
Well-Ordering Principles and

Π1
1-Comprehension + Bar Induction

Ian Alexander Thomson

Submitted in accordance with the requirements for the degree of Doctor

of Philosophy

The University of Leeds

Department of Pure Mathematics

September 2017

The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to the

work of others. This copy has been supplied on the understanding that it

is copyright material and that no quotation from the thesis may be

published without proper acknowledgement.



ii



iii

Abstract
This thesis proves that the statement “Every set X is contained in a countable-coded ω-

model of Π1
1-CA + Bar Induction” is equivalent to the statement, “For all sets X, if X is

well-ordered, then the construction OT(EΩω+X
) is well-ordered.” Here OT(EΩω+X

) stands

for the Veblen hierarchy up to Ωω relativized through the addition of epsilon numbers EX

above Ωω.
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“A proof is a proof, and when you have a good proof it’s

because it’s proven”
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Chapter 1

Introduction

1.1 An Overview of Well-Ordering Principles

1.1.1 The Well-Ordering Principels WOP(f)

This thesis is part of an ongoing investigation into well-ordering principles; statements

of the form

WOP(f) : ∀X[WO(X)→WO(f(X))].

Here, f is a proof-theoretic function which maps ordinals to ordinals, and WO(X) stands

for “X is a well-ordering.” There are now several examples in the literature, proving an

equivalence between certain well-ordering principles and the various theories of reverse

mathematics, modulo a weak base theory such as RCA0. The first such result is due to

Girard [4].

Theorem 1.1.1 The following are equivalent over RCA0 :

1. ACA0.

2. WOP(2X)
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More recently, Marcone and Montalbán proved the following two results using the

methods of computability theory: [5]

Theorem 1.1.2 The following are equivalent over RCA0 :

1. ACA+
0 .

2. WOP(εX)

Here, ACA+
0 is the system ACA0 plus the axiom:

∀X∃Y [Y0 = X ∧ ∀n(Y )n+1 = TJ((Y )n)]

where TJ(U) is the Turing jump of U , as laid out in [11].

Theorem 1.1.3 The following are equivalent over RCA0 :

1. ATR0.

2. WOP(ϕX0)

This latter result was based off of unpublished work by Friedman.

Based off of preprint drafts of this work, new demonstrations for these two theorems

were found using the techniques of proof theory. Theorem 1.1.2 was proven by Afshari

and Rathjen [1], while Theorem 1.1.3 was proven by Rathjen and Weiermann [10].

1.1.2 ω-models

In the development of these proof-theoretical techniques, Rathjen observed a similar

equivalence between well-ordering proofs and statements of the form

Every set X is contained in a countable-coded ω-model of T

where T is one of the systems of reverse mathematics [7].
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Definition 1.1.4 Let T be a theory in the language L2 of second-order arithmetic. A

countable-coded ω-model of T is a set W ⊆ N which encodes the L2-model

M = (N,S,+, ·, 0, 1, <)

with S = {(W )n|n ∈ N} such that M |= T. Here, (W )n = {m|〈n,m〉 ∈ W}.

Note that an ω-model can be encoded in RCA0 [11].

Rathjen reformulated the results of Marcone and Montalbán as follows [7].

Theorem 1.1.5 The following are equivalent over RCA0 :

1. WOP(εX).

2. Every set is contained in a countable-coded ω-model of ACA0.

Theorem 1.1.6 The following are equivalent over RCA0 :

1. WOP(ϕX0).

2. Every set is contained in a countable-coded ω-model of ∆1
1-CA0.

In the same paper, he proved the following result.

Theorem 1.1.7 The following are equivalent over RCA0 :

1. WOP(ΓX).

2. Every set is contained in a countable-coded ω-model of ATR0.

In a separate paper, Rathjen and Vizcaı́no proved a related result [8].
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Theorem 1.1.8 The following are equivalent over RCA0 :

1. WOP(ϑX).

2. Every set is contained in a countable-coded ω-model of RCA0+Bar Induction.

In adopting the ω-model approach, there seems to be a sharper parallel between the proof-

theoretic functions found in the well-ordering principles and the systems being modelled.

The case of ACA0 and εX, for example, closely resembles Gentzen’s original ordinal

bound for Peano Arithmetic [3]. In this thesis, we shall extend this parallel by proving the

following result:

Theorem 1.1.9 The following are equivalent over RCA0 :

1. WOP(ψ0(EΩω+X
)).

2. Every set is contained in a countable-coded ω-model of Π1
1-CA + BI.

1.1.3 The Theory Π1
1-CA + BI

We shall now introduce the system Π1
1-CA + BI. We formulate this system in language

of second-order arithmetic, L2. Second order variables shall be denoted by capital letters,

U, V,W . . . while first order variables shall be denote by lower case letters a, b, c . . . . The

language also contains the constant symbol 0, a symbol for every primitive recursive

function, and the relations = and ∈ denoting first-sort equality and set membership

respectively. The language also includes the standard logical connectives, ∧,∨,→,¬,

as well as first-order quantifiers ∀x, ∃y and second-order quantifiers ∀X, ∃Y.
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Definition 1.1.10 The system ACA0 contains all the axioms of elementary number theory,

defining 0,′ (successorship), the equations defining primitive recursive functions, the

induction axiom

∀X[0 ∈ X ∧ ∀x(x ∈ X → x′ ∈ X)→ ∀x(x ∈ X)]

and the arithmetical comprehension schema

∃X∀y[y ∈ X ↔ F (y)]

where F (a) is an arithmetical formula (i.e. it contains no set quantifiers) and X is free in

F (a).

Definition 1.1.11 Π1
1-CA is a system which includes all the axioms of ACA0 but has the

Π1
1-comprehension schema

∃X∀y[y ∈ X ↔ F (y)]

where F (a) is Π1
1-formula (i.e. F (a) is equivalent to some formula ∀

−→
Y G(a,

−→
Y ), where

G(, a,
−→
U ) is arithmetic,

−→
Y = {Y0, Y1, . . . Yk} for some finite k, and ∀

−→
Y is shorthand for

∀Y0∀Y1 . . . ∀Yk.).

Suppose ≺ is a two-place relation symbol, and F (a) is an arbitrary L2-formula. We

define:

Prog(≺, F ) := ∀x[∀y(y ≺ x→ F (y))→ F (x)] (progressiveness)

TI(≺, F ) := Prog(≺, F )→ ∀xF (x) (transfinite induction)

WF (≺) := ∀XTI(≺, X) (well-foundedness)

Definition 1.1.12 Bar Induction (denoted BI for short) is the axiom schema consisting

of all formula with the form

WF (≺)→ TI(≺, F )

where ≺ is an arithmetical relation and F (a) is an arbitrary L2-formula.

Definition 1.1.13 Π1
1-CA + BI is the system Π1

1-CA plus the Bar Induction schema.
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1.1.4 An outline of this thesis

In Chapter 2, we construct the relativized ordinal representation system, OT(ψ0(EΩω+X
)),

which consists of the Veblen hierarchy up to Ωω augmented by a set of epsilon numbers,

EX, above Ωω. We then carry out a well-ordering proof for that system predicated on

the existence of an ω-model of Π1
1-CA + BI that contains the set X. Chapter 3 lays

preliminary groundwork for proving the existence of an ω-model. It introduces the

concept of deduction chains, and the deduction tree DQ, relative to an arbitrary set Q,

and observe that if this tree is ill-founded then there is an infinite branch which yields

an ω-model of Π1
1-CA + BI. The second half of the chapter pertains to majorization

and fundamental functions of ordinal terms in OT(ψ0(EΩω+X
)). This is an essential, if

technical, component of tracking ordinal heights during the next chapter. Chapter 4 is

a proof that the deduction tree DQ cannot be well-founded and thus an ω-model must

exist which contains the set Q. We do this by embedding the deduction tree into a

ramified sequent calculus, which yields a proof of the empty sequent. By leveraging

cut-elimination we show that such a proof is impossible, and thus DQ cannot be well-

founded.
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Chapter 2

A Well-Ordering Proof for

OT(ψ0(EΩω+X
))

In this chapter we shall construct our ordinal representation system OT(ψ0(EΩω+X
).

The first two parts of this chapter take a set-theoretic approach, working within

ZFC. We conclude section 2.2 with an equivalent formal term structure that can be

encoded in RCA0. The final part of this chapter then presents a well-ordering proof for

OT(ψ0(EΩω+X
)) from the axiom

“Every set is contained in a countable-coded ω-model of Π1
1 − CA0.

This chapter closely follows the construction of the Veblen hierarchy as presented in [6].

2.1 The functions ϕα

Due to the complexity of OT(ψ0(EΩω+X
)), we shall construct it over two sections. This

section lays the groundwork, detailing the properties of the ϕα functions. These ϕα

functions are not sufficient to create a primitive recursive representation system on their
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own, however, as there are strongly critical cases where ϕα0 = α. In the next section

we shall circumvent this difficulty by introducing the ψk functions, which will give these

strongly critical cases a normal form representation.

Definition 2.1.1 The additive principle ordinals are those ordinals α > 0 such that

(∀η < α)η + α = η. They are enumerated by the function α 7→ ωα. Note that this

function is strictly increasing (α < β =⇒ ωα < ωβ), and that ωλ = sup{ωη|η < λ},

where λ is a limit ordinal.

An ordinal α is called an ε-number if α = ωα.

Definition 2.1.2 The class of critical ordinals of level α, denoted Cr(α), is inductively

defined as follows:

1. Cr(0) is the class of additive principle ordinals.

2. ϕα is the function enumerating Cr(α).

3. Cr(α + 1) = {ρ|ϕα(ρ) = ρ}.

4. Cr(λ) =
⋂
{Cr(ξ)|ξ < α}.

Observe that each Cr(α) is an unbounded class of ordinals, and that ϕα is a strictly

increasing function with ϕαλ = sup{ϕαη|η < λ}. Henceforth, we will write ϕαβ to

denote ϕαβ.

Moreover, observe that Cr(1) is the class of ε-numbers.

Lemma 2.1.3 (See [6] Lemma 9.3) Suppose α = ϕγδ and β = ϕξη. Then α = β if and

only if one of the following holds:

1. γ < ξ and δ = ϕξη.
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2. γ = ξ and δ = η.

3. γ > ξ and η = ϕγδ.

Proof

For the first case, suppose γ < ξ. We know that β ∈ Cr(ξ), and hence

ϕγ(ϕξη) = ϕξη = β.

Thus α = ϕγδ = β if and only if δ = β. The second case is trivial, and the third case

follows from the same argument as the first.

2

Lemma 2.1.4 (See [6] Lemma 9.3) Suppose α = ϕγδ and β = ϕξη. Then α < β if and

only if one of the following holds:

1. γ < ξ and δ < ϕξη.

2. γ = ξ and δ < η.

3. γ > ξ and ϕγδ < η.

Proof

For the first case, suppose γ < ξ. Since ϕγ is strictly increasing, we have

α = ϕγδ < ϕγ(ϕξη) = β

if and only if δ < ϕξη.

The second case follows immediately from the face that ϕγ is strictly increasing.
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For the third case, assume ξ < γ. Then α = ϕγδ = ϕξ(ϕγδ). Since ϕξ is strictly

increasing, it follows that

α = ϕξ(ϕγδ) < ϕξη = β ⇐⇒ ϕγδ < η.

