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Abstract

The exponential growth of wireless networks and the number of connected devices
as well as the emergence of new multimedia based services have resulted in grow-
ing demands for high data-rate communications, and a spectrum crisis. Hence, new
approaches are required for better utilization of spectrum and to address the high data-
rate requirements in future wireless communication systems. Non-orthogonal multiple
access (NOMA) has been envisioned as a promising multiple access technique for 5G
and beyond wireless networks due to its potential to achieve high spectral efficiency
(SE) and energy efficiency (EE) as well as to provide massive connectivity in support-
ing proliferation of Internet of Things. In NOMA, multiple users can share the same
wireless resources by applying superposition coding (SC) and power domain multi-
plexing at the transmitter and employing successive interference cancellation (SIC)
technique at the receiver for multi-user detection. NOMA outperforms conventional
orthogonal multiple access (OMA) by simultaneously sharing the available communi-
cation resources between all users via the power domain multiplexing which offers a
significant performance gain in terms of SE.

In this thesis, several resource allocation problems have been addressed in NOMA
based communication systems, in order to improve network performance in terms
of power consumption, fairness and EE. In particular, the NOMA scheme has been
studied in multiple-input-single-output transmissions where transmit beamformers are
designed to satisfy quality of service using convex optimization techniques. To incor-
porate the channel uncertainties in beamforming design, robust schemes are proposed
based on the worst-case design and the outage probabilistic-based design. Finally, the
EE is investigated for non-clustering and clustering NOMA schemes with imperfect
channel state information. To eliminate the interference between different clusters,
zero-forcing beamformers are employed at the base station. Theoretical analysis and
algorithmic solutions are derived and the performance of all these schemes has been
verified using simulation results.
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Chapter 1

Introduction

1.1 Background and Motivations

Over the past few decades, mobile devices and wireless technologies have transformed
people's lives in significant way. They continue to underpin people's lives and the in-
frastructure of the networked society that people live in today. As such, they play a
crucial role in people's day-to-day life, services and the means of our interactions. The
first generation (1G) of cellular wireless systems was developed in the 1980s based
on analog technology and provided basic voice services [1]. To handle the increasing
demand for data transmission and high quality of communications, the digital cellular
technology was integrated into the second generation (2G) mobile telecommunication
networks by the early 1990s. The 2G systems provided more capacity, enhanced sound
quality and offered more data services than the 1G systems [2]. Subsequently, the in-
troduction of the general packet radio service (GPRS) became the major step in the
evolution of wireless networks towards the third generation (3G) telecommunication
technology which was introduced in 1998 [3]. The 3G networks enabled users to ac-
cess the Internet over mobile devices. Therefore, video calls, mobile TV, online games
and location-based services were developed through different applications by devot-
ing more bandwidth, and consequently, higher data transmission. In March 2008, the
International Telecommunications Union-Radio (ITU-R) communications sector spec-
ified the International Mobile Telecommunications (IMT)-Advanced requirements for
the fourth generation (4G) mobile telecommunication technology standards [4]. A 4G
system not only supports voice and other 3G services but also provides a wide range
of exciting applications such as fast bulky file transfer, high definition (HD) mobile
TV, multimedia teleconferencing and online game services. Given a historical 10-year
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Fig. 1.1 Smart world [6].

cycle for every generation of cellular networks, it is expected that the fifth generation
(5G) wireless networks will roll out by 2020 [5]. However, the demanding require-
ments for high quality new services with stringent delay requirements should be met
in 5G and beyond wireless networks.

In the near future, people are expected to completely rely on different services and
applications provided by the smart world, as illustrated in Fig.1.1 where connectivity
will become ubiquitous [7]. This smart world is a result of the growing interest in area
of machine-to-machine (M2M) communications and Internet-of-Things (IoT) which
have stringent requirements for reliability, latency and seamless connectivity [8, 9].
The autonomous vehicles which operate in real time environments to prevent accidents
and industrial manufacturing processes controlled through wireless networks are only
a few examples of ultra-reliable and low-latency communications in IoT networks.
On the other hand, it is expected in the next ten years of wireless communications
evolution, the continual growth of mobile devices including smartphones and other
data-consuming wireless network devices will introduce a 1, 000-fold increase on the
volume of mobile data traffic [10]. In order to handle this explosive growth of data traf-
fic, future wireless networks are also expected to provide a 1, 000-fold capacity growth
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Fig. 1.2 Sustainable green communications evolution for 5G by 2020 [16].

compared to the current generation of wireless networks. These requirements unfold
many new challenges, such as the massive increase in the number of connected devices
with diverse service requirements, the various applications, and the volume of traffic
demands and also uniform quality of user experience anywhere and any time [11–13].
Furthermore, the radio spectrum has been heavily occupied and become overcrowded
[14, 15]. Thus, the wireless networks encounter a scarcity of radio resources to sup-
port this massive connectivity with high data rate applications. In order to address
these issues, future wireless systems should be developed with extended capabilities
to efficiently use the available limited resources to satisfy a massive number of users
with high data rate requirements. Furthermore, this explosive growth of data traffic,
as illustrated in Fig.1.2, has triggered a rapid increase in energy consumption. Statis-
tics show that the information and communication technology infrastructures consume
more than 4% of the world-wide energy [17–19]. This energy consumption can indi-
rectly increase the amount of greenhouse gas emission levels. Beyond environmental
contamination, the cost of high energy consumption imposes further financial pressure
on the network operators. Thus, improving energy efficiency (EE) will be another
major challenge that should be appropriately considered in designs of future wireless
networks. According to diverse set of requirements in future wireless networks, the
most relevant performance targets to 5G, depicted in Fig.1.3, can be summarized as
follows:

• Massive device connectivity
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Fig. 1.3 5G performance targets [2].

• Higher system capacity

• Higher data-rate

• Low latency

• Energy saving and cost reduction

As the current wireless communication technologies do not have the capabilities
to handle the future wireless networks requirements, advanced technologies and intel-
ligent radio resource management techniques have to be developed for 5G and beyond
wireless networks [20]. To further meet the demanding requirements of data rates and
massive connectivity, different potential candidate technologies have been proposed
in recent years such as massive multiple-input multiple-output (MIMO) [21], millime-
ter wave (mm-Wave) communications [22], device-to-device (D2D) communications
[23], and non-orthogonal multiple access (NOMA) [24].

Employing multiple antennas at the transceivers is a proposed technique to address
the increased data rate demand in future wireless networks [25–28]. MIMO, using
multiple antennas at both transmitter and receiver, is a well known technique for mul-
tiplying the capacity of a radio link and offers generous array and multiplexing gains
by leveraging the spatial selectivity [29–32]. MIMO techniques can further improve
SE and transmission reliability by simultaneously transmitting multiple data streams
in wireless communication systems. Hence, this technology can support a high-speed
and reliable link through the additional degrees of freedom introduced in the propa-
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gation channel. A MIMO system with an especially high number of antennas called
massive MIMO is a promising technique for the next generation of wireless commu-
nication systems which has the potential capabilities to address many of the future
wireless networks'challenges [33–36]. Deploying BSs with very large numbers of an-
tennas can effectively increase both the beamforming gain and diversity gain, which
consequently, can increase the SE [37, 38]. The BSs can concentrate their radiated
energy on particular directions by forming very narrow beams since a large number
of antennas is utilized in massive MIMO. Through this benefit, massive MIMO can
enhance the EE in the order of 100 times compared to conventional MIMO systems
[39]. Massive MIMO makes use of favorable propagation channel and the channel
hardening property [40]. Hence, very simple and linear signal processing techniques
achieve the same performance of the complicated non-linear signal processing meth-
ods. Latency is one of the key challenges of current wireless communication systems.
It usually occurs in multipath environments with strong destructive interference while
the channel experiences deep fading. This phenomenon is more prohibitive in slow
fading channels, when the channel may experience a deep fading and the receiver has
to wait for a longtime for the channel to recover its good condition and provide a rea-
sonable gain again. However, thanks to the law of large numbers, massive MIMO
makes use of the channel hardening with less gain fluctuation compared to the con-
ventional MIMO channels. Thus, massive MIMO can naturally contribute to design
of low-latency wireless links as it is unlikely that a destination terminal is trapped in a
deep fading. Therefore, massive MIMO can bring improvements in SE, EE, complex-
ity of signal processing, and latency for 5G and beyond wireless networks [21].

mm-Wave communication is another advanced physical layer technology which
is expected to address the challenges of providing high-rate services and reducing la-
tency in 5G and beyond wireless networks. Network capacity enhancement is one of
the major challenges in future wireless networks and including more spectrum is a
straightforward method to increase the capacity in future wireless networks [2]. Most
current wireless networks operate in low frequency bands below 6 GHz which have a
wide area coverage and low penetration losses however they are already licensed for
different services and communication technologies. On the other hand, much wider
spectrum is available in the untapped mm-Wave frequency bands, between 30 GHz
and 300 GHz, which can potentially offer more bandwidth to provide peak data rates
beyond 10 Gbits/s. The short propagation range in this frequency bands can be an
advantage which allows the frequency reuse in smaller distances than at lower fre-
quencies and provides improvements in SE. This technique also offers spatial degrees
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of freedom with very high-dimensional antenna arrays due to the smaller size of an-
tenna elements at higher frequencies. Furthermore, smaller antenna size also allows
the integration of multiple arrays with mobile devices which provides more throughput
enhancements for mobile devices and maintains reliable connectivity even if the signal
from one array is blocked [22]. mm-Wave communication has several merits such as
extremely wide bandwidths, small element sizes, and narrow beams compared to the
existing wireless technologies. Due to its potential benefits of multi-gigabit and low
latency wireless links, mm-Wave communication is expected to play a crucial role in
5G and beyond wireless networks.

The next proposed technique to achieve higher SE and reduce latency in future
wireless networks is enabling direct communications between devices, referred to D2D
communications in the literature [23, 41]. In this technique, different mobile devices
can directly establish communication links without involving network infrastructure
which paves the way to efficiently reuse the spectrum. Through these D2D com-
munications, the overall system capacity can be improved by accommodating more
connected devices. In fact, leveraging additional D2D links can potentially scale the
network with the number of user devices contributing improvement in both throughput
and quality of service (QoS). Augmenting wireless networks with D2D communica-
tion can provide robustness as users can continue to function even in the absence of
infrastructure. Also, as users in the D2D link communicate over a short distance, the
capacity of the direct link tends to be higher even at the low transmit power and even
more importantly the same time and frequency resources can be reused in the network.
Hence, both energy and spectral resources can also be efficiently exploited by direct
communication [42, 43]. Accordingly, D2D communication is considered as a promis-
ing technology to provide low-power, high data rate and low-latency services as well
as to address the massive connectivity issues in the 5G and beyond wireless networks.

Multiple access techniques play a key role in handling data traffic in multi-user sys-
tems as it directly determines the throughput performance by efficiently accommodat-
ing multiple users with the available resources [44–46]. Consequently, a standard mul-
tiple access scheme is introduced as a specific feature for each generation of wireless
network such as time division multiple access (TDMA) in 2G, code division multiple
access (CDMA) in 3G, and orthogonal frequency division multiple access (OFDMA)
in 4G. These conventional schemes employ orthogonal multiple access (OMA) tech-
niques in which orthogonal resources such as time, frequency and code are assigned
to different users to avoid mutual interference between them. In current wireless sys-
tems, orthogonal frequency division multiplexing (OFDM) has been widely employed
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Fig. 1.4 An illustration of OMA and NOMA schemes [52].

due to its ability to cope with the frequency selective fading channel by dividing it
into a number of narrow-band flat fading sub-channels [47, 48]. One multiple access
scheme based on OFDM is OFDMA where each subcarrier is allocated to only one
user. Through this subcarrier assignment, the system throughput is maximized by uti-
lizing multi-user diversity gain [49–51]. However, the networks with massive connec-
tivity and high data-rate requirements may suffer from the performance of OFDMA
since it is not allowed to reuse frequency within one cell which significantly limits cell
throughput. Although this approach allows simple transceiver implementations, the
low complexity of the system comes at the cost of low spectral efficiency (SE) and low
EE [45].
Recently, NOMA has been envisioned as a promising multiple access candidate to
address these high data rate requirements as well as to support the massive connec-
tivity in 5G and beyond networks [53]. In contrast to OFDMA, as shown in Fig.1.4,
NOMA can simultaneously allocate an available radio resource to more than one user
which significantly enhances the system throughput due to frequency reuse within a
cell [54]. In this scheme, multiple users are allowed to efficiently and simultaneously
share time and frequency resources via the power or code domain. Hence, NOMA can
offer different advantages including improved SE, higher cell-edge throughput, and
low transmission latency. The available NOMA techniques can broadly be divided
into two categories, namely, power-domain and code-domain NOMA:

• Power-domain NOMA: Through this approach, different users are served at
different transmit power levels according to their channel conditions to obtain
the maximum gain in system performance. So that the user with lower channel
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gain is served with higher transmit power whilst less transmit power is allocated
to the user with high channel gain. To carry out this power domain multiplexing,
the base station (BS) transmits a linear superposition of the signals of the users
and at the receiver sides, multiuser detection algorithms such as successive in-
terference cancellation (SIC) are utilized to detect the desired signals [55, 56].
In particular, the NOMA scheme allows controllable interference and allocates
non-orthogonal resources to increase system throughput and serve more users
while introducing a reasonable additional complexity at the receivers [24].

• Code-domain NOMA: Unlike power-domain NOMA, which attains multiplex-
ing in power domain, code-domain NOMA achieves multiplexing in code do-
main. Similar to the basic CDMA systems, code-domain NOMA shares the en-
tire available resources in time and frequency. In contrast, code-domain NOMA
utilizes user-specific spreading sequences that are either sparse sequences or non-
orthogonal cross-correlation sequences of low correlation coefficient [56]. This
can be further divided into a few different classes, such as low-density spreading
CDMA (LDS-CDMA) [57], low-density spreading-based OFDM (LDS-OFDM)
[24], and sparse code multiple access (SCMA) [58]. The use of low-density
spreading sequences helps LDS-CDMA to limit the impact of interference on
each chip of basic CDMA systems. LDS-OFDM can be thought of as an amal-
gamation of LDS-CDMA and OFDM, where the information symbols are first
spread across low-density spreading sequences and the resultant chips are then
transmitted on a set of subcarriers. SCMA is a recent code-domain NOMA tech-
nique based on LDS-CDMA. In contrast to LDS-CDMA, the information bits
can be directly mapped to different sparse codewords, because both bit mapping
and bit spreading are combined. In comparison with LDS-CDMA, SCMA pro-
vides a low complexity reception technique and offers improved performances.

There exist some other multiple access techniques, which are also closely-related
to NOMA, including multi-user shared access (MUSA) [59], pattern division multiple
access (PDMA) [60] and spatial division multiple access (SDMA) [61]. Theses non-
orthogonal schemes share the same idea that the multiple users can simultaneously use
the same subchannels [24].

Furthermore, in comparison with conventional user scheduling techniques which
tend to allocate more transmit power to the users with stronger channel gain to im-
prove the overall system throughput but exacerbate unfairness, NOMA enables a more
flexible management of the achievable rate of users and maintains better fairness by
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simultaneously serving all users. In other words, NOMA, in fact, facilitates a bal-
anced tradeoff between system throughput and user fairness [62]. In addition to the
higher SE realised in NOMA, it is also compatible with other disruptive communica-
tion technologies that proposed for future wireless communications such as multiple
antenna [63], distributed antenna systems [64–66] and heterogeneous networks [67–
69] without any additional hardware requirements. In particular, without requiring any
modifications to the Long Term Evolution (LTE) resource blocks (i.e., OFDMA sub-
carriers), by using the NOMA scheme, different users can be simultaneously served
on the same OFDMA subcarrier. Combination of NOMA with other communication
technologies will also provide the additional frequency reuse gain to further improve
the performance of wireless networks. The two advantages of reusing the limited spec-
trum and flexibility to be implemented with other technologies have enabled NOMA
as a potential technology to develop for future wireless communications [70]. It is
unlikely that a single technology would have the potential capabilities to address the
exponential growth in the volume of data traffic and the number of connected devices
in future wireless networks. Hence, a combination of different communication tech-
nologies need to be introduced in order to enable high data rate communications and to
meet other unprecedented requirements in 5G and beyond wireless networks [71–73].

1.2 Thesis Contributions and Organization

Motivated by the challenges of increasing SE and EE in 5G and beyond wireless net-
works, this thesis studies NOMA transmissions and investigates its performance for
future wireless networks. This thesis focuses on the power-domain NOMA that su-
perposes multiple users in power domain and exploits the channel gain difference be-
tween multiplexed users. At the transmitter side, signals from various users are super-
posed and the resulting signal is then transmitted over the same time and frequency
resources. At the receiver sides, SIC is utilized to efficiently remove interference be-
tween multi-user signals. The main aim of this thesis is to explore different power
allocation techniques in multiple-input single-output (MISO) NOMA systems to im-
prove system performance in 5G communication systems. In particular, beamforming
designs are proposed for power minimization and user fairness problems as well as
robust EE design by incorporating channel uncertainties. The scope of the thesis in-
cludes mathematical modeling of the radio resource optimization problems, analysis
of the problems'complexities, algorithm development, as well as theoretical and nu-
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merical analysis. This thesis consists of seven chapters and the main contributions of
each chapter are summarised as follows:

In Chapter 2, fundamental concepts of superposition coding (SC) with SIC for
NOMA communications are presented. In particular, the downlink channel capacity
of NOMA for the general K user system and some implementation issues of SIC are
represented. Furthermore, possible extensions of NOMA are also discussed apply-
ing multi-antenna techniques to achieve further performance improvement in 5G net-
works. In addition, this chapter provides a detailed literature review related to different
resource allocation techniques proposed for NOMA.

In Chapter 3, mathematical optimization which is the main approach for addressing
the radio resource allocation problems is investigated. The basic concepts of convex
optimization theory are outlined and then the most generic classes of convex prob-
lems, namely, linear programming (LP), quadratic programming (QP), quadratic con-
strained quadratic programming (QCQP), second-order cone programming (SOCP)
and semidefinite programming (SDP) are described with necessary details.

In Chapter 4, the system model is introduced for the MISO-NOMA system with
the assumption of perfect channel state information (CSI) at the transmitter. Two main
radio resource allocation problems are investigated; sum-power minimization and max-
min fairness. Since low energy consumption is one of the key requirements in future
wireless networks, a beamforming design is first provided to minimize the total trans-
mit power with the minimum rate requirement constraints at each user. To solve this
optimization problem, Convex-Concave Procedure (CCP) is employed based on two
different approaches; Taylor series approximation and semidefinite relaxation (SDR)
to design the beamformers. The performance of proposed approaches are evaluated in
terms of power consumption and computational complexity while comparing the per-
formance with the conventional OMA scheme. Next, a max-min fairness problem is
defined to provide fairness between users in which the minimum rate between all users
is maximized while satisfying the transmit power constraint. This problem is solved
by utilizing the bisection method to obtain the optimal solution and simulation results
have been provided to demonstrate the effectiveness of this max-min beamforming
design [74].

In the previous resource allocation problems, it is assumed that perfect CSI is
available at the transmitter. However, in wireless transmissions, channel uncertain-
ties are inevitable due to quantization and channel estimation errors, limited training
sequences and feedback delays. In particular, due to ambiguities introduced in SIC
through the user decoding order and SC at the transmitter in NOMA, these uncertain-
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ties can greatly degrade the overall system performance. To cultivate the desirable
benefits offered by NOMA, these channel uncertainties should be accounted for the
design of resource allocation techniques; this is the main focus of Chapter 5. In partic-
ular, Chapter 5 introduces the concept of robust beamforming and the corresponding
performance analyses are also presented. Two approaches are studied to incorporate
the channel uncertainties; worst-case design which assumes the CSI errors belong to
some known bounded uncertainty sets, and outage probabilistic based design where
the channel errors are random with a certain statistical distribution and constraints can
be satisfied with certain outage probabilities. By exploiting the SDR approach and
S-procedure, the original non-convex constraints are converted into linear matrix in-
equality (LMI) form. Numerical results are provided to show that the proposed robust
schemes outperform the non-robust scheme in terms of the achieved rates and rate
satisfaction ratio at each user. In particular, they offer a better performance than the
non-robust scheme by satisfying the signal-to-interference-noise ratio (SINR) require-
ment at each user all the time regardless of associated channel uncertainties [75, 76].

Due to the limited available spectrum and increasing throughput requirements, SE
has been considered as the sole performance metric in the designs of resource alloca-
tion in the NOMA based systems. However, with the immense increase of the traffic
data and number of mobile devices, the energy consumption has increased and become
an important issue in the green cellular network. Accordingly, the designs of future
wireless networks should be not only spectral efficient but also energy efficient. Hence,
EE has become one of the key performance metrics in the development of 5G and be-
yond wireless networks. To this end, Chapter 6 investigates energy efficient resource
allocation techniques for MISO NOMA system with imperfect CSI. Two approaches
are introduced for NOMA systems: non-clustering and clustering schemes. In the first
scheme, NOMA is employed to share the radio resources between all users and each
user has its own beamforming vector. However, in the clustering scheme, the users in
a cell are grouped into different clusters and the users in the same cluster are supported
by the NOMA scheme. In this scheme, transmit beamforming vectors are generated
in the same manner as in the conventional multi-user beamforming systems. Each of
these transmit beamforming vectors can support a group of two or more users in the
same cluster, rather than only a single user. To remove the interference between dif-
ferent clusters, two different types of zero-forcing (ZF) designs, namely, hybrid-ZF
and full-ZF are employed at the BS. The full-ZF scheme completely removes the inter-
cluster interference at the cost of more number of antennas at the transmitter whereas
the hybrid-ZF scheme partially cancels the inter-cluster interference. Moreover, by
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leveraging the norm-bounded channel uncertainty model, the worst-case EE is con-
sider for both NOMA schemes while each user enjoys a minimum required QoS. To
solve the problem, an iterative scheme is developed by exploiting Dinkelbach's algo-
rithm. The simulation results reveal that hybrid-ZF outperforms the full-ZF scheme
with a few clusters, while full-ZF shows a better performance with a higher number of
clusters. In addition, the numerical results confirm that the proposed robust schemes
outperform the non-robust scheme in terms of the rate satisfaction ratio at each user.

Finally, Chapter 7 draws conclusions of this thesis and identifies interesting future
research directions.



Chapter 2

Fundamental Concepts and Literature
Review

In this chapter, the fundamental transmission principles of the NOMA systems are
presented. First, SC with SIC is discussed which are underlying notions behind this
novel multiple access technique. Then, the downlink channel capacity is provided for
NOMA system in comparison with that of the conventional OMA techniques. Finally,
the literature on NOMA is reviewed which provides recent work to address the chal-
lenges in future wireless networks.

2.1 Non-orthogonal Multiple Access Technology
Towards 5G and Beyond

With the complementation of 4G standards and the development of LTE networks, the
interests of the wireless research community is moving towards 5G. The capabilities
of 5G and beyond wireless networks should extend far beyond previous generations
of wireless communications in order to enable massive connectivity with diverse and
stringent requirements. These capabilities will include massive system capacity, high
data rates at any time and anywhere, very low latency, ultra-high reliability, very low
device cost and energy-efficient techniques. The current mobile networks will not be
able to handle these demanding requirements which imposes the necessity of differ-
ent disruptive technologies. Recently, NOMA has been proposed as a key technique to
achieve high SE and considerable performance improvements in system throughput. In
addition to the higher SE realised in NOMA, it is also flexible to implement with other
proposed technologies for 5G and beyond networks which provides the additional fre-
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quency reuse gain to further improve the performance of wireless communication sys-
tems. Unlike OMA that restricts the bandwidth assignment to the weaker users in order
to achieve a higher throughput, all users can use the overall transmission bandwidth
in non-orthogonal access regardless of their channel conditions. The fundamental con-
cept of NOMA is sharing the same wireless resources between multiple-users in the
code or power domain, resulting in non-orthogonality among user access. This scheme
applies SC [54] which is a summation of all users'signal to superpose multiple user at
the transmitter. By relying on the receivers with equipped processors with different
capabilities, multi-user detection and SIC are applied to separate multi-user signal at
the receiver end.

