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Abstract 
 
The formation of a functionally integrated nervous system is dependent 

on a highly organized sequence of events that includes timely division 

and differentiation of progenitors. Three evolutionarily conserved polarity 

protein complexes are crucial for defining the apical and basolateral 

boundaries of cells. In my thesis, I demonstrate that one of the vertebrate 

homologs of Crumbs- Crumbs2 (Crb2) plays context dependent roles in 

the developing nervous system using two model systems: the chick 

embryonic hindbrain and the mouse embryonic telencephalon. 

In the developing telencephalon, conditional ablation of Crb2 leads to 

defects in recruitment of apical polarity proteins, cell junction proteins, 

positioning of mitotic cells and cortical neurogenesis.  

In the chick embryonic hindbrain, misexpression of Crb2 affects 

morphology of the neural tube and also affects the apical localization of 

cell polarity proteins, mitotic cell divisions and neural differentiation. In 

addition to this, I demonstrate that a novel secreted splice variant of Crb2 

plays an important role in regulating neural crest cell migration.  

Taken together my analyses show that both loss and misexpression of 

Crb2 have similar effects on the apical domain and in confining mitotic 

cell divisions to the apical domain. This implies that the level of Crb2 is 

crucial for its various biological roles in the developing nervous system.   
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1.0 Introduction 

In my thesis, I have taken advantage of two model systems: a 

conditional knockout mouse model and the chick embryonic hindbrain to 

study the role of Crumbs 2 (Crb2) during neural development. The 

introduction aims to provide a general overview of 1. Neural induction and 

Neurulation  2. Cortical development  3. Segmentation of the hindbrain   

4. Apical-basal cell polarity focussing mainly on the apical complex 

protein Crb2. Finally, I will outline the specific aims of my study.  

 

1.1 Neural induction and neurulation 

The central nervous system (CNS) is the most complex organ 

system in the vertebrate body. The complexity of the CNS belies its 

modest origin from a single sheet of polarized epithelium called the 

neuroectoderm (Gilbert, 2003). In the late 19th century, Ramon y Cajal 

proposed that the CNS is composed of discrete metabolic units. Cajalʼs 

exhaustive studies revealed the organizational complexity and precise 

connectivity between cells of the nervous system (Cajal, 1890, 1937; 

Guillery, 2005). More than a century after Cajalʼs studies, we are still 

trying to understand the mechanisms underlying the emergence of the 

complex CNS.  

Neurons are individual functional units of the nervous system and 

are generated precisely in a spatio-temporal manner to mediate simple 

and higher order reflexes of vertebrates. Tight regulation of the 

specification, proliferation, migration and subsequent control of axonal 

path of neurons results in the intricate neural network observed in the 

adult CNS and the foundation for this neural circuitry is laid early during 

embryonic development (Gilbert, 2003).  

Neural induction, the process by which naïve ectodermal cells 

adopt a neural fate over a non-neural fate is initiated during gastrulation 

(Wolpert et al., 1998; Zaraisky, 2007). Classical experiments in Xenopus 
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have shown that the cells underlying the prospective neural plate are a 

crucial source of neural inducing signals (Spemann and Mangold 1924, 

2001; Harland, 1994).  These signals induce the expression of neural-

specific genes in competent ectodermal cells. The pathways implicated in 

neural induction are the BMP, FGF and Wnt signalling pathways (Wolpert 

et al., 1998). The induction of a ʻneural-stateʼ is not a single step process 

but involves sequential exposure to these signaling molecules (Wolpert et 

al., 1998; Stern, 1994).  

As development progresses, the induced neural plate undergoes 

extensive morphogenesis. Initially, the neural plate elongates and bends 

around a medial groove. Subsequently, the neural folds elevate along the 

medio-lateral axis and the dorso-lateral apical surfaces of the neural folds 

meet, fusion occurs at the dorsal midline to form a neural tube with a 

lumen in the centre and this sequence of events occurring during late 

gastrulation is termed ʻneurulationʼ (Wolpert et al., 1998) (Fig 1.1). The 

neural tube is formed beneath the overlying ectoderm and the dorsal 

most portion of the neural tube contributes to the neural crest cells 

(described in section 1.3.1).  

The primitive neural tube can be grossly subdivided into a rostral 

part that develops into the brain and a caudal part that is the presumptive 

spinal cord. The rostral end of the neural tube enlarges and forms three 

linked primary vesicles – the prosencephalon, mesencephalon and 

rhombencephalon. The prosencephalon gives rise to the telencephalon 

and diencephalon. The rhombencephalon divides into the metencephalon 

and myelencephalon and connects to the presumptive spinal cord. Unlike 

the prosencephalon and rhombencephalon the mesencephalon does not 

expand significantly during subsequent brain development and remains 

as a single vesicle (Gilbert, 2003; Chizhikov & Millen, 2005) (Fig 1.2 B).  
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Pioneering studies in chick embryos have indicated that the 

distinct demarcation of forebrain, midbrain, hindbrain and spinal cord 

territories may be defined in response to anteriorising and posteriorising 

signals (Fig 1.2 A) (Beddington & Robertson, 1999; Ericson et al., 1995; 

Patten & Placzek, 2002; Simon et al., 1995). These signals that pattern 

the neural tube along the anterior-posterior axis emanate from tissues 

such as anterior visceral endoderm, somites and notochord that lie in 

close proximity with the developing neural tube (Episkopou et al., 2001; 

Gavalas & Krumlauf, 2000; Muhr et al., 1997).  

1.2 Organization of the forebrain 

Forebrain organization involves patterning along the dorsoventral 

(DV) and anterioposterior (AP) axes (Rash & Grove, 2006; Rhinn et al., 

2006). DV patterning specifies dorsal forebrain from the ventral forebrain. 

AP patterning delineates the telencephalon from the diencephalon and 

also specifies subdivisions of the telencephalon. The dorsal 

telencephalon gives rise to the cerebral cortex and the ventral 

telencephalon to the striatum, pallidum and septum (Kaufman & Bard, 

1999).  

A prosomeric model of forebrain development was put forward on 

the basis of morphological and gene expression boundaries (Puelles & 

Rubenstein, 1993; Rubenstein et al., 1994; Shimamura et al., 1995). At its 

core, the prosomeric model proposes sub-divisions of the forebrain into a 

grid-like pattern of neuromeric domains by AP and DV boundaries. These 

neuromeric domains called prosomeres are in turn grouped into 

diencephalon (prosomeres 1-3) and the secondary prosencephalon - the 

hypothalamus and telencephalon (prosomeres 4-6) (Rubenstein et al., 

1994) (Puelles & Rubenstein, 2003). Apart from these transverse 

domains, the forebrain also shows organization along its longitudinal axis   

 

 



	
   7	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   8	
  

and these correspond to the roof, alar, basal and floor plates of the spinal 

cord (Shimamura et al., 1995).  

Previous work has shown that gene expression profiles in the 

developing telencephalon correlates with morphological distinction of 

prosomeric boundaries and furthermore these genes play significant roles 

in defining position-specific identity of cells (Fishell, 1997; Shimamura & 

Rubenstein, 1997). In the telencephalon, specific transcription factors that 

include members of the distalless (Dlx), empty spiracles (Emx), forkhead 

(Fox), orthodenticle (Otx), paired-box (Pax) and sine oculis (Six) families 

are involved in the regional specification of the AP sub-divisions (Fishell, 

1997; Shimamura & Rubenstein, 1997; Simeone et al., 1992). The 

expression profiles of some of the key transcription factors involved in 

patterning of the telencephalon are summarized in Fig 1.3 and Table 1.1.  

 
1.2.1 Cortical histogenesis and proliferative zones in the cortex 

Retroviral lineage tracing and birth-dating experiments have 

demonstrated that the cells lining the inner edge of the cortical wall 

contribute to the repertoire of cell types observed in the mature cerebral 

cortex (Price & Thurlow, 1988; Reid et al., 1995). The mammalian 

cerebral cortex is organized into six layers and each layer contains 

neurons with similar morphology. The cortical layers are laid down in an 

inside-out fashion (Fig 1.4). The early born neurons reside closer to their 

birth place whereas later born neurons migrate further to populate the 

superficial layers of the cortex (Angevine & Sidman, 1961; Berry & 

Rogers, 1965; Gotz & Bolz, 1992; Rakic, 1988).   

 Birthdating experiments using [3H] thymidine were used to predict 

accurately the commitment of a neuronal cell to a particular laminar fate 

(Angevine & Sidman, 1961). In addition to these experiments, 

transplantation studies have shown that early cortical progenitors are 

multipotent and late progenitors have a more restricted fate potential. The 

association between the birth-date of a cell and its laminar fate made it 
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possible to study the timing of a cellʼs commitment to layer-specific 

neurons during development (McConnell & Kaznowski, 1991, Desai & 

McConnell, 2000).  

It is generally accepted that during development the ventricular 

zone consists of a heterogenous cell population that includes: multipotent 

progenitors (Luskin et al., 1988), lineage-restricted progenitors (Williams 

& Price, 1995) and specified daughter cells (Reid et al., 1995). Initially, 

neuroepithelial cells span the width of the cortical wall and they undergo 

cell divisions to generate more of the proliferative cell population. The 

proliferating progenitors predominantly reside in a domain close to the 

ventricle and are called ventricular zone progenitors. Nuclei of the 

ventricular zone progenitors display interkinetic nuclear migration, where 

the position of the nuclei in relation to the ventricular surface is dependent 

on the phase of cell cycle. The nuclei move away from the ventricular 

surface during G1 and occupy outer ventricular zone during S-phase and 

undergo mitosis near the apical surface (Sauer, 1935). This dynamic 

nuclear migration gives a pseudo-stratified appearance to the 

neuroepithelium (Gotz & Huttner, 2005).   
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Table 1.1 List of some of the key genes involved in patterning of the 
telencephalon.  
 

	
  
Gene Expression 

pattern in the 

brain 

Forebrain phenotype 

observed 

Reference 

Emx1 Dorsal 

telencephalon 

Minor defects in forebrain 

development, reduced cortical 

plate thickness, disorganized 

fasciculation of anterior 

commissure and corpus 

callosum  

Simeone et al., 

1992 

Qiu et al.,1996 

Yoshida et al., 

1997 

Gorski et al., 

2002 

 

Emx2 

Dorsal 

telencephalon 

and diencephalon 

 

Decreased cortex size and 

absence of dentate gyrus 

Simeone et 

al.,1992 

Pellegrini et al., 

1996 

Yoshida et al., 

1997 

Pax6 Telencephalon 

and diencephalon 

Loss of discrete prosomeric 

boundaries, aberrant cortical 

stratification and defects in 

telencephalic and diencephalic 

patterning 

 

Stoykova et al., 

1996, Warren 

and Price 1997, 

Gotz et al., 

1998 

 

Nkx 2.1 Ventral 

telencephalon 

Defects in development of the 

septum and basal ganglia in the 

ventral telencephalon 

Shimamura et 

al., 1995 

Dlx1/2 Domains of 

diencephalon and 

ventral 

telencephalon 

In Dlx1/2 double mutants, 

altered proliferation and 

differentiation in the basal 

telencephalic regions. No 

apparent patterning defects in 

the single mutants 

Bulfone et al., 

1993 

Gli3  Telencephalon, 

dorsal mid and 

hindbrain  

Reduced size of cortex, no 

defined boundary between 

telencephalon and diencephalon 

Grove et al., 

1998 
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For this section, I define neurogenesis as the generation of 

postmitotic cortical neurons and this take place over a period of seven 

days in the mouse – Embryonic ages E10.5 – E17.5 (Caviness, 1982) 

(Takahashi et al., 1995b). With the onset of neurogenesis, proliferating 

progenitor cells withdraw from the cell cycle and form the first cortical 

neurons. The cortical neurons migrate a short distance and form a distinct 

layer called the preplate. The preplate is subsequently divided by the 

cortical plate neurons into a superficial marginal zone that contains the 

Cajal-retzius cells and a deeper subplate (Allendoerfer & Shatz, 1994; 

Marin-Padilla, 1998).  

With the onset of neurogenesis, neuroepithelial cells are 

transformed into radial glial cells (RGCs). RGCs are characterized by an 

intrinsic apical-basal polarity and long processes that contact both the 

apical and pial surfaces of the cortex. They act as scaffolds for the 

migration of newborn neurons to the cortical plate.  

A second proliferative progenitor pool is present in the sub-

ventricular zone -SVZ (Takahashi et al., 1995a) (Bayer & Altmann, 1991).  

The SVZ is associated with the emergence of upper layers (II-IV) of the 

neocortex. Basal or intermediate progenitor cells (IPCs) are neurogenic 

transient amplifying cells that populate the SVZ in the developing cerebral 

cortex. IPCs arise after the onset of neurogenesis and are prominent 

during mid and late neurogenesis. IPCs have been linked with 

determination of cortical surface area, laminar thickness and cortical 

neurogenesis during embryonic development and into adulthood. They 

undergo mitosis in the SVZ of the cortex unlike the neuroepithelial/radial 

glial cells that divide close to the ventricular surface (Haubensak et al., 

2004) (Noctor et al, 2007). Additionally, IPCs lack the apical-basal polarity 

of neuroepithelial cells (Noctor et al., 2004; Attardo et al., 2008) and the 

majority undergoes symmetric terminal cell divisions. However, a 

relatively small population is still capable of undergoing symmetric  
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proliferative divisions to expand the IPCs (Kowalczyk et al., 2009; Noctor 

et al., 2004).  

Neuroepithelial cells, RGCs and IPCs are characterized by 

expression of different genes and these differentially impact on 

neurogenesis. The defining features of these cell types are summarized 

in Table 1.2. 

 
Table 1.2 Summary of the similarities/differences of neural 
stem/progenitor cells. 
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cell	
  type	
  
	
  

Neuroepithelial	
  cell	
   Radial	
  glial	
  cell	
   Intermediate	
  
progenitor	
  

Division	
  
potential	
  

Multipotent	
   Multi/Bipotent	
   Bi/Unipotent	
  

Apical-­basal	
  
cell	
  polarity	
  

Present	
   Present	
   Downregulated	
  

	
  
Molecular	
  
markers	
  

	
  
Emx1/2,	
  Hes5,	
  Pax6,	
  
Par3,	
  aPKC,	
  CD133	
  

Emx1/2,	
  Hes5,	
  
Pax6,	
  Par3,	
  aPKC,	
  
CD133,	
  GFAP,	
  
BLBP	
  

	
  
Tbr2,	
  Cux1/2,	
  
Neurog1/2	
  

Interkinetic	
  
nuclear	
  
migration	
  

	
  
√	
  

	
  
√	
  

	
  
X	
  

Cortical	
  layer	
   Ventricular	
  zone	
   Ventricular	
  zone	
   Sub-­‐ventricular	
  
zone	
  

	
   Mode	
  of	
  cell	
  division	
  
Symmetric,	
  
proliferative	
  

	
  
√	
  

	
  
√	
  

	
  
Small	
  proportion	
  

Symmetric,	
  
differentiative	
  

	
  
√	
  

	
  
√	
  

	
  
√	
  

	
  
Asymmetric	
  

	
  
√	
  

	
  
√	
  

	
  
X	
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1.2.2 Specification of cortical progenitors: 

The interplay between both intrinsic and extrinsic factors is thought 

to regulate progenitor cell proliferation, lineage restriction and cell fate 

specification. (Johansson et al., 2010; Temple & Qian, 1996). Strict 

control of cell cycle parameters is also critical in the specification of 

cortical progenitors (Dehay & Kennedy, 2007).  

In this section, I will focus mainly on the intrinsic factors involved in 

the switch of a multipotent progenitor to a committed cell fate but also 

briefly discuss the roles of Notch and Reelin pathways in neural 

development. The candidate genes discussed below are classified into 

the following categories: Transcriptional regulators, Signalling pathways 

and apical/cell junction components. 

Transcriptional regulators: 

A combination of transcription factors work together to regulate cell 

fate decisions in the developing cortex (Hevner, 2006). The SoxB1 gene 

family that includes Sox1, 2 and 3 is crucial for maintaining the neural 

progenitor pool (Bylund et al., 2003; Graham et al., 2003). The basic helix 

loop helix (bHLH) proteins encoded by proneural genes such as 

Neurogenin 1/2, Mouse achaete-scute complex homolog 1 (Mash1) and 

mouse atonal homologs 5 (Math 5) have also been implicated in 

regulating cortical neurogenesis (Bertrand et al., 2002; Nieto et al., 2001; 

Britz et al., 2006). To maintain neural progenitors in an undifferentiated 

state, SoxB1 proteins inhibit the activity of the bHLH proneural proteins 

(Bylund et al., 2003; Holmberg et al., 2008). However, this is not the only 

mechanism involved in the switch of cell fate from a neural progenitor to a 

neuron.  

The transcription factor Pax6, a conserved member of the paired-

box family has been associated with establishing dorso-ventral patterning 

in the telencephalon, cell cycle progression of apical progenitors, 

specification of intermediate progenitors and also cortical neuronal 
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migration (Georgala et al., 2011). It functions both via regulation of 

proneural gene expression (Scardigli et al., 2003) and by mechanisms 

independent of proneural genes (Heins et al., 2002; Estivill-Torrus et al., 

2002). 

Tbr2 and Tbr1 are T-domain transcription factors expressed 

sequentially in the cells of the cortex. Tbr2 is expressed highly in the IPC 

population and has been used extensively as a marker for these cells 

(Cappello et al., 2006; Yoon et al., 2008). Conditional ablation of Tbr2 in 

the developing cortex results in a significant depletion of IPCs. This 

suggests that Tbr2 is critical for the specification of IPCs in the 

developing cortex (Sessa et al., 2008). Tbr1 expression is detected in 

early born cortical neurons of the preplate and layer 6 (Bulfone et al., 

1995) and in glutamatergic neurons (Hevner et al., 2001). Loss of Tbr1 

expression leads to impaired subplate division, molecular and functional 

defects in these neurons (Hevner et al., 2001).   

In a simplified scheme of events, neurogenesis can be broadly 

classified into direct and indirect neurogenesis (Haubensak et al., 2004; 

Hevner, 2006). The direct transformation of RGCs to newborn neurons is 

regulated by proneural genes like Neurogenin 1/2 and Notch pathway 

target genes Hes1/5 and this process corresponds with a downregulation 

of progenitor fate determinants Pax6, Sox2 and a concomitant 

upregulation of postmitotic neuronal markers Tbr1, Math2 and NeuroD2 

(Englund et al., 2005; Schuurmans et al., 2004). In the case of indirect 

neurogenesis, RGCs undergo transition to IPCs and subsequently into 

neurons. This involves an upregulation of Tbr2 and a downregulation of 

Pax6. Subsequently, the transition of IPCs to neurons then correlates with 

the downregulation of Tbr2 and an upregulation of Tbr1 and Math2 

(Englund et al., 2005; Hevner, 2006).  
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Notch Signalling pathway 

Notch signalling is an evolutionarily conserved intercellular 

signalling pathway that regulates cellular fate choices. It allows juxtacrine 

communication between neighbouring cells and mediates a variety of 

cellular responses (Louvi & Artavanis-Tsakonas, 2006).  During 

development, Notch signalling mediates the segregation of specific cell 

lineages from a field of developmentally equivalent cells by linking the 

fate of adjacent cells (Cau & Blader, 2009; Louvi & Artavanis-Tsakonas, 

2006). At the core of the Notch signalling pathway, is the receptor present 

on the surface of one cell and the ligands present on the surface of an 

adjacent cell. The signal is transduced from a ʻsending cellʼ that displays 

the ligands and these ligands bind the receptors of the ʻreceiving cellʼ. 

This signalling transduction leads to a series of proteolytic events to 

release the Notch intracellular domain from the cell surface. NICD 

translocates to the nucleus and assembles an activated complex, which 

contains RBPjK (recombining binding protein suppressor of hairless) 

(Artavanis-Tsakonas et al., 1999; Louvi & Artavanis-Tsakonas, 2006) and 

triggers the transcription of its target genes. In the vertebrate CNS, the 

main Notch target genes are Hes1 and Hes5 (Kageyama & Ohtsuka, 

1999; Ohtsuka et al., 1999). The canonical Notch signalling pathway 

described in this section is shown in Fig 1.5 

Notch signalling maintains the balance between amplification of 

the neural progenitor pool and neural differentiation by a mechanism 

called lateral inhibition (Greenwald & Rubin, 1992; Raible & Eisen, 1995). 

The Notch pathway ligands are also targets of proneural genes and newly 

specificed neurons can transduce Notch signalling in adjacent neural 

progenitor cells (Bertrand et al., 2002; Casarosa et al., 1999; Cau et al., 

2002). Active Notch signalling in adjacent cells inhibits acquisition of 

neuronal cell fate by antagonism of proneural genes.  Thus the Notch 

pathway can contribute to waves of neuronal production as opposed to 

differentiation of all progenitor cells at a given time point.  
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In the vertebrate CNS, Notch signalling has been extensively 

studied for its diverse regulatory roles (Chambers et al., 2001; Louvi & 

Artavanis-Tsakonas, 2006; Mizutani et al., 2007). Notch signalling is 

crucial for maintaining the neural progenitor pool during neurogenesis and 

activation of the Notch signalling pathway maintains neural progenitors in 

an undifferentiated state by repressing the expression of proneural genes 

(Louvi & Artavanis-Tsakonas, 2006) (Holmberg et al., 2008).  

Interestingly, disruption of components of the Notch pathway such as its 

transcriptional target Hes5 mimic the phenotype observed in the 

telencephalon of Notch conditional knockout embryos: a reduction of the 

neural progenitors and premature neurogenesis (Chenn & McConnell, 

1995; Mizutani et al., 2007; Ohtsuka et al., 1999; Yoon & Gaiano, 2005). 

This suggests that these transcriptional targets are the predominant 

downstream effectors of Notch signalling in the CNS (Ohtsuka et al., 

1999; Yoon & Gaiano, 2005).  

Both Hes1 and 5 are classical DNA-binding repressors that inhibit 

expression of proneural genes (Ohtsuka et al., 1999). Inhibition of 

proneural genes occurs when Hes proteins bind to the N-box sequences 

in their promoter region. Additionally, Hes proteins are also capable of 

directly interacting with proneural bHLH proteins to form non-functional 

dimers and inhibit neurogenesis (Cau & Blader, 2009) (Fischer & Gessler, 

2007).  

 
Reelin Signalling 

Reelin, a secreted protein synthesized by Cajal-retzius cells acts 

through the extracellular milieu to regulate positioning of signal-

responsive target cells (DʼArcangelo et al., 1995; Frotscher et al., 2009). 

The receptors for Reelin are VLDR (very low-density lipoprotein receptor) 

and apoER2 (apolipoprotein E receptor 2) receptors and Reelin signal is 

transduced by tyrosine phosphorylation of Dab1 (Disabled1), an 

intracellular adaptor protein (Fig 1.6). Dab1 and the Reelin receptors are 

expressed in the ventricular zone and this is consistent with the proposed 
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role of Reelin in influencing migration of neural cells (Tissir & Goffinet, 

2003; Frotscher et al., 2009; Nomura, Hattori, & Osumi, 2009). In the 

reeler mouse model that has a spontaneous mutation in Reelin, severe 

abnormalities such as mislocalization of laminar specific neurons and 

disorganization of cortex are apparent. Interestingly, the inside-out 

pattern of cortical development (described in section 1.2.1) is lost in 

reeler mice and the postion of neurons in the cortex is inverted with layer 

specific neurons observed in an outside-in pattern (Rakic & Caviness 

1995, Tissir and Goffinet 2003, DʼArcangelo et al., 1995). 

Relationship between apical cell membrane constituents and neural 
cell fate determination 

During Drosophila neuroblast division, the orientation of the 

cleavage plane is influenced by apical-basal polarity cues (Knoblich, 

2008; Zhong & Chia, 2008). It has been proposed that similar conserved 

mechanisms are in play during vertebrate neurogenesis (Wodarz & 

Huttner, 2003).  

Neuroepithelial cells have an intrinsic apical-basal polarity and it 

was proposed that some of the self-renewing factors localize at the apical 

cell surface and the inheritance of these factors determines cell fate 

(Chenn, Zhang, Chang, & McConnell, 1998; Gotz & Huttner, 2005). 

Accumulating evidence from ʻmouse knockout studiesʼ supports the role 

for apical cell membrane constituents in neural cell fate determination. 

These studies are summarized in Table 1.3 
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Table 1.3 Summary of the phenotypes observed in mouse knockout 

models of polarity and cell-junction proteins. 
	
  

Protein 

analysed 

Knockout 

system/ 

Conditional 

knockout model 

Phenotype observed Reference 

Crumbs 

complex 

Pals1 

 

 

 

Emx1-Cre 

 

 

 

Disruption of apical complex 

proteins 

Premature withdrawal from cell 

cycle 

Precocious neural differentiation 

Rapid cell death of neurons 

 

 

Kim et al., 2010 

 

 

Lin7 (MALS) 

 

 

Null 

 

 

Disruption of apical complex 

proteins, intact adherens 

junctions 

Altered neural progenitor cell 

proliferation only during early 

neurogenesis 

 

 

Olsen et al., 

2005 

Srinivasan et 

al., 2008 

 

Par complex 

Par3 

 

 

shRNA  

 

 

Premature cell cycle exit 

Increased symmetric divisions 

and in turn affects neural cell 

fate specification 

 

Costa et al., 

2008 

Bultje et al., 

2009 

 

aPKC 

 

Nestin-Cre 

 

Loss of adherens junctions 

Impaired interkinetic nuclear 

migration 

No effect on neurogenesis 

 

 

Imai et al., 2006 
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Cdc42 Emx1-Cre Apical Par and adherens 

junctions disrupted 

Increase in mitosis at sub-

ventricular zone 

Increased intermediate 

progenitor cell domain 

Cappello et al., 

2006 

Scribble 

comple 

Lgl  

 

 

Null  

 

 

Disorganized localization of 

apical junctional complexes. 

Failure to exit cell cycle 

Hyperproliferation and increased 

apoptosis 

 

 

Klezovitch et 

al., 2004 

Cell junctions 

N-Cadherin 

 

 

D6-Cre 

 

 

Disruption of adherens junctions 

Disrupted laminar organization 

of cortex 

 

Kadowaki et al., 

2006 

 

β-Catenin Nestin-Cre 

D6-Cre 

 

Disrupted adherens junctions 

Impaired interkinetic nuclear 

migration 

Precocious differentiation into 

astrocytes 

 

Machon et al., 

2003 ; 

Mutch et al., 

2010. 
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Regulation of cell fate decisions by symmetric versus asymmetric 

divisions.  

In vertebrates, the apical cell surface represents only a minor 

proportion of the total plasma membrane and so the mechanisms 

regulating cleavage plane orientation must be precisely orchestrated. 

Time-lapse studies have demonstrated that a vertical cleavage results in 

two identical daughter cells that remain in the ventricular zone (Attardo et 

al., 2008; Kosodo et al., 2004). If the daughter cells have the same 

potential as the mother, it is considered a symmetric/proliferative division 

and if the daughters are more committed in their lineage, it is a 

symmetric/differentiative division (Farkas & Huttner, 2008; Gotz & 

Huttner, 2005).  

