem cell population may be either bipotent or produce an early progenitor that 

can resolve down both the basal or luminal lineages. Here only the SC and TA populations have 

telomerase activation yet luminal cells have longer telomere lengths than CB cells. Progression 

down a linear route of epithelial differentiation of SC to TA, TA to CB and CB to luminal cell in this 

model does not account for this sequential loss and gain of telomere length, therefore the luminal 

cells must be produced directly from the SC or TA populations (58). 

TERT is silenced in the normal prostate epithelial subpopulations (59) including the stem cells, but 

becomes active during PIN and in the luminal cells of prostate cancers with both RNA and protein 

levels increasing in primary to metastatic disease (60, 61). The telomere lengths of cancer cells 

however are lower than that of surrounding normal tissue epithelium, (60-63) suggesting that an 

expansion of the TERT- stem cell pool occurred during tumorigenesis that resulted in telomere 

reduction of its more differentiated progeny (59). By extrapolating the findings in BPH there may 

be a root for the aberrant differentiation seen in prostate cancer. The burst of stem cell 

differentiation may “exhaust” the basal cell lineage as TERT reactivation doesn’t occur, however 

the telomere length can be maintained in the cancerous luminal cells that have active telomerase 

and thus the imbalance observed in luminal to basal epithelial populations is created (58). 
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1.2 - Disorders of the Prostate 

1.2.1 - Benign Prostatic Hyperplasia 

Normal postnatal prostatic growth occurs due to a rise in circulating testosterone levels during 

puberty, however the organ can also undergo abnormal growth later in life due to BPH; a chronic 

disease that affects the TZ of the prostate. Here hormone-dependent micronodular hyperplasia of 

the glandular and stromal tissue enlarges the TZ to constrict the descending urethra, resulting in 

lower urinary tract symptoms such as acute urinary retention. The restriction of urinary flow and 

obvious discomfort can be alleviated by transurethral resection of the prostate (TURP) where the 

tissue overgrowth is surgically removed. An increase in prostate volume due to BPH has been 

linked to elevated PSA levels, which may contribute to false positive cancer diagnoses through use 

of the canonical diagnostic test (discussed further in Section 1.4) (64). Future growth of the 

prostate in BPH can be predicted using baseline prostate volume and assessing internal prostatic 

architecture. For example; if a patient has a clearly defined TZ with an obvious stromal border, a 

larger endpoint prostatic volume can be expected (65).  

Microarray data has highlighted the divergence of BPH and cancer at the transcriptional level (66). 

The diseases are also phenotypically distinct in the fact that BPH has hyperproliferation of both 

layers of prostate epithelium rather than an exclusively luminal expansion (58, 67). 

1.2.2 - Prostatitis 

Tissue inflammation is the most common disorder of the prostate and occurs at a higher 

incidence than both BPH and cancer (68). Bacterial and viral infection, along with chemical 

exposure all cause prostatitis (69, 70). The disease can be split into four separate classes; I – acute 

bacterial prostatitis, II – chronic bacterial prostatitis, III – chronic pelvic pain syndrome, and IV – 

asymptomatic prostatitis (70). It is estimated that ~16% of US males will suffer symptomatic 

prostatitis (I-III) during their lifetime. Surprisingly, asymptomatic prostatitis is much more 

prevalent in the population and high percentages of both BPH and cancer biopsies show signs of 

surrounding tissue inflammation (70). Prostatitis, like BPH, can raise serum PSA levels - thought to 

be linked to destruction of tissue architecture causing “leakage” of the protein into the 

circulation, with levels of the antigen decreasing concordantly upon application of antibiotics (71).  

1.2.3 - Inflammatory Aetiology of Prostate Cancer 

Inflammation has been postulated as a triggering event or accelerating factor for prostate cancer 

development for many years (68, 72, 73). Inflammation, produced by an initial infection, can then 

trigger immune cell infiltration of the tissue; creating a disruptive chemical environment that can 

result in prolonged exposure of epithelial cells to a cocktail of transforming cyto- and chemokines. 
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Our lab has identified that prostate cancers do exhibit a reliance on inflammatory pathways 

centred about NF-kB, IFNGR and IL-6 signalling (66) which may have been cultivated in a situation 

not dissimilar to that described above.  

The initial (or combination of) infectious or chemical insult that triggers the cascade of 

inflammation and immune activation can come from a wide array of sources. 

Inflammation; Infectious Agents 

Many infectious organisms that produce prostatic inflammation are sexually transmitted, owing 

to the close proximity of the gland to the male genitalia. Sexually transmitted infections (STI) of 

Chlamydia trachomatis (Chlamydia), (74) Neisseria gonorrhoeae (Gonorrhoea), (75) Treponema 

pallidum (Syphilis), Herpes Simplex Virus, Human Papillomaviruses (HPV), Human Herpes Virus 

and Cytomegalovirus (76) have all been detected in prostate tissue.  

Meta-analysis linking STI data to prostate cancer has shown that past history of any STI increases 

later disease incidence. In particular, gonorrhoea infection heightens risk of malignancy 

development by 20% (77). 

Propionibacterium acnes, as the name suggests, is more commonly associated with the skin 

condition acne, (78) yet is recurrently discovered in inflamed prostate tissue (79, 80). Studies, 

both in vitro and in vivo, that position the bacterium in this prostatic niche have identified similar 

molecular activations and defects seen in human prostate tumours. Culturing the bacterium with 

the prostate epithelial cell line RPWE-1, caused activation of STAT3 and NF-kB with secretion of 

the IL-6 cytokine (81) and in a mouse model; infection stimulated epithelial hyperproliferation, 

inflammation and downregulation of  the tumour suppressor, NKX3.1 (82)(Figure 4A). 

HPV infection has been correlated with increased Gleason grading of tumours and also with lower 

survival rates (83, 84). However, several studies have also found no correlation with infection and 

many tumour tissues display absence of any genetic material attributable to the virus (85-87). This 

suggests that further studies with larger patient cohorts and sequencing depth would be required 

to ascertain the involvement of HPV in prostate cancer development.  

Another virus that has been recurrently found in the prostate is Epstein-Barr virus (EBV). This 

pathogen has historical ties to epithelial and blood cancers (88) and is proposed to collaborate 

with HPV infection to initiate prostate carcinogenesis (89). 

Human BK polyomavirus has been detected in cancer and associated proliferative inflammatory 

atrophy (PIA) lesions, suggesting a role for the virus in disease development. Interestingly the 

virulent BK T antigen can abrogate both p53 and Rb protein function (both usually intact in early 

prostate cancers (90), marking a path for non-mutagenic removal of two key tumour suppressing 
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genes by the virus (91, 92). Conversely, BK sero-positivity in patients with prostate cancer is linked 

to a reduction in rates of biochemical recurrence – meaning that presence of the virus may be a 

good prognostic factor – yet again, studies with larger sample sizes will hopefully ascertain if the 

virus plays a role in the development of prostate cancer (93)(Figure 4B). 

Deep sequencing of homogenised tissue can now identify the presence of bacterial and viral 

genetic information in prostate samples, (79) a feat only previously achievable through targeted 

PCRs – a sensitive yet blinkered approach (94-96). This opens a gateway leading to possible 

identification of new pathogenic species, that previously couldn’t be sustained in ex vivo culture, 

and any subsequent involvement in prostate carcinogenesis that they may have. 

Inflammation; Dietary Compounds 

Epidemiology has linked the increase of prostate cancer incidence in a population with high intake 

of animal fat and red meats (97, 98). The active chemicals cited to trigger carcinogenesis are 

heterocyclic amines (HCA). Supplementing the diet of rats with an HCA; 2-amino 1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP) caused spontaneous cancer formation in the breast, 

intestinal and prostate tissue of the animals (99). This HCA also increased the mutation rate in the 

rodent prostate cancers and was observed to have lobe-specific effects – similar to the high zonal 

specificity seen in human disease. The rats also had a marked progression of disease; with stages 

of PIA and PIN existing prior to full adenocarcinoma (72, 100, 101). Dietary PhIP has also been 

observed to enhance bacterial prostatitis with congruent IL-6 signalling activation and 

development of prostate cancer (102, 103). 

Dietary compounds have also been linked to a reduced risk of prostate cancer development and 

progression. These have mainly been associated through large cohort studies and include; green 

tea, (104) tomatoes (lycopenes), (105) cruciferous vegetables, (106) soy, (107) and pomegranates 

(108). Specific chemicals in these foodstuffs have been shown in isolation to halt cancer cell 

growth in vitro and protect against oxidative stress – a key mediator of inflammatory damage in 

this early stage of disease (Figure 4C). 

Inflammation; Immune Cell Infiltration 

There is also considerable evidence suggesting that tissue infiltrates of immune cells contribute 

towards BPH and cancer (68-70, 109). 
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FIGURE 4 – Factors influencing prostate inflammation in carcinogenesis.  

A) Bacterial and B) viral infections, alongside C) diet and the individual’s immune D) response all 

affect prostate inflammation and the outcome of disease initiation and progression. 
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Against initial thought, an increased number of intratumoural immune cells can, in fact, promote 

disease progression (110). T cell infiltrates of prostate tumours are regularly found to be 

“exhausted” (non-active) due to expression of the PD-1 receptor and cognate ligand PD-L1 (111). 

These infiltrates also contain a high percentage of Treg cells, suggesting further dampening of the 

T-cell directed immune response against the tumour (111, 112). Other immune cells also have 

correlative incidences with prostate tumours. An increase in tumour associated macrophages and 

B cells (113, 114) can promote disease whilst the reverse is true of Natural Killer (NK) cell numbers 

(115). B cells also contribute towards cancer cell self-renewal processes through heterotypic 

signalling; something that may be harnessed, and misappropriated, by the stem cell compartment 

of the organ in disease (116)(Figure 4D). 

Inflammation; Further Aetiological Evidence 

Suppression, by pharmacological “dampening”, of a patient’s immune system following organ 

transplant, increases the risk of prostate adenocarcinoma developing, suggesting that infectious 

agents or a lack of immune surveillance plays a role in the initiation of disease (117). Several 

studies have found that a recurrent dose of non-steroidal anti-inflammatories reduces prostate 

cancer incidence (72, 118-120) and that higher grade cancers often have inflammation in the 

surrounding normal tissue. This also provides further evidence in favour of inflammation playing a 

role in disease initiation and progression (121). 

1.2.4 - Proliferative Inflammatory Atrophy 

PIA is thought to occur as a precursor to PIN, manifesting as regenerative hyperproliferation of 

the epithelia in response to an initiating inflammatory insult. PIA is most commonly found in the 

PZ and has been seen here to merge with PIN and cancerous epithelial tissue (72, 122) – providing 

correlative evidence towards a hierarchical progression of disease (Figure 5A). Interestingly, 

similar molecular defects can be tracked across these overlaying lesions. Loss and gain of genetic 

material, commonly observed in prostate cancer, doesn’t occur in PIA lesions (123) yet there are 

several notable changes in gene expression. GSTπ1, a protector against oxidative stress, and Bcl-2, 

an apoptosis suppressor, are both upregulated whilst tumour suppressor genes commonly 

deleted in prostate cancers are downregulated (70, 124, 125). Progression of PIA to PIN is likely, 

however there is also evidence that disputes this hypothesis; a study that processed over 1000 

biopsies from 98 patients suggests that PIA has links to prostatitis yet it is unlikely the lesion 

develops into PIN based on tissue architecture and proximity (126). Further evidence is therefore 

required to ascertain if there is a true development of PIN from PIA. 
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1.2.5 - Prostatic Intraepithelial Neoplasia 

PIN is suspected to be a precancerous lesion, characterised by hyperplasia of the luminal cell 

population into the acinar lumen. It is biochemically, genetically and phenotypically similar to 

prostate adenocarcinoma, however there is no disruption of the basement membrane 

(127)(Figure 5B). Other key differences include the reduction of basal cells (still present in PIN, 

whereas in cancer the basal population is proportionally negligible) and the surrounding stromal 

tissue isn’t completely reactive (128). In PIN the relative mitotic rates of cells in the bilayer switch 

and the luminal cells become more proliferative, causing the observed hyperplasia. This 

overgrowth can present as tufting, micropapillary projection, cribiform or flat growth into the 

lumen (127). PIN is a chronic disease that has been identified in men as early as in their twenties. 

Prostate cancer foci can be detected within a decade later, with percentages of both diseases 

increasing as population cohorts grow older. This implies that prostate cancer initiates relatively 

early in men yet doesn’t present clinically until much later in life (129). Anatomically PIN, like 

cancer, occurs dominantly in the PZ and is thought to give rise to the malignant phenotype via a 

“field” effect, a hypothesis supported by common reports of high-grade PIN (hgPIN) and cancer 

tissue merging (127, 130). 

In terms of their expression profiles, PIN and cancer are significantly similar. The ETV and ERG 

gene fusions specific to prostate adenocarcinomas are foreshadowed in PIN, where the neoplasia 

presents with active transcriptional networks reliant upon the very same ETS transcription factors 

(123). A recent study exposing clonal dynamics in tissue by means of unique TMPRSS2-ERG fusion 

breakpoints observed that some hgPIN lesions were actually retrograde carcinomas that also 

harboured PTEN deletions (131). These presented, in tissue pathology, as PIN yet were actually 

cancers. In similar cases, hgPIN has been shown to harbour primary genetic defects of prostate 

cancer such as the TMPRSS2-ERG fusion, (132) SPOP mutation (133) and NKX3.1 loss (127), 

highlighting a possible hierarchy of multi-step carcinogenic development through neoplasia or 

cancer mimicry of PIN tissue patterns. 

Development of adenocarcinoma from PIN has also been assessed using temporally separated 

biopsies taken from the same patient’s prostate (134). A study of just under 800 patients that 

were diagnosed with PIN at first biopsy and then re-biopsied within a year of initial diagnosis, 

found that there was an increase in the amount of cancers sampled. However, the authors 

attributed this to the poor initial sampling of the patients i.e. the cancer was present yet 

undetected the first time, rather than a progression of PIN into carcinoma. 
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FIGURE 5 – Proposed staged progression of prostatic disease into prostate cancer. 

Disease progression, highlighting the cellular and molecular changes through A) PIA, B) PIN and C) 

Cancer.   
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1.2.6 - General Attributes of Prostate Cancer 

Prostate cancer is the most commonly diagnosed cancer in men of the United Kingdom (135). The 

prevailing risk factor for disease seems to be age, with diet and infection also thought to play 

important roles in disease aetiology. The most striking phenotypic feature of ductal carcinoma is 

the apparent breakdown of acinar tissue architecture. The skewing of epithelial cell populations 

seen in hgPIN is further exaggerated in cancer with luminal expansion, twinned with loss of basal 

cells, causing a >99% to <1% luminal-basal split (22). The BM is degraded and cells migrate into 

the reactive stroma where heterotypic signalling facilitates further invasion of the tissue (14). The 

disruption of normal acinar morphology is thought to be what leads to higher circulating levels of 

PSA, the canonical diagnostic marker of the cancer (136). 

Tissue architecture is histopathologically defined by the Gleason grading system, upon which 

patient disease can be stratified and prognostic severity estimated (128). Prostate cancer is also 

classified by the TNM (tumour, nodes, metastases) scale. T1-4 stratifies the local primary tumour 

growth and invasion, N0-3 infers level of lymph node metastases, and finally M0-1 signifying the 

presence of any distant metastases (137). Localised disease can be treated by surgical removal of 

prostate tissue, an array of focal therapies and, in advanced cases, ADT. ADT is used to target the 

AR-dependent luminal cells of the tumour to result in initial remission of the cancer (136). As 

prostate cancer is distinctly heterogeneous, treating tumours as a homogeneous collection of 

cells (as ADT does) ultimately fails as the reduced basal compartment, and possibly a small 

percentage of luminal cells that have escaped androgen dependence, can regenerate the tumour. 

Relapse of castration-resistant prostate cancer (CRPC) typically presents 12-24 months following 

hormone therapy (26). Advanced prostate cancer either rapidly metastasises following treatment 

or may have spread to secondary sites prior to hormonal therapy. This catastrophic stage of 

disease leads rapidly to patient mortality.  This end-stage disease is currently inefficiently treated 

with broad-spectrum cytotoxic chemotherapeutic drugs or second generation anti-androgens that 

extend life by a few months. All therapies at this point are palliative (26). 

1.2.7 - Prostate Cancer Epidemiology  

In the United Kingdom and United States, prostate cancer has the greatest annual incidence of 

diagnosis in males, accounting for approximately 1 in 4 male cancer cases (138). The most up to 

date figures in the UK state that there were around 47,000 new diagnoses of disease in 2014 

(138). It is also the second most common cause of male cancer death in both countries with just 

over 11,000 mortalities in the UK and 30,000 in the USA (139). Age is the major obvious risk 

factor; over 50% of cases are diagnosed after the age of 70 (138)(Figure 6). 
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FIGURE 6 – Age as a disease risk-factor in prostate cancer 

Data from 2012-2014 compiled by CRUK indicating peak incidence of disease in 65-70yr old men 

and >50% diagnoses coming after 70yrs of age. http://www.cancerresearchuk.org/health-

professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/incidence#heading-One  
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Familial prostate cancer accounts for 10-20% of population cases. It is defined in a family that has 

disease incidence in two first-degree relatives (father, brother or son) or in one first-degree and at 

least 2 second-degree relatives (uncle, cousin, nephew, half-brother) (140). 

Hereditary prostate cancer has stricter criteria than that of familial cases; 

1. Prostate cancer in three or more first-degree relatives  

2. Prostate cancer in three consecutive generations 

3. Early diagnosis of prostate cancer (~50 years old) in two siblings (140) 

It is notable that, whilst not fully understood, there is a racial predisposition to prostate cancer 

with Asian men having the lowest rick of mortality from disease and African-Americans, the 

highest (141-143). 

Aside from genetic factors, other compelling epidemiological evidence highlights that 

environmental factors also significantly contribute towards disease. As previously mentioned, the 

incidence of prostate cancer in the Asian population is lower than that observed in Westerners. 

However, in Japanese who migrated to Hawaii it was observed that previously low rates of 

prostate cancer development in the population rose to match that of the American indigenous 

(144). This suggests that a change in diet, or habit, (145) or possibly an endemic infection may 

have caused the rise in incidence and also infers there may be an underlying connection of 

prostate cancer to an environmental influence that supersedes any current observation of racial 

predisposition to the disease. 

Recent statistics show the extent of the impact that prostate cancer has in the male population. 

With current treatments unable to combat advanced prostate cancers that have become castrate 

resistant, better understanding of cancer cell type of origin and the development of the disease is 

required to produce new and effective therapies. 
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1.3 - Tumour Heterogeneity and Cancer Stem Cells 

Tumours present a complex microenvironment due to heterogeneity of constituent and recruited 

cells. Tumour cell phenotypic variance can be observed both histopathologically and within 

proliferation and differentiation states (146-148). Unfortunately, most cancer treatments assume 

that tumours are close to a homogeneous cellular mass which can be killed within the spectrum 

of singular agent or combination therapies. These treatments can cause initial regression of 

tumour bulk yet the cancer often relapses in a more advanced form, suggesting selection of a 

more aggressive phenotype. This raises several questions. Is resistance adaptive or pre-existing? 

How is tumour heterogeneity generated presuming a clonal origin of cancer, and, do all cells have 

an equal capacity for tumour regeneration?  

Heterogeneity observed in blood malignancies (149) and solid tumours (150) has shown that 

cancers consist of genetically and phenotypically diverse cells. This variance within tumours can 

be accounted for, and generated by two theories which are not entirely mutually exclusive (19, 

151). 

1.3.1 - Clonal Evolution Model 

In this model, all cells have an equal propensity to become tumourigenic, with transformation 

occurring through a stochastic mutational or epigenetic event. This transformed cell then gives 

rise to other like-cells via mitosis, which have similar tumour forming ability. The tumour cells can 

then acquire subsequent mutation/s, giving them a selective advantage that allows for disease 

progression (19, 151).  

The first cell (and the clonal expansion of cells it produces) to incur the epigenetic or genetic 

change can be thought of as the “trunk” of the cancer (tree), with all further sub-clones branching 

off as the tumour develops (Figure 7A). Initiating genetic events, so called trunk mutations, have 

been classically modelled, by transformation of cell lines through introduction or removal of single 

genes that are altered across human cancers (152-156). Assimilation of cancer genomic data has 

allowed around 150  carcinogenic “driver” genes which operate in 12 central signalling pathways 

to be identified (157). 

A driver is a gene that, when “favourably” altered, gives the cell a proliferative edge over its 

neighbours, causing the cell to behave selfishly. The transformed cell abandons its role in the 

tissue and competes to survive and divide. Drivers can be further subclassified as tumour 

suppressors (when disease is promoted by gene loss or inactivation) and oncogenes (when 

disease is promoted by gene gain or activation). However, cancers usually harbour many more 

mutations than would be required to transform a single cell. These additional mutations are called 
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passengers. They accumulate in the clone with the advantageous driver mutation/s and are 

selected alongside during clonal evolution. In a very small fraction of cancers, these passenger 

mutations may become adaptive in a different microenvironment (such as that encountered in a 

new treatment regime or secondary metastatic site) and aid tumour survival. The majority of 

current sequencing studies use late stage tumours loaded with an overwhelming amount of 

mutational changes. From this end-point it is difficult to decipher which order the mutations 

occurred in, and also which alterations are critical to cancer initiation, development and 

progression (157). 

Epigenetic events can also drive cancer progression. Epigenetically altered tumour progenitor cells 

do not have inflexible fixed mutations but instead, and more elegantly, fluctuate the expression of 

critical genes. Control of transcript levels through methylation of the DNA or histone tails allows 

the cell a heightened plasticity over that of a mutational change, as it can adapt within a mitotic 

cycle to microenvironmental alteration (158). 

A study that highlights the feasibility of the clonal evolution model in prostate cancer was 

conducted by Goldstein et al. Sequential lentiviral introduction of the oncogenes ERG and AKT 

(mimicking TMPRSS2-ERG fusion and PTEN loss respectively) into basal cells caused formation of 

PIN-like disease in mice. Addition of AR into these activated cells then produced various tumours; 

some of which presented with outgrowth of an AR+ population and “loss” of the basal cells that 

were initially transformed, a situation not dissimilar to the presentation of human prostate 

cancers in situ (159). This challenges current thought that prostate tumours at diagnosis are the 

same at initiation, progression and presentation. The same group has repeated this study of serial 

gene alteration in human cell derived organoid cultures that were subsequently transplanted into 

mice. Transformation of basal cells produced a more aggressive disease phenotype than that of a 

luminal origin. Formation of luminal cell derived tumours show that these secretory cells can 

initiate cancer in this specific context with the study also observing divergent histology and 

heterogeneity of cancers (that were representative of human disease) stemmed by cells of the 

different epithelial populations (160). However, the study failed to address which particular 

subpopulation in the broad basal and luminal epithelial classes was the cell of origin. The 

organoids were also not serially transplanted in mice, only cultured in vitro, meaning that further 

interrogation of cell of origin is required for human prostate cancer. 
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FIGURE 7 – Linear step, clonal evolution and field cancerisation. 

A) A schematic of a fictional tumour, the dark blue line traces the route of a linear progression 

with mutation gained step by step, the dark grey line shows the network of clonal evolution in the 

tumour with continuation of route lineages and branching of less “successful” sub clones. B) The 

associated diagram showing the field cancerisation effect of the tumour schematic in A – here any 

cell in the field can gain a mutational change that allows for development of successful sub-

clones.  
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1.3.2 - Linear step carcinogenesis 

Proposed by Fearon & Vogelstein in 1990, (152) step-wise carcinogenesis implies the sequential 

accumulation of driver mutations in a single cell (Figure 7A). The mutational burden, upon 

reaching a certain number, transforms the cell into the initiating clone. The number of mutations 

required to create a cancer cell appears to be tissue specific with initial estimates placing the 

number of specific aberrations to be around 7 (161). However, recent analytical modelling 

suggests that this number is more likely to be ~3 specific mutations in the majority of solid 

tumours (162). Leukaemias usually present in childhood, where the early onset is thought to be 

driven by the minimal requirement of a single transformative event such as well characterised 

BCR-ABL and RUNX1-ETV5 gene fusions (146, 163). In the case of prostate cancer, sequential 

mutagenesis in mouse models suggests that 1-3 mutational events are needed to form the 

initiating cell (128). 

Linear step carcinogenesis however has two main criticisms; 

• Metastatic potential 

The original model places cellular acquisition of metastatic potential as a final step 

immediately prior to patient death, however metastasis is now known to occur early in 

cancer development yet remain undetectable. This is due to inefficiency in secondary-site 

seeding and the variable latency of micro-metastases (164-166). 

 

• Immune surveillance and apoptosis evasion 

Step-wise accrual of mutations that drastically affect cell growth pathways would usually 

cause cell death or elimination by the immune system; the body’s quality control 

mechanisms. There would need to be a mutational protection from self-initiated cell 

death before other proliferative mutations could occur. The HPV oncogenes; E6 and E7, 

give a perfect example of this. E7 binds cellular Rb and causes cell cycle dysregulation yet 

requires E6 to bind p53 the prevent the destruction of the transformed cell. Both are 

needed for survival and growth advantage. Therefore, the step-wise gain of mutation has 

to be coordinated and well timed to transform a cell without simultaneously inducing 

apoptosis (167-169). 

1.3.3 - Field Cancerisation 

Field cancerisation (FC) is similar to the linear-step model but considers that the entire tissue or 

“field”, rather than just a single cell, is pre-disposed to carcinogenesis (Figure 7B). It was proposed 

due to the multi-focal nature of primary oral cancers that formed in extreme proximity to one 

another, yet were entirely separate (170). Here, in the “activated” field, a cell can incur an 
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epi/genetic change and then divide; producing a sub-field of clonal cells in which further change 

can accumulate until a tumourigenic profile is achieved and cancer forms (171). 

There is evidence of this effect, both epigenetically and genetically, in prostate cancer; that exists 

commonly as multi-focal disease (172). Methylation ratios of two genes; APC and RARβ2, across 

both tumour and surrounding benign prostate tissue, highlighted a previously undetected 

underlying field of heritable epigenetic defect (173). Similarly, deep-sequencing of sectioned 

tissue from three prostates and their associated cancers found an unexpectedly (due to previously 

reported low mutation rates in prostate cancer (90, 174)) high incidence of background somatic 

mutations in “normal” tissue. The authors themselves proposed that this was representative of an 

activated mutational field that then stemmed the multifocal prostate tumours they were studying 

(175). 

1.3.4 - Cancer Stem Cell Model 

The Cancer Stem Cell (CSC) theory stipulates that only some cells have an ability to initiate and 

regenerate a cancer. They are thought to arise from somatic stem cells or a transformational 

event in a near progenitor that affords the cell stem-like attributes. Heterogeneity is then 

generated through aberrant differentiation from the clonal CSC origin which produces the 

dysfunctional lineage (28, 176-178)(Figure 8A). Accumulation of mutations and epigenetic defects 

in the stem cell is thought to occur in pre-tumour development (179). 

CSCs were predicted long before their eventual discovery. In 1938, Furth & Kahn discovered that a 

single cell was sufficient to transmit leukaemia between mice from a common genetic background 

(180). Twenty years later, Chury and Tobiska described a leukaemia observed in a human patient 

as a stem cell disease (181). John Cairns then discussed the potential role of stem cells in human 

cancers, as tumours arise primarily in epithelial tissues sustained by a somatic progenitor 

population (182). Culture of extracted human patient tumour stem cells in vitro was then 

pioneered and suggested that it would, in future, permit assessment of metastatic potential and 

allow for targeted personalised medicine to be applied against the individual’s cancer (183). In 

1988, Pierce & Speers proposed that tumours mirrored dysfunctional tissues and were therefore 

sustained by a small population of, in this instance, malignant stem cells (147).  

Once technology had advanced sufficiently to allow isolation of cells by expression of surface 

molecules, the first tumour progenitors to be identified were the leukaemic stem cells of the 

acute myeloid leukaemia (AML) initiating population by Bonnet and Dick in 1997 (184). These cells 

shared the immunophenotype of Haematopoietic Stem Cells (HSCs), possessed an enhanced self-

renewal capability and were able to generate the entirety of the leukaemic blast lineage. 
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Fractionation of tumour cells has now allowed for the identification of many tumour initiating 

populations in solid cancers, listed in Table 1.  
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FIGURE 8 – CSC model and metastatic relapse 

A) The CSC model of heterogeneity generation. A mutated (X1) progenitor or CSC can both give 

rise to a more differentiated lineage and create stem cell clones by asymmetric division. The CSC 

clones can then incur further mutation (X2) to produce another CSC derived mutated lineage and 

generate the heterogeneity observed in tumours. B) Following ADT the basal CSCs, which are 

innately resistant to castration, can trigger relapse and metastatic spread of the cancer.  



43 

 

 

Tissue Phenotype Reference 

Haematopoietic System CD34+ CD38- (Bonnet & Dick 1997)(184) 

Breast CD44+ CD24-/lo (Al-Hajj 2003)(185) 

Brain CD133+ (Singh 2003)(186) 

Multiple Myeloma CD138- (Matsui 2004)(187) 

Prostate CD44+ CD133+ α2β1
hi (Collins 2005, Patrawala 

2007)(21, 28) 

Melanoma CD20+ (Fang 2005)(188) 

Pancreas CD44+ CD24+ ESA+ (Li 2009)(189) 

Liver CD133+ (Ma 2007)(190) 

Colon CD133+ (Ricci-Vitiani 2007)(191) 

Head and Neck Squamous 

Carcinoma 

CD44+ BMI1+ (Prince 2007)(192) 

Lung CD133+ (Eramo 2008)(193) 

Ovary CD44+ CD117+ (Zhang 2008)(194) 

Endometrium CD133+ (Rutella 2009)(195) 

Bladder 67LR+ CEACAM6+ CK17+ (He 2009)(196) 

Cervix CD44+ CK17+ (Feng 2009)(197) 

TABLE 1 – Cancer Stem Cells of solid tumours.  
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The CSC fraction is characterised much in the same way as adult stem cells. They must be able to 

self-renew, to maintain the CSC pool, and have differentiation capacity to produce the more 

differentiated tumour cell lineage. They also display similar cell surface markers (or 

immunophenotype) to that of their normal tissue counterparts (19). The exact origin of CSCs in a 

tumour’s natural history isn’t definitively known, yet current thought is that they arise from a 

transformative event in a tissue stem cell or near progenitor. The best evidence of this is from 

colorectal cancers. Here adenocarcinomas were induced in mice only upon stem cell 

transformation and not in the case of attempted initiation by transformed TA cells (176). 

The gold standard for CSC validation remains the initiation of cancer by xenotransplantation of 

enriched cells (preferably a single cell) into immunocompromised mice  (151). However, the 

degree to which each recipient mice strain’s immune system is deficient can complicate the 

interpretation; some may permit CSC growth whilst others may not, based solely on the 

complement of endogenous immune cells left intact in the mouse (198). Existence of a rare CSC 

population (apart from in melanomas, where all cells have CSC properties (198)) has huge 

implications for existing therapies that target tumour bulk, yet leave this resistant fraction 

unscathed to act as minimal residual disease (44, 199). CSCs can be selected and expanded by 

chemotherapy (200, 201) as depletion of tumour bulk causes CSC activation; the root of the 

cancerous lineage dividing to replace differentiated tumour cells lost to treatment. This could 

make tumour progenitors susceptible to correctly timed therapies and gives a possible 

explanation to immediate relapse of cancer following “successful” treatment.  

1.3.5 - Pre-tumour development 

Pre-tumour development describes a period that occurs well before visible emergence of cancer. 

The adult or somatic stem cell pool of the prostate isn’t depleted by differentiation, development 

or apoptosis and is maintained throughout the course of an individual’s life-span. The long-life 

and constancy of this cell pool is afforded by the relative quiescence and slow-turnover of the 

stem cells. This means that, in the case of the prostate, pre-tumour development can take place 

over decades. The increased emergence of disease in older men does suggest that the stem cell 

population has a role in disease (146, 179). 

However, this is perhaps an oversimplification of the many factors that contribute to 

carcinogenesis. Recently, the number of life-long stem cell divisions was correlated with cancer 

incidence in several tissues (202). This analysis however drew widespread criticism as the authors; 

neglected to use data from major cancers including breast and prostate, (203) didn’t account for 

known environmental influences which aid tumourigenesis, (204) only used data from the USA 
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and suggested that cancer is “bad luck” (205-207) which flies in the face of current evidence that 

lifestyle choices play a critical deterministic factor in disease initiation and progression (208). 

The vast number of mutations harboured by late-stage solid tumours cannot be plausibly accrued 

using random multi-hit mutational modelling (209, 210) without the early development of a 

mutator phenotype (68, 179, 211). This is more suggestive of microevolutionary processes that 

select for advantageous mutation in the stem cells (212). Mathematical modelling implementing 

cancer genome deep sequencing data has been used to support this theory; identifying that the 

necessary drivers are present in the first cell with heterogeneity then being derived after initiating 

events to create the passenger mutation noise that then masks the foundational signature. Here 

lineages can develop neutrally with passenger mutations becoming adaptive later in progression 

(213). 

1.3.6 - The stem cell niche 

Adult and cancer stem cells are maintained by, and contribute to, a niche. The niche is a 

protective microenvironment that surrounds the stem cell population in the tissue and is 

constituted by the necessary cell-cell, cell-structure contacts alongside immersion in growth 

factors and other soluble compounds that can alter stem cell fate and division choice (38, 214). 

The best evidence for an independent CSC niche is from glioblastoma. Here a hypoxic 

microenvironment maintains the stem cells (215) yet there also exists a sub-clone that can act 

through trans-differentiation as an endothelial progenitor if the niche requires oxygen (216, 217). 

The prostate epithelial stem cell niche is most likely located at the basement membrane of acini 

due to high expression of the collagen-binding integrin α2β1 (CD49b) (28, 41). More research is 

required into establishing the exact location (218) and determining what factors separate the 

normal and cancerous niches, as specific disruption of the CSC niche would likely amount to an 

efficacious treatment of prostate cancer. This may also extend to treatments of metastatic 

disease as niche-mimicry and secondary site seeding by CSCs remain a distinct possibility in 

prostate cancer (219). 

1.3.7 - The immortal strand hypothesis 

Stem cell asymmetric division may also protect the population from fixing mutations. The 

immortal strand hypothesis stipulates that, in mitosis, the stem cell non-randomly retains its 

template genetic material so that any mutation incurred in DNA replication is segregated to the 

non-stem daughter. This facilitates both the survival of the stem cell and the serial creation of 

mutated and differentiated progeny through asymmetric division (19, 44, 148, 220, 221). Initial 

evidence suggested that the hypothesis may be founded in truth, with selective retention of 

template strands observed in embryonic fibroblasts (222) and by the stem cells of skeletal muscle 
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(223) and mouse intestine (224). Recent observations however dispute existence of an immortal 

strand as both HSCs (225) and mouse intestinal stem cells (226) randomly segregate DNA upon 

asymmetric division, experiments that are in agreement with current modelling of somatic stem 

cell mutational accumulation (227). This meta-analysis does have shortcomings in that it 

compares normal stem cell divisions with cancer genome data and also fails to take into account 

that CSCs may purposefully disrupt strand segregation mechanisms (228) to create an 

environment more favourable to mutational accumulation. 

1.3.8 - Cancer relapse; a stem cell triggered event? 

A CSC does not have to increase its proliferative capabilities to be “successful”, indeed the ability 

to enter and re-emerge from a quiescent state is far more advantageous to a cancerous 

progenitor. This renders treatments such as radio- and chemotherapy ineffective as both rely on 

cell division to have a toxic effect. Indeed, normal somatic HSCs evade DNA damage through this 

mechanism (229). 

In prostate cancer, targeted treatment of androgen deprivation therapy causes tumour volume to 

decrease as cells dependent on the hormone develop regressive morphology, stop growing and in 

some instances, undergo apoptosis (230-233). However, in the following 36 months, the cancer 

usually reappears and often does so in the advanced and catastrophic spread of metastasis. 

Dormant CSCs coming out of their quiescent state are a likely perpetrator for the sudden 

emergence of disease, however little is known about successful metastatic founder clones of 

prostate cancers (165, 178, 234)(Figure 8B). The targeting of dormant cells with therapy is a 

difficult challenge in which there are two possible treatment options. The first, and most risky due 

to the possibility of cellular evasion over time, is enforcing the dormancy of the CSC 

subpopulation so that they can’t re-enter mitosis and bring about relapsed disease. The other acts 

upon the opposite end of the same signalling axis and actively triggers the CSCs into a cycling 

state. This would be tailored so that the CSCs have a preference for symmetrical division to 

produce non-stem daughters, allowing depletion of the cell pool. This so-called differentiation 

therapy hopes to shift the cancerous cells to a phenotype that then also becomes targetable by 

the spectrum of conventional chemotherapies (235-237). Differentiation therapy does have one 

major challenge to overcome, that is; the selective nature of inducing CSC-specific mitotic entry 

and not that of normal tissue somatic stem cells. This off-target effect in treatment of prostate 

cancer would result in drastic loss of glandular and acinar architecture – and may also affect other 

somatic stem cell pools.  
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1.3.9 - Prostate Cancer Stem Cells 

Prostate cancer is slow growing and has been observed histologically in men as young as forty, in 

whom the disease becomes clinically apparent in later life (129). This suggests a model of 

accumulated mutations in the stem cell population, rather than cancer arising in the senescent 

luminal cells. The dominant luminal phenotype in prostate adenocarcinoma (22) also hints at an 

aberrant differentiation program produced by the CSC. 

Mouse models have evidence for both basal (33, 238) and luminal (239, 240) CSCs whereas in the 

human prostate, overwhelming current evidence points towards a prostate epithelial and 

cancerous stem cell of basal phenotype (21, 28, 49, 52, 160, 241-243). Isaacs & Coffey predicted 

existence of these malignant progenitors (48) before Collins et al. identified the CD44+ CD133+ 

α2β1
hi CSC population (28). Subsequent studies using similar basal molecular markers as a base for 

fractionation and enrichment of this prostate CSCs have independently verified existence of this 

rare cell type (21, 244). Interestingly, experiments attempting to initiate cancer from benign 

human basal epithelial subpopulations found that the CD133+ cells were protected from 

tumourigenesis and it was the CD133- α2β1
hi TA population that was susceptible to transformation 

(245). This suggests that prostate cancers may initiate in a CD133- basal cell that then adapts into 

a CD133+ cell to sustain tumour growth. 

The biochemistry of this CD133+ CSC population has been further investigated. These cells express 

the basal epithelial markers; p63, CK5 and CK14, and lack canonical luminal markers; AR, PSA and 

PAP. The invasive nature noted by Collins et al. was further confirmed in microarray data, by 

identification of an epithelial to mesenchymal transition (EMT) signature, with loss of E-cadherin 

and gain of both vimentin and osteonectin (13, 28). Common genetic alterations in prostate 

cancer, such as the TMPRRS2-ERG fusion and PTEN deletions, are confirmed to be present in this 

tumourigenic population (66, 246, 247). 

Notch signalling, classically observed in epithelial cell fate decision making and in the maintenance 

of the stem cell compartment, is active in prostate epithelial stem cells and their cancerous 

equivalents (Rachel Adamson, unpublished data). Notch is context dependent; invoking varying 

responses in different cell types and disease stages (248). Active signalling is maintained by cell-

cell contact in which a ligand receptor; Jagged 1 (JAG1), JAG2 or Delta-like 1 (DLL1), DLL2 or DLL3, 

binds the Notch receptor, of which there are four isoforms (NOTCH1-4). Notch receptors are 

comprised of an extracellular and an intracellular domain (NICD). Binding of ligand receptor to 

NOTCH begins a series of proteolytic cleavage events, releasing the NICD into the cytosol 

whereupon it acts as a transcription factor (alongside RBPJ) for a number of canonical 

downstream genes such as the HES1 and HEY1 transcriptional repressors, MYC and CCND1 (248). 
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This maintains a dedifferentiated state and facilitates asymmetrical divisions through the 

polarisation of cell-cell contacts (249). 

 

FIGURE 9 – Molecular markers of prostate cancer stem cells.  

Combination of basal epithelial, stem cell, epithelial to mesenchymal transition and inflammatory 

proteins can be used to identify and isolate the cancer stem cells of prostate cancer.   
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The suspected inflammatory aetiology of prostate cancer may also have roots in the CSC pool. 

Microarray data distinguished a CSC expression signature with an enrichment in JAK-STAT 

signalling and NF-kB activation with involvement of IL-6 (66). IL-6 is highly expressed in prostate 

cancers and serum concentration of the cytokine becomes elevated in metastatic disease (250-

252). CSCs have also been shown to express high levels of IL-6 and its cognate receptor (IL-6R), 

reinforcing an autocrine signalling loop to promote JAK-STAT activation. Disruption of this 

pathway by STAT3 phosphorylation inhibitor LLL12 resulted in reduced CSC colony forming 

efficiency and viability as a result of differentiation (253). IL-6 positive feedback via NF-kB has also 

been shown to act as a transforming and cancer-sustaining event in a breast epithelial cell line, 

enhancing sphere forming ability and induction of a breast CSC phenotype (254). Activation of 

STAT3 signalling also affords prostate cancers an androgen independence mechanism in castrate-

disease, (255) and has been implicated in maintenance of glioblastoma stem cell self-renewal 

ability (256). The pervasive nature of the STAT3 pathway throughout prostate cancers has led to 

the development of phosphorylation (253, 255, 257) and DNA-binding inhibitors as future 

treatments of advanced disease (258)(Figure 9). 

As alluded to at the beginning of this section, both CSC and clonal evolution theories are likely to 

co-exist in cancers. For prostate cancer, the slow progression and almost inevitable relapse after 

hormone therapy can readily be attributed to the CSC pool, whilst the runaway nature of 

metastatic castrate disease looks to be a CSC-derived dominant clonal expansion of cells (259). 
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1.4 - Prostate Cancer Diagnosis 

1.4.1 - Prostate Specific Antigen Testing 

Screening and diagnosis of prostate cancer is currently centred upon serum levels of PSA, a serine 

protease that aids seminal fluid liquification. PSA in the blood is indicative of cancer, where higher 

levels correlate with more advanced disease (260). In disease, characteristic degradation of the 

basement membrane allows escape of this protein into the vasculature, (136) increasing 

circulating concentrations by up to 105 fold. The normal adult male blood concentration of PSA is 

~0.6ng/ml (261) and the threshold value for prostate cancer diagnosis has been set at 4ng/ml. The 

Prostate Cancer Prevention Trial required all 5519 participants in the placebo group to undergo 

prostate biopsy after PSA test and digital rectal exam (DRE). The trial found that a PSA value of 

>4ng/ml has a selectivity of 93% and sensitivity of 24% in correct prostate cancer diagnosis (136, 

262). PSA exists in the blood either as free PSA (fPSA) or more commonly, bound to protease 

inhibitors, as complexed PSA (cPSA). The availability of epitopes on fPSA allows the quantification 

of fPSA and thus cPSA, in coordination with the normal PSA test that measures total PSA levels 

(136). The percentage of fPSA seems to be a more specific diagnostic factor than total PSA levels; 

<25% fPSA has a reported 95% selectivity and 20% sensitivity for correct prostate cancer diagnosis 

(263). 

However, PSA testing, like many biomarker diagnostic tools, does have problems in which false 

positives are detected and true positives missed.  PSA is detectable in other tissues including the 

lungs and salivary glands, (264) other disease states such as prostatitis can elevate circulating 

levels (71) and some men with cancer have normal (<4ng/ml) PSA levels, all of which complicate 

diagnosis (262). 

Several other diagnostic alternatives to PSA have been developed. The next generation urinary 

biomarkers for prostate cancer are PCA3 and TMPRSS2-ERG (265, 266). PCA3 is a non-coding 

transcript that is overexpressed, relative to normal tissue, in nearly all prostate cancers. There is 

significant data which suggests that PCA3 is more selective for prostate cancers than the PSA test 

(265, 267). This biomarker can also be utilised in combination with urinary TMPRSS2-ERG RNA – 

an extremely selective prostate cancer transcript, to stratify patient disease (266, 268). Currently, 

rapid detection colorimetric tests have been developed for TMPRSS2-ERG breakpoints that would 

allow assessment of fusion status from a post-DRE urine sample in less than two hours (269).  

Another powerful diagnostic platform is the Stockholm-3 (STHLM3) model developed by 

researchers in the Swedish capital (270). The diagnosis of clinically relevant cancers is based upon 

several plasma protein biomarkers, a genetic profile of 232 single nucleotide polymorphisms 
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(SNPs) and clinical variables of the individual patients. With the same sensitivity for cancer 

detection as the standard 3ng/ml PSA test; STHLM3 could reduce total biopsies taken by half and 

the number of unnecessary biopsies taken of benign disease by 76% (271).The model has recently 

been improved for the Swedish male cohort by inclusion of further SNPs, specifically a HOXB13 

variant and the removal of intact PSA as a serum biomarker, to further reduce unnecessary 

biopsies (272). 

Multi-parametric magnetic resonance imaging (mpMRI) can be used to direct single biopsies of 

prostate cancer foci through combination of several imaging techniques. These include; T2-

weighted imaging which can distinguish between the four tissue zones of the prostate and has 

high signal intensity in the PZ that is disrupted by tumours, diffusion weighted MRI which 

measures water movement parameters in tissue, particularly its restriction in tumours, and 

dynamic contrast enhanced MRI, in which a contrast agent is used to map tissue and tumour 

vasculature (273). mpMRI has been shown through several large cohort studies to be extremely 

accurate in detecting clinically significant prostate cancers, is far superior to standard transrectal 

ultrasound (TRUS) -guided biopsy (that takes 10-12 tissue cores) and is able to stratify disease that 

requires treatment or active surveillance (274-276).  

1.4.2 - The Gleason Grading System 

Detection of high circulating levels of PSA in a patient is followed by multiple prostate tissue 

biopsies to allow for disease stratification by the Gleason grading system (277). This system, 

based on tissue pathology, was reported in 1966 by Donald Gleason and remains the greatest tool 

of prognostic value in prostate cancer (278) over PSA levels, biomarkers and genetic profiling 

(128). It works by establishing and rating relative tumour architectural patterns that are scored 1-

5; one representing normal acinar morphology and five being anaplastic sheets of 

undifferentiated tissue. The two most commonly observed grade patterns present in the 

individual’s sample are added together to give a final score between two and ten that is then 

assigned to the cancer (Figure 10A). 
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FIGURE 10 - The Gleason grading system. 

A) The Gleason grading system chart of tissue pathology – 1 shows normal prostate acini and 5 

anaplastic undifferentiated sheets of tissue observed in advanced prostate cancer. Figure taken 

from Epstein 2005 (279). B) Clonal model of Gleason progression – divergent clones “stem” the 

Gleason 3 and 4 tissues. C) Transitional model of Gleason progression – the Gleason 3 cell incurs a 

molecular change that permits progression to the more advanced Gleason 4 tissue.  
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The system was revised in 2005, and again in 2014 by the International Society of Urological 

Pathology, with changes to protocol and additions to classification including; inclusion of cribiform 

cancer as grade 4, the reporting of negligible secondary lower grade cancer, final grade decision in 

the presence of tertiary pattern high grade cancer and the consideration of the benign nature of 

Gleason 3 tissue (279-282). 

The major problem that faces diagnosis of localised prostate cancer is that no current biomarker 

can distinguish between indolent and aggressive disease. This is particularly important when a 

patient presents with intermediate Gleason grade cancer (6-7); immediate treatment could be 

life-saving if the cancer is aggressive but over-treatment of indolent cancer has serious 

implications on the patient’s quality of life (128). 

There is a notable molecular difference between pattern 3 and 4 tissues, whereas Gleason scores 

of 4 and 5 are indistinguishable in gene expression studies (283). Gleason 6 and 7 transcriptomic 

differences were used to construct a gene signature with the ability to separate these tissues. 

Interestingly, inclusion of the Gleason 6 tumours in total analysis (comparing cancer to BPH) 

removed any previously observed separation of benign and cancerous tissue (66). Another similar 

study couldn’t produce such a divisive expressional signature; however this may have been due to 

domination of any underlying gene changes by the majority luminal cell cDNA input of the 

microarray (123). 

Detectable differences between the two tissues bearing separate Gleason grades opens another 

question facing both clinicians and scientists; do Gleason tissue patterns share a common or 

divergent ancestral clone? Namely, does the Gleason 3 cell progress into a pattern 4 cell, the 

transitional model, or are there separate clones for Gleason 3 and 4+ tissues, the clonal model? 

The most obvious way to conduct this research is to perform repeat biopsy on patient prostates 

to track if there is any progression or if development is stemmed from separate cancer clones. 

However, this approach is hampered by several factors, including; the heterogeneity of prostate 

tissue, the common multi-focal presentation of cancer and the inherent sampling error of needle 

biopsies (284-286). 

Clonal Model of Gleason Scores 

The widespread use of PSA testing has allowed earlier detection of tumours, in the natural history 

of the individual’s cancer, than before clinical adaptation of the biomarker. If Gleason grade 

progressed over time, this would mean that earlier detection would have reduced the number of 

higher grade tumours observed at diagnosis. A large study of over 1200 patients found that this 

wasn’t the case and that incidence of Gleason 7+ tumours has not changed post-PSA testing (286). 

