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Abstract

It is vital that we develop our understanding of how crops will respond to climate change

given the likely need to increase food production by 2050. The contribution of potatoes

to the global food supply is increasing - consumption more than doubled in developing

countries between 1960 and 2005.

Analyses of climate impacts on potato compared to other major crops are relatively

rare. Studies involving biotic stresses in crop modelling are also comparatively rare -

around 70% of models do not incorporate pest and disease damage. This thesis simulated

abiotic and biotic impacts of climate change to 2050 to identify risks and opportunities for

global potato agriculture. The GLAM crop model is used to assess abiotic impacts and

the SimCastMeta model is used to assess the impacts of the most important global disease

of potato, late blight Phytophthora infestans. A further analysis uses pesticide data as a

proxy for pest pressures, showing that warming leads to pesticide increases in temperate

areas.

GLAM is evaluated for potato simulation in two contrasting climates using data from

Colombian regions and Aberdeen, UK. The model shows skill in simulating observed

weather-yield relationships. National yield data are then used to test a global parame-

ter configuration. Results show realistic planting dates and crop growth. Skill is low due

to insignificant observed weather-yield relationships. Regional results show higher skill

than global results, primarily due to more parameter detail.

Global model results show skill in reproducing observed yields in Europe. Elsewhere,

correlations are generally positive but low. Future climate simulations show that yields

are expected to increase in most cases, primarily as a result of CO2 fertilisation, although

the magnitude of increases are uncertain due to the uncertainties around future climate

and CO2 fertilisation. Temperature increases in some regions result in shorter durations

and reduce yield increases. Late blight is predicted to increase more in temperate regions,

particularly if adaptation to climate change is considered. Taken together, abiotic and

biotic impacts show potential opportunities for potato agriculture in temperate latitudes

providing pests and diseases can be sustainably managed.
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Chapter 1

Introduction

1.1 Motivation and overview

Increasingly, the focus and funding across various scientific disciplines is being aimed at

real-world problems, such as the impacts of climate change on agricultural systems (Müller

et al., 2017; Challinor et al., 2009b). It is widely reported that production has to increase

substantially by 2050 to achieve global food security (e.g. Ramankutty et al., 2018; God-

fray et al., 2010; Chakraborty and Newton, 2011). The extent of any required production

increase depends on future socio-economic factors such as dietary choices, however (Tom-

linson, 2013). Whilst access and the sustainability of food are also key to food security,

production remains critically important (Godfray and Garnett, 2014). It is therefore vital

that we develop our understanding of how crops will respond to climate change.

Potato production is rising globally, meaning that potatoes are likely to become an

increasingly important part of the efforts to achieve global food security in the coming

decades. The contribution of potatoes to the global food supply is increasing steadily

in developing countries especially, with potato consumption more than doubling between

1960 and 2005 to over 100 million tonnes in India and China alone (FAO, 2005). More on

where potatoes are grown and their importance for food security can be found in Section

1.4.

Studies concerning potato agriculture are relatively few in number compared to other
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major staple crops, maize, rice, wheat, sorghum and soybean. Global production of pota-

toes (327 million tonnes in 2005) is greater than that of soybean (215 million tonnes) and

sorghum (60 million tonnes), approximately half that of wheat (627 million tonnes) and

rice (634 million tonnes) and less than half that of maize (714 million tonnes) (FAO, 2005).

A Web of Knowledge search taken from Brown et al. (2011) of “Potato and (radiation

interception or radiation use efficiency or photosynthesis or extinction coefficient or phyl-

lochron or leaf appearance or leaf size or leaf area index or harvest index)” for the years

1950 to 2016 resulted in 7006 studies for potato. The same search for wheat, maize and rice

yielded 27901, 18103 and 16357 studies respectively. When global production is weighted

by the number of these studies, a striking picture develops - the relative number of studies

on potato physiology and crop modelling is very low for its level of global crop produc-

tion (see Figure 1.1). Reasons for this neglect could include the difficulties in observing

below-ground physiology and the complexities of modelling a vegetatively propagated crop

(Brown et al., 2011).
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Figure 1.1: Figure relating the number of crop physiology and crop modelling studies to the level
of global production over 1995 to 2005 for six major crops – the crop modelling “Neglect Index”.

Biotic stresses (stresses to crops caused by other living organisms) are also neglected

within the crop modelling community – around 70% of crop models do not incorporate pest

and disease damage (Rivington and Koo, 2011). An understanding of the evolution of food

systems is also needed, including adaptation to climate change and mitigation efforts, land

use changes and socio-economic impacts. In order to make these comprehensive agricultural

forecasts we need an understanding of how crops will respond to climate change, and in

some cases this is still lacking.

This thesis primarily investigates how abiotic factors influence potato agriculture over

the coming decades. It combines neglected areas of crop modelling in a framework designed

to identify regions across the globe that present risks and opportunities for potato yields

with climate change. The thesis also accounts for the impacts of a globally important
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disease of potato, late blight Phytophthora infestans, as well as a broader analysis of pest

pressures and climate change using proxy pesticide data.

This chapter introduces climate change and crops, the tools used to investigate them

and potato agriculture specifically. Firstly, an overview of how climate change is predicted

to impact crops through direct abiotic impacts is provided (Section 1.2.1). Section 1.2.2

then introduces crop biotic stresses: how climate change impacts pests and diseases (Sec-

tion 1.2.2.1) and in turn how the crops themselves are affected by these changes to pests

and diseases (Section 1.2.2.2).

The methods used to make these predictions are discussed in Section 1.3. Climate

models are discussed in Section 1.3.1 – their structure (Section 1.3.1.1), how they simulate

human-induced climate change (Section 1.3.1.2), ensembles of multiple models (Section

1.3.1.3) and the processing of output for use in crop models (Section 1.3.1.4).

Crop models are discussed in Section 1.3.2. Section 1.3.2.1 introduces different types of

crop models and issues of appropriate model complexity and spatial scale. Section 1.3.2.2

gives a review of crop modelling from local to global domains. Section 1.3.2.3 provides

a summary of how process-based crop models simulate crop growth and development.

Section 1.3.2.4 details models of pests and diseases. Section 1.3.2.5 discusses some of

the important uses of crop models, ranging from simulations that assess climate change

adaptation to inclusion within broader food security assessments.

Potatoes are discussed specifically in Section 1.4, firstly providing an overview of global

potato agriculture. Potato growth and development are then described (Section 1.4.1), be-

fore the projected impacts of climate change on potato agriculture are summarised (Section

1.4.2).

Thesis objectives are outlined in Section 1.5, along with the chapters that fulfil these

objectives.
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1.2 The impacts of climate change on food security

The earth has warmed on average globally from 0.72 - 0.85◦C since 1850 (Stocker et al.,

2013). This warming is unprecedented both in terms of its anthropogenic source (Shine

and Sturges, 2007) and its speed; the current warming trend is the strongest of the last

millennium (Jones et al., 2001).

With warming, species shift their distribution to match development and growth to

appropriate temperature conditions (Chakraborty, 2013). Chen et al. (2011) found a me-

dian shift of species distribution of 16.9 km per decade, but there was substantial variation

across taxa. Lowland forests are responding slower to warming than highland forests, for

example (Bertrand et al., 2011). Without human intervention, such natural shifts to adapt

to climate change do not occur in agricultural systems.

Climate change is expected to be harmful to food security, especially in areas that are

already suffering from malnutrition (Wheeler and von Braun, 2013). Yields often display a

negative response to rising temperatures (Challinor et al., 2014b), although technological

improvements and potential increases in photosynthesis from increasing atmospheric levels

of carbon dioxide (CO2) may mitigate losses (Lobell and Field, 2007). Lobell et al. (2011)

found that climate (primarily temperature) trends resulted in yield decreases for maize

and wheat despite technology and CO2 fertilisation gains.

Tropical countries are at greater risk from climate change as they face developmental

challenges and generally use more traditional agricultural techniques (for example, relying

on rainfed crops as opposed to irrigation – Portmann et al., 2010). A significant warming

signal is also likely to emerge earliest in tropical countries (Mahlstein et al., 2011).

It is important to comprehensively examine agriculture in the context of climate change

as well as just looking at abiotic impacts on crops (described below in Section 1.2.1).

Multiple simultaneous climate shocks could lead to global food security crises (Homer-

Dixon et al., 2015), and large scale holistic modelling efforts are needed that can coordinate

risk assessments and food security policies worldwide (Challinor et al., 2017).

Section 1.2.1 outlines some of the projections for the abiotic impacts of climate change
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on crops. Section 1.2.2 discusses the biotic impacts of climate change specifically.

1.2.1 The impacts of climate change on crops

Given the likely need to increase food production, it is essential to quantify how a changing

climate will impact yields. The distribution of temperature anomalies has shifted and

broadened, meaning that more extreme climatic events and higher mean temperatures are

now becoming increasingly likely (Hansen et al., 2012). In hotter conditions, crop yields

often fall (Battisti and Naylor, 2009; Challinor et al., 2014a). Estimates of future hot

seasons are therefore important for planning appropriate adaptation to climate change.

Challinor et al. (2014b) provide a meta-analysis of yield change with temperature,

generally reporting losses even at small increases of temperature when no management

adaptations to climate change are accounted for. At tropical latitudes, moderate temper-

ature increases are more likely to be detrimental to crop yields with and without adapta-

tion. This was in contrast to the 4th Assessment report of the Intergovernmental Panel

on Climate Change (IPCC), when small yield increases were projected at low temperature

increases (Easterling et al., 2007). As the bulk of the world’s cereals come from low- to

mid-latitudes, small to moderate increases in temperature are likely to severely hamper

global food security, given the probable required increases in food production. Regionally,

precipitation and CO2 concentration changes will have large impacts on this general global

trend. Temperature increases lead to yield reductions as a result of decreased crop dura-

tions (Hatfield and Prueger, 2015) and the impacts of heat stress (Challinor et al., 2010).

Increasing precipitation can lead to more flooding of cropland, whereas water can become

limiting (i.e. drought conditions) with decreasing precipitation (Saue and Kadaja, 2014).

Increasing CO2 emissions are expected to result in an increase in crop yields due to

increased photosynthetic activity or water use efficiency (Leakey et al., 2009). This could be

counterbalanced, however, by increasing temperatures and changes to precipitation (Lesk

et al., 2016; Lobell et al., 2014). Studies sometimes account for the impacts of climate

change not only on mean yield levels but also on the variability of yields, with higher

extreme yield years (i.e. more likely crop failure) usually predicted in the future (e.g.
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Chavez et al., 2015; Challinor et al., 2010). In global analyses of major crops, warming

usually leads to decreases in yields and CO2 fertilisation to increases in yields, although

results are crop, region and scenario-specific (Raymundo et al., 2017b; Deryng et al., 2014).

Crop-climate models are the primary tools with which estimates are made of climate

change impacts on crop yields (see Section 1.3 for more information on how these work).

For example, Lobell et al. (2011) used empirical modelling to quantify the impacts of

temperature and precipitation changes on yield for four international staple crops from

1980 to 2008. Globally, wheat and maize production declined by 5.5 and 3.8% respectively,

whereas soybean and rice showed no average decline. Climate impacts often exceed 10%

of the rate of yield change from technological and management improvements, exerting a

“drag” on yield improvements over time (Lobell et al., 2011).

Other studies take a mechanistic approach to model the impacts of climate on yield.

For example, the General Large Area Model for annual crops (GLAM; Challinor et al.,

2004) has been used for a variety of crops and regions to simulate the impact of climate

on yield. Challinor et al. (2010), for example, found that crop failures of spring wheat in

north-east China are due to become more frequent with increasing heat stress. Butter-

worth et al. (2010) used the crop simulation model STICS (Simulateur mulTIdisciplinaire

pour les Cultures Standard) to simulate oilseed rape (Brassica napus) growth and yield.

They predicted that oilseed rape yields will increase in Scotland and decrease in Southern

England. Differences between statistical and process-based models are discussed in more

detail in Section 1.3.2.

Agricultural adaptations (distinct from biological evolutionary adaptations) to climate

change can be defined as activities that reduce negative or enhance positive impacts of

climate change (Lobell, 2014) – the IPCC define adaptation as “the adjustment in natural

or human systems in response to actual or expected climatic stimuli or their effects, which

moderates harm or exploits beneficial opportunities” (Field et al., 2014). Adaptations

vary greatly in scope and design, from autonomous adaptations that involve small-scale

incremental changes to larger scale and more transformative adaptations (Kates et al.,

2012). Climate Smart Agriculture (CSA) aims to take into account not only adaptation
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but also mitigation to climate change, given the growing need to do both simultaneously

(Harvey et al., 2014).

It is important to note that projections of climate change impacts on yields are uncer-

tain due to various factors, including the input data used. Osborne et al. (2013) used 14

atmosphere-ocean global climate models (GCMs) to quantify the uncertainty in climate

inputs. Soybean and spring wheat were simulated globally using GLAM under baseline

and 2050 climatic conditions, using the A1B SRES emissions scenario (broadly a middle-of

the road scenario, with high early emissions that peak mid-century before tailing off) along

with different measures of adaptation. The spread of global yield change across GCMs and

adaptation strategies ranged from 1 to -52%. There was no consistent pattern of impacts

on yield across GCMs for crops and regions, highlighting the importance of accounting for

GCM uncertainty. However, Asseng et al. (2013) found that the uncertainty associated

with crop models was greater than that of the downscaled climate model projections. We

therefore need to be careful in our use and interpretation of ensembles depicting large-scale

impacts of climate change on crop yield.

1.2.2 Pests and diseases

Crop biotic stresses, or pests and diseases (hereafter collectively referred to as “pests”) are

a major limitation on crop yields in many parts of the world. Pests are incredibly diverse,

with organisms from many taxa (including bacteria, viruses, fungi, oomycetes, insects and

nematodes) contributing to agricultural losses. Fungi and oomycetes are among the most

significant pest groups in terms of crop losses (Bebber and Gurr, 2015; Oerke, 2006). For

example, the most significant global disease of potato (Solanum tuberosum) is the oomycete

potato late blight (Phytophtora infestans) (Oerke, 2006). This thesis includes modelling

aimed at assessing the potential for late blight to adapt to climate change and impact

potato agriculture. Particular attention is therefore given to late blight in this section.

Section 1.2.2.1 discusses the impacts of climate change on pests. Section 1.2.2.2 then

reviews the predicted impacts of pests on crops. Modelling of pests within crop-climate

impacts science is detailed in Section 1.3.2.4.
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1.2.2.1 The impacts of climate change on biotic stresses

Species have to migrate, evolve or die in response to climate change (Chakraborty, 2013).

Many pest species are expected to respond faster than their host crops to changing climate

conditions because of large population sizes, short generation times and strong selection

pressures (Bale et al., 2002). Aphids, for example, are an insect group expected to respond

rapidly to climate change because of their short generation times and low developmental

threshold temperatures (Harrington et al., 2007).

Late blight is an example of a fungal-like pathogen of global importance. Blight is

appearing earlier in the growing season in response to increasing temperatures (Roos et al.,

2011; Gregory et al., 2009). In addition, there is evidence of rapid spread of new varieties

of late blight that have the potential to reproduce sexually and add to the evolutionary

potential of the species (i.e. the adaptation potential of a species to respond to changing

conditions) (McDonald and Linde, 2002; Cooke et al., 2012; Hwang et al., 2014; Roos et al.,

2011).

Temperature is the most important environmental variable impacting insect devel-

opment, abundance and persistence (Bale et al., 2002). In temperate regions it can be

especially important; Svobodová et al. (2014b) showed that distributions of European corn

borer (Ostrinia nubilalis), European grape vine moth (Lobesia botrana) and codling moth

(Cydia pomonella) in southern Moravia and northern Austria are particularly determined

by air temperature. In tropical regions, precipitation can be important in determining pest

pressures, for example for pests of coffee in Zimbabwe (Kutywayo et al., 2013). Humidity is

a primary determinant for the intensity of fungal pest outbreaks, with warmer and wetter

conditions generally favourable for pests (Bebber, 2015; Sparks et al., 2011).

Pests colonise new areas as a result of both anthropogenic and natural means. As

human societies become more interconnected, this anthropogenic dissemination of pests

will likely increase (Bebber et al., 2013). For example, late blight has repeatedly been

introduced by humans into non-native regions (Anderson et al., 2004).

Whilst the initial spread of pests is often the result of human intervention, climatic
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conditions are likely to determine whether or not a species can persist in a new area.

Warming is predicted to result in an increasing latitudinal range of pests through the

increasing availability of host crops, as well as through the direct effects on the pests

themselves (Bebber et al., 2013; Anderson et al., 2004). Greater winter survival is often an

important factor behind pests (especially insects) being able to survive at higher latitudes

and thus extending their range (Bale et al., 2002). For pests where range expansion is

limited by conditions for initial establishment, extreme conditions could make large shifts

possible (Garrett et al., 2013). Bebber et al. (2013) calculate an average poleward shift

of pests of 2.7±0.8 km yr−1 since 1960, although this is variable across pest taxonomic

groups. Higher-latitude countries are more able to detect pest movement due to greater

observational capacity (Bebber et al., 2014b). Therefore, in the absence of a climate-

induced signal, we would expect a trend towards the equator (opposite of the observed

poleward-trend).

There are two broad ways organisms can adapt to a changing climate: phenotypic

plasticity and genetic adaptation. Phenotypic plasticity describes the ability of an organism

to respond to environmental changes by changing its behaviour. In the context of climate

change, this often manifests itself as range shifts (e.g. Bebber et al., 2013) and changes

in seasonal cycles (e.g. for late blight - Gregory et al., 2009). Genetic adaptation (or

evolution) describes adaptation through genetic changes by means of natural selection to

better suit environmental conditions.

Crop pathogens have shown the potential to respond to host resistance (Gregory et al.,

2009), and evolve resistance to pesticides (Maino et al., 2018) with short generation times

and large populations aiding this process (Maino et al., 2018; Cable et al., 2017); pathogen

evolution may be more rapid when large pathogen populations are present, so increased

over-wintering and over-summering will also likely contribute as they lead to larger pop-

ulations (Garrett et al., 2006). With respect to a changing climate, rapid evolution of

genotypes more suited to warmer conditions has been reported for diseases in the past (e.g.

for stripe rust, caused by Puccinia striiformis; Milus et al., 2006). The fungal pathogen

Batrachochytrium dendrobatidis has shown evolutionary potential with different isolates
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showing adaptation to different environmental conditions (Fisher et al., 2009). Evolution

could also accelerate with increased CO2 due to enhanced host fecundity (Chakraborty

and Datta, 2003). Warming has been linked with increasing rates of adaptation in bac-

teria (Davis et al., 2005). Another example of rapid pest evolution is provided by the

redlegged earth mite Halotydeus destructor, where recent range expansions are outside of

previous temperature limits (Macfadyen et al., 2018).

New clonal varieties of late blight are emerging (Gevens and Seidl, 2015; McDonald

and Linde, 2002), with one clonal lineage having previously dominated the majority of

blight populations (Goodwin et al., 1994). Different varieties have been shown to re-

spond differently to temperature with respect to sporangial germination (e.g. Mizubuti

and Fry, 1998; Danies et al., 2013) and lesion growth rate (Seidl Johnson et al., 2015).

Mizubuti and Fry (1998) reported significant differences among lineages (US-1, US-7 and

US-8) for sporangial germination at 15, 20, and 25◦C, with this varying across lineages by

approximately 35% at 15◦C and 50% at 20◦C. Sporulation rate was reported to vary by

approximately 33% across US-22, US-23, and US-24 clonal lineages at 20◦C (Seidl Johnson

et al., 2015). Optimal temperatures for blight lesion growth rates were also found to vary

on tomato leaves (tomato being closely related to potato) from 15.8 to 21.5◦C. Indirect

germination was faster for US-24 than that of three other clonal lineages studied by Danies

et al. (2013); for example, after 30 minutes at 15◦C, 13% of US-24 sporangia had released

zoospores compared with 4% of US-23 sporangia. These studies collectively provide a body

of evidence for a fitness advantage of certain genotypes at different temperatures. This

results in adaptive advantages of certain varieties of blight in different areas – in other

words, blight is better able to thrive in different temperature conditions and this results

in some varieties being more virulent than others in different conditions. These studies

do not usually feature changes to humidity, which is also important for blight populations

(Bebber, 2015).

1.2.2.2 The impacts of biotic stresses on crops

Global average yield losses to pests are 40% for potato, 28% for wheat and 37% for rice

(Oerke, 2006). Losses tend to be higher in Africa and Asia compared to North America
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and Europe, although this is crop- and region-dependent – potatoes tend to follow this

general pattern, however, with most high production countries having slightly lower losses

due to better management of the crop (Oerke, 2006). Diseases account for much of these

losses, with fungal diseases considered especially challenging to global food security and

predicted to become even more so with climate change (Bebber and Gurr, 2015; Fisher

et al., 2012). Pests are also increasingly saturating host crops across the world (Bebber

et al., 2014a).

Whilst pests are expected to continue to spread geographically (see Bebber et al., 2013),

it is uncertain how much of an impact climate change will have on the magnitude of pest

attacks and therefore their impacts on crops. This is due to the huge diversity of crop-pest

interactions with climate as well as a lack of data (Donatelli et al., 2017). Specific regional

examples exist of predicted changes to pest distributions and in some cases yield changes,

but global studies are lacking. For example, Van der Waals et al. (2013) projected the

development rate of pests and pathogens of potato to increase through to 2050 in South

Africa, meaning that pest pressures are predicted to increase.

Butterworth et al. (2010) looked at the influence of climate change on the yield of

different cultivars of fungicide-treated oilseed rape when impacted by Phoma stem canker

(Leptosphaeria maculans) using the STICS (Simulateur mulTIdisciplinaire pour les Cul-

tures Standard) model and a weather-based regression model predicting pest severity. L.

maculans is the most important disease of oilseed rape in England. Despite L. maculans

being predicted to move north with warming temperatures, epidemics are not expected to

significantly reduce future yields. Southern England, by contrast, is expected to see sub-

stantially reduced yields unless L. maculans epidemics are mitigated. Here, warming leads

to yield losses from increased pest outbreaks, outweighing yield gains due to the increase in

photosynthetic activity that results from increasing levels of CO2. Some resistance genes

are temperature-dependent, so it is important to identify crop varieties that will be effec-

tive under future climatic conditions in the UK. The differences in the results for Scotland

and England demonstrate the complexity of the interactions between crop growth, climate

and disease severity, and hence there is a need to model all of these things in concert.
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Ideally, this requires data on all three aspects of pests, crops and climate change.

Whilst modelling provides the majority of information on the future influence of pests

on crops (see Section 1.3.2.4), other studies use different methods to measure potential

impacts. Schaap et al. (2011) used a semi-quantitative approach to measure the impact of

changing climate extremes on impacts. Their framework utilises expert knowledge to define

thresholds of climate that result in increased climate impacts, including pest damage. From

the changing frequencies of these “climate factors”, resulting economic losses are estimated.

For example, as a result of sustained wet weather (defined as a period of at least 21 days

with more than 0.5 mm precipitation on 75% of the days) being predicted to become less

frequent, yield losses from Phytophthora infestans may fall. Increasingly warm and wet

weather is predicted to result in an increase in Pectobacterium carotovorum incidence.

Some studies use proxy data to predict changing pest impacts on agricultural systems.

Warming is projected to increase pesticide costs and use in the United States by early

and late 21st century, and therefore pest pressures are predicted to increase with warming

(Ziska, 2014; Chen and McCarl, 2001).

In order to provide more precise estimates of the influence of climate on pests – and

the subsequent impacts on yields – modelling is often our best option. In the majority

of crop models, however, the impacts of pests on yield are not accounted for - Rivington

and Koo (2011) found that c. 70% of crop models do not include the simulation of pest

damage. See Section 1.3.2.4 for more details of pest modelling within crop modelling.

1.3 Crop-climate modelling

1.3.1 Climate models

This section introduces climate modelling and how climate model output is prepared for

use with crop models, as used in all the analyses of this thesis. Historical (or baseline)

climate data are used in all analysis chapters in this thesis. Future climate data are used

in Chapters 6 and 7.

Climate models, such as Regional or Global Climate Models (RCMs or GCMs), can be
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used as a source of climate information for crop models. Given that our climate is changing,

it is not reliable to extrapolate current trends to predict climate change. Empirical models

do not allow the complex interactions of systems to be represented which are necessary for

such predictions – numerical (process-based) simulation models, however, allow surrogates

of the climate system to be tested and the uncertainty associated with these predictions

to be measured (Lobell and Burke, 2010).

Subsections that follow describe firstly climate model structure (Section 1.3.1.1), model

forcing (Section 1.3.1.2), model ensembles (Section 1.3.1.3) and lastly downscaling and bias

correction for use in conjunction with crop models (Section 1.3.1.4). For more details on

crop modelling, see Section 1.3.2.

1.3.1.1 Climate model structure

Climate models vary in complexity. Simple energy-balance and statistical models approx-

imate the trajectory of global mean temperature or radiative forcings (e.g. Aldrin et al.,

2012). GCMs partition the layers of the atmosphere, the surface of the earth and the ocean

into grid boxes. They describe how climatic variables change in each grid box over time.

Climate simulations often begin at pre-industrial times and can simulate climate until the

end of the 21st century and beyond.

As scientific understanding of the climate improves we can simulate a greater num-

ber of processes mechanistically. However, limitations in the resolution of GCMs (due

to computational limitations) are important in the sense that local climates cannot al-

ways be represented accurately. Many processes in the climate system take place at scales

finer than are represented in GCMs. Approximations of these processes are then neces-

sary, which leads to much of the uncertainty associated with GCMs. Examples of these

processes are cloud formation and precipitation. Precipitation results from small-scale

convective processes that are increasingly being simulated explicitly rather than parame-

terised empirically (Fosser et al., 2017). Continental-scale temperatures are treated with

higher reliability than those of smaller scales due to averaging over areas reducing internal

variability and increasing agreement between models (Räisänen, 2007).
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In the fifth assessment report of the IPCC, GCMs operate at a typical spatial scale of

around 200 km2, which is too coarse a spatial scale to explicitly represent cloud formation

(Stocker et al., 2013). Such GCMs still need to represent the large-scale effects of clouds,

so parameterisations are used in an attempt to answer questions such as what proportion

of the box is covered by cloud, as well as the effect of this cloud on temperature and

precipitation. These parametrisations all have associated levels of uncertainty. Different

GCMs have been developed that vary in scale, as well as which processes are explicitly

represented (e.g. the carbon cycle). More significant differences between models arise when

models approximate processes, such as cloud formation (Stocker et al., 2013).

1.3.1.2 Climate model forcing

External forcings can be used to simulate the impacts of various factors on the climate sys-

tem. Some of these forcings are “natural” as opposed to anthropogenic. Volcanic eruptions

are an example of a natural forcing; these result in aerosols reaching the stratosphere,

which shield the earth from solar radiation and hence have a temporary cooling effect

(Robock, 2013). Fischer et al. (2014) showed that models are surprisingly consistent in

their response to forcings, with internal model variability providing more uncertainty.

Increasing concentrations of greenhouse gases are an important anthropogenic external

forcing. Such anthropogenic forcing is included in GCMs using scenarios of socio-economic

and technological changes (Stocker et al., 2013; Moss et al., 2010), called Representative

Concentration Pathways (RCPs). Climate model simulations are usually referred to as

“projections” rather than “predictions” as they are contingent on these scenarios (Lobell

and Burke, 2010). Greenhouse gases force a GCM system into trends, such as increasing

temperatures with rising CO2.

1.3.1.3 Climate model ensembles

Within a single model, “perturbed-physics experiments” are used to explore within-model

uncertainty across parameter space (as in Stainforth et al., 2005). An ensemble of different

GCMs can be used to develop a sense of structural uncertainty. It is the differences between
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models in terms of what processes are included and how they are represented that makes

analysing groups of models for climate change projection so essential. The cause of the

spread of model results within ensembles will vary, but is often down to differences in model

resolution and model formulation, or differences in climatic noise, which can be quantified

by looking at within-model ensembles of different initial conditions.

Ensembles can quantify parameter uncertainty using one model (Challinor et al., 2009c)

and model structural uncertainty using many models (as demonstrated by Rosenzweig

et al., 2013). Climate ensembles refer to directly comparable simulations as they use the

same protocols to carry out simulations. These simulations are generated using some or

all of multiple climate projections, multiple climate models and multiple configurations of

the models.

The Climate Model Intercomparison Project 5 (CMIP5; Taylor et al., 2012) is an

example of such a climate model ensemble. It is a coordinated climate modelling framework

designed to provide accurate climate modelling forecasts – a climate multi-model ensemble.

It allows us to examine model differences in poorly understood feedbacks - in particular, the

carbon cycle and cloud formation. It also helps to determine why similarly-forced models

produce different responses. The emissions scenarios outlined in Moss et al. (2010) allow

the assessment of different policy actions on future climate scenarios using an ensemble of

model simulations.

The models selected in ensembles are themselves important (assuming access to all

models is not available); the Inter-Sectoral Impact Model Intercomparison Project (ISI-

MIP) data of 5 bias-corrected GCMs (Hempel et al., 2013) represent a globally-coherent

data set that is a reasonable subset of the CMIP5 ensemble, as demonstrated by McSweeney

and Jones (2016). They found that many more models would have to be included in an

ensemble to offer significant improvement in terms of representing the CMIP5 ensemble.

These data are used in the climate change analyses of Chapters 6 and 7.
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1.3.1.4 Climate model output processing for crop modelling

There are issues with using GCM output as crop model input, whether for historical or

future climates. The spatial scale of grid cells in climate models is typically larger than

that of crop models, leading to a need for the downscaling of the climate output. Regional

dynamical models can be nested into global models, or statistical downscaling can be

used. For both this dynamical and statistical downscaling, spatial detail is added to model

output, but it is often essentially interpolation (Baron et al., 2005). Whilst dynamical

downscaling has been shown to reproduce small-scale extreme events more accurately, the

uncertainty associated with the GCM results is also inherently associated with the regional

output (Lobell and Burke, 2010). In order to characterise this uncertainty, downscaling

from ensembles of GCMs is possible (Jones and Thornton, 2013), as well as comparisons

between different downscaling methods. Additional sources of uncertainty in such climate

projections (aside from parameter and structural uncertainty) come from emission uncer-

tainty and natural variability in weather processes (Lobell and Burke, 2010).

The reliability and realism of climate outputs also needs to be considered. Different

GCMs can predict different absolute changes in temperature, as well as different responses

to increasing anthropogenic forcing. There are various ways of dealing with these biases.

The raw GCM daily output can be used for impacts studies. This is simple but can be

subject to the aforementioned biases; parameter calibration in crop models can help to

deal with both this climate model bias and other factors such as the yield gap between

potential and actual yields (Challinor et al., 2005b). The aforementioned dynamical down-

scaling may be used to help correct bias, although it does not completely eliminate bias

as regional climate model boundary conditions are biased. Weather generators typically

involve fitting an empirical model to daily observations. Monthly mean data from GCMs

are then used in conjunction with the empirical model to produce future daily weather

forecasts. This approach assumes that the empirical model produces the correct variabil-

ity ranges (Hawkins et al., 2013b). The “Delta” method involves adding the monthly mean

change in climate from GCMs to daily observations (not using a weather generator).

Ho et al. (2012) suggest output correction for climate change projections fall into two
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categories: “bias correction” and “change factor”. Bias correction adjusts the projected

GCM output using the differences in the mean and variability between output and obser-

vations. Change factor uses the output baseline values subtracted from future simulated

values, which are added to the present day observed values. Bias correction assumes model

discrepancy stays constant in time; change factor assumes that the change in distribution

from the past to future model simulations is the same as the distribution change from the

past to future observations. These two methods can lead to significant differences in terms

of climate output and therefore the climate impacts results. This is an additional source

of uncertainty in climate and impacts modelling. For all of these methods, the choice of

GCM is important. How to downscale the GCM data, and whether the variability of the

data (as well as the mean) should also be calibrated, are important questions (Hawkins

et al., 2013b).

In order to effectively deal with these biases (and to account for uncertainty), a range

of models are likely to be of use for bettering our understanding of the processes involved

in simulating crop yields, or for helping us quantify uncertainty (see Section 1.3.1.3).

Reanalysis data sets use observational and GCM output data to create data sets that

can be used as baseline period crop model inputs. As opposed to other climate data sets,

particular efforts are made to bias-correct agricultural areas and reproduce the climate

variables that crops are known to respond to. These include biases in mean growing season

precipitation and temperature and the frequency and sequence of rainfall events. Examples

of such data sets are the Princeton data (Sheffield et al., 2006) and the AgMERRA data

(Ruane et al., 2015), which are described in Chapter 3. Ruane et al. (2015) compared

different reanalysis data sets to find that AgMERRA performs comparably well and as

such is well suited for global climate impacts studies.

1.3.2 Crop models

This section describes the structure and use of crop models. The GLAM-crop model is used

throughout this thesis (Chapters 2 to 6). Crop models are tools that are used to assess the

impacts of environment and management factors on development, growth and yield. Crop
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management includes choice of crop cultivar, sowing date, fertiliser and irrigation levels.

Environmental factors include temperature, day length, solar radiation, precipitation and

biotic stresses.

Section 1.3.2.1 discusses different types of crop models, including issues of spatial scale

and appropriate complexity. Section 1.3.2.2 details the uses and differences associated with

crop modelling across different spatial domains. Section 1.3.2.3 then looks at the fundamen-

tals of how process-based crop models simulate growth and development. Section 1.3.2.4

discusses modelling of biotic stresses in crop model frameworks. Section 1.3.2.5 covers

different applications of crop models, including the impacts of climate change, adaptation

and use within broader modelling ensemble studies.

1.3.2.1 Crop modelling approaches and scales

Crop models vary a great deal in terms of the processes they aim to simulate and the

spatial scales at which they operate. These models primarily aim to simulate crop growth

and development in response to climate, with adaptation to climate change also commonly

simulated. Methods range from empirical models to process-based numerical simulations.

Process-based models themselves vary a great deal, from relative simplicity (such as GLAM,

Challinor et al., 2004) to more detailed models (e.g. DSSAT, Jones et al., 2003). There

is often overlap between empirical and process-based models, given that processes are

sometimes described empirically within the latter (Challinor et al., 2009a).

Empirical (or statistical) crop models (e.g. Schlenker and Lobell, 2010; Lobell et al.,

2008) have the advantage of being applicable over large spatial scales and can represent

crop yields in response to both biotic and abiotic realised conditions (Estes and Beukes,

2013). The validity of such models when using data outside the range from which they

were fitted can be questionable – both in terms of time and space. Statistical models run

the risk of overtuning if using limited data and should not be used to make predictions

outside of the explanatory data range of historical data, without assumptions concerning

the linearity of crop responses outside of this range (Lobell et al., 2008). This most often

arises when looking at the impacts of climate projections on crop yield (Challinor et al.,
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2009a).

Process-based simulations (e.g. Brisson et al., 1998; Challinor et al., 2004) examine the

response of crop yield to predominately abiotic factors. This sometimes involves tuning

to take into account a yield gap, which represents the gap between potential and actual

yields. This gap is made up of the impacts of pests, diseases and non-optimal management

(Jagtap and Jones, 2002; Challinor et al., 2004). Other models only simulate potential

yields (e.g. see Hijmans, 2003).

In a report based on data gathered using an online questionnaire (Rivington and Koo,

2011), 57% of crop models were described as process-based whilst 14% were empirical.

Empirical models were found by Estes and Beukes (2013) to project larger yield losses

than process-based models with climate change. The majority of these differences were

attributed to the water use efficiency gains simulated by process-based models under con-

ditions of elevated CO2. A meta-analysis looked at the differences in results between

process-based and empirical models (Challinor et al., 2014b), and concluded that near-

term (to 2020) yield losses were greater using empirical models, although when looking

at longer-term changes there was broad agreement between the two. Other studies con-

firm that statistical and process-based studies are likely best used for different purposes,

crops and regions - e.g. Watson et al. (2015) showed that a process-based model (GLAM

- Challinor et al., 2004) was more resilient to precipitation errors than an empirical model

(Hawkins et al., 2013a). Errors in simulating temperature relationships were more of a

problem for the process-based model, however.

Large-area crop modelling seeks to combine the advantages of process-based models

with those of empirical models. That is, to simulate crop yields under changing climates

over large areas with a relatively low input data requirement (e.g. GLAM; Challinor

et al., 2003, 2004, and as used throughout this thesis). Models should be complex enough

to capture the response of the system to the environment but not so complex as to in-

clude parameters not directly estimable from available data. The appropriate degree of

complexity for these models is largely determined by both the spatial scale at which the

weather-crop relationship is apparent and the output variable of interest. The larger the
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spatial scale, the more aggregation of environmental variables will be needed to model crop

yield (Challinor et al., 2009a). Challinor et al. (2003) set out a framework for a combined

seasonal weather and crop forecasting system, using the example of groundnut yield in

India. The relationships between crop yield and climate variables were tested at different

spatial scales. The scale of GCMs was found to be appropriate for crop modelling (around

100-200 km2).

All crop models are prone to errors and uncertainties associated with climate model

output. Some process-based crop models (for example CROPGRO - Boote et al., 1998)

use a more detailed mechanistic approach, often at smaller spatial scales; a detailed picture

of the biophysical processes associated with climate change can hence be built up for a

specific region, but there is a danger of overtuning if the modelling framework is overly

complex. Yield can, for example, be dependent on many variables such as soil, crop type

and management practises. Such models can be useful for informing the adaptation of

the local management of farms but are of limited use across large spatial domains (and

possibly for teasing out general patterns) due to their inherent specificity. They may also

rely on the downscaling of climate data, which adds to analysis uncertainty. See Section

1.3.2.2 for more on crop modelling across large and small domains.

The spatial resolution of the model determines the spatial scale of processes it can

represent. Only processes that function immediately below the output variable of interest

(usually yield in the case of crop models) should be simulated, as only these processes are

of immediate relevance in producing output (Sinclair and Seligman, 2000). This also helps

avoid overparameterisation, which can lead to large errors and increase the risk of overtun-

ing a model to one environment. To help avoid overtuning, parameters should whenever

possible be based on observations, i.e. be empirically testable (or semi-empirically, for

example a water stress index that is empirically related to yield). With a lack of ob-

served data, models risk reproducing yield without correctly representing the processes

involved (through many unconstrained parameters). The parameters obtained for one

climate should not be used for another; a climate could change temporally with climate

change or spatially when looking at another geographic area (Challinor et al., 2004), and
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varieties may differ across regions.

1.3.2.2 Spatial domain of crop models: from field-scale to global

Crop models are used across a variety of spatial extents, ranging from the farm level to

global simulations (Ewert et al., 2011). This section will introduce the uses and challenges

of crop modelling across these different scales.

Global studies are defined as those with full global coverage (e.g. Chapter 6 of this

thesis), and regional studies as those with limited geographic extent, such as the province

or county scale (e.g. Chapter 3 of this thesis; Challinor et al., 2014a). Local studies are

typically defined as being site-specific or at the field scale. It is common for crop models to

be used at a different spatial scale to that which they have been designed and calibrated for,

however (Ramirez-Villegas et al., 2015). See Section 1.3.2.1 for more on the appropriate

spatial scales of crop models.

Global studies typically use globally-consistent input data and assumptions concerning

parameter configurations in order to provide assessments of uncertainty and crop model

comparisons (e.g. Müller et al., 2017; Deryng et al., 2014; Osborne et al., 2013). They do

not usually involve model parameter optimisation across different regions in any great de-

tail. Such calibration of parameters for global studies is computationally limited, the data

are often lacking that enable calibration across regions and confident evaluation (Müller

et al., 2017; van Bussel, 2011), and this kind of optimisation may be undesirable when

trying to achieve a consistent model set up to evaluate models across a large range of

environments. Management and phenology parameter information is lacking across larger

scales, and evidence suggests these can improve model skill (Adam et al., 2011; van Bussel

et al., 2011).

Global gridded crop models provide comprehensive coverage, although there are usually

large challenges for calibration and quality control of inputs (Ruane et al., 2017). Müller

et al. (2017) propose using the best model for each region/crop as a benchmark to assess

how well models are performing, given the lack of quality observational data in some cases.

Other studies assess how particular model components such as heat stress can impact
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results across different models at the global scale (Mistry et al., 2017). It is important to

recognise that the appropriate spatial scale to model some processes is larger than others -

for example, modelling the impacts of El Niño lends itself to larger scale modelling (Iizumi

et al., 2014).

Regional studies use detailed analyses with more data and specific knowledge to better

inform policy decisions (e.g. Lv et al., 2013). When regional parameter information is

limited, parameters can be optimised to represent crops in specific environments. Examples

include optimising parameters that adjust mean yield levels across a region (Challinor et al.,

2004) or optimising phenology parameters to simulate realistic crop durations (Nicklin,

2013). Regional impacts models provide assessments of the impacts of climate change

or evaluation of model skill to see if accurate representation of the regional inter-annual

variability in observed yields is feasible.

It is difficult to evaluate model performance using national scale yield data alone (van

Bussel, 2011), although this is often done in global studies as little else is available, es-

pecially for potatoes (Raymundo et al., 2017b). For regional studies, more detailed infor-

mation is likely to be available to researchers. Certain areas show that there are drivers

of yield other than the direct impacts of weather variables (such as technology and man-

agement changes and biotic stresses), resulting in an improved understanding of model

performance in regional studies. In contrast, variability in year-to-year data can average

out across large areas (van Bussel, 2011), leading to lower correlations with weather vari-

ables and hence poorer model results. It is often difficult to ascertain the exact cause of

poor model skill in global studies (Challinor et al., 2018).

Aggregation of data inputs is often necessary to model at global scales (Ewert et al.,

2011). These inputs include weather, soil, sowing and yield data. In some cases, aggre-

gation has been shown to have a limited impact on results at large scales (van Bussel

et al., 2011) but other studies show its importance in impacting results – soil aggregation

uncertainty can be significant relative to other sources of data uncertainty, for example

(Folberth et al., 2016).

Ruane et al. (2017) provide a summary of strengths and weaknesses of crop modelling
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at different extents. The most common type of site-based modelling can effectively char-

acterise specific agricultural systems but may fail to cover the diversity seen across large

areas. Global gridded studies can provide broad assessments but lose regional detail. The

combined use of regional and global studies can help inform both approaches – regional

studies to help improve global simulations in specific areas, and global results to put re-

gional studies into a broader context. An example of the latter could include an assessment

of how important a region is for broader food security, both now and with climate change.

Figure 1.2 summarises strengths and weaknesses of these crop modelling domains.

Figure 1.2: Proposed coordination of modelling improvements using different spatial modelling
domains, including strengths and weaknesses of local to global studies. Taken from Challinor et al.
(2014a).

Integrated Assessment Models (IAMs) provide coordinated and comprehensive evalua-

tion of key climate responses from local to global scales, featuring crop modelling as well

as socio-economics (Ruane et al., 2017). They combine detailed site-based studies with

gridded global analysis. Baseline responses generated by gridded models can initially be

compared against the corresponding site-based simulations to assess methodological un-

certainty and calculate bias-correction factors. These studies are still not common in the

climate impacts community, however.
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To summarise, global studies can produce a single consistent evaluation, but the data

are often lacking that would enable us to see if there are losses of information from the

regional to global scale. Such losses could include management information, parameter

knowledge and input data detail. There is a resulting danger that seemingly robust global

simulations will lack regional skill, leading to misinformation at the policy level. In-depth

analyses have rarely been performed that investigate these differences (Challinor et al.,

2014a). Zampieri et al. (2017) provide an example of a regional and global comparison, but

focus on yield anomalies rather than assessing model skill. Chapter 5 of this thesis compares

the model skill of the regional and global simulations that are outlined in Chapters 3 and

4 respectively.

1.3.2.3 Modelling crop growth and development

Genetic, environmental and management factors drive crop growth and development. Plant

growth can be described as the increase of biomass that results from the difference between

the gain and loss of environmental resources (Hay and Porter, 2006). Growth refers to

the increase of biomass of the plant, which ultimately comes from photosynthesis. This

process uses solar radiation to convert CO2 and water into carbohydrates and oxygen.

There are three photosynthetic pathways, C3 and C4 and CAM. Most crops (including

potato) use the C3 pathway, which is predicted to lead to more CO2 fertilisation than the

other pathways as CO2 is less saturating in baseline conditions (Leakey et al., 2009). Crop

growth can be limited by water and nutrient availability as well as by temperature. When

water is limiting, transpiration and photosynthesis are reduced, resulting in lower biomass

accumulation.

Temperature is the environmental variable most important in determining crop devel-

opment (also known as phenology), driving the crop from a vegetative to a reproductive

state (Chujo, 1966). Temperature also has an effect on respiration rates and the translo-

cation of assimilates, but less so on photosynthesis, even at light saturation (Grace, 1989).

Process-based crop models generally aim to quantify environmental effects on plant

physiological processes, and need to account for both growth and development, as well as
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partitioning to yield. Rates measure how a quantity changes over time and are crucial in

models. Integrating a rate over time yields the quantity amassed during the time period

elapsed. For example, thermal time (or degree days) is used to assess the rate of crop

development. This is a more nuanced alternative to simply using a number of days in each

developmental stage. The optimal rate of crop development is associated with a certain

temperature, with no development above or below crop-specific limits.

Equation 1.1 describes the basic elements of a crop model simulating the yield Y over

the thermal time when water and nutrients are non-limiting from sowing s to harvest h,

as described in Hay and Porter (2006):

Y =

∫ Tt=h

Tt=s
QRUE f(L) g(W ) dt (1.1)

where Q is the amount of photosynthetically active radiation incident on the crop, RUE is

the radiation use efficiency, f(L) is a function of the leaf area index of the crop (as a leaf

canopy is needed to intercept and absorb radiation) and g(W ) is the harvested fraction of

the total dry matter produced by the plant. More layers of detail can be added to this

basic model, such as substituting RUE with mathematical descriptions of photosynthesis

and respiration, the constraints of production caused by a lack of nutrients and water, or

the impacts of pests, diseases and competing plants. Evapotranspiration can be modelled

simplistically using empirical relationships (Priestley and Taylor, 1972) or using more data-

intensive methods (Allen et al., 1998). Chapter 2 gives an example of a description of a

process-based model of medium complexity – GLAM-potato.