2.1.1 Superposition Coding with Successive Interference Cancella-
tion

Power domain multiplexing means that multiple users'signals are multiplexed through
different power levels based on their channel conditions while the same time-frequency-
code resources are shared among multiple users. This scheme applies SC to encode
multiple user's signals at the transmitter, and performs SIC at the receiver to decode
multi-user signals. Since the SC scheme has the capability to achieve the channel ca-
pacity, it is an efficient technique to increase capacity in the NOMA system. This thesis
has focused on a NOMA scheme in the power domain [46, 52, 77, 78], and hereafter,
NOMA refers the power-domain NOMA scheme. In NOMA, it is expected that the
weaker users are allocated with a higher transmit power than that of the strong users
as they are already experiencing a poor channel conditions. In other words, a stronger
user is allowed to access the slot which is used by a weaker user without degrading
the performance of the weaker user [79]. As they share the same radio resources, the
signal related to the weaker user received at the strong user has a higher SINR than
that at the weaker user. Hence, the strong user is able to employ SIC to decode its
own signal by first decoding and removing the weaker user's signal. On the other hand,
the weaker user decodes its own signal without using SIC as the strong user's signal is
negligible at the weaker user due to its transmit power is lower than that of the weak
user.

Here, an example is provided to further exemplify the basic concepts of SC and
SIC as shown in Fig. 2.1. Assume a downlink transmission scenario with two users
where a BS serves them by using the same channel. The users are geographically
distributed where one of them is the near user and the other one is the far user. The
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Fig. 2.1 SC and SIC receiver [52].

channel gains from the BS to two users are denoted by h1 and h2. The near user is
considered as user 2, U2, which has a better channel condition than that of the far user,
i.e., user 1, U1, hence, ∥h1∥ ≤ ∥h2∥. NOMA allocates more transmit power to the
user with poor channel condition whereas the user with better channel condition is
served with less transmit power. Consider x1 and x2 as signals intended for U1 and U2,
respectively. At the transmitter, the BS broadcasts a superposition coded information
to two users which is the sum of users'signals, i.e., x = x1 + x2. Hence, the received
signals at U1 and U2 can be written by

y1 = h1x+ n1, (2.1)

y2 = h2x+ n2, (2.2)

where nk is Additive White Gaussian Noise (AWGN) for Uk, k = 1, 2, with zero mean
and variance σ2

k.
For multi-user detection, the SIC is employed at the receivers. In SIC technique,

by assuming that ∥h1∥ ≤ ∥h2∥, the signal which can be decoded at the weaker user,
i.e., U1, can be also decoded by the strong user, i.e., U2 [80, 81]. Therefore, at the
receiver end, U2 can perform SIC and first decodes the signal intended to U1, i.e., x1.
After subtracting x1 from the received signal y2, U2 can decode its own signal, i.e., x2
from h2x2 + n2. At U1's receiver, x2 is treated as noise and U1 decodes its own signal,
x1, directly from y1 [82] as illustrated in Fig. 2.2. This process can be extended for
systems with more number of users. Assume the scenario with K users where xk is
supposed to be transmitted to Uk, ∀k. The users are sorted based on their channel
strengths i.e., ∥h1∥ ≤ ∥h2∥ ≤ . . . ≤ ∥hK∥. The BS transmits a superposition coded
signal, i.e., x =

∑K
k=1 xk, to all users. At the receiver end based on this user ordering,
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Fig. 2.2 The receivers for NOMA with two users scenario.

each user Uk can detect and remove the first k− 1 users'signals in a successive manner
whereas the messages of the other users, i.e., from Uk+1 to UK , are treated as noise.
From an information-theoretic perspective, it is well-known that non-orthogonal user
multiplexing using SC at the transmitter and SIC at the receiver not only outperforms
orthogonal multiplexing, but also is optimal in the aspect of achieving the capacity
region of the downlink broadcast channel [55, 82].

2.1.2 Downlink Channel Capacity

A channel in wireless communications is defined in terms of the bandwidth and time.
The fundamental metric to measure the performance of a wireless channel is its capac-
ity which is defined as the maximum data rate of communication over this wireless
channel for which arbitrarily small error probability can be achieved at the receiver
end [82]. The previous example of a two-user NOMA system is considered where U2

with better channel condition performs SIC, whereas the U1 only decodes its own data
while U2's signal is treated as noise. According to the Shannon's capacity definition,
the data rate normalized to the bandwidth for U1 and U2 can be written by

R1 = log2

(
1 +

P1|h1|2

P2|h1|2 + σ2
1

)
, (2.3)

R2 = log2

(
1 +

P2|h2|2

σ2
2

)
, (2.4)
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Fig. 2.3 The rate regions of the two-user downlink broadcast channel of NOMA and
orthogonal schemes with the users' signal-to-noise ratio (SNR) equal to 0 and 20 dB
(i.e., P |h1|2

σ2
1

= 1 and P |h2|2
σ2
1

= 100). In the orthogonal schemes, both the power split
P = P1 + P2 and split in degrees of freedom α are jointly optimized to compute the
boundary [82].

where P1 and P2 denote the transmit power for the U1 and U2, respectively, and P =

P1 + P2 is the total transmit power at the BS.
On the other hand, consider an orthogonal scheme which allocates a fraction α of

the degrees of freedom to U1 and the rest (1 − α) to U2. Hence, orthogonal schemes
can achieve following rates, for each power split P = P1 + P2 and degree-of-freedom
split α ∈ [0 1]:

R1 = α log2

(
1 +

P1|h1|2

ασ2
1

)
, (2.5)

R2 = (1− α) log2
(
1 +

P2|h2|2

(1− α)σ2
2

)
. (2.6)

Here, α represents the fraction of the bandwidth devoted to users. In the multi-user sys-
tems, as the channel should be shared or divided among different users, the rate region
is utilized to characterize the multi-user channel capacity. This region demonstrates
the tradeoff between the rates of the concurrent streams in the multi-user channel [83].
To compare the performance of NOMA and orthogonal schemes, the rate region can
be obtained for both schemes. The achievable boundaries of the rate regions with
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NOMA and the orthogonal scheme for the downlink channel is shown in Fig.2.3 with
SNR1 = 0 dB and SNR2 = 20 dB. It is observed that NOMA has a better performance
than orthogonal scheme (except for the two corner points where only one user is being
communicated to). For any rate pair achieved by orthogonal scheme there is a power
split for which the NOMA scheme achieves the rate pairs that are larger than that of
orthogonal scheme. This performance gap is more pronounced when the difference
between the users'channel gain increases. In Fig.2.3, for example, while maintaining
the rate of the weaker user R1 at 0.9 bps/Hz, NOMA can provide a rate of around
R2 = 3 bps/Hz to the strong user while an orthogonal scheme can provide a rate of
only around 1 bps/Hz. Intuitively, the strong user, being at high SNR, is degree of
freedom limited and NOMA allows it to use the full degrees of freedom of the chan-
nel while being allocated only a small amount of transmit power, thus causing small
amount of interference to the weak user. In contrast, an orthogonal scheme has to
allocate a significant fraction of the degrees of freedom to the weak user to achieve
near single user performance, and this causes a large degradation in the performance
of the strong user. As result, by allowing to send the information to two users over
the same frequency band and time by NOMA, the channel capacity boundary shown
in Fig. 2.3 can be potentially reached. Different from orthogonal scheme where chan-
nel gain difference is expressed as a multi-user diversity gain via frequency-domain
scheduling, the channel gain difference in NOMA is expressed as multiplexing gains
by superposing the signals of multiple users in the power-domain. In NOMA, both
users with high and low channel gains are in a win-win setup [46]. In other words,
the users with better channel gain lose a little by being allocated less transmit power,
but gain more by being allocated more bandwidth, while weaker users also lose a little
because of the interference from the strong users but gain more by using more band-
width [52, 77, 78]. Another benefit of SIC based receiver is that by allocating more
transmit power to weak users, they can get a much higher data rate than that of the
conventional schemes. This means that users with better channel conditions can be
allowed to take advantage of the strong channel and be transmitted with a higher rate
while not degrading the performance of the cell-edge users by controlling the transmit
power. In the conventional receiver, this is not possible due to the near-far problem.
With the OMA techniques, the good performance for the weak user can be attained by
nearly sacrificing all the rate of the stronger user. With the SIC, the near-far problem
is turned into a near-far advantage be realizing better rates for both users.

These results have natural extensions to the general K user downlink channel. In
general with the ordering ∥h1∥ ≤ ∥h2∥ ≤ . . . ≤ ∥hK∥, the data rate for Uk is achieved
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by

Rk = log2

(
1 +

pk|hk|2∑K
i=k+1 pi|hk|2 + σ2

k

)
, k = 1, 2, . . . , K. (2.7)

where pk denotes the transmit power for the Uk, ∀k, and P =
∑K

k=1 pk is the total
transmit power at the BS. The optimal points are achieved by SC at the transmitter
and SIC at each of the receivers. The interference cancellation order at every receiver
is always to decode the weaker users before decoding its own signal. By applying
SIC technique at the receivers, multiple users with different transmit power levels can
be multiplexed on the same frequency band, providing higher sum rate than that of
conventional orthogonal schemes.

2.1.3 Implementation Issues of SIC

In the previous section, the advantages of SIC technique have been discussed which
provides significant performance gain over the conventional OMA techniques. It takes
advantage of the strong channel of the nearby user to achieve higher throughput while
providing the weak user with the best possible performance. However, there are some
potential practical issues in iterative SIC such as the complexity, error propagation,
analog-to-digital (A/D) quantization error and imperfect CSI due to estimation errors
[82]:

• In the downlink, by employing SIC at the receivers, the stronger users have to
decode information intended for the weaker users. It means that the complex-
ity of SIC scales with the number of users which shares the same bandwidth.
However, the SC with SIC has the largest performance gain when the users have
different quality of channels from the BS. This can be a practical way to de-
crease the complexity by grouping the users in a cell into different clusters with
a small number of users. The users in each cluster are supported by the SC-SIC
scheme to share the same time-frequency block. Hence, clustering approach can
significantly contribute to the performance gain of the overall system with low
complex SIC.

• In capacity analysis in section 2.1.2, the error-free decoding is assumed, how-
ever, errors are inevitable with practical codes. Since the decoding in the SIC is
sequential, if an error occurs for one user, it is more likely that the next users in
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the SIC decoding order are decoded incorrectly. In other words, the error propa-
gates in the successive decoding. It is shown if ρi is the probability of decoding
the Ui incorrectly, assuming that all the previous users are decoded correctly,
then the error probability for the Uk using SIC is

∑k
i=1 ρi [82]. Hence, the error

propagation degrades the error probability by a factor of the number of users K
when all users are coded with the same target error probability. Hence, If num-
ber of users is reasonably small, this effect can easily be compensated by using
a slightly stronger code.

• When the range of received powers is very large, an A/D converter with a large
dynamic range is essential. For example, if the power disparity is 20dB, even
1-bit accuracy for the weak signal would require an 8-bit A/D converter. This
may well pose an implementation constraint on how much gain SIC can offer
[82].

• To apply SIC and to remove the signals of weaker users from the received sig-
nal, they must be reconstructed from the decoded signal and also the impulse
response of the channel. Imperfect estimate of the channel will lead to residual
cancellation errors. One concern is that, if the range of the users'received power
is very large, the residual error from cancelling the weaker user can degrade the
strong users signal. On the other hand, it is also much easier to accurately esti-
mate the channel of strong users. Therefore, these two effects compensate each
other and the effect of residual errors does not grow with the power disparity
[82].

2.2 NOMA with Multiple Antennas

As mentioned in Chapter 1, the requirements in future wireless networks are very de-
manding and stringent. In particular, to achieve a further enhancement in the SE com-
pared to the LTE baseline, it is required to introduce new technologies. The gain from
NOMA using SIC is an improvement of approximately 30 − 40% in the SE [84]. Al-
though the same time-frequency resources can be shared by multiple users in the basic
NOMA employing SIC, the improvement of SE still remains limited. One solution to
address this problem is the extension of the NOMA by incorporating it with multiple-
antennas techniques [85, 86]. Hence, in this section, possible extensions of NOMA
are discussed by applying multi-antenna techniques through which multiple degrees
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of freedom can be introduced to achieve further performance improvement in 5G and
beyond wireless networks. Despite of potential benefits by applying multiple antennas
in NOMA, numerous open research challenges need to be addressed. In contrast to
the single-input single-output (SISO) NOMA, design of MIMO NOMA is more chal-
lenging. The main problem in SISO-NOMA is determining optimal power allocation
between users, while by the extra spatial degrees of freedom in MIMO-NOMA, it is
possible to cancel the user interference via beamforming in both the power and spatial
domains. This makes the design of MIMO-NOMA more complicated. In general, the
introduction of multi-antenna NOMA brings up two major challenges. First, although
it is obvious that MIMO-NOMA outperforms MIMO-OMA [87], it is not clear that
SC with a SIC in MIMO can achieve the optimal performance in term of multi-user
capacity region. It is shown in [88] that if the users'channels are quasi-degraded, the
use of MIMO-NOMA can achieve the optimal performance. However, the extension
from quasi-degraded channels to general ones remains as an open problem. Secondly,
user ordering in MIMO-NOMA scenarios is a NP hard problem as they are determined
through the design parameters that in the form of matrices or vectors. In the SISO case,
since the users'channels are scalars, the SIC order usually depends directly on channel
gains. It is possible for the receiver to decode a signal intended to the weaker user
that has a lower channel gain, and hence the optimal decoding order is in the order of
the increasing/decreasing channel gain. However, this property is not guaranteed in
multiple antenna systems where separate beamformer is designed for each user [89].
In MIMO-NOMA, the effective channel gains are related to particular beamforming
designs, which makes the design of beamforming and SIC ordering coupled [90]. Dif-
ferent techniques are proposed for ordering in MIMO NOMA scenarios. The random
beamforming is considered in [85] where the BS orders the users according to quality
of feedback channels. Another proposed technique is the large scale path loss based
user ordering [91, 79, 92] where user located far from the BS is treated as the weak user
and its signal is decoded first at all the receivers. Another effective way is to pair users
into clusters, and assign the same beamforming vector to the users in the same clus-
ter. This decomposes the MIMO-NOMA channels into multiple parallel SISO-NOMA
subchannels [87, 93].

In this thesis, the SC with a SIC receiver is employed for two different categories
of MISO-NOMA scheme: the beamformer-based scheme [79] and the cluster-based
scheme [77, 94, 95]. In the beamformer-based scheme, there is no clustering and user
ordering is based on the large scale path loss. Then, SC based SIC is applied between
all users served by the BS where each user is supported by its own beamforming vector.
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However, in the cluster-based scheme, the users are grouped into different clusters with
at least two users in each cluster. Then, a transmit beamforming vector is designed to
support each cluster through conventional multi-user beamforming designs. The users
in each cluster are supported by a NOMA based SC-SIC approach where multiple
user signals are superposition coded within each beam. The key difference between
these two schemes is whether one beamformer serves one user or multiple users. It is
worth to note here that the ordering which used in this thesis may not be optimal, and
better rates may be achievable for different decoding order. However, the work in this
thesis does not focus on the optimal decoding order problem, but in the radio resource
allocation and design of the beamforming vectors to achieve the best performance by
taking realistic constraints into account.

2.3 Literature Review

The NOMA scheme has recently received considerable attention in research commu-
nity due to its potential benefits in 5G and beyond networks. Although OFDMA is
widely adopted as the multiple access technique in current wireless communication
systems by providing concurrent interference-free transmission to multiple users, it
does not generally achieve the highest possible rate [96–99]. Hence, NOMA has
become as one of the key enabling techniques for the design of radio access tech-
niques for the 5G wireless networks to address the future wireless network challenges
[24, 100]. The performance of NOMA scheme is investigated in [101–105] where
the BS and users are equipped with a single antenna. In [101], the NOMA scheme is
studied for downlink transmission in a cellular system with randomly deployed users
whereas the design of uplink NOMA schemes has been proposed in [102]. The impact
of user pairing on a hybrid multiple access system is studied in [103] where NOMA
is combined with conventional multiple access. In [104], a novel cooperative NOMA
scheme has been proposed with the derivations of the outage probability and diversity
order. Joint power allocation and relay beamforming design is investigated in [105]
for a NOMA based amplify-and-forward relay network where the achievable rate of
the destination with the best channel condition is maximized with rate requirements at
other destinations and individual transmit power constraints.

A general framework for a MIMO NOMA system has been studied in [93] for
both downlink and uplink transmission to further improve the performance in which
the inter-cluster interference is eliminated by exploiting signal alignment. In [106],
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a design for precoding and detection has been developed for MIMO-NOMA by de-
riving the outage probabilities for two different power allocation schemes whereas
the MIMO-NOMA network with limited feedback is considered in [107]. The sum
rate maximization problem for a MISO NOMA has been investigated in [79] through
the minorization maximization algorithm. The optimal and low complexity power al-
location schemes have been proposed in [91] for a two-user MIMO-NOMA system.
Authors in [52, 85] provided system-level performance comparisons between NOMA
and OFDMA based cellular downlink transmissions, where [52] considered single-
antenna transceivers, and [85] extended performance comparison to MIMO technol-
ogy with random beamforming. They showed that NOMA improves both the overall
cell throughput and cell-edge user throughput performances over OFDMA. It is shown
that the performance of NOMA without MIMO is similar to that of OFDMA with 2×2
random beamforming [85], which suggested that NOMA has a similar effect to spatial
multiplexing with random beamforming. For the MIMO NOMA system, the secrecy
rate maximization problem is solved in [108] where it is demonstrated that the NOMA
scheme outperforms the conventional OMA scheme in terms of achieved sum secrecy
rate by efficiently utilizing available bandwidth. Joint optimization with beamforming
design and power allocation with clustering in MISO-NOMA systems is considered
in [109] where an iterative algorithm is proposed based on SDR to minimize power,
showing that this algorithm requires less power than for power allocation and beam-
forming considered separately. In [110], a secure beamforming design is proposed for
a MISO NOMA system by grouping the users into clusters.

In wireless transmissions, channel uncertainties are inevitable due to quantization
and channel estimation errors, limited training sequences and feedback delays. To cir-
cumvent the inevitable channel uncertainties, robust design is a well-known approach
in the literature, which can be classified into two groups, the worst-case robust de-
sign [111–114], and outage probability based design [115, 116]. In the worst-case
design, it is assumed that the CSI errors belong to some known bounded uncertainty
sets and robust beamforming design is proposed to tackle the worst error whereas in
the second approach, the channel errors are random with a certain statistical distribu-
tion and constraints can be satisfied with certain outage probabilities. In [111], the
robust beamforming design has been developed for providing secure communication
in wireless networks with imperfect CSI. By incorporating the bounded channel un-
certainties, the robust sum power minimization problem is investigated in [112] for a
downlink multicell network with the worst-case SINR constraints whereas the robust
weighted sum-rate maximization was studied for multicell downlink MISO systems in
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[113]. In [114], a robust minimum mean square error based beamforming technique is
proposed for multi-antenna relay channels with imperfect CSI between the relay and
the users. An outage-constrained distributed robust beamforming scheme is developed
for multicell networks using second order statistical CSI in [115]. Authors in [116]
consider robust multi-cell coordinated beamforming design for downlink wireless sys-
tems by assuming that the CSI errors are complex Gaussian distributed and formulate
a chance-constrained robust design problem which guarantees that the mobile stations
can achieve the desired SINR requirements with a high probability. In most existing
NOMA schemes, it is assumed that perfect CSI is available at the transmitter, however,
it is not a practical assumption. In particular, due to ambiguities introduced in SIC
through user decoding order and SC at the transmitter in NOMA, these uncertainties
can greatly degrade the overall system performance [117]. Therefore, to cultivate the
desirable benefits offered by NOMA, these channel uncertainties should be accounted
for in the design of resource allocation techniques. In the context of NOMA, a robust
design with the norm-bounded channel uncertainties is investigated in [95] where a
clustering scheme is studied to maximize the worst-case achievable sum rate with a
total transmit power constraint.

Besides, all of the above work in the literature on NOMA mainly focus on improv-
ing the SE of NOMA systems [79, 118–120]. However, there is a dearth of literature
considering the EE which has been identified as one of the key performance metrics
in future wireless networks. The EE for NOMA systems was investigated in [121]
for a given statistical CSI at the transmitter. A crucial step forward followed in [122]
to maximize the EE of downlink NOMA systems by recalling a non-linear fractional
programming method. Also, the authors in [123] proposed a power allocation and sub-
channel assignment to maximize the EE in NOMA networks by assigning only two
users per subchannel. The joint user scheduling and power allocation in this context
was further explored in [124, 125] under the assumption of imperfect CSI. In [124],
it was assumed that only two users can be multiplexed on each subchannel whereas a
general case with more number of users on same subchannel was developed in [125].
Their results confirmed that the NOMA system can achieve a better performance in
terms of sum rate and EE compared to the conventional OMA systems. In [126],
the authors proposed two user scheduling schemes combined with a power allocation
scheme to enhance the EE in the MIMO NOMA system.

Radio resource allocation techniques play a key role in performance improvement
in cellular networks. The goal of resource allocation is to optimize the assignment
of the limited resources to achieve the best performance by satisfying the required
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constraints. The benefits of optimization in cellular networks include network perfor-
mance improvement, satisfying QoS requirements, saving energy, as well as reducing
the operation expenditure. Therefore, it is important to investigate the various resource
allocation problems in NOMA transmission to analyse and validate its performance
through better utilization of available radio resources. Since most research works on
NOMA systems focuses on the case that the BS has the perfect knowledge of the CSI
and the SE design, this thesis has focused on the robust SE design as well as robust en-
ergy efficient one. Accordingly, in this thesis, it is aimed to find optimal solutions, or
develop near-optimal solutions for different resource allocation problems in the con-
text of MISO NOMA which are not addressed in the literature. In particular, it is
focused on three different resource allocation problems i.e., beamforming design with
perfect CSI, robust beamforming design, and robust energy-efficient beamforming de-
sign.

2.4 Summary

In this chapter, an overview on fundamental concepts of NOMA systems has been pro-
vided. Furthermore, the concept of SC with SIC is presented and some implementation
issues of SIC have been discussed. Then, the downlink channel capacity for NOMA
system has been defined while comparing the rate region of the NOMA system with
the OMA system. Moreover, the extension of the NOMA to incorporate multiple-
antennas techniques has been introduced to enable further performance improvement
in 5G and beyond wireless networks. Finally, a detailed literature review has been
provided related to different resource allocation techniques available for NOMA.



Chapter 3

Mathematical Optimization

Optimization techniques play a vital role in the deployment and operation of most
types of networks by providing a powerful set of tools for the design and analysis of
communication systems and signal processing algorithms [127–129]. Many commu-
nication problems can be appropriately formulated into different optimization prob-
lems with a set of constraints. These problems are either convex in nature or can be
converted into convex forms through some mathematical manipulations and approxi-
mations. All standard convex optimization problems, can be efficiently solved using
interior point methods [130, 131]. Furthermore, the algorithms and software tools for
convex optimization problems have advanced significantly over the last decades which
enables solving many engineering problems through convex optimization framework.
However, most optimization problems are non-convex in nature and formulating those
problems into a convex forms is the major challenge in the application of convex opti-
mization. In this section, first, the general structure of radio resource allocation prob-
lems is briefly presented. Then, different kind of convex optimization problems are
reviewed.