Another piece of evidence supporting the clonal theory is the fact that Gleason 6 (3+3) patterns 
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rarely advance to lethal disease (287, 288) whereas presence of secondary, or even tertiary 

Gleason 4 tissue predicts cancer progression (289)(Figure 10B). 

Transitional Model of Gleason Scores 

Supporting a transitional advancement of Gleason grading, is the positive correlation of Gleason 

grade magnitude with age of detection; older men are diagnosed with increasingly aberrant tissue 

architecture (286). There is also extremely compelling molecular evidence in favour of the 

transitional model. Upon tumour tissue isolation, adjacent Gleason 3 and 4 patterns were 

separated by laser capture microdissection. The tissues were then processed and sequenced. This 

identified that a small population of the Gleason 3 pattern had stemmed the Gleason 4 tissue due 

to shared lineage of unique chromothriptic and TMPRSS2-ERG breakpoints (290). Either the 

tumour had progressed transitionally, or a common progenitor (containing the trunk 

chromothripsis and fusion genomic alterations) produced both the linked 3 and 4 patterns (Figure 

10C). 

1.4.3 – Treatment of Low Grade Prostate Cancer 

Treatment strategies for prostate cancer are very much dependent on the stage of disease. Low 

Gleason grade cancers are still differentiated and may require a more conservative approach such 

as active surveillance. Over-detection of cancers by PSA testing has resulted in treatment of some 

patients that would never have progressed to a clinically troubling disease. Protocols have been 

put in place to mark cancer progression rather than treat first, ask questions later. This applies to 

low Gleason grade tumours with a combined score no greater than 6. PSA is measured every 3 

months and biopsies are repeated annually over a 2 year period to monitor tumour status (291). 

The surgical approach towards advanced local disease, radical prostatectomy, can prove an 

effective treatment before local invasion and metastasis have occurred. The benefits of this 

surgery were observed in a clinical trial of patients that had T0-T2 stage disease, a negative bone 

scan and PSA <50ng/ml. After 10 years of follow up, deaths due to prostate cancer in the watchful 

waiting cohort were up 5.3% and incidence of distant metastasis increased by 10.2% over that of 

the radical prostatectomy arm of the trial (292). 

Focal Treatments 

Other options for the treatment of localised prostate cancer are focal therapies. This may be 

preferable to radical surgery in cases where progression of the cancer is low-risk. The chief aim of 

these therapies is to maximise cancer cell death whilst simultaneously minimising damage to the 

surrounding tissues (293). 



55 

 

High-Intensity Focused Ultrasound (HIFU) causes intensification of ultrasonic waves, allowing high 

energies to be delivered into a localised area whilst leaving the tissue along its path-length 

unaffected. This heats the target tissue rapidly to 80OC; denaturing their cellular protein content 

and facilitating necrotic cell death (294). HIFU is applied trans-rectally and is monitored carefully 

to ensure that the tumour is targeted for the entirety of treatment duration. This issue has been 

aided by the recent advances in real-time magnetic resonance imaging (295)(Figure 11A). 

Cryotherapy allows for rapid freezing and thawing of tissue to result in localised cellular necrosis 

and cell death, again by protein denaturation. Treatment of the tumour with either liquid nitrogen 

or argon gas is administered by transperineal cryoprobes under direction of TRUS (296). Freezing 

of surrounding tissue is monitored using temperature sensors and a warming catheter is applied 

to the urethra to limit any adverse damage (297)(Figure 11C). 

Radiotherapy (RT) delivers targeted ionising radiation to the tumour to cause DNA damage. 

Damage can occur indirectly; through formation of reactive oxygen species (ROS) that attack the 

genetic material, or directly; by inducing single or double strand breaks of the phosphodiester 

backbone. Extensive DNA damage leads to cell cycle arrest and apoptosis. The most common RT 

applied to prostate cancers is external beam radiotherapy (EBRT), where 5-7 beams are targeted 

to the tumour mass core. EBRT has recently been improved through use of Cyberknife, a 

technology that monitors movement of the prostate during treatment and corrects radiation 

targeting (of 150-200 beams) so that the focal point of radiation remains within a 2mm target 

area (298, 299)(Figure 11E). Brachytherapy is a variation on traditional RT. Here trans-perineal 

placement of radioactive seeds such as 103Pd, 125I and 131Cs into the prostate itself allow for 

localised administration of an internal radioactive dose. Both TRUS and MRI are used to achieve 

optimal placement (300)(Figure 11D). 

Photo-Dynamic Therapy (PDT) produces extremely localised tissue damage through photo-

activation of a targeted drug molecule. Energy provided by the light source is transferred to 

oxygen molecules resulting in formation of single delta oxygen (SDO). SDO creates a hypoxic 

environment surrounding the tumour and also cause apoptosis/necrosis of the cancer cells (301). 

Trans-perineal and trans-urethral insertions of fibres for photo-activation have been used in PDT 

treatment of prostate cancer (302)(Figure 11B). Recently, a Phase III clinical trial targeting low-

grade prostate cancers found PDT to be advantageous over active surveillance (303). 
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FIGURE 11 – Focal therapies of prostate cancer. 

A) High intensity focused ultrasound – heats cells to cause necrosis. B) Photodynamic therapy – 

activates targeted drug molecules using light to cause specific cancer cell death. C) Cryotherapy – 

rapidly freezes tissues to cause cell death by necrosis. D) Brachytherapy – planting of radioactive 

“seeds” in the prostate tumour to exert killing effect. E) Radiotherapy – targeted ionising radiation 

that causes extensive DNA damage and cell death F) Low Temperature Plasma – ionised gas 

injection that facilitates massive oxidative stress and cell death by necrosis and apoptosis. This 

focal therapy has not yet been tested in patients.  
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Pre-clinical studies in our laboratory have shown that application of Low Temperature Plasma 

(LTP) is also effective at killing primary prostate epithelial cells (304). Plasma is formed by the 

stripping of electrons from gas molecules, achieved by application of a high voltage across an 

oxygen-helium admixture. The background gases form the dominating species yet the accelerated 

free electrons drive a unique reactive environment that produces interconverting reactive oxygen 

and nitrogen species (RNS), UV radiation and charged particles (293). LTP treatment of primary 

prostate tumour cultures found that plasma reduced cell viability and induced DNA damage, 

leading to cellular necrosis (304, 305)(Figure 11F). Elucidating the mechanisms behind the killing 

effects of LTPs on tissues, considerations of safety, practical means of applying the plasma to the 

tumour site and the establishment an of optimal dose for individual patient treatments are all 

required before the devices can be implemented in a clinical setting. The full extent of LTP use as 

a potential anti-cancer strategy will be discussed further in Section 1.9.  

1.4.4 - Treatment of Advanced Prostate Cancer 

Cancers of higher Gleason grade have a less differentiated appearance, and this breakdown of the 

normal prostate structure hints at the invasive and metastatic potential of the cancer. In this 

event, the treatment is ADT. These therapies target the androgen signalling axis upon which the 

majority of prostate cancer cells are dependent (Figure 12). 

Androgens are produced mainly in the testes, where expression of testosterone is stimulated by 

luteinising hormone (LH). LH itself is released from the pituitary in response to hypothalamic 

luteinising-hormone releasing hormone (LHRH). Pharmacological castration can be achieved 

through use of LHRH antagonists such as Zoladex, which circumvents androgen production 

through restriction of circulating LH (306). 

Serum testosterone is further processed in prostate cells by the enzyme; 5α-reductase, into the 

more potent metabolite dihydrotestosterone (DHT) that directly binds AR. Inhibitors of 5α-

reductase testosterone metabolism such as finasteride (262) and dutasteride (307) are known to 

decrease intraprostatic DHT levels and subsequently reduce androgen signalling in the organ. 

ADT can also directly target AR through anti-androgens (molecules that act as AR antagonists). 

The anti-androgens hydroxyflutamide (308) and bicalutamide (309, 310) initially have similar 

efficacies to surgical castration (orchiectomy), showing the specificity these inhibitors have for AR 

upon first exposure. However, development of resistance to these drugs has prompted the 

production of second generation molecules.  

One such molecule, enzalutamide binds almost irreversibly to AR, reducing its ligand-dependent 

nuclear translocation and the receptor’s ability to bind androgen response elements to recruit 

coactivators and stimulate transcription (311). A phase 3 clinical trial observed that enzalutamide 
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increased survival in post-chemotherapy CRPC patients by 5.4 months over that of the placebo 

group. No direct comparisons with previously used anti-androgens were made, however 

enzalutamide extended median overall survival by 4.8 months (312). Androgens are produced in 

the testes, adrenal glands and, in some cases, the prostate by intra-tumoural expression of the 

CYP17 enzyme. Abiraterone is a selective inhibitor of CYP17 and blocks testosterone synthesis. 

The drug performed similarly to enzalutamide in post-chemotherapy CRPC patients, improving 

their overall survival by 3.9 months (313). These drugs represent the current forefront of prostate 

cancer treatment. Although a modest extension of expected lifespan is granted to these patients 

(312, 313) underlying tumoural resistance at the molecular level arises; with discovery of AR 

splice-variant (AR-V) upregulation (314, 315) and novel AR mutations in relapsed patients (316, 

317) which allow for promiscuous activation of AR, that can now bind hormones other than 

androgens (318). 

Cytotoxic therapies used in prostate cancer are palliative as they are restricted to the inevitably 

fatal metastatic patient cohort. The main chemotherapeutic agent used is docetaxel (319) which 

is utilised in a wide range of combination therapies (26). The drug has obvious toxicities as a 

microtubule stabiliser, yet resistance has developed through involvement of several proteins such 

as STAT1, (320) PIM-1 (321) and ABCB1 (322). 

Both ADT and chemotherapy assume that the tumour is a mass of homogenous cells that are 

respectively androgen-dependent and mitotically cycling. In this scenario the heterogeneity 

evident in prostate tumours is unaccounted for. This oversight is particularly relevant to the 

prostate CSC population, as they don’t express AR and are quiescent or at least extremely slow-

cycling. These cells have already been shown to be radio-resistant, (323) with other solid tumour 

CSCs noted to possess an efficient DNA damage response, (324) high levels of detoxifying 

enzymes (200) and drug efflux transporters, (325) making them extremely resilient targets (19). 

The most efficient possibility of targeting the CSC population is through use of differentiation 

therapies, discussed earlier in Section 1.3. In the case of prostate cancer this would deplete the 

stem cell pool through eventual production of more differentiated luminal cells that are then 

susceptible to ADT. Such differentiation therapies have been observed to work in gliobastoma 

(326), breast cancer (68, 327) and leukaemia (328). 

The targeting of the secretory luminal cells in prostate cancer by the ADT regimen is thought to 

select for the more advanced CRPC phenotype. This disease stage is irreconcilable and leads, 

eventually, to patient death. 
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FIGURE 12 – Androgen Deprivation Therapy 

The pharmacological targeting of the androgen axis in prostate cancer. The prevention of 

Luteinising Hormone Releasing Hormone (LHRH) stimulating Luteinising Hormone (LH) induced 
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production of testosterone in the testes, and the intraprostatic processing of testosterone to 

Dihydrotestosterone (DHT) by 5-alpha Reductase (5-αR), alongside antagonising DHT binding to 

the ligand binding domain (LBD) of AR all minimise the pro-proliferative effects of androgens on 

prostate cancers. 
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1.5 – The Genetic Background of Primary Prostate Cancer 

Current targeted treatments of prostate cancer focus on the androgen-axis, in part due to the 

work of Huggins (329) and the importance of AR in prostate development,(7) but also as relatively 

few other targetable defects have been identified through genetic studies. The profound 

heterogeneity between patient’s prognoses and corresponding genetic profiles of tumours has 

hampered progress (330, 331). Recent studies have attempted to define genetic subtypes that 

could be used to profile; cancer indolence/aggressiveness, Gleason scores and, in advanced 

cancers, separation of CRPC and neuroendocrine prostate cancer (NEPC) (27, 66, 283, 332, 333). 

The ultimate aim is to offer accurate prognosis to individual patients based on the genetic make-

up of their cancer. 

Prostate cancers differ from most solid tumours, as they rely almost entirely upon copy number 

variations, rather than specific mutation, to facilitate cellular transformation and disease 

progression (90, 133, 174, 175, 334, 335). With tumours of so-called “hypermutator” phenotype, 

regularly observed in primary cancers of other tissues, only presenting following advanced 

treatment (336, 337). Scrambling of the prostate cancer genome is achieved by chromoplexy; 

chained rearrangement events that are notably convergent between individual patient tumours. 

Temporally, it isn’t known when these patterned translocations and deletions occur in a cancer’s 

natural history. Due to clonality of founder or “trunk” events (fusion of TMPRSS2-ERG and NKX3.1 

deletion) and sub-clonality of further common genetic aberrations (PTEN and CDKN1B deletions) 

chromoplexy is presumably a staged event that occurs over a long time. Deletions of RB1 and 

TP53 are also linked to chromoplectic chains, yet only present in advanced prostate cancers (334, 

338). It is thought that defective DNA repair machinery, a common defect in prostate tumours, 

aids the chromoplectic re-shuffling of the genome. It is relevant that hallmark chromoplectic 

deletions and fusions are present in the prostate CSCs (66, 246, 247). 

As a hallmark of cancer, (148) genomic instability can both predispose and accelerate 

tumourigenesis, becoming particularly relevant to prostate cancer, in the light of common mass 

genomic rearrangement. Instability afforded by the reduction of telomere lengths and aberrations 

to DNA maintenance and damage response pathways in prostate cancer contribute towards a less 

favourable prognosis (339). 

Prostate cancer frequently presents with attenuated DNA damage response and repair networks 

(338, 340)(Figure 13). Studies of both familial and sporadic disease have identified predisposing 

genetic alterations in these pathways.  The well-known BRCA1 and 2 mutations most commonly 

associated with ovarian and breast cancers, also heighten risk of prostate cancer development in 

men (341, 342). Families with hereditary prostate cancer show an enrichment of Chk2 mutations; 
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with the defective enzyme unable to cause G1 arrest and prevent the accumulation of genetic 

aberration, upon detection of DNA damage (343). Risk alleles for DNA repair genes PARP1, ATM 

and XRCC1 have been identified by multiple independent population studies (344). Whilst these 

mutations and variants do increase risk of developing cancer, they typically present in less than 

5% of the total population. Observation of further recurrent ATM and p53 mutations in advanced 

prostate tumours show that DNA damage response is an important signalling axis in the initiation 

and progression of prostate cancers (27). These defects mainly affect the homologous 

recombination repair (HRR) pathway making prostate cancer cells more reliant on the error prone 

non-homologous end joining (NHEJ) pathway to fix double strand breaks (DSBs); a situation that 

lends itself to the production of chromoplexy. (Figure 13) 

FIGURE 13 – Defective DNA damage repair response in prostate cancer. 

The genes of all proteins depicted in the diagram are recurrently mutated or deleted in prostate 

tumours. Arrows depict phosphorylation (P) events that activate the recipient protein.  
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Replicative stress triggered by runaway oncogene activation also contributes towards genomic 

instability. In the prostate, ungated activation of AKT and the PI3K pathway; due to catalytic 

subunit mutations of PI3K (90, 133) and the more common PTEN deletion, (345) alongside 

proliferative signals supplied by dysregulated MYC increase the mitotic index and thus replicative 

stress of affected cells (346). AKT can promote the NHEJ DNA repair pathway, creating an 

environment more favourable for chromoplectic rearrangements (340). AR also has a role in DNA 

damage response as the nuclear receptor relies upon PARP1 to enforce its basal transcriptional 

program (347). Upon DNA damage; AR stimulates upregulation of DNA-PKCS, XRCC2 and XRCC3, 

proteins that have a role in the DSB repair pathways of homologous recombination repair and 

NHEJ (348). 

Tumours of the prostate that present with a mutator phenotype are attributed to genomic 

rearrangement and mutation of the mismatch repair pathway enzymes, specifically MSH2 and 

MSH6 (90, 133, 336, 337). Current evidence suggests that genetic insult to these enzymes, and 

thus tumour hypermutation, is created by the genotoxicity of cancer treatments. Therefore this 

phenotype is observed more prevalently in advanced disease; however mutation of MSH6 has 

been identified in primary prostate cancer (133, 337). 

Linkage studies relating ETS+ tumours to DNA repair gene variants have identified risk alleles 

encoding ESCO1, POLI1 and BRCA2 that form a genetic background inductive of fusion formation 

(349). In a culture environment of genotoxic stress, and a lineage-dependent manner; prostate 

cells form de novo TMPRSS2-ERG fusions, an event attributable to AR-mediated transcriptional 

proximity of involved loci (350). 

Distinct molecular subtypes of prostate cancer have now been assigned to tumours due to the 

frequent identification of genomic changes, in both primary and metastatic disease (334, 

335)(Figure 14). One classification paradigm is the ETS factor fusion status of the tumour. Now 

commonly and recurrently observed, ERG and ETV1 fusion events were discovered as prostate 

cancer specific aberrations in 2005 (351) and the TMPRSS2-ERG fusion has now been established 

by many large population cohort studies to occur in half of all primary tumours (90, 330, 331, 

334). These fusion positive tumours often have linked chromoplectic deletions of PTEN, TP53 and 

3p14 (a locus encompassing several tumour suppressor genes) (90, 133, 334). A divergent 

subclass of prostate tumours are those that harbour CHD1 deletions (133, 352). CHD1 is an ATP-

dependent chromatin remodelling factor that facilitates availability of transcriptionally active 

chromatin. CHD1 deletion is often mutually exclusive of ETS fusions, as loss of the remodelling 

protein results in an increase in condensed chromatin. The open chromatin structure usually 

observed at the fusion loci therefore no longer forms – meaning that there is a reduced chance of 

damage, inappropriate repair and thus fusion formation (353). SPOP mutation, the most 
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frequently observed mutation in primary cancers, (133, 330) co-segregates with CHD1 deletions 

to give an ETS- CHD1- SPOP- subclass. Through combining prostate cancer transcriptomes with 

matched genome data, detailed signatures can be used to stratify prostate tumours on prognosis 

and outcome using this advanced molecular data (90, 331, 338, 354, 355). 

The genetic heterogeneity of primary prostate cancer was highlighted by a study conducted by 

the Cancer Genome Atlas (TCGA) which extensively mapped over 300 primary prostate cancers 

and, using the comprehensive information gained by several sequencing platforms, was unable to 

group one in four of the tumours into a molecular signature. This genetic heterogeneity in the 

initial stages of localised cancer will impact the response to treatment of these tumours as well as 

their progression into more advanced and castrate disease (330). Another recent multi-centre 

sequencing study of prostate cancers identified novel coding and non-coding driving events in 

primary tumours that had remained undetected in previous datasets and their subsequent 

analysis (338). This highlights that there are still important molecular alterations which remain to 

be uncovered, aberrations that may play pivotal roles in the initiation and progression of select 

sub-groups of prostate cancer. 

FIGURE 14 – Common genetic alterations in primary and castrate resistant prostate cancer.  

Graph compiled using data from Taylor 2010 (90), Robinson 2015 (331) and TCGA 2015 (330). The 

scale represents the percentage of the sequencing cohort with genetic aberration in the labelled 

gene. 
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1.6 - Castrate Resistant Prostate Cancer (CRPC) 

1.6.1 - Androgen signalling in end-stage disease 

The first line of chemotherapy for advanced prostate cancer is ADT, which is achieved by chemical 

ablation of the androgen axis as discussed in Section 1.4. Specific targeting of the AR by anti-

androgens leads to the clonal expansion of cells that have AR aberrations. These cells can function 

in extremely low levels of androgen through dysregulation of the androgen signalling axis.  

Before the CRPC terminology, this end-stage of disease was referred to as androgen independent 

prostate cancer as the pharmaceutically imposed androgen blockade was thought to have 

nullified AR signalling. However in castrate conditions, tumours and metastases have been 

identified to possess residual, and augmented, androgen signalling. Here the cancer switches from 

androgen-dependent stromal paracrine signalling to a more autocrine pattern (356). The most 

common genetic alterations specific to CRPC, found in 50-60% of patients, are those that 

influence AR signalling and the receptor itself (331, 357, 358)(Figure 15). This is likely due to 

treatment-mediated selection of cellular subpopulations in which AR alteration confers survival 

advantages in castrate levels of androgen. Hormone naïve cancers rarely exhibit any detectable 

AR changes apart from a few exceptions, suggesting that the aggressive latter stage of disease 

may be induced by ADT (359, 360). Overexpression (361) (via possible autoregulation (362)) and 

transcription factor dysregulation (363-365), locus amplification (366, 367) and mutations that 

reduce ligand-specificity (368-373) of the receptor all manifest in CRPC tumours. A similar effect is 

seen in methotrexate resistance, where amplification or overexpression of dihydrofolate 

reductase is frequently observed in leukaemia (374). 

A recent study investigating patient-matched metastatic and non-metastatic tumours observed 

that AR amplification and mutation were; mutually exclusive, and absent in hormone-naïve 

cancers (27). It is now widely accepted that ADT profoundly alters prostate cancer genomes and 

transcriptomes (375). AR promotes a divergent transcriptional program in CRPC, to that of the 

nuclear receptor in localised disease, supporting cellular survival in castrate conditions (376). Thus 

AR maintains a role in the development of CRPC. 

Another ADT-circumvention mechanism upon which CRPC relies is the constituent action of AR 

splice variants (or AR-V). These divergent transcripts are created through aberrant splicing of 

cryptic exons early in the AR gene (377-380). The majority of the variants also exhibit absence of 

latter exons encoding the nuclear receptors’ hinge region and ligand-binding domain (LBD) (381) 

that allow for degradation (382) and activation of the receptor respectively. AR-Vs show 

constitutive nuclear localisation, that is not reliant upon canonical importation pathways (383, 
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384) and are able to activate transcription of the full-length AR gene portfolio independently of 

androgen binding, ablation therapy and indeed presence of the full-length transcript (315, 378, 

383, 384). 

FIGURE 15 – Androgen Receptor aberration in CRPC 

AR changes through splice variation, ligand binding domain mutation, overexpression and 

amplification in advanced castrate disease. Mutational plot highlighting clustering of LBD 

mutations was adapted from COSMIC website (385).  
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Variants activate gene transcription networks divergent from those of full-length AR such as 

STAT3, AP-1/Jun (384) and AKT (378). However not all studies are in agreement with this altered 

profile (315). As most anti-androgens including bicalutamide and next generation treatments such 

as enzalutamide target the LBD of AR (315), AR-Vs are not susceptibility to these therapies. 

Instead this innately conferred resistance allows the variants to proceed unaffected; directing the 

independent growth of cancer cells. They are observed to be upregulated and selected in castrate 

conditions both in culture (315, 381) and in tumours (378, 379). However, there is opposition to 

these findings that state the variants rely on full-length AR for effect, and this renders them 

sensitive to enzalutamide (381). In benign prostate tissues, presence of the splice variants in 

stromal and basal populations, but not in the luminal epithelia, may contribute towards the 

androgen independent growth of these cells (378). It is still unknown whether the epigenetic 

changes resulting in AR-V production are a driver of late stage disease or an adaptive change. 

Most studies interrogating the molecular workings of CRPC focus on AR. Whilst the nuclear 

receptor is an important driver, it does not completely account for the “efficacy” of end-stage 

disease. Indeed, recent studies have shown that small cellular populations of AR- neuroendocrine 

and AR independent basal cells are left untouched by hormonal treatment (241). Currently it is 

unknown whether CRPC is a natural progression of prostate cancer or if it is selected by ADT. 

Supporting evidence for CRPC as an inevitable stage of disease include; 10-20% patients have no 

biochemical response to ADT (386) and the identification of AR alterations prior to treatment 

(387). Castration selecting for CRPC has been suggested in the sudden appearance of androgen 

signalling defects in tumours and in studies in mice models (388). This selection could 

hypothetically be of a luminal cell that has already acquired therapy resistance attributes and/or 

of an androgen independent basal TIC.  

1.6.2 - Involvement of Basal Cancer Stem Cells in Metastatic disease 

Selection of the CSC pool is entirely plausible, as they are therapy resistant and would expand in 

response to the castration-induced apoptosis and growth arrest of the secretory luminal epithelia 

(232). Androgen-independent cells (existing at low frequencies; 1 in 105-106 cells) in a prostate 

cancer xenograft were able to re-initiate tumour growth by clonal expansion (389). These cells, 

although uncharacterised, were very probably the CSC population. 

In the recent generation of organoid cell lines which accurately represent metastatic prostate 

cancer, one of these models PCa6 presented with cytokeratin 5 and p63 expression and a genetic 

background of PTEN deletion and MLL2 mutation suggesting a metastatic outgrowth of basal cell 

origin (241). This is supported by another study which developed a comprehensive and congruent 

expression profile between primary basal stem cells and advanced neuroendocrine metastatic 



68 

 

cancer datasets from multiple studies – suggesting that the progenitors may be at the root of 

advanced disease (390). 

Dysregulation of micro RNAs (miRNAs), key post-transcriptional regulatory molecules dictating 

gene expression, in prostate cancer has been recognised for almost a decade (391-394) with 

implication of specific miRNA networks in castrate resistance (395-398). It has recently been 

shown that the miRNA profile of prostate CSCs is conserved between different disorders and 

tumour grades suggesting that miRNAs are critical in stem cell maintenance throughout disease 

progression. Forced expression of miR-548c-3p, upregulated in the progenitor population, 

reverted the CB cells to a more stem-like state, both phenotypically and functionally. 

Interestingly, the prostate CSC miRNA expression profile is closest to that of unfractionated CRPC 

cells (399) with the signature confirmed by other studies that noted miR-548c-3p elevation in 

advanced prostate cancers (400) and the overlap of EMT/CSC miRNA expression networks (401). 

CRPC is predominantly viewed as a progression of disease, yet a dedifferentiation phenotype is 

becoming more apparent. Whether this is an acquired plasticity of malignant cells or an expansion 

of the CSC pool is yet to be determined. There also exists the possibility that a subset of CSCs is 

more metastatic than others amongst the tumour initiating population, like that observed in 

pancreatic cancers (402). The reappearance of prostate CSC markers and molecular subtypes in 

advanced disease will hopefully be incorporated into the development of treatments which 

consider the difficulty of killing malignant stem cells. 

1.6.3 - Neuroendocrine Prostate Cancer 

The castrate levels of androgens also permit emergence of a distinct tumour phenotype. 

Anaplastic or NEPC is often seen focally in advanced prostate cancer and represents a truly 

androgen-independent form of disease as these cells do not express AR (27). NEPC correlates with 

a more aggressive clinical onset, progressing to death <6 months post-diagnosis (403-405). It is 

thought that neuroendocrine cell differentiation may be occurring during CRPC; thus cases of 

NEPC may benefit from docetaxel and carboplatin combination chemotherapy that would have 

obvious toxicity on the dividing cells (26). 

Neuroendocrine cells are found primarily in the PZ of the organ, scattered throughout the basal 

epithelium. They are terminally differentiated, canonically lack AR, release mitogenic compounds, 

and are classically identified through staining for chromogranin A (404). The functions of this cell 

type are unclear but it is thought that neuroendocrine cells assist prostate epithelial 

differentiation through secreted factors and may possibly affect the constitution of seminal fluid 

(396). Inflammatory stimuli also play a role in neuroendocrine differentiation; cooperativity 

between IL-6 and STAT3, like that reported in CSCs, has also been shown to cause neuroendocrine 
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differentiation in prostate cancer cell lines (406). Recent sequencing of cancers with 

neuroendocrine features identified upregulation of EZH2 and co-amplification of N-Myc and 

Aurora kinase. Molecular hallmarks that distinguish this disease stage over primary epithelial 

tumours (26). 

Neuroendocrine prostate cancer has clonal origins in prostatic adenocarcinoma as shown by a 

study investigating p53 mutation (407), a finding which is corroborated by exome sequencing 

efforts to disseminate the heterogeneity of advanced cancer. Postulation that the neuroendocrine 

phenotype may arise through divergent clonal evolution from the original adenocarcinoma 

following hormonal treatment rather than a linear progression into androgen independence (333, 

375) suggests that either an aberrant differentiation pathway or trans-differentiation may be 

promoted in castrate conditions. 

1.6.4 - Genetic heterogeneity in Castrate Resistant Prostate Cancer 

Considerable effort has been made to map the specific genomic landscape of CRPC (27, 335, 408-

410). Recurrent fusion of TMPRSS2-ERG, deletion of PTEN, NKX3.1 and BRCA2 with amplification 

of Myc are inherited from earlier stage tumours (27, 133, 174, 334, 335). Post-ADT tumours have 

additional AR mutation and amplification (not observed in hormone-naïve cancers), but also 

increased p53 mutation, RB1 loss and defects in DNA damage repair and response enzymes (27, 

335, 408, 409). SPOP mutation, although present, (27, 155, 331, 411) is not seen at the same level 

as observed in primary tumours, (133, 174) with mutation percentage dropping below 10% in 

advanced disease (330). 

Pathway analysis of CRPC also identified similar defects to these found in primary cancer, such as 

disruption of the PI3K signalling network, (90, 174, 335, 409), deregulation of ETS factors,(123, 

334, 335, 351) and AR cofactors including; NCOA2 (90, 409) and FOXA1 (334, 335). The Wnt/β-

catenin pathway is selectively activated in CRPC tissues over hormone-naïve cancers and is linked 

to a dedifferentiated phenotype in these castrate conditions (410). The Wnt and Glucocorticoid 

Receptor (GR) pathways are mutually exclusive in circulating tumour cell (CTC) subsets, suggesting 

that variant androgen-independence mechanisms develop side-by-side in metastatic cancers 

(411, 412). The shift in hormonal synthesis under low androgen conditions also creates an 

environment that selects for promiscuous AR mutant clones which can be activated by 

glucocorticoids (413). WNT5A, upregulated in CRPC, has also been shown to confer heightened 

cancer cell resistance to the anti-androgen enzalutamide (412) showing that these pathways not 

only allow more effective growth of cancer cells but also protect them from cell death. 

As discussed above, treatment of CRPC is palliative as no current drug combination can dissect the 

genetic heterogeneity of metastatic disease (reviewed in (414)). Heterogeneity regarding cell-
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type has again not been addressed to a sufficient level in these studies as most sequencing efforts 

employ, at best, epithelial cell mixtures from tissue microdissections or needle biopsies which also 

contain stromal and haematopoietic cells. However, the improved depth of sequencing does 

allow for visualisation of clonality – especially in metastatic polyclonal abundance (411, 412, 415). 

The mutation rate in non mutator phenotype tumours (331, 335-337) is very low in CRPC 

tumours, suggesting a non-obvious inductive aetiology. 

Alterations found in DNA repair and response genes are found in 20% of CRPCs. Loss of BRCA2, 

which also exhibits germline predisposition of prostate cancer, becomes apparent in castrate 

resistant over treatment naïve cancers (331). 

Targeting the androgen axis has proven to be effective in the short term, yet as resistance 

continually develops in response to next generation therapeutics, novel treatments that act upon 

other actionable defects in end-stage disease are required. Currently, the most promising among 

these is PARP inhibition (416-418). This utilises the defective DNA damage response and repair 

pathways against the cancer, and kills cells due to synthetic lethality. Synthetic lethality is where 

one mutational event has no effect as a variant bypass pathway can rescue the damage but a 

secondary event in (or inhibition of) said salvage pathway becomes lethal for the cell (340). 

PARP is involved in the repair of single-strand breaks with inhibition proving lethal to cells that 

have DSB processing defects – a common phenotype in advanced prostate cancer with recurrent 

identification of loss of or mutation to BRCA2 and ATM genes (331). Several studies have 

highlighted the potential of PARP inhibitors in cancer (416, 418). These insights have produced 

the TOPARP clinical trial of olaparib in prostate cancer patients which has confirmed the predicted 

enhanced response in patients that present with disrupted DNA response and repair (417). 

Aside from sequencing efforts to gain insight into how prostate cancer genomes are rearranged, 

studies have also identified dysregulation of multiple chromatin modifying enzymes that further 

impact upon the epigenetic state of tumours in advanced disease. These include alterations to the 

histone methyltransferases (HMTs) ; EZH2, (90, 123) MLL2, SMYD, (335) and demethylases; 

JMJD3, (419) KDM4C (420) and JARID1B to name a few. The epigenome of prostate cancer and 

indeed the significance of the alterations to both DNA and histones in the initiation, progression 

and prognosis of disease is only just beginning to be uncovered (421-423). 

1.6.5 - Prostate Cancer Invasion and Metastasis 

Metastasis is the process in which the primary cancer spreads to anatomically-distant secondary 

sites utilising body cavities or the circulatory and lymphatic systems. In prostate cancer, patient 

metastasis represents a terminal diagnosis. Only ~5% of patients initially present with metastases 

yet this percentage rises to 40% after treatment (26). Like other cancers, prostate metastases 
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have particular secondary tissue tropisms; - 90% of patients have bone metastases upon autopsy, 

highlighting the extreme bone tropism of prostate CTCs. Other common metastatic sites are the 

lungs (46%), liver (25%), pleural cavity (21%) and adrenal glands (13%) (424)(Figure 16A). 

The metastatic cascade is a series of steps that cancers must pass through to establish and form 

“successful” secondary cancers throughout the body, outlined in (Figure 16B).This process is 

extraordinarily inefficient, with estimates that fewer than 0.01% of CTCs actually form 

macrometastases (425). Certain steps such as final metastatic colonisation of the foreign tissue 

also have higher attrition rates than others (426). Most metastases have a clonal route from one 

locally confined cancer focus, showing a selection process of “successful” cancers. 

1. Local Invasion  

Breakdown of the BM by secreted proteases, such as matrix metallo-proteinases (MMPs), 

(427) releases extracellular matrix GF ligands that enhance an invasive phenotype. 

Destruction of the BM affords greater access to the reactive stroma that further 

contribute to invasion through heterotypic signalling (14). Here, EMT plays a critical role. 

Reduced E-cadherin expression through miRNA and transcription factor interplay causes 

dissolution of epithelial structures and allows cells to collectively invade local tissue. At 

the cellular level two distinct invasive programs have been identified; mesenchymal 

(protease, stress fibre and integrin dependent) and amoeboid (Rho/ROCK signalling 

dependent). Plasticity exists between these two states to optimise invasiveness in 

different microenvironments (164, 428). 

2. Intravasation  

Intravasation is the process by which tumour cells access the vasculature or lymph. The 

main route of metastasis is through the circulatory system with acquisition of traits that 

allow passage through the pericyte and endothelial cell layers which surround blood 

vessels. The vessels stimulated to grow within tumours however aren’t “normal”. 

Angiogenesis initiated by the hypoxic microenvironment creates an irregular neo-

vasculature. These vessels have incomplete pericyte coverage and are also prone to leaks 

due to weak endothelial cell interactions, both of which make intravasation a much easier 

process (429). 
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FIGURE 16 – Metastatic cascade of prostate cancer 

A) Common secondary sites for metastatic prostate cancer colonisation. B) The metastatic 

cascade of prostate cancer; 1. Invasion, 2. Intravasation, 3. Circulation, 4. Secondary site arrest, 5. 

Extravasation, 6. Survival in secondary site microenvironment, 7. Secondary site colonisation  
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3. Circulatory Survival 

CTCs are spread via venous and arterial blood flow to distant secondary sites. PSA 

expression has been used to detect prostate cancer CTCs in the peripheral circulation 

(430). CTC number has also been used in prognosis of castrate resistant disease. 

Identification of >5 cells in 7.5ml of blood correlated with a 10 month reduction in overall 

survival (431). These circulating cells have been characterised, showing the presence of 

TMPRSS2-ERG fusions with heterogeneous AR amplification and PTEN loss (432). As a 

survival requirement, these cells must suppress anoikis (apoptosis provoked by loss of 

anchorage to the substratum) mechanisms, (433) and assuage other problems, such as 

immune surveillance and shearing forces within the blood vessels. Expression of certain 

cell surface molecules allows the CTCs to complex with platelets and form metastatic 

emboli. These bodies can thus evade both fates through the binding of other circulatory 

cells (434). 

4. Arrest at Secondary site 

Cancer cells have preferable adhesion sites, evident in their individual tissue tropism 

profiles. It is thought that this process is dependent on both the physical restrictions of 

CTC passage through micro-vessels and differential expression of cellular adhesion 

molecules that allow selective attachment in certain capillary beds (164). 

5. Extravasation  

Upon vascular arrest, the cells move by the process of extravasation through the vessel 

walls. Extravasation is an exceedingly more difficult proposition than intravasation as 

secondary site vasculature is healthy and is likely to be of low permeability. This does 

have exceptions such as at the fenestrated sinusoids of the liver and bone (435). 

6. Survival in the Secondary site microenvironment 

Initial survival at the secondary site is obviously critical for metastasis formation. To 

achieve this, cells must adapt to the variant microenvironment that is composed of 

different stromal cell constitution, ECM ligands, GFs, cytokines and tissue architecture. 

There is evidence of preparation of secondary sites as pre-metastatic niches, with the aim 

to reduce the differences between the distant tissue and the primary tumour. This is 

thought to be achieved through tissue remodelling instigated by secreted systemic factors 

from the original tumour and would also explain cases of tissue tropism (436). This 

challenge also shows that cells involved in establishing secondary site metastases cannot 

be terminally differentiated, as some plasticity must be retained. In prostate cancer it has 

been shown that the β1 integrin is involved in interactions with bone stroma that enhance 

survival and colonisation (437). This includes α2β1, a surface marker of prostate CSC and 
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TA cell populations, (28) citing possible involvement of these progenitor cells in seeding 

metastases. 

7. Secondary site colonisation  

Survival at the secondary site is no guarantee of “successful” metastases, as the cells can 

remain viable but may not be able to produce any net gain in numbers due to either; 

entry into a quiescent state or simply a balance between proliferative and apoptotic 

indices. Tissue-specific tropism has been observed in divergent metastatic gene-sets 

identified in breast cancer for bone, lung, brain and liver colonisation (164). Success in 

sustaining prolonged growth however depends on the self-renewal capabilities of the 

cells establishing the secondary site, again implicating CSC involvement. 

An interesting study followed a single patient from diagnosis to death, tracking the genetic trail of 

the complete metastatic cascade. Sequencing of the patient’s multi-focal primary cancer and 

biopsied/autopsied metastases revealed a monoclonal origin with acquired genetic changes 

throughout staged progression (155). This approach has previously identified clonal origin of 

metastases in primary pancreatic tumours, (438) and indeed reflects the intra-tumoural 

heterogeneity of the primary cancer itself (439). 
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1.7 - Prostate Cancer Models 

1.7.1 - Cell Lines and Primary Cultures 

Cell lines are the primary model of studying prostate cancer as a disease. They are able to be 

easily manipulated and transfected over repeated passages and can be grown in varying culture 

conditions. There are now well established lines representative of normal tissue, benign, 

malignant and metastatic forms of disease. These cells also range across basal and luminal 

phenotypes to give a more complete picture of disease, in which the appropriate mode can be 

chosen for further study (Table 2). 

Cell lines are useful models in preliminary studies of the disease yet do not accurately represent 

prostate cancer in vivo. Long term culture of cells has been shown to cause divergence from the 

original phenotype and genotype of the once physiologically relevant disease at initial isolation 

(440). This includes chromosomal alterations, changes in gene expression (441) and promoter 

hypermethylation (442). There have also been cases of misrepresentation; due to cell line cross-

contamination (443) or laboratory introduction of an infectious agent (444). Current problems 

facing prostate cancer cell lines are; the relatively low number of them (which have been made 

widely available), their failure to recapitulate all of the molecular phenotypes of disease and the 

lack of lines produced from a current disease state, with the majority of cells having been isolated 

from tissue over 20 years ago (Table 2). Culturing of primary cells, taken with patient approval, 

provides a better disease model. Primary cells still have slight changes imposed upon them by 

culture conditions yet afford a close and relevant model of patient disease when kept at a low 

passage (445). These prostate cancer primary cultures display relevant molecular defects 

including TMPRSS2-ERG (66, 246) and PTEN deletion (247). Primary culture is not without its 

practical limitations. Cells are often slow growing and in some instances patient tissue doesn’t 

propagate in culture at all. The restriction of keeping cells at low passage also means that the high 

cell numbers required for some molecular techniques, and readily achievable through growth of 

cell lines, cannot be reached using primary cultures. 
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Cell line 
Tissue 

Derivation 

Immortalisation 

Method 
Phenotype 

Stage of 

Disease 

Disease 

Features 

Derivation 

Reference 

PNT2-C2 

Primary 

epithelial 

culture 

SV40 large T and 

small t antigen 
Luminal Normal Express CK19 

Berthon 1995 

(446) 

PNT1-A 

Primary 

epithelial 

culture 

SV40 large T and 

small t antigen 
Luminal Normal 

Luminal CK 

Expression 

Cusenot 1991 

(447) 

BPH-1 

TURP primary 

epithelial cell 

culture 

SV40 large T 

antigen 
Intermediate Benign 

Luminal CK 

expression, AR-

, PSA-, PAP- 

Hayward 

1995 (448) 

P4E6 

Primary 

epithelial 

culture 

HPV-16 E6 gene Intermediate Malignant 

Luminal and 

basal CK 

expression, 

CD44+, β1
+, AR- 

Maitland 

2001 (449) 

Du145 
Brain 

metastasis 
/ Basal Metastatic 

Androgen 

insensitive 
Stone 1978 

(450) PTEN 

Heterozygous 

Deletion (451) 

PC3 
Bone 

metastasis 
/ Basal Metastatic 

Androgen 

insensitive 
Kaighn 1979 

(452) PTEN 

Homozygous 

deletion (453) 

22Rv1 
CWR22 

xenograft 
/ Luminal Metastatic 

Contains AR 

splice variants 

(454) 

Sramkoski 

1999 (455) 

LNCaP 
Lymph node 

metastasis 
/ Luminal Metastatic 

Mutant AR 

(456) 

Horoszewicz 

1980 (457) 

TMPRSS2-ETV1 

fusion (351) 

PTEN 

frameshift 

(453) 

VCaP 
Bone 

metastasis 
/ Luminal Metastatic 

TMPRSS2-ERG+ 

(458) 

Korenchuk 

2001 (459) 

TABLE 2 – Prostate cell lines 

Derivation, phenotype and molecular features of prostate epithelial cell lines.   
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Four years after characterisation of prostate epithelial stem cells in 2001, (41, 50) the same 

surface markers of CD44+ α2β1
hi CD133+ were used to isolate the tumourigenic fraction from 

prostate cancers of varying Gleason grades. The selected population constituted ~0.1% of total 

tumour cells, exhibited self-renewal with high secondary colony forming efficiency, displayed 

enhanced proliferative potential over that of non-malignant prostate epithelial stem cells and 

were also extremely invasive (28). Selection of the tumour subpopulations is described in further 

detail in Figure 17 (50). 

There is also another problem that the current, and limited, repertoire of prostate cell lines 

doesn’t fully address; the genetic background of disease for both primary and advanced cancers. 

The metastatic cell lines, as indicated in Table 2, do have some common features of disease such 

as PTEN deletion, AR mutation and ETS factor fusions yet other subtypes of disease such as SPOP 

mutation, CHD1 deletion and SPINK1 overexpression aren’t represented (460). A study in 2014 

attempted to expand this cohort of lines by successfully generating seven fully-characterised 

organoid cultures (241). These cultures encapsulate the molecular phenotypes listed above as 

well as harbouring other common genetic alterations seen in advanced disease such as RB1 loss 

and TP53 mutation (335). These representative and more relevant models can hopefully be more 

widely distributed, to facilitate discovery of treatment strategies and further current 

understanding of the molecular underpinnings governing advanced prostate cancers. 
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FIGURE 17 - Generation of primary prostate epithelial cultures from tissue 

Tissue from patients is cultured using this process stream. Molecular markers can then be used to 

isolate individual cell populations from the heterogeneous epithelial cultures.  
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1.7.2 - Mouse Models; Xenograft and Transgenic lines 

For any theory or treatment option to be clinically accepted, results of in vitro studies must be 

validated in vivo. The greatest in vivo tool used in prostate cancer is the mouse. These are either 

generated as transgenic models or are recipients of human prostate cancer tissue xenografts 

(128). 

Studies using transgenic mice have been pivotal in uncovering the precise biology of many human 

diseases, however there are many anatomical differences between the prostates of mice and 

humans. Firstly, mouse prostate tissue atrophies with increasing age, a situation contrasted to the 

spontaneous neoplastic growth of both BPH and cancer in humans (461). Anatomical organisation 

also differs; the mouse organ comprises of four lobes surrounding the urethra whereas humans 

have an alobular prostate that envelopes the descending urethra (462). The glandular structure of 

the tissue is similarly divergent. Human acini are composed of distinct, yet contiguous, luminal 

and basal epithelial layers in comparison to the single mixed layer of epithelial cells of the mouse 

prostate (463)(Figure 18B).Tumours do not naturally initiate in the mouse prostate, meaning that 

any parallels drawn between cancer in the mouse to that in the human have to be carefully 

considered. The very act of promoting a non-naturally occurring scenario on a model system will 

produce artefacts, some of which may be open to misinterpretation. 

Since mice do not spontaneously develop prostate cancer, transgenic models have been 

generated to mimic disease development. The two classic transgenic lines are TRAMP and Lady, 

with other more specialised models subsequently generated to investigate gain or loss of specific 

proteins. Such mice include PTEN+/-, TMPRSS2-ERG+ and TMPRSS2-ERG+/PTEN+/- mice that have 

given useful insights into the process of carcinogenesis (464, 465)(Figure 18A). 

Xenografts can be established from cell lines or primary human tissue. Cell line xenografts have 

major limitations as they do not recapitulate the heterogeneity of prostate cancer. As previously 

mentioned, these cells have genetic and phenotypic changes induced by culture that aren’t 

representative of tumours. Grafting of human tissue provides a better model of true cancer yet 

proves even more challenging than primary tissue culture, with initial grafts only having a 0-20% 

“take” rate. Xenograft lines, established from successful primary tissue grafts, can be serially 

transferred between mice. In prostate cancer, these include the well-established LAPC and 

CWR22 lines. Again, the value of these models has been questioned due to lack of AR and PSA 

expression in most lines and the lack of physiological similarity due to tissue adaptation to the 

environment of the mouse. Efficacy of this process is dependent on the site of engraftment; 

subcutaneous, in the renal capsule or orthotopic. Each has relative survival advantages and 

mimicry of tumour microenvironment yet each is met with increasing procedural challenge. Other 

additional aids such as testosterone implant and mouse mesenchymal tissue recombination have 
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been shown to improve xenograft survival rates (466). Patient derived xenografts (PDX) are 

notoriously difficult to grow due to inefficient take rates and complication in that human T and B 

cell lymphocytic tumours spontaneously develop in the immune-deficient PDX models and mimic 

solid tissue derived cancer (467). Report of 21 novel and characterised PDXs, representative of 

metastatic prostate cancer, that both encapsulate the genetic heterogeneity of advanced disease 

and respond in similar fashion to conventional treatments (docetaxel and ADT), is promising news 

in the search for more efficacious CRPC therapies (468). 

Xenografting is performed in immunocompromised mice to stop the rejection of foreign tissue. 

The best emerging model are the NOD mice, these lack T and B cells and have NK cell and 

macrophages with impaired function. The addition of mutation-inactivated ILR2γ to these mice 

causes further depletion of NK cells and dendritic cell dysfunction. This augmentation to the 

original model has produced the NSG (NOD-SCID-ILR2γ-/-) and NRG (NOD-Rag1-/--ILR2γ-/-) mice 

which, due to lack of an effective immune response, allow for improved xenograft take efficiency 

(466)(Figure 18C). 

However, the lack of immune system in the mice can permit development of spontaneous human 

lymphomas in the mice from tumour-infiltrating immune cells with latent EBV infection. This is 

particularly common in prostate cancer PDXs which both decreases successful take rates and 

requires further diagnostic screening to remove these “false positives” (469, 470). 
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FIGURE 18 – Mouse models of prostate cancer 

A) Transgenic mouse models of prostate cancer, Lady and TRAMP represent early models and the 

latter highlighting the prostate specific expression (or lack) of known disease genes. B) Organ and 

gland anatomy of the mouse prostate. C) Xenograft mouse lines and engraftment sites for 

modelling prostate cancer  



82 

 

1.7.3 - Cancer Stem Cells in Mice 

Both basal (33, 238, 471) and luminal (239, 240) CSC models of disease are supported in the 

mouse prostate; a scenario that frustrates the search for the origin of an epithelial stem cell 

progenitor in human prostate cancer, adding more confusion than clarification. 

In terms of CSC dynamics during xenotransplantation, the niche in mouse tissue will not re-

capitulate that of the cell in culture or indeed that of epithelia in the human prostate. 

Hypothetically, xenografting of cancer cells may select for a previously non-dominant CSC clone 

that is better adapted in supporting tumour growth in the mouse (245). The stromal 

compartment is extremely important in prostate tumourigenesis; xenografting of cancer cells with 

human stroma enhances their tumourigenicity, implying that the CSC pool interacts with the 

stromal compartment to enhance intrinsic self-renewal and proliferative capabilities (472, 473). 