2

Lemma 2.1.5 (See [6] Lemma 9.4) ϕα0 < ϕβ0 ⇐⇒ α < β.

Proof

We know that 0 < ϕβ0 since all additive principle ordinals are non-zero. Hence, by (1)

the preceding lemma, if α < β then ϕα0 < ϕβ0 and vice versa.

2

Lemma 2.1.6 (See [6] Lemma 9.4) α, β ≤ ϕαβ.

Proof

We start by proving α ≤ ϕα0, and by extension α ≤ ϕαβ since by lemma 2.1.4 (2)

ϕα0 ≤ ϕαβ. We proceed by transfinite induction on α.

In the base case, we know 0 < ϕ00. Now suppose α = γ + 1, and we have γ ≤ ϕγ0.

Then we know that

γ + 1 ≤ (ϕγ0) + 1 < ϕ(γ + 1)0

since ϕ(β + 1)0 is an additive principle number and hence cannot be a successor ordinal.
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Now, suppose that α = λ, a limit ordinal, and for all ξ < λ we have

ξ ≤ ϕξ0 < ϕξ(ϕλ0) = ϕλ0.

It follows that λ ≤ ϕλ0, and hence by transfinite induction we have α ≤ ϕα0.

We now shall prove β ≤ ϕαβ using transfinite induction on β. We have already proven

the base case. Thus, suppose β = γ + 1 and that γ ≤ ϕαγ. Then we know that

γ + 1 ≤ (ϕαγ) + 1 < ϕα(γ + 1)

since ϕα(γ + 1) is an additive principle number.

Finally, suppose β = λ, a limit ordinal, and that we have ξ ≤ ϕαγ for all ξ < λ. Then

ξ ≤ ϕαξ < ϕα(ϕαλ) = ϕαλ.

Consequently, we have λ ≤ ϕαλ, and thus by transfinite induction we get β ≤ ϕαβ. 2

Lemma 2.1.7 (See [6] Lemma 9.5) For every ρ ∈ Cr(0) there exist unique ordinals β, γ

such that γ < ρ and ρ = ϕβγ.

Proof

Suppose α ∈ Cr(0). Then 0 < α and there is γ such that γ ≤ α = ϕ0γ. If γ < α, then

we are done. Otherwise, there is a least β such that α < ϕβα. In other words, for all

β0 < β we know that α is a fixed point of ϕβ0. Hence, there is γ such that γ 6= α = ϕβγ,

and by Lemma 2.1.6 we know γ < α.

To show uniqueness, suppose α = ϕβ0γ0 = ϕβ1γ1 and γ0, γ1 < α. We shall assume for a

contradiction that β0 6= β1.

If β0 < β1, then γ0 < α = ϕβ1γ1, and thus by 2.1.4 (1) ϕβ0γ0 < ϕβ1γ1, contradicting

our hypothesis. Similarly, if β1 < β0, then γ1 < α = ϕβ0γ0, and we find by 2.1.4 (3) that
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ϕβ1γ1 < ϕβ0γ0, which is, again, a contradiction. Thus, β0 = β1. But then, by 2.1.4 (2)

we know that γ0 = γ1, hence uniqueness.

2

Definition 2.1.8 1. α =nf ϕβγ :⇐⇒ α = ϕβγ and β, γ < α.

2. α =nf β + γ : ⇐⇒ α = β + γ, with β ∈ Cr(0), and γ = γ1 + . . . + γn with

γi ∈ Cr(0) for all i ≤ n and β ≥ γ1 ≥ . . . ≥ γn.

These normal forms are unique, due to the preceding lemma. It is important to note that

this definition alone does not account for all critical ordinals. In particular, ordinals of the

form ϕα0 do not yet have an ordinal form representation.

Definition 2.1.9 We define the class of strongly critical ordinals as

SC := {α|ϕα0 = α}.

2.2 OT(ψ0(EΩω+X
)) and the Functions ψk

In this section, we shall construct the full ordinal representation system OT(ψ0(EΩω+X
)).

At the end of this section, give an equivalent presentation of OT(ψ0(EΩω+X
)) as a primitive

recursive term system, which can be encoded into the system

RCA0 + ∀X∃Y (X ∈ Y ∧ Y is an ω-model of Π1
1-CA0 + BI).

In this chapter, the notations [α, β] and (α, β) will stand for the inclusive and exclusive

intervals from α to β respectively. We also establish the following conventions:

A < α := (∀η ∈ A)(η < α)
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α < A := (∃η ∈ A)(α < η.)

The notations A ≤ α and α ≤ A are as above, replacing < with ≤.

Definition 2.2.1 Let Ω0 = 0. For 0 < k ≤ ω, let Ωk = ℵk. It is worth noting that for

regular cardinals λ > ω, if β < λ, then ϕβλ = λ.

Fix a countable-coded set X with a well-ordering <X . For all u ∈ X , {Eu}u∈X
enumerate the first X ε-numbers above Ωω. Thus, the following hold for all u, v ∈ X:

1. Ωω < Eu

2. If u <X v then Eu < Ev

3. ϕ0Eu = Eu.

Definition 2.2.2 For k < ω the sets Ck(α) and the ordinals ψkα are defined by recursion

on α, with Ck(α) constructed inductively as follows:

1. Ωm ∈ Ck(α) for all m ≤ ω.

2. Eu ∈ Ck(α) for all u ∈ X .

3. [0,Ωk] ⊆ Ck(α).

4. If ξ, η ∈ Ck(α), then ξ + η ∈ Ck(α).

5. If η ∈ Ck(α) then ωη := ϕ0η ∈ Ck(α).

6. If ξ, η ∈ Ck(α) ∩ Ωω, then ϕξη ∈ Ck(α).

7. If ξ < α and ξ ∈ Ck(α), then ψnξ ∈ Ck(α) for all n < ω.

8. ψkα = min{η|η 6∈ Ck(α)}.
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Note that in (6), the ϕ function is defined purely over ordinals less than Ωω. This is

because the ϕ function enumerates epsilon numbers, but epsilon numbers above Ωω are

enumerated via Eu for u ∈ X .

Definition 2.2.3 1. If Ωk ≤ α < Ωk+1, then Sα = Ωk. We call Sα the level of α.

Similarly, let α+ = Ωk+1.

Lemma 2.2.4 (See [6] Lemma 10.3) 1. If α ≤ β then Ck(α) ⊆ Ck(β).

2. Ωk < ψkα < Ωk+1.

3. ψkα ∈ SC

4. ψkα 6= Ωj or Eu for any j ≤ ω or u ∈ X .

5. ψkα = Ck(α) ∩ Ωk+1.

Proof

(1) is proven by transfinite induction on α. The cases where α has the form ξ + η or ϕξη

reduce to the induction hypothesis. The critical case is when α = ψk(γ). If ψk(γ) ∈

Ck(α), then we have γ < α ≤ β. So ψk(γ) ∈ Ck(β).

For (2), observe that since [0,Ωk] ⊆ Ck(α), clearly Ωk < ψkα.

To show ψkα < Ωk+1, we begin by constructing the sets Crik(α), as follows:

(i) Cr0
k(α) = [0,Ωk] ∪ {Ωj}j≤ω ∪ {Eu}u∈X .

(ii) Suppose ξ, η ∈ Crik(α). Then ξ + η ∈ Cri+1
k (α) and ϕξη ∈ Cri+1

k (α).

(iii) If ξ ∈ Crik(α) and ξ < α then ψkξ ∈ Cri+1
k (α).
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Clearly,
⋃
i<ω Cr

i
k(α) = Ck(α), and |Ωk| = |Cr0

k(α)|.

Suppose, then, that we have |Ωk| = |Crik(α)|. To generate Cri+1
k (α), we take the closure

of Crik(α) under a single iteration of the ϕ, + and ψm functions. Hence |Cri+1
k (α)| =

|Crik(α)|, and thus |
⋃
i<ω Cr

i
k(α)| = |Crk(α)| < Ωk+1 Therefore, by definition, ψkα <

Ωk+1.

To prove (3), first we observe that ψk(α) is an additive principle number. Otherwise,

ψk(α) would be the sum of two ordinals in Ck(α), and thus we would have ψk(α) ∈

Ck(α). Hence ψkα = ϕξγ, with ξ ≤ ψkα and γ < ψkα. Clearly we cannot have both

ξ, γ < ψkα or we would have ψkα ∈ Ck(α). Since γ < ψkα, we must have ξ = ψkα, and

since ψkα ≤ ϕ(ψkα)0, it follows that ψkα = ϕ(ψkα)0. Hence, α ∈ SC.

(4) is immediately obvious from the construction of Ck(α).

(5) follows from (2) and the definition of ψk(α).

2

Lemma 2.2.5 (See [6] Lemma 10.4) Let α ∈ Ck(α) and β ∈ Cl(β).

1. ψkα = ψlβ if and only if k = l and α = β.

2. ψkα < ψlβ if and only if k < l or k = l ∧ α < β.

Proof

1. By part (2) of the preceding theorem, obviously ψkα 6= ψlβ if k 6= l. Suppose there

are α, β such that ψkα = ψkβ. Without loss of generality, suppose α < β. Then

by part (1) of the preceding lemma α ∈ Ck(β), and thus ψk(α) ∈ Ck(β). Thus

ψkα 6= ψkβ.
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2. This is a direct corollary of the result we just proved, combined with part (5) of the

preceding lemma.

2

Lemma 2.2.6 (See [2] Lemma 2.7) If α < β and there is no δ ∈ Ck(α) such that α ≤

δ < β, then γ ∈ Ck(β) implies γ ∈ Ck(α).

Proof

This is proved by induction on the construction of γ ∈ Ck(β).

1. If γ = 0 or Ωm or Eu, for any m < ω, u ∈ X , then γ ∈ Ck(α) by definition.

2. If γ has the normal form φγ0γ1 or γ0+γ1, then γ0, γ1 ∈ Ck(β) and thus by induction

hypothesis, γ0, γ1 ∈ Ck(α). Thus, it follows that γ ∈ Ck(α).

3. Suppose γ = ψk(γ0). Then γ0 ∈ Ck(β) and γ0 < β. By induction hypothesis, it

follows that γ0 ∈ Ck(α). By assumption, it is not the case that α ≤ γ0 < β, so

γ0 < α. Therefore, ψk(γ0) ∈ Ck(α).

2

Lemma 2.2.7 (See [2] Lemma 2.8) If β = min{ξ|α ≤ ξ ∈ Ck(α)} then Ck(α) =

Ck(β), and thus ψk(α) = ψk(β) with β ∈ Ck(β).

Proof
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Since α ≤ β, clearly Ck(α) ⊆ Ck(β) by part (1) of Lemma 2.2.4. By the preceding

Lemma, it follows that Ck(β) ⊆ Ck(α). We have β ∈ Ck(β) by our initial assumption.

2

Definition 2.2.8 α =nf ψkβ :⇐⇒ (α = ψkβ ∧ β ∈ Ck(β)).

Definition 2.2.9 The set of ordinal terms OT(ψ0(EΩω+X
)) and the complexity Gα < ω for

α ∈ OT(ψ0(EΩω+X
)) are defined inductively as follows:

1. 0,Ωk,Eu ∈ OT(ψ0(EΩω+X
)) and G0 = GΩk = GEu = 0 for k ≤ ω.

2. If α =nf α0 + α1 ∧ α0, α1 ∈ OT(ψ0(EΩω+X
)) then α ∈ OT(ψ0(EΩω+X

)) and Gα =

max{Gα0Gα1}+ 1.