3.1 Radio Resource Optimization in Wireless Networks

Radio resource allocation has become increasingly important in wireless systems and
networks design as it enables an efficient use of radio resources, offering additional
benefits under the same infrastructure [132–134]. In general, optimizing the assign-
ment of the limited resources (i.e., frequency, power or time) to achieve the best perfor-
mance with a given set of constraints is the main aim of resource allocation techniques.
There are typically three main components in a radio resource allocation problem: a



3.2 Fundamentals of Convex Optimization 27

utility function as the objective which can be a performance metric, variables to be
optimized and the constraints which are usually QoS requirements or some physical
limitations in wireless networks. Any optimization problem can be feasible or infea-
sible according to the feasible solution region defined based on the constraints and
optimization variables. In other words, resource allocation aims to find the optimal so-
lutions from the feasible region, or develop near-optimal solutions [135, 136]. Some
classic objective functions used in this thesis are summarized as follows:

• Power minimization: Power consumption is an important performance metric
and imposes demanding requirements in future green wireless networks. A typ-
ical objective function is the sum of the transmit power allocated for the users
served in the network as

∑
k Pk where Pk is the transmit power allocated for the

kth user Uk.

• Max-min fairness: In some application scenarios, maintaining fairness between
users in terms of achieved throughput is more important than maximum through-
put. Hence, the corresponding utility function is expressed as the minimum
achievable rate between all users as mink Rk where Rk is the data rate of Uk.

• Spectrum efficiency: This utility function is used to quantify throughput in unit
bandwidth and expressed in bits per second per Hz (bps/Hz). In this class of
optimization, the objective is the sum of the users’ data rate (sum-rate), i.e.,∑

k Rk, normalized to the bandwidth where the data rate is usually computed by
well-known Shannon’s channel capacity definition in bits per second (bps).

• Energy efficiency: To strike a good balance between the achievable data rate and
power consumption, EE is another performance metric defined as the number
of bits that can be reliably transmitted per Joule of energy consumption. The
function is expressed by

∑
k Rk∑
k Pk

in bit per Joule.

In the following sections, an overview of mathematical optimization is provided
focusing on the special role of various convex optimization techniques. Furthermore,
a general optimization problem is formulated and the different canonical optimization
problems are discussed at the end of this chapter.

3.2 Fundamentals of Convex Optimization

This section briefly introduces the fundamentals of convex optimization.
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3.2.1 Convex Sets

A set C ∈ Rn is convex if for any x,y ∈ C and any θ ∈ [0, 1], it holds [127]:

θx+ (1− θ)y ∈ C, ∀x,y ∈ C. (3.1)

In other words, a set can be classified as a convex set if the line segment between
any two points from set lies in the same set.

3.2.2 Convex Cones

A set C is called a convex cone, if it is convex and for every x ∈ C and θ ≥ 0, it holds
θx ∈ C. This can be mathematically expressed as [127]:

θ1x+ θ2y ∈ C, ∀x,y ∈ C, θ1, θ1 ≥ 0. (3.2)

Points of this form can be described geometrically as forming the two-dimensional
pie slice with apex 0 and edges passing through x and y. Convex cones arise in the
various forms in engineering applications. The most common convex cones which are
used in this thesis are second-order cone (SOC) C = { (t,x), t ≥ ∥ x ∥ }, and
positive semidefinite matrix cone C = {X|X symmetric and X ≽ 0}.

3.2.3 Convex Functions

A function f : Rn → R is convex if dom f is a convex set and if for all x,y ∈ domf ,
it holds

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y). (3.3)

In other words, the line segment between (x, f(x)) and (y, f(y)) lies above the
graph of f . The function f is concave if−f is convex. A convex function is continuous
on the relative interior of its domain and it can have discontinuities only on its relative
boundary.

Suppose f is differentiable, then f is convex if for all x,y ∈ domf the following
inequality holds

f(y) ≥ f(x) +∇f(x)T (y − x). (3.4)
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Moreover, if f is twice continuously differentiable, then the convexity of f is equiv-
alent to

∇2f(x) ≽ 0, ∀x. (3.5)

It means f is convex if and only if its Hessian is positive semidefinite on its domain
[127]. This reduces to the simple condition f(x)′′ ≥ 0 for a function on R which
means that the derivative is non-decreasing. Similarly, f is concave if and only if
∇2f(x) ≼ 0, or the simple condition f(x)′′ ≤ 0 for a function on R.

Quasiconvex functions

A function f : Rn → R is called quasiconvex if its domain and all its sublevel sets
Sα = {x ∈ domf | f(x) ≤ α} for α ∈ R, are convex. A function f is quasiconcave if
−f is quasiconvex, it means every superlevel set {x|f(x) ≥ α} is convex. It is shown
that the quasiconvexity is a generalization of convexity and quasiconvex functions hold
many of the properties of convex functions [127]. There is a variation on Jensen’s
inequality that characterizes quasiconvexity: A function f is quasiconvex if and only
if domf is convex and for any x,y ∈ domf and θ ∈ [0 1],

f(θx+ (1− θ)y) ≤ max{f(x), f(y)}. (3.6)

This inequality is sometimes called Jensen’s inequality for quasiconvex functions.

3.3 Convex optimization Problems

3.3.1 Optimization problems

A general mathematical formulation to describe the problem of finding a solution x

that minimizes f0(x) while satisfying the set of conditions can be defined in the fol-
lowing standard form:

minimize f0(x) (3.7)

subject to fi(x) ≤ 0, i = 1, . . . , p,

hj(x) = 0, j = 1, . . . , q,
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where the vector x = (x1, . . . , xn) is the optimization variable of the problem, the
function f0 : Rn → R is the objective function or cost function, the functions fi are
the inequality constraints, and the constants hj are the equality constraints. If there are
no constraints, then the problem can be classified as an unconstrained problem. The
domain of this optimization problem is the set of points for which the objective and
the constraints are defined and is denoted as

D = (

p∩
i=1

dom fi)
∩

(

q∩
j=1

dom hj). (3.8)

A point x ∈ D is feasible, if it satisfies all the constraints fi and hj and problem
(3.7) is said to be feasible if there exists a feasible point, otherwise it is called infeasible.
The solution of the optimization problem is achieved at the optimal point x∗ if and only
if

f0(x
∗) ≤ f0(x), ∀x ∈ D. (3.9)

It means if vector x∗ has the smallest objective value among all vectors that satisfy
the constraints, it is called optimal or a solution of the problem (3.7) [127]. Different
classes of optimization problems are generally characterized based on the forms of the
variables, objective and constraint functions.

Maximization problems

Some problems are defined in the form of the maximization problem as

maximize f0(x) (3.10)

subject to fi(x) ≤ 0, i = 1, . . . , p,

hj(x) = 0, j = 1, . . . , q.

This problem can be solved by minimizing the function −f0 subject to the constraints.
Hence, all the terms defined for a minimization problem can also be defined for the
maximization problem. The optimal value of the problem in (3.10) is defined as
sup{f0(x)|fi(x) ≤ 0,∀i, hj(x) = 0, ∀j}. The solution of the optimization prob-
lem is achieved at the optimal point x∗ if and only if f0(x∗) ≥ f0(x) for all x in the
domain of this problem. For the maximization problem, the objective is also called the
utility instead of the cost.
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Equivalent problems

Two problems are equivalent if a solution of one can be easily found from a solution
of the other. Consider the following problem as an example

minimize f̃(x) = α0f0(x) (3.11)

subject to f̃i(x) = αifi(x) ≤ 0, i = 1, . . . , p,

h̃j(x) = βjhj(x) = 0, j = 1, . . . , q,

where αi > 0,∀i, and βj ̸= 0,∀j. It is obtained from the standard form problem (3.7)
by scaling the objective and inequality constraint functions by positive constants, and
scaling the equality constraint functions by non-zero constants. The feasible sets of
the original problem and equivalent problem are identical. A point x∗ is optimal for
the original problem if and only if it is optimal for the scaled problem.

In the following, some general transformations to obtain the equivalent problems
are described.

• Change of variables: Suppose ψ : Rn → Rn is one-to-one, with image cov-
ering the domain of original problem D, i.e., ψ(domψ) ⊇ D. The following
problem with variable z can be defined as

minimize f̃0(z) (3.12)

subject to f̃i(z) ≤ 0, i = 1, . . . , p,

h̃j(z) = 0, j = 1, . . . , q,

where the functions f̃i(z) = fi
(
ψ(z)

)
,∀i and h̃j = hj

(
ψ(z)

)
,∀j. The original

problem in (3.7) and the problem in (3.12) are related by the change of variable
or substitution of variable x = ψ(z) [127]. These two problems are equivalent,
hence, if z solves the problem in (3.12), then x = ψ(z) solves the problem
in (3.7) and also if x solves the problem in (3.7), then z = ψ−1(x) solves the
problem in (3.12).

• Objective and constraint functions transformation: Suppose ϕ0 : R→ R is
monotone increasing, ϕ1, . . . , ϕp : R → R satisfy ϕi(u) ≤ 0 if and only if
u ≤ 0, and ϕp+1, . . . , ϕp+q : R → R satisfy ϕj(u) = 0 if and only if u = 0.
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The equivalent problem can be obtained as

minimize f̃0(x) (3.13)

subject to f̃i(x) ≤ 0, i = 1, . . . , p,

h̃j(x) = 0, j = 1, . . . , q,

where f̃i(x) = ϕi

(
fi(x)

)
, i = 0, . . . , p, and h̃j(x) = ϕp+j

(
hj(x)

)
, j = 1, . . . , q,

are defined as the compositions. The problem in (3.13) and the original problem
in (3.7) are equivalent, hence, the feasible sets and also the optimal points are
identical.

• Slack variables: By using the simple transformation that fi(x) ≤ 0 if and only
if there is an si ≥ 0 that satisfies fi(x) + si = 0, the following problem can be
defined

minimize f0(x) (3.14)

subject to si ≥ 0, i = 1, . . . , p,

fi(x) + si = 0, i = 1, . . . , p,

hj(x) = 0, j = 1, . . . , q,

where the variables are x ∈ Rn and s ∈ Rp. The new variable si is called
the slack variable associated with the original inequality constraint fi(x) ≤ 0.
The problem in (3.14) is equivalent to the original problem in (3.7), hence, if
(x, s) is feasible for the problem in (3.14), then x is feasible for the original
problem in (3.7) and conversely, if x is feasible for the original problem, then
(x, s) is feasible for the problem in (3.14). Moreover, x is optimal for the original
problem in (3.7) if and only if (x, s) is optimal for the problem in (3.14).

3.3.2 Convex Optimization

A convex optimization problem is used for the general optimization problem in (3.7)
when the objective function, f0, and inequality constraint functions, fi, ∀i, are convex,
and the equality constraint functions hj, ∀j, are affine [127]. Recall that a function
is affine if it is a sum of a linear function and a constant, i.e., aT

j x = bj, ∀j. In
convex optimization problems, any locally optimal point is also globally optimal. In
general there is no analytical formulation for the solution of convex optimization prob-
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lems, however, they can be solved efficiently by some well-known algorithms such as
interior-point algorithm.

3.3.3 Linear optimization problems

The optimization problem is called a LP when the objective and constraint functions
are all affine. The problem is non-linear program (NLP) if the objective or some
constraint functions are non-linear. A standard form of LP problem can be expressed
as follows

minimize cTx+ d (3.15)

subject to Gx ≤ h,

Ax = b,

where c ∈ Rn, h ∈ Rp, and b ∈ Rq are column vectors and G ∈ Rp×n and A ∈ Rq×n

are matrices. LPs are convex optimization problems. It is common to eliminate the
constant d in the objective function, since it does not affect the optimal solution.

3.3.4 Quadratic optimization problems

The convex optimization problem in (3.7) is called a QP when the objective function
is quadratic and the constraint functions are affine. The standard form of QP problem
is shown below

minimize
1

2
xTPx+ qTx+ r (3.16)

subject to Gx ≤ h,

Ax = b,

where P ∈ Sn
+, G ∈ Rp×n and A ∈ Rq×n. When both objective and the inequality

constraint functions are quadratic, the convex optimization problem is called a QCQP.
This has the form

minimize
1

2
xTP0x+ qT

0 x+ r0 (3.17)

subject to
1

2
xTPix+ qT

i x+ ri ≤ 0, i = 1, . . . , p,

Ax = b,
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where Pi ∈ Sn
+, ∀i. QPs include LPs as a special case, by taking P = 0 in (3.16). Also,

QCQP includes QP (and therefore also LPs) as a special case, by taking Pi = 0, i ≥ 1

in (3.17).

3.3.5 Second-Order Cone Programming

A SOCP can be written as [127, 137]

minimize fTx (3.18)

subject to ∥Aix+ bi∥ ≤ cTi x+ di, i = 1, . . . , p,

Fx = g,

where Ai ∈ Rni×n and F ∈ Rq×n. The first constraint in (3.18) is called a second
order cone constraint. This class of optimization problems is closely related to QP. If
ci = 0, ∀i, a standard form of QCQP will be obtained by squaring both sides of the
constraints. Similarly, if Ai = 0, ∀i, then the SOCP reduces to a LP.

3.3.6 Semidefinite Programming

The most general form for SDP can be written as [127, 138]

minimize cTx (3.19)

subject to x1F1 + x2F2 + . . .+ xnFn +G ≼ 0,

Ax = b,

where G,Fl, . . . ,Fn ∈ Sk and A ∈ Rq×n. The inequality constraints in (3.19) are also
called LMI. An SDP reduces to LP if the matrices G,Fl, . . . ,Fn are all diagonal.

3.4 Summary

In this chapter, a general introduction to the optimization problems is provided along
with the related technologies and mathematical tools and the various convex optimiza-
tion problems have also been briefly discussed. In general, the aim of optimization
problem is finding optimal solutions from the feasible region, or developing near-
optimal solutions. Convex problems are usually solved efficiently using interior point
methods, but some original problems may not have a convex form due to inappropriate
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formulations. However, for some of them it is possible to transform them to convex
problems. For the addressed radio resource optimization problems in this thesis, it
is a difficult and challenging task to solve the problems. Hence, some widely used
mathematical tools are presented in this chapter which is utilized in the next chapters
to solve the addressed optimization problems in NOMA-based systems.



Chapter 4

Resource Allocation Techniques for
MISO NOMA Systems

4.1 Introduction

NOMA introduces a paradigm shift to offer high SE compared to that of the con-
ventional multiple access schemes. Since available resources are limited, an efficient
resource utilisation is required in the system design to meet the demanding require-
ments. Resource allocation is a series of processes required to determine the amount
of related resources to be efficiently allocated to each user in order to achieve the best
performance by taking realistic constraints into account [139]. Therefore, optimum
power allocation among users in NOMA is required to provide the best performance
with the minimum amount of resources. Early works on NOMA system mainly fo-
cus on the resource allocation to improve the performance of the wireless networks
with single antenna transceiver [101–105]. Recently, some attempts are made to uti-
lize multiple antenna in NOMA system to achieve high SE. In [46, 52], the random
opportunistic beamforming is first proposed for the MIMO NOMA systems, where
the transmitter generates multiple beams and superposes multiple users within each
beam. In this chapter, beamforming design for a NOMA based downlink system is
investigated, where a BS is equipped with multiple antennas serving a number of ge-
ographically distributed users. It is assumed that the CSI between the transmitter and
the users is perfectly known at the transmitter. Then, two resource allocation problems
are defined in MISO-NOMA systems to design the beamformers for power minimiza-
tion and user fairness. Since both optimization problems are non-convex, Taylor series
approximation and SDR approach are used to transform and approximate the original
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non-convex problems to convex optimization problems. The problems are solved by
iteratively solving the convex subproblems. Simulation results show that the NOMA
system yields better performance in terms of power consumption and fairness than the
conventional multiple access schemes.

4.2 System Model

A downlink transmission of a MISO NOMA system withK users, Uk, k ∈ {1, . . . , K}
is considered as shown in Fig. 4.1, where BS employs NOMA scheme to transmit
signals of different users. The BS is equipped with N transmit antennas, whereas
each user equipment consists of a single antenna. The BS transmits a superposition
of the individual messages to all users which linearly weighted by the corresponding
beamforming vector. Each user receives its signals as well as interference signals from
the other users. Hence, the signal received at the kth user, Uk, is given by

yk = hH
k wksk +

∑
m̸=k

hH
k wmsm + nk, (4.1)

where sk and wk are the transmitted information symbol intended for Uk and the corre-
sponding transmit beamforming weight vector, respectively. The symbols are normal-
ized so that they have unit energy and the messages are assumed to be independent,
i.e., E(ssH) = I where s = [s1 s2 . . . sK ]

T , and ∥wk∥22 represents the transmit power
assigned to Uk. In addition, hk ∈ CN denotes the complex channel vector between the
BS and Uk and nk represents a zero-mean circularly symmetric AWGN with variance
σ2
k at Uk, (i.e., nk ∼ CN (0, σ2

k)).
In the NOMA scheme, user multiplexing is performed in the power domain and

the SIC approach is employed at the receivers to separate signals between different
users [15, 54]. In this scheme, users are sorted based on the norm of their channels,
i.e., ∥h1∥2 ≤ ∥h2∥2 ≤ . . . ≤ ∥hK∥2. In this scenario, Uk should be able to decode the
signals intended for the users from U1 to Uk and effectively remove the interference
from the first k − 1 users, whereas the signals intended for the rest of the users, i.e.,
Uk+1, . . . , UK , are treated as the interference at Uk. Based on this SIC approach, the
lth user can decode and remove the kth user’s signals for all 1 ≤ k < l in a successive
manner. In other words, the kth user’s signal should be decoded by the lth user for all
l ∈ {k, k + 1, . . . , K} [46, 79]. Hence, the remaining signal at the lth user to decode
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Fig. 4.1 The NOMA based downlink systems. One BS with multiple antennas serves
users. The signals of users from U1 to Uk−1 are cancelled at kth user, while the signals
of users Uk+1 to UK are considered as interference.

the kth user’s signal is represented as follows:

y
(k)
l = hH

l wksk +
K∑

m=k+1

hH
l wmsm + nl, (4.2)

where the first term is the desired signal to detect sk and the second term treated as
the interference from the signals intended for the users Uk+1, . . . , UK . Based on these
conditions, the achievable rate of Uk can be defined as follows:

Rk = log2

(
1 + min

l∈{k,k+1,...,K}
SINR(k)

l

)
, (4.3)

where

SINR(k)
l =

|hH
l wk|2∑K

m=k+1 |hH
l wm|2 + σ2

l

, (4.4)

represents the SINR of the signal intended for Uk, at the lth user.
Moreover, the following conditions should be satisfied in NOMA scheme to guar-

antee the intended ordering of SIC in decoding the signals of the weaker users and to
allocate non-trivial data rates to the weaker users [79]:

|hkw1|2 ≥ . . . ≥ |hkwk−1|2 ≥ |hkwk|2 ≥ |hkwk+1|2 ≥ . . . ≥ |hkwK |2, ∀k.
(4.5)
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The sequence of above inequalities helps boost the SINRs needed to decode other
users’ messages. Also, in SIC based receivers, each user decodes its own message after
decoding the messages of weaker users and successfully removing their interference.
In order to facilitate this SIC technique, the received power of the signals to be decoded
should be made greater than the received powers of the other users’ signals. Hence,
the above inequalities help to implement SIC by increasing the power of the signals
intended for the weaker users. Through imposing these conditions, the users located
far from the BS receive more signal power than that of the users near to the BS.

4.3 Power Optimization Framework

Low energy consumption is one of the key requirements in future wireless networks.
Hence, a resource allocation problem is first considered to minimize the required total
transmit power while satisfying a predefined QoS at each user. This scenario could
arise in a network consisting of users with delay-intolerant real-time services (real-
time users) [140]. These users should achieve their required QoS at all times, regard-
less of their channel conditions. In this section, a power minimization problem is
considered to satisfy QoS at each user with perfect CSI assumption. Accordingly, the
beamformers are designed to minimize the total transmit power while imposing con-
straints on the rate requirement at each user. This power minimization problem can be
formulated into the following optimization framework:

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (4.6a)

subject to log2

(
1 + min

l∈{k,k+1,...,K}
SINR(k)

l

)
≥ Rmin

k , ∀k, (4.6b)

where the constraint in (4.6b) is considered to guarantee minimum data rate require-
ment Rmin

k at Uk. The power allocation problem considered in (4.6) is non-convex in
terms of wk. To handle this issue, first, some transformations are applied to simplify
the constraints and then, different approaches are exploited to approximate the equiv-
alent problem. Since log(.) is a non-decreasing function, the following equivalent
constraint can be considered instead of (4.6b):

min
l∈{k,k+1,...,K}

SINR(k)
l ≥ γmin

k , ∀k, (4.7)
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where γmin
k = 2R

min
k − 1 is the minimum SINR requirement at Uk. Then, (4.7) can be

rewritten as follows:


SINR(k)

k ≥ γmin
k ,

SINR(k)
k+1 ≥ γmin

k ,
...
SINR(k)

K ≥ γmin
k ,

⇔



γmin
k

(∑K
m=k+1 |hH

k wm|2 + σ2
k

)
≤ |hH

k wk|2,

γmin
k

(∑K
m=k+1 |hH

k+1wm|2 + σ2
k+1

)
≤ |hH

k+1wk|2,
...

γmin
k

(∑K
m=k+1 |hH

Kwm|2 + σ2
K

)
≤ |hH

Kwk|2,

⇔ γmin
k

(
K∑

m=k+1

|hH
l wm|2 + σ2

l

)
≤ |hH

l wk|2, ∀k, l = k, . . . ,K. (4.8)

Finally, the equivalent formulation of the original power minimization problem in
(4.6) can be reformulated as

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (4.9a)

subject to γmin
k

(
K∑

m=k+1

|hH
l wm|2 + σ2

l

)
≤ |hH

l wk|2, ∀k, l = k, . . . ,K.

(4.9b)

The above problem is still non-convex due to the quadratic term on the right side of
the inequality in (4.9b). To tackle this issue, some approximation methods are applied
to convexify the optimization problem. Then, an iterative algorithm is eventually devel-
oped to solve the original power minimization problem. This type of algorithms will
be initiated with the feasible solution which satisfies the constraints and then, solves
the problem iteratively and yields a better solution in each iteration.

4.3.1 Taylor Series Approximation

In this subsection, convex approximations for the non-convex constraint in (4.9b) are
provided. To handle these constraints, SOC representation is used to equivalently trans-
form the constraint into a tractable form. In this beamforming design, choosing an
arbitrary phase for wk has no impact on the optimization and also provides the same
solutions. Thus, any arbitrary phase can be selected for this beamformer. Furthermore,
this enables to assume that hH

l wk > 0, which makes the square root of |hH
l wk|2 well-

defined [141, 142]. By reshuffling the constraints and taking their square root, the
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non-convex constraints can be reformulated as a SOC as follows:

γmin
k

(
K∑

m=k+1

|hH
l wm|2 + σ2

l

)
≤ |hH

l wk|2 ⇔



√
γmin
k

∥∥∥∥∥∥∥∥∥∥
|hH

l wk+1|
...
|hH

l wK |
σl

∥∥∥∥∥∥∥∥∥∥
≤ |hH

l wk|,

ℑ(hH
l wk) = 0.