As discussed, mice are important in deciphering the development and mechanisms of prostate 

cancer. However, limitations are due to the physiological differences compared to the human 

prostate gland; both cellularly and anatomically (474, 475). The lack of immune response and 

non-endogenous heterotypic stromal interaction also adds further variables that must be 

accounted for in the modelling of disease (466). 
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1.8 - Alterations of Allelic expression in Prostate Cancer 

PTEN and SPOP are two tumour suppressor genes (TSGs) that are recurrently mutated, at modest 

frequencies, in primary prostate tumours. Genetic aberrations of both genes are typically 

heterozygous; meaning that a functional allele is still present in affected cells. Cancers may exploit 

this “opportunity” and silence the remaining gene copy epigenetically. The IDH-1 proto-oncogene 

is also observed to be heterozygously mutated in a small percentage of prostate tumours. The 

effects of mutation are pleiotropic in different cell backgrounds and thus the mutated allele may 

be silenced for reactivation in a more “favourable” setting by cancer cells to maximise the 

selective advantage of the enzyme’s neomorphic capabilities. 

Allelic regulation of gene expression has, over the last decade, been shown to affect many 

autosomal disease genes, a possible explanation for the variable penetrance of several 

neurodegenerative disorders, but hasn’t yet been interrogated in prostate cancer. Recent work 

conducted in the Maitland laboratory observed monoallelic expression of the TMPRSS2-ERG 

fusion gene in prostate CSCs. The finding highlights the importance of allelic perturbation in 

cancer and suggests that selection of ERG is beneficial for stem-like properties of these malignant 

progenitors. Identification of higher order regulatory mechanisms in allelic expression may allow 

therapeutic targeting of epigenetic insults in prostate cancer. 

1.8.1 - Classical monoallelic expression 

Mendelian genetics assumes that inherited alleles, paternal and maternal, are congruently 

expressed and contribute in equal parts to progeny phenotype. This is termed biallelic expression, 

where transcription of both alleles occurs in equivalent frequencies (476). However, for some 

gene sets; expression only occurs from a single allele. To date, there are three distinct examples 

of monoallelic expression; X chromosome inactivation (XCI), imprinting and random monoallelic 

expression (RME). 

X-inactivation is a mammalian female-specific dosage compensation event in which one of the X 

chromosomes is enveloped in heterochromatin and silenced. This creates cellular X monosomy, 

meaning that there is only one active copy of each X-linked gene present. The initial selection for 

silencing of the chromosome; XM (maternal) or XP (paternal) is random and propagates clonally, 

yielding a mosaic pattern of X inactivation across tissues (477). The mechanism of XCI is well 

studied and involves Xist (X-inactive silencing transcript), a long non-coding RNA (lncRNA) (478) 

produced from the X inactivation centre (XIC). Xist achieves this by recruiting the Polycomb 

repressive complex 2 (PRC2), containing EZH2, that directs trimethylation of H3K27 along the 
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chosen X chromosome (479). Silencing the majority of genes on a single X chromosome facilitates, 

by default, monoallelic expression of the partner alleles on the active X (Figure 19). 

 

FIGURE 19 - X chromosome inactivation 

1. RepA mRNA recruits PRC2 to the X inactivation centre (XIC) 

2. PRC2 directs trimethylation of H3K27 of XIC 

3. This activates Xist lncRNA expression that recruits PRC2 

4. Xist directs the repressive trimethylation of the whole X chromosome through PRC2  
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Imprinting is non-random monoallelic expression. Here, silencing is dictated by parent-of-origin-

dependent expression in gene clusters. This phenomenon accounts for observations that both 

paternal and maternal chromosomes are required in the development of viable progeny (480). 

These clusters all contain a regulatory element, or imprinting control region (ICR), that enforces 

the monoallelic expression of a local gene or genes. lncRNA genes also found at the loci further 

enforce silencing of one of the alleles.  

Gene imprinting has several models describing the regulation of allelic expression. Currently, 

these can be divided into insulator and lncRNA regulated imprinting. In the insulator mechanism; 

a protein coding and lncRNA gene (separated by a common ICR) share downstream enhancer 

sequences. The maternal allele ICR is bound to by a CTCF insulator protein which restricts access 

of the protein coding gene to the enhancer as they are now in disparate genomic 

neighbourhoods. At the paternal allele; the ICR is methylated thus CTCF cannot bind to the 

element. The paternal epigenetic alteration also seeds secondary methylation of the lncRNA gene 

resulting in paternal allele expression of the protein coding gene, as the enhancer regions are 

accessible and maternal-specific expression of the lncRNA. This is canonically observed at the Igf2 

– H19 locus (481)(Figure 20A). 

Currently the lncRNA model of imprinting has no definitive universal consensus, and indeed 

seems unique in both a cellular context and the nature of the individual lncRNA. There is evidence 

to show that the sense transcript may anneal to the antisense of the adjacent allele’s promoter 

causing, initially, transcriptional disruption followed by a proximal accumulation of repressive 

chromatin and DNA methylation, or loss of active histone marks (482). Another possibility is that 

the imprinting lncRNAs mimic Xist and package the other gene copy into repressive chromatin 

structures. Indeed, lncRNAs have been shown to interact with several epigenetic modifiers. These 

include; PRC2, the H3K9me3 HMT G9a, DNMT1 and KDM1B (H3K4 demethylase) offering 

plausible correlating evidence (481, 483, 484)(Figure 20B). 
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FIGURE 20 – Models of Imprinting 

A) Insulator mechanism of gene imprinting. B) The antisense and XCI mimic models of lncRNA 

mediated gene imprinting  
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1.8.2 - Random monoallelic expression; involvement in cancer? 

RME is unlike XCI and imprinting as it doesn’t occur at distinct loci but is observed to be 

widespread across autosomes (476, 485). It is established in development (486-488) and 

regulated through conserved epigenetic mechanisms (489, 490). There is an extremely high 

probability that RME is perturbed in cancer i.e. that pathogenic heterozygous mutation or 

deletion of a gene can trigger a switching of allelic expression at an epigenetic level that silences 

the remaining gene copy. In a cancer cell, this would cause complete removal of protein 

expression and, thus, tumour suppressor activity. Similarly, observation of epigenetic selection 

and activation of oncogenes remains plausible in this setting. 

Disease genes known to be affected by RME include those associated with neurodevelopmental 

disorders; (491) such as the amyloid precursor protein in Alzheimer’s (485) and α-synuclein in 

Parkinson’s (492). Death-associated protein kinase (DAPK1) in chronic lymphoblastic leukaemia 

(CLL), (485, 493) the Eya transcriptional co-factors implicated in brachio-otic/brachio-oto-renal 

syndromes (487) are other RME disease genes. The altering of expression occurs at a 

transcriptional level and typically reduces total transcriptional output although some genes do 

exhibit transcriptional compensation (487, 494). Haploinsufficiency and the variance produced by 

monoallelic expression produces intra-clonal diversity at the transcriptomic level in tissues. This is 

hypothesised to contribute towards the differing penetrance seen in many disease states (495). 

Some studies show that selective allelic expression can reduce the dosage of the mutant allele 

and presumably protect the cell from pathologic effects (496, 497). 

Cellular populations, due to stochastic choice upon development, will express an RME gene both 

monoallelically and biallelically. This generates a further layer of heterogeneity amongst 

genetically identical clones (485, 487, 494). In colorectal cancer xenografts, intra-clonal diversity 

has been observed to alter cellular proliferation and response to chemotherapy. Population 

variance couldn’t be attributed to genetic differences and therefore must be propagated by 

epigenetic alterations (including RME) and/or niche placement in the tumour microenvironment 

(498). Indeed, recent developments in single-cell transcriptomic sequencing (499, 500) has further 

revealed that both normal (501) and cancerous (502-504) cell clones vary greatly in their 

expression profiles and the levels of transcript expressed. The increased diversity allows tumour 

cells a wider field to enable survival upon tackling the selective pressures of microenvironmental 

changes and during treatment; meaning that they are more prepared, as a collective, for the 

adaptive changes required for progression into a “successful” cancer (212, 505). 

It has also been observed that most cells exhibit dynamic RME due to transcriptional bursting. 

This term is used to describe the temporally asynchronous production of mRNA transcript from 

paternal and maternal alleles. Dynamic RME is widespread across the human genome and affects 
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a significant percentage of transcribed loci (506). These episodic bursts complicate studies which 

evaluate stable monoallelic expression as most techniques, such as RNA-seq and RNA-FISH, only 

afford a snapshot of cellular mRNA expression at a single time-point. For a biallelically expressed 

gene, the alternate transient production of a single allele’s mRNA due to transcriptional bursting, 

as visualised by the aforementioned methods, will appear as stable monoallelic expression – 

resulting in a false positive result for allelic imbalance.  

This problem has been highlighted in an almost perfect case study. In 2012, a group reported 

monoallelic expression of the pluripotency factor nanog in the early stages of embryonic 

development using RNA-FISH (507). This allelic restriction however was shown to be due to 

transcriptional bursting by another study the following year. Fluorescent protein labelling was 

used to mark the two nanog alleles to show biallelic expression of the gene in real-time (508). It is 

therefore necessary to evaluate several time-points when looking at allelic expression, preferably 

using multiple analytic methods (486). 

This is both to prevent incorrect claims of stable monoallelic expression and also to reduce the 

number of false positives due to transcriptional bursts. Use of RNA-seq to determine allelic 

frequency ratios in mouse embryonic, liver and fibroblast cells detected global transcriptional 

bursting. This, as expected, gave a much higher than usual percentage of monoallelically 

expressed transcripts due to the dynamic nature of the bursting (509, 510). A follow-up study 

using single-cell RNA-seq that accounted for the clonal dynamics of cells, observed that the 

majority of cellular RME is due to transcriptional bursting with very few genes stably and clonally 

monoallelically expressed (511). 

RME genes differ between cellular lineages yet there appears to be a core group conserved across 

cell types. The observation at present is that the overlap is greater between biologically related 

and functionally similar cells (489, 510). This has impact on cancers, as, like their mutational 

content, they will most likely have variant monoallelically expressed gene-sets that may 

compromise important pathogenic alleles. However, as the field is in its infancy, the extent to 

which the phenomenon impacts upon the state of cancer is relatively unknown with only a select 

few “driving” genes having been linked to RME. The epigenetic regulatory mechanisms of 

monoallelic expression are known (489, 490) yet their timing, resolution and whether there are 

any key upstream players above the HMTs involved is still a mystery. All of the aforementioned 

may be perturbed in cancer leading to a state where allelic expression at a global level is affected. 

It is also worth noting that, although discovered in cell culture, RME has now been shown to exist 

in vivo by multiple studies and is not an artefact of the artificial growth environment (487, 489, 

511-513). 
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1.8.3 - Epigenetic regulation of random monoallelic expression and perturbation in cancer  

The regulation of allelic choice, in the majority of RME genes (487) is not controlled by correlative 

methylation of promoter CpG islands (246, 514, 515) as originally postulated. Strand-specific 

methylation could account for switching in active alleles at mitosis, however analysis of published 

ChIP-seq datasets implies that RME is defined by an asymmetric chromatin signature (516). 

Gene body histones of the active allele are tri-methylated at H3K36 and the nucleosomes of the 

silenced allele are trimethylated at H3K27 (489). This fingerprint has been shown to be predictive 

of monoallelic expression and is orthologically conserved in both mice (490) and chimpanzees 

(517) suggesting that the unknown upstream regulation of allelic expression is encoded into our 

DNA. The recent compilation of many transcriptional and ChIP-seq datasets has led to the 

creation of a monoallelic expression database that has both mouse and human cell and tissue 

records (518). In reference to the evolutionarily conserved nature of RME; Matthew Thayer’s 

laboratory have identified loci, found on chromosomes 6 and 15, which produce autosomal 

equivalents of the Xist lncRNA called ASARs (asynchronous replication and autosomal RNAs). 

These molecules direct monoallelic expression in cis along their chromosomes, placing ASARs in a 

possible higher order of regulatory mechanisms for RME. These regions may provide ICR activity 

as they act akin to the lncRNAs identified in imprinted gene clusters. It is likely there are other, as 

yet undiscovered, loci which dictate autosomal monoallelic expression (519, 520). 

The majority of genes encompassed by the characteristic RME chromatin structure are bivalently 

marked in embryonic stem cells (ESCs) (489). Bivalent or “poised” chromatin is formed by dual 

deposition of respective activating and repressive trimethylations, H3K4me3 and H3K27me3, on 

the same nucleosome (521-524), in gene promoter regions which, although antagonistic, 

maintains a low level of gene transcription. Removal of one of the marks by a specific histone 

demethylase (525) results in the rapid activation or repression upon stem cell differentiation 

(526)(Figure 21). Resolution of somatic stem cell bivalent marks into those observed in RME gene 

bodies is plausible theory (489, 527). It has been observed that promoter elements of RME genes 

are regulated by allelic accessibility in differentiated cells, and that this is pre-marked by 

deposition of H3K4me3, K27me3 and K9me3 in ESCs (528). Bivalent genes, like RME gene-sets, 

are lineage specific (529) and are perturbed in cancers of various tissues (530-537) including the 

prostate (423). The bivalent histone state of normal tissue and progenitor cell gene promoters has 

high predictive value for the subsequent methylation of these regions in tissue matched cancer 

cells (538, 539). These regions also exhibit microenvironmental plasticity and have been observed 

to respond to hypoxia (540). Breast cancer cells increase bivalent domains during EMT, to reduce 

transcript levels of epithelial identity genes, and resolve them during the reverse mesenchymal to 
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epithelial transition (MET) via expression of the H3K27me3 demethylase, JMJD3 (541). This 

permits successful secondary site seeding and the establishment of metastases. 

Sequencing has also identified an enrichment of events that dysregulate chromatin modifying 

enzymes involved in deposition of these trimethylations in prostate tumours. In advanced 

cancers, the H3K27 methyltransferase EZH2 is upregulated and its locus frequently amplified (90, 

123). EZH2 expression can be activated by ERG, a developmental transcription factor frequently 

dysregulated in prostate cancer, an interplay that promotes a de-differentiation program (542) by 

epigenetic silencing of critical genes such as NKX3.1 (543). H3K4 methyltransferases SMYD3 and 

MLL2 are also perturbed in prostate cancer. The first enzyme is seen to be frequently 

overexpressed in cancer tissues, (422) whilst MLL2, that interacts with and facilitates epigenetic 

transactivation of AR, is recurrently mutated (335). Interestingly these HMTs are involved in 

maintenance of bivalent chromatin;(526) that, in the prostate, marks a gene-set which becomes 

dysregulated during cancer development (423). Studies in prostate cancer cell lines have 

observed the alterations at bivalent loci from benign to cancerous states and also during EMT 

(421, 422) yet work of this nature needs to be undertaken in primary cells and tissues to ascertain 

closer to physiological correlations of these histone trimethylations. 
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FIGURE 21 - Resolution of bivalent chromatin to RME chromatin 

The original bivalent or poised state of the allele allows for rapid activation or silencing of the 

gene copy by promoter loss of a histone trimethylation and gene body gain of another.  
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Apart from obvious alterations to gene copy number by deletion and amplification, nucleotide 

changes that lead to an epigenetic switch of allelic expression have been identified in cancer. 

DAPK1 is a mediator of apoptosis that is monoallelically expressed in peripheral blood 

mononuclear cells (485). The gene promoter is recurrently hypermethylated in CLL, allowing the 

cells to become more resistant to apoptotic cell death. A rare germline mutation has also been 

discovered in a suppressor sequence of the gene that increases the binding affinity of the 

transcriptional repressor HOXB7, further reducing output of DAPK1 transcript from the mutant 

allele (493)(Figure 22A). 

In T-ALL, microinsertions upstream of the TAL1 oncogene disrupt normal deposition of silencing 

H3K27me3 and cause monoallelic reactivation of the gene that is usually silenced in the T-cell 

lineage. The nucleotide insertion was initially observed in the Jurkat cell line and has now been 

recurrently identified in primary samples – this monoallelic defect correlates with worse overall 

survival and higher blast counts in patients (544)(Figure 22B). 

Allele-specific upregulation of FGFR2 has been observed in breast cancers. Here a haplotype of 2 

specific minor SNPs confers abnormal binding of RUNX2 to the oncogenic allele – stimulating a 

disproportionate activation of FGFR2 expression in breast cancer cells. Allelic upregulation of the 

mitogenic receptor tyrosine kinase confers a growth advantage to cells which is exploited by the 

cancer (545, 546)(Figure 22C). 

TERT promoter mutations are always heterozygous, and have been observed in a number of 

cancers, but not in the prostate (547-549). This molecular defect can actually drive expression of 

telomerase more efficiently than the wild-type promoter (550). The mutant allele binds the 

GABPA ETS factor, causing a switch from the usual H3K27me3 to an active chromatin structure. 

The silent allele also becomes associated with repressive marks such as H3K27me3 and EZH2 

(551). This allele-specific binding event presumably allows for the deposition of H3K4me3 and the 

subsequent monoallelic expression of telomerase – granting replicative immortality to the cancer 

cell (552)(Figure 22D). 

The most comprehensive study of the proportion of mutated alleles expressed in cancer has come 

from multiple myeloma (497). Contrary to the assumptions of most genome sequencing studies 

that all mutations are expressed and affect protein; it was shown, through combination of 

matched patient RNA and DNA-seq datasets, that the majority of mutations in the cancer weren’t 

expressed. This phenomenon has also been previously observed in studies of breast, lung and 

brain cancers (553-555). 
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FIGURE 22 – Literature examples of normal to cancer allelic alterations 

Red circles – repressive epigenetic marks. Green circles – activating epigenetic marks. 

A) DAPK1 methylation in CLL. The gene is hypermethylated in chronic lymphoblastic leukaemia 

and a mutation upstream of the gene can provide a novel binding site for the HOX7B 

transcriptional repressor protein that further decreases transcriptional output. 

B) TAL1 chromatin changes in T cell lymphoma. Micro-insertions disrupt deposition of repressive 

histone modifications to cause allelic activation of the TAL1 oncogene. 

C) FGFR2 transcription factor binding in breast cancer. SNP variants create a RUNX2 binding site in 

an allele of FGRF2 and cause a hyperactivation of allelic transcription.   

D) TERT promoter mutation in several cancers. Promoter mutation produces a biding site for the 

GABPA ETS factor and a switch from silencing to active chromatin signature that permits 

telomerase expression from the single allele.  
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1.8.4 - Epigenetic modifiers as cancer treatments 

The switching on and off of allelic expression in disease can be related to dynamic chromatin 

restructuring. Prostate cancer itself has an enrichment of mutation and rearrangements in 

chromatin modifying enzymes such as CHD1, (174) MLL2 (335) and EZH2, among others (90). The 

polycomb group protein EZH2 is up-regulated by TMPRSS2-ERG, (542) and creates the chromatin 

structures seen to envelope bivalent and RME genes (489). Treating cancer cells that are 

epigenetically aberrant with small molecule inhibitors of specific DNA or histone modifying 

enzymes may cause a reversal of either the deposition or removal of the epigenetic mark – 

resulting in a regression of the cancer phenotype. 

CSCs of the prostate have heightened levels of heterochromatin that offers greater protection 

from radiotherapy. Co-application of an Histone Deacetylase (HDAC) inhibitor sensitised the stem 

cells to the radiation dose leading to formation of open chromatin structures and exposing DNA 

vulnerable to damage by the treatment (323). Promoter hypermethylation is another commonly 

observed epigenetic event in prostate cancer differentiation. Affected genes are first 

downregulated and then methylated to lock them in the repressed state. Interestingly these 

differentiation associated hypermethylated (DAH) genes were identified to have previously been 

associated with bivalent chromatin earlier in development. The DAH genes, in 3D cultured 

prostatic acini, showed a non-significant methylation increase with a significant decrease of the 

H3K4me3 mark throughout differentiation. Promoter H3K4 trimethylation permits the expression 

of the genes in the stem cells, yet this chromatin signature is lost upon development, causing 

gene downregulation and subsequent methylation (423). The identification of this gene-set in 

prostate cancer and its initial bivalent status suggest that RME may also play a genome-wide role 

in tumours through reduction of transcript levels and producing subsequent heterogeneity of 

gene expression during the aberrant differentiation of the prostate epithelia. 

Inhibition of DNA methyltransferases is used to facilitate epigenetic reactivation of TSGs. The 

reversible nature of methylation marks it as an attractive anti-cancer therapeutic target. 

Commonly used inhibitors are azacitidine and decitabine which have seen use in myeloid 

leukaemias with some effect (556). Azacitidine decreased PSA levels in correlation with reduced 

LINE methylation in pre-chemotherapy CRPC patients (557) suggesting possible application of the 

drug earlier in prostate cancer progression may reduce biochemical symptoms and slow 

progression of disease. In relation to RME, regular treatment of the Raji CLL cell line with 

decitabine caused a steady rise in DAPK1 expression while untreated cells had no response in 

expression levels as the tumour suppressor remained epigenetically silenced (493).  
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Targeting DNA methylation as a viable treatment option is possible yet it seems that in the case of 

prostate cancer, histone modifications are the more important regulators; advocating possible 

use of HDAC and HMT inhibitors in combination with other therapies. 

1.8.5 - PTEN and Prostate Cancer  

Phosphatase and tensin homologue deleted on chromosome ten (PTEN) is a dual-specificity 

protein tyrosine phosphatase (PTP) that has both lipid and protein targets (558). The enzyme 

itself was discovered due to frequent loss of heterozygosity (LOH) at chromosome 10q23 in 

prostate, breast and brain cancers; implicating the gene as a probable tumour suppressor (558). 

The major cellular role of PTEN is to antagonise PI3K phosphorylation at the 3’ position of PIP2 

(phosphatidylinositol 3,4 bisphosphate) and PIP3 (phosphatidylinositol 3,4,5 triphosphate) (559). 

Depletion of these specific phospholipid signalling molecules prevents binding of proteins with 

Pleckstrin homology (PH) domains, such as AKT; a central growth signalling kinase (560-562). 

In prostate cancer, PTEN deletion is among the most common genetic alterations in both primary 

and metastatic tumours. Deletion of the phosphatase is seen in ~40% of localised cancers with 

incidence rising to 70-80% in metastatic disease (345). This pattern suggests that PTEN plays a 

role in both initiation and progression of prostate cancers.  

Disruption of the phosphatase gene allows for unchecked AKT activity – sustained proliferative 

signalling, increased protein synthesis through MTORC1, enhanced cellular survival, angiogenesis 

and tumour progression (148, 563-565). PTEN also has caretaker functions as it promotes 

genomic stability, both through nuclear and cytosolic localisation, and aids the DNA damage 

response (565-568). The enzyme has protein targets, independent of its lipid phosphatase activity 

in the PI3K pathway. These include FAK (Focal Adhesion Kinase) (569) an enzyme involved in cell 

motility, the transcription factor CREB (570) and the non-receptor tyrosine kinase; Src (571). 

Alterations in the PI3K/AKT signalling pathway are a common occurrence in prostate cancer, with 

PI3K mutations and other regulators also being disrupted in the disease state (90, 174, 331, 345, 

572)(Figure 23). 
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FIGURE 23 – PTEN signalling and disturbances in Prostate Cancer 

Normal PTEN signalling and the molecular alterations to the gene frequently observed in prostate 

cancers. Mutational chart of exon 5 taken from COSMIC website (573).  
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The deletion of the 10q23 locus is commonly seen in TMPRSS2-ERG+ tumours (90) created by 

coordinated chromoplectic chain events (334). It has been shown that PTEN deletion also causes 

staged cancer progression; prostate specific homozygous deletion of the gene in transgenic mice 

causes accelerated development of PIN, adenocarcinoma and metastatic disease. The murine 

PTEN null tumours were hypersensitive to ADT, yet upon autopsy it was found that AR+ cells were 

still present. This suggests that if observation time had been extended, the PTEN-/- tumours may 

have advanced into a state of CRPC (574). The prevalence of genetic insults to the PTEN gene in 

prostate cancer has been used to map heterogeneity in tumours. Multifocal disease in the 

prostate is common and PTEN status at each focus varies, suggesting that loss of the phosphatase 

is a later sub-clonal event. Increased heterogeneity of PTEN deletion has also been shown to 

directly correlate with Gleason grade and thus cancer aggressiveness (345). 

Classically, for cancer to arise from mutated TSGs, inactivation of both alleles must occur 

according to Knudson’s two-hit hypothesis (575). The other PTEN allele in cancer has been 

observed to be deleted (homozygous removal of PTEN), mutated and epigenetically silenced 

(although promoter hypermethylation of the gene isn’t observed in prostate tumours) (174, 576, 

577). TMPRSS2-ERG+ tumours can also repress PTEN expression via ERG, highlighting that a 

convergent molecular outcome in prostate cancers is a reduction of PTEN protein (578). Thus the 

gene dosage of PTEN is critical in the prostate, as cancer can result from haploinsufficiency of the 

gene (579, 580). If RME affects the PTEN gene, then reduced dose through monoallelic expression 

in cancer will enhance tumourigenesis. 

The metastatic prostate cancer cell lines; PC3, LNCaP and Du145 represent the importance of 

PTEN aberrations in disease. PC3 cells completely lack PTEN due to homozygous deletion, Du145 

have heterozygous deletion and exon 5 point mutation to the remaining allele whilst LNCaPs have 

an exon 1 indel that creates a frameshift (451, 558). In prostate tumours it is observed that PTEN 

mutation typically targets the PTP domain of the enzyme (exon 5 of the gene), with the 

123HCKAGKGR130 catalytic loop being the most frequently mutated region of the phosphatase 

domain (565)(Tables 3 & 4). Although frequency varies between population studies; in prostate 

cancer, PTEN mutation is not a commonly observed event relative to deletions of the gene (133, 

330, 335, 558, 581-584). Recently, a recurrent inversion of the whole PTEN gene has been 

observed in hormone naïve localised prostate cancers that decreases PTEN mRNA production and, 

surprisingly, reduces pathway activity below that seen in cases of heterozygous deletion 

(332)(Figure 23). 
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Codon Nucleotide 

Change 
Amino Acid 

Change 
Location 

(Exon/Domain) Consequence Reference 

19G>C E7Q Exon 1 Missense Haffner 2013 (155) 
58G>T G20Stop Exon 1 Nonsense Dong 2001(585) 
70G>A D24N Exon 1 Missense COSMIC – UK (586) 
144C>A N48K Exon 2 Missense TCGA 2015 (330) 
163A>G R55G Exon 2 Missense Dong 2001 (585) 
202T>C Y68H Exon 3 Missense COSMIC – UK (586) 
259C>T Q87Stop Exon 5/PTPc Nonsense Vliestra 1998 (453) 
271G>C E91Q Exon 5/PTPc Missense Suzuki 1998 (584) 
276C>A D92E Exon 5/PTPc Missense COSMIC – UK (586) 
283C>T P95S Exon 5/PTPc Missense de Muga 2010 (581) 
302T>A I101N Exon 5/PTPc Missense Dong 2001 (585) 
328C>T Q110Stop Exon 5/PTPc Nonsense Dong 2001 (585) 
332G>A W111Stop Exon 5/PTPc Nonsense Kan 2010 (583) 
355G>T V119F Exon 5/PTPc Missense TCGA 2015 (330) 
384G>C K128N Exon 5/PTPc Missense Barbieri 2012 (66) 
385G>A G129R Exon 5/PTPc Missense Li 1997 (558) 
388C>T R130Stop Exon 5/PTPc Nonsense Vliestra 1998 (453) 
400A>T M134L Exon 5/PTPc Missense Li 1997 (558) 
401T>G M134R Exon 5/PTPc Missense COSMIC – UK (586) 
403A>G I135V Exon 5/PTPc Missense Dong 2001 (585) 
449A>G E150G Exon 5/PTPc Missense Dong 2001 (585) 
480C>T T160T Exon 5/PTPc Silent Dong 1998 (582) 
487A>T K163Stop Exon 5/PTPc Nonsense Grasso 2012 (335) 
517C>T R173C Exon 6 Missense COSMIC – UK (586) 
518G>A R173H Exon 6 Missense Barbieri 2012 (133) 
520T>A Y174N Exon 6 Missense Feilotter 1998 (587) 
638C>G P213R Exon 7/C2 Missense Grasso 2012 (335) 
697C>T R233Stop Exon 7/C2 Nonsense Barbieri 2012 (133) 
758T>A I253N Exon 7/C2 Missense COSMIC – UK (586) 
814C>T H272Y Exon 8/C2 Missense Dong 2001 (585) 
977A>G D326G Exon 8/C2 Missense TCGA 2015 (330) 
1008C>A Y336Stop Exon 8/C2 Nonsense Barbieri 2012 (133) 
1031A>G K344R Exon 9/C2 Missense Dong 2001 (585) 
1043C>T T348I Exon 9/C2 Missense Dong 2001 (585) 
1102T>G V369G Exon 9 Missense Dong 1998 (582) 
1144A>T T382S Exon 9 Missense Dong 2001 (585) 

TABLE 3 – All known PTEN mutations in prostate cancer  
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Exon 

Number 
mRNA/Protein Sequence 

1 
mRNA 

ATGACAGCCATCATCAAAGAGATCGTTAGCAGAAACAAAAGGAGATATCAAGAGGATGGATTCGAC

TTAGACTTGACCT 
Protein M T A I I K E I V S R N K R R Y Q E D G F D L D L T  

2 
mRNA 

ATATTTATCCAAACATTATTGCTATGGGATTTCCTGCAGAAAGACTTGAAGGCGTATACAGGAACAA

TATTGATGATGTAGTAA 
Protein Y I Y P N I I A M G F P A E R L E G V Y R N N I D D V V R  

3 
mRNA GGTTTTTGGATTCAAAGCATAAAAACCATTACAAGATATACAATCT 
Protein F L D S K H K N H Y K I Y N 

4 
mRNA TTGTGCTGAAAGACATTATGACACCGCCAAATTTAATTGCAGAG 
Protein L C A E R H Y D T A K F N C R 

5 
mRNA 

TTGCACAATATCCTTTTGAAGACCATAACCCACCACAGCTAGAACTTATCAAACCCTTTTGTGAAGAT
CTTGACCAATGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCACTGTAAAGCTGGAAAGGGA
CGAACTGGTGTAATGATATGTGCATATTTATTACATCGGGGCAAATTTTTAAAGGCACAAGAGGCCC
TAGATTTCTATGGGGAAGTAAGGACCAGAGACAAAAAG 

Protein 
V A Q Y P F E D H N P P Q L E L I K P F C E D L D Q W L S E D D N H V A A I H C K A G K G R T G 
V M I C A Y L L H R G K F L K A Q E A L D F Y G E V R T R D K K  

6 
mRNA 

GGAGTAACTATTCCCAGTCAGAGGCGCTATGTGTATTATTATAGCTACCTGTTAAAGAATCATCTGG
ATTATAGACCAGTGGCACTGTTGTTTCACAAGATGATGTTTGAAACTATTCCAATGTTCAGTGGCGG
AACTTG 

Protein G V T I P S Q R R Y V Y Y Y S Y L L K N H L D Y R P V A L L F H K M M F E T I P M F S G G T  

7 
mRNA 

CAATCCTCAGTTTGTGGTCTGCCAGCTAAAGGTGAAGATATATTCCTCCAATTCAGGACCCACACGAC
GGGAAGACAAGTTCATGTACTTTGAGTTCCCTCAGCCGTTACCTGTGTGTGGTGATATCAAAGTAGA
GTTCTTCCACAAACAGAACAAGATGCTAAAAAAG 

Protein 
C N P Q F V V C Q L K V K I Y S S N S G P T R R E D K F M Y F E F P Q P L P V C G D I K V E F F H K 

Q N K M L K K  

8 
mRNA 

GACAAAATGTTTCACTTTTGGGTAAATACATTCTTCATACCAGGACCAGAGGAAACCTCAGAAAAAG
TAGAAAATGGAAGTCTATGTGATCAAGAAATCGATAGCATTTGCAGTATAGAGCGTGCAGATAATG
ACAAGGAATATCTAGTACTTACTTTAACAAAAAATGATCTTGACAAAGCAAATAAAGACAAAGCCAA
CCGATACTTTTCTCCAAATTTTAAG 

Protein 
D K M F H F W V N T F F I P G P E E T S E K V E N G S L C D Q E I D S I C S I E R A D N D K E Y L V 
L T L T K N D L D K A N K D K A N R Y F S P N F K  

9 
mRNA 

GTGAAGCTGTACTTCACAAAAACAGTAGAGGAGCCGTCAAATCCAGAGGCTAGCAGTTCAACTTCT
GTAACACCAGATGTTAGTGACAATGAACCTGATCATTATAGATATTCTGACACCACTGACTCTGATCC
AGAGAATGAACCTTTTGATGAAGATCAGCATACACAAATTACAAAAGTCTG 

Protein 
V K L Y F T K T V E E P S N P E A S S S T S V T P D V S D N E P D H Y R Y S D T T D S D P E N E P F 

D E D Q H T Q I T K V Stop 
TABLE 4 – Location of prostate cancer associated mutations in the PTEN gene  
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1.8.6 - SPOP and Prostate Cancer  

The primary role of Speckled-type POZ protein (SPOP) is that of a substrate-specific adaptor 

protein for the Cullin3-RING E3 ligase (CRL3) (588, 589). SPOP owes its strange name to the 

roundabout way in which it was discovered. Application of autoimmune antibodies from a 

schleroderma patient onto COS7 cells created a confined speckled pattern in cell nuclei. Immuno-

screening of a HeLa library identified the epitope-containing protein that was found to contain a 

POZ (pox virus and zinc finger) domain by subsequent BLAST search. The protein was thus named 

speckled-type POZ protein (590).  

In complex with CRL3, SPOP marks a plethora of protein substrates for targeted proteasomal 

degradation by poly and multi-mono ubiquitination (591, 592). The adaptor protein is equipped 

for this function through MATH (meprin and TRAF homology) and BTB (Bric-a-

brac/Tramtrack/Broad, also known as POZ) domains. The MATH domain sequesters substrate 

protein whilst the BTB domain facilitates activation of SPOP-CRL3 dimerisation/oligomerisation, 

and the binding of the Cullin 3 complex, to bring the substrate into close proximity to the E3 

Ligase catalytic core (593-595). Substrate proteins contain an SPOP binding consensus (SBC) 

consisting of a 5 amino acid motif (595). SBCs are found in BMI1, macroH2A, Daxx, Gli2/3, DEK, 

TRIM24, AR, NCOA3, SETD2, BRD4 and ERG, to name a few of SPOP’s targets (382, 591, 592, 596-

603)(Figure 24A). Whilst this binding typically confers ubiquitin-mediated degradation, it has been 

shown to have other effects; such as aiding macroH2A deposition on the inactivated X 

chromosome (598) and antagonising INF2-mediated regulation of mitochondrial fission (604). 

SPOP also plays a role in the DNA damage response (605, 606) and in cellular senescence, 

suggestive of a caretaker role for the gene (607). The presence of SPOP in an E3 ligase complex, 

one of the largest human enzyme classes, opens the potential for dysregulation of widespread 

protein targets in cancer, some of which won’t have yet been identified as SPOP substrates. 

SPOP is the most commonly mutated gene in primary prostate cancer (settling at around 10%) 

(330-332, 608). Mutations of the gene have been identified in colorectal, (609, 610) 

hepatocellular, (611) thyroid (612) and endometrial (592) carcinomas. Allelic loss is also evident in 

breast cancer (613). SPOP can have an oncogenic role, inconsistent with its tumour supressing 

capabilities in several cancers. This is due to the fact that dysregulation of cellular ubiquitination is 

entirely context dependent. For example; in clear cell renal cell carcinoma, SPOP is seen to be 

consistently overexpressed. Here, SPOP upregulation shifts protein localisation to the cytosol, 

favouring the increased degradation of tumour suppressing CRL3 substrates – including PTEN 

(614, 615). The context dependent cancer promoting role for SPOP has led to the development of 

small-molecule inhibitors of SPOP-substrate interactions that promote renal cell death in vitro 

and in vivo (616). 
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FIGURE 24 – SPOP signalling in prostate cancer 

A) SPOP as a substrate binding adaptor protein of the Cullin3 E3 ligase – involved in the turnover 

of oncogenic proteins in the prostate – especially those involved in AR signalling. B)Mutational 

clustering in the substrate binding domain of SPOP (taken from COSMIC (617)) prevents substrate 

binding and degradation  
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Prostate cancer-associated SPOP mutations cluster exclusively in the MATH domain of the protein 

and affect amino acids required for substrate binding (382, 592, 596, 597, 605, 607). Currently, 17 

amino acid residues in the MATH domain (See Figure 24B, Tables 5 & 6)(133, 174, 330, 335, 583, 

593, 618-623) are affected by missense mutation in prostate cancer; with all tested point 

mutations abrogating the ability to bind substrate protein (596, 597, 605, 607, 624). Mutations in 

SPOP are mutually exclusive from ETS fusions and PI3K pathway alterations, yet correlate with 

CHD1 deletions in tumours and occur early in the cancer’s natural history (90, 330, 334, 605, 618). 

SPOP mutation has also been reported in hgPIN tissues adjacent to cancerous foci, marking it as a 

possible tumour-initiating event (133, 335). A study that tracked metastases, based on genetic 

alterations, back to their source in the prostate showed that SPOP mutation occurred early in 

progression of the cancer as the metastatic molecular signature could be linked to an originating 

sub-clonal focus within the primary tumour (155, 338). 

Disruption of SPOP-specific Cullin 3 substrate degradation in prostate cancer impacts the cellular 

ubiquitylome and causes inappropriate protein accumulation (592). Whilst in dimeric 

conformation with the wildtype protein, mutant SPOP is theorised to completely abrogate 

substrate protein ubiquitination – possibly explaining the complete effect of heterozygous 

mutation (592). This so-called dominant-negative effect was seen in prostate epithelial cells 

(hPREC, PC3 and LNCaP) to affect NCOA3 (625) (AR co-factor), TRIM24 (626) (androgen-

independent AR activator and degrades p53) and DEK (proto-oncogene) protein levels. Reduced 

degradation of these proteins that promote prostate epithelial cell growth and invasiveness 

correlated with increased tumourigenic potential of cells. SPOP’s regulation of androgen signalling 

is extensive as even the AR itself has an SBC located the hinge region of the protein. This has 

implications in CRPC as AR splice variants, for example; V7, lack this domain and therefore cannot 

be affected through wildtype SPOP-CRL3 ubiquitination, allowing the AR transcriptional program 

to be constitutively enforced (382). SPOP mediated degradation of AR is further supported by the 

fact that protein levels of closely related nuclear receptors; ERα (627) and PR (241) are also 

regulated by SPOP.  

The adaptor protein has also been observed to degrade ERG, through binding to an N-terminal 

SBC. Again mutation of the adaptor protein fails to cause degradation of the transcription factor 

and, depending on the location of the breakpoint, truncated ERG is partially or fully resistant to 

SPOP-mediated ubiquitination (596, 597). This means that in prostate cancer, the two dominant 

molecular subtypes; TMPRSS2-ERG fusion and SPOP mutation both achieve a congruent molecular 

endpoint; inappropriate accumulation of ERG. However, a recent study has observed that, in 

SPOP mutant prostate cancers; ERG is not expressed (628). This means that, although MATH 
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domain mutations can stabilise ERG, SPOP defects drive prostate cancer with a complete separate 

molecular aetiology from ERG-high prostate cancers. 

Recently, SPOP has been shown to aid degradation of PD-L1 which is involved in immune 

response suppression (629). Mutation of the adaptor protein in prostate cancers abrogates the 

proteasomal turnover of PD-L1, and is thus linked to high PD-L1 protein levels with reduced 

immune cell infiltration in tumours.  

SPOP has a wide repertoire of protein targets that are relevant to prostate cancer (382, 596, 597, 

614). This however isn’t complete and there is potential for important links to be made in future 

which broaden the effect of mutations to the E3 ligase adaptor protein. SPOP mutants cause 

activation of mTOR, PI3K and AR signalling in transgenic mice. Data that aligns with paired 

previously obtained DNA and RNA sequencing efforts of localised human prostate cancer, 

highlighting that the diverse range of SPOP targets influence critical growth pathways (630). If the 

SPOP gene is under regulation at an allelic level then there is the possibility that heterozygous 

mutation, with the functional allele silenced by histone trimethylations, can lead to complete loss 

of protein function as observed in multiple studies. 
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Codon Nucleotide 
Change 

Amino Acid 
Change 

Location (Exon; 
Domain) 

Consequence Reference 
248A>G Y83C Exon 6/MATH Missense Saar 2014 (620) 
259T>A Y87N Exon 6/MATH Missense Blattner 2014 (618) 
260A>G Y87C Exon 6/MATH Missense Barbieri 2012 (133) 
260A>C Y87S Exon 6/MATH Missense Grasso 2012 (335) 
304T>A F102I Exon 6/MATH Missense COSMIC – CA (621) 
304T>G F102V Exon 6/MATH Missense TCGA 2015 (330) 
305T>G F102C Exon 6/MATH Missense Barbieri 2012 (133) 
305T>C F102S Exon 6/MATH Missense Buckles 2014 (619) 

310T>G F104V Exon 6/MATH  Missense 
Garcia-Flores 2014 
(622) 

311T>C F104S Exon 6/MATH Missense TCGA 2015 (330) 
318C>T I106I Exon 6/MATH Silent Buckles 2014 (619) 
332G>A G111E Exon 6/MATH Missense Buckles 2014 (619) 
356G>A S119N Exon 7/MATH Missense Barbieri 2012 (133) 

358C>T Q120Stop Exon7/MATH  Nonsense 
Garcia-Flores 2014 
(622) 

373T>G F125V Exon 7/MATH Missense Kan 2010 (583) 
375T>A F125L Exon 7/MATH Missense Barbieri 2012 (133) 
385A>G K129E Exon 7/MATH Missense Barbieri 2012 (133) 

388G>A D130N Exon 7/MATH Missense 
Garcia-Flores 2014 
(622) 

391T>G W131G Exon 7/MATH Missense 
Garcia-Flores 2014 
(622) 

391T>C W131R Exon 7/MATH Missense TCGA 2015 (330) 
392G>C W131S Exon 7/MATH Missense TCGA 2015 (330) 
393G>C W131C Exon 7/MATH Missense TCGA 2015 (330) 
397T>G F133V Exon 7/MATH Missense Berger 2011 (174) 
398T>G F133C Exon 7/MATH Missense Barbieri 2012 (133) 
398T>C F133S Exon 7/MATH Missense Barbieri 2012 (133) 
399C>G F133L Exon 7/MATH Missense Barbieri 2012 (133) 
397T>A F133I Exon 7/MATH Missense TCGA 2015 (330) 
402G>C K134N Exon 7/MATH Missense Barbieri 2012 (133) 

N/A K135X Exon 7/MATH Missense Blattner 2014 (618) 
406T>C F136L Exon 7/MATH Missense COSMIC – UK (586) 

457G>A D153N  Exon 7/MATH Missense 
Garcia-Flores 2014 
(622) 

887A>T N296I Exon 11/BTB Missense Zuhlke 2014 (631) 
1103G>A R368H Exon 12 Missense TCGA 2015 (330) 

TABLE 5 – All known SPOP mutations in prostate cancer  
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Exon 
Number 

mRNA/
Protein 

Sequence 

1 
mRNA 

GGGGAGGAGGCCGCGCGGGGTGGGGTCTGGCGGTACGCGCTGGCTGCGTCGACGTGCTGACGCCATGA
CGCCCCGGCTGGTGTGTGTCGGTGTGTATGTGTGTGTGTGAGTGTGCGCGCTCCGAGTGTGTGTGTATTT
GTGTATCGGCGGTCCCGCAGGTCCCGGATGTTGCGGACAGTATGAGGCAAGCGCAGGGGGACGGGGAC
CAGCAGCTGTCGCCGCCGCTCTCAG Protein Non coding 

2 
mRNA 

ATCGAGTCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGCGCGATCTCAGCTCACTGCCACCTTTGCCTCC
TGGGTTCAAGCGATTCTTCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAG Protein Non coding 

3 
mRNA GCTCTGGGAACCACCCTTCTACTTTCTGTCTCTAGGAATTTCACTACTCTAG Protein Non coding 

4 
mRNA 

GGTGAAGAGGGAACAGAAATCTTTGCCCCCTGACTTTGGAAATCTCGTTTAACCTTCAAACTGGCGATGTC
AAGGGTTCCAAGTCCTCCACCTCCGGCAGAAATGTCGAGTGGCCCCGTAGCTGAGAGTTGGTGCTACACA
CAG Protein M S R V P S P P P P A E M S S G P V A E S W C Y T Q 

5 
mRNA 

ATCAAGGTAGTGAAATTCTCCTACATGTGGACCATCAATAACTTTAGCTTTTGCCGGGAGGAAATGGGTGA
AGTCATTAAAAGTTCTACATTTTCATCAGGAGCAAATGATAAACTGAAATG Protein I K V V K F S Y M W T I N N F S F C R E E M G E V I K S S T F S S G A N D K L K 

6 
mRNA 

GTGTTTGCGAGTAAACCCCAAAGGGTTAGATGAAGAAAGCAAAGATTACCTGTCACTTTACCTGTTACTG
GTCAGCTGTCCAAAGAGTGAAGTTCGGGCAAAATTCAAATTCTCCATCCTGAATGCCAAGGGAGAAGAAA
CCAAAGCTATGG Protein W C L R V N P K G L D E E S K D Y L S L Y L L L V S C P K S E V R A K F K F S I L N A K G E E T K A M 

7 
mRNA 

AGAGTCAACGGGCATATAGGTTTGTGCAAGGCAAAGACTGGGGATTCAAGAAATTCATCCGTAGAGATTT
CTTTTGGATGAGGCCAACGGGCTTCTCCCTGATGACAAGCTTACCCTCTTCTGCGAG Protein E S Q R A Y R F V Q G K D W G F K K F I R R D F L L D E A N G L L P D D K L T L F C E 

8 
mRNA 

GTGAGTGTTGTGCAAGATTCTGTCAACATTTCTGGCCAGAATACCATGAACATGGTAAAGGTTCCTGAGTG
CCGGCTGGCAGATGAGTTAGGAGGACTGTGGGAGAATTCCCGGTTCACAGACTGCTGCTTGTGTGTTGCC
GGCCAGGAATTCCAGGCTCACAAGGCTATCTTAGCAG 

Protein 
V S V V Q D S V N I S G Q N T M N M V K V P E C R L A D E L G G L W E N S R F T D C C L C V A G Q E 
F Q A H K A I L A 

9 
mRNA CTCGTTCTCCGGTTTTTAGTGCCATGTTTGAACATGAAATGGAGGAGAGCAAAAAG Protein A R S P V F S A M F E H E M E E S K K 

10 
mRNA 

AATCGAGTTGAAATCAATGATGTGGAGCCTGAAGTTTTTAAGGAAATGATGTGCTTCATTTACACGGGAA
GGCTCCAAACCTCGACAAAATGGCTGATGATTTGCTGGCAGCTGCTGACAAG Protein N R V E I N D V E P E V F K E M M C F I Y T G K A P N L D K M A D D L L A A A D K 

11 
mRNA 

TATGCCCTGGAGCGCTTAAAGGTCATGTGTGAGGATGCCCTCTGCAGTAACCTGTCCGTGGAGAACGCTG
CAGAAATTCTCATCCTGGCCGACCTCCACAGTGCAGATCAGTTGAAAACTCAGGCAGTGGATTTCATCAAC
TA Protein Y A L E R L K V M C E D A L C S N L S V E N A A E I L I L A D L H S A D Q L K T Q A V D F I N 

12 
mRNA 

TCATGCTTCGGATGTCTTGGAGACCTCTGGGTGGAAGTCAATGGTGGTGTCACATCCCCACTTGGTGGCTG
AGGCATACCGCTCTCTGGCTTCAGCACAGTGCCCTTTTCTGGGACCCCCACGCAAACGCCTGAAGCAATCC
TAAGATCCTGCTTGTTGTAAGACTCCGTTTAATTTCCAGAAGCAGCAGCCACTGTTGCTGCCACTGAC Protein Y H A S D V L E T S G W K S M V V S H P H L V A E A Y R S L A S A Q C P F L G P P R K R L K Q S Stop 

TABLE 6 – Location of prostate cancer associated mutations in the SPOP gene  
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1.8.7 - Isocitrate Dehydrogenase-1 and Prostate Cancer  

IDH-1 is the cytoplasmic and peroxisomal isoform of Isocitrate Dehydrogenase, an enzyme that 

catalyses forward and reverse conversions of α-ketogluturate (α-KG) to iso-citrate. The 

mitochondrial IDH-2 supports the same reaction in the tricarboxylic acid cycle, a major pathway in 

aerobic respiration that fuels ATP production via oxidative phosphorylation. Besides aiding 

metabolism, the reaction which produces α-KG is one of the major contributors to the cellular 

NADPH pool. NADPH is a necessary reducing co-factor in redox regulation (both thioredoxin and 

glutathione require it) as well as being extensively utilised in several major biosynthetic pathways 

(632). 

