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Abstract 

The improper administration of therapeutic compounds is not only financially inefficient, but, 

there exists a very real risk of harmful, or potentially life-threatening effects. To gain control, 

nano-drug delivery systems provide a discernible option for temporal and spatial regulation of 

drug bioavailability within the body. In current regimes, temporal control is realised through 

gradual release over an extended period of time, or triggered release in response to a change in 

the physiochemical environment. Of course, when considering the design of an ideal drug 

delivery system, we think of adaptivity – adaptivity to dynamically modulate drug release in 

response to a changing biological macroenvironment. In nature, this ability to sense, 

communicate, and respond is fundamental to the existence of any living organism, irrespective 

of complexity. In most instances, this responsiveness is achieved through feedback-controlled 

biochemical processes that work to regulate a functional process, and so, any “smart” delivery 

system would be smart to do the same. Of course, where conventional chemical feedback is 

concerned, potential toxicity and lack of biocompatibility, caused by inappropriate catalysts, is 

problematic, however, the emergence and enhanced understanding of enzymatic feedback 

provides an interesting and more compatible alternative. As such, this doctoral thesis focuses 

on drawing together two distinct entities of intense scientific focus, nonlinear enzyme kinetics 

and nanoreactor technology, and works towards the idealism of a feedback-controlled 

secondary response. 

To achieve this, through the utilisation of bottom-up synthetic chemistry, we have successfully 

built, investigated, and optimised a platform that has allowed up to systematically and 

extensively investigate the effect of confinement on an enzymatic feedback reaction. Through 

this process, we have uncovered a system more complicated than first anticipated. This 

complexity, driven firstly by the fragility of constituents in relatively harsh conditions, but more 

importantly by the dynamism of the system in terms of membrane transport, and associated 

pH-linked permeability coefficients. However, by building this platform, we have not only 

learned how to control the kinetic output of the reaction, but have gained an overview of how 

the system behaves as a whole. It is this organic discovery, and ultimate understanding, that has 

allowed us to extend our reach, pushing the functionality of our novel system, to achieve both 

temporally-controlled drug delivery and nano-motor-based vesicular propulsion. 
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1.1 Introduction 

Pharmacotherapy, described as “the treatment and prevention of illness and disease by means 

of drugs of chemical or biological origin”, is ranked amongst surgery, radiation, psychotherapy, 

and physiotherapy as one of the most important contributing derivatives of medical treatment 

[1]. Whilst there are many successful examples of the use of pharmaceuticals and vaccinations 

to treat, prevent, and in the case of smallpox, completely eradicate illness and disease, the 

extent to which pharmacotherapy has impacted human health cannot be estimated. There is, 

however, zero doubt that a combination of improved sanitation, better lifestyles, i.e., diet and 

housing, and the contribution of pharmacotherapy has improved health, life expectancy, and 

quality of life. 

Rapid advancements in the field of genomics and molecular biology has presented an extensive 

diversity of new therapeutic targets [2]. Modern pharmacochemical techniques such as 

combinatorial chemistry and high throughput screening has provided us with a method of 

producing vast libraries of new drug candidates, and testing their biological or biochemical 

activity, in very little time. Similarly, a more advanced understanding of the immune system, in 

conjunction with accelerated developments in microbiology, cell biology, and molecular biology, 

has allowed for the development of modern vaccines against existing and novel challenges [3]. 

However, it is important to understand that the discovery of an “active component”, be it a 

more classical small-molecule drug, or a more modern biopharmaceutical compound, e.g., a 

therapeutic protein, is the beginning of drug development, where considerations of dosage form 

and appropriate drug delivery is present. As a result, the development of such new and exciting 

pharmaceutical candidates is both expensive and time-consuming, therefore, efforts can be 

made to improve the safety and efficacy of existing compounds [4]. 

Alongside the more obvious methods of achieving this, i.e., therapeutic monitoring, 

personalised medicine, and dose titration, onus has been placed on the need for advanced drug 

delivery systems. Of course, the “ideal” drug delivery system is autonomous, capable of 

releasing its active payload into the body at a specified time, for the optimum duration, and at 

the correct location, optimising efficacy, and minimising the risk of adverse effects 

 

1.2 Conventional Drug Delivery Systems 

There are many ways to categorise drug delivery systems. For example, when thinking about 

drug delivery in terms of dosage form, a simple and more classical way of differentiating them 
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is in accordance to their physical state, i.e., solids (e.g., tablets, capsules, powders, etc.), 

semisolids (e.g., creams, gels, etc.), liquids (e.g., solutions, suspensions, etc.), and, finally, gasses 

(e.g., anaesthetics). A second outlook, again classical in nature, is to differentiate delivery 

systems in accordance to route of administration, i.e., through a mucosal membrane (oral, 

suppositories, nasal sprays, inhalers, etc.), parenteral (e.g., infusion or injection), topical (e.g., 

ointments, creams, etc.), or transdermal (patches) [1]. A more modern differentiation of drug 

delivery can be appreciated in terms of the achieved release profile. 

It is obvious to say that a relationship exists between the nature of the drug delivery system 

employed, and the pharmacological effect it can elicit - this can be explained in terms of the 

pharmacokinetic profile of the compound, the rate in which it is released, the duration in which 

the drug is active for, the site in which the drug is active at, and, consequently, the associated 

toxicology profile. In most circumstances, the active compound should hold a concentration 

within the therapeutic range, i.e., between the minimal effective concentration (MEC) and the 

minimal toxic concentration (MTC) (Figure 1.1), at the appropriate site of action.  

 

 

 

Figure 1.1. Drug plasma concentration over time for oral immediate release therapeutics. Time 
within (∆t) therapeutic range (MEC ↔ MTC) shown. 

 

 

1.2.1 Immediate Release 

Like many of the most common drugs commercially available to us, a fast onset of therapeutic 

effect is required. For example, if we take a standard analgesic, such as paracetamol, or a non-



25 
 

steroidal anti-inflammatory drug (NSAID), such as ibuprofen, we can quickly understand why 

quick disintegration and rapid uptake are desirable characteristics. In light of this, immediate 

release forms of drug delivery typically administer the dosage in a single burst, and thus, follows 

a first-order kinetic profile. What this means is that release/dissolution of a drug compound to 

its dosage form happens very quickly, resulting in very rapid transport across a mucosal 

membrane, where drug concentration in the blood plasma can reach its maximum (Cmax) in the 

shortest time possible (tmax). Once the compound has been absorbed into the body, the process 

of elimination occurs. Elimination, i.e., the natural process of metabolism and excretion, again 

displays a first-order kinetics profile [5]. From a pharmacokinetic standpoint, the measurement 

of drug plasma concentration over time, following initial administration of an immediate release 

drug, is the sum of first-order absorption and first order elimination (Figure 1.2). 

 

 

Figure 1.2. Plasma concentration-time curve for oral immediate release. Time taken (tmax) to 
reach maximum concentration (Cmax) indicated. 

 

 

The associated downfall of immediate-release dosage is the drugs ability to maintain its blood 

plasma concentrations within the therapeutic range. If the drug in question has a short biological 

half-life, i.e., the time taken for drug elimination to hit 50% of Cmax is quick, then the drug will be 

limited by its ability to maintain its concentration above the MEC. Although the obvious answer 

is to increase dosing frequency, in instances where disease onset is not accompanied by 

debilitating symptoms, i.e., hypertension, a lack of compliance exists, so this may not always be 

the best answer. Similarly, it may not always be possible to simply increase the dosage of such 
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therapeutics, due to concern about adverse effects, i.e., blood plasma concentration exceeds 

MTC. Owing to the importance of maintaining blood plasma concentration levels within the 

therapeutic range, whilst maintaining patient compliance, a number of alternative drug release 

systems, largely focused on achieving a degree of temporal control, have been investigated. 

 

1.2.2 Gaining Temporal Control 

In its simplest form, temporal control can be obtained in terms of delayed or extended release. 

In instances of delayed release, the active component of a therapeutic compound is described 

as being “released at any other time other than immediately after administration” [1]. When 

discussed in terms of oral therapeutics, delayed release can not only be used to control the 

ultimate location of drug release, i.e., the small intestine, but to protect degradation or 

ionisation on its passage through the gastrointestinal system, i.e., the low pH of the stomach. 

One well-documented way of achieving this is to coat a therapeutic compound in a pH 

responsive polymer [6]. In this instance, the polymer will be capable of resisting the effects of 

the stomach’s low-pH, but will then dissolve in the higher-pH environment of the small intestine, 

leading to a pharmacokinetic profile similar to that of immediate release, but shifted along the 

x-axis (Figure 1.3). 

 

 

Figure 1.3. Plasma concentration-time curve for oral, immediate and delayed drug release. 
Time taken to reach Cmax for immediate (tmax

IR) and delayed (tmax
DR) are indicated. 
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Temporal control can also be obtained by extending the release profile of a drug, thereby 

reducing the frequency in which medication is administered. This type of control can be achieved 

in two ways. Firstly, by sustaining the release profile over a longer period of time, which, in a 

pharmacokinetic sense, is to increase the length of your ∆t value (Figure 1.4). Again, this effect 

is most commonly achieved through a polymer coat [6]. 

 

 

Figure 1.4. Plasma concentration-time curve for oral, sustained drug release, showing extended 
∆t in comparison to immediate-release profile. 

 

 

Secondly, controlled release is the preferred approach with regards to temporal control, 

because it allows for the sustainment of drug plasma levels within the therapeutic range, 

irrespective of the biological microenvironment at the site of administration [7]. The 

fundamental difference between controlled- and sustained-release is that controlled release 

controls the total drug concentration within the body [1], whereas sustained release extends 

the time period in which a drug quantity is released over. Adding to its increased complexity, 

controlled release of therapeutics is often mediated by “therapeutic systems”, where a 

therapeutic compound is released in a predetermined fashion over an allocated period of time. 

The pharmacokinetic release profile of controlled release typically has some zero-order 

characteristics, for example, layer-by-layer films [8, 9] (Figure 1.5). 
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Figure 1.5. Example of plasma concentration-time curve for controlled drug release, showing 
zero-order release kinetics. 

 

 

However, irrespective of the advancement we have seen so far, from immediate release to 

controlled release, important exceptions exist where stronger harmony with biological rhythms 

and processes would be advantageous. 

 

1.3 Significance of Chronobiology 

As we know, the hormone responsible for regulating homeostasis in blood glucose is called 

insulin. If functioning properly, insulin is secreted from the pancreas in preparation/response to 

the rise in glucose associated with having a meal. It then functions to transport glucose to the 

appropriate tissues and organs for utilisation, before a basal level is restored once blood glucose 

levels fall (Figure 1.6). Type I diabetes is an autoimmune disease, where insulin-producing 

pancreatic β-cells are destroyed [10]. In this instance, blood glucose is controlled in an 

exogenous manner, without the above-mentioned “closed-loop”. Owing to the responsive 

nature of insulin release, extensive effort has been focused on the development of a blood 

delivery system that mimics the biological process of the pancreas [11]. In this instance, where 

rapid switching of insulin release is necessary, the benefits associated with zero-order release, 

e.g., improved patient compliance, reduction in the frequency of drug administration, etc., are 

redundant. 
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Figure 1.6. Example of a “closed loop” response to a physiological variable, i.e., insulin release 
in response to increased bloody glucose levels. 

 

There is also huge evidence to suggest that biological processes are not constant, but, instead, 

conform to a predictable rhythm, measured in time by the frequency of their oscillations, and 

controlled by endogenous biological clocks [12, 13]. The time taken to complete these cycles 

can vary dramatically, from the sub-second pulsatile secretions of the neuroendocrine system, 

to the circadian production of melatonin in sleep-wake cycles, and beyond to longer 

circamensual cycles associated with ovulation (Table 1.1). The documentation and 

understanding of such biological rhythms has led to a growing importance being placed on 

correct drug dosing, and the treatment of certain metabolic conditions, with respect to time. 

 

Table 1.1. Range of biological rhythms and their associated times [12]. 

Time Category Rhythm Example 

Short 

(t < 30 min) 

Pulsatile (0.1 s < t < 1 s) 

Pulsatile (t ~ 1 min) 

Neural, Cardiac 

Calcium, Biochemical 

Intermediate 

(30 min < t < 6 days) 

Ultradian (30 min < t < 20 hours) 

Circadian (20 hours < t < 28 hours) 

Mitotic, Hormonal 

Sleep-wake, Temperature 

Long 

(t > 6 days) 

Circaseptan (t ~ 7 days) 

Infradian (t ~ 30 days) 

Circannual (t ~ 1 year) 

Chronoimmunology 

Ovarian 

Seasonal 
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1.4 Advanced Temporal Control 

The need for advanced chronotherapeutics is not only necessitated by the strong association 

between certain diseases, i.e., asthma, angina, and cancer, and biological rhythms, but, a greater 

therapeutic efficacy is also achieved when therapeutic compounds aim to mimic the pulsatile 

release of endogenous peptides, e.g., insulin, gonadotropin releasing hormone (GnRH), 

somatostatin, etc. [14]. It is interesting to see insulin listed, since common understanding of 

insulin release is known to be responsive, however, in actuality, discrete pulses of insulin are 

secreted from a healthy pancreas at an estimated rate of 11–13 minutes [15]. Evidence suggests 

that administering insulin in an oscillatory pattern, not only reduces the amount of insulin used 

(in comparison to a continuous release system), but, can also help to alleviate the increased 

levels of mitosis associated with increased insulin [15] – factors that may be considered in the 

design of future insulin-delivery systems. 

Of the other examples listed, GnRH is another hormone with great clinical significance. GnRH is 

produced and secreted by the hypothalamus, in a pulsatile fashion. It functions to stimulate the 

release of other hormones, luteinizing hormone (LH) and follicle stimulating hormone (FSH), 

from the anterior pituitary gland, which in turn, circulate throughout the body, stimulating the 

release of reproductive hormones within the gonads [16]. Although both men and women 

produce LH and FSH, in women, biological feedback of these hormones controls the rate of 

GnRH, which, in turn, mediates fertility to a monthly cycle [17], whereas in men, the release of 

GnRH is in low and frequent. In cases of GnRH deficiency, common therapeutic procedure 

involves the intravenous administration of GnRH in a pulsatile fashion. However, although 

successful, in chronic cases of GnRH deficiency, the associated downfalls of continuous 

intravenous administration, i.e., infection and inconvenience, necessitates the long-term need 

for fully implantable, autonomous alternatives. 

Another example of therapeutics that would benefit from pulsatile delivery are agents which 

show a of tolerance and/or reduced activity, following continuous exposure. This concept is 

possibly best understood when thinking about exposure to nicotine, and the addiction 

associated with long-term smoking, however, there are entirely medicinal compounds that 

exhibit truncated activity following sustained exposure. One clinically available example, is the 

use of glyceryl trinitrate (GTN) patches. GTN is a vasodilator, which mediates its effects through 

the nitric oxide pathway, and as such, was developed in a patch for the prevention of angina 

[18]. However, original GTN patches, which provided a continuous 24-hour dose, were proven 

to be unsuccessful, following a failure to appreciate associated tolerance [19, 20]. In light of this, 

the current administration protocol exists of a 12-hour dose [21], followed by a drug-free period 
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to re-establish GTN sensitivity, before re-patching, however, it is not difficult to appreciate how 

a rhythmic drug delivery mechanism would enhance both therapeutic-compliance and -

outcome. Either way, the oscillations between the drug and drug-free state should conform to 

the underlying kinetic mechanisms associated with drug tolerance onset, i.e., receptor down-

regulation, and subsequent recovery [22, 23]. 

A final contribution, to complete this quick review on the relationship between intermittent 

hormone release, and associated treatment strategies, is a mention of the well-known circadian 

rhythm. This 24-hour oscillation, experienced by many lifeforms, is shown to adapt the 

organism, changing its behaviour depending on the time. One obvious example is a comparison 

between diurnal and nocturnal animals, who elicit similar hormonal regulation, during opposite 

periods, i.e., day vs night, respectively [12]. It has been well-documented that pharmacokinetic 

and pharmacodynamic factors associated with drug dosing and therapeutic outcome show 

variation depending on the time of day [12, 14, 24]. It is with this growing appreciation, that 

drug delivery, especially in the treatment of asthma, cardiovascular problems, and cancer, must 

evolve to take more heavily into account biological rhythms. 

As such, efforts to mimic these natural rhythms in the dominion of drug delivery has led to both 

“active techniques”, whereby an input of external energy, e.g., electrical [25], magnetism [26], 

ultrasound [27], pressure [28], etc., is used to trigger drug release at the desired time of 

administration, and, “passive techniques”, where drug release is temporally controlled without 

the need of an external stimuli, i.e., programmed disruption, layering, or through the utilisation 

of non-linear feedback (oscillations) within the drug delivery system [29]. 

 

1.4.1 Chemical Feedback 

Feedback is described as “the process by which a system is regulated by its output” [30], and is 

highly prevalent in biological systems, where a transition in chemical state is needed in response 

to an external stimuli, i.e., morphogenesis, long-term potentiation (memory formation), signal 

amplification, etc., [31]. In fact, it was Alan Turing in his seminal paper “the Chemical Basis of 

Morphogenesis”, who put forward the idea of a two-species reaction-diffusion model, where an 

activator and an inhibitor coalesce to form a single negative feedback loop, and summarised 

that Turing instability, formed through the spatial heterogeneity of two morphogens with non-

equal diffusion coefficients, is an essential part of Turing pattern formation [32]. However, it is 

the idea that positive and negative feedback can effectuate coaction between complex chemical 
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reactions and physical processes, to generate a specific function within a chemical system, that 

has brought the area so much attention in recent years [33]. 

It is widely understood that chemical oscillators can be generated by combining positive and 

negative feedback. Positive feedback, or autocatalysis, means that the reaction is catalysed by 

its products. For example, in an autocatalytic reaction where substrates are converted to 

products (S → P), the rate law may be defined as v = k[S][P], where v is the rate of reaction and 

k is the rate constant, thus showing that the reaction rate increases as the products are formed. 

Negative feedback works to remove the autocatalyst, however, for oscillation to arise as a result 

of kinetic instability, negative feedback must be delayed relative to positive feedback [34]. 

Chemical oscillators have been well-studied for a very long time, with the most well-

characterised being the Belousov-Zhabotinskii (BZ) reaction, where, in the presence a metal-ion 

catalyst, an acidified bromate solution oxidises an organic substrate (typically malonic acid), in 

a series of reactions [35, 36]. In recent times, following advancements in soft material science, 

the BZ reaction has been utilised in the creation of chemoresponsive polymer gels, where 

autonomous and periodic redox oscillations are the causation of rhythmic volume changes 

(when immersed in a substrate-rich, acidic solution) [37]. An example of autocatalytic 

production of a base, is the Methylene Glycol-Sulphite-Gluconolactone (MGSG) reaction, which 

can be coupled with an acid-consuming step (negative feedback via the ferrocyanide reaction) 

in a flow reactor, to produce a pH oscillator. However, although  a number of pH oscillators are 

available, and are proposed as tools in drug delivery systems [38], they may not necessarily be 

suitable, either because of issues surrounding toxicity, or their short oscillatory periods. 

One example of a pH oscillator, looked at in more detail because of its relatively mild toxicity 

and relatively long oscillatory period, is the bromate-sulphite-marble reaction. In this model 

system, the pH oscillator medium, which contains benzoic acid (pKa = 4.2), was placed next to a 

lipophilic ethylene vinyl acetate copolymer membrane. The premise of the experiment was to 

change the ionisation state of benzoic acid, through oscillations in pH (pH 2-7), and ultimately 

facilitate the intermittent diffusion of benzoic acid (uncharged) across the lipophilic membrane. 

However, it was found that inclusion of the “drug” (benzoic acid), even in low concentrations, 

alters/compromises the behaviour of the pH oscillator, and if drug concentration is increased, 

oscillations are attenuated, and a steady state pH around the pKa of the drug is achieved – this 

is likely attributed to drug-related buffering of the system [39]. This phenomenon has also been 

witnessed for a Landolt pH oscillator in the presence of benzoic acid [40]. The overriding 

summary of these results is that the use of inorganic redox reactions as pH oscillators, as well as 
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being potentially toxic, are limited in their use in potential rhythmic drug delivery systems. So, 

although we are aware of the great potential held by chemical oscillators in the field of drug 

delivery, the need for less toxic and biocompatible autocatalysis remains prevalent. 

Enzyme-catalysed reactions provide the most discernible option, however, only a low number 

of robust and reproducible enzyme-catalysed reactions are shown to exhibit feedback instability 

in vitro [41-43]. One example, studied extensively because of its prevalence throughout nature, 

is the urea-urease reaction. 

 

1.5 Urea-Urease Reaction 

Urease is an metalloenzyme, discovered in a variety of different sources, including bacteria, 

fungi, and plants, and is responsible for the catalysed hydrolysis of urea to ammonia and carbon 

dioxide (base-catalysed feedback): 

 

𝐶𝑂(𝑁𝐻2)2 + 𝐻2𝑂 → 2𝑁𝐻3 + 𝐶𝑂2 

Equation 1.1.. Hydrolysis of urea to ammonia and carbon dioxide. 

 

1.5.1 Mechanism of Action 

The structure of urease is dependent on the source from which it is extracted from, however, in 

terms of the active site, some consistent observations remain; two nickel (Ni1 and Ni2) atoms, 

one carbamylated lysine, four histidines, and one aspartate residue. In addition, a hydroxide ion 

bridges the two Ni atoms, which along with other three terminal water molecules (W1, W2, W3), 

forms an H-bonded water tetrahedral cluster in the active site (Figure 1.7) [44, 45]. However, 

although the components of the urease active site have been successfully elucidated, the 

mechanism by which catalysis occurs has been of popular debate. At present, strong evidence 

provided by studies with urease inhibitors [46-48], has led to a harmonisation of opinion. It is 

proposed that, by replacing water held within the active site (Figure 1.7A), urea binds to the first 

nickel atom (Ni1) through the carbonyl oxygen, increasing the electrophilicity of the urea carbon, 

and increasing its susceptibility to nucleophilic attack (Figure 1.7B). Urea then binds to the 

second nickel atom (Ni2), via one of its amino nitrogen atoms, forming a bidentate bond with 

urease (Figure 1.7C), and ultimately facilitating the water nucleophilic attack on the carbonyl 
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carbon. Finally, a tetrahedral intermediate is formed (Figure 1.7D), from which NH3 and 

carbamate are released (Figure 1.7E) [49]. 

 

 

Figure 1.7. Catalytic mechanism of urea hydrolysis by urease, showing structure of nickel-
containing urease active site, and associated stepwise reaction scheme, from [49] 

 

 

1.5.2 Activity 

The urea-urease reaction is of the Michaelis-Menten type [44, 50]: 

 

EH + U ⇌ EHU 

EHU ⇌ P + EH 

Equation 1.2.. Mechanism/equilibria of enzyme-catalysis for urea-urease reaction. 

 



35 
 

Where EH is the active protonated form of the enzyme, U is the substrate, urea, EHU is the 

enzyme-substrate complex and P is 2NH3 and CO2. Applying the steady state approximation to 

EHU and setting E0 = E + EHU where E0 = the total enzyme concentration yields the Michaelis-

Menten expression for the rate, where Vmax represents the maximum rate, and KM is the 

Michaelis constant: 

 

UK

UV
V

M +
= max

 

Equation 1.3. Michaelis Menten expression for the rate of enzyme kinetics as applicable to the 
urea-urease reaction. 

 

 

Owing to the proficiency of urease activity, and the high stability of urea itself, the reaction rate 

of urea hydrolysis is shown to be 1014  faster in the presence of the enzyme (in comparison to 

the non-catalysed system) [51]. As such, urease activity and pH are linked. For most ureases, the 

Michaelis constant (KM), i.e., the concentration of the substrate when the reaction velocity is 

equal to one half of the maximal velocity (vmax) for the reaction, falls in the range of 1–4 mM [52-

56], and has been found to be only slightly dependent on pH [52-56]. In contrast, the vmax itself, 

and by extension the turnover number (kcat), i.e., the number of substrate molecules converted 

into product per enzyme in a unit time when fully saturated, is known to be strongly dependent 

on pH. This rate can be expressed as (See Appendix I) [57]:  
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Equation 1.4. Rate of enzyme catalysed hydrolysis of urea by urease. 
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Where, the vmax is the maximum rate, KM is the Michaelis constant, and Kes2 and Kes1 are 

protonation equilibria of the substrate-enzyme complex. Substrate and product inhibition terms 

are included: Ks = equilibrium constant for uncompetitive substrate inhibition and Kp = 

equilibrium constant for non-competitive product inhibition. 

 

Table 1.2. Enzyme constants for the rate of hydrolysis of urea by urease, from [50] 

Enzyme Constants KM Kes1 Kes2 Ks Kp 

 3 × 10-3 M 5 × 10-6 2 × 10-9 3 0.002 

 

 

This dependency, where variations in pH alter the protein binding site conformation, reflects in 

the speed in which the enzyme is capable of catalysing the reaction, ultimately resulting in the 

bell-shaped rate-pH curve (characteristic of feedback) (Figure 1.8). The urease-catalysed 

conversion of urea to a weak base has been shown to have a maximum rate when at pH 7 [30]. 

This means that if the starting pH is lowered, via the addition of acid, then the reaction 

accelerates as it advances. 

 

 

 

Figure 1.8. pH-activity curve for Jack Bean Urease 
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1.5.3 “pH Clock” Behaviour 

When conducted in a closed reactor, the reaction solution is shown to be stable at an acidic pH 

(~ pH 4) for a particular amount of time, known as the “clock time”, before rapidly changing to a 

basic pH (~ pH 10).  Clock reactions are characterised by two indicative features: 1) clock time, 

and; 2) the maximum reaction rate at a non-zero time point. A study investigating the effects of 

initial chemical concentrations, i.e., urea, urease, acid, on these features tell us that decreasing 

urea (Figure 1.9a) and urease (Figure 1.9b) concentrations leads to an increase in clock time and 

a lower final pH value, whereas, decreasing acid concentration at the start of the reaction (Figure 

1.9c) leads to a decrease in clock time, but has no apparent effect on the maximum pH value 

[51]. 

 

 

 

Figure 1.9. Changes in clock time (induction time) as a function of: (a) urea, (b) urease, (c) 
H2SO4, concentrations, from [58] 

 

 

Aperiodic oscillations (~pH 4 ↔ ~pH 7) have been observed when the urea-urease reaction is 

conducted in an open (flow) reactor, using a weak acid (acetic acid), as opposed to sulphuric acid 

[30]. Such oscillations were shown to be slow and responsive to instability in acid/base, and time 

variations in pH were suggested to be responsive to mixing effects. Currently, all known pH 

oscillator systems necessitate the need for open flow conditions, because in typical 

circumstances, at least one of the substrates is fully consumed in the initial pH switch. In the 

urea-urease system, however, only partial consummation of urea occurs, highlighting its 

potential as the first batch pH oscillator [30, 59]. 
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1.5.4 Membrane Interaction 

Interestingly, these urease metalloenzymes display many biological functions unrelated to their 

ureolytic activity. For example, C. ensiformis is capable of producing three isoforms of urease 

(Jack bean urease, Jack bean urease II (JBURE-II), and Canatoxin), and in addition to their 

associated catalytic activity, they have also been reported to induce various other biological 

responses, i.e., neurotoxicity, exocytosis-inducing and pro-inflammatory effects, activation of 

blood platelets, and insecticidal and antifungal activities [60-65]. These various effects point to 

interactions of ureases with cell membranes, either directly or via receptor modulation. 

The insecticidal activity of Canatoxin is attributed to the release of an internal peptide, namely 

pepcanatox, in response to cathepsin-like enzyme-induced hydrolysis in the digestive tract of 

associated insects [66]. Based on the N-terminal sequence of pepcanatox, through the utilisation 

of recombinant DNA technology, an analogous Jack bean urease-derived peptide, called 

Jaburetox, capable of displaying potent entomotoxic activity against insects with either 

cathepsin- or trypsin-based digestive systems, was expressed [67]. This peptide, shown to 

elucidate several of the aforementioned biological responses of urease, e.g., insecticidal activity, 

neurotoxicity, and fungicidal activity [65], highlighted the importance of this region for most of 

Jack bean urease’s “other” biological properties, and this was first demonstrated by Piovesan 

and co-workers [68], who reported the first demonstration of Jack bean urease and Jaburetox 

to permeabilise membranes, forming cation-selective ion channels in both zwitterionic and 

anion lipid membranes. 

A higher affinity for negatively charged membranes suggests that anionic lipids may constitute 

the actual receptors of the toxin in target cells, however, a later study by Micheletto and 

colleagues [69] showed interaction between Jack bean urease above its isoelectric point (4.5) 

and a negatively charged lipid membrane, thus inferring that hydrophilic/hydrophobic 

interactions are more important than the electrostatic attraction in regards to Jack bean urease 

insertion into a liposome membrane. Interestingly, although the majority of the surface of Jack 

bean urease is hydrophilic in nature, the Jaburetox sequence is both exposed on the surface and 

amphiphilic in nature, suggestive of its flexibility to insert itself into a lipid bilayer (Figure 1.10) 

[69]. 
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Figure 1.10. Surface hydrophobicity of Jack bean urease, highlighting the Jaburetox (Jbtx)-
region, from [69] 

 

 

It is therefore important to be mindful of this consideration moving forward, even in the 

presence of neutral charge phosphatidylcholine liposomes (Figure 1.11), e.g., diphytanoyl-

phosphatidylcholine, there is potential for encapsulated Jack bean urease, regardless of its pH-

induced electrostatic potential, to form cation specific membrane channels, and potentially alter 

the ion permeation dynamics of our potential system. 

 

 

 

Figure 1.11. Relative charge of phosphatidylcholine as a function of pH (ionic strength = ~0.1 
(HCl)), from [70]. 
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1.6 Nanoreactors 

These vehicles, which allow defined chemical reactions to take place on a nano-scale, have been 

extensively studied over recent years, not only for their therapeutic potential, but also to better 

understand the natural counterpart from which they took their inspiration – the human cell. In 

fundamental terms, the human cell is just a complex reactor, where biological processes are not 

only protected from the reactive microenvironment of the body, but are kept distinct through 

function-specific structures called organelles (e.g., mitochondria, endoplasmic reticulum, etc.). 

This natural form of separation, known as compartmentalisation, provides a suitable platform 

for signal transduction, facilitating the harmonious regulation of complex biological processes 

through multiple, simultaneous biochemical cascades [71].  

Multiple supramolecular assemblies have been suggested to encapsulate active molecules and 

generate nanoreactors. These therapeutic nanoreactors can be synthesised using bio- or 

synthetic-polymers, or a combination of the two. In the field of nanoreactor technology, there 

exists four groups of natural biopolymers, i.e., lipids, polysaccharides, polypeptides, and 

polynucleotides, and multiple groups of synthetic polymers, i.e., homopolymers, 

polyelectrolytes, and block copolymers, etc. [72-75]. However, out of all these, not only are lipid 

and block copolymer systems the most widely investigated, and best understood, but the use of 

such supramolecular assemblies is both EMA and FDA approved, e.g. Doxil® [76] and Pluronic® 

[77]. 

Comprising of a nanosize reaction compartment, these supramolecular structures allow a 

multitude of processes and biochemical reactions to take place, e.g., localised production of a 

drug [78], detoxification [79, 80], monitoring toxic substances [81], enzyme-replacement 

therapy [82], etc. Their architecture can be comprised from a mixture of “building blocks”, 

including biological or synthetic surfactants, or a combination of the two, and, this architectural 

versatility allows for active compounds to be entrapped either within the hydrophilic cavity, or 

within the hydrophobic part of the membrane. Any active components encapsulated within the 

aqueous core are offered two primary benefits. Firstly, they are provided with a reaction space 

for in situ activity, and secondly, they are protected from the external environment, i.e., 

proteolytic attack [83]. However, to satisfy the conditions of a nanoreactor, one has to be 

mindful of the ease in which reaction products can leave. In instances where membrane 

permeability cannot be facilitated via passive diffusion, the implementation of strategic 

membrane permeabilisation can be achieved through a variety of means, e.g., manipulation of 

lipid phase transitions, utilising substrate-permeable membranes, or introducing functional 

“gate” proteins [83-85]. 
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Liposomes, similarly to naturally occurring membranes (Figure 1.12), contain a lipid bilayer, 

whereby the hydrophilic head groups are facing the aqueous environment, and the hydrophobic 

tails face inwards, towards each other. Liposomes, depending on how they are prepared, can 

contain many (multilamellar), few (oligolamellar), or one (unilamellar) bilayer shell(s). The 

aqueous solution in which the liposomes are prepared can be found in the lumen of the 

liposome, however, considerations of osmotic balance between the inside and outside of the 

vesicle must be employed. The liposome’s diameter can be varied, often ranging between 

approximately 20 nm, and a few hundred micrometres [86].  

 

 

 

Figure 1.12. Liposome cross-section showing encapsulated enzyme, from [87] 

 

 

It is worth highlighting that the self-assembly of polymeric amphiphiles, i.e., homopolymers, 

polyelectrolytes, or block copolymers, can result in a variety of different morphologies, i.e., 

dendrimers, micelles, capsules, PICsomes, and polymersomes, however, with respect to the 

research at hand, focus will be aimed at polymersomes. Polymersomes (Figure 1.13), which are 

comparable to liposomes, are vesicles containing a polymeric membrane. Owing to the diverse 

library of block copolymers available, where each polymer varies in terms of composition and 

molecular weight, tighter control over the polymersome’s properties can be achieved with 

regards to membrane thicknesses, permeability characteristics, and stimuli-responsiveness [88-

90]. The principle of vesicle self-assembly is covered more extensively by Antonietti and Förster 

[91], however, the stability of polymer vesicles, mixed with their potential to be both 

biocompatible and biodegradable, facilitates their usefulness in therapeutic applications.  
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Figure 1.13. Schematic illustration of an enzyme-encapsulating polymersome, showing 
membrane permeability, adapted from [92] 

 

 

Introducing poly(ethylene glycol) (PEG) onto the surface of either polymersomes or liposomes 

vesicles is shown to increase circulation time [93], and in the case of liposomes, increase 

stability. Liposomes have not only been shown to display a high interaction rate with high and 

low density lipoproteins in blood plasma, an instability which can cause their constituents to be 

prematurely released [94], but they are also susceptible to immune system recognition. 

PEGylation of any composition membrane promotes “stealth-like” characteristics, by minimising 

the interfacial free energy and increasing steric repulsion, ultimately reducing opsonin 

recognition and reticulo-endothelial system (RES) uptake [95]. 

 

1.6.1 Principles of Self-Assembly 

Irrespective of their architecture, it is the balancing of attractive and repulsive forces that causes 

amphiphiles to self-assemble into supramolecular structures. For example, micelles represent a 

simple supramolecular assembly, where the individual components are in thermodynamic 

equilibrium with monomers of the same species in the surrounding medium. When in 

monomeric form, these surfactant monomers are surrounded by water molecules, forming a 

“water cage” or “solvation shell”, which, in similarity to a clathrate cage, form an ice-like crystal 

structure, characterised by the hydrophobic effect. 