3. If α =nf ϕβγ ∧ β, γ ∈ OT(ψ0(EΩω+X
)) then α ∈ OT(ψ0(EΩω+X

)) and Gα =

max{Gβ, Gγ}+ 1.

4. If α =nf ψkβ ∧ β ∈ OT(ψ0(EΩω+X
)) then α ∈ OT(ψ0(EΩω+X

)) and Gα = Gβ + 1.

Using Lemma 2.1.7 and 2.2.7, we can see that every ordinal term α ∈ OT(ψ0(EΩω+X
))

has a unique normal form, and thus G(α) is well-defined.

Definition 2.2.10 The set of ordinals Kkα for α ∈ OT(ψ0(EΩω+X
)) are defined

inductively as follows:

1. Kk0 = ∅.

2. If α =nf α1 + . . .+ αm then Kkα =
⋃
{Kkαj|1 ≤ j ≤ n}.

3. If α =nf ϕβγ then Kkα = Kkβ ∪Kkα.
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4. If α =nf ψlβ then,

Kkα =

∅ if l < k

{β} ∪Kkβ if k ≤ l.

Lemma 2.2.11 (See [6] Lemma 10.9) If α ∈ OT(ψ0(EΩω+X
)) then α ∈ Ck(β) if and

only if Kkα < β.

Proof

Proved by induction on the construction of α in Cm(β). The critical case is when α =nf

ψmα0 and k ≤ m.

First, suppose ψmα0 ∈ Ck(β). Then α0 ∈ Ck(β) and α0 < β. By induction hypothesis,

{α0} ∪Kkα0 < β.

Now supposeKkψmα0 < β. Then {α0}∪Kkα0 < β. By induction hypothesisKkα0 < β

implies α0 ∈ Ck(β) and since α0 < β we obtain ψkα0 ∈ Ck(β). 2

Definition 2.2.12 We define the e(α) inductively as follows:

1. e(0) = 0

2. e(Ωk) = {Ωk}

3. e(Eu) = 1

4. e(α) = 0 where α =nf α0 + α1.

5. e(α) = {β} where α =nf ϕβγ.

6. e(α) = {α} where α =nf ψkβ.
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Lemma 2.2.13 (See [6] Lemma 10.10) If α = ϕβγ then α =nf ϕβγ if and only if

e(γ) ≤ β ∧ (β 6∈ SC ∨ γ > 0).

Proof

Assume that α =nf ϕβγ. Then γ, β < α by definition. Moreover, if β ∈ SC and γ = 0

then β =nf ψkβ0 = ϕβ0 = α, violating normal form. Hence β 6∈ SC ∨ γ 6= 0. Proceed

by induction on Gγ.

For the base case, if γ = 0, then the assertion is trivial. If γ = Eu, then 0 < {1} = e(Eu)

so α cannot have the normal form φ0Eu. Now suppose γ = Ωk ∈ {Ωk} = e(γ), for

k > 0. Then Ωk > ω. Thus if β < e(Ωk), then ϕβγ = γ, violating the normal form of α.

Hence e(γ) ≤ β.

Now suppose the assertion holds for Gγ0 = n, and Gγ = n+ 1.

If γ =nf γ0 + γ1, then the assertion follows immediately by induction hypothesis.

If γ =nf ϕγ0γ1, then γ0, γ1 < γ < ϕβγ, and e(γ) = {γ0}. Suppose, for a contradiction,

that β < γ. Since ϕγ0γ1 < ϕβγ, by Lemma 2.1.4, ϕγ0γ1 < γ, which is a contradiction.

Thus, e(γ) = {γ0} ≤ β.

If γ =nf ψkγ0, then e(γ) = {γ} and by Lemma 2.1.5 γ = ϕγ0 < ϕβ0, as needed.

For the opposite direction, we shall just consider the two critical cases of the induction

step. Suppose α = βγ, and e(γ) ≤ β.

If γ =nf ϕγ0γ1 then e(γ) = {γ0} ≤ β by assumption, and γ0, γ1 < γ due to normal form.

If γ0 < β, then since γ1 < γ ≤ ϕβγ, by Lemma 2.1.4 we have γ < ϕβγ. Likewise, if

γ0 = β, then since γ1 < γ, we have γ < ϕβγ.

If γ =nf ψkγ0, then e(γ) = {γ} and γ ≤ β by assumption. But then ϕγ0 ≤ β, so

γ = ϕγ0 ≤ ϕβ0 < ϕβγ, as needed.

2
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In order to ensure our proof can be carried out in RCA0 + ∀X∃Y (X ∈ Y ∧

Y is an ω-model of Π1
1CA0 + BI), we must present a primitive recursive term structure

with an ordering relation equivalent to OT(ψ0(EΩω+X
)).

Definition 2.2.14 (Compare [8] Definition 2.9) Let X = (X,<X) be the well-ordering

of the set X ⊆ N by the relation <X . We shall recursively define a binary relational

structure

ψ0(EΩω+X
) = (|ψ0(EΩω+X

)|, <),

together with a collection of functions

KX
n : |ψ0(EΩω+X

)| 7→ { finite subsets of |ψ0(EΩω+X
)|},

for n < ω, and an additional function,

eX : |ψ0(EΩω+X
)| 7→ |ψ0(EΩω+X

)|

such that

1. Ωm ∈ |ψ0(EΩω+X
)|, for all m ≤ ω, with Ω0 = 0. For all m,n ≤ ω and k ∈ N we

have eX(Ωm) = {Ωm}, KX
k Ωm = ∅, and if m < n then Ωm < Ωn.

2. If α ∈ |ψ0(EΩω+X
)| and α 6= 0 then 0 < α.

3. For all u ∈ X there is Eu ∈ |ψ0(EΩω+X
)|, where Ωω < Eu, e

X(Eu) = {Eu} and for

all n ∈ N, KX
nEu = 0. If u, v ∈ X and u <X v then Eu < Ev.

4. If β, γ ∈ |ψ0(EΩω+X
)| with eX(γ) ≤ β and (γ 6= 0∨β does not have the form ψX

mα),

then ϕXβγ ∈ |ψ0(EΩω+X
)| with eX(ϕXβγ) = {β}, and KX

nϕ
Xβγ = KX

nβ ∪KX
n γ.

5. Suppose α = ϕXα0α1 ∈ |ψ0(EΩω+X
)| and β = ϕXβ0β1 ∈ |ψ0(EΩω+X

)|. Then α < β
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if and only if

α0 < β0 and α1 < ϕXβ0β1 or

α0 = β0 and α1 < β1 or

β0 < α0 and ϕXα1α0 < β1.

6. ϕXβγ ∈ |ψ0(EΩω+X
)| and α has the form Ωk,Eu, or ψX

mγ then α < ϕXβγ if α < β.

Otherwise β < α.

7. If α1, . . . , αk ∈ |ψ0(EΩω+X
)| with α1 ≥ . . . ≥ αk with k ≥ 2, then ωα1 +. . .+ωαk ∈

|ψ0(EΩω+X
)|, with eX(ωα1 + . . .+ ωαk) =

⋃
i≤k e

X(αi), and KX
n =

⋃
i≤kK

X
nαi.

8. If α = ωα1 + . . . + ωαk ∈ |ψ0(EΩω+X
)| and β has the form Ωn,Eu, ψ

X
k γ, or ϕXγη

then

if β ≤ α1 then β < α or

if α1 < β then α < β.

9. Suppose α = α = ωα1 + . . . + ωαk ∈ |ψ0(EΩω+X
)| and β = ωβ1 + . . . + ωβk ∈

|ψ0(EΩω+X
)|. Then α < β if and only if

(m < n) ∧ ∀i ≤ m(αi = β1) or

∃i ≤ min{m,n}∀j < i[(αj = βj) ∧ (αi < βi)]

10. If α ∈ |ψ0(EΩω+X
)| and KX

mα < α then ψX
mα ∈ |ψ0(EΩω+X

)|, and eX(ψX
nα) =

{ψX
nα}. If m < n then KX

nψ
X
m = ∅. If n ≤ m then KX

nψ
X
m = {α} ∪KXα.

11. If ψX
mα ∈ |ψ0(EΩω+X

)| and m < n then ψX
mα < Ωn, and if n ≤ m then Ωn < ψX

mα.

12. If ψX
mα, ψ

X
nβ ∈ |ψ0(EΩω+X

)| and m < n then ψX
mα < ψX

nβ.

13. If ψX
mα, ψ

X
mβ ∈ |ψ0(EΩω+X

)|, and α < β then ψX
mα < ψX

mβ.
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Recall that in our standard notation system ωα := ϕ0α and thus we are not introducing

any problematic new symbols into the system. The term system |ψ0(EΩω+X
)| makes

use of Cantor normal form, rather than the normal form we have established in this

chapter, but this presents no great complications either. The only difference is that we

will occasionally see an instance of ωαi , where αi is an epsilon number, in which case we

may recover the standard normal form by noting ωαi = αi.

Lemma 2.2.15 1. The set |ψ0(EΩω+X
)| together with the binary relation < and

functions KX
n and eX is primitive recursive in X.

2. < is a total linear ordering on |ψ0(EΩω+X
)|.

Proof

While the proof is not difficult, it would take up a great deal of space without adding any

great insight. Instead, we simply note the parallels between the functions e and Kn and

their respective counterparts, eX and KX
n , with the behaviours shown in Lemmas 2.2.11

and 2.2.13

2

2.3 Distinguished Sets and Well-Ordering

In this section, we shall show OT(ψ0(EΩω+X
)) is well-ordered using the method of

distinguished sets. We work in the background theory of

RCA0 + ∀X∃Y (X ∈ Y ∧ Y is an ω-model of Π1
1-CA0 + BI).
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In particular, we shall assume Y is a countable-coded ω-model of Π1
1-CA0 + BI, with

X ∈ Y.

Distinguished sets serve as a benchmark for provable well-ordering, which we shall

ultimately leverage to find well-ordering up to Ωω. From there, we shall use the well-

ordering of X within our model Y to prove well-ordering up to Eu for all u ∈ X .

Definition 2.3.1 The level k strongly critical subterms of α ∈ OT(ψ0(EΩω+X
)) are

inductively defined as follows:

1. SCk(0) = SCk(Eu) = ∅ for all u ∈ X .

2. If i < k then SCk(Ωi) = {Ωi}. Otherwise, SCk(Ωi) = ∅.

3. SCk(α) = {α} if α ∈ SC ∩ Ωk+1.

4. SCk(α) = SCk(α1) ∪ SCk(α2) if α =nf α1 + α2.

5. SCk(α) = SCk(β) ∪ SCk(γ) if α =nf ϕβγ.

6. SCk(α) = SCk(β) if α =nf ψmβ, and Ωk+1 ≤ α, for any m < ω.

Definition 2.3.2 Let U ⊆ OT(ψ0(EΩω+X
)) and F (a) be an L2-formula.

1. U ∩ α := {η ∈ U |η < α}.

2. U ∩ α ⊆ F ⇐⇒ (∀η ∈ U ∩ α)F (η).

3. Prg(U, F ) ⇐⇒ ∀η ∈ U [U ∩ η ⊆ F → F (η)].

4. W [U ] := {η ∈ U |∀Y [Prg(U, Y )→ U ∩ η ⊆ Y ]}

5. MU
k := {η < Ωk+1|(∀j,Ωj ∈ U ∩ Ωk)SCj(η) ⊆ U}.

6. WU
k := W [MU

k ].
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Suppose α ∈ OT(ψ0(EΩω+X
)), and Sα = Ωk and α+ = Ωk+1. We establish the following

conventions.