Mutation of the IDH1 gene was first reported in glioblastoma, shortly followed by acute myeloid 

leukaemia. Whilst these cancers have the largest prevalence of IDH-1 mutation, the enzyme has 

now been found to be affected in many solid tumour types, albeit at much lower frequencies 

(633). Mutation of the IDH-1 enzyme is postulated to be an early or founder event, as noted in 

brain cancer sequencing studies that predict occurrence prior to cellular transformation (634, 

635). These mutations affect a key active site arginine residue, R132, to alter the reaction 

performed by the enzyme. Instead of producing isocitrate, mutant IDH-1 forms the 

oncometabolite 2-hydroxygluturate (2-HG) that, due to the mutation-induced imbalance in the 

molecule’s metabolism, builds to extraordinarily high intracellular concentrations (636). As 2-HG 

closely resembles α-KG, (the C2 carbonyl group of α-KG is replaced by a hydroxyl group) the 

molecule competitively inhibits α-KG-dependent dioxygenases, that rely on the molecule as an 

essential co-factor in catalysis. This is an extremely diverse enzyme class with over eighty 

members in human cells, thus the effects of inhibitory 2-HG concentrations are extensive. Instead 

of a single pathway being defective, the 2-HG mediated dysregulation of both metabolism and 

chromatin structure means that disease phenotype is pleiotropic between cell types, with the 

true pathological molecular origin difficult to pinpoint amidst other background alterations (632, 

637)(Figure 25A). 

Oxidative Stress 

The reaction facilitated by IDH-1 boosts the NAPDH pool to indirectly protect the cell from 

oxidative stress. However, in gaining the neomorphic ability to create 2-HG, mutant IDH-1 

depletes rather than increases cellular NADPH. In doing so the mutation promotes a redox 

environment with a decreased buffer from the harmful effects of ROS (632). As expected IDH-1 

mutation increases oxidative stress within glioma cells; a state, depending on the genetic 

background of the tumour, that may promote or inhibit cancer growth (638). 
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DNA Methylation 

DNA hypermethylation is a hallmark of IDH-1 mutant tumours. The ten-eleven translocase (TET) 

dioxygenases are a family of proteins that begin the process of DNA demethylation by converting 

5-methyl-cytosine moieties to 5-hydroxymethyl-cytosines. IDH-1 mutant gliomas present with this 

methylated phenotype due to TET2 inhibition by 2-HG (639). Aside from the expected gene 

silencing by promoter methylation,(640) reduced clearance of 5-methyl-cytosine has been 

observed to disrupt CTCF insulator binding sites across the genome. In particular, a restrictive 

boundary point between a super-enhancer element and the PDGFRA oncogene was shown to be 

defective in mutant IDH-1 patient gliomas; facilitating overexpression of the growth factor 

receptor and conferring subsequent proliferative advantage to mutant cells (641). This discovery 

highlights the effects of inappropriate hypermethylation, not just at promoter CpG islands but, at 

an epi-genomic level whilst also presenting a case that IDH-1 mutation may promote similar 

deregulatory effects in other cancers. 

Histone Methylation 

The Jumonji-C (JmjC) domain histone demethylase family are another class of α-KG-dependent 

dioxygenases affected in IDH-1 mutant cells. The JmjC domain has been crystallised with 2-HG in 

the active site pocket typically occupied by α-KG. This particular protein structure was further 

associated with increased global histone methylation (642). The complete effect and impact of 

IDH-1 mutation on chromatin organisation is only just beginning to be investigated. A recent study 

(643) using IDH-1 R132H knock-in mice, linked decreased protein expression of ATM in progenitor 

blood cells (but not in more differentiated progeny) to an increase of H3K9me3 at the gene’s 

promoter. ATM reduction increased HSC DNA damage that the authors suggested could initiate 

transformation of the myeloid lineage, yet investigation in a human system or patient samples is 

required to observe whether the same phenotype prevails. The above study (643) highlights the 

need for cellular heterogeneity to be taken into account, due to the pleiotropic effects of the 

mutation in cells with variant genetic backgrounds and differentiation states. 

Extracellular Matrix Composition 

Collagen synthesis through the critical hydroxylation of proline and lysine residues by α-KG 

dependent prolyl hydroxylase domain containing proteins (PHDs) (644, 645) is an anabolic process 

affected by IDH-1 mutation. This has been observed to cause basement membrane disruption and 

also promotes ER stress through accumulation of the immature collagen proteins in the organelle 

(646). Chondrosarcoma, the second most prevalent form of bone cancer, has an enrichment of 

IDH-1 mutations that are often combinatorial with aberrations to the COL2A1 cartilage collagen 

gene – suggesting that the molecular pathology of this cancer is to achieve disruption of collagen 
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synthesis (647). Breakdown of the ECM, a hallmark of prostate cancers, alters cellular adherence; 

with associated growth and cell death signalling subsequently changing – all of which may 

promote transformation or indeed invasion and metastasis. 

Hypoxia Inducible Factor Signalling 

PHDs also regulate the hydroxylation of HIF1 and 2 in normoxic conditions to allow for recognition 

and subsequent proteasomal degradation via the VHL ubiquitin ligase. IDH-1 mutation would 

therefore hypothetically increase HIF levels due to PHD inhibition. This has been observed in 

glioma cells both in vitro (642) and ex vivo (648, 649). However, regulation of HIF stability relies 

on several other factors, and HIF protein levels have been observed to be decreased (650) and 

subsequent signalling pathways inhibited (651) in the context of IDH mutation. HIF regulation by 

the EGLN prolyl-4 hydroxylases therefore classically marks the context dependence of IDH-1 

mutations between and even within cancers. 
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FIGURE 25 – IDH-1 mutation in prostate cancer 

A) IDH1 gains a neomorphic capability via R132 mutation to create 2-hydroxygluturate (2-HG). 2-

HG levels build in mutant cells and inhibit prolyl-hydroxylases (PHDs) and chromatin modifiers to 

disrupt critical cellular processes. B) Prostate cancer IDH-1 mutations taken from COSMIC (652).  
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A multi-tissue sequencing project led to discovery of low frequency IDH-1 R132 point mutations in 

prostate cancer (653). These mutations have now been recurrently identified in many cohorts of 

prostate cancer patients (330, 608, 654-656)(Figure 25B & Table 7). 

IDH-1 R132 mutant tumours appear to present in early-onset prostate cancers yet the mutation 

doesn’t appear to track linearly through cancer progression (330). Mutation of the enzyme isn’t 

detected in sequencing studies of metastatic disease meaning; i) IDH-1 mutation is at too low a 

frequency to observe transition to “successful” metastasis, ii) IDH-1 mutant tumours never 

progress to an advanced stage, or iii) a cancerous progenitor clone without IDH-1 mutation stems 

the aggressive lineage, after the growth of the primary IDH-1 mutant tumour has acted as a 

“gateway” event. The low percentage of IDH-1 mutation in the total patient population probably 

does mask progression of primary to metastatic cancer. To date a single study has observed IDH-1 

mutation in a lung metastases, but again there are too few known incidences of mutation to make 

a conclusion from current data (657). 

These prostate tumours also exhibit extensive hypermethylation of their genomes, to an extent 

greater than that previously documented in IDH mutant gliomas and leukaemias (330). As 

hypermethylation in IDH-1 mutant cells also presents in prostate cancers, it would be expected 

that there are similar disruptive effects on transcriptional neighbourhood organisation seen in 

gliomas that may play an active role in disease (641). Metabolic alterations would also be 

expected in these tumours, as observed in glioblastoma, however low incidence has hampered 

investigation into the mutation’s effects in prostate cancer. Disruption of collagen synthesis in 

IDH-1 mutants may have effects on the CSC population of the prostate that typically express high 

levels of collagen’s cognate integrin; α2β1. How this population is affected with regard to collagen 

anabolism and the hypothesised increase of stem cell symmetrical division observed in IDH-1 

mutant mice models are important future questions (632, 639, 658). The convergent nature of 

IDH-1 R132 mutations has allowed several selective inhibitors to be developed that reduce 2-HG 

levels and genome hypermethylation in mutant cells.  Interestingly allosteric inhibitors of the 

mutant enzyme have been observed to induce differentiation of leukaemic stem like cells and 

implementation of these inhibitors in the small patient cohort affected in prostate cancer is a 

realistic future exploitation of patient specific medicine (659, 660). 
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Codon 

Nucleotide 

Change 
Amino Acid 

Change 
Location 

(Exon/Domain) Consequence Reference 

59G>A R20Q 5 Missense COSMIC UK - 
COSU538 

356G>A R119Q 6 Missense Barbieri 2012 
(133)  

395G>A R132H 6 Missense Barbieri 2012 
(133)  

395G>T R132L 6 Missense Barnett 2014 
(655) 

394C>A R132S 6 Missense Barnett 2014 

(655) 

394C>T R132C 6 Missense Barnett 2014 
(655) 

394C>G R132G 6 Missense Barnett 2014 
(655) 

TABLE 7 – All known IDH-1 mutations in prostate cancer 
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1.8.8 - TMPRSS2-ERG; a defining rearrangement in Prostate Cancer 

In men, TMPRSS2 is almost exclusively expressed in prostate tissue under canonical activation of 

the AR (661) and in 2005 the gene was shown to be commonly fused to members of the ETS TF 

family in prostate cancers; establishing a novel role in carcinogenesis and the possibility that ETS 

factor expression is driven by androgen signalling (351). The most common of the ETS fusions; 

TMPRSS2-ERG, is consistently observed in ~50% of all prostate tumours (90, 330, 662). 

The ERG gene is located at 21q22.3, downstream of TMPRSS2 at 21q22.2 meaning that a fusion 

can be created as a result of a deletion event or through a series of translocations (174, 351). The 

chromosomal alteration places the 5’ untranslated region (UTR) of TMPRSS2 upstream of ERG, 

causing inappropriate expression of the transcription factor, now under control of an active 

promoter region. A recent study also found that ERG alters the global chromatin state in prostate 

cancer and creates super-enhancers; regions of high transcriptional activity characterised by 

elevated H3K27 acetylation (663). One of these regions extends through the TMPRSS2-ERG locus 

to further promote ERG expression. TMPRSS2-ERG fusions are unique to each patient’s tumour at 

a genomic nucleotide level and are thought to be generated through regions of micro-homology 

by NHEJ following DSB formation (664). Higher levels of the NHEJ master-regulator BRD4 

associate with fusion positive cancers and the BET (bromodomain and extraterminal) protein 

regulates formation of TMPRSS2-ERG (665). The transcriptional activity of TMPRSS2 and the 

accessibility of ERG intronic chromatin also determines fusion formation (666).  

Next generation sequencing can capitalise on the unique genomic nature of the fusion 

breakpoints; and employ them as highly specific trunk mutation clonal markers. TMPRSS2-ERG 

can thus be used to track cell population origin, development and location in prostate cancers 

(131, 667). The variety of fusion transcripts (and thus protein products) between and within 

samples are diverse, however the most commonly observed exon-exon fusions are those between 

TMPRSS2 exon 1 and ERG exons 4 (as seen classically in the VCaP cell line) and 5 (351, 596). 

Distinct fusions show focal heterogeneity in prostate tumour biopsy samples demonstrating that 

different fusions can exist side-by-side and are independently generated through separate 

initiating events within the same prostate (668). 

Fusions generated by deletion of the region between the two genes are heterogeneous within 

and between patients, with variant start sites leading to production of different fusions. The 

deletions, rather than the rearrangement events, can be correlated with cancers that have higher 

biochemical recurrence (PSA levels) after treatment (662). The deletion also removes ETS2, an ETS 

family member that is observed to be mutated in fusion negative prostate cancers (335, 662). This 

gene is a candidate tumour suppressor (669) and overexpression of ETS2 in VCaP decreased 

cellular proliferation, migration and invasion (335). Chromoplexy acts as a factory for 
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chromosomal rearrangements in prostate cancer and recurrently produces TMPRSS2-ERG fusions 

(334). TMPRSS2-ERG+ tumours have greater inter-chromosomal rearrangements than those that 

lack a fusion event suggesting that TMPRSS2-ERG-centred chromoplexy has wider carcinogenic 

effects on the genome; such as coordinated loss of tumour suppressing loci including PTEN and 

3p14; an area containing three potential TSGs (90, 334). Analysis of separate tumours found that 

different chromoplectic chains can still produce the necessary genetic rearrangements required 

for fusion formation. 

Creation of TMPRSS2-ERG involves interphase co-localisation of the genes and topoisomerase II 

recruitment (350, 670, 671). It has been hypothesised that androgen signalling is responsible for 

the close proximity of the loci and thus facilitates the chain of translocations leading to TMPRSS2-

ERG (174). Exposure of LNCaP to androgens does cause de novo fusion formation, an event that 

remains specific to cells of prostatic origin.  
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FIGURE 26 – Generation of the TMPRRS2-ERG fusion in prostate cancer. 

Transcriptional proximity of the loci and the addition of micro-environmental stressors produce 

the fusion either by deletion or translocation of the intervening genetic material. The fusions are 

always produced in intronic regions and align early TMPRSS2 exons with later ERG exons.    
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This effect is enhanced by the presence of inflammation, which itself, in absence of androgen, can 

generate de novo fusions as modelled by TNF-α exposure (666). Inflammation mediated by ROS 

has been observed to create fusions in LNCaP, both in vitro and in vivo. Interestingly, the in vivo 

study highlighted critical involvement of macrophage cytokines and the role of the innate immune 

system in TMPRSS2-ERG formation. As the supposed aetiology of human prostate cancer is rooted 

in inflammation of the organ, these findings give molecular evidence for the initial transformation 

of prostate cells. Repetition of these experiments in cells of a “normal” genetic background would 

add further and necessary weight to this theory (Figure 26). 

DNA repair gene variants, including BRCA2, ESCO1 and POLI, have been identified in population 

linkage studies to be significantly associated with fusion positive cancers, suggesting that they 

produce a genetic background conducive to TMPRSS2-ERG fusion production (349). Interestingly 

genotoxic stress – like androgen and TNF-α exposure – also causes creation of the fusion in 

prostate cells (350). 

Expression profiles of the precursor lesion PIN and prostate cancer itself are extremely similar. 

The transition of PIN into malignancy correlates with increased expression of ERG, ETV1 and ETV4, 

all known fusion partners; suggesting that TMPRSS2 rearrangements act as founder events in 

prostate cancer (123). ERG fusions are observed in hgPIN with incidence correlating with a faster 

rate of progression into prostate cancer over fusion negative PIN patients (132). As the fusion is 

assumed to be an early event in the development of prostate cancer, it can be used to trace 

metastases back to their focal origin in the primary tumour (662). TMPRSS2-ERG is present in the 

CSC fraction of the prostate, postulating a self-renewing root for widespread fusion presence in 

prostate tumours (246)  and, in a genetically manipulated mouse model of the prostate, the 

fusion has indeed been shown to increase the self-renewal and invasiveness of basal progenitor 

(Sca-1hi, EpCAM+) cells, (672)  again suggesting TMPRSS2-ERG  plays a role in maintenance of the 

CSC population and allows for the subsequent mutational accumulation. 

Transgenic TMPRSS2-ERG+ mice developed PIN with selective ERG overexpression at disease foci 

and not in benign glands, suggesting that enhanced protein levels induce a neoplastic phenotype 

rather than initiate the cancer. Further investigation using cell lines found that the fusion also 

facilitated an invasive phenotype through overexpression of MMPs and urokinase plasminogen 

activator (uPA). ERG knockdown in these cells raised expression of canonical luminal cell markers 

suggesting that overexpression of the ETS factor sequesters prostate epithelial cells in a 

dedifferentiated state (427). The invasive phenotype has also been noted in patient samples 

where fusion positivity co-segregated with an increase in TGF-β signalling, a hallmark of EMT (673, 

674). 
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ERG in this context has been shown to upregulate PIM1. This kinase is an oncogene overexpressed 

in both haematological and epithelial malignancies and is implicated in docetaxel resistance of 

prostate cancer. PIM1 increases cyclin B levels to cause destabilisation of the G2/M checkpoint, 

resulting in aneuploidy and genomic instability in pre-malignant prostate cells (675). ERG 

regulation by AR also creates a wider network of cross talk between the two important TFs. 

Overlap of AR and ERG binding sites in VCaP cells found that ERG is co-recruited to around half of 

all AR-bound loci. One of the most enriched sites, identified by ERG ChIP-seq, was the AR gene 

itself. siRNA targeting of ERG caused an increase in AR protein levels highlighting that ERG has 

repressive effects on the androgen signalling axis, a finding that may have wider implications in 

CRPC (542). 

The recent development of ERG inhibitory peptides that reduce transcriptional activity, increase 

degradation of the transcription factor and suppress cancer progression in vitro and in vivo marks 

a promising and novel treatment strategy for the 50% of patients that present with the fusion 

(676). 

In primary prostate epithelial cells, a SNP-based pyrosequencing strategy was utilised to show 

RME of TMPRSS2 in the basal cell populations of cancer and BPH samples. The strongest allelic 

restriction of TMPRSS2 was seen in the stem cells, yet in most cases this was relaxed or even 

switched to the other allele upon asymmetric division in clonal TA cells. However, in TMPRSS2-

ERG+ cancers the fusion is solely expressed in the stem cell population with no expression of 

TMPRSS2 from the unfused “wildtype” allele. This doesn’t follow the random pattern of 

expression in the fusion negative samples and implies that the fused allele is somehow selected 

for in the stem cell, the allelic expression of which wasn’t correlative with promoter 

hypermethylation (246). 

Identification of genetic defects in SPOP, PTEN, IDH-1 and presence of the TMPRSS2-ERG fusion 

gene in primary prostate epithelial cultures will allow for allelic expression analysis to observe; i) 

whether mutant alleles are expressed, and ii) if there is any non-random selection of allelic 

expression in prostate cancers. This will inform whether mutations are actionable and, if 

observed, will introduce another layer of heterogeneity needed to be addressed and accounted 

for in the diagnosis and treatment of prostate cancer. 
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1.9 - Low Temperature Plasma and Oxidative Stress 

1.9.1 - Low Temperature Plasma as an anticancer therapy 

Treatments of localised (293) and metastatic prostate cancer (26) have improved over recent 

years, yet there remains the problem of overtreatment during the early stages of disease due to a 

lack of clinical biomarkers that can determine indolent or aggressive cancer (283, 677). Current 

focal treatments of organ-confined disease such as radiotherapy have high rates of recurrence 

that can be attributed to sub-clonal cell populations in the prostate (323, 678). Novel therapies 

are required to maximise treatment-options, increase overall success and effectively ablate the 

tumour initiating cell pool as discussed in Section 1.4. 

The ability to generate plasma at ambient air temperatures has allowed biomedical 

implementation of LTP devices and subsequently, the technology has been postulated as an anti-

cancer therapy (293). Plasma is formed through application of a sufficiently high voltage across a 

gas-flow; causing removal and subsequent acceleration of gas molecule electrons into the 

surrounding atoms and molecules. A reactive cascade of interconverting neutral and charged 

species is created in the plasma effluent, alongside the emission of UV radiation. Mixing of LTP 

with gas molecules in the air is known to produce high concentrations of ROS and RNS (679-684) 

that can cause subsequent oxidative stress, DNA damage, protein oxidation and lipid peroxidation 

in living cells (685, 686). 

LTP based treatment has now been applied to a wide range of cell line models including those 

representative of; prostate cancer, (304, 305) cervical cancer, (687) melanoma, (688, 689) 

leukaemia, (690) ovarian cancer, (691) breast cancer, (692, 693) head and neck cancer, (679) 

glioblastoma, (694, 695) lung cancer, (696, 697) colorectal cancer (698) and liver cancer (699). 

1.9.2 - Oxidative Stress – Antioxidant and Transcriptional Response 

In vitro studies, including our own (304), have examined the effect of LTP upon cancer cell 

cultures and arrived at congruent conclusions; plasma is able to generate ROS and RNS in both the 

medium and the cells (304, 679, 687, 695-697, 699). This in turn causes oxidative damage of 

lipids, (699) proteins (692) and DNA (305, 679, 688, 689, 692, 695, 700) to ultimately produce loss 

of viability and cell death in cultures (304, 679, 687, 688, 692). 
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FIGURE 27 –Low Temperature Plasma and Reactive Oxygen Species. 

A) The basal antioxidant defence network of a cell. The cellular NADPH pool maintains the 

Glutathione and Thioredoxin cycles that redox enzymes require to mount an effective response to 

oxidative stress and damaged proteins. B) The induction of ROS by LTP causes varied molecular 

and cellular damage that impacts cell fate decisions.  
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Oxidative stress is defined by the imbalance of ROS and cellular antioxidants; a state induced by 

LTP treatment and experimentally demonstrated by skewing of reduced and oxidised forms of 

cellular antioxidants and co-factors such as glutathione (GSH) and NADPH (696, 701, 702). 

Antioxidants limit ROS induced damage and include both scavenging proteins and ROS-converting 

enzymes. Non-enzymatic antioxidants can donate electrons to neutralise ROS. GSH is the primary 

cellular antioxidant and can prevent damage caused by free radicals and peroxides. Enzymatic 

antioxidants include many well-studied proteins such as the superoxide dismutases (SOD), 

thioredoxins (TXN), glutathione peroxidases (GPX), haem oxygenases (HMOX) and peroxiredoxins 

(PRDX). Haem oxygenase 1 is an inducible enzyme that exerts an antioxidant effect by creation of 

biliverdin from haem. Biliverdin is subsequently entered into a cycle that scavenges and depletes 

cellular ROS (703). The peroxiredoxins are involved in removal of hydrogen peroxide from cells, 

with their native reduced state being regenerated by GSH, TXN and sulfiredoxin (SRXN) (704-

706)(Figure 27A). 

Whilst oxidative stress response occurs rapidly through alterations in enzymatic activities, 

transcriptional programs are also augmented, to give cells a survival advantage in prolonged 

exposure. Gene expression response to ROS is mediated by a plethora of transcription factors 

such as Nrf2, HIF, NF-kB and AP-1 (686, 707). 

Nrf2 is restricted to the cytosol by dimers of Keap1, an adaptor protein of the Cullin 3 E3 Ligase 

that facilitates constitutive degradation of the transcription factor in non-stress conditions. Keap1 

is redox sensitive at several cysteine residues and modification of these thiols by ROS causes 

dissociation from Nrf2. Nrf2 then translocates to the nucleus whereupon it forms heterodimers 

with small Maf proteins. These dimers act as transcriptional activators for genes downstream of 

Antioxidant Response Elements (AREs) including; glutathione reductase (GSR), PRDX, TXN, 

TXNRD1 (thioredoxin reductase 1), CAT, SOD1, HMOX1, NQO1 and GPXs (708-713). Nrf2 is also 

phosphorylated by kinases, such as PKC and ERK, during oxidative stress which is also thought to 

aid the transcription factor’s dissociation from Keap1 (686). Recent studies have indicated the 

involvement of Nrf2-mediated anti-oxidant signalling in the cellular response to plasma. 

Application of LTP, and even plasma activated media, is adequate to promote nuclear 

translocation, cause upregulation of target genes and enhance ARE binding of the transcription 

factor (714-716). 

Previous studies have also shown that LTP triggers MAPKs such as JNK, p38 and ERK (JNK and p38 

are also termed stress-activated protein kinases, SAPKs) through canonical phosphorylation of 

these proteins, allowing for activation of downstream apoptotic and response pathways (679, 

687, 715, 716). A microarray based approach in a lung cancer cell line identified increased 

expression of Jun and Fos transcription factors alongside increased activation of JNK in response 
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to LTP (717). Activator Protein 1 (AP-1) is a collection of several dimeric basic leucine zipper 

proteins belonging to the Jun, Fos, Maf and ATF families; although, classically, AP-1 is formed by 

Jun-Fos heterodimers. Transcriptional activity can be induced by ROS through phosphorylation of 

Jun by JNK and p38 (718). JNK phosphorylation can be induced by many upstream activators. 

Among these are ASK1, another kinase that is activated by hydrogen peroxide induced TXN 

oxidation, and the redox sensing GST(µ/π) to which JNK, and ASK1, are associated with in non-

stress conditions (414, 686, 719, 720). 

Activation of these TFs would allow cells to respond at a molecular level to the oxidative stress 

induced by LTP. Differential gene targets between normal and cancerous cells may have potential 

to be pharmacologically exploited to sensitise prostate cancers to plasma treatment over 

surrounding normal tissue. 

1.9.3 - Cell Fate in LTP induced Oxidative Stress 

Our own studies using primary prostate epithelial cells have shown that, instead of the usual 

apoptosis observed in cell line studies, the mechanism of cell death is necrosis (304). This can be 

interpreted as an abortive action when a cell has sustained a level of damage that cannot be 

salvaged. ROS excess switches cell death from apoptosis to necrosis as mitochondrial dysfunction 

reduces cellular ATP level, whilst ROS and RNS can inhibit caspases through oxidative modification 

or S-nitrosylation of the reactive thiol (721, 722).  

Oxidative stress can also lead to senescence through stalling of the cell cycle, which occurs as lipid 

peroxides prolong G1 phase, with aldehyde oxidation products also causing CDK and DNA 

polymerase inhibition. Oxidative DNA damage further contributes to stabilise p53 through JNK 

and p38 phosphorylations causing either restriction point stalling or apoptosis (414, 722). 

Interestingly we also noted an enhanced autophagy response – an increased level of mature LC3-

B - in the primary prostate cultures treated by LTP, suggesting that this salvage pathway may play 

a role in the survival of certain cells (304). Autophagy allows for absorption of defective 

organelles, such as mitochondria, and abnormal protein aggregates in stressed cells. This process 

relies on the double membrane formation of the autophagosome that degrades interred 

organelles or cellular bodies upon lysosomal fusion. Autophagy is induced by superoxide and 

hydrogen peroxide and is thought to be mediated through lipid peroxidation and specific Cys81 

thiol modification of Atg4, a key protein in autophagosome formation. Active Atg4 is critical in the 

formation of LC3-BII that coats the inner surface of the autophagosome whereupon it acts as a 

binding site for poly-ubiquitinated protein aggregates under the escort of the p62/SQSTM1 

chaperone protein (723, 724). Sequestosome 1 (SQSTM1) is an Nrf2, NF-kB and AP-1 target gene 
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(725, 726). Dysfunctional autophagy increases cellular oxidative stress as recycling of 

mitochondria, the major source of endogenous ROS, becomes defective (727)(Figure 27B). 

1.9.4 - Oxidative Stress in Prostate Cancer 

Cancer cells generally have a higher ROS threshold that allows them to dampen cell death signals 

normally induced by higher ROS concentrations and allows further aberrant signalling to be 

mediated by the oxygen species. For example, GSH levels are higher in some cancers to buffer the 

excess ROS and transcriptional changes seen in oxidative stress are enhanced, allowing for 

aberrant activation of these signalling pathways such as AKT-mediated apoptosis inhibition and 

cellular proliferation (702).  

Various cancers contain mutations in genes involved in ROS management and stress response. 

Antioxidant enzymes SOD2 and GPX are mutated in prostate and other cancers along with the 

oxidative DNA damage repair enzymes OGG1 and APE1 (686). The same is true of the 

transcription factor Nrf2 and its antagonising protein Keap1 (728). Epigenetic regulation of genes 

can also be disturbed by oxidative stress; ROS can increase DNMT expression leading to gene 

(BRCA1, RB1, MDM2, MLH1 and KEAP1) silencing and genome hypermethylation (702, 728). As 

mitochondria are the primary source of endogenous ROS, tumours can redirect their metabolic 

pathways into glycolysis, a change called the Warburg effect. This activates anaerobic hypoxic 

respiration, and also sets up a miniature Cori cycle with recruited cells. In oxidative stress, the 

process of oxidative phosphorylation becomes restricted, leading to pyruvate kinase inhibition 

and pentose phosphate pathway (G6PD) activation.  The resultant increased production of NADPH 

is able to maintain GSH in a reduced state, facilitating ROS scavenging (729, 730) and contributing 

to tumour cell ROS resistance. 

ROS resistance is enhanced in CSCs. The tumourigenic cell fraction in breast cancer was shown to 

have lower levels of ROS and higher levels of antioxidant proteins and enzymes. The importance 

of the antioxidant levels was demonstrated through the depletion of GSH which caused a 

significant reduction in colony forming efficiency of the CSCs (731). The majority of cancer 

treatments induce ROS; upregulation of the antioxidant network in the tumour initiating cells 

would aid their commonly observed radio- and chemoresistance. 

As part of the ROS-induced transcriptional response, mutations to KEAP1 that affect Nrf2 binding 

have been observed in prostate cancer cell lines and tumour samples; with epigenetic silencing, 

via DNA methylation of the gene, observed in Du145 cells (732). However, most studies 

investigating Nrf2 in prostate cancer report a reduction in levels of the TF, (733) with promoter 

methylation perhaps reducing transcript levels (734). Decreased Nrf2 presumably facilitates an 
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environment of oxidative stress to aid chromoplectic genome rearrangements and cellular 

transformation (734). 

AP-1 has context-dependent effects in prostate cancer due to its dual role in promoting both cell 

proliferation and apoptosis. Whilst the AP-1 axis isn’t notably affected by mutation or 

rearrangement, levels of the transcription factors in the various stages of disease appear to 

contribute towards clinical outcome.  

JUNB (cJun homologue) mRNA and protein levels decrease during cancer progression, where 

JUNB loss synergises with PTEN deletion mutants to promote invasive prostate cancer in 

transgenic mice (735). However, another study found PTEN loss caused JNK, and subsequent Jun, 

activation through PI3K. Positive correlation of pAKT and pJun levels in human prostate cancer 

tissue microarrays were then identified as a supposed result of common PTEN phosphatase 

deletion (736). AP-1 is elevated in more advanced prostate cancers with JNK driving disease 

progression from adenocarcinoma to metastatic disease in mouse models (737). Expression of 

both Fos and Jun increases throughout disease. Incidence peaks in metastases where significant 

co-expression is also observed. Activation of Jun, in particular, is predictive of decreased patient 

survival following relapse from ADT, suggesting that the AP-1 pathway may act as a driver of 

androgen independent disease (738, 739). 

By identifying the transcriptional networks activated following plasma treatment of primary 

prostate epithelial cultures, derived from multiple disease contexts, the upstream transcription 

factors can be identified. An increased understanding of how prostate epithelia react to LTP will 

afford insight to how resistant populations can survive the oxidative stress induced by treatment 

whist also informing on possible sensitising treatments for cancerous cells over that of adjacent 

normal tissue to maximise the killing effect of the focal therapy. 
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2. Thesis Aims 

AIM 1 

To identify if genes commonly altered in prostate cancer are monoallelically expressed 

and, if so, whether mutation of the gene affects allelic expression. 

Random monoallelic expression provides a source of expression heterogeneity. In the knowledge 

that allelic imbalances are molecular determinants of prostate cancers the phenomenon was thus 

investigated in primary prostate epithelial cultures. The study had two goals, to; 

• Determine if silent and expressed TMPPRSS2 alleles are marked by histone 

trimethylations associated with monoallelic expression in primary prostate epithelial 

subpopulations. Ascertain whether these also correlate with allele specific expression of 

TMPRSS2-ERG fusion in prostate cancer samples.  

 

• Analyse allelic expression of SPOP, PTEN and IDH1 and assess whether mutation of these 

commonly altered genes changes allelic expression. 

AIM 2 

To identify the molecular signalling events in prostate epithelia after Low Temperature 

Plasma exposure that are associated with the resistant population.  

LTP is a promising novel focal therapy for prostate cancer. Our previous work has identified a 

potent killing effect; however, a viable population of cells remained after treatment. This resistant 

population may cause regrowth and relapse of the tumour. By identifying the immediate 

signalling events that contribute to post-LTP survival it may be possible to sensitise the resistant 

population using combination therapy. The study had the following goals; 

• Identify whether oxidative stress response signalling was initiated by LTP. 

 

• Find altered signalling pathways after treatment using whole transcriptome analysis. 

 

• Identify active signalling intermediates and transcription factors upstream of gene 

expression. 

 

• Connect gene expression and transcription factor response to the resistant population. 



124 

 

3. Materials and Methods 

3.1 –Cell and Tissue Culture 

Primary Cell Culture 

Primary epithelial cells were dissociated from patient prostate tissue as previously described 

(Collins 2005)(28). For matched Gleason 7 and Normal cells, tissue was obtained through needle 

biopsy immediately following surgical removal of the prostate. Biopsy sites were informed by 

previous pathology, imaging and palpitation. BPH and Gleason 9 tissue were obtained through 

trans-urethral resection of the prostate. All tissues were transported in RPMI-1640 supplemented 

with 5% foetal calf serum (FCS) and 100U/ml antibiotic/anti-mycotic solution at 4oC and processed 

within 6 hours of surgery. All tissue was obtained with full ethical permission and consent of the 

patient through agreement with Hull Hospital - REC ref 07/H1304/121. Patient samples were 

anonymised before receipt at the York Cancer Research Unit.  

Primary cells were grown on Collagen I coated 10cm dishes (Corning) in 5ml stem cell media 

(SCM). This is based upon keratinocyte serum free media supplemented with  L-glutamine, stem 

cell factor, granulocyte macrophage colony stimulating factor, cholera toxin, bovine pituitary 

extract (Gibco), epidermal grown factor (Gibco) and leukaemia inhibitory factor, see Collins 2005 

(28). Primary cells were cultured in the presence of irradiated STO mouse feeder cells. No 

antibiotic/anti-mycotics were used to treat the cultures.  

STOs were grown in D10 media [DMEM (Gibco) supplemented with 10% FCS and L-glut]. Batches 

of STOs, for use as feeder cultures of primary cells, were irradiated (60Gy) and resuspended in 

KSFM to be used within 4-5 days and kept at 4oC. STOs were depleted by outgrowth of the 

epithelial cells before any plasma treatments so as to remove any mouse cell artefacts (19). 

Cell stocks were centrifuged to form pellets at 1500rpm for 5 minutes in the IEC CL30R centrifuge 

(Thermo Scientific). The pellet was then re-suspended in 1ml of filtered Freezing Media (7 parts 

RPMI 1640, 2 parts FCS and 1 part DMSO), transferred to a Cryo S cryovial (Greiner) and labelled. 

The sample was frozen in CoolCell LX foam freezing chamber (Biocision) from room temperature 

to -80oC and then transferred to liquid nitrogen dewars. Retrieving frozen stocks involved thawing 

the samples to 37oC, adding the sample to 2ml of its growth media in a 15ml falcon (Greiner) and 

then spinning down at 1500rpm for 5 minutes to pellet the cells. The pellet was re-suspended in 

the appropriate volume of growth media and the cells applied to tissue culture plastic. 
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Selection of Basal Epithelial Subpopulations 

Six Collagen I coated 10cm dishes (Corning) were blocked with 3ml PBS – 0.3% BSA (that had been 

heat treated at 80oC for 10 minutes followed by vacuum filtration) for 1 hour at 37oC. Whilst the 

plates were blocking, the whole population cultures (≥6x10cm confluent plates) were trypsinised, 

neutralised in R10 [RPMI-1640 (Gibco) supplemented with 1% L-glutamine (Gibco) and 10% FCS 

(Gibco)], spun down at 1500rpm for 5 minutes in the IEC CL30R centrifuge (Thermo Scientific) and 

then re-suspended in 9ml SCM. Blocked plates were removed after the elapsed time and washed 

in PBS. Blocked plates were then labelled; 3x SC/TA, 3x Intermediate. 3ml of cells were applied to 

each of the three SC/TA blocked plates and placed in the incubator for 5-10 minutes. The 

adherent cells after this time are the SC/TA population. Plates were removed from the incubator 

and the media containing non-adherent cells collected. Plates were then washed twice with 3ml 

PBS – that was also collected and placed into the media containing tube. The plates of adherent 

SC/TA cells were then trypsinised for 10 minutes. The cells in suspension were pelleted at 

1500rpm for 5 minutes and then re-suspended in 9ml SCM. 3 ml of the suspended cells were 

added to each of the three remaining blocked plates and incubated for 30 minutes. The 

trypsinised SC/TA cells were neutralised in R10 and spun down at 1500rpm for 5 minutes. If any 

adherent cells remained they were removed with 10X trypsin-EDTA. The SC/TA cells were then re-

suspended, in the amount of media required for the next assay, and counted. The second set of 

blocked plates were removed after 30 minutes and non-adherent CB cells collected, as before; 

removal of media and collection of two PBS washes. The adherent intermediate cells were 

trypisinised. CB cells were span down at 1500rpm for 5 minutes and counted. Intermediate cells 

were then collected in the same manner as the SC/TA population. SC/TA and CB populations were 

then either applied to plates or harvested immediately depending on the following treatment. 

For gDNA; intermediate cells were pelleted in the Accuspin Micro microcentrifuge (Fisher 

Scientific) – 2 minutes at 6500rpm. Pellets were washed in 1ml PBS, and spun down at the same 

speed and time. The PBS was aspirated and the pellet frozen at -80oC until gDNA extraction. 

For RNA; cells were grown in 12 well plates with 100,000 cells per well in 1ml SCM. They were left 

to adhere overnight before treatment and harvesting, or harvested immediately by spinning down 

at 6500rpm for 2 minutes in the Accuspin Micro microcentrifuge (Fisher Scientific), washed in PBS 

and re-pelleted. PBS was aspirated and the pellet frozen at -80oC until RNA extraction. 

For Protein; cells were grown in 6 well plates with 500,000 cells per well in 2ml SCM. They were 

left to adhere overnight before treatment and harvesting. Harvesting was either as cell pellets or 

protein lysate in 4X SDS protein buffer – See SDS-PAGE and Western Blotting section. 
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For Chromatin; cells were re-suspended in 2ml SCM and 54μl formaldehyde (36.5-38%)(Sigma 

Aldrich) was added. The sample was incubated in the formaldehyde for 15 minutes and flicked to 

prevent the cells settling on the bottom of the tube. After the allotted time the formaldehyde was 

neutralised with 1M glycine for 5 minutes. The sample was then centrifuged for 5 minutes at 

1000rpm at 4oC in the IEC CL30R centrifuge (Thermo Scientific). The pellet was rinsed twice in 4ml 

of ice cold PBS – both times the cells were spun down for 3 minutes at 2500rpm at 4oC. PBS was 

aspirated and the pellet frozen at -80oC before ChIP. 

Cell line culture 

See Table 2 in Section 1.7 for more details on prostate epithelial cell lines. 

• BPH-1 cells were grown in R5 [RPMI-1640 (Gibco) media supplemented with 5% FCS and 

1% L-glutamine (Gibco)]. 

• PNT1a cells were grown in R10 media. 

• PNT2-C2 cells were grown in R10 media. 

• P4E6 cells were grown in K2 [KSFM media (Gibco) supplemented with bovine pituitary 

extract, epidermal growth factor (Gibco), 2% FCS and 1% L-glutamine (Gibco)].  

• PC3 cells were grown in H7 [Hams F-12 media (Lonza) supplemented with 7% FCS and 1% 

L-glutamine (Gibco)]. 

• LNCaP cells were grown in R10 media. 

• Du145 cells were grown in R10 media. 

• VCaP cells were grown in R10 media on Corning Cell Bind T25 flasks (Corning). 

Cells were cultured in the absence of antibiotics and anti-mycotics on, unless specifically stated, 

standard tissue culture plastics supplied by Corning or Starstedt and incubated at 37oC with 5% 

CO2. 

3.2 – Molecular Analyses 

RNA extraction 

Cells were harvested by trypsinisation (1X Trypsin-EDTA (Gibco) and neutralised with equal 

volume of R10. They were then centrifuged for 5 minutes at 1500rpm in an IEC CL30R centrifuge 

(Thermo Scientific) then washed in 1ml PBS before final centrifugation at 6500rpm for 2 minutes 

to produce a cell pellet in an Accuspin Micro microcentrifuge (Fisher Scientific). RNA extractions 

were performed on fresh cell pellets, pellets previously stored at -80oC or by direct in-plate lysis 

(addition of complete RLT buffer followed by storage at -80oC overnight) using the RNeasy Micro 

Kit (Qiagen) following the manufacturer’s instructions for the animal cell protocol that proceeds 

as follows. 
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One part Β-mercaptoethanol (BioChemica) was added to one hundred parts RLT buffer, and 600μl 

of this mix was added to the cell pellet and mixed using a pipette. Lysates were then transferred 

into a QIAshredder column (Qiagen) in a 2ml collection tube and centrifuged for 2 minutes at 

13,000rpm in the Accuspin Micro microcentrifuge (Fisher Scientific). 600μl of 70% ethanol was 

added to the flow-through, mixed by pipette until homogenous and then aliquoted into an 

RNeasy Mini column in a 2ml collection tube. These were centrifuged at 8000rpm for 15 seconds 

(s) and flow-through discarded. Genomic DNA contamination was removed by on-column 

application of the RNase-free DNase Set (Qiagen) – this involved a wash step of 350μl Buffer RW1 

(8000rpm for 15s, flow-through discarded) before application of 70μl:10µl mix of Buffer 

RDD:DNase. Columns were left to stand at room temperature for 15 minutes before a second 

Buffer RW1 wash step as before. 500μl of Buffer RPE was then used to wash the column, 8000rpm 

for 15s and flow-through discarded. This step was repeated with a final 2-minute centrifugation. 

The column was transferred to a fresh collection tube and centrifuged at 13,000rpm for 1 minute. 

The collection tube and flow-through were discarded and the column placed in a 1.5ml labelled 

Eppendorf. RNA was eluted from the column with 30µl of PCR quality water (Sigma) directly 

pipetted onto the membrane and centrifuged for 1 minute at 8000rpm, this step was repeated for 

a total volume of 60µl RNA. Concentration was measured on the Nanodrop ND-1000 (Labtech) 

and either proceeded directly into cDNA synthesis or stored at -80oC. 

cDNA synthesis 

cDNA was synthesised directly from purified RNA using either the iScript cDNA synthesis kit 

(BioRad) or Superscript III or IV kits (Invitrogen), depending on availability in the laboratory. All 

mastermixes (MMs) were made up in the Mini V/PCR hood (Telstar) and the RNA added on bench. 

cDNA was stored at -20oC or used immediately in qRT-PCR assays or RT-PCR. 

iScript 

MM was made up of (for one reaction); 4μl iScript RT Supermix and 14μl of PCR quality water 

(Sigma). This was mixed with a pipette, pulse centrifuged and added to 2μl of template RNA 

(≤1μg). Reactions were then placed into the GeneAmp PCR System 9700 thermal cycler (Applied 

Biosystems) and entered into a program of; 25oC for 5 minutes, 46oC for 20 minutes and 95oC for 

1 minute. Sample cDNA concentration was assessed using the Nanodrop and diluted to stock and 

working concentrations in PCR quality water (Sigma). 

Superscript III 

All reagents marked with (*) are supplied in kit from Invitrogen and reactions carried out as per 

manufacturer’s instructions. MM1 for each reaction consisted of; 1μl Random Hexamer* (50g/μl), 
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1μl dNTP* (10mM). This was mixed using a pipette and added to 10μl sample RNA (≤5μg) and 

reactions placed in GeneAmp PCR System 9700 thermal cycler (Applied Biosystems) for 5 minutes 

at 65oC followed by 2 minutes on ice. At this point MM2 was made. Each reaction contained; 4μl 

First Strand Buffer*, 2μl DTT* (100mM), 1μl RNase OUT* (40U) and 1μl Superscript III Reverse 

Transcriptase* – mixed using a pipette and then pulse centrifuged. 8μl of MM2 was then added to 

each reaction before the tubes were again placed in the thermocycler; 25oC for 10 minutes, 42oC 

for 50 minutes, 15 minutes at 72oC, hold at 4oC. cDNA was then isolated using the QIAquick PCR 

Clean up kit (Qiagen) as described in PCR Product Purification. Following clean up, sample cDNA 

concentration was assessed using the Nanodrop and diluted to working concentrations in PCR 

quality water (Sigma). 

Superscript IV 

All reagents marked with (*) are supplied in kit from Invitrogen and reactions carried out as per 

manufacturer’s instructions. MM1 for each reaction consisted of; 1μl Random Primers* (50μM), 

1μl dNTPs* (10mM), 2μl PCR quality water (Sigma). MM1 was mixed using a pipette, pulse 

centrifuged and 4μl added to 1.5μl of template RNA (≤5μg) in PCR tube. Tubes were placed in 

GeneAmp PCR System 9700 thermal cycler (Applied Biosystems) for 5 minutes at 65oC followed by 

1 minute on ice. At this point MM2 was made. Each reaction was made up of; 4µl of 5X SSIV 

Buffer* (after vortexing and pulse centrifugation), 1µl DTT* (100mM), 1µl RNase OUT* (40U) and 

1µl Superscipt IV Reverse Transcriptase*. MM2 was mixed using a pipette, pulse centrifuged and 

7µl added to the MM1 + RNA on ice. The reactions were again placed in the thermal cycler on the 

following program; 23oC for 10 minutes, 50oC for 10 minutes and 80oC for 10 minutes. Each 

sample then had 1μl RNase H* added and placed back in the thermal cycler for 20 minutes at 

37oC. cDNA concentration was measured on the Nanodrop and diluted in PCR quality water 

(Sigma) to appropriate working stock concentrations. 

Quantitative Real Time PCR (qRT-PCR)  

qRT-PCR was performed in FrameStar 96 qRT-PCR plates (4titude). Input cDNA was standardised 

at 30ng per well and biological samples averaged from technical triplicate measurements. MM 

was constituted in the Mini V/PCR hood (Telstar) and was added 7μl per well (giving a total 

volume of 10μl) before the wells were protected by a clear adhesive cover and the plate 

centrifuged at 1000rpm for 2 minutes in the Heraeus Megafuge 1.0R centrifuge (Thermo Fisher). 

TaqMan probes were purchased from Thermo Fisher and BioRad, and are listed in Table 8. qRT-

PCR was performed using the C1000 Thermal Cycler and CFX96 Real-Time System (BioRad) under 

the following protocol for all applications; 95oC – 2 minutes, 39 cycles; 95oC for 5s, 60oC for 30s, 

4oC Hold. When using TaqMan Fast Universal Master Mix (Applied Biosystems) the following PCR 
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was used; 95oC – 10 minutes, 39 cycles; 95oC for 15s, 60oC for 60s, 4oC Hold.  Machine reader 

heads were configured to WHITE-ALL CHANNELS (Thermo Fisher Taqman & BioRad Taqman), or 

WHITE-FAM ONLY (Thermo Fisher Taqman) dependent on Taqman probes used. Data was 

annotated using the CFX Manager 2.0 (BioRad) and analysed using the 2-ΔΔCt method in Microsoft 

Excel (740).  
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Gene Target Probe Company Code 

HMOX1 FAM BioRad qHsaCIP0033307 

HSPA1A FAM BioRad aHsaCEP0040036 

JUN FAM BioRad qHsaCEP0032009 

GAPDH TexRed BioRad qHsaCEP0041396 

SOD2 FAM Thermo Fisher Hs00167309_m1  

GPX2 FAM Thermo Fisher Hs01591589_m1  

NOS2 FAM Thermo Fisher Hs01075529_m1 

RPLP0 FAM Thermo Fisher Hs99999902_m1 

NRARP FAM Thermo Fisher Hs04183811_s1  

HES1 FAM Thermo Fisher Hs00172878_m1  

SOX9 FAM Thermo Fisher Hs00165814_m1  

IL6R FAM Thermo Fisher Hs01075664_m1  

NR4A1 FAM Thermo Fisher Hs00374226_m1  

NR4A2 FAM Thermo Fisher Hs01117527_g1  

NR4A3 FAM Thermo Fisher Hs00545009_g1  

FOSB FAM Thermo Fisher Hs00171851_m1  

DUSP10 FAM Thermo Fisher Hs00200527_m1  

SQSTM1 FAM Thermo Fisher Hs01061917_g1  

JUN FAM Thermo Fisher Hs01103582_s1  

HMOX1 FAM Thermo Fisher Hs01110250_m1  

18S VIC Thermo Fisher Hs99999901_s1 

TABLE 8 – TaqMan probes used in study.  
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SDS-PAGE and Western Blotting 

Cell lysates were either prepared from frozen pellets or cells were directly lysed in 6-well plates 

following plasma treatment. Each individual protein lysate sample required 5x105 cells. 

Cell pellet lysates were prepared by resuspension in 80μL CytoBusterTM Protein Extraction 

Reagent (Novagen) with PhosStop phosphatase inhibitors (Roche), cell debris removed by 

centrifugation in the Accuspin Micro microcentrifuge (Fisher Scientific) (13,000rpm, 5 minutes) 

and protein content measured by PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific). BCA 

Assays were performed according to manufacturer’s instruction in a 96 well plate (Starstedt). A 

2mg/ml stock of Bovine Serum Albumin (Sigma) was prepared in CytoBusterTM Protein Extraction 

Reagent, this was then serially diluted in triplicate across the wells (10μl/well) of the 96 well plate 

to produce standards. 10μl of protein sample, unknown concentration, was then pipetted into 

separate wells before addition of 190µl of BCA reagent (1 part Reagent B to 50 parts Reagent A). 

The plate was incubated at 37oC for 30 minutes before absorbance at 562nm was measured using 

the POLARstar OPTIMA plate reader (BMG Labtech). Data collected by the FluoSTAR OPTIMA 

program and protein concentration of the unknown samples calculated using Microsoft Excel.  

20µg of protein with the appropriate amount of 4X SDS protein sample buffer (40% glycerol, 

240mM Tris-HCl pH 6.8, 8% SDS, 0.04% bromophenol blue, 15% beta-mercaptoethanol) was 

incubated at 95oC for 5 minutes before loading onto an acrylamide gel. 

In-plate cell lysates were prepared by direct application of 200μL/well 4X SDS protein sample 

buffer followed by cell scraping. Samples were then sonicated for 3x 10s using the Soniprep 150 

(MSE Sanyo) and incubated at 950C for 5 minutes on a heatblock (Grant BT3). 40μL of lysate was 

loaded per well. 