A micelle will then only form when the concentration of surfactant monomers is greater than 

both the critical micelle concentration (CMC) and the critical micelle temperature (Krafft 
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temperature) (Figure 1.14). This phenomenon can be described in thermodynamic principles, 

where it is this balance between entropy and enthalpy that ultimately contributes to the 

spontaneous formation of micelles. On its own, the assembly of surfactant molecules is 

unfavourable in terms of both enthalpy and entropy, however, as the concentration of 

monomers is increased to the point of CMC, the unfavourable entropy contribution, arising from 

hydrophobic tail clustering, is overcome by a gain in entropy received during the release of their 

associated solvation shells – at this point, the hydrophobic tail must be distinct from the solvent, 

and so, form micelles. In summation, where surfactant concentration is above the CMC and 

Krafft temperature, the gain of entropy due to release of “trapped” water molecules is greater 

than the loss of entropy due to the assembly of surfactant molecules [96].  

 

 

 

Figure 1.14. Concentration of individual species in a surfactant solution 

 

 

Following on, the geometry of the surfactant aggregate, i.e., whether it aggregates into a vesicle, 

micelle, or other, is primarily related to the surfactant’s packing considerations. Firstly, it is 

important to clarify the difference between a vesicle and a micelle; a vesicle contains a bilayer 

with an aqueous compartment, whereas, a micelle contains a polar head group exterior, and a 

hydrocarbon interior. In addition, micelles can undertake various different geometries, i.e., 

spherical, cylindrical, etc. Each amphiphilic molecule has an optimal interfacial area, and 

supramolecular self-assembly of amphiphiles undertakes considerations of this optimum, in 

relation to solvent exposure. Where “a0” is the headgroup area, “v” is the volume, and “l” is the 
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chain length, then the molecular shape of each structure can be described in terms of the 

packing parameter (P), where P = v / a0l (Table 1.3) [97]. A double-chained amphiphile would 

(approximately) lead to a doubled v value, and because the optimal “a” and “l” values are 

constant, this ultimately means that such double-chained amphiphiles tend to form vesicles or 

cylindrical micelles, whereas single-chained amphiphiles are more likely to form spherical 

micelles. Vesicle formation can also be aided by other factors, such as hydrophilic head group 

charge distribution [98]. 

 

 

Table 1.3. Illustration of how surfactant molecular shape affects the critical packing parameter, 
and ultimately determines aggregate morphology. 

 

Critical Packing 
Parameter (P) 

Surfactant Molecular 
Shape 

Aggregate 
Morphology 

 

P ≤ ⅓  

Cone 

 

 

Spherical 
Micelles 

 

⅓ ≤ P ≤ ½ 

Truncated Cone 

 

 

Cylindrical 
Micelles 

 

½ ≤ P ≤ 1 

Truncated Cone 

 

 

Vesicles 

 

P ~1 

Cylinder 

 

 

Planar Bilayers 

 

P > 1 

Inverted Truncate Cone 

 

 

Inverted 
Micelles 
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1.6.2 Membrane Permeability 

Phospholipid membranes are permeable to small, uncharged, water-soluble molecules, such as 

urea or CO2, via passive diffusion, and in these examples, molecules will travel down their 

respective chemical concentration gradient, from an area of high concentration, to an area of 

low concentration. The relative membrane diffusion rate of a given substance is proportional to 

that substrate’s concentration gradient across the lipid bilayer, and to the hydrophobicity of the 

molecule. 

For a molecule to enter a vesicle, first, the molecule must diffuse from the surrounding aqueous 

solution into the hydrophobic interior of the phospholipid bilayer. Each substance has a partition 

coefficient (𝐾), determined as the ratio of the molecular concentration inside the hydrophobic 

bilayer (𝐶𝑚) to the molecular concentration in the aqueous solutions (𝐶𝑎𝑞), which can be used 

as a determinant of its hydrophobicity (higher 𝐾 = greater hydrophobicity and faster diffusion) 

[99]. 

 

𝐾 =  
𝐶𝑚

𝐶𝑎𝑞
 

Equation 1.5. Partition coefficient. 

 

The higher viscosity of the hydrophobic core of a bilayer membrane, in comparison to the 

aqueous solution surrounding, means that the diffusion rate across the membrane is a lot slower 

than the associate diffusion rate of the same molecule through the aqueous solution. As such, 

the diffusion across the cell membrane is determined as the rate-limiting step in the passive 

diffusion of molecules into the vesicle lumen. 

So, if we think about this in a more quantitative fashion, where a membrane with a defined 

surface area (𝐴) and thickness (𝑥) separates two solutions, of varying concentration, where the 

concentration outside the vesicle (𝐶𝑜
𝑎𝑞

) is greater than the concentration inside the vesicle 

(𝐶𝑖
𝑎𝑞

). In this instance, we can modify Fick’s Law [99], stating that the membrane diffusion rate 

(
𝑑𝑛

𝑑𝑡
) is directly proportional to the permeability coefficient ( 𝑃 ), the difference in solution 

concentrations (𝐶𝑜
𝑎𝑞

− 𝐶𝑖
𝑎𝑞

), and to the area (𝐴). 
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𝑑𝑛

𝑑𝑡
= 𝑃𝐴(𝐶𝑜

𝑎𝑞
− 𝐶𝑖

𝑎𝑞
) 

Equation 1.6. Modified equation to determine diffusion rate 

 

And, the value of P, i.e., the rate of diffusion for any given molecule, is proportional to its 

partition coefficient: 

𝑃 =  
𝐾𝐷

𝑥
 

Equation 1.7. Permeability coefficient (P) 

 

Where 𝐷 represents the diffusion coefficient of the substance whilst inside the membrane, we 

can combine these two equations to obtain: 

 

𝑑𝑛

𝑑𝑡
= 𝐴

𝐾𝐷

𝑥
(𝐶𝑜

𝑎𝑞
− 𝐶𝑖

𝑎𝑞
) 

 

Equation 1.8. Diffusion rate of molecules across a lipid bilayer. 

 

Here, we can see that the diffusion rate is proportional to both the diffusion constant, and the 

partition coefficient, and inversely proportional to membrane thickness, but, because the 

membrane thickness, and diffusion coefficient is likely to be similar for all phospholipid bilayers, 

the real determinant of diffusion is accredited to the substrate-to-substrate differences in 

partition coefficients, i.e., the degree of hydrophobicity a molecule exhibits. 

Now, if we are to consider our potential system, for what at first instance may seem like a 

relatively straightforward concept, i.e., the encapsulation and subsequent reaction profile of a 

confined urea-urease reaction, complexity is likely added through the number of reaction 

species produced, the subsequent equilibria that governs the pH inside and outside the vesicle 

lumen, and similarly, the transfer of neutral molecules between the vesicles and surrounding 

solution (Figure 1.15). 
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Figure 1.15. Complexity of confined urea-urease reaction in terms of membrane permeation 

 

Of course, where neutral species, e.g., urea, ammonia, and carbon dioxide, do not hold a charge, 

their relatively smaller partition coefficient infers a greater readiness to cross the lipid bilayer 

(providing a concentration gradient is present). However, if we are to consider the ions in our 

system, i.e., H+, OH-, NH3
+, CO3

2-, whose hydrophilicity will be much, much higher than that of 

the uncharged species, we can begin to see how charge, which is intrinsically linked to pH, affects 

diffusion rates across the membrane (Table 1.4) [100]. 

 

Table 1.4. Permeability rates (m.s-1) across lipid membranes for protons, ammonia, carbon 
dioxide, and urea [100]. 

 

 Neutral Charged 

Chemical Species NH3 CO2 Urea H+ 

Permeability (P) 
(m.s-1) 

10-4 10-6 10-8 10-12 
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1.6.3 Generating Nanoreactors 

Nanoreactor preparation is a complex process, which requires fulfilment of specific 

requirements with regards to nanoreactor architecture, i.e., building blocks and active 

constituents, and also the therapeutic application. In addition, generation of therapeutic 

nanoreactors for intended use in the human body are subject to increased scrutiny in relation 

to their health and safety. Nanoreactor preparation can be subdivided into two main processes: 

1) architecture formation from specific building blocks, and; 2) introducing the active constituent 

to the architecture. The primary aim is to maintain the active constituent in its functional form; 

this is both specific to each biomolecule, and also dependent on the preparation 

method/conditions [73]. As a result, architecture preparation has to be altered to be compatible 

with the active constituent. Another important consideration is building block treatment with 

organic solvents. Organic solvents can have a dramatic impact on the activity of biological 

compounds, and their use should therefore be decreased (where possible) or preferably 

removed (solvent-free preparation) [90]. 

There are various methods available for the generation of vesicles with active constituents 

entrapped from the aqueous phase, which have been extensively reviewed [101], however, for 

the purpose of this research, two distinct methods are of interest. Firstly, thin film rehydration 

is one of the most commonly used techniques for the formation of vesicles [102, 103]. 

Surfactants are dissolved in an organic phase (typically chloroform), and, for this method, that 

organic phase is removed through evaporation under a high vacuum, to leave a thin, dried lipid 

film. The thin film is then hydrated with aqueous media, causing it to swell, and subsequently 

agitated to detach the swelling lamellae from the vessel surface. This ultimately results in the 

formation of closed, spherical, and multilamellar vesicles, encapsulating the aqueous media, 

with a typical diameter of several micrometres. 

This method represents one of the simplest techniques for liposome formation, however, as a 

standalone technique, multiple limitations are present. Firstly, there exists a problem with 

multilamellarity and encapsulation efficiency. It has been shown that subjecting a rehydrated 

lipid sample to freeze-thaw cycling, not only helps break down multilamellar vesicles into 

unilamellar vesicles, but, the encapsulation of large macromolecules, such as urease, primarily 

occurs during this step – this is thought to be the result of membrane-formed ice crystals leaving 

pores for encapsulant entry [104]. Secondly, extrusion through a polycarbonate filter with a 

defined nanoscale pore size resolves a lack of homogenisation within the sample [105], as well 

as further reduces multilamellarity. Finally, unwanted encapsulants outside the vesicle lumen 

can be removed through a secondary, chromatographic technique, i.e., size-exclusion, etc.   
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The second method, known as the inverted emulsion technique (Figure 1.16), is of potential 

interest for the production of giant unilamellar vesicles (GUVs) capable of housing such an 

enzymatic reaction. In this technique a water-in-oil emulsion is created by agitating a small 

amount of aqueous solution (containing dissolved encapsulants) in a larger volume of oil 

containing free surfactants. Within a centrifugation tube, a surfactant-water interface is 

generated by overlaying free surfactants in oil over a secondary aqueous (collecting) phase. The 

emulsion is then overlaid on top of the surfactant-in-oil phase, and centrifuged. As the emulsion 

droplets pass through the interface, they pick up a secondary monolayer. 

There are several obvious advantages associated with this technique: firstly, encapsulants 

remain distinct from the hosting solution throughout the entire process. As a result, 

encapsulating urease within the emulsion droplets in the first step of process not only increases 

encapsulation efficiency, but, it keeps the process independent of the type of surfactant used, 

the size or charge of the encapsulants, or the ionic strength of the hosting solution. This 

technique also allows for control of vesicle size, which is largely dependent on the rigor of 

agitation. In addition, the inverted emulsion technique facilitates control over bilayer 

composition, potentiating the idea of asymmetric vesicles [106]. It is because of this tight control 

on every aspect of vesicle formation, that these techniques hold such potential in the production 

of micro- and nanoreactors, which house an enzymatic reaction capable of eliciting a secondary 

response.  

 

 

Figure 1.16. Schematic illustration of the inverted emulsion technique showing: a) emulsion 
droplet formation, b) lipid monolayer formation, and c) vesicle formation [106] 
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1.6.4 Therapeutic Applications 

However, when you step away from the theoretical concept of a nanoreactor and begin to think 

about their practical use in biomedical applications, different considerations arise. Depending 

on the function, these considerations can be split into two groups: in vivo, e.g., therapeutics, 

and ex vivo, e.g., medical biosensors. The constraints placed on ex vivo applications are largely 

centred on enhancing the system performance via the optimisation of external conditions, 

whereas, with regard to in vivo applications, demands are placed to fulfil strict health and safety 

regulations governed by the US Food and Drug Administration (FDA), and also the European 

Medicines Agency (EMA). 

For therapeutics, nanoreactors, have been well-received in light of their ability to successfully 

overcome associated problems of conventional therapeutics, e.g., biocompatibility, 

biodistribution, toxicity, cellular uptake, and clearance, through their ability to offer a means of 

protected transport and provide an enclosed reaction space for active biological compounds [73, 

107, 108]. As we know, the addition of a biologically inert shell gives the nanoreactor stealth-

like properties, increasing circulation time and ultimately boosting efficacy, however, site-

specificity can also be achieved through surface-functionalisation with antibodies, peptides, etc., 

to create recognition points [109-111] or achieve target-specific drug delivery [112-114], and so 

can stimuli-responsive nanoreactors, whose membrane permeability changes response to 

physical- (mechanical, temperature, etc.), biological- (enzyme, receptor), or, chemical-stimuli 

(pH, solvent, etc.) [115, 116]. 

In this next section, I will give an up-to-date account of the latest advances in vesicle-based drug 

delivery, and nanoreactor research. As previously mentioned, utilisation of liposomes as drug 

carriers is already present in the marketplace, with many other research efforts in the clinical 

trials phase [117]. EMA and FDA approval of such vesicular drug vehicles, as well as the recent 

approval of triblock copolymer Pluronic® [77] 

(poly(oxyethylene)−poly(oxypropylene)−poly(oxyethylene), PEO-PPO-PEO), only aids to 

highlight the potential of nanoreactors for a range of therapeutic applications, such as: prodrug 

therapy, enzyme-replacement therapy, and also biosensors. Towards the end of the 20th 

century, considerable advances in lipid-based nanoreactor technology were made and 

extensively reviewed [86], however, caveats in their relative instability and short systemic 

circulation time, in conjunction with the first description of polymersomes, led to a distribution 

of research efforts between liposomes, polymersomes, and lipid-polymer hybrids.  

 



51 
 

1.6.4.1 Artificial Red Blood Cells 

Within the field of oxygen therapeutics, both liposomes [118, 119] and polymersomes [120-123] 

have been shown to successfully encapsulate haemoglobin. In the hope of creating an artificial 

red blood cell, haemoglobin-containing lipid vesicles have shown good efficacy in animal studies 

[124], and multi-compartmental vesicles, co-encapsulating catalase or a reductant, e.g., 

homocysteine, have been shown to increase oxygen uptake efficiency via the abolition of 

metheamoglobin formation [125]. However, these lipid-derived systems have shown associated 

downfalls i.e., liposome stability, compatibility with blood, reticuloendothelial system-induced 

degradation, and blood circulation time. Polymersome systems have therefore been 

investigated as a means of protecting the encapsulants whilst working in a biological 

environment. Poly(ethylene oxide)-poly(butadiene) (PEO-b-PBD) and poly(ethylene oxide)-

poly(ethyl ethylene) (PEO-b-PEE) polymersome nanoreactors have shown to be stable in blood 

plasma (temperature; 21°C) for up to five days, potentiating their use for successful oxygen 

replacement therapy [121]. Reduced permeability issues, commonly associated with polymer 

membranes, significantly reduce oxygen binding potential (in comparison to free haemoglobin) 

[120], however, impregnation with the OmpF membrane protein was shown to reduce this issue 

[123]. As is the extensive research effort expended in artificial red blood cell production, as an 

alternative to transfusion, this topic has been broadly reviewed [119, 126-128]. 

 

1.6.4.2 Reactive Oxygen Therapy 

Superoxide dismutase (SOD), an antioxidant enzyme known to catalytically degrade the reactive 

oxygen species (ROS) responsible for the pathogenesis of rheumatoid arthritis, Alzheimer’s 

disease, Parkinson’s disease, as well as others, has shown to be successfully encapsulated in 

lipid- [129] and polymer-based [79, 80] vesicles. In rat models, PEGylation of liposomes was used 

to enhance blood circulation time, which ultimately resulted in greater SOD accumulation 

efficiency at targeted sites, and superior therapeutic effects, irrespective of dose quantity or the 

type of enzyme [94, 130]. A hydrophobic variant of SOD, namely Ac-SOD, resulted in liposomes 

with SOD enzymes presented on their surface [131]. These Ac-SOD-liposomes were shown to be 

more efficient, with respect to anti-inflammatory response, in comparison to when the enzyme 

is encapsulated, due to better surface presentation. In the polymer system, alteration of 

PMOXA-b-PDMS-b-PMOXA block lengths were used to tune permeability, ultimately producing 

SOD-encapsulated nanoreactors with optimal properties [132]. These anti-oxidant-based 
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nanoreactor-systems are expected to have applications age-associated pathologies, i.e., 

cataracts [133, 134], cancer, age-associated macular degeneration, Alzheimer’s disease, etc. 

On the contrary, generation of ROS in high quantities, and in a localised fashion, presents a 

strategy for photodynamic therapy [135, 136]. Polymersome-based nanoreactor systems 

containing a photosensitiser linked to bovine serum albumin, were able to, when excited by a 

specific wavelength of light, to produce ROS and lead to cell death [115]. Such nanoreactor-

based systems hold a great advantage over clinical phase photodynamic therapies because ROS 

are produced in a localised fashion, without the release of the photosensitiser [137, 138]. 

In addition, this type of advance has been explored in a theranostic capacity, i.e., combining 

therapeutic and diagnostic qualities within polymeric nanoreactors. In this example, 

encapsulation of two distinct enzymes, SOD to transform ROS to H2O2 and lactoperoxidase to 

transform H2O2 to H2O and O2, within a polymeric nanoreactor stimulates an enzymatic cascade, 

which, in turn, oxidises Amplex Red to its fluorescent product resorufin. This ultimately produces 

a nanoreactor system capable of removing ROS, whilst simultaneously monitoring ROS-activity 

through fluorescence [79]. 

 

1.6.4.3 Enzyme Replacement Therapy 

Nitric oxide (NO) is produced in the arterial endothelial layer and promotes artery wall 

relaxation, controlling blood flow, and regulating blood pressure. Therefore, being NO deficient 

is a well-understood cause of a variety of different health challenges e.g., arteriosclerosis, 

hyperglycemia, impotence, hypertension, etc. [139]. The enzyme responsible for the production 

of NO is nitric oxide synthase (NOS), which has been successfully encapsulated in a liposomal 

nanoreactor. These NOS-encapsulated nanoreactors were shown to be stable for a minimum of 

15 days, and maintained 75% enzyme activity [139]. 

Similarly, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a genetic 

disease, that causes an elevation of thymidine and deoxyuridine in the blood plasma through 

thymidine phosphorylase deficiency – this leads to toxicity primarily effecting the nervous and 

digestive systems [140]. The successful encapsulation of thymidine phosphorylase has been 

documented in polymersomes, where, thymidine phosphorylase-catalysed conversion of 

thymidine to thymine and deoxyribose 1-phosphate can take place. These nanoreactors were 

found to be both stable (blood serum, 37°C) and non-toxic (hepatocytes and in macrophages) 

[73, 82]. 
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1.6.4.4 Prodrug Activation 

An example of how nanoreactor systems can be used to enhance an existing cancer therapeutics 

can be seen with directed enzyme prodrug therapy (DEPT). Here, artificial introduction of 

enzymes into the body is used as a means of converting a prodrug into an active drug. However, 

the likelihood of the enzyme invoking an immune response, leading to rapid clearance or 

potentially harmful adverse effects is high. To circumvent this problem, an advancement on 

DEPT is gene-DEPT (GDEPT), where an enzyme-encoding gene is delivered to stimulate the 

enzymatic activation of a prodrug. However, although this strategy has significantly reduced 

systemic toxicity because toxin production is confined to the tissue to which the gene is 

delivered [141], a more efficient strategy would be to encapsulate prodrug-activating enzymes 

within a nanoreactor, which can then be targeted to the cancerous cells, ultimately eliciting their 

therapeutic effect upon docking. The obvious advantage of enzyme encapsulation is that 

following intravenous administration, circulation time is to be increased and likelihood of an 

immune response is greatly reduced. 

Again, within the field of cancer therapeutic, encapsulation of an enzyme capable of converting 

a prodrug to an active drug have been documented. Both lipid [142, 143] and polymer [142] 

systems have been shown to encapsulate nucleoside hydrolase, an enzyme extracted from the 

parasite Tyrpanosoma vivax, which is capable of converting non-toxic prodrugs 6-methyl-purine 

riboside and 2-fluoroadenosine to toxically active compounds 6-methylpurine and 2-

fluoroadenine, respectively. In each case, incorporation of OmpF channel proteins into the 

nanoreactor membranes facilitated permeability.  

Another promising example, where an element of temporal control was achieved, was shown in 

penicillin acylase-encapsulating polymeric nanoreactors, capable of successfully converting a 

prodrug into an active drug. Since the substrate has no antibiotic effect, not only is the risk of 

adverse reactions reduced, but the localised efficacy of antibiotic effect will be increased. 

However, temporal control of antibiotic release was only partially achieved through the 

manipulation of various fundamental parameters, i.e., substrate concentration, vesicle size, and 

the number of membrane channels present [78]. 

 

1.6.4.5 Cell-Level Therapies 

The height of nanoreactor technology is rooted in the repair of cell dysfunction, either through 

the mimicry of cell organelles, or through gene upregulation [114, 144-146]. Further advanced 

is liposomal DNA delivery, with products such as Lipofectamine already on the market, but these 
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products are only shown to improve the efficiency of transfection. However, for the cell to 

express the transgene, it must reach the cell nucleus and undergo transcription [147]. These 

DNA-carrying nanoreactors are typically generated through the conjugation of a cationic lipid 

molecules with neutral co-lipid helpers to produce a positively charged liposome, which is then 

capable of generating electrostatic interaction with nucleic acids and fusing with the negatively 

charged cell membrane allowing transfer of the genetic material [148].  

The idea of mimicking a natural organelle would not only have a resounding impact on the field 

of artificial cell (protocell) design, but it would also revolutionise medical practice with regards 

to correcting cell-level disorders, e.g., mitochondrial disease. At this moment in time, there has 

been no breakthrough in artificial organelle technology where the requirements to achieve such 

a feat is complicated on many fronts. The nanoreactor needs to be of an appropriate size to be 

taken into the cell, the in situ activity of encapsulated constituents needs to be preserved, the 

actual nanoreactor architecture must be completely stable. If achieved, this technology would 

represent a significant milestone in in vivo cell organelle replacement, and provide a new 

frontier in therapeutics. 

 

1.6.5  Artificial Cells 

Of course, the potential of this technology stretches beyond that of therapeutic outcomes, to 

perhaps underpin a pillar of synthetic biology. Cells, often referred to as the “building blocks of 

life”, are the basic structural, functional, and biological unit of all lifeforms. However, on a 

fundamental level, a cell is just a highly advanced, and efficient microreactor, and it is this 

fascinating concept that has inspired much research into the field of artificial cell technology. In 

fact, since there first proposition in 1957 [149], research into these protocells has served many 

purposes, such as: i) helping shape a plausible theory for the origins of life, ii) providing insight 

to shape our understanding of cellular life, iii) investigating the connection between the living 

and non-living world, and; (iv) adding novel functions to biological cells for the development of 

new applications [150]. 

At present, the many processes that take place in a natural cell are well-understood. The internal 

structure, including the function and biochemical characteristics of the internal components 

have been elucidated [151]. However, the true complexity of a natural cell is owed to 

understanding how all these individual factors integrate. Advances within synthetic biology tries 

to bridge the knowledge gap, progressing our understanding of how these processes 

interconnect, through two distinct yet fundamental approaches: 
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i. A top down approach, which involves the systematic breakdown of a living 

organism’s genetic material to leave the minimum number of genes required for 

essential function [152]. 

ii. A bottom-up approach, in which an artificial cell is created through the assembly of 

non-biotic materials to mimic the aspects of a biological cell [153]. 

Although yet to be created, an artificial cell, as well as being similar in structure and 

characteristics to its natural counterpart [153, 154], should be “alive”, in the sense that it should 

be able to self-maintain, self-reproduce, evolve, and die. Given the huge complexity of even the 

most simple organisms, before any effort is expended trying to synthesise a “living” protocell, 

one must consider the minimal criteria for cellular life [155]:  

i. A robust and semi-permeable membrane to provide protection to internal 

constituents and allow selective passage of material/energy 

ii. Genetic material in the form of biomacromolecules, e.g., DNA or RNA, to control the 

dynamics of the cell, and allow for evolution capabilities 

iii. A network of metabolic pathways, providing a means of energy generation, self-

maintenance, and self-processing. 

iv. The ability to grow and reproduce, allowing for the survival of the species. 

v. Adaptive characteristics to promote survival in a dynamic and environment. 

The integration of such complex and efficient functions into a single synthetic system is an 

impressive but challenging goal. However, as synthetic biology has advanced, and micro-

/nanoreactors have provided an efficient means of housing a variety of 

macromolecules/functions [156, 157], several groups have successfully mimicked some simple 

functions of life [158]. 

Phospholipids have been identified as the primary components of plasma membranes in almost 

all known living organisms, so liposomes provide one discernible option for the housing of 

cellular components, but this is not the only option, other examples include polymersomes, 

lipid-polymer hybrids, colloidosomes, or virus capsids [156]. However, although great control 

has been achieved in terms of permeability, biodegradability, stimuli-responsiveness, and size, 

the complex compartmentalised internal structure of eukaryotic cells generates an additional 

level of difficulty. Within a cell, the separation of microenvironments, housing a variety of 

distinct chemical reactions and reaction cascades, is appropriated through a number of 

organelles, however, for this to be replicated in synthetic systems, multi-compartment vesicles 

must be generated. One example, in the work of Peters and co-workers [159], describes a multi-
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compartmentalised vesicle where each compartment was loaded with a different enzymatic 

reaction cascade step, and communication between such compartments allowed for a signalling 

cascade to be achieved in an artificial system. 

Besides being a basic chemical boundary, a minimal cell should act as an information system. 

Where all life is coded by DNA, the translation of information held within a gene into a functional 

product, often a protein, is fundamental to the construction of a minimal cell. However, even 

the most simple of organisms contains hundreds of delicately regulated genes. Clearly, the task 

of engineering a complex and communicating synthetic network within a synthetic cell is 

enormous, however, there have been promising advances. In 2001, Yu and co-workers [160], 

reported the expression of a functional, mutant green fluorescent protein (GFP) (GFPmutl), 

through the encapsulation of a protein synthesis reaction mixture. This was built on in 2004, 

when Ishikawa and colleagues [161] encapsulated both a T7 RNA polymerase gene and a GFP 

gene, and initiated a two-step reaction cascade, where the product from T7 RNA polymerase 

promoted the upregulation of the GFP gene. However, in contrary to such relatively simple 

behaviour, a truer representation of a biological cell would see protein expression regulated 

through feedback behaviour. To this end, a recently-developed, synthetically-

compartmentalised system encapsulating all seven regulatory E. coli σ factors has allowed for 

more complex, and responsive metabolic circuits, where transcriptional activation cascades 

showing feedback behaviour have been shown to switch between two outputs depending on 

the inducer [162, 163]. 

For a cell to function and maintain its activity, it needs a continuous supply of building blocks, 

and the energy to convert them into functional metabolites. In biological cells, this is supplied 

through the catabolism of molecules, i.e., ATP → ADP, which are continuously recycled as part 

of the electron transport chain. Here, a series of complexes that transfer electrons from electron 

donors (nicotinamide cofactor (NADH)) to electron acceptors (Complex I) via redox (both 

reduction and oxidation occurring simultaneously) reactions, and couples this electron transfer 

with the transfer of protons (H+ ions) across a membrane. This creates an electrochemical 

proton gradient that drives the enzyme-catalysed synthesis (ATP synthase) of adenosine 

triphosphate (ATP), a molecule that stores energy chemically in the form of highly strained 

bonds [164]. Through the encapsulation of a Baeyer–Villiger monooxygenase, NADH has been 

shown to be successfully regenerated in nanoreactors [165]. Likewise, the incorporation of 

Complex I, a membrane protein responsible for the coupling of electron transfer between NADH 

and ubiquinone to proton translocation across an energy-transducing membrane, to help build 

the electrochemical potential difference that supports ATP synthesis, into vesicle membranes, 
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there is clear movement towards an energy producing nanodevice [166]. Finally, encapsulation 

of ATP synthase, used to produce high-energy ATP, has been reported. [167]. Although not quite 

there, the potential to combine and expand on such regenerative and energy producing 

metabolic reactions is huge when looking to achieve a synthetic source of cellular energy. 

However, in the broader sense of metabolism, in most instances reported to date, the omission 

of a mechanism to balance such resources results in the cessation of artificial cell metabolism, 

due to a depletion of nutrients, and where continuous replenishment of nutrients occurs, the 

accumulation of waste becomes problematic [168]. 

In order to maintain a living population, cells, whether biological or artificial, must reproduce. In 

order to proliferate, producing daughter/sister cells of an appropriate size without shrinkage, 

membrane components must be produced. To do this, an often-adopted approach is to 

incorporate an amphiphilic molecule-producing catalyst into the vesicle, be it the lumen or the 

membrane [169]. This catalytic generation of an amphiphile induces budding, and ultimately 

fission, in response to a disruption in the compartment’s surface-to-volume ratio, however, 

ultimate dilution of the catalyst following growth iterations is problematic. Similarly, to truly 

reproduce biological cell proliferation, and maintain metabolic function, the associated 

metabolic machinery must also be replicated – so far, minimal success has been realised in this 

area [169]. 

Finally, where we have highlighted the current state of advancement for the first four 

characteristics of life, finally, we move onto adaptability. In this sense, for a cell to survive in a 

dynamic environment it must continuously sense and respond to environmental stimuli. In one 

example [170], dynamic protein-ligand interactions were reversibly controlled by external small-

molecule triggers in GUVs. The pH-modifying enzyme, alcohol dehydrogenase, was responsible 

for the conversion of two different substrates, was used to modulate a pH-specific interaction 

between the His-tagged luminal protein and the Ni-NTA ligand on the vesicle membrane – this 

process was also reversible in the presence of an appropriate antagonist. As well dynamic 

membrane association/dissociation, one of the most important characteristics to replicate 

would be stimuli-responsive modulation of membrane permeability. In 2013, Li and co-workers 

[171] successfully showed, albeit in a colloidosome, that they could efficiently regulate an 

internal reaction through the control of membrane permeability, however, to move towards a 

total artificial cell, this selectivity should be based on more than just size or charge. 

Similar efforts have been expended trying to replicate the natural communication seen between 

cells when they are coordinating their actions. In the first example of natural-to-artificial cell 
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signalling, Gardner et al. [172] developed a lipid-bound protocell that could synthesize complex 

carbohydrates by the autocatalytic sugar-synthesizing formose reaction. It was able to initiate a 

quorum-sensing mechanism in the marine bacterium Vibrio harveyi and cause a bioluminescent 

response. Since then, a few examples of artificial-to-artificial cell signalling have been described, 

for example, where hydrogen peroxide formed in one colloidosome induced the formation of a 

thermoresponsive PNIPAM outer shell on a secondary colloidosome [173]. Despite this progress, 

reciprocal communication is yet to be achieved; it is this communal communication that could 

form the foundations of artificial tissue-like structures. 

Finally, the importance of motility in natural cells is well documented throughout nature, either 

by chemotaxis, or through mechanical means. In this sense, motility has been achieved in 

artificial cell-like systems, via “nanomotors”, through a variety of means, i.e., propulsion and 

chemotaxis. This will be elaborated on in more detail in Chapter Six.  

 

1.7 Overview of Research 

So, within this doctoral thesis, we draw together these disciplines of thriving scientific attention, 

and work towards an idealism, where state-of-the-art nanoreactor technology, is combined with 

non-linear enzyme kinetics, to generate a secondary outcome. 

With regards to a temporally-controlled drug delivery system, although it is obvious to assume 

that the cooperation between positive and negative feedback is needed to create a system with 

full autonomy, the inner-workings of how this may be done are still unknown. However, by 

building a system from the bottom-up, confining enzymatic feedback within a nanoreactor, and 

investigating the associated nuances, we can begin on a path to better understanding this 

system, with a view to therapeutic design. 

Through this means, we have uncovered a system more complicated than first anticipated. This 

complexity, driven firstly by the fragility of the constituents in relatively harsh conditions, but 

more importantly by the dynamism of the system in terms of membrane transport, and 

associated pH-linked permeability coefficients. However, by building a platform to allow for 

extensive parameter space exploration, in combination with theoretical modelling, we have not 

only gained control over the kinetic output but have also pieced together a holistic overview of 

how the system behaves in totality. It is this organic discovery, and ultimate understanding, that 

has allowed us to extend our reach, and push the functionality of our novel system, e.g., inter-

vesicle communication and vesicular motility.  
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CHAPTER TWO – OPTIMISATION OF SYSTEM (PRE-CONFINEMENT) 
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2.1 Introduction 

It has previously been suggested [174], through simulations of bistability in alginate beads, that 

there may be a link between the degree of enzymatic confinement, and the robustness of pH 

switching, in the urea-urease reaction. However, before attempting to load the urea-urease 

reaction into a situation of nanoscale, vesicular confinement, a number of considerations and 

preliminary experiments have to be investigated. 

Within this chapter, firstly, a practical and efficient way of monitoring pH switching must be 

found. Of course, in a regime where pH change must be monitored inside a vesicular lumen, our 

ideal candidate would not only be pH-sensitive, but also ratiometric, as to mitigate against 

potential variability in encapsulation efficiency, and membrane impermeant, as to prevent 

leakage. Once our lead candidate (HPTS), had been identified, specifically owing to its adherence 

to these characteristics, three questions were asked. Firstly, is HPTS an appropriate pH indicator 

for the pH-switching range witnessed for the urea-urease reaction, could this switching range 

be calibrated, allowing for the simple conversion between absorption ratio and pH, and, finally, 

does HPTS in any way interfere with the catalytic activity, and therefore, pH-switching properties 

of urease? It is, therefore, within this chapter, that we seek to answer these initial questions, 

firstly, through the spectroscopic calibration of HPTS, and secondly, through the repetition of a 

common [174], bulk urea-urease reaction using HPTS as the pH determinant. 

Similarly, given the proposed experimental setup, i.e., the reduction of pH in order to obtain a 

“clock”, and the harsh exposure of the system components to freeze-thawing, during the 

process of thin film rehydration, there are questions to be answered surrounding stability. If we 

take pH for example, and apply what we know from previous literature [174], including what we 

know about H. pylori [175], we can be assured with a high level of certainty that urease will be 

able to withstand the proposed reductions in pH, however, can the same be said about the lipid 

vesicles? Similarly, freeze-thaw cycling is a common technique, coupled to thin-film rehydration, 

which reduces multilamellarity and increases encapsulation efficiency, however, is urease 

robust enough to withstand multiple freeze-thaw cycles, or will catalytic activity be severely 

diminished? This section seeks to answer these questions, aiding a more complete 

understanding of each component within the proposed system, and reassures us that a confined 

system will not unravel into a bulk regime due to our harsh preparation techniques. 

Finally, owing to the (relatively) massive size of Jack Bean Urease (545 kDa), one of the most 

crucial and prominent challenges is the successful and efficient removal of unencapsulated 

entities from the external environment. Of course, the removal of much smaller molecules, e.g., 
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HPTS (524 Da), from larger architectures (like vesicles) can be achieved via size-exclusion on a 

gravity packed column, however, the sheer size of urease may cause unexpected problems with 

regards to the use of not-so-standard size exclusion media. Therefore, the final part of this 

chapter is focused on unearthing an efficient and reproducible technique of vesicle purification, 

exploring the use of different size-exclusion media, and the potential use of peptidases to 

completely inactivate, or cleave the urease into more manageably removable fragments. 