1.3.2.4 Modelling pests and diseases in crop-climate modelling

Traditionally, the growth and development of crops and pests have been modelled in two

distinct scientific communities. Whilst much modelling knowledge and expertise is now

available, linking these two fields usually leads to over-simplifications of one or both areas

(Donatelli et al., 2017). It is important to define clear research objectives in any modelling

study and for different objectives different modelling approaches will be prioritised and

desirable, leading to further potential simplifications.
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A common way that pests are modelled is to simulate their distribution based on climate

variables, often predicting future distributions from extrapolations of current relationships

(Svobodová et al., 2014a; Kocmánková et al., 2011; Herrera Campo et al., 2011). Variants

on statistical distribution models include those making use of remote sensing (Mahlein

et al., 2012) and those including the simulation of pest phenology (Trnka et al., 2007).

Pest severity can also be linked to climate using statistical models (Sparks et al., 2011;

Butterworth et al., 2010 – see the late blight modelling in Chapter 6).

Kutywayo et al. (2013) examine species distribution models of the African coffee white

stem borer (Monchamus leuconotus) in Zimbabwe to quantify their distribution and how

climate change will impact this distribution; the coffee white stem borer is the most serious

coffee pest in Zimbabwe. Models predict that the borer will become more common by 2080,

although one region shows a predicted decline. Precipitation-related variables are shown

to be the most important predictors of borer distribution.

Extrapolations of pest distributions and impacts based on current climates could be of

little use as observed distributions of pests say little about future potential distributions

under novel climatic conditions (Conn et al., 2015). Warming could lead to a tipping point

at a temperature threshold for a pest species, changing the nature of the temperature-pest

relationship (Lenton, 2013; Salis et al., 2016). These extrapolations also fail to account for

pest evolution in response to the changing climate.

Knape and de Valpine (2011) advise caution when using climate variables to predict

population dynamics and structure. They suggest that the effects of variation in climate

on population dynamics are complex. As a result, specific knowledge of a system is needed

to identify the environmental variables important in modelling dynamics. Without this

knowledge it becomes easy to statistically over-fit models of population structure to weather

variables. Hence, they recommend limiting analysis of the impact of climate on populations

to just a few judiciously-chosen variables. For example, Svobodová et al. (2014b) showed

that distributions of European corn borer (Ostrinia nubilalis), European grape vine moth

(Lobesia botrana) and codling moth (Cydia pomonella) in southern Moravia and northern

Austria are particularly determined by air temperature. Sparks et al. (2011) relate late
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blight intensity to temperature and relative humidity.

Another common method used in pest modelling communities is that of decision sup-

port systems that assess the impacts of climate change on practical applications, for ex-

ample the frequency of pesticide applications (Sparks et al., 2011, 2014). Some studies go

further and use assessments of pest intensity to estimate yield losses (Dillehay et al., 2005).

Less commonly, pests are simulated as part of a crop-climate modelling framework

(Rivington and Koo, 2011). Reasons for the scarcity of pest damage functions in crop

models include the inherent complexity of processes and a lack of data with which to

evaluate modelling efforts (Donatelli et al., 2017). These complexities include linking pest

damage to pest abundance, multiple pest species dynamics and pest-crop interactions with

climate (Donatelli et al., 2017).

Crop pests have been included in crop models using a variety of techniques, however.

These are often dependent on the spatial scale of the analysis. Some use a data-intensive,

small-scale, process-based framework to simulate the impact of pests upon the organs of

the plant that are in direct contact with the pest (for example Kropff et al., 1995). Yield

then reduces as a result of damage to, for example, the leaf area. Others, like Challinor

et al. (2004), scale the yield down via a yield gap parameter that not only accounts for

the impact of pests but also non-optimal management. This approach is more suited to

larger scale modelling as it does not rely on extensive pest input data. Others do not

attempt to include the impacts of pests on crop yield, as in den Hoof et al. (2011). In

some cases, the models make the decision not to include the impacts of pests as they are

deemed insignificant, perhaps given local pesticide usage (Brisson et al., 2003).

Kropff et al. (1995) describe detailed methods to input pest damage in crop models

using “coupling points”. Coupling points in pest-crop modelling can be at the level of

resource capture (light, nutrients or water), the process level (photosynthesis, respiration

or translocation) or at the state variable level (biomass, leaf area etc). Damage mechanisms

include resource stealing, stand reduction (killing plants in the canopy) and assimilate

sapping. Damage levels can be hard to define for certain pests as they can damage the

crop in multiple ways simultaneously – late blight, for example, damages potato leaves,
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stems and tubers.

The simulation of pest impacts in coupled pest-crop models also requires data on the

various mechanisms of pest damage, for example the quantification of the relationship

between leaf blast severity and photosynthesis levels (Bastiaans, 1991). In CERES-rice, for

example, 20 coupling points were used to implement these damage mechanisms, including

leaf and assimilate consumption (Pinnschmidt et al., 1995). A module was developed in

the model to read in pest data and compute the damage impacts at the coupling points.

Such approaches can be simplified by defining guilds of pest damage, thus accounting

for the diversity of pests within a model (Rabbinge and Rijsdijk, 1982). These remain

data-intensive processes, however. In InfoCrop (Aggarwal et al., 2006), pest population

dynamics are not simulated; pest incidence has to be provided directly as input data.

The most advanced pest models used to estimate pest damage on crops are those

that simulate pest population dynamics and hence the severity of pests within a region

explicitly (e.g. Wiman et al., 2014). Predicting these dynamics is complicated, however.

Such information on pest dynamics is derived from observed data, or parametrised using

expert knowledge. Single species are most often simulated as opposed to multiple species

(e.g. Hegazi et al., 2015); such interactions can quickly become overly-complex for the

likely appropriate level of complexity of the model.

Regardless of the method used to model the impacts of pest pressures, data limitations

are often a problem (Donatelli et al., 2017), making large scale analyses hard to evaluate.

Some studies use surrogates for pest pressures to help get around this problem. Garrett

et al. (2013) estimate a conduciveness to pest attack as a result of climate inputs. Chen

and McCarl (2001) relate the cost of pesticides to weather variables as a surrogate for

changing pest pressures in the United States for different crops. Ziska (2014) similarly

relate minimum temperature data to pesticides to assess climate change impacts of pests

on soybean in the mid-western United States. Chapter 7 of this thesis features a global

analysis relating pesticide use to climate change. In general, small-scale analyses for specific

crop-pest interactions are feasible if data are available (e.g. Butterworth et al., 2010), but

global scale analyses on broader pest-crop systems are lacking.
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Further complexities and challenges to the crop-pest modelling community include ac-

counting for uncertainty from climate change projections and the impacts of agricultural

adaptation strategies (Newbery et al., 2016) – Gouache et al. (2013) providing one of

few examples where climate model uncertainty is taken into account. The use of model

intercomparison groups such as the Pest and Disease Modelling Intercomparison Project

(PeDiMIP - part of AgMIP) are in their infancy but may help with the sharing of exper-

tise and data across modelling disciplines (Donatelli et al., 2017), potentially leading to

improved global pest impact assessments.

1.3.2.5 Crop model applications

Impacts on mean yields have traditionally been the focus of climate impacts studies (e.g.

see Challinor et al., 2014b). Increasingly, however, studies aim to quantify the impacts of

inter-annual variability and extremes on food systems (Ewert et al., 2015; Chavez et al.,

2015). Such studies often focus on stresses such as heat stress, flooding and droughts to

crop yields as opposed to mean impacts such as duration changes (Lesk et al., 2016; Lobell

et al., 2014; Deryng et al., 2014; Challinor and Wheeler, 2008; Challinor et al., 2005a). The

methods used to assess extreme impacts are often different to those used in more traditional

climate impacts studies. These include the use of agroclimatic indices (Trnka et al., 2011)

and machine learning techniques (Chavez et al., 2015). Indices have the advantage of

requiring fewer assumptions and data than analogous modelling studies, however they can

be of limited use when extrapolating results for future climates (Challinor, 2011) and are

usually not used to calculate yields.

Challinor et al. (2018) suggest other improvements for the targeted use of crop models,

including the use of more diverse modelling approaches and outputs, better use of stake-

holder knowledge for framing of analyses and greater clarity of assumptions used in studies.

It is also important to recognise the improvements still needed for individual crop models

(Müller et al., 2017) – Wang et al. (2017), for example, show that improving temperature

response functions increases model skill in wheat simulations.

Increasingly, studies take into account uncertainty in results (e.g. yield projections)
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using multiple models. Full quantification of uncertainty would require responses to fu-

ture atmospheric and climatic conditions, the response of agriculture to these projections,

and non-climatic drivers (Challinor et al., 2013). The Agricultural Model Intercomparison

and Improvement Project (AgMIP) is used for agricultural model intercomparison and

climate change impacts, using inputs from multiple crop and economic modelling groups

(Rosenzweig et al., 2013). Osborne et al. (2013) quantify the uncertainty in climate inputs

using a 14 member ensemble of GCMs. Asseng et al. (2013) show that the uncertainty

associated with crop models can be greater than that of downscaled climate model projec-

tions. Maiorano et al. (2017) found that crop model improvement reduces the uncertainty

of the response to temperature of multi-model ensembles, resulting in fewer models being

required in multi-model impact assessments.

Part of the uncertainty in future climate impacts is associated with the extent to which

we can adapt to climate change. Crop models can be used to explore a range of adaptation

scenarios to help us quantify this uncertainty. These range from studies assessing small in

scope, incremental adaptations, such as changing planting dates and crop varieties (Shin

et al., 2017), to more transformational adaptations, such as changing cropping systems

(Rippke et al., 2016; Kates et al., 2012). Some studies go further by looking at the timing of

important climate change impacts and adaptations rather than looking at impacts between

fixed time slices (Challinor et al., 2016).

Most modelling studies feature only incremental adaptations (Challinor et al., 2014b)

and there are a lack of adaptation options included in most modelling studies (Beveridge

et al., 2018; Challinor et al., 2018). The benefits of adaptation are often overestimated,

however, as studies do not account for technological changes in the baseline climate (Lo-

bell, 2014). The third side of the Climate Smart coin (the others being production and

adaptation) is mitigation to climate change, which is commonly not accounted for in crop

modelling studies (Challinor et al., 2018). Typically, mitigation in crop production can be

achieved through better soil management in cropping systems, reductions in fertiliser use

and through preventing the loss of high carbon ecosystems in establishing new agricultural

areas (Harvey et al., 2014).
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Integrated Assessment Models (IAMs) aim to model not just abiotic climate impacts

on yields but socio-economic scenarios and changes in land use (e.g. see Ruane et al.,

2017). Representative Agricultural Pathways (RAPs) provide additional information that

can be used for agricultural impact assessments, using plausible future biophysical and

socio-economic conditions to carry out climate impact assessments for agriculture (Antle

et al., 2017). Crop models are important tools within these modelling frameworks.

Regardless of the crop modelling application, past trends due to technological changes

should be accounted for as models rarely simulate these factors directly (and we do not

know if such trends will continue). There are numerous statistical techniques available to

deal with technology trends, the most common of which is to detrend using the (often lin-

ear) relationship between observed yields and time. However, if outliers are present in the

time series then the assumptions of ordinary least squares regression can be violated (Fin-

ger, 2013). In such cases, so-called robust regression techniques are statistically sounder

(Finger, 2010; Claassen and Just, 2011; Ye et al., 2015).

1.4 Potato agriculture

Potato is the most important non-grain crop and 4th most important crop in terms of global

production (FAO, 2016) – maize, wheat and rice have approximately double the production

of potatoes globally. 2009 was “International Year of the Potato” (Lutaladio and Castaldi,

2009), resulting in the Food and Agriculture Organization (FAO) recommending potatoes

as an important food security crop in the context of uncertainties in food supply, a growing

population and an increasing demand for food. Many economically-developing areas with

high populations (such as large areas of India and China) overlap with potato cultivation

and rely on potatoes for an increasingly large proportion of their calories, meaning that

there is potential for potatoes to help combat food poverty (Devaux et al., 2014).

Potatoes are an especially important source of food security and income in the devel-

oping world (Lutaladio and Castaldi, 2009). Potatoes are important for local food security

in many developing regions as they are not globally traded as much as major cereal crops

due to higher post-harvest losses, resulting in prices being determined primarily by local
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production costs (Oerke, 2006; Lutaladio and Castaldi, 2009). In addition, smallholders

can increase household income from planting potatoes as they are also used as a cash

crop in many regions, further alleviating food poverty (Devaux et al., 2014). Potato pro-

duction in Asia has increased due to both increasing yields as well as more growing area

(FAO, 2016). African countries have increased production primarily from increasing potato

growing areas (FAO, 2016).

Potatoes are a nutrient-rich crop (Lutaladio and Castaldi, 2009). The potato yields

more nutritious food more quickly on less land and in harsher climates than any other

major crop, with high harvest index values meaning a very high fraction of dry matter

goes to the tubers (Ivins and Bremner, 1965). Potatoes are a good source of vitamin C,

B1, B3 and B6, as well as minerals such as potassium, phosphorus, iron and magnesium

(Burlingame et al., 2009).

Potatoes are grown over a wide latitudinal range (Hijmans, 2001) across more than

100 countries (FAO, 2016) – see Figure 1.3 for maps of potato growing area and irrigation

levels (Portmann et al., 2010). Temperature often limits potatoes to being grown at higher

elevations in hotter countries, with it being a common lowland crop only in temperate areas

– tuber growth is inhibited above 33◦C (Timlin et al., 2006; Wolf et al., 1990; Ingram and

McCloud, 1984). For respectable yields, over 500 mm of water is required over a typical

growing season of 120 to 150 days (FAO, 2016).
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Figure 1.3: A. Potato growing area per grid cell (Ha) and B. percentage of irrigation per grid
cell for the baseline climate based on MIRCA data (Portmann et al., 2010).

Global production is skewed towards the northern hemisphere and especially Europe,

which claims around 50% of global growing area (Hijmans, 2001; Birch et al., 2012). Glob-

ally, potato production has increased by about 20% since 1990, but production is still 50%

below that of wheat, maize and rice (FAO, 2016). Asia is now catching Europe up as a

major global producer (Birch et al., 2012), with India, Bangladesh and China increasing

potato yields and area grown (Hijmans, 2001). The contribution of potato to food supply is

increasing steadily in developing countries especially, where potato consumption has more

than doubled between 1960 and 2005 to 22 kg per capita per year (FAO, 2016).

Around 10% of the potato tubers produced annually are used for propagation rather
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than consumption (McKey et al., 2010). Consequently, there is greater competition be-

tween potato tubers used as seed (see Section 1.4.1 below) and those used as food compared

with sexually reproducing crops. Seed potatoes are typically the most expensive input to

potato cultivation (FAO, 2016).

In North America and Western Europe, yields often exceed 40 Tonnes/Ha, but in

developing countries yields are commonly half of this amount (FAO, 2016). Higher yields in

developed countries are due to favourable climates, higher levels of mechanisation, higher-

yielding and pest-resistant varieties, more irrigation, better pest management schemes and

more use of pesticides and fertilisers (Lutaladio and Castaldi, 2009).

Potato irrigation water demand and water use is similar to other crops, typically needing

at least 500 mm of water in the growing season (FAO, 2016), however potatoes are a water-

efficient crop, meaning that more yield per water used is achieved compared to other major

crops (Hay and Porter, 2006). Irrigation is important for potatoes in certain areas, but

the majority of global potato growing area is rainfed (Portmann et al., 2010). In order

to achieve the highest yields, soil moisture should not go below the field capacity of a

sandy soil, especially during tuber bulking stages (FAO, 2016). In high yielding temperate

countries such as the UK, irrigation is used to supplement rainfall and increase yields, with

over half of the growing area of England and Wales irrigated to some extent (Daccache

et al., 2011a). In countries at lower latitudes such as Colombia, the growing season coincides

with the rainy seasons and production is rainfed (CIP, 2009).

Potatoes are particularly vulnerable to pest attack compared to other major crops, due

to vegetative propagation, diverse pest species and high post-harvest losses (Oerke, 2006).

Global average yield losses to pests are around 40%, compared with 28% for wheat and

37% for rice (Oerke, 2006). Diseases alone account for 21% of potato losses. Pesticide use

is therefore high, and increasing in the developing world (Handford et al., 2015). Most of

the current widely-cultivated potato varieties are susceptible to late blight (Forbes, 2012),

resulting in disease management relying heavily on fungicides. Yield losses from late blight

can be as high as 30% (Dowley et al., 2008). Late blight causes such substantial yield losses

by damaging most parts of the plant – the leaves, stems and tubers (Hwang et al., 2014).
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1.4.1 Potato development and growth

Potatoes typically develop from seed tubers, which are a potato tuber from which the plant

vegetatively grows – potatoes are rarely grown from true seeds (Harris, 1992). Potatoes

propagated from true seed as opposed to seed tubers tend to have lower yields, smaller

tubers and are more susceptible to pests and diseases (Burton, 1989).

The physiological age of the seed tuber influences the timing of phenological develop-

ment as well as final yields (Hay and Porter, 2006). A physiologically-older seed tuber (e.g.

a seed kept in storage for a long period) will typically have a faster developmental cycle

(quicker canopy development, tuber initiation and senescence) at the expense of reduced

yield due to a reduction of overall light interception (Hay and Porter, 2006). Dormancy

of seed tubers ends when temperatures exceed 2-4◦C, depending on the variety (Harris,

1992). Once planted, the seed tubers sprout when temperature conditions are favourable

for crop development. Growth can be limited when the soils are poorly aerated or heavily

compacted leading to poor aeration, but potatoes can grow in a wide variety of soil mois-

tures (Harris, 1992). However, a volumetric soil water content of 15 to 25% is desirable

(Van Loon, 1981).

Flowering often has no effect on tuber initiation and is absent in some cultivars (Sands

et al., 1979). Potato development is driven mainly by temperature, but photoperiod also

plays a key role in the time taken from emergence to tuber initiation (Gayler et al., 2002;

Streck et al., 2007). Photoperiods below a critical threshold hasten tuber initiation. Pota-

toes typically senesce their leaves towards the end of the growing season, and in a mature

plant 75-80% of potato dry weight comprises of tuber yield (Ivins and Bremner, 1965).

Like other crops, accumulated biomass in potato is determined by intercepted radiation,

transpiration, radiation use efficiency and transpiration efficiency. Both transpiration and

radiation are linearly related to potato biomass and tuber yield (Harris, 1992; Haverkort

and Bicamumpaka, 1986). Photosynthetically-active radiation is intercepted by the canopy

and partitioned to tubers according to limitations imposed by water, temperature and

nutrients (Harris, 1992; Burton, 1989).
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In temperate areas temperature can be the major limiting factor to potato growth –

frost can lead to damage of early shoot growth which can delay planting and therefore

harvest. In hotter conditions, heat stress can also be a problem for potato growth. High

temperatures lead to reduced partitioning to tubers (Timlin et al., 2006; Wolf et al., 1990;

Ewing, E. E., 1981; Ingram and McCloud, 1984), with optimal partitioning occurring at

around 15◦C (Ingram and McCloud, 1984) and significant decline in the tuber-to-biomass

ratio occurring beyond 24◦C (Timlin et al., 2006; Wolf et al., 1990; Ingram and McCloud,

1984). In these circumstances, translocation is directed more towards the stems than

tubers, resulting in no net loss of weight (Wolf et al., 1990). The cause of this reduced

partitioning to tubers is the inhibition of starch biosynthesis enzymes in tubers (Lafta and

Lorenzen, 1995). In addition to impacts on tubers, there is some evidence for accelerated

senescence at high temperatures, usually at temperatures of around 30◦C (Midmore, 1990;

Kooman et al., 1996).

A shallow and sparse rooting system (Opena and Porter, 1999) makes potatoes very

sensitive to soil moisture stress, especially during the tuber bulking growth stages (Onder

et al., 2005; Monneveux et al., 2013; Van Loon, 1981). Excess water can also be a problem

for potatoes, however, with water logging leading to poor soil aeration and potentially

greater risk of pest and disease attack (Benoit and Grant, 1985). Both excess and limited

water can be a problem for potatoes during the same growing season (Saue and Kadaja,

2014).

Kunkel and Campbell (1987) reported a maximum potential potato yield of 124 tonnes

per hectare, although yields typically range from 5 to 45 tonnes per hectare (FAO, 2016).

The high fraction of dry matter going to the tubers results from potatoes not being sink

limited – the soil bears the weight of sink organs, unlike major cereal crops where the

plant has to divert energy to maintaining their support, imposing a sink limitation on

yield (Katoh et al., 2015).

Most Potatoes have indeterminate growth – i.e. crop maturity is not driven solely by

environmental and genetic factors. Management decisions are also key to when potatoes are

harvested. Temperature is the most important climatic variable determining duration, but
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the relationship of climate variables to duration of developmental stages weakens after tuber

initiation (Kooman et al., 1996). Typically potatoes are harvested when senescence has

taken place for some time, allowing some canopy die back, and depending on management

decisions the crop haulm is cut back using mechanical or chemical methods and left for

several days. Skin hardening of tubers takes place during this time (Wilcockson et al.,

1985). Management factors include the desired starch or dry matter content of tubers

(Noda et al., 2004), time taken for skin hardening (Wilcockson et al., 1985), local pest

and disease pressures, level of soil moisture (excessively dry or wet soils making harvest

impractical) and market prices for different varieties (Harris, 1992; Burton, 1989).

1.4.2 Climate change and potato agriculture

Globally, potato yields are projected to decrease in future, although current modelling

studies are rare and fail to simultaneously account for the impacts of rising CO2 and

adaptation to climate change (Raymundo et al., 2017b; Hijmans, 2003). Hijmans (2003)

show that adaptations of altering planting dates and varieties help to mitigate the negative

impacts of rising temperatures by mid-century. Raymundo et al. (2017b) show that CO2

fertilisation results in increasing yields in parts of Europe and the tropics in 2055 compared

to the present climate.

Rising temperatures and extremes of rainfall are likely to occur with climate change,

and these could lead to yield reductions (Fleisher et al., 2016; Raymundo et al., 2017b;

Hijmans, 2003). Potato yields could increase in future with elevated CO2 due to CO2

fertilisation, with water use efficiency and photosynthesis rates increasing (Fleisher et al.,

2008; Finnan et al., 2005). These increases are estimated to be higher than those of other

C3 crops (Magliulo et al., 2003). Raymundo et al. (2017b) projected yields to decrease

globally when taking CO2 fertilisation into account, however. Lobell et al. (2011) found

that climate (primarily temperature) trends resulted in yield decreases for maize and wheat,

with technology and CO2 fertilisation gains failing to account for yield decreases.

Few studies have assessed the impact of rising CO2 on potato nutrient content. Myers

et al. (2014) review impacts on multiple crops, concluding that zinc, iron and protein
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concentrations fall in C3 crops. For potatoes specifically, protein, calcium and potassium

tuber content has been found to decrease with CO2 enrichment, with inconclusive impacts

on tuber quality (Högy and Fangmeier, 2009; Vorne et al., 2002). Further work is needed

for more general conclusions about future potato nutrient content.

Concentrations of ozone are also likely to have an impact on potato yields. Ozone can

enhance leaf senescence as well as decrease photosynthesis and crop yield (Vorne et al.,

2002). Feng and Kobayashi (2009) conduct a meta-analysis of the effects of ozone on

multiple crops. With current ozone levels, mean potato yield losses were found to be the

lowest of the crops examined at 5.3%, compared to 9.7% and 17.5% for wheat and rice

for example. With projected future levels of ozone, mean potato yield losses were also the

lowest compared to other crops at 11.9% in future climate. Overall, the ameliorating effects

of CO2 more than compensated for the losses due to ozone damage. Similar results were

reported by Vorne et al. (2002) in the European CHIP (Changing climate and potential

Impacts on Potato yield and quality) experimental project, with 5% yield losses due to

ozone damage.

Temperature can decrease yields through mean changes by shortening crop durations

(Raymundo et al., 2017a; Fleisher et al., 2016; Timlin et al., 2006). Extremes of tempera-

ture typically affect potatoes through heat stress impacts, predominately by reducing the

allocation of assimilates to tubers (Lafta and Lorenzen, 1995; Rykaczewska, 2015; Timlin

et al., 2006; Wolf et al., 1990; Ingram and McCloud, 1984; Kooman et al., 1996; Prange

et al., 1990), although some evidence exists for increased senescence (Midmore, 1990).

With increasing drought, yields are predicted to decrease (Fleisher et al., 2016). There

is substantial variation in the ability of different varieties to cope with drought stress,

however, due to variable water use efficiencies (Schafleitner et al., 2011). Flooding may

become more of a problem in other potato growing areas (Rosenzweig et al., 2001), and

potatoes are susceptible to both excess and limited water (Saue and Kadaja, 2014). Excess

water can lead to poor soil aeration, limited root growth and increased biotic stresses.

Some of the most important diseases of potato are from fungal (or the closely related

oomycete) taxa and these groups are predicted to become more threatening with climate
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change (Bebber and Gurr, 2015; Fisher et al., 2012). Late blight is appearing earlier in the

growing season in response to increasing temperatures (Roos et al., 2011; Gregory et al.,

2009). In addition, there is evidence of rapid spread of new varieties of late blight that have

the potential to reproduce sexually and further the evolutionary potential of the species

(Cooke et al., 2012; Hwang et al., 2014; Roos et al., 2011). In the past, one clonal lineage

has dominated the majority of blight populations (Goodwin et al., 1994).

Pests are expected to continue to move away from the equator in response to warming

conditions (Bebber et al., 2013). For potato, examples exist that point to likely changes

in pest attacks. The development rate of pests and pathogens of potato could increase

through to 2050 in South Africa, meaning that pest pressures increase (Van der Waals

et al., 2013). In contrast, Sparks et al. (2014) project limited increases in global late blight

pressure by 2050, with an initial increase in risk followed by a decrease by mid-century.

Climate change will affect the areas that are suitable for potato agriculture in the

future due to the above abiotic and biotic impacts of climate change. For example, a fall

in suitability of current potato growing areas in Africa and across tropical highlands is

projected by the EcoCrop model (Ramirez-Villegas et al., 2013) before mid-century due to

rising temperatures (Schafleitner et al., 2011; Hijmans, 2001). Other areas are likely to be

more suited to potato growth thanks to warming, such as northern Europe.

1.5 Objectives and thesis outline

In this chapter we have learned that potato crop modelling and the impacts of pests and

diseases are neglected areas of climate impacts science. In order to support predictions

of the impacts of climate change on global food security, more potato and biotic stress

modelling are therefore needed. There is a lack of data available with which to model and

evaluate the impacts of climate change on pests and diseases within crop models, however,

especially at the global scale. Therefore, the use of alternative methods (including proxy

data and empirical modelling) can be useful for building a picture of the impacts of climate

on biotic stresses.
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Assessing the impacts of climate change on crop yields is necessary but not sufficient

in order to assess climate change impacts on food security. The impacts of climate change

on agriculture are broader and more complex than simply assessing changes to yields.

Understanding how yields will change remains a critical component to developing an un-

derstanding of how climate change will affect food security, however.

Global potato crop modelling is a particularly neglected field, so much so that we can

have little confidence in the nature of the changes to potato yields in the future. The

few studies that are currently published do not take into biotic stresses, crop management

adaptations and CO2 fertilisation (Raymundo et al., 2017b; Hijmans, 2003). Adaptation

to climate change is important to consider in global climate change studies so that the

impacts of climate change are not overestimated (Lobell, 2014). Most studies also focus on

mean yield changes, rather than commenting on how the variability of crop yields could

change (Challinor et al., 2018).

The lack of models currently used to assess global potato yield changes is especially

important given that potatoes are an increasingly important crop for food security in the

developing world. The skill of multi-model ensembles is frequently better than individual

crop model skill also (Fleisher et al., 2016). There is therefore a need to develop models

that simulate the potato crop globally in order to assess yield changes in the future.

Few studies assess the loss of model skill across different crop modelling domains, for

example from regional to global simulations (Challinor et al., 2014a). It is important to do

so in order to understand the information needed to improve global simulations to better

inform policy decisions.

The ultimate objective of this thesis is to present an analysis of how climate change

influences abiotic and biotic stresses in global potato cultivation. As discussed, climate

change impacts on food security are complex, spanning different spatial and temporal

scales and involving socio-economic as well as environmental factors. This thesis focuses

on the impacts of climate on potato yields and biotic stresses, as these are current areas in

particular need of analysis. In order to analyse global potato yields, several other objectives

become apparent, including model development and evaluation at both regional and global
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scales.

More data are available at the regional scale than globally. The model is firstly eval-

uated using regional data, in order to know if model performance is adequate when more

parameter information is available. Model skill is then assessed using the data inputs

available at the global level. Differences in skill between these regional and national scale

simulations are then analysed. This framework provides us with the necessary tools and

confidence with which to simulate potato yields globally.

The biotic stresses of potato are assessed using the example of potato late blight, a

globally important potato disease. A combined abiotic and biotic assessment is made on

future potato agriculture, highlighting countries at particular risk of yield reductions and

blight increases. Globally-coherent data on specific pests and diseases do not exist, and

potato-specific pesticide data are also not available on the global scale. Therefore, pesticide

use data is used as a proxy for data on pest pressures to evaluate broader climate change

impacts on crop biotic stresses.

The objectives of this thesis are therefore as follows:

1. Develop a process-based crop model suitable for simulating large scale potato-weather

relationships (Chapter 2).

2. Evaluate the process-based potato model in contrasting climates using regional data

and parameter information (Chapter 3).

3. Evaluate the potato model parameter set up at the national scale for use in global

simulations (Chapter 4).

4. Compare the model skill of the global and regional simulations (Chapter 5).

5. Assess the impacts of climate change on global potato yields (Chapter 6).

6. Assess the impacts of climate change on global potato biotic stress (Chapter 6).

7. Use proxy data (on pesticide use) to evaluate the links between climate and pests

and predict the influence of climate change on pests globally (Chapter 7).
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Chapter 8 summarises the results and conclusions of each analysis chapter in turn. This

is followed by research recommendations.
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Chapter 2

GLAM-potato model development

2.1 Introduction

Potato physiological and crop modelling research is rare compared to that of other major

crops (see Chapter 1; Brown et al., 2011). There are, nevertheless, various potato crop

models currently in use. Raymundo et al. (2014) review these models and describe their

differences.

Most potato models have been derived from other crop models within the last 30

years (Raymundo et al., 2014). These use thermal time and photoperiod to control crop

development, with developmental stages for emergence to tuber initiation and senescence

the most commonly simulated. Growth tends to be moderated by radiation, heat and water

limitations. Biomass is usually the product of intercepted radiation and a radiation use

efficiency term, or transpiration and transpiration efficiency. A harvest index commonly

partitions biomass to yield (Raymundo et al., 2014).

The potato model intercomparison of Fleisher et al. (2016) demonstrated that an en-

semble median performed better than individual potato models, highlighting the difficulties

in simulating potato – maincrop varieties have indeterminate growth and so prove chal-

lenging to simulate (Fleisher et al., 2016). Some potato models do show skill in modelling

yields however. These tend to be high input models that are relatively complex (Raymundo

et al., 2017a).
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Of the potato crop models that do exist, most are designed for small scale simulations,

such as the field-scale (Raymundo et al., 2014). GLAM is specifically designed to operate

at larger spatial scales and with a relatively low input data requirement (Challinor et al.,

2004). GLAM-potato was therefore developed as a potato crop modelling option that is

particularly suited to large scale, low input data analyses.

This chapter describes the development of the GLAM-potato model - a tool that can

be used to simulate the year-to-year variation of potato yields in response to weather

variables. The processes and equations included in GLAM-potato are described, as well

as the justification behind the different components of the model. Chapter 3 evaluates

the model’s ability to simulate weather-yield relationships in contrasting temperate and

tropical environments using regional case studies in the UK and Colombia. Chapter 4 then

evaluates the model using UK and Colombian national scale yield data in a parameter

configuration designed for global simulations.

GLAM-potato was based on the original GLAM-groundnut set up as described in

Challinor et al. (2004), simulating groundnut (Arachis hypogaea L.) in India. Certain

components of the model are crop-generic and so unaltered (root growth, water balance

and evapotranspiration routines), whereas others are crop-specific. A summary of model

components that show structural differences between GLAM-groundnut and GLAM-potato

can be seen in Table 2.1. Details of crop-specific parameters are in Section 2.2.11. The

groundnut model was used as the basis for GLAM-potato as the code was readily avail-

able at the time of model development and there are similarities between the two crops in

terms of how they are modelled, such as the biomass-to-yield partitioning and the number

of developmental stages. Indeed, the majority of potato simulation models are based on

already existing crop models (Raymundo et al., 2014).

Section 2.2 introduces the model and the crops that GLAM can currently simulate.

Section 2.2.1 describes the input data required for GLAM. Sections 2.2.2 to 2.2.7 then

detail the components of the model: a description of each component of the model is given

first for GLAM-groundnut and then for GLAM-potato.

In each GLAM-potato model component section, any changes compared to GLAM-
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groundnut are first briefly described. The physiological background and justification for the

GLAM-potato model changes are then given before changes to model structural equations

and parameters are detailed.

GLAM-potato uses the same routines for transpiration (Section 2.2.7), evaporation

(Section 2.2.7) and water balance (Section 2.2.6) as in Challinor et al. (2004). Crop plant-

ing, development (Section 2.2.2) and leaf area (Section 2.2.3) routines are altered. Heat

stress is described in Section 2.2.8. Finally model calibration, model optimisation (both

model-generic) and GLAM-potato parameters are described in Sections 2.2.9, 2.2.10 and

2.2.11 respectively.

Table 2.1: Summary of model structural differences between GLAM-groundnut and GLAM-
potato.

Model Component (Section) GLAM-potato approach
Crop development (2.2.2) Crop-specific phenology
Leaf growth (2.2.3) Leaf area grows until senescing in final stage
Root growth (2.2.4) Same as GLAM-groundnut
Biomass and yield (2.2.5) RUE and TE approach
Water balance (2.2.6) Same as GLAM-groundnut
Evaporation and transpiration (2.2.7) Same as GLAM-groundnut
Heat stress (2.2.8) Same as simple GLAM-groundnut routine

2.2 The GLAM crop model

The General Large Area Model for annual crops (GLAM) is a process-based, one-dimensional

crop model, originally designed to operate at the spatial scale of global and regional cli-

mate models. Whilst this resolution is not fixed in time, during GLAM development it was

around 100 km2 (Challinor et al., 2003). GLAM can simulate at any resolution, however,

being mathematically one dimensional.

The model simulates crop development, growth, evapotranspiration and soil water bal-

ance at a daily time step. GLAM was originally developed for groundnut simulation

(Challinor et al., 2004). Being modular, it is relatively easy to modify for other crops and

has since been used to simulate spring wheat, winter wheat (Li, 2008), maize (Bergamaschi

et al., 2013), soybean (Osborne et al., 2013) and sorghum (Nicklin, 2013).
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The modelling philosophy of GLAM can be summarised as “appropriate model com-

plexity”. Less complex models may omit important processes, potentially leading to poor

model skill. More complex models do not necessarily result in improved model perfor-

mance, however. If the quality of the input data required by complex models is poor,

results could also be poor (Jamieson et al., 1998; Jagtap and Jones, 2002). Some studies

have suggested that on larger spatial scales some processes become less important (Hansen

and Jones, 2000; Challinor et al., 2004), allowing a less complex model to perform equally

well. The relatively low number of parameters in GLAM reduces model sensitivity to poor

quality input data (Challinor et al., 2004) and means that less extensive calibration is

necessary, reducing the risk of ‘overtuning’ the model to data at certain sites (Cox et al.,

2006).

2.2.1 Input data

GLAM requires daily input weather data for rainfall, surface incoming solar radiation and

minimum and maximum temperatures. A sowing window is also specified. Three soil

hydrological parameters are required that are constant with soil depth. These are:

• Lower limit θrll - the volumetric soil moisture content at or below which no more

evaporation or transpiration from the soil can occur;

• Drained upper limit θdul - the volumetric soil moisture content remaining after thor-

ough wetting and drainage;

• Saturation upper limit θsat - the fully-saturated volumetric soil water content.

2.2.2 Crop development

2.2.2.1 Crop development - GLAM-groundnut

The crop is chosen to be planted either on a specified date or when soil moisture exceeds

a critical value (Csow) within a given planting window, at the end of which the crop is

planted regardless (this process is called the intelligent planting routine). Subsequent crop

development in GLAM is dependent on the accumulation of thermal time. The thermal
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time elapsed tTT is calculated by performing the following integration over daily time, t:

tTT =

∫ T

ti

(Teff − Tb) dt (2.1)

where Tb is the base temperature, below which no thermal time is accumulated and no

crop development takes place, and Teff is the effective temperature (defined below). The

time of emergence – the first day that the leaf area index (LAI) becomes non-zero – is tem.

The developmental stage number is given by i. After a given amount of thermal time has

been accumulated a new developmental stage is reached, associated with a new value of

i. In Challinor et al. (2004) – simulating groundnut (Arachis hypogaea L.) in India – the

developmental stage numbers are 1 between sowing and anthesis, 2 between anthesis and

pod-filling, 3 between pod-filling initiation and maximum LAI and 4 for between maximum

LAI and maturity.

Teff is defined for each developmental stage using the relationship between the mean

daily temperature, T̄ , and the three cardinal temperatures Tb, To and Tm, where the

subscripts refer to base, optimal and maximum temperatures at which growth can occur.

T̄ is taken either directly from measurements or as the average of Tmin and Tmax. Teff is

defined below.

Teff =


T̄ Tb ≤ T̄ ≤ To

To − (To − Tb)( T̄−To
Tm−To

) To < T̄ < Tm

Tb T̄ ≥ Tm, T̄ < Tb

(2.2)

As the mean temperature increases from Tb up to To the development rate increases linearly.

A mean temperature greater than the optimum temperature and less than the maximum

temperature has a reducing effect on the effective temperature, meaning that as the mean

temperature increases from To up to Tm the development rate decreases linearly.

2.2.2.2 Crop development - GLAM-potato

GLAM-potato is similar to GLAM-groundnut in that the crop develops through the ac-

cumulation of thermal time through four developmental stages. The developmental stages

differ as described below, with photoperiod affecting the onset of tuber initiation.
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In temperate areas temperature can be the major limiting factor for potato planting

– frost can lead to damage of early shoot growth which can delay harvest (Harris, 1992).

Potato development is driven mainly by temperature, but photoperiod also plays a key

role in the time taken from emergence to tuber initiation – photoperiods below a critical

threshold hasten tuber initiation (Gayler et al., 2002; Streck et al., 2007).

Potatoes are grown on a wide variety of soils (Harris, 1992) and as such are planted in

different soil moisture conditions. However, a level of soil moisture of at least the drained

upper limit of a sandy soil is desirable (Van Loon, 1981).

The physiological age of the seed tuber (i.e. the “mother tuber” from which the crop

grows) influences the timing of phenological development as well as final yields (Hay and

Porter, 2006). A physiologically-older seed tuber (i.e. a seed that has been kept in stor-

age for a long period) will typically have a faster developmental cycle (quicker canopy

development, tuber initiation and senescence). Dormancy of seed tubers ends when tem-

peratures exceed 2-4◦C, depending on the variety (Harris, 1992). Therefore seed tubers

that experience warmer conditions lead to shorter growing seasons and lower final yields

due to a reduction of overall light interception (Hay and Porter, 2006). Once planted, the

emergence of the canopy depends on temperature and planting depth as well as the age of

the seed tuber (Harris, 1992; MacKerron and Waister, 1985).

Potato development in models is usually based around the timing of tuber initiation

(Raymundo et al., 2014). Developmental stages in other potato models include planting,

emergence, tuber initiation, maximum bulking rate and tuber maturity (e.g. Sands et al.,

1979; MacKerron and Waister, 1985; Streck et al., 2007). In line with GLAM model

principles, a simplistic approach to potato modelling is selected when possible. As such,

a relatively straightforward approach to phenology (in terms of number of developmental

stages) is taken. The same number of developmental stages as GLAM-groundnut are used.

This does not include a maximum bulking rate stage as this was deemed unnecessary based

on the evidence available (see Section 2.2.5.2). In order, the developmental stages are

from planting to emergence, followed by canopy development (at which tuber initiation

– i.e. partitioning of biomass to yield – begins at a certain time) up until the onset of
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senescence. The developmental stage numbers i are 1 between planting and emergence, 2

between emergence and tuber initiation, 3 between tuber initiation and senescence and 4

between senescence and harvest.

Whilst storage conditions do vary and have an impact on yields through the age of

the seed tuber, simulating these management conditions is not practical for a regional

scale model as such conditions would likely vary and average out, or are able to be tuned

spatially using the yield gap parameter CYG (see Section 2.2.3). Data on planting depth

are rarely available and not simulated in GLAM-potato. A specific developmental stage for

planting to emergence (the point when leaf area index becomes greater than 0) is therefore

assigned to simulate the impact of temperature on plant emergence. This is in place of

the GLAM-groundnut method of using the parameter tem to govern emergence by setting

a specific number of days taken from planting to emergence.

GLAM-potato uses the intelligent planting routine as used in GLAM-groundnut, with

the addition of a temperature condition for planting. The crop is only planted when both

minimum temperature is greater than 0◦C for a set period of time and enough soil moisture

is present.

The number of days that the model requires for non-frost conditions before planting was

based on preliminary simulations in the temperate region where planting date information

was available (Aberdeen, UK), using the preliminary parameter sets described in Chapter

3, Section 3.2.2.1. These simulations varied the number of consecutive days required to be

frost-free (greater than 0◦C) for planting to take place.

In GLAM, an intelligent planting window is used to control when the crop is planted.

When certain conditions are met the crop is planted. The day on which the intelligent

planting conditions were met (i.e. crop planted) was recorded (Figure 2.1) for the different

conditions of different required consecutive days of frost free conditions. Simulations tested

two different planting windows: one starting on DOY 45, the other starting on DOY 61,

to test different initial conditions.

Severe frost conditions do not commonly stop until April in Aberdeen (i.e. DOY 91
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onwards). As such, the number of days for frost-free conditions should be long enough to

produce realistic planting dates but not so long as to commonly result in planting being

delayed until the end of the planting window – the conditions are designed to produce a

realistic planting date given the weather conditions, i.e. to replicate when a farmer would

want to plant the crop.

Therefore it is desirable to choose a required number of days when the planting date

first reaches a realistic value. As can be seen in Figure 2.1, 15 consecutive frost free days

produced realistic planting dates using planting windows starting on day of year 45 and

day of year 61 (the length of the intelligent planting window is kept fixed at 30 days).

Therefore, this value was used in all GLAM-potato simulations in this thesis.
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Figure 2.1: Day of year when the crop is planting using different required number of days of
non-freezing conditions in the GLAM-potato intelligent planting window in Aberdeen, UK, using
the mid-range parameter set described in Chapter 3, Section 3.2.2.1. A = start of planting window
on day of year 45, B = start of planting window on day of year 61.
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When the temperature condition has been met, the level of soil moisture is checked,

and if sufficient moisture is present the crop is planted. The value of Csow was set equal

to the value of the drained upper limit of a sandy soil (a volumetric soil water content of

0.1), as described by FAO soil properties (FAO, 2016).

The soil moisture routine is run for a period of 30 days before the start of the planting

window in order to have a realistic level of starting soil moisture for the region. Preliminary

simulations were used to test the number of days required for the soil spin-up. These tested

extreme conditions of soil moisture – clay and sandy soils, no rain and excessive amounts of

rain (10 mm every day) and large and small initial levels of soil moisture. In all conditions,

a period of 30 days resulted in either exactly the same soil moisture or very similar levels

to a 60 day spin-up, so 30 days was selected as a sufficient spin-up of the soil water routine

and used for all subsequent GLAM-potato simulations (see Figure 2.2).
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Figure 2.2: Soil water in the top soil layer when simulating different lengths of soil water spin-up
(NWBDAYS). Red line = 30 day spin-up, black line = 60 day spin-up. The following descriptions
for plots A to H describe the soil type, wet or dry rainfall time series and the initial volumetric
soil water content. A = sand dry 0.5, B = sand dry 2, C = sand wet 0.5, D = sand wet 2, E =
clay dry 0.5, F = clay dry 2, G = clay wet 0.5, H = clay wet 2.

Development in GLAM-potato is (as in GLAM-groundnut) driven by the accumulation

of thermal time for i 1, 3 and 4. Photoperiod is included in GLAM-potato to allow

accurate simulation of phenological progression from emergence to tuber initiation (i 2).

A photoperiod response function (Streck et al., 2007) is multiplied by the thermal time

calculated for each day during this developmental stage (as in the method used by Li, 2008,

taken from Cao and Moss, 1997). Li (2008) use a “daily thermal sensitivity” to adjust the

daily thermal time according to photoperiod and vernalisation for GLAM-winter wheat.
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Vernalisation was omitted from GLAM-potato, not being relevant for potato development.

A photoperiod response function f(P) is calculated as in Equation 2.3 using a critical

photoperiod Pcrit and a photoperiod sensitivity Ps as follows:

f(P) = e−Ps(Ph−Pcrit) (2.3)

with Ph being the photoperiod hours, calculated as in other GLAM crops (maize and winter

wheat also using photoperiod for development) using the methods used in the CERES-

maize model (Jones et al., 1986):

Dec = −23.4(π/180) cos(2.0π(Doy + 10)/365) (2.4)

Dl = acos(−tan(lat(π/180))tan(Dec)) (2.5)

Ph = 2/15Dl(180/π) (2.6)

with Dec being sun declination, Doy being day of year, Dl being day length and lat being

latitude. During the 2nd crop development stage from emergence to tuber initiation, the

photothermal time accumulated is calculated by multiplying f(P) by thermal time, similarly

to the tuberisation rates calculated in Streck et al. (2007) and Gayler et al. (2002). The

photoperiod response function of Streck et al. (2007) was preferred to that of Gayler et al.

(2002). The latter function yielded very similar results but was slightly more complex and

was therefore not used to limit unnecessary model complexity.