During early embryonic stages, prior to the onset of neurogenesis, 

neuroepithelial cells undergo symmetric, proliferative divisions to amplify 

the progenitor cell population. With the onset of neurogenesis, there is a 

gradual increase in the frequency of asymmetric divisions (Fig 1.7) (Gotz 

& Huttner, 2005; Huttner & Brand, 1997; Kriegstein et al., 2006; Zhong & 

Chia, 2008).  

Several lines of evidence suggest that one of the mechanisms 

involved in generation of the diverse neural cell types is asymmetric cell 

division whereby the polarized distribution of cellular constituents and 

their differential inheritance by daughter cells determines cell fate (Horvitz 

& Herskowitz, 1992; Huttner & Brand, 1997; Kosodo et al., 2004; Wodarz 

& Huttner, 2003). The asymmetric inheritance of components may also 

regulate other factors crucial for cell fate determination, for instance, 

asymmetric distribution of Numb in turn regulates Notch protein 

expression and so influences the cellular response to extrinsic signals 

(Betschinger & Knoblich, 2004).  
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Overall, it is clearly evident that the emergence of the diverse cell 

types of the vertebrate CNS cannot be attributed to a single factor and 

that it involves the concerted action of different transcription factors, cell 

intrinsic components and signalling molecules.  
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1.3 Hindbrain segmentation and cell lineage restriction 
  The vertebrate hindbrain (rhombencephalon) is the most 

posterior vesicle of the embryonic brain; it is characteristically diamond-

shaped and extends caudally from the cerebral aqueduct to the central 

canal of the spinal cord. It is a complex structure that controls many 

autonomic and voluntary functions such as regulation of sleep patterns, 

the state of consciousness, breathing and blood circulation. The hindbrain 

is subdivided into metencephalon that develops in to the cerebellum and 

the myelencephalon; the latter subsequently gives rise to the pons and 

medulla oblongata in the adult brain (Kaufman & Bard, 1999). 

 The first clearly defined boundaries in the embryonic hindbrain are 

the transient segments observed along the AP axis called rhombomeres. 

In the chick embryo	
  (Vaage, 1969), eight rhombomeres were defined with 

the last rhombomere being contiguous with the presumptive spinal cord. 

The roots and ganglia of cranial nerves – trigeminal (V), abducens (VI) 

facial (VII), vestibulocochlear (VIII), glossopharyngeal (IX) vagus (X) 

accessory (XI) and hypoglossal (XII) derive from the rhombomeres and 

are linked to the pons and medulla. These cranial nerves control and also 

receive sensory information from muscles in the eye, jaw and face. Axons 

from motor nuclei in rhombomeres 1, 2 and 3 gather at the trigeminal 

nerve and exit the hindbrain from rhombomere 2 to innervate the first 

branchial arch. The second and third branchial arches are innervated by 

the facioacoustic (VII/VIII) and glossopharyngeal nerves (IX). Axons from 

motor nuclei in rhombomeres 4/5 and 6/7 contribute to these cranial 

nerves (VII-IX) (Lumsden and Keynes, 1989; Kaufmann and Bard 1999). 

  Clonal analysis and ablation of inter-rhombomeric boundaries 

demonstrated that there was cell-lineage restriction within individual 

rhombomeres of the chick embryo (Fraser et al., 1990; Guthrie & 

Lumsden, 1991). These experiments indicated that cell-lineage restriction 

was established even before the delineation of the individual 

rhombomeres. However, it should be noted that this lineage restriction is 
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not absolute and a few cells are capable of crossing the inter-

rhombomeric boundaries (Birgbauer & Fraser, 1994).   

It has been reported that the transient segmentation of the 

hindbrain is crucial for appropriate neuronal specification and timely 

migration of cells from the hindbrain (Guthrie & Lumsden, 1991; Narita & 

Rijli, 2009; Trainor & Krumlauf, 2001). It has also been suggested that the 

expression of several rhombomere-specific genes is progressively refined 

during the setting up of morphological boundaries in the hindbrain (Cooke 

& Moens, 2002). In particular, the role of HOX genes that encode helix-

turn helix transcription factors has been studied extensively in the 

embryonic hindbrain (Tumpel, et al., 2009). Their expression pattern 

correlates with the rhombomere boundaries and they play crucial roles in 

controlling both establishment and maintenance of regional identity along 

the AP axis of the hindbrain (Fig 1.8) (Alexander et al., 2009). 

Two mechanisms have been proposed for the setting up of 

rhombomere limits: plasticity of cell fates and cell sorting (Cooke & 

Moens, 2002). To define inter-rhombomeric boundaries, cell sorting and 

cell plasticity could work in concert with each other or they could be 

redundant mechanisms that ensure precise formation of rhombomeric 

boundaries if one mechanism fails. Experiments in zebrafish and mouse 

embryonic hindbrain have shown that the identity of cells is plastic at 

early stages and that a cell is capable of altering the segment-specific 

genes it expresses (Schilling et al., 2001) (Trainor & Krumlauf, 2001). 

These data suggest that dynamic regulation of gene expression 

boundaries may play a role in establishing the morphological boundaries 

(Trainor & Krumlauf, 2001).  

Initial evidence for cell sorting in rhombomeres was obtained from 

in vitro experiments. When odd-numbered and even-numbered 

rhombomeres were dissociated and cultured, the cells from the odd 

rhombomeres separated away from the even-rhombomeric cells 

(Wizenmann & Lumsden, 1997). Alternating rhombomeres demonstrate 
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similar cell-adhesion properties and the cell surface properties vary 

according to the rhombomeric units in the hindbrain (Guthrie & Lumsden, 

1991; Schilling et al., 2001). 

 The Eph family of receptor tyrosine kinases and their membrane 

bound ligands, the ephrins, are candidates in mediating the differential 

affinity between rhombomeres. The expression of receptors and ligands 

is complementary:  EphA4, EphB2 and EphB3 receptors are highly 

expressed in the odd rhombomeres r3 and r5 and the ephrin ligands – 

ephrin B1-B3 are expressed in the even rhombomeres r2, r4 and r6 (Xu 

et al., 2000). It has been reported that activation of the ephrins is 

sufficient to induce cell sorting in the rhombomeres (Mellitzer et al., 1999; 

Xu et al., 1999).  

 

1.3.1 Neural Crest cell migration  
Neural crest cells are a multipotent cell population capable of 

differentiating into a diverse array of cell types that include neurons and 

glia of peripheral nervous system, pigment cells, cartilage and bones 

(Wolpert et al., 1998). They originate from the dorsal neural tube in a 

rostrocaudal fashion and are spatially distributed along migratory paths to 

target regions. The neural crest population can be broadly classified on 

the basis of its positional origin in the neuraxis into cranial, vagal, trunk 

and sacral neural crest. Neural crest cells arising from the cranial level 

traverse through the cranial mesenchyme and make facial bones, 

cartilage and sensory glia (Ayer-Le Lievre & Le Douarin, 1982). Trunk 

neural crest cells generate melanocytes, sensory and sympathetic glia 

and chromaffin cells. Although both cranial and trunk neural crest cells 

produce sensory neurons, glia and melanocytes only cranial neural crest 

cells produce facial bone and cartilage suggesting that these cells have 

some properties in common but have intrinsic differences in their 

developmental potential (Nakamura & Ayer-Le Lievre, 1982). 
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The relationship between site of emergence of cranial neural crest 

from the hindbrain and the segmentation of the neural epithelium has 

been clearly defined. Neural crest cells migrating from rhombomeres 1 

and 2 populate the first branchial arch and trigeminal ganglion. 

Rhombomere 4 neural crest cells contribute to vestibulo-acoustic ganglia, 

facial ganglia neurons and second branchial arch. Rhombomere 6 

contributes to the third branchial arch and superior ganglion of the IX 

nerve (Guthrie & Lumsden, 1991; Lumsden, Sprawson, & Graham, 1991). 

Rhombomeres 3 and 5 do not contribute significantly to the neural crest 

cell population and the even-numbered rhombomeres flanking these 

segments repress neural crest production by inducing apoptosis 

(Graham, Heyman, & Lumsden, 1993) (Lumsden et al., 1991).  

The specification of neural crest cells is dependent on extrinsic 

signals such as Notch, BMP, Wnt and intrinsic factors such as Pax3, 

Pax7, Snail, Slug and Sox9 (Saint-Jeannet, 2006). Improper migration of 

neural crest cells migration results in severe morphological defects in 

facial and cardiovascular development (Hutson & Kirby, 2003; Tobin, 

2008). 

Slug, a zinc finger transcription was identified as the earliest 

intrinsic marker of neural crest cells in Xenopus and chick embryos. Slug 

is highly expressed in neural crest cells prior to the onset of crest cell 

migration (Nieto et al., 1994) and triggers epithelial-mesenchymal 

transition during neural crest delamination (Duband et al., 1995; Cano et 

al., 2000). In addition to these roles, Slug is necessary for the formation 

of neural crest cell precursors and their migration (LaBonne & Bronner-

Fraser, 2000). However, species-specific differences exist in the role of 

Slug in regulating neural crest specification and migration. For instance, 

mouse embryos lacking Slug showed severe developmental defects but 

loss of Slug had no impact on neural crest generation itself (Jiang et al., 

1998).  
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Members of the Cadherin gene family have also been implicated in 

regulating neural crest migration cells (Nakagawa & Takeichi, 1998) 

(Stepniak et al., 2009). N-Cadherin and Cadherin6B are downregulated 

and Cadherin 7 expression is upregulated in migrating neural crest cells 

(Nakagawa & Takeichi, 1998). This distinct expression pattern of the 

Cadherins suggests that their roles in neural crest migration may not be 

restricted to intercellular adhesion but also influence epithelial to 

mesenchymal transition (Coles et al., 2007; Taneyhill, 2008). Ephs 

(section 1.3) also play divergent roles during avian neural crest cell 

migration (Mellott & Burke, 2008).  
 

Different factors have been used extensively as markers to 

distinguish between premigratory and migratory neural crest cells. The 

glycoprotein/glycolipid epitope HNK-1 (Tucker et al., 1984) (Le Douarin & 

Dupin, 1993) and Slug (Nieto et al., 1994) are the most commonly used 

crest cell markers. Injection of HNK-1 antibody into the mesencephalic 

neural tube at the onset of crest cell migration resulted in aberrant 

migration of the cranial neural crest cells suggesting that HNK-1 epitope 

is important for neural crest migration (Bronner-Fraser, 1987). Whilst Slug 

is expressed in both premigratory and migratory cells, HNK-1 is only 

detected in the migratory cells (Del Barrio & Nieto, 2004).  
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1.4 Apical-Basal Cell Polarity 

In this section, I will introduce the apical-basal cell polarity protein 

complexes and briefly describe the functional roles of Crumbs. The role of 

apical polarity proteins during mammalian neurogenesis has been 

described in section 1.2.2 (Table 1.3). 

Apical-basal cell polarity is crucial for a variety of biological 

processes such as proliferation, differentiation, vectorial transport of 

molecules, cell signalling and asymmetric cell division (Assemat et al., 

2008) (Knoblich, 1997; Knoblich, 2008). It reflects intricate mechanisms 

that not only establish, but also maintain functionally specific plasma 

membrane and cytoplasmic domains by employing an elaborate network 

of polarity protein complexes. The detailed molecular mechanisms 

underlying the generation of cell polarity are just beginning to be 

understood. Three evolutionarily conserved protein complexes have been 

shown to be crucial in the setting up and maintenance of apical-basal 

polarity namely the Scribble, PAR and Crumbs complexes (Fig.1.9 A-

B). The Crumbs and Par complexes define the apical domain whilst the 

Scribble complex is basally localized. The polarity complex proteins were 

initially identified in C.elegans and Drosophila. Mammalian homologs of 

all polarity proteins have been identified (Table 1.4).  

 

1.4.1 Sub-cellular compartments- Cilia and cell junctions 

The apical domain of epithelial cells can be broadly subdivided into 

three compartments: a) the ventricular/luminal surface b) the subapical 

domain that lies between the luminal surface and the lateral cell junctions 

and c) specialized membrane protuberances such as microvilli and cilia 

(Farkas & Huttner, 2008)  

Cilia are microtubule-based organelles observed in almost all 

polarized cells and they perform crucial roles in signal reception and 

transduction of signals to the cell body. The role of cilia in signalling has 
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been associated with cellular events like cell proliferation, differentiation, 

migration and mechanotransduction (Eggenschwiler & Anderson, 2007; 

Gerdes, Davis, & Katsanis, 2009). Several key components of signalling 

pathways such as fibroblast growth factor, platelet-derived growth factor, 

sonic hedgehog and cell polarity proteins have been identified in primary 

cilia (Goetz & Anderson, 2010) (Fan et al., 2004). Primary cilia are crucial 

regulators of Hedgehog (Hh) signalling pathway and ligand binding to 

Patched (Ptc) receptor in the cilium removes Ptc from the cilium and 

results in enrichment of Smoothened in the cilium and the subsequent 

activation of Hh signalling pathway. In addition to this role, mutations in 

intraflagellar transport proteins also affect Hh signalling and lead to 

severe developmental defects in mammals. The primary cilium has also 

been linked with regulation of canonical and non-canonical Wnt signalling 

pathways (Gerdes et al., 2009; Goetz & Anderson, 2010; Goetz, Ocbina, 

& Anderson, 2009).   

An elementary requirement for setting up a functionally integrated 

epithelium is the formation of cellular junctions. An adhesive belt of 

junctional complexes called adherens junctions is established at the 

apical-basal boundary of a cell. The adherens junctions are usually 

located basal to the tight junctions.  

In vertebrates, cadherins are key regulators of cell-cell adhesion 

(Miyaguchi, 2000). They are single pass transmembrane proteins with 

homophilic interactions that are calcium dependent. Cadherins are linked 

to the cytoskeleton via α and β-catenins (Alberts et al., 2002). Apart from 

cadherins and catenins, nectin and nectin-like molecules are also 

associated with the adherens junctions and they interact with each other 

in a calcium independent manner (Miyaguchi, 2000; Mizoguchi et al., 

2002). Adherens junctions not only mediate cell-cell adhesion but also 

cell signalling events by receiving and transmitting signalling cues (Erez 

et al, 2005; McCrea et al., 2009). 
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Table 1.4 Summary of gene names for the apical-basal polarity proteins 

in C.elegans, Drosophila and in Mammals. 
	
  

Polarity complex C. elegans Drosophila Mammals 

Par complex 

(Par3/Par6/aPKC) 

Par3 

Par6 

PKC-3 

Bazooka 

DmPar6 

DmaPKC 

Pard3 (a,b) 

Pard6 (α, β, γ) 

Prkc (ζ, λ) 

Scribble 
complex 

(Scrib/Dlg/Lgl) 

LET-413 

Dlg1 

Tom-1 

Scrib 

Dlg 

Dlgl 

Scrib 

Dlg (1-5) 

Llgl (1-2) 

Crumbs 

complex 
Crb/Pals/Patj  

Crb1, Eat -20 

TAG-117 

 

MPZ-1 

Crumbs 

Sdt 

Dpatj 

dLin7 

Crb/CRB (1-3) 

MPP(1-7)/Pals 

INADL/PATJ 

MPDZ/MALS 

 

Tight junctions are specialized vertebrate occluding membrane 

domains and are localized apically to the adherens junctions. They play a 

crucial role in regulating flow of molecules and ions through an 

epithelium. Formation of tight junctions involves interactions of 

transmembrane proteins from the following protein families: claudins, 

occludins, junctional adhesion molecules and zonula occludens 

(Gonzalez-Mariscal et al., 2000; Shin & Margolis, 2006). 

Overall, a combination of transmembrane proteins, enzymes and 

adaptor proteins are involved in the organization of the dynamic cell-cell 

junctions. These components work together to regulate diverse functions 

and maintain structural integrity of complex tissues during development. 

 

1.4.2 Scribble complex 

           The basally localized Scribble complex consists of Scribble (Scrib), 

Lethal giant larvae (Lgl) and Discs large (Dlg) proteins. Both Dlg and Lgl 

were primarily identified as tumor suppressors (Gateff, 1978; Stark & 
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Bridges, 1926). These tumor suppressors were linked to Scrib because 

they gave the same embryonic phenotype as observed in Scrib mutants 

(Bilder, Li, & Perrimon, 2000). It has been proposed that members of the 

Scrib complex function as scaffolds to regulate protein interactions 

(Bilder, 2004). The protein Scrib consists of 16 leucine rich repeats and 4 

PDZ (PSD-95 (a 95 kDa protein involved in signaling in the post-synaptic 

density), Dlg (the Drosophila discs large protein), and ZO1 (the zonula 

occludens 1 protein involved in maintaining epithelial cell polarity) 

domains (Bilder et al., 2000). Scrib has been implicated in defining the 

basolateral boundary by exclusion of apical membrane determinants such 

as the Crumbs complex (Assemat et al., 2008; Bilder & Perrimon, 2000). 

Dlg has an L27 domain, a GUK domain and a SH3 domain and 3- PDZ 

domains (Woods & Bryant, 1991). In Drosophila, mutation in Dlg gene 

leads to neoplastic overgrowth in the eye imaginal disc (Woods & Bryant, 

1991). Lgl protein has several tryptophan-aspartic acid repeats similar to 

proteins playing a role in cell adhesion (Lutzelschwab et al., 1987). 

During Drosophila larval development, mutations in Lgl result in growth 

and adhesion abnormalities.  

In vertebrates, the Scrib complex consists of Scrib, 2 Lgl homologs 

–Lgl1 and Lgl2 and 5 Dlg homologs. Unlike the interactions between 

apical protein complexes little is known about the direct interactions 

between members of the Scrib complex (Assemat et al., 2008).  

 

1.4.3 Par complex 

The PAR (partitioning defective) genes, an integral part of the PAR 
complex, were the earliest cell polarity genes to be identified in a genetic 

screen carried out in the nematode C. elegans (Kemphues et al., 1988). 

In vertebrates, the PAR complex includes scaffold proteins Par3 and Par6 

along with the atypical protein kinase C (aPKC λ/ζ) and Cdc42 (Macara, 

2004). Previous studies have indicated that the PAR complex is 
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interdependent on its constituent proteins for its localization (Doe & 

Bowerman, 2001; Ohno, 2001).  

Par3 colocalizes with aPKC in mammalian epithelial cells and is 

phosphorylated by aPKC in vitro (Izumi et al., 1998). Par3 is not always 

associated with the PAR complex and competes with Lgl for binding 

(Yamanaka et al., 2003) with Par6. Par6 binds aPKC to inhibit its kinase 

activity and the binding of Cdc42 to Par6 via its CRIB domain induces a 

conformational change to relieve aPKC inhibition. This in turn induces 

phosphorylation of downstream targets by aPKC. It has been proposed 

that competitive binding between Lgl and Par3 may mediate 

establishment and maintenance of apical-basal polarity (Margolis & Borg, 

2005; Yamanaka et al., 2003)  

 

1.4.4 Crumbs complex: 

Crumbs, Protein associated with Lin 7 1 (PALS1), Lin 7 and 

PALS1 associated tight junction protein (PATJ) (Bachmann et al., 2008; 

Bachmann et al., 2001; Bhat et al., 1999; Bulgakova & Knust, 2009; Hong 

et al., 2003) form the core members of the mammalian Crumbs 

complex. 

PALS1 and PATJ have multiple protein binding sites and function 

as scaffolds of the complex. Crumbs binds to PALS1 through its C-

terminal tail to a PDZ domain present in PALS1 and PATJ interacts with 

Pals 1 through one of its L-27 multiple protein-protein interaction 

domains. Increasing evidence now seems to suggest existence of direct 

interactions between the Crumbs complex and Par complex (Hurd et al., 

2003; Lemmers et al., 2004; Sotillos et al, 2004).  

 It is now accepted that the apical and basal complexes mutually 

antagonize each other to define the apical and basal limits of a cell 

(Margolis & Borg, 2005). Loss of gene function on either side results in 
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the expansion of the other and a subsequent alteration in normal growth 

and defects in epithelia and cell junction formation.   

1.4.4.1 Homologs of Crumbs. 

Drosophila Crumbs is a large transmembrane protein having 30 

epidermal growth factor (EGF)-like repeats and 4 LamininA G-domain-like 

repeats in its extracellular domain, a membrane spanning domain and a 

short (37amino acid) highly conserved, intracellular domain (Tepass et 

al., 1990). Crumbs gene was first discovered in a Drosophila screen 

aimed at identifying genes affecting the larval cuticle (Jurgens, 

Wieschaus, Nusslein-Volhard, & Kluding, 1984). The cuticle in Crumbs 

mutant embryos was not contiguous, its appearance was reminiscent of 

breadcrumbs and Crumbs gene was named after this phenotype.  

As previously mentioned, Crumbs genes are evolutionarily 

conserved from invertebrates to mammals. Human and mice Crumbs 

orthologs are represented as (Human/Mice): CRB1/Crb1 (den Hollander 

et al., 2002); CRB2/Crb2 (van den Hurk et al., 2005); CRB3/Crb3 

(Lemmers et al., 2002). CRB1 has 19 EGF-like domains and 3 Laminin G 

like domains; CRB2 has 15 EGF like and 2 Laminin G like domins. CRB3 

has a very short extracellular domain in contrast to CRB1 and CRB2, 

nevertheless, the intracellular domain is highly conserved between CRB1, 

2 and 3 (Fig 1.9 C).  

Drosophila Crumbs is expressed in all epithelia derived from the 

ectoderm (Tepass et al., 1990). Human CRB1 expression was 

predominantly confined to the brain and retina (den Hollander et al., 

2002). There are reports (Roh et al., 2003; Watanabe et al., 2004) 

describing expression of mouse Crb1 in brain, retina, stomach, lung, 

testis and kidney. Both CRB2 and CRB3 are expressed in a broad range 

of tissues with CRB2 being expressed in retina, brain, kidney and at 

comparatively low levels in lung, heart and placenta (van den Hurk et al., 

2005). Human CRB3 was expressed in the retina, colon, lungs, kidney, 
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heart and mammary glands (Makarova et al., 2003). The functions of 

Crumbs proteins in Drosophila, zebrafish and in mammals are 

summarized in Table 1.5  

1.4.4.2 Alternative splice variants and secreted Crumbs. 

It has been predicted that CRB1 and CRB2 both encode for 

transmembrane and truncated isoforms, with the truncated isoforms 

being putatively secreted (Katoh & Katoh, 2004; Watanabe et al., 2004). 

Differential splicing gives rise to these truncated isoforms that do not 

possess the transmembrane and intracellular domains typical of Crumbs 

protein.  

A mouse Crb1 splice variant that encoded for a C-terminal 

truncated secretory protein (Crb1s) was previously identified (Watanabe 

et al., 2004). This study showed expression of Crb1s in the skin, lung and 

kidneys of adult mice and based on in vitro data suggested a role for 

Crb1s for stratified epithelial organization. 

Based on bioinformatics studies, RT-PCR analyses and Northern 

blots different isoforms of mouse Crb2 were identified in our lab 

(unpublished, Walker and Rashbass) and are shown in Fig 1.10.  

The first isoform encodes a full length form (Crb2F) and consists 

of a signal peptide, 10 epidermal growth factor (EGF) like repeats, 3 

laminin G-like domains, 4 EGF repeats, a transmembrane domain and an 

evolutionarily conserved cytoplasmic tail. Isoform 2 has exon 9A spliced 

in and this introduces a premature stop before the transmembrane 

domain, thereby encoding a putatively secreted Crb2 protein (Crb2S) that 

contains 10 EGF repeats and 2 laminin-G like domains. Isoform 3 has an 

alternative start in exon 6A and encodes a shortened transmembrane 

protein that lacks the first 8 EGF-like repeats. 
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Table 1.5: Brief summary of known functions of Crumbs proteins in 

Drosophila, Zebrafish and Mammals. 

Model organism Functional role /Phenotypes 

observed 

Reference 

Drosophila 

Crumbs 

 

 

Define apical domain  
Loss of cell polarity in embryonic,  
follicle epithelia, pupal and adult 
photoreceptors 
Disintegration of epithelia and 
extensive cell death 
Organ size control during head 
development 
Regulates growth via Hippo pathway 

 

 
Bachmann et 
al., 2001; Hong 
et al., 2001; 
Klebes and 
Knust, 2000; Li 
et al., 2008; 
Tanentzapf et 
al., 2000 

Zebrafish 

Crumbs 

 

Apically localized Crb maintains 
apical basal gradient of Notch 
activity in zebrafish hindbrain 
 

 

Ohata et al., 

2011 

 

crb1 

 

 

No obvious phenotype observed 

 

Omori and 

Malicki, 2006 

 

crb2a (oko 

meduzy) 

 

 
Morpholino induced knockdown -    

• Displacement of cell junctions 
in neuroepithelial cells 

• Neuronal patterning defects 
in the retina.  

Determinant of apical surface size in 
photoreceptors.  
 

 
Malicki and 
Driever, 1999; 
 
Omori and 
Malicki, 2006 

 

crb2b 

 

 
Required for normal elongation of 
cilia and positioning of cilia in the 
pronephros. 
 

 
Malicki and 
Driever, 1999; 
 
Omori and 

Malicki, 2006 
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crb3a, crb3b 

 
Crucial determinant of auditory 
kinocilia length. 

 
Omori and 

Malicki, 2006 

Mammals 
Crb1 

 

 

Progressive loss of photoreceptors 
Crb1 mutations in humans leads to 
retinal dystrophies 
 

 

den Hollander 
et al., 1999; 
van de Pavert 
et al., 2004 
van de Pavert 
et al., 2007 

 

Crb2 

 

 

Defective epithelial-mesenchymal 
transition during gastrulation in KO 
mouse embryos.  
Regulator of mouse embryonic stem 
cell derived neural progenitors  
 

 

Xiao et al., 
2011 
 
Boroviak and 
Rashbass 
2011 

 
Crb3 

 
Morphogenesis of tight junctions in 
mammalian epithelial cell lines 
Maintains apical basal polarity and 
cell junction formation and 
subsequently contact inhibits 
growth, suppress invasion and 
metastasis in tumour derived cell 
lines.  
Trafficking of Crb3 to Rab11 positive 
endosomes is crucial for lumen 
formation in MDCK cyst formation 
assays 
 

 
Roh et al., 
2003 
Karp et al., 
2008 
Whiteman et 
al., 2008 
 
 
Schluter et al., 
2009 

1.4.4.3 Functional role of the intracellular domain of Crumbs  

A hallmark of polarized epithelial cells is the establishment and 

maintenance of junctions that demarcate the apical and basal boundaries 

of a cell. The specific functions carried out by epithelial cells depend 

heavily on the formation of these well-defined junctions. Studies in 

Drosophila have shown that the Crumbs protein influences the formation 

and maintenance of cellular junctions in epithelia (Tepass et al., 2001). 
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Drosophila Crumbs mutant embryos do not succeed in setting up 

the adherens junctions and in addition, demonstrate mislocalization of 

adherens junction components (Grawe et al., 1996; Tepass et al., 2001). 