 

2.2 Experimental 

2.2.1 Materials 

The lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC), and the fluorescent lipid 

marker (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(ammonium salt)) (Rhod-DOPE), were purchased from Avanti Polar Lipids Inc. The ratiometric 

pH probe 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and the urease from 

Canavalia ensiformis (Jack Bean) were purchased from Sigma-Aldrich. 

 

2.2.2 Vesicle Preparation (Thin Film Rehydration) 

Here is an overview of a non-specific thin film rehydration protocol, however, this process 

contains multiple variables, i.e., surfactant, encapsulant, pore size, mobile phases, etc., which 

can be altered to create a desired sample. So, to a known volume of chloroform-suspended lipid 

stock solution, in this instance, DPhPC (25 mg/mL), 0.5 mol% of the fluorescent marker Rhod-

DOPE (0.5 mol%) was added, which will give a final concentration of 2.5 mg/mL when 1 mL of 

hydrating solution is added, i.e., 70 μL of DPhPC and 30 μL of Rhod-DOPE, and this was then 

subsequently dried overnight under high vacuum to remove the solvent. The remaining thin lipid 

film was resuspended in an aqueous solution containing the desired encapsulant, which, for 

example, could be urease (10 μM) and HPTS (20 mM) in dilute HCl (0.2 mM) (made with distilled 

water). Following vortex mixing, the samples were subjected to ten cycles of freeze-thawing 

(nine cycles at 45°C, and the final cycle at 36°C). The samples were then extruded eleven times 

through a polycarbonate filter with a defined pore size, e.g., 100, 200, 400 nm. The extruded 

sample was then run down a size-exclusion column, packed with an appropriate medium, e.g., 

Sephadex G-50, with an appropriate mobile phase, e.g., dilute HCl (0.2 mM), to separate the 

vesicles from any unwanted, unencapsulated entities. 
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2.2.3 Calibration of HPTS 

2.2.3.1 Ultraviolet-Visible Spectrometer 

To cover the range of pH switching (pH 4 – pH 10), a phosphate-citrate buffer, covering a pH 

range of 2.2 – 8.0, and a glycine-NaOH buffer, covering a pH range of 8.6 – 10.6, were used. The 

absorption spectra of buffered-HPTS (50 μM) (pH 4.0, 5.0, 6.0, 6.6, 7.0, 7.5, 8.0, 8.6, 9.0, 9.5, and 

10.0) were measured using a Cary 100 ultraviolet-visible spectrometer. A calibration curve for 

HPTS, plotting absorption ratio (450/405 nm) against pH, was created. 

2.2.3.2 Fluorometer 

The same buffered solutions of HPTS used to calibrate the Ultraviolet-visible spectrometer were 

used to obtain fluorescent intensity readings, using a FluoroMax-3 fluorometer, for each the 

known pH solution of HPTS. The solutions were excited at 450 nm and 405 nm, and a 

fluorescence intensity maxima ratio at 511 nm was plotted against pH, to give a calibration curve 

for HPTS. 

 

2.2.4 Urea-Urease Reaction – Bulk Conditions 

Solutions (500 μL) of urease (6.8 units/mL), HPTS (50 μM), and differing concentrations of H2SO4 

(0.24 mM, 0.27 mM, and 0.30 mM) were made using distilled water. In a 550 μL micro-cuvette, 

250 μL of these solutions were placed, the reaction was initiated through the addition of 250 μL 

urea (5 mM), and a time course of absorption ratio  (450/405 nm) was measured using a Cary 

100 Ultraviolet-visible spectrometer. 

 

2.2.5 Acid Stability of Liposomes 

2.2.5.1 Carboxyfluorescein-Release Experiment 

DPhPC and Rh-DOPE (0.5 mol%) vesicles were prepared via the above described thin film 

rehydration method. The aqueous medium used to hydrate the lipid film was a 125 mM 

carboxyfluorescein solution, which had undergone titration using NaOH, until full dispersion of 

carboxyfluorescein had occurred (pH 7.4). Ten freeze-thaw cycles were conducted before the 

lipid suspension was passed through a 100 nm polycarbonate pore filter. The 

carboxyfluorescein-encapsulating liposomes were separated from the external 

carboxyfluorescein via size-exclusion chromatography, using Sephadex G-50 as the medium, and 
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deionised water as the mobile phase. A FluoroMax-3 fluorometer was used to monitor changes 

in fluorescence intensity maxima at 517 nm upon addition of Triton X-100. 

2.2.5.2 HPTS-Release Experiment 

DPhPC and Rh-DOPE (0.5 mol%) vesicles were prepared via the above described thin film 

rehydration method. The aqueous medium used to hydrate the lipid film was a 50 mM HPTS 

solution, adjusted to pH 9.5 with NaOH. Ten freeze-thaw cycles were conducted before the lipid 

suspension was passed through a 400 nm polycarbonate pore filter. The HPTS-encapsulating 

liposomes were separated from free HPTS via size-exclusion chromatography, using Sephadex 

G-50 as the medium, and deionised water as the mobile phase. 

A FluoroMax-3 fluorometer was used to monitor changes in fluorescence intensity maxima at 

511 nm, when excited at 405 nm, upon addition of increasing concentrations of H2SO4 (0.05 

mM/pH 4.0, 0.16 mM/pH 3.5, 0.50 mM/pH 3.0, and 1.58 mM/pH 2.5). Two control measures 

were also taken: 1) no acid, and therefore assumption of no HPTS release, and; 2) addition of 

Triton X-100 (50 μL, 10% v/v) to cause liposome rupturing, and therefore assume that all 

encapsulated HPTS is released. 

 

2.2.6 Urease Stability 

Two bulk solutions, containing urease (50 U/mL) and HPTS (0.05 mM), were made. One was 

subjected to ten freeze-thaw cycles, and the other (control), was left untouched. A Cary 100 

Ultraviolet-visible spectrometer was then used to measure the absorption ratio of each sample, 

in terms of HPTS (450/405 nm), over time, following the addition of urea (10 mM).  

 

2.2.7 Purification 

Two stock species of DPhPC + Rhod-DOPE (0.5 mol%) vesicles (5 mg/mL) were produced via thin 

film rehydration. The first species encapsulated urease (11.1 µM) and HPTS (20 mM), the second 

species were empty, but, once generated, urease (11.1 µM) was added to their external 

environment. Two samples of the urease-encapsulating vesicles were taken, and were either 

incubated with pepsin (0.55 µM) for 2 h, then underwent size-exclusion chromatography on a 

Sephadex G-50 size exclusion column, or vice versa. This was then repeated for the empty 

vesicles, however, after the size-exclusion step, HPTS (50 µM) was added to the external 

environment. Finally, two more samples of the empty vesicles were taken, but, this time, they 

were either incubated with pepsin (0.55 µM) for 2 h or underwent size-exclusion 
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chromatography (Sephadex G-50), before HPTS (50 µM) was added to their external 

environment. Once the experiment had been initiated by addition 10 mM of urea to each 

sample, the absorption ratio (450/405 nm) was measured over time using a Cary 100 Ultraviolet-

visible spectrometer. 

2.3 Results and Discussion 

2.3.1 Calibration of HPTS 

To allow for pH switching in the urea-urease reaction to be monitored, HPTS was chosen because 

of its ratiometric pH sensitivity, attributed to pH-responsive shifts in absorption spectra at 450 

and 405 nm (Figure 2.1), allowing for ratiometric absorption to be measured at 450/405 nm, and 

its water soluble and membrane-impermanent properties, owed to the presence of 3 negative 

charges [176]. The ratiometric nature of HPTS makes it an ideal pH indicator for vesicle 

encapsulation, because measurements can be taken without regard to encapsulation efficiency. 

This is in contrast to standard fluorescent pH probes, which typically change 

absorbance/fluorescence intensity in response to changing pH, and so, in this regime, would 

exhibit fluctuations in intensity in response to inconsistent encapsulation efficiencies across 

different samples. 
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Figure 2.1. Absorption spectra of HPTS with respect to changing pH 

 

 

 

 

 

 

Figure 2.2. Chemical structure of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) 
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2.3.1.1 Ultraviolet-Visible Spectrometer 

To create a calibration curve capable of converting an absorption ratio value to a pH value, 

buffered solutions (phosphate-citrate and glycine-NaOH) of HPTS (50 μM) were calibrated to 

known pHs between pH 4 and pH 10, and their absorption was read. A calibration curve, plotting 

absorption ratio against known pH (Figure 2.3), was shown to be sigmoidal in shape – this was 

consistent with the literature, where confidence in calculated pH was fallible below pH 6.6. By 

applying an appropriate fit to the data (Figure 2.3), we can extract the equation of the curve, 

where 𝑥  is the pH, 𝑦  is the absorption ratio (450/405 nm), and 𝑥𝑐 , 𝑘 , and 𝑎  are fitting 

parameters, which, when rearranged (Equation 2.1), allows us to directly convert absorption 

ratio (450/405 nm) into pH, providing it is within the range of the pH probe (approximately pH 

6.6 – pH 10). 

 

 

Figure 2.3. Calibration curve of known pH HPTS buffered solutions (Ultraviolet-visible 
spectrometer). 

 

𝑥 = 𝑥𝑐 − 
1

𝑘
ln (

𝑎

𝑦
− 1) 

Equation 2.1. Rearranged sigmoidal fit equation from HPTS calibration to allow for prediction 
of pH based on absorption ratio (450/405 nm) 
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2.3.1.2 Fluorometer 

Similarly, the same buffered solutions of HPTS used to calibrate HPTS absorption were used to 

obtain fluorescent intensity readings, where, sequential excitation at 450 nm and 405 nm, 

allowed for a fluorescence intensity maxima ratio at 511 nm to be plotted against pH, and a 

calibration curve generated. By fitting the data (Figure 2.4), where, again 𝑥  is pH, 𝑦  is the 

absorption ratio, and 𝐴1, 𝐴2, and 𝑝 are the fitting parameters, it allows us to convert between 

fluorescence intensity ratio and pH, providing another form of spectroscopy capable of 

determining pH change within HPTS-encapsulating vesicles. 

It is interesting to note that fluorescence gives a more useable conversion at lower pH (below 

pH 6), but is less sensitive above pH 8, whereas, absorption (Figure 2.3) is less sensitive at low 

pH, but more sensitive at higher pH. 

 

 

 

Figure 2.4. Calibration curve of known pH HPTS buffered solutions (Fluorometer). 
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2.3.2 Urea-Urease Reaction – Bulk Conditions 

The intrinsic link between urease activity and pH is widely understood, where changes in pH lead 

to alterations in the protein binding site conformation, resulting in the bell-shaped rate-pH curve 

that is an indicative characteristic of feedback [177]. As such, the urease-catalysed conversion 

of urea to a weak base has been shown to have a maximum rate when at pH 7 [30], meaning 

that if the starting pH is lowered, through the addition of acid, then the reaction rate accelerates 

as the reaction progresses. The literature tells us, that when conducted in bulk conditions, the 

reaction is stable at acidic pH, before rapidly changing to basic pH. As previously mentioned, 

adjustment of these initial reaction conditions, i.e., urea concentration, urease concentration, 

and acid concentration, have an effect on clock time and reaction rate, where, increasing urea 

and urease concentrations leads to a decreased clock time and higher final pH, and increasing 

acid concentration leads to an increased clock time, but has little effect on the pH maxima [177]. 

The kinetics of this reaction in bulk conditions are well-studied, and modelled accordingly, 

however, the use of a ratiometric pH probe (HPTS) in these circumstances is less known. By 

retesting the system, using HPTS as a pH indicator, this not only allows us to confirm what is 

reported in the literature, but, it also allows us to: 1) test the usefulness of HPTS within this 

system, 2) confirm that HPTS plays no interference with pH switching, and; 3) provides a model 

standard for comparisons with reaction kinetics under confined conditions. 

For a urea–urease clock reaction, whereby the initial pH is adjusted by different concentrations 

of sulphuric acid (0.24 mM, 0.27 mM, 0.30 mM), the clock time is shown to increase in relation 

to an increase in sulphuric acid (approximately 20 s, 160 s, and 320 s, respectively) (Figure 2.5). 

The reaction is eventually seen reaching a self-buffering state at a high pH because of the 

formation of the ammonia-ammonium buffer, however, previous literature [174] dictates that 

there is a trend between an increased starting acid concentration, and increased width of 

transition, which can be seen in Figure 2.5, as well as a decrease in final pH, which can also be 

seen here (Figure 2.6), albeit in one example. 
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Figure 2.5. Change in HPTS absorption ratio (indicative of pH) when urea (5 mM) is added to 
bulk urease (6.8 U/mL) and HPTS (50 µM), where the initial pH had been adjusted through 

addition of H2SO4 (0.24 mM, 0.27 mM, 0.30 mM) 

 

 

Figure 2.6. Final pH of bulk urea-urease reaction, when urease concentration (6.8 U/mL) and 
urea concentration (5 mM) are held consistent, and initial H2SO4 concentration is increased 

(0.24 mM, 0.27 mM, 0.30 mM) 
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2.3.3 Acid Stability of Liposomes 

The nature of the urea-urease reaction means that the liposomes in question may be subjected 

to relatively strong acidic (pH 3/pH 4) and basic conditions (pH 9/pH 10). Although previous 

research is indicative of liposomal stability between the ranges of pH 2-9 [178], in our proposed 

experiments, where the internal pH of a urease-containing liposome will be lowered through 

the incorporation of H2SO4, it is important to ensure the stability of these particular liposomes. 

 

2.3.4 Carboxyfluorescein-Release Experiment 

The encapsulation of carboxyfluorescein, a fluorescent dye with pH-dependant solubility around 

pH 7, and subsequent rupture with a detergent, often Triton X-100, has become a standard 

technique for testing the mechanical integrity of liposomes. In general, Triton X-100 can be used 

to determine the rate of leakage displayed by water-soluble substances within a liposome [179]. 

However, such experimental validity is dependent on two assumptions: 1) encapsulated 

carboxyfluorescein is self-quenched, meaning that upon release/leakage into the external 

environment, it is no longer self-quenched, and fluorescence occurs, and; 2) upon addition of 

Triton X-100, all of the encapsulated carboxyfluorescein is released, and fully dispersed into the 

external medium. The validity of this technique, in non-buffered solutions, was tested [179]. 

In typical release studies, when a sufficient volume of Triton X-100 is added to cause all 

encapsulated carboxyfluorescein to be released, an increase in fluorescent intensity maxima at 

517 nm would occur. However, in our scenario (Figure 2.7), the fluorescence spectra has shifted 

along the x-axis. In the most likely scenario, the reduced pH of deionised water (approximately 

pH 5.5) caused through dissolution of free CO2 in the atmosphere, coupled with the pH-

dependent solubility of carboxyfluorescein, means that detergent-induced release is causing the 

carboxyfluorescein to come out of solution. Testing liposome stability to acid using a fluorescent 

probe with poor solubility at acidic pH makes this approach nonviable.  
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Figure 2.7. Monitoring changes in fluorescence intensity maxima (517 nm) (excitation at 497 
nm) when DPhPC + Rh-DOPE liposomes (100 nm) encapsulating self-quenched 

carboxyfluorescein (125 mM) are completely ruptured with Triton X-100 (50 μL, 10% v/v) 

 

 

2.3.5 HPTS-Release Experiment 

A second approach, using HPTS in place of carboxyfluorescein, was explored to determine the 

mechanical integrity of liposomes when exposed to acidic environments. As previously 

mentioned, HPTS is ratiometric, absorbing at 405 nm and 450 nm, and emitting at 511 nm. 

Therefore, as pH decreases, fluorescence intensity at 511 nm increases when excited at 405 nm 

and decreases when excited at 450 nm. 

In this experiment, HPTS at pH 9.5 was encapsulated, and the external environment was left as 

deionised water (pH 5.5). The idea was, that if acid-based disruption of membrane integrity 

occurred, then the HPTS would be diluted into the lower pH external environment, and the 

fluorescence intensity maxima (excited at 405 nm) would increase. In first instance (Figure 2.8), 

we can see a trend that suits this hypothesis. In comparison to the baseline (no acid), increasing 

the concentration of H2SO4 is shown to increase fluorescence intensity maxima at 511 nm, and 

complete rupture (Triton X-100) is shown to cause an expected sharp increase in fluorescence 

intensity. 
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However, follow up experiments (see later in Section 3.3.2.1), which determine the rate of 

proton permeation across the membrane, make it less clear. In these experiments, it was found 

that through the exchange of ions between the vesicle lumen and the external environment, the 

internal and external pH would drift towards a state of equilibrium. Given the time taken to 

prepare and characterise the liposomes, and cross-referencing this time with the time taken to 

move towards equilibrium, it is likely that before any addition of acid, we are already in this 

regime. 

So, when acid is then added to the external environment to test the mechanical stability of the 

liposomes, a new proton gradient is introduced, again, with the net flow of protons being 

directed into the vesicle, and an inevitable decrease in internal pH occurring. As such, the 

increase in fluorescence intensity witnessed when the concentration of H2SO4 is increased, could 

actually be attributed to the pH of the internal environment becoming lower, not through vesicle 

leakage/bursting. 

Similarly, if we assume that the addition of 0.05 mM H2SO4 has, in fact, caused partial release of 

HPTS, we cannot be certain that addition of further acid is actually causing more release, or the 

fluorescence intensity increase is the result of the released, now external HPTS pH being 

decreased further. The reasons outlined make it difficult to ensure the validity of the data, and, 

in truth, the contributing variables, when trying to use spectroscopy techniques to determine 

acid stability of liposomes in non-buffered conditions. 

However, as we will see when we investigate post-generative stability in Section 3.2.5, given the 

time taken to produce, purify, and quantify phosphorus concentration, we can safely assume 

that the vesicles are capable of maintaining their pH gradient over long periods of time in these 

low pH environments. 
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Figure 2.8. Fluorescence intensity change (511 nm) when increasing H2SO4 concentrations 
(0.05, 0.16, 0.50, and 1.58 mM) are added to HPTS-encapsulating (50 mM, pH 9.5) DPhPC 
liposomes (400 nm). No acid, and addition of Triton X-100 (50 μL, 10% v/v), were controls.  

 

2.3.6 Urease Stability 

When it comes to considerations of encapsulation, many of the existing protocols that yield a 

high encapsulation efficiency, use organic solvents or detergents, and are therefore designed 

for molecules with considerable chemical stability. However, the delicate nature of biological 

macromolecules, such as enzymes, means that care is needed in the experimental protocol. As 

a result, the thin film rehydration method is the most suitable approach for encapsulating 

enzymes, but, encapsulation efficiency is low. It has been shown that subjecting a rehydrated 

lipid sample to freeze-thaw cycling, not only breaks down multilamellar vesicles into unilamellar 

vesicles, but, the encapsulation of large macromolecules primarily occurs during this step – 

thought to be the result of membrane-formed ice crystals leaving pores for encapsulant entry. 

However, with each freeze-thaw cycle, there is a likelihood of protein denaturation, and 

therefore a balance must be struck between encapsulation efficiency and enzyme deactivation. 

Colletier et al. 2002, reported that the optimum number of cycles to achieve this balance is ten 

[180]. To confirm this, two identical bulk urease solutions, one left as is, and the other subjected 

to 10x freeze-thaw cycles, were observed following the addition of urea. It can be seen in Figure 

2.9, that in comparison to pH switching in bulk conditions (control), there is little or no difference 

following exposure to freeze-thaw cycling, and as a result, in the experiments involving enzyme 

encapsulation, the number of freeze-thaw cycles was fixed to ten. 
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Figure 2.9. pH switching, as shown by change in HPTS (50 µM) absorption ratio (450/405 nm), 
for bulk urease (1 µM) and bulk urease (1 µM) that has undergone ten freeze-thaw cycles, both 

suspended in dilute HCl (0.2 mM) 

 

 

2.3.7 Purification 

Owing to the quantitative nature of the data in question, questions may be asked about the 

location of pH switching, i.e., inside or outside the vesicle. One factor, which may contribute to 

this uncertainty, is inefficient purification, i.e., inability to successfully remove all external urease 

from the sample. After failing with a high molecular weight size-exclusion media (Sephacryl S-

1000, fractionation range: Mr = 105 - 108), it was hypothesised that using online bioinformatics 

resources, .e.g., “PeptideCutter” [181] may help. “PeptideCutter” is capable of predicting 

protease cleavage sites and reporting the subsequent chain lengths of the peptide fragments. 

Incubation with a protease eliciting high activity at low pH, e.g., pepsin, would break the urease 

down the urease into fragments capable of being separated from the vesicles using a column 

gravity-packed with Sephadex G-50 media. As a result, samples were either subjected to 2 hours 

incubation with pepsin, and then ran down a Sephadex G-50 column, or vice versa, and no pH 

switching was shown (Figure 2.10). 
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However, when testing the efficiency of pepsin incubation on its own (Figure 2.10), simulating a 

biological macroenviroment where free proteases can readily diffuse around the external 

environment of the vesicle, pH switching was shown to occur upon addition of urea, concluding 

an inefficiency of pepsin in urease deactivation. In contrast, when testing the efficiency of size 

exclusion chromatography-only at removing external urease (Figure 2.10), we see in similarly to 

both iterations of size-exclusion chromatography and pepsin incubation, that no pH switching 

occurs in response to catalytic activation. This concludes that size-exclusion chromatography is 

the sole contributor to vesicle purification. Strangely, both the vesicles and the urease were 

outside the limit of the Sephadex G-50 column, however, this separation may be attributed to 

the relative size differences between the two entities. 

 

 

 

Figure 2.10. Efficiency of size-exclusion chromatography (Sephadex G50) and pepsin (0.55 µM) 
incubation at purifying DPhPC vesicles from unwanted external urease (11.1 µM) (external 

environment and mobile phase; dilute HCl (0.2 mM). 
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2.4 Summary 

To summarise, the first aim of pre-loading optimisation was to find a probe capable of 

monitoring pH-switching from within the vesicle lumen. To satisfy our requirements, the probe 

had to display characteristics of membrane impermeance, be ratiometric in nature, and work 

within the desired pH-switching range of the urea-urease reaction, which was found in HPTS. 

Once identified, we calibrated our pH probe for both fluorescence and absorption 

spectroscopies, which was consistent with previous literature [182], and successfully 

investigated its usefulness for tracking pH-switching in our model reaction. 

Following on, we tested the robustness of our experimental constituents to the conditions 

presented in vesicle generation, i.e., low pH and freeze-thaw cycling. We found that, for a 10-

fold iteration of freeze-thawing, urease activity is affected very minimally, and for the reported 

increase in encapsulation efficiency, the cycle number was set at ten. Similarly, we investigated 

vesicle stability at low pH, however, experimental restrictions made the effect of increased acid 

concentration, at first instance, difficult to untangle. Despite this initial concern, as we will see 

in Section 3.2.5, we can be confident in our vesicle’s ability to maintain their integrity at large 

pH gradients, which is also consistent with what is reported in the literature [178]. 

Finally, and crucially, for urease-confinement to be investigated and understood, an efficient 

way of removing unwanted, external urease must be found. In our methods, firstly (although 

not described) we investigated the use of a gel-filtration medium with a molecular cut off range 

capable of removing urease, however, difficulty with gravity packing disrupted the viability of 

this technique. Secondly, the use of a protease to either completely inactivate the enzyme, or 

cleave it into fragments small enough to be purified by gravity-packed Sephadex G-50, was 

investigated. Unfortunately, the use of pepsin only partially reduced the activity of urease, and, 

owing to the low pH that we were operating at, a second protease, with a different cleavage 

behaviour, could not be co-utilised. It was found, however, that a standard, gravity-packed 

column containing Sephadex G-50 was capable of successfully separating external urease from 

our vesicle sample, even though urease was above the recommended molecular cut-off weight 

(~30 kDa), and as such, this technique was used for all further purification. 
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CHAPTER THREE – OPTIMISATION OF SYSTEM (POST-UREASE 

CONFINEMENT) 
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3.1 Introduction 

Once an efficient means of tracking pH switching inside vesicles and the potential caveats of 

adapting thin-film rehydration to suit enzymatic encapsulation had been overcome, i.e., stability 

of membranes in dilute acid, stability of enzyme to freeze-thawing, and a reliable technique of 

removing such a large protein from the external environment, we can look encapsulate the urea-

urease reaction, and optimise the reaction conditions to build a robust platform for further 

exploration. 

Through our initial failings to obtain a definable pH clock, we begin the consider the effect of 

membrane permeability, investigating the movement of H+/OH- across our vesicle membrane, 

and taking from literature where appropriate other species permeability coefficients, to build a 

holistic understanding of the dynamics of our confined system. 

In addition, this chapter seeks to optimise the concentration of vesicles needed to obtain a 

measurable and repeatable reaction profile, especially when scattering and turbidity are 

present. From this, we build a picture of how vesicle size effects scattering, and look to revisit 

our HPTS calibration, but this time, in the presence of varying sized vesicles (100, 200, 400 nm), 

thus allowing us to more accurately define and compare our pH change across varying 

parameters.  

Finally, owing to the unanswered acid stability questions in Chapter Two, we look to confirm the 

locality of our reaction. To do this, we will compare two sets of identical vesicles, one having 

been pre-ruptured with detergent prior to enzymatic activation with urea, and one being left as 

is, whilst asking the question; is the reaction profile we are seeing a result of confinement, or 

are we simply seeing the disintegration of our vesicle, and bulk-reaction phenomena? 
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3.2 Experimental 

3.2.1 Initial Loading 

Urease (12.5 µM) and HPTS (50 μM), suspended in varying concentrations of dilute H2SO4 (0.05 

mM, 0.16 mM, and 0.50 mM) were subsequently encapsulated in 400 nm DPhPC + Rh-DOPE (0.5 

mol%) liposomes, produced via the aforementioned “thin film rehydration” technique (Section 

2.2.2). They were purified via size-exclusion chromatography using the corresponding solution 

of dilute H2SO4 used to suspend the urease and HPTS. A Cary 100 Ultraviolet-visible 

spectrometer was used to monitor changes in the HPTS absorption ratio (450/405 nm), over 

time, following the addition of urea (5 mM) 

3.2.2 Membrane Transport 

3.2.2.1 H+/OH- Transport 

DPhPC and Rh-DOPE (0.5 mol%) vesicles (400 nm), encapsulating HPTS (50 mM) in HEPES (40 

mM) and NaCl (20 mM) buffer (pH 7.5), were prepared via thin film rehydration. The mobile 

phase of size-exclusion was the same buffer used to prepare the vesicles. To initiate the 

experiment, 3 µL of 1 M NaOH was added to the external environment (1 mL), causing a 0.5 pH 

unit shift in the buffering point. A Cary 100 ultraviolet-visible spectrometer was used to monitor 

changes in the HPTS absorption ratio (450/405 nm) over time, and the rate of H+/OH- transport 

across the membrane was extracted. 

3.2.2.2 Electrochemical Equilibrium 

The same experimental protocol was used as above in the pH-transport experiment (Section 

3.3.2.1), however, Triton X-100 (10% v/v) was used to rupture the membrane, once the 

experiment was complete (equilibrium was reached). A final post-ruptured reading of the 

absorption ratio (450/405 nm) was taken.  

 

3.2.3 Vesicle Concentration 

Urease (10 µM) and HPTS (20 mM), suspended in dilute H2SO4 (0.16 mM), was subsequently 

encapsulated in 400, 200, and 100 nm DPhPC + Rh-DOPE liposomes via “thin film rehydration” 

(Section 2.2.2). They were purified via size-exclusion chromatography using the corresponding 

solution of dilute H2SO4 used to suspend the urease and HPTS. A phosphorus assay (Section 

3.2.3.1) was used to determine the total phosphorus content of the sample, which, in turn, was 

diluted to 200 and 500 µM. A Cary 100 Ultraviolet-visible spectrometer was used to monitor 

changes in the HPTS absorption ratio (450/405 nm), over time, when urea (10 mM) and the six 
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samples (100, 200, 400 nm at a total phosphorus content of 200 and 500 µM) are mixed in equal 

volumes (250 µL + 250 µL). 

3.2.3.1 Phosphorus Assay 

Stock solutions of H2SO4 (8.9 N), ascorbic acid (10% w/v), and ammonium molybdate(VI) 

tetrahydrate (2.5 % w/v) were made. 

Six “standards”, which included one “blank” were made by adding the following quantities of 

phosphorus standard (0.65 mM Phosphorus) into 6 borosilicate test tubes: 0 µmoles (0 µl) blank, 

0.0325 µmoles (50 µl), 0.065 µmoles (100 µl), 0.114 µmoles (175 µl), 0.163 µmoles (250 µl), and 

0.228 µmoles (350 µl). Sample tubes were made by adding 50 µl of the liposome solution to 

each test tube (in triplicate, where possible). 

To each of the test tubes, 450 µl of H2SO4 (8.9 N) was added, and all tubes were heated in an 

aluminium block at 210°C for 25 minutes. The tubes were then removed from the block, allowed 

to cool for 5 minutes, before addition of 150 µl of H2O2, and placed back in the heating block for 

a further 30 minutes at 210°C. The tubes were then removed and allowed to cool, before 

addition of 3.9 mL deionised water, 500 µl of our ammonium molybdate(VI) tetrahydrate stock 

solution, and 500 µl of our ascorbic acid stock solution. Once complete, each tube was vortexed, 

and capped with parafilm, before being returned to the heating block for 7 minutes at 100°C. 

Once finished, the tubes were removed, cooled, and their contents were transferred to cuvettes. 

The absorbance of each standard was measured at 820 nm, using a Cary 100 Ultraviolet-visible 

spectrometer, and a calibration curve was generated. The absorbance of each sample was also 

measured at 820 nm, and read against the calibration curve to determine the concentration of 

phosphorus in the sample. 

 

3.2.4 HPTS Calibration (Vesicles Present) 

Deionised water-encapsulating DPhPC + Rh-DOPE (0.5 mol%) liposomes (400, 200, 100 nm) were 

produced via “thin film rehydration” (Section 2.2.2), and a phosphorus assay (Section 3.2.3.1) 

was used to determine the total phosphorus content of the sample. 

As in previous HPTS calibration, a phosphate-citrate buffer (pH 2.2 – 8.0) and a glycine-NaOH 

buffer (pH 8.6 – 10.6), were used to cover the switching range of HPTS (pH 4-10). The absorbance 

of each buffered solution (pH 4.0, 5.0, 6.0, 6.6, 7.0, 7.5, 8.0, 8.6, 9.0, 9.5, and 10.0), containing 

HPTS (50 μM) and deionised water-encapsulating liposomes (400, 200, 100 nm) at a phosphorus 
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content of 250 µM, was read using a Cary 100 Ultraviolet-visible spectrometer. A calibration 

curve for HPTS, plotting absorption ratio (450/405 nm) against pH, was created. 

 

3.2.5 Fitting Procedure 

From our experimental data, firstly, manual “zero-filling” was performed, introducing negative 

“dummy” values equating to y at t0 at 5 minute increments to t-25. Using Origin Pro 2017, the 

data representing “Absorption Ratio450/405 nm” versus “Time (mins)” was fitted using the “Hill1” 

fitting model. From this fit, the final absorption ratio (End), the clock time (k), and an indicator 

of transition width (n) could be extracted. Finally, using the respective calibration curve from 

Section 3.2.4, the final absorption ratio value was converted into a final pH value. 

 

3.2.6 Post-Generation Stability 

“Thin film rehydration” (Section 2.2.2) was used to encapsulate urease (10 µM) and HPTS (20 

mM) inside 200 nm DPhPC + Rh-DOPE (0.5 mol%) liposomes, which were purified via size-

exclusion chromatography using the corresponding solution used to suspend the urease and 

HPTS. A phosphorus assay (Section 3.2.3.1) was then used to determine the total phosphorus 

content of the sample, which, in turn, was diluted to 2 x 500 µM samples. One sample was left 

“intact”, whilst the other was “ruptured” using Triton X-100 (10% v/v). 250 µL of each sample 

was placed in a 550 µL micro-cuvette, and a Cary 100 Ultraviolet-visible spectrometer was used 

to monitor changes in HPTS absorption ratio (450/405 nm), over time, when 250 µL urea stock 

(100 mM) is added (final urea concentration; 50 mM). 
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3.3 Results and Discussion 

3.3.1 Initial Loading 

Data obtained from the initial experimental setup (Section 3.2.1), where urease and HPTS 

suspended in different concentrations of dilute H2SO4 (0.05 mM, 0.16 mM, and 0.50 mM) were 

loaded into lipid vesicles, but the external environment was deionised water, showed a 

relationship between increased acid concentration decreased final pH (Figure 3.1). However, 

although a clear relationship can be seen, there is no distinguishable clock time (as witnessed in 

bulk).  

 

Figure 3.1. Change in absorption ratio, when urea (5 mM) is added to DPhPC + Rh-DOPE 
liposomes (400 nm), encapsulating urease (12.5 µM), HPTS (50 μM), and a varying initial 

concentrations of H2SO4 (0.05 mM, 0.16 mM, and 0.50 mM) 

 

When trying to better understand why no clock time was witnessed for the above reaction, it 

could only be assumed that given the strength of the strength of the initial acid concentrations 

used, in comparison to their bulk counterpart, that the starting pH of the vesicle’s lumen had 

shifted during preparation and purification, and thus, the enzymatic activity of urease was 

higher than expected – this led us to consider the transport of H+/OH- across the vesicle 

membrane over time. 
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3.3.2 Membrane Transport 

If we consider an empty vesicle (Figure 3.2), where the internal pH is lower than the external 

pH, it would be sensible to assume, given what we know about ion transport across biological 

membranes, that there would be a net influx of hydroxyl ions, and a net efflux of protons, along 

their respective concentration gradients, resulting in an overall increase in internal pH. After all, 

ion transport across lipid membranes is central to proper cellular functioning, where proton 

gradients are built, maintained, and dissipated. Of course, such transport of charged species is 

assumed to be very slow, without the presence of active channels or transporters. In light of 

this, it would, therefore, not be unrealistic to assume that during the process of production and 

characterisation, a vesicle with a pH imbalance across its membrane, would move towards a 

position of equilibrium. 

 

 

 

Figure 3.2. H+/OH- diffusion across a lipid vesicle membrane 
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3.3.2.1 H+/OH- Transport 

In this experiment, an increase in pH of the external environment was induced through the 

addition of NaOH (1 M), creating a pH gradient across the vesicle membrane. As a result, H+/OH- 

will seek to diffuse from respective regions of high relative concentrations, i.e., across the lipid 

membrane – this can be seen by monitoring the change in absorption ratio (450/405 nm), until 

a state of equilibrium is achieved (Figure 3.3). A permeability coefficient can then be deduced 

using a recently reported method [183, 184]. The pKa of our buffer (7.5) is converted to a Kb 

value (3.16 x 10-7), which, in turn, can be used to determine the relative hydroxide and HEPES 

concentration of the sample throughout the experiment: 

 

 

𝐾𝑏 =  
[𝑂𝐻−] ×  [𝐻𝐸𝑃𝐸𝑆]

[𝐻𝐸𝑃𝐸𝑆−]
 

 

Equation 3.1. Base dissociation constant for HEPES buffer 

 

 

The flux of H+/OH-, J, can then be determined using the equation: 

 

 

𝐽 =
[𝑂𝐻−]𝑡=𝑥 + [𝐻𝐸𝑃𝐸𝑆−]𝑡=600 − [𝐻𝐸𝑃𝐸𝑆−]𝑡=0 

𝛥𝑡
× 

 𝑉

𝑆
 

 

Equation 3.2. Calculating flux of H+/OH- across vesicle membrane 

 

 

Where V is the internal volume and S is the external surface area estimated in line with 

associated extrusion filter pore size. J uses the amount of OH− ions at t = 0 s or t = 600 s. The net 

flux of protons and hydroxide ions, JH+/-OH, can be found by subtracting 𝐽𝑠𝑡𝑎𝑟𝑡 from 𝐽𝑒𝑛𝑑 To find 

the permeability constant, P, the net flux, JH+/-OH, is divided by the hydroxide ion concentration 

gradient (𝐶) formed from the addition of NaOH: 
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𝑃 =
𝐽𝑒𝑛𝑑 − 𝐽𝑠𝑡𝑎𝑟𝑡

𝐶
 

Equation 3.3. Permeability coefficient for H+/OH- transfer across a membrane 

 

 

Slow proton leakage with a permeability of 1.1 × 10−10 cm.s−1  was measured for 400 nm DPhPC 

liposomes, taking approximately 3.5 h to reach equilibrium. As such, in an experimental protocol 

where sample preparation is long, considerations of proton transport across a membrane hold 

their own weight. It was therefore important to keep internal and external pH balanced to 

ensure no movement throughout lengthy sample preparation. 