WU
Sα = WU

k

MU
Sα = MU

k

WU
α+ = WU

k+1

MU
α+ = MU

k+1

Note that MU
k is a set by arithmetical comprehension, while W [U ] (and therefore WU

k ) is

a set by Π1
1-CA0.

Lemma 2.3.3 (See [6] Lemma 11.4) 1. Prg(U, S)→ W [U ] ⊆ S.

2. Prg(U,W [U ]).

3. [U ⊆ V ∧ Prg(U, S)]→ Prg(V, {η|η ∈ U → η ∈ S}).

4. Prg(W [U ], S)→ W [U ] ⊆ S.

5. W [W [U ]] = W [U ].

6. W [U ∩ α] ⊆ W [U ] for any α ∈ OT(ψ0(EΩω+X
)).

7. U ∩ Ωk = V ∩ Ωk → (MU
k = MV

k ∧WU
k = W V

k ).

8. α ∈ WU
k ↔ (α ∈MU

k ∧MU
k ∩ α ⊆ WU

k )

Proof

(1) follows immediately from the definitions.
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(2) Let α ∈ U , and and suppose U ∩ α ⊆ W [U ]. By (1) we have W [U ] ⊆ S for all S

satisfying Prg(U, S). It follows that U ∩ α ⊆ S, and thus α ∈ S, by definition of W [U ].

Thus, Prg(U,W [U ]).

(3) Assume U ⊆ V and Prg(U, S), and let α ∈ V , with V ∩ α ⊆ {η|η ∈ U → η ∈ S}.

Since U ⊆ V , we have

U ∩ α = U ∩ (V ∩ α) ⊆ S,

so by Prg(U, S) we have α ∈ U → α ∈ S, and therefore α ∈ {η|η ∈ U → η ∈ S}.

(4) Assume Prg(W [U ], S). By (3) we we have Prg(U, {η|η ∈ W [U ] → η ∈ S}). By (1)

we get W [U ] ⊆ {η|η ∈ W [U ]→ η ∈ S}, and thus W [U ] ⊆ S.

(5) W [W [U ]] ⊆ W [U ] holds by definition. By (2) we know that Prg(W [U ],W [W [U ]]),

and thus by (4) we get W [U ] ⊆ W [W [U ]]. So W [U ] = W [W [U ]]

(6) Let η ∈ W [U ∩α]. Thus, we have η ∈ U ∩α, and ∀Y [Prg(U ∩α, Y )→ (U ∩α)∩η ⊆

Y ]. Since η < α, it follows that,

∀Y [Prg(U, Y )→ U ∩ η ⊆ Y ].

So by definition, η ∈ W [U ].

(7) Let U ∩Ωk = V ∩Ωk. Then MU
k = {η < Ωk+1|(∀Ωj ∈ U ∩Ωk)SCj(η) ∈ U} = MV

k ,

and thus by definition WU
k = WU

k .

(8) By definition of WU
k , we know that if α ∈ WU

k , then:

Prg(MU
k ,W

U
k )→MU

k ∩ α ⊆ WU
k

and by (2), we deduce:

MU
k ∩ α ⊆ WU

k .

We obtain α ∈MU
k because WU

k ⊆MU
k .

Similarly, suppose α ∈MU
k and MU

k ∩ α ⊆ WU
k . Then it is trivial to conclude:

Prg(MU
k ,W

U
k )→MU

k ∩ α ⊆ WU
k .
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By the definition of WU
k , we may conclude:

∀Y Prg(MU
k , Y )→MU

k ∩ α ⊆ Y,

and thus α ∈ WU
k . 2

Definition 2.3.4 1. We say that U ⊆ OT(ψ0(EΩω+X
)) is a distinguished set if

(a) (∀α ∈ U)Sα ∈ U and

(b) ∀i < ω,Ωi ∈ U → (U ∩ Ωi+1) = WU
i .

We shall use Ds(U) to denote that U is a distinguished set,

2. W := {η|∃X[Ds(X) ∧ η ∈ X]}.

We observe that W is a Σ1
2 statement, and thus is not provably a set in Π1

1 − CA0.

Henceforth, the variables Q and P will be used to represent distinguished sets.

Lemma 2.3.5 (See [6] Lemma 11.6) 1. Q ⊆ W [Q], and thus Q = W [Q].

2. Prg(Q, V )→ Q ⊆ V.

Proof

(1) Suppose α ∈ Q. Since Q is distinguished, we know that Sα ∈ Q, and thus

Q ∩ α+ = WQ
Sα = W [WQ

Sα] = W [Q ∩ α+] ⊆ W [Q].

(2) We know that Prg(Q, V )→ W [Q] ⊆ V . By part (1), it follows that Q ⊆ V . 2

Note that if<Q is the restriction of< to the distinguished setQ, then the preceding lemma

gives WO(<Q).
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Lemma 2.3.6 (See [6] Lemma 11.7) 1. (n ≤ m ∧ β ∈ SCm(α)) → SCn(β) ⊆

SCn(α)

2. α ∈ Q ∧ Ωk ∈ Q→ SCk(α) ⊆ Q.

3. Ωk ≤ Q→ Ωk ∈ Q.

Proof

(1) We proceed by induction on Gα. If α ∈ {0,Ωh,Eu} then SCm(α) = ∅ and the

proposition holds vacuously. Now, suppose the proposition holds for Gγ ≤ k, and Gα =

k + 1. Suppose n < m and β ∈ SCm(α). The critical case is when α = ψjγ for Ωj ≤ γ.

Then SCmα = {α}, and thus β = α. So SCn(β) = SCn(α). The other cases follow by

the induction hypothesis.

(2) Suppose α ∈ Q and Ωk ∈ Q. We have two cases. First, suppose Ωk < Sα. Since Q

is distinguished, we know Sα ∈ Q and thus α ∈ Q ∩ α+ = WQ
Sα ⊆ MQ

Sα. Moreover, we

have Ωk ∈ Q ∩ Sα, and thus SCk(α) ⊆ Q, by the definition of MQ
Sα.

Now suppose that Ωk ≥ Sα. Since Q is distinguished, we know α ∈ Q ∩ Ωk+1 =

WQ
k ⊆ MQ

k . By definition of MQ
k , if j < k then SCj(α) ⊆ Q, and by part (1), we have

(∀β ∈ SCk(α))SCj(β) ⊆ Q. Thus, SCk(α) ⊆ ({α} ∪ (MQ
k ∩ α)), and since α ∈ WQ

k ,

by Lemma 2.3.3 (6) we get:

SCk(α) ⊆ ({α} ∪ (MQ
k ∩ α)) ⊆ WQ

k .

(3) Suppose Ωk ≤ Q. Then there is some α ∈ Q such that Ωk ≤ Sα. Since Q is

distinguished, if Ωk = Sα, then Ωk ∈ Q. Now suppose Ωk < Q. We know that

Ωk ∈ MQ
Sα since SCj(Ωk) = ∅ ⊆ Q for any j. Moreover, since α ∈ WQ

Sα, by Lemma

2.3.3 part 6 we know that MQ
Sα ∩ α+ ⊆ WQ

Sα, and thus Ωk ∈ WQ
Sα = Q ∩ α+. 2
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Lemma 2.3.7 (See [6] Lemma 11.8) For all k < ω, Q ∩ Ωk+1 ⊆ WQ
k .

Proof

Suppose α ∈ Q ∩ Ωk+1. Since Q is distinguished, α ∈ WQ
Sα, and thus by Lemma 2.3.3

MQ
Sα∩α ⊆ WQ

Sα. By Lemma 2.3.6 (8) we know that for all j ≤ k, SCj(α) ⊆ Q, and thus

α ∈MQ
k ∩ α+. Using Lemma 2.3.3 Prg(MQ

k ∩ α+, U) implies:

Prg(MQ
Sα, {η|η ∈M

Q
k ∩ α

+ → η ∈ U}),

and thus, by Lemma 2.3.3 (8)

MQ
k ∩ α ⊆MQ

Sα ∩ α ⊆ WQ
Sα ⊆ {η|η ∈M

Q
k ∩ α

+ → η ∈ U}.

We may therefore conclude that MQ
k ∩ α+ ∩ α ⊆ U , which proves that

α ∈ W [MQ
k ∩ α] ⊆ WQ

k . 2

Theorem 2.3.8 (See [6] Lemma 11.9) MQ
k ∩ Ωk ⊆ Q→ Ωk ∈ WQ

k ∧Ds(W
Q
k ).

Proof

Since SCl(Ωk) = ∅ for all l < k we know Ωk ∈ MQ
k . Moreover, we have MQ

k ∩ Ωk ⊆

Q ∩ Ωk+1 ⊆ WQ
k , and thus by Lemma 2.3.3 we have Ωk ∈ WQ

k .

Next, we shall prove that WQ
k is a distinguished set.

(a) We begin by showing that if α ∈ WQ
k , then Sα ∈ WQ

k . If α < Ωk, then this is

immediate from the fact that Q is distinguished, and WQ
k = Q ∩ Ωk+1. Otherwise Ωk ≤

α ≤ Ωk+1, so Sα = Ωk.

(b) Next, we must show that if Ωn ∈ WQ
k then WQ

k ∩ Ωn+1 = W
WQ
k

n . Let Ωn ∈ WQ
k .If

k < n, then clearly Ωn 6∈ WQ
k , so n ≤ k. Thus, by Lemma 2.3.3 we have

WQ
k ∩ Ωn = Q ∩ Ωk+1 ∩ Ωn = Q ∩ Ωn = WQ

n .
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So WQ
k is distinguished 2

The above theorem is significant, because it allows us to find non-empty distinguished

sets. Even more importantly, we gain the following corollary:

Lemma 2.3.9 (See [6] Lemma 11.10) Prg(P ∪Q,U)→ P ∪Q ⊆ U

Proof

Assume Prg(P ∪Q,U). Then for any α, P ∩ α ⊆ P ∪Q, we have

(P ∩ α ⊆ U) ∧ (Q ∩ α ⊆ U) ∧ (α ∈ P → α ∈ U).

Moreover, by Lemma 2.3.3

(∗)P ∩ α ⊆ U → Prg(P ∪Q, {η|η ∈ P ∩ α→ η ∈ U})

which simplifies to

(∗∗)P ∩ α ⊆ U → Prg(Q, {η|η < α→ η ∈ U}).

Since Q is distinguished, it follows by Lemma 2.3.5 and (∗∗) that

P ∩ α ⊆ U → Q ∩ α ⊆ U

and therefore by (∗)

(P ∩ α ⊆ U) ∧ (α ∈ P )→ α ∈ U,

i.e. Prg(P,U). Again applying Lemma 2.3.5 we find that P ⊆ U . A similar argument

yields that Q ⊆ U , and thus P ∪Q ⊆ U . 2

Lemma 2.3.10 (See [6] Lemma 11.11) Ωk ∈ P ∪Q∧Ωk ≤ P ∧Ωk ≤ Q→ P ∩Ωk+1 =

Q ∩ Ωk+1
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Proof

Lemma 2.3.9 shows that we may perform induction over P ∪ Q. For the base case, we

note that if 0 ∈ P , and 0 ≤ Q then Q is nonempty and P ∩ 0 = Q∩ 0 = ∅. The argument

then proceeds much the same way as the induction step, below.