Also, overexpression of Crumbs disrupts the integrity of epithelial 

junctions and consequently leads to formation of a multilayered 

epidermis, indicating that Crumbs plays a significant role in proper 

positioning and assembly of adherens junctions (Grawe et al., 1996).  An 

interesting observation was the overexpression of either the full-length or 

transmembrane plus cytoplasmic domains of Crumbs was sufficient to 

partially rescue this mutant crumbs phenotype (Wodarz et al., 1995). This 

highlights the importance of interactions between Crumbs and the 

cytoplasmic protein machinery. In addition, the same study showed that 

an overexpression of only the extracellular Crumbs domain had no 

influence in determining the apical characteristics of the plasma 

membrane. This suggests that both the extra and intracellular domains of 

Crumbs have distinct functions, which may in turn be influenced by 

transient binding of proteins and the developmental stage and/or cell 

type. 

The Crumbs complex also interacts with the apical spectrin 

cytoskeleton, via its juxtamembrane domain.  The Crumbs complex is 

associated with the actin cytoskeleton through members of the Par 

complex and FERM protein family. Medina et al., 2002 have shown that 

Crumbs interacts with DMoesin and β-heavy spectrin, thereby, arbitrating 

interactions between the cytoskeleton and the Crumbs complex (Medina 

et al., 2002). It was also proposed that Moesin might exert its function by 

repressing the activity of the GTPase - Rho (Speck et al., 2003) or by 

associations between Crumbs and β-heavy spectrin. Extensive studies 

(Bulgakova & Knust, 2009) have now established the significance of 

Crumbs protein complex in defining apical-basal boundaries and 

stabilizing the adherens junctions in epithelia.  



	
   43	
  

Overall, it can be said that setting up the apical/basal domains of 

epithelial cells involves an elaborate organization of protein scaffolds and 

interplay of proteins; with the Crumbs complex playing a crucial role. 

1.4.4.4 Functional Role of the extracellular domain of Crumbs 

Apart from its role in determining apico-basal cell polarity in 

epithelial cells and assembling zonula adherens, Crumbs has also been 

implicated in photoreceptor morphogenesis (Izaddoost et al., 2002; 

Johnson et al., 2002; Pellikka et al., 2002). An important outcome of 

these studies (Johnson et al., 2002; Pellikka et al., 2002) was the 

identification of a role for the extracellular domain of Crumbs protein. 

Both the extracellular and intracellular domains were shown to have 

distinct functions in photoreceptor cells of Drosophila. The intracellular 

domain was crucial and sufficient for the integrity of adherens junctions 

and rhabdomere elongation in contrast to the extracellular domain, which 

was important for modulating the length of stalk membrane in 

photoreceptors (Johnson et al., 2002; Pellikka et al., 2002).   

Expression of the cytoplasmic membrane bound Crumbs domain 

was insufficient to rescue photoreceptor degeneration. In fact, deletion of 

the C-terminal domain had absolutely no effect on light-induced 

photoreceptor degeneration (Johnson et al., 2002).  

This again seems to imply that the intracellular and extracellular 

domains of Crumbs have distinct functions; with the intracellular domain 

playing a crucial role in the formation of zonula adherens and 

morphogenesis; and the extracellular domain being a vital suppressor of 

light induced retinal degeneration (Johnson et al., 2002).  
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In human patients, abnormal Crumbs function has been implicated 

in causing severe retinal dystrophies such as Retinitis Pigmentosa (RP), 

Leber Congential Amaurosis and Pigmented Paravenous Chorioretinal 

Atrophy (den Hollander et al., 2001; McKay et al., 2005). It has been 

shown that majority of the mutations (more than 85%) in patients with 

these retinal dystrophies, map to the extracellular domain of human 

CRB1. However, it was predicted that all nonsense and frameshift 

mutations result in truncated isoforms lacking transmembrane and 

intracellular domains (den Hollander et al., 2004). The identification of 

missense mutations in the extracellular domain would be an indication of 

its association with retinal disorders. 

Nonetheless, it has also been shown that the severity of the retinal 

dystrophy maybe dependent on environmental cues and/or genetic 

modifiers (den Hollander et al., 2004). For instance, when crb mutant flies 

have minimal exposure to light they show a mild phenotype unlike flies 

kept in constant light that demonstrate progressive and substantial retinal 

degeneration (Johnson et al., 2002). This suggests that reduced light 

intensity may assist in lowering the severity of RP in patients carrying 

CRB1 mutations.  

1.4.4.5 Crumbs and its association with signalling pathways  

The Hippo pathway is an evolutionarily conserved signal 

transduction pathway crucial for regulating tissue size in Drosophila and 

vertebrates (Reddy & Irvine, 2008). It has been reported that Crumbs 

regulates growth in Drosophila wing (Chen et al., 2010) and eye imaginal 

discs (Ling et al., 2010) by interacting with members of the Hippo 

signalling pathway. Interestingly, the Crumbs complex has also been 

implicated in coupling the Hippo and TGF-ß signalling pathways in 

regulating cell-density sensing mechanisms (Varelas et al., 2010).  

The Crumbs complex has also been associated with the mTORC 

pathway (mammalian Target of Rapamycin) by directly interacting with 
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TSC1/2 (Tuberous sclerosis complex proten 1 or 2) an inhibitor of the 

mTORC pathway (Massey-Harroche et al., 2007).  

Due to its high sequence homology with the Notch genes, it has 

been speculated that Crumbs may be a potential neurogenic gene. 

Additionally, cloned fragments of Crumbs were found to cross-hybridize 

with Notch under low stringency conditions in Drosophila (Tepass et al., 

1990). A potential role for Crumbs in refining Notch signalling in 

Drosophila via the inhibition of γ-secretase was reported (Herranz et al., 

2006). This work also demonstrated that the intracellular domain of 

Crumbs was dispensable for the inhibition of Notch signaling and 

implicated the extracellular domain in regulating Notch signaling. 

Consistent with this study, it was demonstrated in an in vitro system that 

human Crb2 inhibits γ-secretase cleavage of amyloid precursor protein 

(Mitsuishi et al., 2010). Crumbs has also been shown to biochemically 

interact with the extracellular domain of Notch in zebrafish (Ohata et al., 

2011). This increasing evidence suggests a potential role for Crumbs in 

modulating Notch signalling and this may have important implications for 

neural development.  

1.5 Thesis Aims 

As outlined in the introduction, the development of a functionally 

integrated nervous system is a highly coordinated process involving 

stringent control of self-renewal, proliferation and differentiation. An 

important step towards understanding these processes is elucidating the 

underlying molecular mechanisms involved. As discussed previously, 

tremendous progress has been made in this direction and several cell 

polarity proteins have been identified as key cell fate determinants.   

Recent work from our lab has shown that Crumbs homolog 2 

(Crb2) is a novel regulator of mouse embryonic stem cell (mES) derived 

neural progenitors in vitro (Boroviak & Rashbass, 2011).  In this in vitro 

system, Crb2 protein is upregulated at the onset of neural specification 
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and Crb2 knockdown mES cell lines failed (a) to stabilize apical polarity 

proteins and (b) to undergo neural differentiation. This suggested that 

Crb2 is critical for the recruitment of apical polarity complex proteins and 

it contributes to proliferation, survival of neural progenitors in vitro. 

For the remainder of this section, I will discuss my hypotheses for 

how Crb2 could play a potential role in neural development in vivo, and 

how I have addressed some of them in my experiments.  

1. Establishment and maintenance of cell junction components 

There is evidence that the apical polarity proteins are essential for setting 

up and maintaining cell-cell junction components by recruiting proteins to 

the appropriate cellular compartments. Manipulating Crumbs protein 

levels in Drosophila and zebrafish severely impairs the formation of cell 

junctions and also results in mislocalization of other polarity proteins 

(Tepass et al., 1990; Malicki and Driever 1999, Omori and Malicki 2006, 

Ohata et al., 2011). This suggests that the vertebrate homolog of 

Crumbs- Crb2 might play a similar role in formation and maintenance of 

cell junctions. To test this, I have analysed Crb2 conditional knockout 

mouse mutants and chick embryos where Crb2 is misexpressed for 

altered expression of polarity and cell junction proteins  

2. Role in cell fate specification 

Initially, I analysed the expression pattern of Crb2 in the two model 

systems (chapter 3). Crb2 is predominantly expressed at the apical 

surface of the neural progenitors and this suggested that similar to other 

apical polarity proteins, Crb2 might also play a role in neural progenitor 

fate determination. To test this hypothesis, I carried out a candidate gene 

expression analysis (chapter 4) based on phenotypes observed in 

conditional knockout mouse models of apical polarity proteins (table 1.3) 

in the developing cortex of a Crb2 conditional-knockout mouse model at 

different stages of neurogenesis.  
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Additionally, previous work from our lab has shown that multiple 

splice variants of Crb2 exist. To begin to understand the role of one of 

these splice variants (a truncated isoform that is predicted to be 

secreted), I characterized this isoform – referred to as Crb2S (secreted 

Crb2). To further understand the role of Crb2 in neural development, the 

full length Crb2 (Crb2F) and Crb2S were misexpressed in the developing 

chick neural tube and I carried out marker expression analysis (chapter 5 

and 6). I also analysed the effect of manipulating levels of Pals1, an 

intracellular binding partner of the Crumbs complex, in neural 

development (chapter 7). 

Finally in the appendices, I present some preliminary data that 

suggests a role for Crb2 in the patterning of neural progenitors in the 

chick embryonic spinal cord (appendix 1). In addition to this, I have also 

included data from preliminary biochemical analyses that suggests a 

potential interaction between Crb2F and Crb2S (appendix 2)  
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2.1 Cell Culture 

Human embryonic kidney (HEK) 293 cells were maintained in 

Dulbeccoʼs modified Eagle medium (DMEM) + 10% Foetal Calf serum 

(Gibco)+ 1% L-Glutamine (Gibco)+ 1% Penicillin/ Streptomycin (Gibco) at 

37 °C in 5% CO2.  Cells were routinely passaged using Trypsin-EDTA 

(0.25% Invitrogen) and seeded at appropriate dilutions for experiments. 
 

2.1.1 Transfection  

HEK 293 cells were plated to approximately 95% confluency at 

least 48 hours before transfection in 100 mm tissue culture dishes 

(Greiner Bio one). The cells were rinsed 2X in Opti-MEM I Reduced 

serum medium (Invitrogen) and the transfection mix was added to each 

dish. The transfection mix consisted of 10 µg DNA and 12 µl 

Lipofectamine 2000 (Invitrogen) in 600 µl Opti-MEM. This mixture was 

incubated at room temperature for an hour before adding it onto washed 

cells. Cells were incubated at 37 °C in 5% CO2 for 5-6 hours. The 

transfection medium was then replaced with Opti-MEM+1% L-Glutamine 

and 1% Penicillin/Streptomycin. Cells were incubated at 37 °C in 5% CO2 

and maintained under serum-free conditions. 

 

Table 2.1 List of constructs used for transfection/electroporation 

Vector Specific construct 

pcDNA3.1 V5 His tag (Invitrogen) Crb2 Full Length 

pCDNA3.1 V5 His tag (Invitrogen) Crb2 Secreted 

pCDNA3.1 V5 His tag (Invitrogen) Control Signal Peptide 
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2.1.2 Obtaining Crb2S protein containing cell culture supernatant 

Transfected HEK 293 cells were cultured for 3-4 days post-

transfection, allowing secretion of proteins into the serum-free medium.  

The cell culture supernatant was centrifuged at 1000g for 10minutes and 

the resulting supernatant was concentrated 25X using an Amicon Ultra 

centrifugal filter device 10kDa (Fisher) or Microcon filter unit YM-30 

(Millipore)   

2.1.3 Generation of stable cell lines 

For generating stable cell lines, HEK 293 cells cultured in 6-well 

dishes (Greiner Bio one) were transfected as described above. After 24 

hours, cells from each 6-well were expanded into two 100mm tissue 

culture dishes with HEK 293 cell culture medium. The following day the 

medium was changed to HEK 293 cell culture medium+ G418 (800 µg/ml-

Sigma Aldrich) and replaced with fresh medium every 3 days. After 14 

days, single colonies were picked using a sterile 20µl pipette tip and 

transferred into a 48 well plate with HEK293 medium+ G418. After the 

colonies had attached, they were dissociated using Trypsin-EDTA and 

allowed to reach confluency. Each well was then split into 2 wells of a 12-

well plate (Greiner Bio one). Cells from one well were frozen down and 

cells from the other well were used for screening. For identification of 

positive clones, cell lysates or cell culture supernatants were collected as 

described in section 2.1.2. The expression level of protein of interest in 

the clones was determined by western blotting. Three positive clones 

were expanded stepwise into T-75 flasks and frozen down and 

transferred to liquid nitrogen. All the transgenic cell lines were routinely 

maintained in HEK293 cell culture medium+G418medium. 

 

2.2 Crb2S protein purification and sequencing  

A HEK 293 stable cell line overexpressing Crb2S was used for 

obtaining purified protein. The transgenic Crb2S cell line was passed onto 
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BioServ UK for scale-up of cells and immobilized metal ion affinity 

chromatography (IMAC). The cells were maintained in G418 selection 

antibiotic (800 µg/ml) throughout the culture period. The purified Crb2S 

protein (100 µg/ml) was sequenced as described below, aliquoted and 

stored at -80°C. 

For protein sequencing, SDS gel electrophoresis was carried out 

as described below; care was taken to minimize external keratin 

contamination from the environment. All processing was carried out in a 

clean biosafety cabinet. The gel was fixed and stained with Coomassie	
  

Brilliant Blue (Sigma-Aldrich) as per manufacturerʼs instructions and the 

bands of interest were excised using a clean blade and stored at 4°C in a 

sterile tube. LC-ESI-Mass spectrometry was carried out by a commercial 

company (Eurogentec) using an LC (nano-Ultimate 3000- Dionex)-ESI-

ion trap (AMAZONE-Bruker) in positive mode. 

 

2.3 SDS Protein Gel/Western Blot 

Cells were washed 2X in Phosphate Buffer Saline (PBS) at 4°C 

and harvested using RIPA (Radio-immunoprecipitation assay) lysis buffer 

supplemented with 1 Complete Mini EDTA free protease inhibitor tablet 

(Roche). Cells were scraped off the surface of the culture dish and 

passed through a syringe fitted with a 21-gauge needle. The lysate was 

transferred to a microcentrifuge tube and incubated on ice for 30min. The 

lysed samples were then microfuged at 2800g for 20min.  The protein 

concentration was determined by Bradford assay using dye reagent 

concentrate (Biorad) according to manufacturerʼs instructions. For long-

term storage, the lysates were stored at -20°C. 

NuPAGE 4-12% Bis Tris gradient precast gels (Invitrogen) were 

loaded with 20µg total protein of the cell lysates or 30µl of concentrated 

cell culture supernatant under denaturing conditions.  SDS PAGE gel 

electrophoresis was carried out using the X-Cell Novex MiniCell system 

(Invitrogen).  The gels were run at 180V for 90 min and wet transferred 
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using the same X-Cell system to a Hybond-C extra nitrocellulose 

membrane (GE Healthcare). After transfer for 2-3 hours at 20V, the 

membrane was blocked in blocking solution for 1hour at room 

temperature. Blocking solution was made with PBS, 5% w/v dried 

skimmed milk powder (Marvel) and 0.1% Tween (Sigma-Aldrich). 

The membrane was then incubated with the appropriate primary 

antibody (refer table 2.2) in blocking solution at 4°C on a rotating shaker 

overnight. The following day, 3X PBS+0.1% Tween washes: first wash 

15min and subsequent 5min washes were carried out at room 

temperature. The appropriate HRP-conjugated secondary antibody 

(Jackson Immunolabs) diluted in blocking solution (1:1000) was added. 

Membrane was incubated for 1 hour at room temperature on a rotating 

shaker. After 4X PBS+0.1% Tween washes, the membrane was 

developed using ECL Plus chemiluminescent detection kit (GE 

Healthcare). X-Ray films (Amersham Hyperfilm ECL-GE Healthcare) were 

developed using an X-Ray developer.    

 

2.4 Harvesting embryos 

Mice 

C57black/6J mice were used to obtain wild type mouse embryos. 

Timed mating was used to obtain embryos at the appropriate stages; the 

day of vaginal plug discovery following mating was designated as E0.5. 

Pregnant mice were killed by cervical dislocation. The embryos were 

dissected out from the uterine pouch into ice-cold L-15 medium (Gibco).  

The embryos were fixed in 4% Paraformaldehyde (PFA) for 2hours 

at 4°C, transferred to 30% sucrose in PBS and shipped with blue ice. 

After receiving the embryos, they were transferred to fresh 30% sucrose 

solution, incubated for 2 hours at 4°C and embedded in optimal cutting 

temperature (OCT) compound. The frozen tissue blocks were stored at -

80°C before being processed for immunostaining. 
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Transgenic mouse models 

The Emx-1 Cre; Crb2 conditional knockout mice and the Nestin 

Cre; Pals1 conditional knockdown mice were generated by our 

collaborators at the Netherlands Institute for Neuroscience (Henrique 

Alves and Bokyung Park working in the laboratory of Jan Wijnholds). A 

schematic of the Cre-lox technology used for conditional gene knockout is 

shown in Fig 2.1. A conditional gene-targeting construct for Crb2 was 

generated using bacterial artificial chromosomes (BACs) and Cre/loxP 

technology. A 3ʼ loxP site was inserted in exon 13 behind the stop codon 

in the 3ʼ untranslated region of Crb2. A neomycin cassette flanked by frt 

recombination sites and a 5ʼ loxP site was inserted in intron 9 behind 

exon 9A. The targeting vector was released from the BAC into a plasmid 

using homologous recombination. The loxP and frt recombination sites 

were tested by expression of the floxed Crb2 targeting vector in bacterial 

cells expressing CRE or FLP recombinases. The targeting vector was 

used to generate Crb2F/+ mouse 129 E14 ES cells by homologous 

recombination. The Crb2F/+ conditional knockout mice were generated by 

blastocyst injections of Crb2F/+ ES cells. Chimeric mice gave germ line 

transmission, thereafter the neomycin cassette was successfully removed 

by crossing the Crb2F/+ mice with a transgenic mouse that expressed FLP 

recombinase in the germ line (129S4/SvJaeSor-

t(ROSA)26Sortm1(FLP1)Dym/J mice; Jackson lab). Two Crb2F/+ mouse 

lines were generated from two independent ES cells clones these lines 

were designated P1E9 and P11D6. The two lines gave identical 

phenotypes. The conditional knockout mice were crossed with Emx1-Cre 

mice (B6.129S2-Emx1tm1(cre)Krj/J; Jackson lab) expressing Cre 

recombinase in the developing neuroepithelium of the cerebral cortex. 

shPals1 mice previously described in Park et al., 2011 were crossed with 

Nestin-Cre transgenic mice to obtain shPals1 conditional knockdown 

mice. 
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For the analysis of the mutant mouse models, embryos were 

genotyped and sent from Amsterdam in 30% sucrose solution. I 

embedded and processed the embryos as described in sections 2.7 and 

2.8. A minimum of three control and three conditional knockout embryos 

were used for marker analysis.  

Chick  

Fertile brown chicken eggs (Henry Stewart & Co. Ltd) were 

incubated at 39°C and the embryos were staged according to Hamburger 

and Hamilton staging system (Hamburger and Hamilton, 1951). Embryos 

were dissected by cutting into the vitelline membrane and around the 

embryo with a pair of dissection scissors. Embryos were then transferred 

to ice-cold Leibovitzʼs L-15 medium (L-15) or Hankʼs balanced salt 

solution-HBSS (Gibco) 

2.5 Explant culture 

Hamburger and Hamilton (H&H) Stage 10-11 chick embryos were 

dissected into ice-cold L-15 medium. Embryos were treated with Dispase 

(Roche) at room temperature for 5-15min. The treatment was stopped by 

addition of L-15 medium + 2% foetal calf serum and embryos transferred 

to ice. After 30 min, neural tubes were dissected away from the 

surrounding embryonic tissue. The notochords were left intact at this 

point to distinguish dorsal from ventral. The neural tubes were transferred 

to 2x changes of OptiMEM medium. The neural tube was sub-dissected 

into rhombomeres. Each rhombomere was carefully transferred using a  
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200 µl pipette tip to 0.1% Gelatin (Sigma) and 50µg/ml Fibronectin 

(Invitrogen) coated dishes (Ibidi) with Opti-MEM I reduced serum 

medium, 1% Penicillin-Streptomycin and 1% L-Glutamine. The explants 

were cultured for 24 hours at 37°C and 5% CO2 prior to fixing in 4% PFA 

and further processing. 

Preliminary analyses suggested that a combination of fibronectin 

and gelatin is a suitable substrate for adhesion of explants and neural 

crest migration under serum-free conditions compared to collagen (Fig 

2.2).  

2.6 In ovo electroporation 

H & H St10 embryos were electroporated as described previously 

by (Itasaki et al., 1999). Briefly, eggs were windowed and the extra-

embryonic membrane partially removed. A few drops of sterile HBSS 

medium were added to the embryo and DNA solution was injected into 

the lumen of neural tube.  Excess DNA was washed away with HBSS and 

electroporation was carried out using a BTX ECM830 square wave 

electroporator with 4X 26V square wave pulses of 10millisec duration and 

1 second interval between each pulse.  The eggs were then sealed using 

Parafilm and incubated at 39 °C (Sanyo) for 24h-48h. 

 

2.7 Cryostat embedding and sectioning 

Embryos were fixed in 4% PFA at 4°C for 2 hours in a rotating 

shaker, washed 3X 5min at room temperature. Embryos were then 

transferred to 30% sucrose in PBS at 4°C and left overnight.  Tissue was 

embedded in OCT and rapidly frozen on dry ice. Frozen blocks were 

stored at -80°C in a sealed container.  
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2.8 Immunostaining of cryosections 

Solutions used for immunostaining: 

1. Permeabilization solution – PBS + 0.5% Triton-X 100 

2. Blocking solution – PBS+5% Heat inactivated donkey serum 

(HIDS) 

3. Antibody solutions- Primary antibody (refer table 2.2) diluted in 

blocking solution, secondary antibody diluted in PBS. 

15µm thick sections were cut using a cryostat (Bright). Before 

cutting the frozen blocks were mounted on a chuck and allowed to reach 

the cryostat chamber temperature for 30 min. Sections were collected on 

Superfrost slides and air-dried for 2hours. After 1X wash for 5min in PBS, 

sections were permeabilized in 0.5% Triton-X 100/PBS for 10min. 5% 

HIDS and 0.1% Triton-X 100 in PBS was used for blocking. After 1hour of 

blocking, 250µl primary antibody was added and the slides were 

incubated in a humidified chamber at 4°C overnight. Slides were then 

washed 3X  - 5min in PBS and corresponding secondary antibody with 

DAPI (4,6-diamidino-2phenylindole, Molecular Probes) was added. They 

were incubated for 1hour at room temperature in a dark humidified 

chamber, washed 3X in PBS and then mounted in Vectashield (Vector 

laboratories) with a glass coverslip sealed with clear nail varnish (Boots 

No.7). Slides were stored in the dark at 4°C before imaging. 

Note: For chick embryo sections, there was no separate 

permeabilization step before blocking. Also, sections were blocked only 

for 30min. 

 

2.9 Immunostaining explant culture/cells on glass coverslips 

Cell culture dishes were washed 2X in PBS. Cells/explants were 

fixed in 4% PFA for 10min at room temperature. 2X PBS washes, 

followed by blocking in PBS+ 0.1%Triton-X 100 + 1% heat inactivated 

serum for 30 min. Primary antibody diluted in blocking solution was added 
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and culture dishes were stored at 4°C overnight. After 3X changes of 

PBS, appropriate secondary antibodies (+DAPI) were added and 

incubated for an hour at room temperature. After 3X PBS washes, the 

coverslips were mounted on glass slides and sealed with clear nail 

varnish. Cell culture dishes were left in PBS solution at 4°C in a sealed 

box before imaging. 

 

Table 2.2 List of antibodies used for immunofluorescence (IF) and 

western blotting (WB) 

Antibody Source  Dilution 

Crumbs2 Custom made Eurogentec- 

(EMDSVLKVPPEERLI) 

and (AWEGPRCEIRAD) 

1:500   (IF) 

1:1000 (WB) 

Pals1 Abcam, rabbit polyclonal 1:200 (IF) 

Par3 Millipore, rabbit polyclonal 1:200 (IF) 

PKC-zeta Santa Cruz, rabbit polyclonal 1:200 (IF) 

PKD/PKCµ Cell Signalling, rabbit polyclonal 1:100 (IF) 

ZO-1 Zymed, mouse monoclonal 1:200 (IF) 

ß-Catenin BD Biosciences, mouse 

monoclonal 

1:500 (IF) 

N-Cadherin BD Biosciences, mouse 

monoclonal 

1:100 (IF) 

NCAM Chemicon, rabbit polyclonal 1:200 (IF) 

pH3 Upstate, rabbit polyclonal 1:500 (IF) 

Ki67 Novocastra, rabbit polyclonal 1:500 (IF) 

Pax6 DSHB, mouse monoclonal 1:50   (IF) 

Sox2 Millipore, rabbit polyclonal 1:500 (IF) 

Nestin Abcam, mouse monoclonal 1:300 (IF) 

CD133 Abcam, rabbit polyclonal 1:250 (IF) 

Tuj1 Covance, mouse monoclonal 1:500 (IF) 

BLBP Chemicon, rabbit polyclonal 1:250 (IF) 

GFAP Abcam, rabbit polyclonal 1:250 (IF) 
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HNK-1 Sigma, mouse monoclonal 1:100 (IF) 

Slug Abcam, rabbit polyclonal 1:100 (IF) 

V5 Tag Abcam, chicken polyclonal 1:200 (IF) 

1:2000 (WB) 

His Tag Cell signalling, rabbit polyclonal 1:1000 (WB) 

Calnexin Cell signalling, rabbit polyclonal 1:100 (IF) 

 

FITC, RRX and Cy5 conjugated secondary antibodies raised in donkey 

were from Jackson Immunolabs. They were used at 1:200. 

 

2.10 Microscopy and Image processing 

Images were captured using ZEISS LSM 510 META confocal 

microscope or ZEISS Apotome microscope with Axioimager. Imaging of 

explant cultures was done using a Leica fluorescent dissecting 

microscope using Leica Firecam software. Images were processed using 

ImageJ (NIH, http://rsb.info.nih.gov/ij), Photoshop CS4 and Bridge CS4 

(Adobe).  Statistical analysis was performed using GraphPad Prism. 

 

2.11 General molecular biology 

Bacterial cell culture 

LB Agar was prepared by dissolving 35g of LB-Agar (Sigma-

Aldrich) in 1l of deionized water. After autoclaving, the agar was allowed 

to cool down and appropriate antibiotic was added before pouring the 

agar into bacterial dishes. 