(4.10)

However, it is impossible to have a phase rotation to simultaneously satisfy the
following conditions:

ℑ(hH
k wk) = ℑ(hH

l wk) = 0, ∀l = k + 1, . . . , K. (4.11)

Therefore, this phase rotation has been only applied to satisfyℑ(hH
l wk) = 0, for l = k,

and exploited the Taylor series approximation [36, 32, 143] for l = k + 1, . . . , K to
convexify the non-convex constraints in (4.9b) based on the following Lemma:

Lemma 1: By using the first order Taylor approximation of the function fl(wk) around
w

(t)
k in the tth iteration, the following inequality holds

|hH
l wk|2 = wH

k hlh
H
l wk , fl(wk) ≥ w

(t)
k

H
hlh

H
l w

(t)
k

+ 2ℜ
[
w

(t)
k

H
hlhl

H(wk −w
(t)
k )
]
, gl

(
wk,w

(t)
k

)
.

(4.12)

This formulation is linear in terms of variable wk, and will be used instead of the orig-
inal norm-squared function. Any inequality in constraint (4.9b) can be approximated
to a convex one as follows:

γmin
k (

K∑
m=k+1

|hH
l wm|2 + σ2

l ) ≤ gl(wk,w
(t)
k ). (4.13)

Proof: Please refer to Appendix A.1. �
After applying the SOC representation in (4.10) and the approximation in Lemma

1, the following optimization problem is formulated:
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Table 4.1 Proposed algorithm based on Taylor series approximation

Algorithm 1. Proposed Algorithm for solving problem (4.14)
1. Initialization: Set t = 0 and randomly generate a set of

feasible w
(0)
k , ∀k for problem in (4.14).

2. repeat
3. Solve problem (4.14)
4. Update {w(t+1)

k } = {w(t)
k }, ∀k

5. t← t+ 1

6. until |w(t+1)
k −w

(t)
k | ≤ ε

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (4.14a)

subject to


√
γmin
k

∥∥∥∥∥∥∥∥∥∥
|hH

k wk+1|
...
|hH

k wK |
σl

∥∥∥∥∥∥∥∥∥∥
≤ |hH

k wk|,

ℑ(hH
k wk) = 0,

∀k, (4.14b)

γmin
k

(
K∑

m=k+1

|hH
l wm|2 + σ2

l

)
≤ gl

(
wk,w

(t)
k

)
, ∀k, l = k + 1, . . . , K.

(4.14c)

An iterative algorithm is developed to solve the power minimization problem based
on the approximated problem in (4.14) which is summarized in Table 4.1. This algo-
rithm will be initialized with w

(t)
k and the corresponding approximated problem will be

solved to obtain the beamforming vector, i.e., w(t+1)
k . In other words, the correspond-

ing initial solution is updated iteratively and the algorithm will be terminated once the
required accuracy is achieved.

4.3.2 Semidefinite Relaxation Approach

SDP is a standard subfield of convex optimization problem that consists of a linear
objective function over the intersection of the cone of positive semidefinite matrices
with an affine space. SDPs can be efficiently solved by interior point methods. By
using SDR, the non-convex constraint can be relaxed and the problem can be converted
to a SDP problem [140, 141]. This relaxation formulates the non-convex optimization



4.3 Power Optimization Framework 43

problem into a convex optimization problem where the cost and constraints are convex
in nature. In this section, an approach based on SDR is proposed to solve the original
non-convex power minimization problem in (4.9). By considering Hk = hkh

H
k and

Wk = wkw
H
k , a new matrix variable Wk is introduced and the original optimization

problem in (4.9) can be reformulated into the following optimization framework:

min
Wk∈CN×N , ∀k

K∑
k=1

Tr(Wk) (4.15a)

subject to γmin
k

(
K∑

m=k+1

Tr(HlWm) + σ2
l

)
≤ Tr(HlWk), ∀k, l = k, . . . ,K,

(4.15b)

Wk < 0, ∀k, (4.15c)

rank(Wk) = 1, ∀k. (4.15d)

Note that, all the constraints except the rank one constraint in (4.15d) are convex.
To obtain a solution, the rank-one constraint is relaxed by exploiting the SDR approach.
Without the rank-one constraint, the following optimization problem is solved:

min
Wk∈CN×N , ∀k

K∑
k=1

Tr(Wk) (4.16a)

subject to γmin
k

(
K∑

m=k+1

Tr(HlWm) + σ2
l

)
≤ Tr(HlWk), ∀k, l = k, . . . ,K,

(4.16b)

Wk < 0, ∀k. (4.16c)

Since (4.16) is a standard SDP, it can be efficiently solved through convex opti-
mization techniques. In general, if the solution of the relaxed problem in (4.16) is a
set of rank-one matrices Wk, then it will be also the optimal solution to the original
problem in (4.15). Otherwise, the randomization technique can be used to generate a
set of rank-one solutions [115]. The beamforming vector wk can be obtained from a
rank-one Wk solution, as wk =

√
λkvk where λk and vk are the maximum eigenvalue

and the corresponding eigenvector of Wk, respectively.
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4.3.3 Complexity Analysis

Computational complexity theory is a branch of the theory of computation in theoreti-
cal computer science that focuses on classifying computational problems according to
their inherent difficulty of solving a problem. In fact, the computational complexity
helps algorithm developers to identify how difficult for solving a problem is. A com-
putational problem is understood to be a task that is in principle amenable to being
solved by mechanical application of mathematical steps, such as an algorithm. This
is equivalent to stating that the problem may be solved by a computer. A problem is
regarded as inherently difficult if its solution requires significant resources in the al-
gorithm. The theory formalizes this intuition, by introducing mathematical models of
computation to study these problems and quantifying their computational complexity,
i.e., the amount of resources needed to solve them, such as time and storage [144].

In this section, the complexity of two different approaches developed to transform
the original non-convex optimization problem to a convex one is investigated. In the
SDR approach, the optimization problem is reformulated in SDP form by relaxing the
non-convex rank one constraint. The optimal solution of the original problem can be
obtained from this simple SDR method if it yields rank-one solutions. On the other
hand, it is possible in some cases for the solution of the relaxed problem to turn out not
to be rank-one. In this case, the proposed Taylor series approximation can be employed
to convexify the original problem, resulting in a suboptimal solution. The complexity
of the proposed algorithms are analyzed by evaluating the computational complexity
of each problem based on the complexity of the interior point methods [137, 131]. This
complexity can be defined by quantifying the required number of arithmetic operations
in the worst-case at each iteration and the required number of iterations to achieve the
solutions with a certain accuracy. The computational complexity for each algorithm is
defined as follows:

1) In the Taylor series approximation, the beamformer design in the power mini-
mization problem is formulated into a SOCP in problem (4.14). Therefore, the worst-
case complexity is determined by the SOCP in each step. It is well known that for
general interior-point methods the complexity of the SOCP depends upon the num-
ber of constraints, variables and the dimension of each SOC constraint. The total
number of constraints in the formulation of (4.14) is 0.5K2 + 1.5K. Therefore, the
number of iterations needed to converge with ε solution accuracy at the termination
of the algorithm is O(

√
0.5K2 + 1.5K log 1

ε
) [137]. Each iteration requires at most

O
(
(NK)2(0.33K3 + 0.5K2 + 1.16K + 1)

)
arithmetic operations to solve the SOCP
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whereNK and 0.33K3+0.5K2+1.16K+1 are the number of optimization variables
and the total dimension of the SOC constraints in (4.14).

2) In SDP, the algorithm finds an ε-optimal solution for the semidefinite problem
with an n dimensional semidefinite cone in at most O(

√
n log 1

ε
) iterations where n =

N2 in the problem in (4.16). Each iteration requires at mostO(mn3+m2n2+m3) arith-
metic operations to solve the SDP where m denotes the number of semidefinite con-
straints [131]. Thus, O

(
0.5K(K +1)N6 +0.25K2(K + 1)2N4 +0.125K3(K + 1)3

)
arithmetic operations are required in each iteration of solving the problem in (4.16).

In summary, the first scheme has a lower worst-case complexity than an SDR
scheme. In contrast to the semidefinite formulation, there is no need to introduce the
additional matrices Wk for the first scheme and the resulting optimization involves
significantly fewer variables. However, first scheme has to deal with an approximation
which makes the solution suboptimal. On the other hand, the SDR method can yield
the optimal solution if it given a set of rank-one matrices which eliminates the need for
the iterative approach as in the Taylor series approximation scheme. Note that the first
scheme requires an iterative process, however, as seen in simulation results section,
this approach converges with a small number of iterations which has no significant
impact on the order of the complexity of the proposed algorithm.

4.4 Max-Min Fairness Problem

For the previously considered power minimization approach, the transmitter requires a
certain amount of transmit power to achieve the target rate at each user. However, the
maximum available transmit power is generally limited at the transmitter and therefore
the power minimization problem might turn out to be infeasible due to insufficient
transmit power. In this case, the target rate should be decreased, and optimization
should be repeatedly performed until the problem becomes feasible. To overcome
this infeasibility issue, a max-min fairness based approach is considered, in which
the minimum rate between all users is maximized while satisfying the transmit power
constraint [145]. This practical scenario could arise in a network consisting of users
with delay-tolerant packet data services (non-real time users) [146, 147], where packet
size could be varied according to the achievable rate value. In the context of NOMA
systems, there are a number of works that consider the max-min fairness scheme in
single antenna NOMA systems [148, 149]. However, this has not been studied for
a multi-antenna NOMA system. In this section, a max-min fairness problem for the
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NOMA downlink system has been investigated. Since the users’ rate in the NOMA
scheme can be managed with more flexibility, it may be an efficient way to enhance
user fairness for scenarios with strict fairness constraints.

Therefore, to balance the rate between different users in the network, the max-min
fairness approach is an appropriate criterion. The corresponding max-min fairness
problem can be formulated as follows:

max
wk∈CN×1, ∀k

min
k
Rk, (4.17a)

subject to
K∑
k=1

∥wk∥22 ≤ Pmax, (4.17b)

|hH
k w1|2 ≥ . . . ≥ |hH

k wk−1|2 ≥ |hH
k wk|2 ≥ |hH

k wk+1|2 ≥ . . .

≥ |hH
k wK |2, ∀k, (4.17c)

whereRk is given in (4.3). The constraint in (4.17b) represents the maximum available
total transmit power, i.e., Pmax and the constraint in (4.17c) is considered to ensure the
given decoding order of SIC. It is difficult to realize the optimal solution for this max-
min problem due to its non-convex nature. Hence, the problem is first transformed into
a convex one, then utilize a low-complexity polynomial algorithm to find an optimal
solution.

Lemma 2: This max-min fairness problem is quasi-concave and can be solved through
a bisection method.

Proof: Please refer to Appendix A.2. �

First, some transformations are considered to simplify the constraints. From the
inequalities in (4.17c), it holds that

|hH
k w2|2 ≤ |hH

k w1|2,
...
|hH

k wk+1|2 ≤ minm∈[1,k] |hH
k wm|2,

...
|hH

k wK |2 ≤ minm∈[1,K−1] |hH
k wm|2,

⇔ |hH
k wn|2 ≤ |hH

k wm|2,

∀k, n = 2, . . . , K, m = 1, . . . , n− 1. (4.18)
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Table 4.2 Proposed algorithm based on bisection method

Algorithm 2 Proposed Algorithm for solving problem (4.17)

1. Initialization: Set αmin = 0, αmax = log2

(
1 + Pmax|hK |2

σ2
K

)
,

2. repeat
3. Set α = (αmax + αmin)/2 and solve (4.21) to obtain w0

4. if (4.17b) is satisfied then
5. Set αmin = α; w∗ = w0;
6. else
7. αmax = α
8. until (αmax − αmin ≤ ε).

After these simplifications, Lemma 1 in Section 4.3.1 can be employed to convex-
ify (4.18) as

|hH
k wn|2 ≤ gk(wm,w

(t)
m ), ∀k, n = 2, . . . , K, m = 1, . . . , n− 1, (4.19)

where gk(wm,w
(t)
m ) is the Taylor series approximation of the term |hH

k wm|2 around
w

(t)
m in the tth iteration.

Similarly, the equivalent convex formulation for (A.9) can be reformulated as

(2α − 1)(ΣK
m=k+1|hH

l wm|2 + σ2
l ) ≤ gl(wk,w

(t)
k ), ∀k, l = k, k + 1, . . . , K. (4.20)

where gl(wk,w
(t)
k ) is the Taylor series approximation of the term |hH

l wk|2 around w
(t)
k

in the tth iteration.
In order to solve this problem through a bisection method, assume that R∗ de-

notes the optimal value of the objective function of the problem in (4.17). For a given
threshold α, if there exists a set of w0 = {w1, . . . ,wK} that satisfies the constraints
(4.17b),(4.19) and (4.20), thenR∗ ≥ α, otherwiseR∗ ≤ α. Equivalently, the following
problem can be solved

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (4.21a)

subject to (4.19) and (4.20), (4.21b)

and determined whether the solution satisfies the total power constraint
∑K

k=1 ∥wk∥22 ≤
Pmax. By appropriately choosing α through a bisection method, the solution of (4.17),
w∗ can be obtained by solving a sequence of feasibility problems of (4.21). Table 4.2
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presents the proposed bisection method for realizing the solution for the problem in
(4.17).

4.5 Simulation Results

In this section, the performance of the proposed beamforming designs for the NOMA
scheme is evaluated through numerical simulations. A single cell downlink transmis-
sion is consider where a multi-antenna BS serves single-antenna users which are uni-
formly distributed within the circle with a radius of 50 meters around the BS, but no
closer than 1 meter. The small-scale fading of the channels is assumed to be Rayleigh
fading which represents an isotropic scattering environment. The large-scale fading
effect is modelled by dk−β to incorporate the path-loss effects where dk is the distance
between Uk and the BS, measured in meters and β is the path-loss exponent. More
precisely, hk = χk

√
dk

−β where χk ∼ CN (0, I) refer to small scale fading channels.
It should be noted here that in simulations the user distances are fixed and the average
is taken over the fast fading component of the channel vectors and the path-loss expo-
nent is considered as β = 3.8. Moreover, the noise variance at each user is assumed
to be 0.01 (i.e., σ2

k = 0.01) and it is assumed that the target rates for all users are the
same. For the simulations, the Yalmip package [150] is used and the numerical results
are obtained by averaging over different 1000 random channels.

To compare the performance of NOMA with conventional methods, the simulation
results are also achieved for OMA and ZF schemes. For OMA scheme, the following
optimization problem is solved:

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (4.22a)

subject to
1

K
log2

(
1 +
|hH

k wk|2

σ2
k

)
≥ Rmin

k , ∀k, (4.22b)

where the OMA and NOMA schemes are compared in terms of required bandwidth.
In other words, the OMA scheme requires K sub-channels to cover K users, while, in
the NOMA scheme, these users are allowed to simultaneously share one sub-channel
via the power domain. Hence, more bandwidth is required in the OMA scheme in
comparison with the NOMA scheme.

In the ZF scheme, the beamforming vector is considered as wk =
√
pkvk where

pk and vk are power and direction associated to the kth user's data, respectively. Then,
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Fig. 4.2 The required total transmit power to achieve different target rates for 3 users
in NOMA, ZF and OMA schemes.

the vectors vk, ∀k, are designed to avoid mutual interference between users. In other
words, the following condition should be satisfied:

hH
i vk = 0, ∀i ̸= k. (4.23)

To design the beamforming vector which satisfy condition in (4.23), the following
matrix is first defined:

Hk = [h1 · · ·hk−1 hk+1 · · ·hK ], (4.24)

The null space of the matrix Hk in (4.24) can be utilized for the vector vk which results
in HH

k vk = 0 and satisfies condition in (4.23). Then, the following power allocation
problem is solved:

min
pk, ∀k

K∑
k=1

pk, (4.25a)

subject to log2

(
1 +

pk|hH
k vk|2

σ2
k

)
≥ Rmin

k , ∀k, (4.25b)

4.5.1 Total Transmit Power

First, the required total transmit power is evaluated for both power minimization ap-
proaches (i.e., Taylor series approximation and SDR) with different system parameters.
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Fig. 4.3 The required total transmit power to achieve Rmin
k = 2 bps/Hz for different

numbers of users by using Taylor series approximation and SDR methods.

The required total transmit power against different target rates is presented in Fig. 4.2
for the NOMA and conventional multiple access schemes with different numbers of
transmit antennas. By increasing the minimum required rate at each user, the BS
requires more power to satisfy the target rate requirements. For a given target rate,
the required total transmit power can be reduced by employing more antennas at the
transmitter. As shown in Fig. 4.2, for a specific rate requirement, the conventional mul-
tiple access techniques consume more transmit power than the NOMA scheme. This
demonstrates that the NOMA scheme outperforms the conventional multiple access in
terms of power consumption.

In Fig. 4.3, the required total transmit power for different number of users with dif-
ferent number of transmit antennas is obtained. As the number of antennas increases,
the required transmit power decreases due to the spatial diversity gain. However, the
BS requires more transmit power as the number of users increases. As shown in Fig.
4.3, both schemes, Taylor series approximation and SDR show a similar performance
for a few users due to the small number of approximated terms in the Taylor series
approximation. However, the number of approximated terms increases with the num-
ber of users. As a result, the performance gap between these two schemes increases
and SDR outperforms the Taylor series approximation scheme in terms of required
transmit power. The reason is that SDR can provide the optimal solution given that the
solution is rank one whereas the other scheme relies on the Taylor series approximation
which might lead to a suboptimal solution.
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Table 4.3 Comparison of power allocations in two approaches. Taylor series Approxi-
mation and SDR method.

Taylor Approximation SDR Method

Channels
U1 Power

(w)
U2 Power

(w)
U3 Power

(w)
Total Power

(w)
U1 Power

(w)
U2 Power

(w)
U3 Power

(w)
Total Power

(w)
Channel 1 5.3596 0.6702 0.0821 6.1119 5.3593 0.6701 0.0820 6.1114
Channel 2 3.7419 0.4692 0.0636 4.2747 3.7417 0.4690 0.0635 4.2742
Channel 3 7.6185 0.9595 0.1232 8.7012 7.6156 0.9591 0.1230 8.6977
Channel 4 10.2415 1.2811 0.1642 11.6868 10.2367 1.2808 0.1641 11.6814
Channel 5 8.4636 1.0626 0.1468 9.6730 8.4634 1.0625 0.1467 9.6726
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Fig. 4.4 The convergence of the algorithm in Table 4.1 for different set of channels.
Number of users= 3, Number of antennas= 6, Target rate= 1.
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Fig. 4.5 The convergence of the algorithm based on Taylor series approximation for
different initializations. Number of users= 3, Number of antennas= 5, Target rate=
1.

Fig. 4.4 depicts the convergence of the algorithm provided in Table 4.1 in terms of
transmit power. As shown, this approach converges with a small number of iterations
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10 watt in NOMA, ZF and OMA schemes.
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Fig. 4.7 The minimum achieved rate for 5 users with different Pmax in NOMA, ZF and
OMA schemes.

(most of the time with 3 iterations), which does not have a significant impact on the
order of the complexity of the proposed algorithm. Moreover, the impact of the ini-
tialization of the algorithm is numerically evaluated on the convergence of the Taylor
series approximation. As shown in Fig. 4.5, the Taylor series approximation method
converges to the same solution with different initializations. Table 4.3 is provided to
compare the required transmit power for each user and the total transmit power ob-
tained through the Taylor series approximation and SDR approaches. As evidenced by
these results, there is no significant difference between the two proposed approaches.
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4.5.2 Achieved Minimum Rates in Max-min Approach

Next, the performance of the max-min fairness design is studied for both NOMA and
conventional multiple access schemes. The balanced rates maintaining fairness be-
tween users are demonstrated in Fig. 4.6 and Fig. 4.7, respectively, for different num-
ber of users and maximum available transmit power with different number of antennas.
As expected, reducing the number of users or increasing the maximum available trans-
mit power threshold improves the achievable fairness rate. Since the fairness rate is a
logarithmic function of power, as the power threshold increases the rate improvement
is compressed. These simulation results confirm that the QoS based beamforming de-
sign satisfies the required rate constraints at each user whereas the rates of the users are
balanced in the fairness based approach. As shown in Fig. 4.6 and Fig. 4.7, for a spe-
cific available power, the NOMA scheme achieves higher rate than the conventional
multiple access techniques.

The power allocations and the balanced rates obtained by solving problem (4.17)
are provided for five different random channels in Table 4.4. In order to validate the
optimality of the proposed max-min fairness approach, it is compared with the power
allocations through the power minimization solution in Section 4.3. In particular, the
balanced rates obtained through the fairness approach have been set as the target rates
in the power minimization approach for the same set of channels, and the correspond-
ing power allocations are obtained. As seen in Table 4.4 and Table 4.5, both max-
min fairness and power minimization approaches utilize the same power allocations to
achieve same rates at each user. This confirms the optimality of the proposed max-min
fairness based design as the power minimization approach is optimal for a given set of
target rates.

Table 4.4 Power allocations and achieved rates obtained through max-min fairness
approach.

Channels
U1 Power

(w)
U2 Power

(w)
U3 Power

(w)
Total Power

(w)
U1 Rate
(bps/Hz)

U2 Rate
(bps/Hz)

U3 Rate
(bps/Hz)

Channel 1 13.9225 0.9990 0.0804 15 3.8010 3.8010 3.8010
Channel 2 4.3137 0.5965 0.0929 5 2.8584 2.8584 2.8584
Channel 3 9.1271 0.8013 0.0730 10 3.5140 3.5140 3.5140
Channel 4 6.7110 0.7166 0.0754 7.5 3.2327 3.2327 3.2327
Channel 5 11.5454 0.8814 0.0752 12.5 3.7119 3.7119 3.7119
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Table 4.5 Total required transmit power and power allocation at each user for different
target rates with K = 3.

Channels
Target Rate
(bps/Hz)

Total Power
(w)

U1 Power
(w)

U2 Power
(w)

U3 Power
(w)

Channel 1 3.8010 15 13.9225 0.9990 0.0804
Channel 2 2.8584 5 4.3137 0.5965 0.0929
Channel 3 3.5140 10 9.1271 0.8013 0.0730
Channel 4 3.2327 7.5 6.7110 0.7166 0.0754
Channel 5 3.7119 12.5 11.5454 0.8814 0.0752

4.6 Summary

In this chapter, the beamforming design has been proposed in MISO-NOMA system
with perfect CSI. Low energy consumption is one of the key requirements in future
wireless networks. As such, a resource allocation problem to minimize the required
total transmit power is first considered while satisfying a predefined QoS at each user.
In particular, the power minimization problem is studied, where the beamformers are
designed to provide the minimum rate requirements at each user. This optimization
problem is non-convex in terms of beamforming vectors. To circumvent this non-
convexity issue, CCP is employed based on Taylor series approximation and SDR to
design the beamforming. Based on this approximation, an iterative algorithm is pro-
posed to design the beamforming vectors while satisfying the rate constraint. For the
previously considered power minimization approach, the transmitter requires a certain
amount of transmit power to achieve the target rate at each user. However, the maxi-
mum available transmit power is generally limited at the transmitter and therefore the
power minimization problem might turn out to be infeasible du to insufficient transmit
power. To overcome this infeasibility issue, a max-min fairness based approach is con-
sidered, in which the minimum rate between all users is maximized while satisfying
the transmit power constraint. Hence, the max-min problem is considered in a MISO
NOMA system to maintain fairness between users and solved by exploiting bisection
approach. Simulation results have been provided to validate the performance of the
proposed schemes in the terms of the required transmit power and balanced rates. It is
shown that NOMA can ensure high fairness requirements through appropriate power
allocation. These simulation results also demonstrate that NOMA can achieve superior
performance in terms of power consumption and system throughput compared to the
OMA and ZF schemes and can efficiently utilize the bandwidth resources.