 

 

 

Figure 3.3. Determination of electrical potential across membrane following vesicle rupture 
after H+/OH- equilibria is reached. 
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3.3.2.2 Electrochemical Equilibrium 

However, considerations of pH transport across a membrane does not paint the whole picture, 

where considerations of electroneutrality are present. As ions move across the vesicle bilayer, 

along their respective concentration gradients, they may contribute to the build-up of a 

potential differences across the membrane, and, where such charge separation is present, an 

electrical gradient will continue to grow in magnitude until it balances exactly with the chemical 

gradient. Therefore, the rate of exchange between the vesicle lumen and the external 

environment, i.e., the movement towards chemical equilibrium may not occur if an imbalance 

of electrical charge is present [185]. By rupturing the membrane with Triton X-100 and seeing a 

further increase in pH (0.05), it may be assumed that the chemical gradient across the 

membrane has not quite reached equilibrium, and, in fact, a build-up of electrical potential is 

preventing further transport. However, given the small increase, and the likely contribution of 

symport and antiport of M+/A-, this does not seem likely (Figure 3.3). 

 

3.3.3 Vesicle Concentration 

Of course, to compare two samples of urease-encapsulating vesicles, which may differ by an 

influencing parameter, i.e., urease concentration, it is imperative to ensure the number of 

liposomes in each sample is equal. To calculate the total number of liposomes, one must first 

calculate the number of lipid molecules in a liposome [186]. To do this, we determine the total 

surface area of the inner and outer monolayers of unilamellar vesicle, where 𝑑 is the diameter 

of the liposome, ℎ is the bilayer thickness (~5 nm), and divide that area by the head group of a 

single lipid molecule (𝑎, ~0.61 – 0.71 nm2) [187]: 

 

𝐴𝑟𝑒𝑎𝑜𝑢𝑡𝑒𝑟 = 4𝜋 (
𝑑

2
)

2

 

Equation 3.4. Surface area of outer monolayer 

 

 

𝐴𝑟𝑒𝑎(𝑖𝑛𝑛𝑒𝑟) = 4𝜋 (
𝑑

2
− ℎ)

2

 

Equation 3.5. Surface area of inner monolayer 
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𝑁𝑡𝑜𝑡 =  

[4𝜋 (
𝑑
2)

2

+ 4𝜋 [
𝑑
2

− ℎ]
2

]

𝑎
 

Equation 3.6. Number of lipid molecules in a unilamellar liposome 

 

 

On that basis, the total number of lipids that make up a 100, 200, and 400 nm vesicle is 8.09 x 

104, 3.37 x 105, and 1.38 x 106 (if 𝑎  = 0.71 nm2), respectively. As such, if we know the 

concentration of lipids (𝐶𝑙𝑖𝑝𝑖𝑑) in a known volume (𝑉), and the total number of lipids in a single 

unilamellar vesicle (𝑁𝑡𝑜𝑡), then the total number of liposomes (𝑁𝑙𝑖𝑝𝑜) can be calculated: 

 

𝑁𝑙𝑖𝑝𝑜 =  
𝐶𝑙𝑖𝑝𝑖𝑑 × 𝑉 × 𝑁𝐴

𝑁𝑡𝑜𝑡
 

Equation 3.7. Determination of liposome number in a sample 

 

So, if we have a 1 mL solution of 100, 200, and 400 nm unilamellar DPhPC (Mr; 818.3) vesicles, 

at a concentration of 5 mg/mL, the total number of liposomes in each sample would be 4.59 x 

1013, 1.09 x 1013, and 2.66 x 1012, respectively. 

However, in practicality, it would be naïve to assume that the preparation and purification of 

two identical samples, would yield exactly the same number of liposomes, due to experimental 

discrepancies, and, as such, these discrepancies can result in a significant difference with regards 

to the concentration of active urease within the overall sample. To mitigate against such inter-

sample differences, quantitation of lipid concentration can be achieved by calculating the total 

concentration of phosphorus in the system, where each phospholipid contains a single 

phosphorus group, by means of a phosphorus assay, and diluting each sample to a standard 

phosphorus concentration. 

However, defining the correct liposome concentration, where considerations of turbidity and 

scattering are present, was not as simple as first anticipated. When using optical detection 

methodology, it can be assumed that the two most important parameters are the wavelength 

(λ) of light, and the refractive index (n) of the vesicles (relative to the surrounding medium). 

Typically, any optical phenomena witnessed is dependent on the relationship between the 
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wavelength of light and the refractive index, where the larger the difference in refractive index 

between the particle and its medium, the more light that is scattered [188]. When translated 

into the practical use, in Ultraviolet-visible spectrometer spectrometry, this means that incident 

light illuminating a sample of vesicles is partly scattered, and partly absorbed. Determination of 

scattering through mathematical means has been defined numerous times, i.e., Rayleigh 

scattering, Fraunhofer diffusion, etc., however, Mie theory, which determines the scattering 

cross section (σ) of a vesicle, using the diameter, the refractive index of the particle and its 

medium, and the wavelength of polarised light, can be applied to any relationship between 

wavelength and particle diameter [189]. 

To illustrate the relationship between particle size, and associated refractive index, it has been 

shown that at 488 nm, a single 600 nm polystyrene bead scatters 64,000-fold higher than that 

of a single 60 nm polystyrene bead. Similarly, when comparing the effect of associated refractive 

index on scattering, comparisons between similarly sized (300 nm) polystyrene (n = 1.605) and 

silica (n = 1.445) beads, and a vesicle (n = ~1.42), all in water (n = 1.33), shows a seven-times 

decrease in scattered light between polystyrene and silica beads, and a four-times decrease 

between silica beads and vesicles [188]. 

However, although it is easy to imagine the effects of scattering on a single liposome, in turbid 

samples, containing millions of vesicles, the summative extend in which light is scattered is more 

difficult to understand. For instance, if multiple scattering events were to occur, but the final 

scattering event directed incident light back towards the detector, then that light would be 

transmitted to the detector. In this instance, a balancing act therefore needs to be found 

between a sample being dilute enough not to cause associated problems of scattering, but 

concentrated enough that the encapsulated molecules are efficient at raising the internal pH 

(urease) and capable of being detected without noise (HPTS). 

Cross-comparing 400, 200, and 100 nm vesicles at 100 and 250 µM (Figure 3.4), we can see that 

the more standard 100 µM vesicle concentration (dashed line), as commonly seen in the 

literature to reduce turbidity-associated scattering, does not have a clearly-defined switch in pH, 

the absorption ratio is low (reduced signal), and there is no discernible difference between the 

three different-sized vesicles. In contrast, increasing the concentration to 250 µM, negates 

against these concentration-associated problems, giving a clear, and expected difference in 

reaction profile between the different sized vesicles, and, as a result, 250 µM was chosen as a 

standard for all future experiments. 
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Figure 3.4. Determining optimum concentration (in terms of phosphorus content, 100 vs 250 
µM) of urease (10 µM) and HPTS (20 mM)-encapsulating vesicles in dilute HCl (0.2 mM) to 

ensure efficient switching and characterisation 

 

 

 

3.3.4 HPTS Calibration (Vesicles Present) 

However, in these circumstances, it is important to understand the effect that turbidity and 

scattering is having on absorption, and as such, a new HPTS calibration curve, in the presence of   

vesicles, is needed. As we can see from the data (Figure 3.5), as particle size increases closer to 

the wavelength of incident light, the amount of scattering also increases, flattening the 

calibration curve. Through fitting the data at hand (Equation 3.8), where y is the absorption 

ratio(450/405 nm), x is the pH, bstart  and bend  is the absorption ratio at the beginning and end, 

respectively, k is pH at ½ max, and n is the gradient at ½ max, then rearranging the equation, it 

allows us to directly convert absorption ratio (450/405 nm) into pH for each size vesicle 

(providing it is within the range of the pH probe). 
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Figure 3.5. Calibration of HPTS, in known pH solutions, when 100, 200, and 400 nm DPhPC 
vesicles (250 µM phosphorus concentration) are present. 

 

 

 

 

y = bstart + (bend − bstart)
xn

kn + xn
 

   Equation 3.8. Fitting equation (adaptation of “Hill Equation”) 

 

 

𝑥 = (
(𝑦 − 𝑏𝑠𝑡𝑎𝑟𝑡)𝑘𝑛

𝑏𝑒𝑛𝑑 − 𝑦
)

1
𝑛

 

Equation 3.9. Fitting equation rearranged to make x the subject 
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Table 3.1. Values extracted from each calibration curve for 100, 200, and 400 nm DPhPC 
vesicles. 

 100 nm 200 nm 400 nm 

bstart 0.102 0.094 0.325 

bend 2.67 2.61 1.64 

k 7.80 7.86 7.63 

n 16.33 12.85 14.41 

 

 

To understand how these calibration curves can be used to determine a change in pH, and to 

ensure the absorption ratio reflects the pH insides the vesicles, the reaction profile for 200 nm 

vesicles at 250 µM phosphorus concentration from Figure 3.4 (Section 3.3.4) was converted to 

pH, and plotted (Figure 3.6). From this data, we can confirm that absorption ratio is a 

representational indicator of pH. 

 

 

Figure 3.6. Comparison between absorption ratio (450/405 nm) and pH reaction kinetics for 
200 nm vesicles (phosphorus concentration; 250 µM) encapsulating urease (10 µM) and HPTS 

(20 mM) in dilute HCl (0.2 mM), when activated with urea (10 mM). 
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3.3.5 Fitting Procedure 

The fitting equation used above (Equation 3.8) to extract a viable calibration curve can be used 

to extract kinetic parameters that will allow for comparison between multiple samples. If we 

consider the kinetic outputs of our reaction profile that we are interested in, i.e., the clock time, 

the final pH, and the width of transition, we can see from the hypothetical reaction profiles 

below (X) that our fitting function is capable of extracting these data points with ease. Where k 

is time at (End-Start)/2, final absorption ratio(450/405 nm) (bend), which can be converted to pH 

using our HPTS calibration curve (Figure 3.5), and n is the slope at k (mk), which can be used as 

a relative indicator of transition width: 

 

 

 

Figure 3.7. Hypothetical fitting scenario showing extractable parameters (clock time (k), final 
absorption ratio450/405 nm (End), and transition width (n)) when k and End remain constant, and n 

is varied (1 and 5). 
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To understand how this works on a practical level, the 200 nm vesicles at 250 µM phosphorus 

concentration from Figure 3.4 (Section 3.3.4) was taken and fitted with our chosen model 

(Equation 3.8). We can see here than our clock time is 35.1 minutes, our final absorption ratio is 

0.499, which when converted to pH is 6.80, and our indicator of transition width is 1.86. 

 

 

Figure 3.8. Exemplar plot showing fitting model and extractable parameters indicative of clock 
time (k), final absorption ratio (pH) (End), and transition width (n). 

 

 

 

3.3.6 Post-Generation Stability 

Lengthy production and purification time, in combination with the time taken to quantify the 

concentration of phosphorus and ensure samples are uniform, may raise questions regarding 

the post-generation stability of the vesicles, as well as their ability to house the reaction for an 

order of hours. As a result, it is natural to question whether the reaction profile we are seeing 
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is, as a matter of fact, the result of a confinement, or, whether we are seeing vesicular 

breakdown prior to characterisation, and, as such, witnessing a bulk reaction. 

To test this experimentally, a sample of urease- and HPTS-encapsulating 200 nm DPhPC vesicles 

were produced, and diluted down to two identical samples (250 µM phosphorus concentration). 

One sample was ruptured using a detergent (Triton X-100), and the other was left untouched, 

and the absorption ratio was plotted over time, following the addition of urea (50 mM). As we 

can see (Figure 3.9), in the sample that had been “ruptured” using detergent, it can be assumed 

that either no pH switching has occurred, or that pH-switching is rapid (and weak), and has 

therefore not been picked up by the Ultraviolet-visible spectrometer. In both instances, given 

the comparison to pH-switching in “intact” vesicles, where a distinct reaction profile is shown, 

and the data in Figure 3.10, where, in bulk, negligible detergent-induced change in absorption, 

and zero reduction in urease activity, is witnessed, our suggestion that pH-switching is 

happening inside the lumen of our vesicles is reinforced. 

 

 

 

Figure 3.9. DPhPC vesicles (200 nm, 250 µM) encapsulating urease (10 µM) and HPTS (20 mM) 
where one sample was pre-ruptured using Triton X-100 (10% V/V), before adding urea (50 mM) 
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Figure 3.10. Absorption spectra between 450 and 405 nm, showing a) bulk urease (10 µM) and 
HPTS (50 µM), b) the sequential addition of Triton X-100 (10% v/v), and c) the sequential 

addition of urea (50 mM).  

 

 

 

As well as reinforcing the locality of pH switching within the system, a major clue is unearthed 

within this data about the importance of confinement. The data shows, in both hypothetical 

scenarios, that confinement is actually causing pH switching (if we assume that no pH switching 

has occurred in the “ruptured” sample) or it is enhancing the strength of the switch (if we 

assume that pH switching is rapid and weak), with regards to the spatial distribution of urease. 

If we imagine the two samples in their most simple, representational form (Figure 3.11), we can 

quickly understand the importance of confinement, where, in “intact” vesicles, we see enzyme 

molecules in close spatial proximity, and, when we use a detergent to rupture the vesicles, the 

concentration of urease decreases, with respect to the total bulk volume. 
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Figure 3.11. Spatial proximity of urease when in confinement and following the addition of a 
detergent. 

 

 

 

3.4 Summary 

Throughout this chapter, we have unearthed knowledge crucial to the understanding of our 

system. Through the comparison of pre-ruptured and intact vesicles, we have provided insight 

into the importance of confinement, where, owing to the overall concentration of urease 

present in our sample, localisation, forced through vesicular confinement, is now known to be 

needed for catalytic activity, where, rupture and subsequent dispersion into the bulk volume, is 

not sufficient, in terms of spatial distribution, to cause pH-switching. Similarly, through 

experiments tracking H+/OH- transport, a better understanding of cross-membrane chemical 

dynamics allows us to better design our experimental protocol, being mindful of internal and 

external pH, and ultimately achieve clock-like pH switching. Finally, we have generated a more 

robust calibration process, which, takes considerations of scattering and turbidity into account, 

and, thus, can allow us to more accurately compare reaction profiles across associated 

parameter space with ease and flexibility.  

+ Triton X-100 
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CHAPTER FOUR – GAINING CONTROL 
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4.1 Introduction 

If nonlinear enzyme kinetics are to be used in the design of a temporally-controlled vesicular 

drug delivery system, a holistic understanding of how the system works, and how each 

parameter influences the reaction’s kinetics is imperative. In this chapter, through the 

exploration of inter- and extra-lumen pH tracking, we begin on a path to better understanding 

how a confined reaction affects its local environment, and how, through the medium of 

membrane transport, this immediate effect is translated to the wider external environment. 

From this, we unearth interesting observations on reaction kinetics that are driven by the 

presence of a membrane not previously seen in bulk and begin to answer questions about how 

transport of substrates and products progresses over time, as the reaction proceeds. 

In bulk conditions, the clock time can be controlled via three primary means, i.e., starting pH, 

urea concentration, and urease concentration. When we look to confine the reaction, we add 

additional parameter space to the matrices. Not only do we have considerations of vesicle size, 

and how that may be intrinsically linked to local urease concentration, but, we also have 

considerations of membrane composition, and how that may alter diffusion rates of reaction 

species. Naturally, it is most logical to explore the parameters which can be explored in bulk, 

i.e., acid concentration, urease concentration, etc., to better understand how the actual process 

of confinement, effects the reaction profile. 

As such, controlling reaction kinetics through the manipulation of pH was investigated. By 

lowering the starting pH of the reaction, through suspension of urease and HPTS in increasingly 

concentrated solutions of HCl, we begin to see a pattern forming, correlating to its bulk 

counterpart, where clock time and transition width increase, and final pH decreases. Then the 

pH of the internal constituents loaded into their respective vesicles were tested, painting further 

colour on the internal working of our confined system. Owing to the buffering capabilities of 

proteins, our experiments show that the internal pH of each vesicle did not correlate to the 

expected pH, in fact, it was closer to neutral (pH 6.9) and therefore closer to the optimum 

activity pH for urease. This is an interesting observation, as one would expect instantaneous pH-

switching in all cases, the presence of a clock is again indicative of an electrochemical movement 

towards a state of equilibrium with the lower pH external environment. To complete our 

comparison with bulk, a comprehensive survey of urea and urease concentration was 

undertaken, with the latter raising an interesting debate about the importance of protein copy 

number in a system that appears to be centralised around free diffusion across vesicular 

membranes. 



99 
 

Continuing with the theme of parameter space exploration, this chapter provides clarity on the 

impact of confinement-specific influencers such as vesicle size and membrane composition. If 

we take vesicle size, naturally, one would assume the larger the vesicle, the higher the protein 

copy number (in tune with Poisson statistics), and therefore, a more robust pH switch. However, 

similar to what we see in urease concentration, this assumption is not as clear-cut as first 

identified, adding further weight to the argument of inter-vesicle communication. Likewise, in a 

system where membrane transport is so important, the interchangeability of membrane 

composition between different lipids and polymers provides grounds of investigation to confirm 

our understanding, allowing cross-comparison with known diffusive properties, and again adds 

to our knowledge of the system in a holistic sense. 

Finally, Chapter Four concludes by confirming a self-presented idea that instead of pH-switching 

being solely influenced by increased encapsulation of urease, we draw on what we know about 

membrane permeability and pH-switching outside the vesicle lumen to ask, “is the driving force 

of system-wide pH-switching determined by inter-vesicle communication?”. We confirm this 

indication through the pH-switching of urease-deficient vesicles in the presence of urease-

containing vesicles in the same population. 

 

4.2 Experimental 

4.2.1 Materials 

The lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 

cholesterol, and the fluorescent lipid marker (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(lissamine rhodamine B sulfonyl) (ammonium salt)) (Rhod-DOPE), were purchased from 

Avanti Polar Lipids Inc. Poly(butadiene)-poly(ethylene oxide) (PBD-PEO 1800 and 3800) were 

purchased from Polymer Source. The ratiometric pH probe 8-hydroxypyrene-1,3,6-trisulfonic 

acid trisodium salt (HPTS) and Urease from Canavalia ensiformis (Jack Bean) were purchased 

from Sigma-Aldrich. 

 

4.2.2 Inside vs Outside 

To compare how the pH changes inside and outside the vesicle lumen,  two species of 200 nm 

DPhPC + Rh-DOPE (0.5 mol%) liposomes were prepared using “thin film hydration” (as outlined 

in Section 2.2.2) – the first encapsulating urease (10 µM) and HPTS (20 mM), and the second just 

encapsulating just 10 µM urease. Each sample was then purified via size-exclusion 
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chromatography using the corresponding solution used to suspend the urease and HPTS (0.20 

mM HCl) as the mobile phase, again, outlined in Section 2.2.2. A phosphorus assay (Section 

3.2.3.1) was used to determine the total phosphorus content of each sample. Sample one was 

diluted in HCl (0.2 mM) to a concentration of 500 µM, and sample two was diluted also diluted 

to 500 µM, in HCl (0.2 mM), but with 50 µM HPTS in the external environment. 250 µL of each 

sample was placed in a 550 µL micro-cuvette, and a Cary 100 ultraviolet-visible spectrometer 

was used to monitor changes in HPTS absorption ratio (450/405 nm), over time, when 250 µL 

urea (100 mM) was added. Three independent repeats were performed, and error was 

presented as ± standard deviation (SD). 

 

4.2.3 Starting pH (HCl Concentration) 

“Thin film rehydration”, where the solutions used to suspend the urease (10 µM) and HPTS (20 

mM) are of varying HCl concentration (0.10, 0.20, and 0.32 mM), was used to produce 200 nm 

DPhPC + Rh-DOPE (0.5 mol%) liposomes, which, in turn, were purified via size-exclusion 

chromatography, using the solution of dilute HCl used to suspend the urease and HPTS as the 

mobile phase (Section 2.2.2). A phosphorus assay (Section 3.2.3.1) was then used to determine 

the total phosphorus content of each sample, which, in turn, were diluted to 500 µM. 250 µL of 

each sample was placed in a 550 µL micro-cuvette, and a Cary 100 ultraviolet-visible 

spectrometer was used to monitor changes in HPTS absorption ratio (450/405 nm), over time, 

when 250 µL urea (100 mM) is added. Three independent repeats were performed, and error 

was presented as ± standard deviation (SD). 

 

4.2.4 Balancing Internal and External pH 

A pH meter was used to produce stock solutions of dilute HCl at pH 4, 5, and 6. Likewise, the 

sample pH meter was used to match a sample of urease (10 µM) and HPTS (20 mM) in dilute HCl 

to each corresponding pH (pH 4, 5, and 6). “Thin film rehydration” was used to produce 200 nm 

DPhPC + Rh-DOPE (0.5 mol%) liposomes, encapsulating each of the urease and HPTS solutions 

at different pH, which, in turn, were purified via size-exclusion chromatography using the 

corresponding stock solution of HCl as the mobile phase (Section 2.2.2). A phosphorus assay 

(Section 3.2.3.1) was used to determine the total phosphorus content of each sample, which, in 

turn, were diluted to 500 µM. 250 µL of each sample was placed in a 550 µL micro-cuvette, and 

a Cary 100 ultraviolet-visible spectrometer was used to monitor changes in HPTS absorption 

ratio (450/405 nm), over time, when 250 µL urea (100 mM) is added. 
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4.2.5 Urease, Urea, and Size 

“Thin film rehydration” was used to produce DPhPC + Rh-DOPE (0.5 mol%) liposomes, of varying 

size (100, 200, and 400 nm), encapsulating HPTS (20 mM), and varying concentrations of urease 

(5, 10, and 20 µM), which, in turn, were purified via size-exclusion chromatography using the 

corresponding solution of dilute HCl (0.2 mM) used to suspend the urease and HPTS as the 

mobile phase (Section 2.2.2). A phosphorus assay (Section 3.2.3.1) was then used to determine 

the total phosphorus content of each sample, which, in turn, were diluted to 500 µM. 250 µL of 

each sample was placed in a 550 µL micro-cuvette, and a Cary 100 ultraviolet-visible 

spectrometer was used to monitor changes in HPTS absorption ratio (450/405 nm), over time, 

when 250 µL urea, at different concentrations (20, 100, and 500 mM) is added. Three 

independent repeats were performed, and error was presented as ± standard deviation (SD). 

 

4.2.6 Membrane Composition 

4.2.6.1 Lipids 

“Thin film rehydration” was used to produce 200 nm liposomes, of varying membrane 

compositions (DPhPC, POPC, DPPC, and DPPC:Cholesterol (70:30) (all + Rh-DOPE (0.5 mol%)), 

encapsulating urease (10 µM) and HPTS (20 mM), which, in turn, were purified via size-exclusion 

chromatography using the corresponding solution of dilute HCl (0.2 mM) used to suspend the 

urease and HPTS (Section 2.2.2). A phosphorus assay (Section 3.2.3.1) was then used to 

determine the total phosphorus content of each sample, which, in turn, were diluted to 500 µM. 

250 µL of each sample was placed in a 550 µL micro-cuvette, and a Cary 100 ultraviolet-visible 

spectrometer was used to monitor changes in HPTS absorption ratio (450/405 nm), over time, 

when 250 µL urea (100 mM) was added. Three independent repeats were performed, and error 

was presented as ± standard deviation (SD). 

4.2.6.2 Polymers 

Stock concentrations of DPhPC, PbD-PEO (1800) and PbD-PEO (3800) (all + Rh-DOPE (0.5 mol%) 

of 88.6 mM were dried under vacuum, and “thin film rehydration” (Section 2.2.2), was used to 

produce 200 nm vesicles, of corresponding membrane, encapsulating urease (10 µM) and HPTS 

(20 mM). These vesicles were purified using size-exclusion chromatography (Section 2.2.2), with 

the corresponding solution of dilute HCl (0.2 mM), used to suspend the urease and HPTS, as he 

mobile phase. 250 µL of each sample was placed in a 550 µL micro-cuvette, and a Cary 100 

Ultraviolet-visible spectrometer was used to monitor changes in HPTS absorption ratio (450/405 
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nm), over time, when 250 µL urea (100 mM) was added. Three independent repeats were 

performed for PbD-PEO (1800), and error was presented as ± standard deviation (SD). 

4.2.7 Temperature Control 

“Thin film rehydration” was used to produce 200 nm DPhPC + Rh-DOPE (0.5 mol%) liposomes, 

encapsulating urease (10 µM) and HPTS (20 mM), which, in turn, were purified via size-exclusion 

chromatography, using the corresponding solution of dilute HCl (0.2 mM) used to suspend the 

urease and HPTS as the mobile phase (Section 2.2.2). Each sample was then subjected to heat 

treatment at 90°C for 1, 5, and 10 minutes, in a water bath. A phosphorus assay (Section 3.2.3.1) 

was then used to determine the total phosphorus content of each sample, which, in turn, were 

diluted to 500 µM. 250 µL of each sample was placed in a 550 µL micro-cuvette, and a Cary 100 

ultraviolet-visible spectrometer was used to monitor changes in HPTS absorption ratio (450/405 

nm), over time, when 250 µL urea (100 mM) was added. 

 

4.2.8 Inter-Vesicle Communication 

 “Thin film rehydration” was used to produce two types of 200 nm DPhPC + Rh-DOPE (0.5 mol%) 

liposomes. The first type encapsulated urease (10 µM) only, and the second type encapsulated 

HPTS (20 mM) only. Each species were purified via size-exclusion chromatography, using 

Sephadex G-50 as the media, and where the corresponding solution of dilute HCl (0.2 mM) used 

to suspend the urease and HPTS was used as the mobile phase (Section 2.2.2). A phosphorus 

assay (Section 3.2.3.1) was then used to determine the total phosphorus content of each sample, 

and as single sample contained 500 µM of each species was produced. 250 µL of this sample was 

placed in a 550 µL micro-cuvette, and a Cary 100 Ultraviolet-visible spectrometer was used to 

monitor changes in HPTS absorption ratio (450/405 nm), over time, when 250 µL urea (100 mM) 

was added. This process was repeated to generate a third 200 nm DPhPC species, containing 

both urease (10 µM) and HPTS (20 mM), which was used as a control (phosphorus content; 500 

µM, HCl; 0.2 mM, urea; 50 mM) 
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4.3 Results and Discussion 

4.3.1 Inside vs Outside 

Owing to the complexity of species-permeation between the lumen of the vesicle and the 

external environment (Section 1.6.2), it is important to understand how such exchange is 

affecting both internal and external pH. In an experiment where two vesicle samples differ only 

by the location of HPTS, i.e., inside or outside the vesicle lumen, a better understand of pH 

change can be obtained. It can be seen from Figure 4.1 that pH-switching in the external 

environment is instantaneous, i.e., pH begins to switch before a measurement can be registered 

by the equipment. If we compare bulk and confined conditions, with regards to the final pH 

(Figure 4.2) in which the reaction tends to, it may be expected that, since there is excess urea in 

the system, the urea-urease reaction should continue to proceed until a similar pH to that of 

bulk is achieved. However, the fact that the pH maxima tends toward a lower pH value than that 

of bulk, and that of the external environment, indicates that something within the system is 

having a repressive effect on the internal pH. Another interesting observation from the data is 

the initial drop in absorption ratio (450/405 nm) inside the vesicle (Figure 4.1), which 

corresponds to the sharp increase in absorption ratio (450/405 nm) outside the vesicle. 

To aid our understanding, and to complement such experimental outcomes, the system was 

modelled by a collaborator, Dr Annette Taylor. The model, which considers the rate of enzyme 

catalysis (Equation 1.4), the associated equilibria that governs the internal and external pH 

(Table 4.1), and the net rate of species transfer across the membrane relative to the 

concentration gradient (Table 1.4), was used to simulate reaction kinetics. 

 

Table 4.1. Rate constants (25°C) for reactions governing internal and external pH of confined 
urea-urease reaction, from [190, 191]. Note: acid included as H+ rather than H3O+. Desorption 

of CO2 or NH3 (gas) from surrounding solution and H2CO3 (forms CO2) are not included. 

Reaction Equilibria pKa Rate Equation k1 (s-1) k-1 (M-1 s-1) 

NH4
+ ⇌ NH3 + H+ 9.25 k[NH4

+] - kr[NH3][H+] 24 4.3 × 1010 

CO2 + H2O ⇌ H+ + HCO3
- 6.35 k[CO2] - kr[HCO3

-][H+] 3.7 × 10-2 7.9 × 104 

HCO3
- ⇌ H+ + CO3

2- 10.25 k[HCO3
-] - kr[CO3

2-][H+] 2.8 5 × 1010 

H2O ⇌ H+ + OH- 14 k[H2O] - kr[OH-][H+] 1 × 10-3 1 × 1011 

HPTS∙OH ⇌ HPTS∙O- + H+ 7.3 k[HPTS∙OH] - kr[OH-][H+] 1 2.5 × 107 
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Although not shown in our experimental outcome, due to equipment restrictions, an 

instantaneous spike in pH is shown in the model – due to the very fast (k = 1010 mol L–1 s–1) 

reaction rate between ammonia and acid. Where we see the absorption ratio (450/405 nm) 

decreasing, this is also mirrored in the simulation, and is owing to the rate of urea permeation 

towards the vesicle lumen being slower than the rate of ammonia transport out of the vesicle, 

until the internal concentration of urea has increased enough to reverse such a misbalance. 

Finally, the model shows that the internal pH does not reach the same pH as the external 

environment, because of an internal buffering effect caused by HPTS – when removed, the 

internal and external pH are similar. 

This creates a novel scenario whereby the vesicle membrane is actually protecting the internal 

conditions from the very change in which it is eliciting outside the vesicle. So, with regards to 

enzyme kinetics, we have a situation where system self-induced lowering of pH, or sustaining 

the pH at a low value, maintains the enzymatic activity of urease below its optimum pH (pH 7) 

for longer, thereby increasing the clock time.  
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Figure 4.1. Change in absorption ratio (450/405 nm) inside and outside of the vesicle, when 
urea (50 mM) is added to urease (10 µM) encapsulating DPhPC vesicles (200 nm, 250 µM), 

including super-zoom on initial “dip” (n = 3, error = ± SD). 
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Figure 4.2. Internal and external pH of urease (10 µM)-encapsulating DPhPC vesicles (200 nm, 
250 µM), following addition of urea (50 mM) (n = 3, error = ± SD). 
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4.3.2 Starting HCl Concentration 

As previously mentioned, lowering the starting pH of the urea-urease reaction lowers the 

enzymatic activity of urease, meaning that, as the reaction proceeds towards pH-activity 

maximum (pH 7), the reaction will accelerate. In first instance, from the data shown in Figure 

4.3, it can be seen that, likewise to bulk conditions (Figure 2.5), increasing starting acid 

concentration leads to an apparent and respective increase in clock time, a decrease in final pH, 

and a decrease in the robustness of pH-switching. 

 

 

Figure 4.3. Change in absorption ratio (450/405 nm) for DPhPC vesicles (200 nm, 250 µM), 
encapsulating urease (10 µM) and HPTS (20 mM), when exposed to urea (50 mM), at different 

starting HCl concentrations (0.10 mM, 0.20 mM, 0.32 mM) (n = 3, error = ± SD). 

 

 

Firstly, if we fix the concentration of urea at 10 mM (Figure 4.4), we can identify the effects of 

increasing HCl concentration (0.10, 0.20, 0.32 mM), and an unpaired t-test can help determine 

significance (95% confidence, denoted by an asterisk (*). Here, when we increase the initial 

concentration of HCl from 0.10 to 0.20 mM, we see a 160% increase in clock time, and a further 
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69.6% increase when HCl concentration is increased from 0.20 to 0.32 mM. With regards to final 

pH, increasing starting HCl concentration from 0.10 and 0.20 mM is shown to cause a shift in 

final pH from pH 6.96 ± 0.04 to pH 6.79 ± 0.05, however, further increasing HCl concentration 

from 0.20 to 0.32 mM is shown to have negligible effect (pH 6.79 ± 0.05 → pH 6.78 ± 0.10). 

Finally, for each incremental increase initial starting HCl concentration, an increase in transition 

width is witnessed (96.5% increase between 0.10 and 0.20 and 48.2% increase between 0.20 

and 0.32 mM. 

If we now increase urea concentration to 50 mM, we can assess if the relationship witnessed 

here can be strengthened through repeatability (Figure 4.4). As such, when we increase the 

initial concentration of HCl from 0.10 to 0.20 mM, and then 0.20 to 0.32 mM, we see an increase 

in clock time of 61.0% and 67.6%, respectively. With final pH, we see a decrease in the final pH 

when acid concentration is increased (0.10 to 0.20 to 0.32 mM = pH 7.20 ± 0.03 → pH 7.09 ± 

0.05 → pH 6.91 ± 0.13).Similar to a fixed urea concentration of 10 mM, we see a positive 

relationship between increased acid concentration and increased transition width, where there 

is a 45.5% increase between 0.10 to 0.20 mM and a 26.6% increase between 0.20 to 0.32 mM. 

Finally, if we fix the urea concentration at 250 mM, we see a similar pattern (Figure 4.4), whereby 

increasing acid concentration from 0.10 to 0.20 mM and from 0.20 to 0.32 mM produces an 

average, respective increase in clock time of 29.7% and 36.4%, respectively. A similar effect is 

seen in final pH, where an average decrease in pH is witnessed in respect to increasing acid 

concentration (pH 7.17 ± 0.04 → pH 7.12 ± 0.07 → pH 7.08 ± 0.03 when increasing from 0.10 → 

0.20 → 0.32 mM, respectively). Likewise, with respect to transition width, we see an average 

increase of 18.6% and 12.7% in respect to increasing acid concentrations (0.10 to 0.20 mM and 

0.20 to 0.32 mM, respectively). 



109 
 

 

Figure 4.4. Understanding the effect of HCl concentration (0.10, 0.20, 0.32 mM) on clock time, 
final pH, and transition width in DPhPC vesicles (size; 200 nm, phosphorus concentration; 250 

µM, Urease; 10 µM, HPTS; 20 mM) at different concentrations of urea (10, 50, 250 mM) (n = 3, 
error = ± SD). 