Protein samples were resolved on 10% acrylamide gels for 2 hours at 110V with 10μl Precision 

Plus Kaleidoscope Prestained Protein Standards (BioRad). Proteins were transferred onto PVDF 

Immobilon P membranes (Merck Millipore) for 1 hour at 100V, with ice-pack. The membrane was 

blocked for 1 hour in 5% milk-TBS at room temperature before primary antibody was applied in 

1% milk-TBS overnight at 4oC. After overnight incubation the membrane was washed 3x 5 minutes 

in TBS-Tween and secondary antibody applied; either anti-mouse or anti-rabbit HRP, at 1:10,000 

in 1% milk-TBS. The membrane was washed 3x 5 minutes in TBS-Tween and then developed, using 

BM Chemi-luminescence Western Blotting Substrate (POD)(Roche), and viewed on the 

GeneGnome XRQ (Syngene). For all primary and secondary antibodies used, see Table 9. 
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Target Species Dilution Used Code Company 

Nrf2 Rabbit polyclonal 1:500WB/1:100IF ab137550 Abcam 

Keap1 Mouse monoclonal 1;500 ab119403 Abcam 

Keap1 (IF) Rabbit monoclonal 1:100 D6B12 #8047 Cell Signalling 

Technologies 

Phospho-SAPK/JNK 

(Thr183/Tyr185) 

Rabbit monoclonal 1:500 81E11, 

#4668  

Cell Signalling 

Technologies 

SAPK/JNK Rabbit monoclonal 1:500 #9252  Cell Signalling 

Technologies 

Phospho-cJun (Ser63) Rabbit monoclonal 1:500 54B3, #2361  Cell Signalling 

Technologies 

Phospho-cJun (Ser73) 

(IF) 

Rabbit monoclonal 1:100 #9164   Cell Signalling 

Technologies 

cJun Rabbit monoclonal 1:500 60A8, #9165  Cell Signalling 

Technologies 

Cleaved Notch1 

(Val1744) 

Rabbit monoclonal 1:500 D3B8 #4147 Cell Signalling 

Technologies 

NOTCH1 Rabbit polyclonal 1:500WB/1:100IF ab27526 Abcam 

NF-kB (p65) Rabbit monoclonal 1:500 D14E12 

#8242 

Cell Signalling 

Technologies 

NF-kB (p65) (IF) Rabbit monoclonal 1:400 D14E12 

#8242 

Cell Signalling 

Technologies 

IkBα Rabbit monoclonal 1:500 [E130] 

ab32518-100 

Abcam 

Phospho-IkBα (Ser32) Rabbit monoclonal 1:500 14D4 #2859 Cell Signalling 

Technologies 

CD49b-FITC (IF) Mouse polyclonal 1:800 MCA743F Serotec 

NIK Rabbit polyclonal 1:500 #4994 Cell Signalling 

Technologies 

Actin Rabbit monoclonal 1:10,000 04-1040, 

clone EP184E 

Merck-Millipore 

GAPDH Rabbit polyclonal 1:10,000 ab9485 Abcam 

Anti-Mouse HRP Goat 1:10,000 115-035-003 Affinipure 

Anti-Rabbit HRP Goat 1:10,000 7074P2 Cell Signalling 

Technologies 

Anti-Rabbit 

AlexaFluor 568 (IF) 

Goat 1:1000 A11036 Life 

Technologies 

Anti-Mouse 

AlexaFluor 568 (IF) 

Goat 1:1000 A11031 Invitrogen 

TABLE 9 – Antibodies used in study.  

IF – Immunofluorescence, WB – Western blot. Antibodies that have no notation after their name 

were used in western blotting experiments.  
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Densitometry Analysis 

All western blot images were edited on GIMP 2.8 (GNU Image Manipulation Program) prior to 

densitometry analysis. In GIMP, the image colour output levels were reduced to avoid saturating 

the image analyser in the next step. Densitometry acquisition was performed using Image Studio 

Lite 5.2 (Licor). Using the analysis tools, a box was drawn around the band and the box copied (to 

not allow for any change in area affecting densitometry analysis) and pasted to surround adjacent 

bands. The readout from the densitometry then allowed results to be analysed using Excel 2010 

(Microsoft). 

In Excel, house-keeping gene normalisation as a loading control formed the first step of analysis. 

The lowest densitometry score for a house-keeping band was used to normalise the other house-

keeping gene bands (division of the band score by the lowest score) – so that the lowest score 

was 1 and the other bands scored ≥1. The other protein bands in the lane were then divided by 

this score, for example proteins in the same lane as the lowest house-keeping gene band 

densitometry scores went unchanged as they were just divided by 1. Treatment induced changes 

in the levels of protein were then determined by dividing the normalised score of treated 

densitometry by the normalised untreated densitometry. This allowed for absolute protein level 

changes to be calculated but not phosphorylation of cleavage events. 

Phosphorylation events were calculated from the house-keeping normalised scores in the 

following equation;  

[
𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑
]

[
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑈𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑
]

 

This allowed for changes in the total level of the protein to be taken into account as this could 

affect the level of phosphorylation seen by Western Blot. The same equation was applied to 

calculate Notch activation – here cleaved protein substituted phosphoprotein. 

Statistical Analysis of Data 

All analyses were performed using the statistical analysis platform on Prism 7 (GraphPad). 

Unpaired t tests (one-tailed) were performed on biological triplicate measurements of epithelial 

subpopulation gene expression data. All statistical tests, error bar parameters and biological 

repeats (n values) are included in the figure or figure legend.  

Genomic DNA extraction  

Genomic DNA was extracted from frozen cell pellets using the Qiagen DNeasy Blood and Tissue Kit 

protocol for cultured cells, detailed below. 
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Cell pellets were allowed to thaw on ice. Pellets were loosened by gentle flicking of the tube. 

220μl of a solution constituted by 200μl PBS and 20μl Proteinase K (20mg/ml)(Qiagen) was used 

to break up the pellet – mixed using the pipette. 4μl of RNase A (100mg/ml) (Sigma) was added 

and each sample incubated at room temperature for 2 minutes. 200μl of ATL buffer was applied 

and mixed by pipette until the solution was homogeneous. The sample was then incubated at 

56oC for 10 minutes in a water bath. 200μl of ethanol (96-100%) was then added and again mixed 

to a homogeneous solution before being transferred to the DNeasy Mini spin column in a 2ml 

collection tube. The sample was then centrifuged in the Accuspin Micro microcentrifuge (Fisher 

Scientific) at 8000rpm for 1 minute with flow-through and collection tube discarded after the spin.  

The column was then placed into a new collection tube and 500μl of AW1 buffer was added 

before being centrifuged again for 1 minute at 8000rpm. Flow-through and collection tube were 

discarded again and the column placed in a fresh collection tube. 500μl of AW2 buffer was added 

and the sample centrifuged for 3 minutes at 13,000rpm. Again both flow-through and collection 

tube were discarded and the column placed in a 1.5ml Eppendorf tube. 50μl of PCR quality water 

(Sigma) was pipetted directly onto the membrane in the column and allowed to stand for 1 

minute. The sample was then centrifuged for 1 minute at 8000rpm. The elution step was repeated 

so that genomic DNA was in a final total volume of 100μl – sample concentration was determined 

on the Nanodrop ND-1000 (Labtech) and gDNA stored at -20oC. 

Polymerase Chain Reaction 

PCR product was amplified using two different polymerase systems, GoTaq Flexi G2 (Promega) 

and Phusion (NEB). All reactions were performed in the GeneAmp PCR System 9700 thermal 

cycler (Applied Biosystems). Reactions had 50ng total of gDNA or cDNA as template material 

(typically as 5µl at 10ng/µl). For negative reactions (no template controls) this was replaced by 5μl 

of PCR quality water (Sigma Aldrich). Before separation, products were combined with 6X Purple 

Loading Dye (NEB). Products were separated on a 1-3% agarose 1X TAE gel containing 1:20,000 

GelRed Nucleic Acid Gel Stain (Biotium) alongside, unless stated, Quick-Load Purple 2log DNA 

Ladder (NEB). Gels were immersed in 1X TAE buffer and electrophoresed for 90 minutes at 90V, 

unless stated. Products were visualised under UV using the PXi Touch (Syngene). 

GoTaq Flexi G2 

All reagents marked with (*) are supplied in kit from Promega and reactions carried out as per 

manufacturer’s instructions. 

The MM was made up on ice in the Mini V/PCR hood (Telstar). For a single PCR tube; 10µl 5X Clear 

Flexi Buffer*, 6µl MgCl2* (25mM), 2µl dNTP mix (10mM) (Invitrogen), 1µl forward primer, 1µl 



135 

 

reverse primer, 0.5µl GoTaq G2 Polymerase*, 26.5µl PCR quality water (Sigma). 45µl of the MM 

was added to 0.2ml PCR tubes followed by 5µl of DNA (10ng/µl). 

The reactions were added to the thermocycler and ran; 94oC – 2 minutes, 35 cycles [94oC – 30 sec, 

(variable annealing temperature, see Table 10)– 30 sec, 72oC – 30 sec], 72oC – 5 minutes, 4oC – 

hold. 

Phusion 

All reagents marked with (*) are supplied in kit from NEB and reactions carried out as per 

manufacturer’s instructions. 

Phusion requires two MMs, both of which were made up on ice in the Mini V/PCR hood (Telstar). 

For a single PCR tube, MM1 contained; 28.75µl PCR quality water (Sigma), 1µl dNTP mix* (10mM), 

2.5µl forward primer and 2.5µl reverse primer. 34.25µl of MM1 was added to the tubes in hood. 

MM2 was then made up of 0.25μl Phusion Polymerase* and 10µl HF Buffer*.  

Tubes were taken out of the hood and 50ng of DNA was added to each sample on bench. The 

thermocycler was heated to 98oC and then paused before 10.25µl of MM2 was added to each 

tube and mixed. The reaction was placed directly into the thermocycler on the following program; 

98oC – 30 sec, 35 cycles [98oC – 10 sec, (variable annealing temperature)– 30 sec, 72oC – 20 sec], 

72oC – 5 minutes, 4oC – hold. 
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Target Primer Sequence 

Annealing 

Temperature 

(OC) 

Product 

Size (bp) 

Template 

material 

SPOP exon 6 & 

7 

FP: TTCTATGGGGCCTGCATTT 
62 (Phusion) 429 gDNA 

RP: CTCCACTTGGGGCTTTTTCT 

IDH1 exon 6 
FP: ATATTCTGGGTGGCACGGTC 

62 (Phusion) 456 gDNA 
RP: TGCAGCCAGTGTTGAAAACC 

PTEN exon 5 
FP: ACCTGTTAAGTTTGTATGCAAC 

56 (Phusion) 385 gDNA 
RP: TCCAGGAAGAGGAAAGGAAA 

PTEN intron 8 
FP: CATTCTTCATACCAGGACCAG 

60 (GoTaq) 354 gDNA 
RP: TCATGTTACTGCTACGTAAAC 

TMPRSS2 

exon 6 

FP: CTGTTACTGTCACTCGGCGG 
60 (GoTaq) 174 gDNA 

RP: CTCGTGCAGTTCGCCTCTAC 

TMPRSS2-ERG 

Outer 

FP: CGCGAGCTAAGCAGGAGGC 
70 (Phusion) Variable cDNA 

RP: GGCGTTGTAGCTGGGGGTGAG 

TMPRSS2-ERG 

Inner 

FP: GGAGCGCCGCCTGGAG 
71 (Phusion) Variable cDNA 

RP: CCATATTCTTTCACCGCCCACTCC 

GAPDH 
FP: GCTCTCTGCTCCTCCTGTTC 

63 (Phusion) 357 cDNA 
RP: AAATGAGCCCCAGCCTTCTC 

TABLE 10 – PCR information 

FP – forward primer, RP – reverse primer, bp – base pairs. 
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PCR Product Purification 

PCR products were purified for sequencing using an on-column method, extraction from gel 

fragments or DNA precipitation. Standard on-column purification was used for bulk PCR reactions. 

Gel extraction was used to separate unknown DNA fragments for sequencing and BLAST 

identification. DNA precipitation was used as an alternate method to on-column purification to 

confirm PCR product sequences. 

On-column Purification 

All reagents marked with (*) are supplied in the QIAquick PCR Purfication kit (Qiagen) and the 

purification carried out as per manufacturer’s instructions. 200µl of Buffer PB* was added to the 

40μl of remaining PCR product (10μl had been previously ran on a gel) and mixed by pipette. If 

the colour of the solution had turned from the yellow of Buffer PB* to an orange or violet then 

10µl of 3M sodium acetate (pH 5.0) was added and mixed by pipette. The solution was then 

transferred to a QIAquick column* in 2ml collection tube and centrifuged at 13,000rpm for 1 

minute in the Accuspin Micro microcentrifuge (Fisher Scientific). Flow-through was discarded and 

750μl Buffer PE* applied to the column. The column was centrifuged at 13,000rpm for 1 minute 

and flow-through discarded. The tube was then centrifuged again for 1 minute at 13,000rpm to 

remove any residual buffer. The collection tube was discarded and the column placed in a clean 

1.5ml tube. 30μl of PCR quality water (Sigma) was added to the membrane of the column and left 

to stand for 1 minute before being centrifuged at 13,000rpm. The elution step was repeated, 

making the final volume of gDNA; 60µl. The sample concentrations were measured on the 

Nanodrop ND-1000 (Labtech) and then stored at -20oC. 

Gel Extraction 

All reagents marked with (*) are supplied in the QIAquick Gel Extraction kit (Qiagen) and the 

purification carried out as per manufacturer’s instructions. The entire PCR reaction was loaded 

onto a 1% agarose TAE gel with 1:10,000 SYBRsafe DNA gel stain (Invitrogen) and ran at 90V for 90 

minutes. Following this the gel was placed on the Safe ImagerTM (Invitrogen) and the band of 

interest excised using a scalpel. The gel fragment was then placed in a colourless 1.5ml tube and 

weighed on the Sartorius LE244S balance. 3 volumes of Buffer QG* was added to the single 

volume of gel, where 100mg of gel is a single volume of 100µl QG*. The gel in buffer was then 

incubated at 50oC in a heatblock (Grant BT3) for 10 minutes and the tube vortexed briefly every 3 

minutes to aid the dissolving of the gel fragment. If the colour of the solution had turned from the 

yellow of Buffer QG* to an orange or violet then 10µl of 3M sodium acetate (pH 5.0) was added 

and mixed by pipette. A single gel volume of isopropanol was then added to the solution and 

mixed. The gel solution was then transferred to the QIAquick spin column* in a 2ml collection 
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tube and centrifuged for 1 minute at 13,000rpm in the Accuspin Micro microcentrifuge (Fisher 

Scientific). 500μl of Buffer QG* was added to the column which was then centrifuged at 

13,000rpm for 1 minute. Flow-through was discarded and 750μl Buffer PE* applied to the column 

which was centrifuged again at 13,000rpm for 1 minute. Flow-through was discarded and the 

column centrifuged at 13,000rpm to remove residual buffer from the membrane. The collection 

tube was discarded and the column placed in a 1.5ml tube. 30μl of PCR quality water (Sigma) was 

added to the membrane of the column and left to stand for 1 minute before being centrifuged at 

13,000rpm. The elution step was repeated, making the final volume of gDNA; 60µl. The samples 

concentration was measured on the Nanodrop ND-1000 (Labtech) and then stored at -20oC.    

DNA Precipitation 

Protocol adapted from Collas 2011 (741). 

400µl of PCR quality water (Sigma) was added to the 50μl PCR reaction in a 2ml tube. 44µl of 

sodium acetate (3M, pH5.2), 5μl linear acrylamide carrier (Ambion) and 1ml of 96% ethanol at -

20oC was added to the DNA and the solution mixed thoroughly. The tube was then incubated at -

80oC overnight. The next day, the tube was thawed and centrifuged at 14,000rpm for 15 minutes 

at 4oC in the Mikro 220R (Hettich). The supernatant was removed using a pipette and 1ml of 70% 

ethanol at -20oC was added. The tube was, again, centrifuged at 14,000rpm for 15 minutes at 4oC 

in the Mikro 220R (Hettich) and supernatant removed. The pellet was dried using the 

Concentrator 5301 (Eppendorf) at 30oC for 10 minutes with brake on. The DNA pellet was 

dissolved in 30µl PCR quality water (Sigma) and the concentration measured on the Nanodrop 

ND-1000 (Labtech). 

PCR Product Sequencing 

PCR products were Sanger sequenced in the departmental technology facility by a staff member. 

Each reaction was submitted as 5µl at 5ng/μl – making 25ng of DNA in total – sequencing primer 

or forward primer was supplied at a concentration of 3.2µM - 1μl per reaction. Trace files were 

analysed using the MegAlign and SeqMan II analysis software (DNA Star). 

3.3 - Low Temperature Plasma Treatments 

Dielectric Barrier Discharge LTP Jet Setup and Cell Treatments 

The LTP jet consisted of a quartz glass tube of inner/outer diameter 4/6mm, with two copper tape 

electrodes 20mm apart. One electrode was powered (6kV sinusoidal voltage at 30kHz) and the 

other grounded. Helium, the carrier gas, flowed at 2 standard litres per minute and was fed with 

0.3% molecular oxygen admixture. 1-5x105 cells were used for each treatment condition, cell 

number varied, dependent upon assay used. Cells were exposed to the LTP jet at a distance of 
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15mm from the end of the bottom electrode for 180s in 1.5ml centrifuge tubes, suspended in 

1.5ml of respective media or directly in 6-well (cells in 2ml SCM) or 12-well (cells in 1ml SCM) 

plates (Corning or Sarstedt). The distance between the end of the glass tube and the media 

surface was ~2mm. Treatment times up to 600s did not raise the surface temperature of culture 

media above 36.5oC, measured using a thermocouple. The temperature and relative humidity of 

the laboratory were ~20oC and ~25% respectively.  

RT2-PCR Oxidative Stress Profiler Arrays 

Oxidative stress arrays (Qiagen) are 96 well plates consisting of 84 wells containing gene-specific 

primers to transcripts responsive to oxidative stress, 5 wells for house-keeping genes (HPRT1, 

GAPDH, B2M, RPLP0, B-ACT) for relative fold change quantification, PCR control wells in triplicate, 

reverse transcription control wells in triplicate and a single genomic DNA contamination control 

well. 1µg of RNA (8µl of 125ng/µl) was used as input for reverse transcription to cDNA with the 

RT2 First Strand Synthesis kit (Qiagen). The cDNA was combined with SYBR Safe Mastermix 

(Qiagen) and aliquoted across the array plate. All array plate qRT-PCR was performed using the 

C1000 Thermal Cycler and CFX96 Real-Time System (BioRad) under the RT2 Array qRT-PCR 

protocol; 95oC – 10 minutes, 39 cycles of 95oC for 10s, 60oC for 1 minute (Qiagen). Data was 

assimilated using the CFX Manager 2.0 (BioRad) and analysed using the Qiagen’s online Data 

Analysis Center (http://www.qiagen.com/gb/shop/genes-and-pathways/data-analysis-center-

overview-page/)(742). Gene expression scatterplots generated in the software were of the Log10
 

2-ΔΔCt values plotted against each other (treated/untreated), upregulation was marked as ≥2 fold 

change in expression. 

Clariom D Affymetrix Microarray 

Microarray analysis was outsourced and performed by Eurofins on RNA harvested from six 

primary samples before (untreated) and 2 hours (treated) after LTP treatment. 

Meta-analysis of All Samples Treated against Untreated 

Initial microarray analysis was performed using the Transcriptome Analysis Console ver3 

(Affymetrix) set up with the Clariom_D_Human.na36.hg38.probeset. All samples were grouped 

Untreated against Treated and that dataset was used for all subsequent analysis. 

LIMMA (Linear Models for Microarray and RNA-seq Data), GO (Gene Ontology) enrichment and 

KEGG pathway analysis were performed by Dr Alistair Droop. LIMMA Analysis Pre-processed data 

were analysed using the LIMMA (743) within the R numerical environment (744). Cell of origin 

and treatment type was modelled in the design matrix. Significant results after empirical Bayes 

http://www.qiagen.com/gb/shop/genes-and-pathways/data-analysis-center-overview-page/
http://www.qiagen.com/gb/shop/genes-and-pathways/data-analysis-center-overview-page/
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smoothing of the standard errors were extracted using a false discovery rate threshold of 0.025. 

No log fold change threshold was applied. 

Results were also analysed using gene set enrichment. The topGO package (745) was used. GO 

testing was performed using the "weight01" algorithm with Fisher's statistics. A threshold of 0.05 

was used to select significant results. 

Pathway analysis was performed against the KEGG (746) pathways. Significant results from the 

LIMMA analysis were analysed with a p-value threshold of 0.05. 

Immunofluorescence  

Cultured primary cells were trypsinised into chamber slides. These were BioCoat Collagen I 8-well 

plates (Corning) – 10,000 cells per well, or 2-well Nunc Lab-Tek chamber slides (Sigma Aldrich) – 

300,000 cells per well. 

Cells were left overnight before being treated in-well by plasma. A plasma dose of 1.5-minutes 

was used for 8 well chamber slides and 3-minutes for 2 well chamber slides. Following treatment, 

cells were fixed at either 0.5 hours or 2 hours post-treatment using 4% PFA (Paraformaldehyde) - 

100µl for 8 well and 500μl for 2 well. Wells were then washed 3x for 5 minutes in PBS (equivalent 

to the volume of PFA). Chamberslides were then stored at 4oC with the equivalent volume of PBS 

in well or carried forward into permeabilisation. 

Cells were permeabilised for 10 minutes in 0.5% Triton X-100 (Sigma) in PBS (at a volume 

equivalent to that used for PFA). Triton X-100 was tipped off and cells washed in PBS 3x 5 

minutes. Cells were then blocked in 10% goat serum (Sigma) in PBS for 1 hour. Goat serum was 

then removed and primary antibody applied. See Table 9 for more information. Primary antibody 

was diluted in 10% goat serum in PBS. The chamber slides were left in the fridge overnight (~16 

hours) at 4oC on orbital shaker (Stuart SSM3) at 50rpm. 

After overnight incubation the primary antibody (Table 9) was removed and cells washed 3x 5 

minutes in PBS. The secondary Alexafluor 568 antibody (Table 9) diluted in 10% goat serum was 

then applied for 1 hour at room temperature. This incubation step was performed beneath a 

plastic box lid to prevent loss of Alexafluor signal. Secondary antibody was removed and cells 

washed 3x 5 minutes in PBS. 

The chamber of the slides was now removed. For the BioCoat 8-well slides, the tool accompanying 

the slides was used, for the 2 well Nunc Lab-Tek slides the chamber was lifted off and the 

adhesive removed using forceps. 4 drops of Vectashield with DAPI (Vector, H-1200) was applied to 

the slide and a coverslip added on top. Excess Vectashield was wiped away and any air bubbles 

were removed before being sealed with nail varnish and left to dry for 15 minutes in the dark. 
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Slides were either stored at 4oC in the dark or imaged immediately on the DM IL LED Microscope 

(Leica) with the DFC365 FX Camera (Leica), equipped with DAPI and Cy3 filter blocks. Images were 

viewed and stored using the LAS X program (Leica). 

SmartFlares 

SmartFlares were prepared from lyophilised stock by addition of 50µl Nuclease Free Water 

(Merck-Millipore). This was mixed by pipette and then vortexed to assure that there was no 

biphasic separation of the probes. The SmartFlares were then stored at room temperature away 

from light.  

SmartFlare (Merck Millipore) experiments were attempted in two variations, with treatment 

before and following SmartFlare addition. SmartFlares used in the experiment were; Uptake-Cy3, 

Scrambled-Cy5 and HMOX1-Cy3 (discontinued). 

LTP Treatment Before Application of SmartFlares 

5x105 cells suspended in 1.5ml growth media were treated with LTP. The cells were then added to 

a 48 well plate - 40,000 cells per well in 500µl media. SmartFlares were diluted 1:20 in PBS and 4µl 

added to each well. Plates were monitored and pictures taken 24 hours after addition of 

SmartFlare on DM IL LED Microscope (Leica) with the DFC365 FX Camera (Leica). Images were 

viewed and stored using the LAS X program (Leica). 

LTP Treatment After Application of SmartFlares 

100,000 cells were aliquoted across a 24 well plate and left to adhere for 6 hours in 1ml of media. 

SmartFlares were diluted 1:20 in PBS and 10µl added to each well. Cells were then treated with 

the appropriate plasma dose and pictures taken 24 hours after LTP treatment with the DM IL LED 

Microscope (Leica) uing the DFC365 FX Camera (Leica). Images were viewed and stored on the 

LAS X program (Leica). 

Arsenite Treatments of Cell Lines 

Sodium meta-arsenite 0.05M (Merck Millipore) was diluted to the appropriate concentration in 

K2 or R10 medium directly before treatment. Cells were exposed to arsenite-containing media for 

the allotted time, up until harvesting. Following treatment, cells were washed twice with PBS to 

maximise the removal of arsenite and pelleted.  
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3.4 - Allelic Expression Experiments 

SURVEYOR 

The SURVEYOR system detects mutation or SNPs by first forming heteroduplexes of wildtype and 

variant strands before the SURVEYOR nuclease is added. This enzyme can recognise regions of 

mismatch or ≤12bp indels and upon recognition; cleaves the duplex. This allows the fragments to 

then be separated by gel electrophoresis. Reagents marked with a (*) were supplied in the 

Integrated DNA Technologies kit. 

Each reaction contained; 200-300ng purified PCR product (>10ng/μl), 2μl 0.5M KCl and PCR 

quality water (Sigma) to a final consistent volume between 20-30μl. The reactions were placed in 

a thermocycler (Applied Biosystems) on the following program to allow for heteroduplex 

formation; 95oC – 10 minutes, 85oC – 1 minute, 75oC – 1 minute, 65oC – 1 minute, 55oC – 1 

minute, 45oC – 1 minute, 35oC – 1 minute, 25oC – 1 minute, 4oC – hold. 

SURVEYOR nuclease was then added to these reactions in the following MM. For one reaction; 

2.5μl 0.15M MgCl2*, 1μl SURVEYOR nuclease*, 1μl ENHANCER*. 4.5μl was added to each reaction, 

mixed by pipette and incubated at 42oC for 1 hour in a thermocycler (Applied Biosystems). After 

incubation 2.5μl of STOP solution* was added. 

The entire reaction was then loaded onto a 2% agarose 1X TAE gel with 1:20,000 GelRed and 

electrophoresed at 80V for 100 minutes. Bands were visualised under UV on the PXi Touch 

(Syngene) 

PTEN Intron 8 LOH HincII Restriction Digests 

The solution used for restriction digest was constituted of; 0.4μl of HincII (NEB), 2.5μl 3.1 

restriction buffer (NEB) and 17.1μl of PCR quality water (Sigma). Following PCR of the intronic 

region, 20μl of HincII MM was added to 30μl of un-purified PCR product. Reactions were 

incubated at 37oC for 30 minutes and then at 65oC for 25 minutes in separate water baths. 

Reactions were combined with 10μl of 6X DNA loading dye and then 20μl loaded onto a 3% 

agarose 1X TAE gel alongside 10μl of undigested PCR product. Gels were ran at 100V for 1 hour 

and products visualised on the PXi Touch (Syngene). 
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4. Results – Determination if common tumourigenic alterations to genes in 

prostate cancers alters their allelic expression 

Large scale genome sequencing studies often assume mutations to be expressed. Yet evidence of 

said expression is rarely provided through use of matched transcriptomic or proteomic data. (330, 

497) This assumption is naïve in the common knowledge that many pre- and post-transcriptional 

mechanisms exist in cells, above the level of genetic alterations, that can significantly impact final 

and functional protein expression (or lack thereof) which affects the cancer phenotype. These 

include epigenetic modifications, which can promote or silence transcription, and nonsense 

mediated decay; that acts as a mRNA quality control mechanism. Most mutations and 

chromosomal alterations are heterozygous and cells retain a functional wildtype allele that, unless 

levels of the protein are critical and haploinsufficiency results, should be able to rescue the usual 

loss-of-function effects that such genomic alterations result in. Changes in the expression of 

disease or wildtype alleles therefore may have measurable molecular and cell fate outcomes in 

prostate cancer. The flowcharts, provided in Figures 28 & 34, show the plan of study progression 

in determining the effects on allelic expression made by gene alterations in prostate cancer. 

4.1 – Heterozygosity in TMPRSS2 is common in primary prostate epithelial cultures 

TMPRSS2 is monoallelically expressed in human tissues, including that of the prostate (246, 518). 

The prostate cancer unique TMPRSS2-ERG fusion is also selectively expressed at an allelic level in 

CSCs (246). To reproduce previous work, and show monoallelic expression in primary prostate 

cultures, heterozygosity had to be established so that the expression of each TMPRSS2 allele 

could be measured. Patient culture information on TMPRSS2 heterozygotes from previous work 

was compiled in Table 11. This data allowed for the selection of known heterozygous primary 

samples alongside the testing of recently harvested genomic DNA stocks for heterozygosity at SNP 

rs12329760, located in exon 6 of the TMPRSS2 gene (Figure 29A). In total, thirty-six primary 

cultures (from thirty-four patients) were tested and nine rs12329760 heterozygotes were 

identified, at a minor allele frequency (MAF) of 0.125 (9/72) half of the expected global MAF 0.25 

(Figure 29B + 30). Sequence traces for all samples can be found in the Appendix – 9.1. From these 

findings, fourteen patient samples were grown from liquid nitrogen stocks and the cultures 

subsequently fractionated into epithelial subpopulations (Figure 31) where RNA, genomic DNA 

(gDNA) and chromatin were harvested. After this, the rs12329760 state of the freshly grown 

samples was confirmed by PCR (Figure 32A) and Sanger sequencing of the product (Figure 32B). 

The second round of sequencing identified that YO47/09 and H329/13 LB were not A (minor 

allele) homozygotes, as was previously identified. 
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4.2 – The TMPRSS2-ERG fusion is expressed in primary prostate epithelial cultures 

The advantage of fusion positive samples is that monoallelic expression can be established by RT-

PCR. The fused and unfused TMPRSS2 alleles are inequivalent therefore expression of both can be 

assessed independently. Analysis of fusion expression in the primary cultures was achieved using 

a nested RT-PCR method (previously developed by Polson 2013 (246)) where outer and inner 

forward primers were located in TMPRSS2 exon 1 and the reverse primers in ERG exon 6, allowing 

for the amplification of all major fusion mRNA products (596). Product from PCR 1, using the 

outer primers, was immediately entered into PCR 2, using the inner primers, to achieve specificity 

and minimise off target amplification of any other cDNAs (Figure 33A). The strategy was 

confirmed to work using VCaP, a prostate cancer cell line with a confirmed TMPRSS2-ERG fusion, 

(351) to produce a PCR product that was identified as fusion mRNA by BLAST (Figure 33B). A total 

of seventeen patients, with various whole population and subpopulation cultures, were tested for 

presence of the fusion. Three patient prostate cancer cultures; H434/14 RM, H116/11 RA and 

H050/11 RA, were TMPRSS2-ERG+ (Figure 33C). Assessment of the unfused TMPRSS2 allele in the 

TMPRSS2-ERG+ cultures wasn’t carried out at this stage as the cellular heterogeneity present in 

the primary cultures would prevent determination of monoallelic fusion transcript expression 

(246). 

From the combined work on TMPRSS2 heterozygosity and fusion status of the primary samples, 

twelve cultures were fractionated into epithelial subpopulations, and RNA, gDNA and chromatin 

were collected (Table 12). These samples were to be analysed for allelic asymmetry in TMPRSS2 

expression and promoter/gene body histone trimethylations. 
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FIGURE 28 – Allelic expression of TMPRSS2 study structure and the primary cultures assessed for 

heterozygosity of the gene. 

Flowchart detailing the workflow for the determination of allelic expression and assessment of 

the factors governing the expression of TMPRSS2 in primary prostate basal epithelial cultures. 
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Patient Pathology SNP rs12329760 
Y023/09 BPH G 
Y006/09 BPH G/A 
Y012/09 BPH G 
Y013/09 BPH G 
Y025/09 BPH G/A 
YO29/09 BPH G 
YO30/09 BPH G 
YO40/10 BPH G/A 
YO47/09 BPH A 
YO26/09 BPH G 
PE667 Gleason 6 (3+3) G 
YO08/06 Gleason 6 (3+3) G/A 
H016/09 Gleason 7  G 
PE665 Gleason 7 (3+4) G/A 
PE671 Gleason 7 (3+4) G 
PE659 Gleason 8 (4+4) G 
PE434 Gleason 8/9 G 
YO46/09 CRPC  G 
YO11/09 Gleason 8 (3+5) G 
YO21/09 Gleason 9 (4+5) G 

TABLE 11 – Primary samples with known rs12329760 status.  

Data was compiled from (Polson 2013) (246) and lab books. 
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FIGURE 29 – Analysis of TMPRSS2 exon 6 DNA from primary prostate cultures for the SNP 

rs12329760. 

A) TMPRSS2 exon 6 PCR products from primary prostate epithelial cultures. B) The coding SNP - 

rs12329760 C/T. Taken from the NCBI SNP database (747).  
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FIGURE 30 - Sanger sequencing traces of rs12329760 heterozygotes in TMPRSS2 exon 6 of primary 

cultures. 



149 

 

FIGURE 31 – Selection of prostate basal epithelial subpopulations by collagen I adhesion.  

Diagrammatic representation of whole population (WP) primary culture fractionation protocol 

used to isolate; stem and transit amplifying (SC & TA), intermediate (Int.) and committed basal 

(CB) cell subpopulations in the TMPRSS2 allelic expression study. 
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FIGURE 32 – Confirmation of rs12329760 SNP status in fractionated primary culture samples.  

A) PCR products of TMPRSS2 exon 6 in chosen samples. B) Sanger sequence traces of rs12329760 

in the fractionated samples, grouped as hetero- or homozygotes. 
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FIGURE 33 – Identification of TMPRSS2-ERG fusion expression in primary prostate cultures. 

A) Nested PCR strategy for analysing TMPRSS2-ERG expression in primary sample cDNA. The 

analysis allowed detection of the most common fusion products; TMPRSS2 exon 1 to ERG exons 2, 

4 and 5. B) i) VCaP TMPRSS2-ERG RT-PCR product amplified by the nested PCR strategy, ii) Small 

and large products isolated from the bright band in i. iii) Top BLAST result from the Sanger 

sequence consensus derived from both large and small products. C) TMPRSS2-ERG expression in 

primary prostate cultures. 
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Sample Pathology SNP 

rs12329760 
Fusion 

status Passage 

H001/08 Gleason 6 

(3+3) G/A -ve 3 

H434/14 RM Gleason 7 

(4+3) G/A +ve 3 

H209/12 LA Normal G/A -ve 
WP -

RNA/gDNA 

H329/13 LB Gleason 7 

(3+4) G/A -ve 
WP -

RNA/gDNA 
Y047/09 BPH G/A -ve 5 

H048/11 RB Gleason 6 

(3+3) G/A -ve 3 

H052/11 LB Gleason 7 

(3+4)  G/A +ve 2 

H052/11 RA Gleason 7 

(3+4) G/A -ve 2 

YO60/10 BPH G/A -ve 3 
Y025/09  BPH G/A -ve Didn’t Grow 

H054/11 RB  Gleason 7 

(3+4) G/A -ve 3 

H056/11 RB Gleason 7 

(4+3) G -ve 4 

H050/11 RA Gleason 7 

(3+4) G +ve 3 

H116/11 RA Gleason 7 

(4+3) G +ve 4 

H233/12 RA Gleason 8 

(4+4) G -ve 3 

TABLE 12 - Primary samples selected for further study of TMPRSS2 allelic expression in fractionated 

populations. 

Samples were grouped on rs12329760 heterozygote status. TMPRSS2-ERG fusion status of 

samples is included. Passage number was that of the sample at harvest of RNA, gDNA and 

chromatin. 
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FIGURE 34 – Study plan - Does point mutation in prostate cancer genes affect allelic expression? 

Flow chart of experiments to determine if and how mutation could affect allelic expression in 

prostate cancer. 
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FIGURE 35 – SPOP, PTEN and IDH-1 aren’t mutated in prostate cell lines.  

A) PCR products of SPOP exon 6+7, PTEN exon 5 and IDH-1 exon 6 in prostate cell lines. B) 

Alignment of cell line SPOP exon 6+7 PCR product Sanger sequences and traces highlighting 

presence of the SNP; rs2066747 in the BPH-1 and Du145 cell lines. C) Alignment of cell line PTEN 

exon 5 PCR product Sanger sequences. D) Alignment of cell line IDH1 exon 6 PCR product Sanger 

sequences.  
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4.3 – Mutations observed in primary prostate cancers aren’t represented in current cell 

lines 

Mutational “hotspots” in the three genes chosen for allelic analysis; SPOP exon 6+7, PTEN exon 5 

and IDH1 exon 6, were amplified in seven prostate cell lines (Figure 35A). No mutations were 

observed in the SPOP amplicon yet two of the cell lines; BPH-1 and Du145, had an intronic SNP – 

rs2066747 (Figure 35B). Both PTEN and IDH1 in the cell lines were wildtype (Figure 35C+D). PC3 

cells showed no PCR product for PTEN exon 5 as the cell line has a homozygous deletion of the 

gene (451). 

4.4 – PTEN heterozygous deletion is represented in primary prostate cancer cultures 

Deletion of PTEN is a common event in primary prostate cancers (345). To ascertain the effect of 

mutation on the allelic expression of PTEN, the gene needs to have both alleles intact. 

Heterozygous deletion would produce a situation that mimics monoallelic expression, therefore 

establishing that relevant samples had both alleles of PTEN was necessary in this study. Loss of 

heterozygosity (LOH) was determined in primary cancer cultures using a SNP (rs555895) in intron 

8 of PTEN, the T allele of which provides a restriction site for the HincII enzyme. G/T 

heterozygotes produce a three-band pattern detectable by electrophoresis (Figure 36A). Twenty-

two patient lymphocyte (normal, with both alleles) and matched tumour samples were tested for 

LOH in the cancer PTEN gene. In four of the tested tumours, the uncut PTEN allele was deleted 

(Figure 36B). In this small sample cohort, the LOH was 18% with a MAF of 0.45. A frequency 

comparable to the European MAF of 0.37 (Figure 36C). Differences in banding intensities between 

tumour and lymphocyte DNA is due to there being more starting material in the lymphocyte PCR. 

4.5 – Mutations observed in primary tumours aren’t observed in primary prostate cancer 

cultures 

The mutational status of 55 primary prostate cultures, taken from 49 patients, including 5 PDXs, 

was assessed. SPOP, PTEN and IDH1 were amplified in all cancer samples (Figure 37). Some of the 

samples appeared under-represented in the SPOP and PTEN PCR products, however this was 

deemed to be technical variation upon repeat and not reflective of LOH status. After PCR, 

mutation of the genes was analysed either using the SURVEYOR nuclease assay or by Sanger 

sequencing.  

The SURVEYOR assay allows mutations to be easily visualised by firstly denaturing and then re-

annealing heterozygous PCR products to form heteroduplexes. The SURVEYOR nuclease is then 

applied to the products that can recognise and cut at the mismatched sites in formed 

heteroduplexes, allowing the different sized fragments to be separated by gel electrophoresis 

(Figure 38A). The assay was first optimised by increasing the PCR product input over that of the 
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manufacturer’s recommendation (Figure 38B) before being tested on the primary samples. SPOP 

heterozygotes were detected in tumour DNA by SURVEYOR, however the allelic difference was 

not due to mutation rather a germline SNP (rs2066747) as shown by the identical banding pattern 

produced by SPOP SURVEYOR in patient matched lymphocyte DNA (Figure 38C). 

PTEN and SPOP intronic heterozygotes were found, however no allelic differences were detected 

in IDH1. No tumour culture samples were mutated in the three chosen genes. SPOP Sanger 

sequence traces of all heterozygote samples are provided in Figure 39, PTEN in Figure 40 and 

IDH1 (examples of homozygotes) in Figure 41. Sequence traces for all samples can be found in the 

Appendix – 9.1. 

The goal of the study was to establish whether heterozygous mutation in prostate cancer altered 

the allelic expression of the affected gene and its wildtype copy. As no mutations of SPOP, PTEN 

or IDH1 were detected in either cell line or primary prostate cancer culture this goal could not be 

met. The models used in the study and that are currently available to researchers do not 

represent the full spectrum of disease that falls under the umbrella heading of prostate cancer. 
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FIGURE 36 – Detection of PTEN Loss of Heterozygosity in prostate cancer primary cultures. 

A) LOH of PTEN using the rs555895 SNP located in intron 8 of the gene that can act as a restriction 

site for HincII. B) LOH of primary prostate culture PTEN using HincII digests of patient matched 

tumour and lymphocyte DNA. LOH samples are highlighted. C) LOH percentages of primary 

samples with matching lymphocyte DNA. Minor allele frequency (MAF) of SNP in the tested 

samples compared to publicly available (NCBI SNP database (747)) MAF of European samples. 
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FIGURE 37 – Primary prostate culture SPOP exon 6+7, PTEN exon 5 and IDH1 exon 6 PCR products. 
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FIGURE 38 – SURVEYOR detection of primary prostate culture SPOP heterozygotes.  

A) Diagrammatic process of the SURVEYOR nuclease assay. i) PCR is performed on the 

heterozygous amplicon to produce a mixture of allelic PCR products with variance at 

heterozygous nucleotide position/s, ii) products are denatured and then re-annealed allowing 

heteroduplexes (and homoduplexes) to form between heterozygous products, iii) SURVEYOR 

nuclease recognises mismatches (and indels of ≤12bp) and cleaves dsDNA to leave different sized 

fragments, iv) gel electrophoresis allows separation of the variant SURVEYOR cleavage products to 

detect heterozygosity. B) Optimisation of SURVEYOR assay with varying amounts of SPOP PCR 

product. C) Identification of germline SNP in SPOP prostate tumour and patient lymphocyte gDNA 

using SURVEYOR. 
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FIGURE 39 – SPOP Sanger sequence traces of heterozygote primary prostate cancer cultures.  

SNP detected in the PCR product is rs2066747. 
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FIGURE 40 – PTEN Sanger sequence traces of heterozygote primary prostate cancer cultures. 

SNP detected in the PCR product is rs398123319. 
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FIGURE 41- IDH1 Sanger sequence traces of primary prostate cancer cultures.  

Examples of sequence traces taken from six primary prostate culture samples with wildtype IDH1. 

The traces show the location of the most frequent mutation (R132H) in the IDH1 gene.  
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5. Results– Oxidative stress response signalling in LTP treated primary 

prostate basal epithelial cells 

5.1 – Optimisation of plasma dose and post-treatment assessment of gene expression 

To investigate the immediate signalling events following LTP treatment of prostate basal epithelial 

cells (Table 13), optimisation of both plasma dose and the post-treatment time-point at which 

gene expression changes became apparent were required. 

The intention was to profile the antioxidant response of primary cells using the Qiagen Oxidative 

Stress Profiler Arrays which can simultaneously assess the expression of 84 genes. Genes common 

to the array plates were chosen for initial qRT-PCR analysis to establish both the time-point at 

which responsive gene expression was assessed and the time period of plasma treatment. Firstly, 

four prostate cell lines were assessed for their expression of the mitochondrial ROS scavenging 

enzyme SOD2 at 2, 4, 6 and 8 hours after a 10-minute plasma dose (post-treatment time-points 

and LTP dose were informed by previous work (304)) (Figure 42). PC3 and PNT2 lines weren’t 

responsive in their SOD2 expression, whereas both BPH-1 and LNCaP showed an increase in the 

transcript over the time-course.  

From this initial data, 4 and 6 hour time-points were chosen and the number of array genes 

assessed was expanded. Expression of SOD2, GPX2 (peroxide scavenging enzyme) and NOS2 

(reactive nitrogen species generating enzyme) was analysed in three primary cultures (Figure 43). 

This experiment also included a 3-minute plasma dose and a 1mM hydrogen peroxide treatment. 

The peroxide treatment had previously been used as a positive control for both oxidative damage 

effects and cell fate responses in prostate primary cultures (304), its inclusion in gene expression 

analysis was to provide the same positive inductive effect on cellular antioxidant response 

networks. The 3-minute plasma dose was the most effective in raising gene expression. SOD2 

expression was marginally upregulated in cultures at the 4 hour time-point. GPX2 expression was 

largely unchanged by plasma and NOS2 also didn’t appear to have a patterned upregulation in the 

cultures assessed. 

As the primary cells didn’t respond to plasma like the cell lines, post treatment time-points were 

tested directly on the Qiagen Oxidative Stress Response Profiler arrays. This included 0.5 and 2 

hour time-points to monitor rapid response and the later snapshots of 4 and 8 hours to observe 

prolonged transcriptional change (Figure 44). We observed, across multiple cultures, that the 2 

hour post-LTP time-point was optimal for monitoring primary cell transcriptional response and 

that very few changes in gene expression were observed at 4 and 8 hours. The 3-minute plasma 

dose was chosen for the study as it produced a wider expressional response than the longer 
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treatment of 10 minutes (Figure 45A). An H2O2 treatment also produced a robust induction of 

oxidative stress response genes, including catalase, at the 2 hour time-point. The peroxide 

response was similar to that of the 3-minute LTP dose in the H209/12 LA culture (Figure 45C). 

5.2 – A central oxidative stress response is triggered by LTP in cultures, regardless of 

pathology 

Oxidative stress transcriptional response was assessed with Qiagen Oxidative Stress Profiler Array 

qRT-PCR plates. These monitored 84 literature-defined genes linked to oxidative stress, 5 house-

keeping genes for normalisation and internal reverse transcriptase, PCR and genomic DNA 

contamination controls. All RNA samples used passed these internal quality controls. To see 

whether LTP response was determined by tissue pathology, three separate patient cultures from 

four different disease states were used; normal, BPH, Gleason 7 and Gleason 9 (Table 14). For 

added comparative power, the normal and Gleason 7 tissues came from the same patient – a 

Patient Matched Pair – allowing a true comparison of normal and cancer that doesn’t require 

adjustment for known inter-patient heterogeneity (304). 
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 Sample Identifier Tissue Type 
Biopsy Core 

Positivity 
Tumour 

palpable? 
Operation 

Age of 
Patient 

 YO68/09 BPH / / TURP N/A 

 H221/12  BPH / / TURP 77 
 H229/12 BPH / / TURP 69 
 H249/12 BPH / / TURP 83 

 

 

H209/12 LA Normal 0/5 No  
LRP 

64 
H209/12 RA Gleason 7 (4+3) 4/5 Yes 

H329/13 LB Gleason 7 (3+4) 3/5 Yes  
ORP 

53 
H329/13 R Normal 0/5 No 

H341/13 LB Gleason 7 (3+4) 3/5 Yes 
LRP 52 

H341/13 R Normal 0/5 No 

H434/14 LM Normal 0/6 No  
ORP 

68 
H434/14 RM Gleason 7 (4+3) 4/4 Yes 

H523/13 LM Normal 0/5 No  
LRP 

66 
H523/13 RM Gleason 7(4+3) 4/5 Yes 

H641/17 L Normal 0/5 No  
RRP 

64 
H641/17 R Gleason 9(4+5) 4/7 Yes 

H643/17 LM Normal No cores No  
RRP 

78 
H643/17 RM Gleason 7(3+4) 5/5 No 

H646/17 LM Gleason 7(3+4) 8/8 No  
RRP 

67 
H646/17 RM Normal 0/5 No 

 

 H594/17 L Gleason 7(3+4) 8/5 Yes RRP 61 

 H637/17 L Gleason 7(3+4) 7/14 Yes RRP 52 

 H652/17b R Gleason 7(3+4) 4/4 Yes RRP 57 

 H306/13 Gleason 9 (5+4) 6/6 NA chTURP 60 

 H460/14 Gleason 9 (4+5) No cores NA chTURP 76 

 H545/15 RM Gleason 9 (4+5) 4/5 Yes ORP 69 

TABLE 13 – Sample information of all patient cultures used in LTP study.  

The letters after the anonymous patient identifier inform on the biopsy site of the originating 

tissue. L – left, R – right, A – apex, M – mid and B – base. Operations included Robotic Radical 

Prostatectomy (RRP), Open Radical Prostatectomy (ORP), Laparascopic Radical Prostatectomy 

(LRP) and channel (ch)/TURP – Transurethral Resection of the Prostate. 
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FIGURE 42 – Prostate cell line expression of SOD2 in response to LTP is varied. 

Expression of SOD2 was measured at 2, 4, 6 and 8 hour time-points following application of a 10-

minute LTP dose in four prostate cell lines. Note that y axis scales are different. Graph error bars 

represent the standard error of the mean (SEM) of the biological triplicates. 
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FIGURE 43 - Primary culture stress response gene expression following oxidative treatment. 

Expression of SOD2, GPX2 and NOS2 was measured at 4 and 6 hour time-points following an LTP 

dose of 3 or 10-minutes and 1mM H2O2 treatment. Note that y axis scales are different. Graph 

error bars represent the SEM of the biological triplicates. 
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FIGURE 44 - Oxidative stress response array time-point optimisation using the H329/13 LB primary 

culture. 