LB Broth was prepared by dissolving 20g of LB-Broth (Sigma-

Aldrich) in 1l of deionized water and autoclaving. 

Bacterial cells were grown at 37 °C in LB medium+ antibiotic on a 

shaker at 225rpm or on LB agar plates.  To make glycerol stocks for long 

term storage, two part volumes of bacterial culture in the exponential 
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growth phase was mixed with 1 part of 80% glycerol in LB-Broth and 

stored at -80°C. 

 

Plasmid extraction and purification 

Plasmids were extracted and purified using commercially available 

kits (Qiagen), according to manufacturerʼs instructions. 

 

RNA extraction, cDNA synthesis 

RNA was extracted using RNAeasy kit (Stratagene) following 

manufacturerʼs instructions. For RNA extraction from mouse liver and 

skeletal muscle, phenol chloroform was used instead of the kit. The 

purified RNA was eluted in dH20 and the concentration was determined 

using NanoDrop ND1000 (Labtech). 3µg of RNA per 20µl reaction was 

used for reverse transcription using SuperScript III reverse transcriptase 

(Invitrogen), according to manufacturerʼs instructions with random primers 

from Promega.  

 

RT-PCR 

DNA amplification was done using a PTC-200 Thermocycler (MJ 

Research). For a reaction volume of 25µl, double distilled water, 1X PCR 

buffer (Promega) 1mM MgCl2, 0.2mM dNTPs, 1µl Taq polymerase, 

0.25µM forward primer and 0.25µM reverse primer.  

 

The PCR program used was as follows: 
Initial	
  denaturation	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  95°C	
  	
  	
  	
  	
  	
  	
  	
  2	
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Table 2.3 Primer sequences used for RT-PCR/ cloning 
Gene Forward Primer Reverse Primer 

Mouse 

Crb2S  

CTTGGTGATGCTCAGCTTTG AGCTTCGGTTGGTAGACTGC 

Mouse 

GAPDH 

AACGGGAAGCCCATCACC CAGCCTTGGCAGCACCAG 

   

Mouse 

Crb2F 

AAGTCTAAGgcggccgctCAGGCAGAG 

CCGGCTGCCAT 

Not1 restriction site 

GTACGTCCGgtcgacGGCACCAGCAG 

CCAGGCAAAC 

Sal1 restriction site 

   

Mouse 

Crb2S 

AAGTCTAAG 

gcggccgctATGGCGCTG 

GTGGGGCCTA 

Not1 restriction site 

GTACGTCCG gtcgac CTAAGAAGGC 

ACAGTCGAGGCTGA 

Sal1 restriction site 

	
  

Primers were supplied by Sigma Aldrich UK and DNA sequencing was 

carried out by the Core Genetic Facility, University of Sheffield. 

 

Transformation of bacterial cells 

One shot TOP10 (Invitrogen) chemically competent cells were 

routinely used for transformation of plasmid DNA according to 

manufacturerʼs instructions.  

 
DNA electrophoresis 

Agarose gels were made using 1% ultra-pure Agarose (Invitrogen) 

in 1X TAE (50mM TrisHCl (Sigma Aldrich), pH 8.0; 1mM EDTA (VWR 

International), 0.02M acetic acid (Fisher Scientific), heated in a 

microwave until completely dissolved. After the solution had cooled, 

Ethidium Bromide (Bio-Rad) was added to a final concentration of 0.7 

ug/ml. 10X loading buffer [4% v/v saturated bromophenol blue (Sigma 

Aldrich) solution, 20% 50X TAE, 40% glycerol (Fisher Scientific) in 
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deionized water] was added to the sample at a final concentration of 1X.  

Gel was run in 1X TAE at 80 V. Bio-Rad DNA Mini Sub Cell GT 

electrophoresis kit was used for electrophoresis. The bands were 

visualized using a UV transilluminator. 1kb DNA ladder (New England 

Biolabs or Promega) was always run on the gel for size reference. 

 

Sub-cloning, Restriction digestion and ligation 

To amplify DNA for making constructs, Pfu high fidelity polymerase 

(Rovalab) was used.  All restriction enzymes used were from New 

England Biolabs and used according to manufacturerʼs instructions.  PCR 

product and digested vector backbone were purified using QIAquick PCR 

purification kit (Qiagen).    

The cut vector backbone and insert were analysed by gel 

electrophoresis and subsequently mixed at a ratio of 1:3 for ligation. T4 

DNA ligase was used according to manufacturerʼs instructions. The 

ligation reaction was then used for transformation into TOP10 cells. 

Colonies were screened and diagnostic restriction digests carried out to 

identify positive clones. DNA from positive clones was sequenced and 

glycerol stocks were made.   

 

2.12 In situ hybridisation  

Solutions used for the protocol 

Prehybridisation solution – 50% Formamide, 5X SSC (saline sodium 

citrate) buffer –pH 7, 2% Boehringer Blocking powder, 0.1% Triton X-100, 

0.5% CHAPS, 100µg yeast RNA, 50µM EDTA and 50µg/ml Heparin. 

Solution I- 50% Formamide, 5X SSC pH4.5, 1% SDS  

SolutionII- 50% Formamide, 2X SSC pH 4.5 0.1% Tween 20 

NTMT- 0.1M NaCl, 0.1M Tris pH9.5, 0.05 MgCl2, 0.1% Tween 20 

 

Embryos were harvested as described in section 2.4 and fixed in 

4% PFA overnight at 4°C. After 2X PBS+0.1% Tween-20 (Sigma Aldrich) 
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washes, the embryos were dehydrated by taking them through a series of 

methanol washes – 25%, 50%, 75% and 100%. The embryos were then 

rehydrated using the reverse graded methanol series -100%, 75%, 50% 

and 25% and incubated in prehybridisation solution at 68°C for 3-4 hours. 

0.2-1µg digoxigenin (DIG) riboprobe was diluted in prehybridisation 

buffer, denatured at 68° C and incubated with embryos overnight at 68°C.  

The following day embryos were washed 2X with solution I and 2X 

with solution II for 30min each at 68°C and blocked in 10% heat 

inactivated goat serum in PBS-T for 90min at room temperature. After 

blocking the embryos were incubated with 1:2000 anti-DIG Alkaline 

phosphatase Fab fragments overnight at 4°C. After 8X post-antibody 

washes the embryos were developed in NTMT containing NBT and BCIP. 

When the colour had developed to the desired extent, the reaction was 

terminated by washing with PBS-T. Embryos were re-fixed in 4% PFA 

and stored at 4°C before imaging. 

The following template DNA was used to generate a DIG-labelled 

antisense RNA probe: Plasmid pBS Hes5 (from Verdon Taylor) 

containing a cDNA fragment encoding mouse Hes5 was linearised with 

Hind III restriction enzyme and transcribed with T3 polymerase. Chicken 

EST (ChEST) clone Crb2-663n24 in pBluescript II vector was used to 

generate antisense Crb2 riboprobe. Not1 was used for linearization and 

T3 polymerase for in vitro transcription.   

For in situ hybridization on sections, previously published protocols 

were followed (Manning et al., 2006; Strahle et al., 1993). Briefly, 20 µm 

cryostat sections were collected on Superfrost plus glass slides (VWR) 

and air-dried. The slides were kept dry and stored at -20°C. The following 

day sections were rehydrated with 3X washes of PBS and acetylated 

using 11.6µl/ml Triethanolamine and 2.5µl/ml acetic anhydride in water. 

Acetylation was followed with equilibration in 5X SSC buffer (pH 6) for 

7min and incubation in prehybridisation solution for a minimum of 2 hours 

at 65 °C. The antisense probe was diluted in 100µl of prehybridisation 
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buffer and incubated overnight at 65 °C. The following day slides were 

processed similar to the whole mount in situ protocol.  After stopping the 

developing reaction, slides were washed 3X in PBS and mounted using 

Aquamount (BDH) 

2.13 In ovo manipulation 

Dorsal and dorso-lateral telencephalic tissue from E17.5 WT 

brains was dissected using a fine tungsten needle from 200µm vibratome 

sections of the brain. The tissue was incubated in 500nM SYTO green 

dye at 37°C for 10min and transplanted into H&H St10 chick embryos in 

the caudal neuropore region, after making a small incision. Eggs were 

sealed and incubated at 39°C for 24hours prior to further processing. 

Affigel beads (Biorad) were soaked for 24 hours in approximately 

100nM of purified Crb2S protein. H&H Stage 10 chick embryos were 

accessed in ovo by making a small window in the eggshell. Beads were 

implanted in the caudal neuropore or inside the hindbrain region, resealed 

and incubated at 39°C for 24 hours prior to fixation and analysis by 

immunostaining.   
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CHAPTER 3 

 
 
 
 
Expression profile of Crb2 in the 
developing central nervous system 
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3.1 Introduction 

The earliest reported expression of Drosophila Crumbs protein is 

during gastrulation (Tepass et al., 1990). After gastrulation, Crumbs 

expression is detected in all the ectodermally derived epithelia analysed 

(Bulgakova & Knust, 2009).  

The vertebrate homologs of Crumbs exhibit dynamic expression 

patterns during development and in adult tissues that are suggestive of 

tissue-specific functions. The expression of the different Crumbs 

homologs has previously been discussed in Chapter 1 (1.4.4.1).   

Recently, the expression pattern of Crb2 mRNA in the early stages 

of mouse embryonic development was described (Xiao et al., 2011). 

However, the expression profile of Crb2 protein in the developing central 

nervous system of chick and mouse embryos has not yet been reported.  

The aim of this chapter was to analyze the temporal and spatial 

expression pattern of Crb2 in the developing chick and mouse embryonic 

nervous system. The expression studies were restricted to two specific 

regions in each of these model systems: the hindbrain in the chick 

embryo and the dorsal telencephalon in the mouse embryo. In the chick 

embryonic system, in ovo electroporation and manipulations described in 

chapter 6 were carried out at Hamburger and Hamilton (H&H) stage10 

and embryos were allowed to develop to H&H stage17 to study the role of 

Crb2 during neural development. The expression profile of Crb2 during 

the different developmental stages from H&H stages 10-17 is described 

in this chapter. In chapter 4, I have analysed a dorsal telencephalon 

specific Crb2 conditional knockout and this chapter shows the expression 

profile of Crb2 in the telencephalon of wild type mouse embryos during 

early (E12.5), mid (E14.5) and late (E17.5) stages of cortical 

neurogenesis. 
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3.2 Results 

CHICK 
 

3.2.1 Crb2 mRNA is expressed in the neural tube of a developing 
chick embryo 

To detect the expression of chick Crb2 transcripts (cCrb2) in 

Hamburger and Hamilton (H&H) stage 10-stage 17 chick embryos, I 

carried out whole mount in situ hybridization. At stage 10, cCrb2 is 

expressed in the developing forebrain, midbrain, caudal hindbrain and in 

the spinal cord (Fig 3.1A).  At stage 11, cCrb2 is expressed in the 

forebrain, midbrain and at the midbrain-hindbrain boundary (Fig 3.1B). By 

stage 11, the rhombomeres of the hindbrain are distinctly visible and 

cCrb2 is strongly expressed only in the caudal rhombomeres (arrow 

heads in Fig 3.1B) but not in the rostral rhombomeres (arrows in Fig 

3.1B).  

In contrast to its expression at stage 10 and 11 wherein cCrb2 is 

expressed in a rhombomere-specific manner, by stage 12 cCrb2 is 

expressed uniformly in the developing neural tube (Fig 3.1C). cCrb2 

expression is also detected in the optic vesicle (arrow in Fig. 3.1C).  

Analysis of stage 13, stage 15 and stage 17 embryos showed that 

cCrb2 is expressed in the developing eye and along the anterior-posterior 

axis of the neural tube (Fig. 3.2). Additionally, at stage 17 cCrb2 

expression is also detected in the branchial arches (arrow in Fig 3.2E). 

15µm transverse sections were cut through the whole mount 

embryos and the expression of cCrb2 at different levels of the neural tube 

was examined. At stages 10 and 11, cCrb2 is expressed in the 

neuroepithelial cells (Fig 3.3, 3.4). At both these stages, particularly at 

stage 10 there is a dorsal low-ventral high gradient expression of cCrb2 in 

the hindbrain region (Fig 3.3 arrow in Eʼ-Gʼ).  
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As development proceeds, the dorsal low-ventral high gradient 

expression of cCrb2 is no longer evident and the expression of cCrb2 

transcripts within the neural tube is noticeably more concentrated at the 

apical surface of the neuroepithelial cells (Fig 3.5 and Fig 3.6). In the 

stage 15 embryonic eyes, cCrb2 is expressed in the lens cup and is 

apically enriched in the retinal pigment epithelium (Fig. 3.6 B”).  
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1.2.2 Crb2 protein is apically localized in the developing chick 

neural tube 

To determine the sub-cellular localization of cCrb2 protein I carried 

out immunostaining on coronal and transverse sections through the chick 

embryo for Crb2.  

Coronal sections through an H&H stage 11 chick embryo were 

immunostained for Crb2. cCrb2 is expressed in the forebrain, midbrain, 

midbrain-hindbrain boundary and spinal cord (Fig 3.7). cCrb2 protein is 

apically localized in the neural epithelium. Consistent with the expression 

of cCrb2 mRNA, cCrb2 protein expression is also rhombomere-specific in 

the hindbrain. Crb2 protein is weakly detected in rostral rhombomeres 

(asterisk in Fig 3.7 B). Conversely, in caudal rhombomeres Crb2 protein 

is highly expressed at the apical surface of the neural tube (arrow head in 

Fig 3.7 B). Intriguingly, Crb2 staining is also detected at the basal surface 

(arrows in Fig 3.7 B).  

Immunostaining of transverse representative sections through the 

developing brain of an H&H stage11 chick embryo show that Crb2 protein 

is also variably expressed in the hindbrain region, where apically 

localized Crb2 staining is observed only in sections through the caudal 

hindbrain (Fig 3.7 H) but not in sections through the rostral hindbrain (Fig 

3.7 E-G).  

Whole mount immunostaining and immunostaining of transverse 

sections through an H&H stage 13 embryo show Crb2 expression in the 

neural tube along the anterior-posterior axis. In the transverse sections, 

Crb2 is detected at the luminal surface of the neuroepithelial cells (Fig 3.8 

B-C). Similar to the basal staining detected at stage 11, at stage 13, Crb2 

staining is also detected at the basal surface (asterisk, Fig 3.8 A)   
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Overall, in the early chick embryo the expression of Crb2 mRNA 

and protein is specifically restricted to the developing neural tube. Notably 

in the hindbrain, Crb2 mRNA and protein is highly expressed only in the 

caudal rhombomeres at early stages, but as development proceeds Crb2 

is uniformly expressed in all the rhombomeres.  

MOUSE 

Using an antibody predicted to cross-react with all three vertebrate 

Crumbs homologs, it was reported that the mouse Crumbs proteins are 

restricted to the apical surface of neuroepithelial cells in E8.5 mouse 

embryos (Lee et al., 2007). Additionally, during cortical development in 

the rat, Crumbs proteins are apically localized along with other polarity 

proteins- Pals1, MALS3 and PATJ (Srinivasan et al., 2008).  

Previous unpublished work from our lab has shown that Crb2 

mRNA is expressed in the developing neural tube of a mouse embryo as 

early as E8.5. However, little is known about the expression pattern of 

Crb2 protein in the developing mouse cortex.  

 

1.2.2 Crb2 protein is apically localized in the telencephalon of a 

developing mouse embryo. 

Initially, I examined the expression of Crb2 in the developing 

cortex at three ages – E12.5, E14.5 and E17.5. These stages correspond 

to early, mid and late neurogenesis (Caviness et al., 2003; Caviness et 

al., 1995).  

In E12.5 wild-type mouse telencephalon, Crb2 protein is apically 

localized in the cortical neuroepithelial cells (Fig 3.9). The staining 

observed at the pial surface of the cortex is non-specific staining (asterisk 

in Fig 3.9) as it is also observed in telencephalic tissue immunostained 

with only the secondary antibody (data not shown). By E14.5, the cortex 

has a well-defined laminar organization and Crb2 expression continues to 

be restricted to the apical cell surface (Fig 3.10). At E17.5, there is an 
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appreciable increase in the thickness of the cortex and a decrease in the 

size of the lateral ventricle. Crb2 protein is expressed apically in the cells 

lining the ventricle. Interestingly at E17.5, the expression of Crb2 is not 

confined only to the apical domain but extends to a distinct region in the 

sub-ventricular zone in the dorsal telencephalon (Fig 3.11). Double 

immunostaining with Nestin, a neural stem cell marker, revealed that 

there is a close association between Crb2 and Nestin expression in the 

dorsal telencephalon at E17.5 (Fig 3.12). 

Overall, in both chick and mouse embryos Crb2 is highly 

expressed in the neural tube and its expression is more pronounced at 

the apical surface of neural progenitor cells. 

3.3 Discussion 

Both in terms of morphology and localization of cellular 

constituents, neuroepithelial cells demonstrate apical-basal polarization 

(Chenn et al., 1998). The evolutionarily conserved apical polarity proteins 

Pals1, Par3, aPKC have previously been associated with the apical 

surface of developing neuroepithelia (Afonso & Henrique, 2006; Costa et 

al, 2008; Kim et al., 2010; Srinivasan et al., 2008; Stohr et al., 2005). 

Recently these apical polarity proteins have been implicated in cell fate 

determination during neurogenesis (Kim et al., 2010; Bultje et al., 2009; 

Imai, 2006). Despite this, comparatively little is known about the 

expression and role of the vertebrate homologs of Crumbs in neural 

development. 

In this chapter, I have shown that one of the vertebrate homologs 

of Crumbs, Crb2, is apically enriched in the neuroepithelium of a 

developing chick neural tube and in the developing murine telencephalon.  
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The expression of Drosophila Crumbs (dCrb) has been associated 

with all ectodermally derived epithelia, the only exception being the 

expression of dCrb in the peripheral nervous system (Tepass et al., 

1990). It has been shown previously that dCrb plays a crucial role in the 

dynamic reorganization of epithelia during morphogenesis (Campbell et 

al., 2009). Given this role for Crumbs in tissue remodeling, it is not 

surprising that Crb2 is highly expressed in the developing neural tube, a 

tissue that undergoes extensive morphogenesis.  

cCrb2 mRNA is apically enriched in the chick embryonic neural 

tube. Asymmetric mRNA localization of cCrb2 transcripts could be 

beneficial for the production of multiple protein copies that are enriched at 

the apical neural epithelium. It is also possible that specific asymmetric 

localization of mRNA is a regulatory mechanism to prevent Crb2 protein 

from acting ectopically during translocation.  

Interestingly, cCrb2 mRNA is not detected within rhombomeres 1-4 

at H&H stages 10 and 11. This pattern of cCrb2 expression may be 

crucial for defining rostral rhombomere identity from that of caudal 

rhombomeres during early stages of chick embryonic development. This 

cCrb2 free zone can be used to ectopically express Crb2 and to analyse 

its role during chick embryonic hindbrain development.  

It is now well established that the apical neural progenitors of the 

neural tube reside close to the ventricles (the apical surface) and as they 

become post-mitotic they migrate to the basal layers in an orderly fashion 

(Gotz & Huttner, 2005). Crb2 protein expression in both the chick neural 

tube and mouse neocortex is predominantly restricted to the apical 

surface of the neuroepithelial cells. However, some Crb2 expression is 

also detected at the basal surface of the neural tube during H&H stages 

10-11. It is possible that this is non-specific antibody staining or that Crb2 

during early stages of development is also basally localized and is 

enriched at the apical surfaces as development proceeds. Overall, the 

preferential localization of Crb2 at the apical surface of the proliferating 
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progenitors is suggestive of a role for Crb2 in regulating the proliferation 

and/or cell fate of neural progenitors.  

In addition to its apical expression in the dorsal telencephalon of 

E17.5 mouse embryos, Crb2 shows an intriguing expression pattern in 

and is expressed in a particular subset of cells in the dorsal sub-

ventricular zone. These Crb2 positive cells are also closely associated 

with the neural stem cell marker, Nestin. It is possible that this cell 

population within the dorsal sub-ventricular zone is a specialized sub-type 

of progenitor cells that migrate to and settle-down in a different 

environment such as the olfactory bulb or that they give rise to specific 

neuronal sub-types in the cortex. It is tempting to speculate that the non-

apically expressed Crb2 may play roles independent of apical-basal 

polarity during murine cortical neurogenesis.  
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4.1 Introduction 

Recent work from our lab has shown that Crb2 is a novel regulator 

of neural differentiation in vitro (Boroviak & Rashbass, 2011). The main 

aim of this chapter was to elucidate if Crb2 plays a role in neural 

development in vivo. To study the potential effect of conditional removal 

of Crb2, transgenic Crb2 floxed mice were generated by our Dutch 

collaborators (Henrique Alves working in the lab of Jan Wijnholds). 

However, the targeting construct is directed only against full-length Crb2 

and not the secreted isoform described in chapter 6.  

The homeodomain protein encoded my Emx1 is predominantly 

restricted to cortical subdivisions of the telencephalon. Emx1 is 

expressed in progenitor cells and neurons of dorsal, medial and lateral 

pallia (Simeone, et al., 1992; Puelles & Rubenstein, 1993). The neuronal 

expression of Emx-1 is mainly restricted to projection neurons (Chan et 

al., 2001) (Gorski et al., 2002). The defects observed in brains of Emx-1 

homozygous mutants were subtle and restricted to the forebrain. Emx-1 

mutant mice were born in normal Mendelian ratio and survived into 

adulthood (Yoshida et al., 1997). 

To restrict Cre mediated recombination to the developing dorsal 

telencephalon, homozygously floxed Crb2 mice were crossed with Emx1-

Cre transgenic mice. In this system, Cre mediated recombination is 

restricted to the dorsal telencephalon (Gorski et al., 2002; Guo et al., 

2000). The Crb2 cKO mice are viable and survive into adulthood they 

also do not display any overt morphological or behavioural defects (H. 

Alves, personal communication).  

 

As summarized in table 1.3 many polarity proteins play crucial 

roles during murine cortical neurogenesis by regulating apical-basal 

polarity. These studies suggested that apically enriched proteins such as 

Par3, Par6, Pals1, MALS and Cdc42 influence the fate of daughter cells 
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and disruption of any of these proteins affects apical-basal polarity of 

neuroepithelial cells and subsequently affects normal cortical 

development (Bultje et al., 2009; Cappello et al., 2006; Kim et al., 2010; 

Manabe et al., 2002; Srinivasan et al., 2008). Based on the observations 

made in these studies, we hypothesized that conditional removal of Crb2 

from the cortex may affect a) cell junction components b) recruitment of 

other apical polarity proteins c) apical restriction of mitoses d) cell fate 

decisions of neural progenitors. 

4.2 Results: 
The experiments described in this chapter were carried out at 

three stages of embryonic development – E12.5, E14.5 and E17.5. For 

analysis of the Crb2 conditional knockout embryos, a candidate marker 

approach was taken and I have focused on the dorsal telencephalic 

region of the mouse embryonic brain. A minimum of three control and 

three conditional knockout embryos were analysed for each marker at 

each embryonic stage.  

Immunohistochemical analysis was carried out for markers 

classified into the following categories: 

1. Apical polarity proteins 

2. Cell junction proteins,  

3. Cell proliferation markers 

4. Neural progenitor markers  

5. Neuronal markers 

 

Analysis of Crb2; Emx1-Cre conditional knockout mouse embryos 
E12.5 

 
4.2.1 Conditional deletion of Crb2 results in the loss of apical Crb2 

protein expression 

Initially, I analysed the expression of Crb2 protein in the dorsal 

telencephalon of Crb2 F/+; Emx1-Cre Tg/+ and/or Crb2 F/F  (control) and 
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Crb2 F/F; Emx1-Cre Tg/+ (cKO) embryos. Crb2 protein is enriched at the 

apical surface of the cells lining the ventricle in the dorsal telencephalon 

of a control embryo (Fig 4.1 A-C). Conversely, in the cKO cortex where 

Cre expression is detected there is a complete loss of Crb2 expression 

(Fig 4.1 D-F). 

 

4.2.2. Loss of Crb2 affects the expression of polarity proteins and 

cell junction-associated proteins 

 To determine if loss of Crb2 has an effect on localization of apical 

polarity proteins and junction-associated proteins, I analysed the control 

and cKO littermate embryos for alterations in marker expression. ZO-1, a 

cell junctional protein (Aaku-Saraste, Hellwig, & Huttner, 1996) is 

localized at the luminal surface of the dorsal telencephalon in the control 

embryos (Fig 4.2 A, B). In the cKO cortex, the expression of ZO-1 is 

unaltered (Fig 4.2 E, F). N-Cadherin is one of the major cadherins 

associated with neuroepithelial cells (Kadowaki et al., 2007). At E12.5 in 

control embryos, N-Cadherin expression is enriched in the apical domain 

of the VZ- ventricular zone (Fig 4.2 C, D). Interestingly in the cKO cortex, 

the apically enriched expression of N-Cadherin is perturbed and N-

Cadherin is expressed in a diffuse manner in the ventricular zone. Weak 

N-Cadherin expression was also detected in the SVZ-sub-ventricular 

zone (Fig 4.2 G, H).   
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To investigate what effect Crb2 deletion has on the expression of 

apical polarity components, I analysed the expression of two candidate 

genes - Pals1, a member of the Crumbs complex and Par3, a member of 

the Par complex. In the control littermate embryos, Pals1 is expressed in 

the apical domain of the ventricular zone cells. In contrast, in the Crb2 

cKO embryos, the expression of Pals1 is barely detectable (Fig 4.3 A-B, 

E-F).  

Consistent with previously published data (Manabe et al., 2002) 

(Bultje et al., 2009), Par3 expression is enriched at the apical surface of 

the ventricular zone progenitors in the control embryos (Fig 4.3 C-D). 

Similar to Pals1 expression, the expression of Par3 is also disrupted in 

the Crb2 cKO cortex. However, some Par3 staining is detected in the 

lateral cortex (Fig 4.3 G-H). It is possible that Cre mediated recombination 

has not yet occurred in the lateral cortex at this stage.  

Overall, the data suggests that at E12.5, loss of Crb2 expression in 

the dorsal telencephalon leads to a disruption of the apical polarity protein 

complexes and the adherens junction protein N-Cadherin but does not 

affect the localization of ZO-1 that is usually associated with tight 

junctions.  

 

4.2.3 Loss of Crb2 affects the neural progenitor cell pool 

To elucidate the role of Crb2 in neurogenesis, I analysed the 

control and cKO littermate embryos for alterations in markers of neural 

progenitors (Sox2, Nestin), intermediate progenitors (Tbr2) and early-born 

neurons (TuJ1).  