 

From this data, we see a consistent and expected relationship between increased acid 

concentration and our three measurable parameters, where, increasing acid concentration 

increases clock time and transition width, and reduces final pH. We also have first insight into 

the effect of urea, where at lower concentrations (10 mM) greater differences in clock time and 

transition width are witnessed, however, the degree of variability (error) is also increased. In 

contrast, at higher urea concentrations (250 mM) we see greater precision, however, the effect 

elicited through increasing HCl concentration is reduced, highlighting the overriding effect 

increased urea concentration may have. One thing to also notice here is that the HCl 

concentrations used, i.e., 0.10, 0.20, and 0.32 correspond to a pH of 4.0, 3.5, and 3.0, 

respectively. Given the reduced volume of urease, and the added effects of confinement, when 

comparing these results to bulk, one would expect that if the internal pH was truly pH 3.0, then 

the reaction vessel may not switch at all. This was investigated further in the next section. 
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4.3.3 Balancing Internal and External pH 

Most proteins, and by extension, enzymes, hold buffering capabilities. To test the buffering 

capacity of urease, we took a dilute HCl solution (0.32 mM), and measured its pH using a pH 

meter (pH 3.63). We then added enough urease to give a 5 µM urease and tracked an increase 

in pH to pH 6.91. Finally, we added excess urea (1 M) to initiate the reaction and took the final 

reading (pH 9.10) (Figure 4.5).  

 

 

Figure 4.5. Final pH, as tested by a pH meter, of a 0.2 mM dilute HCl solution, following 
sequential addition of urease (5 µM) and then urea (1 M) 

 

 

The information at hand tells us something very important about the system we are working 

with. If, as the above experiment outlines, the addition of urease to dilute HCl causes an increase 

in the pH of that solution from acidic to near-neutral, we can assume that when the urease is 

loaded into the vesicle, under normal conditions, i.e., suspended in 0.2 mM HCl, the starting pH 

will be around pH 7. However, based on the experiment below (Figure 4.6), which compares 

vesicles made via our standard protocol (urease suspending in dilute HCl), to vesicles where the 

encapsulated volume has been pH-adjusted, using a pH meter, to pH 4, 5, and 6, respectively, 

we see this is not the case. Knowing what we know about the relationship between pH and final 
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pH, and pH and clock time, i.e., increased clock time and lower final pH, it may be safe to assume 

that the actual starting pH, although unknown, is around pH 5.5, meaning that during the 

process of vesicle generation, purification, and phosphorus quantification, there is a shift in 

luminal pH closer to that of the lower-pH external environment (0.20 mM HCl). 

 

 

 

 

Figure 4.6. Comparison of reaction profile between standard experimental setup (urease in HCl 
(0.20 mM)) (blue), and  internally and externally balanced pH (pH 4, 5, and 6) (red). Each 

sample contained 200 nm DPhPC vesicles (phosphorus concentration; 250 µM), encapsulating 
10 µM urease and 20 mM HPTS, and the reaction was started with 50 mM urea.   
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4.3.4 Urease Concentration 

If we fix the vesicle size at 100 nm (Figure 4.7), we can explore the effect of increasing urease 

concentration (5, 10, 20 µM), for three designated urea concentrations (10, 50, and 250 mM) 

(Figure 4.7). For 10 mM urea concentration, increasing urease concentration from 5 µM to 10 

µM results in a 40.0% decrease in average clock time and doubling again from 10 µM to 20 µM 

produces a further 19.7% decrease. Likewise, at a urea concentration of 50 mM, a percentage 

decrease of 35.8% is witnessed from 5 to 10 µM, and a further 25.2% decrease is witnessed 

between 10 and 20 µM. At a urea concentration of 250 mM, a 62.9% decrease is witnessed 

between 5 µM and 10 µM, and a 22.8% decrease is witnessed between 10 µM and 20 µM, 

however, in both instances, there is large respective variability. 

If we now consider final pH (Figure 4.7), at a urea concentration of 10 mM, we can see that 

increasing the concentration of urease from 5 to 10 µM, causes a respective increase in final pH 

(pH 6.83 ± 0.06 → pH 6.93 ± 0.02), however, although increasing further from 10 µM to 20 µM 

produces a further increase in average final pH, this increase is negligible (pH 6.93 ± 0.02 → pH 

6.95 ± 0.07). Similarly, at 50 mM urea concentration, an initial increase in average final pH is 

witnessed when urease concentration is increased from 5 to 10 µM (pH 7.08 ± 0.06 → pH 7.15 

± 0.01), however, no further increase it witnessed when increasing from 10 to 20 µM (pH 7.15 ± 

0.01 → pH 7.13 ± 0.03). At a urea concentration of 250 mM, there is no (or negligible) increase 

in final pH in response to increasing urease concentration from 5 to 10 µM (pH 7.16 ± 0.07 → pH 

7.16 ± 0.04) or 10 to 20 µM (pH 7.16 ± 0.04 → pH 7.17 ± 0.07).  

Finally, where width of transition is a determinant of the robustness of pH switching, we can see 

that for 10 mM urea concentration (Figure 4.7), increasing urease concentration, both from 5 

µM to 10 µM and 10 µM to 20 µM, results in an average decrease in transition width (3.74 ± 

1.32 → 2.00 ± 0.51 and 2.00 ± 0.51 → 1.87 ± 0.19, respectively). Similarly, for both 50 and 250 

mM urea concentrations, a decrease in transition width is witnessed between 5 µM, 10 µM, and 

20 µM (1.39 ± 0.24 → 1.33 ± 0.09 → 1.23 ± 0.03, and 1.26 ± 0.40 → 1.00 ± 0.23 → 0.96 ± 0.11, 

respectively). 
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Figure 4.7. Understanding the effect of urease concentration (5, 10, 20 µM) on clock time, final 
pH, and transition width in DPhPC vesicles (size; 100 nm, phosphorus concentration; 250 µM, 

HPTS; 20 mM) at different concentrations of urea (10, 50, 250 mM) (n = 3, error = ± SD). 

 

 

 

So, again, if we fix vesicle size at 200 nm (Figure 4.8), we can begin to extract the same 

information, with regards to clock time, final pH, and the width of transition, to see if these data 

are consistent with the data from 100 nm vesicles. For clock time, at all three of our tested urea 

concentrations (10, 50, and 250 mM), an inverse relationship exists between increased urease 

concentration (5 to 10 to 20 µM) and decreased clock time. With regards to final pH, it is difficult 

to infer a relationship with urease concentration. At 10 mM we see an unexpected decrease in 

final pH when urease concentration is increased from 5 to 10 µM, then pH increases again when 

urease concentrations is increased from 10 to 20 µM. At 50 mM we see an expected average 

increase in response to increasing urease concentrations, however, these increases are very 
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minimal. Finally, at 250 mM, we see no change between 5 and 10 µM, and then an unexpected 

drop in final pH when urease concentration is increased again to 20 µM. Finally, where transition 

width is concerned, for all tested urea concentrations (10, 50, and 250 mM), increasing urease 

concentration resulted in a consistent and expected decrease in transition width. 

 

 

Figure 4.8. Understanding the effect of urease concentration (5, 10, 20 µM) on clock time, final 
pH, and transition width in DPhPC vesicles (size; 200 nm, phosphorus concentration; 250 µM, 

HPTS; 20 mM) at different concentrations of urea (10, 50, 250 mM) (n = 3, error = ± SD). 

 

 

 

Finally, if we fix vesicle size at 400 nm (Figure 4.9), we add further insight to our understanding 

of the relationship between urease concentration and clock time, final pH, and the transition 
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width. At both 10 and 250 mM urea concentrations, we see a decrease in clock time when urease 

concentration is doubled from 5 to 10 µM, however, when it is doubled again, although we 

actually see a small increase in average clock time, there is no statistical difference between 10 

and 20 µM (P = 0.7854 and P = 0.9196, respectively). However, at a urea concentration of 50 

mM, we see the expected average decrease in clock time with respect to increasing urease 

concentrations. With regards to final pH, in the instance of 400 nm vesicles, we see a relationship 

inverse to what we would expect, where, increasing urease concentration is resulting in a 

decrease in final pH – likely to be attributed to enhanced protein buffering in the presence of 

increased protein copy number. Finally, for a urea concentration of 10 mM an average decrease 

in transition width is witnessed when increasing urease concentration from 5 to 10 µM, 

however, when the concentration of urease is doubled again, the average transition width 

actually increases, although large associated errors attached to the 20 µM sample makes it 

difficult to infer a statistical different between 10 and 20 µM (P = 0.6606). However, for both 50 

and 250 mM urea concentrations, an expected an average gradual decrease is witnessed in 

relation to increased urease concentrations (5 to 10 to 20 µM). 
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Figure 4.9. Understanding the effect of urease concentration (5, 10, 20 µM) on clock time, final 
pH, and transition width in DPhPC vesicles (size; 400 nm, phosphorus concentration; 250 µM, 

HPTS; 20 mM) at different concentrations of urea (10, 50, 250 mM) (n = 3, error = ± SD). 

 

 

From the data at hand, across the range of vesicle sizes/urea concentrations, in the most, the 

average clock time and transition width is consistent with what is expected. However, where the 

theoretical number of urease copies each vesicle can hold doubles proportionally to doubling 

starting urease concentrations (Figure 4.10), you would expect this parameter to be one of the 

greatest contributors in enhanced kinetics. Instead, enhanced variability, increased 

experimental error, and overall lack of statistical significance highlights that urease 

concentration is not as strong a contributor as first predicted.  
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Figure 4.10. Calculated estimation of urease copy number when starting urease concentration 
is increased (5, 10, 20 µM), for different sized vesicles (100, 200, 400 nm) 

 

Interestingly, this distribution amongst the sample does not follow typical Gaussian 

characteristics, but, instead, is Poisson in nature, meaning that the probability of vesicles 

containing a specific number of urease copies. i.e., 0, 1, 2, etc., is intrinsically linked to the initial 

concentration of urease and the capability of the vesicle lumen in terms of size to be able to 

house these copies (Figure 4.11). 

This concept is no better explained than at 5 µM urease, in 100 nm vesicles, where the effects 

witnessed might not actually be because the concentration is not sufficient to cause a robust pH 

switch (in isolation), but because within the sample, the percentage of vesicles that contain a 

low protein copy number is increased, magnifying the stochasticity of the sample with regards 

to pH switching. At this concentration, we may create a scenario whereby some vesicles are 

switching more slowly than others, and potentially, even a small population of vesicles are not 

switching at all. This may explain why there is a larger percentage decrease in clock time, for 

each of the urea concentration (10, 50, 250 mM), when urease concentration is doubled from 5 

µM to 10 µM (40.0%, 35.8%, 62.9%, respectively), than is when it is doubled again from 10 µM 

to 20 µM (19.7%, 25.2%, 22.8%, respectively). Similarly, it may be used to explain the interesting 
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behaviour of final pH at 400 nm, where, an increased internal enzyme concentration may 

negotiate a stronger protein-buffering capacity, resulting in a lower final pH when urease 

concentration is increased. 

 

 

Figure 4.11. Poisson distribution for 5, 10, and 20 µM urease concentration in 100 nm (X; 1-20, 
ꝩ = 1.35, 2.70, 5.41, respectively), 200 nm (X; 1-75, ꝩ = 11.7, 23.4, 46.8, respectively), and 400 

nm (X; 1-500, ꝩ = 97.2, 194, 389, respectively), showing proportion of vesicles within the sample 
encapsulated urease. 
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4.3.5 Urea Concentration 

Again, similar to what we have seen in bulk, where urea concentration can be manipulated to 

alter the reaction profile of the urea-urease reaction, this phenomenon can be replicated in 

confined conditions (Figure 4.12). So, to understand how alterations in urea concentration effect 

the system, in terms of urease concentration and vesicle size, the three measurable parameters, 

i.e., clock time, final pH, and transition width have been extracted for comparison below. 

 

 

 

Figure 4.12. Absorption ratio (450/405 nm) of 200 nm DPhPC vesicles (phosphorus content; 250 
µM), encapsulating urease (10 µM) and HPTS (20 mM), when the reaction is initiated by 

varying concentrations of urea (10, 50, 250 mM) (n = 3, error = ± SD). 

 

 

Again, if we fix vesicle size at 100 nm (Figure 4.13), and explore the effect of increasing urea 

concentration (10, 50, 250 mM), we can see that for the three designated urease concentrations 

(5, 10, and 20 µM), if you increase urea concentration, an average decrease in clock time occurs. 

For all of the fixed urease concentrations tested (5, 10, and 20 µM), increasing urea 
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concentration five-fold, from to 10 to 50 mM was shown to produce a 62.8%, 60.2%, and 62.9% 

decrease in clock time, respectively, and increasing again a further five-fold, from 50 to 250 mM, 

was shown to decrease clock time by a further 24.7%, 56.6%, 55.2%, respectively. The overall 

decrease from 10 to 50, to 250 mM was 72.0%, 82.7%, and 83.4%, respectively. Similarly, if we 

consider final pH (Figure 4.13), for all three fixed urease concentrations (5, 10, and 20 µM), the 

average final pH increases incrementally with regards to increased urea concentration (10 to 50 

to 250 mM), however, it is interesting to note that the difference in final pH is less when 

increasing from 50 to 250 mM, in comparison to 10 to 50 mM. Likewise, for all three fixed urease 

concentrations (5, 10, and 20 µM), the average width of transition decreases incrementally in 

response to increasing urea concentration (10 to 50 to 250 mM). 

 

 

Figure 4.13. Understanding the effect of urea concentration (10, 50, 250 mM) on clock time, 
final pH, and transition width in DPhPC vesicles (size; 100 nm, phosphorus concentration; 250 
µM, HPTS; 20 mM) at different concentrations of urease (5, 10, 20 µM) (n = 3, error = ± SD). 
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Likewise, if we fix vesicle size at 200 nm (Figure 4.14), a similarly strong relationship between 

urea concentration and average clock time exists. Again, for all three urease concentrations (5, 

10, and 20 µM) we see an average decrease in clock time (62.2%, 68.7%, and 53.7%, respectively) 

when urea is increased from 10 mM to 50 mM, and a further average decrease (58.5%, 41.8%, 

and 59.9%, respectively) when urea concentration is increased from 50 to 250 mM. Similarly, if 

we consider final pH (Figure 4.13), for urease concentration fixed at 5 and 10 µM), the average 

final pH increases incrementally with regards to increased urea concentration (10 to 50 to 250 

mM), however, when urease concentration is fixed at 20 µM, an increase is only witnessed when 

urea concentration is increased from 10 mM to 50 mM (but not when further increased to 250 

mM). Likewise, for all three fixed urease concentrations (5, 10, and 20 µM), the average width 

of transition decreases incrementally in response to increasing urea concentration (10 to 50 to 

250 mM). 

 

 

Figure 4.14. Understanding the effect of urea concentration (10, 50, 250 mM) on clock time, 
final pH, and transition width in DPhPC vesicles (size; 200 nm, phosphorus concentration; 250 
µM, HPTS; 20 mM) at different concentrations of urease (5, 10, 20 µM) (n = 3, error = ± SD). 
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Finally, if vesicle size is fixed at 400 nm (Figure 4.15), for urease concentrations of 5 and 10 µM, 

we see an unexpected increase in clock time when urea concentration is increased from 10 mM 

to 50 mM, however, in each instance, there is large associated error. When comparing the clock 

time between 10 mM and 250 mM urea concentrations, however, a clear and expected 

relationship exists, where urea concentration is inversely proportional to clock time.  In contrast, 

at a urease concentration of 20 µM, we see a clear, incremental decrease in average clock time. 

These results clearly highlight increased variability when there are opposing parameter 

extremities, i.e., larger vesicle (400 nm), low enzyme concentration (5 µM), however, when the 

parameters are respectively matched, e.g., by increasing urease concentration to 20 µM, 

resolution is reduced, but so is variability (in this example, i.e., 400 nm vesicles). 

When it comes to final pH, at fixed urease concentrations of 5 and 10 µM, we witness what we 

seen in 100 and 200 nm vesicles, where, increasing urea concentration from 10 to 50 mM causes 

an increase with respect to increasing urea concentrations (10 to 50 to 250 mM). However, for 

20 µM, like we have seen in previous examples, we see an increase in final pH when increasing 

urea concentration from 10 to 50 mM, but a decrease in final pH when further increasing urea 

from 50 to 250 mM – again, this could be attributed to a strengthened protein buffering capacity 

caused when larger vesicles contain a high concentration of enzymes. 

Finally, with regards to transition width, for fixed urease concentrations of 5 and 20 µM, we see 

an expected relationship where increasing concentrations of urea (10 to 50 to 250 mM) results 

in a decrease in average transition width. For a urease concentration of 10 µM, although an 

anomalous result at 50 mM of urea is present, the overall relationship between urea 

concentration and transition width, i.e., increasing urea concentration from 10 to 250 mM, 

conforms to what is expected.  
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Figure 4.15. Understanding the effect of urea concentration (10, 50, 250 mM) on clock time, 
final pH, and transition width in DPhPC vesicles (size; 400 nm, phosphorus concentration; 250 
µM, HPTS; 20 mM) at different concentrations of urease (5, 10, 20 µM) (n = 3, error = ± SD). 

 

From the data above, you could infer that, especially at 10 mM, there is insufficient urea within 

the system to replicate the effects seen at the higher urea concentrations and in bulk. However, 

given the comparative concentrations between bulk (Figure 2.5) and confined (Figure 4.13, 

Figure 4.14, and Figure 4.15), it is hard to believe that in bulk conditions, where a greater urease 

copy number is present, when urea concentration remains constant, it is now insufficient in a 

confined system. Given that the concentration of urea is in excess in all scenarios, and the 

enzyme will likely be operating at Vmax throughout, the positive relationship between urea 

concentration and our measurable parameters, is more likely to be attributed to concentration-

based membrane diffusion, spatiotemporal correlations, or a combination there of. 
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Where urea concentration causes the most significant shifts in our measurable parameters, a 

clear relationship is beginning to unearth itself with regards to parameter concentrations. There 

is an increased variability when utilising 100 and 400 nm vesicle samples, especially when other 

parameter extremities are also employed. For example, in 100 nm vesicles, an initial increase in 

urea concentration from 10 to 50 mM gives a significant decrease in clock time at all urease 

concentrations, however, from 50 to 250 mM, a sequential reduction in P-value in response to 

increasing urease concentrations is indicative of an increased efficiency (less variability). 

Similarly, in both 100 and 400 nm vesicles, at low enzyme concentrations (5 µM), a lot of 

variability exists with regards to transition width – this is reduced when the urease concentration 

is increased to 20 µM. However, 200 nm vesicles, especially when in combination with other 

“middle” concentrations, i.e., 50 mM urea or 10 µM urease, give consistent, expected results, 

infer statistically significant relationships, and provide an appropriate resolution with regards to 

parameter manipulation. As such, this is likely to be considered our “baseline” in future 

experiments. 
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4.3.6 Vesicle Size 

The effect of varying vesicle size on pH switching should, in theory, be simpler to predict, where 

variation in diameter, and as such, lumen volume, is relative to the theoretical number of urease 

copies each vesicle can hold (Figure 4.16). However, as seen with urease concentration, this 

distribution amongst the sample does not follow typical Gaussian characteristics, but, instead, 

is Poisson in nature (Figure 4.17). As such, if we are to assume that an increased number of 

protein copies equates to an increased probability that all vesicles within the sample are likely 

to contain a sufficient protein copy number to invoke robust pH switching, then we are likely to 

assume that larger vesicles should have a lower clock time, lower transition width, and a higher 

final pH. 

  

 

Figure 4.16. Calculated estimation, based on the size of the vesicle (400, 200, 100 nm), the 
respective volume of the lumen, and the concentration of urease (5, 10, 20 µM), of the total 

number of protein copies within each vesicle. 
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Figure 4.17. Poisson distribution for 100, 200, and 400 nm vesicles (X; 250, ꝩ = 2.7, 23.4, and 
194.3, respectively) extruded in the presence of urease (10 µM), showing percentage of vesicles 

within the samples encapsulating associated urease copy numbers. 
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Firstly, if we isolate the concentration of urea at 10 mM (Figure 4.18), which, thus far has been 

shown to have one of the biggest impacts on our extractable parameters, we can identify the 

effects of increasing vesicle size (100 to 200 to 400 nm) for each designated urease 

concentration (5, 10, and 20 µM). When working at urease concentrations of 5 and 20 µM, we 

see an expected and incremental decrease in clock time when increasing vesicle diameter from 

100 nm to 200 nm (8.7% and 25.3%, respectively) and a further decrease when increasing from 

200 nm to 400 nm (41.0% and 37.4%, respectively). 

For a urease concentration of 10 µM, although an anomalous result at 50 mM of urea is present, 

where clock time increase (albeit with significant error), the overall relationship between urea 

concentration and clock time, i.e., increasing vesicle size from 100 to 200 nm, conforms to what 

is expected (68.0% decrease). With regards to final pH (Figure 4.18), it is hard to extract any sort 

of significant relationship to vesicle size, where, at 5 µM average final pH increases with respect 

to increasing size, at 20 µM we see the inverse, adding further weight to are argument that when 

vesicle size is increased at higher urease concentrations, increased protein buffering capacity 

may contribute to a reduced final pH, and at 10 µM we see a decrease when vesicle size is 

doubled from 100 to 200 nm but then an increase when diameter is doubled again (to 400 nm). 

Similarly, it is difficult to infer a relationship between vesicle size and transition width (Figure 

4.18), where at 5 µM we see we see an expected average decrease, albeit with overlapping 

variability, at 10 µM we see an increase in transition width between 100 and 200 nm, but a 

decrease between 200 and 400 nm, and at 20 µM, we see the opposite, where transition width 

decreases between 100 and 200 nm, but then increases again between 200 and 400 nm. 
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Figure 4.18. The effect of increasing vesicle size (100, 200, 400 nm) on clock time, final pH, and 
transition width for DPhPC vesicles encapsulating 5, 10, or 20 µM urease, and 20 mM HPTS, 

when 10 mM urea is added (n = 3, error = ± SD). 

 

When urea concentration is fixed at 50 mM, for urease concentrations of 5 and 10 µM, variability 

in average clock time and a lack of precision in our triplicate repeats makes it difficult to infer 

any sort of correlative relationship with vesicle size (Figure 4.19). However, at 20 µM urease 

concentration, we see results more in line with what we would expect, where a consistent 

average decrease in clock time is linked to increasing vesicle size (evidence of reduced variability 

at higher systemic concentrations). For pH (Figure 4.19), at 5 µM urease, we see minimal 

decrease in final pH when increasing vesicles size from 100 nm to 200 nm, but then as vesicle 

size is doubled again (to 400 nm), the final pH then increases, given a net overall increase from 

100 nm to 400 nm. Interestingly, for both 10 and 20 µM urease concentrations, a consistent 

decrease in final pH is witnessed in relation to increased vesicle size – this unexpected result 

adds further to the hypothesis of enhanced protein buffering where urease copy number is high. 

Finally, where increased vesicle size is intrinsically linked to increased protein copy number, you 
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would expect transition width to reduce in relation to increased vesicle size. However, what we 

see is the opposite, where for all three fixed urease concentrations (5, 10, and 20 µM), we see 

an incremental increase in transition width with respect to increasing vesicle size (100 to 200 to 

400 nm) (Figure 4.19). 

 

 

Figure 4.19. The effect of increasing vesicle size (100, 200, 400 nm) on clock time, final pH, and 
transition width for DPhPC vesicles encapsulating 5, 10, or 20 µM urease, and 20 mM HPTS, 

when 50 mM urea is added (n = 3, error = ± SD). 

 

 

Finally, at a fixed urea concentration of 250 mM (Figure 4.20), there is a general trend between 

increased vesicle size and decreased clock time, however, given that we have already 

established urea concentration as a strong contributor towards kinetic output, the resolution is 

reduced to the point it is difficult to extract any statistical significance. With regards to pH, for 

both 5 and 10 µM urease concentrations, there is an overall increase in average final pH in 
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response to increasing vesicle size (from both 100 to 200 nm and 200 to 400 nm), however, 

these increases are negligible when considering the experimental precision. It could therefore 

be inferred that at this urea concentration, increasing vesicle size has no further impact on final 

pH (a maximum has been reached). As is a recurring observation, when urease concentration is 

increased to 20 µM, increasing vesicle size causes a relative decrease in final pH. Similarly, at 

250 mM urea concentration, it is difficult to infer a relationship between vesicle size and 

transition width (Figure 4.18), where at 5 µM we see a decrease in transition width between 100 

and 200 nm, but an increase between 200 and 400 nm, at 10 µM we see an average increase, 

albeit with overlapping variability, and at 20 µM we see the opposite, where transition width 

decreases in response to increasing vesicle size, albeit again with overlapping variability. 

  

 

Figure 4.20. The effect of increasing vesicle size (100, 200, 400 nm) on clock time, final pH, and 
transition width for DPhPC vesicles encapsulating 5, 10, or 20 µM urease, and 20 mM HPTS, 

when 250 mM urea is added (n = 3, error = ± SD). 
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From the data at hand, across a range of different urea and urease concentration, we can 

establish that vesicle size, does not impact reaction kinetics as first predicted. Here, it is easy to 

think about a vesicle as a solitary reaction chamber, however, considerations of statistical 

encapsulation across a sample of vesicles complicates this issue. If, for example, we take 100 nm 

vesicles, the expected average number of urease molecules encapsulated within the at a urease 

concentration of 10 µM is 2.70 (Figure 4.16). When considered in terms of Poisson distribution 

(Figure 26), means that in probability, 70.9% of the vesicle population at this size and urease 

concentration will contain 3 or less protein molecules, with an estimated 6.7% of the population 

containing 0 (“urease-free”). Where no (or weak) relationship between vesicle size and our three 

parameters cannot be found, factoring in what we know about this relationship with urease 

copy number, this raises an interesting question about what is truly happening within the sample 

(as a collection of individual reaction chambers). Is pH switching stochastic in nature or do 

considerations of membrane permeability infer potential communication between vesicles, 

irrespective of protein copy number, ultimately leading to a deterministic form of permeability-

induced pH switching? 
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4.3.7 Membrane Composition 

4.3.7.1 Lipids 

As we know from the literature, one of the key characteristics of lipid bilayers is the relative 

fluidity of the individual lipid molecules within it. This “fluidity” is dependent on the 

temperature, where, either side of the phase transition temperature (Tm (°C)), the bilayer can 

exist in a liquid ordered phase or a solid (gel) phase. It is worth noting that, in both phases, the 

individual lipids are restricted to the two-dimensional plane of the membrane, however, in the 

gel phase, the lipid molecules cannot freely diffuse within this plane. Exhibition of such phase 

behaviour is dependent on the corresponding characteristics of the lipid molecules with regards 

to the strength of attractive forces (Van der Waals) between adjacent lipid molecules. As such, 

the strength of interaction is intrinsically linked to the length of the lipid tail, where longer lipid 

tails have more area to interact. This means that at a designated temperature, a long-tailed lipid 

will exhibit less fluidity, and therefore have a higher Tm, than that of an otherwise identical short-

tailed lipid. 

Another factor, which has been shown to contribute to the fluidity of lipid bilayers, is the degree 

of unsaturation. A “kink” in the lipid tail, creating free space within the membrane, and 

ultimately permitting extra flexibility to the adjacent lipid chains, is created through the inclusion 

of one or more double bonds. It is this disruption that reduces packing efficiency and leads to a 

reduction in Tm. Tm is more sensitive to unsaturation than it is to chain length; decreasing chain 

length by one carbon is shown to produce an average reduction Tm of around 10°C, whereas 

inclusion of a single double bond is capable of reducing phase transition temperature by 50°C or 

more [192]. 

The relative permeability a lipid bilayer exhibits also has strong ties to 1) the degree of 

interaction between lipid chains, and; 2) the presence of defects (double bonds) within the 

membrane. For instance, a gel-like lipid membrane, which has high membrane rigidity and an 

increased packing density will exhibit the lowest permeability. If we consider the lipid structure 

of the three membrane compositions tested (Figure 4.21), then we can see that POPC (16:0-

18:1), a common model lipid used to imitate chain disorder found in native membranes, is 

unsaturated, and, this is reflected in the Tm (-2°C). As such, you would therefore expect the 

relative permeability of POPC to be high. DPhPC (16:0), in contrast, has the benefit of being 

completely saturated, and, as a result, is more stable. However, the periodic inclusion of methyl 

groups along the acyl chains produces an (almost) energetic equivalence between the trans and 

one of the gauche rotamers [193]. A considerable disorder is therefore found in DPhPC lipid 
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membranes as a result of the steric requirements of these methyl branches preventing lateral 

packing efficiency between adjacent acyl chains. As a result, DPhPC does not exhibit a detectable 

gel to liquid crystalline phase transition between -120°C and +120°C [193]. Similar to DPhPC, 

DPPC (16:0) contains a 16-carbon acyl chain, however, the lack of a double bond, and the 

exclusion of chain methylation, means that the permission of lateral packing is strong between 

the adjacent chains. This is reflected in the Tm of DPPC, which is 41°C, meaning that at room 

temperature, DPPC exists as a gel, and should, hypothetically, have the lowest substrate 

permeability coefficient of any of the three membrane compositions tested. 

 

 

 

Figure 4.21. Chemical structure of POPC, DPhPC, and DPPC 

 

When looking at the outcome of pH switching for different membrane compositions (Figure 

4.22), we can immediately see that there has been either an apparent failure to successfully 

encapsulate urease in DPPC vesicles, or, exposure to prolonged temperatures above the Tm of 

DPPC (which is incidentally close to the denaturing point of urease (50°C)), could have caused 

inactivation. As a result, no pH switching was observed. Owing to the notoriety of pure DPPC 

membranes, cholesterol, a bidirectional regulator of membrane fluidity was added to DPPC at 

30 mol% to generate DPPC:cholesterol (70:30) vesicles. However, much like pure DPPC vesicles, 

they were inefficient at producing a recognisable clock. Some preliminary data suggests that the 

low pH, caused by dilute HCl (0.2 mM), is affecting the ability of DPPC (and cholesterol) to form 
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vesicles capable of eliciting a reaction, but without information regarding the encapsulation 

efficiency of each vesicle membrane, it is difficult to identify the cause. 

 

 

Figure 4.22. Change in absorption ratio (450/405 nm) for 200 nm lipid vesicles (phosphorus 
concentration; 250 µM) of differing membrane compositions (DPhPC, POPC, DPPC, and 

DPPC:cholesterol (70:30)), (urease (10 µM), HPTS (20 mM), urea (50 mM)) (n = 3, error = ± SD). 

 

Firstly, if we compare the effect an increasing urea concentration has on the respective 

membrane compositions (Figure 4.23), we see that all three parameters, i.e., clock time, final 

pH, and transition width follow an expected trend, where increasing urea concentration results 

in a respective decrease in clock time and transition width, and a respective increase in final pH. 

Now, if we are to take our three extractable parameters and compare the differences between 

POPC and DPhPC at set urea concentrations (Figure 4.23), we see an average decrease in clock 

time at a urea concentration of 10 mM (58.5 min vs 52.7 min, respectively, P = 0.62), another 

average decrease when urea concentration is 250 mM (11.0 min vs 9.6 min, respectively, P = 

0.26), but an average increase when urea concentration is fixed at 50 mM (15.3 min vs 16.5 min, 

respectively, P = 0.78). For pH, at 10 mM urea concentration, final average pH is almost identical 
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between POPC and DPhPC (pH 6.80 vs pH 6.79, respectively, P = 0.62), however, at both 50 mM 

and 250 mM, it is observed that POPC vesicles tend towards a lower average pH than their DPhPC 

counterparts (8.85 vs 7.09, P = 0.00 and 7.02 vs 7.17, P = 0.25, respectively). Similarly, if we 

compare the average transition width of our two species, it is clear that for all three urea 

concentrations (10, 50, and 250 mM), POPC has a smaller width of transition in comparison to 

DPhPC (P = 0.19, 0.03, and 0.03, respectively) – this highlights that although clock time is 

considered (statistically) the same between the two differing lipid vesicles, the speed in which 

they switch above 50 mM urea concentration is statistically quicker for POPC. 

 

 

Figure 4.23. Comparing clock time, final pH, and transition width of POPC and DPhPC (size; 200 
nm, phosphorus concentration; 250 µM, urease; 10 µM, HPTS; 20 mM) at different urea 

concentrations (10, 50, 250 mM) (n = 3, error = ± SD). 
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As previously touched upon, owing to the degree of unsaturation in POPC lipids, and therefore 

an increased permeability, in comparison to that of DPhPC, it could be concluded that the 

greater robustness in pH switching seen in POPC vesicles (Figure 4.23), may be attributed to an 

increased rate of urea permeability into the lumen, thereby overcoming the expulsion of pH 

(witnessed as ammonia is exchanged into the external environment) more efficiently. To add, 

hypothetically speaking, in terms of DPPC, if we consider the thickness of the non-polar region 

of the membrane to be one of the key contributors of permeability, then we would expect, 

because they are both straight, have an identical headgroup, and are shorter than 20 carbons in 

length [194], that the permeation rate of DPPC (16:0) and DPhPC (16:0) would be similar 

(according to the widely used solubility diffusion model). It has, however, been reported in 

various sources [194, 195], that the permeability of the branch-chained DPhPC lipid membrane 

is lower than that of its straight chained counterpart. This is likely due to restricted diffusion, 

brought on through the inclusion of methyl groups enhancing the energetic stability between 

trans-gauche rotamers, leading to an overall increase in structural stability [195], and, as a 

result, it is likely that the extracted parameters for DPPC would sit somewhere between POPC 

and DPhPC. 

 

4.3.7.2 Polymers 

As previously mentioned, polymersomes, by their nature, are very similar to liposomes, in that 

they self-assemble into a bilayer shell, encapsulating an aqueous core. However, amphiphilic 

block copolymers are typically much larger than the lipids that contribute to the formation of 

liposomes, and as a result, the hydrophobic portion of the membrane is much thicker. This 

associated thickness, in contribution to the viscous, mesh-like overlay of the hydrophobic 

polymer chains, means that polymer membranes are significantly less permeable than their lipid 

counterparts. 

When trying to understand the effect a polymer membrane has on the reaction profile of the 

urea-urease reaction, a known lipid control must be incorporated. In this instance, DPhPC is 

used, however, because we cannot determine the phosphorus concentration of a polymersome 

sample, we must designate equal starting concentrations of each surfactant, and once subjected 

to the same purification techniques, we can assume that the final concentrations of each sample 

are roughly equal. In the example below (Figure 4.24), stock concentration of DPhPC, PbD-PEO 

(1800), and PbD-PEO (3800) was set at 88.6 mM, and, after purification with size-exclusion 

chromatography, and a likely dilution of 1 in 4, we can assume the final concentration of vesicles 
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in each sample is ~20 mM. It can be seen from first instance that, as the membrane thickness 

increases, from a lipid to a larger polymer, and then again to an even larger polymer, that we 

see some profound effects on the reaction profiles. 

  

 

Figure 4.24. Change in absorption ratio (450/405 nm) for 200 nm vesicles (20 mM) of differing 

membrane compositions (DPhPC, PbD-PEO (1800), and PbD-PEO (3800)), encapsulating urease 

(10 µM) and HPTS (20 mM), following addition of urea (50 mM) (n = 3, error = ± SD). 