Gene expression analysis using the Oxidative Stress Profiler Arrays shows the upregulation of 

genes 2 hours after LTP dose. Black solid line denotes “no change” between untreated and 

treated gene expression, the dashed line (above and below the black solid line) signifies a 2-fold 

change in gene expression. Upregulated genes are red dots, unchanged genes are black dots and 

downregulated genes are green dots. Scatterplots prepared using Qiagen’s online data analysis 

tool (742). 
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FIGURE 45 - Oxidative stress response array dose optimisation using the H209/12 LA primary culture. 

Gene expression at 2 hours post LTP using the treatments of A) 3-minutes LTP, B) 10-minutes LTP 

and C) 1mM H2O2. Black solid line denotes “no change” between untreated and treated gene 

expression, the dashed line (above and below the black solid line) signifies a 2-fold change in gene 

expression. Upregulated genes are red dots, unchanged genes are black dots and downregulated 

genes are green dots.  
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Tissue Sample Treatment Time-point (hr) 

BPH 

H221/12 
Untreated 0 
3 min LTP 

0.5 
2 

H229/12 
Untreated 0 
3 min LTP 

0.5 
2 

H249/12 
Untreated 0 
3 min LTP 

0.5 
2 

Normal 

H209/12 LA 

Untreated 0 

3 min LTP 
0.5 
2 

2 (repeat) 
10 min LTP 

0.5 
2 

H2O2 2 

H329/13 R 
Untreated 0 
3 min LTP 

0.5 
2 

H434/14 LM 
Untreated 0 
3 min LTP 

0.5 
2 

Gleason 7 Cancer 

H209/12 RA 
Untreated 0 
3 min LTP 

0.5 
2 

H329/13 LB 

Untreated 0 

3 min LTP 

0.5 
2 
4 
8 

10 min LTP 
4 
8 

H434/14 RM 
Untreated 0 
3 min LTP 

0.5 
2 

Gleason 9 Cancer 

H306/13 
Untreated 0 
3 min LTP 

0.5 
2 

H460/14 
Untreated 0 
3 min LTP 

0.5 
2 

H545/15  
Untreated 0 
3 min LTP 

0.5 
2    TOTAL – 44 Arrays 

 

TABLE 14 – Summary of conditions and samples used for Oxidative Stress Profiler Arrays   
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The H434/14 normal culture rapidly responded to plasma treatment with an increase in the 

number of genes upregulated at the 2 hour mark. The Gleason 7 of the patient matched pair was 

muted in its response at 0.5 hours and had only a few upregulated genes at the later time-point 

(Figure 46). Both cultures of the H329/13 patient matched pair showed an initial downregulation 

of genes followed by an upregulation of multiple genes at 2 hours, here the cancer had a greater 

number of responsive genes than the normal culture (Figure 47). The H209/12 normal culture 

showed the usual response of initial gene downregulation and upregulation at the later time-

point yet the cancer culture had a greatly reduced output at 2 hours with upregulation of only 

three genes (Figure 48). Through averaging the responses of the three patient matched pairs it 

was possible to identify common genes that were either up or downregulated across patients. At 

the earlier time-point of 0.5 hours, the Gleason 7 cultures downregulated a number of genes, a 

response that wasn’t observed in the other tissue pathologies (Figure 49A). At 2 hours, the 

patient matched pair cultures had a very similar expression profile; sharing upregulation of 

HMOX1, TXNRD1, HSPA1A and SQSTM1, with the normal epithelia additionally expressing SRXN1 

and DUSP1 – which were both recurrently upregulated by LTP in the other pathologies (Figure 

50A+B). 

The patient matched pairs also afforded the ability to explore whether or not the cancer cultures 

expressed oxidative stress genes to a greater extent over normal counterparts with no treatment. 

Each patient’s cancer varied in the composition of genes that were over or under-expressed in the 

disease state, yet the mean expression response highlighted that a few genes were consistently 

upregulated in Gleason 7 disease over normal epithelia, including HMOX1 and HSPA1A (Figure 

51).  

BPH cultures, with the exception of H249/12, were the most responsive of the tissue types half an 

hour after treatment and showed a similar expression signature to the other pathologies at the 

later time-point (Figure 52). The average expression profile of BPH showed the upregulation of 

HMOX1, HSPA1A and DUSP1 at 2 hours, similar to normal prostate epithelia (Figure 50C). 

The Gleason 9 samples also showed marked variability between patients that was observed 

amongst the other tissue pathologies. All cultures had a minimal response at 0.5 hours followed 

by a pronounced upregulation of genes at the 2 hour time-point. H306/13 showed huge 

upregulation of DUOX1 and GPX4 at both time-points in response to plasma (Figure 53). The 

pathology average for the Gleason 9 patients showed upregulation of HMOX1, HSPA1A and 

SRXN1, with DUOX1 and GPX4 included due to the magnitude of both gene’s expression in 

response to LTP in H306/13 (Figure 50D). 
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Validation of the results obtained using the arrays was carried out by TaqMan qRT-PCR. The 

expression of four genes (SOD2, GPX2, HMOX1 and HSPA1A) was tested using this method across 

the four tissue pathologies; H229/12 – BPH, H329/13 R – normal, H329/13 LB – Gleason 7 and 

H545/15 – Gleason 9, with both SYBR green and TaqMan qRT-PCR producing similar results 

(Figure 54A). Melt curve analysis of the array plates following the PCR showed that the array 

primers were specific as the PCR product generated in each well was a single species (Figure 54B). 

Assessment of real-time upregulation of the top hit from the arrays; HMOX1, was attempted 

using SmartFlares. These are gold nanoparticles coated in oligonucleotides specific to the mRNA 

of interest which are taken up indiscriminately by cells. Bound to these oligonucleotides are 

complementary fluorescent probes which are quenched when in close proximity to the gold 

particle. When the target mRNA increases it specifically displaces the probes on the gold particle 

and thus fluorescence increases (Figure 55A). SmartFlares were chosen as they would permit 

simultaneous observation of close to real time increases in mRNA transcript and allow for 

assessment of cell population transcriptional heterogeneity. However, no change in HMOX1 

fluorescence was observed in response to treatment in the PC3 cell line (Figure 55B) or primary 

cells (Figure 55C). HMOX1 expression, as measured by the SmartFlares, did not match the 

accompanying qRT-PCR data. 
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FIGURE 46 - Oxidative stress gene response in the H434/14 patient matched pair.  

Oxidative stress transcriptional response in normal and Gleason 7 cultures from patient H434/14. 

Expression was assessed 0.5 and 2 hours after a 3-minute LTP dose. Black solid line denotes “no 

change” between untreated and treated gene expression, the dashed line (above and below the 

black solid line) signifies a 2-fold change in gene expression. Upregulated genes are red dots, 

unchanged genes are black dots and downregulated genes are green dots  
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FIGURE 47 - Oxidative stress gene response in the H329/13 patient matched pair. 

Oxidative stress transcriptional response in normal and Gleason 7 cultures from patient H329/13. 

Expression was assessed 0.5 and 2 hours after a 3-minute LTP dose. Black solid line denotes “no 

change” between untreated and treated gene expression, the dashed line (above and below the 

black solid line) signifies a 2-fold change in gene expression. Upregulated genes are red dots, 

unchanged genes are black dots and downregulated genes are green dots.  
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FIGURE 48 - Oxidative stress gene response in the H209/12 patient matched pair. 

Oxidative stress transcriptional response in normal and Gleason 7 cultures from patient H209/12. 

Expression was assessed 0.5 and 2 hours after a 3-minute LTP dose. Black solid line denotes “no 

change” between untreated and treated gene expression, the dashed line (above and below the 

black solid line) signifies a 2-fold change in gene expression. Upregulated genes are red dots, 

unchanged genes are black dots and downregulated genes are green dots.  
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FIGURE 49 - Tissue pathology average of oxidative stress response gene expression at 0.5 hours post-

LTP. 

Average gene expression taken from the three cultures of A) Normal prostate, B) Gleason 7 

cancer, C) Benign prostatic hyperplasia and D) Gleason 9 cancer, at 0.5 hours after a 3-minute LTP 

dose. Black solid line denotes “no change” between untreated and treated gene expression, the 

dashed line (above and below the black solid line) signifies a 2-fold change in gene expression. 

Upregulated genes are red dots, unchanged genes are black dots and downregulated genes are 

green dots.  
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FIGURE 50 - Tissue pathology average of oxidative stress response gene expression at 2 hours post-

LTP. 

Average gene expression taken from the three cultures of A) Normal prostate, B) Gleason 7 

cancer, C) Benign prostatic hyperplasia and D) Gleason 9 cancer, at 2 hours after a 3-minute LTP 

dose. Black solid line denotes “no change” between untreated and treated gene expression, the 

dashed line (above and below the black solid line) signifies a 2-fold change in gene expression. 

Upregulated genes are red dots, unchanged genes are black dots and downregulated genes are 

green dots.  
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FIGURE 51 - Oxidative stress response genes are expressed at higher basal levels in Gleason 7 

cultures of patient matched pairs. 

Patient matched pair cancer and normal gene expression from untreated cultures were 

compared. The patient is marked on each scatterplot, the lower right panel shows the average 

expression of the three patients. Black solid line denotes “no change” between untreated and 

treated gene expression, the dashed line (above and below the black solid line) signifies a 2-fold 

change in gene expression. Upregulated genes are red dots, unchanged genes are black dots and 

downregulated genes are green dots.  
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FIGURE 52 - Oxidative stress gene response in three BPH primary cultures. 

Oxidative stress transcriptional response in cultures from patients H221/12, H229/12 and 

H249/12. Expression was assessed 0.5 and 2 hours after a 3-minute LTP dose. Black solid line 

denotes “no change” between untreated and treated gene expression, the dashed line (above 

and below the black solid line) signifies a 2-fold change in gene expression. Upregulated genes are 

red dots, unchanged genes are black dots and downregulated genes are green dots.  



180 

 

FIGURE 53 - Oxidative stress gene response in three Gleason 9 primary cultures. 

Oxidative stress transcriptional response in cultures from patients H306/13, H460/14 and 

H545/15. Expression was assessed 0.5 and 2 hours after a 3-minute LTP dose. Black solid line 

denotes “no change” between untreated and treated gene expression, the dashed line (above 

and below the black solid line) signifies a 2-fold change in gene expression. Upregulated genes are 

red dots, unchanged genes are black dots and downregulated genes are green dots.  
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FIGURE 54 - Oxidative stress gene expression qRT-PCR array data was reproducible and robust. 

A) Primary culture expression of four genes included on the arrays was measured using TaqMan 

qRT-PCR 2 hours after LTP treatment. Error bars of qRT-PCR measurements represent SEM of 

biological triplicates. B) Melt curve analysis of recurrently upregulated gene products on the array 

plates reveals amplification of a single product.  
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FIGURE 55 - SmartFlares do not accurately represent transcriptional changes in HMOX1 gene 

expression. 

A) Diagrammatic depiction of how mRNA changes can be assessed in real time by fluorescence 

using SmartFlare gold particles. B) HMOX1 SmartFlare fluorescence in the PC3 cell line and 

comparison to transcript levels detected by TaqMan qRT-PCR. Error bars are representative of the 

SEM of biological triplicate measurements. C) SmartFlare fluorescence in the H434/14 patient 

matched pair with comparison to HMOX1 mRNA levels detected by Array qRT-PCR. Note different 

y axis scales in the HMOX1 expression graphs. Black scale bars are 75µm.   
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5.3 – LTP stimulated the respective activation and accumulation of AP-1 and Nrf2 

transcription factors in prostate epithelial cells 

The recurrent upregulation of several antioxidant genes by LTP across several tissue pathologies 

suggested involvement of a common upstream transcription factor/s. Literature supported the 

involvement of Nrf2 and AP-1 (709-712, 726, 748), both canonical oxidative stress responders, in 

the induction of gene expression. The activation of both transcription factors following LTP 

exposure was assessed in patient matched pair cultures. Following 3-minute plasma treatment, 

the oxidative stress transcription factor Nrf2 accumulated in primary cultures (Figure 56A+B). This 

effect, determined by densitometry, was more pronounced in the normal tissues of the patient 

matched pairs, compared to the accumulation of the transcription factor in the Gleason 7 cultures 

(Figure 56C+D). Levels of Keap1, the protein responsible for Nrf2 turnover in non-stressed cells, 

were unchanged by treatment (Figure 56). The AP-1 factor Jun was potently activated half an 

hour after plasma treatment, shown by the phosphorylation (pJun) in treated cells across all 

cultures of the three patient matched pairs. Activation of the AP-1 signalling axis was further 

confirmed by congruent activation (by phosphorylation) of Jun’s upstream kinase; JNK, by LTP 

(Figure 56A+B).  

Attempts to view Nrf2 translocation from the cytoplasm to the nucleus after LTP treatment were 

hampered by the discovery that the transcription factor was located in the nucleus of untreated 

cultures, at least in the two patient matched pairs that were used. Only H209/12 RA showed 

expected cytosolic staining for Nrf2 in non-stress conditions (Figure 57A). However, upon testing 

if treatment altered Nrf2 localisation, the initial result could not be reproduced and, in untreated 

cells, Nrf2 was nuclear as for the other cultures (Figure 57B). 

Jun phosphorylation was increased by LTP treatment in all cultures, with typical nuclear 

localisation of the transcription factor observed (Figure 58A). The same was true of the active 

transcription factor in the basal epithelial subpopulations (SC/TA and CB). For several cultures 

(H594/17, H643/17 RM, H646/17 RM) pJun staining after treatment was more intense in the 

progenitor SC/TA fraction than in the more differentiated CB cells (Figure 58B). 

5.4 – Development of a cell line model of primary LTP stress response 

Primary prostate cultures can rarely be grown to cell numbers adequate for assessment of 

transcription factor-response element binding by ChIP. As IF had failed to establish Nrf2-ARE 

binding after plasma treatment, a cell line model of primary prostate cancer was required to 

establish whether LTP altered both Nrf2 and Jun response element occupancy and whether this 

binding to chromatin caused transactivation of genes. 
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Two cell lines; P4E6 (cancer) and PNT1a (normal) were treated with the stress inducing chemical; 

sodium meta-arsenite (arsenite). P4E6 cells were more sensitive to the arsenite, with cell death 

obvious at 10µm dose and, using HMOX1 transcription as a readout, maximum gene expression 

reached levels four times those observed in the PNT1a cells (Figure 59A). PNT1a also appeared 

more resistant in cellular morphology, with no obvious increase in cell death, even at the higher 

doses (Figure 59B). 

To map the timing of transcriptional stress response in the cell lines, HMOX1 was used. Following 

arsenite treatment, P4E6 showed a gradual production of transcript whereas LTP produced a 

delayed, but, peaked response (Figure 60A). The PNT1a cell line showed the opposite response, 

with a peaked arsenite response and gradual HMOX1 expression after plasma treatment. The cell 

line was also much more sensitive to arsenite than plasma (Figure 60C). Transcriptional output of 

HMOX1 reached greater levels than in the dose-response experiment (Figure 59B). JUN 

transcription was also assessed in treated P4E6 cells. mRNA levels of the AP-1 factor reacted 

much quicker than that of HMOX1 and displayed a wave-like curve in response to both 

treatments (Figure 60B).  

LTP was shown to induce a robust and recurrent oxidative stress transcriptional response in 

primary prostate epithelial cultures which was confirmed by upstream involvement of classical 

stress-activated transcription factors Nrf2 and AP-1. Cell lines also responded to plasma yet had a 

longer refractory period than the patient cultures to the reactive species, something which may 

be attributable to “culture shock”(reviewed in (749)) where the demands of adapting to the 

plastic environment have increased capacity to scavenge damaging ROS. As this focused approach 

had shown that primary cells responded to LTP, global transcriptional changes in treated cells 

were assessed using a micro-array based approach. 
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FIGURE 56 -LTP caused accumulation of Nrf2 and activation of AP-1 within 0.5 hours of treatment. 

A) Oxidative stress response pathway protein analysis at 0.5 and 2 hours after a 3-minute plasma 

dose in three patient matched pairs. B) Densitometry analysis of LTP induced protein changes in 

all six cultures (n=6). Each sample’s LTP induced fold change is plotted as a single pink circle 

(0.5hrs) and green triangle (2hrs) on the boxplot. Mean of measurements is plotted as a small (+) 
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in the boxplots. C) Densitometry analysis of LTP induced protein changes in the three normal 

prostate cultures (n=3) D) Densitometry analysis of LTP induced protein changes in the three 

Gleason 7 cultures (n=3). Note that y axis scales of densitometry boxplots are different.   
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FIGURE 57 - Nrf2 is located in the nucleus of primary prostate basal epithelial cultures. 

A) Assessment of Nrf2 and Keap1 localisation in the H209/12 and H434/14 patient matched pairs. 

B) Repeat assessment of Nrf2 and Keap1 localisation in the H209/12 RA culture before and 30-

minutes after 3-minute LTP treatment. All white scale bars are 100µm.  
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FIGURE 58 - pJun is nuclear in primary prostate cultures and phosphorylation was increased by LTP 

treatment. 

A) Assessment of pJun localisation in three patient’s primary prostate cultures 30-minutes after 

LTP treatment. B) Assessment of pJun localisation in the basal epithelial subpopulations of five 
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patient cultures 30-minutes after LTP. CD49b (α2 integrin) levels indicates a successful separation 

of SC/TA (high CD49b) and CB (low CD49b) populations. All white scale bars are 100µm.   
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FIGURE 59 - Arsenite dose response in P4E6 and PNT1a prostate cell lines. 

A) P4E6 morphology and HMOX1 transcription at increasing doses of sodium meta-arsenite. B) 

PNT1a morphology and HMOX1 transcription at increasing doses of sodium meta-arsenite. All 

white scale bars are 200µm. Note different y axis scales of the HMOX1 expression graphs. The 

error bars represent SEM of biological triplicates.  



191 

 

              

FIGURE 60 – HMOX1 and JUN transcript levels in Arsenite and Plasma treated P4E6 and PNT1a 

prostate cell lines. 

A) P4E6 8 hour time-course of HMOX1 mRNA abundance following treatment with either 3-

minute LTP dose or 0.8µM arsenite. B) P4E6 8 hour time-course of JUN mRNA amount following 

treatment with either 3-minute LTP dose or 0.8µM arsenite. C) PNT1a 8 hour time-course of 

HMOX1 mRNA following treatment with either 3-minute LTP dose or 2µM arsenite. The graph is 

split as LTP-induced expression wouldn’t be visible if included with arsenite-induced HMOX1 

expression. Note different y axis scales of expression graphs. Error bars of all graphs are 

representative of the SEM of the biological triplicates.  
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6. Results– Microarray analysis revealed rapid activation of Notch and AP-1 by 

LTP 

6.1 – Microarray data identified activation of multiple signalling pathways by LTP in 

prostate primary cultures 

As the qRT-PCR Profiler arrays had identified that LTP elicited a recurrent gene expression 

response in the primary prostate cultures, whole transcriptome analysis of LTP-treated cells was 

performed to gain a complete picture of the transcriptional changes caused by the treatment. 

RNA was harvested from six untreated and treated primary prostate cultures 2 hours after a 3-

minute plasma dose. The RNA was taken from two patient matched pairs and two Gleason 9 

cancers. Quality of all RNA samples was excellent; with each sample earning a perfect RIN score of 

10 and showing strong 28S and 18S rRNA banding in the accompanying electrophoresis images 

(Figure 61A). Multidimensional scaling (MDS) using the Euclidean distance of each point of 

transcript expression was able to successfully separate the primary epithelial culture 

transcriptomes from those of two prostate cell lines; BPH-1 and PC3, that were also submitted for 

analysis in a separate experiment (Figure 61B). Comparison of treated against untreated samples 

observed that LTP treatment altered the expression of 645, out of a total 540,000, transcripts on 

the Clariom D microarray. 544 were upregulated and 101 were downregulated 2 hours after a 3-

minute plasma dose (Figure 61C). 

Focusing on the upregulated transcripts, it was immediately apparent that genes involved in NF-

kB (NR4A1-3, RIPK1+4, IL6R, TNFS13B, TNFAIP3, IRAK2, SQSTM1, NFKBIA, REL, NFKB2), AP-1 (JUN, 

JUND, FOSB, FOSL1, DUSP5, DUSP10, MAP3K8, MAP2K3) and Notch signalling (NRARP, HES1, 

HEY1, SOX9, ID2, ID3) were activated by the plasma alongside upregulation of many transcription 

factor genes. (ATF3, EGR2+3, KLF4,9+10) (Figure 62). LIMMA analysis, which accounts for inherent 

biological variability in gene expression and removes genes that have a wide range of 

transcriptional variability in untreated samples from further analysis, (743) was applied to the 544 

LTP-upregulated transcripts and returned 89 upregulated probe-sets, of which 42 were annotated 

genes (Figure 63). This further confirmed involvement of Notch and AP-1 with a responsive 

expression of several previously identified transcription factors. 

Expression of twelve genes in four independent primary cultures following LTP was assessed by 

qRT-PCR to validate the signalling pathways implicated in microarray analysis. NRARP was the only 

tested gene of those chosen to represent Notch signalling to pass validation (Figure 64). The two 

AP-1 factors JUN and FOSB were expressed consistently following plasma treatment whereas the 

negative regulator DUSP10 was not (Figure 64). IL6R also failed to pass validation. SQSTM1 and 
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HMOX1 were upregulated 2 hours post-LTP across the four samples, as were the three NR4A 

isoforms (Figure 64). 

6.2 – Upstream transcription factors Notch1 and Jun are activated by plasma 

The transcription factors indicated to be initiating the transcriptional response to LTP in the 

primary cultures; Notch, NF-kB and AP-1, were assessed in two patient matched pairs over a 2 

hour time-course. Nrf2 was also included (Figure 65 & 66A). 

Canonical NF-kB signalling was not universally activated by the plasma. IkBα levels remained 

stable and phosphorylation of the inhibitory protein only occurred in the Gleason 7 cultures of the 

patient matched pairs (Figure 65 & 66B). Non-canonical NF-kB signalling however, was activated. 

Following LTP treatment, NIK protein accumulated over the time-course, an effect most obvious 

in the H646/17 LM culture (Figure 65 & 66C).  

Notch signalling was activated in the primary cultures after plasma treatment, which caused a 

release of the Notch1 intracellular domain (NICD). This cleavage event was most clearly observed 

in patient H646/17 (Figure 65). Cleavage of Notch1 was initiated almost immediately by LTP and 

mean levels of the transcription factor peaked 1 hour after plasma dose (Figure 66D). 

AP-1 signalling was activated in all of the patient matched pairs (Figure 65). The maximum 

intensity of Jun phosphorylation occurred, like Notch activation, 1 hour after LTP treatment 

(Figure 66E). Nrf2 was present at high basal levels in the patient matched pair cultures, and no 

change in the amount of the transcription factor or its negative regulator, Keap1, was observed 

across the time-course, with the exception of Keap1 in the H643/17 RM culture (Figure 65 & 66A). 

Further analysis of canonical NF-kB signalling found that plasma treatment resulted in no change 

in the localisation of NF-kB p65, which remained cytosolic; in both whole population (WP) culture 

(Figure 67A) and in the basal epithelial subpopulations (Figure 67B). Western blot data also 

showed no alteration in NF-kB p65 levels by LTP across four primary cultures. IkBα 

phosphorylation remained unchanged, yet total protein was reduced by treatment after 2 hours 

in the H523/15 matched pair – suggesting activation of the transcription factor in this patient 

(Figure 67C). 

Notch signalling was further assessed in three patients, 0.5 hours and 2 hours after LTP. In the 

majority of these cultures, Notch1 proteolytic activation was increased 0.5 hours after treatment 

(Figure 68A+B). 
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FIGURE 61 - Microarray RNA sample integrity and initial microarray data showed that LTP treatment 

alters gene expression. 

A) Agilent electrophoretic image shows the intact ribosomal RNA in all samples sent for 

microarray analysis. All samples achieved a perfect RNA integrity score of 10. B) Multi-

dimensional scaling of all transcripts expressed in the samples, as detected by microarray analysis, 

was able to separate two prostate cell lines and the primary cultures (top right) into three distinct 

clusters. C) Volcano plot showing significant fold changes in transcript expression at 2 hours post 

3-minutes LTP dose in primary prostate epithelial cultures. All samples (2x normal, 2x Gleason 7 

and 2x Gleason 9) were grouped and treated was compared to untreated. In total 645 transcripts 

were altered by LTP; 544 upregulated and 101 downregulated.   
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FIGURE 62 - Heatmap of annotated gene expression changes following LTP treatment. 

Expression intensity in untreated and LTP-treated samples for genes of interest in the six primary 

prostate cultures. The heatmap was constructed on Affymetrix Transcriptome Analysis Console 3 

and the genes chosen due to relation to activation of related pathways and magnitude of 

significant expression change.  
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FIGURE 63 - Linear Models for Microarray Data (LIMMA) analysis found 89 transcripts were 

significantly altered by LTP in primary prostate cultures. 
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Each sample’s expression of the transcript is plotted as a single dot, mean of total population 

(n=6) expression is represented by the vertical line. Green dots represent untreated, and blue are 

the treated samples.  
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FIGURE 64 - Validation of 12 genes from initial analysis confirmed robustness of the microarray 

dataset. 

Genes were chosen from the Notch (NRARP, HES1, SOX9), AP-1 (JUN, FOSB, DUSP10) Stress 

response (HMOX1, SQSTM1) and NF-kB (NR4A1-3, IL6R) signalling pathways. The blue boxplot 

shows gene expression of the six microarray samples, the green boxplot shows average gene 

expression of the four validation samples, with the individual biological replicates of the validation 

samples also plotted. 2-fold upregulation is marked by the solid red line across the gene 

expression data. Mean of sample box plots is indicated by (+). Note that y axis scales of gene 

expression boxplots are different.  
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FIGURE 65 - LTP activated Notch and AP-1 signalling in primary prostate epithelial cultures. 

Western blot time-course analysis of NF-kB, Notch, AP-1 and Nrf2 signalling in two LTP-treated 

patient matched pairs.   
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FIGURE 66 - Densitometry analysis of LTP treatment time-course showed activation of Notch, AP-1 

and non-canonical NF-kB signalling. 

Total protein and activation densitometry analysis of Figure 65 Western Blots. A) Nrf2 and Keap1, 

B) Total IkBα and phospho-IkBα, C) NIK, D) Notch1 and Cleaved Notch1, and E) Total Jun and 

phospho-Jun. Each sample’s fold change is plotted with the group mean represented by a + within 

the boxplot. Note that y axis scales of the densitometry boxplots are different.  
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6.3 – Stem and transit amplifying cells are the plasma-responsive fraction in primary 

cultures 

As all previous analysis had been conducted in heterogeneous cultures where epithelial 

subpopulations may have contributed differently to the LTP response, WP cells were separated on 

their expression of α2β1 integrin. This yielded an α2β1
hi population consisting of prostate 

progenitors (SC/TA) and an α2β1
lo population of differentiated CB cells. The SC/TA population were 

the most responsive to LTP (Figure 69). Mean upregulation of the NR4A isoforms in the 

progenitor population was higher than in both WP and CB cells, with only two exceptions (NR4A3 

in H643/17 LM WP & NR4A1 in H594/17 WP). LTP upregulated NR4A1 and 3 in the progenitors to 

a significantly higher level than that observed in the more differentiated CB cell population. 

AP-1 was also more readily activated by plasma in SC/TA cells (Figure 70A). Average Jun 

phosphorylation in the SC/TA pool was three times that observed in the more differentiated CB 

cells (Figure 70B). JUN mRNA was increased in all populations by LTP but there was no significant 

difference in upregulation of the gene between the SC/TA and CB epithelial subpopulations 

(Figure 70C). 

Notch1 signalling was constitutively active in the H646/17 patient matched pair and responsive to 

LTP in H652b/17 SC/TA. Densitometry analysis revealed that NICD release after plasma treatment 

was also greatest in the SC/TA pool (Figure 70E). The progenitor subpopulation also had higher 

levels of the Notch1 receptor than CB cells (Figure 70D). Significant upregulation of NRARP was 

seen 2 hours after LTP treatment in SC/TA cells but not CB cells from the same patients (Figure 

70F). Notch1 staining of plasma treated epithelial subpopulations revealed changes to cellular 

morphology and contact; some cells rounded up after LTP was administered and most treated 

cell-sheets were disrupted by the treatment (Figure 71A). LTP altered Notch localisation in four of 

the five primary prostate cultures treated. Nuclear foci of Notch1 were observed exclusively in the 

LTP-treated SC/TA subpopulation, 30 minutes after plasma dose (Figure 71B). 

The microarray highlighted the diverse molecular response produced by LTP in the primary 

prostate cultures which was further characterised by validation of the upstream protein 

components. Activation of stress response pathways of AP-1 and NF-kB was expected, the global 

approach highlighted the involvement of Notch, a signalling network critical to epithelial 

differentiation and the human prostate stem cell population (53). Separation of the basal cell 

populations revealed a heterogeneous response in both the transduction of the signal and the 

transcriptional output of primary prostate cells following plasma treatment. The activation of 

Notch and non-canonical NF-kB may prove to be hallmarks of the LTP-resistant population, 

something which requires further investigation.   
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FIGURE 67 - Canonical NF-kB signalling in primary prostate cultures is unaffected by LTP. 

A) Immunofluorescence of NF-kB p65 30-minutes post-LTP in treated and untreated cultures. B) 

Immunofluorescence of NF-kB p65 30-minutes post-LTP in H594/17 L epithelial subpopulations. 

CD49b (α2 integrin) levels indicate a successful separation of SC/TA (high CD49b) and CB (low 

CD49b) populations. White scale bar is 100µm. C) Canonical NF-kB activation protein analysis in 

four primary prostate cultures.  
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FIGURE 68 - Notch1 is activated by LTP in primary prostate epithelial cultures. 

A) Assessment of LTP induced changes to Notch1 receptor total amount and its activation by 

proteolysis to produce the NICD 0.5 and 2 hours after a 3-minute LTP dose. B) Densitometry 

analysis of Notch1 receptor changes following LTP treatment. Each sample’s LTP induced fold 

change is plotted and the mean is represented by the + inside the boxplot.  
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FIGURE 69 - NR4A isoform upregulation by LTP was more potent in the SC/TA subpopulation of 

primary prostate cultures. 

NR4A1, 2 & 3 gene expression in the epithelial subpopulations from three primary prostate 

epithelial cultures. Individual biological replicates are plotted. The red lines highlight the 2-fold 

increase required for the gene to be designated “upregulated”. The mean of biological triplicates 

is represented by a (+) Note that y axis scales of the gene expression boxplots are different. 

Unpaired t-tests were performed between subpopulation gene expression – significant 

differences are shown in the figure.   
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FIGURE 70 - Epithelial subpopulation analysis of LTP-induced AP-1 and Notch signalling. 

 

A) Protein analysis of Jun activation 30-minutes post 3-minute LTP dose in the epithelial 

subpopulations of three primary cultures. B) Densitometry analysis of change in Jun activation in 
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LTP treated prostate epithelial subpopulations. Individual samples are plotted. Mean of the 

samples is represented by +. C) JUN expression 2 hours post 3-minute LTP dose in the epithelial 

subpopulations of three primary cultures. Individual biological replicates are plotted. 2-fold 

upregulation is marked by a solid red line. Mean of biological triplicates is represented as a (+). 

Note that y axis scales are different. Unpaired t-tests were performed between subpopulation 

gene expression – significant differences are shown in the figure. D) Protein analysis of Notch1 

activation 30-minutes post 3-minute LTP dose in three primary cultures subpopulations. E) 

Densitometry analysis of Notch1 cleavage in LTP treated prostate epithelial subpopulations. 

Individual samples are plotted. Mean of the samples is represented by +. F) NRARP expression 2 

hours post 3-minute LTP dose in the epithelial subpopulations of three primary cultures. 

Individual biological replicates are plotted. 2-fold upregulation is marked by a solid red line. Mean 

of biological triplicates is represented as a (+). Note that y axis scales are different between the 

patients. Unpaired t-tests were performed between subpopulation gene expression – significant 

differences are shown in the figure.   
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FIGURE 71 - Notch1 was nuclear in LTP-treated SC/TA cells. 

A) Immunofluorescence of Notch1 in epithelial subpopulations of five primary prostate cultures. 

CD49b (α2 integrin) panel indicates a successful separation of SC/TA and CB populations. B) Larger 

images of Notch1 nuclear foci in SC/TA cells of four cultures. White scale bar is 100µm in all 

images.  
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7.1 Discussion – Alterations in allelic expression of genes involved in the 

molecular pathogenesis of prostate cancer 

7.1 – Do current cell lines and the primary prostate basal epithelial cultures adequately 

represent modern prostate cancers? 

Mutation is an infrequent event in prostate cancer with most genomic changes achieved by 

chromosomal rearrangements such as fusions of TMPRSS2 and ERG, and deletions in the PTEN 

gene (90). AR is the most commonly mutated gene in prostate cancer, yet this molecular 

aberration only occurs in advanced disease and is selected for by hormonal treatments (73). In 

primary prostate cancer, SPOP is the most commonly affected gene with publications citing 

mutation frequencies between of 5-15% in patient tumours. PTEN and IDH1 mutation are even 

less frequent, observed in ~1% of all tumours (330, 618). In a recent global study of prostate 

cancer genomes, SPOP and IDH1 mutation defined subclasses of prostate cancers and therefore 

will have independent disease features and treatment susceptibilities. In order to recapitulate the 

heterogeneity of prostate cancer we must have models of these disease variants rather than 

project an all-encompassing conclusion of a treatment outcome or molecular aberration on a 

single model of disease. Especially now we have knowledge that a significant proportion of 

patient disease does not readily fall into a single category of prostate cancer or, even with the 

combined power of whole genomic, transcriptomic and epigenetic data-sets, is able to be 

grouped at all (330). 

7.1.1 - Cell lines 

Current commercially available prostate cell lines are limited and most represent the advanced 

stage of disease with VCaP, Du145, LNCaP and PC3 having all been isolated from metastatic tissue. 

Whilst common molecular defects such as the TMPRSS2-ERG fusion (VCaP) and PTEN aberration 

(LNCaP, PTEN, Du145) are represented in cell lines, mutation of SPOP, PTEN or IDH-1 wasn’t 

detected in the panel of seven lines (351, 451, 453)(Figure 35). 

SPOP mutation has only been documented in a single cell line isolated in 2014 (241). However, 

the model hasn’t been widely distributed. There is no documented production of an IDH1 mutant 

prostate cancer cell line, probably due to the low frequency of this mutation in tumours. 

7.1.2 - Primary basal epithelial cultures 

The primary basal cultures are grown from tissue biopsies isolated from radical prostatectomies. 

Cancerous tissue biopsies are informed by palpation (feeling the tumour in the organ at time of 

removal) and assessment of tissue pathology. Palpable tumours with a high rate of Gleason grade 
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positivity give the greatest chance of growing cultures that originate from cancerous cells. Biopsy 

cores, harvested with this criteria, typically contain >70% cancer cells (Unpublished data from 

1996). 

The data collected from the primary prostate cancer cultures show that they mirror population 

diversity well in regards to minor allele frequency of SNPs and that molecular changes attributed 

to prostate cancer are present, such as LOH in the PTEN gene (Figure 36) and expression of the 

highly prostate cancer specific TMPRSS2-ERG fusion (Figure 33). 

The lack of observable IDH1 and PTEN mutation in the patient population assessed is reasonable 

due to the expected low frequency of both mutations identified in much larger studies (330). 

However, not a single SPOP mutation was found in the 55 cancer cultures tested (Figure 39). 

Although this isn’t a large patient group it would be expected that, even at the lower end of 

mutational frequency (~5%); 2-3 patients would harbour point mutations. There are several other 

groups that have reported a lack of SPOP mutants in patient cohorts, including that of Guido 

Jenster in Rotterdam. 

Aside from the possibility that SPOP mutations are entirely absent in the tumours from which we 

have grown the primary cultures used in this study, there are several other possibilities as to why 

no SPOP point mutants were detected.  

Genomic differences between prostate cancers of variant racial/ethnic groups. 

Genomic disparities exist between prostate cancers diagnosed in patient cohorts of different 

races (750). For example, prostate cancers in Chinese men have low frequencies of TMPRSS2-ERG 

fusions (~6%) and divergent driver chromosomal alterations such as PCDH9 deletions (32%) and 

amplification of PLXNA1 (23%) (751). The mortality and diagnostic figures based on geography 

show that different populations of men vary greatly in their disease outcomes (73). Geographical 

environmental factors also play a significant role in disease outcome, and perhaps molecular 

pathology (144). The first major SPOP mutation studies (133) were conducted in New 

York/Boston, cities that have far greater racial and ethnic diversity than North Yorkshire where my 

laboratory sources it’s samples from. However this may not be such a decisive factor as a previous 

study has found that SPOP mutation varied little across ethnically diverse patient cohorts (618). 

Outgrowth of normal epithelia. 

Although unlikely, it is a possibility that some samples may have had an outgrowth of normal 

prostate epithelia. Methods are in place to reduce the percentage of normal tissue included in the 

cancer biopsies, yet in all cases it is impossible to completely remove normal prostate epithelia 

from the biopsy. Biopsy core cancer positivity is monitored by tissue pathology and most tumour 
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biopsy sites are palpable through the prostate capsule. The harvesting of sample DNA at low 

passage limited the chance that normal outgrowth may have occurred and simultaneously will 

have retained cancer cells in which mutation would be detectable by a sensitive molecular 

technique such as PCR. Normal cells may out-compete cancerous epithelia in some patient 

samples, as adaptation to culture is determined on a patient-by-patient basis. Some samples 

don’t grow at all. Therefore it is possible, although highly unlikely due to the presence of PTEN 

deletion and TMPRSS2-ERG expression in the same cultures, that primary “cancer” cultures may 

be normal epithelia and thus SPOP mutation wasn’t detected.  

Mutation is cell type dependent. 

SPOP mutations have been detected by studies that process whole-prostate tissue sections (133, 

175). This identifies that a mutation is present in the prostate, yet not which cell type it occurs in. 

Some efforts have been made to identify cell-type using laser capture microdissection. However, 

due to the skewed epithelial proportions in cancer, this is likely to be a signature dominated by 

the luminal cells of the tumour (133). A less likely hypothesis is that the mutation is exclusive to 

stromal cells. Stromal mutations are known to occur in epithelial cancers and aberrant signatures 

assigned to cancers have later been determined to be stromal, highlighting the difficulties of 

dissecting information provided by whole-tissue processing (752). The more plausible scenario, as 

our cultures are grown from prostate basal epithelia, is that the SPOP mutation is in the luminal 

cells of tumours which do not grow in the culture environment. This would be interesting as it 

would imply that a separate lineage incurs the SPOP mutation that is then carried into advanced 

metastatic disease (73). 
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7.2 Discussion - Stress signalling in LTP treated primary prostate basal 

epithelial cells 

7.2.1 - Primary cultures respond more rapidly to plasma treatment than prostate cell lines 

All of the cell lines tested (Figure 42) exhibited a delayed transcriptional response to LTP over that 

seen in the primary cultures. The genomic, transcriptomic and proteomic separation of cell line 

and primary cultures is well documented (753, 754). Currently, the metastatic stage of disease is 

over-represented in prostate cancer cell lines (450, 452, 455, 457, 459) whereas our primary 

cultures have been taken and grown from organ confined tumours, the disease state for which 

LTP if successful, could provide a future treatment. The stark separation of the primary culture 

transcriptome from that of two basal prostate cell lines in Euclidean analysis of the samples used 

in this study gives further evidence of the distance from which cell lines can accurately re-

capitulate disease, or even “normal”, pathologies (Figure 63B). The transcriptional response of 

the cell lines, peaking 4-8 hours after treatment, was misleading with respect to the primary 

culture experiments. Some cultures responded within half an hour of treatment (H221/12, 

H229/12 and H306/13) (Figure 52 & 53) with widespread reactionary transcription observed at 

the 2 hour time-point (Figure 50). 

7.2.2 - Oxidative stress is initiated by LTP in prostate primary cultures 

Previous work has observed that ROS are generated in primary culture growth medium by low 

temperature plasma (304) with characteristic DNA damage following the induction of the reactive 

species. This work identified a robust gene expression response is triggered by the plasma, which 

is very similar to that generated by hydrogen peroxide treatment – implying that this particular 

species may be a major contributor to the damage initiated by LTP (Figure 45C). 

All cultures tested (with the exception of H249/12) robustly express genes involved in oxidative 

stress response. From the averaged expression data based on tissue type, six genes were 

highlighted as a core plasma response; HMOX1, HSPA1A, TXNRD1, SRXN1, DUSP1 and SQSTM1 

(Figure 50). 

HMOX1 and HSPA1A are present in the mean expression data of all four pathologies (Figure 50). 

HMOX1 translates as the inducible Haem Oxygenase 1 enzyme that permits intracellular ROS 

scavenging via catalysis of haem metabolism reactions (755) and HSPA1A (Heat Shock Protein 

A1A); a protein folding chaperone (autophagy and ER stress) (756, 757) that also has a negative 

feedback role in NF-kB signalling (758). 
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SQSTM1 was upregulated in normal and Gleason 7 tissue averages and appears in individual BPH 

and Gleason 9 samples (Figure 50). The gene encodes an autophagy chaperone protein called 

Sequestosome 1 or p62. SQSTM1 escorts misfolded protein aggregates to the autophagosome 

(724, 759). Autophagy is activated in plasma treated prostate basal epithelial cells, so an increase 

in the molecular effectors of this response was not unexpected (304). The activation of 

autophagic processes in LTP-response was further confirmed by pathway analysis highlighting 

enrichment in unfolded protein and ER stress signalling responses in treated cells (Table 16). The 

misfolding and subsequent aggregation of proteins alongside potential oxidative damage to 

organelles would initiate autophagy in cells attempting to survive LTP. 

Like SQSTM1, DUSP1 upregulation was observed in all tissue pathologies and appeared in the 

mean expression plots of normal and BPH patient cultures (Figure 9). This gene encodes Dual 

Specificity Phosphatase 1, a MAPK phosphatase that acts as a pan-specific negative regulator of 

p38, JNK and ERK activation (760). DUSP1 is classically upregulated in response to stress stimuli 

(761) and functions as an “off-switch” for AP-1 signalling.  

SRXN1 was upregulated in all tissue types by LTP and appeared in the mean expression data of 

both the normal and Gleason 9 samples (Figure 50). Sulfiredoxin 1 acts as a redox regulator in 

oxidative stress by recycling peroxiredoxins (762, 763). The peroxiredoxins, in their recycled form 

are responsible for the detoxification of hydrogen peroxide, (764) thus a rise in SRXN levels allows 

cells to buffer an increase in H2O2 and ROS. This again suggested, alongside the H2O2 treatment 

data (Figure 45C)(304) that peroxide is a major active species induced within cells by the plasma. 

Although TXNRD1 (thioredoxin reductase 1) wasn’t upregulated in BPH cultures, (Figure 52) the 

enzyme was expressed in response to plasma in the other pathologies and was consistently 

expressed in the patient matched pair cultures (Figure 50). The TXN system is a major cellular 

anti-oxidant defence which resolves inappropriate disulphide bridges in proteins that have 

sustained oxidative damage and restores them to native and functional state. However, in the 

process TXN itself becomes reduced with its active form being regained through enzymatic action 

of TXNRD1 (765). Upregulation of this redox regulator suggests that cells enter a state of oxidative 

stress following LTP treatment and require a larger turnover of active TXN.  

The upregulation of the above genes after LTP treatment indicates a state of oxidative stress was 

produced in primary prostate cultures. Activation of genes involved in protein misfolding, 

autophagy and ROS scavenging suggests that cells sustain oxidative damage and attempt to 

respond via a transcriptional response. 
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7.2.3 - Gleason 7 cultures have elevated expression of oxidative stress genes over their 

normal counterparts 

The relative expression change of genes in response to plasma was measured using treated and 

untreated cells. Through comparison of both untreated normal and cancerous gene expression 

from the patient matched pairs it was, firstly, obvious that patient cultures had a divergent 

expression signature from one another and, secondly, that the Gleason 7 cultures had an elevated 

expression of several important oxidative stress response genes. For example, the Gleason 7 

culture of patient H209/12 shows elevated expression HMOX1, HSPA1A, SQSTM1 and TXNRD1 

over its corresponding normal epithelia (Figure 51). By combining the data from the three 

patients, the prostate cancers again show a heightened expression of several well-known 

antioxidant genes, including; HMOX1, HSPA1A, GPX2 and SOD3. Prostate cancers do have an 

inflammatory aetiology that relies upon the control of oxidative species to promote hallmark 

genomic rearrangements in prostate cells (72, 73, 666). 

Metabolic changes in cancer cells are well studied and tumours are known to utilise different 

energy systems to normal tissues (766). Indeed some cancers have hallmark defects in response 

to oxidative stress, with allelic variants or mutational expression pre-disposing carcinogenesis 

(767, 768) and transcriptional profiles indicating a higher expression of antioxidant genes (769). 

Mutation or epigenetic changes in antioxidant transcription factors are also common in cancers, 

such as those observed for Nrf2 and the transcription factor’s associated regulatory network 

which typically increase baseline levels of Nrf2 in cancer cells to increase their innate ROS 

scavenging capacity (770). The pathology-dependent transcriptional separation identified in the 

base expression of the patient matched pairs agrees with previously published differential 

expression of antioxidant response genes in primary prostate cancer and normal cultures (771). 

7.2.4 - The HMOX1 SmartFlare fluorescence doesn’t match transcript levels of its target 

From the expression data of HMOX1, the gene was upregulated over 20-fold in some cultures 

after plasma treatment and was the obvious candidate for real-time monitoring of mRNA 

increases in cells. However, there was no change in SmartFlare fluorescence post LTP, relative to 

untreated cultures. This was surprising as HMOX1 is an inducible enzyme and therefore its 

basal/non-stress levels in the cell are low. The generation of ROS by LTP stimulates HMOX1 

production in treated cells, as shown by the matched qRT-PCR data, and thus SmartFlare 

fluorescence should increase (Figure 55B+C). A lack of response was also observed with the other 

SmartFlare probe being used in our laboratory at the same time. The ineffectiveness of the probes 

was further confirmed by a recent publication (772). The paper observed that fluorescence 

variations produced by the HMOX1 SmartFlare were dependent on cellular uptake of the gold 

particles and not the amount of target transcript in cells. Testing of four other gene probes 
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achieved the same result; changes in fluorescence didn’t match that of true transcript levels. 

SmartFlares therefore, fundamentally do not work and/or the quality control applied by the 

distributor, Merck-Millipore, was inadequate. Indeed, the number of commercially available 

SmartFlares in their inventory has dropped from ~1700 target transcripts to just 6 at present. 

7.2.5 - The transcription factors Nrf2 and AP-1 are activated by Low Temperature Plasma in 

patient cultures 

Due to the consistent transcriptional response of the recurrently upregulated genes across the 

primary cultures it was reasonable to assume that a common upstream regulator/s was activated 

by the plasma. The involvement of HMOX1 in the response, suggested a role for the redox active 

transcription factor Nrf2. In fact, upon further literature analysis, all six identified genes had Nrf2 

consensus AREs in their promoters (709-712, 726, 748). Nrf2 is activated by LTP in colorectal 

cancer, keratinocyte and fibroblast cell lines whereupon it aids cell survival (715, 716) through 

transactivation of a cytoprotective expression response initiated by binding to upstream AREs 

(714)(Figure 72A). 

Following plasma treatment, Nrf2 protein levels rose as expected (Figure 56A+B). This was a rapid 

response, with a snapshot at half an hour post-treatment showing an obvious increase that was 

then reduced by the 2 hour time-point. This suggests that in the prostate epithelia, LTP induces 

oxidative stress that facilitates Nrf2 accumulation by redox alteration of Nrf2-bound Keap1. The 

constant levels of Keap1 in all cultures mean that the observed increase of Nrf2 protein is due to 

oxidative stress and not a decrease in its negative regulator (Figure 56A+B). The transcription 

factor is then free to activate gene expression observed at the 2 hour time-point following LTP. 

The reduction in oxidative stress caused by the gene expression response causes the degradation 

of the transcription factor, as Keap1 is no longer modified by ROS and can be recycled to its 

reduced form, facilitating direction of Nrf2 to the proteasome, as is normal in non-stress 

conditions (Figure 56). 

The activation of Nrf2 is more pronounced in normal prostate epithelia than in the cancer cultures 

as shown by the densitometry analysis (Figure 56C+D). This may imply that normal cultures can 

respond to oxidative stress better than their corresponding Gleason 7 cancers, however follow up 

work tracking the outcome and cellular fate of this antioxidant signalling is required before any 

conclusion can be drawn from this data. Basal levels of Nrf2 protein are higher in the cancer 

cultures (H209/12 RA and H523/15 RM) thus a less potent activation is expected. This observation 

also highlights that prostate cancers do have alterations in their base antioxidant levels and 

activities, also shown in the elevated expression of oxidative stress response genes in Gleason 7 

cultures (See Section 1.9 & Figure 51). 
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FIGURE 72 – Stress induced Nrf2 and AP-1 Signalling.  

A) In non-stress conditions, binding of Keap1 to Nrf2 promotes the proteasomal degradation of 

the transcription factor. In oxidative stress, ROS modify key cysteine sulphydryl groups on Keap1 

causing a conformational change in the protein. This prevents Keap1 binding of Nrf2 and frees the 

transcription factor. Nrf2 translocates to the nucleus and affects antioxidant gene expression to 

promote cell survival. B) The stress activated protein kinases, including JNK, are activated by ROS. 