Chapter 5

Robust Beamforming Designs for
MISO NOMA Systems with Imperfect
CSI

5.1 Introduction

In the wireless systems, the channel parameters are prone to imperfection. Hence,
there are practical difficulties in having the perfect CSI at the transmitter due to the
channel estimation and quantization errors. Ignoring the effect of CSI uncertainties
in the design for wireless networks can lead to solutions that may violate critical con-
straints and results in a poor performance in realistic channel conditions. In particu-
lar, these channel uncertainties might significantly degrade the system performance in
NOMA, since the decoding order of the received signal intended for different users
plays a crucial role in SIC based NOMA schemes [117]. Therefore, it is important
to incorporate these channel uncertainties in the beamforming design to cultivate the
desirable benefits offered by NOMA. To circumvent the inevitable channel uncer-
tainties, robust design is a well-known approach, which can be classified into two
groups, the worst-case robust design [111–114], and the outage probability based de-
sign [115, 116]. In the worst-case design, it is assumed that the CSI errors belong to
some known bounded uncertainty sets whereas in the outage probability based design,
the channel errors are random with a certain statistical distribution and constraints can
be satisfied with certain outage probabilities. In fact, the bounded robust optimization
is generally conservative owing to its worst-case criterion while probabilistic SINR
constrained beamforming provides a soft SINR control. In the context of NOMA, a ro-
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bust design with the norm-bounded channel uncertainties is investigated in [95] where
a clustering scheme is studied to maximize the worst-case achievable sum rate with a
total transmit power constraint.

In this chapter, both methods are employed to design the robust beamforming in a
MISO-NOMA system with imperfect CSI between the BS and the users. First, the ro-
bust power minimization problem is investigated where the beamformers are designed
by incorporating norm-bounded channel uncertainties to provide the required QoS at
each user. The constraints are formulated based on the worst-case performance op-
timization framework. By exploiting S-Procedure, the original non-convex problem
is converted into LMI and solved by using interior point methods. Next, an outage
probabilistic based robust scheme is considered where the total transmit power is min-
imized while satisfying the outage probability constraint at each user. The problem
is transformed into an LMI form through exploiting SDR approach to obtain the solu-
tion of the original non-convex problem. Simulation results show that proposed robust
schemes outperform the non-robust scheme in terms of the rate satisfaction ratio at
each user.

5.2 Worst-Case Robust Design

In the worst-case performance optimization, the maximum/minimum value of the ob-
jective function over all possible errors should be minimized/maximized using a set
of constraints on the worst possible errors [111–114]. In this section, the worst-case
robust design is investigated to incorporate imperfect CSI in the beamforming design.
This technique ensures that the constraint associated with the QoS is satisfied all the
time regardless of the channel uncertainties. Consider the same system model as in
Chapter 4 where a BS equipped with N antennas sends information to K single an-
tenna users, i.e., U1, U2, . . . , UK with imperfect CSI assumption as shown in Fig. 5.1.
In particular, the norm-bounded channel uncertainties are incorporated in the beam-
forming design to propose a robust design for the downlink MISO-NOMA systems.
In this model, it is assumed that the channel estimation error is bounded in a known
region and the true CSI can be expressed as

hk = ĥk +∆ĥk, (5.1)

∥∆ĥk∥2 = ∥hk − ĥk∥2 ≤ εk, (5.2)
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Fig. 5.1 The NOMA based downlink system where imperfect CSI is available at the
transmitter. One BS with N antennas serves K users. The signals of users from U1 to
Uk−1 are cancelled at kth user, while the signals of users Uk+1 to UK are considered as
interference.

where ĥk, ∆ĥk and εk ≥ 0 denote the estimate of hk, the norm-bounded channel
estimation error and the channel estimation error bound, respectively. The received
signal at Uk is given by

yk = (ĥk +∆ĥk)wksk +
∑
m̸=k

(ĥk +∆ĥk)wmsm + nk, ∀k. (5.3)

By applying the SIC at receivers, the signal at the lth user after removing the first
k − 1 users’ signals to detect the kth user is represented as

y
(k)
l = (ĥl +∆ĥl)wksk +

k−1∑
m=1

∆ĥlwmsm+
K∑

m=k+1

(ĥl +∆ĥl)
Hwmsm + nl,

∀k, l = k, k + 1, . . . , K, (5.4)

where the first term is the desired signal to detect sk and other terms treated as the
interference. The second term is due to imperfect CSI during the SIC process where
the signals intended for the users U1, . . . , Uk−1 cannot be completely removed by the
lth user. The third term is the interference introduced by the signals intended to the
users Uk+1, . . . , UK . Therefore, the SINR of the signal intended for Uk at the lth user
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can be written as

SINR(k)
l =

(ĥl +∆ĥl)
Hwkw

H
k (ĥl +∆ĥl)

k−1∑
m=1

∆ĥH
l wmw

H
m∆ĥl +

K∑
m=k+1

(ĥk +∆ĥk)
Hwmw

H
m(ĥk +∆ĥk) + σ2

l

.

(5.5)

For this network setup, the beamformers are designed based on the worst-case per-
formance optimization framework to tackle the norm-bounded channel uncertainties.
This robust beamforming design can be formulated as

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (5.6a)

subject to min
l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

)
≥ γmin

k , ∀k, (5.6b)

where γmin
k = (2R

min
k −1) is the minimum required SINR to achieve a target rateRmin

k at
Uk and the worst-case SINR denotes lower bound of SINR over the channel uncertain-
ties ∆ĥl, i.e., min∥∆ĥl∥2 SINR(k)

l . It is obvious that the problem formulation in (5.6)
is non-convex in terms of wk and channel uncertainties, and cannot be solved directly.
Thus, the equivalent transformation of the constraint in (5.6b) is first considered by
introducing a new matrix variable Wk = wkw

H
k as follows:

min
l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

)
≥ γmin

k

⇔ min
∥∆ĥl∥2≤εl

(
SINR(k)

l

)
≥ γmin

k , ∀l = k, k + 1, . . . , K,

⇔ min
∥∆ĥl∥2≤εl


hH
l Wkhl

k−1∑
m=1

∆ĥH
l Wm∆ĥl +

K∑
m=k+1

hH
l Wmhl + σ2

l

 ≥ γmin
k ,

∀l = k, k + 1, . . . , K. (5.7)
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Without loss of generality, the original optimization problem in (5.6) can be refor-
mulated into the following optimization framework:

min
Wk∈CN×N , ∀k

K∑
k=1

Tr(Wk), (5.8a)

subject to min
∥∆ĥl∥2≤εl

(
hH
l Wkhl∑k−1

m=1∆ĥH
l Wm∆ĥl +

∑K
m=k+1 h

H
l Wmhl + σ2

l

)
≥ γmin

k ,

∀k, l = k, k + 1, . . . , K,

(5.8b)

Wk ≽ 0, ∀k, (5.8c)

rank(Wk) = 1, ∀k. (5.8d)

The reformulated problem in (5.8) is still non-convex due to the rank-one constraint
and unknown channel uncertainties, i.e., ∆ĥk. The inclusion of estimation uncertain-
ties leads to the problem (5.8) intractable since the exact statistical information of ∆ĥk

is unknown. The rank-one constraint in (5.8d) can be relaxed by exploiting SDR. To
remove the unknown channel uncertainties, S-procedure can be employed to reformu-
late the constraints as LMIs [151]. This is possible since the error bound of the channel
estimation is known.

Lemma 3: By relaxing the rank-one constraints on Wk, the original problem in (5.8)
can be recast into the following convex problem:

min
Wk ∈ CN×N , ∀k
µkl ≥ 0

, ∀k,l

K∑
k=1

Tr(Wk), (5.9a)

subject to Ckl =

[
µklI+ φk ϕkĥl

ĥH
l ϕk ĥH

l ϕkĥl − σ2
k − µklε

2
l

]
≽ 0,

∀k, l = k, k + 1, . . . , K, (5.9b)

Wk ≽ 0, ∀k, (5.9c)

where φk = Wk − γmin
k

∑
m ̸=k Wm and ϕk = Wk − γmin

k

∑K
m=k+1Wm.

Proof: Please refer to Appendix B.1. �
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The problem in (5.9) is a standard SDP and can be efficiently solved using interior-
point methods. If the solution of the relaxed problem in (5.9) is a set of rank-one
matrices Wk, the optimal solution for the original problem in (5.6) can be obtained
through extracting the eigenvector corresponding to the maximum eigenvalue of the
rank-one solution of (5.9). Otherwise, the randomization technique can be used to
generate a set of rank-one solutions.

5.3 Outage Probabilistic based Robust Design

In the probabilistic approach, the channel errors are random with a certain statistical
distribution [115, 116]. In this model, the constraints assure that the desired SINR
targets are delivered to the users under predefined outage probabilities. In this section,
the outage probabilistic based approach is investigated by incorporating channel uncer-
tainties in the beamforming design. In particular, the power minimization problem is
considered with the outage probabilistic based target rate constraints. In this scheme,
it is assumed that an imperfect estimate of channel covariance matrix is available at the
BS and the required QoS should be satisfied with a predefined probability. Consider
Ĉk = E(ĥkĥ

H
k ) ∈ CN×N indicate the estimated channel covariance matrix of Uk and

the corresponding uncertainty matrix is denoted by ∆k ∈ CN×N . The (ij)th entries of
∆k are independently and identically distributed (i.i.d) as [∆k]ij ∼ CN (0, σ2

ij). Hence,
the actual channel covariance matrix can be modelled as

Ck = Ĉk +∆k, ∀k. (5.10)

Based on the SIC approach, the SINR of the signal intended for Uk at the lth user
can be written as

SINR(k)
l =

wH
k (Ĉl +∆l)wk∑k−1

m=1w
H
m∆lwm +

∑K
m=k+1w

H
m(Ĉl +∆l)wm + σ2

l

, (5.11)

where the first term and the second term in denominator are, respectively, due to im-
perfect CSI at the receivers during the SIC process and the interference introduced by
the signals intended to the stronger users. Hence, the power minimization problem can
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be formulated as follows:

min
wk∈CN×1, ∀k

K∑
k=1

∥wk∥22, (5.12a)

subject to min
l∈{k,k+1,...,K}

SINR(k)
l ≥ γmin

k , ∀k, (5.12b)

where γmin
k = 2R

min
k − 1 is the minimum required SINR at the Uk and the constraint in

(5.12b) can be simplified to SINR(k)
l ≥ γmin

k , ∀k, l = k, k + 1, . . . , K.

In the outage probability-based design, the QoS constraint for given SINR targets
γmin
k , is the probability that min

l∈{k,k+1,...,K}
SINR(k)

l ≥ γmin
k should be greater than 1− ρk,

for a pre-specified probability of outage ρk. Therefore, given the uncertainty model in
(5.10) and a distribution for [∆k]ij , the problem of interest can be written as

min
wk∈CN×1,∀k

K∑
k=1

∥wk∥22, (5.13a)

subject to Pr
(
SINR(k)

l ≥ γmin
k

)
≥ (1− ρk), ∀k, l = k, k + 1, . . . , K. (5.13b)

The robust problem in (5.13) is NP-hard since the inclusion of CSI uncertainties
in probabilistic constraints naturally lead to an infinite number of convex sets. To
tackle this issue, the probabilistic constraint of the problems in (5.13b) is equivalently
transformed into a tractable form. In order to realize the solution for the problem in
(5.13), first, a new matrix variable Wk = wkw

H
k is introduced and the constraints in

(5.13b) can be rewritten as follows:

Pr


Tr
(
Wk(Ĉl +∆l)

)
k−1∑
m=1

Tr(WH
m∆l) +

K∑
m=k+1

Tr
(
WH

m(Ĉl +∆l)
)
+ σ2

l

≥ γmin
k


= Pr

(
Tr(−B́k∆l) ≤ Tr(BkĈl)− σ2

l

)
≥ (1− ρk), ∀k, l = k, k + 1, . . . , K.

(5.14)

where B́k = γmin
k

−1
Wk −

∑
m̸=k Wm and Bk = γmin

k
−1
Wk −

∑K
m=k+1Wm.
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Hence, by defining a rank-one positive semidefinite matrix Wk, the problem in
(5.13) can be rewritten as

min
Wk∈CN×N , ∀k

K∑
k=1

Tr(Wk), (5.15a)

subject to Pr
(
Tr(−B́k∆l) ≤ Tr(BkĈl)− σ2

l

)
≥ (1− ρk), ∀k, l = k, . . . ,K.

(5.15b)

Then, a procedure is utilized through the following Lemma to convert probabilistic
constraints in (5.15b) into a tractable form to obtain the solution for the robust problem.

Lemma 4: The original robust optimization problem in (5.15) can be reformulated
into the following problem:

min
Wk∈CN×N , ∀k

K∑
k=1

Tr(Wk), (5.16a)

subject to Ckl =

[
Φkl√

2erf−1(1−2γk)
IM2 vec(−B́k ⊙ Σ∆l

)

vecH(−B́k ⊙ Σ∆l
) Φkl√

2erf−1(1−2γk)

]
≽ 0,

∀k, l = k, k + 1, . . . , K, (5.16b)

Wk ≽ 0, ∀k, (5.16c)

rank(Wk) = 1, ∀k. (5.16d)

Proof: Please, refer to Appendix B.2. �

The constraints in (5.16b) and (5.16c) are semidefinite in terms of Wk. However,
the problem is not convex due to the non-convex rank-one constraint in (5.16d). This
non-convex problem can be relaxed into a convex one by exploiting SDR. Therefore,
the problem in (5.16) without rank-one constraint is SDP and can be efficiently solved
using interior-point methods. Then, the optimal solution for the original problem in
(5.15) can be obtained through extracting the eigenvector corresponding to the max-
imum eigenvalue of the rank-one solution. If the solution of the relaxed problem in
(5.16) is not a set of rank-one matrices, the randomization technique can be used to
generate a set of rank-one solutions.
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Fig. 5.2 Total transmit power versus different SINR thresholds for the robust and non-
robust schemes with different channel estimation error bounds, ε.

5.4 Simulation Results

In this section, the simulation results are provided to evaluate the performance of the
proposed robust designs in MISO NOMA systems through numerical simulations. To
assess the performance of the proposed robust beamforming approach, the same setup
as in Section 4.5 is considered where a multi-antenna BS serves single-antenna users
which are uniformly distributed within the circle with a radius of 50 meters around the
BS, but no closer than 1 meter. In addition, the channel coefficients between the BS
and the users are generated as hk = χk

√
d−β
k where χk ∼ CN (0, I), dk is the distance

betweenUk and the BS, measured in meters and β = 3.8 is the path-loss exponent. The
noise variance at each user is assumed to be 0.01 (i.e., σ2

k = 0.01). It should be noted
that the term non-robust scheme refers to the scheme where the BS has imperfect CSI
without any information on the channel uncertainties and the beamforming vectors are
designed based on imperfect CSI without incorporating channel uncertainty informa-
tion. In addition, for the worst-case design the error bounds are considered to be 0.06
(i.e., εk = ε = 0.06). For the outage probabilistic based design, the variance of each
entry (i.e., [∆k]ij ) of the error covariance matrix ∆k and the predefined outage proba-
bility (ρk) of the required QoS constraints are set to 0.005 and 0.1, respectively. These
numerical results are obtained by averaging over different 1000 random channels. For
the simulations the Yalmip package [150] is used.
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Fig. 5.3 Comparison CDF and PDF of minimum achieved SINR for (a) the robust
scheme and (b) the non-robust scheme with ε = 0.06, γmin

k = 10 dB.

5.4.1 Performance Study of Worst Case Robust Design

In this subsection, the performance of the worst-case robust design is evaluated. First,
the impact of channel uncertainties on the required total transmit power is studied. Fig.
5.2 depicts the required total transmit power against different SINR thresholds for the
robust and the non-robust NOMA schemes as well as OMA scheme with different
error bounds. As seen in Fig. 5.2, the robust scheme requires more transmit power
than that of the non-robust scheme. This is because the robust scheme satisfies the
required SINR all the time, at the price of more transmit power at the BS whereas the
non-robust scheme does not. The difference between the required transmit power for
the robust and the non-robust schemes increases with error bounds. This is because
incorporating all possible sets of errors in the beamforming design to satisfy high SINR
thresholds requires more transmit power in the robust scheme. Moreover, as seen in
Fig. 5.2, the conventional framework OMA requires more transmit power to achieve
the same rate in comparison with NOMA scheme.
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Fig. 5.4 Comparison the performance of the robust and non-robust schemes with equal
transmit power.
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Fig. 5.5 Comparison probability of the achieved SINR for differner number of served
users for robust and non-robust schemes.

Next, the performance of the proposed robust and non-robust schemes are evalu-
ated in terms of the minimum achieved SINR between users. Fig. 5.3 provides cumula-
tive distribution function (CDF) and probability density function (PDF) obtained from
1000 random sets of channels with error bounds of 0.06 (ε = 0.06) where the SINR
threshold has been set to 10 dB at each user. As evidenced by the results, the robust
scheme outperforms the non-robust scheme in terms of minimum achieved SINRs. In
addition, the robust scheme satisfies the SINR thresholds all the time regardless of
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Fig. 5.6 Histogram for rate satisfaction ratio, i.e., ηk, for Rmin
k = 3bps/Hz.

the channel uncertainties whereas the non-robust design fails to satisfy the minimum
SINR requirements.

For a fair comparison, the performance of the robust and the non-robust schemes
is compared with equal power as depicted in Fig. 5.4. These simulation results have
been generated by considering for 1000 different channels with 30 W transmit powers
and 10 dB target SINR constraint. The robust scheme satisfies the minimum SINR re-
quirements (10 dB) all the times regardless of the channel uncertainties. Although the
non-robust scheme can achieve the required SINR for some set of channels, however,
it fails to satisfy the required QoS all the times.

In order to demonstrate the impact of the number of users on the proposed robust
scheme, the performance for different number of served users ie presented in Fig. 5.5.
As seen in Fig. 5.5, the robust scheme satisfies the SINR requirement for different
number of users all the times regardless of the channel uncertainties. However, the
performance of non-robust scheme is degraded as the number of served users increases
and fails to provide required SINR for more cases.

5.4.2 Performance Study of Outage Probabilistic based Robust De-
sign

In this subsection, the impact of the outage probabilistic based robust design on the
system performance is studied. The performance of the robust and the non-robust
scheme is compared through the rate satisfaction ratio ηk, which is defined as the ratio
between the achieved rate and the target rate at the user Uk. Hence, ηk ≥ 1 indicates
that the rate requirement is satisfied at the user Uk. Fig. 5.6 depicts the histogram of
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the rate satisfaction ratio for the robust and the non-robust NOMA schemes with the
target rate, Rmin

k = 3. It can be observed in Fig. 5.6(a) that in the robust design, rate
constraint is satisfied in most cases and in only 10% of cases does the rate satisfaction
ratio fall below one according to the outage probability requirement. However, as
evidenced by result presented in Fig. 5.6(b) the non-robust design cannot satisfy the
target rate requirement for approximately 50 percent of the cases since it does not take
into account any information regarding channel uncertainties.

In Fig. 5.7, the negative affect on the required transmit power by the channel
uncertainty is investigated. As seen, more transmit power is required at the BS as the
error in the CSI increases. It means that the channel estimation error will degrade the
performance of system in term of power consumption.
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Fig. 5.7 The required total transmit power to achieve different target rates with different
channel uncertainties at fix outages ρ = 0.1. Number of users = Number of antennas
= 3.

5.5 Summary

In this chapter, the practical imperfect CSI scenario is investigated to design a robust
beamforming for NOMA based downlink transmission. In the previous chapter, it is
assumed that perfect CSI is available at the transmitter. However, in wireless transmis-
sions, channel uncertainties are inevitable due to quantization and channel estimation
errors. Particularly, due to ambiguities introduced in SIC through user decoding order



5.5 Summary 68

and superposition coding at the transmitter in NOMA, these uncertainties can greatly
degrade the overall system performance. Therefore, to cultivate the desirable benefits
offered by NOMA, these channel uncertainties should be accounted in the design of
resource allocation techniques. Hence, two approaches, the worst-case design and out-
age probabilistic based design, are considered in this chapter to incorporate the channel
uncertainties in the beamforming design for the NOMA-based systems. In the first ap-
proach, the beamformers are designed by incorporating norm-bounded channel uncer-
tainties to provide the required QoS at each user. In terms of beamforming vectors, the
original robust design is not convex and therefore, the robust beamformers cannot be
obtained directly. To overcome this non-convex issue, the original intractable problem
is reformulated into a convex problem, where the non-convex constraint is converted
into the LMIs by exploiting S-Procedure. In the second approach, the total transmit
power is minimized while satisfying these outage probabilities at each user. Through
exploiting the SDR approach, the original non-convex problem is reformulated with
a LMI form to obtain the solution for the original robust problem. Simulation results
are provided to validate the performance of the proposed schemes in the terms of ad-
vantages of the robust design. These results confirm that the proposed robust schemes
outperform the non-robust scheme in terms of the achieved rates and rate satisfaction
ratio at each user. It offers a better performance than the non-robust approach by satis-
fying the SINR requirement at each user all the time regardless of associated channel
uncertainties.



Chapter 6

Energy Efficient Design for MISO
NOMA Systems with Imperfect CSI

6.1 Introduction

The exponential growth in volume of data traffic and the number of mobile devices
in the next generation cellular networks has led to a rapid increase in energy con-
sumption. This energy consumption can indirectly increase the amount of greenhouse
gas emission levels. Beyond environmental contamination, the cost of high energy
consumption imposes further financial pressure on the network operators. Hence, pro-
viding energy-efficient techniques is necessary to meet the high data-rate requirements
in future wireless communication systems. As such, an appropriate performance met-
ric is required to strike a good balance between the achievable data rate and power
consumption. To this end, EE has been recently considered as one of the key per-
formance metrics to evaluate the performance of communication networks [152–155].
In this chapter, EE-based resource allocation techniques are investigated for a MISO
NOMA system with practical imperfect CSI at the transmitter. Two different system
models are considered when designing the beamformers to maximize the worst-case
EE. First, the bemformer design is presented for a general system model without any
clustering. Then, the users are grouped in different clusters to reduce the complexity
of SIC while employing NOMA to share resources between users in each cluster. To
remove the interference between different clusters, two ZF techniques are applied in
the beamforming design. The original designs are formulated as non-linear fractional
programming and the Dinkelbach's algorithm is exploited to solve the corresponding
EE maximization problem by converting the problem into a simple subtractive form.
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Finally, the performance of the proposed beamforming designs is evaluated through
numerical simulations.