 

However, if we are to look a little deeper, and extract our same three measurable parameters, 

i.e., clock time, final pH, and transition width (Figure 4.25), we can see some profound 

differences in the comparative values. Firstly, if we look at clock time, we see a 156% increase 

in clock time (4.7 min to 11.9 min) when switching from a lipid (DPhPC) membrane, to a polymer 

(PbD-PEO (1800)) membrane, and, a 1099% (11.9 min to 143.1 min) increase when the polymer 

membrane thickness is increase to PbD-PEO (3800). This means that, in first instance, clock time, 

when switching from DPhPC to PbD-PEO (3800) increases by 2966%. A similar trend is witnessed 

for transition width, where, following the same patterns, transition width increases by 55.9% 

(DPhPC to PbD-PEO (1800)) and a further 161.2% (PbD-PEO (3800)). However, a more significant 

difference in final pH, for DPhPC, PbD-PEO (1800), and PbD-PEO (3800), than seen in 
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comparative samples, i.e., 7.52, 7.33, and 7.00, respectively, raises questions about uniformity, 

in terms of encapsulation efficiency, and enzyme activity, where higher temperatures are used 

to resuspend the dried polymer film. 

Theoretically, a thicker, more viscous membrane, and as such, a reduced permeability, should 

of course have an effect on the reaction profile, but, in these experiments, it is hard to extract 

whether the differences seen are due to the membrane type, or whether they are caused by 

variations in encapsulation efficiency, variations in sample concentrations, and/or variations in 

enzyme activity following more robust heating for PbD-PEO (3800). In likelihood, the heating of 

the PbD-PEO (3800) sample to 90°C, is likely to have affected the activity of urease, however, it 

does open questions as to whether clock time can be controlled in a post-generative fashion, 

using heat treatment. 

 

Figure 4.25. Comparing clock time, final pH, and transition width of DPhPC, PbD-PEO (1800), 
and PbD-PEO (3800) vesicles  (size; 200 nm, surfactant concentration; 88.6 mM, urease; 10 µM, 

HPTS; 20 mM, urea; 50 mM) (n = 3, error = ± SD). 
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4.3.8 Temperature Control 

In an experimental control, set up to better understand the effects seen with thick-membraned 

polymer vesicles (requiring robust heating in their generation), led to an idea, where heating 

above the temperature threshold of urease, for a controlled amount of time, could alter the 

reaction profile of a confined urea-urease reaction, in a post-generative fashion. In this 

experiment, three identical vesicle samples were all placed in a heater bath, and were 

sequentially removed after 1, 5, and 10 minutes. After purification, phosphate quantification, 

and dilution, the reaction was initiated through addition of urea, and the absorption ratio was 

monitored (Figure 4.26). As we can see from this initial data, increasing the duration of heating 

has a direct effect on the reaction profile witnessed. 

 

 

Figure 4.26. Change in absorption ratio (450/405 nm) for 200 nm DPhPC vesicles, encapsulating 
urease (10 µM) and HPTS (20 mM), which have been heat treated at 90°C for 1, 5, and 10 

minutes, before addition of urea (50 mM) 

 

If we are to look closer at our three standard parameters, i.e., clock time, final pH, and transition 

width (Figure 4.27), we see a considerable trend comparable to adjusting one of our standard 

starting concentrations, where a 297% increase in clock time (5.7 min to 22.5 min) was 
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witnessed when heating at 90°C is extended from 1 minute, to 5 minutes, and a further 30% 

increase (22.5 min to 29.2 min) was witnessed from 5 minutes to 10 minutes. A similar trend is 

observed for transition width, where, following the same patterns, transition width increases by 

107% between 1 and 5 minutes, and a further 11.6% between 5 and 10 minutes. Finally, as we 

would expect, in instances where urease activity has been reduced, we see a relationship 

between final pH, and the amount of time spent under heated conditions. Extending the heating 

time from 1 minute to 5 minutes, and then 5 minutes to 10 minutes, produced a reduction in 

the final pH that the reaction tends towards of 4.01% and 2.63%, respectively. As is the pattern 

emerging, where, the greatest effect on each of the measurable parameters, occurs between 1 

and 5 minutes of heating, it would appear that the affect heat has on the reaction profile is 

nonlinear, and, the greatest control over clock time may be achieved between 1 and 5 minutes. 

 

Figure 4.27. Comparing clock time, final pH, and transition width of heat treated (90°C for 1, 5, 
and 10 min) DPhPC vesicles (size; 200 nm, phosphorus concentration; 250 µM, urease; 10 µM, 

HPTS; 20 mM, urea; 50 mM) 
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4.3.9 Inter-Vesicle Communication 

There is logic to assume that by increasing encapsulated urease concentration, or by increasing 

vesicle size, and as such, increasing the number of urease molecules encapsulated, that these 

parameters would have the greatest impact on the kinetics of our system, however, this has not 

been reciprocated. Given what we have learned from Section 1.6.2, 3.2.2, and 4.2.2, with 

regards to species permeation, and the differences between internal and external 

environments, a question has been raised about the possibility of inter-vesicle communication. 

To test this, we created two species of vesicles, one encapsulating urease-only and the other 

encapsulating HPTS-only. If communication is present, the products produced by the first 

species, upon initiation with urea, would cause a pH switch-like response in the second, HPTS-

encapsulating species. 

The first thing to point out is that pH-switch-like behaviour is present, confirming communicative 

behaviour (Figure 4.28). Interestingly, in system the pH-increasing ammonia permeates out of 

the vesicles as quickly as it is made, it may be a possibility that pH switching occurs outside the 

vesicle, and then the inside of our vesicle’s lumens equilibrates to that of the outside. Secondly, 

when compared to our standard one-species system, we witness a greater robustness in pH-

switching, more akin to what we see outside the vesicle in terms of final absorption ratio/pH 

(Figure 4.1) – an expected yield, where species one raises the pH of the external environment, 

and species two equilibrates to that. Another interesting thing to note is that there is a dip in 

pH, even in the urease-deficient vesicles, before the pH increases – this is believed to be 

attributed to a pH gradient being established across the membrane following addition of urea 

(presumably at a lower pH). Finally, it is interesting to note that where modelling predicted HPTS 

to be the reason why the pH inside the vesicle cannot reach that of the outside, here, we have 

stronger reason to believe this phenomenon is attributed to the buffering capacity of the 

enzyme. 
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Figure 4.28. Inter-vesicle communication between two species of 200 nm DPhPC vesicles 
(phosphorus concentration; 250 µM), where species one encapsulates urease (10 µM) and 

species two encapsulates HPTS (50 mM), following addition of urea (50 mM). A single species, 
encapsulating both HPTS and urease in the same concentration is added as a control. 
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4.4 Summary 

Through the vast exploration of each available parameter, we have established a thorough 

understanding of the system, and how it can be controlled. Importantly, we have unearthed a 

relationship between the inside and outside of the vesicle, where, in the presence of internal 

buffering, changes in pH that originate in the vesicle lumen elicit a greater effect on the pH 

outside of the vesicle, in comparison to the inside. Likewise, we have established that through 

internal protein buffering, and pH transfer across the membrane, the pH on the inside when first 

encapsulated, isn’t the pH on the inside once characterised, as they move towards equilibrium 

over time. 

By way of an executive summary, we have established that decreasing starting pH, through 

increasing concentrations of HCl, results in an increase in clock time and transition width, and a 

decrease in final pH. Increasing urea and urease concentration causes a decrease in clock time 

and transition width, and an increase in final pH. Increasing urea concentration actually has the 

greatest effect on pH switching, however, unexpectedly, urease concentration is not a great 

influence. In fact, both urease concentration and vesicle size, two parameters predicted to have 

great effect on reaction kinetics, are not as important as once anticipated. There is evidence and 

logic to suggest that, because of inter-vesicle variation in protein copy number distribution 

within the sample, that increasing these two parameters would have a significant effect on our 

measurable parameters, however, because of the constant efflux and influx of reaction species 

in/out of the lumen, even in those potentially encapsulating no urease, it infers vesicular 

communication, and whole-sample, deterministic pH switching. For completeness, heat treating 

urea-containing vesicles is an attractive option for post-generation control of reaction kinetics, 

i.e., increasing the length of high heat treatment increases clock time and transition width, and 

decreases final pH. 

Finally, from the data at hand, in instances of high and low vesicle size (100 and 400 nm) and 

urease concentration (5 and 20 µM), in combination with high and low urea concentration (10 

and 250 mM) there is evidence of increased variability, when compared to 200 nm, 10 µM, and 

50 mM. As such, these are defined as the optimum condition, and will be held as a baseline 

moving forward. 
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CHAPTER FIVE – DRUG RELEASE 
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5.1 Introduction 

The potential of nanoreactors as drug delivery systems for low molecular weight drugs, proteins, 

nucleic acids, and other such molecules is huge. This potential, often driven by the enhancement 

of pharmacokinetic capabilities has seen more than ten liposomal-based drugs, e.g., Doxil™, put 

to clinical use [196, 197]. So, in this doctoral research, which has so far focused on understanding 

the effects of confinement and controlling the associated kinetics, the next goal is to combine 

nanoreactor technology and nonlinear enzyme kinetics to achieve temporal control over drug 

release.  

In instances where passive-loading, i.e., loading during generation, is often associated with poor 

encapsulation efficiency, a major step in vesicle-based therapeutics was achieved through 

active-loading [196]; this is when drugs in a sufficient quantity to achieve therapeutic efficacy 

are loaded into preformed liposomes. The premise of this phenomenon takes advantage of the 

relative permeability of charged versus uncharged species, and as such, a suitable candidate for 

active loading must itself be capable of becoming ionised, where the degree of ionisation is 

intrinsically linked to the agent’s pKa and the pH of the surrounding environment. Not only this, 

but the molecule earmarked for encapsulation must also exhibit high solubility, and, as such, the 

only molecules that tend to fit such specific requirements are amphipathic weak acids or bases 

[196]. 

The first demonstration of active loading was achieved by Nichols and Deamer [198], where 

amphiphilic amines were loaded, down a pH gradient, into liposomes. Since then, this process 

has been improved upon, by way of producing pH and ion gradients through the salts of weak 

acids (e.g., acetate) or weak bases (e.g., ammonium) [199]. The associated ions can be present, 

depending on the pH of the surrounding solutions, as charged or uncharged species, where 

uncharged species are capable of crossing the liposomal membrane, capable of creating an ionic 

gradient leading to their exchange with amphipathic therapeutic entities [199].  

With the internal and external pH maxima, in our case, being reached between pH 7.0 and 7.5, 

the ideal molecular profile of our drug would be a weak base with a pKa around neutral. In this 

instance, the molecule will become ionised at low pH, becoming entrapped within the vesicle at 

the start of the reaction, however, once the reaction proceeds, and the pH of the system is 

increased, the therapeutic candidate will lose its charge, and will freely diffuse into the external 

environment.  

One promising candidate, cimetidine (Figure 5.1), a histamine H2-receptor antagonist, is an 

example of a weakly basic (pKa; 6.9), water-soluble (0.938 mg/mL), and small-molecule drug (Mr; 
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252.3) used to treat gastrointestinal disorders such as gastric/duodenal ulcers, 

gastroesophageal reflux disease (GERD), and pathological hypersecretory conditions [200].  Just 

as H. pylori protects itself in the mucosal lining of the stomach, through the urease-catalysed 

conversion of urea (found in abundance in the stomach), to create a cloud of acid-neutralising 

byproducts, i.e., ammonia and carbon dioxide [201], one could imagine an instance where 

urease-encapsulating nanoreactors could not only be used to control the release of a compound, 

but to maintain that compound’s therapeutic effect once released. This ideal may one day be 

translated out of the stomach, and into the acidic microenvironment of a urea-rich tumour, i.e., 

kidney. Here, the effect elicited by the urease-encapsulating nanoreactors on their external 

environment could be used to generate a more favourable microenvironment before the drug 

is even released, boosting efficacy, as well as helping to clear excess urea associated with 

tumour-related renal failure [202]. Similarly, another interesting avenue of exploration may be 

rooted in the treatment of dementia, where a build-up of urea in the brain is now known to be 

a primary contributor [203]. 

 

 

 

Figure 5.1. Chemical structure of cimetidine 

 

 

Therefore, in this chapter, firstly, we are going to find an effective method of measuring 

cimetidine concentration whilst in a multi-component solution, whilst testing the capacity of 

cimetidine to be actively loaded down a pH gradient (HEPES; pH 7.4 → citrate buffer; pH 4.0). 

Next, we are going to leverage what we know about inter-vesicle communication, where one 

species of nanoreactors, housing urease, are responsible for neutralising the charge of 

cimetidine encapsulated in a second species of nanoreactors, to create a communicative drug 

release system.  
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5.2 Experimental 

5.2.1 Materials 

The lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC), and the fluorescent lipid 

marker (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(ammonium salt)) (Rhod-DOPE), were purchased from Avanti Polar Lipids Inc. Poly(butadiene)-

poly(ethylene oxide) (PbD (1200)-PEO (600)) was purchased from Polymer Source. The 

ratiometric pH probe 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), Urease from 

Canavalia ensiformis (Jack Bean), cimetidine, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid) (HEPES), citric acid monohydrate, trisodium citrate dihydrate, and Slide-A-Lyzer™ MINI 

Dialysis Devices (2K MWCO, 0.1 mL) were purchased from Sigma-Aldrich. 

 

5.2.2 Cimetidine Calibration 

5.2.2.1 Cimetidine Only 

Cimetidine (252.34 g/mol) was dissolved in dilute HCl (0.2 mM) to give a 1 mg/mL stock solution. 

This stock solution was serially diluted, giving cimetidine solutions, in dilute HCl (0.2 mM), of 0.0, 

1.0, 2.5, 5.0, 10, 20, 30, 40, and 50 µg/mL. Each solution was placed into a quartz-standard 

microcuvette, and their absorption was measured (between 200 and 300 nm) using a Cary 100 

Ultraviolet-visible spectrometer. A baseline correction was performed, and the resulting 

absorption at 219 nm was plotted as a calibration curve. 

5.2.2.2 Cimetidine and DPhPC Vesicles 

“Thin film rehydration” (Section 2.2.2), was used to produce 200 nm DPhPC and Rh-DOPE (0.5 

mol%) liposomes, with dilute HCl (0.2 mM) both inside and outside of the vesicle lumen. A 

phosphorus assay (Section 3.2.3.1) was then used to determine the total phosphorus content of 

the sample. The cimetidine solutions outlined above (0.0, 1.0, 2.5, 5.0, 10, 20, 30, 40, and 50 

µg/mL) were made again in the same way (Section 5.3.1.1), however, 250 µM of the DPhPC 

vesicles were present in each sample. Again, each solution was placed into a Quartz Standard 

microcuvette, and their absorption was read (between 200 and 300 nm) using a Cary 100 

Ultraviolet-visible spectrometer. A baseline correction was performed, and the resulting 

absorption at 219 nm was plotted as a calibration curve. 

 



148 
 

5.2.2.3 Cimetidine and HPTS 

A stock solution of HPTS (50 mM) was prepared. The cimetidine solutions outlined above (0.0, 

2.5, 5.0, 10, 20, 30, 40, and 50 µg/mL) (Section 5.3.1.1) were made again, in the same way, 

however, this time, 50 µM of HPTS was present in each sample. Each solution was placed into a 

3.5 mL Quartz Standard cuvette, and their absorption was read (between 200 and 300 nm) using 

a Cary 100 Ultraviolet-visible spectrometer. A baseline correction was performed, and the 

resulting absorption at 219 nm was plotted as a calibration curve. 

 

5.2.3 Active Loading and Encapsulation Efficiency 

Stock solutions (100 mL, 1 M) of citric acid monohydrate and trisodium citrate dihydrate were 

produced and used to create a citric acid buffer solution (100 mM, pH 4). Similarly, a 500 mL 

stock solution of HEPES buffer pH 7.4 (HEPES (20 mM) and NaCl (40 mM) was produced. 

“Thin film rehydration” (Section 2.2.2), was then used to produce 200 nm DPhPC and Rh-DOPE 

(0.5 mol%) liposomes, encapsulating citric acid buffer (100 mM, pH 4). The external citric acid 

buffer was exchanged for HEPES buffer, through size-exclusion chromatography (column: 1.5 x 

15 cm, media: Sephadex G-50), using HEPES buffer as the mobile phase. Part (200 µL) of the 

sample was removed at this point and stored. To the remaining liposome solution, cimetidine 

was added to give a final concentration of 0.24 mg/mL, and the solution was stirred, using a 5 

mm magnetic stirrer bar, for 30 minutes, to ensure complete dissolution. The 

cimetidine/liposome solution was then incubated at 65°C for 30 minutes, where the cimetidine 

would travel down the pH gradient, and become protonated (and therefore trapped) within the 

vesicle. 

The same size-exclusion column with dilute HCl (0.2 mM) as the stationary and mobile phase, 

was used to remove unencapsulated cimetidine, and to exchange the external HEPES buffer. A 

phosphorus assay (Section 3.2.3.1) was then used to determine the total phosphorus content of 

each sample (pre- and post-cimetidine), and the “post-cimetidine” sample was diluted to 250 

µM phosphorus content. The calibration curve above in Section 5.3.1.2 was used to determine 

the total cimetidine concentration in 250 µM of vesicles, which was multiplied by the dilution 

factor (“pre-cimetidine” vesicle concentration/250), and then calculated as a percentage of the 

initial cimetidine concentration (0.24 mg/mL). 
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5.2.4 Overcoming Buffering Potential via Vesicle-to-Vesicle Communication 

Two species of 200 nm DPhPC and Rh-DOPE (0.5 mol%) vesicles were produced via “thin film 

rehydration” (Section 2.2.2). The first species encapsulated HPTS (20 mM) in citric acid buffer 

(100 mM, pH 4), where the external HPTS and citric acid buffer was removed/exchanged, 

through size-exclusion chromatography (column: 1.5 x 15 cm, media: Sephadex G-50, stationary 

phase: dilute HCl (0.2 mM)), using dilute HCl (0.2 mM) as the mobile phase. The second species 

encapsulated urease (10 µM) in dilute HCl (0.2 mM), and, again, size-exclusion chromatography 

was used to removed unencapsulated urease. 

A phosphorus assay (Section 3.2.3.1) was then used to determine the total phosphorus content 

of each sample, and a solution containing 500 µM of each species was generated. An aliquot 

(250 µL) of this sample was placed in a 550 µL micro-cuvette, and a Cary 100 ultraviolet-visible 

spectrometer was used to monitor changes in HPTS absorption ratio (450/405 nm), over time, 

when 250 µL urea (100 mM) was added. Three independent repeats were performed, and error 

was presented as ± standard deviation (SD). 

 

5.2.5 Drug Release 

Two species of 200 nm DPhPC and Rh-DOPE (0.5 mol%) vesicles were produced via “thin film 

rehydration” (Section 2.2.2). The first species encapsulated urease (5 or 10 µM) and HPTS (20 

mM) in dilute HCl (0.2 or 0.32 mM), where, size-exclusion chromatography, with the 

corresponding solution of HCl used to suspend the encapsulants, was used to removed 

unencapsulated urease and HPTS. 

The second species encapsulated HPTS (20 mM) in citric acid buffer (100 mM, pH 4). The external 

citric acid buffer was exchanged for HEPES buffer, through size-exclusion chromatography, using 

HEPES buffer as the mobile phase. Cimetidine was added to give a final concentration of 1 

mg/mL, and the solution was stirred, using a magnetic stirrer bar, for 30 minutes, to ensure 

complete dissolution. The cimetidine/liposome solution was then incubated at 65°C for 30 

minutes, where the cimetidine would travel down the pH gradient, and become protonated (and 

therefore trapped) within the vesicle. A size-exclusion column, with a corresponding 

concentration of dilute HCl as the mobile phase, was used to remove unencapsulated 

cimetidine, and to exchange the external HEPES buffer, leaving cimetidine and citric acid (100 

mM, pH 4)-encapsulating liposomes in dilute HCl. 
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A phosphorus assay (Section 3.2.3.1) was used to determine the total phosphorus content of 

each sample, and a “vesicle stock solution” containing 500 µM of each species was made. 

Simultaneously, in a 3.5 mL quartz cuvette, a magnetic stirrer bar is placed, and 2.85 mL of urea 

(10.1754 or 50.8772 mM) and HPTS (50.8772 µM) solution is made, and an aliquot (50 µL) is 

extracted. A Slide-A-Lyzer™ MINI Dialysis cup (2K MWCO, 0.1 mL) is placed in the top of the 

cuvette, sealed with parafilm, and the previously extracted 50 µL of urea and HPTS solution is 

placed inside the cup. The cuvette is placed inside a Cary 100 ultraviolet-visible spectrometer, 

and an absorption spectrum was obtained, between 200 and 450 nm, over time, when 50 µL of 

the aforementioned vesicle stock solution is added (total volume 2.9 mL, urea (10 or 50 mM), 

HPTS (50 µM)). As the pH switches, cimetidine is deprotonated and released, where it can diffuse 

from the dialysis cup, into the cuvette, and be read by the Ultraviolet-visible spectrometer. This 

value can then be converted to a concentration, using the calibration curve in Section 5.3.1.3. 
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5.3 Results and Discussion 

5.3.1 Cimetidine Calibration 

As we know, the absorption spectra of a chemical species are generated when a beam of 

electromagnetic energy (light) is passed through a sample, and a proportion of the photons 

within that beam are absorbed by the chemical species therein [204]. Here, we assume that 

absorbance (𝐴) is directly proportional to both the concentration (𝑐) of the solution, and the 

length of the light path (𝑙), and through the inclusion of a proportionality constant (𝜖), Beer-

Lambert law can be used to help determine the concentration of an analyte within a sample. 

 

 

𝐴 = 𝜖𝑐𝑙 

Equation 5.1. Beer-Lambert Law 

 

 

5.3.1.1 Cimetidine Only 

Thus, if we consider our compound of choice, cimetidine, it is important to ascertain whether it 

obeys Beer-Lambert’s law, and for what concentration range. As such, an absorption spectrum 

of varying concentrations of cimetidine, between 0 and 100 µg/mL, dissolved in dilute HCl (0.2 

mM), were originally taken, however, upon further analysis, it was shown that Beer-Lambert’s 

law was only obeyed up to a maximum concentration of 50 µg/mL, and as such, it was only these 

values that are shown (Figure 5.2). A baseline correction was performed (Figure 5.3), and a 

calibration curve for cimetidine (@ 219 nm) was produced (Figure 5.4). 
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Figure 5.2. Absorption spectra for various cimetidine concentration (0 – 50 µg/mL) in dilute HCl 
(0.2 mM) 

 

 

 

Figure 5.3. Baseline correction of cimetidine absorption for concentrations between 1 and 50 
µg/mL 
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Figure 5.4. Calibration curve at 219 nm for cimetidine concentration, between 0 and 50 µg/mL, 
in dilute HCl (0.2 mM), showing conformation to Beers-Lambert law. 

 

 

 

5.3.1.2 Cimetidine and DPhPC Vesicles 

However, although we can comfortably appreciate that cimetidine in solution conforms to Beer-

Lambert law, to test the encapsulation efficiency when subjected to active loading, a second 

calibration curve, which is mindful of the scattering effects talked about in Section 3.3.3, must 

be produced. In this instance, solutions of cimetidine, which conformed to the original 

concentrations outlined above (Section 5.3.1.1), were produced in the presence of 250 µM 

(phosphorus concentration) of DPhPC vesicles, and their absorption spectra was taken (Figure 

5.5). Although clear scattering effects were present, a baseline correction (Figure 5.6) showed 

clear conformation to Beer-Lambert law, and an appropriate calibration curve, at 219 nm, was 

produced (Figure 5.7). 
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Figure 5.5. Absorption spectra for various cimetidine concentration (0 – 50 µg/mL), in the 
presence of DPhPC vesicles (250 µM phosphorus concentration), in dilute HCl (0.2 mM) 

 

 

 

Figure 5.6. Baseline correction of cimetidine absorption, in the presence of 250 µM (phosphorus 
content) of DPhPC vesicles, for concentrations between 1 and 50 µg/mL 
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Figure 5.7. Calibration curve, at 219 nm, for cimetidine (0 – 50 µg/mL) in presence of DPhPC 
vesicles (250 µM phosphorus content) 

 

 

5.3.1.3 Cimetidine and HPTS 

Finally, for the experiment outlined in Section 5.2.5, where a Slide-A-Lyzer™ MINI Dialysis cup 

(2K MWCO, 0.1 mL), holding two species of vesicles capable of communicative drug-release, is 

placed inside a 3.5 mL cuvette, thus allowing the transfer of cimetidine into the HPTS-containing 

cuvette, a third calibration curve must be generated. This time, solutions of cimetidine, which 

conformed to the original concentrations outlined above (Section 5.3.1.1), were produced in the 

presence of HPTS (50 µM) (Figure 5.8). Although clear interference of HPTS was present, a 

baseline correction (Figure 5.9) showed clear conformation to Beer-Lambert law, and an 

appropriate calibration curve, at 219 nm, was produced (Figure 5.10), thus allowing us to 

monitor both pH change, in terms of absorption ratio, and cimetidine release, for our drug 

release experiments. 
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Figure 5.8. Absorption spectra for various cimetidine concentration (0 – 50 µg/mL), in the 
presence of HPTS (50 µM), in dilute HCl (0.2 mM) 

 

 

 

Figure 5.9. Baseline correction of cimetidine absorption, in the presence of 50 µM HPTS, for 
concentrations between 1 and 50 µg/mL 
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Figure 5.10. Calibration curve, at 219 nm, for cimetidine (0 – 50 µg/mL) in presence of HPTS (50 
µM) 

 

 

5.3.2 Active Loading and Encapsulation Efficiency 

To determine the capability of our vesicles in encapsulating cimetidine, and to understand the 

encapsulating efficiency of our methodology, a sample of DPhPC vesicles encapsulating citrate 

buffer was purified via size exclusion chromatography, with HEPES buffer as the mobile phase, 

and 3 mL of the eluent was collected. Out of this 3 mL, 1 mL was separated and designated “pre-

cimetidine”, and the remaining 2 mL, designated “post-cimetidine” underwent active loading, 

as described above. A phosphorus assay of each sample was conducted, reporting the average 

concentration of “pre-cimetidine” to be 1384 ± 95 µM, and the average concentration of “post-

cimetidine” to be 889 ± 42 µM. Each sample was diluted to 250 µM, and their absorption was 

read between 200 and 300 nm. A baseline reduction (“post-cimetidine” minus “pre-cimetidine”) 

was conducted, and the resulting spectrum plotted (Figure 5.11). Using our calibration curve 

above (Figure 5.7), a concentration value of 39.81 µg/mL was extracted, and using our known 

dilution factor, 5.54, i.e., 1384/250, and our starting cimetidine concentration (240 µg/mL), we 

can successfully determine our encapsulation efficiency to be approximately 92% (((39.81 x 

5.54)/240)*100). 
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Figure 5.11. Absorption of cimetidine in 250 µM (phosphorus concentration) DPhPC vesicles 

(200 nm), following baseline correction, showing concentration equivalent as 39.82 µg/mL 

 

 

5.3.3 Overcoming Buffering Potential via Vesicle-to-Vesicle Communication 

For our drug to be released in a communicative fashion, the pH of the cimetidine-containing 

vesicles must be increased, to neutralise the drug. In chapter four, we discussed the potential of 

inter-vesicular communication to affect the luminal pH of HPTS-only containing vesicles, 

however, in this instance, a new question is asked; is inter-vesicle communication strong enough 

to overcome the internal buffering potential of citrate buffer (needed for active loading)? 

To simulate the conditions needed for our drug release studies, we adapted the communication 

experiments seen in Chapter Four. Two species of vesicles; one containing urease in dilute HCl 

(0.2 mM), and the other containing HPTS in citrate buffer (100 mM, pH 4) were generated, and 

upon addition of urea, it becomes evident that overcoming buffering potential, through 

communicative means, is possible (Figure 5.12). It is likely, given what we know about how the 

system works, where the external pH rapidly switches in relation to rapid ammonia transport 

out of the lumen, that overcoming the internal buffering potential of the vesicles in this scenario 

is aided by the disparity in volume between the vesicle lumen and the external environment, 
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and, by association, the strength of the pH gradient across the membrane. It is also worth 

mentioning that, as expected, pH-switching is comparatively slower under buffered conditions, 

than what was witnessed under non-buffered conditions in Chapter Four, however, the 

characteristic “dip” in pH at the beginning of the reaction is still present (due to urea addition at 

a lower pH of system’s universal pH). 

 

 

 

Figure 5.12. Communicative pH-switching between a urease (10 µM) in HCl (0.2 mM)-
encapsulating species and a HPTS (20 mM) in citrate buffer (100 mM, pH 4)-encapsulating 

species of DPhPC vesicles (250 µM phosphorus content, 200 nm) (n = 3, error = ± SD). 

 

 

5.3.4 Drug Release 

Here, in a creative experimental setup (Figure 5.13), where, to a quartz cuvette containing urea 

and HPTS in dilute HCl, a dialysis cup, partially filled with equally concentrated urea and HPTS in 

dilute HCl, was inserted. This way, when the reaction is initiated by introducing our two species 

of vesicles, i.e., urease encapsulating and drug encapsulating, into the dialysis cup, the 

subsequent urea-urease reaction will raise the pH of the external solution, thus allowing us to 
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monitor the change in pH over time, and, as a consequence, the neutralised cimetidine, now 

capable of freely diffusing across the vesicular membrane, can also diffuse across the dialysis 

membrane, to also allow for drug concentration monitoring. 

 

 

 

Figure 5.13. Experimental setup for drug release experiments, showing a Slide-a-Lyzer dialysis 
cup placed inside a 3.5 mL QS cuvette. Once the communicative vesicles are added to the 

cup/cuvette containing urea and HPTS, the reaction is initiated, and the associated NH3 and 
CO2 raises the pH of the whole cuvette, altering the permeability of cimetidine, which is 

subsequently released.  

 

 

5.3.4.1 Control and Standard 

To gain a better understanding of the natural rate of cimetidine release from DPhPC vesicles, a 

control experiment, where 250 µM (phosphorus concentration) of vesicles encapsulating 

cimetidine in citrate buffer were added to the dialysis cup, and the absorption values of the 

sample were monitored at 219, 405, and 450 nm for 10 hours (Figure 5.14). In this example, as 

we would expect, without the presence of a urease-containing species capable of invoking 

communicative release, the pH (represented by absorption ratio) does not increase, and as such, 

neutralisation of encapsulated cimetidine, and triggered release, is not achieved. 



161 
 

 

Figure 5.14. Drug release control, where only cimetidine in citrate buffer (100 mM, pH 4)-
encapsulating DPhPC vesicles (200 nm, 250 µM phosphorus content) are added to the dialysis 

cup, without the presence of a communication-linked triggering species. 

 

 

However, if we are to take our standard parameters, outlined at the end of Chapter Four, i.e., 

DPhPC (200 nm, 250 µM phosphorus concentration), urease (10 µM), urea (50 mM), and HCl 

(0.2 mM), we can ascertain a “typical” release profile for our drug release experiments (Figure 

5.15). The first thing to notice, upon initial examination, is that the profile of each measured 

parameter is very similar, and conforms to our initial prediction, where increased pH would lead 

to increased cimetidine neutralisation, and therefore release. If we are to then apply our 

standard fitting parameter (Hill1), first discussed in Section 4.2.3, to each profile, i.e., the 

reaction profile of pH switching, and the reaction profile of drug release, we can more accurately 

compare the “clock time” (time taken to reach half maximum), and thus the relationship, 

between the two. Here, the clock time for pH switching is 28.9 min, and the clock time for 

cimetidine release is 29.9 min, inferring a strong correlation between the two. 
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Figure 5.15. Drug release, where DPhPC vesicles (200 nm, 250 µM phosphorus content) 
encapsulating urease (10 µM) in HCl (0.2 mM) are used communicatively trigger cimetidine 

release from DPhPC vesicles (200 nm, 250 µM phosphorus content) encapsulating cimetidine in 
citrate buffer (100 mM, pH 4), in the presence of 50 mM urea. 

 

 

5.3.4.2 Urea Concentration 

Although we have achieved (approximately) a 30-minute delay in drug release using our 

“standard” concentrations, given what we learned in Chapter Four through our extensive 

parameter space exploration, it is likely that we can adjust said parameters to extend/control 

drug release, in a chronotherapeutic capacity. In this example, all the parameters are held 

constant, barring the concentration of urea, which is reduced from 50 mM to 10 mM. Here, upon 

first examination, we can see a comparable increase in the time taken for both the pH to switch 

and the drug to be released (Figure 5.16). In fact, for all our measurable parameters extracted 

from our fitting function, we see a predictable change, where clock time and transition width 

increase, and final pH (represented in this example by absorption ratio) decreases (Table 5.1) – 

this relationship between pH and drug release adds strong further evidence that drug release is 

triggered by the urease clock. 
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Table 5.1. Clock time, final absorption ratio(450/405 nm), and transition width for pH-switching and 
drug release, following adjustment of urea concentration (50 - 10 mM), when other 

experimental parameters are held constant (DPhPC (200 nm), urease (10 µM), HCl (0.2 mM)) 

 

Absorption Ratio/AR 

(450/405 nm) 

Cimetidine Concentration 

(µg/mL) 

Urea Concentration  50 mM 10 mM 50 mM 10 mM 

Clock Time (min) 28.1 63.5 29.9 60.1 

Final AR 2.74 2.61   

Transition Width 4.56 5.05 1.32 2.71 

 

 

 

Figure 5.16. Drug release, where DPhPC vesicles (200 nm, 250 µM phosphorus content) 
encapsulating urease (10 µM) in HCl (0.2 mM) are used communicatively trigger cimetidine 

release from DPhPC vesicles (200 nm, 250 µM phosphorus content) encapsulating cimetidine in 
citrate buffer (100 mM, pH 4), in the presence of 10 mM urea. 
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5.3.4.3 Urease Concentration 

Similarly, if we again hold all the standard parameters constant, but change the concentration 

of urease from 10 µM to 5 µM, we can see a comparable increase in the time taken for the pH 

to switch, the drug to be released, and, like we have seen before, the width of transition also 

increases (Figure 5.17). In fact, similarly to when we decrease urea concentration, all our 

measurable parameters alter in an expected way, i.e., clock time and transition width increase, 

and final pH (represented in this example by absorption ratio) decreases (Table 5.2). 

 

 

Table 5.2. Clock time, final absorption ratio(450/405 nm), and transition width for pH-switching and 
drug release, following adjustment of urease concentration (10 to 5 µM), when other 

experimental parameters are held constant, i.e., DPhPC (200 nm), urea (50 mM), HCl (0.2 mM) 

 

 

Absorption Ratio/AR 

(450/405 nm) 

Cimetidine Concentration 

(µg/mL) 

Urease 

Concentration 
10 µM 5 µM 10 µM 5 µM 

Clock Time (min) 28.1 221.0 29.9 180.4 

Final AR 2.74 1.98   

Transition Width 4.56 5.25 1.32 3.31 
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Figure 5.17. Drug release, where DPhPC vesicles (200 nm, 250 µM phosphorus content) 
encapsulating urease (5 µM) in HCl (0.2 mM) are used to communicatively trigger release from 
DPhPC vesicles (200 nm, 250 µM phosphorus content) encapsulating cimetidine in citrate buffer 

(100 mM, pH 4), in the presence of 50 mM urea. 

 

 

5.3.4.4 Acid Concentration 

Now, if we hold all our standard parameters constant, but adjust the concentration of HCl both 

used to suspend our encapsulants and as the mobile phase in size-exclusion chromatography, 

from 0.20 mM to 0.32 mM (pH 3.7 to pH 3.5), we see some remarkable results (Figure 5.18). 