Lastly, harvest in GLAM-potato is driven by thermal time accumulation, as with other

GLAM crops. Potato harvesting is a complex process, however, as maincrop potato vari-

eties are typically indeterminate, with environmentally-driven crop maturity not the only

factor involved in potato harvesting (see Chapter 1, Section 1.4.1). As a result, model

simulations in this thesis typically reject parameter combinations that result in durations

greater than 180 days, as this is longer than the majority of potato growing seasons (e.g.

see Harris, 1992) and harvest is not solely driven by thermal time in many cases (Kooman

et al., 1996).
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2.2.3 Leaf growth

2.2.3.1 Leaf growth - GLAM-groundnut

In GLAM-groundnut, crop leaf area growth is calculated as follows:

∂L

∂t
=


(∂L∂t )max CYG min( S

Scr
, 1) i < 3

0 i = 3

(2.7)

where L is the effective LAI, ∂L
∂t max

is a constant and S is the soil water stress factor. LAI

is reduced by the soil water stress factor and the yield gap parameter, CYG. CYG is used

to alter the LAI to account for the effects of pests, diseases and non-optimal management.

S is calculated as follows:

S =
TT

TTpot
(2.8)

where TT and TTpot are the rates of transpiration and potential transpiration respectively.

The potential yields as determined by the weather and crop can be calculated by setting

CYG to 1.

Specific Leaf Area (SLA) control is used to avoid an unrealistically high leaf area-to-

biomass ratio that can result from very low biomass at the start of the growing season

(Challinor and Wheeler, 2008). SLA is calculated as follows:

SLA =
L

W − Y
(2.9)

where L is the leaf area index, W is the above ground biomass and Y is the yield. SLA

control uses two parameters, Smax (the maximum realistic value of SLA) and ND. For the

first ND days after emergence, if the SLA exceeds Smax the biomass is increased in order

to reduce the SLA. After ND, biomass changes according to Section 2.2.5 and the leaf area

index is reduced if necessary.
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2.2.3.2 Leaf growth - GLAM-potato

Crop leaf area growth is calculated as above in Equation 2.7 for the first three develop-

mental stages, with senescence being added for the senescence to harvest maturity stage

(ISTG 3).

Senescence is the (broadly linear – Hay and Porter, 2006) reduction in canopy that

takes place towards the end of the potato development cycle. The rate at which leaves

senesce is shown by observations to be similar to the rate at which they grow (Gordon

et al., 1997; Hay and Porter, 2006, e.g. Figure 2.3).

Figure 2.3: Figure showing observations of Leaf Area Index developing across the growing season,
for both early and late maturing crops grown at Trefloyne (South Wales) and Cambridge (East
Anglia). a-a, Trefloyne (early); b-b, Cambridge (early); c-c Trefloyne (late); d-d, Cambridge (late).
Taken from Harris (1992).

The maximum senescence rate parameter was set equal to ∂L
∂t max

for the final crop

development stage. Senescence is then calculated as in Equation 2.10:

∂L

∂t sen
= −

(
∂L

∂t

)
max

CYG

(
1 +

(
1 − min

(
S

Scr
, 1

)))
i = 3 (2.10)
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where L is the effective LAI, ∂L
∂t max

is a constant, CYG is the yield gap parameter and S

is the soil water stress factor, as described in Section 2.2.3.1.

The process of SLA control is used in GLAM-potato to ensure a realistic relationship

between leaf area index and biomass. Following Challinor and Wheeler (2008), ND is set

to 5 days. Smax is set to 500 cm2 g−1 (Vos and Biemond, 1992).

2.2.4 Root growth

2.2.4.1 Root growth - GLAM-groundnut

Root growth in GLAM-groundnut is dependent on LAI L and described by root length

density and root depth:

∂lv(z = 0)

∂L
= prescribed constant

VEF = prescribed constant

lv(z = zef) = prescribed constant

(2.11)

where lv is the root length density by volume, z is the depth into the soil, zef is the depth

of the root extraction front and VEF is the extraction front velocity. The value of the

root length density at the surface (z = 0) increases linearly with leaf area index and the

value at the extraction front (z = zef) is constant. The root length density is linearly

interpolated between the surface and the extraction front, which moves down into the soil

with a constant velocity VEF. The extraction front descends until maturity unless it reaches

the maximum obtainable rooting depth, zmax.

2.2.4.2 Root growth - GLAM-potato

GLAM-potato uses the same method as GLAM-groundnut to simulate root growth (see

Section 2.2.4.1). As in GLAM-groundnut, crop yield (i.e. potato tuber) in GLAM-potato

is partitioned from above-ground biomass as described below in Section 2.2.5, and GLAM-

potato treats roots concerned with water uptake separately from those that store nutrients

(the tubers).

Potato root length density is typically lower at the extraction front than the soil surface,
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with some studies suggesting more compact potato roots near the surface (Iwama, 2008;

Lesczynski and Tanner, 1976; Iwama et al., 1993). Other studies suggest a more even

root distribution and that distributions depend on irrigation and soil management, with

irrigated crops with loosened soil having roots compacted nearer the soil surface (Stalham

and Allen, 2001; Parker et al., 1989).

Initial simulations described in Sections 3.3.1.1 and 3.3.2.1 show that varying the root

length density at the extraction front and root growth by LAI at the surface (∂lv(z=0)
∂L )

across reported parameter ranges did not significantly affect yields. In keeping with GLAM

model principles and mixed evidence from the literature, the simple linear interpolation of

roots was therefore favoured over a more complex parameterisation.

These initial results did show unrealistically high mean root length densities however,

increasing up to values not generally seen in the literature (e.g. see Iwama et al., 1993; Vos

and Groenwold, 1986) when ∂lv(z=0)
∂L was set to a mid-point across the range found in the

literature. It was therefore decided that ∂lv(z=0)
∂L should be set to the lower end of reported

parameter values for subsequent simulations in order to more realistically represent root

growth.

2.2.5 Biomass and yield

2.2.5.1 Biomass and yield - GLAM-groundnut

In GLAM-groundnut, above-ground biomass (W ) is calculated from the product of transpi-

ration TT and the minimum of the normalised transpiration efficiency ET and the maximum

normalised transpiration efficiency ETN,max:

∂W

∂t
= TT min(

ET

V
,ETN,max) (2.12)

V = CV (esat(Tmax) − esat(Tmin)) (2.13)

where V is the vapour pressure deficit (the difference between the amount of moisture in

the air and how much moisture the air can hold when it is saturated), calculated as shown

in Equation 2.13, where e is the vapour pressure. esat(T ) is the saturation vapour pressure
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at temperature T . ET can be increased in response to possible future climates to simulate

increased levels of CO2.

Yield (Y ) is then determined using the harvest index HI, which represents the fraction

of above-ground biomass that is partitioned to yield:

∂HI

∂t
= prescribed constant, Y = HIW. (2.14)

2.2.5.2 Biomass and yield - GLAM-potato

GLAM-potato uses a similar method to GLAM-groundnut to simulate biomass and parti-

tioning to yield (see Section 2.2.5.1). The only difference is the addition of a radiation use

efficiency approach to simulating biomass.

Potato growth is both water and radiation limited, with significant relationships be-

tween potato dry matter and intercepted radiation and transpiration (Harris, 1992). The

majority of potato crop models simulate biomass using a radiation use efficiency approach

(Raymundo et al., 2014), although whether crop growth is water or radiation limited will

depend on environmental conditions (Burton, 1989; Harris, 1992). Temperature primar-

ily affects biomass through impacts on crop development, particularly on tuber initiation

(Ewing and Struik, 1992).

Once tuber initiation occurs, partitioning of assimilates to tubers is fairly constant

(Moriondo et al., 2005; Hay and Porter, 2006), with high temperatures potentially reducing

the allocation of biomass to tubers (see Section 2.2.8). Tubers can also increase in mass

during leaf senescence, as a result of assimilates being stored in stems following the die

back of leaves (Moorby, 1968).

Above-ground biomass (W ) in GLAM-potato includes biomass partitioned to yield,

i.e. the tubers, as in GLAM-groundnut where above-ground biomass includes the biomass

partitioned to the below-ground pods. W is calculated daily from the minimum of accu-

mulated biomass from transpiration efficiency and radiation use efficiency approaches (as

for example in GLAM-Maize and the potato CropSyst model – Stöckle et al., 2003), as

crop biomass is both water and radiation limited.
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Transpiration-limited biomass is calculated from the product of transpiration TT and

the minimum of the normalised transpiration efficiency ET and the maximum normalised

transpiration efficiency ETN,max, as can be seen in Equation 2.12 in Section 2.2.5.1. Biomass

from radiation use efficiency is calculated as follows:

PAR = 0.5Srad(1 − e−k L) (2.15)

∂W

∂t RUE
= RUE PAR (2.16)

where PAR is photosynthetically active radiation, RUE is radiation use efficiency, Srad is

solar radiation, k is the extinction coefficient, L is leaf area index and ∂W
∂t RUE

is the daily

increase in biomass from the radiation use efficiency approach. Biomass on any given day

is then calculated as follows:

∂W

∂t
= min

(
∂W

∂t TE
,
∂W

∂t RUE

)
(2.17)

where ∂W
∂t TE

is the biomass calculated from the transpiration efficiency approach, as in

Equation 2.12.

A linearly increasing harvest index parameter is used to partition above-ground biomass

to yield, as above in Equation 2.14. Above-ground biomass here includes potato tubers

– roots concerned with water uptake are considered separately. This simple method of

biomass partitioning has been previously shown to be effective for potatoes (Moriondo

et al., 2005). The harvest index is capped at 0.8 to avoid unrealistically-high partitioning

to yield for long crop seasons (Bélanger et al., 2001; Moriondo et al., 2005; Hay and Porter,

2006).

The impacts of elevated CO2 in future climates can be taken into account in GLAM-

potato by altering parameters for transpiration efficiency ET, radiation use efficiency RUE

and the physiologically limited maximum transpiration (Challinor et al., 2005b). ET and

RUE are increased to simulate CO2 fertilisation and the physiologically limited maximum

transpiration is reduced to simulate increased stomatal closure following higher CO2.
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2.2.6 Water balance

2.2.6.1 Water balance - GLAM-groundnut

In GLAM-groundnut (as with other GLAM crops, the water balance routine not being

crop-specific), water balance is essentially a process of filling, drainage, root extraction

(according to transpiration levels) and evaporation. Rainfall runoff (R) is calculated as

follows:

R =
P 2

P + S
(2.18)

where P is precipitation and S is the amount of water that can soak into the soil. S is

set equal to ksat, which is the saturated hydraulic conductivity of the soil, representing the

ease with which soil pores permit water movement. The water influx from the uppermost

layer is equal to P − R. The soil is split into NSL soil layers, each with a corresponding

root length density and volumetric soil water content θ. Drainage is calculated as follows:

∂θ

∂t
= −FD(θs − θdul) (2.19)

D = Cd1θ
2

dul + Cd2θdul + Cd3 (2.20)

F = 1 − ln(Qi + 1)

ln(ksat + 1)
(2.21)

ksat = Kks

(
θsat − θdul

θdul

)2

(2.22)

where FD is the drainage rate (with F accounting for the inflow from the layer above

Qi, and D for drainage into the next layer), θs is the initial soil water content, θdul is the

soil drainage upper limit (the amount of soil moisture remaining after the soil has been

thoroughly wetted and left to drain, and after this drainage has largely stopped), and θsat

is the saturation soil water upper limit. Cd1, Cd2, Cd3 and Kks are empirical constants.

Water is extracted over the root soil depth by roots according to transpiration and by

evaporation over the evaporation soil depth zed.

2.2.6.2 Water balance - GLAM-potato

GLAM-potato uses the same method as GLAM-groundnut to simulate water balance (see

Section 2.2.6.1).
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The value of NSL is not crop specific and so follows Challinor et al. (2004) to use a

value of 25, as values greater than 25 were found not to change yields significantly.

Potatoes are a shallow rooted crop, with roots below a depth of 1 metre rarely exceeded

even in deep, uniform soils (Harris, 1992). A value of 100 cm was therefore selected for

zmax. zed (having to be a multiple of soil layer depth) was found not to affect results and

set to 20.0 cm (i.e. five soil layers).

2.2.7 Evaporation and transpiration

2.2.7.1 Evaporation and transpiration - GLAM-groundnut

In GLAM-groundnut (as with other GLAM crops, the evapotranspiration routine not be-

ing crop-specific), transpiration TT and evaporation E rates depend on the limitations

associated with plant and soil structure, energy availability and water availability. Po-

tential rates of TT and E are defined as being limited by plant/soil structure and energy

availability. The physiologically-limited transpiration T p
Tpot is modelled using an empirical

relationship from Azam-Ali (1984):

T p
Tpot =


TTmax(1 − Lcr−L

Lcr
) L < Lcr

T p
Tpot = TTmax L ≥ Lcr

(2.23)

where Lcr is a threshold value of L and TTmax is the maximum possible potential transpi-

ration rate.

The energy-limited transpiration and evaporation rates T e
T and Ee are defined as in

Priestley and Taylor (1972). Potential evapotranspiration is defined as follows:

ET
pot = Ee + T e

T =
α

λ

∆(RN −G)

∆ + γ
, (2.24)

RN = (1 −A)Srad, (2.25)

α = 1 + (α0 − 1)
V

Vref
(2.26)

G = CGRNe
−kL (2.27)
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where RN is the net all-wave radiation (calculated as in Equation 2.25 where Srad is the

short-wave radiation and A is the mean albedo of the surface), G is the soil heat flux, CG is

a constant in Equation 2.27 (Choudhury et al., 1987), λ is the latent heat of vapourisation

of water, ∆ = δesat/δT (Bolton, 1980), γ is the ratio of specific heat of air at constant

pressure to the latent heat of vapourisation of water and α is the Priestley-Taylor coefficient.

This is parameterised as a function of VPD (Jury and Tanner, 1975) as in Equation 2.26,

where Vref is a reference value of VPD (Steiner et al., 1991) and α0 is a pre-correction value

(Priestley and Taylor, 1972). This method was chosen because it takes into account some

impacts of advective effects on the exchange of water vapour from the surface, without the

need for wind speed and relative humidity data that the commonly used FAO Penman-

Monteith method of Allen et al. (1998) relies upon.

The energy-limited evapotranspiration is then partitioned to evaporation and transpi-

ration considering light interception by leaves. Estimating light interception using the

Beer-Bougert law (as described in Arya, 1988) – where the absorption of short-wave radi-

ation into a plant canopy exponentially decays with depth-dependent LAI – gives

Ee = ET
pote

−kL, (2.28)

T e
T = ET

pot(1 − e−kL), (2.29)

where k is the extinction coefficient. Note that Equations 2.28 and 2.29 have been altered

since the publication of Challinor et al. (2004) – see Challinor et al. (2009c).

The potential evaporation (taking into account soil and energetic constraints) is mod-

elled according to Cooper et al. (1983):

Epot =
Ee

tR
(2.30)

where tR is the days since daily total rainfall was greater than a threshold value Pcr, set to

1 mm to avoid unrealistically high potential evaporation following heavy rainfall (Challinor

et al., 2004).
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The potential physiological- and energy-limited transpiration rate is as follows:

TTpot = min(T p
Tpot, T

e
T) (2.31)

Structural and energetic constraints having been accounted for, water is partitioned to

evaporation and transpiration according to the ratio of potential evaporation and transpi-

ration in water-limited circumstances, or is set to potential rates, as in Equation 2.32.

TT = TTpot and E = Epot for θpe ≥ ET
pot,

TT = θpe
T e

T

T e
T + Ee

and E = θpe
Ee

T e
T + Ee

for θpe < ET
pot

(2.32)

The potentially extractable soil water θpe is calculated from the soil water content above

the lower limit (θ−θll) and the root length density, lv, in each soil layer as follows (Challinor

et al., 2009c):

θpe =

∫ zmax

0
(θ(z) − θll)(1 − ekDIFlv(z)) dz, (2.33)

where kDIF is the uptake diffusion coefficient and z is each soil layer. Note that Equation

2.33 has been altered since the publication of Challinor et al. (2004).

2.2.7.2 Evaporation and transpiration - GLAM-potato

GLAM-potato uses the same method as GLAM-groundnut to simulate evapotranspiration

(see Section 2.2.7.1).

2.2.8 Heat and water stress

2.2.8.1 Heat stress - GLAM-groundnut

In GLAM-groundnut heat stress can be modelled using two parametrisations, referred to

here as the “complex” and “simple” routines.

The complex heat stress routine is fully described in Challinor et al. (2005a) and can be

parameterised for different sensitivities of crops to heat stress as well as different flowering

distributions. High temperature stress episodes are defined as periods of time when the

mean 8 a.m. - 2 p.m. temperature exceeds a critical threshold. The impact of each episode
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on pod-set for each day during the flowering period is then calculated. The impact on pod-

set for each of these episodes depends on its temperature, timing and duration. The total

reduction in pod-set due to each high temperature episode is calculated by summing the

impact on each of the days during the flowering period:

Ptot =

i=Nf∑
i=1

P (i)Ff(i) (2.34)

where Ptot is the fractional pod-set, Nf is the number of days during the flowering period,

P (i) is the fraction of pods from day i that set, and Ff(i) is the fraction of flowers opening

on day i. The high temperature episode resulting in the lowest value of Ptot is considered

the most important and is used to calculate the reduction in the rate of change of harvest

index ∂HI
∂t :

∂HI

∂t
=

(
∂HI

∂t

)
0

(
1 − Pcr − Ptot

Pcr

)
(2.35)

where Pcr is the fractional pod-set below which the rate of change of harvest index begins

to be reduced from its non-stressed value.

The simple heat stress routine is parameterised based on the methods of Osborne et al.

(2013). For each day t from anthesis to the start of pod-filling (i.e. ISTG 2 to 3) above

a critical temperature Tcrit, HTS(t) is linearly reduced from 1 until a temperature Tlim

where HTS(t) is 0. A mean value of HTS across the number of days n from anthesis to

pod-filling is calculated, which is used to reduce ∂HI
∂t , as described below.

HTS(t) = 1 − T̄ (t) − Tcrit

Tlim − Tcrit
(2.36)

HTS =

n∑
t=1

HTS(t)

n
(2.37)

∂HI

∂t
=

(
∂HI

∂t

)
0

HTS (2.38)

2.2.8.2 Heat stress - GLAM-potato

Heat stress in GLAM-potato is parameterised as in the simple heat stress routine of GLAM-

groundnut. In GLAM-potato, heat stress impacts yields based on the temperatures be-
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tween the start of tuber initiation to the start of senescence.

Heat stress on potatoes predominately reduces partitioning to tubers (Lafta and Loren-

zen, 1995; Rykaczewska, 2015; Timlin et al., 2006; Wolf et al., 1990; Ingram and McCloud,

1984; Kooman et al., 1996; Prange et al., 1990). Previous modelling studies have shown

skill in simulating the impacts of high temperatures on tubers with linear reductions above

a threshold temperature of 24◦C until a maximum temperature of 33◦C, above which tuber

bulking ceases (Ingram and McCloud, 1984; Griffin et al., 1993). This process was similarly

modelled using the simple GLAM heat stress routine, following the methods of Osborne

et al. (2013) (Section 2.2.8.1). This method is a relatively simple parameterisation that

reduces simulation time and the number of parameters needed.

2.2.8.3 Water stress - GLAM-potato

The impact of water stress on
(
∂HI
∂t

)
0
is switched off in GLAM-potato, as water stress

impacts on yields are felt primarily through reductions in leaf area and photosynthesis

rather than as a direct impact on the allocation of assimilates (Cabello et al., 2013; Jefferies

and MacKerron, 1993; Van Loon, 1981).

2.2.9 Model calibration

In general, GLAM is calibrated to observed yields in order to take into account the mean

effects of biotic stresses and non-optimal management using the yield gap parameter CYG.

GLAM calibration using CYG reduces leaf area index (as in Equation 2.7). CYG is used to

reduce the leaf area index from a potential value to a value that takes into account the mean

effects of non-weather impacts. CYG is varied from 0 to 1 in a set number of increments

(typically 20 or 100) and CYG associated with the lowest Root Mean Square Error (RMSE)

is selected for model simulations. By reducing the leaf area index, transpiration and the

absorbed photosynthetically active radiation are reduced, which in turn reduces biomass

and yield.

Further details of calibration for specific analyses can be found in subsequent sections,

such as Sections 3.2.3.1 and 3.2.3.2 in Chapter 3.
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2.2.10 Model optimisation

The GLAM optimisation code used for parameter optimisation in Chapter 3 was developed

by James Watson at the University of Leeds in order to select parameter values from pre-

defined ranges. Different experimental studies often report different values for parameters,

thus providing plausible ranges for parameters to be used in model simulations. The

optimiser runs GLAM multiple times with different parameter sets (the parameters to be

optimised are specified with ranges) and returns the parameter set of those simulated that

is associated with the minimum RMSE between simulated and observed yields. For each

iteration, a random new parameter value from within a predefined range is selected, and

if this new value is associated with a lower RMSE it is retained.

The optimiser requires a “seed” to be chosen for a random number generator to ran-

domly select parameter values. With different seeds, different parameters are chosen ran-

domly and different final parameter sets result due to the ability of parameters to com-

pensate for each other and produce the same (or at least similar) model outcomes. The

optimiser is therefore typically run multiple times with different seeds, and using enough

iterations per optimisation run to allow the reduction in RMSE to become relatively small

with time. Further details can be found in Sections 3.2.2.1 and 3.2.2.2.

2.2.11 Model parameters

Table 2.2 lists all crop- and regionally-specific parameters used in GLAM-potato, together

with the reported parameter values and ranges where applicable.
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Chapter 3

GLAM-potato regional evaluation

3.1 Introduction

The objective of this chapter is to evaluate the performance of GLAM-potato in simulat-

ing observed weather-yield relationships using regional yield data and regionally-optimsed

parameters. The most important weather variables for determining potato development

and growth are different in different regions. For example, hotter areas are often limited

by excessive temperatures or insufficient rainfall. In temperate areas, the growing season

is often determined by when frosts are no longer a risk (see Chapter 1, Section 1.4.1). As

such, it is important to test the model in contrasting locations. The model was calibrated

and tested in two contrasting environments (in Aberdeen, United Kingdom and Colombia)

to see if adequate weather-yield responses can be simulated in different weather conditions.

The potato agriculture in these two countries is described below in Sections 3.1.1 and 3.1.2.

See Chapter 2 for a description of GLAM-potato. See Chapter 1, Section 1.4 for a

broader summary of potato agriculture.

3.1.1 UK potato agriculture

Potato agriculture in the UK is typically highly efficient, resulting in potato yields being

comparatively high (c. 40 tonnes per hectare – FAOSTAT country average yield data,

2017). Over the latter half of the 20th century, registered potato growers in the UK de-

creased by 96% and the harvested area of potatoes halved at the same time as average
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yields nearly doubling (Daccache et al., 2011a), resulting in total production staying rel-

atively constant (see Figure 3.1; Daccache et al., 2011a). These changes were driven by

demands for higher quality and to serve large agribusinesses and supermarkets (Daccache

et al., 2011a).

Figure 3.1: Potato cropped area and yield, 1960-2007. Potato production has remained relatively
constant over this period due to falling growing area but increasing yields. From Daccache et al.
(2011a).

The start of the UK potato growing season is primarily determined by the end of

spring frosts, which can range from March to May depending on latitude (Harris, 1992).

Harvesting occurs throughout the summer (depending on planting date and variety) and

can be as late as October. Weather conditions are in general favourable for production,

being relatively cool and moist. Maris Piper is the most common potato variety in the

UK, with the majority of production made up of similar maincrop varieties (Daccache

et al., 2011a). 63% of production is irrigated to some extent - there is regional variation,

with most production and irrigation occurring in the drier Eastern regions (see Figure

3.2; Daccache et al., 2011b). In Scotland there is extensive potato production also, with

seed potato production being especially important as the cooler conditions help prevent

nematode attack (Eves-van den Akker et al., 2016).
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Figure 3.2: Proporation of total irrigated potato area in England and Wales in 2009. From
Daccache et al. (2011b).

3.1.2 Colombia potato agriculture

Potato yields are typically modest in Colombia relative to temperate regions, where agri-

culture is usually more mechanised and has higher levels of irrigation. Potatoes are pre-

dominately a highland crop in Colombia, being concentrated along two mountain ranges

running roughly parallel to each other from south to north in the west-centre of the country.

The principle growing regions are Cundinamarca and Boyacá in central Colombia, Nariño

in the south west and Antioquia to the north (Figure 3.3). Potatoes are often grown with

other vegetable crops such as broad beans and green peas on steep slopes, making highly

mechanised agriculture difficult. National average fresh weight yields of approximately 18

tonnes per hectare are high relative to Andean neighbours such as Ecuador (c. 7 tonnes

per hectare), though still much lower than yields achieved in more mechanised agricultural

systems such as the UK (FAOSTAT country average yield data, 2017).
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Figure 3.3: Potato growing area in Colombia (hectares) using data from Portmann et al. (2010)
described in Section 3.2.1.4. Region 1 = Putumayo, 2 = Nariño, 3 = Cauca, 4 = Huila, 5 = Tolima,
6 = Quindío, 7 = Cundinamarca, 8 = Caldas, 9 = Boyacá, 10 = Santander, 11 = Antioquia, 12 =
Norte de Santander.

Potato production is predominately rainfed in Colombia, so the main growing season

coincides with the rainy season (CIP, 2009). For most of Colombia, the rainy season extends

from March-May through to November (Enfield and Alfaro, 1999). The first and main

growing season therefore occurs from March-May through to September-October, with

a second growing season from August or September through to around February (Diana

Giraldo Mendez, International Potato Council, personal communication). There is regional

variation, however, as Colombia is a topographically-diverse country with large variation

in climate. For example, Cundinamarca has a relatively low elevation and high mean
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temperature (typically around 26◦C) whereas Nariño is higher, more mountainous and

cooler, with mean temperatures typically around 16◦C. Most commercial potato production

is grown at 1800-2300 metres above sea level. Being a tropical country, there is little annual

variation in temperature.

Colombian potato varieties are most often maincrop Solanum tuberosum ssp. tubero-

sum. There has been a decrease in area planted for native andigena varieties in the past few

decades and the majority of production is increasingly focused on higher-yielding maincrop

varieties, with 60% of production on medium-to-large scale farms. Smallholders tend to

grow more of the 10 commonly used native varieties (International Potato Council, World

Potato Atlas, 2009).

3.1.3 Objective and research question

GLAM-potato needs to be assessed across a variety of environmental conditions in order

to be deemed a suitable model for potato simulations across large scales. Therefore, the

aim of this chapter is to assess model performance using regional data from the UK and

Colombia:

• Is GLAM-potato capable of simulating observed weather-yield relationships in the

UK and Colombia?

3.2 Methods

This section is a summary of the methods used to evaluate GLAM-potato. In the following

sections, each stage of the process is described in more detail. If applicable, differences in

the methods used for the UK and Colombia are presented in subsections for each country.

These differences are summarised in Table 3.1.

75



Stewart Jennings 76 University of Leeds

Table 3.1: Summary of differences in methods for UK and Colombia GLAM simulations.

Difference UK Colombia
Yield data Time series from 1985 to 2008 for an 11 Colombian regional yield

experimental site at Craibstone, Aberdeen time series from 2007 to 2010
Planting date Approximate planting window known Planting defined by rainy season
Crop Optimised phenology parameters Cardinal temperatures at each grid
development cell selected using preliminary runs
Optimisation Optimise parameters on first half of yield Optimise parameters on one

time series of 11 regions (Antioquia)
Calibration Calibrate CYG on first half of time series Calibrate CYG on each

of 11 regions
Evaluation Assess model skill on second half Assess model skill on all

of yield time series regions apart from Antioquia

The process used to evaluate GLAM-potato consists of parameter selection for optimi-

sation, parameter optimisation, model calibration and finally model evaluation. Optimi-

sation refers to the process of varying selected model parameters to ascertain those that

lead to the best model skill (described in Section 3.2.2). Calibration refers to the process

of setting the yield gap parameter CYG to account for mean observed yield levels (Section

3.2.3). Evaluation is then the test by which we judge whether or not GLAM-potato is

performing adequately in simulating observed weather-yield relationships (Section 3.2.4).

Figure 3.4 summarises these processes.

Figure 3.4: Flow diagram summarising methods used to evaluate GLAM-potato. Thicker arrows
indicate a higher number of GLAM simulations. 9 simulations are necessary for evaluating each
crop-specific parameter for optimisation (varying each parameter three times over three parameter
sets). Over 20000 simulations are used for optimising parameter sets. CYG = Yield Gap Parameter.
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3.2.1 Input data

The input data used in GLAM are described in this section – observed yields, soil data,

weather data, growing area and irrigation information. See Chapter 2 for a full description

of GLAM-potato.

3.2.1.1 Yield data

As in Gregory and Marshall (2012) and Bélanger et al. (2001) (and similarly to the methods

used in Müller et al., 2017 and Haverkort et al., 2013), yield data are converted from

fresh weight to dry weight using an assumed proportion of tuber dry matter to fresh

matter ratio of 20%. While potato tuber dry matter varies with variety and environmental

conditions (Ifenkwe and Allen, 1978), this value is used as it falls midway across reported

values (Harris, 1992; Gray and Hughes, 1978). Ifenkwe and Allen (1978) found that for

Maris Piper (a maincrop potato cultivar), dry matter content was 20% at time of harvest.

Consistency of methods is also desired across analyses in this thesis, and it is assumed that

minor changes to dry matter content resulting from environmental conditions at larger

scales will average out for regional scale yield data and have a negligible influence on

results.

The yield time series are checked for detrending to remove any trends in the data not

due to weather. This is done to remove the influence of factors not simulated explicitly

by the model (e.g. technology and management). Linear and quadratic models are chosen

to detrend the yield data as more complex local regression fitting is deemed undesirable

due to the short time series. Linear and quadratic models are tested on each time series.

Robust regression is used to fit models to the data using the R package “robust” (Wang

et al., 2014), as this is superior to ordinary least squares regression when data contain

outliers or otherwise break the assumptions associated with linear models (Finger, 2010).

Detrended yields are not retained if they show lower mean absolute correlations between

weather variables and observed yields. In this situation, observed yields are used instead.

This approach assumes that any trends in yields are due to weather rather than factors

not accounted for in the model.
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3.2.1.1.1 UK yield data

Yield data from an experimental site at Craibstone, Aberdeen, are used to test model

performance in temperate latitudes. The Aberdeen data are provided by Dr. Stuart

Whale, previously of the Scottish Agricultural College, via Professor Peter Gregory, as

used in Gregory and Marshall (2012). Data are available from the years 1951 to 2008. The

crops are fully rainfed and planted from late-March to the end of May. The potatoes are

a maincrop variety (Maris Piper).

The observed yields for the years prior to 1985 were found to have a poorer relationship

with the weather variables (correlation coefficient < 0.3 for precipitation and < 0.1 for

minimum and maximum temperature, with associated p-values > 0.05 for all weather

variables), so the second half of this time series (1985-2008) is used to evaluate GLAM

performance, as it provides a stronger weather-yield signal for the model to pick up on.

Yield observations are available for five different sets of fertiliser treatments, as well

as control observations with no fertiliser added to the crop. GLAM does not specifically

account for fertiliser use in the model but does so implicitly in a mean level across a time

series using a Yield Gap Parameter CYG – see Section 3.2). No significant differences in

correlations with weather variables were found across the different yield time series. Figure

3.5 shows these correlations when using weather variables averaged from late-March to the

end of September. These correlations vary across different assumed starts of the growing

season (looking at day of year 65, 91, 106, 121, 136 and 152), although correlations are

never significantly different across fertiliser treatments and growing periods used to average

weather variables. Because of this, yields with no fertiliser are chosen for model runs as

GLAM does not simulate fertiliser use.
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Figure 3.5: Correlations of yield data (1985-2008) with GLAM weather inputs (A = solar radi-
ation, B = minimum temperature, C = maximum temperature, D = rainfall, E = mean absolute
correlation) across the six fertiliser treatments across a growing season from day of year 61 to 271.
Y1 = the no fertiliser data used in this study, Y2 to Y6 describe different fertiliser treatments.
Horizontal lines represent the significance threshold for correlations at the 5% level.

The observed yields are not detrended as there is no significant linear or quadratic trend

in the data. The first half of the UK time series is used for optimisation of parameters and

calibration of CYG, and the second half used for model evaluation. This is to help ensure

an independent data set with which to evaluate model performance.

The Aberdeen yield data are from experiments where crops were planted across late-

March to the end of May and harvested in late September. As in Gregory and Marshall

(2012), simulations assume a start of the sowing window at April 1st and allow a maximum
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duration of 180 days. A 45 day planting window is selected to reproduce the variation in

planting dates of the experiment and to match other simulations in this thesis.

3.2.1.1.2 Colombia yield data

Four-year time series for Colombian regions are used to test model performance in trop-

ical latitudes. These represent aggregated yield data for the largest administrative areas

in Colombia, known as “departments”. There are 32 departments in Colombia. For the

main Colombian growing season (with potatoes being planting in the first half of the cal-

endar year), data from 12 departments are available (including the most important potato

growing regions of Colombia – see Section 3.1.2), from the years 2007 to 2010. These are

Santander, Nariño, Tolima, Putumayo, Antioquia, Boyacá, Quindío, Norte de Santander,

Huila, Cundinamarca, Cauca and Caldas. The Colombian yield data are provided by the

International Center for Tropical Agriculture (CIAT) via Julian Ramirez-Villegas. Data

from Putumayo are not used as they contain very little potato growing area (see Section

3.2.1.4).

The model runs described below use yields that are not linearly detrended. No signifi-

cant trend was found in all regions save for Nariño and Tolima, and when these yields were

detrended the correlations between detrended yields and weather variables were lower than

correlations between the raw yield data and weather variables. It was therefore decided to

not detrend yields for these two regions, the assumption being that the trend in yields was

due to weather variables rather than factors not accounted for by the model.

3.2.1.2 Weather data

The AgMERRA (Agriculture Modern-Era Restrospective analysis for Research and Appli-

cations) data set is used for baseline climate conditions, available from 1980 to 2010 (Ruane

et al., 2015). This is a global baseline climate forcing data set better than many widely-

available alternatives (Ruane et al., 2015). NASA’s Modern-Era Retrospective Analysis

for Research and Applications (MERRA; Rienecker et al., 2011) is bias-corrected using

observation data and satellite data, as described in Ruane et al. (2015).
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Ruane et al. (2015) showed that mean biases in maximum and minimum temperature,

as well as correlations with daily data, are slightly better than other reanalysis data sets

when compared to data from 2324 observational stations. There is a slight global warm

bias for maximum temperature and a cool bias in minimum temperature, and results are

generally better at mid-high latitudes. Correlations with precipitation are significantly

better than the other reanalysis data sets. This is thought to be the result of AgMERRA’s

use of MERRA-Land (Reichle et al., 2011), which has improved simulation of the water

cycle, as well as the incorporation of the Climate Prediction Center’s precipitation data

(Chen et al., 2008).

Observed weather data were available fromMIDAS (Met Office Integrated Data Archive

System) for the Craibstone site but were not used to make the simulations in this thesis

comparable with respect to the weather inputs – see Chapter 5 for a comparison of the

regional and global simulations in this thesis.

AgMERRA is compared to these observed weather data, as well as a comparable reanal-

ysis data set (the Princeton data set – Sheffield et al., 2006) in Figure 3.6. The AgMERRA

data have very similar mean daily temperature and precipitation whilst having better rep-

resentation of daily variability than the Princeton data set, with correlations of AgMERRA

data with observations higher on average than those of the Princeton data for both temper-

ature and rainfall. Princeton and AgMERRA data sets are also compared in Ruane et al.

(2015). They show that AgMERRA typically outperforms Princeton, although Princeton

is usually very similar in its mean biases with temperature and precipitation. The corre-

lations of temperature with daily observations are lower for Princeton, although the larger

difference is in the representation of rainfall, in keeping with the greater uncertainties as-

sociated with simulating cloud formation and precipitation in climate models (see Chapter

1).
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Figure 3.6: Comparison of AgMERRA, Princeton and MIDAS weather data. Boxplots show
medians, interquartile ranges and the whiskers extend to 1.5 times the interquartile range. A).
Correlations of daily reanalysis and observed rainfall data. B). Mean daily rainfall data across
1980-2010. C). Correlations of daily reanalysis and observed minimum temperature data. D).
Mean daily minimum temperature data across 1980-2010. E). Correlations of daily reanalysis
and observed maximum temperature data. F). Mean daily maximum temperature data across
1980-2010.

3.2.1.3 Soil data

Soil data are from the the Global Soil Dataset for Earth System Modelling (Shangguan

et al., 2014). The soil inputs for GLAM are calculated using the method of Saxton et al.

(1986). They use the percentage values of sand and clay to calculate values of the three

soil hydrological parameters used in GLAM, drained lower limit θrll, drained upper limit

θdul and saturation limit θsat. These values are then averaged over the top seven soil layers
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(i.e. the top 1.383 m) and aggregated to a 0.5◦ grid using bilinear interpolation in R (R

Core Team, 2017). The top seven layers are chosen to be averaged over to include the 100

cm soil depth used in GLAM-potato (see Chapter 2, Section 2.2.6.2).

3.2.1.4 Potato growing area information

Grid cells are selected for simulation if they contain potato growing area, as defined by

MIRCA (Monthly Irrigated and Rainfed Crop Areas – Portmann et al., 2010), representing

information from the years 1998-2002. Shapefiles from the Database of Global Adminis-

trative Areas are used to define the 12 Colombian departments from which yield data are

available (http://www.gadm.org/) using grid cell centres to define boundaries. Data are

aggregated to a 0.5◦ grid using bilinear interpolation to match the available weather data

using the statistical package R (R Core Team, 2017).

As shown in Chapter 4, the top 50% of grid cells by growing area contain 99% of the

total potato growing area across all grid cells globally. This means that the other 50%

of grid cells contain almost no potato growing area and so were excluded from analyses

in this thesis as they have little influence on regional yields and production. This meant

excluding the Putumayo region entirely from the Colombian simulations.

The grid cell that contains the Aberdeen site is selected to provide inputs for these

simulations.

3.2.2 GLAM-potato parameter selection and optimisation

Parameters are selected for optimisation for the UK and Colombia when the parameters

are region- and crop-specific and a significant impact on simulated yields is found across

the reported parameter range from the literature. All parameters (and their ranges) tested

are in Table 3.2. A few crop or regionally-specific parameters were not optimised. The

maximum rate of change of leaf area index and the maximum normalised transpiration

efficiency are set to the maximum of the values reported in the literature in order to

potentially simulate the highest yields.

Preliminary runs are used to decide whether or not parameters are having a significant
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impact on simulated yields using a sequential sensitivity analysis. Three parameter sets

are created, comprising of each region- and crop-specific parameter at the lower, upper

and mid-point of the reported ranges from the literature. Each parameter is then varied

across its range within the three parameter sets, keeping all other parameters constant. A

parameter is deemed to be having a significant impact on simulated yields when across the

parameter range within any of the three parameter sets there is a percentage difference in

RMSE of 5% or greater. These parameters are then chosen for optimisation.

For the parameters found not to have a significant impact on yields, a mid-point of

the reported parameter range is taken for use in evaluation simulations. This approach

is adopted as opposed to a screening method of sensitivity analysis (e.g. see King and

Perera, 2013) as it can measure the size of the effect of each parameter on model output –

as opposed to simply ranking them using a screening method – and relatively few model

runs are used, which is desirable for preliminary runs.

Optimisation is performed using the optimiser developed by James Watson at the

University of Leeds, as used by Nicklin (2013) and described in Chapter 2, Section 2.2.10.

The optimiser randomly samples the parameters selected across their specified ranges and

returns the parameter set associated with the minimum RMSE after a set number of

iterations. Parameter sets that result in durations across years and grid cells being greater

than 180 days or maximum LAIs being less than 1 are rejected (these being unrealistic –

Harris, 1992; Burton, 1989).

This process is repeated using eight different seeds to generate different parameter

sets, as in Nicklin (2013) – skill across the eight seeds did not vary significantly so this

was deemed sufficient following prelimary simulations that consisted of tests of the model

optimsation set up. The seeds initialise the random number generator in the optimiser.

Different optimised parameter sets result from different seeds, as parameters in the model

can compensate for each other in differing ways. The number of iterations is chosen to

be sufficient for further reductions in RMSE to be minimal, and further convergence of

parameter sets (i.e. different seeds) to be insignificant in both regions. This was set to

be 20000 as the preliminary results suggested no further improvement in RMSE after this
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point.

Each iteration of the optimisation consists of a calibration run of CYG. This varies

CYG for every GLAM simulation during the optimisation. It was decided to vary CYG,

rather than fix it (as, for example, was done by Ramirez-Villegas, 2014), as this allows

a full exploration of parameter space and a sensible value of CYG to emerge from the

optimisation. Fixing CYG was considered a less viable option due to the uncertainty

associated with pre-selecting a value of CYG for each region.
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3.2.2.1 UK parameter selection

The first half of the UK time series (1985 to 1996) is used for model parameter selection,

optimisation and calibration. This allows the second half of the time series to be used as

independent data for evaluation.

3.2.2.2 Colombia parameter selection

As mentioned in Section 3.1.2, Colombia is a diverse country in terms of terrain and

temperature ranges. Different potato cultivars are used across such large geographic and

climatological ranges. Previous regional modelling has shown that a single parameter set

can capture phenology provided the region is homogeneous in terms of climate (van Bussel,

2011) - one parameter set cannot adequately simulate potato development across the highly

diverse Colombian regions, however. The planting dates and crop phenologies are therefore

varied at each grid cell in order to represent this variation in potato cultivars.

This section describes the methods used to select planting date and variety parameters

at each grid cell. The model parameters not involved in phenology are afterwards optimised

on one region and evaluated on all other regions, as described above in Section 3.2.2. One

region was chosen to optimise (as opposed to individual grid cells) as the yield data is at

the regional level, and therefore the variability in yield data at the grid cell level will not

always be the same as that at the regional level. The region chosen to optimise parameters

on was Antioquia. This is a large region with varied climatic conditions and significant

potato growing area to optimise over.

Colombia initial model runs select the date for the start of the planting window and

varieties (cardinal temperatures) for each grid cell across all regions. One planting window

is selected first for each grid cell based on rainfall, which primarily determines the growing

season in Colombia. Planting dates use a 45 day planting window, in keeping with other

GLAM simulations in this thesis. The start of this planting window is based on the level

of rainfall within the usual length of growing season. Six different six month periods from

January 1st to June 1st (as these yield data are associated with the main Colombian

growing season, i.e. planting in the first half of the year) are tested at each grid cell to
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see which period had the most rainfall in each season. The start of the most common

period across the four years with most rainfall was selected as the start of the planting

window in GLAM for that grid cell (for example, if three years had February 1st as the

start of the six month period containing the most rainfall, this start of the growing season

was selected). More rainfall was associated across years on average when taking this most

common maximum rainfall period rather than an average of maximum rainfall periods

across years. Eight grid cells had four different six month periods selected across the four

years – in these situations, a median of these four dates was selected rather than the mean,

again because it resulted in more rainfall on average across years. Planting dates selected

and the average total rainfall across the growing season associated with these planting

dates can be seen in Figures 3.7 and 3.8 respectively. Selected planting windows tend to

be nearer the end of the tested time intervals in the south and North of Colombia.

Figure 3.7 Figure 3.8

Left: Selected start of planting windows. Right: Sum of rainfall over the six growing season
associated with selected planting dates (mm). Region 1 = Nariño, 2 = Cauca, 3 = Huila, 4 =
Tolima, 5 = Quindío, 6 = Cundinamarca, 7 = Caldas, 8 = Boyacá, 9 = Santander, 10 = Antioquia,
11 = Norte de Santander.

Following planting date selection, a variety is then selected for each grid cell, based

on which combination of planting date and variety has the highest mean simulated yields

across the time series. This is similar to the methods used in Osborne et al. (2013) and

Hijmans (2003), where varietal types are defined based on thermal time requirements. The

assumption using the highest yielding combination is that the variety and planting date
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are optimal for the crop given the conditions and will reflect as much as possible the variety

and planting date used in reality.

For defining different varieties, cardinal temperatures are varied rather than thermal

time requirements as this allows the relationship between temperature and developmental

time to change across varieties at each grid cell (see Table 3.3). Planting date and variety

combinations that do not show emergency planting (i.e. when planting occurs at the end

of the planting window at that grid cell), durations higher than 180 days or maximum

LAI values of greater than 10 or less than 1 are tested to see which has the highest yields.

These caps are imposed to simulate realistic crop phenology and as potato harvesting is

a complex process involving climatic and non-climatic factors (see Chapter 1), with the

majority of potato seasons being shorter than 180 days.

Varieties T1-T5 consist of progressively higher cardinal temperatures (Table 3.3, rows 1-

5). Varieties LHT1 and LHT2 (“Low-High” temperature varieties, Table 3.3, rows 6-7) have

hotter temperatures for the latter three and two developmental stages respectively (which

result in longer tuber bulking periods in cooler conditions, or shortened tuber bulking

in hotter conditions), and varieties HLT1 and HLT2 (“High-Low” temperature varieties,

Table 3.3, rows 8-9) have hotter temperatures for the first three and two stages respectively

(which result in longer tuber bulking periods in hotter conditions and shortened tuber

bulking in cooler conditions). Other developmental parameters (thermal times and the

critical photoperiod) are fixed across all varieties. The thermal time parameters are set to

the upper end of the reported range for the senescence to harvest stage and the low end

of reported ranges from emergence to senescence, in order to simulate realistic leaf area

index development (i.e. allowing the leaf area index to fall near to zero, as is common

in potatoes – see Section 3.3). This was decided following the Colombian simulations

described in Section 3.2.2 that showed unrealistically short senescence periods – previous

large scale crop modelling has shown the importance of the representation of leaf senescence

for accurate model performance (van Bussel, 2011).
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Table 3.3: Cardinal temperatures used for the different varieties for each grid cell in Colombian
regions (◦C). In the column names, B refers to base temperature, O refers to optimum temperature
and M refers to maximum temperature and numbers 1-4 refer to the 4 developmental stages –
planting to emergence (1), emergence to tuber initiation (2), tuber initiation to senescence (3) and
senescence to harvest (4).