Thus, suppose Ωk ∈ P and Ωk ≤ Q. By induction hypothesis P ∩ Ωk = Q ∩ Ωk, and

thus by Lemma 2.3.3 Ωk ∈ W P
k = WQ

k ⊆ MQ
k . So by Lemma 2.3.6 we find Ωk ∈ Q,

and since Q is distinguished, P ∩ Ωk+1 = W P
k = WQ

k = Q ∩ Ωk+1. The same argument

works for the opposite case, when Ωk ∈ Q and Ωk ≤ P . 2

Theorem 2.3.11 (See [6] Lemma 11.12) α ∈ Q→ Q ∩ α+ = W ∩ α+

Proof

Suppose α ∈ Q. Obviously, Q ∩ α+ ⊆ W ∩ α+. Suppose, then, that η ∈ W ∩ α+.

Then there is some distinguished set P such that η ∈ P ∩ α+. So Sη ∈ P ∪ Q, with

Sη ≤ η ∈ P and Sη ≤ α ∈ Q. So by the preceding lemma, η ∈ Q ∩ α+. 2

We shall now examine the closure properties of distinguished sets, and by extension the

closure of W.

Theorem 2.3.12 (See [6] Lemma 11.13) 1. α, β ∈ Q→ α + β ∈ Q.

2. α, β ∈W→ α + β ∈W.

Proof

Suppose α, β ∈ Q. If Sα < Sβ then α + β = β ∈ Q. So assume that Sβ ≤ Sα. Thus,

we have α, β ∈ WQ
Sα. Now let

U := {ξ|α + ξ ⊆ WQ
Sα}.
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By definition MQ
Sα is closed under addition. Thus,

η ∈MQ
Sα ∧M

Q
Sα ∩ η ⊆ U → α + η ∈MQ

Sα ∧M
Q
Sα ∩ (α + η) ⊆ WQ

Sα.

So, applying Lemma 2.3.3 yields

η ∈MQ
Sα ∧M

Q
Sα ∩ η ⊆ U → α + η ∈ WQ

Sα.

We may therefore conclude Prg(MQ
Sα, U), and thus WQ

Sα ⊆ U by Lemma 2.3.3, and thus

α + β ∈ Q ∩ α+.

(2) follows immediately from (1). 2

Lemma 2.3.13 (See [6] Lemma 11.14) Let F(α, β) be the formula

α, β ∈ Q ∧ (∀ξ ∈ Q ∩ α)(∀η ∈ Q)(ϕξη ∈ Q) ∧ (∀η ∈ Q ∩ β)(ϕαη ∈ Q).

The following statements are true:

1. F(α, β) ∧ δ = max{α, β} ∧ γ ∈MQ
Sδ ∩ ϕαβ → γ ∈ Q.

2. F(α, β)→ ϕαβ ∈ Q.

Proof

For part (1) we proceed by induction on Gγ. From F(α, β) we may deduce α, β ∈

Q ∩ δ+ = WQ
Sδ. The assertion holds trivially, if γ ∈ {Ωk|Ωk < δ+}. If γ =nf γ1 + . . . γn

then for i ≤ n, γi ∈ MQ
Sδ, and by induction hypothesis, γi ∈ Q. Hence γ ∈ Q. If

γ = ψkη, then γ ∈ SC, and γ ≤ α ∨ γ ≤ β. Since α, β ∈ WQ
Sδ, we may conclude by

Lemma 2.3.3 that

MQ
Sδ ∩ γ ⊆MQ

Sδ ∩ δ ⊆ WQ
Sδ,

and thus γ ∈ WQ
Sδ ⊆ Q.
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Finally, we consider when γ =nf ϕξη. By definition, ξ, η ∈ MQ
Sδ and hence by induction

hypothesis ξ, η ∈ Q, If ξ ≤ α we have γ ∈ Q by F(α, β). If α < ξ then we must have

γ < β or else we would have ϕαβ < γ contrary to our hypothesis. Once again, we find

MQ
Sδ ∩ γ ⊆MQ

Sδ ∩ β ⊆ WQ
Sδ,

and thus γ ∈ WQ
Sδ ⊆ Q.

(2) Let δ = max{α, β}. From part (i) we may deduce

F(α, β)→MQ
Sδ ∩ ϕαβ ⊆ WQ

Sδ.

By Lemma 2.3.6 we also find that

F(α, β)→ ϕαβ ∈MQ
Sδ.

These two statements, combined with Lemma 2.3.3 yield

F(α, β)→MQ
Sδ ∩ ϕαβ ⊆ WQ

Sδ = Q ∩ δ+.

Hence F(α, β)→ ϕαβ ∈ Q. 2

Theorem 2.3.14 (See [6] Lemma 11.15) 1. α, β ∈ Q→ ϕαβ ∈ Q.

2. α, β ∈W→ ϕαβ ∈W.

Proof

We shall prove this result in stages. First, let α ∈ Q and V := {η|ϕαη ∈ Q}. Now,

assume (∀ξ ∈ Q∩α)(∀η ∈ Q)(ϕξη ∈ Q) andQ∩γ ⊆ V . Then by the preceding lemma,

ϕαγ ∈ V , and thus we have Prg(Q, V ). Since Q is distinguished, this means Q ⊆ V . In

other words, we have:

(∀ξ ∈ Q ∩ α)(∀η ∈ Q)(ϕξη ∈ Q)→ Q ⊆ V
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Now, let U = {ξ|(∀η ∈ Q)ϕξη ∈ Q}. From the statement above, we may then deduce:

Q ∩ α ⊆ U → α ∈ U

i.e. Prg(Q,U), or Q ⊆ U . Thus Q, and by extension W is closed under the ϕ function. 2

Corollary 2.3.15 (See [6] Corollary 11.16) 1. Sα ≤ Ωk∧Ωk ∈ Q∧SCk(α) ⊆ Q→

α ∈ Q.

2. Sα ≤ Ωk ∧ Ωk ∈W ∧ SCk(α) ⊆ Q→ α ∈W.

Proof

This follows immediately from Lemmas 2.3.13 and 2.3.15 above. 2

Lemma 2.3.16 (See [6] Lemma 11.17) 1. β ∈ Q ∧ α ∈MQ
Sβ ∩ β → α ∈ Q

2. β ∈W ∧ α ∈MQ
Sβ ∩ β → α ∈W

Proof

(1) If β ∈ Q then β ∈ Q ∩ β+ = WQ
Sβ . By Lemma 2.3.3 we have MQ

Sβ ∩ β ⊆ WQ
Sβ and

hence α ∈ WQ
Sβ. (2), of course, follows immediately from (1). 2

Definition 2.3.17 BQ
k := {α|(∀Ωi ∈ Q ∩ Ωk)[Kiα < α→ ψiα ∈ Q]

Lemma 2.3.18 (See [6] Lemma 11.19) Assume α ∈ MQ
k ,M

Q
k ∩ α ⊆ BQ

k ,Ωn ∈ Q ∩

Ωk, Knα < α and γ ∈MQ
n ∩ ψnα. Then γ ∈ Q.
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Proof

Proceed by induction on Gγ. If γ ≤ Ωn then γ ∈ Q by Lemma 2.3.17. Suppose, then

that Ωn < γ.

If γ =nf γ1 + . . . γm then by the induction hypothesis, for i ≤ m we have γi ∈ Q, and

thus γ ∈ Q by closure.

If γ =nf ϕξη then ξ, η ∈ Q by the induction hypothesis, and thus ϕξη ∈ Q by closure.

Finally, if γ =nf ψnη then we know η < α, since ψk is a strictly increasing function.

Since n < k and γ ∈MQ
n , by Lemma 2.3.6 we know that

(∀Ωt ∈ Q ∩ Ωn)(∀β ∈ SCn(η))SCt(β) ⊆ SCt(η) ⊆ Q

By the construction of ψn, we know that SCn(η) < ψnη < ψnα and thus we find that

SCn(η) ⊆ MQ
n ∩ ψnα. By induction hypothesis, then, SCn(η) ⊆ Q. In other words, we

have:

(∀t ≤ n)[Ωt ∈ Q ∩ Ωk → SCt(η) ⊆ Q]

From here, we may carry out a secondary induction to show that

(∀Ωt ∈ Q ∩ Ωk)(SCt(η) ⊆ Q).

Suppose, then, that Ωt ∈ Q ∩ Ωk. We have already proven the result for t ≤ n.

Suppose, then, that n < t. By our secondary induction hypothesis, we have

(∀Ωt′ ∈ Q ∩ Ωt)SCt′(η) ⊆ Q. It follows that SCt(η) ⊆ MQ
t . We have n < t

and Knα < α by assumption. Since γ =nf ψnη, we know that Knη < η. From n < t we

may therefore deduce that Ktη < η and Ktα < α. Thus, we have SCt(η) < ψtη < ψtα,

and thus SCt(η) ⊆ MQ
t ∩ ψtα. Thus, by our primary induction hypothesis we may

conclude that SCt(η) ⊆ Q. Thus η ∈ MQ
k ∩ ψkα, and since η ∈ BQ

k we have ψkη ∈ Q.

2



Chapter 2. A Well-Ordering Proof for OT(ψ0(EΩω+X
)) 35

Lemma 2.3.19 (See [6] Lemma 11.20) Prg(MQ
k ,B

Q
k ).

Proof

Suppose α ∈ MQ
u and MQ

u ∩ α ⊆ BQ
u . We wish to show α ∈ BQ

u . So assume that

Ωv ∈ Q ∩ Ωu and Kvα < α. By Lemma 2.3.19 we know that MQ
b ∩ ψvα ⊆ Q ∩ Ωv+1.

For Ωt ∈ Q ∩ Ωv, we have SCt(ψvα) = SCt(α), and since α,Ωv ∈ Q by Lemma 2.3.6

we have ψkα ∈ WQ
v ⊆ Q, i.e. α ∈ BQ

u , and hence Prg(MQ
u ,B

Q
u ). 2

Lemma 2.3.20 (See [6] Lemma 11.21) 1. α,Ωk ∈ Q ∧Kkα < α→ ψkα ∈ Q.

2. α,Ωk ∈W ∧Kkα < α→ ψkα ∈W.

Proof

(1) Let δ = max{Sα, SΩk}. Since we know Prg(MQ
k ,B

Q
k ) we have WQ

k ⊆ BQ
k . Since Q

is distinguished, we have δ ∈ Q and thus Q ∩ δ+ = WQ
δ ⊆ Bδ. In particular, this yields

α ∈ BQ
k and thus ψkα ∈ Q.

(2) of course, follows immediately from (1). 2

Lemma 2.3.21 (See [6] Lemma 11.22) Suppose U ⊆ N. Then (∀j ∈ U)Ds(Qj) →

Ds(∪{Qj|j ∈ U}).

Proof

Suppose Ds(Qj) holds for all j ∈ U . Then by arithmetical comprehension

Z := ∪{Qj|j ∈ U}

is a set. If α ∈ Z, then there is some j ∈ U such that α ∈ Qj . Since Qj is distinguished,

Sα ∈ Qj ⊆ Z.
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Now, suppose that Ωk ∈ Z. Then Ωk ∈ Qi for some i ∈ U . By Theorem 2.3.12 we have

W ∩ Ωk+1 = Qi ∩ Ωk+1 ⊆ Z ∩ Ωk+1 ⊆W ∩ Ωk+1

So Z ∩Ωk+1 = Qi∩Ωk+1. By Lemma 2.3.3 we observe that WZ
k = WQi

k = Z ∩Ωk+1. 2

Lemma 2.3.22 For all n < ω,Ωn there is a distinguished set Q such that Ωn ∈ Q. Thus,

Qn ∈W. Moreover, Ds(W ∩ Ωω).