Firstly, from 0 – 50 minutes, we see a passive rate of cimetidine diffusion across the membrane, 

then, as the urea-urease reaction begins to proceed, at around 100 minutes, we see a 

corresponding increase in the rate of release. Finally, although we cannot see the full reaction 

to completion, although we can assume the clock time would be somewhere around 600 

minutes, we see a corresponding increase in cimetidine release, that mirrors the reaction profile 

of the pH of the cell. 
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Figure 5.18. Drug release, where DPhPC vesicles (200 nm, 250 µM phosphorus content) 
encapsulating urease (10 µM) in HCl (0.32 mM) are used communicatively trigger cimetidine 

release from DPhPC vesicles (200 nm, 250 µM phosphorus content) encapsulating cimetidine in 
citrate buffer (100 mM, pH 4), in the presence of 50 mM urea. 

 

 

5.4 Summary 

Through the manipulation of charge, we have successfully loaded our model compound 

(cimetidine), and, utilised vesicle-to-vesicle communication and parameter space manipulation 

to create a tuneable, feedback-controlled drug delivery system. As previously described, the 

potential of chemical feedback in next-generation nanomedicine cannot be understated, and 

here, we have achieved a first demonstration of feedback-controlled drug delivery. As such, the 

significance of this finding, given its potential, is vast. However, not only have we devised a 

system capable of temporal control, but, in likeliness to H. pylori creating a cloud of acid-

neutralising byproducts for protection, we have a drug delivery system capable of clearing urea, 

whilst generating a favourable external environment for drug release, be it in a protective 

capacity, or to boost efficacy. 
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CHAPTER SIX – ENZYMATIC PROPULSION OF NANOREACTORS 
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6.1 Introduction 

The exploitation and conversion of chemical free energy into mechanical work is ubiquitous 

across all systems within nature, and is a vital component of survival in all organisms of varying 

complexity. From locomotion to vesicle transportation, phagocytosis to cell division, examples 

of substrate-driven mechanical work are commonplace within biological systems [205], and, in 

most instances, enzymes that are capable of converting substrates with specificity and efficiency 

provide the engine. Whether it be energy production via the dephosphorylation of ATP by 

ATPase, or the synthesis of DNA by DNA polymerase, countless examples of enzymes acting as 

biological workhorses exist [206]. In fact, in a more recent overview, enzymes themselves are 

effectively considered a type of nanomotor, given the revelation of enhanced diffusion (on a 

single molecule level) in response to catalytic activity [207-209]. 

In similarity to the discovery of nanoreactors, discussed in Section 1.6, the discovery of synthetic 

nanomotors grew from a similar seed; an endeavour to mimic their biological counterpart, with 

a hope to better understand their fundamentals and a view to control their use for wider 

application [210]. Since their first demonstration in 2004, nanomotors have received great 

attention for their potential applications in smart drug delivery [211], bio-nanotheragnostics 

[212], environmental remediation [213], etc. It is, therefore, not only important to understand 

and appreciate their fundamental biocatalytic processes, but to also ascertain a full 

understanding of enzymes themselves as “swimmers”, and as a result, begin to unravel their 

contribution towards motility in more complex structures, i.e., vesicles. As such, a deeper 

understanding of the mechanism of enzymatic propulsion, may lead to the creation of more 

advanced nanomotor architectures, and technological advancement within the fields they are 

rooted. 

Therefore, given the slightly tangential nature of this chapter, this introduction will seek to 

provide a focused, mini-review on enzymes as molecular machines, as well as their propelling 

contribution to nanomotors, when combined with synthetic machines, i.e., inorganic [214, 215] 

or polymeric [216] entities. This section will be focused on the fundamental mechanisms of 

enzymatic catalysis, and how such reactions can be used to convert biocatalytic energy into 

propulsive power. 

 

6.1.1 Enzymes as Motors 

At the cellular level, enzymatic catalysis of substrates to products is responsible for most forms 

of biological motion. For example, the movement of myosin along an actin filament [217], or, 
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similarly, the movement of kinesin or dynein along a microtubule track [218], represent the 

three primary, cellular molecular motors. Their movement, attributed to the energy generated 

when ATPase hydrolyses, and, as a result, dephosphorylates ATP into ADP (ATP + H2O → ADP + 

Pi (inorganic phosphate)), has been reported to generate forces varying between 1 and 10 pN 

[219-221]. 

Single enzymes can also perform decoupled intracellular motion, for example, the rotation of 

ATPase. In this example, ATPase catalytic proteins are embedded within organelle membranes, 

and contribute to either ATP synthesis, through the electron transport chain-facilitated 

generation of an electrochemical proton gradient (F-ATPase) [222], or the acidification of intra- 

or -extracellular compartments (V-ATPase) [223]. Although first hypothesised in 1979 [224], the 

rotary phenomena of ATPase, now known to be attributed to conformational changes in 

differing subunits [225], was not empirically observed until 1997 [226], and realisation that 

ATPase was capable of generating a force was not realised until 2002 [227]. 

In addition to these more well-understood accounts of intracellular motion, it has been 

hypothesised that the self-diffusion of enzymes located within the cytoplasm plays a vital role 

in the transduction of intracellular signals [228]. It wasn’t until 2010, that empirical evidence of 

this phenomena was first demonstrated, where, enhanced diffusion of urease was shown to be 

highly reliant on urea concentration and enhanced diffusion of catalase was shown in the 

presence of hydrogen peroxide. However, enhanced diffusion was not the only interesting 

finding. In fact, in both cases, free enzymes presented with a preferential movement up their 

respective concentration gradients, and towards increasing substrate concentrations – regarded 

as a form of molecular chemotaxis [208]. 

Although such findings have opened a whole new field of scientific discovery, where energy 

released by enzymes is harnessed as fuel for nanomotors, the underlying mechanism in which 

enzymatic motion is achieved has yet to be agreed upon. The first idea, suggested by 

Golestanian, claims that a self-diffusiophoresis mechanism is accountable for enhanced 

enzymatic diffusion, where, an asymmetric release of products creates an interfacial force in 

relation to osmotic gradients, charges, or other such properties [229, 230]. This idea, simplified 

via the notion that self-propulsive forces are generated through enzymatic interactions with the 

local gradient of the product they release, was echoed in 2014 [231]. 

However, it has also been suggested, that enhanced diffusion is actually the result of repeat 

conformational changes, in response to substrate catalysis, that actually results in a 

phenomenon called “stochastical swimming” [229, 232-234]. The mechanisms behind this 
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swimming phenomena, i.e., the energetics that drive conformational change in response to 

substrate binding, were investigated in 2016 with adenylate kinase, an enzyme responsible for 

cellular homeostasis through the interconversion of ATP, ADP, and AMP (ATP + AMP → 2ADP), 

using single-molecule force spectroscopy (optical tweezers) [235]. 

Likewise, although it may seem simplistic to suggest that an increase in temperature, attributed 

to catalysis-induced heat release, is responsible for enhanced diffusion, it has been explored. In 

this instance, it was suggested that motion was the result of asymmetric pressure waves being 

generated through the transient displacement of the centre-of-mass of the enzyme (chemo-

acoustic effect) [209], however, this idea is still under debate. As such, Golestanian [229] 

investigated four distinct mechanisms of motion (stochastic swimming, self-thermophoresis, 

collective heating, and boosting kinetic energy) in the temperature-driven enhanced diffusion 

of enzymes observed by Riedel et al [209]. However, his findings were inconclusive, stating that 

there was not enough evidence to suggest self-thermophoresis or a boost in kinetic energy is 

responsible for effective diffusion, and instead, suggested that enhanced motility in enzymes 

responsible for the catalysis of exothermic reactions is likely to be connected to a systemic 

increase in temperature and/or conformational changes that enhance the relative diffusion 

coefficient [229].  

Although no such agreement has been reached, understanding the underlying mechanism of 

single-enzyme motion is likely to be critical to the advancement of biocompatible, enzyme-

powered nanomachinery. It is likely that the answer to this question lies in sophisticated 

experimental design, negating the combining effects described above, and ultimately helping in 

the design and implementation of nanomotors to drive complex artificial systems. 

 

6.1.2 Enzyme-Powered Nanomotors 

One of the classic, most-simple, self-propulsive systems involves the exposure of platinum-silica 

(Pt-SiO2) Janus spheres to H2O2, where catalytic decomposition of H2O2 on the Pt face, causes 

diffusiophoretic movement in relation to the newly established concentration gradient, and 

nucleation of oxygen on the Pt surface resulted in microbubble propulsion [236]. However, just 

as enzymes power motion in biological structures, their ability to provide adequate force to 

propel larger synthetic entities has been investigated [209, 214, 216, 237]. Of course, as is the 

toxicity and inefficiency of Pt, catalase was identified as a suitable replacement [238], and 

through the immobilisation of catalase inside a tubular micromotor (25 μm), ultrafast propulsion 

was achieved through via microbubble expulsion. Other research looked to demonstrate proof-
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of-concept  applications for microbubble-propelled micromotors, which included drug delivery 

[239], decontamination [240], testing water quality [241], and sensory applications [242]. 

Likewise, the conjugation of catalase onto one face of a Janus particle, produced microbubbles 

sufficient enough to drive the particle away from the biocatalytic face [209, 243, 244]. Of course, 

although microbubble propulsion holds several advantages over phoretic motion, such as 

directional movement and higher propulsive velocity, the use of H2O2 as fuel presents realistic 

limitations in terms of high oxidative activity and biotoxicity. 

The benefit of efficiency in replacing Pt-based microbubble systems with enzyme-based systems 

was again exemplified, firstly, in 500 nm stomatocytes (a cell which has lost its biconcave 

morphology, and presents in three dimensions as a “bowl”), where, when loaded with catalase, 

or catalase and glucose oxidase, self-propulsion was achieved through the expulsion of gas 

through small openings in the structures [216], and, secondly, in the work of Pantarotto and co-

workers [237], where microbubble-propulsion was achieved when 20 nm glucose 

oxidase/catalase-conjugated carbon nanotubes were exposed to glucose and oxygen. In 

likelihood, this increase in efficiency is likely to be attributed to the highly efficient and rapid 

catalytic conversion of substrates exhibited by the enzymes, but, also through the localisation 

of catalytic activity within micro/nanomotor cavities, resulting in an accumulation of product, 

which is subsequently expelled as a “jet” [216]. 

In another example [214], where propulsion occurred through chemophoretic mechanisms, 400 

nm Janus nanomotors were created by conjugating three different enzymes (catalase, urease, 

and glucose oxidase), onto one “face” of the hollow mesoporous silica nanoparticles (HMSNPs). 

It was shown, that upon exposure to their respective substrates (H2O2, urea, and glucose), 

enhanced diffusion of all nanomotors was present, and a measurable driving force of around 60 

fN was reported. A similar enhancement in diffusion of Janus silica particles was also reported 

by Schattling and co-workers [245], who immobilised both catalase and glucose oxidase onto 

one face of the particles. 

Another method, using various enzymes (glucose oxidase, catalase, horseradish peroxidase, 

glutamate oxidase, xanthine oxidase) conjugated onto polypyrrole-gold nanorods, enhanced 

diffusion was found, and reported to be the result of self-electrophoresis based on a 

bioelectrochemical mechanism (2H+ +2e− + H2O2 → 2H2O; 2O2 → 2O2
•−+ 2e−) [246, 247]. 

Bioelectrochemical propulsion was also achieved, this time by Mano and Heller [248], through 

the conjugation of glucose oxidase and bilirubin oxidase onto a macroscale carbon fibre, and 

subsequent exposure to glucose. Mechanical force was generated through bioelectrochemical 
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means, via the oxidation of β-D-glucose to δ-glucono-1,5-lactone (β-D-glucose + ½O2 → δ-

glucono-1,5-lactone + H2O), which resulted in propulsion at the air-liquid interface. 

Enhanced diffusion of polystyrene beads, explained by a thermal effect, was reported by Dey 

and co-workers [215] when both catalase and urease where conjugated around the whole 

surface of the polystyrene structures. It was reported that, following exposure to their 

respective substrates, the exothermic enzymatic reaction that ensued was sufficient to drive 

particle motility, however, it was pointed out, in the same paper, that this hypothesis needs 

further investigation. 

In this section, thus far, we have described the potential of nanomotors, and shown their 

feasibility of utilising biocompatible fuel sources, however, micro/nanomotors do not operate 

in the same regime in which we live, and, as such, the outcomes of physical laws on this scale 

differ significantly. Within this regime, the effect of viscous drag, coupled with Brownian motion 

and its subsequent randomisation on movement, has a profound and deterministic effect on 

motion [249]. With regards to viscous drag, each object, i.e., a vesicle or a person, can be 

designated a Reynolds number (Re), relating to the ratio between inertial and viscous forces 

(Equation 6.1) [250]: 

 

 

𝑅𝑒 =  
𝑝𝑉𝑙

𝜇
=  

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑠

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝐹𝑜𝑟𝑐𝑒𝑠
 

Equation 6.1. Reynolds number. 

 

 

In this equation, 𝑝  represents the density of the fluid, 𝑉  is indicative of the velocity of the 

particle, 𝑙 can be defined as the length of the object in question, and 𝜇 is the dynamic viscosity 

of the external medium. By way of an example, a human swimming through a swimming pool of 

water has a high (104) Reynolds number, and in most instances in the macroscopic world, inertial 

forces dominate over viscous forces, resulting in turbulent flow. By contrast, a bacterium 

swimming through the same pool would have a Reynolds number of 10-4, where viscous forces 

are dominant [249]. This means, at low Re numbers, the immediate counteraction of viscous 
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drag means that inertia is no longer sufficient in sustaining motion, flow is laminar, and, as such, 

the importance of continuous force is imperative for micro/nanomotor motion.  

In recent times, a fully biocompatible, urease-conjugated, hollow mesoporous silica Janus 

micromotor (2.3 μm) was shown to exhibit fast (>10 μms−1), long-lasting, and long-range (>100 

μm) motion at physiological urea concentrations, thus highlighting its potential for 

biotherapeutic applications [251]. Such findings, i.e., self-diffusiophoresis-driven propulsion, 

adds weight to what was claimed above by Golestanian, where asymmetric release of catalytic 

products results in phoretic motion in enzyme-conjugated Janus particles [230]. However, 

considerations of conformational changes in enzyme structure and systemic temperature 

increases may potentiate the enhancement of Brownian motion. Brownian motion is described 

as the randomisation of particle motion in response to thermally driven collisions between 

solvent and colloidal molecules, and given by the diffusion coefficient (𝐷) extracted from the 

Stokes-Einstein relationship (Equation 6.2) [252]: 

 

 

𝐷 =
𝑘𝐵𝑇

6𝜋𝑛𝑟
 

Equation 6.2. Stokes-Einstein Equation 

 

 

In this instance, 𝑘𝐵  represents the Bolztmann constant, 𝑇  is the absolute temperature, 𝑛  is 

defined as the viscosity, and 𝑟 is the particle radius. The rate of diffusion, represented by the 

diffusion coefficient, is therefore related to the thermal energy within the system and the size 

of the particle in question. Consequentially, the interference of Brownian motion, in terms of 

randomisation of directionality, increases as the size of the particle decreases [249]. As such, 

when designing a micro/nanomotor-based system for future application, especially in terms of 

biotherapeutics, control over motion is paramount. 

Such control of micro/nanomotor movement can be achieved through external means, where, 

in one example, one-dimensional guidance of both solitary enzymes (urease and catalase) [208] 

and enzyme-conjugated systems was achieved in a microfluidic system [215] - these enzymatic 

micro/nanomotors were shown to have preferential movement towards areas of high substrate 
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concentration (chemotaxis). Another common strategy, based on the incorporation of a 

magnetic entity, e.g., Ni or Fe, into the micro/nanomotor structure, is remote magnetic 

guidance. In this example, the directional orientation of enzymatic motors was achieved through 

the application of a guided magnetic field [243, 251, 253]. It is also worth mentioning, that as 

well as directional guidance, propulsion velocity was also tuned through the manipulation of 

enzymatic activity, using known urease inhibitors, such as the Ag+ or Hg2+ [251]. This concept 

was applied to water quality sensing, by observing inhibited propulsion in micromotor systems 

[240, 241]. 

 

6.1.3 Overview of Chapter 

We seek to achieve motility in a novel way, where the enzymes responsible for providing 

propulsive energy are encapsulated within a phase-separated hybrid (lipid/polymer) vesicle. In 

this instance, we combine two assumptions. Firstly, that the permeability of a lipid domain on a 

phase-separated vesicle is higher than that of the remaining polymer domain, thus directing 

propulsion away from the lipid domain (Figure 6.1), and, secondly, building off the work of Nam 

and co-workers [254], that the size of the lipid domain can be controlled through composition 

ratio. Through this technique, we seek to control propulsive velocity through the manipulation 

of domain size, hypothesising that the smaller the domain, the more focused, and therefore, 

powerful, the jet of propulsive force will be, whilst creating a system, where enzymatic 

nanomotors are protected from hypothetical physiological macroenvironments. 

 

Figure 6.1. Hypothesised mechanism of propulsive velocity, where, owing to the superior 
permeability of lipids to polymers, phase separated vesicles should result in a focused efflux of 

catalytic byproducts, and as such, propel the vesicle away from the lipid domain. 
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6.2 Experimental 

6.2.1 Materials 

The lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol, and the 

fluorescent lipid marker (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (ammonium salt)) (Rhod-DOPE), were purchased from Avanti Polar Lipids 

Inc. poly(butadiene)-poly(ethylene oxide) (PBD-PEO (3500)) was purchased from Polymer 

Source. The ratiometric pH probe 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), 

urease from Canavalia ensiformis (Jack Bean), and urea were purchased from Sigma-Aldrich. 

 

6.2.2 Motility 

 “Thin film rehydration” (Section 2.2.2) was used to produce PbD-PEO (3500):POPC:cholesterol 

+ Rh-DOPE (0.5 mol%) vesicles, at varying molar ratios of the constituents (3:5:2, 1:1:1, 5:3:3, 

and 0:6:4), and of varying sizes (100, 200, 400 nm), depending on which parameter was being 

tested. The HPTS concentration encapsulated in each vesicle was held constant (20 mM), but 

the concentration of urease could vary (0, 10, 30 µM). Each sample was purified via size-

exclusion chromatography, using 0.20 mM HCl (used to suspend the urease and HPTS) as the 

mobile phase. To an 850 µL micro-cuvette, 1000 µL of the sample being tested was added. At 

the same time, a solution of urea (0.21, 1.05, or 2.10 M, depending on the experiment in mind) 

was prepared. A Malvern Zetasizer was programmed to take reading every 5 minutes and 

immediately after the first reading was complete, 50 µL of the specified urea solution was added, 

making the final volume 1050 µL, and the final urea concentrations, 10, 50, and 100 mM, 

respectively. Three independent repeats were performed, and error was presented as ± 

standard deviation (SD). 
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6.3 Results and Discussion 

6.3.1 Motility 

Due to the simplicity of its underlying principles, where a laser beam of light is shone into a 

sample and the resulting scattered photons are detected at a known scattering angle (θ) by a 

photon detector, dynamic light scattering (DLS) [255] has proved to be a popular technique in 

the size determination of colloids, nanoparticles, polymers, vesicles, micelles, proteins, and 

emulsions. 

In this nano/microscopic regime, the fluctuation of light scattered by particles provides 

information about their motion, in terms of intensity, and, from this, information about their 

size, through the processing of fluctuating intensity with an autocorrelation function, and the 

subsequent extraction of the autocorrelation function as a function of delay time (τ), can be 

determined [256]. 

Earlier in this chapter, we seen the relationship between size and the diffusion coefficient, 

through the Stoke-Einstein equation (Equation 6.2). By simple rearrangement, we can determine 

the hydrodynamic diameter (m), 𝐷ℎ, of our particles through the Stokes-Einstein relationship: 

 

𝐷ℎ =  
𝑘𝐵𝑇

3𝜋𝑛𝐷𝑡
 

Equation 6.3. Stokes-Einstein Relationship 

 

Where, 𝐷𝑡 now represents the diffusion coefficient (m2 s-1), and, as we know, 𝑘𝐵, 𝑇, 𝑛, represent 

the Bolztmann constant, absolute temperature (K), and viscosity (Pa·s), respectively, if we 

measure the apparent average diameter of a urease-loaded vesicle, over time (using DLS), 

following the addition of urea, and assume that vesicle size and all other parameters, i.e., heat 

and viscosity, remain constant, we can use the Stokes-Einstein relationship to measure the 

associated diffusion coefficient (µm2 s-1) ( 𝐷𝑣 ) of our sample in response to changing 

experimental conditions, i.e., increased urease concentration: 

 

𝐷𝑣 = (
𝑘𝐵𝑇

3𝜋𝑛𝐷ℎ
) × 1012 

Equation 6.4. Diffusion coefficient extracted from Stokes-Einstein relationship. 
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6.3.1.1 Membrane Composition 

In our initial hypothesis, we sought to enhance diffusion through the manipulation of lipid 

domain size, where, a smaller lipid domain would result in a more focused “jet” of exponents, 

and, as such, greater diffusion. Building off the work off Nam and co-workers [254], who found 

that through manipulation of PbD-PEO:POPC:cholesterol membrane composition from 3:5:2, to 

1:1:1, to 5:3:3, sequentially smaller lipid domains on phase separated vesicles could be attained, 

we loaded 200 nm PbD-PEO:POPC:cholesterol vesicles, at membrane compositions of 0:6:4 (lipid 

and cholesterol only), 3:5:2, 1:1:1, and 5:3:3, with either HPTS (20 mM) (control), or urease (10 

µM) and HPTS (20 mM), and determined their apparent diffusion coefficient (Table 6.1) by 

recording their average diameter over 5 minute increments, following exposure to urea (50 

mM), and translating the data using the aforementioned equation (Equation 6.4). 

To allow for a more representational measurement, the diffusion coefficient recorded at each 

time increment was converted to percentage change with respect to the diffusion coefficient at 

t0 min (Figure 6.2). For our control, i.e., when internal urease concentration is 0 µM, we can see 

that for all three of our phase separated vesicle compositions (3:5:2, 1:1:1, and 5:3:3), there is 

no significant percentage change in diffusion coefficient between t0 min and t30 min (6.1 ± 3.3, 

5.0 ± 0.4, and 4.2 ± 1.0 % change in µm2 s-1, respectively), following the addition of urea (50 mM) 

(Figure 6.2). In the case of our lipid and cholesterol-only vesicle, apparent diffusion coefficient 

increases by 13.2 ± 1.8 % following the addition of urea, indicating that the apparent diffusion 

of these homogenous vesicles is naturally higher in the presence of urea, than their polymer-

containing counterpart, even without the presence of an appropriate nanomotor (enzyme) 

(Figure 6.2). 
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Table 6.1. Diffusion coefficient (µm2 s-1) in urease-deficient (0 µM) 200 nm PbD-
PEO:POPC:Cholesterol vesicles, at membrane compositions of 0:6:4, 3:5:2, 1:1:1, and 5:3:3, 

when exposed to urea (50 mM) 

 

Membrane 

Composition 

Diffusion Coefficient 

(µm2 s-1) 

t0 t30 

0:6:4 2.63 ± 0.12 2.98 ± 0.13 

3:5:2 3.08 ± 0.24 3.27 ± 0.24 

1:1:1 3.06 ± 0.20 3.22 ± 0.22 

5:3:3 3.08 ± 0.17 3.21 ± 0.21 

 

 

 

 

Figure 6.2. Percentage change in diffusion coefficient (µm2 s-1) in urease-deficient (0 µM) 200 
nm PbD-PEO:POPC:Cholesterol vesicles, at membrane compositions of 0:6:4, 3:5:2, 1:1:1, and 

5:3:3, when exposed to urea (50 mM) (n = 3, error = ± SD). 
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Now, if we take the same vesicle compositions as above, and give them an “engine”, by way of 

10 µM encapsulated urease, we test our hypothesis of enhanced diffusion in relation to different 

permeability characteristics of phase separated vesicles. As for the control, if we take our 

absolute values (Table 6.2), and plot them as percentage change in apparent diffusion 

coefficient over time (Figure 6.3), a better comparison can be made. Here, when our lipid 

composition is at 50 mol% (3:5:2), and our lipid domain is theoretically at its largest, the 

percentage change in diffusion coefficient between t0 min and t30 min is significantly lower (12.3 

± 2.6 % change in µm2 s-1) than our other smaller-lipid-domain vesicle species (1:1:1 and 5:3:3). 

Although this supports our “jet” hypothesis, the same cannot be said when comparing the 

percentage change in apparent diffusion coefficient (t30 min) between 1:1:1 and 5:3:3, where 

the theoretically larger lipid domain of 1:1:1 has a higher apparent change in diffusion coefficient 

(21.6 ± 0.7 % change in µm2 s-1) than a membrane composition of 5:3:3 (18.8 ± 1.4 % change in 

µm2 s-1). However, given the mol% compositions of both 1:1:1 and 5:3:3, in terms of lipid 

contribution (33.3% and 27.3%, respectively), in comparison to the 50% of 3:5:2, it may be easy 

to appreciate, given their similarity, why their apparent diffusion coefficient is similar. 

Likewise, it may be strange at first instance to see a non-phase separated, lipid and cholesterol-

only vesicle (0:6:4), displaying evidence of comparatively increased diffusion coefficient, in a 

scenario where diffusion of catalytic byproducts, i.e., ammonia and CO2, is not focused through 

heterogeneities in membrane constituent properties. One answer, which may be influencing our 

above data, is encapsulation efficiency. We know already that the encapsulation efficiency of 

liposomes is greater than that of polymersomes/hybrid vesicles, so, what if, we are entering into 

a regime where, although more focused propulsion is being achieved with reduced lipid 

composition, the encapsulation of urease, i.e., the engine that powers our nanomotor, is being 

reduced with it. Although potentially offering an explanation as to why lipid and cholesterol 

vesicles display enhanced apparent diffusion coefficient in comparison to their polymer-

containing counterparts, it does not explain why directional apparent propulsion is being 

witnessed in a system where homogenous diffusion of catalytic byproducts is present. 
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Table 6.2. Diffusion coefficient (µm2 s-1) in 200 nm PbD-PEO:POPC:Cholesterol vesicles, at 
membrane compositions of 0:6:4, 3:5:2, 1:1:1, and 5:3:3, loaded with urease (10 µM) and HPTS 

(20 mM), and exposed to urea (50 mM) 
 

Membrane 

Composition 

Diffusion coefficient 

(µm2 s-1) 

t0 t30 

0:6:4 2.35 ± 0.22 3.23 ± 0.18 

3:5:2 3.04 ± 0.08 3.45 ± 0.03 

1:1:1 2.84 ± 0.03 3.46 ± 0.03 

5:3:3 2.92 ± 0.03 3.46 ± 0.03 

 

 

 

 

Figure 6.3. Percentage change in diffusion coefficient (µm2 s-1) in 200 nm PbD-
PEO:POPC:Cholesterol vesicles, at membrane compositions of 0:6:4, 3:5:2, 1:1:1, and 5:3:3, 

loaded with urease (10 µM) and HPTS (20 mM), and exposed to urea (50 mM) (n = 3, error = ± 
SD). 
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6.3.1.2 Urease Concentration 

To test our assumption, that the bigger the “engine” the faster the diffusion, we sought to 

encapsulate differing concentrations of urease (0, 10, 30 µM) within our lipid/cholesterol only 

vesicles. Again, if we take our absolute values (Table 6.3), and plot them as percentage change 

in apparent diffusion coefficient over time (Figure 6.5), we can see, that the change in diffusion 

coefficient increases by 13.2 ± 1.8 % change in µm2 s-1, 37.5 ± 4.9 % change in µm2 s-1, and finally, 

nearly doubling, 90.2 ± 6.3 % change in µm2 s-1 at t30 min, for 0, 10, and 30 µM, respectively, in 

response to activation with urea (50 mM). This confirms what we already assume, that the 

higher the concentration of enzyme encapsulated within, the more propulsive power the vesicle 

has in terms of motility, however, it does not explain why we get propulsion despite symmetrical 

diffusion of catalytic byproducts, alluding to the idea that transmembrane substrate diffusion is 

not the primary driver of enhanced diffusion.  

In the previously mentioned work of Dey and colleagues [215], enhanced diffusion in symmetric 

enzyme-coated beads was reported to be attributed to the strongly exothermic catalysis of 

urease/catalase, and the associated collective heating of the sample. However, if we take our 

30 µM urease sample, which displays an apparent percentage increase in diffusion coefficient 

of 90.2 ± 6.3 % at t30, we start with vesicle population, at t0, with an average diameter of 285.9 

± 14.2 nm, at a temperature of 298.15 K and water viscosity of 8.891 x 10-4 Pa*s, and, as such, 

the initial diffusion coefficient of this sample is 1.722 µm2 s-1. Then, if we are to assume that size 

remains constant, but an increase in temperature, and associated effect on water viscosity, is 

resulting in the extremity of enhanced diffusion coefficient (to 3.272 µm2 s-1). Then, in this 

instance, the temperature within the sample would have had to rise to 327.09 K (increase of 

28.94°C), inclusive of a decrease in water viscosity to 4.388 x 10-4 Pa*s. 

To validate this, the catalytically-induced local rise in the temperature was modelled by our 

collaborator, Dr Annette Taylor. Here, the vesicles are just assumed to be well-mixed spherical 

reactors of volume (𝑉), surface area (𝐴), and radius (𝑟) in a bath of urea solution (at 𝑇0). By 

adding an equation for temperature, relating to the internal reaction enthalpy and the heat lost 

to the external environment, the change in temperature could be determined: 

 

𝑑𝑇𝑖

𝑑𝑡
=

1

𝑝𝑉𝑐
(𝑉 ∗ (−∆𝐻𝑟) ∗ 𝑣 − 𝐿 ∗ 𝐴 ∗ (𝑇𝑖 − 𝑇0)) 

Equation 6.5. Rate of temperature change inside the vesicle 
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Where 𝑣 is the enzyme rate in mol dm-3, ∆𝐻𝑟 is the enthalpy of the reaction (-59850 J/mol), 𝐿 is 

the heat transfer coefficient across a lipid bilayer, 𝑝 is the density of water, and 𝑐 is the specific 

heat capacity of water. For the surrounding solution, we have, where 𝑑 is the dilution factor of 

vesicles (𝑛 x 𝑉𝑖) in volume of external environment (𝑉𝑠): 

 

 

𝑑𝑇0

𝑑𝑡
= 𝑑 ∗

1

𝑝𝑉𝑐
(𝐿 ∗ 𝐴 ∗ (𝑇𝑖 − 𝑇0)) 

Equation 6.6. Rate of temperature change in the surrounding solution 

 

 

The model shows that, where an initial temperature of 298 K is concerned, the temperature 

rises to 298.002 K in the vesicles, and similar in the surrounding solution, after 33 minutes. 

Likewise, if no heat is transferred to the surrounding solution, the maximum theoretical 

temperature rise was approximately 4 K after 30 minutes – reaffirming that the increased 

motility witnessed is not solely contributed for by an increase in local or systemic temperature.  

If we are to consider other mechanisms of motility, firstly, micro-swimming, where actuation of 

the enzyme in response to catalytic activity is achieved through iterative conformational 

changes in the protein’s active site, and, secondly, self-diffusiophoresis, where instant 

redistribution of catalytic products causes fluctuations in velocity, then we still have a scenario 

where no net oriental propulsion should theoretically be achieved. However, for this to be true, 

we would have to assume that enzyme distribution is even/symmetrical around the whole 

internal circumference of the vesicle. It is difficult at this point to identify what breaks the 

symmetry and provides this “directionality”. Is propulsion driven by asymmetry in product 

diffusion across the membrane, or are vesicles being “pushed” internally by asymmetric enzyme 

clustering (Figure 6.4)? Is there cause to suggest that such an asymmetric phenomenon is caused 

by a self-generating, environmental gradient of products to substrates, which may contribute to 

a degree of molecular chemotaxis? These are all highly theoretical suggestions, which are in 

need of further investigation.  
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Figure 6.4. Proposed mechanism of motility in enzyme-driven nanomotor, where enzymes are 
encapsulated within the lumen of a homogenous POPC:cholesterol vesicle. 
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Table 6.3. Diffusion coefficient (µm2 s-1) in 200 nm POPC:cholesterol (6:4) vesicles, loaded with 
different concentrations of urease (0, 10, 30 µM) and HPTS (20 mM), when exposed to urea (50 

mM) 

 

Urease 

Concentration 

Diffusion coefficient 

(µm2 s-1) 

t0 t30 

0 µM 2.63 ± 0.12 2.98 ± 0.13 

10 µM 2.35 ± 0.22 3.23 ± 0.18 

30 µM 1.72 ± 0.09 3.27 ± 0.07 

 

 

 

 

 

Figure 6.5. Percentage change in diffusion coefficient (µm2 s-1) in 200 nm POPC:cholesterol (6:4) 
vesicles, loaded with varying concentrations of urease (0, 10, 30 µM) and HPTS (20 mM), when 

exposed to urea (50 mM) (n = 3, error = ± SD). 



185 
 

6.3.1.3 Urea Concentration 

To conduct a thorough examination, and help us better understand this system in terms of its 

variables, the effect of urea concentration was also investigated, where all other parameters, 

i.e., size (200 nm), urease concentration (10 µM), membrane composition (POPC:cholesterol, 

6:4), were held constant. If we take our absolute values (Table 6.4), and plot them as percentage 

change in apparent diffusion coefficient over time (Figure 6.6), we can see, that the apparent 

increase in diffusion coefficient does not increase in response to increased urea concentration 

from 1 mM to 10 mM (5.5 ± 2.3 % and 4.6 ± 2.1 %, respectively). There is, however, a percentage 

increase in apparent diffusion coefficient is witnessed when increasing to 50 mM urea 

concentrations (20.3 ± 4.0 %), and, again, when further increased to 100 mM (27.4 ± 5.4 %), 

albeit not as significant (over our recorded timeframe, i.e., 30 min). From this data, we can 

assume that the standard concentration of urea that we have been using (50 mM) is perfect for 

the conditions at hand, and, evidence is added to the suggestion that “engine size” is the most 

important driving force behind enhanced diffusion coefficient. 
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Table 6.4. Diffusion coefficient (µm2 s-1) in 200 nm POPC:cholesterol (6:4) vesicles, loaded 
urease (10 µM) and HPTS (20 mM), when exposed to varying concentrations of urea (1, 10, 50, 

100 mM) 

 

Urea 

Concentration 

Diffusion coefficient 

(µm2 s-1) 

t0 t30 

1 mM 2.46 ± 0.05 2.59 ± 0.07 

10 mM 2.48 ± 0.05 2.59 ± 0.02 

50 mM 2.46 ± 0.05 2.96 ± 0.13 

100 mM 2.45 ± 0.09 3.12 ± 0.13 

 

 

 

 

Figure 6.6. Percentage change in apparent diffusion coefficient (µm2 s-1) in 200 nm 
POPC:cholesterol (6:4) vesicles, loaded urease (10 µM) and HPTS (20 mM), when exposed to 

varying concentrations of urea (1, 10, 50, 100 mM) (n = 3, error = ± SD). 
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6.3.1.4 Size 

Finally, to determine the contribution of vesicle size, all experimental parameters were held 

constant, i.e., urease (10 µM), membrane composition (POPC:cholesterol, 6:4), urea (50 mM), 

and the size of the nanopore filter in which it was extruded was adjusted (100, 200, 400 nm). 