Variety B1 B2 B3 B4 O1 O2 O3 O4 M1 M2 M3 M4
1 - T1 0 0 0 0 15 15 15 15 25 25 25 25
2 - T2 2 2 2 2 16.5 16.5 16.5 16.5 27 27 27 27
3 - T3 4 4 4 4 18 18 18 18 29 29 29 29
4 - T4 6 6 6 6 19.5 19.5 19.5 19.5 31 31 31 31
5 - T5 8 8 8 8 21 21 21 21 33 33 33 33
6 -LHT1 0 4 4 4 15 18 18 18 25 29 29 29
7 -LHT2 0 0 4 4 15 15 18 18 25 25 29 29
8 - HLT1 8 8 8 6 21 21 21 19.5 33 33 33 31
9 - HLT2 8 8 6 6 21 21 19.5 19.5 33 33 31 31

Other parameters are set to mid-points of reported ranges for these initial simulations

that select planting dates and varieties, with a few exceptions. The maximum rate of

change of leaf area index, the maximum rate of change of harvest index and the maximum

normalised transpiration efficiency are set to the maximum of the values reported in the

literature in order to potentially simulate the highest yields. The root length density by leaf

area at the soil surface is set to the low end of the reported range in order to realistically

simulate root growth (see Section 2.2.4.2). The radiation use and transpiration efficiency

parameters are especially important for simulating crop biomass. Transpiration efficiency

was set to the low end of its reported range and radiation use efficiency fixed at the mid-

point of its reported range following prelimary simulations (see Chapter 4, Section 4.2.2).

3.2.3 GLAM-potato calibration

GLAM is calibrated for each region to observed yields in order to take into account the

mean effects of biotic stresses and non-optimal management over the time series using the

yield gap parameter (CYG).

For each region, CYG is varied from 0.05 to 1.00 in increments of 0.05 and the value of

CYG associated with the lowest RMSE is selected. The model is then evaluated using this

value of CYG.
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3.2.3.1 UK calibration

Calibration of CYG uses the first half of the yield time series (1985 to 1996).

3.2.3.2 Colombia calibration

Calibration of CYG uses the four year yield time series associated with each of the 11

Colombian regions (Antioquia during the optimisation process and the other 10 for evalu-

ation).

For each Colombian region, it is necessary to calculate a regional simulated yield time

series to compare to regional observed yields for calibration, optimisation and subsequent

evaluation. In order to do this, regional production is calculated using the product of the

area data and the simulated yields at each grid cell, which are summed for the regional

production time series. A simulated yield time series is then calculated by dividing total

production by total area at the regional level to compare to the regional observed yields.

3.2.4 Evaluation framework

Two tests are used to evaluate GLAM-potato model performance in each region:

1. Are correlations between GLAM-potato simulated yields and statistical model sim-

ulated yields not statistically different?

2. Are model output variables realistic compared to observed values?

The simulated and observed yield correlations from statistical and process-based mod-

els are compared to see if GLAM captures the seasonal weather variations comparably to

a statistical model. Statistical models have previously been shown to effectively capture

weather-yield relationships (e.g. Hawkins et al., 2013a), and these relationships can be

used as a benchmark of model preformance (e.g Challinor et al., 2004). If GLAM-potato

performs comparably to such a model (that is specifically designed to capture these rela-

tionships) as well as realistically simulating potato growth then the model is said to be

getting the right answer for the right reasons. Checks to ensure that model outputs of

leaf area index and harvest index are sensible (i.e. fall within the ranges of values re-

ported in the literature) are conducted to assess the model’s accuracy in simulating potato
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growth. Durations of developmental stages are also assessed. The leaf area index output

from GLAM is reduced when calibrated using CYG, and this reduced value is compared to

observations.

The focus of the evaluation is on the best performing GLAM parameter sets, as chosen

from the eight parameter sets optimised as described in Section 3.2.2. The best performing

parameter sets for UK and each Colombian region being evaluated are defined as those

which showed the highest correlation coefficients, as the primary focus of the analysis

is the accurate representation of year-to-year variability. When a correlation between

observed yields and statistical model yields is found to be significant, the Williams method

(Williams and Williams, 1959) is used to judge whether or not this correlation and that

between GLAM yields and observed yields is significantly different. If they are not found

to be significantly different and have the same sign of correlation (i.e. positive or negative)

then evaluation test 1 is passed in that region. If no significant correlation is found between

statistical model yields and observed yields, the sign of correlations is required to be the

same only. The model output variables examined for test 2 are biomass, harvest index,

maximum leaf area index and duration. If across all years and grid cells these are within

the limits seen in observations from the literature then test 2 is passed.

The R function “r.test” from the package “psych” (Revelle, 2015) is used to statistically

judge whether or not the correlations are significantly different. Being two modelling

processes that are based on the same input weather data, the variables containing the

simulated yields from the two models are not independent, and hence neither are the

associated correlations. The “r.test” function is therefore used to calculate a test statistic

for the difference of two dependent correlations (the correlations between the simulated

yields for both modelling types and observations) using the Williams method (Williams

and Williams, 1959), which has been shown to perform well relative to other methods in

terms of the statistical power of the test (i.e. the probability of correctly rejecting the null

hypothesis when it is false – Wilcox and Tian, 2008). The Williams method calculates a

test statistic based on the correlations between the three variables concerned (both sets of

simulated yields and the observed yields). The statistic is then compared to a student’s

93



Stewart Jennings 94 University of Leeds

t-distribution to obtain a p-value for evidence against an equal-correlation hypothesis.

3.2.4.1 UK evaluation

After optimisation and calibration of model parameters, evaluation is conducted on the

second half of the UK time series (1997 to 2008). This is to ensure that the data used for

optimisation and calibration are independent of those used for model evaluation.

3.2.4.2 Colombia evaluation

The model is optimised on the Antioquia region, as it is a large region with varied climatic

conditions and significant potato growing area to optimise over. Model evaluation then

takes place on the other regions of Colombia. This is to ensure that the data used for

optimisation are independent of those used for model evaluation.

Correlation coefficients evaluated are for each region. These use regional yield time

series for the observed and simulated yields, calculated using regional production and area

data as described in Section 3.2.3.2.

3.2.5 Statistical crop model

The statistical models consist of the weather variable inputs used in GLAM to allow a

direct comparison between GLAM and the statistical model. A multiple linear regression

model – as shown below in Equation 3.1 – consisting of mean rainfall, temperature, solar

radiation and temperature-rain interactions for the growing season (defined as the weather

data from the earliest possible planting date to latest harvest date) as explanatory variables

and yields as the response variable over years t is compared to GLAM-potato:

Y (t) = I + β1Tmean(t) + β2P (t) + β3R(t) + β4Tmean(t)P (t) + e (3.1)

where Tmean is the mean temperature during the growing season, P is the mean precipita-

tion during the growing season, R is the mean solar radiation during the growing season,

Tmean(t)P (t) is the interaction between precipitation and mean temperature, Y is the end-

of-season yield and e is a Gaussian error term. The parameters (or coefficients) associated
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with each variable in the model are represented by β1 to β4, and I is the intercept. In

addition to the weather inputs that GLAM uses, an interaction variable between tempera-

ture and precipitation is included as the variability between rainfall and temperature is not

independent (Runge, 1968) and is therefore commonly included in statistical crop models

(e.g. Hawkins et al., 2013a; Schlenker and Roberts, 2009).

3.2.5.1 UK statistical model

The statistical model is calibrated on the first half of the time series and then used to

simulate yields in the second half of the time series, allowing a direct comparison to GLAM

model evaluation.

3.2.5.2 Colombia statistical model

One statistical model is calibrated for each Colombian region. Regional observed and

simulated yields are related to the average climate variables across the region, as in Hawkins

et al. (2013a) - in other words, averaging the weather variables for each year across all grid

cells to make regional weather time series.

To avoid model overtuning on the short four year time series, the variable of those in

Equation 3.1 showing the highest correlation coefficient with observed yields in each region

is selected and used as a single explanatory variable in each model.

3.3 Results

Results are presented separately for the UK and Colombia. An optimisation results section

(Section 3.3.1.1 for the UK and Section 3.3.2.1 for Colombia) is followed by the evaluation

results (Section 3.3.1.2 for the UK and Section 3.3.2.2 for Colombia).

3.3.1 UK

3.3.1.1 Optimisation

Parameters selected for optimisation as a result of the sensitivity analysis are shown in

Figure 3.9. Whilst these initial runs show that the root length density at the extraction
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front lv(z = zef) and root growth by LAI ∂lv(z=0)
∂L were not significantly affecting yields

(and so not optimised), the results across parameter sets used in the sensitivity analysis

did show unrealistically high mean root length densities, increasing up to values not gen-

erally seen in the literature (e.g. see Iwama et al., 1993; Vos and Groenwold, 1986). It

was therefore decided that ∂lv(z=0)
∂L should be set to the lower end of reported parameter

values for subsequent simulations in order to more realistically represent root growth. This

applies to all GLAM-potato simulations in this thesis, as the same was found in Colombian

simulations.
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The evolution of RMSE during the optimisation process on the Aberdeen time series

can be seen in Figure 3.10. As can be seen, RMSE improvements take place mostly within

the first 5000 iterations. Subsequent improvements to RMSE tail off and after 10000

iterations no significant improvements take place. 20000 was chosen as the final number

of iterations as skill across different seeds no longer converged significantly across seeds.

Figure 3.11 shows why the RMSE is higher after optimisation in Aberdeen (around 2000

kg/ha) compared to Colombian results (which show RMSE around 200 kg/ha, see Section

3.3.2.1). The most important source in the difference in skill is the mean yield level (i.e. line

3 in Figure 3.11 shows the lowest RMSE from any single change in model setup). After this,

the shorter time series is most important (line 2), with the number of parameters not having

a significant effect on RMSE (line 1). Following these tests, RMSE in Aberdeen reduced

to less than 1000 kg/ha, but was still not as low as seen in Colombian optimisations. The

remaining difference in skill between Aberdeen and Antioquia following optimisation is due

to the higher interannual variability of the Aberdeen time series compared to Antioquia.

This results in higher RMSE, as while the model shows good skill in picking up the year-

to-year variability in observed yields, the magnitude of the differences between observed

and simulated yields are higher on average due to the higher variability in observed yields.

The Antioquia time series shows less yearly variability and therefore RMSE tends to be

lower.

The variation in parameters selected by the optimisation process can be seen in Figure

3.12. Model skill (both RMSE and correlation coefficient) is best for parameter sets 1,

3 and 5. All parameters show substantial variation across reported ranges, showing that

compensation can occur with different parameter sets leading to similar model skill. The

better performing parameter sets do show lower radiation use efficiency, transpiration use

efficiency, and higher rate of change of harvest index ∂HI
∂t values, however. For the most

skilful parameter sets, the CYG is calibrated to have a maximum value of 1.
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Figure 3.11

Left: Optimisation runs using 8 different seeds for Aberdeen, showing only the iterations that
improved RMSE. Right: Optimisation runs testing the source in difference between optimised skill
in Aberdeen and Colombia, showing all values of RMSE across iterations, ordered by value. 1
= All parameters optimised, 2 = four year time series optimised, 3 = yield levels half of normal
Aberdeen time series, 4 = half yields and four year time series, 5 = half yields, four year time
series and all parameters optimised.
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Figure 3.12: Parameters optimised for the Aberdeen time series. For the thermal time plot, lines
1 to 4 correspond to the 4 developmental stages. The cardinal temperature plot shows five lines:
the first four correspond to developmental stages 1 to 4 for the base cardinal temperature. Line
five corresponds to the optimal temperature for the 3rd developmental stage (tuber initiation to
senesence - this being the only optimal temperature selected for optimisation). YGP is the Yield
Gap Parameter CYG.

3.3.1.2 Model Evaluation

Evaluation test 1 - that simulated GLAM yields have the same correlation with observed

yields as the simulated statistical model yields - is passed, with no significant difference

in the two correlations (see Figure 3.13). The correlation coefficient between observed

and statistical model yields is not significantly greater than those with GLAM yields,

100



Stewart Jennings 101 University of Leeds

and is in itself insignificant, suggesting that GLAM is adequately capturing weather-yield

relationships. Parameter set 7 shows the highest correlation coefficient, with parameter

sets 5 and 6 showing skill almost as good. There is no significant difference in correlation

coefficient across parameter sets, however - whilst no correlation with observed yields is

significant, most show reasonable skill in simulating the variability in year-to year yields.

The significance threshold for a two-tailed Pearson correlation coefficients for this length

of time series is 0.575 (n = 12). None of the GLAM or statistical model correlations are

significant.
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Param. set 2 − RMSE = 2.08 Cor. = 0.38 Cor. Test P.Val = 0.63
Param. set 3 − RMSE = 2.03 Cor. = 0.37 Cor. Test P.Val = 0.67
Param. set 4 − RMSE = 2.51 Cor. = 0.23 Cor. Test P.Val = 0.18
Param. set 5 − RMSE = 1.99 Cor. = 0.44 Cor. Test P.Val = 0.87
Param. set 6 − RMSE = 2.07 Cor. = 0.44 Cor. Test P.Val = 0.85
Param. set 7 − RMSE = 1.94 Cor. = 0.53 Cor. Test P.Val = 0.77
Param. set 8 − RMSE = 2.11 Cor. = 0.32 Cor. Test P.Val = 0.41

Figure 3.13: Observed, simulated GLAM and simulated statistical model yields, with a compar-
ison of GLAM and statistical model skill across parameter sets.

Correlations between simulated yields and weather variables (temperature, rain and
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solar radiation) are the same sign as correlations between observed yields and weather

variables (see Figure 3.14). The model overestimates the magnitude of the correlation

between simulated yields and temperature, however - there is only a small, weak nega-

tive correlation between observed yields and temperature. The strongest correlation with

observed yields is rainfall, although this is still insignificant. The interannual variability

of solar radiation is larger than for temperature or rainfall, although correlations with

observed yields are very low.
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Figure 3.14: A). Sum of rain over the growing seasons associated with the different GLAM pa-
rameter sets. B). Mean temperature over the growing seasons associated with the different GLAM
parameter sets. C). Mean solar radiation over the growing seasons associated with the different
GLAM parameter sets. Correlations between weather variables and observed and simulated yields
are shown, with the ranges shown for correlations associated with the different parameter sets.
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Table 3.4: Statistical model coefficients, associated p-values and variation explained by the model
variables.

Variable Coefficient p-value Variation (%)
Intercept 221.570 0.069 n/a
Mean Temperature -15.489 0.127 0.003
Mean Rain -94.374 0.082 0.016
Mean Solar Rad. -2.319 0.263 0.097
Mean Temperature * Mean Rain 8.325 0.082 0.328

A summary of the statistical model statistics is shown in Table 3.4. No model coefficient

has a significant p-value. Temperature has a weak negative correlation with observed

yields as well as a very weak, negative coefficient in the statistical model. Rainfall has a

positive correlation with observed yields but a negative coefficient in the statistical model.

Model variation explained is dominated by the interaction variable of mean temperature

multiplied by total rainfall during the growing season, which has a positive coefficient.

The variability in temperature and rainfall are therefore not independent – the positive

relationship between rain and observed yields is dependent on temperature also. In cooler

years there tends to be more rainfall and in warmer years less rainfall. The effect of

rainfall on yields therefore depends on temperature and vice versa. This is likely due to

the developmental stage of the crop being important for the impacts of water on yields.

Some authors suggest that both tuber initiation and bulking periods are more sensitive to

drought stress than other stages (e.g. see Dalla Costa et al., 1997). Temperature affects

development which will influence the timing of rainfall on the crop. There is also evidence

that heat and drought stress acting together can further reduce yields (Mittler, 2006).

When the interaction term is excluded from the statistical model, a positive coefficient is

associated with rainfall, overall suggesting that the timing of rainfall for potato yields is

key.

Years 1998 to 2000 and 2008 show observed yields that are not well simulated by GLAM

(Figure 3.13), but as can be seen from the statistical model made up of the weather variable

inputs in GLAM, the trend was not due to the direct influence of the weather inputs either

(temperature, rainfall and solar radiation). Figure 3.14 shows weather input variables used

by the models. The negative correlations with temperature and the positive correlations
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with rainfall dominate the inter-annual variability in simulated yields. In 1998 to 2000,

rain and temperature trends cause the pattern seen by simulated yields in the statistical

model and the GLAM model set-ups, i.e. less rain and higher temperatures leading to

lower yields in 1999 than the surrounding years. The observed yields show the opposite

trend, however. The same is happening in 2008, where less rain and average temperatures

lead to lower simulated yields, but yield observations show a large increase. Solar radiation

shows an increase in 1999 and 2008, but there is no positive correlation with observed yields

to explain the observed yield trend. It is therefore likely that the growing season during

these years is different to that being simulated. Whilst it is known from the experimental

setup that planting takes place over an approximate period of March to May, there is some

uncertainty over exact planting dates and hence when the timing of developmental stages

take place. Because of this, the cumulative weather variables of the simulated crop may be

different in some years, and this is likely taking place here, resulting in a different pattern of

simulated and observed yields in those years. In both 1999 and 2008, for example, shortly

after the end of the simulated growing season there are days with significant rainfall.

Slight changes to phenology may therefore have significant impacts on simulated yields.

In general, however, we can conclude that GLAM is picking up the relationships of yields

and weather.

Evaluation test 2 - that model output variables are realistic compared to those seen

in observations - is passed, although not all GLAM parameter sets show realistic values

for all model output variables. Figures 3.15.A and 3.15.B show end of season biomass and

harvest indices respectively across all parameter sets. The biomass shown is comparable to

the ranges seen in Harris (1992) for cultivars with growing seasons simulated in this work.

Harvest indices were capped at 0.8 so as to be realistic for long tuber bulking periods (Ivins

and Bremner, 1965), as seen in parameter set 1.

Figure 3.15.D shows crop durations to be within observed values (Jefferies and Mack-

erron, 1987; Van Keulen and Stol, 1995) across all parameter sets, as expected given the

limitations set on optimised parameter sets described in Section 3.2.2.1. These durations

were also in agreement with those reported by Gregory and Marshall (2012) in the experi-

mental set-up from which these data come. Figure 3.16 shows that the senescence stage in
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GLAM-potato can be short compared to those seen in some observations (see Figures 3.17

and 3.18), resulting in an end of season LAI that approaches 0 but falls short of doing so.

That being said, parameter set 1 shows LAI falling to at or close to 0 in many years.
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Figure 3.15: End of season biomass, end of season harvest index, maximum seasonal LAI and
crop duration across years simulated. Boxplots show medians, interquartile ranges and the whiskers
extend to 1.5 times the interquartile range. Dashed blue lines indicate the range of realistic values
for that variable. For biomass, realistic values span the range shown in the y-axis.
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Figure 3.16: Durations of the developmental stages in GLAM-potato - 1 = planting to emergence,
2 = emergence to tuber initiation, 3 = tuber initiation to senescence, 4 = senescence to harvest.
Boxplots show medians, interquartile ranges and the whiskers extend to 1.5 times the interquartile
range.
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Figure 3.17: Observations of Leaf Area Index developing across the growing season, for both
early and late maturing crops grown at Trefloyne (South Wales) and Cambridge (East Anglia).
a-a, Trefloyne (early); b-b, Cambridge (early); c-c Trefloyne (late); d-d, Cambridge (late). Taken
from Harris (1992). Repetition of Figure 2.3.

Figure 3.18: Range of LAI values across planting dates and varieties. Taken from Harris (1992).
Clear circles = Home Guard, March 11th; clear squares = Desiree, April 1st; Black Triangles =
Maris Piper, April 18th; grey diamonds = Desiree, May 28th; clear triangles = Desiree, June 10th;
grey squares = Pentland Dell, April 15th; clear diamonds = Pentland Dell, May 27th.

As shown in Figure 3.15.C, parameter sets 1, 2, 3, 5, 6 and 8 show maximum LAI

values that are seen in observations (see Figures 3.17 and 3.18). Other parameter sets

(notably parameter set 7, which has the highest correlation coefficient between simulated

and observed yields) show values higher than commonly observed. This is due to the longer

leaf growing developmental stages associated with parameter sets 4 and 7 following optimi-
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sation of phenology parameters (Figure 3.16). As shown in Figure 3.12 in Section 3.3.1.1,

the thermal time requirement for planting to senescence is relatively high for parameter

sets 4 and 7, and that for the senescence to harvest stage is very low. Parameter set 5

is adjudged to be the best performing Aberdeen parameter set due to its high skill and

realistic output variables.

An example of daily evolution of variables for parameter set 5 is shown in Figure 3.19.

Yields, biomass and HI values are all realistic (Figures 3.19.A to C). Senescence is shorter

than observations in some cases (Figure 3.19.D). Mean root length densities typically peak

at a little over 2 cm/cm3, which is in line with observations (Vos and Groenwold, 1986;

Lesczynski and Tanner, 1976), and ISTGs are realistic (Figure 3.19.F).
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Figure 3.19: Daily evolution of model variables for parameter set 5 - yield, biomass, harvest
index, LAI, mean root length density by volume and ISTG breakdown.

3.3.2 Colombia

3.3.2.1 Optimisation

Figure 3.20 shows the parameters selected to be optimised following the sequential sen-

sitivity analysis (see Section 3.2.2.2 for details). Of the parameters tested (which were

those not involved with simulating crop phenology) only the radiation use efficiency, tran-

spiration use efficiency and rate of change of harvest index were found to have significant

impacts on simulated yields and therefore included in the optimisation.
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The evolution of RMSE during the optimisation process on the Antioquia time series

can be seen in Figure 3.21. RMSE improvements take place sharply at times, with no

reductions in RMSE across all seeds by 20000 iterations (this number selected as the final

number of iterations to match the Aberdeen optimisation). In contrast to the Aberdeen

optimisation (see Section 3.3.1.1), the improvements in RMSE are few and the vast majority

of improvements come early in the optimisation process. This is the result of there being

fewer parameters to optimise, with improvements in RMSE being rarer as a result.
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Figure 3.21: Optimisation runs using 8 different seeds for the Antioquia region. Only iterations
that improved RMSE are shown.

All parameter sets show very similar skill, both in terms of RMSE and correlation

coefficient (Figure 3.22). There is very little variation across parameter sets in any of the

optimised parameters.
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Figure 3.22: Parameters optimised for the Antioquia time series. YGP is the Yield Gap Param-
eter CYG.

3.3.2.2 Model Evaluation

The tests of model performance – the statistical model comparison and the output variable

assessment – are passed in six of the 10 Colombia evaluation regions (Table 3.5). Model

simulations are virtually identical across all parameter sets. Spatial plots (Figures 3.23,

3.24 and 3.25) are therefore only shown for parameter set 1, which had marginally higher

model skill.
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Table 3.5: Evaluation tests summary for the 11 Colombian regions (evaluation regions and the
optimised region, Antioquia). Bold regions pass evaluation tests and are therefore adjudged to
adequately simulate potato yields. “Stat. Cor.” refers to the test of GLAM yields and statistical
model yields being the same sign and not statistically different. “Variables” refers to the test
of model output variables being within observed limits. Numbers 1-11 correspond with region
numbering in Figures 3.23 and 3.24. P = test passed, - = test failed.

Region Stat. Cor. Variables
1 - Nariño P P
2 - Cauca - P
3 - Huila - P
4 - Tolima P P
5 - Quindío P P
6 - Cundinamarca P P
7 - Caldas - P
8 - Boyacá P P
9 - Santander - P
10 - Antioquia P P
11 - Norte de Santander P P

A majority of evaluation regions show positive correlation coefficients between GLAM

and observed yields (Table 3.6 and Figure 3.23.A) but none are significant (the 5% signif-

icance threshold for 4 year time series being 0.95, or for p-values of < 0.1, the correlation

threshold value is 0.90). The statistical models are not significantly correlated with ob-

served yields, with the exception of the Huila region. The regions where the statistical

model correlation is significantly different to the GLAM correlation are Nariño, Huila and

Santander. The first test of model performance is therefore not passed in these regions

save for Nariño, where the statistical model correlation is not significant and the GLAM

correlation is also positive. The other regions to fail this test are Cauca and Caldas due to

negative correlations between GLAM and observed yields. Appendix A contains the sim-

ulated and observed yield time series and summary statistics for the 10 evaluation regions

with all parameter sets shown.

In some regions, weather correlations with observed yields do not have the same sign as

those with simulated yields – this is the cause of some regions showing poor skill and often

the reason for test failure (see Figure 3.24). Huila and Caldas fail to represent weather

relationships adequately.
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Table 3.6: Evaluation test 1 summary for the 11 Colombian regions (evaluation regions and the
optimised region, Antioquia). Bold regions pass the evaluation test. “GLAM Cor.” are correlations
between GLAMmodel and observed yields for the parameter set with the best correlation coefficient
with observed yields (across all regions, no parameter set was different in terms of correlation
coefficient by more than 0.01, however). “Stat. Cor.” are correlations between statistical model
and observed yields. “Cor. Test” refers to the p-value test of significant difference between the
highest GLAM correlation with observed yields and the statistical model correlation. Numbers
1-11 correspond with region numbering in Figures 3.23 and 3.24. Asterisks denote significant
correlations (** = 5% level significance, * = 10% level significance). Regions shown in bold pass
evaluation test 1.

Region GLAM Cor. Stat. Cor. Cor. Test
1 - Nariño 0.46 0.77 0.02**
2 - Cauca -0.50 0.53 0.64
3 - Huila -0.84 0.97** 0.07*
4 - Tolima 0.85 0.86 0.94
5 - Quindío 0.72 0.52 0.71
6 - Cundinamarca 0.37 0.59 0.84
7 - Caldas -0.65 0.72 0.50
8 - Boyacá 0.41 0.44 0.97
9 - Santander -0.09 0.43 0.04**
10 - Antioquia 0.79 0.78 0.98
11 - Norte de Santander 0.70 0.07 0.26

114



Stewart Jennings 115 University of Leeds

−80 −78 −76 −74 −72 −70

2
4

6
8

Longitude

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

Cor.

1

2 3

4
5 6

7
8

910

11A

−80 −78 −76 −74 −72 −70

2
4

6
8

Longitude

L
a

ti
tu

d
e

1
31
61
91
121
151
181

D.O.Y.

1

2 3

4
5 6

7
8

910

11B

−80 −78 −76 −74 −72 −70

2
4

6
8

Longitude

1
2
3
4
5
6
7
8
9

Var.

1

2 3

4
5 6

7
8

910

11C

−80 −78 −76 −74 −72 −70

2
4

6
8

Longitude

L
a

ti
tu

d
e

70
85
100
115
130
145
160

Days

1

2 3

4
5 6

7
8

910

11D

−80 −78 −76 −74 −72 −70

2
4

6
8

12
15
17
20
23
26
28

Deg.C.

1

2 3

4
5 6

7
8

910

11E

−80 −78 −76 −74 −72 −70

2
4

6
8

L
a

ti
tu

d
e

0
300
600
900
1200
1500
1800
2100
2400

mm

1

2 3

4
5 6

7
8

910

11F

Figure 3.23: A = Correlations between regional simulated and observed yields for parameter set
1. B = Planting window start day of year. C = Varieties chosen. D = Mean duration for each
grid cell. E = Mean daily temperature. F = Mean sum of rainfall over growing season. Region 1
= Nariño, 2 = Cauca, 3 = Huila, 4 = Tolima, 5 = Quindío, 6 = Cundinamarca, 7 = Caldas, 8 =
Boyacá, 9 = Santander, 10 = Antioquia, 11 = Norte de Santander.
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Figure 3.24: Correlation coefficients between growing season weather variables and simulated
(parameter set 1) and observed yields. Correlations are at the grid cell level for the weather
variables and yields (the same time series of observed yields were used at each grid cell in each
region). A = Correlation between mean temperature and observed yields. B = Correlation between
mean temperature and simulated yields. C = Correlation between sum of rainfall and observed
yields. D = Correlation between sum of rainfall and simulated yields. E = Correlation between
solar radiation and observed yields. F = Correlation between solar radiation and simulated yields.
Region 1 = Nariño, 2 = Cauca, 3 = Huila, 4 = Tolima, 5 = Quindío, 6 = Cundinamarca, 7 =
Caldas, 8 = Boyacá, 9 = Santander, 10 = Antioquia, 11 = Norte de Santander.
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Model outputs other than yield are checked for evaluation test 2 (Figure 3.25). Box-

plots showing variables across years and grid cells are shown in Appendix A. Phenology is

set before evaluation simulations in the preliminary runs choosing planting dates and va-

rieties at each grid cell, resulting in realistic durations across regions (e.g. Figure 3.23.D).

Maximum leaf area index values for most regions are within reported ranges, typically

around 1-4, with higher values occurring in some regions such as Norte de Santander.
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Figure 3.25: Mean end of season outputs for each grid cell for simulations using parameter set
1. A = Biomass. B = Harvest index. C = YGP, Yield Gap Parameter CYG. D = Maximum leaf
area index from the growing season. Region 1 = Nariño, 2 = Cauca, 3 = Huila, 4 = Tolima, 5
= Quindío, 6 = Cundinamarca, 7 = Caldas, 8 = Boyacá, 9 = Santander, 10 = Antioquia, 11 =
Norte de Santander.

To summarise, a majority of regions pass the evaluation tests in Colombia. The main
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cause of test failure and poor model skill in the other regions is the relationships with

weather variables being poorly represented (Figure 3.24). In the badly performing regions

of Caldas, Cauca and Huila, the correlations between observed yields and weather vari-

ables are more often a different sign (i.e. positive or negative correlation) to those with

simulated yields. In the relatively well-performing regions, more often than not the rela-

tionships between observed yields and weather are the same with simulated yields. This is

particularly true with respect to temperature correlations in the south of Colombia. Rain-

fall correlations with simulated yields are also not as positive in the south as seen with

observed yields.

In both Cauca and Huila there is a strong negative correlation between observed yields

and temperature, whereas simulated yields and temperature have a positive correlation

(Figure 3.24). In these regions, warmer temperatures are leading to longer durations and

higher yields. Correlations with rainfall are often positive with observed yields and negative

with simulated yields. The correlations between solar radiation and simulated yields are

usually positive and stronger than those with rainfall in these cases, causing a negative

rainfall correlation with simulated yields. This means that radiation is the limiting factor

for simulated yields in these regions rather than rainfall – i.e. in conditions with higher

solar radiation, there is less rainfall as there is likely less cloud cover.

Planting dates tend to be at the end of tested values in the badly performing regions.

Mean temperatures in the region suggest that higher temperatures lead to longer dura-

tions and higher yields, causing the positive correlation between temperature and simulated

yields. The relationship between observed yields and temperature has a negative corre-

lation, however, suggesting that the planting date and variety combinations selected that

produced the highest simulated yields are not producing realistic responses to temperature.

Further evidence that unrealistic planting dates are being selected comes from the rainfall

correlations being positive with simulated yields and negative with observed yields – i.e.

rainfall should be a limiting factor but is often not in poorly performing regions.

There tends to be more rainfall towards the end of the year than in the first rainy

season in southern Colombian regions. As a result, late planting dates and long duration
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varieties are being selected that result in the simulated growing season including some of

this second rainy season. There is indeed more than sufficient rainfall for a typical potato

growing season in many grid cells in these simulations (Figure 3.23.F). These planting

date and variety combinations are probably not realistic, however, as they are resulting in

harvest being too late in the calendar year in southern regions.

3.4 Discussion and conclusions

This chapter aims to see if GLAM-potato can simulate the observed relationship between

yields and weather variables in UK and Colombian regions. GLAM is satisfactorily simu-

lating the relationship between yield and weather at the Aberdeen location, corroborating

the results seen in Gregory and Marshall (2012), who demonstrate some skill in simulat-

ing yields at this location (but do not show statistics comparing simulated and observed

yields). The good model performance here can be attributed to the correlations between

observed yields and weather variables being the same sign as those with simulated yields,

albeit with correlations with simulated yields often being stronger than those seen with

observed yields. Given that GLAM simulates yields as a function of weather inputs, it

is not surprising that correlations are stronger than those seen with observed yields as

non-climatic factors not included in the model will be influencing observed yields. These

factors could include pests, diseases and changes in management or technology over time.

The potato disease late blight Phytophthora infestans has been shown to have changed its

timing of emergence in the last 30 years, for example (Gregory et al., 2009). These factors

could be influencing certain years in the observed yield time series, and given that they

are not included in the model explicitly this could lead to poor representation of yields in

some cases. Given the experimental set-up used for the observed yield data in this study,

however, any changes in management should be minimal. It is also not surprising that

some years fail to show accurate simulation of yields given the relatively weak relationship

between observed yields and weather.

The model shows some skill in simulating observed yields in Colombia. When poor

model performance does occur, it is usually due to the relationship between temperature
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and simulated yields being different to the relationship between temperature and observed

yields. In some southern regions in particular, the positive relationships between simulated

yields and temperature are not realistic. The combination of planting date and variety

selected for these simulations produces this unrealistic relationship with temperature. In

this case, a lack of detailed information on planting dates and crop varieties is hampering

simulations.

van Bussel (2011) found that the assumption to use one phenological parameter set to

capture the mean response of different German winter wheat cultivars was justified across a

region. This was for a homogenous region though, and the different climatic conditions and

different potato varieties grown across Colombia prompted the use of different phenological

parameters across grid cells.

For both Aberdeen and Colombia, GLAM-potato has been shown to satisfactorily sim-

ulate potato development, growth and yield in a majority of cases. There are exceptions

to the general good performance of the model in both regions, however - certain years

in Aberdeen and certain regions of Colombia show poor skill in simulating yields. The

common problem for these simulations is uncertainty in the choice of planting dates and

phenology. The short time series in Colombia make parameter selection and model eval-

uation difficult. For either region, small changes to planting dates can lead to different

weather inputs and simulated yields. In Colombia, for example, planting dates are based

on rainfall over various tested six month periods. The data used are not perfectly rep-

resentative of observed rainfall and therefore chosen planting dates may not reflect those

used in the field in some cases. There is also uncertainty over the method used to select

the onset of rainfall and therefore the growing season (Bombardi et al., 2017; Coelho et al.,

2017). The highest yielding variety selected in Colombia may not necessarily be the best

for capturing interannual variability. See Chapter 4 for more on the selection of planting

date and variety combinations in Colombia and the UK in relation to the simulation of

weather-yield relationships and model skill.

With more parameters optimised and a longer time series with which to optimise and

calibrate on, it is not surprising that model performance in simulating inter-annual vari-
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ability is stronger in Aberdeen than the majority of the Colombian regions. Importantly,

however, the model has shown the ability to capture inter-annual variability in observed

yields in both tropical and temperate latitudes. It is therefore concluded that GLAM-

potato is an adequate tool for regional scale potato simulations. Improvements in model

skill would doubtless be seen with observed weather data, more accurate information on

planting dates and (for Colombia in particular) longer time series on which to optimise,

calibrate and evaluate the model.
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Chapter 4

Variety and management

parameterisation for global

simulations

4.1 Introduction

Very few modelling studies have assessed the impacts of climate change on potatoes glob-

ally, and there is therefore a need to develop models capable of simulating potatoes at

large scales (see Chapter 1, Section 1.1). This chapter tests the suitability of a method

that selects planting date and variety parameters for global simulations. This method

will be used in simulations that aim to assess the impacts of climate change on potatoes

(Chapter 6).

GLAM requires only minimal management data inputs, in contrast to other more com-

plex crop models (e.g. Tan and Shibasaki, 2003; Jones et al., 2003), and was originally

designed to work at the resolution of global climate models (Challinor et al., 2003, 2004).

Previous work has shown that high model complexity can be associated with higher sensi-

tivity to aggregation of input data (van Bussel, 2011). As such, a relatively simple process

based crop model such as GLAM is potentially better suited to large scale modelling studies

that require some form of data aggregation. Osborne et al. (2013) demonstrate a previous
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global crop modelling study using GLAM that showed good skill in simulating wheat and

soybean yields for some of the highest production countries.

In terms of management inputs into GLAM, planting date and soil information needs to

be specified, along with choices regarding irrigation (see Chapter 2). Global crop modelling

studies commonly use sources of planting date information such as data sets like that

described in Sacks et al. (2010) or use a climate suitability algorithm as outlined in Osborne

et al. (2013) to define realistic crop growing seasons based on climate inputs.

Parameters that govern crop growth and development can be variety-specific. At re-

gional or smaller scales, studies make use of optimisation or specific information to select

these parameters (e.g. Nicklin, 2013). In Chapter 3, simulations used prior knowledge

about planting dates and computationally intensive optimisation to obtain parameters for

the simulation of crop growth and phenology at regional scales.

For global simulations there is a lack of detailed parameter information. There is little

evidence for different parameter values across different regions for potatoes in particular,

due to there being relatively few potato crop modelling studies (see Chapter 1). It is also

not computationally feasible to calibrate the model using detailed optimisation techniques.

As a result, crop growth parameters are often fixed and simulations used to select realistic

crop developmental parameters across large scales, representing hypothetical varieties of

the crop (Osborne et al., 2013; Hijmans, 2003).

This chapter will use simulations in the UK and Colombia to test a method that selects

planting date and variety parameters for global potato simulations, not using regionally-

specific planting date or parameter inputs.

4.1.1 Research Questions

The objective of this chapter is to test the performance of a method for selecting planting

date and variety parameters (referred to as the global parameter method). The two research

questions test performance. Firstly, whether realistic planting dates and model outputs

are being simulated (research question 1) and secondly, if any significant inter-annual

relationships between observed yields and weather variables are identified, is the model
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capturing these at the national level (research question 2):

1. Are realistic planting dates, durations and Leaf Area Index (LAI) being simulated

using the global parameter method?

2. Are observed national scale yield-weather relationships simulated using the global

parameter method?

4.2 Methods overview

How global simulations are conducted using national scale yield data is summarised in

Figure 4.1. The global parameter method is used to select planting date and variety

parameters that are used at each grid cell for the subsequent calibration and evaluation of

model performance, without using computationally-expensive parameter optimisation and

in the absence of regionally-specific information on planting dates or crop developmental

(i.e. variety) parameters. Different varieties are defined using different developmental

parameters. Crop growth parameters are fixed across varieties. This is both because there

is a lack of evidence for how growth parameters vary at large scales and because GLAM

calibrates mean yield levels to match observations using the yield gap parameter CYG (see

Chapter 2), meaning that realistic crop growth at the mean level is accounted for spatially

to some extent.

Figure 4.1: Flow diagram summarising the global parameter method used for global GLAM-
potato simulations. The thicker arrow indicates a higher number of GLAM simulations. For each
time period and climate model, 108 simulations (i.e. 12 sowing dates multiplied by 9 varieties) are
necessary for the planting date/variety selection simulations. CYG = Yield Gap Parameter.
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The highest yielding combination of planting date and variety parameters at each grid

cell is selected, providing these show realistic crop durations and LAI. Unrealistic simu-

lations are defined as those that have maximum LAI values above 10 or growing season

durations over 180 days (both limits are based on the observations and information shown

in Chapter 3). The planting dates of the realistic combinations are assessed for realism

based on the qualitative information available on the two countries studied, the UK and

Colombia (see Chapter 3). In both countries, the main potato growing season starts from

approximately March to May. In Colombia, a second growing season starts from August

to September, although potatoes are planted all year round in important growing regions.

The focus of the global analysis in Chapter 6 is on analysing the impacts of climate

change. It is important to have confidence in the predictability of the model in order to

reliably assess the impacts of future climate on potato yields. Because of this, the focus

on the skill of the model in the global simulations is on the weather-driven year-to-year

variability in potato yields (as in Müller et al., 2017). Unlike in Chapter 3, statistical

models of simulated yields are not compared to the GLAM-model simulations as an as-

sessment of this year-to-year variability, as at national scales it is increasingly likely that

factors other than weather will determine yields and lead to poor statistical model results.

Correlation coefficients between weather variables are used instead as a simple assessment

of relationships between weather, observed yields and simulated yields.

Following the identification of realistic combinations of planting dates and varieties,

any significant correlations between weather variables and observed yields are identified.

In these cases the correlations between weather variables and simulated yields are tested to

see if they are significantly different using the Williams method (Williams and Williams,

1959). If insignificant correlations are observed then the model results are tested to see if

the signs of correlations are the same, as in Chapter 3.
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4.2.1 Input data

4.2.1.1 Climate data

The AgMERRA (Agriculture Modern-Era Restrospective analysis for Research and Appli-

cations) data set is used for base climate conditions, available from 1980 to 2010 (Ruane

et al., 2015). See Chapter 3 for a description of why this data set is selected rather than

other reanalysis data sets.

4.2.1.2 Potato growing area

Grid cells are selected for simulation if they contain potato growing area, as defined by

MIRCA (Monthly Irrigated and Rainfed Crop Areas – Portmann et al., 2010), representing

information from the years 1998-2002. Irrigation is determined by a majority grid cell

approach. If a grid cell contains greater than 50% of growing area irrigated, fully irrigated

simulations are used for that grid cell. Otherwise simulations for the grid cell are rainfed.

No grid cells in Colombia had greater than 50% of growing area irrigated, whereas some

in the UK did (see Figure 4.8 in the results section for map of UK irrigated areas).

Shapefiles from the Database of Global Administrative Areas are used to define national

boundaries used in this analysis using grid cell centres to define boundaries (http://www.gadm.org/).

Data are gridded onto a 0.5◦ grid to match the available weather data using the statistical

package R (R Core Team, 2017).

After aggregation to the model grid, grid cells are ranked globally in terms of the

amount of potato growing area they contain. As shown below in Figure 4.2, the top 50%

of grid cells by growing area contain 99% of the total potato growing area across all the

grid cells. This means that the other 50% of grid cells contain almost no potato growing

area and so are excluded from the analysis. Excluding a higher fraction of grid cells results

in important potato growing grid cells being excluded.
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Figure 4.2: Global potato growing area grid cells ranked by area in each grid cell. The vertical
dashed red line is half way along the X axis, i.e. representing 50% of the grid cells left and right
of the line. Over 99% of cumulative potato growing area is represented by the cells to the left of
this line.

4.2.1.3 Yield data

FAOSTAT country-level data (FAO, 2016) are used to simulate the main growing season

for each country in this study. See Chapter 6 for a description of the preparation of this

data for all countries.

Data examined are from the years 1980 to 2009 to coincide with available weather data.

Checks are performed on these time series of data prior to detrending and modelling which

are outlined in Chapter 6. To summarise for the UK and Colombia, no years were dropped

due to unrealistic yield data, and detrending of yields was not conducted as this was found

to weaken weather-yield observed relationships.
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4.2.1.4 Soil data

Soil data are from the the Global Soil Dataset for Earth System Modelling (Shangguan

et al., 2014). See Chapter 3 for a description of data preparation.

4.2.2 Parameterisation

GLAM-potato is used to simulate the potato crop, as described in Chapter 2. Model runs

take into account irrigation levels and potato growing areas (see Section 4.2.1). GLAM’s

intelligent planting window is turned on (accounting for seasonal differences in temperature

and soil moisture in planting – see Section 2.2.2).

A simple approach is taken regarding GLAM management and variety parameters,

similar to the methods of previous global GLAM modelling studies on wheat, soybean and

maize (Osborne et al., 2013; Dawson et al., 2016; Rose et al., 2016) and previous global

potato simulations (Hijmans, 2003). In the previous GLAM studies, existing GLAM crop

models were used and parameterised by varying phenological parameters and selecting

planting dates for each grid cell, as is done in this chapter. In Osborne et al. (2013),

each grid cell is analysed for a suitable growing period, defined as a period of time during

which the crop reaches maturity within a realistic duration and there is sufficient rainfall.

If suitable growing periods were not found for every year then that grid cell was not

simulated. For suitable grid cells, the median starting date over the 30 years was then

used for the planting date in GLAM.

For the global potato parameter configuration, nine hypothetical varieties of potato are

tested in simulations that are representative of crops that mature optimally in different

environments. Specific information on crop growth parameters is not available across

different regions of the globe, so these are kept constant across grid cells.

Maturity classes are defined using phenological requirements, simulated using different

cardinal temperatures. Thermal times are fixed at mid-points across reported ranges for all

varieties. Harvest is defined as when the required thermal time for the growing season has

been accumulated. There is evidence from the literature that both cardinal temperatures

and thermal times vary across potato cultivars (see papers listed in Table 4.3). Cardinal
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Table 4.1: Cardinal temperatures used for the different varieties in the global study (◦C). B refers
to base temperature, O refers to optimum temperature and M refers to maximum temperature.
Numbers 1-4 refer to the 4 developmental stages – planting to emergence (1), emergence to tuber
initiation (2), tuber initiation to senescence (3) and senescence to harvest (4).

Variety B1 B2 B3 B4 O1 O2 O3 O4 M1 M2 M3 M4
1 - T1 0 0 0 0 15 15 15 15 25 25 25 25
2 - T2 2 2 2 2 16.5 16.5 16.5 16.5 27 27 27 27
3 - T3 4 4 4 4 18 18 18 18 29 29 29 29
4 - T4 6 6 6 6 19.5 19.5 19.5 19.5 31 31 31 31
5 - T5 8 8 8 8 21 21 21 21 33 33 33 33
6 -LHT1 0 4 4 4 15 18 18 18 25 29 29 29
7 -LHT2 0 0 4 4 15 15 18 18 25 25 29 29
8 - HLT1 8 8 8 6 21 21 21 19.5 33 33 33 31
9 - HLT2 8 8 6 6 21 21 19.5 19.5 33 33 31 31

temperatures are varied rather than thermal time requirements as this allows realistic re-

lationships with temperature to be simulated. For example, in a warm country, warmer

temperatures might typically lead to shorter growing seasons. With fixed cardinal temper-

atures at a central point, however, this warming might lead to a lengthening of the growing

season instead and an unrealistic response of duration to temperature.