JNK then activates the AP-1 transcription factor Jun, by phosphorylation, to promote gene 

expression. AP-1 signalling can affect multiple cell fate outcomes.  
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It was hypothesised that LTP treatment would cause translocation of Nrf2 from the cytosol into 

the nucleus of cells. However, the immunofluorescence data showed that Nrf2 is already localised 

in the nucleus in untreated cultures (Figure 57A) with perhaps a slight increase in nuclear 

intensity upon plasma treatment (Figure 57B). Nuclear localisation does not necessarily 

determine functionality. It is entirely possible that nuclear Nrf2 in untreated cells is not bound to 

AREs, with a switch being made upon LTP treatment. To test this directly using chromatin 

immunoprecipitation (ChIP) however is extremely challenging due to the low cell numbers of 

primary cultures. Native ChIP, that is primarily used for detection of histone tri-methylations (and 

a limited repertoire of transcription factors), has been reported, for whole genome analyses, at 

cell counts of <1000 (741, 773). X-ChIP a method that crosslinks the DNA to transiently bound 

transcription factors however requires an input of much larger cell numbers. The protocol 

attempted in our laboratory needed ~20x106 cells (774) and current leading techniques require 

100,000 cells (775). Adaptation of new techniques will require optimisation in the primary cells 

but, in future, should remove the limitations of working with low amounts of cellular material. 

Although Nrf2 represented the most obvious transcription factor to be activated by plasma in the 

primary cultures from the gene expression analysis, recurrent DUSP1 upregulation was a major 

clue to AP-1 activation (Figure 50). The DUSP1 gene is responsive to oxidative stress and the 

protein product; dual specificity phosphatase 1, a MAPK phosphatase, acts as a negative regulator 

of p38 and JNK, the stress-activated protein kinases (776). Effectively, DUSP1 is an “off-switch” for 

AP-1 signalling (Figure 72B). 

AP-1 factors and upstream kinases, like the Nrf2 response, have previously been observed to be 

affected by LTP. Cell line studies have reported phosphorylation of JNK, p38 and ERK in response 

to plasma, (679, 687, 716, 777) with an increase in the protein expression of Jun and Fos also 

resulting from the treatment (717). 

The AP-1 axis of prostate epithelial cells is activated by plasma, with rapid phosphorylation of the 

DUSP1 substrate; JNK, followed by phospho-activation of the AP-1 factor Jun (Figure 56A+B & 

72B). The pJun immunofluorescence confirmed the AP-1 activation observed by Western blot. 

Nuclear localisation of the active transcription factor was observed only after treatment in whole 

cultures (Figure 58A). This study is the first to establish Jun phosphorylation as an outcome of 

plasma treatment. The response is conserved across the patient matched pairs where the 

activation of Jun is amplified by active JNK in the signal transduction process (Figure 56B). This 

signal amplification appears to be larger in the cancer cultures, which is attributable to the high 

base levels of pJNK in the H209/12 and H434/14 Gleason 7 cultures (Figure 56 A,C+D). Elevated 

pJNK is a requirement for some cancers that rely on Jun for oncogenesis and growth (778). A high 

base tumoural level of active JNK or Jun may be a hallmark of that patient’s disease. 
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7.2.6 - Interpatient heterogeneity, and not tissue pathology, is the main generator of 

variability between the oxidative stress transcriptional response in primary cultures 

There exists in the field of LTP treatment of cancer, a contentious theory; that cancerous cells 

have an increased sensitivity to LTP compared to their normal counterparts (779). There are now 

many papers dedicated to this phenomenon; however all of them probably include some 

misinterpretations. Some studies use, for comparison, a normal cell line derived from a separate 

organ site (696, 780-782) or use cultures derived from separate lineages (such as epithelial and 

mesenchymal cells) (715). Inter-patient heterogeneity is also neglected as a determining factor in 

treatment response when cell lines from the same organ and cell type are compared (777). 

There is a possibility that the selective effect does exist, as some cancers do have recurrent and 

hallmarked defects in antioxidant defences (783) and plasmas may exploit this Achilles heel in 

localised treatments. However, no study has provided sufficient evidence to make such a bold 

claim. Obvious variables in cell studies have not been accounted for and other alterations in cell 

culture biology such as the imposed immortalisation of “normal” cell lines aren’t acknowledged. 

Differences in culture medium constitution also impose further artefacts upon conclusions drawn 

from these studies. 

In this study of LTP response in normal and cancerous prostate epithelia, the heterogeneity 

evident in the gene composition, timing of response and in the magnitude of individual gene 

expression meant that individual patients, regardless of disease pathology, couldn’t provide a 

divisive signature. The experiment was designed to include four states of prostate tissue; normal, 

BPH, Gleason 7 and Gleason 9 cancer to discern if there was a difference in how they responded 

to the same plasma dose. However, in the primary prostate basal epithelial cultures, there was no 

clear divergence of gene expression response at the 2 hour time-point. Instead a core group of six 

LTP-induced genes was identified across the four tissue pathologies (Figure 50). No great variance 

in the LTP-response transcriptional profile was expected between disease states as previous work 

showed little difference in downstream damage and salvage pathways initiated by the treatment 

in patient matched pair cultures (304). 

This work represents a true normal/cancer comparison with the patient matched pairs supplying 

tissue isolated from the same individual yet with different disease pathology. There is extensive 

work detailing prostate cancer associated genomic and transcriptomic differences between 

normal and cancer primary cultures (66, 246, 323, 771). Cultures were grown in the same medium 

and were not immortalised. There are no differences apparent between normal and cancer in 

cellular viability or colony forming efficiency (304) after an LTP dose. The same is true at the 

molecular level of gene expression (Figure 50) and protein response, (Figure 46 & 65) where no 
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recurrent differences can distinguish between the tissue pathology. The main generator of 

variance appears to be the biology of each individual patient’s prostate.  

If tissue pathology was unknown for the individual patient 2 hours post-LTP scatterplots, any 

attempt to sort the patients (on the basis of gene expression response) into the four separate 

tissue pathologies using the average gene expression profiles (Figure 50) would be completely 

unsuccessful. No divisive signature in the gene expression response is apparent across the 

individual scatterplots (Figure 46, 47, 48, 52 & 53). The only near match of an individual patient to 

any of the tissue pathology 2 hour average gene expression signatures produced by LTP is 

H545/15 (Gleason 9), which would be identified as a normal prostate epithelial culture (Figure 

53). 

The protein data draws the same conclusion; that cancer and normal cannot be separated based 

upon their LTP response, with slight differences only evident between individual patients. The 

stress signalling of Nrf2 and AP-1 are interchangeable between disease state and to a degree, 

between patients (Figure 56). Notch signalling is also extremely variable between normal and 

cancer and seems to be determined by the patient of origin. For example, in the time-course 

Western blots, NICD activation is more similar between the cultures from the same patient than 

the disease state of normal or Gleason 7 (Figure 65). This implies that a patient’s background 

biology, rather than that of the disease seems to be driving the heterogeneity observed in 

transcription factor responses. 

7.2.7 - A model of a model; using P4E6 to map LTP induced stress responses in the 

prostate 

Primary cultures are a useful model of patient disease, which they mimic more closely than cell 

lines can achieve, however they are slow growing, difficult to transfect and have a limited life-

span in culture. This hampers analysis using methods that require high cell numbers or those that 

alter cell biology using plasmids. As Nrf2 localisation in cells post LTP treatment was ambiguous in 

the primary cells, testing of Nrf2 occupancy and activation of AREs following plasma was 

attempted using ChIP and reporter luciferase assays in the P4E6 cell line. The same experiments 

were chosen to assess Jun activity in the prostate cancer cell line following plasma treatment. 

P4E6 are a cell line which models localised prostate cancer that was generated from a primary 

culture grown in my laboratory. Immortalisation was achieved using the HPV 16 E6 protein (449). 

The cell line has a basal morphology and behave extremely similarly to the primary epithelial 

cultures. Current work using ptychographic live cell imaging has given insight into the 

morphology, migration, size and other cellular variables of primary and cell line cultures (784). Of 

the cell lines used, P4E6 is the closest representation of primary prostate epithelial cells. By using 
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P4E6 the limitations of the primary cultures can be avoided, whilst utilising a cell line model that 

resembles patient disease. PNT1a were chosen simply as they could be used as a “normal” cell 

line control to the induced stress responses of the study.  

As the oxidative stress produced by LTP in the primary cultures was transduced through Nrf2 and 

AP-1 transcription factors; arsenite was selected as a chemical inducer that could generate a 

similar stress response in prostate cells. This chemical has been used previously to activate both 

Jun (785, 786) and Nrf2 (710). In cell line studies of oxidative stress, arsenite could be used to 

stimulate a like-response in P4E6 and PNT1a cells. From initial dose curve analysis, it was 

immediately apparent that P4E6 were much more sensitive to arsenite than PNT1a cells. This was 

visible both in cellular morphology (appearance of vacuoles and abnormal processes in all arsenite 

concentrations) and apoptosis evident from ≥1µM, and in HMOX1 expression, with 1000-fold 

upregulation at higher doses (Figure 59A). In comparison PNT1a cells were resistant to arsenite, 

with no obvious increase in cell death in culture and a, still potent, yet greatly reduced HMOX1 

transcriptional response (Figure 59B). 

From this experiment, (Figure 59) a dose of 0.8µM for P4E6 and 2µM for PNT1a were chosen for 

ChIP and luciferase assays as they produced a ~50-fold upregulation in HMOX1 in each cell type, 

according to the dose curve, a response comparable to the 20-fold change following plasma in the 

primary cultures.  

The timing of both plasma and arsenite responses was measured over an 8 hour time-course to 

find the optimum window to conduct Nrf2 and AP-1 ChIP analysis. Nrf2 timing was estimated by 

using HMOX1 transcription as a readout of activity. In P4E6, the cumulative response of gene 

expression produced over the 8 hours by arsenite was expected due to the cells constant 

exposure to the dose over the treatment course (Figure 60A). HMOX1 transcript levels reached 

those previously observed in the dose response experiment (Figure 59A). The HMOX1 response to 

plasma also proceeded as expected and the single “hit” treatment produced a peak of gene 

expression at 6 hours (Figure 60A). This again shows that even for the P4E6 cell line, which has 

been generated from a primary culture, the speed of transcriptional response is much slower than 

that observed in primary cells. For the PNT1a cell line, the results were quite puzzling. HMOX1 

transcriptional levels reached much higher magnitude than was observed in the dose response 

experiment and the cumulative and peaked curves were reversed. The intensity of response 

between arsenite and plasma treatments were also very different, with the PNT1a appearing to 

be resistant to the 3-minute plasma dose (Figure 60C). This may be due to particular antioxidant 

levels in the cell line that are able to buffer the effects of the arsenite whilst the plethora of 

reactive species induced by plasma treatment caused damage that wasn’t able to be reconciled 

over the frame of the time-course. It also serves to highlight that the complexities of a cell-wide 
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and context dependent response cannot be equated to the transcriptional readout of a single 

gene. AP-1 response was also measured in reaction to both arsenite and plasma in the P4E6 cell 

line using JUN transcription. The transcription factor is known to trigger an autoregulatory 

feedback loop once activated (787) and produces a wave-like pattern suggestive of JUN positive 

feedback in the P4E6 cells (Figure 60B). The response is also much more rapid than that resulting 

in HMOX1 transcription, citing that AP-1 acts as a very quick responder in P4E6 – and by 

projection; prostate epithelia (Figure 65). 

Initial work developing the P4E6 cell line into a model of stress response for LTP was promising, 

however unforeseen complications in the transfection of the cell line and time pressure meant 

that the work is incomplete. Finishing the designed experiments, alongside additional protein 

work to determine transcription factor localisation using IF and the activation/accumulation of 

Jun and Nrf2 respectively by Western blot would provide a robust characterisation of the cell 

line’s response to LTP. Development of this model is discussed further in the Appendix – 9.2. As 

the cell line is easier to handle and grow than primary cultures any preliminary work could then 

be optimised using P4E6. Obviously, results would have to be extrapolated carefully into working 

with primaries for this approach to be successful, yet in doing so this would save time and avoid 

wasting the valuable, and finite, resource of the primary cells. 
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7.3 Discussion - Microarray analysis reveals rapid activation of Notch and AP-1 

by LTP 

7.3.1 - Microarray analysis reveals that Low Temperature Plasma significantly alters the 

expression of multiple genes involved in stress response and cellular fate 

The microarray data of six prostate primary culture samples revealed that a large number of 

genes were central in the response to plasma, with significant alteration of over 600 transcripts 

following treatment (Figure 61C). These fold-changes were consistently observed across all 

samples and the three chosen tissue pathologies; normal, Gleason 7 and Gleason 9 cancer. Genes 

could be grouped into functional pathways and it was apparent that plasma altered several 

signalling networks, the most obvious being Notch, NF-kB and AP-1 (Figure 62). These pathways 

are very much context-dependent and can determine cell death, growth and differentiation state, 

the fluctuation of which will be occurring simultaneously amongst treated culture cell 

populations. The activation of transcription does, simply and as expected, infer that cells survive 

treatment and that cell death isn’t an instant response – an attempt to recover from LTP-induced 

stress is initiated by primary cultures. 

Similar global gene expression signatures were obtained in studies that manipulated Notch (788) 

and HIF1α expression (789). The second group also observed comparable transcriptomic changes 

in cells exposed to the Na+/K+ ATPase inhibitor, ouabain. LTP may alter the transcriptional profiles 

of these transcription factors and influence membrane polarisation in prostate epithelial cells. 

This may be through the oxidative modification of cell surface proteins or be produced by 

electroporative effects associated with some plasma devices (790, 791). 

As interpatient heterogeneity is common in the primary patient cultures, this presented a 

limitation in the analysis of a single snapshot of gene expression.  The time-point of 2 hours post-

treatment was well considered and optimised across a range of primary cultures (Figure 44 + 45) 

isolated from a variety of tissue pathologies. However, the lack of gene expression changes 

observed in some cultures in response to LTP, combined with huge variance in upregulated genes 

at both 0.5 hour and 2 hour post-treatment highlights that transcription was induced as a peak by 

the “single-hit” therapy. Due to differences in cellular adaptation to culture and also epi/genetic 

and patient-based biological variance between cultures, response timing varied around the 

chosen time-point and peak expression in some instances may have been missed altogether by 

analysis. Whilst peripheral response genes may have been “missed” due to patient-patient 

heterogeneity, it strengthens the positive identification of the six central response genes in the 

oxidative stress arrays (Figure 50) and the 545 transcripts in the microarray that, even with 
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variables of interpatient variance in gene expression, were still recurrently and robustly 

upregulated by LTP across the six patient samples. 

Whilst primary cultures are more physiologically relevant and representative of modern prostate 

cancers than cell lines, (Figure 61B) the plastic environment and growth medium change of cell 

culture still shifts the transcriptomes of primary cultures away from that of in-situ populations 

(445). Acknowledgement of these differences in model systems must be made by studies before 

extrapolation of therapeutic results into clinical application – whilst the majority of upregulation 

observed in the prostate cultures by LTP is probably accurate of epithelial tissue response there 

will be a cohort of genes that are altered due to the cellular adaptation to culture environment. 

7.3.2 – Low Temperature Plasma activates Notch-directed gene expression in primary 

prostate cultures 

Notch signalling in the prostate  

Notch signalling regulates cell fate decisions (249), through establishment of asymmetrical 

division (792), cell patterning events such as lateral inhibition (793, 794) and the maintenance of 

stem cell pools by enhancing the self-renewal capabilities of progenitor populations (248, 795, 

796)(Figure 73). As Notch signalling can achieve these functional outcomes, the pathway is often 

misappropriated by tumour initiating cells, such as in breast cancer (797, 798) and glioma (799). 

Notch activation by mutation is classically observed in over half of all T cell acute lymphoblastic 

leukaemias (ALLs) (800). 

The receptor family also plays a regulatory role in the prostate. Notch signalling directs the 

development, and differentiation of the gland as well as formation of the organ itself (801). Notch 

can repress AR dependent gene expression (802) and regulate the PI3K/AKT signalling axis 

through modulation of PTEN levels (803, 804). Both of these signalling networks are important for 

development and differentiation of the normal prostate and in cancer progression. 

Immunohistochemical and gene expression analyses of patient tumour tissue found that Notch 

signalling components are increased in higher Gleason grade cancers, (805, 806) showing that 

Notch signalling plays a role in advancing disease and possibly reverts cancer cells to a favourable 

dedifferentiated state (807, 808).The Notch receptors are direct transcriptional targets of ERG and 

the signalling pathway becomes critical to the survival of fusion positive prostate cancers (663, 

809). 

Some members of the Notch signalling pathway (NOTCH1, HES1) are enriched in prostate 

epithelial SCs over their more differentiated progeny (66)(Figure 74). The pathway appears to be 

critical to the identity of multipotent basal progenitors in the human prostate (53). Notch 
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receptors and ligands are also expressed at the protein level in primary prostate cultures, where a 

reduction of signalling molecules was observed following treatment with gamma secretase 

inhibitors (GSI) (Adamson unpublished data, Figure 75A). Inhibition of Notch, using GSIs, reduced 

prostate epithelial stem cell self-renewal capabilities in colony forming efficiency assays, both 

alone and in synergy with ionising radiation (Figure 75B). GSI treatment of patient-derived 

prostate cancer xenograft cells found that Notch inhibition slowed tumour growth and could, at 

lower inoculation numbers, ablate tumour formation/initiation altogether (Figure 75C). After 

removal from mice that had been treated with GSIs, basal cells from human prostate cancers 

expressed PAP, a protein marker of luminal differentiation (Figure 75D). This suggests that 

inhibition of Notch signalling in the basal epithelia of the prostate pushes cells towards a luminal 

and terminally differentiated state where they are more susceptible to radiation (Figure 75C+D). 

A similar killing effect is observed by targeting Notch in conjunction with radiation in glioma stem 

cells (810). In future, use of antibodies specific to the tumour-associated Notch receptor isoform 

in treatments rather than non-specific GSIs could reduce toxicity towards other somatic stem cell 

pools, allowing for a more targeted treatment in cancers that misappropriate the signalling 

pathway (811, 812). 

Activation of Notch signalling in plasma treated cells, as indicated by initial findings of the 

microarray, (Figure 62) was surprising. Notch signalling has not been implicated in any previous 

work utilising LTP treatment of cells. This study therefore documented the first observed 

activation of the pathway by LTP. Transcriptional responders such as NF-kB and AP-1 were 

anticipated, in relation to the ROS induced stress, but the inclusion of a pathway linked heavily to 

stem cell function and epithelial cell fate determination in the microarray was unexpected The top 

hit of transcriptional and subsequent LIMMA analysis was the NRARP gene; a direct negative 

regulator of the NICD (813). Interestingly, the constitutive expression of Notch1 in ESCs identified 

a similar transcriptional signature to that which was observed in the LTP treated prostate 

epithelial cells. Convergent hits included the ID proteins, NRARP, HEY1, HES1, BTG2, GADD45B, 

SOX9, RHOV, EFNA1, HBEGF (814), ITPKC, RIPK4, ATF3 and the EGR proteins (788). This implicates 

that Notch directly, by causing transactivation of the expressed gene, or indirectly, through 

augmentation of other transcription factor activities, may alter the expression of these genes in 

prostate epithelial cells following plasma treatment. 

Notch is responsive to oxidative stress (815). Hydrogen peroxide activates Notch1 and initiates 

downstream gene expression in mesenchymal stem cells whilst the NICD can inhibit apoptosis 

induction upstream of SAPK activation to promote cell survival (816). ROS, induced by application 

of the plasma, may therefore be the initiating factor of the Notch pathway in the primary prostate 

epithelial cultures. 
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FIGURE 73 - Notch signalling  

A) Canonical Notch signalling. Notch receptors are stimulated by binding of ligand receptor; 

Jagged or Delta. This initiates a series of proteolytic events that releases the Notch Intracellular 

Domain (NICD) into the cell. Here the NICD acts as a transcription factor and increases canonical 

gene expression of Hes1 and Hes1 transcriptional repressors that suppress differentiation by 

silencing lineage defining transcriptional programs. B) Bi-directional Notch signalling. The Notch 

ligand receptors Jagged and Delta are also internalised following receptor-receptor binding and 

the ICDs can also initiate gene expression changes. Delta ICD can synergise with SMAD proteins 

and inhibit AP-1 transcription, whilst Jagged ICD can promote AP-1 mediated gene expression. 
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FIGURE 74 – Notch signalling molecule mRNA expression in prostate basal epithelial subpopulations. 

Notch signalling elements are elevated in prostate basal epithelial stem cells over their more 

differentiated progeny; committed basal cells. Figure produced from microarray data in Birnie 

2008 (66). 
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FIGURE 75 - Inhibition of Notch signalling in primary prostate cultures promoted epithelial 

differentiation.  

A) Protein analysis showed that gamma secretase inhibitors DBZ and RO4929097 decreased levels 

of Notch signalling members in primary cultures. B) Gamma secretase inhibitor RO4929097 (and 

radiation - 2Gy) decreased prostate stem cell colony forming efficiency. C) Gamma secretase 

inhibitor RO4929097 decreased tumour formation in prostate cancer xenografts. D) Extracted 

xenograft tumour cells treated with RO4929097 were positive for the Prostatic Acid Phosphatase 

(PAP) differentiation marker. White scale bar - 15μm. Images were adapted from unpublished 

work completed by Rachel Adamson.   
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Gene H434/14 

LM 
H434/14 

RM 
H329/13 

LB H329/13 R H460/14 H545/15 
Average 

Fold 

Change 
ANOVA p-

value 

Notch 

NRARP 105.6 86.73 265.23 111.49 54.78 197.11 126.92 3.04E-09 
SOX9 8.66 5.11 2.78 3.45 3.47 8.3 4.67 0.000321 
ID1 1.6 1.89 3.05 2.18 4.63 4.05 2.53 0.213964 
ID2 3.95 5.51 3.22 2.06 4.55 2.15 4 0.044476 
ID3 1.54 3.94 18.44 9.14 9.29 2.97 5.8 0.00132 
HES1 4.1 6.56 2.06 1.12 6.93 1.19 2.99 0.00924 
HEY1 6.95 3.67 3.57 3.13 2.77 2.93 3.52 0.000006 

AP-1 

DUSP1 4.2 3.84 1.26 1.46 2.87 5.93 1.82 0.02892 
DUSP5 2.76 4.14 5.67 2.51 1.08 7.83 2.81 0.023169 
DUSP6 2.71 1.23 1.74 1.88 -4.23 2.28 2.55 0.56087 
DUSP10 12.59 10.47 1.58 1.88 9.56 6.91 7.75 0.000669 
FOSB 38.67 106.39 49.13 5.56 7.28 9.45 29.86 0.000557 
FOSL1 7.48 4.16 6.98 4.24 1.23 5.23 4.8 0.002221 
FOS 2.13 4.54 -2.4 -6.24 1.26 -1.19 -1.16 0.927986 
JUNB 2.1 4.22 1.88 1.31 1.19 1.81 1.27 0.160081 
JUN 6.5 17.24 4.23 2.23 10.78 4.07 5.62 0.000081 
JUND 3.77 5.08 4.56 1.95 4.24 1.27 4.07 0.012237 

NF-kB 

REL 2.23 2.49 4.03 3.89 3.3 2.18 2.38 0.004957 
NFKB1 1.46 1.59 4.08 3.11 -1.26 1.79 1.87 0.038902 
NFKB2 1.6 1.72 2.54 2.31 1.42 1.67 2.12 0.00357 
NFKBIA 3.16 3.42 7.58 6.05 1.46 3.85 4.84 0.001085 
NR4A1 53.43 47.41 59.06 24.55 2.18 14.15 40.94 0.000172 
NR4A2 25.53 16.39 48.97 11.12 7.77 9.68 14.99 0.000001 
NR4A3 63.63 34.45 188.37 53.5 9.47 7.95 39.07 0.000014 
HSPA1A 7.94 17.59 6.56 12.88 9.92 6.95 9.47 0.000249 
HSPA1B 12.35 12.09 11.42 12.4 8.47 9.96 11.02 0.000094 
RIPK1 3.36 3.89 2.84 2.17 2.39 2.73 2.84 0.001091 
RIPK4 5.63 15.84 55.83 18.33 7.39 7.37 14.71 0.000561 
TNFAIP3 5.13 4.1 6.35 5.3 1.47 3.36 3.89 0.000026 
MAP3K8 22.25 25.75 45.19 19.55 4.48 7.81 15.64 0.000039 

Cytokine 

IL1B 1.98 2.16 4.32 2.94 -1.25 2.53 2.05 0.041643 
IRAK2 2.86 3.72 7.64 2.93 2.06 1.52 4.1 0.027495 
IL6 4.09 5.35 22.22 7.32 -1.72 2.27 5.24 0.268214 
IL6R 13.9 13.84 5.1 7.69 3.71 4.12 10.35 0.000594 

Stress 
SQSTM1 4.37 9.01 2.94 2.04 4.99 3.7 3.13 0.000354 
HMOX1 2.25 2.71 2.02 2.51 4.24 1.61 2.56 0.00031 

TABLE 15 – Signalling Pathway upregulated genes indicated by initial microarray analysis.   
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Validation of Notch target genes upregulated by LTP in microarray analysis 

See Table 15. 

NRARP 

The top upregulated transcript in plasma treated cells was Notch Regulated Ankyrin Repeat 

Protein (126.92-fold, p=3.04x10-9). NRARP is directly induced by Notch (813) and provides a 

negative feedback loop which causes loss of the NICD (817, 818). The gene is recurrently 

overexpressed in breast, liver and thyroid cancers and is required for the maintenance of liver CSC 

stemness (819-821). NRARP was an obvious choice in the validation of microarray results and 

plasma activation of the gene’s expression passed the cut-off of a two-fold increase in three of the 

four samples chosen for qRT-PCR (Figure 64). Upregulation in a further patient matched pair 

highlights that NRARP is recurrently expressed in response to LTP in prostate basal epithelia 

(Figure 70F). 

HES1 and HEY1 

These canonical Notch targets are basic-helix-loop-helix (bHLH) transcriptional repressor proteins 

that maintain cells in a dedifferentiated state through silencing of multiple targets – many of 

which haven’t yet been characterised (822). They co-ordinately repress lineage transcription 

factors and other genes that can trigger differentiation, to assert Notch’s control on stem cell fate 

dynamics (823). Both were upregulated across the six treated samples; HEY1 - 3.52-fold (p=6x10-6) 

and HES1 – 2.99-fold (p=0.00924). Associated transcriptional co-repressors TLE3 (2.11-fold, 

p=0.0005) and TLE4 (2.01-fold, p=0.0011) were also upregulated by LTP, these proteins aid the 

silencing of developmental genes by associating with Hes1 and Hey1 (824, 825). 

Hes1 is a negative regulator of PTEN, (803) Wnt3, Wnt4 (826) and the CDK inhibitors; p21 and p57 

(827). Expression of the protein is also inducible by oxidative stress (828). HES1 was selected for 

validation as it’s mRNA is differentially expressed at higher levels in prostate epithelial stem cells 

over more differentiated progeny (66)(Figure 74) and it is a Notch specific gene. It failed to pass 

validation cut-offs, with only mild upregulation observed in H594/17 (Figure 64). However, HES1 

is commonly subject to transcriptional oscillation, therefore peak expression may be missed by 

the single snapshot of gene expression afforded by qRT-PCR. Further time-points of analysis 

would be required to definitively rule out HES1 as a LTP responsive gene (829). 

HEY1 negatively regulates ID1 (830) and AR, (802) which is particularly relevant in prostate 

epithelial progenitors. Interestingly, Hey1 can be, in certain cellular contexts, upregulated by Jun 

(831) which is also activated and upregulated by plasma (Figure 46 & 64). HEY1 was confirmed by 
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LIMMA analysis as a LTP responsive gene. Expression should be validated in future work, along 

with changes in protein levels of both Notch signalling effectors (Figure 63). 

 

ID2 and ID3 

The ID (inhibitors of differentiation) proteins are also associated with stem-like cells and belong to 

the same family of bHLH transcriptional repressors as HES1 and HEY1 (832). Like HES1 and HEY1, 

the ID proteins maintain a primitive cellular state with aberrancy in regulation and expression also 

defining CSC pools (reviewed in (822)). These genes, depending upon cellular context, can be 

directly upregulated by the NICD (788, 833-835). Both ID2 (4.00-fold, p=0.044) and ID3 (5.8-fold, 

p=0.0013) are significantly increased by plasma treatment in the six sample group, with ID1 also 

observed to be upregulated in individual samples (2.53-fold, p=0.214).  

SOX9 

Another Notch interacting gene, upregulated by LTP (4.67-fold, p=3.21x10-4), is Sox9; a member of 

the SRY box family of transcription factors that classically maintain stemness by inhibiting 

differentiation. Interplay of Sox9 and Notch has been observed in pancreatic progenitor cells 

(836). Notch causes parallel HES1 and SOX9 expression in these pancreatic ductal cells, showing 

that the Sox9 transcription factor is a target of the NICD, either directly or through secondary 

effectors – an observation supported by other studies (788, 837-839). SOX9 was selected for 

further validation as, like HES1, it was elevated in prostate stem cells (Figure 74) and was an 

intriguing Notch target gene. Even though some biological replicates showed upregulation of the 

transcription factor, the gene failed validation as a plasma responsive gene (Figure 64). 

The failure of some Notch signalling components in the validation process may be due to 

variable/unfavourable relative percentages of progenitor and CB cell populations in the patient 

cultures used. As shown for the NR4A isoforms and NRARP, the more differentiated cells can mask 

responsive expression of the gene in the SC/TA cells, (Figure 69 & 70F) especially if the LTP-

induced upregulation of the gene is subtle. 

Bi-directional Notch signalling; a lesser studied phenomenon 

Although much study has been directed at canonical Notch receptor signalling, little research has 

focused on the activation of signalling by the reciprocal ligand receptors; Jagged and Delta-like. 

Jagged and Delta both release intracellular domains (JICD & DICD) that subsequently localise to 

the nucleus after binding Notch (840-842). The ligand receptor ICDs can physically interact with 

the NICD and prevent formation of the active Notch ternary complex. The JICD can also stimulate 

proteasomal degradation of the Notch transcription factor (843, 844). 
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Delta ICD can promote growth arrest in cells, independent of nuclear localisation of the protein 

(845). The intracellular fragment can also bind to transcription factors which mediate gene 

expression through protein-protein interaction. DICD binding to Smad proteins can promote 

neural differentiation by augmentation of TGFβ signalling (846). A similar interaction with Jun 

causes inhibition of AP-1 dependent transcription in endothelial cells (847). 

The reverse is observed for the JICD, which can increase AP-1 transcriptional activity. Again, the 

downstream signalling initiated by the active ligand receptor is not wholly dependent on nuclear 

localisation and could be nullified by the NICD (841). Jagged overexpression can transform cells, 

an outcome attributable to a PDZ (PSD-95/Dlg/Zo1) ligand sequence in the JICD. This facilitates 

protein-protein binding to alter cellular gene expression and promote oncogenesis (848). 

There may be functionally relevant bidirectional Notch signalling occurring in the LTP treated 

samples, however the cellular context for this is yet to be determined (Figure 73). Further work 

would need to establish which Notch and ligand receptor isoforms were present in the signalling 

cascades initiated by LTP exposure in prostate epithelia. Whilst it is an attractive prospect that the 

JICD plays a role in the Jun signalling observed in plasma treated prostate epithelia, upstream 

SAPK signalling is likely to be the main contributor to AP-1 activation (Figure 56). Indeed, other 

functional signalling pathways may be downstream targets of ligand receptor ICDs in the prostate 

lineage, yet no prior studies exist that have investigated signalling of the Notch ligands in this 

cellular context. Bi-directional Notch signalling is not apparent in every cellular situation, hinting 

again at a context dependency of this pathway (849). 

Upstream protein analysis shows Notch1 activation in prostate basal epithelia by LTP 

Although only one of the three genes chosen for validation of activated Notch signalling by 

plasma passed the criteria, analysis of protein lysates treated with LTP were assessed for presence 

of the Notch1 receptor and the activate NICD (Figure 65 & 68). 

Cleavage of the Notch1 receptor, due to LTP treatment, to release the active NICD (distinguished 

in Western blot analysis by the proteolytically revealed Val1744 epitope) was observed in seven 

cultures taken from five separate patients, with densitometry analysis confirming the activation 

apparent in qualitative blotting images (Figure 65 & 68). Time course analysis showed a rapid and 

incremental increase of the NICD in both the normal and cancer cultures of H646/17. Release of 

the intracellular fragment was also apparent at 30 minutes post treatment in H643/17 RM (Figure 

65). This body of evidence indicates that Notch activation by LTP is a conserved event in prostate 

basal epithelial cells. The context of the signalling and the cellular background make it very 

difficult to hypothesise the outcome of NICD release, but the answer may lie in the differential 

activation of Notch in the epithelial subpopulations, discussed further in Section 7.3.8. 
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7.3.3 - Further evidence of AP-1 signalling in plasma treated primary cultures 

AP-1 target genes were noticeably altered in the microarray data. Upregulation was observed of 

the factors themselves, negative feedback regulators and genes involved in upstream kinase 

signalling nodes. 

The microarray highlighted the autoregulatory effects of the AP-1 transcription factors (787, 850) 

that had been observed for Jun in the P4E6 cell line (Figure 60B). Application of plasma caused 

significant upregulation of four AP-1 factors; FOSB (29.86-fold, p=5.57x10-4), FOSL1 (4.8-fold, 

p=2.22x10-3), JUN (5.62-fold, p=8.1x10-5), and JUND (4.07-fold, p=0.012) (Table 15). FOSB was 

included in the gene-set approved by the more stringent LIMMA analysis (Figure 63) and both 

FOSB and JUN passed qRT-PCR validation with consistent upregulation at levels similar to that 

observed in the microarray (Figure 64).  

DUSP1 was identified, by the targeted oxidative stress response gene arrays, as a plasma 

upregulated negative controller of MAPK activation (Figure 50). The microarray approach found 

other DUSP family phosphatases to be expressed in response to LTP, presumably to further 

attenuate AP-1 activation. 

DUSP5 expression was elevated modestly by plasma (2.81- fold, p=0.023). This phosphatase is a 

direct transcriptional target of Jun (851) and, like DUSP1, has pan-selectivity for p38, ERK and JNK 

(852). Other DUSP isoforms were upregulated across individual samples, showing that negative 

regulation of AP-1 signalling was an important pathway induced by plasma (Table 15). The highest 

upregulation observed for a MAPK phosphatase following LTP was that of the DUSP10 gene (7.75-

fold, p=6.69x10-4). This phosphatase has specificity for the SAPKs; JNK and p38, (853, 854) which 

have previously been identified to be activated by LTP (679, 717) (including JNK in prostate 

epithelia) (Figure 56). Although upregulation of DUSP10 by plasma was expected as it provides 

negative feedback for stress activated AP-1 signalling, the gene did not pass the validation criteria 

in any of the four treated primary cultures (Figure 64). 

The use of more frequent intervals in the time-course experiment allowed a more accurate 

assessment of AP-1 activation timing (Figure 65). For the two normal samples of the patient 

matched pairs Jun phosphorylation was delayed in comparison to the Gleason 7 cultures, taking 

an hour to be activated following LTP. More samples would need to be tested over this time 

frame to ascertain if this was common to all prostate cancers as H209/12, H434/14 and H545/15 

normal cultures do show an activation of Jun at 30 minutes post-LTP (Figure 56). 
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Activation of AP-1 directed gene expression and the phosphorylation of transcription factor 

proteins are a common denominator in plasma treated prostate cells, of both benign and 

cancerous origin. However, like Notch signalling, the problem of context-dependent signalling is, 

as yet, unresolved. Activated Jun could be promoting cell death in cultures or it may be 

coordinating an oxidative stress survival response. To ascertain the functionality of pJun in the 

setting of plasma treatment, future work is required in the monitoring of primary culture cell 

death and survival following LTP exposure with additional molecular dissection of the AP-1 

response with small molecule inhibitors, such as JNK inhibition (855) and si/shRNAs (short-

interfering/short-hairpin RNAs) to individual proteins. This would tease out the consequences of 

AP-1 activation from the complex milieu of signalling presented in the microarray analysis, 

discussed further in Section 8.2. 

7.3.4 - Activation of NF-kB is not consistently observed in plasma treated cultures  

NF-kB Signalling 

The importance NF-kB signalling in primary prostate cultures is well established, with survival and 

malignancy of the prostate epithelial CSC population reliant upon the transcription factor (66). 

Appearance of the pathway in the microarray data was expected due to its combined involvement 

in stress-response signalling and in the maintenance of prostate epithelial cell populations. 

The NF-kB family is made up of two separate classes of proteins; Rel (c-Rel, RelA and RelB) and 

NF-KB (NFKB1 p50/p105 and NFKB2 p52/p100) that form homo (with the exception of RelB) or 

heterodimers to affect transcription. In the canonical signalling pathway; NF-kB complexes are 

held inactive in the cytosol by IkB proteins (α, β, γ, ε and ζ isoforms). Upon activation of upstream 

signalling, the sequestering IkB protein is phosphorylated, (signalling for its ubiquitination and 

degradation) permitting NF-kB dissociation and nuclear translocation (Figure 76A). The upstream 

effectors are typically cell surface receptors, such as the tumour necrosis factor receptor (TNFR). 

Receptor activation then permits recruitment of TRAF and RIP proteins that subsequently activate 

the IKK complex responsible for IkB phosphorylation (856). 

NF-kB triggered gene expression can also occur through a non-canonical route. Here, activation 

relies upon signals passing through NIK (MAP3K14) or NF-kB-inducing kinase (Figure 76B). NIK is 

constitutively degraded in unstimulated cells by a ubiquitin ligase complex containing TRAF3. 

Upon cell surface receptor activation, the TRAF proteins are recruited and degraded in-complex 

by the cognate E3 ligase; allowing NIK protein levels to rise.  The kinase is then able to activate 

IKKα by phosphorylation and subsequently permit the processing of NF-kB p100, to its active 

form; p52. The increase in p52 is dependent thereupon the transcription and translation of the 

NFKB2 gene that encodes p100 and takes place over hours rather than minutes (857). 
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The importance of the NF-kB proteins as master regulators of cellular stress and inflammation 

response is reliant upon complex modulating factors in every situation, which dictate the 

multifaceted and context dependent outcome of NF-kB signalling. 

FIGURE 76 – Canonical and Non-canonical NF-kB signalling elements. 

A) Canonical signalling. Cellular stress activates the IKK complex (IKKα:IKKβ:NEMO). IKK then 

phosphorylates IkBα, which sequesters NF-kB factors in the cytosol, stimulating the subsequent 

ubiquitination and degradation of the protein. The NF-kB proteins (RELA:p105) can then be 

processed, translocate to the nucleus and effect gene expression. B) Non-canonical signalling. 

Oxidative stress inhibits the constitutive degradation of NIK (NF-kB inducing kinase). Stabilised NIK 

activates the IKKα complex by phosphorylation which permits processing of p100 to active p52. 

p52 heterodimerises with RELB to promote the transcription of NF-kB genes  
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Validation of NF-kB genes upregulated by LTP in microarray analysis 

See Table 15. 

Direct NF-kB genes – NFKB2, REL, NFKBIA 

Two subunits of NF-kB were upregulated by plasma treatment; c-Rel (2.38-fold, p=0.005) and 

NFKB2 (2.12-fold, p=0.0036). The seemingly modest upregulation of these genes was significant as 

they were already expressed at mid to high levels in untreated epithelial cultures (Figure 62). The 

NFKBIA gene that encodes the IkBα inhibitory protein was also upregulated (4.84-fold, p=0.001) in 

plasma treated cultures.  

NR4A isoforms 

The orphan nuclear receptor 4A (NR4A) family is comprised of three members NR4A1 (Nur77), 

NR4A2 (Nurr1) and NR4A3 (Nor-1). All were upregulated by LTP treatment in the prostate 

epithelial cultures; NR4A1 (40.9-fold, p=1.7x10-4), NR4A2 (14.99-fold, p=1x10-6) and NR4A3 (39.07-

fold, p=1.4x10-5) (Figure 64 & Table 15). The transcription factors are constitutively active, with 

control of function being achieved through a variety of mechanisms including the subcellular 

localisation and post-translational modification (PTM) of the receptors (858). The role of the 

receptors is cell- and tissue dependent. They have a multitude of functions from pro-apoptotic 

signalling to DNA repair (859). NR4A proteins have a large interactome and are modulated by a 

diverse range of proteins and transcription factors including NF-kB, AP-1 and Notch (860). NR4A1 

can be phosphorylated by active JNK to promote apoptosis (861), whilst Notch is able to both 

inhibit NR4A1 transcription (862) and to physically inhibit (863) the receptor, preventing the 

initiation of apoptotic signalling. In the myeloid lineage, NR4As are upregulated by NF-kB and 

feedback to have effects on the transactivation of the transcription factor itself (864, 865). 

The receptors can act as negative regulators of the NF-kB network; NR4A1 and NR4A3 deficient 

cells have increased NF-kB target gene expression and phosphorylation of the p65 NF-kB subunit 

(864, 866, 867). Depletion of NR4A2 results in the same phenotype, as the receptor acts as a NF-

kB inhibitor through accrued PTMs,(868) NR4A3 can act on multiple levels of NF-kB signalling by 

limiting initial activation, translocation of the factor to the nucleus and downstream gene 

expression of NF-kB (869). 

The effect of the NR4A receptors however is entirely context dependent and synergistic activation 

of NF-kB gene expression has also been reported (865, 870, 871). The orphan receptors can 

simultaneously attenuate and promote NF-kB signalling in the same cell type, (872) highlighting 

the dynamic and diverse signal modulation of this response network, probably to fine tune the 

potent NF-kB response in plasma treated prostate epithelial cells.  
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The three isoforms were chosen for further validation as they were all highly upregulated in the 

microarray data and they held an intriguing possibility of NF-kB modulatory differences between 

epithelial subpopulations, (discussed in Section 7.3.7) where one receptor may promote a certain 

cell fate that is abrogated by another. All NR4A genes were recurrently upregulated by LTP in the 

validation samples to similar fold changes observed on the array (Figure 64). NR4A3 showed high 

biological variability due to transcript levels being almost undetectable in untreated prostate 

basal epithelia. 

Upstream effectors of NF-kB signalling 

Expression levels of receptor interacting serine/threonine protein kinases (RIPK) 1 and 4 were 

responsive to plasma treatment; RIPK1 (2.84-fold, p=0.001) and RIPK4 (14.71-fold, p=5.61x10-4). 

RIPK1 associates with upstream cell surface receptors to activate the IKK complex. The formation 

of these receptor signalling-complexes is facilitated by ubiquitin chains, linked through variant 

lysine residues, regulated by ubiquitin editing enzymes. One such editing ligase is TNFAIP3. This 

protein acts as a negative regulator of NF-kB, that can simultaneously disrupt the ubiquitin 

scaffold and target RIPK for proteasomal degradation (873). TNFAIP3 (3.89-fold, p=2.6x10-5) was 

also upregulated in treated primary cultures by LTP. This suggests that immediate transduction of 

NF-kB signals into the cell is important following exposure to LTP. Response applied to this point 

in the cascade would provide an immediate opportunity to either, completely abrogate the signal 

through disruption of the signalling scaffolds, or amplify it by upregulation of the RIP kinases.  

In activation of NF-kB; RIPK1 can interact with SQSTM1 (implicated in the qRT-PCR arrays and also 

upregulated in the microarray data; 3.13-fold, p=4x10-4) to facilitate atypical PKC activation of the 

IKK complex (874). RIPK1 is also required for activation of MAP3K8, a kinase that functions as an 

upstream hub of MAPK and NF-kB signalling, (875) and was also responsive to plasma treatment 

(15.64-fold, p=3.9x10-5) implying that this node of signal transduction may be important in LTP-

treated cells. 

RIPK1 is also a regulator of both apoptosis and necroptosis (programmed necrosis following 

caspase inhibition) (876). Necrosis is the dominant cell death response observed in our primary 

cultures treated with LTP, (304) the implication that this response may be regulated by RIPK1 

could warrant further investigation in future experiments which can assign cell fate consequences 

to the signalling pathways activated. 

RIPK4, like RIPK1, can activate NF-kB signalling (877) and interacts with PKC (878). It is a 

downstream target gene of NF-kB, MAPK (879) and p63, (880) a classical marker of prostate basal 

epithelia. 
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SQSTM1 and HMOX1 were chosen as genes for further validation to confirm previous 

identification as plasma-responsive genes in qRT-PCR arrays and the microarray (HMOX1, 2.16-

fold, p=0.0003). Both genes passed stipulated cut-offs yet there was significant biological and 

intra-patient variability in plasma responsive expression (Figure 64). 

Interleukin receptor signalling was also triggered by plasma treatment. Upregulation of the 

agonist, IL1B (2.05-fold, p=0.042) and signal transducer; IRAK2 (4.1-fold, p=0.027), a protein that 

can activate both NF-KB and JNK, was observed (881). Plasma also enhances gene expression of 

IL6 signalling proteins – this pathway is particularly important in maintenance of the CSC 

population of the prostate though JAK-STAT signalling (253). The cytokine itself was upregulated 

in the cultures but not to significant levels (IL6, 5.24-fold, p=0.29) whilst its cognate receptor IL6R 

(10.35-fold, p=5.9x10-4) was differentially expressed in treated cells. 

IL6R was a gene of interest due to previous association with prostate CSCs and its upregulation by 

plasma on the microarray (66, 253). The gene was included by LIMMA analysis (Figure 63) yet did 

not pass validation, (Figure 64) appearing to be almost unresponsive to LTP treatment in four 

primary cultures. 

LIMMA analysis and protein data conflict with initial microarray findings 

From the initial microarray data, discussed above, NF-kB activation by LTP in the primary cultures 

appeared to be certain, with both intrinsic proteins and modulating regulators upregulated 

following treatment with the plasma. However, LIMMA analysis (Figure 63 & Table 16) removed 

most NF-kB transcripts (apart from RIPK4, MAP3K8 and the NR4A genes) suggesting that the high 

background of cyclic NF-kB signalling present in the cultures may have been picked up in 

microarray analysis rather than LTP enforcing a functional activation of the transcription factor 

(66). 

Assessing the upstream activation of NF-kB proteins returned results that also suggested a lack of 

pathway activation by plasma. The time-course experiment showed that IkBα protein content was 

not changed in treated cells with phosphorylation of the inhibitory protein only observed in the 

Gleason 7 cultures of the patient matched pairs (Figure 65 & 66B). This cancer-specific 

phosphorylation of IkBα was only seen in patients H643/17 and H646/17. The signalling event was 

also observed to occur in normal cultures and was absent in some Gleason 7 samples following 

LTP treatment (Figure 67C). This again highlights that interpatient heterogeneity and not the 

tissue pathology of the primary prostate cultures is the variable that determines molecular 

response to LTP. 
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If canonical activation was observed, there would have been a rapid phosphorylation of IkBα 

followed by loss of total protein, which would permit liberation of the NF-kB transcription factor. 

Phosphorylation without the expected decrease in NF-kB-bound inhibitor suggests that NF-kB 

remains inactive in LTP-treated primary prostate cultures. This was confirmed by the lack of 

nuclear translocation of the NF-kB factor; p65, in whole and subpopulation cultures, (Figure 

67A+B) further evidence of cytosolic sequestration by IkBα. Patient H523/15 cultures were the 

only samples to respond to LTP, with a loss of IkBα at 2 hours post-treatment (Figure 67C). 

Phosphorylation of the protein wasn’t observed at the earlier time-point yet may still have 

occurred after this snapshot of cellular protein levels was taken. In any case, NF-kB activation 

doesn’t appear to be a widespread consequence of LTP in primary prostate epithelial cultures.  

The slight increase in NFKB2 gene (which encodes NF-kB p100/p52) expression following 

treatment with LTP implied that non-canonical signalling may be activated in LTP-treated prostate 

epithelium. The rise in NIK levels following treatment (Figure 65 & 66C) would suggest a role for 

this signalling in LTP response. Extension of the time course to assess the processing of NF-kB 

p100 to p52 would be required to confirm that the non-canonical signalling arm was truly having 

an effect in treated cells. The outcome of the signalling is again unknown but would be expected 

to be present in surviving cells as the stimulation of NF-kB processing requires time. Fresh protein 

synthesis of the NF-kB p100 protein has to occur for the effects of non-canonical signalling to take 

place, a process which is longer than the latency period of cell death mechanisms. 

Initial impressions from the microarray data was that NF-kB must react rapidly via the canonical 

arm of signalling. However, activation of the slower non-canonical pathway may be an initial 

indicator of signalling in surviving cells as the full outcome of NIK accumulation and downstream 

signalling would take longer than the cell death mechanisms that would remove ROS damaged 

cells. Implying that cells which accumulate NIK may form an LTP-resistant population. Further 

investigation into how and if activation of non-canonical NF-kB associates with LTP-resistance is 

required. 

7.3.5 – Gene Ontology and KEGG metadata confirms pathway activation and highlights the 

unfolded protein response, ER stress and a balancing of apoptotic signalling processes in 

LTP treated prostate epithelia 

See Table 17 for all GO and KEGG terms enriched in LTP-treated primary prostate basal epithelial 

cells. 