You may hypothesise, from what we know about theoretical encapsulation from our 

nanoreactor work (Section 4.3.6, Figure 4.17), and from what we have seen here in terms of 

urease concentration, that the larger the vesicle, and, subsequently, the greater the amount of 

encapsulated urease molecules, the more enhanced apparent diffusion coefficient will appear. 

The diffusion coefficient of our vesicles, in terms of Brownian motion, is higher the smaller they 

are, however, if we are then to plot these values as percentage change in apparent diffusion 

coefficient over time (Figure 6.7), we can see, that the apparent increase in the diffusion 

coefficient does not significantly change in response to increasing nanopore filter size from 100 

to 200 nm (22.1 ± 4.2 % to 21.4 ± 4.0 % (at t30). However, a significant finding presents itself 

when we increase size further, utilising a 400 nm nanopore filter. In this instance, we see no 

change at all, at t30, (0.7 ± 1.4 %), when exposed to urea, again, leading us to the assumption 

that “engine” size is a more profound contributor to motility, and that above a certain size 

threshold, the potential of nanomotor-driven vesicle diffusion, via this methodology, becomes 

unattainable. 
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Table 6.5. Changes in absolute vesicle diameter (nm) and absolute apparent diffusion 
coefficient (µm2 s-1) in POPC:cholesterol (6:4) vesicles of varying size (100, 200, 400 nm), loaded 

urease (10 µM) and HPTS (20 mM), and exposed to 50 mM urea. 

 

Vesicle Size 

Diffusion Coefficient 

(µm2 s-1) 

t0 t30 

100 nm 3.04 ± 0.12 3.71 ± 0.21 

200 nm 2.56 ± 0.17 3.11 ± 0.26 

400 nm 1.10 ± 0.10 1.10 ± 0.11 

 

 

 

 

 

Figure 6.7. Percentage change in apparent diffusion coefficient (µm2 s-1) in POPC:cholesterol 
(6:4) vesicles of varying size (100, 200, 400 nm), loaded urease (10 µM) and HPTS (20 mM), and 

exposed to 50 mM urea (n = 3, error = ± SD). 
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6.4 Summary 

In this chapter, we place the foundations for enzyme-driven nanomotors in a new light. Through 

the encapsulation of urease within the lumen of a phase separated vesicle (PbD-

PEO:POPC:cholesterol), and the subsequent manipulation of the lipid domain size through 

membrane composition (3:5:2, 1:1:1, 5:3:3), we have unearthed initial findings that suggests a 

smaller lipid domain enhances vesicle diffusion, adding to the idea of directional motility 

through channel-focused byproduct diffusion. However, it is worth highlighting that DLS can only 

measure an increase in diffusion, rather than the direction of movement, meaning that there 

may be no net displacement of vesicles. Likewise, given what we subsequently discovered about 

“engine power”, i.e., encapsulated urease concentration, and what we already know about the 

encapsulation efficiency of polymersomes/hybrid vesicles, more investigation is needed to truly 

support our hypothesis. 

As previously mentioned, in the process of determining the effects of parameter manipulation, 

the effect of increasing urease concentration enhanced nanomotor diffusion was unearthed. 

Diffusion of symmetrically coated vesicles, where propulsion is generated from conjugation of 

enzymes onto the surface, was previously reported to be the work of a catalytically-induced 

exothermic release of heat, repeated actuation of the enzyme in response to catalytic activity, 

or the contribution of phoretic movement. However, in this work, we have dismissed heat 

production as the primary contributor to increased diffusion coefficient, opening further 

discussion on internally-propelled nanomotors from a different outlook. 
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CHAPTER SEVEN – CONCLUSION & FUTURE WORK 
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7.1 Conclusion 

The fundamentals of this doctoral thesis, and our initial aim, was to draw together two areas of 

considerable scientific attention, nanoreactor technology and non-linear enzyme kinetics, to 

create a temporally-controlled drug delivery system. Within our first two results chapters, the 

focus was on building our platform from a bottom-up perspective, and circumventing the 

associated nuances of the system. In Chapter Two, we sought to optimise our system before 

loading urease. We tested the suitability and efficiency of our pH probe HPTS in tracking pH 

switching in our primary reaction, and calibrated the relevant spectroscopic equipment to allow 

for easy conversion between absorption ratio and pH. Likewise, we tested the robustness of our 

experimental constituents to the conditions presented in vesicle generation, i.e., freeze-thaw 

cycling, concluding that the urease enzyme is capable of withstanding such conditions, with 

minimal effect on catalytic activity. Finally, owing to the large relative mass of urease, we 

investigated a suitable and convenient method of sample purification, ultimately discovering 

that although our urease enzyme is outside the molecular cut-off weight (~30 kDa), Sephadex 

G-50 actually provided an efficient means separation. 

In Chapter Three, we generated a more robust calibration process, adjusting for considerations 

of scattering and turbidity, to allow for a more accurate comparison of reaction profiles across 

associated parameter space. It was also within Chapter Three, that we really began to unearth 

knowledge crucial to our understanding of the system. Through the comparison of pre-ruptured 

and intact vesicles, we have provided insight into the importance of confinement, where, owing 

to the overall concentration of urease present in our sample, localisation, forced through 

vesicular confinement, is now known to be needed for catalytic activity, where, rupture and 

subsequent dispersion into the bulk volume, is not sufficient, in terms of spatial distribution, to 

cause pH-switching. Likewise, through experiments tracking pH transport, a better 

understanding of cross-membrane electrochemical dynamics allowed us to better design our 

experimental protocol to balance internal and external pH, ultimately allowing us to achieve a 

first example of “clock-like” pH-switching inside a vesicular system. 

And so, by fully optimising our confined urea-urease reaction, whilst circumventing any potential 

caveats, a platform was built to efficiently and accurately explore our associated parameter 

space, i.e., acid concentration, urease concentration, etc., gaining control over the reaction 

kinetics, and providing a deeper holistic understanding of the cross-membrane dynamics of our 

system. Here, we uncovered a system more complicated than first anticipated, but helped paint 

a more clear picture of system dynamics, where changes in pH that originate from within the 

vesicle lumen are capped as a result of internal buffering capacity (enzyme and probe), but elicit 
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a greater effect, in terms of pH-switching, on the external environment. Likewise, through the 

unexpected lack of comparative influence both urease concentration and vesicle size had on 

reaction kinetics, in combination with an advanced understanding of system dynamics, we 

raised and answered the question of inter-vesicle communication- showing through clear 

experimental means, that two distinct species of vesicles are able to communicate with one 

another through reactant and product permeability through the membrane. 

It is this organic discovery, and ultimate understanding, that has allowed us to extend our reach, 

and push the functionality of our novel system, e.g., drug delivery, inter-vesicle communication, 

and vesicular motility. Firstly, within Chapter Five, our primary aim was realised. Here, we 

successfully loaded our model drug (cimetidine), and, utilised principles founded throughout 

this doctoral thesis, such as vesicle-to-vesicle communication and parameter space 

manipulation, to create the first demonstration of a tuneable, feedback-controlled vesicular 

drug delivery system. We theorise that the systems potential goes beyond that of temporal 

control, and extends to a drug delivery system capable of generating a favourable external 

environment capable of protecting sensitive constituents or boosting therapeutic efficacy. 

In the final results chapter, through the manipulation of different membrane permeabilities in 

phase-separated vesicles, we laid the foundations for a new-perspective on enzyme-driven 

nanomotors. In this instance, we have unearthed initial findings to suggest that a smaller lipid 

domain provides more focused membrane diffusion, and therefore potential for enhanced 

directional motility. Likewise, an investigation was conducted to determine the effect of 

parameter space manipulation on nanomotor diffusion, yielding the most profound differences 

in response to an increase in enzyme concentration, i.e., engine size. These findings provide a 

new perspective into the argument of nanomotor motility, dismissing heat production as the 

primary contributor to increased diffusion, where, a population of enzymes is driving, in a 

directional fashion, a larger supramolecular assembly.   
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7.2 Future Work 

7.2.1 Giant Unilamellar Vesicles 

Moving forward, there are large segments of this doctoral thesis that can be further expanded 

upon. Throughout, we have investigated the reaction kinetics of a nanoscale system, which 

provides whole-sample information through spectroscopic means. However, by upsizing our 

reaction vessel, not only would we have the reassurance of visualisation, alleviating initial 

concerns about membrane stability, reaction location, etc., but we could also ascertain a better 

understanding of pH-switching on a vesicle-to-vesicle basis. 

One of the most obvious and appropriate methods of producing GUVs for this purpose, and 

mentioned in Section 1.6.3, is the Inverted Emulsion Technique. Here, water-in-oil emulsion 

droplets, formed when our aqueous encapsulants are agitated in an appropriate oil, are driven 

through a surfactant-water interface, to pick up a secondary monolayer. This allows 

encapsulants to be held distinct from the hosting solution throughout the entire process, an 

obvious benefit when working with sensitive biological compounds.  

As part of an initial movement towards realising this aim, an investigation into the optimisation 

of this technique (outlined by Pautot and colleagues [106]) was conducted. Firstly, the size of 

the emulsion droplets produced were sought to be controlled by the agitation technique 

initiated. When comparing two techniques, pipetting and sonication, the results were as follows. 

Pipetting for 90 seconds yielded emulsion droplets with a diameter of approximately 80 μm 

(Figure 7.1), however, no GUVs were formed following centrifugation through the secondary 

monolayer, likely because the emulsion droplets were in too large to pick up a second layer of 

lipids, either because the lipid interface could not replenish its lipids fast enough, or the amount 

of lipids needed to coat the vesicle was insufficient, leading to gaps in the membrane, and 

therefore, structural deficiencies. Increasing pipetting time to 5 minutes was shown to reduce 

the average size of the emulsion droplets to diameters ranging between 10 μm and 30 μm, which 

subsequently produced GUVs, but was labour intensive, and sonication for 2 minutes produced 

emulsion droplets with a diameter ranging between 5 μm and 20 μm, again producing GUVs. 

These initial experiments confirmed that GUV size is inversely linked to the strength of agitation, 

however, there is a question of how urease would respond to being sonicated. 

 

a) b) 
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Figure 7.1. DPhPC + 0.5 mol% Rhod-DOPE inverted emulsion droplets (~80 μm): a) fluorescent 
rhodamine monolayer (green light), and; b) fluorescent encapsulated carboxyfluorescein (blue 

light). 

 

Although GUVs were obtained through the aforementioned agitation techniques, yield was very 

low. To improve vesicle yield, reducing the collection volume (from 3 mL to 2 mL) to increase 

concentration and increasing encapsulant density by replacing carboxyfluorescein with HEPES-

buffered sucrose and carboxyfluorescein and osmotically balancing the external environment to 

cause “sinking” (Figure 7.2), were investigated, but yield was not significantly increased. 

However, emulsion droplets found in the intermediate phase following centrifugation 

necessitated the investigation into centrifugation time/speed. Maintaining centrifugation speed 

at 700 rpm, but increasing time to 60 minutes produced a noticeable, yet largely unimpressive 

yield, however, maintaining centrifugation duration and increasing centrifugation speed to 1500 

rpm resulted in a considerable increase (Figure 7.2)  

 

 

      

Figure 7.2. Improving GUV yield: a) increasing luminal density and osmotically balancing 
exterior, and; b) increasing centrifugation speed to 1500 rpm. 

a) b) 
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Polymer GUVs, usually produced in this manner with toluene as the solvent, were investigated 

using squalene oil instead. Following the same experimental protocol outlined above for their 

lipid counterpart [106], GUVs were successfully produced, and shown to efficiently encapsulate 

carboxyfluorescein via confocal microscopy (Figure 7.3) 

 

 

 

    

 

Figure 7.3. PBd-PEO polymersomes + 0.5 mol% Rhod-DOPE: a) fluorescent microscopy image 
showing a relatively high yield when using squalene as the solvent, and; b) confocal microscopy 

image showing encapsulation of HEPES-buffered sucrose + CF. 

 

 

Unfortunately, owing to time restrictions, no initial data was obtained for the confinement of 

the urea-urease reaction in microscale. Of course, confocal microscopy can be used to obtain 

qualitative and quantitative data regarding pH-switching within vesicles on a singular level and 

can help us understand the effects of confinement under a different size regime, however, 

additional considerations must be employed. In solution, vesicles are free flowing, so, viewing 

the behaviour of a single GUV over a period of time, especially when urea is added, is 

problematic without tethering. A common solution is through the biotin-containing lipid into the 

vesicular membrane, and coating the well plate with avidin, allowing tethering to occur through 

the formation of the avidin-biotin complex, without any experimental interference [257]. 
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7.2.2 Negative Feedback 

As previously mentioned, the need for advanced chronotherapeutics is not only necessitated by 

the strong association between certain diseases and biological rhythms, but, a greater 

therapeutic efficacy can also be achieved when the compound aims to mimic the pulsatile 

release of endogenous peptides. However, to generate a truly pulsatile and autonomous drug 

delivery system, characteristic feedback behaviour must be installed. Throughout this thesis, we 

have provided an in-depth review and analysis of confined enzymatic (positive) feedback, 

however, despite this demonstration, to function as a pH oscillator, a negative feedback loop, 

capable of removing OH-, will have to be incorporated. 

One of the most discernible options, moving forward, would be to utilise acid-catalysed 

feedback, showing similar characteristics, but, where pH switching occurs in the opposite 

direction (from high to low). An example of acid-catalysed feedback, which would ultimately 

remove OH- ions from the system, is the glucose-glucose oxidase reaction (Equation 7.1). This 

particular reaction has been subject to great attention in recent years, owing to its potential as 

the autonomous “brain” of responsive insulin release. In this reaction, we see the glucose 

oxidase-driven catalytic conversion of glucose into hydrogen peroxide and D-glucono-δ-lactone, 

which subsequently hydrolyses into gluconic acid. It is this sequential drop in pH that is taken 

advantage of in terms of insulin release, where pH responsive smart materials, i.e., hydrogels, 

polymers, or polymersomes, are caused to degrade, swell, or increase permeability, in response 

to a reduction in pH [258]. 

 

 

𝐶6𝐻12𝑂6 → 𝐶6𝐻10𝑂6 + 𝐻2𝑂2 

𝐶6𝐻10𝑂6 → 𝐶6𝐻12𝑂7 

 

Equation 7.1. Enzyme catalysed conversion of glucose to D-glucono-δ-lactone and subsequent 
hydrolyses to gluconic acid 

 

 

Glucose oxidase, in a similar fashion to urease, displays the principally autocatalytic 

characteristic of a bell-shaped rate-pH with  a maximum activity at pH 7. This means that if the 

pH was increased, for example by the urea-urease reaction (positive feedback), a hypothetical 
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clock time would be witnessed, before rapid pH switching back to an acidic pH (negative 

feedback). Of course, this form of negative feedback may theoretically work to remove the 

autocatalyst, however, as we have elucidated towards, for oscillation to arise as a result of 

kinetic instability, negative feedback must be delayed in relation to positive feedback [34]. 

There is a case to state that because of the spatiotemporal distribution of nanoreactors within 

the system, that this delay may be provided, however, in more typical circumstances, such 

behaviour usually occurs in a limited parameter space only and, therefore, requires tight control 

of the concentrations of all reagents. Obviously, the vast majority of techniques used for vesicle 

generation yield heterogeneity in terms of size and encapsulation (stochastic distribution), 

hindering this control. However, through microfluidics, there is an option to hold greater control 

over these parameters, including spatial distribution in multicompartment vesicles, which may 

provide a solution. 

As such, the natural next step would be to investigate the confinement of the glucose-glucose 

oxidase reaction, repeating what we have seen within this doctoral thesis, to gain control over 

reaction kinetics and obtain a holistic understanding of the system in totality. From this, we may 

uncover particular nuances that may better position us to design a positive/negative feedback 

system, with a novel reaction profile, capable of initiating a secondary response.  

 

7.2.3 Drug Delivery 

Where drug delivery is concerned, a platform has been created to allow for the testing of a 

whole variety of drugs, providing they fit the defined criteria, i.e., suitable pKa, etc, and this 

choice will only be broadened, to include weakly basic compounds, if negative feedback (Section 

7.2.2) is achieved. This can be expanded to cause a secondary effect, for example, the 

antibacterial effects of weakly basic (pKa 7.2) trimethoprim could be explored following delayed 

release. 

Obviously, where our drug delivery system is concerned, two separate species of vesicles must 

communicate to elicit a secondary response, however, can this process function in a single 

vesicle? In an experiment, where two sets of vesicles each encapsulating urease and HPTS 

suspended in differing concentrations of pH 4 citrate buffer (10 mM and 100 mM), but where 

the external environment is dilute HCl (0.2 mM), some potential was shown (Figure 7.4). Here, 

we see that for the lower concentration of buffer, a very small switch in pH occurs, which raises 

the question of whether an optimal parameter combination between buffer strength and 

starting pH can be established to control clock time in internally buffered vesicles. As part of a 
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Master’s research project, under the supervision of myself, Eleanor McKeating successfully 

explored this space, loaded cimetidine down a pH gradient into a vesicle containing urease, and 

demonstrated the first example of a single species drug delivery system to use these novel 

components. 

 

 

 

Figure 7.4. Absorption ratio of 200 nm DPhPC vesicles (phosphorus content; 250 μM) 
encapsulating urease (10 μM) and HPTS (20 mM) in pH 4 citrate buffer (10 mM or 100 mM), 

when urea (50 mM) is added (external environment is dilute HCl (0.2 mM). 

 

 

However, the true potential of this system could lie in the ability to neutralise a biological 

microenvironment, ultimately releasing a drug into a more efficacious surrounding. For 

example, although blood/tissue is usually maintained at pH around 7.4 in mammals, the 

extracellular pH drops below 6.5 in solid cancer nests. Such acidic environments are capable of 

decreasing intracellular pH, interfering with a number of enzymes with pH-sensitive catalytic 

activity, and ultimately disrupt cellular function. In a lot of cases, target molecules of anti-cancer 
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drugs are these pH-sensitive enzymes, suggesting that the efficacy of anti-cancer drugs varies as 

pH changes. Of course, with a system such as ours, there is potential to not only release the drug 

in a temporal fashion, but to benefit the conditions it is being released into, and this notion 

deserves further investigation. 

 

7.2.4 Nanomotors 

As we have discussed, the design of smart drug delivery systems is not only necessitated by the 

need to be biocompatibility, biodegradability, and show appropriate pharmacokinetics, but, be 

able to deliver a defined payload to a specific location, whilst minimising adverse effects on 

nearby tissues. Of course, in many instances, drug delivery systems rely on the use of passive 

nanoparticles, which has been reported to have low efficacy [259]. Where we have a drug 

delivery system capable of temporally-controlled drug release, which has also shown enhanced 

motility in the presence of urea, it would be interesting to test this improved efficacy, by 

determining the cellular uptake kinetic profile in in vitro assays. To add further, work on fuel-

dependent targeting and cell uptake and in situ guidance methods, i.e., chemotaxis, to attract 

and guide these nanomotor-based drug delivery systems, need to be addressed, both in vitro 

and in vivo, however, such work may lay the foundations for the development of smart, self-

propelled, enzyme-catalysed drug delivery vehicles. 

Similarly, and as previously suggested, further investigation should be made to determine the 

mechanism of propulsion, i.e., what break symmetry, in internally-driven nanomotor 

assemblies. As a final recommendation, given what we discovered

about “engine power”, and its effect on enhanced motility, to truly test our hypothesis that a 

smaller lipid domain, and therefore more focused membrane permeation, results in greater 

propulsion, a more in-depth investigation, taking greater consideration of vesicle size and 

encapsulation efficiency may be conducted. 
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CHAPTER NINE – APPENDIX 
 

9.1 APPENDIX 1 – CHAPTER ONE – INTRODUCTION 

9.1.1 Urea Urease Reaction 

9.1.1.1 pH dependence of the reaction 

The reaction shows a typical bell-shaped curve which can be explained by the presence of 2 acid 

equilibria giving inactive forms of enzyme [44, 57]: 

 

EH ⇌ E- + H+ Ke1 

  

EH2+ ⇌ EH + H+ Ke2 

 

Equation 9.1. Acid equilibria which leads to inactive form of enzyme 

  

and inactive forms of enzyme-substrate complex: 

 

EHU ⇌ EU- + H+ Kes1 

  

EH2U ⇌ EHU + H+ Kes2 

 

 Equation 9.2. Acid equilibria which leads to inactive form of enzyme-substrate complex 

 

 

As mentioned (Section 1.5.2), it is found that KM changes little with acid concentration implying 

that Ke1 = Kes1 and Ke2 = Kes2, i.e., the protonation equilibria do not change in the presence of the 

substrate. Taking this into consideration, the rate expression becomes [44, 57]: 

 



215 
 











+++

=
+

+

1

2

max

1)(
es

es

M
K

H

H

K
UK

UV
V

 

Equation 9.3. Modified Michaelis-Menten rate expression for urease activity, taking into 
consideration acid-induced inactivation 

 

 

9.1.1.2 Product inhibition 

The ammonium ion is also found to inhibit the reaction through non-competitive means [44, 

57]: 

 

EH + P + S ⇌ EHPS Kp 

 

Equation 9.4. Equilibria of enzyme product inhibition. 

 

 

This equilibrium may be incorporated into the Michaelis rate expression to give [44, 57]: 
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Equation 9.5. Modified Michaelis-Menten rate expression for urease activity, taking into 
consideration product inhibition. 

 

 

 

 



216 
 

9.1.1.3 Substrate inhibition 

The urea inhibits the reaction by an uncompetitive mechanism [44, 57]: 

 

 

EHS + S ⇌ EHS2 Ks 

  

Equation 9.6. Equilibria of enzyme substrate inhibition. 

 

 

This equilibrium may be incorporated into the rate expression to give [44, 57]: 
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Equation 9.7. Modified Michaelis-Menten rate expression for urease activity, taking into 
consideration substrate inhibition. 
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9.2 APPENDIX 2 – CHAPTER FOUR – GAINING CONTROL 

9.2.1 Starting pH (HCl Concentration) 
 

Table 9.1. The effect of increasing starting HCl concentration (0.10, 0.20, 0.32 mM) on clock 
time, final pH, and transition width, in 200 nm DPhPC vesicles (phosphorus concentration; 250 

µM), when urea (10, 50, 250 mM) is added. 

 

Urea 
Concentration 

HCl 
Concentration 

Clock Time (min) Final pH Transition Width 

10 mM 

0.10 mM 20.3 ± 3.1 6.96 ± 0.04 1.16 ± 0.10 

0.20 mM 52.7 ± 15.3 6.79 ± 0.05 2.27 ± 0.36 

0.32 mM 89.4 ± 20.4 6.78 ± 0.10 3.36 ± 0.51 

50 mM 

0.10 mM 10.2 ± 0.3 7.20 ± 0.03 0.89 ± 0.03 

0.20 mM 16.5 ± 1.1 7.09 ± 0.05 1.30 ± 0.12 

0.32 mM 27.7 ± 6.9 6.91 ± 0.13 1.64 ± 0.18 

250 mM 

0.10 mM 7.4 ± 0.4 7.17 ± 0.04 0.86 ± 0.04 

0.20 mM 9.6 ± 3.1 7.12 ± 0.07 1.02 ± 0.01 

0.32 mM 13.1 ± 3.0 7.08 ± 0.03 1.15 ± 0.10 
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9.1.2 Urease Concentration 
 

Table 9.2. The relative effect of increasing urease concentration (5 to 10 to 20 µM) on clock 
time, final pH, and transition width, in 100 nm DPhPC vesicles (phosphorus concentration; 250 

µM), when urea (10, 50, 250 mM) is added. 

 

Urea 
Concentration 

Urease 
Concentration 

Clock Time Final pH Transition Width 

10 mM 

5 µM 82.3 ± 3.2 6.83 ± 0.06 3.74 ± 1.32 

10 µM 49.4 ± 7.7 6.93 ± 0.02 2.00 ± 0.51 

20 µM 39.6 ± 3.4 6.95 ± 0.07 1.87 ± 0.19 

50 mM 

5 µM 30.6 ± 13.6 7.08 ± 0.06 1.39 ± 0.24 

10 µM 19.6 ± 2.4 7.15 ± 0.01 1.33 ± 0.09 

20 µM 14.7 ± 1.2 7.13 ± 0.03 1.23 ± 0.03 

250 mM 

5 µM 23.0 ± 30.4 7.16 ± 0.07 1.26 ± 0.40 

10 µM 8.5 ± 6.5 7.16 ± 0.04 1.00 ± 0.23 

20 µM 6.6 ± 2.2 7.17 ± 0.07 0.96 ± 0.11 

 

 

Table 9.3. The relative effect on clock time, final pH, and transition width for increasing urease 
concentrations (5 to 10 to 20 µM) in 200 nm DPhPC vesicles (phosphorus concentration; 250 

µM), when urea (10, 50, 250 mM) is added. 

 

Urea 
Concentration 

Urease 
Concentration 

Clock Time Final pH Transition Width 

10 mM 

5 µM 75.1 ± 16.1 6.87 ± 0.01 2.76 ± 0.25 

10 µM 52.7 ± 15.3 6.79 ± 0.05 2.27 ± 0.36 

20 µM 29.6 ± 6.5 6.91 ± 0.03 1.41 ± 0.15 

50 mM 

5 µM 28.4 ± 11.5 7.06 ± 0.14 1.47 ± 0.12 

10 µM 16.5 ± 1.1 7.09 ± 0.05 1.30 ± 0.12 

20 µM 13.7 ± 0.2 7.11 ± 0.02 1.26 ± 0.07 

250 mM 

5 µM 11.8 ± 2.7 7.17 ± 0.04 1.05 ± 0.14 

10 µM 9.6 ± 4.1 7.17 ± 0.04 1.02 ± 0.02 

20 µM 5.5 ± 2.6 7.08 ± 0.02 0.95 ± 0.10 
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Table 9.4. The relative effect on clock time, final pH, and transition width for increasing urease 
concentrations (5 to 10 to 20 µM) in 400 nm DPhPC vesicles (phosphorus concentration; 250 

µM), when urea (10, 50, 250 mM) is added. 

 

Urea 
Concentration 

Urease 
Concentration 

Clock Time Final pH Transition Width 

10 mM 

5 µM 44.3 ± 11.8 6.90 ± 0.06 2.61 ± 0.33 

10 µM 15.8 ± 4.2 6.89 ± 0.03 1.51 ± 0.05 

20 µM 18.5 ± 15.5 6.75 ± 0.03 1.80 ± 1.06 

50 mM 

5 µM 51.2 ± 17.7 7.18 ± 0.06 2.22 ± 0.27 

10 µM 26.4 ± 13.4 7.06 ± 0.11 1.90 ± 0.74 

20 µM 9.8 ± 1.1 7.07 ± 0.03 1.31 ± 0.06 

250 mM 

5 µM 9.3 ± 2.6 7.22 ± 0.03 1.15 ± 0.13 

10 µM 4.3 ± 0.8 7.18 ± 0.09 1.04 ± 0.16 

20 µM 4.4 ± 1.4 6.91 ± 0.17 0.77 ± 0.26 
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9.1.3 Urea Concentration 
 

Table 9.5. The relative effect on clock time, final pH, and transition width for increasing urea 
concentrations (10 to 50 to 250 mM)) when added to 100 nm DPhPC vesicles (phosphorus 

concentration; 250 µM), encapsulating urease (5, 10, 20 µM). 

 

Urease 
Concentration 

Urea 
Concentration 

Clock Time Final pH Transition Width 

5 µM 

10 mM 82.3 ± 3.2 6.83 ± 0.06 3.74 ± 1.32 

50 mM 30.6 ± 13.6 7.08 ± 0.06 1.39 ± 0.24 

250 mM 23.0 ± 30.4 7.16 ± 0.07 1.26 ± 0.40 

10 µM 

10 mM 49.4 ± 7.7 6.93 ± 0.02 2.00 ± 0.51 

50 mM 19.6 ± 2.4 7.15 ± 0.01 1.33 ± 0.09 

250 mM 8.5 ± 6.5 7.16 ± 0.04 1.00 ± 0.23 

20 µM 

10 mM 39.6 ± 3.4 6.95 ± 0.07 1.87 ± 0.19 

50 mM 14.7 ± 1.2 7.13 ± 0.03 1.23 ± 0.03 

250 mM 6.6 ± 2.2 7.17 ± 0.07 0.96 ± 0.11 

 

 

Table 9.6. The relative effect on clock time, final pH, and transition width for increasing urea 
concentrations (10 to 50 to 250 mM)) when added to 200 nm DPhPC vesicles (phosphorus 

concentration; 250 µM), encapsulating urease (5, 10, 20 µM). 

 

Urease 

Concentration 

Urea 
Concentration 

Clock Time Final pH Transition Width 

5 µM 

10 mM 75.1 ± 16.1 6.87 ± 0.01 2.76 ± 0.25 

50 mM 28.4 ± 11.5 7.06 ± 0.14 1.47 ± 0.12 

250 mM 11.8 ± 2.7 7.17 ± 0.04 1.05 ± 0.14 

10 µM 

10 mM 52.7 ± 15.3 6.79 ± 0.05 2.27 ± 0.36 

50 mM 16.5 ± 1.1 7.09 ± 0.05 1.30 ± 0.12 

250 mM 9.6 ± 4.1 7.17 ± 0.04 1.02 ± 0.02 

20 µM 

10 mM 29.6 ± 6.5 6.91 ± 0.03 1.41 ± 0.15 

50 mM 13.7 ± 0.2 7.11 ± 0.02 1.26 ± 0.07 

250 mM 5.5 ± 2.6 7.08 ± 0.02 0.95 ± 0.10 



221 
 

Table 9.7. The relative effect on clock time, final pH, and transition width for increasing urea 
concentrations (10 to 50 to 250 mM)) when added to 400 nm DPhPC vesicles (phosphorus 

concentration; 250 µM), encapsulating urease (5, 10, 20 µM). 

 

Urease 

Concentration 

Urea 
Concentration 

Clock Time Final pH Transition Width 

5 µM 

10 mM 44.3 ± 11.8 6.90 ± 0.06 2.61 ± 0.33 

50 mM 51.2 ± 17.7 7.18 ± 0.06 2.22 ± 0.27 

250 mM 9.3 ± 2.6 7.22 ± 0.03 1.15 ± 0.13 

10 µM 

10 mM 15.8 ± 4.2 6.89 ± 0.03 1.51 ± 0.05 

50 mM 26.4 ± 13.4 7.06 ± 0.11 1.90 ± 0.74 

250 mM 4.3 ± 0.8 7.18 ± 0.09 1.04 ± 0.16 

20 µM 

10 mM 49.6 ± 15.9 6.75 ± 0.03 3.45 ± 0.74 

50 mM 9.8 ± 1.1 7.07 ± 0.03 1.31 ± 0.06 

250 mM 4.4 ± 1.4 6.91 ± 0.17 0.77 ± 0.26 
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9.2.1 Vesicle Size 
 

Table 9.8. The raw data obtained, for clock time, final pH, and transition width, when the size 
of DPhPC vesicles encapsulating 5, 10, or 20 µM urease and 20 mM HPTS, is increased (100, 

200, and 400 nm) following the addition of 10 mM urea. 

 

Urease 
Concentration 

Vesicle Size Clock Time Final pH Transition Width 

5 µM 

100 nm 82.3 ± 3.2 6.83 ± 0.06 3.74 ± 1.32 

200 nm 75.1 ± 16.1 6.87 ± 0.01 2.76 ± 0.25 

400 nm 44.3 ± 11.8 6.90 ± 0.06 2.61 ± 0.33 

10 µM 

100 nm 49.4 ± 7.7 6.93 ± 0.02 2.00 ± 0.51 

200 nm 52.7 ± 15.3 6.79 ± 0.05 2.27 ± 0.36 

400 nm 15.8 ± 4.2 6.89 ± 0.03 1.51 ± 0.05 

20 µM 

100 nm 39.6 ± 3.4 6.95 ± 0.07 1.87 ± 0.19 

200 nm 29.6 ± 6.5 6.91 ± 0.03 1.41 ± 0.15 

400 nm 18.5 ± 15.5 6.75 ± 0.03 1.80 ± 1.06 

 

 

Table 9.9. The raw data obtained, for clock time, final pH, and transition width, when the size 
of DPhPC vesicles encapsulating 5, 10, or 20 µM urease and 20 mM HPTS, is increased (100, 

200, and 400 nm) following the addition of 50 mM urea 

 

Urease 
Concentration 

Vesicle Size Clock Time Final pH Transition Width 

5 µM 

100 nm 30.6 ± 13.6 7.08 ± 0.06 1.39 ± 0.24 

200 nm 28.4 ± 11.5 7.06 ± 0.14 1.47 ± 0.12 

400 nm 51.2 ± 17.7 7.18 ± 0.06 2.22 ± 0.27 

10 µM 

100 nm 19.6 ± 2.4 7.15 ± 0.01 1.33 ± 0.09 

200 nm 15.7 ± 1.2 7.09 ± 0.05 1.39 ± 0.17 

400 nm 26.4 ± 13.4 7.06 ± 0.11 1.90 ± 0.74 

20 µM 

100 nm 14.7 ± 1.2 7.13 ± 0.03 1.23 ± 0.03 

200 nm 13.7 ± 0.2 7.11 ± 0.02 1.26 ± 0.07 

400 nm 9.8 ± 1.1 7.07 ± 0.03 1.31 ± 0.06 
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Table 9.10. The raw data obtained, for clock time, final pH, and transition width, when the size 
of DPhPC vesicles encapsulating 5, 10, or 20 µM urease and 20 mM HPTS, is increased (100, 

200, and 400 nm) following the addition of 250 mM urea 

 

Urease 
Concentration 

Vesicle Size Clock Time Final pH Transition Width 

5 µM 

100 nm 23.0 ± 30.4 7.16 ± 0.07 1.26 ± 0.40 

200 nm 11.8 ± 2.7 7.17 ± 0.04 1.05 ± 0.14 

400 nm 9.3 ± 2.6 7.22 ± 0.03 1.15 ± 0.13 

10 µM 

100 nm 8.5 ±6.5 7.16 ± 0.04 1.00 ± 0.23 

200 nm 9.6 ± 4.1 7.17 ± 0.04 1.02 ± 0.02 

400 nm 4.3 ± 0.8 7.18 ± 0.09 1.04 ± 0.16 

20 µM 

100 nm 6.6 ± 2.2 7.17 ± 0.07 0.96 ± 0.11 

200 nm 5.5 ± 2.6 7.08 ± 0.02 0.95 ± 0.10 

400 nm 4.4 ± 1.4 6.91 ± 0.17 0.77 ± 0.26 
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9.2.1 Membrane Composition 

9.2.5.1 Lipids 

 

Table 9.11. Absolute values, including error, allowing comparison of clock time, final pH, and 
transition width for POPC and DPhPC at set concentrations of urea 

 

Urea Lipid Clock Time Final pH Transition Width 

10 mM 
POPC 58.5 ± 10.7 6.80 ± 0.03 1.88 ± 0.22 

DPhPC 52.7 ± 15.3 6.79 ± 0.05 2.27 ± 0.36 

50 mM 
POPC 15.3 ± 0.3 6.85 ± 0.03 1.19 ± 0.08 

DPhPC 16.5 ± 1.1 7.09 ± 0.05 1.30 ± 0.12 

250 mM 
POPC 11.0 ± 0.6 7.02 ± 0.07 0.92 ± 0.05 

DPhPC 9.6 ± 4.1 7.17 ± 0.04 1.02 ± 0.02 

 