In the control telencephalon, Sox2 positive progenitors are 

observed in the ventricular zone (Fig 4.4 A-B). Compared to the controls, 

very few cells in the cKO cortex show distinct nuclear localization of Sox2 

instead Sox2 staining is diffuse throughout the cell body (Fig 4.4 E-F).  
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At E12.5, immunostaining for Nestin revealed an intense staining 

pattern throughout the control cortex labeling cells with typical radial glial 

morphology (Fig 4.4 C-D) but in the cKO cortex Nestin expression was 

markedly reduced (Fig 4.4 G-H) 

To identify any alterations in the progression of apical neural 

progenitors to basal intermediate progenitors, I analysed the control and 

cKO littermate embryos for expression of Tbr2, a specific marker for 

intermediate progenitors (Sessa et al., 2008). At E12.5, Tbr2 is expressed 

in the sub-ventricular zone of the control cortex (Fig 4.4 I-J). Interestingly, 

in the cKO cortex Tbr2 positive cells are detected not only in the sub-

ventricular zone but also in the ventricular zone (Fig 4.4 M-N).  

I also examined the control and cKO cortices for alterations in the 

expression of early neuronal marker TuJ1. It has been previously 

reported that intermediate progenitors divide to generate more neurons 

than the apical progenitors (Noctor et al., 2007; Haubensak et al., 2004). 

Despite the apparent increase in Tbr2 positive intermediate progenitors 

after conditional deletion of Crb2, I did not observe a significant alteration 

in TuJ1 positive neurons in the cKO cortex compared to the control 

cortex, at E12.5.    

Taken together, these results indicate that conditional deletion of 

Crb2 from the cortex leads to a depletion of the apical neural progenitor 

pool and a concomitant increase in intermediate progenitors suggestive 

of a population shift from apical to intermediate progenitors. However, 

terminal neural differentiation remains unaffected at this stage. 
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4.2.4 Hes5 expression is downregulated in the Crb2 cKO cortex 

The Notch signaling pathway has been implicated in the 

maintenance of progenitors during vertebrate neural development (Chenn 

& McConnell, 1995; Mizutani et al., 2007). To investigate whether loss of 

Crb2 has an effect on the Notch pathway, I analysed control and cKO 

cortices for the expression of Hes5, a well-established downstream 

effector of the Notch pathway (Ohtsuka et al., 1999). 

In the control telencephalon, Hes5 mRNA expression is observed 

in the neural progenitors of the ventricular zone (Fig 4.5 A, C). 

Interestingly, in the cKO cortex there is a significant reduction in Hes5 

mRNA transcripts. However, Hes5 is not completed downregulated in the 

cortex and the decrease in Hes5 mRNA expression occurs in a medial to 

lateral manner (Fig 4.5 B, D). In the Crb2 cKO cortex, there appears to be 

a distinct boundary between regions where Hes5 expression is 

unaffected and where Hes5 expression is markedly reduced (dotted lines 

in Fig 4.5 B, D).  

In light of the above observation, the depletion of the apical 

progenitor population in the Crb2 cKO cortex and the subsequent switch 

to an intermediate Tbr2 positive cell fate may be a consequence of Hes5 

downregulation. Alternatively, the loss of Hes5 could be a secondary 

effect to the loss of apical progenitors and this could be regulated by the 

Cdc42-mTOR pathway (Endo et al., 2009). 
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E14.5 

4.2.5 Loss of Crb2 affects the expression of polarity proteins and 

cell junction-associated proteins 

To follow the progressive effect of Crb2 deletion on the expression 

of polarity proteins, I analysed control and cKO littermate embryos at 

E14.5. Similar to the expression at E12.5 in the control cortex, Pals1 and 

Par3 (Fig 4.6 A-B, E-F) are localized in the apical cell compartment. In 

the cKO situation, apical Pals1 expression is lost (Fig 4.6 C-D). Although 

Par3 was disrupted at E12.5, rather surprisingly its expression is restored 

in the cKO cortex by E14.5 (Fig 4.6 G-H). I next examined N-Cadherin 

localization. In the control cortex N-Cadherin staining is detected in the 

SVZ and in the apical surface of the cells lining the ventricle (Fig 4.6 I-J). 

In the cKO cortex, N-Cad expression is significantly reduced (Fig 4.6 K-

L). 

Overall, the data suggests that at E14.5, loss of Crb2 expression in 

the dorsal telencephalon continues to affect recruitment of Pals1 and N-

Cadherin to the apical compartment. However, it no longer influences 

Par3 localization. 

 
4.2.6 Loss of Crb2 affects expression of neural progenitor/neuronal 

markers  

At E14.5, Sox2 expression in the control and cKO cortex is not 

significantly different (Fig 4.7 A-D). In contrast to the diffuse cytoplasmic 

Sox2 staining observed at E12.5 in the Crb2 cKO cortex, nuclear Sox2 

expression is restored by E14.5. Interestingly, the expression of Prominin 

(CD-133) an apical neuroepithelial stem cell marker (Marzesco et al., 

2005), is completely lost in the cKO cortex (Fig 4.7 E-H) when compared 

to the control cortex. Nestin positive cells extend from the apical to pial 

surface in the control cortex (Fig 4.7 I-J).  
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In the cKO cortex, Nestin positive fibers are disorganized and significantly 

reduced (Fig 4.7 K-L). 

Tbr2 positive cells are detected in both the SVZ and basal VZ 

layers of the control (Fig 4.8 A-B) and cKO (Fig 4.8 C-D) cortex. 

However, there appears to be a subtle increase in Tbr2 positive cells in 

the cKO cortex when compared to the controls.  

To ascertain whether the depletion of apical neural progenitors in 

the Crb2 cKO cortex at E12.5 has a pronounced effect on neurogenesis 

at E14.5, I analysed the control and cKO embryos for alterations in neural 

marker expression. Immunostaining the control and cKO cortices for early 

neuronal marker TuJ1 revealed a significant expansion of TuJ1 positive 

neuronal domain in the cKO cortex compared to the control (Fig 4.8 E-H). 

In addition to this expanded domain, I also observed mislocalized TuJ1 

positive neurons in the ventricular zone. The expression of Tbr1, a 

marker for post-mitotic neurons (Bulfone et al., 1995) is unaltered in the 

control (Fig 4.8 I-J) and cKO (Fig 4.8 K-L) cortex at this stage. 

Taken together, the data implies that at E14.5 loss of Crb2 

continues to affect the expression of apical polarity components and 

neural progenitor markers and leads to precocious neural differentiation. 

E17.5 

4.2.7 Loss of Crb2 affects neural differentiation and expression of 

cortical - layer specific markers. 

To examine the effect of Crb2 deletion on neurogenesis at later 

stages, I analysed control and cKO brains at E17.5. Intriguingly, in the 

dorsal telencephalon of a control brain, Nestin is specifically restricted to 

a population of cells close to the ventricle (Fig 4.9 A-B). In the cKO brain, 

Nestin expression is completely downregulated (Fig 4.9 C-D). Compared 

to Sox2 expression at earlier stages, by E17.5 there are fewer Sox2 

positive cells lining the ventricles. In the control cortex, Sox2 labelled cells 

are dispersed in the SVZ (Fig 4.9 E-F). In the cKO cortex, although Sox2 
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positive cells are present in the lateral cortex, Sox2 positive cells are not 

detected in the dorsal telencephalon (Fig 4.9 G-H).  

By E17.5, there is a remarkable increase in TuJ1 positive neurons 

in all layers of the cortex (Menezes & Luskin, 1994). A few TuJ1 positive 

neurons are also detected in the SVZ (Fig 4.9 I-J). The intensity of TuJ1 

staining is more in cKO cortex compared to the controls. Also, there 

appear to be more TuJ1 labelled neurons in the SVZ of a cKO cortex (Fig 

4.9 K-L) compared to a control cortex.   

To investigate the spatial pattern of neural differentiation in the 

cKO brains, I analysed the expression of two cortical neuronal markers -

Tbr1 and Reelin.  Tbr1 is expressed in the upper layers of the cortex and 

in the subplate of the control cortex (Fig 4.10 A-B). In the cKO cortex, 

Tbr1 expressing cells are detected in the same regions as in the controls. 

However, a few Tbr1 positive cells are detected outside their normal 

expression domain (Fig 4.10 C-D). In the control, Reelin marks Cajal-

retzius cells in the superficial marginal zone of the cortical plate (Fig 4.10 

E-F). In contrast to the compact laminar staining observed in the controls, 

in the cKO brain Reelin labeled cells are detected in a disorganized 

fashion at the marginal zone (Fig 4.10 G-H).  

 

4.2.8 Loss of Crb2 results in increased SVZ mitoses 

Neuroepithelial cells undergo interkinetic nuclear migration and the 

nucleus translocates to the apical surface during mitosis (Chenn & 

McConnell, 1995). Intermediate progenitor cells that populate the SVZ 

undergo mitosis away from the ventricles. To determine if loss of apical 

Crb2 expression influences the positioning of mitotic cells, I analysed the 

control and cKO cortices for alterations in pH3 (phosphorylated histone 

H3) a late G2/mitotic phase marker. Immunostaining for pH3 helps 

distinguish between apical VZ and basal SVZ mitoses based on the 

spatial location of pH3 labelled cells in the cortex.  
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At E12.5 in the control cortex, pH3 positive are detected at the 

apical cell surface (Fig 4.11 A-B). There is a dramatic reduction in pH3 

positive mitotic cells only in the dorsal telencephalon of the cKO cortex 

(Fig 4.11 C-E).  

At E14.5, although there is no apparent alteration in the number of 

pH3 positive cells detected at the apical surface in the cKO compared to 

the control (Fig 4.11 F-G) there is an increased occurrence of mitotic cells 

in the SVZ of the cKO cortex (Fig 4.11 J-K).  

At E17.5, I could not detect any pH3 positive cells at the apical cell 

surface in the cKO cortex (Fig 4.11 L-M) but observed a significant 

proportion of pH3 positive cells localized away from the ventricular 

surface when compared to the control cortex (Fig 4.11 H-I). 

The data suggests that apical Crb2 expression is essential for the 

appropriate localization of mitotic cells in the developing telencephalon. 

The increased mitosis at the SVZ correlates with the increase in Tbr2 

positive intermediate progenitors.  

 

4.2.9 Loss of Crb2 influences PKD expression in the cortex 

The protein kinase D (PKD) gene family has been implicated in 

neural differentiation and neuronal protein trafficking in vitro (Bisbal et al., 

2008; Yin et al., 2008; Maier et al., 2007).  

To determine if in the Crb2 cKO, PKD is affected I analysed control 

and cKO cortices for the expression of PKD1/PKCµ. In the control 

situation, PKD1 is weakly expressed in the VZ of the cortex at E12.5 (Fig 

4.12 A-B). Surprisingly, in the cKO cortex PKD1 is highly expressed 

throughout the dorsal telencephalon (Fig 4.12 C-D).  

At E14.5, PKD1 expression is confined to the basal VZ and SVZ in 

the control cortex (Fig 4.12 E-F). In the cKO cortex, there is a remarkable 

upregulation of PKD1 expression. PKD1 is expression is detected in all 
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layers of the dorsal telencephalon (Fig 4.12 G-H). This increased PKD1 

expression was observed only in the dorsal telencephalon and not in the 

lateral and ventral telencephalon (data not shown).  

By E17.5, PKD1 expression is specifically confined to a population 

of cells in the dorsal telencephalon of a control cortex (Fig 4.12 I-J). 

However, in the cKO cortex PKD1 expression was undetectable (Fig 4.12 

K-L). 

The data suggests that there is a progressive upregulation of 

PKD1 expression in the control cortex from E12.5 to E17.5. However, in 

the cKO cortex PKD1 is prematurely expressed at earlier stages and its 

expression is downregulated by E17.5. Thus, loss of Crb2 affects the 

normal spatial and temporal expression of PKD1 in the dorsal 

telencephalon. 
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Table 4.1 Summary of data from the analysis of Crb2; Emx-1Cre cKO 

embryos.  

Markers Control cKO 

 E12.5   E14.5 E17.5 E12.5 E14.5 E17.5 

Crb2       

Pals1       

Par3       

ZO-1       

N-Cad       

Sox2       

Nestin       

Prominin1       

Tbr2       

TuJ1       

Tbr1       

Reelin       

pH3       

Hes5       

PKD-1 + ++ ++++ ++++ ++++  
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4.3 Discussion 

In this chapter, I have shown that Crb2, one of the vertebrate 

homologs of Drosophila Crumbs plays important roles during cortical 

neurogenesis. In the developing telencephalon, where Crb2 is 

conditionally removed, defects are apparent in the localization of apical 

polarity proteins, cell junction proteins and mitotic cells. In addition to 

these effects, loss of Crb2 leads to a dramatic decrease in apical neural 

progenitors and a concomitant increase in intermediate progenitors and 

neurons. These findings suggest a crucial role for Crb2 in regulating 

murine cortical neurogenesis.  

Crb2 depletion from the cortex led to decreased apical localization 

of polarity and adherens junction proteins such as Pals1, Par3 and N-

Cadherin. It has been shown previously that Pals1 is an intracellular 

binding partner of Crb2 (Kim et al., 2010); therefore the loss of Pals1 

expression in the Crb2 cKO cortex was not unexpected.  

The loss of Par3 expression at E12.5 is in agreement with previous 

studies in mammalian epithelial cell lines that have reported a direct 

interaction between the Crumbs and Par complexes (Hurd et al., 2003). 

Surprisingly, apical expression of Par3 expression was restored in the 

cKO cortex by E14.5. It is plausible that two separate mechanisms 

regulate Par3 localization at different stages of neural development: the 

earlier mechanism is Crb2 dependent whilst at later stages a Crb2 

independent mechanism is in place.  

Overall, the data presented in the chapter suggests that 

conditional removal of Crb2 in the developing telencephalon affects apical 

recruitment and stabilization of Crumbs complex components and 

interacting apical proteins. These defects in recruitment of polarity 

proteins are consistent with previously reported phenotypes in both 

Drosophila and zebrafish Crumbs mutants (Hsu et al., 2006; Omori & 

Malicki, 2006b; Pellikka et al., 2002). 
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At early stages of cortical development, there is a decrease in 

mitotic cells at the apical surface of the Crb2 cKO cortex. This correlates 

with a decrease in apical progenitor markers Nestin, Sox2, Prominin-1 

and Hes5. Furthermore in the Crb2 cKO cortex, there is an expansion of 

Tbr2 positive intermediate progenitor cells and a subsequent increase in 

post-mitotic neuronal markers TuJ1, Tbr1. This suggests that Crb2 is 

required for maintenance of neural progenitors in the developing 

telencephalon.  

As discussed in Chapter 1, Crumbs has been associated with the 

Notch signalling pathway. Although it is tempting to speculate that a 

similar association between Crb2 and Notch exists in the developing 

cortex, further experiments need to be carried out to addresses this. It 

remains unclear if the depletion of Hes5 a Notch target gene, in the Crb2 

cKO cortex is the underlying cause for the depletion of the apical 

progenitor cell population or if it represents a mere loss of apical 

progenitors.  

It is also possible that Crb2 affects cortical neurogenesis via 

removal of apical Pals1, Par3 or N-Cadherin. Previous studies have 

implicated all three proteins in cell fate determination in the developing 

cortex (Bultje et al., 2009; Kadowaki et al., 2007; Kim et al., 2010).  

Conditional removal of Pals1 leads to premature withdrawal of neural 

progenitors from the cell cycle and precocious neural differentiation. 

These prematurely born neurons rapidly apoptose and the entire cortical 

structure of Pals1 mutants is compromised (Kim et al., 2010). Similar to 

the phenotype observed in Crb2 cKO embryos in my study, in Pals1 cKO 

embryos adherens junctions, apical complex proteins, cell proliferation 

and neural progenitor fate is affected. Intriguingly, the massive cell death 

phenotype observed in Emx-1 Cre; Pals1 cKO embryos (Kim et al., 2010) 

is not observed in Emx-1 Cre; Crb2 cKO cortex, despite the absence of 

apically enriched Pals1. It is plausible that the timing of Pals1 ablation, 

together with its effect on interacting proteins influences cell survival and 
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that this temporal sequence of events is different between the Pals1 cKO 

and Crb2 cKO embryos. 

In addition to the loss of cell junction components, a member of the 

PKD gene family, Protein kinase D1 is prematurely upregulated in the 

Crb2 cKO cortex. Protein kinase D1 is implicated in trans-Golgi network-

derived sorting of dendritic proteins (Bisbal et al., 2008; Yin et al., 2008). 

Its early upregulation in the Crb2 cKO cortex suggests that Crb2 may also 

influence trafficking of neuronal proteins to the correct cellular domains 

during murine cortical development. Alternatively, PKD-1 could be a 

marker that is indicative of premature neural differentiation and/or altered 

lamination in the cortex. 

Mislocalization of Reelin and Tbr1 positive cells in the absence of 

Crb2 suggests that secondary to defects in cell polarity, lamination of the 

developing cortex is also affected. Reelin is crucial for the inside-out 

layering of the cortex (Caviness et al., 1982) and mislocalization of Reelin 

positive cells in the Crb2 cKO cortex could in turn affect the precise 

localization of layer-specific neurons in the cortex. It is plausible that 

absence of apical Crb2 expression renders cells unresponsive to extrinsic 

guidance cues and subsequently affects their spatial localization. It will be 

interesting to investigate the role of Crb2 in cortical projections of neurons 

and migration.  

Overall, the above-proposed mechanisms are not mutually 

exclusive and Crb2 may act via the concerted action of several interacting 

proteins and interplay of signalling pathways.  

Despite these defects in cortical development, Crb2 mutant mice 

survive and do not display any overt morphological or behavioural defects 

(H. Alves, personal communication). This could probably be due to 

functional redundancy between Crb1 and Crb2 as Crb1 is also expressed 

in the brain (den Hollander et al., 2002). Alternatively, it is also possible 

that the secreted Crb2 isoform (described in Chapter 5) compensates in 
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the absence of full length Crb2. It will be interesting to investigate the 

effect of Crb2 on neurogenesis in a system where both the full-length and 

secreted Crb2 isoforms are targeted.  
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CHAPTER 5 

 
 
 
 
 
Characterization of an alternative 
splice variant of Crumbs 2 
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5.1 Introduction 

As described in Chapter 1 (section 1.4.4), different splice variants 

of Crb2 have been previously identified. The main aims of this chapter 

were to address the following questions: 

1. Does the alternative splice variant of Crb2 – Crb2S encode a 

secreted protein? 

2. Does Crb2S exist physiologically?  

3. Does Crb2S have an expression profile that is distinct from that of 

full length Crb2 (Crb2F)?  

5.2 Results 
5.2.1 Crb2S protein can be detected in the cell culture supernatant 

The cDNA of Crb2S isoform was previously cloned (R. Walker, 

previous post-doc in the lab) into a mammalian expression vector. The 

expression vector has a CMV promoter for high-level constitutive 

expression and a C-terminal V5 epitope tag and a polyhistidine tag. The 

Crb2 signal peptide encoding sequence was cloned into the same 

expression vector and used as a control (Fig 5.1 A).  

To determine if the Crb2S-V5 His tag fusion protein (Crb2S 

protein) was secreted into the cell culture medium, HEK293 cells were 

transfected with the expression vectors inserted with either Crb2S cDNA 

or Crb2 signal peptide cDNA. V5 tagged protein in the processed cell 

culture supernatant was detected by Western blotting. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), a housekeeping gene was used as 

a loading control for the lysates. GAPDH was not detected in the 

supernatants, indicating that the supernatants were not contaminated 

with cytoplasmic debris.  Crb2S-V5 His tagged protein was detected in 

the supernatant and lysate from cells transfected with the Crb2S 

expression vector but not in the supernatant and lysate from cells 

transfected with the control expression vector (Fig 5.1 B). Unfortunately, I 

could not detect the low molecular weight signal peptide in the control 
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transfected cell culture supernatant (data not shown). However, this does 

not negate the use of this expression vector as a suitable experimental 

control.  

Overall, data from this section shows that Crb2S isoform does 

indeed encode a protein that can be secreted in in vitro assays.  

 

5.2.2 Generation of stable cell lines overexpressing Crb2S protein 

Stable clonal cell lines constitutively expressing Crb2S were 

derived from HEK293 cells transiently transfected with the Crb2S 

expression vector. After selection in G418 antibiotic, individual clones 

were expanded and the processed cell culture supernatants from 26 

different clones were analysed by western blotting to detect the V5 

tagged fusion protein (Fig 5.2 A). The data from this analysis is 

summarized in table 5.1. Of the 26 clones, Clone 9 (C-9) and Clone 16 

(C-16) had the highest level of V5 tagged fusion protein expression (Fig 

5.2 B) and were therefore used for further experiments.  

Table 5.1: Summary of western blot screening of the stable clonal cell line 

supernatants 

Clone Number Protein bands detected by V5 tag antibody 

1- 5 and 18 No bands detected 

6-12 and 24-26 Three bands of apparent molecular masses 

between 180kDa and 110kDa. 

Clone 9 has the highest level of expression 

13-15, 20-22 Single band of apparent molecular mass 

between 180 kDa and 110 kDa 

16,17, 19, 23 Four bands of apparent molecular masses 

between 180kDa and 110kDa. 

Clone 16 has the highest level of expression 
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It is well established that the endoplasmic reticulum (ER) plays a 

key role in protein and lipid biosynthesis. The ER is a site for nascent 

secretory protein translocation and any protein designed for secretion is 

localized to the ER (Alberts et al., 2002).   

To determine if the exogenously overexpressed Crb2S protein 

localizes to the ER, I carried out immunocytochemistry for Calnexin, an 

integral chaperone protein in the ER	
  (Kleizen & Braakman, 2004). In C-16 

cells, Crb2S-V5 His tag fusion protein co-localizes with Calnexin (Fig 5.3). 

However, I could not detect any sub-cellular localization of V5 tagged 

protein in C-9 or HEK293 cells (Fig 5.3).  

Overall, the data suggests that C-16 cell line is overexpressing 

Crb2S and constitutively secreting the Crb2S protein into the cell culture 

supernatant.  

5.2.3 Purification and Protein sequencing of Crb2S 

To obtain larger volumes of purified Crb2S V5 His tag fusion 

protein that can be used in biological assays, the C-16 cell line was 

passed to Bioserv UK Ltd. at the University of Sheffield. I analyzed 

samples from the loading, column washes and imidazole elution steps of 

the protein purification process by western blotting for V5 tag antibody 

(data not shown). Crb2S is detected in the final eluted sample using both 

V5 tag (Fig 5.4C) and His tag antibody (data not shown).   

To confirm if the purified protein was Crb2S, the protein sample 

was reduced, denatured and fractionated by SDS-PAGE. The gel was 

stained using Coomassie Brilliant blue compatible with mass 

spectrometry analysis (Fig 5.4C). 4 candidate bands (Sample I-IV) were 

systematically excised from the gel and sent to Eurogentec for 

sequencing by LC-ESI (liquid chromatography-electrospray ionization) 

mass spectrometry (Fig 5.4 B).  
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Sample I and III had two bands each, an intense and a weak band 

(Fig 5.4 C and Fig 5.5 A). Each band was treated separately and was 

reduced, alkylated and digested in gel by trypsin.  Peptide digests from 

the individual samples were analyzed by LC-ESI mass spectrometry. 

Database searches restricted to the mouse taxonomy provided 

significant identification scores. Sample I (Intense) and Sample III 

(Intense and Weak) were identified as Crb2. Sample II and IV correspond 

to spectrin alpha chain and heat shock protein respectively. The peptide 

sequences hits and MASCOT ID score are shown in the Appendix 3. The 

sequencing data is briefly summarized in Fig 5.5 B.  

Overall, the results show that the Crb2S expression vector 

encodes a Crb2S-V5 His tag fusion protein that is localized in the ER and 

readily secreted into the cell culture medium. The purified Crb2S protein 

is a useful resource that can be used in biological assays to study the 

potential functional roles of Crb2S isoform.   

 

5.2.4 Expression of Crb2S mRNA in mouse tissue 

In the previous section, I have shown that the Crb2S isoform 

encodes for a secreted protein in vitro. However, an outstanding question 

remains – does Crb2S isoform exist physiologically?   

To begin to address this question, I analysed mouse embryonic 

and adult tissues to detect the endogenous expression of Crb2S. Total 

RNA from mouse embryonic tissues E10.5, E12.5 head and bodies and 

adult mouse eye, forebrain, cerebellum, medulla, kidney, liver, lung, 

spleen and heart was analyzed by RT-PCR using specific primers for 

Crb2F and Crb2S.  
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Crb2F mRNA is ubiquitously expressed in the embryonic and adult 

tissues. In contrast, Crb2S has a more restricted expression compared to 

Crb2F. Crb2S is expressed in the embryo and also expressed in the adult 

eye, forebrain, cerebellum but not in the medulla, liver, kidney, spleen, 

heart and lung (Fig 5.6). This suggests that the splicing of exon 9A is 

regulated in a tissue-specific manner and that Crb2S expression is more 

prominent during early development and in neural tissue.   

5.3. Discussion 

In this chapter, I have shown that Crb2S, an alternative splice 

variant of Crb2 encodes a secreted protein. This is consistent with 

bioinformatic predictions that human homologs of CRB1 and CRB2 genes 

encode full-length proteins that have a transmembrane domain and also 

putatively secreted truncated proteins that lack the transmembrane 

domain (den Hollander et al., 2002; Katoh & Katoh, 2004). Additionally, a 

mouse Crb1 splice variant encoding a secreted protein has been 

identified (Crb1S) (Watanabe et al., 2004). Similar to the expression of 

Crb2S, the expression profile of Crb1S mRNA is distinct from that of full 

length Crb1 mRNA (Watanabe et al., 2004) suggesting that the splicing of 

Crumbs isoforms is regulated in a tissue -specific manner. 

In cultured cell lines overexpressing Crb2S, I have shown that 

Crb2S is localized to the endoplasmic reticulum and is secreted into the 

cell culture supernatant. It will be interesting to investigate whether 

secretion of Crb2S is mediated by the classical ER-Golgi pathway by 

using inhibitors of protein transport from the ER-Golgi such as Brefeldin A 

or Exo1 (Feng et al., 2003) and monitoring the expression of Crb2S. 

Unfortunately, our custom-made antibodies against Crb2S failed to 

work. The lack of tools to specifically detect the endogenous Crb2S 

protein has hampered in detailed analysis of this isoform. All studies 

relating to Crb2S isoform in this thesis were carried out using the Crb2S- 

V5 His tagged fusion protein.  
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Crumbs is the “only polarity protein” to have an extracellular 

domain. Whilst the interactions of the cytoplasmic tail of Crumbs with 

other polarity proteins have been widely studied (discussed in Chapter 1), 

not much is known about the proteins binding to the extracellular domain 

of Crumbs. The extracellular domain of Crumbs may aid in sequestering 

molecules and in turn contribute to functional diversity of the Crumbs 

protein complex dependent on the cell type/developmental stage.  The 

purified Crb2S protein can be used as a biochemical tool to identify 

proteins interacting with Crb2S (Appendix 2). This may offer insight into 

not only the function of the extracellular domain of Crb2, but also enhance 

our understanding of the influence of transient and novel complex 

members on the activity of the entire protein complex. 
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CHAPTER 6 

 
 
 
 
 
Misexpression of Crb2 isoforms in 
the chick embryonic hindbrain 
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6.1 Introduction 

In the previous chapter, I have discussed the multiple isoforms of 

Crb2 and described the characterization of a novel secreted isoform 

Crb2S. The main aim of this chapter was to determine if the full length 

(Crb2F) and the secreted (Crb2S) isoforms have distinct functional roles 

in the development of the chick embryonic hindbrain.  