Varieties T1-T5 consist of progressively higher cardinal temperatures. Varieties LHT1

and LHT2 have hotter temperatures for the latter three and two developmental stages re-

spectively (which result in longer tuber bulking periods in cooler conditions, or shortened

tuber bulking in hotter conditions), and varieties HLT1 and HLT2 have hotter tempera-

tures for the first three and two stages respectively (which result in longer tuber bulking

periods in hotter conditions and shortened tuber bulking in cooler conditions). Other de-

velopmental parameters (thermal times and the critical photoperiod) were fixed across all

varieties. The thermal time parameters were set towards the upper end of the reported

range for the senescence to harvest stage and the low end of reported ranges from emer-

gence to senescence, in order to simulate realistic leaf area index development (i.e. allowing

the leaf area index to fall near to zero, as is common in potatoes – see Section 3.3). This

was decided following preliminary simulations in the UK and Colombia that showed unre-

alistically short senescence periods (described in Chapter 3, Section 3.2.2). The cardinal

temperatures used for the different varieties are listed in Table 4.1. Note that these are

identical to those described in Chapter 3, Section 3.2.2.2.
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The start of the GLAM simulation is varied from the beginning of each month. These

are referred to throughout as planting dates for simplicity, but include a 30 day soil water

spin-up followed by a 45 day sowing window (for example, planting date 1 starts the 30

day soil water spin-up on January 1st, with the crop being planted from day of year 31 to

76). During the sowing window, the crop is planted when temperature and soil moisture

conditions are met within this window, with the crop being planted on the last day of

the window if conditions are not met (see Section 2.2.2.2). This method of allowing the

model simulations to choose the planting date is preferred to using a data set such as that

described in Sacks et al. (2010) as planting windows were found to be slightly early and

late for important potato growing regions in the UK and Colombia respectively. In the

UK, Sacks planting windows start exclusively in mid-February for the whole country, which

is too early for northern areas in particular. In Colombia the start of the Sacks planting

window varies but mostly is at the beginning of June. This is later than the start of the

main growing season for Colombian potatoes (see Chapter 3, Section 3.1.2).

Other parameters are set to a mid-point of reported ranges. Exceptions were the

maximum rate of change of leaf area index, the maximum rate of change of harvest index

and the maximum normalised transpiration efficiency, which are set to the maximum of

the values reported in the literature in order to potentially simulate the highest yields,

and the root length density by leaf area at the soil surface, which is set to the low end of

the reported range in order to realistically simulate root growth (see Chapter 2, Section

2.2.4.2).

Preliminary simulations showed that the radiation use and transpiration efficiency

(RUE and TE) are particularly important for the simulation of yields (see Chapter 3,

Section 3.2.2). Therefore, in preliminary runs using national scale yield data for the UK

and Colombia and the parameter set up described in Chapter 3, Section 3.2.2, four com-

binations of transpiration efficiency and radiation use efficiency parameters were tested,

varying both from a low to medium value from the ranges reported in the literature. High

values of these parameters were not tested, as it was recognised from preliminary simu-

lations that these lead to unrealistically low values of LAI. The combinations tested are
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summarised in Table 4.2. These simulations fixed planting dates and varieties across all

grid cells and tested all possible combinations of plating dates and varieties in order to see

a broad range of model responses.

Table 4.2: Parameter set-up for the transpiration and radiation use efficiency parameters tested
in preliminary simulations. TE = Transpiration Efficiency value. RUE = Radiation Use Efficiency
value.

Parameter set-up TE (Pa) RUE (g/MJ)
TLRL 2 1.7
TLRM 2 2.7
TMRL 6.525 1.7
TMRM 6.525 2.7

Different combinations of TE and RUE produced different mean yield levels which

in turn affected model calibration and hence LAI. When both parameters were at the

low end of reported ranges the model typically struggled to simulate yields high enough

in the UK compared to observations. When both parameters were set to the middle of

reported ranges, calibration resulted in unrealistic LAI values for the lower yielding regions

of Colombia, with maximum LAI values for the growing season often falling below 1.

Therefore a combination of parameters that is intermediate between these two is desirable.

This allowed simulations to have realistic outputs of mean yield and LAI. Out of the TLRM

and TMRL combinations, the TLRM simulations showed more realistic simulation of the

correlations between temperature and rainfall and observed yields for Colombia (Figures

4.3 and 4.4). UK results were very similar using both TLRM and TMRL parameters.

Therefore the TLRM combination was preferred for subsequent simulations.
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Figure 4.3: Correlation coefficients for Colombia yields and weather variables using TMRL pa-
rameters (A = Temp., B = Rain). “Density” is the kernel smoothed distribution of correlations.
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Figure 4.4: Correlation coefficients for Colombia yields and weather variables using TLRM pa-
rameters (A = Temp., B = Rain). “Density” is the kernel smoothed distribution of correlations.

The yield gap parameter CYG is used to reduce yields to account for spatial differences
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in crop management that are not explicitly included in GLAM (see Chapter 2). One

value of CYG is calibrated for each country. The first half of each time series is used for

calibration and the other for model evaluation. A simulated yield time series is calculated

for each country for calibrating CYG by dividing total country production (calculated using

the simulated yields in each grid cell and the potato growing area for that grid cell) by

total area. This provides a simulated yield time series for calibration, weighted by the

growing area of each grid cell (Equation 4.1). Weather variables are similarly weighted

by growing area for the national scale correlation coefficients between yields and weather

– all correlation coefficients in this chapter are nationally-weighted in this way, save for

those shown in the spatial Figures 4.7 and 4.11, which use grid cell scale weather variables

and simulated yields. The weather variables associated with each grid cell are multiplied

by the growing area for that grid cell. All grid cell values are then summed and divided

by the sum of the national growing area to calculate area-weighted weather variables. See

Table 4.3 for all parameter values.

Y =
Prsum

Asum
(4.1)

The combination of variety and start of planting window that results in the highest

mean simulated yield and has realistic crop durations (less than 180 days, with LAI values

not smaller than 1 or greater than 10 and without emergency planting) across the time

series is chosen for each grid cell. These caps are imposed to simulate realistic crop phe-

nology and as potato harvesting is a complex process involving climatic and non-climatic

factors (see Chapter 1), with the majority of potato seasons not being longer than 180

days.

The combination of planting date and variety that results in the best correlation co-

efficient between observed and simulated yields is not chosen as only national scale yield

data are available for potato, and the variability of year-to-year yields at the grid cell level

may not match with the national scale variability. In order to compute the best correlating

combination of planting date and variety using all grid cells nationally, every combination

of variety and planting date varying across all grid cells would need to be tested, which
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is not computationally feasible. The assumption using the highest yielding combination is

that the variety and planting date are optimal for the crop given the conditions and will

reflect as much as possible the variety and planting date used in reality.
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4.3 Results

The following results are the test of the global parameter method for the simulation of

national scale potatoes, allowing planting dates and varieties to vary across grid cells.

Model results in the UK show realistic planting dates (with the start of the planting

window ranging from the beginning of March to May - see Figure 4.8.C), durations (averag-

ing 112 days) and maximum LAI (averaging 6.96). The inter-annual variability of observed

yields is poorly represented, however (Figure 4.5). Mean yield levels are also lower than

observed yields. Low mean yields result from model calibration of CYG on the first half of

the time series where mean yield levels are lower. Detrending of observed yields was not

performed as this was found to weaken relationships between yields and weather variables.

TE and RUE parameters strongly influence simulated biomass also, and these were not

put to higher values as preliminary simulations (described in Section 4.2.2) showed this to

result in poorer representation of inter-annual yield variability.
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Figure 4.5: Observed and simulated national area-weighted yields for the UK with national scale
correlation coefficients. The dashed red line is the simulated yields. The solid black line is the
observed yields.

The correlations between observed yields and weather variables are low, in particular

that with temperature (Figures 4.6 and 4.7). The two weather variables that have some

relationship with observed yields are rainfall and solar radiation, and these relationships

are well-represented by the model. Years when the model fails to predict observed yields

well result from there being no relationship between temperature and observed yields and

a negative correlation with simulated yields. In 1997 to 1999, for example, the inter-

annual variability of yields is poorly represented. Rainfall increased in 1998 relative to

the surrounding two years, and solar radiation decreased relative to the surrounding two

years. The temperature is slightly lower in 1998 relative to the surrounding years, causing

simulated yields to increase. The same response is not seen in observed yields. The same

pattern is occurring in years 2006 to 2009. There is very little inter-annual variability in
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temperature, so other years capture the yield trend when other weather variables are more

important drivers of observed yields (e.g. 2001 to 2004).
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Figure 4.6: Area-weighted weather variables for the UK with correlation coefficients with observed
yields. A = mean temperature, B = mean rainfall, C = mean solar radiation.
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Figure 4.7: UK correlations between weather variables across the growing season and yields.
Correlations are at the grid cell level for the weather variables and yields (the same time series
of observed yields were used at each grid cell). A. Mean temperature and observed yields. B.
Mean temperature and simulated yields. C. Sum of rainfall and observed yields. D. Sum of rainfall
and simulated yields. E. Mean solar radiation and observed yields. F. Mean solar radiation and
simulated yields.
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Figure 4.8: UK A. Potato growing area. B. Irrigation percentage per grid cell. C. Start of
planting window. D. Variety selected.

Model results in Colombia show a wider variety of planting dates selected (Figure 4.12),

which is in line with potato agriculture in the region where potatoes are grown all year

round. There is a slight tendency for planting dates to be nearer the start of the year

in these important growing areas, in keeping with when they are planted in Colombia to

coincide with the first rainy season (see Chapter 3). Realistic durations (averaging 128

days) and maximum LAI (averaging 2.53) are also within observed values (see Chapter 3).

The inter-annual variability of observed yields is poorly represented, however (Figure 4.9).

Mean yield levels are accurately represented.
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Figure 4.9: Observed and simulated area-weighted national yields for Colombia with national
scale correlation coefficients. The dashed red line is the simulated yields. The solid black line is
the observed yields.

Again there are low correlations between observed yields and weather variables, in

particular those with temperature and rainfall (Figures 4.10 and 4.11). The model fails

to represent the relationship between solar radiation and observed yields. Inter-annual

variability of this variable is very low, however. In 1999 to 2006, the inter-annual variability

in observed yields is better captured by the model. In the surrounding years, the lack

of a relationship between temperature and rainfall with observed yields means that the

relatively high variability in weather results in unrealistic simulated yields.
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Figure 4.10: Area-weighted weather variables for Colombia with correlation coefficients with
observed yields. A = mean temperature, B = mean rainfall, C = mean solar radiation.
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Figure 4.11: Colombia correlations between weather variables across the growing season and
yields. Correlations are at the grid cell level for the weather variables and yields (the same time
series of observed yields were used at each grid cell). A. Mean temperature and observed yields.
B. Mean temperature and simulated yields. C. Sum of rainfall and observed yields. D. Sum of
rainfall and simulated yields. E. Mean solar radiation and observed yields. F. Mean solar radiation
and simulated yields.
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Figure 4.12: Colombia A. Potato growing area. B. Irrigation percentage per grid cell. C. Start
of planting window. D. Variety selected.

A broader look at how GLAM is simulating the relationship between yields and weather

in the UK and Colombia is shown in Figures 4.13 and 4.14. Here, the range of correla-

tions is across planting date and variety combinations, fixing these across all grid cells in

each country. These tell us whether other planting date and variety combinations show

more significant relationships with weather variables and help us to see if the global pa-

rameter method is not capturing observed weather-yield relationships. Simulations that

had unrealistic durations and LAI values were not included in these figures. As is shown

across planting dates and varieties, correlations with observed yields and temperature are

never significant and with rainfall very rarely significant. Simulations mostly capture these

relationships. The correlations between simulated yields and temperature are mostly neg-

ative in the UK, however. The relationship between temperature and crop duration is

responsible for this - higher temperatures lead to shorter growing seasons and lower yields.
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Figure 4.13: National scale correlation coefficients for UK yields and area-weighted weather
variables (A = Temp., B = Rain). “Density” is the kernel smoothed distribution of correlations.
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Figure 4.14: National scale correlation coefficients for Colombia yields and area-weighted weather
variables (A = Temp., B = Rain). “Density” is the kernel smoothed distribution of correlations.
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Figure 4.15: UK national scale correlation coefficients between observed and simulated yields (A)
and crop durations (B) across planting date and variety combinations. ‘X’ indicates a combination
ruled out as unrealistic due to high crop duration, high LAI or emergency planting. ‘O’ indicates
the highest yielding realistic combination. Blue cells in the duration plot indicate unrealistic
durations.
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Figure 4.16: Colombia national scale correlation coefficients between observed and simulated
yields (A) and crop durations (B) across planting date and variety combinations. ‘X’ indicates a
combination ruled out as unrealistic due to high crop duration, high LAI or emergency planting.
‘O’ indicates the highest yielding realistic combination. Blue cells in the duration plot indicate
unrealistic durations

Figures 4.15 and 4.16 show differences in model skill (A) and durations (B) across

different planting date and variety combinations for the UK and Colombia respectively,

with planting dates and varieties fixed across all grid cells. As can be seen, correlations

are rarely significant in these countries across any combinations. In these countries there

are some differences in skill for different planting dates and varieties, however, although

these differences are also not statistically significant.

To summarise, although both countries show poor representation of inter-annual yield

variability, when weak relationships with weather variables are present they are mostly

captured. This is shown by certain years of the simulations showing similar variability to

those observed. At the same time, sensible planting dates are chosen, realistic phenologies
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are being simulated and LAI values are within observed limits.

4.4 Discussion and conclusions

This chapter has two research questions:

1. Are realistic planting dates, durations and LAI being simulated using the global

parameter method?

2. Are observed national scale yield-weather relationships simulated using the global

parameter method?

Results showed that planting dates, durations and LAI were within observed ranges and

therefore realistically simulated, therefore research question one was satisfactorily passed.

There were no significant correlations between observed yields and weather variables at

the national level. Of the weak correlations between weather relationships and observed

yields, rainfall relationships were well represented in both countries. Both countries showed

very weak relationships between national observed yields and temperature, with the model

exaggerating these relationships. However, the majority of relationships between weather

variables and observed yields were simulated with the correct sign, therefore research ques-

tion two was also satisfactorily passed.

The model usually picked up the limited relationships between weather variables and

observed yields and did so with realistic planting dates. In the UK, relationships with rain-

fall and solar radiation were well represented by the model. The correlation with rainfall

was still low, however, which is not surprising in a country with substantial irrigation of

potatoes, particularly in drier areas – there is more irrigation in the UK than the average

European country.

The negative relationship with temperature in the UK comes from temperature impacts

on growing season length - as is often the case for annual crops, faster temperatures lead to

shorter growing seasons and lower yields (Hatfield and Prueger, 2015). In this case there

was no such relationship seen in observations which is surprising, and possibly indicates

that early season temperatures that determine planting in the UK have an impact on yields,
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as well as temperature-duration effects - i.e. the temperature at the start of the year may

be a limiting factor to the length of the growing season and therefore yield (Harris, 1992).

There were no significant correlations between early season temperatures and observed

yields, however, and as GLAM takes into account early season frost impacts on planting

(see Chapter 2, Section 2.2.2.2), the model is deemed capable of simulating significant

relationships with temperature should they occur in other regions. Simulations in this

chapter and those in Chapter 3 indicate that effects of temperature on yields come mainly

through impacts of temperature on crop duration, as is commonly reported (Haverkort,

1990; Hijmans, 2003; MacKerron and Waister, 1985). The climate is milder in winter in

the UK compared to nearby mainland European countries. Management factors could

therefore be relatively important for determining accurate potato planting dates, such as

when other crops are planted in the region (e.g. winter wheat). Flooding could also have

an influence on planting and harvest in wetter areas.

In Colombia, the only correlation with simulated yields that was unrealistic compared

to observations was that with solar radiation. This showed a negative relationship with

observations and a positive relationship with simulated yields. The negative correlation

between solar radiation and observed yields is to be expected when rainfall is a limiting

factor to yields, given that cloudy conditions and more rainfall will correlate with less

solar radiation. However, the lack of a clear signal with rain made simulating year-to-year

variability challenging in this country.

GLAM often exaggerated relationships between weather variables and yields but cor-

rectly captured the sign of these relationships in the important potato growing areas.

GLAM simulates yields as a function of weather inputs. It is therefore not surprising that

correlations with simulated yields are often stronger than those seen with observed yields,

as non-climatic factors not included in the model will influence observed yields. Model

calibration of the yield gap parameter CYG will account for these non-climatic factors to

some extent, but this only varies at the country-scale spatially and does not influence the

simulated inter-annual variability. These factors could include pests, diseases and manage-

ment that could change over time (e.g. potato late blight emerging earlier in the growing
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season in the UK – Gregory et al., 2009). Weather variables can also average out across

large scales, weakening national yield relationships with weather.

Transpiration and radiation use efficiency parameters were selected to better simu-

late weather-yield relationships across different climates and produce more realistic LAI.

Yields were also not detrended in these countries as this was found to weaken the observed

weather-yield relationships. This, along with the parameters chosen that influence biomass,

resulted in calibrated mean simulated yields being lower than observations in the relatively

high-yielding UK. Both the detrending and parameter choices are consistent with trying

to maximise the ability of the model set-up to simulate year-to-year variability of yields.

As shown here this can come at the expense of simulating correct mean yield levels.

It is not surprising that some years fail to show accurate simulation of yields given the

relatively weak relationship between observed yields and weather seen in these countries.

However, given that these results were for countries with only limited relationships with

weather variables, and that simulations showed realism with respect to phenology and

other model outputs, it can be concluded that this model set-up is adequate for national

scale potato yield simulations.

With yield data only available at the national scale, modelling weather-yield relation-

ships remains a challenge, as weather-yield relationships can average out across large scales.

We necessarily have less confidence in climate change predictions in such countries as the

UK and Colombia that show poor model skill due to low weather-yield relationships (e.g.

see Chapter 6). Global studies assessing the impacts of climate change on potato remain

very rare, however. This study and its methods therefore represent useful additions to the

potato canon.
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Chapter 5

Model skill in regional and global

studies

5.1 Introduction

Agricultural systems are complex and require an understanding of many processes that

operate at different spatial scales (Ewert et al., 2011). Crop models can be deployed to

assess various aspects of these systems at varying spatial scales. Most often this is at the

local or field scale (Ruane et al., 2017), although many studies use models at a different

spatial scale than that at which they were designed and calibrated on (Ramirez-Villegas

et al., 2015).

Global and regional climate impacts studies have different strengths and weaknesses

and are used for different purposes. Global studies are defined here as those with full

global coverage, and regional studies as those with limited geographic extent, such as at

the province or field scale (Challinor et al., 2014a).

Global studies typically use globally-consistent input data and assumptions concerning

parameter configurations in order to provide assessments of uncertainty and model com-

parisons (e.g. Müller et al., 2017) – i.e. data are of the same resolution and detail across the

world. They usually do not involve detailed model parameter optimisation across specific

regions. Significant calibration of parameters for global studies is computationally limited,
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the data are often lacking that enable calibration across regions and confident evaluation

(Ruane et al., 2017; Therond et al., 2011; van Bussel, 2011), and this kind of optimisation

may be undesirable when trying to achieve a consistent model set up to evaluate models

across a broad range of environments.

Regional studies use more detailed simulations, with more data and specific knowledge

to improve model accuracy and inform policy decisions (e.g. Lv et al., 2013). Whilst

regional parameter information is often limited, parameters can be optimised to best rep-

resent the crop in certain environments, tuning parameters that are important for yield

simulation to provide accurate regional results (Ruane et al., 2017). An example of this

could be optimising parameters that adjust mean yield levels across a region (Challinor

et al., 2004) or optimising phenology parameters to provide realistic durations given certain

temperature conditions (Nicklin, 2013). The purpose of such regional impacts modelling is

often to provide an assessment of the impacts of climate change using a regional impacts

model, or an assessment of model skill to see if an impacts model can accurately repre-

sent the regional inter-annual variability in observed yields. In order to optimise and test

parameters, sufficient data have to be available with which to optimise and independently

evaluate the model.

It is common to use national level yield data (Müller et al., 2017) in global climate

impacts studies, especially for crops not as frequently modelled such as potato (Brown et al.,

2011). However, it is difficult to effectively evaluate model performance using national scale

yield data alone due to aggregation issues (Porwollik et al., 2017; van Bussel, 2011). There

are sometimes regions within countries where more spatially detailed data are available,

which can aid in model evaluation.

Variability in year-to-year observed yield data can average out at larger scales (van

Bussel, 2011), leading to lower correlations with weather variables and hence poorer model

results. It can be difficult to identify the cause of poor model skill in global studies

(Challinor et al., 2018). Certain areas can show that there are other drivers of yield than

the direct impacts of weather variables, resulting in an improved knowledge of why models

perform well in these regions. Alternative drivers of yields can include technology and
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management changes and biotic stresses (Lobell et al., 2011).

To summarise, global studies produce consistent evaluation world-wide, but the data are

often lacking to see if there are losses of information at large scales. Such losses potentially

include parameter and management information as well as input data detail. There is

therefore a danger that seemingly robust global simulations will in fact lack regional skill.

This potentially leads to misinformation at the policy level. Although there is currently no

evidence of such misinformation, in-depth analyses have rarely been performed (Challinor

et al., 2014a). Zampieri et al. (2017) offer an example of a regional and global comparison

for wheat, but focus on yield similarities rather than assessing model skill.

Therefore there is a need to assess whether or not global studies are different to regional

studies in terms of skill. The two main ways regional studies differ from global studies are

in parameter configuration detail and the spatial scale of the input data. The data at

regional scales are often more detailed spatially, but few studies have shown whether they

are more representative of yield-weather relationships and can therefore provide better

model evaluations (e.g. see van Bussel, 2011). This chapter will compare regional and

national scale studies (that are used as part of a global analysis) in order to assess whether

or not regional information is being lost in a global impacts study. Furthermore, this work

provides an analysis of the source of any difference in skill between crop modelling studies

at different scales.

5.1.1 Objectives and Research Questions

Previous chapters in this thesis have shown simulations at the regional and national scale

in the UK and Colombia (Chapters 3 and 4). The regional simulations in Chapter 3 used

parameter optimisation and any crop management information available in order to assess

the best possible model skill in these regions. In all cases, model skill is measured using

correlation coefficients, as the primary interest of this work is on the year-to-year variability

of yields in relation to weather (rather than, for example, mean yield levels). Results in

Chapter 3 showed some model skill in simulating the impacts of weather on regional yields,

although in some cases there was poor representation of weather-yield relationships, likely

155



Stewart Jennings 156 University of Leeds

due to a lack of planting date and phenology information.

In Chapter 4, the global model configuration was evaluated using national scale yield

data in the UK and Colombia. Results here showed some clear representation of weather-

yield relationships, but often these relationships were weak and therefore model results

showed low correlation coefficients. In summary, these results often indicated better model

skill at the regional scale for these two case study countries.

As mentioned in Section 5.1, studies that explicitly measure differences in model skill in

regional and global simulations are lacking. This chapter therefore aims to use these case

study simulations to quantify any differences in skill. Figure 5.1 summarises the research

aims and hypotheses for this chapter. A typical regional simulation would sit at the top left

of the diagram, whilst global simulations would sit at the bottom right, showing coarser

spatial scale and lower parameter detail.

Figure 5.1: Predicted relationships between model skill, input data scale and parameter detail.
Increasing parameter detail is on the Y axis and increasing spatial scale is on the X axis. Global
studies are typically found in the bottom right corner (i.e. large spatial scale and low parameter
detail) and regional studies more towards the top left (high parameter detail and smaller spatial
scale).
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It is expected that regional data and specific parameter configurations lead to better

model skill. Using regional yield data, relationships between yields and weather variables

may be stronger in some cases compared to national scale data, which would lead to better

model skill. This is because yields in certain regions will be driven primarily by weather as

opposed to other factors (e.g. management and technology) and weather-yield relationships

may average out at larger scales.

A greater level of parameter detail is hypothesised to lead to better model skill as

parameters more associated with a given region and crop should be able to best capture

weather-yield relationships. It is also hypothesised that parameter detail will lead to larger

improvements in simulations compared to the scale of the input yield data. This is because

the improvements due to finer resolution input data are often associated with data quality

improving, as well as the relationships with weather variables being stronger at smaller

scales, and both of these factors are not necessarily the case at finer scales and across

different regions.

The research questions are therefore as follows:

1. Is there a significant difference in model skill in regional and global case studies in

the UK and Colombia?

2. Is there a significant difference in model skill using regionally-optimised parameters

compared with global parameter configurations in the UK and Colombia?

3. Is there a significant difference in model skill when simulating regional and national

yields in the UK and Colombia?

4. Which difference in skill is larger – data scale or parameter detail?

5.2 Methods

5.2.1 Methods Overview

The simulations, data and research questions used in this chapter are summarised in Table

5.1. The regional simulations (RY-RP) of Chapter 3 and the global simulations (GY-
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GP) of Chapter 4 are firstly compared to identify any significant difference in model skill.

Another set of regional simulations using the global parameter configuration (RY-GP) is

then added in this chapter. These are used to assess what causes any difference in model

skill - the spatial scale of the yield data or the level of parameter detail. The methods for

the RY-GP simulations are outlined in Section 5.2.3.

Table 5.1: Naming conventions for parameter configurations, yield data, model results used and
research questions in this chapter.

Yield Data Description
RY (Regional Yield) Aberdeen and Colombian regional yields used in

Chapter 3
GY (Global Yield) FAOSTAT national yields used in Chapters 4 and 6
Parameter Set Description
RP (Regional Parameters) Parameter sets optimised for UK and Colombia

regions in Chapters 3
GP (Global Parameters) Fixed parameters used for global

simulations in Chapters 4 and 6.
Simulation Name Description
RY-RP Chapter 3 GLAM regional baseline climate

evaluation results in UK and Colombia using
regionally-optimised parameter configuration

RY-GP Chapter 5 GLAM regional baseline climate
results in UK and Colombia using global
parameter configuration

GY-GP Chapter 4 and 6 GLAM global baseline climate
results using global parameter configuration

Research Questions Description
1). R-skill (regional study value) RY-RP vs. GY-GP – Is there a difference in model

skill when comparing regional and global studies?
2). RP-skill (regional parameter value) RY-RP vs. RY-GP – What improvement in model

skill is associated with using regionally-optimised
parameter sets compared with parameter sets
used in global simulations?

3). RY-skill (regional yield data value) RY-GP vs. GY-GP – Do regional scale yield
simulations show more skill than national scale
yield simulations?

4). R-diff (source of skill difference) RP-skill vs. RY-skill – What is the source of the
difference in skill between global
and regional simulations?

The value of regional over global studies can first be assessed using RY-RP and GY-GP

simulations. It is hypothesised that there is better model skill associated with regional sim-

ulations. The model skill of the regional optimisation study (RY-RP) results are compared

with the global country-scale (GY-GP) results. The correlation coefficients across regions

(RY-RP) are compared to the national-scale (GY-GP) correlation coefficient. Correlations
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are tested for significant differences across analyses.

Different levels of parameter detail are then assessed. It is hypothesised that more

parameter detail leads to better model skill. The model skill of the regional optimisation

study (RY-RP) results are compared with the regional-scale simulations using the global

parameter configuration (RY-GP) results. The correlation coefficients across regions (RY-

RP) are compared in both parameter configurations. Correlations are tested for significant

differences across analyses.

The value of regional-scale yield data is assessed. It is hypothesised that regional

(rather than national scale) yield data leads to better model skill. The model skill of the

regional study using the global parameter configuration (RY-GP) is compared with the

global country-scale (GY-GP) study. The correlation coefficients across regions (RY-RP)

are compared to the national-scale (GY-GP) correlation coefficient. Correlations are tested

for significant differences across analyses.

Lastly, of parameter detail and data scale, which is most important for improving

regional over global simulations is assessed. It is hypothesised that parameter detail is

the more important difference in terms of model skill of regional and global studies. The

results from the simulations comparing parameter detail and yield data across regional and

global simulations are compared to see which is the larger source of difference in model

skill between regional and global simulations. The number of regions showing significant

differences in model skill are used to judge which is the larger contributor.

The R function “r.test” from the package “psych” (Revelle, 2015) is used to statistically

judge if correlations are significantly different in research tests 1 to 3. The “r.test” function

is used to calculate a test statistic for the difference between correlations (the correlations

between the simulated yields and observations for both modelling types) using the Williams

method (Williams and Williams, 1959), which has been shown to perform well relative to

other methods in terms of the statistical power of the test (i.e. the probability of correctly

rejecting the null hypothesis when it is false – Wilcox and Tian, 2008). The Williams

method calculates a test statistic based on the correlations between the three variables

concerned (both sets of simulated yields and the observed yields). The statistic is then
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compared to a student’s t-distribution to obtain a p-value for evidence against an equal-

correlation hypothesis.

Confidence intervals are included as a measure of uncertainty in correlations - these

represent the interval where, if the experiment were repeated a large number of times, the

true value of the statistic would lie within 95% of such intervals.

For research questions 1 to 3, if the regional study shows significantly higher correlations

than the global study across more regions than show a fall in skill – i.e. if there is a net

increase in the number of regions showing a positive significant difference in correlation

coefficient – then the regional study is judged to show an improvement in model skill.

5.2.2 Input data

All data for all simulations are described in Chapters 3 and 4 and so this information is

not repeated here. Chapter 3 details the data used for Aberdeen and Colombian regions.

Chapter 4 details the data used for the national scale simulations.

5.2.3 Model set-up

Model results from Chapters 3 and 4 (RY-RP and GY-GP) were obtained using the meth-

ods set out in those chapters. Those results are compared to the simulations described

here (RY-GP) to answer the research questions outlined in Section 5.1.1. RY-RP results

presented here are from the best performing optimised GLAM parameter sets from the

eight optimised in those analyses. These were parameter set 1 in the Colombian regions

and parameter set 5 in the UK (Aberdeen site) optimisation.

GLAM-potato (see Chapter 2) is used to simulate potato yields for the RY-GP sim-

ulations. These use the regional yield data described in Chapter 3 in conjunction with

the global parameter configuration described in Chapter 4. Parameters used for these

simulations are identical to those shown in Table 4.3 in Chapter 4.
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5.3 Results

Results are presented by research question below. Research questions 1 to 3 show simula-

tion results across analyses. In Section 5.3.4, the sources of differences in model skill are

discussed (research question 4).

Confidence intervals are included in all subsequent figures. These all span zero and are

large, which result from the short time series (four years) in Colombian regions and a lack

of significant model skill in the UK simulations (as described in Chapters 3 and 4).

5.3.1 Results - regional vs. global: RY-RP vs. GY-GP

Research question 1 assesses whether there is a significant difference in model skill in

regional and global case studies in the UK and Colombia.

Figure 5.2 shows the correlation coefficients between simulated and observed yields for

the RY-RP and GY-GP analyses for the UK and Colombia.

Correlation coefficients are higher in both the UK and Colombia on average for the RY-

RP study. There were no significant correlations across countries and analyses, however.

The correlations were not significantly different for the two analyses in the UK, although

higher for the RY-RP study. Colombia regions 1, 8, 9 and 11 had significantly higher

correlations for the RY-RP simulations and region 6 had a significantly lower correlation.

The GY-GP simulations show low correlations between weather variables and observed

yields, therefore limiting model skill. Certain regions are able to successfully simulate

stronger observed weather-yield relationships in the RY-RP simulations.

It can be concluded therefore that regional scale studies lead to higher model skill in

both the UK and Colombia case studies in some cases. Certain regions in Colombia show

significant improvements and both UK and Colombian simulations show higher correlations

in the RY-RP study.
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Figure 5.2: Correlation coefficients between simulated and observed yields for the RY-RP and
GY-GP (G) simulations. A). UK. 1 = Aberdeen site. B). Colombia. Regions are numbered 1 =
Antioquia, 2 = Boyacá, 3 = Caldas’, 4 = Cauca, 5 = Cundinamarca, 6 = Huila, 7 = Nariño, 8
= Norte de Santander, 9 = Quindío, 10 = Santander, 11 = Tolima. Bars show 95% confidence
intervals.

5.3.2 Results - parameter detail comparison: RY-RP vs. RY-GP

Research question 2 assesses whether there is a significant difference in model skill using

regionally-optimised parameters compared with global parameter configurations in the UK

and Colombia.
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Figure 5.3 shows the correlation coefficients between simulated and observed yields

for the RY-RP and RY-GP analyses for the UK and Colombia. As can be seen here,

correlation coefficients are higher in both the UK and Colombia on average for the RY-RP

study. There were no significant correlations across countries and analyses.

The correlations were not significantly different for the UK, although there were signifi-

cant differences between the correlations associated with the two analyses across Colombian

regions. Regions 1, 7, 8, 9 and 10 had higher correlations associated with the RY-RP study,

whereas regions 2, 4 and 6 showed significantly lower correlations. Improvements in skill

in the RY-RP study result from optimised parameters better representing weather-yield

observed relationships. In the southern Colombian regions where skill is lower in RY-RP

studies, planting dates are not as accurately represented using the regional method. They

tend to be late in the season, whereas the RY-GP study selects them to be nearer the start

of the calendar year (as they should be). This leads to poor skill in the RY-RP study in

Cauca and Huila (regions 4 and 6). Region 2 (Boyaca) also shows poorer planting dates in

the RY-RP study. Here, planting dates are sometimes earlier and sometimes later in the

RY-GP study, but the general affect of the planting date and variety combinations associ-

ated with the global parameter set is for more realistic relationships with temperature in

those grid cells and longer durations than those simulated in the RY-RP study.

In Colombian regions, planting dates were sometimes selected at the end of the calendar

year with the RY-GP simulations when these should be in the first half of the calendar

year, as in the RY-RP simulations. This leads to the better representation of weather-

yield relationships in RY-RP simulations. For the UK RY-GP simulations, the simulated

planting date was slightly earlier in the season than observed. It can be concluded therefore

that the RY-RP analysis - and therefore greater parameter detail - is associated with higher

model skill in certain regions.

Colombian regions 3, 4, 6 and 10 show particularly low skill in both the RY-RP and

RY-GP simulations. The combination of planting date and variety selected for these sim-

ulations produces unrealistic relationships with temperature, causing poor model skill.

Regions 7, 8 and 9 show good skill in simulating yields in the RY-RP study but poor skill
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in the RY-GP study. The biggest difference in these simulations comes from the represen-

tation of the relationship between yields and temperature, which is worse in the RY-GP

simulations but well captured in the RY-RP simulations.
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Figure 5.3: Correlation coefficients between simulated and observed yields for the RY-RP and
RY-GP simulations. A). 1 = UK, Aberdeen site, UK. B). Colombia. Regions are numbered 1 =
Antioquia, 2 = Boyacá, 3 = Caldas’, 4 = Cauca, 5 = Cundinamarca, 6 = Huila, 7 = Nariño, 8
= Norte de Santander, 9 = Quindío, 10 = Santander, 11 = Tolima. Bars show 95% confidence
intervals.
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5.3.3 Results - yield data scale comparison: RY-GP vs. GY-GP

Research question 3 assesses whether there is there a significant difference in model skill

when simulating regional and national yields in the UK and Colombia.

Figure 5.4 shows the correlation coefficients between simulated and observed yields for

the RY-GP and GY-GP analyses. As can be seen here, the RY-GP and GY-GP correlations

are both very low and are statistically not different in the UK and most Colombian regions.

No correlations were significant for either country and analysis.

Colombian regions 2 and 11 (Boyacá and Tolima) had significantly higher correlations

associated with the RY-GP study compared to the GY-GP study. It can therefore be

concluded that finer scale yield data leads to higher model skill in two regions, although

there is not evidence for significant differences in the other regions. In these two regions,

some relationships between observed yields and weather variables are captured, whereas

at the national scale only very weak relationships are present, leading to lower model skill.
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Figure 5.4: Correlation coefficients between simulated and observed yields for the RY-GP (C, 1-
11) and GY-GP (G) simulations. A). 1 = UK, Aberdeen site. B). Colombia. Regions are numbered
1 = Antioquia, 2 = Boyacá, 3 = Caldas’, 4 = Cauca, 5 = Cundinamarca, 6 = Huila, 7 = Nariño,
8 = Norte de Santander, 9 = Quindío, 10 = Santander, 11 = Tolima. Bars show 95% confidence
intervals.

5.3.4 Results - yield scale and parameter detail comparison

Research questions 4 assesses which difference in skill is larger – data scale or parameter

detail.

Results in Section 5.3.1 showed an improvement in model skill for some regional sim-
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ulations compared to global simulations. Results in Sections 5.3.2 and 5.3.3 (Figures 5.3

and 5.4) can tell us something about what is causing this difference in skill.

There is a difference in model skill when comparing parameter detail in the RY-RP

and RY-GP simulations. In Colombia, five regions show significantly higher skill in RY-RP

simulations. There is a smaller difference when comparing yield data in studies RY-GP and

GY-GP, with only two regions showing significantly higher skill in the RY-GP simulations.

In the UK, the differences in correlations are never significant, although the highest skill

is associated with the RY-RP simulations. Therefore, parameter detail is more often the

cause of higher model skill than the spatial scale of the yield data.

In most regions where we see an improvement in skill between regional and global

simulations, the relationships with weather variables, and in particular temperature, are

better represented by the regional simulations. In well performing Colombian regions, for

example, temperature relationships are well captured, whereas for the global simulations,

relationships are weak between observed yields and temperature and sometimes poorly

represented. The UK GY-GP simulations show no relationship between observed yields

and temperature, whereas the RY-RP UK simulations capture a weak relationship with

temperature. The parameters that are chiefly responsible for these differences are planting

dates and crop phenology parameters. For the UK RY-RP simulations, known planting

dates and optimised phenology parameters lead to improvements in skill. For the Colombia

RY-RP simulations, planting dates are selected from a pre-defined range of dates known

from the literature. These improvements are leading to more realistic crop growing seasons

and consequently better representations of observed weather-yield relationships.

5.4 Discussion

This study has four research questions:

1. Is there a significant difference in model skill in regional and global case studies in

the UK and Colombia?

2. Is there a significant difference in model skill using regionally-optimised parameters
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compared with global parameter configurations in the UK and Colombia?

3. Is there a significant difference in model skill when simulating regional and national

yields in the UK and Colombia?

4. Which difference in skill is larger – data scale or parameter detail?

Results for research question 1 were in line with the hypothesis of higher skill being

associated with regional simulations. There were some significant differences in regional

simulations in Colombia. UK simulations showed (insignificantly) higher skill in the re-

gional simulations. The reasons for the higher skill sometimes associated with the regional

studies are discussed below.

Results for research question 2 were in agreement with the hypothesis of higher skill

being associated with greater parameter detail. Regionally-optimised parameters led to

better skill than the global parameter configurations, although this positive significant

difference was only significant in five Colombian regions. More realistic planting dates

were the primary cause of better results in these regions, although optimised phenology

parameters also resulted in more realistic weather-yield relationships. As was shown in

Chapter 4, different planting date and variety combinations can lead to differences in

model skill.

Management inputs such as accurate data on planting dates are often lacking in crop

modelling studies, especially at larger scales (e.g. Ewert et al., 2011). Unsurprisingly,

when phenological parameter calibration is performed skill has been shown to improve in

previous studies (Therond et al., 2011; Angulo et al., 2013). Parameter optimisation is

important for the accurate simulation of crop growth processes (Ramirez-Villegas et al.,

2017), and results in this chapter provide further evidence of this. Few studies have looked

into the appropriate level of model complexity and parameter detail for a given spatial scale

of analysis (Ewert et al., 2011). This work highlights the need to simulate crop phenology

in more detail, in agreement with (Adam et al., 2011; van Bussel, 2011).

Most crop modelling studies are site-based, at the local or field scale (Ruane et al.,

2017; Challinor et al., 2014b). These tend to rely on more detailed experimental data for
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crop phenology parameters, as well as planting and harvest dates. Coordinated studies

(e.g. Ruane et al., 2017) can begin to make use of this information at large (e.g. global)

scales, although site-based studies cannot currently provide the comprehensive coverage

that global modelling requires. Therefore more data collection for important crop phenol-

ogy and management dates is desirable, perhaps using new technologies such as remote

sensing to allow accurate simulation of planting dates and crop phenology across large

regions (Gao et al., 2017). Such techniques could be “bias-corrected” using observations

from experimental sites to verify and improve accuracy. These approaches could be highly

beneficial to global crop modelling studies that currently rely on either model algorithms

(e.g. Osborne et al., 2013) or interpolated data from coarse resolution (e.g. Sacks et al.,

2010) for planting date information.

Results for research question 3 were in agreement with the hypothesis of higher skill

being associated with regional yield data, although evidence for this was limited. Whilst

there was some evidence that having regional yield data improves model skill, few regions

showed significant improvements. This is in keeping with literature on the effects of data

aggregation on simulation results, which generally show small impacts (Kuhnert et al.,

2016; Hoffmann et al., 2015; van Bussel, 2011).

Data are usually associated with a particular spatial scale, and aggregation is necessary

to model on larger scales (Ewert et al., 2011). In this case, yield data require aggregation

to the national scale for globally comprehensive modelling, with a resultant loss of infor-

mation compared to regional data. Aggregation of other data inputs, such as weather and

sowing dates, may have a limited impact on results (van Bussel et al., 2011), although soil

aggregation uncertainty can be significant (Folberth et al., 2016). Porwollik et al. (2017)

show that different crop growing area data sets can lead to uncertainty in different simu-

lated regional yield time series, which is another potential source of model error at larger

scales.

One reason why smaller scale simulations could show improvements in skill is that cer-

tain regions may have stronger weather-yield relationships (Watson and Challinor, 2013),

and these relationships may average out when looking at larger scales. It is therefore not
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surprising that these results do not show clear skill improvements across all regions, as this

hypothesis implies some regions having weaker relationships with weather than others (and

some regions having weaker relationships than those at the national scale). National scale

correlations with weather variables are indeed low in the UK and Colombia (see Chapter

4).

More regions showed significant improvements in model skill due to more parame-

ter information. Research question 4 therefore is answered in agreement with the stated

hypothesis that parameter information is of most importance. More realistic simulated

weather-yield relationships resulted more often from improvements in simulated crop phe-

nology rather than the regional yield data.

5.4.1 Limitations

It is important to note that the analyses in this chapter are limited by the data available,

and to a single crop and crop model. Studies and data are limited for potato in contrast to

other important global crops (see Chapter 1). Only two countries were simulated regionally

for comparison with global simulations. Time series in Colombia were also short. Our

conclusions here are based on the fact that the significant differences in model skill identified

are more often than not in agreement with stated hypotheses. The majority of regions do

not show significant differences in skill, however, and model skill is in general low. It is in

this context that conclusions about the global and regional comparison are made - whilst

some patterns emerge concerning the differences in skill and the sources of this difference,

further work is needed in order to corroborate these findings. This would ideally consist of

regional data of longer time series, across more countries with further contrasting climates,

at different spatial scales and with different levels of parameter detail. The uncertainty in

input data sources (growing area, soils, irrigation, weather) and crop model structure are

also not accounted for in this work and are important to take into consideration.
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5.4.2 Conclusions

This work has shown that there are some differences in model skill between regional and

global simulations in the UK and Colombia. For these studies, the source of improvement in

model skill is largely the higher level of parameter detail associated with regional studies.

In particular, planting dates and crop phenology are better represented in the RY-RP

simulations. This leads to more realistic representations of weather-yield relationships.

van Bussel et al. (2011) highlight the need for better information on crop phenology in

global studies and results in this chapter agree. More data and analyses are needed to

make more general conclusions, however.

For most global crop modelling analyses, globally-coherent data sets and parameter

configurations are needed. High levels of parameter detail are usually unavailable, either

because of a lack of regionally-specific information or due to computational limitations

when needing to optimise parameters. This work highlights the need to have more detailed

parameter information for global studies in order to improve climate impacts modelling.

Particular emphasis should be placed on better planting date information and realistic

simulation of crop phenology.
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Chapter 6

The impacts of climate change on

potato agriculture: global analysis

6.1 Introduction

This chapter presents work highlighting the impacts of climate change on global potato

agriculture. It uses the process-based crop model GLAM-potato (see Chapter 2) alongside

the late blight risk forecasting model SimCastMeta (Sparks et al., 2011) to assess both the

abiotic and biotic impacts of climate change on potato agriculture.

There has been a lack of previous potato modelling studies compared to other crops, es-

pecially at the global level. Hijmans (2003) is one of very few examples, but this study only

examined the impacts of temperature changes on potential yields, not including changes to

CO2 and precipitation. Being a C3 crop, potato yields are likely to increase with elevated

CO2 due to CO2 fertilisation (Fleisher et al., 2008; Finnan et al., 2005). Including these

impacts is especially important as some studies suggest rising CO2 to be more important

than other mean climatic changes (Haverkort et al., 2013) and that CO2 fertilisation for

potatoes could be higher than for other C3 crops (Magliulo et al., 2003). Raymundo et al.

(2017b) include a detailed CO2 parameterisation but do not consider adaptations of culti-

var and planting date changes in the future. Raymundo et al. (2017b) project global yield

decreases by the mid 21st century of 2-6% and Hijmans (2003) 9-18% when considering

adaptation but no CO2 fertilisation.
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Studies that examine yield changes that allow planting dates and varieties to vary in

future climate for other major crops are becoming increasingly common, rather than using

so-called “dumb farmer” planting dates and varieties that do not vary in future climate

(Deryng et al., 2014; Rosenzweig et al., 2014). Previous global gridded modelling studies

have featured simulations that allow planting dates and crop phenologies to vary as well as

simulations that keep these fixed in the baseline climate (Müller et al., 2017; Deryng et al.,

2014) – in other words, adaptation to climate change is or is not considered in previous

global crop simulations.

Of 91 published analyses on climate change impacts included in The Intergovernmental

Panel on Climate Change 5th Assessment report, 33 included adaptation measures. These

measures were limited to changes in planting date, irrigation, crop variety and fertiliser

(Challinor et al., 2014b). Risk assessments risk losing accuracy if they do not include at

least some autonomous adaptations measures (Challinor et al., 2018).