Gene ontology (GO) and KEGG analysis are useful analytical tools as they provide a broad stroke 

picture of gene expression and activated pathways. However sole use of these tools without 

validation of individual gene and protein changes can detract from informing upon the finer 
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workings of molecular responses as unfocused background noise can be assigned to the gene 

signatures by numerous irrelevant annotations on genes, particularly as the collection of publicly 

available microarray datasets grows. To this end, the metadata from the LTP treated microarrays 

is discussed here, following the validation of both gene upregulation and signal pathway 

activation indicated by the patterns of individual annotated transcripts in the initially generated 

dataset and by LIMMA analysis.  

Firstly, an LTP-induced state of oxidative stress was implied in the treated prostate primary cells 

by inclusion of GO terms; cellular response to oxidative stress (p=0.0002) and cellular response to 

hydrogen peroxide (p=0.0003), a reactive species known to be important in the cocktail of 

molecules activated by LTP (Figure 45). There was also negative regulation of the cell cycle 

(p=0.003) which would be expected in cells that encounter LTP-induced DNA damage observed in 

the primary cultures following treatment (304). 

Other known signalling pathways were enriched in the GO and KEGG terms, expanding upon the 

immediately obvious gene regulation from initial array data (Figure 64 & Table 15). NF-kB 

signalling appeared throughout the GO terms, including; positive regulation of tumour necrosis 

factor mediated signalling pathway (p=7.2x10-5) and NF-kB transcription factor activity (p=0.003). 

There was also extensive sequence-specific transcription factor (activator and repressor) and 

coactivator binding terms. Selective terms for AP-1 signalling were also apparent; MAPK3 activity 

(p=0.048) and MAPK signalling pathway (p=0.01). IL-6 signalling was also observed to be 

significantly activated in the microarray data; interleukin-6 binding (p=0.004), receptor activity 

(p=0.004) and receptor binding (p=0.015). 

Primary prostate cultures don’t undergo apoptosis following LTP treatment and instead die via 

necrosis (304). However the cells appeared to orchestrate a wide array of apoptotic signalling 

processes, apparent in the metadata generated from the microarray. The KEGG pathway hit of; 

Apoptosis – multiple species (p=0.006), was reinforced by multiple GO terms suggesting apoptotic 

cell death was occurring, including; positive regulation of cytochrome c from mitochondria 

(p=3.5x10-5) and positive regulation of protein insertion into mitochondrial membrane involved in 

apoptotic signalling pathway (p=0.002). However, there were a significant amount of negative 

regulatory processes involved in apoptosis also enriched in the GO terms (negative regulation of 

mitochondrial outer membrane permeabilisation involved in apoptotic signalling pathway, 

p=0.0001, and negative regulation of extrinsic apoptotic signalling pathway in absence of ligand, 

p=0.002). This suggested that LTP may initiate an apoptotic response in primary cells which is then 

aborted by activation of reciprocal signalling pathway or that the heterogeneous cell populations 

in the primary cultures have variant apoptotic signalling responses to LTP. 
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Probably the major finding from the metadata was the initiation of an unfolded protein response 

and ER stress by LTP. Both processes were heavily enriched throughout the GO term processes 

and KEGG analysis. ER stress is linked directly to the unfolded protein response. This was observed 

in the upregulation of genes such as the heat shock proteins HSPA1A (9.47-fold, p=2.49x10-4) and 

HSPA1B (11.02-fold, p=9.4x10-5) that are stress responsive and act as protein folding chaperones 

and characteristic upregulation of ATF4 in four of the six samples. In conditions of ER stress, the 

ER transmembrane protein PERK phosphorylates the translation initiation factor, eIF2α. Phospho-

eIF2α then causes upregulation of ATF4 to aid cellular anti-oxidant response and alleviation of ER 

stress (reviewed in (882)). The accumulation of unfolded proteins after LTP-induced oxidative 

damage upsets ER homeostasis and can initiate a diverse range of molecular responses such as 

JNK activation, NF-kB signalling, Nrf2 accumulation and autophagy (883). All of which are 

implicated in the LTP response of prostate epithelia (Figure 46)(304). The ER is also involved in 

Ca2+ homeostasis that affects a multitude of signalling pathways if disrupted. In relation to the 

microarray data; NR4A isoforms are upregulated by Ca2+ changes (884) and ITPKC is a modulator 

of extracellular signal-initiated calcium response (885). 

Another finding that was specific enough to warrant further analysis was the GO term enrichment 

in steroid hormone receptor activity (p=0.0003), highlighting glucocorticoid (p=0.0004) and 

retinoid X receptor binding (p=0.03) in treated cells. The signalling initiated by the hormone 

receptors will be context dependent in prostate epithelia but may be indicators of renewal 

processes following LTP treatment. 
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Symbol Gene Fold 

Change 
ANOVA 
p-value 

LIMMA 
p-value 

NRARP Notch regulated ankyrin repeat protein 126.92 3.04E-09 5.0759E-10 
HSPA1A Heat shock protein A1A 9.47 0.000249 1.25377E-08 
HSPA1B Heat shock protein A1B 11.02 0.000094 1.50624E-08 
EFNA1 Ephrin A1 9.98 0.000078 2.2241E-08 
HBEGF Heparin binding EGF like growth factor 22.22 0.000002 5.72194E-08 
RHOV Ras homologue family member V 20.72 0.000044 8.03929E-08 
NR4A2 Nuclear receptor 4A2 14.99 0.000001 2.03093E-07 
CYP1A1 Cytochrome P450 family 1 subfamily A member 1 20.3 0.000099 2.32924E-07 
MAP3K8 Mitogen activated protein kinase kinase kinase 8 15.64 0.000039 2.86501E-07 
ATF3 Activating transcription factor 3 37.37 0.000015 3.38407E-07 
BTG2 BTG anti-proliferation factor 2 12.74 0.000029 4.3246E-07 
RHOB Ras homology family member V 6.39 0.00001 5.36957E-07 
NR4A3 Nuclear receptor 4A3 39.07 0.000014 6.76664E-07 
RIPK4 Receptor interacting protein kinase 4 14.71 0.000561 8.20509E-07 
OVOL1 Ovo like transcriptional repressor 1 8.74 0.000855 9.05974E-07 
ARL5B ADP ribosylation factor like GTPase 5B 4.95 0.000037 1.03334E-06 
PPIF Peptidylprolyl isomerase F 7.14 0.000211 1.32265E-06 
PMAIP1 Phorbol-12-myristate-13-acetate-induced protein 1 11.66 0.000416 1.54963E-06 
ITPKC Inositol-triphosphate3-kinase C 26.33 0.000019 1.79006E-06 
IL6R Interleukin 6 receptor 10.35 0.000594 1.81086E-06 

DAPP1 Dual adaptor of phosphotyrosine and 3-

phosphoinositides 1 4.91 0.000019 2.51189E-06 
CYP1B1 Cytochrome P450 family 1 subfamily B member 1 19.78 0.000108 2.90671E-06 
RNU12 RNA, U12 small nuclear 6.92 0.000098 4.28598E-06 
THBD Thrombomodulin 3.08 0.005813 5.29702E-06 
NR4A1 Nuclear receptor 4A1 40.94 0.000172 5.55242E-06 
PPP1R15A Protein phosphatase 1 regulatory subunit 15A 5.16 0.000269 6.54149E-06 

HEY1 Hes related family bHLH transcription factor with 

YRPW motif 1 3.52 0.000006 6.73261E-06 
INSIG1 Insulin induced gene 1 3.25 0.002229 7.11905E-06 
LHFPL3-

AS2 LHFPL3 antisense RNA 2 2.67 0.000037 8.16209E-06 
RNU4-1 RNA, U4 small nuclear 1 5.6 0.021446 9.17945E-06 
RNF122 Ring finger protein 122 5.45 0.000034 9.61055E-06 
BCL2L11 BCL2 like 11 2.51 0.000865 1.55846E-05 

TABLE 16 – LIMMA-specified and range-separated LTP-upregulated genes 

Table includes the annotated transcripts identified as upregulated by LTP treatment. These all 

passed LIMMA analysis and the further constraint that expression ranges in the untreated and 

treated samples had no overlap. Genes are ranked by LIMMA p values, the most significant at the 

top.  
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GO - Biological Process 
GO ID Term Annotated Significant Expected score 
GO:1904722 positive regulation of mRNA endonucleolytic cleavage involved in unfolded protein 

response 
2 2 0 4.80E-06 

GO:0090200 positive regulation of release of cytochrome c from mitochondria 29 3 0.06 3.50E-05 
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 752 13 1.67 5.70E-05 
GO:1903265 positive regulation of tumor necrosis factor-mediated signaling pathway 6 2 0.01 7.20E-05 
GO:1901029 negative regulation of mitochondrial outer membrane permeabilization involved in 

apoptotic signaling pathway 
8 2 0.02 0.00013 

GO:1902237 positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling 
pathway 

10 2 0.02 0.00021 
GO:0034599 cellular response to oxidative stress 248 7 0.55 0.00023 
GO:0070301 cellular response to hydrogen peroxide 82 4 0.18 0.00025 
GO:0042026 protein refolding 24 3 0.05 0.0006 
GO:0051131 chaperone-mediated protein complex assembly 19 2 0.04 0.0008 
GO:1902236 negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic 

signaling pathway 
20 2 0.04 0.00089 

GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in 
apoptotic signaling pathway 

29 2 0.06 0.00187 
GO:1903917 positive regulation of endoplasmic reticulum stress-induced eIF2 alpha 

dephosphorylation 
1 1 0 0.00222 

GO:2001240 negative regulation of extrinsic apoptotic signaling pathway in absence of ligand 33 2 0.07 0.00242 
GO:0045786 negative regulation of cell cycle 586 5 1.3 0.00275 
GO:0051092 positive regulation of NF-kappaB transcription factor activity 134 3 0.3 0.00323 
GO:0060734 regulation of endoplasmic reticulum stress-induced eIF2 alpha phosphorylation 2 1 0 0.00443 
GO:0061394 regulation of transcription from RNA polymerase II promoter in response to arsenic-

containing substance 
2 1 0 0.00443 

GO - Molecular Function 
GO ID Term Annotated Significant Expected score 
GO:0031249 denatured protein binding 2 2 0 4.50E-06 
GO:0001106 RNA polymerase II transcription corepressor activity 28 3 0.06 2.90E-05 
GO:0001077 transcriptional activator activity, RNA polymerase II core promoter proximal region 

sequence-specific binding 
257 5 0.55 0.00021 

GO:0003707 steroid hormone receptor activity 59 3 0.13 0.00028 
GO:0035259 glucocorticoid receptor binding 13 2 0.03 0.00035 
GO:0070330 aromatase activity 23 2 0.05 0.00111 
GO:0044183 protein binding involved in protein folding 27 2 0.06 0.00153 
GO:0051082 unfolded protein binding 108 3 0.23 0.00161 
GO:0001078 transcriptional repressor activity, RNA polymerase II core promoter proximal region 

sequence-specific binding 
117 3 0.25 0.00202 

GO:0097718 disordered domain specific binding 32 2 0.07 0.00215 
GO:0004879 RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA 

binding 
48 3 0.1 0.00333 

GO:0019981 interleukin-6 binding 2 1 0 0.00431 
GO:0004915 interleukin-6 receptor activity 2 1 0 0.00431 
GO:0019825 oxygen binding 47 2 0.1 0.0046 
GO:0001046 core promoter sequence-specific DNA binding 112 3 0.24 0.00534 
GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding 332 4 0.72 0.00548 
GO:0047844 deoxycytidine deaminase activity 3 1 0.01 0.00646 
GO:0031072 heat shock protein binding 96 3 0.21 0.00726 
GO:0005138 interleukin-6 receptor binding 7 1 0.02 0.015 
GO:0072542 protein phosphatase activator activity 8 1 0.02 0.01713 
GO:0000988 transcription factor activity, protein binding 602 6 1.3 0.0172 
GO:0046982 protein heterodimerization activity 468 4 1.01 0.01769 
GO:0016679 oxidoreductase activity, acting on diphenols and related substances as donors 9 1 0.02 0.01925 
GO:0004126 cytidine deaminase activity 9 1 0.02 0.01925 
GO:0042826 histone deacetylase binding 103 2 0.22 0.02073 
GO:0008440 inositol-1,4,5-trisphosphate 3-kinase activity 10 1 0.02 0.02137 
GO:0020037 heme binding 127 2 0.27 0.03058 
GO:0004115 3',5'-cyclic-AMP phosphodiesterase activity 15 1 0.03 0.03188 
GO:0046965 retinoid X receptor binding 15 1 0.03 0.03188 
GO:0008157 protein phosphatase 1 binding 18 1 0.04 0.03814 
GO:0001223 transcription coactivator binding 19 1 0.04 0.04022 
GO:0005525 GTP binding 371 3 0.8 0.04531 
GO:0005506 iron ion binding 158 2 0.34 0.04548 
GO:0000983 transcription factor activity, RNA polymerase II core promoter sequence-specific 22 1 0.05 0.04642 
GO:0004709 MAP kinase kinase kinase activity 23 1 0.05 0.04848 

KEGG Pathway analysis  

 
Pathway n.pathway n.seen p.value  

path:hsa04141 Protein processing in endoplasmic reticulum 166 4 0.00227184  

path:hsa04215 Apoptosis - multiple species 33 2 0.00560536  

path:hsa04010 MAPK signaling pathway 255 4 0.01042539  

path:hsa00980 Metabolism of xenobiotics by cytochrome P450 74 2 0.02631755  

path:hsa04151 PI3K-Akt signaling pathway 342 4 0.02774234  

path:hsa05204 Chemical carcinogenesis 82 2 0.03182386  

TABLE 17 – Gene Ontology and KEGG Pathway annotations of microarray data  
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7.3.6 - Plasma responsive genes of biological interest highlighted by LIMMA analysis 

LIMMA analysis reduced the initial data-set of 645 differentially expressed transcripts in treated 

cells to 89 (Figure 63). Only 42 of the 89 transcripts were annotated genes, which were then 

further concentrated by excluding transcripts that had any point of overlap in expression range 

between LTP treated and untreated cohorts. This yielded 32 genes that were; i) significantly 

upregulated in LTP treated cells when accounting for the transcript’s inherent expressional 

variability and ii) completely separated on terms of expression between untreated and treated 

groups across all six samples (Table 16). 

Although no further investigation was directed for the majority of the genes included by this 

analysis, several of the transcripts with high scoring p-values such as ATF3, EFNA1, RHOV and 

HBEGF could be followed up with further study of context specific function in the prostate 

epithelia and the role that they play in LTP-induced stress response. If they are able to distinguish 

between resistant and susceptible populations, they may also have future significance if utilised 

as biomarkers of LTP response through tests of pre and post-treatment urinary RNA levels. Whilst 

the LIMMA analysis is a powerful tool in determining possible functionally significance of gene 

expression differences in the LTP treated cells, it is not infallible. IL6R signalling was highlighted in 

the GO terms (Table 17) and was already noted by previous work done in our laboratory as a gene 

important in the signalling of prostate basal epithelial cells (253). However, IL6R didn’t pass the 

validation criteria in qRT-PCR testing of LTP treated cultures (Figure 64). This means that all genes 

that passed stringent LIMMA analysis would still have to be independently verified to confirm 

whether they are critical in the transcriptional response to LTP. 

7.3.7 - Basal epithelial subpopulations differ in their molecular responses to plasma 

Heterogeneity in primary prostate cultures is well documented. Previous studies have observed 

both differential gene expression (66) and treatment response (323, 771) among the basal 

subpopulations. Therefore, differences in how SC/TA and CB cells responded to plasma were 

expected. 

NF-kB signalling plays a significant role in primary culture cell survival, (66) therefore changes in 

signal modulation in epithelial subpopulations following LTP treatment could impact cell fate 

dramatically. The NR4A orphan receptors are known to both attenuate and promote NF-kB 

signalling, and can do so simultaneously in cells (872). The end consequence of their upregulation 

in LTP treated prostate cells is unknown, yet the progenitor SC/TA population consistently 

responds with greater upregulation of each NR4A isoform than that observed in CB cells (Figure 

69). This correlates with the increased requirement of NF-kB signalling in the stem cells over their 

more differentiated progeny (66) and may be because modulation of the pathway requires a 
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greater degree of control here, than in the CB cells; where upregulation of isoform expression is 

observed, just at more modest levels. The context-dependence of the NR4A receptors means that 

further work is required to discern their exact function in LTP response. Firstly, the background 

context of NR4A protein expression and localisation in the primary basal epithelial cells should be 

deduced to properly assess the changes impacted upon the receptor isoforms by LTP. Previously 

observed protein interactions such as those between NR4A1 and the NICD, (863) and whether the 

receptors are targets of JNK phosphorylation (861) warrant further investigation, alongside wider 

cell fate processes such as apoptosis and DNA damage repair (859) – both of which LTP induces 

(304) and the NR4A receptors are involved in. 

The pattern provided by the expression of the NR4A receptors (Figure 69) and NRARP (Figure 70F) 

in the prostate epithelial subpopulations also highlights one of the limitations of the WP array. 

This data suggests that the LTP response is mainly elicited by the SC/TA cells, however this 

population constitutes 25-50% of the whole culture population (with the remainder of cells being 

CB cells). This means that the transcriptional response coordinated in the progenitor population is 

diluted by the more differentiated cells and the expression signature is masked. The effect is seen 

clearly in the NRARP and NR4A1 expression of both cultures from patient H643/17 where WP 

expression has just passed the threshold of 2-fold upregulation, matching that of the less-

responsive CB fraction, yet the transcript is robustly expressed in the SC/TA population (Figure 69 

& 70F). Responsiveness of the progenitor population in the primary cultures allowed the effects 

of LTP to be observed in the whole culture microarray, however genes that may still be 

upregulated in a single subpopulation yet to a lesser extent (than observed for NRARP and NR4A 

isoforms) will be lost in the dominant non-responsive signature. To assess these “lost” genes, 

microarray analysis of individual subpopulation responses to plasma would have to be carried out 

where cultures are first separated into SC/TA and CB cells, treated with plasma and then gene 

expression assessed. The reduction of heterogeneity would afford a clearer view into the effects 

of LTP on the individual subpopulations and may allow true differences to be more readily 

established between the response of normal and cancerous prostate epithelium. 

Similar to members of the Notch signalling pathway, Jun mRNA is consistently expressed at a 

higher level in prostate epithelial stem cells than in the CB population, (66)(Figure 77A) with my 

own data confirming that the transcription factor’s base expression was higher in the progenitors 

(Figure 77B). The protein levels of Jun were also elevated in the SC/TA population of H643/17 LM 

and H652b/17 cultures, (Figure 70A) and the activation of the transcription factor was also more 

potent in the progenitors (Figure 70B). With an increased amount of active Jun, the progenitor 

population would be expected to have a higher upregulation of JUN, through the transcription 

factor’s autoregulatory effects (787). However, no significant difference was observed between 
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SC/TA and CB upregulation of the AP-1 factor gene (Figure 70C). AP-1 signalling is entirely context 

dependent, with activation initiating signalling cascades for both cell death and survival in 

alternate circumstances. The downstream functionality of LTP-stimulated phospho-Jun in the 

progenitor population of the primary cultures is unknown. LTP affects the colony forming 

efficiency of primary prostate cells, reasoning that the oxidative stress induced by the treatment 

must abrogate stem cell function, possibly by killing this population. Whilst previous studies could 

find no apoptotic cell death in primary cultures after LTP (304) the enrichment of apoptotic 

pathways in GO terms (Table 17) and active AP-1 suggests that this mode of cell death may also 

occur in some cells. 

From the transcriptional data alone it is difficult to ascertain what cell populations are resistant 

and which are susceptible to LTP. For example; are the CB cells dying (or becoming senescent? 

(688)) and therefore have a reduced transcriptional output or just non-responsive as LTP-

stimulated ROS simply aren’t affecting critical cellular processes. The final consequences of AP-1 

cell fate determination will only be discernible after further study. Assessment of cell viability and 

death after plasma treatment in conjunction with pathway inhibitors will reveal if Jun 

phosphorylation is a LTP-resistance mechanism or a harbinger of cell death. Through the 

monitoring of these cell fate dynamics in both SC/TA and CB populations, the differential 

transcriptional responses may be linked to a functional outcome; the death or survival of a 

particular subpopulation.  

7.3.8 - Stem and transit amplifying cells selectively activate Notch signalling in response to 

plasma treatment 

As discussed previously in Section 7.3.2; Notch signalling is enriched in prostate epithelial stem 

cells and is important for maintenance of their dedifferentiated state (Figure 73). This data was 

confirmed by assessment of Notch signalling following LTP in fractionated prostate epithelial 

subpopulations (Figure 70 D-F). The Notch1 receptor was more highly expressed in the SC/TA 

fraction than in the CB cells (Figure 72D & 74) and, although Notch signalling was active to some 

degree in all patient cultures, densitometry analysis showed that the progenitor population 

activated Notch1 receptor cleavage more readily than the more differentiated CB cells (Figure 

70E). The significance of this selective activation was further increased by discovery that the 

receptor was internalised and translocated to the nucleus only in LTP-treated SC/TA cells (Figure 

71). The nuclear foci of the Notch1 receptor were not observed in treated CB cells nor in the 

untreated cells of either population. This suggests that LTP initiates a rapid response in the 

progenitor population Notch signalling network, a conclusion supported by the exclusive 

upregulation of the negative regulator NRARP ~10-fold caused by LTP in the SC/TA cells; whilst 

transcription of the Notch target gene is unchanged in the CB population (Figure 70F). The Notch1 
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antibody used in the study is polyclonal and has been approved for ChIP meaning that it can 

detect both the receptor and it’s intracellular fragment. 

Notch signalling is classically activated to retain cellular identity and a dedifferentiated state (249, 

823). This poses three questions; i) could LTP-induced ROS provide a differentiation-promoting 

stimulus to the prostate epithelial stem cell population? ii) do the progenitors trigger Notch 

signalling in attempt to retain their stemness? And, iii) is the activation in Notch signalling critical 

in LTP resistance and regeneration of the epithelial hierarchy following treatment? 

  



247 

 

FIGURE 77 – Prostate epithelial progenitors express JUN to greater levels than differentiated 

committed basal cells. 

A) Microarray data from comparison of SC and CB JUN expression. Across all four gene probes, 

JUN expression is significantly higher in the stem cells. Produced from data gathered in Birnie 

2008 (66). B) qRT-PCR data taken from fractionated epithelial cultures shows that the SC/TA 

population express equal or higher levels of the JUN transcription factor mRNA.   
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FIGURE 78 – Model of Notch signalling and the balance of prostate epithelial stem cell decision. 

High ROS levels can promote a cellular environment favourable to stem cell depletion through 

symmetric division and forced differentiation. Activation of Notch signalling can aid ROS 

scavenging and promote self-renewal of the stem cell pool to give LTP resistance whilst also 

repairing the prostate epithelial hierarchy, allowing for relapse. 
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ROS are observed to stimulate differentiation in human ESCs (886) and glioma CSCs (887) through 

SAPK activation. The same process also occurs in prostate stromal cells (888). Notch is known to 

maintain low ROS levels in cells and is activated, in some contexts, by elevated ROS (815, 816). In 

Drosophila, Notch signalling is activated to prevent lammellocyte stem cell differentiation in high 

ROS concentrations to prevent loss of niche integrity (889). Airway basal stem cells activate Notch 

through Nrf2 in high levels of ROS to enhance self-renewal and allow for the repair of the 

epithelial hierarchy, whilst Nrf2 antioxidant signalling protected the stem cell pool from oxidative 

damage and differentiation (890). The same situation has been observed in LTP-treated prostate 

epithelial cells where active SAPKs, Nrf2 and Notch have all been observed (Figure 56 & 65). 

It is therefore possible that prostate epithelial stem cells (in both normal and cancer cultures) 

initiate Notch signalling to both prevent depletion of the progenitor population, through high ROS 

promoting symmetrical division of the stem cells and subsequent differentiation; and replace 

dead cells further down the epithelial hierarchy by increasing self-renewal capabilities 

(asymmetrical divisions) (Figure 78). If reactive species stimulated by LTP are promoting 

differentiation of the epithelial cultures this could be monitored through tracking loss and gain of 

epithelial differentiation markers – appearance of PSA, PAP, CK8 and CK18, with loss of CD133, 

α2β1 integrin, CK5 and CK14 – following treatment. The colony forming efficiency of prostate basal 

epithelial cells is diminished by LTP (304) suggesting that self-renewal is impaired, and 

combination of LTP treatment with Notch inhibition, using GSIs or Notch receptor antibodies, may 

reveal the true importance of the Notch pathway to the surviving fraction of cells. Differentiation 

therapy, the pushing of stem cells into cycle to promote depletion of the progenitor population 

whilst increasing the number of therapeutically targetable differentiated cells, has already been 

discussed with respect to prostate cancer (236). 

There remains the problem that Notch activation by LTP is not exclusive to cancer cells as normal 

epithelia rely on the same signalling pathway to, presumably, retain stem cell numbers. This may 

also be an epithelial tissue regeneration response in the prostate, initiated by therapeutic insult 

(891). Off-target inhibition of Notch in the prostate epithelial stem cell niche of normal tissue 

would be detrimental to acinar integrity (892). Multiple Notch receptors and ligands are 

expressed in primary prostate cultures (Figure 74 & 75A). However, only the LTP-response of 

Notch1 was examined. Further work is required to discern the full repertoire of Notch receptors 

and ligand-receptors in both normal and cancerous epithelia (including subpopulations) and how 

different isoforms respond to treatment. Any differences in cancer cell Notch signalling that can 

be targeted using receptor isoform specific antibodies in conjunction with LTP treatments could 

provide an enhanced killing effect in the tumour over surrounding normal tissue. This result 
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would be a significant advance towards the clinical implementation of the plasma-device as a 

possible focal therapy option in the treatment of localised prostate cancers. 
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8. Future work 

8.1 – Determination of allelic expression changes in prostate cancer 

This study attempted to assess any allelic expression changes produced by mutations in the SPOP, 

PTEN and IDH1 genes. There is a common assumption by cancer genome studies that detected 

heterozygous mutations are always expressed; biallelic expression would thus produce a mix of 

wildtype and non-functional or neomorphic protein product that enforces the molecular 

pathology of the tumour. Studies that have combined genomic and transcriptomic data have 

observed that some cancers do not express the mutated allele (497, 553, 555). Combined 

datasets have been acquired from prostate cancers, (330) however the appropriate analysis of the 

data to the level of allelic expression hasn’t been conducted. 

One of the main purposes of the study was to determine whether the presence of a mutated 

allele affected the expression of the gene. Would the allele be continually expressed, or would it 

be silenced? There are several functional implications of heterozygous mutation in the context of 

allelic expression due to the plastic nature of epigenetic control. For example; 

• The disease allele may be silenced and not expressed at all as it is simply disadvantageous 

to the cancer. 

• The disease allele may be silenced to be later expressed. This may be due to a shift in 

microenvironmental stimuli, a permissive mutation/s is accrued that allows the silenced 

allele to be expressed without killing the cell, or possibly a differentiation stimulus, 

followed by a change in transcription factor regimens permits disease allele expression.  

• The disease allele may be expressed biallelically alongside the wildtype. 

• The disease allele may be selectively expressed whilst wildtype is silenced to give a 

population of affected protein that can cause carcinogenesis without the effect being 

“diluted” by wildtype protein. 

Due to the heterogeneity in primary prostate cultures, any of the above hypotheticals could be 

occurring exclusively or simultaneously in different epithelial subpopulations. This was observed 

to be the case for the allelic expression of TMPRSS2-ERG. The fused allele was selectively 

expressed in the stem cell fraction of the prostate tumour epithelia and the “choice” of allele then 

relaxed throughout differentiation. The unit of heterozygosity between the alleles needed to be a 

relevant point mutation, a SNP wouldn’t create a “disease” allele and therefore it would be 

assumed to have no bearing upon allelic gene expression. SNPs would have been used to 

determine true biallelic expression of SPOP, PTEN and IDH1 in wildtype cultures as reading the 

pyrosequencing trace of the mutated nucleotide position in a wildtype homozygous cDNA sample 
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would always show a 100% distribution of the nucleotide, without informing on the different 

contributions of the two wildtype alleles to that nucleotide position’s 100% total. However, only 

IDH1 has a suitable coding synonymous SNP; rs11554137 that occurs at a population frequency of 

~6%.  A more laborious way to ascertain allelic expression of the genes would be to use single 

molecule FISH techniques that can detect intronic SNP expression in nascent mRNA (893, 894). 

SPOP (rs6504618 in intron 8), PTEN (rs555895 in intron 8) and IDH1 (rs1437410 in intron 4) would 

be the appropriate heterozygous markers. 

The primary aim of the study was to determine if the allelic restriction of TMPRSS2 and that of the 

TMPRSS2-ERG fusion observed in primary prostate cultures was imposed by either gene body or 

promoter deposition of asymmetrical activating and silencing histone trimethylations (489, 526). 

This was due to the switching of allelic expression through differentiation. Fluctuations that were 

unable to be associated to promoter methylation status in the various epithelial subpopulations 

(246). Although understanding of epigenetics has increased significantly over the last 20 years, it 

is still difficult to ascertain whether histone modifications determine the transcriptional state of 

associated chromatin or are deposited for transcriptional memory to mark a neighbourhood that 

is silent or active (895). For example, RNA Polymerase II associated Set1 and 2 enzymes methylate 

histones as the polymerase transcribes the gene – these particular methylations are a 

consequence of transcription (896, 897). Until recently the simplest way to alter histone 

modifications would be the application of an inhibitor targeting the enzyme responsible for 

deposition and removal of the marks. This changes the global chromatin state, therefore any 

alteration in gene expression associated could be due to a number of factors other than the single 

histone mark deemed to have been removed or deposited at the locus of interest. These include 

activation or repression of master regulator transcription factors that can alter the global 

transcriptome and the alteration of genomic neighbourhood structuring which can repress of 

activate genes depending on the re-ordering of long and short-range chromatin loops. 

The development of CRISPR-Cas9 technology now affords researchers the opportunity to position 

Cas9 anywhere in the genome. The sequence-specific targeting of Cas9 has allowed precise 

modification of the cellular epigenome. Catalytically deactivated Cas9 (dCas9) has been fused to 

p300 H3K27acetyltransferase (898), LSD1 histone demethylase (899), Tet1 DNA demethylase and 

Dnmt3a DNA methyltransferase (900). These studies have shown that removal or deposition of 

epigenetic marks at key loci can activate or silence protein expression which then impacts cellular 

identity. This can be solely attributed to the placement of the dCas9 construct and not any off-

target effects associated with enzyme inhibition. Use of these (and future) dCas9 systems 

alongside techniques that allow unbiased identification of proteins at specific genomic loci (901-
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903) will further identification of protein factors and post-translational modifications that 

determine the transcriptional state of genes. 

Unlike previously reported RME, (487) expression of the TMPRSS2 allele wasn’t held to initial 

choice in the stem cell; allelic expression was switched during epithelial differentiation. This 

finding has implications in our understanding of the complexity of cancer heterogeneity, which is 

rooted in genomic studies rather than mRNA and protein expression variability, and could also act 

as a gateway for emergent expression of a previously silenced fusion allele in a more 

differentiated cell type whereupon tumourigenesis can occur alongside accumulation of other 

epigenetic and genetic defects. Promoter and gene body histone trimethylation status would 

have also been ascertained if SPOP, IDH1 and PTEN allelic expression had been identified. 

Through the TMPRSS2-ERG work, fourteen primary samples were fractionated in to SC/TA and CB 

subpopulations from which RNA and chromatin were isolated. This material is sufficient for 

further study of histone modifications and the impact that they may have upon allelic expression 

in prostate cancers. 

Transcriptional bursting would have to be accounted for in further studies and remains a blight on 

otherwise powerful transcriptional datasets produced by microarrays and RNA-seq (486). Due to 

the temporally asynchronous production of mRNA product, techniques that rely on a single 

snapshot in analysis are incapable of determining stable RME in the absence of other 

methodologies or repeated time-points. Transcriptional bursting of TMPRSS2 is unlikely as ERG 

protein levels and localisation were assessed in fusion positive cells by IF (246). Subpopulations 

that expressed only the fused allele expressed the ERG protein and in cultures that exclusively 

expressed unfused TMPRSS2 mRNA, the transcription factor protein was absent. ERG half-life in 

prostate cells is longer than typical bursts of allelic transcription (904) yet this may vary in the 

primary cultures meaning that, either ERG protein turnover is rapid (in this microenvironmental 

context) or there is a stability in allelic expression of the gene beyond that of transcriptional 

bursting in the epithelial subpopulations of primary prostate epithelial cells.  

The impact of selective allelic expression in cancer is vast as it allows flexible expression of disease 

genes in varying contexts of differentiation and carcinogenesis. To gain further knowledge into 

the pervasiveness of this phenomenon would only serve to deepen our understanding of the 

disease and inform future treatment choices as clinicians progress towards the ultimate goal of 

personalised prostate cancer medicine; tailored treatment of each and every man’s cancer at an 

individual level. 
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8.2 – LTP induced signalling and cell fate outcomes in prostate epithelial subpopulations 

Investigation of the transcriptional response to LTP treatment in the primary culture system 

revealed induction of stress signalling and activation of multiple pathways that can impact cell 

fate decisions. Analysis of how individual cell populations contribute to whole culture response 

and how cell fate outcomes are reached by the signalling networks initiated by plasma are 

required to ascertain pathways that are treatment-actionable. 

To confirm that the reactive species created by LTP were the primary agent in the induction of 

cellular transcriptional response, experiments using ROS scavengers, such as the vitamin E 

analogue trolox or N-actelycysteine (905, 906) would allow rescue of signal transduction through 

AP-1 and cleavage of the Notch receptor if reactive species were responsible. There is also the 

possibility that the electroporative effects of LTP (790, 791) may cause mechanical release of the 

NICD by disrupting the cell membrane. Use of the scavenging molecules should ascertain if Notch 

cleavage is a ROS-independent event or whether reactive species are responsible for the 

upregulation of Notch target genes. 

As previously discussed, the mixing of progenitor and more differentiated cells can dilute the 

transcriptional signature produced by either cell pool if the other in non-responsive. To fully 

appreciate the differences between the cell populations in which resistance may either be 

inherent or develop following LTP, signatures (both transcriptional and in signalling intermediates) 

from separate epithelial subpopulations need to be established. WP cultures fractionated into 

SC/TA and CB cells would be treated with LTP and the subpopulation response measured using 

microarray and protein analysis. The reduction in cellular heterogeneity should allow 

transcriptional signatures to be viewed more clearly – such as Notch signalling in the SC/TA cells. 

From the knowledge of varying responses in the subpopulations, indicators of the different 

signalling pathways activated (AP-1, Nrf2, Notch, NF-kB) would be chosen. Ideally this would be in 

conjunction with live cell imaging to map changes in responsive cell populations over a longer 

time-course – ie. does the pJun population die after 24 hours? Monitoring protein 

levels/subcellular localisation of the responsive mRNA transcripts such as the NR4A isoforms and 

those of the Notch signalling pathway; NRARP, HES1 and HEY1, could be useful here and would 

allow the initiated transcriptional response to be resolved in cells. The appropriate marking of 

positive Notch response, positive Jun response and positive Nrf2 response would allow tracking of 

populations of cells, from initial signalling to final cell fate outcome. To this end, SmartFlares 

would have been the ideal experimental tool as they would allow real time activation of specific 

signalling pathways to be viewed due to gene expression changes following LTP treatment. In the 

failure to mark signalling intermediates, specific si/shRNA or small molecule inhibition of 

individual pathways, up- and downstream of transactivation, will be sufficient to tease apart the 
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pathways critical in LTP resistance and survival, from those that direct cell death or are completely 

inconsequential in the determination of cell fate. In the case of Notch signalling, particular 

monitoring of differentiation antigens before and after plasma exposure (with and without Notch 

receptor inhibition) would be interesting in validating whether LTP-induced ROS impact balances 

within the epithelial hierarchy of the prostate. 
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Appendices 

A.1 – Complete Sanger sequence traces of all samples; TMPRSS2, SPOP, PTEN & IDH1 

 



257 

 

FIGURE 79 – TMPRSS2 exon 6 Sanger sequence traces. 

Heterozygosity at the rs12329760 position detected in the PCR product is displayed in, and 

marked above traces.  
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FIGURE 80 – SPOP exon 6 and 7 Sanger sequence traces of all samples. 

The rs2066747 SNP status of the sample is displayed in, and marked above traces. 
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FIGURE 81 – PTEN exon 5 Sanger sequence traces of all samples. 

The rs398123319 SNP status of the sample is displayed in, and marked above traces. 
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FIGURE 82 – IDH1 exon 6 Sanger sequence traces of all samples. 

Traces show the location of the most frequent IDH1 mutation; R132H. 
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A.2 - Development of P4E6 as a stress signalling model of prostate cancer 

Primary cultures have limitations in biological research as they are difficult to transfect and also 

don’t grow to cell numbers large enough for some analytical techniques. Access to an easy-to-use 

model of LTP induced stress signalling would be advantageous in discerning some of the 

molecular details in the response. 

Luciferase assays allow an accurate assessment of stress pathway transcriptional activation by 

measuring luminescence initiated by reporter Luciferase expression. In this context, the Luciferase 

gene has been placed downstream of a series of transcription factor elements on a plasmid. 

Promega supply a number of stress-reporter luciferase constructs. AP-1 and ARE (Nrf2) stress-

reporter Firefly luciferase plasmids were acquired alongside constitutive Thymidine Kinase (TK) 

and CMV Renilla luciferase constructs. The constitutive reporters allow transfection efficiency to 

be estimated and normalised between conditions. The CMV promoter was used to optimise initial 

transfection of the cell lines and the TK for use in the stress reporter dual luciferase assay as CMV 

promoters can be transactivated by SAPKs such as JNK (907). Vectors were prepared in competent 

bacteria and their identity confirmed by double restriction digest using the publicly available 

vector sequences provided by Promega (Figure 83A). Optimising the transfection of the BPH-1 

and P4E6 cell lines was attempted using a GFP plasmid. BPH-1 cells are usually easy to transfect 

however, using the XtremeGene reagent and varying seeding densities, transfection efficiency 

didn’t exceed 30% (Figure 83B). As the XtremeGene system was unsuccessful, Lonza 

Nucleofection – which had previously been used in my laboratory to achieve ~70% transfection 

efficiency in the P4E6 line – was used instead. However, even with varying input plasmid amount 

and seeding density transfection efficiency was poor (Figure 83C). As a result of this and the 

prioritisation of other experiments, the luciferase reporter work was left incomplete. Inclusion of 

Notch reporter luciferase plasmids in future study would ascertain whether P4E6 also show an 

activation of the pathway by LTP. 

P4E6 grow more quickly than primary cultures and have higher replicative longevity meaning that 

the cell numbers needed for transcription factor ChIP could be reached. 20x106 cells were to be 

used for each condition; untreated, arsenite and LTP treated. Sonication cycles were tested on 

P4E6 chromatin. A program of 45 cycles was used to concentrate fragments between 200-1000bp 

(Figure 84). Post-treatment time-points for the cross-linking of chromatin in treated P4E6 cells 

was determined using the HMOX1 and JUN expression time-courses, (Figure 60A+B) 0.5 hours 

following treatment was chosen for Jun and the 4 hour time-point for Nrf2 – as the transcription 

factors would be expected to be bound to promoter elements here to cause the rise in target 

gene expression.  Unfortunately, due to prioritisation of other work, the ChIP experiments, like 

the luciferase work was unable to be completed. 
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A continuation of both streams of study and adaptation of new ChIP techniques to reduce cell 

number requirements is required to characterise LTP stress signalling in the P4E6 cell line and 

determine whether it is a faithful representation of primary cell LTP response. 
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FIGURE 83 - Stress-reporter Luciferase vector preparation and optimisation of P4E6 transfection. 

A) Double restriction digest of stress and constitutive reporter Firefly (F) and Renilla (R) Luciferase 

(Luc) plasmids to confirm construct identity. B) Transfection of the BPH-1 cell line, seeded at 

increasing densities, with GFP using the XtremeGene reagent. Black scale bar is 25µm. C) 

Transfection of the P4E6 cell line with GFP by Nucleofection. Cells were seeded at increasing 

densities and amount of input plasmid was either 1 or 2µg. Black scale bar is 100µm.  
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FIGURE 84 - Optimisation of P4E6 chromatin sonication. 

Increasing sonication cycle number produce fragmentation of the chromatin until an enrichment 

of fragments less than 1000bp was produced at 45 sonication cycles.  
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List of Abbreviations used 

2-HG – 2-hydroxygluturate 

ADT – Androgen Deprivation Therapy 

ALL – Acute Lymphoblastic Leukaemia 

AML – Acute Myeloid Leukaemia 

AP-1 – Activator Protein 1 

AR – Androgen Receptor 

ARE – Antioxidant Response Element 

AR-V – Androgen Receptor splice variant 

ASAR – Asynchronous Replication and Autosomal RNAs 

AZ – Anterior Zone 

BCA -Bicinchoninic Acid  

BET – Bromodomain and Extraterminal 

bHLH – basic Helix-Loop-Helix 

BLAST – Basic Local Alignment Search Tool 

BM – Basement Membrane 

bp – base pair 

BPH -Benign Prostatic Hyperplasia 

BSA – Bovine Serum Albumin 

BTB – Bric-a-brac/Tramtrack/Broad 

CB – Committed Basal cell 

CDK – Cyclin Dependent Kinase 

ChIP – Chromatin Immunoprecipitation 

CK - Cytokeratin 

CLL – Chronic Lymphoblastic Leukaemia 

CMV – Cytomegalo Virus 
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COSMIC – Catalogue Of Somatic Mutation In Cancer 

COX – Cytochrome c Oxidase 

CRISPR – Clustered Regularly Interspaced Palindromic Repeats 

CRL3 - Cullin3-RING E3 ligase 

CRPC – Castrate Resistant Prostate Cancer 

CRUK – Cancer Research United Kingdom 

CSC – Cancer Stem Cell 

Ct – Threshold Cycle value 

CTC – Circulating Tumour Cell 

CZ – Central Zone 

DAH – Differentiation Associated Hypermethylated 

DAPK1 – Death Associated Protein Kinase 1 

DBD – DNA Binding Domain 

dCas9 – deactivated Cas9 

DHT – Dihydrotestosterone 

DICD – Delta Intracellular Domain 

DLL- Delta-Like 

DNA – Deoxyribo Nucleic Acid // c (prefix) – copy // g (prefix) - genomic 

DNMT – DNA Methyltransferase 

DRE – Digital Rectal Exam 

DSB – Double Strand Break 

DTT – Dithiothreiotol 

DUSP1 – Dual Specificity Phosphatase 1 

EBV - Epstein-Barr Virus 

EGF – Epidermal Growth Factor 

EMT – Epithelial to Mesenchymal Transition 
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ER – Endoplasmic Reticulum 

ER – Estrogen Receptor 

ESC – Embryonic Stem Cell 

FAK – Focal Adhesion Kinase 

FC – Field Cancerisation 

FCS – Foetal Calf Serum 

FGF – Fibroblast Growth Factor 

FISH – Fluorescent In Situ Hybridisation 

FP – Forward Primer 

G – (prefix to a number) Gleason 

GF – Growth Factor 

GO – Gene Ontology 

GPX – Glutathione Peroxidase 

GR – Glucocorticoid Receptor 

GSH – Glutathione 

GSI – Gamma Secretase Inhibitor 

GSR – Glutathione Reductase 

H – followed by 1,2,3 or 4 – Histone 

HCA – Heterocyclic Amines 

HDAC – Histone Deacetylase 

HIFU – High Intensity Focused Ultrasound 

HMOX - Haem Oxygenase 

HMT – Histone Methyltransferase 

HPV – Human Papillomavirus 

hr – hour/s 

HRR – Homologous Recombination Repair 
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HSC – Haematopoietic Stem Cell 

HSPA1A – Heat Shock Protein A1A 

ICR – Imprinting Control Region 

ID – Inhibitors of Differentiation 

IDH1 – Isocitrate Dehydrogenase 1 

IF – Immunofluorescence 

IGF – Insulin-like Growth Factor 

IL – Interleukin 

JAG – Jagged 

JICD – Jagged Intracellular Domain 

LA – Left Apex 

LB – Left Base 

LBD – Ligand Binding Domain 

LH – Luteinising Hormone 

LHRH – Luteinising Hormone Releasing Hormone 

LIMMA - Linear Models for Microarray and RNA-seq Data 

LM – Left Mid 

LOH – Loss of Heterozygosity 

LRP – Laparascopic Radical Prostatectomy 

LTP – Low Temperature Plasma 

MAF – Minor Allele Frequency 

MAPK – Mitogen Activated Protein Kinase 

MATH – Meprin and TRAF homology 

MDS – Multidimensional Scaling 

MET – Mesenchymal to Epithelial Transition 

min – minute/s 
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MM – Master Mix 

MMP – Matrix Metalloproteinase 

mpMRI – multi-parametric Magnetic Resonance Imaging 

NEPC – Neuroendocrine Prostate Cancer 

NHEJ – Non -homologous End Joining 

NICD – Notch Intracellular Domain 

NIK – NF-kB Inducing Kinase 

NK – Natural Killer cells 

NR4A – Nuclear Receptor 4 A 

NRARP - Notch Regulated Ankyrin Repeat Protein 

NRG - NOD-Rag1-/--ILR2γ-/- 

NSG – NOD-SCID-ILR2 γ-/- 

NTC – No Template Control 

NTD – N Terminal Domain 

ORP – Open Radical Prostatectomy 

p – (prefix to number) passage 

p – (prefix to protein) phoshpho- 

PAP – Prostatic Acid Phosphatase 

PBS – Phosphate Buffered Saline 

PCR – Polymerase Chain Reaction // q (prefix) – quantitative // RT (prefix) – reverse transcriptase 

PDGF – Platelet Derived Growth Factor 

PDT – Photodynamic Therapy 

PDX – Patient Derived Xenografts 

PDZ - PSD-95/Dlg/Zo1 

PFA – Paraformaldehyde 

PHD – Prolyl Hydroxylase Domain containing protein 
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PhIP - 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine 

PIA – Prostatic Inflammatory Atrophy 

PIN – Prostatic Intraepithelial Neoplasia // hg (prefix) – High Grade 

PIP – Phosphatidylinositol phosphate 

PLB – Passive Lysis Buffer 

POZ - Pox virus and Zinc finger 

PR – Progesterone Receptor 

PRC2 – Polycomb Repressive Complex 2 

PRDX – Peroxiredoxin 

PSA – Prostate Specific Antigen // f (prefix) – Free // c (prefix) - Complexed 

PTEN - Phosphatase and tensin homologue deleted on chromosome ten 

PTM – Post Translational Modification 

PTP – Protein Tyrosine Phosphatase 

PZ - Peripheral Zone 

RA – Right Apex 

RAR/RXR – Retinoic Acid Receptor 

RB – Right Base 

RIPK - Receptor Interacting serine/threonine Protein Kinase 

RM – Right Mid 

RME – Random Monoallelic Expression 

RNA – Ribo Nucleic Acid // m (prefix) – messenger // lnc (prefix) long non-coding // mi (prefix) – 

micro // si (prefix) - short-interfering // sh (prefix) - short-hairpin 

RNS – Reactive Nitrogen Species 

ROS – Reactive Oxygen Species 

RP - Reverse Primer 

RRP – Robotic Radical Prostatectomy 
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RT – Radiotherapy // EB (prefix) – External Beam 

RT – Reverse Transcriptase or Room Temperature or Radiotherapy 

SAPK – Stress Activated Protein Kinase 

SBC – SPOP Binding Consensus 

SC – Stem Cell 

SCM – Stem Cell Media 

SDO – Single Delta Oxygen 

SDS – Sodium Dodecyl Sulphate 

SEM – Standard Error of the Mean 

SHH – Sonic Hedgehog 

SNP – Single Nucleotide Polymorphism 

SOD – Superoxide Dismutase 

SOX9 – SRY box 9 

SPOP - Speckled-type POZ protein 

SQSTM1 – Sequestosome 1 

SRXN – Sulfiredoxin 

SSB – Single Strand Break 

STHLM3 – Stockholm 3 

STI – Sexually Transmitted Infection 

T – Treated 

TA – Transit Amplifying cell 

TAE – Tris-Acetate-EDTA 

TBS – Tris Buffered Saline 

TCGA – The Cancer Genome Atlas 

TERT – Telomerase Reverse Transcriptase 

TET – Ten Eleven Translocase 
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TIC – Tumour Initiating Cell 

TK – Thymidine Kinase 

TNFR – Tumour Necrosis Factor Receptor 

TNM – Tumour, Nodes, Metastases 

TRUS – Transperineal Ultrasound 

TSG – Tumour Suppressor Gene 

TURP – Transurethral Resection of the Prostate // ch (prefix) – channel 

TXN – Thioredoxin 

TXNRD1 – Thioredoxin Reductase 1 

TZ – Transitional Zone 

U – Untreated 

UGE – Urogenital Epithelia 

UGM – Urogenital Mesenchyme 

UGS – Urogenital Sinus 

uPA – urokinase Plasminogen Activator 

UTR – Untranslated Region 

V - Volts 

VEGF – Vascular Endothelial Growth Factor 

WP – Whole Population 

XCI – X Chromosome Inactivation 

XIC – X chromosome Inactivation Centre 

αKG – α-ketogluturate 
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