I have taken advantage of two well-established and powerful 

approaches to manipulate the levels of Crb2 in the chick embryonic 

hindbrain: 1. in ovo electroporation (Itasaki et al., 1999) 2. in vitro explant 

culture (Placzek & Dale, 1999) . In ovo electroporation facilitates the 

analysis of gene function by overexpression or depletion of the protein of 

interest in the chick embryo. This technique has been successfully used 

to study neural development (Itasaki et al., 1999; Nakamura et al., 2004). 

The neural tube is easily accessible and after electroporation, the cDNA 

or short hairpin of interest is expressed only on one side of the neural 

tube whilst the contralateral side serves as an untransfected control (Fig 

6.1A). The idea behind the chick electroporation studies was to 

misexpress Crb2 in a region where endogenous Crb2 is not expressed 

and analyse the effect on neural development by carrying out a candidate 

marker analysis similar to the studies performed on Crb2 conditional 

knockout mouse embryos. Briefly, looking at the effect of Crb2 

misexpression on a) recruitment of apical polarity proteins and cell 

junction proteins b) neural progenitor cell fates c) apically restricted 

mitoses.  

In contrast to in ovo electroporation, explant culture offers the 

advantage of isolated culture of the tissue of interest under defined in 

vitro culture conditions. As mentioned in the introduction, the neural 

differentiation program is initiated in even-numbered rhombomeres and 

the odd numbered rhombomeres follow on. However, rhombomeres 3 

and 5 do not contribute significantly to the neural crest cell population and 

the even-numbered rhombomeres flanking these segments repress 
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neural crest production by inducing apoptosis (Graham, Heyman, & 

Lumsden, 1993) (Lumsden et al., 1991). In the explant culture system, I 

wanted to investigate the effect of secreted Crb2 isoform (described in 

Chapter 5) on neural crest migration in rhombomeres 1-4 of Hamburger 

and Hamilton stage 10 chick embryos, where endogenous Crb2 

expression is not detected (data shown in Chapter 3).  

6.2 Results 

In ovo electroporation of only RFP or GFP control constructs per 

se had no apparent deleterious effect on neural development (Fig 6.1 B, 

C) and no alterations in marker expression profile were observed (data 

not shown) compared to the untransfected contralateral side. Therefore, 

the contralateral side that does not express the gene of interest/reporter 

was used as a control.  

6.2.1 Manipulation of Crb2 levels in the chick embryonic hindbrain 

produces isoform-dependent phenotypes 

In order to ascertain what function full length (Crb2F) and secreted 

Crb2 (Crb2S) isoforms may play during neural development, Crb2F and 

Crb2S expression vectors were co-electroporated with an RFP vector into 

an H&H stage 10 chick embryonic hindbrain. The embryos were analysed 

twenty-four hours after electroporation. All the electroporated embryos 

were analysed at the level of the rostral hindbrain.  

Overexpression of a control RFP construct shows RFP expression 

in one side of the neural tube (Fig 6.1 B&C). The control RFP 

electroporated embryos showed no alteration in neural tube morphology 

and RFP expression was predominantly confined to the neural tube.  

Interestingly, misexpression of Crb2F and Crb2S isoforms 

produced different phenotypes. Misexpression of Crb2F resulted in a 

remarkable change in neural tube morphology (Fig 6.1 D, E). Compared 

to the contralateral control side, there was an apparent increase in the 
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width of the neural tube on the Crb2F+RFP co-electroporated side.  It 

also appears that misexpression of Crb2F + RFP in the neural tube 

induces hyperplasia within 24 hours.  

In contrast to this, after misexpression of the Crb2S isoform, I 

observed a stream of RFP+ve cells migrating away from the neural tube. 

Moreover misexpression of Crb2S in the hindbrain had no overt effect on 

neural tube morphology unlike the full-length isoform (Fig 6.1F,G) 

6.2.2 Misexpression of Crb2F in the hindbrain alters marker 
expression profile 

To determine if misexpression of Crb2F affects cell polarity and 

cell junction components, I carried out candidate marker expression 

analysis on the Crb2F electroporated embryos. As already described, 

twenty-four hours after electroporation of Crb2F there is an alteration in 

the neural tube morphology on the electroporated side compared to the 

unelectroporated control side. In addition, the adherens junction proteins 

N-Cadherin (Fig 6.2 A-B) and ß-Catenin (Fig 6.2 C-D) are apically 

enriched in the control side. Within the Crb2F+RFP expressing region, 

the expression of both N-Cadherin and ß-Catenin is not apically 

restricted. Whilst N-Cadherin staining is detected in a broader domain 

away from the apical surface (Fig 6.2 A-B), ß–Catenin staining is 

observed outlining a mesh-like arrangement of neural tube cells (Fig 6.2 

C-D). 

Similarly, expression of the polarity protein aPKC is no longer 

confined to the apical surface of the neural epithelium in the Cr2b2F+RFP 

expressing region (Fig 6.2 E-F). Intriguingly, in contrast to the broader 

expression domain of ß-Catenin, N-Cadherin and aPKC, the expression 

of Pals1, a member of the Crumbs complex is completely lost (Fig 6.2 G-

H) upon misexpression of Crb2F.  

Interestingly, the apical expression of Rab11, a GTPase shown to 

play key regulatory roles in endocytic trafficking and cytokinesis  
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(Hoekstra et al., 2004) (Strickland & Burgess, 2004) was also 

dramatically reduced in the electroporated side (Fig 6.2 I-J). Taken 

together, Crb2F misexpression affects the apical localization of not only 

adherens junction markers, but also that of the apical localized proteins 

aPKC, Pals1 and Rab11.  

To determine if Crb2F misexpression affected cell proliferation, I 

carried out immunostaining for phospho-histone3 (pH3), a mitotic cell 

marker (Hendzel et al., 1997; Van Hooser et al., 1998). In the control 

unelectroporated side, pH3+ve cells are present on the ventricular surface 

of the neuroepithelium. In the Crb2F electroporated side, many pH3+ve 

mitotic cells are detected away from the ventricular surface, at ectopic 

locations within the neural tube (arrowheads in Fig 6.3 A-C).  

To elucidate if Crb2F misexpression and the subsequent 

alterations in the expression of apical cell components and localization of 

mitotic cells had an effect on neural differentiation, I analysed 

electroporated embryos for alterations in the expression of neural 

progenitor markers Pax6, Sox2 and early neuronal marker TuJ1. Twenty-

four hours after electroporation, there was no apparent alteration in the 

neural progenitor marker expression. Sox2 and Pax6 co-localized with 

Crb2F+RFP in the electroporated side of the neural tube (Fig 6.4 A-B, E-

F). However, I observed aberrantly localized TuJ1 (ß-Tubulin III) positive 

neurons in the electroporated side (Fig 6.3 D-F). Interestingly, 

Crb2F+RFP expression did not overlap with the TuJ1+ve cells. This 

suggests that there may be some non-cell autonomous effect perhaps 

due to incorrect epithelial integrity and adhesion so that cells already 

destined to differentiate prior to electroporation can no longer migrate to 

the correct basal location. 

To investigate if misexpression of Crb2F had an effect on neural 

crest cell migration, I analysed electroporated embryos for the expression 

of Slug, an early neural crest marker (Nieto et al., 1994) and HNK-1, a 

marker for migratory neural crest cells (Del Barrio & Nieto, 2004).   
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Misexpression of Crb2F had no obvious effect on Slug expression (Fig 

6.4 C-D). However, HNK-1 +ve neural crest cells were ectopically located 

in the dorsal neural tube on the electroporated side (Fig 6.4 G-H). 

Overall, the results suggest that misexpression of Crb2F leads to 

altered neural tube morphology and also interferes with the apical 

distribution of adherens junction proteins; polarity proteins, localization of 

mitotic cells and neural crest cells.   

 
6.2.3 Misexpression of Crb2S in the hindbrain induces migration of 

neural crest cells. 

To determine if the Crb2S isoform (discussed in Chapter5) has a 

distinct functional role in neural development, the effect of misexpressing 

Crb2S in the chick embryonic hindbrain was analysed twenty-four hours 

post electroporation. Pax6 is expressed predominantly in the dorsal and 

intermediate progenitors of the neural tube (Ericson et al., 1997). Within 

the neural tube there was no apparent difference in Pax6 expression in 

the Crb2S+RFP side compared to the control side. However, a few 

RFP+ve cells co-localized with Pax6 were detected outside the neural tube 

(Fig 6.5 A-B). Pax7 is expressed in the dorsal neural tube and in the 

cranial neural crest cells (Kawakami et al., 1997). No Pax7+ve cells were 

detected in the contralateral control side however Pax7 expressing cells 

co-localized with RFP were also observed outside the neural tube (Fig 6.5 

C-D). Misexpression of Crb2S had no apparent effect on the expression 

of Sox2 (Fig 6.5 E-F), pH3 (Fig 6.5 G-H), Pals1 (Fig 6.5 I-J), N-Cadherin 

(Fig 6.5 K-L) and ß-Catenin (data not shown)  

Interestingly, the stream of RFP +ve cells observed in Crb2S+RFP 

electroporated embryos coexpressed neuronal class III β-Tubulin 

detected by TuJ1 antibody (Fig 6.6 A-C). In the control side, HNK-1 

expression is detected only in neural crest cells that have migrated away 

from the neural tube. In the Crb2S+RFP electroporated side, HNK-1 

staining was detected in the dorsal neural tube and the stream of  
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Crb2S+RFP+ve cells outside the neural tube also co-localized with 

HNK-1(Fig 6.6 D-F). 

Overall, the data suggests that misexpression of Crb2S leads to a 

different phenotype from that of Crb2F misexpression. Crb2S 

misexpression has no obvious effect on polarity protein expression but 

affects the expression of neural crest markers and the migratory 

behaviour of cells.  

 
6.2.4 Misexpression of Crb2S in the hindbrain induces migration of 

neural crest cells in vitro 

To further examine the role of Crb2S in migration of neural crest 

cells, I setup an in vitro explant culture system where hindbrain segments 

were explanted and cultured.  

The explant system was used to: 

1. Study the effect of Crb2S on the number of migrating neural crest 

cells from hindbrain explants. 

 

2. Test differences between migration patterns of neural crest cells 

from individual rhombomeres of H&H stage11 chick embryos 

cultured in the presence or absence of Crb2S. 

Rhombomere explants were cultured in OptiMEM media alone 

(Control) or with purified Crb2S protein (Experimental). After 24 hours in 

culture, these explants were analysed. I observed that under the minimal 

serum-free culture conditions, the number of cells migrating from the 

experimental samples were more than the cells migrating from the control 

samples (Fig 6.7 A-B).  

To identify the population of migrating cells, I carried out 

immunostaining for neural crest cell markers Slug and HNK-1. A majority 

of the migrating cells expressed Slug, cells co-expressing Slug and HNK-
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1 were also detected (Fig 6.7 C-D). In agreement with the in ovo 

electroporation data, exogenous addition of Crb2S to the hindbrain 

explants resulted in increased neural crest cell migration.  

To quantify the increase in neural crest cell migration following 

exogenous overexpression of Crb2S, the number of cells that had 

migrated from each explant were counted and recorded for at least 10 

explants from 3 independent experiments. There was a statistically 

significant increase (unpaired t-test, p < 0.05) in neural crest migration in 

the Crb2S treated explant compared to the control (Fig 6.7E).  

To examine if the increased migratory phenotype observed upon 

Crb2S overexpression is restricted to specific rhombomeres of the chick 

embryonic hindbrain, individual rhombomeres (Rhombomere1-4) were 

sub-dissected from H&H stage11 chick embryos and cultured alone or 

with Crb2S. Twenty-four hours after culture the explants were assayed for 

neural crest cell migration. The number of migrating cells from each 

rhombomere explant was counted and recorded. There was a statistically 

significant increase in the migration of neural crest cells from 

rhombomeres 2 and 4 (unpaired t-test, p < 0.05, p< 0.005) when cultured 

with Crb2S (Fig 6.8 B-Bʼʼ, D-Dʼʼ). Although there was an increase in 

neural crest migration from rhombomeres 1 and 3 in the Crb2S treated 

explants (Fig 6.8 A-Aʼʼ, C-Cʼʼ), the effect was not significant when 

compared to the control explants (unpaired t-test).  

Intriguingly, the increased neural crest cell migration phenotype 

observed in vitro using the purified Crb2S protein could not be replicated 

by in ovo transplantation of Crb2S protein-soaked beads into the 

hindbrain (Fig 6.9).  However, the Crb2S protein-soaked beads had an 

effect on the expression of dorsal neural progenitor markers in caudal 

neuropore transplantation experiments (Appendix 1) Taken together, the 

data suggests that misexpression of Crb2S induces migration of cranial 

neural crest cells in the chick embryonic hindbrain.  
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The effects of manipulating Crb2 isoforms in the chick embryonic 

hindbrain are summarized in Table 6.1.  Together the data implies that 

altering the expression of Crb2 isoforms in the chick embryonic hindbrain 

as early as H&H stage10 has a significant effect on localization of mitotic 

cells, neural differentiation and neural crest migration.  

Table 6.1 Summary of the phenotypes observed after Crb2 

misexpression in the chick embryonic hindbrain. 

Misexpression of Crb2 isoforms 24 hours 
post- electroporation Crb2F Crb2S 

Altered neural tube 

morphology 

√ X 

Changes in apical expression 

of adherens junction proteins 

and polarity proteins 

√ X 

Mislocalized mitotic cells √ X 

Mislocalized TuJ1 +ve neuronal 

cells 

√ √ 

Increased migration of neural 

crest cells 

X √ 

 

6.3 Discussion  

In this chapter, I have shown that misexpressing two different 

isoforms of Crb2, Crb2F (full length) and Crb2S (secreted) in the chick 

embryonic hindbrain results in distinct phenotypes. 

Crb2F misexpression results in an alteration in neural tube 

morphology. On the basis of morphology, it appears that misexpression 

of Crb2F induces hyperplasia within the neural tube. However, this needs 

to be confirmed with BrdU cell proliferation assays which I would have 
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performed had time allowed. Alternatively, it is possible that 

misexpression of Crb2F affects cell-cell adhesion and the cells are 

reorganized and reshaped within the neural tube. Consistent with this 

latter possibility, the expression of cell junction components like N-

Cadherin and β-Catenin are altered in the Crb2F+RFP expressing 

regions and TuJ1 +ve cells are mislocalized. In addition to this, apical cell 

polarity components are also affected upon Crb2F misexpression.  

Several lines of evidence suggest that Crb2 may regulate both cell 

cycle dynamics and cell-cell adhesion (Ohata et al., 2011; Omori & 

Malicki, 2006a). In zebrafish, Crumbs genes have been implicated in 

defining the apical domain of neural tube epithelia and in restricting 

mitosis to the apical surface (Jensen et al., 2001; Malicki & Driever, 1999; 

Ohata et al., 2011; Zou et al., 2008). Recently, it has been shown that 

zebrafish Crumbs proteins directly bind to the extracellular domain of 

Notch. This binding inhibits Notch activity and the Crumbs-Notch pathway 

is important for the maintenance of apical- basal polarity and also for 

restricting mitosis to the apical cell surface (Ohata et al., 2011). In line 

with the role of Crumbs genes in restricting mitosis to the apical surface, 

misexpression of Crb2 leads to ectopically localized pH3 positive mitotic 

cells away from the apical surface.  

As discussed in previous chapters, polarity proteins and cell 

junction components play a role in cell fate determination. A profound 

disorganization of neuronal architecture was previously reported in 

zebrafish Crumbs loss of function mutants (Omori & Malicki, 2006a). The 

data from this chapter shows that misexpression of Crb2 in the chick 

embryonic hindbrain resulted in abnormal localization of TuJ1 positive 

neurons. Although Crb2F misexpressing cells in the neural tube co-

localize with neural progenitor markers like Sox2 and Pax6 there was no 

co-localization with TuJ1. It is possible that the defects observed in 

polarity of neuroepithelial cells affect the migration of neurons in a cell or 

non-cell autonomous manner. These studies were carried out by co-
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electroporating the Crb2 vectors with a control RFP expression vector. It 

was therefore not possible to determine from these studies whether the 

observed effects were cell-autonomous or not. Unfortunately, bidirectional 

expression constructs expressing Crb2 isoforms and the fluorescent 

reporter protein worked efficiently in mammalian cell lines but despite 

several attempts, I could not observe fluorescent protein expression in 

the chick system (data not shown).  

As described in Chapter 1 (section 1.2.2), asymmetric versus 

symmetric cell divisions also determine cell fate. The expansion of apical 

components upon Crb2 misexpression and their differential inheritance 

may contribute to mislocalized mitosis and increased proliferation of 

neural progenitors by influencing the balance of symmetric versus 

asymmetric divisions. Crb2 may regulate this through control of the Notch 

signaling pathway. Further experiments are required to investigate the 

role of Crb2 and Notch in the developing chick hindbrain. In addition to 

this, it will be interesting to investigate if there is an expansion of the 

basolateral components in the Crb2F+RFP expression region. It has been 

reported that loss of Lgl – a basolateral protein causes hyperproliferation 

in the embryonic mouse brain (Klezovitch et al., 2002). The currently 

accepted model is that the apical and basal complexes mutually 

antagonize each other to define the respective cell boundaries (Bilder, 

2004; Margolis & Borg, 2005). Consistent with this model, the phenotype 

observed after loss of a basolateral protein is similar to the phenotype 

observed after overexpression of an apical complex member.  

In contrast to the phenotype observed after misexpression of 

Crb2F, Crb2S misexpression has no apparent effect on localization of cell 

junction or cell polarity markers. Surprisingly, however, Crb2S affects the 

migration of neural crest cells. In the explant system, Crb2S had a 

significant effect only on neural crest migration from the even numbered 

rhombomeres but not on the odd numbered rhombomeres. This 

observation is consistent with the endogenous specification of neural 
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crest cells where even-numbered rhombomeres generate more neural 

crest than the odd-numbered rhombomeres. It will be interesting to 

investigate if the endogenous expression of Crb2S in the hindbrain is 

rhombomere-specific and if this in turn is responsible for the 

rhombomere-specific effects of Crb2S. Additionally, it is crucial to validate 

the dissection of the individual rhombomeres used in the in vitro explant 

culture experiments. This could be addressed by analyzing the dissected 

rhombomeres for the expression of rhombomere-specific markers like 

Ephrins or Krox20 (Chapter 1 section 1.3, Fig 1.8).  

The observed increase in neural crest migration after exogenous 

addition of Crb2S could be due to an alteration in 1. cell behaviour 

(premature or increased number of migrating cells) 2. proliferation of 

neural crest cells 3. cell fate (favour cells to become neural crest at the 

expense of other cell populations). These possibilities are not necessarily 

mutually exclusive to each other.  

In Xenopus, a secreted protein Xenopus EGF-like repeat with 

laminin-G protein- Xerl was identified  (Kuriyama et al., 2000). This novel 

CNS secretory protein demonstrated an expression profile that was 

similar to Crumbs, with predominantly high expression in the eye and 

brain of Xenopus embryo. Xerl and Crb2 have a high sequence homology 

(Kuriyama, Miyatani, & Kinoshita, 2000). According to Xenbase  

(http://ftp.xenbase.org) and Ensembl (http://www.ensembl.org) Xerl is the 

Xenopus homolog of Crb2. It was shown that this novel secretory protein 

is crucial for establishing the boundary between the neural plate and 

neural crest in Xenopus embryo and it excludes neural crest 

differentiation from the neural plate region (Kuriyama, Ueda, & Kinoshita, 

2003). This suggests that Crb2S isoform may be the vertebrate homolog 

of Xerl and that it might also play a role in defining the neural plate and 

neural crest boundary during neural development in vertebrates.  

In both in ovo electroporation and in vitro explant culture systems, 

misexpression or exogenous addition of Crb2S resulted in increased 
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HNK-1 positive migratory neural crest cells. Surprisingly, no obvious 

increase in the pre-migratory neural crest cell marker, Slug was observed 

in the Crb2S misexpressing embryos. The migration of neural crest cells 

is a dynamic process and in the Crb2S misexpressing embryos the 

expansion of the pre-migratory neural crest domain could have occurred 

at a time point earlier than 24 hours post-electroporation. In ovo 

transplantation of Crb2S protein soaked beads into the hindbrain did not 

have any apparent effect on neural crest migration. The Crb2S bead 

soaked assays were successfully used in chick embryonic spinal cord 

transplantation experiments (Appendix 1). It is possible that the 

concentration of Crb2S required for eliciting a neural crest migration 

response needs to be optimized for the hindbrain transplantation 

experiments.  

Overall, both Crb2F and Crb2S play context dependent roles in the 

chick embryonic hindbrain. Deregulation of the balance between these 

isoforms may have major implications for development of the nervous 

system. 
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Analysis of Pals1 conditional 
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7.1 Introduction 

sh (short-hairpin) RNA mediated knockdown is an alternative to 

the conventional gene knockout approaches. The Cre/loxP system is 

used to activate RNA in a temporal and tissue-specific manner. The 

knockdown system is ideal to study intermediate phenotypes where there 

is a 70-80% reduction in expression of a particular gene (Kunath et al., 

2003). So, using shRNA knockdown over conventional knockout mice is 

more beneficial to study intermediate phenotypes caused by a particular 

gene. Additionally, a knockdown model could be a closer representation 

of a disease caused by point mutations in a specific gene (Kleinhammer 

et al., 2011). 

 Recent work has shown that Pals1, an intracellular binding partner 

of Crumbs 2 is essential for cell survival and loss of Pals1 leads to 

premature cell cycle exit and precocious neural differentiation (Kim et al., 

2010). In this study, Pals1 was deleted from the dorsal telencephalon 

using Emx-1 Cre and Pals1 protein expression was undetectable by 

E11.5. Interestingly, the heterozygous Pals1 mutants showed an 

intermediate phenotype compared to the homozygous mutants 

suggestive of a dosage-sensitive effect of Pals1 during neural 

development. 

Despite the complete loss of Pals1 in the Crb2 cKO model 

(chapter 4) the massive cell death phenotype reported in the Pals1 cKO 

was not observed. To investigate the underlying reasons for this disparity, 

I analysed shPals1 conditional knockdown mice (cKD - details in next 

section). shPals1 transgenic offspring were crossed to Nestin-Cre 

transgenic mice to activate the shRNA vector and obtain shPals1 cKD. 

An important distinction between Nestin-Cre and Emx-1 Cre, apart from 

their expression domains is the timing of recombination produced by Cre. 

Using reporter lines it has been shown that efficient recombination is 

evident at E10.5 in Emx-1 Cre and at E11.5 in Nestin-Cre transgenic 

mice (Chou et al., 2009).  
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7.2 Results 

To study the potential effect of depleting Pals1 levels, transgenic 

shPals1 mice were generated by our Dutch collaborators (Bokyung Park 

working in the laboratory of Jan Wijnholds) using previously published 

shPals1 sequences (Kim et al., 2010; van Rossum et al., 2006). Recently, 

these shPals1 mice were crossed to different Cre lines expressing Cre in 

retinal progenitor cells. It was reported that reduced Pals1 levels led to 

retinal disorganization and degeneration (Park et al., 2011). To restrict 

Cre mediated recombination mainly to the developing nervous system, 

shPals1 mice were crossed with Nestin-Cre transgenic mice (Dubois, 

Hofmann, Kaloulis, Bishop, & Trumpp, 2006). I performed a preliminary 

analysis of the shPals1; Nestin-Cre conditional knockdown mouse 

embryos. The experiments described in this chapter were carried out at 

two embryonic stages E12.5 and E14.5.  

 

7.2.1 Apical enrichment of Pals1 is reduced in the cortex of shPals1; 

Nestin-Cre embryos 

Pals1 protein is apically enriched in the dorsal telencephalon of 

wild type and Nestin- Cre control embryos at E12.5 and E14.5 (Fig 7.1 A, 

B, D, E). In contrast, the shPals1; Nestin-Cre embryos show a reduction 

in the apical enrichment of Pals1 protein at both these stages (Fig 7.1 C, 

F). This indicates that the hairpin construct has successfully depleted 

endogenous Pals1 protein levels. 

 

7.2.2 Apical localization of cell-junction associated proteins is 
unaffected in the shPals1; Nestin-Cre cortex. 

To determine if depletion of apical Pals1 protein influences 

recruitment of cell-junction associated proteins I analysed the Nestin-Cre 

control and shPals1; Nestin-Cre embryos for alterations in marker 

expression. 
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At E12.5, the apical enrichment of Par3, ß-Catenin and ZO-1 is 

unaltered in the shPals1; Nestin-Cre cortex compared to the Nestin-Cre 

control embryos (Fig 7.2). ß-Catenin staining observed in the upper 

layers of the cortex (Fig 7.2 K) is non-specific as it is also observed in 

sections stained with secondary antibody alone (data not shown). This 

suggests that the reduced level of Pals1 is insufficient to disrupt cell 

polarity and cell junctions in the telencephalon at these stages. 

 
7.2.3 Pals1 levels are critical for maintaining the neural progenitor 

pool in the developing dorsal telencephalon. 

To determine if depletion of Pals1 affects cortical neurogenesis, I 

analysed control and shPals1-Nestin Cre littermates for alterations in 

markers of neural progenitors (Sox2, Nestin), intermediate progenitors 

(Tbr2) and early born neurons (TuJ1). At E14.5, there is a marked 

reduction of Sox2 positive neural progenitors in the shPals1; Nestin-Cre 

cortex (Fig 7.3 C-D) compared to the controls (Fig7.3 A-B). This is 

concomitant with an increase in the Tbr2 positive intermediate 

progenitors in the shPals1; Nestin-Cre cortex (Fig 7.3 K-L, arrows in L) 

compared to the littermate controls (Fig 7.3 I-J). In contrast, no obvious 

difference was observed in the expression profiles of Nestin positive 

radial glial cells that span the entire wall of the cortex (Fig 7.3 E-H) or 

TuJ1 positive neurons (Fig 7.3 M-P) at the same stage.  
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7.2.4 Pals1 protein levels influence positioning of mitotic cells in the 

developing dorsal telencephalon 

I analysed the control and shPals1-Nestin Cre embryos for the 

expression of mitotic cell marker- phosphorylated histone H3 (pH3). In the 

control littermates, pH3+ve mitotic cells are predominantly apical at E12.5 

(Fig 7.4 A) and E14.5, with a few mitotic cells localized at the sub-

ventricular zone at E14.5 (Fig 7.4 E). In contrast, in the E12.5 and E14.5 

shPals1; Nestin-Cre telencephalon, there is a reduction of apical pH3 

positive cells and an increase in ectopically localized pH3 positive cells 

(Fig 7.4 B, F, arrows in B and F). Ki67 marks all proliferating cells 

throughout the control cortex (Fig 7.4 C), however Ki67 is reduced in the 

apical cells of the shPals1; Nestin-Cre cortex (Fig 7.4 D) at E12.5.  