A technology change should only be considered an adaptation to climate change if it

is measured in the baseline as well as future climate (Lobell, 2014). Changing planting

dates and varieties in future may not be straightforward, however, due to factors not

typically taken into account in modelling studies, including market pressures, pests and

diseases, other crops and water availability (Hijmans, 2003). Many adaptation scenarios

can be envisaged, ranging from the so-called “dumb farmer” who does not react at all to

climate change to the “clairvoyant farmer” who reacts with no restrictions to resources for

adaptation (Füssel, 2007; Schneider et al., 2000). The most realistic adaptation scenario

will be context specific, depending on regional constraints such as cultivar availability. For

this reason, global studies necessarily have to make assumptions that will not apply to all

regions – an example of global studies losing regional skill (Challinor et al., 2014a). Some

studies preferentially avoid a dumb farmer scenario, assuming that farmers will adapt in

some ways to climate change and if not including adaptation the impacts of climate change

will be overestimated (e.g. Mendelsohn et al., 2000). Others assess the potential benefits

of clairvoyant adaptation strategies (Hijmans, 2003).

The simulations in this chapter include CO2 fertilisation and precipitation changes
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alongside adaptation to climate change (varying planting dates and varieties), unlike pre-

vious global potato climate change modelling studies (Hijmans, 2003; Raymundo et al.,

2017b).

As discussed in Chapter 1, the explicit incorporation of pest impacts into global crop

modelling remains impractical due to reasons of appropriate model complexity and a lack of

global data. Therefore, biotic stress work is included alongside the crop modelling, focusing

on the oomycete pathogen of potato, late blight Phytophthora infestans, a widespread and

destructive potato disease responsible for yield losses that can be as high as 30% (Dowley

et al., 2008; Oerke, 2006). Late blight causes such substantial yield losses by damaging

most parts of the plant – the leaves, stems and tubers (Hwang et al., 2014).

Late blight has shown rapid evolution in the past (Gregory et al., 2009; Goodwin

et al., 1995), despite historically one clonal lineage dominating the majority of blight

populations (Goodwin et al., 1994). Blight is a heterothallic oomycete, meaning that two

compatible partners (known as mating types) are necessary in order to sexually reproduce.

Evolutionary potential (i.e. the potential of a species to adapt to environmental conditions)

could increase in the future thanks to the increasing prevalence of a second blight mating

type (Chowdappa et al., 2015; McDonald and Linde, 2002). This increases the opportunity

for genetic recombination, contributing to greater genetic diversity (Hwang et al., 2014).

As pointed out by Bale et al. (2002), flexible species that have wide geographic ranges and

diverse diets - such as late blight - usually show high evolutionary potential.

For blight, there are increasing numbers of lineages and sexual reproduction is likely

to become more common, resulting in more genetic variation being available within and

across populations. Whilst it is uncertain how much novel genetic mutations can lead to

adaptive responses to climate change (Parmesan, 2006), Hof et al. (2011) theorise that

pre-existing genetic variation within species may have allowed them to cope with climatic

change in the past and could do some in future. There is evidence that blight varieties

respond differently to environmental conditions, particularly that different varieties show

different levels of virulence in response to changing temperatures (see Chapter 1).

It is therefore important to take evolution into account when predicting future biotic
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stresses - something not incorporated in the majority of studies concerning food security

(Scherm, 2004; Davis et al., 2005; Forbes et al., 2003). Sparks et al. (2014) studied the

impacts of climate change on global late blight but did not consider any changes to the

pathogen over the course of the 21st century. They predicted that under the A2 SRES

climate scenario, late blight risk would globally on average increase up to 2050 and then

fall slightly towards the latter part of the century.

Often range shifts and changes to phenology are the only adaptive responses taken into

account in climate change studies, and these typically result from phenotypic plasticity

rather than genetic changes (Scherm, 2004). This analysis goes a step further, allowing the

response of blight to temperature to vary by including the emergence of new blight varieties

that are adapted to different temperature conditions. Without including this response, our

efforts to quantify the likely impacts of climate change on biotic stresses may at best be

uncertain, and at worst dangerously inaccurate.

The changing impacts of one of the most important biotic stresses of potato, late blight

Phytophthora infestans, are considered alongside crop model simulations to give a fuller

picture of global potato agriculture and climate change.

6.1.1 Research questions

As described in Section 6.1, this chapter uses model simulations to assess the impacts of

climate change on global potato agriculture. Three specific research questions are addressed

that look at the abiotic and biotic impacts of climate change:

1. How will climate change affect potato yields globally?

2. How will climate change affect late blight globally?

3. Which countries will be associated with the largest changes to yields and late blight

risk with climate change?
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6.2 Methods

6.2.1 Methods Overview

The GLAM-potato model is used to simulate potato yields globally in the baseline and the

future (see Section 6.2.3.1). This model has been shown to adequately simulate weather-

yield relationships in the UK and Colombia at regional (Chapter 3) and national scales

(Chapter 4).

Simulations in this chapter firstly test the model’s ability to simulate potatoes globally

in a baseline (1980-2010) climate. Subsequent simulations are then used to assess the

impacts of climate change on yields, simulating yields both in the baseline period and in

the future with and without adaptations to climate change (2041-2050). “Adaptation” in

the GLAM simulations refers to the adaptation of potato agriculture to climate change by

allowing planting dates and varieties to vary in the future.

The same baseline and future periods are simulated using the SimCastMeta model

to investigate the impacts of changing climate on risk of late blight attack, with and

without adaptation (see Section 6.2.3.2). Blight “adaptation” to climate change refers to

the simulation of new blight varieties that better suit different temperature conditions. In

all blight future climate simulations, the phenologies of host crop and blight are matched

(i.e. the growing seasons for blight and potato are defined using the same planting dates

as those selected in future climate GLAM simulations).

The countries associated with the largest changes in yields and blight risk are identified

for both the adaptation and non-adaptation simulations. The GLAM dumb-farmer simu-

lations are included as a point of reference to agricultural adaptation simulations, which

are seen as more realistic as they avoid the “dumb farmer” bias (Füssel, 2007; Schneider

et al., 2000). Assumptions have to be made regarding resource availability in the agricul-

tural adaptation simulations but these are seen as more realistic than assuming constant

planting dates and varieties between now and 2050 (Mendelsohn et al., 2000). Similarly,

the blight adaptation simulations allow for pathogen response to climate change and are

therefore seen as more realistic (Bale et al., 2002), with the non-adaptation simulations
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providing a point of reference.

6.2.2 Input data

6.2.2.1 Climate data

The AgMERRA (Agriculture Modern-Era Restrospective analysis for Research and Ap-

plications) data set is used for historical climate conditions, available from 1980 to 2010

(Ruane et al., 2015). See Chapter 3, Section 3.2.1.2 for further description.

ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) bias-corrected input

data are used for future climate data (Hempel et al., 2013). Statistical bias-correction is

used on these data, as described in Hempel et al. (2013). This approach bias-corrects the

monthly mean and daily variability of the data, preserving trends of absolute temperature

change and relative precipitation change.

Five GCMs are used (HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-

CHEM, NorESM1-M). ISI-MIP data are selected for use as they represent a globally-

coherent data set that is a reasonable subset of the CMIP5 ensemble, as demonstrated

by McSweeney and Jones (2016), and are therefore a climate ensemble suitable for use

in climate impacts studies (see Chapter 1, Section 1.3 for details of climate models, bias

correction and ensembles). McSweeney and Jones (2016) found that significantly more

models would have to be included in an ensemble to offer significant improvement on the

five models of the ISI-MIP ensemble. The period 2041-2050 is chosen for future climate

simulations as this period is important from a policy perspective (for example, the deadline

for the Paris Agreement). The RCP 8.5 scenario is used, representing a severe climate

change scenario, although different socio-economic scenarios show relatively little difference

until this period (Moss et al., 2010).

ISI-MIP historical data do not represent actual years of climate data but the climatology

of the historical periods. As such, the ISI-MIP data were compared to the AgMERRA data

in order to see if the central tendencies and variabilities of the data were similar. As can be

seen in Figure 6.1, there are no significant differences in these aspects of the data, with the

median values of each typically overlapping to a large extent. The largest difference is in
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European precipitation, where the median AgMERRA value is lower than all the median

ISIMIP values. Ruane et al. (2015) report a slight dry bias in AgMERRA in some areas

of the world, however, including Europe. The ISI-MIP data were therefore adjudged to be

fit for use in the climate change analysis.
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Figure 6.1: Comparison of ISI-MIP and AgMERRA daily temperature and precipitation data
for the baseline climate (1990-2010). Data plotted are the mean climate variables for each country
in each continent across years. “Ag.” refers to the AgMERRA data. “I1” to “I5” refer to the 5
models of the ISI-MIP data. Boxplots show medians, interquartile ranges and the whiskers extend
to 1.5 times the interquartile range.
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6.2.2.2 Potato growing area, irrigation and soil data

See Chapter 3, Section 3.2.1.3 for details of soil data information and Chapter 4, Section

4.2.1.2 for growing area, shapefile and irrigation data information.

Soil data are from the the Global Soil Dataset for Earth System Modelling (Shangguan

et al., 2014).

Global growing areas and irrigation are shown in Figure 6.2 and are from the MIRCA

data set (Monthly Irrigated and Rainfed Crop Areas – Portmann et al., 2010), representing

information from the years 1998-2002. Only grid cells using the top 50% of potato growing

area are used in this analysis, as described in Chapter 4. Irrigation is taken into account

using a majority grid cell approach - this assumes full irrigation in grid cells with over 50%

irrigated potato growing area, and rainfed conditions in all other grid cells.
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Figure 6.2: A. Potato growing area per grid cell (Ha) and B. percentage of irrigation per grid
cell for the baseline climate based on MIRCA data (Portmann et al., 2010). Note this figure is a
repetition of Figure 1.3.

6.2.2.3 Yield data

FAOSTAT country-level yield data (FAO, 2016) are used to simulate the main growing

season for each country in this study. Data examined are from the years 1980 to 2009 to

coincide with available weather data (some growing seasons going into a second calendar
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year). Checks are performed on these time series of data prior to detrending and modelling

which are outlined here.

Data were dropped from each time series if consecutive years with identical yields were

reported, these being deemed unrealistic. As another check, yield data were manually

calculated using area and production data from FAOSTAT. If the manually-calculated

yield data were correlated significantly with the observed yield data and if these data

had approximately the same mean yield level, time series were deemed acceptable for

modelling. Years with yield values more than two standard deviations away from the

mean were examined alongside the area and production, in an effort to see if any outliers

could be deemed unrealistic and dropped due to FAOSTAT data inconsistencies (none were

found).

FAOSTAT define the year associated with the yield data as that when the majority

of the harvest took place. The year associated with the yield data in GLAM is the year

associated with planting. As such, countries with the bulk of harvest taking place in a

different year to planting need to be identified so GLAM associates the correct year with

the yield data. These countries (Angola, Argentina, Lesotho, Malawi, Mauritania, Mali,

Morocco, Mozambique, Namibia, Papua New Guinea, Rwanda, South Africa, Swaziland,

Zimbabwe, Bolivia, Brazil, Cuba, Peru, Venezuela, Australia, Timor-Leste, Bangladesh,

India, Pakistan, Fiji, Indonesia, Sri Lanka, UAE and Vietnam) are predominately in the

southern hemisphere, with a few exceptions. Information on the main growing seasons

(planting and harvest date information) was taken from the World Potato Atlas provided

by the International Potato Centre, Colombia (CIP, 2009) and using the FAO crop calendar

(FAO, 2016). When this information provided no clear main growing season, the median

harvest dates from Sacks et al. (2010) where used to determine the main growing season

for the country.

The detrending process detailed below aims to remove trends in the data not due to

weather. Before this process, each time series was examined to identify any sudden large

changes in mean yield levels across the time series that would not be well explained by

the simple linear or quadratic relationships used for detrending. These were deemed to be
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such “multi-state” time series if upon visual inspection they exhibited large changes in mean

yields that were sustained for three or more years. Such time series were excluded from the

analysis. Countries excluded for exhibiting such multi-state time series are in Table B1 in

Appendix B. An exception was made for China – which shows some multi-state yield data

– as it produces the most potatoes globally.

The resulting time series were then detrended to remove any trends in the data. This

is done to remove the influence of factors not simulated by the model (technology and

management). Linear and quadratic models were chosen to detrend the yield data as more

complex local regression fitting was deemed undesirable due to the frequent short time

series available from FAOSTAT. Linear and quadratic models were tested on each time

series. Robust regression was used to fit models to the data using the R package “robust”

(Wang et al., 2014), as this is superior to ordinary least squares regression when data

contain outliers or otherwise break the assumptions associated with linear models (Finger,

2010).

In order to avoid taking away trends in the time series due to weather (rather than fac-

tors not simulated by the model), and to not weaken observed weather-yield relationships,

detrended yields were not retained if they showed lower mean absolute correlations be-

tween weather variables (temperature, rainfall and solar radiation) and observed yields. In

this situation, observed yields were used instead. This approach assumes that any trends

in yields in these countries are due to weather rather than factors not accounted for in

the model. This approach was preferred due to the difficulties associated with accounting

for the relative contribution of different factors to observed trends across many different

countries - using this method, the model should be able to capture the maximum possible

weather-yield relationship seen in observed yields. The majority of countries were not de-

trended as a result of weaker relationships between weather variables and detrended yields.

This was mostly due to temperature - significant positive correlations of temperature with

observed yields often became insignificant after detrending. See Table B1 in Appendix B

for the countries affected. 27 countries were detrended, 21 quadratically, 6 linearly, out of

a total of 102 simulated.
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Robust stepwise model selection using the “step.lmRob” function in the robust R pack-

age was used to determine whether a quadratic or linear model should be fitted to the data

for detrending. This is based on assessing model error changes that result from deleting

variables from the maximal model using backward elimination. Backward elimination in-

volves starting with all candidate variables, testing the deletion of each variable using a

chosen model fit criterion, deleting the variable (if any) whose loss gives the most statisti-

cally insignificant deterioration of the model fit, and repeating this process until no further

variables can be deleted without a statistically significant loss of fit.

Following detrending, checks were conducted for values beyond a potential potato yield

value of 20000 kg/ha (a figure larger than agricultural yields even in the highest potato

yielding countries - FAO, 2016) and for values that had been detrended to below 0; none

were present. Lastly, any countries were removed from the analysis if they had fewer than

6 years of data following the other checks. The majority of countries had over 16 years of

data. Full details of the yield data selection and detrending process for each country can

be seen in Table B1 in Appendix B.

6.2.3 Model set-up

6.2.3.1 GLAM model

GLAM-potato (described in Chapter 2) is used to simulate the abiotic impacts of climate

change. Model runs for the current climate take into account irrigation levels and current

potato growing areas. Future runs also account for CO2 fertilisation and allow plant-

ing dates and varieties to change. See Chapter 4 for a description of the global GLAM

parameter configuration.

GLAM is used to select the highest yielding planting date and variety combination

in the baseline climate, using the first half of the baseline time series. The Yield Gap

Parameter CYG is then calibrated and run on the first half of the time series in the baseline

climate before the model is evaluated using the second half of the time series. Planting date

and variety selection as well as model calibration use firstly the evaluation climate data

(AgMERRA) before the baseline data in the climate change analysis are used (ISI-MIP).
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Future climate runs using GLAM look at the difference between baseline and future

yields between the baseline period (1980-2010) and a future climate period (2041-2050).

The impacts of elevated CO2 are taken into account by altering GLAM parameters con-

cerned with biomass production (Radiation Use Efficiency RUE and Transpiration Effi-

ciency TE), as well as limiting the physiologically-limited potential transpiration of the

crop, ensuring that reductions in transpiration are driven by physiology (stomatal closure)

rather than energy limitations (Challinor and Wheeler, 2008; Challinor et al., 2005b).

Previous potato modelling studies parameterise the impacts of CO2 increases in future

climate using experimental data (Free Air CO2 and chamber experiments that assess the

impacts of controlled CO2 increases in on biomass and yields), with increases to biomass

and yields between 20-28.5% reported (Wolf, 2002; Haverkort et al., 2013). A mid-point

of this range (24.25%) is used for the increase to both TE and RUE for this future climate

analysis and the decrease in the physiologically-limited potential transpiration is set to 5%

(Wolf, 2002). These changes to TE and RUE are slightly larger than the increases used

in a previous global climate change analysis using GLAM (Osborne et al., 2013), which

used increases in TE and RUE of 21 and 18% for soybean and spring wheat respectively.

This larger increase is consistent with the larger increases in yield due to CO2 fertilisation

expected for potato compared to other C3 crops. An additional sensitivity analysis is

conducted that explores the sensitivity of projected yield changes to the range of parameters

cited here – see Section 6.21 for details and results (methods outlined in the results section

as the countries chosen for this analysis depend upon country-level model skill which is

featured in the results, as well as having large levels of potato production).

Agricultural adaptations are tested for future climate simulations relative to the base-

line climate. These consist of allowing the start of the sowing window and the variety to

vary. The methods described in Chapter 4 are used to select planting date and variety

combinations - i.e. the highest yielding combination that does not have unrealistically long

durations, emergency planting or unrealistic maximum LAI.

Non-adapted future climate simulations (i.e. a dumb farmer approach) are also included

as a point of reference to adaptation simulations, showing the benefits of allowing planting
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dates and varieties to change in the future. Non-adapted future simulations use the same

planting dates and varieties as those selected in the baseline climate. Those grid cells with

future planting dates and varieties that have been ruled out as unrealistic are not simulated

for the dumb farmer simulations. If these grid cells are included, unrealistic planting date

and variety combinations are simulated in the future. A direct comparison between the

adapted and non-adapted simulations is then not possible.

Global mean yield changes are calculated for each climate model using the simulated

national area-weighted yield time series averaged for each grid cell. These are then summed

for a global mean yield value for both baseline and future climates.

6.2.3.2 SimCastMeta model

Used alongside GLAM-potato, the SimCastMeta model provides an assessment of likely

future changes of biotic stresses. It does so by assessing changes to risk of late blight

attack. This model is fully described in Sparks et al. (2011).

The SimCastMeta model is used to quantify how outbreaks of the most significant

global disease of potato, late blight Phytophthora infestans, will change in future. These

simulations are conducted over the same grid cells as GLAM-potato simulations. Sim-

CastMeta uses monthly mean temperature and relative humidity data to assess the risk of

blight attack. It is a rescaled version of the SimCast model (Fry et al., 1983), designed to

work at coarser spatial and temporal resolutions for ease of use at larger scales. SimCast

calculates “blight units” based on the temperature of consecutive hours in a day where

relative humidity is above 90% (see Figure 6.3). SimCast has been previously shown to

have significant skill in predicting fungicide applications for blight outbreaks across many

countries (Grünwald et al., 2000; Hijmans et al., 2000). It is also a relatively simple model,

suitable for large scale analyses, with the metamodel calibrated using monthly climate data

showing no significant loss of skill compared to the original model calibrated using daily

time step data (Sparks et al., 2011; Hijmans et al., 2000).

186



Stewart Jennings 187 University of Leeds

Figure 6.3: Graphical representation of late blight unit relationship with temperature and hours
when relative humidity is greater than 90%. Taken from Lehsten et al. (2017).

SimCastMeta uses monthly data for both “susceptible” and “resistant” potato cultivars

(the cultivars differing in terms of blight unit accumulation for given weather conditions).

The “susceptible” cultivar is used for this study, as most widely-cultivated potato varieties

are susceptible to late blight (Forbes, 2012) and it is assumed that they will continue to

be so in the future (Goodwin et al., 1995) – there have been several incidences of blight

evolving to overcome resistant cultivars in the past (Forbes, 2012).

The blight units calculated by SimCastMeta represent a relative measure of risk of

blight outbreak. In SimCastMeta, blight unit accumulation decreasing by one is equivalent

to one pesticide application fewer per month for a susceptible cultivar. A value of one

therefore indicates a relatively small risk of significant outbreak, with significant protective
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measures (e.g. pesticide application) unlikely to be needed to maintain yields. Values as

high as four indicate substantial losses from blight are likely in the absence of protective

measures.

The model is first calibrated as described in Sparks et al. (2011) before being used for

simulations using baseline and future climate data as described in Section 6.2.2.1. The

blight units calculated are the mean daily blight unit accumulation for the optimal six

month potato growing seasons in baseline and future climates, which are defined using the

planting dates used in the GLAM analysis for those periods. Six month growing seasons

are chosen as these cover the longest likely potato growing seasons for any variety.

In order to account for genetic adaptation to climate change, different blight varieties

are simulated in the future. In previous work using SimCastMeta, resistant and susceptible

potato cultivars were modelled, with the same blight variety used in all cases (Sparks et al.,

2011, 2014). Blight varieties are simulated in this analysis, varying in their response of

blight risk to temperature. Blight unit accumulation values from the base model set-up are

assumed to represent a mid-range blight variety, as the model was developed to represent

blight across a wide geographic range (Sparks et al., 2011), and therefore represents the

variety of blight found to be most common in past studies (Goodwin et al., 1994). Five

models in total are constructed, using modified temperature data to reflect different re-

sponses of blight to temperature. Models are constructed with temperature data reduced

by 2.5 and 5◦C and increased by 2.5 and 5◦C, as well as with unmodified temperature

data, using the same blight units for each model. These temperature changes were chosen

to reflect both projected average global temperature increases by 2050 using the RCP 8.5

scenario (c. 2.5◦C) as well as larger increases in temperature (5◦C) that will likely be

found in some areas with this severe climate change scenario (Schurer et al., 2017). Vari-

eties adapted to cooler conditions are included to see if blight can become better adapted

to cooler areas. The varieties simulated assume that blight has the ability to adapt to tem-

perature changes of this magnitude. This assumption is based on the high evolutionary

potential of pathogens, differing observed blight responses to temperature (see Chapter 1,

Section 1.2.2) as well as predicted temperature changes.
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The most virulent blight variety for each grid cell is chosen for the future climate,

representing the evolution of new varieties in the future climate. As such, blight varieties

are allowed to change through time (i.e. matching growing seasons of the host crop and

pest) and space (allowing different blight varieties to be present across the globe), reflecting

adaptation to the warming associated with climate change. This approach assumes that

all blight varieties have access to all regions, which is an assumption in keeping with future

predictions of pests and diseases increasingly saturating the host crops on which they are

found (Bebber et al., 2014a). Blight-potato interactions are assumed to stay constant with

climate change, represented through the matching of phenology (i.e. keeping blight and

potato growing seasons linked) and growing areas, which remain constant in the baseline

and future periods.

6.3 Results

Results sections are presented below for global GLAM evaluation (Section 6.3.1.1), the

impacts of climate change on potatoes (Section 6.3.1.2), the impacts of climate change

on late blight (Section 6.3.2) and the combined impacts of abiotic and blight changes on

potatoes (Section 6.3.3).

Variables used in maps in the results sections of this chapter represent averages over

the years of simulation, with data taken from across the simulated growing seasons (i.e.

simulated planting to maturity). Weather variables are the mean daily values over the

growing season, unless otherwise stated.

6.3.1 Global GLAM results

6.3.1.1 Global model evaluation

Correlations between observed and simulated yields for the baseline period are typically

positive but low (Figure 6.4). The bulk of significant yield correlations are in Europe,

although the majority of correlations are insignificant. The countries with positive corre-

lations with p-values < 0.1 are Albania, Austria, Bangladesh, Croatia, Denmark, Egypt,

France, Germany, Latvia, Lithuania, Netherlands, Poland, Russia, Slovenia, Switzerland,
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Thailand and Uganda. The CYG is most often calibrated to be near 1 in the higher yielding

countries of the northern hemisphere (Figure 6.5), with simulated yields often lower than

those observed (Figure 6.6). In some countries (such as China) a CYG of lower than 1

results in observed yields being higher than simulated yields. This is due to such time

series not being detrended, with higher observed yields often in the second half of the

times series and the model calibrated on the first half of the time series. Globally, there is

a mean country-level RRMSE of 32%. The mean observed yield standard deviation across

countries was 0.39 T/Ha. The simulated mean standard deviation was slightly higher at

0.53 T/Ha.
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Figure 6.4: A. Correlation coefficient between simulated and observed national yields. B. Mean
simulated duration of growing season.

Simulated growing season durations are shown in Figure 6.4.B. These are around 120

days in the northern hemisphere and higher in subtropical and tropical regions, in line with

observed duration lengths (see Chapter 3, Sections 3.1.1 and 3.1.2 for examples). There is

a significant but weak negative correlation (-0.25, p-value < 0.05) between duration and

model skill. This is due to the higher durations and lower skill of tropical regions (expanded
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upon later). Harvest indices typically peak near 0.8, which is again in line with observed

values (Figure 6.7).
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Figure 6.5: A. National scale Yield Gap Parameter CYG. B. Simulated mean maximum LAI over
growing season (maximum LAI before senescence takes place).
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Figure 6.7: A. Simulated mean biomass at the end of the growing season. B. Mean Harvest Index
at the end of the growing season.

The start of the sowing window and varieties chosen for the baseline evaluation are

shown in Figure 6.8. Sowing windows typically begin in the first half of the year in Europe

and northern America. In subtropical and tropical regions planting tends towards the

latter half of the year, although there is variation, as expected given the varied potato

growing seasons in these regions. These are broadly similar to the planting dates of the
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Sacks et al. (2010) data set, as well as those used by Raymundo et al. (2017b).

Observed planting dates from experimental sites across 17 countries in Raymundo et al.

(2017a) are significantly correlated with mean sowing dates in GLAM (correlation of 0.75,

p-value < 0.001). The mean planting dates for each country for Sacks and in GLAM are

also correlated (0.40, p-value < 0.001). The countries that showed the largest differences

in planting dates between GLAM and Sacks sowing dates did not necessarily show poor

model skill; some countries perform well despite large differences in average planting date.

For example, Algeria and Bangladesh show correlations between observed and simulated

yields above 0.42, despite having mean planting dates over 150 days different to Sacks. It

is important to note that good model skill does not necessarily mean that realistic growing

seasons are being simulated, however.

Some countries typically have potato planting towards the end of the year and harvest-

ing in the next calendar year in the important potato growing areas. Of these, 10 show

GLAM planting dates in the first half of the year, contrary to expectations (Australia,

Bangladesh, Cuba, India, Indonesia, Mali, Rwanda, Sri Lanka, Venezuela and Vietnam).

14 countries have GLAM planting dates in the second half of the year as expected (An-

gola, Argentina, Bolivia, Brazil, Lesotho, Malawi, Mauritania, Morocco, Mozambique,

Pakistan, Peru, South Africa, Swaziland and Zimbabwe). Model skill is mixed for both of

these groups; uncertainty over planting dates is likely having a negative impact on model

skill in some of these countries.

The level of irrigation has no overall effect on model skill, with the mean irrigation

percentage in each country not being correlated with model skill (i.e. correlation coefficient

between observed and simulated yields). The length of yield time series only had a weak,

insignificant negative correlation (-0.17, p-value 0.11) with model skill, so there is little no

evidence for shorter time series leading to poorer model skill.
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Figure 6.8: A. Start of selected planting window and B. Variety chosen for each grid cell in the
baseline climate. These are selected using the global parameter method described in Chapter 4.

Low model skill is associated with grid cells that fail to simulate observed weather-yield

relationships or where these relationships are prohibitively low (Figures 6.10 to 6.12). How

well the model simulates the relationship between observed yields and temperature is a

good indication of model performance. In most of Europe, there is a negative correlation

between observed yields and temperature and this is well simulated. The areas that are not
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well simulated in Europe are those that have weak relationships between weather variables

and yields (such as the UK) or those that poorly simulate these relationships. This is most

often a poor representation of negative correlations between rainfall and observed yields in

parts of eastern Europe, which is likely due to there not being a flooding parameterisation

in GLAM.

Correlations between observed yields and solar radiation are weak in many parts of

the world (Figure 6.12.A). Negative relationships are seen where model skill is higher in

Europe, however. In these regions, rainfall has a positive correlation with observed yields,

acting as an important limiting factor to potato yields. Cloudy conditions lead to more

rainfall and higher yields, but also less solar radiation, resulting in this negative correlation.

In the important potato growing countries of India, China and the USA, weather-yield

relationships are not well simulated and model skill is poor. Relationships between observed

yields and rainfall are not usually as strong as those with temperature, in part due to the

irrigation of potatoes in many important production areas. Results in these countries are

examined in turn to point towards possible model limitations and improvements.

In India, planting is most often simulated to be in June and July in the most im-

portant areas for potato across the Indo-Gangetic plain. This is earlier than typically

reported planting dates for the region, where potato is a winter crop, sown from October

to November (CIP, 2009). The varieties chosen for this region are those with hotter opti-

mal temperatures for the latter two developmental stages – these varieties typically result

in shorter durations for hotter countries for the tuber bulking stages. The correlations

with rainfall and observed yields show a very weak relationship, which is in line with the

high levels of irrigation used for potatoes in the Indo-Gangetic plain. The percentage of

irrigation in this region is lower than the average for the country, however, with a majority

of grid cells using rainfed simulations. The simulated yields and rainfall show a positive

correlation here, indicating a water-limitation on simulated yields that is not present in

observations (Figure 6.11). It is likely therefore that irrigation levels in this data set and

the majority grid cell approach are not sufficient to prevent significant water limitation on

yields. There is heat stress simulated in the region during the summer months, with the
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harvest index reduced by around 50% as a result of high temperatures during the tuber

bulking stage (Figure 6.9). The soil water stress factor is also striking in this region though

– the water limitation is imposing a bigger limitation on yields than heat stress. This re-

sults in planting dates in the first half of the year when more rainfall is present, although

these planting dates are not in line with observations in the Indo-Gangetic plain, leading

to poor model skill.
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Figure 6.9: A. Mean Heat Stress Factor (HTFAC, factor harvest index reduced by). B. Mean
soil water stress factor.
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In China, two agri-ecological zones dominate the potato landscape: the northern region

and the south western region (CIP, 2009). Potato cultivation in these regions is varied,

with planting dates depending on topography, variety and climate. Potato planting takes

place in both spring and winter in all but the higher latitudes. GLAM simulations show

planting windows often selected to be in the second half of the year in most important

growing areas. The varieties being selected and cool conditions lead to long tuber bulking

periods in the key growing areas. Spring planting dates are also important in most growing

areas, however. This vast country highlights problems associating one national yield time

series with highly contrasting growing areas. Potato growth is theoretically possible in

many important areas all year round. The correct selection of planting dates and varieties

for these regions can therefore depend on having detailed local yield and management

information, for example regarding when other crops are grown as well as potato. Another

factor in poor skill may be the observed yield time series itself, which has a sharp increase

in mean yield levels in the year 1992.

Planting dates in the USA are mostly realistic, with the starts of the sowing window in

the first half of the year. In some areas the varieties selected are those with lower optimal

cardinal temperatures, resulting in warming leading to temperatures further away from

the optimal developmental temperature, longer durations and higher yields. This results

in tuber bulking stages being longer in particular. The relationship between observed

yields and temperature is negative in this region however, meaning that warming should

lead to yield decreases. Relationships with rainfall are usually weak due to high levels of

irrigation, however in the areas with poorly represented temperature relationships there is

a stronger positive relationship between rainfall and observed yields. This relationship is

also not well simulated by the model. Given the high levels of irrigation, the majority grid

cell approach is often resulting in irrigated model simulations being used in these grid cells.

As a result, varieties are being selected that maximise yields in the absence of any water

limitations. In reality, it is likely that although irrigation is widespread, full irrigation is

not realistic. When choosing planting dates and varieties based on rainfed model runs only,

some of these grid cells show varieties that have higher cardinal temperatures, meaning

that they show a more realistic temperature-simulated yield relationship.
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Figure 6.10: A. Correlation coefficient between observed national yields and temperature. B.
Correlation coefficient between simulated national yields and temperature.
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Figure 6.11: A. Correlation coefficient between observed national yields and rainfall. B. Corre-
lation coefficient between simulated national yields and rainfall.
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Figure 6.12: A. Correlation coefficient between observed national yields and solar radiation. B.
Correlation coefficient between simulated national yields and solar radiation.

6.3.1.2 Global future yield changes

Global average yield changes show predicted yield changes from -6 to 16% without adap-

tation and increases from 33 to 47% with adaptation to climate change (see Appendix B

for yield changes associated with each climate model). This large difference reflects the

potential that adaptation of changing planting dates and varieties has for yield increases
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in the future.

Figures in this section show fewer grid cells simulated in the non-adaptation simula-

tions - this is the result of grid cells not being included in non-adaptation future climate

simulations if planting date and variety combinations become unrealistic in the future cli-

mate. The number of grid cells dropped is significant, with the number remaining for these

simulations 5906 for model 1, 5719 for model 2, 5255 for model 3, 5845 for model 4 and

5709 for model 5 out of a total of approximately 11000 grid cells simulated for each model

in the baseline climate (representing the top 50% of potato growing area grid cells). The

grid cells used for the non-adaptation simulations account for approximately 56% of total

potato growing area, as opposed to 96% of growing area for the adaptation simulations.
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Figure 6.13: Yield percentage change from baseline climate to 2041-2050. Values shown are mean
values across climate models. A = non-adaptation simulations. B = adaptation to future climate.

Yield changes are most often positive in the northern hemisphere (Figure 6.13) and

especially so in the adaptation simulations. Figures 6.14 and 6.15 show positive and neg-

ative yield changes respectively by country for both the non-adaptation and adaptation

simulations. Only 5 countries show yield decreases when adaptation to climate change is

considered – Egypt, Cuba, India, Bangladesh and Pakistan. Many more countries show

yield decreases when not allowing planting dates and varieties to vary, however. Yield

decreases usually a result from potato growing season durations decreasing in a warming

climate, with soil water and heat stress also increasing in some areas.
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Climate projections show that temperatures over the non-adaptation growing season

will increase in Europe by approximately 2◦C by 2045. Rainfall is also projected to de-

crease by approximately 50 mm in many growing areas in Europe, although it increases in

parts of Eastern Europe. Consequently, yields fall as a result of decreased durations and

precipitation in European non-adaptation simulations in most cases.

Adaptation simulations alter growing seasons in future climate - GCM projections then

show similar warming in Central and Eastern Europe but a mild cooling of 1-2◦C in parts

of Western and Southern Europe due to planting dates shifting to later in the year. Rainfall

in general increases in the adaptation simulations – in some cases in Europe by over 100

mm. Durations usually increase slightly thanks to shifting planting dates and varieties to

adapt to the moderate temperature changes.
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Figure 6.14: Countries associated with the largest increase in yields from a baseline to 2041-2050,
with ranges across climate models. A. Non-adaptation. B. Adaptation. Boxplots show medians,
interquartile ranges and the whiskers extend to 1.5 times the interquartile range.

206



Stewart Jennings 207 University of Leeds

●

●

●

●

●

●

●

●

●

●

E
g

y
p

t

A
r
m

e
n

ia

U
z
b

e
k
is

ta
n

A
z
e

r
b

a
ij
a

n

K
o

r
e

a

M
e
x
ic

o

T
a

ji
k
is

ta
n

In
d

ia

S
y
r
ia

G
e

o
r
g

ia

L
e

b
a

n
o

n

K
y
r
g

y
z
s
ta

n

S
w

a
z
il
a

n
d

B
o

li
v
ia

P
a

k
is

ta
n

M
o

r
o

c
c
o

Is
r
a

e
l

J
a

p
a

n

Ir
a

n

T
u

n
is

ia

J
o

r
d

a
n

P
e

r
u

Ir
a

q

C
h

in
a

B
a

n
g

la
d

e
s
h

U
S

A

S
w

e
d

e
n

A
lg

e
r
ia

B
u

lg
a

r
ia

L
e

s
o

th
o

−100

−50

0

50

100

Y
ie

ld
 C

h
a

n
g

e
 (

%
)

A

E
g

y
p

t

C
u

b
a

In
d

ia

B
a

n
g

la
d

e
s
h

P
a

k
is

ta
n

−100

−50

0

50

100

Y
ie

ld
 C

h
a

n
g

e
 (

%
)

B

Figure 6.15: Countries associated with the largest decrease in yields from a baseline to 2041-2050,
with ranges across climate models. A. Non-adaptation. B. Adaptation. Boxplots show medians,
interquartile ranges and the whiskers extend to 1.5 times the interquartile range.

Yield increases are largely due to the impact of CO2 fertilisation. Warming often

leads to reduced durations in the non-adaptation simulations (Figure 6.17) and duration

increases in the adaptation simulations. Biomass and yields typically increase in both sets

of simulations due to the higher transpiration and radiation use efficiencies used in the

future climate simulations.

Standard deviations increase from 0.42 to 0.51 T/Ha in the baseline to 0.51 to 0.71

T/Ha in future climate non-adaptation and 0.54 to 0.69 T/Ha in adaptation simulations
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(ranges across climate models). This means that extreme yields are projected to be more

likely in the future – i.e. crop failures could become more common.

Planting dates and varieties selected in the future climate are shown for one of the

5 climate models in Figure 6.16 (other model planting dates and varieties are similar

and are shown in Appendix B). The adaptation simulations that allow planting dates and

varieties to shift in future climate show that in general in the northern hemisphere, planting

takes place later in the season with harvest often occurring as late as December. Warmer

conditions later in the year allow potatoes to take advantage of some of the months that

were previously too cold for growth and contain more rainfall (Figure 6.18). Rainfall over

the growing season therefore increases in some cases (Figure 6.19). Solar radiation falls in

these areas in the adaptation simulations as a result of the months potatoes are projected

to be grown in being cloudier and wetter (Figure 6.20).
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Figure 6.16: A. Start of the sowing window and B. varieties chosen for 2041-2050 using the
hadgem2-es model.
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Figure 6.17: Mean simulated duration change from baseline climate to 2041-2050. Values shown
are mean values across climate models. A = non-adaptation simulations. B = adaptation to future
climate.

Tropical regions have more varied future planting dates and varieties across the 5

climate models. Planting often takes place earlier in the growing season and there tends to

be a trend towards varieties with lower temperatures in the tuber bulking developmental

stages. This results in a lengthening of the tuber bulking stages, although durations often

still fall as a result of increasing temperatures. In spite of this, yields often increase in the

adaptation simulations thanks to increased biomass from CO2 fertilisation, although some

countries (such as India) show yield decreases.
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Figure 6.18: Mean temperature change from baseline climate to 2041-2050. Values shown are
mean values across climate models. A = non-adaptation simulations. B = adaptation to future
climate.
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Figure 6.19: Change in total rainfall over the growing season from baseline climate to 2041-
2050. Values shown are mean values across climate models. A = non-adaptation simulations. B
= adaptation to future climate.
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Figure 6.20: Mean solar radiation change from baseline climate to 2041-2050. Values shown are
mean values across climate models. A = non-adaptation simulations. B = adaptation to future
climate.

6.3.1.3 CO2 sensitivity analysis

6.3.1.3.1 Methods

Four countries are used to assess the sensitivity of projected potato yield changes to CO2

fertilisation. These are Germany, Egypt, Bangladesh and Peru. These four countries are

all in the top 20 of global potato production and represent a wide environmental and

geographic range. Germany, Bangladesh and Egypt have good model skill (correlations

between observed and simulated yields are highly significant in Germany and Egypt, with
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a p-value of 0.07 in Bangladesh). Peru model skill is insignificant but is the top South

American potato producer (and no country has significant skill in South America). A

global sensitivity analysis was not conducted as model skill was often poor in large potato

production countries such as the USA, India and China, making projected yield changes

uncertain.

Future climate change simulations for these four countries are conducted that vary

the TE and RUE parameters across reported ranges cited in Section 6.2.3.1. Simulations

with no CO2 fertilisation are also included for comparison. Simulations will therefore be

conducted with the following percentage increases in TE and RUE in future climate: 0,

20, 22.125, 24.25 (matching the other future climate simulations in thesis), 26.375, 28.5.

These simulations use the same model configuration as the adaptation simulations,

with planting dates and varieties varying for each climate model. The simulations use the

adaptation configuration only as these simulations are considered more realistic than dumb

farmer future simulations.

6.3.1.3.2 Results

Projected changes in yields vary according to the parameterisation of CO2 fertilisation

(Figure 6.21). Mean yield changes vary across CO2 parameterisations from -11% to 3% in

Bangladesh, from -38% to -33% in Egypt, from 40% to 51% in Germany and from 83% to

107% in Peru.

In Egypt, Germany and Peru the mean sign of yield change (i.e. whether there is a

projected increase or decrease in yields in the future) across climate models is the same

whether CO2 fertilisation is turned on or not. In Bangladesh, a mean decrease in projected

yields becomes a modest increase with the highest level of CO2 fertilisation (although note

that the median value across climate models for parameterisation 5 still shows a yield

decrease).

In all four countries there is a steady increase in yields across the CO2 parameter-

isations, reflecting the incremental increase in TE and RUE parameters that result in

incremental increases in biomass and yields.
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There is a smaller difference in yield changes across CO2 parameterisations in Egypt

as the LAI is relatively high, resulting in higher biomass than the other three countries in

this analysis. Therefore for a given increase in TE and RUE the percentage increase in

biomass (and hence yields) is lower. There is a larger difference in yield changes across

CO2 parameterisations in Peru as the LAI and biomass are comparatively small, with the

changes in TE and RUE therefore contributing to larger percentage increases in biomass

and yields.
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Figure 6.21: Projected changes in yields in Bangladesh, Egypt, Germany and Peru using different
levels of CO2 fertilisation. CO2 parameterisation 0 = no CO2 fertilisation, 1 = 20%, 2 = 22.125%, 3
= 24.25%, 4 = 26.375%, 5 = 28.5% increase in TE and RUE. Boxplots show medians, interquartile
ranges and the whiskers extend to 1.5 times the interquartile range.
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6.3.2 Global blight changes

Changes to blight units are shown in Figure 6.22. The largest increases and decreases in

blight units are shown by country in Figures 6.24 and 6.25 respectively.

For the blight simulations not allowing adaptation of new varieties to warming, risk

of disease attack is usually reduced as a result of warming and falling relative humidity

(Figures 6.22 and 6.23). When allowing adaptation of blight to warming the severity of

blight attack in future climate is considerably higher, especially in the northern hemisphere.

Unsurprisingly given the expected warming, the two blight varieties that are adapted

to warming climates contribute most to the increase in blight units expected when allow-

ing adaptation. The blight variety associated with the largest increase in blight units is

the variety adapted to temperatures of 5◦C higher than the baseline climate. The 2.5◦C

warming variety shows similar results, with slightly less virulence in a future climate.

For the growing seasons simulated in the blight analysis, projected temperature in-

creases of c. 3◦C and relatively small rainfall changes mean that relative humidity usually

falls slightly by less than 15% in most grid cells. For the adaptation simulations, blight

unit changes are largely driven by the increases in temperature projected rather than the

changes in relative humidity, as temperature optima of blight can shift to match warmer

temperatures and maximise blight units. Intuitively, blight units often fall in the non-

adaptation simulations, as falling relative humidity and warming leads to fewer blight

units accumulated during the growing season.
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Figure 6.22: Global late blight unit change from baseline climate to 2041-2050. Values shown
are mean values across climate models. A = the same variety as baseline. B = the most virulent
blight variety in future climate. Note that positive changes are coloured blue for these plots, unlike
in yield change plots where positive changes are red. This is for a visual comparison of adversely
affected regions when looking at both biotic and abiotic impacts.
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Figure 6.23: Changes in temperature (A) and relative humidity (B) from baseline climate to
2041-2050. Values shown are mean values across climate models.
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Figure 6.24: Countries associated with the largest increase in mean blight units with variation
across climate models. Changes from baseline to 2041-2050. A = the same variety as baseline. B
= the most virulent blight variety in future climate. Boxplots show medians, interquartile ranges
and the whiskers extend to 1.5 times the interquartile range.
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Figure 6.25: Countries associated with the largest decrease in mean blight units with variation
across climate models. Changes from baseline to 2041-2050. A = the same variety as baseline. B
= the most virulent blight variety in future climate. Boxplots show medians, interquartile ranges
and the whiskers extend to 1.5 times the interquartile range.

6.3.3 Global abiotic and biotic changes

The mean results for the adaptation to climate change for potato yields and late blight are

shown in Figure 6.26. As discussed in Sections 6.3.1.2 and 6.3.2, potato yields and blight

units are projected to increase, particularly in the northern hemisphere.
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Figure 6.26: Changes in mean yields (A) and blight units (B) from baseline climate to 2041-2050.
Values shown are mean values across climate models. Both A. and B. use future climate adaptation
simulations. Note that positive changes are coloured red in A and blue in B. This is for a visual
comparison of adversely affected regions when looking at both biotic and abiotic impacts.

China and Brazil are amongst the few countries projected to see yield increases and

blight reductions (Figure 6.26). Yield increases are modest in Brazil, largely due to CO2

fertilisation. In China, earlier sowing dates in key growing areas lead to falling tempera-

tures, resulting in projected duration and therefore yield increases. These countries show

insignificant GLAM model skill, however, so little confidence can be placed in the yield

change predictions. Projected European yield gains could be offset by increases in blight

attack, as shown in Figure 6.26.
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Few countries are projected to see a reduction in yields by 2041-2050 (Egypt, Cuba,

India, Bangladesh and Pakistan). Of these countries, only Cuba has all five climate mod-

els predicting a blight unit increase of greater than 1, with the other countries showing

negligible increases.

Many countries are predicted to suffer an increase in blight risk, however, with 79

countries showing mean increases in blight units across climate models when considering

blight adaptation. Across Europe, adapted blight varieties are typically showing increases

of 1-4 blight units relative to historical levels. The projected yield increases in Europe are

high in many cases, with median increases across climate models of over 50% common (as

shown in Figure 6.14 in Section 6.3.1.2).

6.4 Discussion

This analysis aimed to project yield and blight changes towards the mid-21st century and

highlight areas where potatoes will be most at risk from climate change.

Late blight is projected to increase in much of Europe when allowing blight adaptation

to warming conditions (i.e. the emergence of new blight varieties with different temperature

optima). Without this adaptation, blight is projected to subside in most areas due to

temperatures and relative humidity going beyond blight optima – i.e. shifting the blight

optimal temperature allows the disease to react favourably to warming conditions. Without

adaptation, temperatures in Europe increase such that the optimum temperatures of c.