Proof

Suppose Q0 = ∅ and Qn+1 = WQn
n . We will show that for all n < ω,Ωn ∈ Qn+1 and

Ds(Qn). Hence, Ωn ∈W.

Further, we claim that MQn
n = WQn

n for all n.

For the base case, observe that Ds(∅) holds vacuously. Since SC0(0) = ∅, and M∅
0 ∩ 0 ⊆

∅, by Lemma 2.3.8 we have 0 ∈ WQ0

0 = Q1.

To show M∅
0 = W ∅

0 , suppose α ∈M∅
0 . By induction on Gα we shall prove that M∅

0 ∩α ⊆

W ∅
0 .

If Gα = 0, then α = 0. Suppose for Gγ < Gα, we have M∅
0 ∩ γ ⊆ W ∅

0 .. If β ∈ M∅
0 and

β < α then:

1. if α =nf α0 +α1, we have β < α0, or β < α1, so by induction hypothesis β ∈ W ∅
0 .

2. ifα =nf ϕα0α1, then by a secondary induction on Gβ, combined with Lemma 2.1.4

gives β ∈ W ∅
0 .

3. If α =nf ψ0α0, then α 6∈M∅
0 , since SC0(ψ0α) = {α} 6= ∅.

Hence, we have α ∈M∅
0 and M∅

0 ∩α ⊆ W ∅
0 , so by Lemma 2.3.3 (8), we have α ∈ W ∅

0 =

Q1.
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For the induction step, suppose that Ωn ∈ Qn+1 andDs(Qn+1),withMQn
n = WQn

n . Since

Qn+1 = WQn
n is distinguished, we know

M
Qn+1

n+1 ∩ Ωn+1 = {η < Ωn+1|(∀j,Ωj ∈ Qn ∩ Ωn+1)SCj(η) ⊆ Qn} = MQn
n

and by induction hypothesis, MQn
n = WQn

n . Thus, we may apply theorem 2.3.8 to find

Ωn ∈ Qn+2 and Ds(Qn+2).

To show M
Qn+2

n+2 = W
Qn+2

n+2 , we again proceed by induction on Gα. The proof proceeds

much the same as in the base case, though we must now consider the case where α =nf

ψk(α0), with k < n + 2. Then SCk+1(ψk(α0)) = {ψk(α0)}, and by definition of MQn+2

n+2

this means ψk(α0) ∈ Qn+1 ∩ Ωn+2. By induction hypothesis, Qn+1 is distinguished with

Ωn+2 ∈ Qn+1, and thus Qn+1 ∩ Ωn+2 = W
Qn+2

n+2 , as needed.

To see that W ∩ Ωω is a distinguished set, we observe that by Lemma 2.3.11, Qn+1 =

Qn ∩ Ωn+1 = W ∩ Ωn+1, and hence Ds(W ∩ Ωn+1) for all n < ω. By Lemma 2.3.21,

then, ∪{W ∩ Ωj+1|j < ω} = Ds(W ∩ Ωn+1), so Ds(W ∩ Ωn+1).

2

Recall that Y is a countable-coded ω-model of Π1
1 − CA + BI. We say that U is Y-

definable if U = {n ∈ N|Y |= Y (n)} for some formula Y (x) of second-order arithmetic

with parameters from Y.

Definition 2.3.23 1. M := {α | ∀n < ω SCn(α) ∈W}.

2. α <M β :⇔ α, β ∈M ∧ α < β.

3. COLL := {α ∈M | ∀n < ω (Knα < α)→ ψnα ∈W}.

4. PrgM(U) = (∀α ∈M)[(∀β <M α β ∈ U)→ α ∈ U ].

Lemma 2.3.24 W ∩ Ωω = M ∩ Ωω. (Compare [8] Lemma 3.3)
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Proof

Let α ∈W∩Ωω. By Lemma 2.3.22 there exists a distinguished setQ such that Ωn, α ∈ Q.

Then SCn(α) ⊆ Q ⊆W by Lemma 2.3.6 (2).

Now let α ∈ M ∩ Ωω. Choose n such that α < Ωn. Then SCn(α) ∈ W, so that by

Theorems 2.3.12 and 2.3.14, we get α ∈W. 2

Lemma 2.3.25 (Compare [8] Lemma 3.4) Let U be definable in our ω-model Y. Then

we have

∀α ∈W ∩ Ωω [(∀β ∈W ∩ α β ∈ U)→ α ∈ U ]→W ∩ Ωω ⊆ U.

Proof

We have

∀α ∈ Q ∩ Ωω [(∀β ∈ Q ∩ α β ∈ U)→ α ∈ U ]→ Q ∩ Ωω ⊆ U (2.1)

for every distinguished set in Y, using Bar Induction inside that model. (2.1) yields the

the desired assertion. 2

Lemma 2.3.26 (Compare [8] Lemma 3.6) If U is Y-definable then PrgM(U) →

Ωω,Ωω + 1 ∈ U .

Proof

Suppose PrgM(U). By Lemma 2.3.26 we get W ∩ Ωω ⊆ U . As Ωω,Ωω + 1 ∈ M,

PrgM(U) yields Ωω,Ωω + 1 ∈ U . 2

Lemma 2.3.27 PrgM(COLL).
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Proof

By induction on Gγ we first show that whenever (i) α ∈ M, (ii) ∀β <M α β ∈ COLL,

(iii) n < ω ∧ Knα < α, and (iv) DS(Q) ∧ Ωn ∈ Q ∧ γ ∈MQ
n ∩ ψnα then γ ∈ Q.

So assume (i)-(iv). If γ < Ωn or γ =nf α1 + . . . + αm or γ =nf ϕα0α1 then this follows

from the induction hypothesis using Theorems 2.3.12 and 2.3.14. Also if γ = Ωn we

have γ ∈ Q. Thus it remains to consider the case when γ =nf ψnη for some η < α.

Since SCn(η) < ψnη < ψnα and the elements of SCn(η) are shorter that γ with respect

to G and belong to MQ
n ∩ ψnα, the induction hypothesis yields SCn(η) ⊆ Q. To show

that η ∈ M we also have to verify that SCk(η) ⊆ W for n < k < ω. To this end we

employ a subsidiary induction on k. The subsidiary induction hypothesis yields that for

all n ≤ k′ < k one has SCk′(η) ⊆ W. Thus SCk(η) ⊆ MP
k for any distinguished set P

with Ωk ∈ P . From Knη < η and Knα < α we can also deduce that Kkη < η, Kkα < α

and SCk(η) < ψkη < ψkα. Therefore we have SCk(η) ⊆ MP
k ∩ ψkα and consequently,

by applying the main induction hypothesis, SCk(η) ∈ P . This completes the subsidiary

induction proof. As a result, SCi(η) ⊆W holds for all i, whence η ∈M so that by means

of (ii) we obtain η ∈ COLL, and hence γ = ψnη ∈ Q.

To verify PrgM(COLL), let α ∈ M and suppose that ∀β <M α β ∈ COLL. Suppose

Knα < α. Pick a distinguished set Q with Ωn ∈ Q. Then, by the first part of the proof,

MQ
n ∩ ψnα ⊆ Q. Since also ψnα ∈ MQ

n we obtain ψnα ∈ Q and hence ψnα ∈ W as

desired. 2

Definition 2.3.28 Let U ⊂ OT(ψ0(EΩω+X
)). We define the Gentzen Jump U j as follows:

U j = {γ|∀δ ∈M[M ∩ δ ⊆ U →M ∩ (δ + ωγ) ⊆ U ]}

Lemma 2.3.29 (Compare [8] Lemma 3.9) Let U be Y-definable. Then

1. γ ∈ U j →M ∩ ωγ ⊆ U .
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2. PrgM(U)→ PrgM(U j).

Proof

(1) follows from the definition, with δ = 0.

To show (2), suppose (a) PrgM(U), (b) γ ∈M ∧M ∩ γ ⊆ U j , and (c) M ∩ δ ⊆M. We

must show that M ∩ (δ + ωγ) ⊆ U . Let η ∈M ∩ (δ + ωγ).

If η < δ, then η ∈ U by (c). If η = δ, then η ∈ U by (a) and (c). If δ < η < ωγ , then we

have η =nf δ + ωγ1 . . .+ ωγn , for some γ > γ1 ≤ . . . ≤ γn. Since η ∈M, it follows that

γi ∈M∩γ. Now use (b) and (c) to obtain M ∩ (δ+ωγ1) ⊆ U . By iterating this process,

it follows that

η = δ + ωγ1 + . . .+ ωγn ∈ U

So M ∩ (δ + ωγ) ⊆ U . It follows that γ ∈ U j , and thus PrgM(U)→ PrgM(U j). 2

Corollary 2.3.30 (Compare [8] Lemma 3.10) Let I(δ) be the statement PrgM(U)→ δ ∈

M∧M∩ δ ⊆ U for all Y-definable sets U . Assume I(δ), and let δ0 = δ and δn+1 = ωδn .

Then I(δn) holds for all n.

Proof

Proceed by induction on n. For n = 0, this is our starting assumption. Now suppose

I(δn) holds. Assume PrgM(U). By the preceding lemma, we obtain PrgM(U j), and

hence δn ∈ U j and M ∩ δn ⊆ U j . Clearly, M ∩ 0 ⊆ U . So M ∩ (0 + ωδn) ⊆ U , i.e.

M ∩ δn+1 ⊆ U . Since PrgM(U j) entails δ ∈M, we also have δn+1 ∈M. Thus, we have

δn+1 ∈M ∧M ∩ δn+1 ⊆ U as desired.

2
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Let ω0(α) := α and ωn+1(α) = ωωn(α).

Lemma 2.3.31 (Compare [8] Lemma 3.11) I(Eu) for all u ∈ X .

Since our background theory assumes that X is contained in an ω-model, and X is well-

ordered, we can use transfinite induction over <X .

We begin by observing that we have I(M ∩ Ωω + 1), by Lemma 2.3.26. Let u0 be the

<X least element of X . We have Eu0 ∈ M, and for all η < Eu0 there exists n such that

η < ωn(Ωω + 1). By the preceding corollary, then, we have PrgM(U)→M ∩ Eu0 ⊆ U,

for all Y-definable sets U .

Now suppose that u ∈ X is not the <X-least element and for all v <X u we have I(Ev).

Since, for every η < Eu there exists v <X u and n < ω such that η < ωn(Ev + 1), the

inductive assumption, together with the preceding corollary yields

PrgM(U)→M ∩ Eu ⊆ U.

Eu ∈M is trivial.

Theorem 2.3.32 (Compare [8] Lemma 3.12) For all α, I(α).

Proof

Proceed by induction on Gα. Obviously, we have I(0) and I(Ωn) for all n < ω. by

Lemma 2.3.26 we also have I(Ωω).

By the preceding lemma, we have I(Eu) for all u ∈ X .