Combined, the data suggests that Pals1 protein levels are critical 

for the regulation of cell proliferation in the cortex and that depletion of 

Pals1 causes a premature switch of cell fate from Sox2 positive to Tbr2 

positive cells.  

7.3 Discussion 

The results show that apical enrichment of Pals1 is reduced in the 

cortex of shPals1-NestinCre embryos. Surprisingly, there is no alteration 

in expression of apical polarity proteins and junctional proteins in the 

shPals1; Nestin-Cre cortex. However, it has been reported that complete 

removal of Pals1 from the developing cortex affects localization of apical 

polarity and adherens junction proteins (Kim et al., 2010). This implies 

that the levels of Pals1 were not depleted sufficiently to disrupt 

recruitment of other apical components. Despite this, I do observe 

mislocalization of pH3 positive cells, depletion of apical Ki67 positive cells 

and alterations in neural differentiation markers in the shPals1-NestinCre 

telencephalon.  

This data shows both similarities and some significant differences 

from a recent paper that used an Emx1-Cre conditional knockout strategy  
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to remove Pals1 completely in the developing dorsal telencephalon (Kim 

et al., 2010). Both studies show decreased proliferation, however I also 

see an increase in mislocalized mitotic cells in the shPals1; Nestin-Cre 

cortex that was not observed in the Pals1-/- Emx1-Cre telencephalon. 

Moreover, in the shPals1; Nestin-Cre telencephalon there is a decrease 

in Sox2 positive cells and an increase in Tbr2 positive cells. In contrast, 

the Pals1-/- Emx1Cre study describes a decrease in Tbr2 positive cells 

(Kim et al., 2010). There are several reasons that could explain this 

apparent disparity. Firstly, it is possible that Pals1 plays diverse roles at 

different stages of neurogenesis and that the two different promoters 

driving Cre expression have revealed this role. Alternatively, there may 

be different dose-sensitive functions for Pals1 in cortical development: 

complete loss of Pals1 results in a decrease of Tbr2 positive cells whilst a 

reduced level of Pals1 in my study causes an increase in Tbr2 positive 

cells. 

Cdc42 regulates neural progenitor cell fate in the developing 

mouse brain (Cappello et al., 2006; Chen et al., 2006) and Cdc42 

deficiency causes a decrease in Pax6 positive cells and an increase in 

Tbr2 positive cells in the developing cortex (Cappello et al., 2006). It is 

plausible that Pals1 controls the switch from Sox2 positive to Tbr2 

positive cells via Cdc42, as there is a biochemical and functional link 

between the Crb-Pals1-PATJ and Par3-Par6-Cdc42 complexes (Hurd et 

al., 2003). If time had allowed, I would have tested this hypothesis by 

immunostaining for Cdc42 in the Pals1 conditional knockdown cortex and 

further investigated if the Pals1 conditional knockdown phenotype mimics 

the Cdc42 mutant phenotype. In addition to this, it will be useful to 

determine if there is a direct biochemical interaction between Pals1 and 

Cdc42 in the telencephalon.   
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8. General discussion 

In this chapter, I will briefly summarize the key findings of my work 

and try to put them in context with previously known roles for apical cell 

polarity proteins in neurogenesis. Additionally, I will suggest further 

experiments that have not been performed in this thesis but may help 

identify additional roles for Crb2 during neural development.  

8.1 Overview of main results:  

Most of our current knowledge about the role of the Crumbs family 

is from studies in Drosophila or zebrafish (Assemat et al., 2008;	
  Ohata et 

al., 2011; Omori & Malicki, 2006b). The identification of significant roles 

for Crb1 in retinal development opened up a new field of investigation into 

the role of Crumbs genes (den Hollander et al., 1999; den Hollander et 

al., 2001; den Hollander et al., 2004; van de Pavert et al., 2004). More 

recently, Crumbs has been associated with growth control and Crumbs 

proteins are emerging as potential tumour suppressors	
   (Laprise, 2011). 

However, Crb2 function has, until now, not been examined in mammalian 

neural development in vivo.  

In my thesis, by analysing the effect of Crb2 deletion (mouse 

embryo) and Crb2 misexpression (chick embryo) during different 

developmental stages, I have shown that Crb2, a vertebrate homolog of 

Drosophila Crumbs is  

• expressed at the apical surface of neural progenitors in the 

developing telencephalon of mouse embryos and in the chick 

embryonic hindbrain.  

• Conditional removal of Crb2 from the dorsal telencephalon leads to 

defects in cortical neurogenesis.  

• Misexpression of Crb2 affects neural tube morphology.  

• A truncated isoform of Crb2 is secreted in vitro.  

• This secreted isoform has potential implications for regulating 

neural crest cell migration.  
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In addition to this, I have also shown that the levels of Pals1, an 

intracellular binding partner of Crb2 is important in cell cycle control and 

cortical cell fate specification. 

 

8.2 Crb2 and cortical neurogenesis 

As shown in Chapter 3, Crb2 protein expression is specifically 

enriched at the apical surface of neural progenitors in the developing 

telencephalon. The asymmetric segregation of several cell-junction 

components and cell polarity proteins has been shown to affect 

proliferation of progenitors and/or neuronal specification (Bultje et al., 

2009; Costa et al., 2008; Marthiens & ffrench-Constant, 2009; Neumuller 

& Knoblich, 2009).  

Here, to determine if the asymmetric distribution of Crb2 in cortical 

progenitors affects cell fate specification, I analysed the telencephalon of 

Crb2 conditional knockout (cKO) embryos. A schematic illustration of 

cortical neurogenesis in the wild type versus Crb2 knockout situation is 

shown in Fig 8.1 A-B.  

Depletion of Crb2 from apical progenitors affects the recruitment of 

proteins to the apical compartment. As development progresses, in the 

Crb2 cKO cortex there is a premature shift in cell fate from ventricular 

zone progenitors to sub-ventricular zone progenitors/neurons. At later 

stages, the well-defined stratification of the cortex is disrupted and post-

mitotic neuronal cells are aberrantly positioned. In addition to this, mitotic 

cell divisions are not confined to the apical surface but are more randomly 

localized.  

 

 

 

 



	
   166	
  

 

 

 

 

 

 



	
   167	
  

 

 

 

 

 



	
   168	
  

Based on the effect of Crb2 depletion on apical cell polarity 

proteins, cell junction proteins, mitotic cell divisions, neural progenitors 

and post-mitotic neurons, it is reasonable to propose that Crb2 is a crucial 

regulator of neurogenesis in the developing telencephalon.  

However, given that Crb2 protein may have pleiotropic functions, 

the roles of Crb2 during neural development in the conditional knockout 

system need to be interpreted carefully.  

Previous studies have shown that apical and basal polarity 

proteins play crucial roles during neural development in vertebrates:  

1. Members of the Par complex Par3 and Par6 localize apically 

and promote proliferative progenitor divisions (Bultje et al., 2009; Costa et 

al., 2008).  

2. The Rho GTPase Cdc42, associated with the Par complex is 

important for neurogenesis. Neural progenitors deficient in Cdc42 

undergo a shift in cell fate towards intermediate progenitor cell types 

(Cappello et al., 2006).  

3. Apically localized aPKCζ in the chick embryo regulates neural 

stem cell proliferation and also plays a role in the overall stratification of 

cells within the embryonic neural tube (Ghosh et al., 2008).  

4. MALS3 (Lin7c) a member of the Crumbs complex has been 

reported to maintain apical-basal polarity in neural progenitors. In the 

developing murine CNS depletion of MALS3 leads to slower cycling rates 

of progenitors followed by an increase in cell cycle exit and neuronal 

differentiation (Srinivasan et al., 2008).  

5. Recently, Pals1 a member of the Crumbs complex has been 

implicated in control of cell fate and cell survival during cortical 

development	
  (Kim et al., 2010).  
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6. Loss of Lgl1, member of the basal Scribble complex, during 

neural development leads to hyperproliferation and formation of rosette-

like structures reminiscent of neuroectodermal tumours (Klezovitch et al., 

2002). 

Given these roles for polarity proteins during neural development, 

it is highly plausible that the switch in cell fate to generate neurons 

instead of maintaining a progenitor-state in the Crb2 cKO cortex may 

stem from the disruption of the apical domain. The absence of apical 

components may lead to inadequate tethering of the cells to the 

ventricular zone, thereby, exposing these cells to different extrinsic cues 

and subsequently affecting their fate.  

It has been reported that intact cell junctions are a fundamental 

prerequisite for normal neural progenitor cell proliferation in Drosophila 

(Lu et al., 2001). However, the presence of intact apical junctions is not 

an absolute requirement in regulation of vertebrate neurogenesis. For 

instance, conditional knockout of aPKCλ disrupted adherens junctions yet 

failed to have an impact on neurogenesis (Imai, 2006). Conversely, in 

MALS triple knockout mutant embryos, adherens junctions were 

unaffected but significant defects in proliferation of neural progenitors 

were observed (Srinivasan et al., 2008). Taken together, this suggests 

that the Crb2 cKO phenotype cannot be solely attributed to loss of apical 

junctional components.   

8.3 Role of Crb2 in chick embryonic hindbrain 

Misexpressing two different isoforms of Crb2, Crb2F (full length) 

and Crb2S (secreted) in the chick embryonic hindbrain results in distinct 

phenotypes.  

Crb2F misexpression results in a remarkable alteration in the 

morphology of neural tube. A schematic illustration of the morphology 

observed after Crb2F misexpression is shown in Fig 8.2. Within this 

region of altered morphology, the apical localization of cell junction and 
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polarity proteins is affected. Crb2F misexpressing neural tube cells 

appear to be reshaped and rearranged within the neural tube. If time had 

allowed, I would have performed three-dimensional reconstruction of 

sections and also have carried out cell proliferation/cell survival assays in 

the Crb2F misexpressing embryos.  

In Drosophila, Crumbs has been associated with the Hippo 

pathway for regulation of tissue size. Both loss and overexpression of 

Crumbs resulted in overgrowth, hyperproliferation and induction of Hippo 

target genes (Chen et al., 2010). It will be interesting to investigate if 

Hippo signalling is altered after misexpression of Crb2F in the chick 

embryonic system.  

Although no overt difference in neural progenitor marker 

expression was observed upon Crb2F misexpression, post-mitotic 

neurons were aberrantly positioned outside the neural tube. It is possible 

that the defects observed in polarity of neuroepithelial cells in turn affect 

the migration and positioning of neuronal cells. Overall, both loss of Crb2 

and misexpression of Crb2 affect the localization of apical junctional 

components. As mentioned in the previous section, the apical cell 

junctional components are important determinants of cell fate. Crb2F may 

alter neural tube morphology due to defects in apical-basal polarity and/or 

regulation of cell fate decisions by interacting with signalling pathways.  

In contrast to Crb2F, Crb2S does not affect localization of apical 

cell polarity components and results in a distinct phenotype from that of 

Crb2F. This also clearly demonstrates that the phenotype observed in 

Crb2F misexpressing embryos is not an artifact of electroporation.  

Intriguingly, Crb2S misexpression affects neural crest cells. Neural 

crest cells contribute to the neural and non-neural cell types of the 

peripheral nervous system (Le Douarin & Dupin, 1993). Xerl, a novel 

secreted protein having high sequence homology to Drosophila Crumbs 

was identified in Xenopus (Kuriyama et al., 2000). It was proposed that  
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Xerl establishes the boundary between neural plate and neural 

crest (Kuriyama & Kinoshita, 2001; Kuriyama et al., 2003). It is plausible 

that Crb2S may play a role similar to that of Xerl in the developing chick 

embryo to influence the neural crest cell population.  

Crb2S misexpression both in vitro and in vivo leads to increased 

migration of neural crest cells. Even though an increased migration of 

neural crest cells after Crb2S misexpression (in vitro) is observed in all 

rhombomeres, the effect is significant only in even-numbered 

rhombomeres. It has been previously reported that the odd-rhombomeres 

generate fewer neural crest cells (Birgbauer et al., 1995; Farlie et al., 

1999) and that the even-rhombomeres control the apoptosis of neural 

crest cells migrating from odd-numbered rhombomeres (Graham et al., 

1993). It is plausible that Crb2S only influences migration in cells already 

committed to a neural crest cell fate.  

The identification of a role for Crb2S in neural crest migration 

indicates that Crb2 affects not only development of central nervous 

system but also that of the peripheral nervous system. However, it is 

crucial to analyze expression of endogenous Crb2S in the chick 

embryonic hindbrain. 

8.4 Crumbs and Notch signalling  

One key question that needs to be addressed is how Crb2 links 

signalling events during neurogenesis to regulate neuronal output? Given 

that Crumbs is the only known apical polarity protein to have an 

extracellular domain it is tempting to speculate that it is an ideal candidate 

for the transduction of signals originating at the luminal surface to the 

neural progenitor cells.  

The Notch signalling cascade is essential for maintenance of 

progenitor pools and in the control of neurogenesis in the developing and 

adult brain. Inactivation of Notch signalling results in depletion of the 

progenitor population and induces precocious neural differentiation. On 
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the other hand, activation of Notch signalling keeps the neural stem cells 

in a progenitor state and thereby maintains the progenitor pool (Bertrand 

et al., 2002; Ross et al., 2003; Kageyama et al., 2008; Kopan and Ilagan, 

2009).  

A potential interaction between Crumbs and Notch was initially 

reported in Drosophila (Herranz et al., 2006). In Crumbs mutant clones 

Notch signalling pathway is activated.  The mutant wing phenotype 

mimics gain-of-function of Notch and can be rescued by overexpressing 

either full length Crumbs or a truncated form of Crumbs lacking the 

intracellular domain. The authors suggested that Crumbs refines Notch 

signalling by inhibition of γ-secretase at the wing margin in Drosophila.  

Consistent with the Drosophila study, it was shown that human 

Crb2 binds to the presenilin complex and inhibits γ-secretase mediated 

cleavage of amyloid precursor protein. Crb2 mediated inhibition of γ-

secretase leads to reduced proteolytic production of Notch intracellular 

domain (Mitsuishi et al., 2010).  

During Drosophila head development, Crumbs plays an important 

role in the control of organ size and in Crumbs mutant clones there is an 

increase in ligand-dependent Notch signalling. It was also reported that 

ectopic Notch signalling observed in Crumbs mutant clones corresponds 

to an increase in Notch and Delta endocytosis and this function was 

independent of the role of Crumbs in apical-basal polarity (Richardson 

and Pichaud, 2010). 

Recently it was reported that in zebrafish, the Crumbs-Notch 

pathway is important for restriction of mitosis to apical surface and also in 

the maintenance of neuroepithelial polarity. Crumbs proteins were shown 

to directly interact with the extracellular domain of Notch and inhibit its 

activity (Ohata et al., 2011). 

These studies suggest that the interaction between Notch 

signalling cascade and Crumbs is evolutionarily conserved and that 
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Crumbs is part of a negative feedback loop during Notch signalling. 

Based on this it can be predicted that the conditional removal of Crb2 

would lead to ectopic activation of Notch signalling. Surprisingly, in the 

dorsal telencephalon loss of Crb2 results in the opposite phenotype- 

downregulation of Hes5 mRNA expression. Hes5 is a bona fide 

downstream target of the canonical Notch signalling pathway (de la 

Pompa et al., 1997; Ohtsuka et al., 1999).  

This discrepancy could be due to a) temporal differences in Crb2 

and Notch interactions b) tissue-specific regulation of Crb2 and Notch 

signalling pathway. It is also important to take into account that the 

reports showing interactions between Crumbs and Notch were 

biochemical studies carried out in non-in vivo situations and possibly 

predict misleading functions for Crumbs and Notch. The physiological 

relevance of these interactions remains to be addressed. Furthermore, 

the phenotype observed in Notch, Hes1 and Hes5 loss of function mutant 

brains is remarkably similar to that of Crb2 cKO phenotype; the loss of 

progenitor pools and precocious neural differentiation (Chenn & 

McConnell, 1995; Mizutani et al., 2007; Ohtsuka et al., 1999; Yoon & 

Gaiano, 2005).  

This suggests that Crumbs loss of function in the brain leads to 

reduced Notch activity and in turn affects cell fate decisions. However, it 

is unclear from my studies whether Crumbs-Notch interaction is positive 

or negative. It is plausible that in the brain, Crb2 and Notch positively 

regulate each other and Crb2 could directly bind to extracellular domain 

of Notch and sequester progenitor cells from neural differentiation 

signals.  

 

Although it may be favourable to put forth a unifying model to 

define the roles of Crb2 during neural development this could be a naïve 

approach, given that Crumbs plays isoform and context -dependent roles 

in different systems. Further studies need to be carried out to confirm an 
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association between Crb2 and Notch signalling in the developing 

vertebrate nervous system. Crb2 may play an instructive, permissive or 

inhibitory role in the transduction of signals to neural progenitors.  

 

8.5 Future work 

The broad scope of investigation in this study using two different 

model systems leaves room for further experiments. In this section I will 

briefly summarize some possible areas of future work to investigate 

further the role of Crb2.  
 
8.5.1 Role of Crb2 in control of cell cycle dynamics 

In both the mouse and chick systems, loss and misexpression of 

Crb2 resulted in mitotic cells frequently localized at aberrant positions. 

However, due to time constraints I could not perform detailed analysis of 

the effect of Crb2 on the cycling of neural progenitors. The role of Crb2 in 

regulating cell cycle progression could be examined by using cell cycle 

specific markers such as cyclins and cyclin-dependent kinases (Nigg, 

1995; Sherr, 1994) and time-lapse imaging and/or BrdU assays (Estivill-

Torrus et al., 2002) to determine cell-cycle length.  

8.5.2 Role of Crb2 in cell survival 

Recently work from our lab has shown that Crb2 is a novel 

regulator of mouse embryonic stem cell derived neural progenitors.  At 

the onset of neuroepithelial specification, Crb2 localized to the apical 

surface of ES-cell derived neural structures called neural rosettes. Crb2 

knockdown embryonic stem cells fail to survive neural differentiation 

(Boroviak & Rashbass, 2011). Given this role for Crb2 in cell survival of 

neural progenitors in vitro, it will be interesting to investigate if a similar 

mechanism operates in vivo by using markers to detect apoptotic cells in 

Crb2 cKO embryos using TUNEL (Terminal deoxynucleotidyl transferase 

dUTP nick end labeling) cell death detection methods (Labat-Moleur et 
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al., 1998; Negoescu et al., 1996) and/or Cleaved caspase3 antibody 

(Fernandes-Alnemri et al., 1994; Nicholson et al., 1995).  

 

8.5.3 Cell autonomous versus non-cell autonomous roles of Crb2 

In both the chick and mouse embryonic systems, the cell 

autonomous versus non-cell autonomous effects of Crb2 in neural 

development needs to be determined. This could be approached by in 

utero electroporation of hairpin constructs in the mouse embryonic 

system and/or using bidirectional overexpression vectors. Similar 

electroporation studies can be performed in the chick embryonic system.   

In addition to this, analysis of a knockout system where both Crb2F and 

Crb2S isoforms are targeted would reveal if these isoforms have 

overlapping functions in neural development.  

Some preliminary data suggestive of potential non-cell 

autonomous effects of Crb2F and Crb2S is presented in Chapter 9 

(Appendix1). 

8.6 Concluding remarks  

Although Crb2F and Crb2S modulate distinct aspects of neural 

organization, maintaining the balance between these isoforms may be 

critical for normal neural development. In conclusion, the roles of Crb2 in 

neural development are far from simple and Crb2 may perform context-

dependent functions throughout development and possibly into 

adulthood. The identification of a role for Crb2 during embryonic 

neurogenesis and its potential association with Notch signalling pathway 

makes it an attractive candidate for playing similar roles in adult 

neurogenesis. Interestingly, Crb2 is expressed in the sub-ependymal 

region (Allen brain atlas), characterized as a stem cell niche (Riquelme et 

al., 2008) in the adult brain. Further investigations in this direction may 

contribute significantly to the fields of adult stem cell research and 

neuroscience.  
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9. Appendices 

In Appendix 1, I have included data from preliminary experiments 

to determine if the ʻnon-typicalʼ expression of Crb2 at E17.5 has a role in 

neural development. The data included here is suggestive of additional 

roles for Crb2 and Crb2S during neural development. In Appendix 2, I 

have included data from experiments aimed at identifying proteins 

interacting with the secreted Crb2 isoform. However, the data is fairly 

preliminary and does not fit in with the main crux of this thesis and hence 

is included as an appendix. Finally in Appendix 3, I have included the 

protein sequencing data from the mass spectrometry analysis. 

Appendix 1 

Analysis of Crb2 positive tissue/ Crb2S protein-soaked bead 

transplanted embryos 

As described in Chapter 3, in the mouse embryonic brain at E17.5, 

Crb2 expression is not restricted to the apical surface but is expanded to 

a specific-population of cells in the dorsal telencephalon. To identify this 

cell population, I carried out marker expression analysis. Interestingly, the 

expression of Nestin, a well-established stem cell marker is closely 

associated with Crb2 expression in this region (Fig 9.1 A-D). At E17.5, a 

similar association of Crb2 and Nestin expression is also observed in the 

olfactory bulb (Fig 9.1 E-G) and in the developing spinal cord (Fig 9.1 H-

J) (K.Chinnaiya).  

To understand if this expression pattern has any significance, we 

carried out in ovo transplantation experiments (Fig 9.2) in collaboration 

with K. Chinnaiya and Prof. M.Placzek. We transplanted dorsal 

telencephalic (DT) tissue (Crb2 and Nestin positive region) into the caudal 

neuropore of H&H stage 10 chick embryos and analysed the embryos 

after 24 hours. Dorso-lateral telencephalic tissue (Control) that did not  
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express Crb2 was used as a control for the transplantation experiments. 

In the control-transplanted embryos, Pax6 is expressed in the dorsal and 

intermediate progenitors of the neural tube (Fig 9.3A). Interestingly, in DT 

transplanted embryos Pax6 expression is downregulated within the 

neural tube and Pax6 positive cells are detected outside the neural tube 

(Fig 9.3 B). Moreover, in the control-transplanted embryos, Nkx6.1 

expression is detected in the progenitors of the ventral neural tube (Fig 

9.3 C). Similar to Pax6 expression in the DT transplanted embryos, 

Nkx6.1 positive cells were detected at ectopic locations outside the neural 

tube in a similar fashion as the altered Pax6 expression (Fig 9.3 D). In the 

control, Sox2 marks all the progenitors with the neural tube (Fig 9.3 E). 

Within the neural tube of DT transplanted embryos, there is a remarkable 

downregulation of Sox2 and a few Sox2 labelled cells are also detected 

outside the neural tube (Fig 9.3 F). Shh expression is detected in the 

ventral floor plate and notochord of control embryos (Fig 9.3G). In the DT 

transplanted embryos, Shh is detected in the notochord and floor plate 

but additionally Shh expression is also present in the intermediate neural 

tube region (Fig 9.3H). Ectopic Shh positive tissue is also detected near 

the notochord. The expression of 3B9, a notochord marker is also 

significantly altered in the DT transplanted embryos (Fig 9.3 J) compared 

to the control embryos (Fig 9.3 I).  

Overall, this shows that transplantation of DT tissue affects the 

localization and expression of neural progenitors. It also leads to the 

formation of ectopic notochord and floor plate-like structures. 

To study if Crb2 could mediate part of or all of this effect, we took 

advantage of in ovo bead transplantation approaches wherein Crb2S 

protein soaked beads were transplanted into the caudal neuropore of 

chick embryos and analysed after 24 hours. PBS soaked beads were 

used as controls. In the control embryos, Pax6 is expressed in the dorsal 

and intermediate progenitors and Nkx6.1 expression is restricted to the 

ventral neural tube progenitors. Analysis of embryos transplanted with 
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Crb2S protein soaked beads show a remarkable alteration in dorsal and 

ventral expression domains of Pax6 (Fig 9.4 A) and Nkx6.1 (Fig 9.4 C). 

Pax6 expression is reduced in the dorsal and intermediate neural tube but 

is highly expressed in the ventral neural tube (arrows in Fig 9.4 B). 

Nkx6.1 expression domain is expanded and Nkx6.1 positive cells are 

detected in the dorsal and intermediate neural tube regions (arrows in Fig 

9.4 D). The expression of Sox2 is also affected in Crb2S bead 

transplanted embryos. Sox2 expression is decreased in the Crb2S 

transplanted embryos and in particular from the intermediate region of the 

neural tube (Fig 9.4 arrow in F) compared to the control embryos where 

Sox2 is expressed in all progenitors of the neural tube (Fig 9.4 E). Shh is 

expressed in the ventral floor plate and notochord (Fig 9.4G) In Crb2S 

transplanted embryos, Shh is expressed in the notochord and also Shh 

expression domain is expanded (arrow in Fig 9.4 H). 3B9 is expressed in 

the notochord of both control (Fig 9.4 I) and Crb2S bead transplanted 

embryos additionally, in Crb2S embryos 3B9 positive cells are also 

detected outside the notochord (Fig 9.4, arrow in J).  

Transplantation of Crb2S protein soaked beads gave a similar 

phenotype to that of DT transplanted embryos. However, compared to the 

DT transplanted embryos, the effect of Crb2S on localization of Pax6, 

Nkx6.1 and Sox2 neural progenitors outside the neural tube was subtle. 

However, Crb2S had a dramatic effect on the dorsal-ventral patterned 

progenitor domains within the neural tube. Both DT and Crb2S 

transplantations affected normal expression of Shh and 3B9. Taken 

together, this suggests that transplantation of either dorsal telencephalic 

tissue or Crb2S protein soaked beads affects the expression of dorsal-

ventral patterning markers in the developing chick embryonic neural tube.  

However, further experiments need to be carried out to enable 

conclusive interpretation of data and particularly to identify if there is any 

physiological relevance to the intriguing phenotypes observed upon 

transplantation of Crb2 positive tissue/beads.   
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Appendix 2 

Development of assays to assist with identification of proteins 

interacting with Crb2S 

As mentioned in Chapter 1, Crumbs is the only known polarity protein to 

have an extracellular domain. Whilst the intracellular interacting partners 

of Crumbs are known, not much is known about the extracellular domain. 

Using Crb2S as a resource, we tried to develop assays to identify 

proteins potentially interacting with the extracellular domain of Crb2. 

A. Stress fibre assay 

DLD-1 (human colon adenocarcinoma cell line) stable cell lines 

overexpressing different Crb2 isoforms were previously made (Baijun 

Kou). The different clonal cells were stained for F-actin by Phalloidin 

staining. A difference in actin cytoskeleton was observed between cells 

overexpressing membrane-bound Crb2 and secreted Crb2 (Crb2S).  In 

cells overexpressing Crb2S, contractile actin cytoskeletal structures- 

stress fibres were observed, whereas the stress fibre phenotype was not 

seen in cells expressing full length or altered start Crb2 or in cells where 

Crb2 expression was knocked down; as shown in Fig 9.5.  