6.2 Robust Energy Efficient MISO Transmission for
Non-clustering NOMA Scheme

In this section, the energy-efficient design for a NOMA system without clustering is
investigated when there are uncertainties in the CSI. The same system model in Chap-
ter 5 is considered in this design where a BS, equipped with N transmit antennas,
sends information to K single antenna users. Furthermore, the BS has imperfect CSI
of the users. As recalled, it is assumed that the channel estimation error is bounded
in a known region and the true CSI is modeled in (5.1)-(5.2), and the corresponding
SINR is obtained in (5.5). For this downlink transmission, the worst-case robust design
is investigated to maximize the EE while ensuring that each user enjoys a minimum
required QoS. For energy-efficient communications, the aim of the design is to maxi-
mize the amount of transmitted data bits with a unit energy. Hence, the global EE is
defined as the ratio between the achievable sum rate of the system and the total power
consumption. Based on this definition, the EE of the NOMA system with worst-case
design can be expressed as

EE =

∑K
k=1 log2

(
1 + min

l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

))
∑K

k=1 ∥wk∥22 + Pc
, (6.1)

where ∥wk∥22 represents the transmit power assigned to Uk and Pc is additional circuit
power consumption. The beamforming design to maximize the worst-case EE can be
formulated under limited total transmit power and the QoS constraint for each user as

max
wk∈CN×1, ∀k

EE =

∑K
k=1 log2

(
1 + min

l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

))
∑K

k=1 ∥wk∥22 + Pc
, (6.2a)

subject to
K∑
k=1

∥wk∥22 ≤ P max, (6.2b)

min
l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

)
≥ γ min

k , ∀k, (6.2c)
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where P max is the maximum transmit power available at the BS, and γ min
k is the mini-

mum required SINR at each user. This problem cannot be solved directly and different
steps are required to turn it into a tractable form. First, by introducing a variable

γk = min
l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

)
, problem (6.2) can be equivalently reformu-

lated as

max
γk,wk, ∀k

∑K
k=1 log2

(
1 + γk

)∑K
k=1 ∥wk∥22 + Pc

, (6.3a)

subject to
K∑
k=1

∥wk∥22 ≤ Pmax, (6.3b)

γk ≥ γmin, ∀k, (6.3c)

γk ≤ min
l∈{k,k+1,...,K}

(
min

∥∆ĥl∥2≤εl

SINR(k)
l

)
, ∀k. (6.3d)

Note that the constraint (6.3d) can be simplified as γk ≤ min
∥∆ĥl∥2≤εl

SINR(k)
l , ∀k, l =

k, k + 1, . . . , K. This optimization problem is non-convex in its original form and
NP-hard due to the terms on the right-hand side of the constraint in (6.3d) and the
fractional expression in objective function, thus, it is challenging to determine the
optimal solution.

6.2.1 Low Complexity Beamforming Design

In order to overcome the complexity issues associated with the optimization problem
(6.3), a suboptimal algorithm is developed based on the alternating optimization tech-
nique, and is derived in conjunction with the sequential convex programming. To this
end, the beamforming vector associated with the kth user is defined as

wk =
√
pkvk, (6.4)

where pk = ∥wk∥22 and vk = wk

∥wk∥2
are power and direction associated to the kth

user's data, respectively. Hence, by substituting this expression of wk, the SINR can
be updated as

SINR(k)
l =

pk|(ĥl +∆ĥl)
Hvk|2∑k−1

m=1 pm|∆ĥH
l vm|2 +

∑K
m=k+1 pm|(ĥl +∆ĥl)Hvm|2 + σ2

l

, (6.5)
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and the optimization problem (6.3) can be equivalently reformulated as

max
γk,pk,vk, ∀k

∑K
k=1 log2

(
1 + γk

)∑K
k=1 pk∥vk∥22 + Pc

, (6.6a)

subject to
K∑
k=1

pk∥vk∥22 ≤ Pmax, (6.6b)

γk ≥ γmin, ∀k, (6.6c)

γk ≤ min
∥∆ĥl∥2≤εl

SINR(k)
l , ∀k, l = k, k + 1, . . . , K, (6.6d)

pk ≥ 0, ∥vk∥22 = 1, ∀k. (6.6e)

The basic idea of this algorithm is to solve the problem with respect to different
subsets of variables while the others variables are fixed. In the proposed algorithm, the
optimization problem is divided into two subproblems. In the first step, by keeping
vk fixed, the problem in (6.6) is solved with variables γk and pk. In the next step,
γk is considered as a fix variable and pk,vk are updated. As both subproblems are
non-convex problem, some approximation techniques are applied to convert them to
convex problems. The proposed suboptimal algorithm iteratively solves these two
subproblems and updates the solution.

Subproblem 1

In this subsection, the first subproblem is considered where the problem is solved with
variables γk and pk while the directional vectors vk are fixed. This subproblem can be
defined as

max
γk,pk, ∀k

∑K
k=1 log2

(
1 + γk

)∑K
k=1 pk + Pc

, (6.7a)

subject to
K∑
k=1

pk ≤ Pmax, (6.7b)

γk ≤ min
∥∆ĥl∥2≤εl

SINR(k)
l , ∀k, l = k, k + 1, . . . , K, (6.7c)

γk ≥ γmin, pk ≥ 0, ∀k. (6.7d)

Since there is a common variable ∆ĥl in both numerator and denominator of the
SINR expression, the constraints in (6.7c) are intractable. To tackle this issue, the
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lower bound of min
∥∆ĥl∥2≤εl

SINR(k)
l is considered to solve the problem through the fol-

lowing Lemma:

Lemma 5: The lower bound of min
∥∆ĥl∥2≤εl

SINR(k)
l can be expressed as

φk
l =

pk f
k
l∑k−1

m=1 pm ḡml +
∑K

m=k+1 pm gml + σ2
l

, (6.8)

where

fk
l =

∣∣∣∣(∣∣ĥH
l vk

∣∣− εl∥vk∥
)+∣∣∣∣2, (6.9)

gml =

∣∣∣∣∣∣ĥH
l vm

∣∣+ εl∥vm∥
∣∣∣∣2, (6.10)

ḡml =ε2l ∥vm∥2. (6.11)

Proof: Please refer to Appendix C.1. �

Therefore, by using a lower bound function φk
l in (6.8), the original problem (6.7)

can be rewritten as follows:

max
γk,pk, ∀k

∑K
k=1 log2

(
1 + γk

)∑K
k=1 pk + Pc

, (6.12a)

subject to
K∑
k=1

pk ≤ Pmax, (6.12b)

γk ≤
pk f

k
l∑k−1

m=1 pm ḡml +
∑K

m=k+1 pm gml + σ2
l

, ∀k, l = k, k + 1, . . . , K,

(6.12c)

γk ≥ γmin, pk ≥ 0, ∀k. (6.12d)

The problem (6.12) is still a non-convex problem due to constrain (6.12c) and the frac-
tional expression of the objective function. To deal with this fractional expression, the
Dinkelbach's algorithm in Table 6.1 is employed which converts a nonlinear fractional
optimization problem to an equivalent and a tractable problem. For more details of
this algorithm, please refer to Appendix C.2.
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Table 6.1 Dinkelbach's Algorithm

Algorithm 1 Dinkelbach's algorithm
1. Initialization: Set ϵ > 0, n = 0, λn = 0,
2. repeat
3. x∗

n = argmax
x
{f(xn)− λng(xn)},

4. F (λn) = f(x∗
n)− λng(x∗

n),

5. λn+1 =
f(x∗

n)

g(x∗
n)

,

6. n = n+ 1,
7. until F (λn) < ϵ.

To employ the Dinkelbach's algorithm, the problem (6.12) should be reformulated
in the form of a concave-convex fractional problem (CCFP). Hence, to deal with non-
convexity of constrain (6.12c), new variable νl,k is defined and the corresponding con-
straint is represented by the following inequalities:

γkνl,k ≤ pkf
k
l , ∀k, l = k, k + 1, . . . , K, (6.13a)

k−1∑
m=1

pm ḡml +
K∑

m=k+1

pm gml + σ2
l ≤ νl,k, ∀k, l = k, k + 1, . . . , K. (6.13b)

Now, to deal with the product of two variables on the left hand-side of (6.13a), the
following expression is utilized:

γkνl,k =
1

4

[
(γk + νl,k)

2 − (γk − νl,k)2
]
. (6.14)

Then, the second quadratic term in (6.14) can be approximated by a first order Tay-
lor series around γ(t)k and ν(t)l,k . As such, the product of two variables can be transformed
into a convex term as

γkνl,k ≈
1

4
(γk + νl,k)

2 − 1

4
[(γ

(t)
k − ν

(t)
l,k )

2 + 2(γ
(t)
k − ν

(t)
l,k )(γk − γ

(t)
k − νl,k + ν

(t)
l,k )].

(6.15)

By recalling the above approximation, the following optimization problem should
be solved in the tth iteration:
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max
γk,pk,νl,k, ∀k,l

∑K
k=1 log2

(
1 + γk

)∑K
k=1 pk + Pc

, (6.16a)

subject to
K∑
k=1

pk ≤ Pmax, (6.16b)

1

4

(
(γk+νl,k)

2 −
[
(γ

(t)
k −ν

(t)
l,k )

2+2(γ
(t)
k −ν

(t)
l,k )(γk−γ

(t)
k −νl,k + ν

(t)
l,k )
])

≤ pkf
k
l , ∀k, l = k, k + 1, . . . , K,

(6.16c)
k−1∑
m=1

pm ḡml +
K∑

m=k+1

pm gml + σ2
l ≤ νl,k, ∀k, l = k, k + 1, . . . , K,

(6.16d)

γk ≥ γmin, pk ≥ 0, ∀k. (6.16e)

In each iteration, the Dinkelbach's algorithm is employed to solve the fractional
programming problem in (6.16) and the solution of problem is considered as γ(t)k and
ν
(t)
l,k in the next iteration. This procedure is repeated until it converges.

Subproblem 2

In this subproblem, the variables pk and vk needs to be updated for a given γk which is
obtained by solving subproblem 1. By fixing γk, the numerator of the objective func-
tion remains constant and the denominator should be minimized. Hence, the following
optimization problem for a given γk can be solved:

min
pk,vk, ∀k

K∑
k=1

pk∥vk∥22, (6.17a)

subject to γk ≤ min
∥∆ĥl∥2≤εl

SINR(k)
l , ∀k, l = k, k + 1, . . . , K, (6.17b)

pk ≥ 0, ∥vk∥22 = 1, ∀k, (6.17c)
K∑
k=1

pk∥vk∥22 ≤ Pmax. (6.17d)
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To solve this problem, first, the variables pk and vk are assigned back to wk and
the problem is reformulated as

min
wk, ∀k

K∑
k=1

∥wk∥22, (6.18a)

subject to γk ≤ min
∥∆ĥl∥2≤εl

SINR(k)
l , ∀k, l = k, k + 1, . . . , K, (6.18b)

K∑
k=1

∥wk∥22 ≤ Pmax. (6.18c)

where SINR(k)
l is defined in (5.5). By exploiting S-procedure provided in Appendix

(B.1), the non-convex constraint (6.18b) is converted into LMI form and then SDR
technique is applied through following Lemma:
Lemma 6: By introducing new variables Wk = wkw

H
k such that Rank(Wk) = 1, and

applying S-procedure, the inequality constraints of problem are replaced with LMIs
and the solution to the problem (6.18) can be determined by solving following relaxed
problem:

min
Wk,µkl, ∀k,l

K∑
k=1

Tr(Wk), (6.19a)

subject to

[
µklI+ ϕk −

∑k−1
m=1Wm ϕkĥl

ĥH
l ϕk ĥH

l ϕkĥl − σ2
l − µklε

2
l

]
≽ 0,

∀k, l = k, k + 1, . . . , K,

(6.19b)

µkl ≥ 0, ∀k, l = k, k + 1, . . . , K, (6.19c)

Wk ≽ 0, ∀k, (6.19d)
K∑
k=1

Tr(Wk) ≤ Pmax, (6.19e)

where ϕk =
1

γk
Wk −

∑K
m=k+1 Wm.

Proof: Please refer to Appendix C.3. �

The problem in (6.19) is a standard SDP and can be efficiently solved through
convex optimization techniques. Note that the rank-one constraints on Wk in prob-
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Table 6.2 Suboptimal algorithm for the worst-case problem (6.3)

Initialization: Set iteration index t = 0, EE0 = 0, ϵ > 0 and εl > 0, and initialize
v
(0)
k and p(0)k with a feasible set of points for problem (6.6).

Step 1 Solve Subproblem 1 with fix vk = v
(t)
k :

(1.1) Calculate γ(t)k and ν(t)l,k as follows:

γ
(t)
k = minl∈{k,k+1,...,K}

(
p
(t)
k fk

l∑k−1
m=1 p

(t)
m ḡml +

∑K
m=k+1 p

(t)
m gml +σ2

l

)
,

ν
(t)
l,k =

∑k−1
m=1 p

(t)
m ḡml +

∑K
m=k+1 p

(t)
m gml + σ2

l ,

where fk
l =

∣∣∣∣(∣∣ĥH
l vk

∣∣− εl∥vk∥
)+∣∣∣∣2, gml =

∣∣∣∣∣∣ĥH
l vm

∣∣+ εl∥vm∥
∣∣∣∣2

and ḡml = ε2l ∥vm∥2.
(1.2) Solve problem (6.16) and obtain the solution {γ∗k, p∗k}.
(1.3) if maxk |γ(t)k − γ∗k|>ϵ, set γ(t)k =γ∗k,∀k and repeat step (1.2).
Otherwise, set ptk = p∗k and γtk = γ∗k and go to Step 2.

Step 2 Stop If |EE(γtk, p
t
k)− EE0| < ϵ and set the suboptimal solution by

p
(t)
k , γ

(t)
k ,v

(t)
k . Otherwise, set EE0 = EE(γtk, p

t
k) and go to Step 3.

Step 3 Solve Subproblem 2: By fixing γk=γ
(t)
k , solve problem (6.19)

and obtain W∗
k.

Obtain w∗
k =
√
λkυk, where λk is the dominant eigenvalue of W∗

k

and υk is eigenvector that corresponds to λk.
Step 4 Update p(t+1)

k = ∥w∗
k∥22 and v

(t+1)
k =

w∗
k

∥w∗
k∥2

.
Step 5 Update t = t + 1 and go to Step 1.

lem (6.19) have been relaxed. In general, if the solution of the relaxed problem in
(6.19) is a set of rank-one matrices Wk, then it will be also the optimal solution to the
original problem. Otherwise, different randomization techniques can be used to gen-
erate a set of rank-one solutions [115]. The beamforming vector wk can be obtained
from a rank-one Wk solution, as wk =

√
λkυk where λk and υk are the maximum

eigenvalue and the corresponding eigenvector of Wk, respectively. After solving the
problem (6.19), pk and vk can be determined for problem (6.17) by using the relation-
ship provided in (6.4). The proposed suboptimal algorithm for the worst-case problem
(6.3) is summarized in Table 6.2. This algorithm will be terminated in Step 3 when
the difference between the achieved EE values in two successive iterations is less than
a predefined threshold. Note that problem (6.16) is solved by using Dinkelbach's al-
gorithm and problem (6.19) is a standard convex SDP, hence, both problems can be
solved efficiently by using interior point methods.

Note that before solving the problem in (6.3), it is important to check the feasibility
of the original problem. It might be possible that the minimum SINR constraints in
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(6.2c) might not be attainable in all users if the available total power at the BS is
not sufficient. Hence, there exists a minimum required transmit power Pmin which
is sufficient to deliver the minimum data rate for each user and makes the problem in
(6.3) feasible only under the condition Pmax ≥ Pmin. Thus, it is important to determine
a feasible range of Pmax that should be able to meet the data rate requirements at
each user. To obtain the feasible range of Pmax, an auxiliary optimization problem is
formulated as

Pmin = min
wk, ∀k

K∑
k=1

∥wk∥22, (6.20a)

subject to min
∥∆ĥl∥2≤εl

SINR(k)
l ≥ γmin, ∀k, l = k, k + 1, . . . , K. (6.20b)

This optimization problem can be solved by invoking the same technique in Lemma 6.

6.3 Robust Energy Efficient MISO Transmission for
Clustering NOMA Scheme

One of the implementation issues of employing SIC at the receivers is the complexity
introduced by scaling the number of users. A practical approach to reduce the com-
plexity is grouping the users into different clusters with a small number of users. The
users in each cluster are supported by NOMA scheme to share the same time-frequency
block. Hence, in this section, the robust EE beamforming design is investigated for the
clustering NOMA systems.

6.3.1 System Model

Consider a MISO NOMA downlink transmission where a BS, equipped with N trans-
mit antennas, intends to communicate with K = 2Ḱ single antenna users as shown in
Fig. 6.1. All users are grouped into Ḱ clusters (Ḱ ≤ N) with two users per cluster by
employing a clustering algorithm proposed in [77]. Note that the number of users in a
cluster can be more than two, however, it is assumed that there are only two users in
each cluster for the sake of brevity. The lth user in the kth cluster is denoted by Ul,k, for
all k ∈ {1, . . . , Ḱ} and l = 1, 2. For user pairing, the proposed clustering algorithm in
[77] is applied which is based on the channel correlation, |hT

i hj |
∥hi∥ ∥hj∥ , and gain difference,
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∣∣, between two users i and j. This clustering algorithm selects two users
that have a high correlation and a large channel gain difference in each cluster.

Fig. 6.1 A MISO NOMA system where imperfect CSI is available at the transmitter.
One BS with N antennas serves Ḱ clusters with two users per cluster.

Let hl,k ∈ CN×1 represent the channel vector from the BS to Ul,k, which can be

modeled as χ
√
d−β
l,k , where χ denotes the Rayleigh fading channel gain, dl,k is the

distance between the BS and Ul,k, and β represents the path loss exponent. U2,k is
considered as the strongest user which has a higher channel gain than that of U1,k,
such that ∥h1,k∥ ≤ ∥h2,k∥, ∀k and U1,k is referred as the weakest user. The actual
channel is modeled by the worst-case model in (5.1)-(5.2), and the norm-bounded
channel uncertainties are incorporated in the analysis such that

hl,k = ĥl,k +∆ĥl,k, (6.21)

where ĥl,k is the estimated channel of Ul,k, and ∆ĥl,k ≤ εl,k is the corresponding
channel uncertainty. Let wk and pl,k denote the beamforming vector steering towards
the kth cluster and the transmit power allocated to Ul,k, respectively. From the NOMA
protocol, the BS broadcasts the superposition coded of users' signals as

x =
Ḱ∑
k=1

wk(
√
p1,k s1,k +

√
p2,k s2,k), (6.22)
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where s1,k and s2,k are the unit power information symbols for U1,k and U2,k, respec-
tively. Thus, the received signals at U1,k and U2,k are given by

y1,k =hH
1,kx+ n1,k, (6.23)

y2,k =hH
2,kx+ n2,k, (6.24)

where nl,k∼CN (0, σ2
l,k) for l = 1, 2 is a zero-mean circularly symmetric AWGN with

variance σ2
l,k. By utilizing the SIC at the receivers, U2,k decodes and eliminates the

data of U1,k from the aggregated received signal y2,k, and then, decodes its own data.
To eliminate the interference between clusters, the ZF beamformer is utilized at

the BS. To this end, the beamforming vector is designed based on the user's channel,
hl,k, and fulfills the following condition:

hH
l,mwk = 0, ∀m ̸= k. (6.25)

Note that when there are Ḱ ≤ N < 2Ḱ − 1 antennas at the BS, it is not possible
to simultaneously satisfy (6.25) for both channel vectors hi,m, and h2,m. Therefore,
if it is assumed that the channel hi,m is aligned with one of these users' channels, the
other one will suffer from the interference caused by the other clusters. Consequently,
this inter-cluster interference can severely degrade the performance of the SIC at the
strong user to decode the weaker user's signal [77]. Therefore, to efficiently implement
SIC, beamforming vectors are generated based on the channel of the strong users i.e.,
hi,m = h2,m to satisfy the condition in (6.25) such that

hH
2,mwk = 0, ∀m ̸= k. (6.26)

However, note that hH
1,mwk ̸= 0, for any m ̸= k, which is the source of inter-cluster

interference. Since there is inter-cluster interference for U1,k, this scheme is referred
as a hybrid-ZF scheme. By defining the following matrix

H =[h2,1 · · · h2,Ḱ ], (6.27)

the beamforming vector can be obtained as

W = [w1 · · · wḰ ] = H† = H(HHH)−1, (6.28)
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where H† denotes the pseudo-inverse of the matrix H in (6.27), and wk is the beam-
forming vector for the kth cluster. Therefore, the received signal at U2,k can be written
as

y2,k = hH
2,kwk(

√
p1,k s1,k +

√
p2,k s2,k)+∆ĥ

H

2,k

∑
j ̸=k

wj(
√
p1,j s1,j +

√
p2,j s2,j)+n2,k,

(6.29)
where the second term in (6.29) refers to the residual inter-cluster interference which
cannot be completely removed during the ZF process due to imperfect CSI. Overall,
the SINR at the strong user to decode the weak user's signal is given by

SINR(1)
2,k =

p1,k|hH
2,kwk|2

p2,k|hH
2,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑
j ̸=k

|∆ĥ
H

2,kwj|2(p1,j + p2,j)︸ ︷︷ ︸
inter-cluster interference due to imperfect CSI

+σ2
2,k

, (6.30)

and after removing the weak user's signal via SIC technique, the strong user achieves
the following SINR to decode its own signal:

SINR(2)
2,k =

p2,k|hH
2,kwk|2

p1,k|∆ĥ
H

2,kwk|2︸ ︷︷ ︸
intra-cluster interference due to imperfect CSI

+
∑
j ̸=k

|∆ĥ
H

2,kwj|2(p1,j + p2,j)︸ ︷︷ ︸
inter-cluster interference due to imperfect CSI

+σ2
2,k

.

(6.31)

The first term of the denominator in (6.31) is considered due to the fact that the strong
user cannot completely remove the weaker user's signal during the SIC process due to
imperfect CSI. At the other end, the SINR of U1,k to decode its own signal is given by

SINR(1)
1,k =

p1,k|hH
1,kwk|2

p2,k|hH
1,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑
j ̸=k

|hH
1,kwj|2(p1,j + p2,j)︸ ︷︷ ︸

intra-cluster interference

+σ2
1,k

. (6.32)
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Thus, the achievable rate at U1,k and U2,k can be respectively defined as follows:

R1,k = log2
(
1 + min{min

∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k}
)
, ∀k (6.33)

R2,k = log2(1 + min
∆ĥ2,k

SINR(2)
2,k), ∀k. (6.34)

6.3.2 Robust EE Problem Formulation

To design an energy-efficient system, the worst-case global EE can be mathematically
expressed as

EE =

∑Ḱ
k=1(R1,k +R2,k)∑Ḱ

k=1(p1,k + p2,k) + Pc

, (6.35)

Furthermore, the optimization problem can be formulated to determine the transmit
power allocation for maximizing the worst-case EE under limited power budget and
the QoS constraint for each user as

max
p1,k,p2,k, ∀k

EE, (6.36a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.36b)

min{min
∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k} ≥ γmin, ∀k, (6.36c)

min
∆ĥ2,k

SINR(2)
2,k ≥ γmin, ∀k, (6.36d)

This optimization problem is a non-convex in terms of power allocation variables and
it is a non-linear fractional programming problem. To solve this EE maximization
problem, an iterative approach is presented by using the Dinkelbach's algorithm to
optimize an approximated convex problem.