Suppose α =nf ω
α1 + . . . + ωαn . Inductively we have I(αi). Assume PrgM(U). Then

PrgM(U j) by Lemma 2.3.27. Hence αi∩M ⊆ U j . Using the definition of U j repeatedly

we conclude that α ∩M ⊆ U . Moreover, α ∈M since α1, . . . , αn ∈M.
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Suppose α =nf ϕξγ with ξ > 0. Then α < Ωω. Inductively, we have I(ξ) and I(γ),

and thus ξ, γ ∈ W, whence γ ∈ W. Since PrgM(U) → W ∩ Ωω ⊆ U holds, we get

PrgM(U)→ α ∈ U . Hence I(α).

Suppose α =nf ψnη. Inductively we have I(η), especially η ∈ COLL by Lemma 2.3.27.

Thus α ∈W, which entails I(α).

2

Corollary 2.3.33 (Compare [8] Lemma 3.13) OT(ψ0(EΩω+X
)) is a well-ordering.

Proof

By the preceding theorem, the proof is complete. 2
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Chapter 3

Prelude to ω-models: Deduction Chains

and Majorization

3.1 The Deduction Tree DQ

3.1.1 Deduction Chains

We wish to prove that if WOP (ψ0(EΩω+X
)) holds, then X exists in a countable-coded

ω-model of Π1
1CA0 + BI. We will prove this using the method of deduction chains. If

Q ⊆ N, then a deduction chain for Q is a series of sequents, beginning with the empty

sequent. Each step introduces an axiom of Π1
1CA0 + BI, and decomposes one of the

formulae from the preceding step into subformulae. These deduction chains can then be

collected into a deduction tree DQ. If DQ is not well-founded, then it provides us with an

ω-model P of Π1
1CA0 + BI.

In Chapter 4, we shall embed DQ into a sequent calculus and leverage cut elimination to

prove that DQ cannot be well-founded.

Definition 3.1.1 Henceforth, we will use the following conventions:
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1. We enumerate the free set variables of L2 using, U0, U1, U2, . . .. If t is a closed L2

term, then t̄ is the numerical value of t.

2. A sequent is a finite set of L2 sentences.

3. A literal is a an atomic sentence or negated atomic sentence, i.e. having the form

R(t1, t2, . . . , tn) or ¬R(t1, t2, . . . , tn) where R is a predicate, and t1, t2, . . . tn are

closed terms.

4. A sequent ∆⇒ Γis axiomatic, if:

(a) Γ contains a true literal or ∆ contains a false literal.

(b) The formula s ∈ U is in Γ and the fomula t ∈ U is in ∆ for some set variable

U , and closed terms s, t such that s̄ = t̄. We shall also consider sequents

where either {t ∈ U,¬s ∈ U} ⊆ Γ or {t ∈ U,¬s ∈ U} ⊆ ∆ to be axiomatic.

5. A sequent is reducible if it is not axiomatic, and contains a formula which is not a

literal.

Next, we fix a set Q ⊆ N. Ultimately, our deduction chains will provide an ω-model of

Π1
1CA0 + BI containing Q.

Definition 3.1.2

Q̄(n) =

n̄ ∈ U0 if n ∈ Q

n̄ 6∈ U0 otherwise.

Definition 3.1.3 Let A0, A1, A2, . . . enumerate the (universal closures of) all instances of

Π1
1 − CA and BI . Further, let us assume that Ai is an instance of Π1

1 − CA when i is

even, and BI when i is odd.
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Definition 3.1.4 Suppose Q ⊆ N. A Q-deduction chain is a finite string of sequents,

∆0 ⇒ Γ0,∆1 ⇒ Γ1, . . . ,∆k ⇒ Γk

constructed as follows:

1. ∆0 ⇒ Γ0 is the sequent Q̄(0), A0 ⇒

2. If i < k then ∆i ⇒ Γi is not axiomatic.

3. If i < k and ∆i ⇒ Γi is not reducible, then ∆i+1 ⇒ Γi+1 is the sequent ∆i, Q̄(i +

1), Ai+1 ⇒ Γi,

4. If ∆i ⇒ Γi is reducible, and i < k, then at least one of ∆i or Γi contains a formula

E that is not a literal. We call E the redex.

Suppose i < k, ∆i ⇒ Γi is reducible, and Γi = Γ′i, E,Γ
′′
i where Γ′i contains only

literals. We obtain ∆i+1 ⇒ Γi+1 as follows:

(a) If E ≡ ¬E0 then ∆i+1 ⇒ Γi+1 has the form

∆i, E0, Q̄(i+ 1), Ai+1 ⇒ Γ′i,Γ
′′
i .

(b) If E ≡ E0 ∧ E1 then ∆i+1 ⇒ Γi+1 has the form

∆i, Q̄(i+ 1), Ai+1 ⇒ Γ′i, Ej,Γ
′′
i

where j ∈ {1, 2, }.

(c) If E ≡ E0 ∨ E1 then ∆i+1 ⇒ Γi+1 has the form

∆i, Q̄(i+ 1), Ai+1 ⇒ Γ′i, E0, E1,Γ
′′
i .

(d) If E ≡ ∀xE0(x) then ∆i+1 ⇒ Γi+1 has the form

∆i, Q̄(i+ 1), Ai+1 ⇒ Γ′i, E0(t̄),Γ′′i

for an arbitrary t ∈ N.
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(e) If E ≡ ∃xE0(x) then ∆i+1 ⇒ Γi+1 has the form

∆i, Q̄(i+ 1), Ai+1 ⇒ Γ′i, E0(j̄), E,Γ′′i

where j is the least number such that E0(j̄) 6∈ Γ0, . . . ,Γi, and ¬E0(j̄) 6∈

∆0, . . .∆i.

(f) If E ≡ ∀XE0(X) then ∆i+1 ⇒ Γi+1 has the form

∆i, Q̄(i+ 1), Ai+1 ⇒ Γ′i, E0(Uj),Γ
′′
i

for an arbitrary j ∈ N.

(g) If E ≡ ∃XE0(X) then ∆i+1 ⇒ Γi+1 has the form

∆i, Q̄(i+ 1), Ai+1 ⇒ Γ′i, E0(Uj), EΓ′′i

where Uj is the first set variable such that E0(Uj) 6∈ Γ0,Γ1, . . . ,Γi and

¬E0(Uj) 6∈ Θ0,Θ1, . . . ,Θi.

5. Now, suppose i < k, ∆i ⇒ Γi is reducible, and ∆i = ∆′i, E,∆
′′
i where ∆′i contains

only literals. We obtain ∆i+1 ⇒ Γi+1 as follows:

(a) If E ≡ ¬E0 then ∆i+1 ⇒ Γi+1 has the form

∆′i,∆
′′
i , Q̄(i+ 1), Ai+1 ⇒ E0,Γi

(b) If E ≡ E0 ∨ E1 then ∆i+1 ⇒ Γi+1 has the form

∆′i, Ej,∆
′′
i , Q̄(i+ 1), Ai+1 ⇒ Γi

where j ∈ {1, 2, }.

(c) If E ≡ E0 ∧ E1 then ∆i+1 ⇒ Γi+1 has the form

∆′i, E0, E1,∆
′′
i , Q̄(i+ 1), Ai+1 ⇒ Γi
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(d) If E ≡ ∃xE0(x) then ∆i+1 ⇒ Γi+1 has the form

∆′i, E0(t̄),∆′′i , Q̄(i+ 1), Ai+1 ⇒ Γi

for an arbitrary t ∈ N.

(e) If E ≡ ∀xE0(x) then ∆i+1 ⇒ Γi+1 has the form

∆′i, E0(j̄),∆′′i Q̄(i+ 1), Ai+1 ⇒ Γi

where j is the least number such that E0(j̄) 6∈ ∆0, . . . ,∆i and ¬E0(j̄) 6∈

Γ0, . . . ,Γi.

(f) If E ≡ ∃XE0(X) then ∆i+1 ⇒ Γi+1 has the form

∆′i, E0(Uj),∆
′′
i , Q̄(i+ 1), Ai+1 ⇒ Γi

for any j ∈ N.

(g) If E ≡ ∀XE0(X) then ∆i+1 ⇒ Γi+1 has the form

∆i, E0(Uj),∆
′′
i Q̄(i+ 1), Ai+1 ⇒ Γi

where Uj is the first set variable such that E0(Uj) does not appear in

∆0, . . . ,∆i and ¬E0(Uj) does not appear in Γ0, . . . ,Γi.

Definition 3.1.5 Let DQ be the set of all Q-deduction chains. Then we call DQ the

deduction tree for Q.

Claim: If DQ is ill-founded, then there is a countable-coded ω-modelM of Π1
1−CA0 +

BI, such that Q ∈M. This is provable in RCA0.

If DQ is ill-founded, then it has an infinite path P. We define the sets, Mi, as follows:

Mi = {k|(k̄ 6∈ Ui) ∈ P}.
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Here, we use the following shorthand. Let F be a formula, and ∆i ⇒ Γi be a sequent

appearing in P. If F ∈ ∆i, then ¬F ∈ P. If F ∈ Γi then F ∈ P.

We now create the L2 structure M = (N, {Mi|i ∈ N},∈,+, ,̇0, 1, <). Under the

assignment Ui 7→Mi, we have:

If F ∈ P, thenM |= ¬F,

and thus,M is an ω-model of Π1
1CA0 + BI. To see this, consider the following lemma.

Lemma 3.1.6 Let Q be a subset of the naturals, and suppose that the corresponding

deduction tree, DQ, is ill-founded. Then DQ has an infinite path P with the following

properties:

1. All literals E ∈ P are false.

2. P does not contain both s ∈ Ui and t 6∈ Ui, where s and t are constant terms such

that s̄ = t̄.

3. If P contains E0 ∨ E1 then P contains E0 and E1.

4. If P contains E0 ∧ E1 then P contains E0 or E1.

5. If P contains ∃xE(x) then P contains E(n̄) for all n ∈ N.

6. If P contains ∀xE(x) then P contains E(n̄) for some n.

7. If P contains ∃XE(X) then P contains E(Um) for all m ∈ N.

8. If P contains ∀xE(x) then P contains E(Um) for some m.

9. P contains ¬Ai for all i.
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Proof

(1) holds because if P contained a true literal, then it would contain an axiomatic sequent,

and since all deduction chains end at an axiomatic sequent, P would be finite.

Likewise, (2) must also be true in order to prevent the occurrence of an axiomatic sequent.

Note that there is no deduction chain rule which results in the elimination of an atomic

formula. Hence, if ∆k ⇒ Γk is a sequent appearing in P, and (s ∈ Ui) ∈ Γk, then

(s ∈ Ui) ∈ Γk+i for sequents ∆k+i ⇒ Γk+i appearing in P. Thus, suppose (s ∈ Ui) ∈ P

and (t 6∈ Ui) ∈ P with t̄ = s̄. Then there must be some ∆k ⇒ Γk appearing in P such

that (s ∈ Ui) ∈ Γk and either (t 6∈ Ui) ∈ Γk, or (t ∈ Ui) ∈ ∆k, which is an axiomatic

sequent, producing a contradiction as before.

Conditions (3) through (8) are shown via induction on i, where ∆i ⇒ Γi are sequents

appearing in P. Pn shall denote a finite segment of P, containing the sequents ∆0 ⇒

Γ0, . . . ,∆n ⇒ Γn. The base case holds vacuously.