We had hoped to use the stress fibre phenotype as a scoreable 

readout for an RNAi screen to identify proteins interacting with Crb2S. 

Prior to this, the robustness of the screening assay had to be validated.   

I carried out control experiments to validate stress fibre phenotype 

seen in cells overexpressing Crb2S. Initially, I analysed the previously 

made clonal DLD-1 cells overexpressing Crb2S. Unfortunately, I 

observed variations in the stress fibre phenotype between different Crb2S 

clonal cell lines (data not shown).  
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  I designed a control vector described in Chapter 5, where the 

signal peptide of Crb2 was cloned into the same expression vector 

backbone used for Crb2S overexpression. I generated stable clonal cell 

lines for Crb2S and the control construct. Unfortunately, after Phalloidin 

staining I detected stress fibres in both Crb2S and control cell lines (Fig 

9.6). This ruled out the use of the stress fibre phenotype as a useful 

assay to identify interacting proteins  

B. Immunoprecipitation assay 

  As an alternative approach to identify proteins interacting with 

Crb2S, I carried out immunoprecipitation experiments (IPs). It has been 

reported previously that Pals1 interacts with Crb2 (Kim et al., 2010). I 

used this known interaction as a positive control for the IPs as there is 

currently no known binding partner for Crb2S (Fig 9.7A).  

Mouse embryonic stem cells were differentiated to neural 

progenitors in vitro. Previous work from our lab has shown that Crb2 is 

expressed in these progenitors (Boroviak & Rashbass, 2011). I collected 

neural progenitor cell lysates and incubated them with Crb2S V5 His 

tagged fusion protein (Crb2S). The lysates were immunoprecipitated with 

an antibody against full length Crb2 and blotted for V5 tag antibody to 

detect Crb2S (Fig 9.7B). This showed that endogenously expressed Crb2 

isoform is capable of binding with the recombinant Crb2S protein. 

Although, the IP data is fairly preliminary it is a good starting point to 

identify Crb2S interacting proteins by following a candidate approach. 
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Appendix 3  

Crb2S protein sequencing data  

In this section I have included data from the LC-ESI mass 

spectrometry sequencing analysis of Crb2S. The description of the 

analysed samples is included in Chapter 5 (Fig 5.4 C and Fig 5.5 A). 

Sample I (Intense) and Sample III (Intense and Weak) were identified as 

Crb2. Sample II and IV correspond to spectrin alpha chain and heat 

shock protein respectively. 

 Database searches restricted to the mouse taxonomy provided 

significant identification scores. The matched peptide sequences hits are 

shown in red and MASCOT identification scores are also shown.  
I- Intense 

Match to: CRUM2_MOUSE Score: 209 Crumbs homolog 2  
OS=Mus musculus Matched peptides shown in Bold Red 
 
MALVGPRIWG PRRDIYPLLL LLLLLLLLLL PWVPAGLVPP ETPSVCASDP      51 
CAPGTKCQAT ESGGYTCEPS ELGGCATQPC HHGALCVPQG PDPNSFRCYC     101 
VPGFQGPHCE LDIDECASRP CQHGGTCQNL ADHYECHCPL GYAGVTCEAE     151 
VDECSSAPCL HGGSCLDGVG SYRCVCAPGY AGANCQLDVD ECQSQPCAHG     201 
GVCHDLVNGF RCDCADTGYE GARCEQEVLE CASAPCAHNA SCLDGFRSFR     251 
CLCWPGFSGE RCEVDEDECA SGPCQNGGQC LQRSDPTLYG GVQAIFPGAF     301 
SFSHAAGFLC SCPLGFAGND CSMDVDECAS GPCLNGGSCQ DLPNGFQCYC     351 
QDGYTGLTCQ EDMDECQSEP CLHGGTCSDT VAGYICQCPE AWGGHDCSVQ     401 
LTGCQGHTCP LAATCIPTFK SGLHGYFCRC PPGTYGPFCG QNTTFSVVSG     451 
SSVWGLVPAA ASLGLALRFR TTLLAGTLAT LKDTRDSLEL VLVGAVLQAT     501 
LSRHGTAVLI LTLPDLALND GHWHQVEVTL HLGTLELRLW HEGCPGQLCV     551 
ASGPVATGPT ASVASGPPGS YSIYLGGGVF AGCFQDVRVE GHLLLPEELK     601 
GTVLLGCERR EPCQPLPCAH GGACVDLWTH FRCDCPRPYR GATCTDEVPA     651 
ATFGLGGATS SASFLLHQLG PNLTVSFFLR TREPAGLLLQ FANDSVASLT     701 
VFLSEGQIRA EGLGHPAVVL PGRWDDGLPH LVMLSFGPDQ LQDLGQRLYV     751 
GGRFYPDDTQ LWGGPFRGCL QDLQLNSIHL PFFSSPMENS SWPSELEAGQ     801 
SSNLTQGCVS EDTCNPNPCF NGGTCHVTWN DFYCTCSENF TGPTCAQQRW     851 
CPRQPCLPPA TCEEVPDGFV CVAEATFREG PPAVFTGHNV SSSLSGLTLA     901 
FRTRDSEAGL LRAVSAAGAH SNIWLAVRNG SLAGDVAGSV LPAPGPRVAD     951 
GAWHRVRLAR EFPQAAASRW LLWLDGAATP VALHGLGGDL GFLQGPGAVP    1001 
LLLAENFTGC LGRVALGDFP LPLAPPRSGT VSGAREHFVA WPGSPAVSLG    1051 
CRGGPVCSPS PCLHGGACRD LFDAFACSCG PAWEGPRCEI RADPCRSTPC    1101 
VRGQCHARPD GRFECRCPPG FSGPRCRLPV LPQGCNLNST CKDGAPCEGG    1151 
PLGTNCSCQE GLAGLRCQSL DKPCEASPCL NGGTCRVASG IFECTCSAGF    1201 
SGQFCEVVKT LPLPLPFPLL EVAVPAACAC LLLLLLGLLS GILAARKRRQ    1251 
SEGTYSPSQQ EVAGARLEMD SVLKVPPEER LI 
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I-Weak 
Match to: SPTA2_MOUSE Score: 349 Spectrin alpha chain,  
brain OS=Mus musculus 
  
 
 
MDPSGVKVLE TAEDIQERRQ QVLDRYHRFK ELSTLRRQKL EDSYRFQFFQ      51 
RDAEELEKWI QEKLQVASDE NYKDPTNLQG KLQKHQAFEA EVQANSGAIV     101 
KLDETGNLMI SEGHFASETI RTRLMELHRQ WELLLEKMRE KGIKLLQAQK     151 
LVQYLRECED VMDWINDKEA IVTSEELGQD LEHVEVLQKK FEEFQTDLAA     201 
HEERVNEVSQ FAAKLIQEQH PEEELIKTKQ DEVNAAWQRL KGLALQRQGK     251 
LFGAAEVQRF NRDVDETIGW IKEKEQLMAS DDFGRDLASV QALLRKHEGL     301 
ERDLAALEDK VKALCAEADR LQQSHPLSAS QIQVKREELI TNWEQIRTLA     351 
AERHARLDDS YRLQRFLADF RDLTSWVTEM KALINADELA NDVAGAEALL     401 
DRHQEHKGEI DAHEDSFKSA DESGQALLAA SHYASDEVRE KLSILSEERT     451 
ALLELWELRR QQYEQCMDLQ LFYRDTEQVD NWMSKQEAFL LNEDLGDSLD     501 
SVEALLKKHE DFEKSLSAQE EKITALDEFA TKLIQNNHYA MEDVATRRDA     551 
LLSRRNALHE RAMHRRAQLA DSFHLQQFFR DSDELKSWVN EKMKTATDEA     601 
YKDPSNLQGK VQKHQAFEAE LSANQSRIDA LEKAGQKLID VNHYAKEEVA     651 
ARMNEVISLW KKLLEATELK GIKLREANQQ QQFNRNVEDI ELWLYEVEGH     701 
LASDDYGKDL TNVQNLQKKH ALLEADVAAH QDRIDGITIQ ARQFQDAGHF     751 
DAENIKKKQE ALVARYEALK EPMVARKQKL ADSLRLQQLF RDVEDEETWI     801 
REKEPIAAST NRGKDLIGVQ NLLKKHQALQ AEIAGHEPRI KAVTQKGNAM     851 
VEEGHFAAED VKAKLSELNQ KWEALKAKAS QRRQDLEDSL QAQQYFADAN     901 
EAESWMREKE PIVGSTDYGK DEDSAEALLK KHEALMSDLS AYGSSIQALR     951 
EQAQSCRQQV APMDDETGKE LVLALYDYQE KSPREVTMKK GDILTLLNST    1001 
NKDWWKVEVN DRQGFVPAAY VKKLDPAQSA SRENLLEEQG SIALRQGQID    1051 
NQTRITKEAG SVSLRMKQVE ELYQSLLELG EKRKGMLEKS CKKFMLFREA    1101 
NELQQWITEK EAALTNEEVG ADLEQVEVLQ KKFDDFQKDL KANESRLKDI    1151 
NKVAEDLESE GLMAEEVQAV QQQEVYGAMP RDEADSKTAS PWKSARLMVH    1201 
TVATFNSIKE LNERWRSLQQ LAEERSQLLG SAHEVQRFHR DADETKEWIE    1251 
EKNQALNTDN YGHDLASVQA LQRKHEGFER DLAALGDKVN SLGETAQRLI    1301 
QSHPESAEDL KEKCTELNQA WTSLGKRADQ RKAKLGDSHD LQRFLSDFRD    1351 
LMSWINGIRG LVSSDELAKD VTGAEALLER HQEHRTEIDA RAGTFQAFEQ    1401 
FGQQLLAHGH YASPEIKEKL DILDQERTDL EKAWVQRRMM LDHCLELQLF    1451 
HRDCEQAENW MAAREAFLNT EDKGDSLDSV EALIKKHEDF DKAINVQEEK    1501 
IAALQAFADQ LIAVDHYAKG DIANRRNEVL DRWRRLKAQM IEKRSKLGES    1551 
QTLQQFSRDV DEIEAWISEK LQTASDESYK DPTNIQSKHQ KHQAFEAELH    1601 
ANADRIRGVI DMGNSLIERG ACAGSEDAVK ARLAALADQW QFLVQKSAEK    1651 
SQKLKEANKQ QNFNTGIKDF DFWLSEVEAL LASEDYGKDL ASVNNLLKKH    1701 
QLLEADISAH EDRLKDLNSQ ADSLMTSSAF DTSQVKEKRD TINGRFQKIK    1751 
SMATSRRAKL SESHRLHQFF RDMDDEESWI KEKKLLVSSE DYGRDLTGVQ    1801 
NLRKKHKRLE AELAAHEPAI QGVLDTGKKL SDDNTIGQEE IQQRLAQFVE    1851 
HWKELKQLAA ARGQRLEESL EYQQFVANVE EEEAWINEKM TLVASEDYGD    1901 
TLAAIQGLLK KHEAFETDFT VHKDRVNDVC TNGQDLIKKN NHHEENISSK    1951 
MKGLNGKVSD LEKAAAQRKA KLDENSAFLQ FNWKADVVES WIGEKENSLK    2001 
TDDYGRDLSS VQTLLTKQET FDAGLQAFQQ EGIANITALK DQLLAAKHIQ    2051 
SKAIEARHAS LMKRWTQLLA NSATRKKKLL EAQSHFRKVE DLFLTFAKKA    2101 
SAFNSWFENA EEDLTDPVRC NSLEEIKALR EAHDAFRSSL SSAQADFNQL    2151 
AELDRQIKSF RVASNPYTWF TMEALEETWR NLQKIIKERE LELQKEQRRQ    2201 
EENDKLRQEF AQHANAFHQW IQETRTYLLD GSCMVEESGT LESQLEATKR    2251 
KHQEIRAMRS QLKKIEDLGA AMEEALILDN KYTEHSTVGL AQQWDQLDQL    2301 
GMRMQHNLEQ QIQARNTTGV TEEALKEFSM MFKHFDKDKS GRLNHQEFKS    2351 
CLRSLGYDLP MVEEGEPDPE FEAILDTVDP NRDGHVSLQE YMAFMISRET    2401 
ENVKSSEEIE SAFRALSSEG KPYVTKEELY QNLTREQADY CVSHMKPYVD    2451 
GKGRELPTAF DYVEFTRSLF VN 
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II 
Match to: SPTA2_MOUSE Score: 295 Spectrin alpha chain,  
brain OS=Mus musculus 
 
MDPSGVKVLE TAEDIQERRQ QVLDRYHRFK ELSTLRRQKL EDSYRFQFFQ      51 
RDAEELEKWI QEKLQVASDE NYKDPTNLQG KLQKHQAFEA EVQANSGAIV     101 
KLDETGNLMI SEGHFASETI RTRLMELHRQ WELLLEKMRE KGIKLLQAQK     151 
LVQYLRECED VMDWINDKEA IVTSEELGQD LEHVEVLQKK FEEFQTDLAA     201 
HEERVNEVSQ FAAKLIQEQH PEEELIKTKQ DEVNAAWQRL KGLALQRQGK     251 
LFGAAEVQRF NRDVDETIGW IKEKEQLMAS DDFGRDLASV QALLRKHEGL     301 
ERDLAALEDK VKALCAEADR LQQSHPLSAS QIQVKREELI TNWEQIRTLA     351 
AERHARLDDS YRLQRFLADF RDLTSWVTEM KALINADELA NDVAGAEALL     401 
DRHQEHKGEI DAHEDSFKSA DESGQALLAA SHYASDEVRE KLSILSEERT     451 
ALLELWELRR QQYEQCMDLQ LFYRDTEQVD NWMSKQEAFL LNEDLGDSLD     501 
SVEALLKKHE DFEKSLSAQE EKITALDEFA TKLIQNNHYA MEDVATRRDA     551 
LLSRRNALHE RAMHRRAQLA DSFHLQQFFR DSDELKSWVN EKMKTATDEA     601 
YKDPSNLQGK VQKHQAFEAE LSANQSRIDA LEKAGQKLID VNHYAKEEVA     651 
ARMNEVISLW KKLLEATELK GIKLREANQQ QQFNRNVEDI ELWLYEVEGH     701 
LASDDYGKDL TNVQNLQKKH ALLEADVAAH QDRIDGITIQ ARQFQDAGHF     751 
DAENIKKKQE ALVARYEALK EPMVARKQKL ADSLRLQQLF RDVEDEETWI     801 
REKEPIAAST NRGKDLIGVQ NLLKKHQALQ AEIAGHEPRI KAVTQKGNAM     851 
VEEGHFAAED VKAKLSELNQ KWEALKAKAS QRRQDLEDSL QAQQYFADAN     901 
EAESWMREKE PIVGSTDYGK DEDSAEALLK KHEALMSDLS AYGSSIQALR     951 
EQAQSCRQQV APMDDETGKE LVLALYDYQE KSPREVTMKK GDILTLLNST    1001 
NKDWWKVEVN DRQGFVPAAY VKKLDPAQSA SRENLLEEQG SIALRQGQID    1051 
NQTRITKEAG SVSLRMKQVE ELYQSLLELG EKRKGMLEKS CKKFMLFREA    1101 
NELQQWITEK EAALTNEEVG ADLEQVEVLQ KKFDDFQKDL KANESRLKDI    1151 
NKVAEDLESE GLMAEEVQAV QQQEVYGAMP RDEADSKTAS PWKSARLMVH    1201 
TVATFNSIKE LNERWRSLQQ LAEERSQLLG SAHEVQRFHR DADETKEWIE    1251 
EKNQALNTDN YGHDLASVQA LQRKHEGFER DLAALGDKVN SLGETAQRLI    1301 
QSHPESAEDL KEKCTELNQA WTSLGKRADQ RKAKLGDSHD LQRFLSDFRD    1351 
LMSWINGIRG LVSSDELAKD VTGAEALLER HQEHRTEIDA RAGTFQAFEQ    1401 
FGQQLLAHGH YASPEIKEKL DILDQERTDL EKAWVQRRMM LDHCLELQLF    1451 
HRDCEQAENW MAAREAFLNT EDKGDSLDSV EALIKKHEDF DKAINVQEEK    1501 
IAALQAFADQ LIAVDHYAKG DIANRRNEVL DRWRRLKAQM IEKRSKLGES    1551 
QTLQQFSRDV DEIEAWISEK LQTASDESYK DPTNIQSKHQ KHQAFEAELH    1601 
ANADRIRGVI DMGNSLIERG ACAGSEDAVK ARLAALADQW QFLVQKSAEK    1651 
SQKLKEANKQ QNFNTGIKDF DFWLSEVEAL LASEDYGKDL ASVNNLLKKH    1701 
QLLEADISAH EDRLKDLNSQ ADSLMTSSAF DTSQVKEKRD TINGRFQKIK    1751 
SMATSRRAKL SESHRLHQFF RDMDDEESWI KEKKLLVSSE DYGRDLTGVQ    1801 
NLRKKHKRLE AELAAHEPAI QGVLDTGKKL SDDNTIGQEE IQQRLAQFVE    1851 
HWKELKQLAA ARGQRLEESL EYQQFVANVE EEEAWINEKM TLVASEDYGD    1901 
TLAAIQGLLK KHEAFETDFT VHKDRVNDVC TNGQDLIKKN NHHEENISSK    1951 
MKGLNGKVSD LEKAAAQRKA KLDENSAFLQ FNWKADVVES WIGEKENSLK    2001 
TDDYGRDLSS VQTLLTKQET FDAGLQAFQQ EGIANITALK DQLLAAKHIQ    2051 
SKAIEARHAS LMKRWTQLLA NSATRKKKLL EAQSHFRKVE DLFLTFAKKA    2101 
SAFNSWFENA EEDLTDPVRC NSLEEIKALR EAHDAFRSSL SSAQADFNQL    2151 
AELDRQIKSF RVASNPYTWF TMEALEETWR NLQKIIKERE LELQKEQRRQ    2201 
EENDKLRQEF AQHANAFHQW IQETRTYLLD GSCMVEESGT LESQLEATKR    2251 
KHQEIRAMRS QLKKIEDLGA AMEEALILDN KYTEHSTVGL AQQWDQLDQL    2301 
GMRMQHNLEQ QIQARNTTGV TEEALKEFSM MFKHFDKDKS GRLNHQEFKS    2351 
CLRSLGYDLP MVEEGEPDPE FEAILDTVDP NRDGHVSLQE YMAFMISRET    2401 
ENVKSSEEIE SAFRALSSEG KPYVTKEELY QNLTREQADY CVSHMKPYVD    2451 
GKGRELPTAF DYVEFTRSLF VN 
 
III Intense 
Match to: CRUM2_MOUSE Score: 315 Crumbs homolog 2  
OS=Mus musculus 
 
MALVGPRIWG PRRDIYPLLL LLLLLLLLLL PWVPAGLVPP ETPSVCASDP      51 
CAPGTKCQAT ESGGYTCEPS ELGGCATQPC HHGALCVPQG PDPNSFRCYC     101 
VPGFQGPHCE LDIDECASRP CQHGGTCQNL ADHYECHCPL GYAGVTCEAE     151 
VDECSSAPCL HGGSCLDGVG SYRCVCAPGY AGANCQLDVD ECQSQPCAHG     201 
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GVCHDLVNGF RCDCADTGYE GARCEQEVLE CASAPCAHNA SCLDGFRSFR     251 
CLCWPGFSGE RCEVDEDECA SGPCQNGGQC LQRSDPTLYG GVQAIFPGAF     301 
SFSHAAGFLC SCPLGFAGND CSMDVDECAS GPCLNGGSCQ DLPNGFQCYC     351 
QDGYTGLTCQ EDMDECQSEP CLHGGTCSDT VAGYICQCPE AWGGHDCSVQ     401 
LTGCQGHTCP LAATCIPTFK SGLHGYFCRC PPGTYGPFCG QNTTFSVVSG     451 
SSVWGLVPAA ASLGLALRFR TTLLAGTLAT LKDTRDSLEL VLVGAVLQAT     501 
LSRHGTAVLI LTLPDLALND GHWHQVEVTL HLGTLELRLW HEGCPGQLCV     551 
ASGPVATGPT ASVASGPPGS YSIYLGGGVF AGCFQDVRVE GHLLLPEELK     601 
GTVLLGCERR EPCQPLPCAH GGACVDLWTH FRCDCPRPYR GATCTDEVPA     651 
ATFGLGGATS SASFLLHQLG PNLTVSFFLR TREPAGLLLQ FANDSVASLT     701 
VFLSEGQIRA EGLGHPAVVL PGRWDDGLPH LVMLSFGPDQ LQDLGQRLYV     751 
GGRFYPDDTQ LWGGPFRGCL QDLQLNSIHL PFFSSPMENS SWPSELEAGQ     801 
SSNLTQGCVS EDTCNPNPCF NGGTCHVTWN DFYCTCSENF TGPTCAQQRW     851 
CPRQPCLPPA TCEEVPDGFV CVAEATFREG PPAVFTGHNV SSSLSGLTLA     901 
FRTRDSEAGL LRAVSAAGAH SNIWLAVRNG SLAGDVAGSV LPAPGPRVAD     951 
GAWHRVRLAR EFPQAAASRW LLWLDGAATP VALHGLGGDL GFLQGPGAVP    1001 
LLLAENFTGC LGRVALGDFP LPLAPPRSGT VSGAREHFVA WPGSPAVSLG    1051 
CRGGPVCSPS PCLHGGACRD LFDAFACSCG PAWEGPRCEI RADPCRSTPC    1101 
VRGQCHARPD GRFECRCPPG FSGPRCRLPV LPQGCNLNST CKDGAPCEGG    1151 
PLGTNCSCQE GLAGLRCQSL DKPCEASPCL NGGTCRVASG IFECTCSAGF    1201 
SGQFCEVVKT LPLPLPFPLL EVAVPAACAC LLLLLLGLLS GILAARKRRQ    1251 
SEGTYSPSQQ EVAGARLEMD SVLKVPPEER LI 
 
III Weak 
Match to: CRUM2_MOUSE Score: 183 Crumbs homolog 2  
OS=Mus musculus 
 
MALVGPRIWG PRRDIYPLLL LLLLLLLLLL PWVPAGLVPP ETPSVCASDP      51 
CAPGTKCQAT ESGGYTCEPS ELGGCATQPC HHGALCVPQG PDPNSFRCYC     101 
VPGFQGPHCE LDIDECASRP CQHGGTCQNL ADHYECHCPL GYAGVTCEAE     151 
VDECSSAPCL HGGSCLDGVG SYRCVCAPGY AGANCQLDVD ECQSQPCAHG     201 
GVCHDLVNGF RCDCADTGYE GARCEQEVLE CASAPCAHNA SCLDGFRSFR     251 
CLCWPGFSGE RCEVDEDECA SGPCQNGGQC LQRSDPTLYG GVQAIFPGAF     301 
SFSHAAGFLC SCPLGFAGND CSMDVDECAS GPCLNGGSCQ DLPNGFQCYC     351 
QDGYTGLTCQ EDMDECQSEP CLHGGTCSDT VAGYICQCPE AWGGHDCSVQ     401 
LTGCQGHTCP LAATCIPTFK SGLHGYFCRC PPGTYGPFCG QNTTFSVVSG     451 
SSVWGLVPAA ASLGLALRFR TTLLAGTLAT LKDTRDSLEL VLVGAVLQAT     501 
LSRHGTAVLI LTLPDLALND GHWHQVEVTL HLGTLELRLW HEGCPGQLCV     551 
ASGPVATGPT ASVASGPPGS YSIYLGGGVF AGCFQDVRVE GHLLLPEELK     601 
GTVLLGCERR EPCQPLPCAH GGACVDLWTH FRCDCPRPYR GATCTDEVPA     651 
ATFGLGGATS SASFLLHQLG PNLTVSFFLR TREPAGLLLQ FANDSVASLT     701 
VFLSEGQIRA EGLGHPAVVL PGRWDDGLPH LVMLSFGPDQ LQDLGQRLYV     751 
GGRFYPDDTQ LWGGPFRGCL QDLQLNSIHL PFFSSPMENS SWPSELEAGQ     801 
SSNLTQGCVS EDTCNPNPCF NGGTCHVTWN DFYCTCSENF TGPTCAQQRW     851 
CPRQPCLPPA TCEEVPDGFV CVAEATFREG PPAVFTGHNV SSSLSGLTLA     901 
FRTRDSEAGL LRAVSAAGAH SNIWLAVRNG SLAGDVAGSV LPAPGPRVAD     951 
GAWHRVRLAR EFPQAAASRW LLWLDGAATP VALHGLGGDL GFLQGPGAVP    1001 
LLLAENFTGC LGRVALGDFP LPLAPPRSGT VSGAREHFVA WPGSPAVSLG    1051 
CRGGPVCSPS PCLHGGACRD LFDAFACSCG PAWEGPRCEI RADPCRSTPC    1101 
VRGQCHARPD GRFECRCPPG FSGPRCRLPV LPQGCNLNST CKDGAPCEGG    1151 
PLGTNCSCQE GLAGLRCQSL DKPCEASPCL NGGTCRVASG IFECTCSAGF    1201 
SGQFCEVVKT LPLPLPFPLL EVAVPAACAC LLLLLLGLLS GILAARKRRQ    1251 
SEGTYSPSQQ EVAGARLEMD SVLKVPPEER LI 
 
IV 
Match to: HS71A_MOUSE Score:350 Heat shock 70kDa  
protein 1A OS=Mus musculus 
 
MAKNTAIGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL      51 
IGDAAKNQVA LNPQNTVFDA KRLIGRKFGD AVVQSDMKHW PFQVVNDGDK     101 
PKVQVNYKGE SRSFFPEEIS SMVLTKMKEI AEAYLGHPVT NAVITVPAYF     151 
NDSQRQATKD AGVIAGLNVL RIINEPTAAA IAYGLDRTGK GERNVLIFDL     201 
GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVSH FVEEFKRKHK     251 
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KDISQNKRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA     301 
RFEELCSDLF RGTLEPVEKA LRDAKMDKAQ IHDLVLVGGS TRIPKVQKLL     351 
QDFFNGRDLN KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS     401 
LGLETAGGVM TALIKRNSTI PTKQTQTFTT YSDNQPGVLI QVYEGERAMT     451 
RDNNLLGRFE LSGIPPAPRG VPQIEVTFDI DANGILNVTA TDKSTGKANK     501 
ITITNDKGRL SKEEIERMVQ EAERYKAEDE VQRDRVAAKN ALESYAFNMK     551 
SAVEDEGLKG KLSEADKKKV LDKCQEVISW LDSNTLADKE EFVHKREELE     601 
RVCSPIISGL YQGAGAPGAG GFGAQAPKGA SGSGPTIEEV D 
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