The Proposed Solution

In this subsection, a power allocation scheme is proposed that maximizes the worst-
case EE through an iterative algorithm. First, variables {γ1,k, γ2,k} ∈ R+ are intro-
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duced to further simplify the optimization problem in (6.36) as follows:

max
γ1,k,γ2,k,p1,k,p2,k, ∀k

∑Ḱ
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)∑Ḱ
k=1(p1,k + p2,k) + Pc

, (6.37a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.37b)

γmin ≤ γ1,k ≤ min

{
min
∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k

}
, ∀k, (6.37c)

γmin ≤ γ2,k ≤ min
∆ĥ2,k

SINR(2)
2,k, ∀k. (6.37d)

The equivalent problem in (6.37) is still non-convex and NP-hard to determine a fea-
sible solution. As there is a common parameter ∆ĥl,k in the both numerator and the
denominator of the SINR expression, the constraints in (6.37c) and (6.37d) are in-
tractable. To circumvent this issue, the lower bound of SINR obtained in Lemma 5 is
exploited. By applying the lower bound in (6.8) to the problem (6.37), the following
optimization problem can be defined:

max
γ1,k,γ2,k,p1,k,p2,k ∀k

∑Ḱ
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)∑Ḱ
k=1(p1,k + p2,k) + Pc

, (6.38a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.38b)

γ1,k ≤
p1,k f

k
1,k

p2,kgk1,k +
∑

m ̸=k(p1,m + p2,m)gm1,k + σ2
, ∀k, (6.38c)

γ1,k ≤
p1,k f

k
2,k

p2,kgk2,k +
∑

m ̸=k(p1,m + p2,m)g
m
2,k + σ2

, ∀k, (6.38d)

γ2,k ≤
p2,k f

k
2,k

p1,kg
k
2,k +

∑
m ̸=k(p1,m + p2,m)g

m
2,k + σ2

, ∀k, (6.38e)

γmin ≤ γ1,k, γ
min ≤ γ2,k, ∀k. (6.38f)

To solve this fractional programming problem, the Dinkelbach's algorithm in Table
6.1 is employed to convert a nonlinear fractional optimization problem to an equivalent
and a tractable problem. According to the requirement of Dinkelbach's algorithm, the
problem in (6.38) should be reformulated in a CCFP form to apply this algorithm.
To deal with the non-convex nature of constraints in (6.38c)-(6.38e), new variables
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ϑ1,k, ϑ2,k and ϑk are introduced and the corresponding constraints are redefined in the
following inequalities:

(6.38c)⇒

{
γ1,k ϑ1,k ≤ p1,k f

k
1,k,

p2,kg
k
1,k +

∑
m̸=k(p1,m + p2,m)g

m
1,k + σ2 ≤ ϑ1,k,

∀k, (6.39)

(6.38d)⇒

{
γ1,k ϑ2,k ≤ p1,k f

k
2,k,

p2,kg
k
2,k +

∑
m ̸=k(p1,m + p2,m)g

m
2,k + σ2 ≤ ϑ2,k,

∀k, (6.40)

(6.38e)⇒

{
γ2,k ϑk ≤ p2,k f

k
2,k,

p1,kg
k
2,k +

∑
m ̸=k(p1,m + p2,m)g

m
2,k + σ2 ≤ ϑk,

∀k. (6.41)

Next, to deal with the product of optimization variables in (6.39)-(6.41), the ex-
pression in (6.14) is exploited, and then, the first order Taylor series approximation
is applied to approximate the second quadratic term. As such, the product of two
variables can be transformed into a linear convex term as

γi,k ϑj,k ≈
1

4

(
(γi,k + ϑj,k)

2 −
[
(γ

(t)
i,k − ϑ

(t)
j,k)

2 + 2(γ
(t)
i,k − ϑ

(t)
j,k)(γi,k − γ

(t)
i,k − ϑj,k + ϑ

(t)
j,k)
])

, G(γi,k ϑj,k, γ
(t)
i,k ϑ

(t)
j,k). (6.42)

By recalling the above approximation, the following optimization problem in the tth

iteration should be solved:
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Table 6.3 Energy Efficiency Maximization

1. Initialize Λ(0) to a feasible value of (6.38), and set t = 0,
2. repeat

Solve (6.43) by using Dinkelbach's algorithm,
Set Λ(t+1) = A∗,
Update t = t+ 1,

3. until required accuracy or maximum number of iterations.

max
p1,k,p2,k,A, ∀k

∑Ḱ
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)∑Ḱ
k=1(p1,k + p2,k) + Pc

, (6.43a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.43b)

G(γ1,k ϑ1,k, γ
(t)
1,k ϑ

(t)
1,k)≤p1,kf

k
1,k, ∀k, (6.43c)

p2,kg
k
1,k+

∑
m ̸=k

(p1,m + p2,m)g
m
1,k+σ

2≤ϑ1,k, ∀k, (6.43d)

G(γ1,k ϑ2,k, γ
(t)
1,k ϑ

(t)
2,k)≤p1,kf

k
2,k, ∀k, (6.43e)

p2,kg
k
2,k+

∑
m ̸=k

(p1,m + p2,m)g
m
2,k + σ2≤ϑ2,k, ∀k, (6.43f)

G(γ2,k ϑk, γ
(t)
2,k ϑ

(t)
k )≤p2,kfk

2,k, ∀k, (6.43g)

p1,kg
k
2,k+

∑
m ̸=k

(p1,m + p2,m)g
m
2,k+σ

2≤ϑk, ∀k, (6.43h)

γmin ≤ γ1,k, γ
min ≤ γ2,k, ∀k, (6.43i)

where A , {γ1,k, γ2,k, ϑ1,k, ϑ2,k, ϑk}. For notational simplicity, all parameters that
have been used to linearize the quadratic terms in the the tth iteration are defined as

Λ(t) , {γ(t)1,k, γ
(t)
2,k, ϑ

(t)
1,k, ϑ

(t)
2,k, ϑ

(t)
k }. (6.44)

The approximated problem in (6.43) should be iteratively solved for different val-
ues of Λ(t) to obtain the best solution. Towards this end, if the solution of problem
(6.43) in the tth iteration is A∗ , {γ∗1,k, γ∗2,k, ϑ∗

1,k, ϑ
∗
2,k, ϑ

∗
k}, it is considered as the

initial point of the next iteration, i.e., Λ(t+1), until it converges. The pseudo-code of
the proposed iterative algorithm is summarized in Table (6.3). Furthermore, the min-
imum threshold to terminate the algorithm is chosen as the difference between two
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successive values of achieved EE or the maximum number of iterations is reached to
a predefined value.

Note that before solving the original problem in (6.36), it is important to obtain the
feasible range of Pmax. To this end, an auxiliary optimization problem is formulated
as

Pmin = min
p1,k,p2,k ∀k

Ḱ∑
k=1

(p1,k + p2,k), (6.45a)

subject to min

{
min
∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k

}
≥ γmin, ∀k, (6.45b)

min
∆ĥ2,k

SINR(2)
2,k ≥ γmin, ∀k. (6.45c)

This optimization problem can be converted into a LP problem by invoking the same
technique that used to solve main problem in (6.37).

6.3.3 Full-ZF beamforming scheme

In this section, full-ZF beamforming scheme is presented to completely mitigate the
interference between clusters. In particular, it is assumed that the number of antennas
deployed at the BS is N ≥ 2Ḱ − 1, which provides sufficient degrees of freedom for
the ZF beamformer to completely remove the inter-cluster interference [156]:

hH
i,mwk = 0, ∀m ̸= k, i = 1, 2. (6.46)

To design the beamforming vector to satisfy condition in (6.46), the following matrix
is first defined by including the other channel matrices:

Hk = [Ĥ1 · · · Ĥk−1 Ĥk+1 · · · ĤḰ ], (6.47)

where Ĥk = [h1,k h2,k]. Then, the null space of the matrix Hk in (6.47) can be
utilized for the beamforming vector wk which results in HH

k wk = 0. By exploiting
this condition so-called full-ZF beamformer, the aggregated received signal at Ul,k is
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given by

yl,k =hH
l,kwk(

√
p1,k s1,k +

√
p2,k s2,k)

+ ∆ĥ
H

l,k

∑
j ̸=k

wj(
√
p1,j s1,j +

√
p2,j s2,j) + nl,k, l = 1, 2, (6.48)

where the second term in (6.48) is considered due to imperfect CSI. Hence, the SINR
at the weak user to decode its own signal can be defined as

SINR(1)
1,k =

p1,k|hH
1,kwk|2

p2,k|hH
1,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑
j ̸=k

|∆ĥ
H

l,kwj|2(p1,j + p2,j)︸ ︷︷ ︸
inter-cluster interference due to imperfect CSI

+σ2
1,k

. (6.49)

Similarly, the SINR at U2,k to decode weaker user's signal is given by

SINR(1)
2,k =

p1,k|hH
2,kwk|2

p2,k|hH
2,kwk|2︸ ︷︷ ︸

intra-cluster interference

+
∑
j ̸=k

|∆ĥ
H

2,kwj|2(p1,j + p2,j)︸ ︷︷ ︸
inter-cluster interference due to imperfect CSI

+σ2
2,k

, (6.50)

and U2,k achieves the following SINR to decode its own message after performing SIC:

SINR(2)
2,k =

p2,k|hH
2,kwk|2

p1,k|∆ĥ
H

2,kwk|2︸ ︷︷ ︸
intra-cluster interference due to imperfect CSI

+
∑
j ̸=k

|∆ĥ
H

2,kwj|2(p1,j + p2,j)︸ ︷︷ ︸
inter-cluster interference due to imperfect CSI

+σ2
2,k

.

(6.51)

Based on the definitions of SINRs, the worst-case EE can be expressed as

EE=

∑Ḱ
k=1

(
log2

(
1+min{min

∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k}
)
+log2(1 + min

∆ĥ2,k

SINR(2)
2,k)
)

∑Ḱ
k=1(p1,k + p2,k) + Pc

.

(6.52)
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Accordingly, the following optimization problem is solved to determine the best
power allocation for maximizing the worst-case EE:

max
p1,k,p2,k ∀k

EE, (6.53a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.53b)

log2

(
1+min

{
min
∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k

})
≥ Rmin, ∀k, (6.53c)

log2

(
1 + min

∆ĥ2,k

SINR(2)
2,k

)
≥ Rmin, ∀k. (6.53d)

To solve the fractional programming problem in (6.53), the same procedure in the
previous section is utilized. Towards this end, the problem in (6.53) is equivalently
reformulated by introducing variables γ1,k and γ2,k as follows:

max
γ1,k,γ2,k,p1,k,p2,k ∀k

∑Ḱ
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)∑Ḱ
k=1(p1,k + p2,k) + Pc

, (6.54a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.54b)

γmin ≤ γ1,k ≤ min

{
min
∆ĥ1,k

SINR(1)
1,k, min

∆ĥ2,k

SINR(1)
2,k

}
, ∀k, (6.54c)

γmin ≤ γ2,k ≤ min
∆ĥ2,k

SINR(2)
2,k, ∀k. (6.54d)

where γmin = 2R
min − 1 is minimum required SINR for each user. By invoking Lemma

5, the following optimization problem can be defined
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max
γ1,k,γ2,k,p1,k,p2,k ∀k

∑Ḱ
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)∑Ḱ
k=1(p1,k + p2,k) + Pc

, (6.55a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.55b)

γ1,k ≤
p1,k f

k
l,k

p2,kg k
l,k +

∑
m̸=k(p1,m + p2,m)g

m
l,k + σ2

l,k

, ∀k, l = 1, 2,

(6.55c)

γ2,k ≤
p2,k f

k
2,k

p1,kg
k
2,k +

∑
m̸=k(p1,m + p2,m)g

m
2,k + σ2

2,k

, ∀k, (6.55d)

γmin ≤ γ1,k, γ
min ≤ γ2,k, ∀k. (6.55e)

where

f k
l,k =

∣∣∣∣(∣∣ĥH
l,kwk

∣∣− εl,k∥wk∥
)+∣∣∣∣2, (6.56)

g k
l,k =

∣∣∣∣∣∣ĥH
l,kwk

∣∣+ εl,k∥wk∥
∣∣∣∣2, (6.57)

g m
l,k =

(
εl,k∥wm∥

)2
. (6.58)

Finally, the fractional programming problem in (6.55) can be solved by leverag-
ing Dinkelbach's algorithm. According to the requirement of the Dinkelbach's algo-
rithm, the problem should be reformulated in a CCFP form to apply this algorithm. To
deal with the non-convex nature of constraints in (6.55c) and (6.55d), new variables
ϑ1,k, ϑ2,k and ϑk are introduced and the corresponding constraints are redefined in the
following inequalities:

(6.55c)⇒

{
γ1,k ϑl,k ≤ p1,k f

k
l,k,

p2,kg
k
l,k +

∑
m̸=k(p1,m + p2,m)g

m
l,k + σ2

l,k ≤ ϑl,k,
∀k, l = 1, 2,

(6.59)

and

(6.55d)⇒

{
γ2,k ϑk ≤ p2,k f

k
2,k,

p1,kg
k
2,k +

∑
m ̸=k(p1,m + p2,m)g

m
2,k + σ2

2,k ≤ ϑk,
∀k. (6.60)



6.3 Robust Energy Efficient MISO Transmission for
Clustering NOMA Scheme 90

In order to deal with the product of optimization variables in (6.59) and (6.60), the
expression in (6.14) and the first order Taylor series approximation around γ(t)i,k and
ϑ
(t)
j,k are used to transform them into convex linear terms. As such, the product of two

variables can be transformed into a convex linear term as

γi,k ϑj,k ≈
1

4

(
(γi,k + ϑj,k)

2 −
[
(γ

(t)
i,k − ϑ

(t)
j,k)

2 + 2(γ
(t)
i,k − ϑ

(t)
j,k)(γi,k − γ

(t)
i,k − ϑj,k + ϑ

(t)
j,k)
])

, G(γi,k ϑj,k, γ
(t)
i,k ϑ

(t)
j,k). (6.61)

By recalling the above approximation, the following optimization problem in the tth

iteration is solved

max
p1,k,p2,k,A ∀k

∑Ḱ
k=1

(
log2(1 + γ1,k) + log2(1 + γ2,k)

)∑Ḱ
k=1(p1,k + p2,k) + Pc

, (6.62a)

subject to
Ḱ∑
k=1

(p1,k + p2,k) ≤ Pmax, (6.62b)

G(γ1,k ϑl,k, γ
(t)
1,k ϑ

(t)
l,k)≤p1,kf

k
l,k, ∀k, l = 1, 2, (6.62c)

p2,kg
k
l,k+

∑
m̸=k

(p1,m + p2,m)g
m
l,k + σ2≤ϑl,k, ∀k, l = 1, 2, (6.62d)

G(γ2,k ϑk, γ
(t)
2,k ϑ

(t)
k )≤p2,kfk

2,k, ∀k, (6.62e)

p1,kg
k
2,k+

∑
m̸=k

(p1,m + p2,m)g
m
2,k+σ

2≤ϑk, ∀k, (6.62f)

γmin ≤ γ1,k, γ
min ≤ γ2,k, ∀k, (6.62g)

where A , {γ1,k, γ2,k, ϑ1,k, ϑ2,k, ϑk}. For notational simplicity, Λ(t) represents the
points at which the quadratic terms have been linearized in tth iteration as

Λ(t) , {γ(t)1,k, γ
(t)
2,k, ϑ

(t)
1,k, ϑ

(t)
2,k, ϑ

(t)
k }. (6.63)

Finally, the approximated problem in (6.62) is iteratively solved for different values
of Λ(t) and update the approximations to obtain the best local solution similar to the
proposed iterative algorithm in Table (6.3).
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Fig. 6.2 Robust EE performance versus the maximum available power at the BS for
K = 4 users by applying non-clustering approach. The error bound is set as ε = 0.001.

6.4 Simulation Results

In this section, the performance of the proposed robust EE design for both clustering
and non-clustering MISO NOMA systems is evaluated by generating 1000 Monte-
Carlo realizations of the flat fading channels. A downlink transmission is considered
in a single cell with one BS equipped with N antennas. In the clustering approach,
the users are clustered into Ḱ clusters with two single-antenna users per cluster. The
small-scale fading of the channels is assumed to be Rayleigh fading which represents
an isotropic scattering environment. The large-scale fading effect is modelled by dlk−β

to incorporate the path-loss effects where dlk is the distance between Ul,k and the BS,
measured in meters and β is the path-loss exponent. Hence, the channel coefficients
between the BS and userUl,k are generated using hl,k = χ

√
dlk

−β where χ ∼ CN (0, I)

and β = 3.8 [37]. Users are uniformly distributed within the circle with a radius of
50 meters around the BS, but no closer than 1 meter. Throughout the simulations, it is
assumed that the users' locations are fixed and the average is taken over the small-scale
fading of the propagation channels. In addition, it is assumed that the noise power is
σ2
l,k = σ2 = 0.01 at each receiver, and the minimum QoS requirement for all users is

the same. For the simulations the Yalmip package [150] is used.

6.4.1 Performance Study of Non-Clustering Robust Design

In this subsection, the performance of the robust EE design is evaluated for non-
clustering schemes. In Fig.6.2, the achievable robust EE is presented against maximum
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Fig. 6.3 Robust EE performance versus the maximum available power for different
number of users with N = 3 antennas at the BS. The error bound is set as ε = 0.001.

available transmit power at the BS for both NOMA and conventional OMA schemes.
The SE maximization refers to the achievable EE that obtained by maximizing the
sum rate of the system. In other words, the sum rate maximization problem is solved
and then the EE is determined based on the power allocation for the defined SE maxi-
mization problem. As shown in Fig. 6.2, the achievable EE reaches a maximum value
with a certain available power (referred as green power in the literature) and then it
remains constant for any available power which is more than the green power. Hence,
one can conclude that just a portion of the power budget contributes to achieve the
maximum EE, and using more power will deteriorate the performance of the system
in terms of the EE which is the case in the SE maximization based design. As it is
shown, more EE can be achieved by increasing the number of antennas. From Fig.
6.2, it is observed that the performance of NOMA system is much better than that
of the conventional OMA scheme. In fact, NOMA can provide higher data rate by
simultaneously allocating the radio resources to more than one user.

In Fig. 6.3, the performance of EE is evaluated versus the maximum available
power at BS for different number of users K. In the simulation, the error bound is
set as ε = 0.001. It is shown that the EE increases when the number of the users
increases. As the number of users increases, the EE continues to increase, but the rate
of growth becomes slower, as expected from the rate formulation in calculating the
EE. In fact, by increasing the number of users, the interference from stronger users is
enhanced, hence, the rate increment is less than power increment which degrades the
performance of the overall system in terms of achievable EE.
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Fig. 6.4 The EE-SE tradeoff for K = 4 users with different number of antennas at BS.
The error bound is set as ε = 0.001.
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Fig. 6.5 Robust EE performance with different variance of channel uncertainty in
NOMA and OMA schemes. System parameters are K = 4 users, N = 3 antennas.

Next, the EE-SE tradeoff of the proposed NOMA scheme and the traditional OMA
scheme is presented in Fig. 6.4. As shown, the NOMA scheme significantly outper-
forms the OMA scheme in terms of both SE and EE. In Fig. 6.5, the impact of different
channel uncertainties on the achieved EE is represented. It can be observed from Fig.
6.5 that the EE decreases for both schemes as the variances of the channel uncertainty
in the CSI increase which requires more power consumption to satisfy the worst-case
SINR at all users.

The impact of the proposed robust design on the achievable EE and rate is demon-
strated by comparing with the performance of the non-robust scheme. The achieved EE
of the robust and the non-robust designs are depicted in Fig. 6.6 for different available
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Fig. 6.6 EE performance versus maximum available power for the robust and the non-
robust schemes with K = 4 users and channel estimation error bound ε = 0.001.
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Fig. 6.7 Histogram for rate satisfaction ratio in the robust and non-robust NOMA
scheme with channel estimation error bound ε = 0.001.

transmit power at the BS. As shown, the results of the robust and non-robust schemes
are almost identical for ε = 0.001. To have a better comparison, the performance of the
robust and the non-robust schemes is compared in term of rate satisfaction ratio, which
is defined as the ratio between the achieved rate and the target rate at each user. Hence,
rate satisfaction ratio greater than 1 indicates that the rate requirement is satisfied at
each user. Fig. 6.7 depicts the histogram of the rate satisfaction ratio for the robust and
the non-robust schemes. The simulation result implies that the rate constraint in the
robust design is satisfied all the times regardless of the channel uncertainties. However,
the non-robust design cannot satisfy the target rate requirement for more cases since it
does not take the channel uncertainties into account.
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Fig. 6.8 Robust EE performance versus the maximum available power at the BS for
Ḱ = 2 clusters in full-ZF and hybrid-ZF schemes as well as OMA scheme. The error
bound is set as ε = 0.001.

6.4.2 Performance Study of Clustering Robust Design

In this subsection, the performance of the robust EE design is evaluated for clustering
scheme. The achievable robust EE against maximum available transmit power at the
BS is presented in Fig. 6.8 for both full-ZF and hybrid-ZF schemes as well as the
conventional OMA scheme. In this figure, the EE maximization represents the solution
to the original optimization problem in (6.43) and (6.62). As shown in Fig. 6.8, both
methods i.e., EE maximization and SE maximization, have a same performance in
terms of the EE in the low transmit power and the EE increases with the transmit power.
However, as the transmit power reaches a certain point, further increase in the transmit
power does not yield a higher EE. After that point, the EE remains constant in the EE
maximization method while the EE decreases in the SE maximization method. . For
a given transmit power and with minimum required transmit antennas in each scheme
(i.e. 2 antennas in hybrid-ZF scheme and 3 antennas in full-ZF scheme), the full-ZF
can achieve more EE than that of the hybrid-ZF scheme. In fact, full-ZF scheme can
provide higher data rate by completely removing other clusters interference at the cost
of more required transmit antennas at the BS.

To draw a fair comparison, it is assumed that the equal number of transmit antennas
is employed for both schemes. As seen in Fig. 6.9, the hybrid-ZF scheme outperforms
the full-ZF in terms of achieved EE when there are a few clusters. This is due to
the fact that the full-ZF requires more transmit power to completely remove the inter-
cluster interference, while this type of interference has less impact in the systems with
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Fig. 6.9 Robust EE performance versus the maximum available power in full-ZF and
hybrid-ZF schemes with the same number of transmit antennas at the BS. The error
bound is set as ε = 0.001.
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Fig. 6.10 The EE-SE tradeoff for full-ZF and hybrid-ZF schemes. System parameters
are Ḱ = 2 clusters, error bound ε = 0.001.

a few clusters. In other words, the rate improvement in full-ZF is not as much as
the required power which degrades the system performance in terms of EE. However,
by increasing the number of clusters, the full-ZF scheme outperforms the hybrid-ZF
scheme because the inter-cluster interference increases and has a significant impact on
the over all performance of the system.

Next the tradeoff between the SE and EE of the proposed schemes is evaluated.
Fig. 6.10 depicts the EE-SE tradeoff of the both full ZF and hybrid ZF schemes. As
shown in Fig. 6.10, both the SE and EE increase up to a maximum level which is
known as the best tradeoff point, and then EE decreases while increasing SE. Beyond
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Fig. 6.11 Robust EE performance with different variance of channel uncertainty in full-
ZF and hybrid-ZF schemes. System parameters are Ḱ = 2 clusters, N = 3 antennas.
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Fig. 6.12 EE performance versus maximum available power for the robust and the non-
robust schemes with channel estimation error bound ε = 0.001. System parameters
are Ḱ = 2 clusters, N = 3 antennas.

this best tradeoff point, the EE should be sacrificed to achieve higher SE for which the
BS requires more transmit power. On the other hand, the impact of different channel
uncertainties on the achieved EE is represented in Fig. 6.11. It can be observed from
Fig. 6.11 that the EE decreases for both schemes as the variances of the channel
uncertainty in the CSI increase.

Next, the impact of the proposed robust design on the achievable EE and rate is
demonstrated by comparing with the performance of the non-robust scheme. The
achieved EE of the robust and the non-robust designs are depicted in Fig. 6.12 for
different available transmit power at the BS. As seen in Fig. 6.12, both schemes have
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Fig. 6.13 Histogram for rate satisfaction ratio in the robust and non-robust NOMA
scheme with channel estimation error bound ε = 0.001.

almost the identical performance in the terms of the achieved EE. For a better com-
parison, the histogram of the rate satisfaction ratio is depicted in Fig. 6.13 for the
robust and the non-robust schemes. As evidenced by the results, the robust scheme
outperforms the non-robust scheme and satisfies the rate requirement all the time re-
gardless of the channel uncertainties whereas the non-robust design fails to satisfy the
rate requirement.