20◦C are surpassed more often and fewer blight units accrue.

Sparks et al. (2014) projected blight decreases as the century passes, largely through

cooling temperatures when allowing growing seasons to shift. They assume a constant

pathogen response to temperature, however. This important inclusion in this analysis

highlights the differences in responses of biotic stresses when taking into account not only

the host response to climate change (i.e. the crop) but that of the disease also. Fungal

diseases are predicted to become more threatening to global food security with climate

change (Bebber and Gurr, 2015; Fisher et al., 2012). Results in this chapter agree that the
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fungal-like oomycete late blight is likely to become more problematic in key growing areas

in the future.

The blight variety associated with the largest increase in blight units compared to

the baseline is the variety adapted to temperatures of 5◦C warming. The 2.5◦C warming

variety also has higher virulence in a future climate. Given that warming is usually not

projected to be as high as 5◦C, this implies that blight is currently not optimally suited

to temperature conditions. This is perhaps not surprising given that potatoes and blight

originated in warmer tropical regions; even though both can grow across a wide temperature

range, optimal temperatures are often higher than those experienced in colder latitudes.

That being said, results for the 2.5◦C variety are almost as virulent, meaning that adapting

to less warming also produces significantly more blight in the future climate.

Given that pesticide legislation in important potato growing areas like the European

Union is already highly restrictive (Handford et al., 2015), it is unlikely that increasing

pesticide use to control pathogens such as light blight will be viable in the future in many

regions. More nuanced Integrated Pest Management techniques will require investigation

(Alyokhin et al., 2015; Guedes et al., 2016). Chapter 7 looks into pesticide use and climate

change in more detail in an analysis that looks at broader pest-climate change projections.

The areas with the highest confidence associated with baseline yield simulations are

mostly in the northern hemisphere. Yields are generally predicted to increase in these

areas. When considering both adaptation (i.e. allowing planting dates and varieties to

vary in the future) and CO2 fertilisation, projected yield changes are large. The range of

global mean yield changes shown across climate models is -6 to 16% without adaptation

and 33 to 47% increases with adaptation. These increases are larger than those reported

in previous global potato crop modelling studies (Raymundo et al., 2017b; Hijmans, 2003).

Previous studies do not include the simultaneous impacts of adaptation to climate change

and CO2 fertilisation, however, which cause the increases in yields projected here. Past

studies also do not comment on model skill in simulating the inter-annual variability of

national scale yields and do not report crop model outputs such as LAI and duration.

Previous studies of global crop model using GLAM have simulated wheat, maize and
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soybean rather than potato (Osborne et al., 2013; Rose et al., 2016; Dawson et al., 2016). Of

these studies, model skill is only commented on in Osborne et al. (2013). Here, correlations

between observed and simulated national scale yields were significant in only four of the

top 15 soybean production countries and in only three of the top 15 wheat producing

countries. Mean simulated yields were often underestimated also. In short, model skill of

global GLAM-potato is comparable to that shown in previous global GLAM analysis.

CO2 fertilisation mitigates many of the negative influences of changing climate such

as rising heat stress, water stress and shortened durations. The CO2 fertilisation sensi-

tivity analysis shows the range of yield changes across different parameterisations of CO2

fertilisation. The range of yield changes across parameterisations in the four countries

analysed in this analysis were 14% in Bangladesh, 5% in Egypt, 11% in Germany and

24% in Peru. For some of the lower biomass countries such as Peru, the difference across

parametersiations is higher due to lower biomass, resulting in the altered TE and RUE

parameters having a relatively large impact on biomass and yields. Conversely, higher

biomass countries such as Egypt and Germany showed a smaller range of yield percentage

changes across parameterisations. Given that the higher biomass countries in the northern

hemisphere typically show better model skill, it is reasonable to conclude that the yield

changes that we have most confidence in are reasonably robust across the range of CO2

fertilisations cited in this study. However, the uncertainty surrounding the yield change

projections for some important countries with both high and low biomass levels is large,

both given poor model skill and significant parameter uncertainty for CO2 fertilisation.

Projected future yield losses for potato from ozone damage are estimated to be around

12% on average across studies (with a range across studies of c. 6-18%) (Feng and

Kobayashi, 2009). For potatoes, CO2 fertilisation is predicted to more than compensate

for ozone-induced losses, although both the size of the effect of CO2 fertilisation and ozone

damage are uncertain (Raymundo et al., 2017b; Feng and Kobayashi, 2009). Similarly,

CO2 and ozone impacts on potato tuber quality and nutrition are complex – studies have

reported losses in protein, calcium and potassium tuber content but impacts on tuber

quality are uncertain (Högy and Fangmeier, 2009; Vorne et al., 2002). More studies are
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needed to make robust statements about the implications of nutrient loss in key potato

growing areas in food insecure regions such as India and China.

This study primarily focuses on the impacts of climate change on yields, with changes

to climate variables (temperature, precipitation and solar radiation) and CO2 accounted

for. At the time of the analysis ozone damage was not included in GLAM so this was not

accounted for. However, it is possible to use current ozone yield damage projections to put

results into context. Global mean yield changes are projected in this study across climate

models to be -6 to 16% without adaptation and 33 to 47% increases with adaptation.

Decreasing these ranges by the mean projected ozone damage leads to global mean yield

changes of -18 to 4% without adaptation, and 21 to 35% with adaptation.

It is important to note that ozone damage is variable across regions, dependent on

local pollution, and therefore more work is needed to identify particular areas of risk to

ozone damage in key growing areas (Feng and Kobayashi, 2009). Europe, for example,

have substantial potato production with some projected ozone-induced yield losses (Vorne

et al., 2002) but are not an area predicted to be at great risk from food insecurity. Other

regions of the world that are more vulnerable, such as India and China, need further study.

Including the uncertainty range over the parameterisation of CO2 fertilisation is also

important when examining confidence in both global and country-level projections of yield

changes. Based on the results of the sensitivity analysis, the uncertainty range around

the size of the CO2 fertilisation effect can be large but will rarely change the sign of yield

change at the country scale or globally. In European countries, for example, using Germany

as a case study, the parameterisation of CO2 fertilisation is associated with yield changes

5% lower or higher than the mean CO2 fertilisation level that is used in the main results

section. Combined with ozone damage of around 5% shown in the European CHIP analysis

(Vorne et al., 2002), yield changes would then be around the same or as much as 5% higher,

depending on the choice of CO2 parameterisation.

The potential for adaptation to increase yields is large, with yield increases of 30%

common compared to yields using dumb farmer planting dates and varieties. It is important

to note that a large fraction of potato growing area was omitted from potato non-adaptation
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simulations due to these grid cells not having realistic planting date-variety combinations in

the future climate. This provides further support to considering the adaptation simulations

as the most realistic in future climate in this model set up, alongside the need to avoid the

dumb farmer bias (Füssel, 2007; Schneider et al., 2000).

Previous global crop modelling studies do show skill in some cases at representing mean

yield levels and interannual variability (e.g. Müller et al., 2017), with ensembles typically

performing better than individual models (Fleisher et al., 2016). For potato such studies

are rare, however. Regional studies show better results than the global GLAM-potato

configuration in some cases, as shown in this thesis in Chapter 5. Singh et al. (2005) use

the INFOCROP-POTATO model to study potato in India. INFOCROP-POTATO does

not allow potato growth above 30◦C and has significant correlations for crop development

and growth, which is likely due to high input data detail. Raymundo et al. (2017b) show

mixed results in representing the variability and mean of FAO national yields across the

globe, and do not show correlation coefficients with which to compare to the results pre-

sented here. Their results showed higher simulated than observed yield variability and

high RRMSE (56% on average globally). Mean yields are calibrated in GLAM, although

in some cases mean simulated yields are lower than observed mean yields due to parame-

terisation and data preparation choices, as discussed in Chapter 4. The focus of the GLAM

analysis is on capturing interannual variability in observed yields. Whilst mean yields are

poorly represented in some cases, confidence in percentage changes to yields is associated

most with interannual variability - i.e. how well the model can simulated the relationship

between yields and climate (Müller et al., 2017).

These other studies do include more complex parameterisations of processes in some

cases but model performance is mixed at the global scale. There are reductions in RUE

and increases in senescence at higher temperatures in Raymundo et al. (2017b). China

and India in particular still showed overestimation of country-level production. Müller

et al. (2017) also found poor model skill for Chinese wheat and soybean, illustrating the

difficulties in simulating crops in these important potato growing regions using national

scale yield data. In this chapter, the mean yield levels of the Chinese yield time series
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fluctuate substantially mid-time series, making model calibration and skill difficult.

The larger countries simulated in this analysis usually have poor model skill (Russia

being the exception to this) and this is probably not a coincidence. The use of national

scale yield data is likely a part of the reason for poor skill as the variability of the national

scale yield data may not apply to that at the level of the grid cell. The FAOSTAT yield

data are associated with the year when the majority of the harvest takes place. Large and

climatically-variable countries such as China and India have planting dates in different

times of the year, and therefore the yield data for a given year may not be representative

of all grid cells.

In Raymundo et al. (2017b), yields were projected to decrease for the temperate regions

of north America, eastern Europe and Asia, whilst increasing in western Europe in the

climate change analysis using RCP 8.5 from 1979-2009 to 2040-2070. For subtropical and

tropical regions yields were generally predicted to increase. Whilst results in this chapter

show more yield increases in much of the northern hemisphere than Raymundo et al.

(2017b), these differences are likely due to their treatment of CO2 fertilisation leading

to less of an increase in yields and the inclusion in this study of adaptation of farmers

to climate change. Raymundo et al. (2017b) acknowledge that the response of yields to

CO2 fertilisation is highly uncertain. Whilst their representation of this process is more

detailed than the one used in this chapter, their results show an under-estimation of the

increase in yields due to rises in CO2 concentration. Haverkort et al. (2013) found that

increasing CO2 more than compensated for yield losses due to rising temperatures and

reduced water availability for South African potatoes by 2050. Whilst the size of the CO2

fertilisation effect on biomass is uncertain, current experimental evidence does indicate

substantial biomass gains in potato (Fleisher et al., 2008; Finnan et al., 2005; Magliulo

et al., 2003). Potato uses the C3 photosynthetic pathway, which is predicted to lead to

more CO2 fertilisation as CO2 is less saturating in baseline conditions (Leakey et al., 2009).

This effect is also predicted to be larger than for other crops (McGrath and Lobell, 2013;

Magliulo et al., 2003), making it especially important to account for.
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6.4.1 Study limitations

Study limitations will be discussed for the GLAM simulations firstly, followed by the late

blight simulations. This study explores the biophysical impacts of climate change on

potatoes, but little is known of the evolution of food systems and farming practises, and

these factors are not addressed in this study.

The only region to perform consistently well in terms of model skill in the baseline

climate was Europe. Whilst other countries sometimes showed significant correlations,

most did not, which limits the confidence one can place in the analysis of global yield

changes.

Only one crop model was used in this study, meaning that the structural uncertainty

associated with different crop models is not accounted for. A range of input data sets (apart

from climate inputs) are also not a part of this analysis - Folberth et al. (2016) highlight

how the uncertainty due to soil data inputs can be important, so this in particular should

be investigated in future work.

Only using a single crop area data set can lead to a lack of quantification of aggregation

uncertainty in simulated yield time series (Challinor et al., 2018; Porwollik et al., 2017).

However, previous work has shown that regions with more potato growing area are asso-

ciated with better model skill (Watson et al., 2015). Only the top 50% of potato growing

area grid cells are included in this analysis. It is assumed that these grid cells are more

often the same across growing area data sets than the low area grid cells in more marginal

potato growing regions. Uncertainty due to growing area data sets is therefore assumed to

be small, as was most often the case in Porwollik et al. (2017).

Technology impacts on yields are also beyond the scope of the current study; these can

have major impacts on yields, as demonstrated by Lobell et al. (2011), who found that

for global maize, wheat, rice and soybean, one year of gains from technology trends can

compensate for 10 years of negative impacts from climate trends.

This study did not examine multiple cropping seasons for potato which could impact

annual mean yields. Ozone damage and nitrogen limitations were not taken into account
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explicitly for baseline or future simulations, although the CYG captures some of these

impacts implicitly in a mean level across the time series for the baseline climate. Irrigating

the crop fully was not seen as a viable adaptation strategy so was not simulated, given

water limitations already apparent in important growing regions (Kumar et al., 2005).

Land use changes were also not considered. Such an adaptation option would potentially

allow more suitable grid cells to be simulated for potatoes in future, which could lead

to more potato yield increases. This was beyond the scope of the current study due to

uncertainties around future land use patterns and time constraints.

For future climate simulations, changing planting dates and varieties may not be

straightforward due to market pressures, pests and diseases, other crops and water avail-

ability (Hijmans, 2003). There is a large diversity of potato cultivars that could be exploited

by breeders to help improve tolerance to climate change impacts (Schafleitner et al., 2011),

but the access of new varieties to farmers will likely remain problematic in poorer countries.

The realism of altering planting dates will likely depend on factors not accounted for in this

study, namely other crops, market pressures and broader pest and disease impacts. Moore

and Lobell (2014) found that the rate at which farmers adapt to warming is an impor-

tant source of uncertainty in climate impact projections. Although the representation of

adaptation in terms of changing planting dates and varieties is arguably optimistic, other

adaptations are not included in this study which could help in adapting to climate change.

The lack of representation of a more diverse array of adaptation options is common in crop

modelling studies (Challinor et al., 2018).

An important point regarding the choice of planting dates in this analysis is that

GLAM selects the best performing planting date and variety combination in the absence

of any limitations imposed by the growing seasons of other crops. The selected planting

dates could be theoretically realistic – based on environmental inputs – but not actually

observed due to other crops being planted at that time. Both potato planting and harvest

are affected by management decisions as well as environmental factors, making model

selection of these difficult. van Bussel (2011) had some difficulty choosing the correct

planting dates for cassava, for example, which is a crop with similarities to potato in terms
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of phenology and growth (Singh et al., 1998).

The heat stress parameterisation used in this chapter could be overly-simplistic, both in

terms of model structure and parametrisation - the percentage decrease in yields resulting

from heat stress may be too low in some hotter countries such as India. High temperatures

did not affect transpiration or radiation use efficiency in this analysis, but recent evidence

and modelling studies suggest this to be of some importance (Raymundo et al., 2017b;

Zhou et al., 2017). Results in India may indicate this, with long durations resulting from

high temperatures that might be insufficiently reducing yields. Whilst some heat stress

was apparent in simulations it was possibly not severe enough. There was no correlation

between heat stress severity and model skill, however.

Studies such as Raymundo et al. (2017b) and Singh et al. (2005) use more complex

models with higher input data requirements, suggesting potential improvements to the

parameterisations of heat stress and CO2 fertilisation used in GLAM-potato. There is

evidence that different varieties of potato show different responses to heat stress (Wolf

et al., 1990). As stated in Chapter 4, a simple parameterisation for global simulations was

chosen due to a lack of data and regional information. Therefore, different varieties of

potato did not include different heat stress parameterisations.

Müller et al. (2017) correlate simulated yields with FAO national yield time series

and test correlations when the observed yields are allowed to shift by one year. The one

year shift is selected if it improves the correlation by greater than 0.3. This approach

improved correlations in Müller et al. (2017), particularly in tropical countries. This has

the advantage of allowing the model to choose the best performing time series, however

in some cases the “wrong” years are bound to be associated with the data, so the more

knowledge-based approach of prior selection was preferred here. Neither approach is perfect

however - in Vietnam, for example, there was a significant negative correlation coefficient

between observed and simulated yields and it is possible that the observed yield time series

should be shifted.

Regarding the impacts of climate change on the biotic stress of potatoes – only one

species is simulated in this study. This is the obvious limitation as to how much can be
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concluded from this work about the biotic impacts of climate change on potato agriculture.

Whilst it is a globally important disease, other species are likely to show different responses

to climate change, and other species will be particularly important in some areas. The

study highlights important regions of potential risk as a result of this important potato

disease, however. As ever, data limitations on pests and diseases limit the possibility for

evaluating the large scale biotic stress modelling in this chapter (Donatelli et al., 2017;

Bale et al., 2002), although the model in use has shown skill in the past (e.g. Sparks et al.,

2011).

Interactions between the pest and host crop are accounted for only in some basic ways,

such as assuming growing seasons between pest and host continue to match and assuming

that potatoes will be equally susceptible to blight attack in the future. These assumptions

are based upon work that highlights the continued vulnerability of crops to pests and their

continued matching phenologies (Oerke, 2006; Bebber et al., 2014a).

6.4.2 Conclusions and future work

Improved crop model simulations would allow us to have more confidence in yield change

predictions across the globe. Multiple crop models and input data sets (such as soil, growing

area and irrigation data sets) could be used to better estimate the uncertainty associated

with projected yields. Better crop management and phenology information (planting and

harvesting dates) would in particular improve results (van Bussel, 2011), although more

accurate global data are not currently available.

There is some uncertainty as to when the majority of the potato crop is harvested

in some tropical countries, and therefore which years of observed yield data should be

associated with crop model simulations. Future potato model simulations could alter the

years associated with the observed yield data (as in Müller et al., 2017) to see if results in

these areas improve. These issues are an example of those that come from using national

scale yield data – related issues include differing yield variability across spatial scales.

Future work should focus on improving the treatment of potato growing seasons (per-

haps by subdividing large countries into important potato growing areas), improving the
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impacts of heat stress on potato yields and developing more sophisticated irrigation and

flooding parameterisations. With more detailed information on potato irrigation, a less

crude method could be used that takes into account the differing amounts of irrigation

across regions. With a flooding parameterisation, regions such as eastern Europe – that

show a negative observed yield-rainfall relationship due to excessive rainfall during part of

the growing season (Schleyer, 2017) – may be better simulated.

Some crop models simulate the impacts of pests and diseases on crops directly, although

this is rare (Rivington and Koo, 2011). Future work using SimCastMeta could include a

resistant potato variety (in addition to the susceptible potato variety used in this anal-

ysis), to see how much this could mitigate the projected increases in blight risk. Future

work would also be enhanced by simulating other potato pests of global importance, or

of particular importance in key potato growing areas. Linking predictive models of likely

blight risk to levels of yield loss is also a priority, as this would allow us to quantify the

impacts of pests on production and therefore food security. This would require sufficient

data to validate causal relationships between pest stresses and yield losses, however, and

data are famously lacking in the field (no pun intended) of biotic stresses (Donatelli et al.,

2017; Bale et al., 2002).

Agricultural revolution could render current modelling studies obsolete by mid-century.

The purpose of this work is to point to likely climatic limitations and opportunities, how-

ever, rather than perfectly predict the state of potato agriculture by 2050. Future work

could make use of climate suitability algorithms that predict future suitable potato grow-

ing areas (Schafleitner et al., 2011) to further enhance these efforts. Scenarios of varying

optimism regarding technological improvements could also be included. Different adapta-

tion scenarios that explore the extent to which planting dates and varieties are allowed to

be varied in different regions could inform adaptation options with greater sophistication.

This study shows that yields in important potato growing areas in the northern hemi-

sphere could increase by over 50% by the mid-21st century. This number is subject to

uncertainty from climate models, CO2 fertilisation and ozone damage however. The largest

source of uncertainty comes from the climate model inputs (varying substantially per coun-
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try), with smaller (c. 10%) uncertainty over the parameterisation of CO2 fertilisation and

ozone damage. Therefore, although the sign of yield change in Europe is relatively certain,

the magnitude of the effect is not. Globally, the sign of yield change is less certain due to

smaller projected yield gains with adaptation (c. 30%), the aforementioned uncertainties

and poor model skill in important production regions of the USA, India and China.

It is important to note the predicted increases in blight attack in these regions, however.

Whilst these blight increases cannot currently be translated into impacts on production,

blight is commonly responsible for substantial yield losses that can be as high as 30%

(Dowley et al., 2008; Oerke, 2006). Such decreases in yields from unchecked pests and

diseases could reduce expected yield gains from CO2 fertilisation and adaptation to climate

change.
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Chapter 7

The influence of climate change on

crop pests and diseases: pesticide

analysis

7.1 Introduction

Pests and diseases (hereafter collectively referred to as “pests”) are moving polewards in

response to increasing temperatures (Bebber et al., 2013) and are increasingly present in

the areas in which their host crops are found (Bebber et al., 2014a). As a result, changes to

the magnitude and frequency of pest outbreaks – rather than distribution – are likely to be

of more importance to food security in the coming decades. Modelling of pest distributions

based on climate variables remains more common, however (e.g. see Sutherst, 2014).

Temperature is usually an important climatic variable in determining the intensity of

disease and insect pest outbreaks (Cammell and Knight, 1992). Minimum temperatures are

of particular importance in temperate areas, with low winter temperatures being an impor-

tant limiting factor to survival (Ziska, 2014; Bale et al., 2002). Research into the impacts

of precipitation is not as common (Bale et al., 2002), although humidity (and therefore

precipitation) is especially important for the intensity of fungal pathogen outbreaks (Beb-

ber, 2015), which are among the most important in terms of crop losses (Bebber and Gurr,
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2015; Oerke, 2006). The oomycete late blight Phytophthora infestans is an example of a

fungal-like disease of global important to potato agriculture specifically. Both temperature

and relative humidity are important for determining the intensity of blight outbreaks. See

Chapter 6 for an analysis of how this disease responds to climate change specifically. See

Chapter 1 for more on pests, climate and crops.

Relationships at large spatial extents (i.e. greater than the province or farm level)

between pests and climate (as well as socio-economic factors) have been demonstrated,

primarily concerned with warming and range expansions (Bebber et al., 2014b, 2013),

including at the continental and global level (Parmesan and Yohe, 2003). Pest distributions

are significantly predicted by per capita Gross Domestic Product (GDP), for example

(Bebber et al., 2014b). Globally comprehensive pest abundance and damage data are

lacking, however, that would enable us to validate models that assess risk of pest attacks

(Donatelli et al., 2017).

Pest management will have to adapt in future to respond to changes in pest outbreaks.

Pest management techniques include cultural (e.g. crop rotation or selection of pest-

resistant varieties), biological (e.g. natural enemies) and chemical (i.e. pesticide) control.

Pesticides are a very common form of pest control and are arguably the most important

component of Integrated Pest Management (Alyokhin et al., 2015; Guedes et al., 2016).

Pesticides remain vital for crop production and their use is increasing (FAO, 2016) despite

potential toxicity to humans and other (non-targeted) organisms when poorly regulated

(Coats, 1994). The level of pesticide use in a country is a function of legislative limits,

economic access, agricultural technology (Law, 2001) and area as well as environmental

factors, including the abundance and intensity of pest outbreaks (Delcour et al., 2015).

Maximum Residue Limits (MRLs) are the primary means by which pesticides are reg-

ulated across the globe (Delcour et al., 2015; Handford et al., 2015). MRLs are defined

by the European Food Safety Authority as “the upper legal levels of a concentration for

pesticide residues in or on food or feed based on good agricultural practices (GAP) and to

ensure the lowest possible consumer exposure”. They aim to restrict the maximum amount

of pesticides that are present in foodstuffs to ensure consumer safety.
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The economic conditions in a country can influence the level of pesticides applied

through various means. Pesticide companies primarily target major crops to maximise

profits as only few crops (wheat, rice, maize and potato for example) dominate global agri-

cultural production (FAO, 2016; Delcour et al., 2015). There are therefore fewer pesticides

available for the small-scale farming systems more commonly found in poorer countries

(Collier and Dercon, 2014). More obviously, the rate at which pesticides will be applied

will largely be determined by prices and application costs (Delcour et al., 2015).

Pests are rarely modelled explicitly in crop models (Rivington and Koo, 2011 – see

Chapter 1), so even simple modelling options that estimate the impacts of climate change

on pest pressures at large scales are scarce. Modelling on larger scales is of increasing

importance as the agricultural sector becomes ever-more globalised, resulting in the pro-

liferation of pest species across continents (e.g. Hulme, 2009). Global climate data sets

are becoming increasingly common (e.g. Sheffield et al., 2006, Ruane et al., 2014, Hempel

et al., 2013), allowing large-scale analyses of pests with climate variables to take place (e.g.

Sparks et al., 2011), although large scale pest data sets remain rare (Donatelli et al., 2017).

Smaller-scale, non-climatic processes can average out at larger scales, allowing climate to

become a more important determinant of pest outbreaks (Parmesan and Yohe, 2003). Pest

severity will increase in some species and decrease in others, making broad conclusions and

policy recommendations difficult at large scales (Newbery et al., 2016).

Models that seek to represent pest impacts on crops and changing pest pressures vary

in complexity and scope. They range from simple statistical models to complex process-

based models; from site-based analyses to global simulations (see Chapter 1). An example

of a simple statistical approach is that used by Ziska (2014). In this study, the relationship

between daily minimum temperatures and pesticide application rates on soybean was used

to predict changes in pest pressures in response to climate for seven locations in the mid-

west United States. An attraction of using pesticide data as a proxy for pest pressure data

is that it is readily available at the country scale (FAO, 2016) in many areas - data can be

a limiting factor to more complex modelling approaches (Jagtap and Jones, 2002), making

larger scale analyses difficult. Pesticide data also represent multiple pest species, in that
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their use at large scales is not commonly associated with a single pest.

Ziska (2014) related minimum temperature to pesticide data at each location using

regression analysis. Ziska (2014) also separately examined insecticide, herbicide and fungi-

cide use per area data in order to disaggregate the statistical relationships found in different

pest groups. In doing so, the impacts of climate change on pests can be shown by proxy.

Ziska (2014) found that there were positive relationships with temperature for all pesticide

classes, with warming linked to potential increases in pest pressures in the USA.

An earlier study of Chen and McCarl (2001) used a similar statistical approach to

link both temperature and precipitation to pesticide cost, again across the United States.

This study found that increases in temperature and precipitation resulted in an increase in

pesticide cost for the majority of crops in the US. This was attributed to increasing severity

of pest outbreaks, resulting in more pesticide use being predicted with climate change. The

work of Ghimire and Woodward (2013) linked pesticide data to various social, economic

and climate variables, but did not estimate changes to pesticide use with climate change.

This study suggested pesticides are being under-used in developing countries and over-used

in developed countries.

The complexities of the impacts of climate on pesticide use are described in Delcour

et al. (2015). The general pattern is for usage to increase with rising temperatures due to

increasing pest pressures and in some cases enhanced crop growth (Delcour et al., 2015).

Pesticide efficiency is affected by changes in climate through temperature increases leading

to increased toxicity, but warming also increases chemical degradation (Noyes et al., 2009).

Precipitation increases lead to enhanced pesticide run-off (Noyes et al., 2009).

The objective of this chapter is to examine the potential of simple statistical modelling

for informing our understanding of how climate change influences global pesticide use (and

by proxy the intensity of pest pressures). Given the links between pests and climate at large

scales, it is hypothesised that significant relationships between pesticide use and climate

variables exist that can be used to estimate the impacts of climate change on pesticide use.

This chapter complements the late blight modelling work in Chapter 6 as it uses data to

evaluate global scale pesticide-climate relationships. These relationships are also broader
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than those associated with the single (albeit important) pest species modelled in Chapter

6.

This work therefore provides an analysis of the impacts of climate change on pests -

are the intensity of pest pressures on crops likely to increase with increasing temperatures

and changing precipitation patterns? The previous studies of Ziska (2014) and Chen and

McCarl (2001) related climate variables to pesticide use and extrapolated for future climate

scenarios in specific sites in the United States. Ghimire and Woodward (2013) looked at

how pesticide use is related to climate and socio-economic variables across 94 countries.

This work builds upon these previous studies by relating pesticide use to these variables

and extrapolating future climate impacts on pesticide use globally for the first time.

7.1.1 Research questions

1. Is there a relationship between pesticide use and climate at large spatial scales?

2. Is there a stronger relationship between pesticide use and climate when taking into

account GDP?

3. Is there more variability in pesticide use between countries or temporally within

countries?

4. How will climate change affect pesticide use?

7.2 Methods overview

7.2.1 Summary

This work consists of two analyses: the correlation analysis looking at both within- and

between-country variability in pesticide data (Section 7.3) and the statistical model analysis

(Section 7.4) that looks at climate change impacts on pesticide use. See Table 7.1 for a

summary of the analyses and Table 7.2 for a summary of variables used in these analyses.
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Table 7.1: Summary of the analyses in this chapter.

Analysis Description
Correlation analysis: Correlations of pesticide use with time series of climate and
within countries economic variables for each country time series.
Methods - Section 7.3.1
Results - Section 7.3.2.1
Correlation analysis: Correlations of pesticide use with climate
between countries and economic variables averaging time series for each country
Methods - Section 7.3.1 and correlating variables for each continent.
Results - Section 7.3.2.2
Statistical models Statistical models calibrated on baseline climate
Methods - Section 7.4.1 and pesticide data and used to project pesticide use
Results - Section 7.4.2 with future climate data.

Table 7.2: Variables used in the correlation and statistical model analyses.

Variable Definition (unit) Section
P Pesticide use per area data (tonnes 1000ha−1) 7.2.2.1
Tm Mean temperature (◦C) 7.2.2.2
R Precipitation (mm day−1) 7.2.2.2
GDP Gross Domestic Product (US$) 7.2.2.3
GDP% Percentage of GDP from agriculture (%) 7.2.2.3
GDPA1 GDP per agricultural area (US$ 1000ha−1) 7.2.2.3
GDPA2 GDP per arable land and permanent crop area (US$ 1000ha−1) 7.2.2.3
MRL Maximum Residue Limit (mg kg−1) 7.2.2.3

The correlation analysis relates historical climate and GDP variables to pesticide data

within and between countries to answer research questions one, two and three.

Mean temperature Tm, precipitation R, GDP and MRL variables are correlated with

pesticide data P to answer research question one. Relationships are examined for each

country-level time series, focusing on the relationships between pesticide use and climate

for each country (the “within country” analysis). The “between country” analysis examines

data between countries by continent, averaging the pesticide and climate variables for each

country and examining the between-country variability in pesticide data.

Correlations inform which of the four GDP variables tested is used to answer research

question two and in the climate change statistical models. The aim is to select one variable

for modelling as they are not independent of each other. This is because they are largely

comprised of the same GDP data, therefore explaining the same variation in pesticide use

and not being independent variables.
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To address research question two, correlations are examined for different groups of

countries based on their GDP variable value. Countries with a higher GDP should be able

to afford to use more pesticides on their crops, all other things being equal. It is therefore

hypothesised that a stronger climate-pesticide relationship would emerge when looking at

the highest countries with respect to the GDP variable.

The data are examined between countries in an analysis by continent, averaging the

pesticide and climate variables for each country and examining the inter-country variability

in pesticide data to address research question three. This informs how best to measure

pesticide-climate relationships for the subsequent climate change modelling work. It is

hypothesised that more pesticide variability exists between, rather than within, countries,

and that this greater variability is due to climate-pesticide relationships being more of a

determinant of pesticide variability at larger scales.

In Section 7.4, multiple linear regression models are defined and used to answer research

question four - assessing the impacts of climate change on pesticide use. Following the

calibration of these models using baseline climate data (Section 7.4.2.1), future climate

data from 2041 to 2050 are used to extrapolate future pesticide use levels (Section 7.4.2.2).

The GDP data are included in this modelling framework by analysing regressions based

on all the data and separately using data from countries associated with high values of the

GDP variable only.

7.2.2 Input data

7.2.2.1 Pesticide data

Pesticide data P are available from FAOSTAT (FAO, 2016). The pesticide data are col-

lected by reporting national statistics of the quantities (in tonnes of active ingredients)

of pesticides used in or sold to the agricultural sector for crops and seeds. Data are un-

available for individual crops such as potato, so all-crop pesticide use per area data are

used. Pesticide use per area data are calculated by finding the total pesticide use for each

country and dividing it by the total arable land and permanent crop area (also available

from FAOSTAT). These data are available for 149 countries with varying lengths of time
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series, from some countries with a single year of data to 16 countries with a time series

between 1990 to 2010. The average length of time series is 11.34 years. Eight countries are

excluded from the analysis as they have time series of less than three years. Six countries

have time series of three years, 14 have time series of four years and 103 have time series

of five or more years (see Figures 7.1 and 7.2). Short time series in some regions helped to

inform which variables to include in the statistical models – see Section 7.4.1.

The pesticide data were analysed for trends through time using a robust regression

technique. Robust regression was used to fit models to the data using the R package “ro-

bust” (Wang et al., 2014), as this is superior to ordinary least squares regression when data

contain outliers or otherwise break the assumptions associated with linear models (Finger,

2010). A previous study found no significant trends of pesticide data through time (Chen

and McCarl, 2001). Here, 59 of the 149 countries showed significant linear trends through

time – 19 in Europe (50% of European countries), 15 in Asia (44% of Asian countries),

11 in Africa (29% of African countries), 9 in South America (75% of South America coun-

tries) and 5 in North America (28% of North America countries). 43 of the trend countries

showed a positive relationship through time, i.e. pesticide use has significantly increased

through time. Detrending of these time series was not undertaken as the purpose of this

would be to remove trends that result from factors not included in modelling. Relationships

between pesticide use and the factors included in the models (weather and socio-economic

variables) weakened in all cases following detrending, so detrending was not performed.
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Figure 7.1: Length of pesticide use time series across countries.
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Figure 7.2: Length of pesticide time series across continents. n = number of countries in each
continent.
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7.2.2.2 Climate data

The AgMERRA (Agriculture Modern-Era Restrospective analysis for Research and Appli-

cations) data set (Ruane et al., 2014) at 0.5◦ resolution is used for baseline climate data

in the correlation analyses of Sections 7.3.2.1 and 7.3.2.2. These data are representative

of years 1990 to 2010 to match the available pesticide data period. See Chapter 3, Section

3.2.1.2 for further description of these data.

ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) bias-corrected input

data at 0.5◦ resolution are used for climate changes from the baseline to the future (Hempel

et al., 2013) in the statistical model analysis of Section 7.4. Future climate data are

compared to historical ISI-MIP data for extrapolation of pesticide use into the future. See

Chapter 6, Section 6.2.2.1 for a description of the ISI-MIP data.

The climate data are used from the above data sets only from grid cells where agricul-

ture is present. The crop land area data from the year 2000 from NASA’s Socio-Economic

Data and Applications Center (SEDAC) are used as shown in Figure 7.3 (SEDAC, 2012)

at 0.5◦ resolution. For countries where crop land area data are absent, the climate data are

averaged over all grid cells in that country (these countries were the Bahamas, Barbados,

Cape Verde, Cook Islands, Fiji, French Polynesia, Iceland, Malta, Mauritius, New Caledo-

nia, Qatar, St. Kitts and Nevis, St. Lucia, Samoa, Seychelles and Vanuatu). Otherwise,

climate data were averaged over the grid cells covered by the crop mask.

Shapefiles from the Database of Global Administrative Areas are used to define country

boundaries used in this analysis (www.gadm.org). Gridding and preparation of the data

is performed using the statistical package R (R Core Team, 2017).
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Figure 7.3: Map of agricultural land used. Figure taken from SEDAC (2012).

7.2.2.3 Socio-economic data

Four variables (see Table 7.2 in Section 7.2.1) involving agricultural area and economic

data are examined in order to explore the relationship between economics and pesticide

use. These are Gross Domestic Product GDP from the World Bank (data.worldbank.org),

the value added by agriculture GDP% (as a percentage of GDP, also from the World Bank,

www.data.worldbank.org) and two measures of GDP per agricultural area: GDP divided

by the total agricultural area including livestock land GDPA1 and GDP divided by the

arable land and permanent crop area GDPA2, both from FAOSTAT (FAO, 2016).

The GDP data are examined across the years for each country that have pesticide

data, save for Myanmar and the Cook Islands, where no World Bank data are available.

For these two countries, the 2005 value of GDP is used from the UN Statistics Division

(http://data.un.org). GDP% is the net output of the agricultural sector after adding up all

outputs and subtracting intermediate inputs. It is calculated without making deductions

for depreciation of fabricated assets or depletion and degradation of natural resources.

GDPA1 and GDPA2 represent the relative size of the economy of a country and the amount
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of agriculture in that country - how much money can potentially be spent on agriculture

when normalised by agricultural area.

Maximum Residue Limit (MRL) data are from the Global MRL database (www. glob-

almrl.com). MRL data from 82 countries were available at the time of this analysis. The

data used in correlations in Section 7.3.2.2 are the mean value of MRLs for each country

(averaged across years with pesticide data).

Whilst technological development is important for rates of pesticide application (see

Section 7.1), it is assumed that as it is related to GDP (e.g. see Mowery and Rosenberg,

1991) it was not necessary to include in this analysis; the short pesticide variable lengths

in this analysis necessitate relatively few variables in modelling.

7.3 Correlation analysis

7.3.1 Methods

Pesticide data are correlated with AgMERRA climate and socio-economic data to assess

research question one - is there a relationship between climate and pesticide use? Two

methods of correlating the data are used: “between-countries” and “within-countries” to

assess research question three - is there more variability between or within countries? Time

series of pesticide use for each country are examined for the within-country work. For

between-country work, the variables are averaged for each country and a single correlation

calculated for each continent. Oceania is excluded from between-country work due to a lack

of GDP data in many countries. The two methods of analysis aim to see if there is more

pesticide variability – and potentially stronger climate-pesticide relationships – between

or within countries. In all cases, correlations are Pearson’s product moment correlations

using the base statistical package of R (R Core Team, 2017).

MRL and GDP data are correlated with pesticide data to assess their importance for

predicting pesticide use. MRL data are excluded from the within-country analysis as only

one value is associated with each country (i.e. there is no temporal variability in the data).

The four GDP variables (see Section 7.2.2.3) are correlated with pesticide data in order
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to see which is the best predictor of pesticide use to include in the subsequent statistical

modelling framework.

To test the hypothesis that higher GDP countries show a stronger relationship with

climate variables (research question two), different GDP bins are tested in the between

country correlation analysis. The countries are examined as part of three different groups:

the lowest 33%, middle 33% and highest 33% GDP variable countries (subsequently referred

to as low, medium and high GDP bins).

7.3.2 Results

7.3.2.1 Within countries

Within-country correlations are presented in Table 7.3 and Figures 7.4 to 7.9.

Slightly more significant correlations within countries are associated with precipitation

rather than temperature (see Figures 7.4 and 7.5). Most of the significant correlations

with climate variables are positive – higher temperatures and wetter conditions more often

than not are associated with higher pesticide usage rates. The temporal variability is

dominated by the GDP signal, however (see Figures 7.6, 7.7, 7.8, and 7.9 for GDP , GDP%

GDPA1 and GDPA2 correlations respectively), with relatively few significant correlations

with climate variables. The significant correlations with climate variables that are found

are concentrated in tropical areas, with very few being in temperate countries. There are

more positive than negative significant correlations with GDP variables apart from GDP%,

which shows more negative correlations with pesticide use.

The within-country correlations show that GDPA1 is more of a predictor of pesticide

use than the other GDP variables tested (see Table 7.3). This was therefore chosen as

the GDP variable used in subsequent climate change statistical modelling (Section 7.4.1

describes the models). A different GDP variable to GDPA1 had a significantly higher

correlation in only 30% of countries. GDP and GDPA2 are also significantly correlated

with pesticide use in a large number of cases – the GDP data being the largest determinant

of pesticide use found in this study, more so than legislative or climatic data.
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Table 7.3: Mean within-country correlations between pesticide use and GDP variables. GDP is
the Gross Domestic Product, GDP% is the percentage of value added by agriculture, GDPA1 is
GDP normalised by agricultural area including livestock areas and GDPA2 is GDP normalised by
arable agricultural area.

Continent GDP GDP% GDPA1 GDPA2

Europe 0.20 -0.01 0.21 0.21
South America 0.76 -0.39 0.76 0.73
North America 0.35 -0.11 0.34 0.33
Oceania 0.48 -0.02 0.49 0.45
Asia 0.18 -0.08 0.18 0.18
Africa 0.17 -0.16 0.23 0.21
Global 0.36 -0.13 0.37 0.35
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Figure 7.4: Correlations of P data with mean temperature Tm. A: mapped correlations. Green
stars indicate significant correlations. B: correlations of each country shown by continent. Small
red circles indicate countries with significant correlations. The large black circle indicates the mean
correlation across countries for each continent. The large red circle indicates the mean significant
correlation. “n.” refers to the number of countries, “s.n.” refers to the number of significant
countries.
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Figure 7.5: Correlations of P data with precipitation R. A: mapped correlations. Green stars
indicate significant correlations. B: correlations of each country shown by continent. Small red
circles indicate countries with significant correlations. The large black circle indicates the mean
correlation across countries for each continent. The large red circle indicates the mean significant
correlation. “n.” refers to the number of countries, “s.n.” refers to the number of significant
countries.
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Figure 7.6: Correlations of P data with GDP . A: mapped correlations. Green stars indicate
significant correlations. B: correlations of each country shown by continent. Small red circles
indicate countries with significant correlations. The large black circle indicates the mean correlation
across countries for each continent. The large red circle indicates the mean significant correlation.
“n.” refers to the number of countries, “s.n.” refers to the number of significant countries.

251



Stewart Jennings 252 University of Leeds

Figure 7.7: Correlations of P data with GDP%. A: mapped correlations. Green stars indicate
significant correlations. B: correlations of each country shown by continent. Small red circles
indicate countries with significant correlations. The large black circle indicates the mean correlation
across countries for each continent. The large red circle indicates the mean significant correlation.
“n.” refers to the number of countries, “s.n.” refers to the number of significant countries.
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Figure 7.8: Correlations of P data with GDPA1. A: mapped correlations. Green stars indicate
significant correlations. B: correlations of each country shown by continent. Small red circles
indicate countries with significant correlations. The large black circle indicates the mean correlation
across countries for each continent. The large red circle indicates the mean significant correlation.
“n.” refers to the number of countries, “s.n.” refers to the number of significant countries.
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Figure 7.9: Correlations of P data with GDPA2. A: mapped correlations. Green stars indicate
significant correlations. B: correlations of each country shown by continent. Small red circles
indicate countries with significant correlations. The large black circle indicates the mean correlation
across countries for each continent. The large red circle indicates the mean significant correlation.
“n.” refers to the number of countries, “s.n.” refers to the number of significant countries.
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7.3.2.2 Between countries

Tables 7.4 and 7.5 and Figure 7.10 show correlation results between countries.

There is most often more variability in pesticide use between than within countries.

The exception to this is in South America, where there is higher variability within country

time series. This is the result of GDP variables predicting high variability within South

American time series. In three continents, however, variability is at least an order of

magnitude higher between countries (Table 7.4). As a result of this greater variability in

between-country pesticide use variables, correlations with climate variables are, on average,

higher. Whilst GDP is still a strong determinant of pesticide use between countries, the

magnitude of the correlations between pesticide use with climate variables is comparable

to those with the GDP variables.

The different GDP bins show some evidence of stronger correlations with mean temper-

ature and pesticide use as you go from low to high bins (see Figure 7.10). Europe and Asia

especially show this, with correlations becoming significant in the high bin. North America

also shows a less strong sign of the same pattern. There is no such trend with precipitation

correlations, however, with significant correlations appearing in the low, medium and high

bins in different continents.

Table 7.4: Mean variability (t/ha)2 across countries in pesticide use per area data and the
variability in pesticide use per area data at the continental level.

Continent Country Continent
Europe 1.06 12.04
South America 18.49 15.74
North America 28.26 402.64
Asia 1.51 18.03
Africa 0.27 0.41
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Figure 7.10: Correlations of mean temperature (A) and precipitation (B) with pesticide use
across continents for different GDP bins. Red bars are significant correlations at the 0.05 level L.,
M. and H. refer to Low, Medium and High GDP bins respectively, which are the lower, middle and
upper 33% of countries within each continent when ranked by GDP.

Maximum Residue Limits (MRLs) are found to have insignificant correlations with pes-

ticide use across continents (and globally) save for Africa, which has a significant negative

correlation (see Table 7.5) – this is expanded upon in Discussion. All MRL values are iden-

tical in European countries, as they are subject to European Union legislation (therefore

no correlation can be calculated). The only other continent to show a large positive cor-

relation is Oceania, but this is insignificant (only being comprised of three observations in

the MRL data set). As there is only one significant correlation observed between countries

and no varying data for Europe, MRLs are not included in the statistical model framework.

The between country correlations of pesticide use with GDPA1 are shown in Table 7.5.

GDP remains a strong determinant of pesticide use. These are significant at the 5% level

apart from Oceania (where there are only four observations) and South America. In South

America, GDP is an important determinant of pesticide use but there is relatively low

variability in the GDP variable, resulting in an insignificant correlation between countries.
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Table 7.5: Correlations between P and MRL and GDPA1 between countries for each continent.
p-values in brackets.

Continent MRL GDPA1

Europe n/a 0.50 (<.01)
South America 0.06 (0.89) 0.41 (0.19)
North America 0.23 (0.43) 0.95 (<.01)
Oceania 0.97 (0.17) -0.10 (0.90)
Asia -0.31 (0.21) 0.39 (0.03)
Africa -0.83 (0.02) 0.80 (<.01)
Global 0.19 (0.08) 0.36 (<.01)

7.4 Statistical models

7.4.1 Methods

This section describes the creation of statistical models that are used to address research

question four – what are the impacts of climate change on pesticide use? Statistical models

are first calibrated on baseline ISI-MIP climate data (results in Section 7.4.2.1) and then

used to extrapolate future pesticide use using future ISI-MIP climate data (results in

Section 7.4.2.2).

The correlation analysis shows that there are limited significant relationships between

climate and pesticide use within countries, but between countries this climate signal is

stronger. The statistical models are therefore “between-country” models, following the

between-country correlations - comprising of country-level data that are averaged for each

country and modelled at the continental level. Oceania was excluded from this work due

to a lack of GDP data in many countries.

The least limiting countries with respect to GDP (i.e. the high GDP bin countries

- see Section 7.3.1 for a description of the bins) are examined independently for changes

to future pesticide use, as these countries showed a stronger temperature-pesticide use

correlation in some cases (Section 7.3.2.2).