6.5 Summary

With the immense increase of the traffic data and mobile devices, the energy consump-
tion increased and become an important issue in the green cellular network. Hence,
EE has become a key performance metric in the development of 5G and beyond wire-
less networks. To this end, an EE design is investigated in this chapter for NOMA
systems where only imperfect CSI is available at the BS. In general, there are two
schemes available in the literature for NOMA, non-clustering scheme and clustering
scheme. In the first scheme, there is no cluster and NOMA is employed to share the
radio resources between all users. In this scheme, each user is supported by its own
beamforming vector. However, in the clustering scheme the users in a cell are grouped
into different clusters to decrease the complexity of SIC at receivers as the users in the
same cluster are supported by the NOMA scheme. For beamforming design in cluster-
ing scheme, the ZF is employed to mitigate the inter-cluster interference. In particular,
two different ZF schemes are proposed, namely, hybrid-ZF and full-ZF based on the
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number of users and available transmit antennas at the BS. The objective function that
defines the EE of the system is a non-convex and a nonlinear function which formu-
lates the original problem into a fractional programming. The Dinkelbach's algorithm
is employed to convert the non-linear fractional programming problem into a simple
subtractive form. As simulation results demonstrate, the complexity of non-clustering
scheme increases by the number of users and more transmit power is required to sat-
isfy the minimum QoS at each user which decreases the EE. In addition, in clustering
scheme, despite the full-ZF scheme can completely remove the interference between
different clusters, it requires more transmit antennas than that of the hybrid-ZF scheme
to serve the same number of users. However, by increasing the number of clusters, the
inter-cluster interference increases, and consequently, the full-ZF approach shows a
better performance in terms of EE. In addition, the results confirmed that the proposed
robust approaches outperform the non-robust scheme in terms of the rate satisfaction
ratio at each user.



Chapter 7

Conclusion and Future Work

NOMA is envisioned as one of the key enabling techniques for future wireless com-
munications to overcome a major problem of OMA techniques which do not allow
frequency reuse within one cell. In this thesis, the NOMA scheme is investigated,
which is expected to increase system throughput and support massive connectivity in
future wireless networks. As NOMA utilizes the power domain to share the same
wireless resources between multiple users, the overall performance in NOMA is very
dependent on how efficiently power allocated between the users. Hence, resource al-
location plays a crucial role in designing the NOMA based systems. As such, this
thesis explored different resource allocation techniques to design beamforing vectors
for MISO-NOMA systems.

The beamforming vectors are designed based on power minimization and max-min
fairness in terms of data-rate among users in Chapter 4 with the assumption of perfect
CSI at the transmitter. To circumvent the non-convexity issues of the optimization
problems and to solve it, CCP is exploited with the first order Taylor series approxima-
tion and SDR approach to determine solutions for the original optimization problems.
The performance of proposed approaches are evaluated in terms of power consumption
and computational complexity while comparing the performance with the conventional
OMA scheme. Simulation results demonstrated that the NOMA scheme outperforms
the conventional multiple access in terms of transmit power consumption. Moreover,
two proposed schemes based on Taylor series approximation and SDR show a simi-
lar performance with a few users in the system. However, by increasing the number
of users, the performance gap between these two schemes increases and SDR outper-
forms the Taylor series approximation scheme in terms of required transmit power.
The reason for this performance difference is that SDR can provide the optimal solu-
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tion given that the solution is rank one whereas the other scheme relies on the Taylor
series approximation which might lead to a suboptimal solution.

Then, practical assumption is taken into account in Chapter 5 by introducing the
concept of robust beamforming design. Two different approaches are considered to
model channel uncertainties and the corresponding performance analyses are also pre-
sented. In the first approach, norm-bounded channel uncertainties are assumed to study
the robust power minimization problem. This robust scheme is developed based on the
worst-case performance optimization framework. In the second approach, an outage
probabilistic based robust scheme is investigated by incorporating channel uncertain-
ties where the total transmit power is minimized while satisfying the outage probabili-
ties at each user. In terms of beamforming vectors, the original robust designs are non-
convex and they are reformulated into a convex problem by exploiting the S-procedure
and SDR approach. Simulation results demonstrated that NOMA can satisfy fairness
requirements through appropriate power allocation. In addition, these results confirm
that the proposed robust scheme offers a better performance than that of the non-robust
approach by satisfying the target rate requirements at each user all the time regardless
of associated channel uncertainties.

With the high demand for energy to meet the unprecedented requirements in future
wireless networks, EE has aroused wide interest and has become a major concern in
the green cellular network. Hence, Chapter 6 investigates robust EE design in MISO
NOMA system by leveraging the norm-bounded channel uncertainty model. First, the
EE beamformers are designed for general system model where there is no clustering
and each user is supported by its own NOMA based beamforming vector. Then, to
reduce the complexity of SIC at the receivers, clustering is applied to group the users
into different clusters with a small number of users. In the clustering NOMA scheme,
users in each cluster are supported by a NOMA based beamforming approach and
beamforming vectors are designed to support each cluster through conventional mul-
tiuser beamforming designs. To remove the interference between different clusters,
two different types of ZF technique, namely hybrid-ZF and full-ZF, are applied in
clustering scheme. In the first approach, i.e., hybrid-ZF, the inter-cluster interference
is partially canceled while the second scheme, i.e., full-ZF, completely removes the
inter-cluster interference at the cost of more antennas at the transmitter. To transform
the original robust problems into a tractable form, the lower bound is considered for
the worst-case SINR and an iterative scheme is developed by exploiting Dinkelbach's
algorithm to solve the problem. The numerical results confirm that the proposed ro-
bust schemes outperform the non-robust scheme in terms of the rate satisfaction ratio
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at each user. In addition, the simulation results reveal that hybrid-ZF outperforms the
full-ZF scheme with a few clusters, while the full-ZF shows a better performance with
a higher number of clusters.

7.1 Future work

The research work presented in this thesis showed that NOMA is a promising candi-
date for multiple access technique in future wireless network. However, for the practi-
cal realization of the NOMA still much research effort is required to develop advanced
NOMA signal processing techniques with reduced complexity. There are a number of
interesting research directions in which the research of this thesis can be extended, as
follows:

• NOMA with massive MIMO: Massive MIMO systems have the potential ca-
pabilities to significantly improve the data throughput. Hence, it will be very
interesting to extend the work in this thesis to a massive MIMO system. How-
ever, the problem will become more complex. Hence, finding effective ways to
combine NOMA and massive MIMO is an interesting direction which can be
considered as a future research work.

• Cooperative NOMA System: The basic idea of cooperative NOMA transmis-
sion is that stronger users act as relays to help weaker users. As SIC is employed
at receivers in NOMA systems, the signals to the weaker users have already been
decoded by the stronger users. Hence, the stronger users can be considered as
relays. A typical cooperative NOMA transmission scheme can be divided into
two phases, the direct transmission phase and cooperative transmission phase.
During the direct transmission phase, the BS broadcasts a combination of sig-
nals for weak and strong users. During the cooperative transmission phase, after
applying SIC at the strong user for decoding weaker user's signal, the strong user
acts as a relay to forward the decoded information to the weak user. Therefore,
weak users receive two copies of the signals through different channels. As a
result, the reception reliability of the weak users is significantly improved. As
power allocation has been recognized to have a great impact on the performance
of NOMA systems, investigating optimal power allocation to further improve
the performance of cooperative NOMA systems is another interesting research
direction. Hence, the beamforming design in the cooperative NOMA system
would be an interesting possible extension.
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• Hybrid topology of NOMA: In this thesis, employing NOMA as a multiple
access technique for future wireless systems is investigated. However, it is en-
visioned that future wireless networks will be designed using more than one
multiple access technique. Combining NOMA and OMA is an effective way
which can significantly improve the capacity of 5G and beyond wireless net-
works. Therefore, it is important to study how to effectively combine NOMA
with other types of multiple access schemes to achieve the best performance
with available radio resources. In addition, a hybrid multiple access system is
viewed as a promising solution to reduce the complexity of cooperative NOMA
system. Hence, it would be very interesting to extend the system model used
in this thesis by dividing users into multiple clusters to incorporate cooperative
NOMA within each cluster, while implementing OMA between clusters.



Appendix A

Proofs for Chapter 4

A.1 Proof of Lemma 1

First the following complex derivatives are summarized as:
Generalized complex derivative

∂f(z)

∂z
=

1

2

(
∂f(z)

∂ℜ(z)
− i ∂f(z)

∂ℑ(z)

)
(A.1)

Conjugate complex derivative

∂f(z)

∂z∗
=

1

2

(
∂f(z)

∂ℜ(z)
+ i

∂f(z)

∂ℑ(z)

)
(A.2)

⇒ ∂f(z)

∂ℜ(z)
= 2ℜ

[
∂f(z)

∂z∗

]
,

∂f(z)

∂ℑ(z)
= 2ℑ

[
∂f(z)

∂z∗

]
(A.3)

Next, the first order Taylor series approximation is presented for a function g(A)
around A0 as follows:
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g(A) ≈ g(A,A0) = f(A0) + Tr
([∂f(A0)

∂ℜ(A)

]T
ℜ(A− A0)

)
+ Tr

([∂f(A0)

∂ℑ(A)

]T
ℑ(A− A0)

)
= f(A0) + Tr

(
2

[
∂f(A0)

∂A∗

]T
ℜ(A− A0)

)
+ Tr

(
2

[
∂f(A0)

∂A∗

]T
ℑ(A− A0)

)
= f(A0) + 2ℜ

(
Tr

[
∂f(A0)

∂A∗

]H
(A− A0)

)
(A.4)

Based on the above approximation, the following approximation can be obtained
fl(wk) = wH

k hlh
H
l wk as follows:

gk(wk, w̃k) = w̃H
k hlhl

Hw̃k +
[(∂fl(wk)

∂ℜ(wk)

∣∣∣∣
wk=w̃k

)T

ℜ(wk − w̃k)
]

+
[(∂fl(wk)

∂ℑ(wk)

∣∣∣∣
wk=w̃k

)T

ℑ(wk − w̃k)
]

(A.5)

and based on equations in (A.3), the following terms can be written

∂fl(wk)

∂ℜ(wk)
= 2ℜ(hlhl

Hwk) (A.6)

∂fl(wk)

∂ℑ(wk)
= 2ℑ(hlhl

Hwk) (A.7)

gl(wk, w̃k) = w̃H
k hlh

H
l w̃k + 2

(
ℜ(w̃H

k hlhl
H)ℜ(wk − w̃k)

)
+2
(
ℑ(w̃H

k hlhl
H)ℑ(wk − w̃k)

)
= w̃H

k hlh
H
l w̃k + 2ℜ[w̃H

k h1h1
H(wk − w̃k)] (A.8)

This completes the proof of Lemma 1. �
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A.2 Proof of Lemma 2

A maximization optimization problem is quasi-concave when the objective function
is quasi-concave and the constraints are convex. The constraint (4.17b) is convex,
however the constraint (4.17c) can be converted to a convex one by using the methods
provided in Section 4.3. Based on the quasi-convex definition a function f is called
quasi-convex if its domain and all its sublevel sets Sα = {x ∈ domf |f(x) ≤ α}, for
α ∈ R+, are convex. A function is quasi-concave if −f is quasi-convex, i.e., every
super level set {x ∈ domf |f(x) ≥ α} is convex. Clearly, for the objective function
in (4.17), minRk(w), to be quasi-concave, all its super level sets must be convex, i.e.,
Sα = {minRk(w) ≥ α}, which represents the set w = {w1, . . . ,wK} that makes the
objective function greater than a specific threshold, α. Since there is the min operator,
it can be rewritten as Sα = {Rk ≥ α, ∀k} and the constraints Rk ≥ α, ∀k can be
obtained as

(2α − 1)(ΣK
m=k+1|hH

l wm|2 + σ2
l ) ≤ |hH

l wk|2, ∀k, l = k, k + 1, . . . , K. (A.9)

By employing the Taylor series approximation presented in Section 4.3.1, the con-
straint in (4.17c) and (A.9) can be transformed into a convex one, which completes the
proof. �



Appendix B

Proofs for Chapter 5

B.1 Proof of Lemma 3

To incorporate the channel uncertainties in the robust optimization problem in (5.8),
let consider the following lemma [151]:

Lemma 3.1: (S-procedure): Let Ai ∈ CN×N be symmetric matrices, bi ∈ CN×1 be
vectors and ci be real numbers. Assume that there is some x0 such that the following
inequality holds.

xH
0 A1x0 + 2Re{bH

1 x0}+ c1 ≤ 0,

Then, the implication

xHA1x+ 2Re{bH
1 x}+ c1 ≤ 0

=⇒ xHA2x+ 2Re{bH
2 x}+ c2 ≤ 0,

holds if and only if there exists some nonnegative number µ ≥ 0 such that

µ

[
A1 b1

bH
1 c1

]
−

[
A2 b2

bH
2 c2

]
≽ 0,

is positive semi-definite.
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For applying S-procedure, the constraint (5.8b) is derived as

∆ĥH
l I∆ĥl − ϵ2 ≤ 0

=⇒ ∆ĥH
l

(
γmin
k

∑
m ̸=k

Wm −Wk

)
∆ĥl

+ 2ℜ

{
ĥH
l

(
γmin
k

K∑
m=k+1

Wm −Wk

)
∆ĥl

}

+ ĥH
l

(
γmin
k

K∑
m=k+1

Wm −Wk

)
ĥl + γmin

k σ2
l ≤ 0, ∀ k, l = k, . . . ,K.

Then, based on Lemma 3.1, the constraint (5.8b) can be reformulated with µkl ≥ 0

as

Ckl =

[
µklI+ φk ϕkĥl

ĥH
l ϕk ĥH

l ϕkĥl − γmin
k σ2

k − µklϵ
2

]
≽ 0, (B.1)

where φk = Wk − γmin
k

∑
m ̸=k Wm and ϕk = Wk − γmin

k

∑K
m=k+1Wm.

This completes the proof of Lemma 3. �
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B.2 Proof of Lemma 4

To convert probabilistic constraints in (5.15b) into a tractable form the following lemma
is required:
Lemma 4.1: Consider a hermitian random matrix X ∈ CN×N with each element
being independently characterized as [X]ij ∼ CN (0, σ2

ij). Then, for any hermitian
matrix Y ∈ CN×N , it holds

Tr(YX) ∼ CN (0, ∥Y ⊙ ΣX∥2F), (B.2)

Tr(YX) = ∥Y ⊙ ΣX∥FU, U ∼ N (0, 1), (B.3)

where ⊙ indicates Hadamard product and ΣX represents a real valued N × N matrix
with each entry [ΣX ]ij = σij , [115].

By exploiting Lemma 4.1 and the CDF of a standard normal distribution as

U ∼ N (0, 1) ⇒ Pr (U ≤ u) =
1

2

[
1 + erf(

u√
2
)

]
, (B.4)

the constraint in (5.15b) can be represented as follows:

Pr
(
Tr(−B́k∆l) ≤ Tr(BkĈl)− σ2

) (B.3)
= Pr

(
∥ − B́k ⊙ Σ∆l

∥FU ≤ Tr(BkĈl)− σ2
)

= Pr

(
U ≤ Tr(BkĈl)− σ2

∥ − B́k ⊙ Σ∆l
∥F

)
(B.4)
=

1

2

[
1 + erf

(
Tr(BkĈl)− σ2

√
2∥ − B́k ⊙ Σ∆l

∥F

)]
≥ (1− ρk), ∀k, l = k, k + 1, . . . , K.

(B.5)

The inequalities in (B.5) can be written in the following forms:

Φkl ≥
√
2 erf−1(1− 2ρk)∥vec(−B́k ⊙ Σ∆l

)∥, (B.6)

where Φkl = Tr(BkĈl)− σ2.
After converting the constraint in (5.15b) to (B.6), the original robust problem can be
transformed into a convex optimization framework through the following lemma:
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Lemma 4.2: The following second order cone constraint on x

∥Ax+ b∥ ≤ eTx+ d, (B.7)

can be represented with the following LMI [127]:[
(eTx+ d)I Ax+ b

(Ax+ b)T eTx+ d

]
≽ 0. (B.8)

By applying Lemma 4.2, the constraints in (B.6) can be reformulated as

Ckl =

[
Φkl√

2erf−1(1−2γk)
IM2 vec(−B́k ⊙ Σ∆l

)

vecH(−B́k ⊙ Σ∆l
) Φkl√

2erf−1(1−2γk)

]
, ∀k, l = k, k + 1, . . . , K.

(B.9)

This completes the proof of Lemma 4. �
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Proofs for Chapter 6

C.1 Proof of Lemma 5

Assume that the numerator and denominator of SINR(k)
l in (6.5) are independent and

then their worst-case terms are derived, separatively. Based on this assumption, a
function φ(k)

l is first introduced as a lower bound of min∥∆ĥl∥2≤ε SINR(k)
l as

φ
(k)
l =

pk min∥∆ĥl∥2≤ε

(∣∣(ĥl +∆ĥl)
Hvk

∣∣2)
∑k−1

m=1 pm max
∥∆ĥl∥2≤ε

(∣∣∆ĥH
l vm

∣∣2)+ K∑
m=k+1

pm max
∥∆ĥl∥2≤ε

(∣∣(ĥl +∆ĥl)
Hvm

∣∣2)+σ2

.

(C.1)
By employing triangle inequality and Cauchy-Schwarz and considering ∥∆ĥl∥2 ≤ ε,
the following holds:∣∣(ĥl +∆ĥl)

Hvk

∣∣ ≥ ∣∣ĥH
l vk

∣∣− ∣∣∆ĥH
l vk

∣∣ ≥ ∣∣ĥH
l vk

∣∣− ε∥vk∥, (C.2)∣∣(ĥl +∆ĥl)
Hvm

∣∣ ≤ ∣∣ĥH
l vm

∣∣+ ∣∣∆ĥH
l vm

∣∣ ≤ ∣∣ĥH
l vm

∣∣+ ε∥vm∥. (C.3)

Then, (C.2) and (C.3) are applied to the numerator and denominator of (C.1) as fol-
lows:

min
∥∆ĥl∥2≤ε

(∣∣(ĥl +∆ĥl)
Hvk

∣∣2) ,
∣∣∣∣(∣∣ĥH

l vk

∣∣− ε∥vk∥
)+∣∣∣∣2, (C.4)

max
∥∆ĥl∥2≤ε

(∣∣(ĥl +∆ĥl)
Hvm

∣∣2) ,
∣∣∣∣∣∣ĥH

l vm

∣∣+ ε∥vm∥
∣∣∣∣2 (C.5)

max
∥∆ĥl∥2≤ε

(∣∣∆ĥH
l vm

∣∣2) , ε2 ∥vm∥2. (C.6)

This completes the proof of Lemma 5. �
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C.2 Dinkelbach's algorithm

Dinkelbach's algorithm is a well-known technique to solve the a CCFP

max
x

f(x)

g(x)
, (C.7a)

subject to ci(x) ≤ 0, ∀ i = 1, . . . , I, (C.7b)

hj(x) = 0, ∀ j = 1, . . . , J, (C.7c)

where f(x) is a non-negative differentiable concave function, g(x) is a positive differ-
entiable convex function, ci is convex for all i = 1, . . . , I , and hj is an affine function
for all j = 1, . . . , J .

Dinkelbach's algorithm has been originally introduced in [157, 158]. Furthermore,
it belongs to the class of parametric algorithms. The fundamental concepts of these
algorithms is to obtain the solution of a CCFP by solving a sequence of simple sub-
problems which converges to the global optimal solution of the original CCFP. The
fundamental result upon which Dinkelbach's algorithm is built is the relation between
the CCFP in (C.7) and the function of real variable as

F (λ) = max
x
{f(x)− λg(x)}. (C.8)

Solving a fractional problem is equivalent to finding the unique zero of the auxiliary
function F (λ) where Dinkelbach's algorithm allows to accomplish this. The pseudo-
code of Dinkelbach's algorithm is provided in Table 6.1.
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C.3 Proof of Lemma 6

By introducing new variables Wk, the constraint (6.18b) can be rewritten as

γk ≤
hH
l Wkhl∑k−1

m=1 ∆ĥH
l Wm∆ĥl +

∑K
m=k+1 h

H
l Wmhl + σ2

l

, ∀k, l = k, k + 1, . . . , K.

(C.9)

Then, by applying S-procedure in Appendix B.1, the constraint (C.9) can be de-
rived as

∆ĥH
l I∆ĥl − ε2l ≤ 0

⇒∆ĥH
l

(∑
m ̸=k

Wm −Wk/γk

)
∆ĥl + 2ℜ

{
ĥH
l

(
K∑

m=k+1

Wm −Wk/γk

)
∆ĥl

}

+ ĥH
l

(
K∑

m=k+1

Wm −Wk/γk

)
ĥl + σ2

l ≤ 0. (C.10)

Based on S-procedure, the inequality (C.10) is satisfied for all possible channel
uncertainties if there exists µkl ≥ 0 and the following LMI holds:[

µklI+ ϕk −
∑k−1

m=1Wm ϕkĥl

ĥH
l ϕk ĥH

l ϕkĥl − σ2
l − µklε

2
l

]
≽ 0, (C.11)

This completes the proof of Lemma 6. �



Glossary

1G First Generation

2G Second Generation

3G Third Generation

4G Forth Generation

5G Fifth Generation

A/D Analog-to-Digital

AWGN Additive White Gaussian Noise

BS Base Station

CCP Convex-Concave Procedure

CCFP Concave-Convex Fractional Problem

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CSI Channel State Information

D2D Device-to-Device

EE Energy Efficiency

GPRS General Packet Radio Service

HD High Definition

i.i.d independently and identically distributed
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IMT International Mobile Telecommunications

IoT Internet-of-Things

ITU-R International Telecommunications Union-Radio

LDS Low-Density Spreading

LMI Linear Matrix Inequality

LP Linear Program

LTE Long Term Evolution

M2M Machine-to-Machine

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

mm-Wave Millimeter Wave

MUSA Multi-User Shared Access

NLP Non-Linear Program

NOMA Non-Orthogonal Multiple Access

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OMA Orthogonal Multiple Access

PDF Probability Density Function

PDMA Pattern Division Multiple Access

QCQP Quadratically Constrained Quadratic Program

QoS Quality of Service

QP Quadratic Program

SC Superposition Coding
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SCMA Sparse Code Multiple Access

SDMA Spatial Division Multiple Access

SDP Semidefinite Programming

SDR Semidefinite Relaxation

SE Spectral Efficiency

SIC Successive Interference Cancellation

SINR Signal-to-Interference-Noise Ratio

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SOC Second-Order Cone

SOCP Second-Order Cone Programming

TDMA Time Division Multiple Access

ZF Zero-Forcing



Notations

Cm Set of complex m× 1 vectors
Rm Set of real m× 1 vectors
Cm×n Set of complex m× n matrices
Rm×n Set of real m× n matrices
Rm

+ Set of nonnegative real m× 1 vectors
|x| Modulus of complex number x
x Vector x
X Matrix X

[X]i,j (i, j)-th element of matrix X

(·)T Transpose
(·)H Transpose conjugate
X−1 Inverse of the matrix X

X† Pseudo-inverse of the matrix X

X ≽ 0 Positive semi-definite matrix
Tr(X) Trace of the matrix X

vec(X) Vector of the matrix X

ℜ(x) Real part of a complex number x
ℑ(x) Imaginary part of a complex number x
|| · ||2 Euclidian vector norm, i.e., ||x||2 =

√
xHx

⊙ Hadamard product
IN N ×N Identity matrix
EX [·] Expectation of a random variable over X
Pr(·) Probability operator
CN (µ, σ2) Complex Gaussian random variable with mean µ and variance σ2

N (µ, σ2) Real Gaussian random variable with mean µ and variance σ2

dom f Domain of a function f
min{},max{} Minimum and maximum function
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