Two multiple linear regression models are therefore created for each continent – one

comprising of all the country data for that continent, the other made up of data from only

high GDP bin countries. Following the methods of Ziska (2014), each data point in these
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models represents a temporally- and spatially-averaged country of pesticide and climate

data - i.e. the data are averaged over the years that pesticide data are available and across

the grid cells in that country that have agriculture. Given the limited data that make

up each regression (maximum n of 32 for the European model – see Figure 7.2 in Section

7.2.2.1 for time series length) only a small number of variables can be included in each

model to avoid overtuning. As discussed in Babyak (2004), including too many variables

in regressions comprised of limited data can lead to estimates varying wildly given different

samples taken from a population – i.e. we can have less confidence in coefficients obtained

when looking at small sample sizes. Babyak (2004) suggest 10-15 observations per variable

in linear regression analyses (although this is dependent on the effect size as well as other

factors, rather than meant as an explicit rule to follow). Therefore only mean temperature

Tm and precipitation R are included in models (these being important climatic variables

for pest distribution and abundance, and shown to have relationships with pesticide data

between countries in this chapter):

P (c) = Tm(c) +R(c) + e (7.1)

where P is pesticide use per area, c is each country and e is a Gaussian error term.

Using the models represented by Equation 7.1, the impacts of climate change on pesti-

cide use are assessed using mean temperature and precipitation changes from the baseline

period to the period of 2041 to 2050. The models are calibrated on baseline climate data

from five climate models and then run using future climate data to project future pesticide

use.

7.4.2 Results

7.4.2.1 Baseline climate

Significant regression models are found in all continents save North America – i.e. signif-

icant variability in pesticide use is predicted by the models in the baseline period (Table

7.6). There are significant relationships with temperature in all continents save North

America and Africa. Significant relationships with precipitation are found in South Amer-
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ica and Africa. Temperature explains the majority of variation in pesticide use in Europe

and Asia, whereas precipitation explains the majority in South America and Africa. The

baseline climate data used are shown in Figure 7.11.

Despite the coefficients associated with mean temperature and precipitation in North

America being insignificant, they are substantial in magnitude – larger than those of other

continents. This results from the variability in the North American pesticide data being

much higher than other continents (see Section 7.3.2). Indeed, the mean R squared value

of 0.66 associated with the high GDP bin North American model is higher than some other

significant models. This North American model is still insignificant as it contains a small

number of data points.

All continents save South America show a higher R squared value for the higher GDP

bin models. This is due to more variation being explained by temperature in the high GDP

models. The high bin models are not always more significant, however, as a result of these

models having fewer data points. The difference in precipitation variation explained by the

high bin model is not so clear. South America shows a reduction in precipitation variation

explained, resulting in this being the only continent to show a decrease in R squared for the

high bin model. In contrast, the African model shows a substantial increase in precipitation

variation explained by its high bin model, which is the main reason why this model has a

higher R squared value.
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Figure 7.11: Mean daily baseline climate data across growing seasons and grid cells used in
analysis (means across climate models). A = Mean Temperature, B = Precipitation.
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7.4.2.2 Future climate

Projected percentage changes to pesticide use are shown in Figure 7.12. The percentage

changes, along with climate changes and model coefficients, are shown in Table 7.7. Future

climate changes are shown in Figures 7.13 and 7.14.

Pesticide use in 2041-2050 is projected to increase in Europe and North America and

decrease in South America and Asia (see Figure 7.12). African pesticide use is projected

to decrease when looking at all countries – when looking at the high GDP bin, pesticide

use is projected to increase. Temperature changes drive the majority of future changes

in pesticide use (Figure 7.13). As a result, particular confidence can be associated with

the models that are both significant and have a significant relationship with temperature.

These are both European models, the South America all country model and the Asia high

GDP bin model (see Table 7.7).

Focussing on those models that are significant in the baseline climate: in the European

models, significant positive temperature coefficients lead to increases in future pesticide

use. For the significant South America and Asia models, the predicted reductions in fu-

ture pesticide use are the result of the models having significant negative temperature

coefficients. This results in any increase in temperature being associated with decreased

pesticide use, as an increase in temperature is multiplied by a negative temperature coef-

ficient, leading to a negative change in pesticide use. The significant African model for all

countries shows the same pattern of a negative temperature coefficient, but as this coeffi-

cient is insignificant this result should be treated with caution. The high bin African model

explains more variation and has a lower p-value, however the temperature coefficient is still

insignificant at the 0.05 level. As a result, increases in future temperatures are predicted

to result in future increases in African pesticide use, but again this should be treated with

caution (Figure 7.12).
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Table 7.7: Climate change regression results for each continent for both all data and the high
GDP bin data (H.) models. Predicted mean percentage change in pesticide use, coefficients (Coef.)
and mean changes in mean temperature Tm and precipitation R variables from a baseline to future
climate (averaged across climate models, ranges across models in brackets). Asterisks indicate
significant models that are significant in a baseline climate.

Continent % Change Tm.Change Tm.Coef. R.Change R.Coef.

Europe* 38 (25, 50) 2.14 (1.43, 2.77) 0.57 (0.55, 0.59) <0.01 (-0.04, 0.04) 1.09 (1.06, 1.23)

Europe H.* 37 (24, 53) 1.98 (1.32, 2.62) 0.97 (0.95, 0.99) 0.06 (-0.02, 0.24) 0.86 (0.70, 0.98)

South America* -23 (-33, -13) 1.79 (1.44, 2.20) -0.54 (-0.57, -0.48) -0.06 (-0.23, 0.13) 3.08 (2.81, 3.21)

South America H. -7 (-31, -1) 1.78 (1.37, 2.26) -0.16 (-0.57, 0.17) -0.03 (-0.27, 0.15) 1.05 (-0.73, 3.12)

North America 22 (8, 34) 1.59 (1.23, 1.95) 1.08 (0.65, 1.31) -0.39 (-0.90, 0.04) -2.20 (-3.51, 0.78)

North America H. 71 (45, 100) 1.81 (1.15, 2.48) 4.26 (3.63, 5.02) -0.26 (-0.59, -0.01) -27.25 (-34.72, -19.27)

Asia -4 (-5, -2) 2.08 (1.53, 2.60) -0.05 (-0.05, -0.04) 0.03 (-0.12, 0.15) 0.10 (0.10, 0.12)

Asia H.* -24 (-30, -17) 2.05 (1.46, 2.61) -0.75 (-0.75, -0.74) 0.02 (-0.20, 0.18) -0.02 (-0.07, 0.03)

Africa* -20 (-31, -12) 1.82 (1.33, 2.36) -0.04 (-0.05, -0.04) 0.04 (-0.11, 0.18) -0.21 (-0.22, -0.20)

Africa H.* 16 (10, 24) 1.85 (1.34, 2.36) 0.08 (0.06, 0.10) -0.01 (-0.12, 0.09) -0.57 (-0.63, -0.50)
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Figure 7.12: Pesticide use percentage change from present day to 2041-2050. E = Europe, S =
South America, N = North America, A = Asia, Af. = Africa. The letter H. and the red bars
correspond to percentage changes taken from models with data from high GDP bin countries only.
Blue bars are for percentage changes taken from models using all data. Range shown is across
climate models. Boxplots show medians, interquartile ranges and the whiskers extend to 1.5 times
the interquartile range.
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Figure 7.13: Mean daily future climate data across growing seasons and grid cells used in analysis
(means across climate models). A = Mean temperature in future climate, B = Change in mean
temperature from baseline to future climate.

264



Stewart Jennings 265 University of Leeds

Figure 7.14: Future climate data used in analysis (means across climate models). A = Precipi-
tation in future climate, B = Change in precipitation from baseline to future climate.
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7.5 Discussion

This work had four research questions:

1. Is there a relationship between pesticide use and climate at large spatial scales?

2. Is there a stronger relationship between pesticide use and climate when taking into

account GDP variables?

3. Is there more variability in pesticide use between countries or temporally within

countries?

4. How will climate change affect pesticide use?

Large scale relationships between pesticide use and climate are significant in some cases

and can help us to understand how pesticides will be used in a future climate. This gives

us an indication of the intensity and distribution of future pest attacks. Temperature is

shown to be an important predictor of pesticide use in temperate areas, leading to warming

resulting in increases in future pesticide use of up to 50%. In warmer areas, pesticide use

is predicted to decrease with warming. Precipitation is shown to be of importance for

predicting pesticide use in tropical regions. However, this work shows that economic access

to pesticides is of primary importance in the majority of countries as opposed to climatic

factors alone, supporting previous work that shows the importance of economic variables

for predicting pesticide use (Ghimire and Woodward, 2013). When accounting for GDP,

temperature especially is shown to be an important predictor of pesticide use.

When looking at the data between countries, a stronger relationship between climate

and pesticide use is seen. This is because there is a higher variability in pesticide use

between countries than within them, and the majority of variation within most time series

of pesticide use is explained by the GDP variable. Between countries, climate becomes a

more important driver of pesticide use. The variability between the climate of countries

is larger than within countries, leading to stronger correlations between climate and pes-

ticide use between countries. Within countries in temperate areas (primarily Europe) for

example, legislative and economic variables are most important for predicting pesticide use
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and there are few significant correlations with climate variables. Significant relationships

emerge when looking at between country correlations.

In agreement with previous studies (Ziska, 2014; Chen and McCarl, 2001), correlations

between-countries show that temperature is the most important driver of pesticide use in

temperate areas - here shown by the relatively colder region of Europe. Precipitation was

more important in South America and Africa. In temperate areas, minimum temperature

is more often the limiting climatic factor behind the intensity of pest outbreaks as it

determines the over-wintering capacity of pest populations, faster development, extended

distributions and potentially additional generations of pests in a growing season (Bale

et al., 2002; Cammell and Knight, 1992). Comparatively little has been published about the

impacts of changing precipitation patterns on pests but there are suggestions that increases

in precipitation can lead to increased insect mortality (Bale et al., 2002). Humidity is

particularly important for fungal diseases also, so changes to both the magnitude and

timing of precipitation could be important for the intensity of fungal outbreaks (Bebber

and Gurr, 2015).

The strongest relationship found between GDP variables and pesticide use is with

GDPA1, which is GDP normalised by agricultural area including livestock. In general, this

variable accounts for more information than GDP alone or GDP% (the value added by

agriculture) as it takes into account the extent of agriculture in a country; it accounts for

the potential amount a country can invest in agriculture. The inclusion of livestock crop

areas is thought to be beneficial as large amounts of pesticides are used on feed crops for

animals as well as on the grazing areas of the livestock themselves, resulting in an impact

on pesticide use. The GDP% variable shows more negative correlations with pesticide

use compared to the other GDP variables. This is likely to do with this variable not

being a direct measure of wealth. It is often the case that the GDP of poorer countries is

highly dependent on agriculture. As such, a high value of GDP% could be associated with

the country being relatively poor and therefore having less money available to spend on

pesticides.

Data representing the level of pesticide legislation in countries show largely insignificant
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correlations with pesticide use. Legislation is becoming stricter globally, however, and is

likely to be (if anything) of more importance for determining future pesticide use levels

(Klatt et al., 2016; Handford et al., 2015). In Europe, pesticide legislation is most stringent

and pesticide use is tightly bound to these limits (Handford et al., 2015). Neonicotinoids

(an insecticide), for example, were banned in Europe in 2014 (Klatt et al., 2016). It will

therefore be hard to sustainably deal with the predicted increases in pest pressures in the

future.

The African MRL-pesticide relationship is the only region to show a significant corre-

lation. It is at first glance a surprising result, being a negative correlation: it suggests that

the tighter the pesticide legislative limitations imposed, the more pesticides are applied to

crops. However, there is evidence to suggest that pesticide legislation is poorly enforced in

Africa (Matthews et al., 2011). Whilst developing countries are increasingly establishing

stringent legislation to comply with the limitations imposed by countries they are exporting

to, the legislation often lacks detail and the capacity to be enforced effectively (Handford

et al., 2015). There is a significant positive correlation between GDP and pesticide use

also. This could mean that richer African countries that can afford more pesticides are

associated with more stringent legislation but do not enforce it.

Grouping based on the GDP variable results in stronger relationships between pesticide

use and temperature. This supports the hypothesis that when economic access is less of a

limiting factor, climate becomes a larger determinant of pesticide use. This is probably due

to the level of pest outbreaks being a relatively larger determinant of pesticide use when

money is non-limiting, with pest outbreaks being related to climate in turn (e.g. see Bale

et al., 2002). Precipitation shows less of such a relationship with GDP. This is potentially

due to temperature - rather than precipitation - being the important climatic determinant

of pest outbreaks (Cammell and Knight, 1992) in the richer temperate countries. The

regions where precipitation is a more important predictor of pesticide use (e.g. South

America and Africa) tend to be poorer and are perhaps less able to respond to pest attacks.

Precipitation is also implicated in other processes that affect pesticide use, such as runoff

(Noyes et al., 2009). Indeed, the results here suggest that precipitation is more of a
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determinant of pesticide use than temperature in a majority of countries, albeit showing

mostly insignificant correlations within countries.

As described in Conn et al. (2015), the reliability of extrapolations using statistical

models depends on factors such as sample size and how far the prediction data are from

the observed range. If we extrapolate beyond the range of observed data we cannot know

whether observed relationships will hold. For example, a temperature-pesticide linear

relationship may be non-linear outside the range of the data on which it was calibrated.

This could result from warming leading to a tipping point at a temperature threshold for

a pest species (Lenton, 2013; Salis et al., 2016). In this analysis we assume this to be an

acceptable extrapolation given the relatively modest climatic changes predicted to 2045

(around an average 2◦C rise in temperature and small precipitation changes), resulting in

the extrapolations being largely within the range of the calibration baseline data.

Extrapolations of future pesticide use show that in temperate areas (i.e. Europe and

North America), increases in temperatures are likely to lead to an increase in pesticide use.

This pattern is also true for the African high GDP model. In tropical regions (i.e. Asia and

South America), a negative relationship with temperature is predicted to lead to reductions

in pesticide use. Both directions of change are the result of opposing relationships with

temperature and pesticide use in the baseline climate. Higher temperatures lead to more

pesticide application in colder areas; lower temperatures lead to more pesticide application

in warmer areas. The European, Asian and African models were made up of the most

data and provided the majority of the significant models in the baseline climate. The

temperature coefficients of the European and Asia high GDP bin models were significant

and drove the changes in future pesticide use. We can therefore have the most confidence

in these extrapolations. Whilst there is modest uncertainty across climate models in the

predicted pesticide use change, the sign of change is the same across climate models in all

cases.

Correlation is not causation; we cannot determine with these data how much the

pesticide-climate relationship is due to the pest-climate relationship. However, as discussed

above, temperature is the most important climatic determinant of pests in temperate ar-
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eas. As well as the positive impacts of warming on pests in temperate areas outlined

previously, warming could have some negative consequences for pests when temperatures

exceed upper lethal limits for growth and development (Bale and Hayward, 2010). In trop-

ical areas, pests can be limited by high temperatures at the edges of their range (as species

in temperate regions are limited by cold temperatures) and are less likely to adapt if they

occupy specialist niches, as many species do in the tropics (Boucher-Lalonde et al., 2014).

7.5.1 Limitations

Pesticides are being under-used in developing countries and over-used in developed coun-

tries (Ghimire and Woodward, 2013). It is unlikely that pesticide use will in reality increase

in economically developed areas such as Europe (Handford et al., 2015). Projections of

50% increases in Europe reflect the extrapolation of current temperature-pesticide relation-

ships that in turn partly reflect projected temperature-biotic stress relationships. These

projections serve as an indication of future pest pressures rather than future predictions

of pesticide use, as it is uncertain what future legislative and economic limitations will be

in place. We can, however, state with confidence that pesticide use is unlikely to increase

significantly in future in Europe as current levels are in danger of not being sustainable

already – e.g. see the recent European ban on Neonicotinoids (an insecticide) in 2014

(Klatt et al., 2016).

There are adverse implications for increases in pesticide use. Impacts on non-target

creatures can be detrimental to ecosystem health (Leach and Mumford, 2008). Insect

biodiversity has recently declined, with increases in pesticide use partially responsible

(Evans et al., 2018; Goulson et al., 2015).

Over-use of pesticides can lead to negative economic impacts as well as environmental

problems (Khan et al., 2002). Monitoring costs for damaged ecosystems can increase

and impacts on non-target creatures can be detrimental to ecosystem health (Leach and

Mumford, 2008). Pimentel (2005) estimated US annual costs of $1.1 billion due to adverse

impacts on public health, $1.4 billion due to crop yield losses, $2.2 billion due to bird losses,

$1.5 billion due to pesticide resistance and $2 billion due to ground water contamination.
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Monitoring costs for damaged ecosystems can increase also (Leach and Mumford, 2008).

In general, a simple modelling approach is adopted to avoid model overtuning given

limited data (e.g. see Babyak, 2004 and Section 7.4.1). If given more data on pesticide use

(both longer time series and more countries) then more variables could be included in the

statistical models, such as those discussed below. With more data, model coefficients can

be treated with greater confidence, resulting in more confidence in the relationships shown

between pesticides and climate. That being said, the regions where significant models

and temperature coefficients (i.e. Europe and Asia) are shown can be treated with some

confidence in that the direction of change predicted is unlikely to change with more data

and variables - more that the strength of the signal is uncertain and could change.

The complexity of changing pest pressures over time are such that simple models cannot

fully capture changes in the relationships between pesticides and climate (e.g. see Welch

and Harwood, 2014). Both abiotic and biotic factors are implicated in these responses

(Delcour et al., 2015). An interaction between temperature and precipitation is not in-

cluded for model simplicity, but can be a significant climatic driver of pests, for example

affecting overwintering (Pan et al., 2014).

Changes in extreme weather events are likely to have a significant impact on the scale

of future pest outbreaks (Boggs, 2016) – further work could include variables in statistical

models that assess the impacts of changing extremes of climate on pesticide use (e.g.

number of days above a temperature threshold during the year). The rate and scale of

pest evolutionary responses to climate and other selection pressures are not considered

(being commonly neglected in such studies – Bale et al., 2002) despite their potential

importance (e.g. see Atallah et al., 2014).

The relationships seen here between pesticide use and temperature are also likely due to

factors other than pest-climate relationships. Delcour et al. (2015) detail how complex the

direct and indirect impacts of temperature on pesticide use can be, such that predictions

of the direction of pesticide use change are still uncertain. Not all the causes of changes

in pesticide use are accounted for – technological developments, crop characteristics and

efficiency of pesticide application are potentially important factors (Delcour et al., 2015).
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Lastly, different varieties of pesticides are not distinguished here - for example, insecti-

cides examined alone may have a stronger temperature signal if they are representative of

insect pest pressures and the relationship of insects to climate. Herbicides often make up

the majority of pesticide applications (FAO, 2016) and therefore may dull the temperature-

pesticide signal relative to insecticides alone. This analysis highlights some likely trends in

pesticide use (and hence pest pressures) with future climate, but also shows the need for

further work using more data to enable more complex modelling studies.

7.5.2 Conclusions

Pesticide legislation is becoming stricter in most regions, limiting the quantity and type

of pesticides applied (Klatt et al., 2016; Handford et al., 2015). Chen and McCarl (2001)

found that increasing temperatures lead to higher pesticide costs. Therefore both legislative

and economic limitations are likely to be increasingly imposed in the future.

This work has shown that there are likely to be increases in pesticides required due

to increased pest pressures in certain regions. It is therefore important that future pest

management scenarios look into the sustainability of future pesticide use levels from both

a legislative and economic perspective. At present it is likely that higher GDP regions are

over-using and poorer areas under-using pesticides (Ghimire and Woodward, 2013).

Chapter 6 features an analysis of the impacts of climate change on blight. Blight

was projected to increase in Europe when the disease was allowed to adapt to warming

conditions. The blight work is an example of a more specific climate-biotic stress analysis,

featuring a single disease of potato and the adaptation of changing growing seasons and

pest evolution in response to warming. The more generic pesticide-climate analysis in the

present chapter supports the conclusions of Chapter 6, with most confidence associated

with the European region in both analyses. Both chapters point to future difficulties in

sustainably managing pest outbreaks in Europe.

To conclude, this work shows that although GDP is the most important predictor of

intra-country pesticide variability, climate is an important factor when economics have

been taken into account, especially at large spatial scales. With warming, temperate areas
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are likely to see required increases in pesticide use and warmer areas may see a decrease.
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Chapter 8

Summary and conclusions

The objectives set out in Chapter 1 were as follows:

1. Develop a process-based crop model suitable for simulating large scale potato-weather

relationships (Chapter 2).

2. Evaluate the process-based potato model in contrasting climates using regional data

and parameter information (Chapter 3).

3. Evaluate the potato model parameter set up at the national scale for use in global

simulations (Chapter 4).

4. Compare the model skill of the global and regional simulations (Chapter 5).

5. Assess the impacts of climate change on global potato yields (Chapter 6).

6. Assess the impacts of climate change on global potato biotic stress (Chapter 6).

7. Use proxy data (on pesticide use) to evaluate the links between climate and pests

and predict the influence of climate change on pests globally (Chapter 7).

The main results from each chapter are summarised in turn with the exception of Chap-

ter 2, which describes the model used in subsequent analysis chapters, fulfilling Objective

1. After results are summarised, conclusions relating to the above objectives are stated.

Section 8.2 then summarises future research recommendations.
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8.1 Results summary and conclusions

8.1.1 Chapter 3 - GLAM-potato regional evaluation

Chapter 3 fulfils Objective 2: evaluate GLAM-potato in the temperate and tropical cli-

mates of the UK and Colombia using regional planting date information and optimisation

of parameters.

For both the UK and Colombia, GLAM-potato was shown to satisfactorily simulate

potato development, growth and yield in most cases. The model shows the ability to

capture inter-annual variability in observed yields. Certain regions of Colombia and years

in the UK time series show poor skill in simulating yields due to unrealistic simulated

planting dates and varieties. Model skill was higher in the UK due to a longer time series,

more parameter optimisation and more specific information concerning planting dates.

It was therefore concluded that GLAM-potato is an adequate tool for regional scale

potato simulations, given that it performs satisfactorily in simulating potato weather-yield

relationships, growth and development in these temperate and tropical regions.

8.1.2 Chapter 4 - Variety and management parameterisation for global

simulations

Chapter 4 fulfils Objective 3: test a parameterisation of GLAM-potato designed to simulate

potatoes across large (global) scales with minimal parameter information. These tests were

performed in the UK and Colombia using national yield data.

Simulations showed realistic model outputs of planting dates, durations and leaf area

index. Model skill of simulating observed yields was poor, however, primarily due to the

lack of significant observed weather-yield relationships. The relationships with rainfall

were well represented. Temperature relationships with observed yields were very weak.

Significant differences in relationships between observed and simulated yields and weather

variables were not identified, however.

UK results showed a negative relationship between simulated yields and temperature

that was not in observations. This was likely due to early season temperatures having

276



Stewart Jennings 277 University of Leeds

more of an impact on growing season length than seen in simulations. The most impor-

tant impact of temperature on crops is usually on crop development (i.e. durations). As

temperature-yield relationships were so weak in the UK time series, and due to confidence

in their representation in the regional UK time series, the model was deemed adequate for

simulating these relationships.

Colombian results showed similar problems with simulating solar radiation relation-

ships. The relationship between rainfall and observed yields was weak, resulting in solar

radiation being the limiting factor for simulating yields rather than the rainfall relationship

– i.e. there was a positive relationship between simulated yields and solar radiation, when

the observed yields show a negative relationship with solar radiation.

It was therefore concluded that GLAM-potato is an adequate tool for potato simulations

at the global scale, given that it performs satisfactorily in simulating potato weather-yield

relationships using no regionally-specific parameter information and national scale yield

data.

8.1.3 Chapter 5 - Model skill in regional and global studies

Chapter 5 fulfils Objective 4: compare the skill of the regional and global model evaluations

in the UK and Colombia. This provides an improved understanding of why model skill is

different in regional and global simulations.

Regional simulations in the UK and Colombia showed better model skill more often

than global simulations using national scale yield data. The main source of this difference in

model skill was parameter differences between the studies; regional studies used parameter

optimisation to better simulate phenology and featured regionally-specific information on

planting dates. Simulations using regional yield data were also associated with higher

model skill than simulations using national scale data in some cases. Confidence in these

results is necessarily limited by the small number of countries examined, low model skill

and few years of data analysed.

It was concluded that the limited planting date and phenology information available

to global studies is an important limiting factor to model skill. To improve global crop
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modelling, better quality information on planting dates and varieties needs to be made

available.

8.1.4 Chapter 6 - The impacts of climate change on potato agriculture:

global analysis

Chapter 6 presented the global potato yield simulations alongside the global blight simu-

lations. This chapter fulfils Objectives 5 and 6, which assess the global impacts of climate

change on potato yields and potato biotic stress respectively.

When considering both agricultural adaptations and CO2 fertilisation, yield changes

were mostly positive. Global mean yield changes shown across climate models were -6 to

16% without adaptation and 33 to 47% increases with adaptation. Decreasing these ranges

by mean projected ozone damage to yields leads to global mean yield changes of -18 to 4%

without adaptation, and 21 to 35% with adaptation. These results are also uncertain due

to the uncertain size of the CO2 fertilisation effect, although this is unlikely to change the

sign of change when taking into account adaptation.

Other model studies show less favourable yields in the future, although these do not

include both adaptation to climate change and CO2 fertilisation. Other studies also fail

to report crop model outputs such as LAI and duration, or feature detailed assessments

of model skill in simulating inter-annual variability. Results in this chapter show that

European yields are typically accurately simulated, although model skill is frequently poor

elsewhere.

When accounting for the adaptation of blight to warming temperatures, blight units

were projected to increase by 2050. This increase was particularly large in the northern

hemisphere. Results showed that blight may subside in key potato growing areas by mid-

century if it does not adapt to warming.

It was concluded that potato yields are likely to increase in the future in the important

potato growing areas of Europe and Russia by 2050. Increased blight pressures could reduce

expected potato yield gains, however, if not sustainably managed. Further modelling is

needed to speak with confidence on potato yield changes in other key potato growing
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regions such as India, China and the United States.

8.1.5 Chapter 7 - The influence of climate change on crop pests and

diseases: pesticide analysis

Chapter 7 fulfils Objective 7: to present a global analysis of the impacts of climate change

on pest pressures, using pesticide use data as a proxy for pest pressures. This analysis

complements the global crop-climate modelling of Chapter 6 by taking a broader, data-

based look at the impacts of climate change on pest pressures.

Warming resulted in higher projected pesticide use in temperate areas, with Europe

showing projected increases as high as 50%. Tropical regions show a decrease in projected

pesticide use in some cases, with precipitation also important in leading to varied pesticide

changes. Within countries, however, GDP is shown to be the most important driver of

pesticide use. When this is accounted for, a clearer climate signal emerges that can be

used to assess the impacts of climate change on pesticide use.

In agreement with the more specific late blight climate change analysis in Chapter 6,

it was concluded that pest pressures are likely to increase in future due to warming in

temperate areas. Due to the increasingly stringent pesticide legislation in place in many

countries (as well as economic constraints), it is important that sustainable plans are made

to deal with likely increases in pest pressures due to climate change.

8.2 Research recommendations

In order to improve future forecasts of the impacts of climate change on abiotic and biotic

stresses of potato, we can improve the skill and quantification of uncertainty associated

with the modelling used in this thesis. It is also important to make better use of the

information such modelling provides by expanding the system boundary of the study –

i.e we can put potato yield and blight change projections into more comprehensive and

wide-ranging assessments of future food security. Both of these modelling and contextual

improvements are discussed below.
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Results in Chapter 6 point to various improvements for future potato modelling work.

Uncertainties not taken into account include crop model structural and parametric uncer-

tainty, as well as input data uncertainty (soil, growing area and irrigation information).

FAOSTAT input data are associated with the year of harvest. In larger countries, these

data may be misleading if different regions harvest at different times. In the absence of

yield data at the sub-national level, future studies should make use of agro-ecological zones

to subdivide larger countries in an effort to accurately model the correct growing season,

and therefore have more representative observed yield data locally.

In terms of improvements to GLAM-potato, more detailed parameterisations of heat

stress and the impacts of excessive soil moisture may improve results in some countries such

as India. More information on irrigation could improve results in important production

countries such as the United States. For this type of global gridded analysis, it is important

to take into account other crop seasons so that, for the crop of interest, the correct growing

season is simulated that is representative of observations.

Further work is needed to assess the changes to model skill between regional and global

studies. Results here suggest that more detailed parameter information is particularly

important in leading to better model skill at regional scales. These results were only based

on two countries, however, with few years of yield data available and often insignificant

national scale weather relationships with observed yields. Therefore, further work would

ideally use regional data of longer time series across more countries. Different spatial

extents and levels of parameter detail should also be explored. Accurate and comprehensive

data sets on planting dates, harvest dates and phenology parameters would be of great

benefit to future global crop modelling.

Future modelling of potato pests and diseases within climate impacts studies would

be improved by simulating other global potato pests, or those of particular importance

in key potato growing areas. There is also a need to link the results of models such as

SimCast (that forecast measures of risk of biotic stress) to yield changes, so the impacts

of pests on food security can be directly estimated. In both of these cases, however, data

is a limitation and a priority in terms of future research needs. In the pesticide analysis,
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more pesticide data would enable more variables to be included in statistical models and

improve confidence in results.

The changes described above would potentially improve crop and blight model simula-

tions and allow us to have more confidence in projections. There is also a need to improve

the range of scenarios projected, as well as putting projections into a broader, more com-

prehensive context. Simulations in this thesis have started to do this by incorporating

biotic stresses into a climate impacts framework, but more is needed.

Projections depend on the scenarios on which they are driven and only one socio-

economic scenario is used here (RCP 8.5). Incorporation of other scenarios would provide

a range of projections on which policy decisions could be based. Adaptation scenarios could

also be investigated that look at different adaptive capacities and technologies. Mitigation

of climate change is not considered and future potato agricultural scenarios cannot be

labelled sustainable until they are demonstrably “climate smart” – i.e. that they adapt to

climate change to produce sufficient food whilst not exacerbating the cause of the problem.

Land use change is not investigated and scenarios of different land use could be used to

provide further information on future global potato production.

The simulation of other crops would allow dietary choice scenarios to be investigated –

food security in any region is about more than the production of a single crop. Dietary nu-

trition, access to food and the sustainability of food production are also critical. Integrated

assessments of socio-economics, food production and climate change are in their infancy,

but such studies are necessary to develop a more accurate sense of how climate change will

impact people’s lives and shape policy. This thesis has developed and evaluated a global

crop modelling framework, a necessary component in such an analysis. Whilst potatoes

are important and neglected in modelling communities, it is vital that future studies take

into account more than just the humble potato to assess the risks and opportunities that

climate change poses to food security.
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Appendix A - GLAM-potato regional

evaluation

Below in Figures A1 to A10 are the time series of observed yields, simulated GLAM

yields and simulated statistical model yields for the 10 evaluation regions of Colombia.

Also included in plots are summary statistics for model performance and for the test of

significant difference between GLAM and statistical model correlation coefficients with

observed yields.
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Figure A1: Boyacá comparison of GLAM
and statistical model skill.
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Figure A2: Caldas comparison of GLAM
and statistical model skill.
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Figure A3: Cauca comparison of GLAM
and statistical model skill.
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Figure A4: Cundinamarca comparison of
GLAM and statistical model skill.
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Figure A5: Huila comparison of GLAM
and statistical model skill.
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Figure A6: Nariño comparison of GLAM
and statistical model skill.
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Figure A7: N. Santander comparison of
GLAM and statistical model skill.
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Figure A8: Quindío comparison of GLAM
and statistical model skill.
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Figure A9: Santander comparison of
GLAM and statistical model skill.
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Figure A10: Tolima comparison of GLAM
and statistical model skill.
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Below in Figures A11 to A20 are boxplots showing evaluation test 2 variables for all

years and grid cells (biomass, harvest index, maximum leaf area index and duration).

Boxplots show medians, interquartile ranges and the whiskers extend to 1.5 times the

interquartile range.
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Figure A11: Boyacá variables across all
years and grid cells.
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Figure A12: Caldas variables across all
years and grid cells.
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Figure A13: Cauca variables across all
years and grid cells.
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Figure A14: Cundinamarca variables
across all years and grid cells.
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Figure A15: Huila variables across all
years and grid cells.
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Figure A16: Nariño variables across all
years and grid cells.

1 2 3 4 5 6 7 8

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

B
io

m
a

s
s
 (

K
g

/H
a

)

A

● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

H
a

rv
e

s
t 

In
d

e
x

B

1 2 3 4 5 6 7 8

0
2

4
6

8
1

0
1

2
1

4

M
a

x
. 

L
A

I

C

1 2 3 4 5 6 7 8

0
5

0
1

0
0

1
5

0
2

0
0

D
u

ra
ti
o

n
 (

d
a
y
s
)

D

Figure A17: N. Santander variables across
all years and grid cells.
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Figure A18: Quindío variables across all
years and grid cells.
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Figure A19: Santander variables across all
years and grid cells.
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Figure A20: Tolima variables across all
years and grid cells.
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Appendix B - The impacts of climate

change on potato agriculture: global

analysis

Figure B1 shows mean temperature, rainfall and solar radiation for the baseline evaluation

simulations.
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Figure B1: A. Mean temperature. B. Mean total rainfall during the growing season. C. Mean
solar radiation (next page).
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Country Years Simulated Why Excluded Detrending

Afghanistan Na S Na

Albania 1980-2009 Na ND

Algeria 1980-2009 Na ND

Angola 1993-2009 F ND

Argentina 1980-2009 Na ND

Armenia 1992-2009 Na ND

Australia 1980-2009 Na Linear

Austria 1980-2009 Na Quadratic

Azerbaijan 1992-2009 Na ND

Bahrain Na R Na

Bangladesh 1980-2009 Na ND

Belarus 1992-2009 NA Quadratic
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Belgium 2000-2009 Na ND

Belize Na A Na

Benin Na S Na

Bermuda Na R Na

Bhutan Na S Na

Bolivia 1980-2009 Na ND

Bosnia 1992-2009 Na Linear

Botswana Na Y Na

Brazil 1980-2009 Na ND

British Virgin Is-

lands

Na Y Na

Brunei Darus-

salam

Na Y Na

Bulgaria 1980-2009 Na ND

Burkina Na S Na

Burundi Na S ND

Cabo Na R Na

Cambodia Na Y Na

Cameroon 1980-2009 Na ND

Canada 1980-2009 Na Quadratic

Cayman Islands Na Y Na

CAR Na S Na

Chad Na S Na

Channel Islands Na Y Na

Chile 1980-2009 Na Quadratic

China Hong Kong

SAR

Na Y Na

China Macao

SAR

Na Y Na

China 1980-2009 Na ND

293



Stewart Jennings 294 University of Leeds

ChinaT 1980-2009 Na ND

Colombia 1980-2009 Na ND

Comoros Na R Na

Congo Na S Na

Cook Islands Na Y Na

Costa 1980-2009 Na ND

Ivory Coast Na Y Na

Croatia 1992-2009 Na Quadratic

Cuba 1980-2009 Na Linear

Cyprus Na A Na

Czech 1993-2009 Na ND

Czechoslovakia Na P Na

DPRK Na S Na

DR Congo Na S Na

Denmark 1980-2009 Na ND

Djibouti Na Y Na

Dominica Na A Na

Dominican R Na S Na

Ecuador Na S Na

Egypt 1980-2009 Na ND

El Salvador Na S Na

Equatorial

Guinea

Na Y Na

Eritrea Na S Na

Estonia 1992-2009 Na Quadratic

Ethiopia Na S Na

Ethiopia PDR Na Y Na

Faroe Islands Na R Na

Fiji Na A Na

Finland 1980-2009 Na ND
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France 1980-2009 Na Quadratic

French Guiana Na Y Na

French Polynesia Na R Na

Gabon Na Y Na

Gambia Na Y Na

Georgia 1992-2009 Na ND

Germany 1980-2009 Na Quadratic

Ghana Na Y Na

Gibraltar Na Y Na

Greece 1980-2007 F ND

Greenland Na Y Na

Grenada Na Y Na

Guadeloupe Na Y Na

Guam Na Y Na

Guatemala Na S Na

Guinea Na A Na

Guinea-Bissau Na Y Na

Guyana Na Y Na

Haiti 1989-2009 F Linear

Holy See Na Y Na

Honduras 1980-2009 Na Quadratic

Hungary 1980-2009 Na ND

Iceland Na A Na

India 1980-2009 Na ND

Indonesia 1980-2009 Na ND

Iran 1980-2009 Na ND

Iraq 1980-2009 Na ND

Ireland 1980-2009 Na ND

Isle of Man Na Y Na

Israel 1980-2009 Na ND
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Italy 1980-2009 Na ND

Jamaica 1980-2009 Na Na

Japan 1980-2009 Na ND

Jordan 1980-2009 Na ND

Kazakhstan Na S Na

Kenya Na S Na

Kiribati Na Y Na

Kuwait Na S Na

Kyrgyzstan 1992-2009 Na ND

Laos Na S Na

Latvia 1992-2009 Na Quadratic

Lebanon 1980-2006 2009-

2009

F ND

Lesotho 1982-2009 F ND

Liberia Na Y Na

Libya Na S Na

Liechtenstein Na Y Na

Lithuania 1992-2009 Na ND

Luxembourg 2000-2009 Na Quadratic

Madagascar Na S Na

Malawi 1980-2009 Na ND

Malaysia Na Y Na

Maldives Na Y Na

Mali 1990-2009 Na Quadratic

Malta Na R Na

Marshall Islands Na Y Na

Martinique Na Y Na

Mauritania Na A Na

Mauritius Na R Na

Mayotte Na Y Na
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Mexico 1980-2009 Na ND

Monaco Na Y Na

Mongolia 1980-2009 Na ND

Montenegro Na Y Na

Montserrat Na R Na

Morocco 1980-2009 Na ND

Mozambique 1980 1985-2009 F ND

Myanmar Na S Na

Namibia Na A Na

Nauru Na Y Na

Nepal 1980-2009 Na ND

Netherlands 1980-2009 Na Quadratic

New Caledonia Na S Na

New Zealand Na S Na

Nicaragua Na S Na

Niger Na S Na

Nigeria Na S Na

Niue Na Y Na

Norfolk Island Na Y Na

Northern Mariana

Islands

Na Y Na

Norway 1980-2009 Na Quadratic

Occupied PT Na S Na

Oman Na S Na

Pacific Islands

Trust Territory

Na Y Na

Pakistan 1980-2009 Na ND

Palau Na Y Na

Panama 1980-2009 Na ND

Papua NG Na A Na
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Paraguay Na A Na

Peru 1980-2009 Na ND

Philippines Na S Na

Pitcairn Islands Na Y Na

Poland 1980-2009 Na ND

Portugal 1980-2009 Na ND

Puerto Rico Na Y Na

Qatar Na A Na

Korea 1980-2009 Na ND

Moldova 1992-2009 Na Quadratic

Reunion Na A Na

Romania Na S Na

Russia 1992-2009 Na Quadratic

Rwanda 1980-2009 Na Quadratic

Saint Kitts Na R Na

Saint Lucia Na Y Na

Saint Pierre and

Miquelon

Na Y Na

Saint Vincent and

the Grenadines

Na Y Na

Samoa Na Y Na

San Marino Na Y Na

Sao Tome and

Principe

Na Y Na

Saudi Arabia Na S Na

Senegal Na A Na

Serbia Na Y Na

Seychelles Na Y Na

Sierra Leone Na Y Na

Singapore Na Y Na
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Slovakia 1993-2009 Na ND

Slovenia 1992 1995-2009 F Linear

Solomon Islands Na Y Na

Somalia Na Y Na

South Africa 1980-2009 Na ND

South Sudan Na Y Na

Spain 1980-2009 Na ND

Sri Lanka 1980-2009 Na Quadratic

Sudan Na S Na

Suriname Na Y Na

Swaziland 1989-2001 2004

2007-2009

F ND

Sweden 1980-2009 Na ND

Switzerland 1980-2009 Na ND

Syrian Arab Re-

public

1980-2009 Na ND

Tajikistan 1992-2009 Na ND

Thailand 1980-1998 2001-

2009

F Quadratic

Macedonia 1992-2009 Na ND

Timor-Leste 1980-1994 1997-

2005 2008-2009

F ND

Togo Na Y Na

Tokelau Na Y Na

Tonga Na Y Na

Trinidad and To-

bago

Na Y Na

Tunisia 1980-2009 Na ND

Turkey 1980 1983-2009 F ND

Turkmenistan Na S Na
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Tuvalu Na Y Na

Uganda 1980 1983-2009 F ND

Ukraine 1992-2009 Na ND

UAE Na A Na

UK 1980-2009 Na ND

Tanzania Na F Na

USA 1980-2009 Na ND

Uruguay 1980-2009 Na ND

USSR Na P Na

Uzbekistan 1992-2009 Na ND

Vanuatu Na Y Na

Venezuela 1980-2009 Na ND

Vietnam 1980-1994 1997-

2004 2007-2009

F ND

Western Sahara Na Y Na

Yemen Na S Na

Yugoslav SFR Na P Na

Zambia Na S Na

Zimbabwe 1980-2009 Na ND

Table B1: Details of countries simulated, countries/years excluded and reasons for doing so and
the model used for detrending (if applicable). Key: F = Flatline (consecutive years of same yield
data so years listed excluded) Y = Yield (fewer than 6 years of data for simulations so country
excluded) R = Resolution (country too small for resolution simulated so excluded) P = Political
(outdated country, represented by extant country/countries, so excluded) S = multiple-state (time
series with multiple sections of yield data at different mean levels so excluded) L = Length (section
of time series chosen due to more years of data in multi-state time series) W = Weather (section
of time series chosen due to stronger relationship between observed yields and weather data) A
= Area (Country excluded as no grid cells with sufficient potato growing area) O = Data Outlier
(year excluded as it is an outlier that is more than two standard deviations from mean of time
series and is not supported by the corresponding production and area data) ND = not detrended
due to weakened correlations with weather variables. Na = not applicable - e.g. not detrended as
country not simulated.

Figures B2 to B5 show sowing windows and varieties selected in future climate for

climate models gfdl-esm2m, ipsl-cm5a-lr, miroc-esm-chem and noresm1-m respectively.
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Figure B2: A. Start of the sowing window and B. varieties chosen for 2041-2050 using the gfdl-
esm2m model.
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Figure B3: A. Start of the sowing window and B. varieties chosen for 2041-2050 using the ipsl-
cm5a-lr model.
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Figure B4: A. Start of the sowing window and B. varieties chosen for 2041-2050 using the miroc-
esm-chem model.
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Figure B5: A. Start of the sowing window and B. varieties chosen for 2041-2050 using the
noresm1-m model.

Figures B6 to B10 show yield changes from baseline to future climate without and with

adaptation for climate models gfdl-esm2m, hadgem2-es, ipsl-cm5a-lr, miroc-esm-chem and

noresm1-m respectively.
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Figure B6: Yield changes from baseline to future climate for the gfdl-esm2m model with A. no
adaptation and B. adaptation.
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Figure B7: Yield changes from baseline to future climate for the hadgem2-es model with A. no
adaptation and B. adaptation.
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Figure B8: Yield changes from baseline to future climate for the ipsl-cm5a-lr model with A. no
adaptation and B. adaptation.
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Figure B9: Yield changes from baseline to future climate for the miroc-esm-chem model with A.
no adaptation and B. adaptation.
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Figure B10: Yield changes from baseline to future climate for the noresm1-m model with A. no
adaptation and B. adaptation.
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Appendix C - The influence of

climate change on crop pests and

diseases: pesticide analysis

Model diagnostic plots for pesticide regression models are shown below. 10 figures are

shown - two for each continent, representing the models made up of all data and the

models using only the high GDP bin data. Diagnostic plots for different climate data

typically show very similar trends so not all are shown - diagnostic plots shown here are

for the models made up of input data from the GFDL-ESM2 model.

These plots are used to check whether the assumptions of model linearity, constant

variance and normality of errors are valid. The “Normal Q-Q” plots show that errors are

typically normal. In some regions the plots show that there are likely some extreme values

in the upper end of the data (e.g. see Figure C2). The “Residuals vs. Fitted” plots show

that there may be some slight increase in variance at larger values (e.g. see Figure C9),

but this was also deemed satisfactory given the limited number of data points, making it

harder to detect such trends with confidence in the models.
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Figure C1: Diagnostic plot for European all data model.
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Figure C2: Diagnostic plots for European high GDP bin model.
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Figure C3: Diagnostic plot for the South American all data model.
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Figure C4: Diagnostic plots for the South American high GDP bin model.
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Figure C5: Diagnostic plot for the North American all data model.

0 20 40 60

−
20

−
10

0
10

North America H., model 1

Fitted values

R
es

id
ua

ls

●

●

●

●

●

Residuals vs Fitted

5

2
1

●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

North America H., model 1

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

12

5

0 20 40 60

0.
0

0.
4

0.
8

1.
2

North America H., model 1

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●●

●

●

●

Scale−Location
12 5

0.0 0.2 0.4 0.6 0.8

−
1.

5
−

0.
5

0.
5

1.
5

North America H., model 1

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●●

●

●

●Cook's distance

1
0.5

0.5
1

Residuals vs Leverage

12

5

Figure C6: Diagnostic plots for the North American high GDP bin model.
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Figure C7: Diagnostic plot for the Asian all data model.

2 4 6 8 10 12 14

−
4

−
2

0
2

4
6

8

Asia H., model 1

Fitted values

R
es

id
ua

ls

●
●

●

●

●

●

●

● ●●

Residuals vs Fitted

6

3

10

●

●

●

●

●

●

●

●●●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1

0
1

2

Asia H., model 1

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

6

3

10

2 4 6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

Asia H., model 1

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●
●

●

●

●
●●

Scale−Location
6

3

10

0.0 0.2 0.4 0.6

−
1

0
1

2

Asia H., model 1

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

● ●●

Cook's distance
1
0.5

0.5
1

Residuals vs Leverage

6

3

5

Figure C8: Diagnostic plots for the Asian high GDP bin model.
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Figure C9: Diagnostic plot for the African all data model.
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Figure C10: Diagnostic plots for the African high GDP bin model.
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