Suppose (E0 ∨ E1) ∈ Pn, but E0 6∈ Pn or E1 6∈ Pn. Then (E0 ∨ E1) appears in

Pn but is never the redex at any point. Hence the last sequent of Pn. must be either

(i)∆n ⇒ Γn, (E0 ∨ E1), or (ii)¬(E0 ∨ E1)∆n ⇒ Γn. Since DQ is the union of all

Q-deduction chains, in the case of (i) there is a deduction chain whose next sequent is

Q̄(n+ 1), An+1∆n ⇒ Γn, E0, E1. Call this new segment Pn+1. Then E0, E1 ∈ Pn+1. The

case of (ii) is similar, but requires an intermediary step to eliminate the ¬ first.

The case of (E0 ∧ E1) follows a very similar process, but we must choose between two

deduction chains - one containing E0, the other containing E1.

If ∀xE(x) ∈ Pn but for all m, E(m̄) 6∈ Pn, then, as before, the final sequent of Pn must

be either (i)∆n ⇒ Γn,∀xE(x), or (ii)¬∀xE(x),∆n ⇒ Γn. Without loss of generality,

we shall assume (i) is the case. Then for each m ∈ N, there is a deduction chain in DQ

such that Q̄(n+1), An+1,∆n ⇒ Γn, E(m̄) is the next sequent in the deduction chain. We
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may pick any of these chains, and call the new segment Pn+1, with E(m̄) ∈ P. The same

processes applies for ∀XE(X).

If ∃xE(x) ∈ Pn but E(m̄) 6∈ Pn for some m. Without loss of generality, assume this

is the least such m. Then the final sequent of Pn is either (i)∆n ⇒ Γn, ∃xE(x), or

(ii)¬∃xE(x),∆n ⇒ Γn, since ∃xE(x) is retained even if it is the redux formula. Again,

without loss of generality we shall assume (i) is the case. Then there is a deduction chain

in DQ such that the next sequent is Q̄(n + 1), An+1,∆n ⇒ Γn, E(m̄), ∃xE(x). We may,

of course, iterate this process to find larger values of m if desired. The case for ∃XE(X)

is identical.

Thus, P =
⋃
n∈N Pn, and satisfies all of conditions (3) through (8).

Finally, we know ¬Ai ∈ P for all i ∈ N, since the axioms are introduced on the left at

every step of the deduction chains.

2

It is, of course, clause (9) that guarantees thatM is an ω-model of Π1
1−CA0 + BI, since

M |= Ai for all i, where Ai are the axioms of Π1
1 − CA0 + BI.

3.2 Majorization and Fundamental Functions

In order to properly carry out the ordinal analysis of Π1
1CA0 + BI, we require a

majorization relation and fundamental functions. These are necessary for the formulation

of the Ωk+1-rules in T ∗Q, which is our sequent calculus analogue. In particular,

majorization and fundamental functions ensure that we can use ψk(α) to indicate proof

heights, while ensuring that α ∈ Ck(α). For more details see section 1.3 of [2].

In what follows, we shall use ωγ as shorthand for ϕ0γ, we shall use ωαn as shorthand for
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ω .
. .
ωα

iterated n times. We shall also let ϕ0γ = γ and ϕn+1γ = ϕ(ϕnγ)1.

3.2.1 Majorization

Definition 3.2.1 1. α Cτ β if α < β and for all δ, k, η we have:

(α ≤ δ ≤ min{β, η}) ∧ (δ, τ ∈ Ck(η)) =⇒ α ∈ Ck(η)

2. α C β (α is majorized by β) if α C0 β

3. α E β if either α C β or α = β

The following basic properties are immediate consequences of the definition.

Lemma 3.2.2 (Basic properties) [See [2], Lemma 4.1]

1. If α C β then α Cτ β.

2. If α < β then α Cα β.

3. If α < β < γ and α Cτ γ then α Cτ β.

4. If α < ϕ10 and α < β, then α C β.

5. If 0 < β < ϕ10 then α C α + β.

6. If α < β < Ω1 then α C β.

7. If α C β then α + 1 E β.

8. If Ωi < Ωj then Ωi C Ωj.

9. If Eu < Ev then Eu C Ev
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10. For all i ≤ ω and all u ∈ X,Ωi C Eu.

Proof

(1) This is trivial.

(2) Obviously, when τ = α we get α ∈ Ck(η)→ α ∈ Ck(η), so if α < β then α Cα β.

(3) Suppose α < γ < β and α Cτ γ. Then, we have for all δ, τ (α ≤ δ ≤ min{γ, η}) ∧

(δ, τ ∈ Ck(η)) =⇒ α ∈ Ck(η). Since γ < β, if we assume that (α ≤ δ ≤ min{β, η}) ∧

(δ ∈ Ck(η)), then this is merely a stronger version of the same condition, and hence

α ∈ Ck(η) as desired.

(4) Note that if α < β < ϕ10, then α and β are constructed solely using 0,+, and ωx. As

all Ck(η) are closed under + and ω, it follows that α ∈ Ck(η) for any η, and thus α C β.

(5) Suppose β < ϕ10. We wish to show that if α ∈ Ck(η) then α + β ∈ Ck(η). But,

as noted in the proof for part (4), since β < ϕ10 it follows that β ∈ Ck(η), and thus by

closure under +, we have α + β ∈ Ck(η).

(6) We prove this by induction on the construction of α. If α = 0, then 0 C β follows from

(4). Otherwise, suppose the statement holds up to α, and that β ∈ Ck(η). If α =nf ω
α0 +

α1 or α =nf ϕα0α1 + α2 then by induction hypothesis we get α0, α1, α2 C β, and hence

α ∈ Ck(η) by closure. Thus, the critical case is when α = ψ0(α0), with α0 ∈ C0(α0).

Note that by Lemma 2.2.4 (5), ψ0(α0) = C0(α0) ∩ Ω1. So either α0 < ψ0(α0) < β (in

which case the argument follows similarly to the previous cases) or Ωk+1 ≤ α for some

k. Thus, let us consider the latter case.

Then β = ψ0(β0) with β0 ∈ C0(β0), and α0 < β0. Hence, if β ∈ Ck(η), then α0 < β0 <

η. Thus ψ0(α0) < ψ0(η). By Lemma 2.2.4 (5), we may restate this as α ∈ (C0(η)∩Ω1) ⊆

Ck(η). Hence α C β.
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(7) Assume α C β. Then, α < β, so either α + 1 = β in which case we are done, or

α + 1 < β. We then observe that if α ∈ Ck(η), then α + 1 ∈ Ck(η) by closure under

addition.

(8) Observe that Ωi ∈ Ck(η) for all k and all η. Hence if Ωi < Ωj then Ωi C Ωj.

(9) & (10) Since Eu ∈ Ck(η) for all u, k, and η, these results follow from a similar

argument to (8).

2

Lemma 3.2.3 (See [2], Lemma 4.2) α Cτ β and β Cτ γ =⇒ α Cτ γ

Proof

Clearly, we have α < γ. Suppose α ≤ δ ≤ min{γ, η}, and δ, τ ∈ Ck(η). If δ ≤ β, then

by α Cτ β we have α ∈ Ck(η). If β < δ, then by β Cτ γ we have β < min{γ, η}, which

means β ∈ Ck(η). By α Cτ β, it again follows that α ∈ Ck(η). Hence, α Cτ γ. 2

Lemma 3.2.4 (See [2], Lemma 4.3) If α Cτ β and β < ωγ+1, then ωγ + α Cτ ω
γ + β.

Proof

By assumption, we have ωγ + α ≤ ωγ + β. Suppose ωγ + α ≤ δ ≤ min{ωγ + β, η} and

δ, τ ∈ Ck(η). By normal form, we know that δ = ωγ + δ0, where α ≤ δ0 ≤ min{β, η}.

By definition of Ck(η), it follows that γ, δ0 ∈ Ck(η), and by α Cτ β we have α ∈ Ck(η).

It thus follows that ωγ + α ∈ Ck(η). 2

Corollary 3.2.5 (See [2] Corollary 4.3) (ωα) · n C (ωα) · (n+ 1)
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This follows easily by induction on n from the previous lemma, with the base case being

0 C ωα, using Lemma 3.2.2, part 4.

Lemma 3.2.6 If α Cτ β then ωα · n Cτ ω
β.

Proof

Clearly, we have ωα · n < ωβ . When n = 0, this follows directly from lemma 3.2.2 (4).

Otherwise, assume ωα · n ≤ δ ≤ min{ωβ, η} with δ, τ ∈ Ck(η). By normal form, we

know δ = ωδ1 + δ2, where α ≤ δ1 ≤ min{β, η}, and δ1 ∈ Ck(η). Hence, by α Cτ β, we

know α ∈ Ck(η), and thus ωα · n ∈ Ck(η)

2

Lemma 3.2.7 Let us fix an ordinal η. Then:

1. if α Cτ β and β < ϕη(γ + 1), then (ϕηγ) + α Cτ (ϕηγ) + β.

2. for all α we have (ϕηα) · n C (ϕηα) · (n+ 1).

3. if α Cτ β then (ϕηα) · n C ϕηβ.

Proof

(1) Suppose α Cτ β and β < ϕη(γ + 1). Since α < β < ϕη(γ + 1), we know that

(ϕηγ) + α and (ϕηγ) + β are in normal form. Now, suppose we have δ, k, ξ such that

(ϕηγ) + α ≤ δ ≤ min{(ϕηγ) + β, ξ} and δ, τ ∈ Ck(ξ). Using normal form, we know

that δ = (ϕηγ) + δ0, with (ϕηγ), δ0 ∈ Ck(ξ) and α ≤ δ0 ≤ min{β, ξ}. Thus, we

may apply α Cτ β to obtain α ∈ Ck(ξ). Combined with (ϕηγ) ∈ Ck(ξ) this gives us

(ϕηγ) + α ∈ Ck(ξ) as desired.
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(2) The base case, where 0 C ϕηα follows from 3.2.2 (2). Otherwise, we know that

(ϕηα) · n < (ϕηα) · n(n + 1). Suppose that we have δ, k, ξ such that (ϕηα) · n ≤ δ ≤

min{(ϕηα) · n(n + 1), ξ}. Then δ =nf ϕηα + δ0 with ϕηα ∈ Ck(ξ). Thus, by closure

under addition, (ϕηα) · n ∈ Ck(ξ).

(3) In the case where n = 0, this follows from 3.2.2 (2). Otherwise, suppose α Cτ β.

Then obviously (ϕηα) · n Cτ ϕηβ. Now assume we have δ, k, ξ such that (ϕηα) · n ≤

δ ≤ min{ϕηβ, ξ}, and δ, τ ∈ Ck(ξ). Then δ = (ϕηδ0) + δ1 with η, δ0, δ1 ∈ Ck(ξ) and

α ≤ δ0 ≤ min{β, ξ}. Using α Cτ we have α ∈ Ck(ξ) and combined with η ∈ Ck(ξ) and

closure under addition we get (ϕηα) ∈ Ck(ξ).

2

Lemma 3.2.8 (See [2] Lemma 4.6) If α Cτ β, with τ ∈ Ck(α) and β ∈ Ck(β) then

α ∈ Ck(α) and ψk(α) Cτ ψk(β).

Proof

First, we shall show that α ∈ Ck(α). By Lemma 2.2.7 we know that for γ = min{ξ|α ≤

ξ ∈ Ck(α)}, we have γ ∈ Ck(γ) = Ck(α). By assumption, we also have τ ∈ Ck(γ).

Since β ∈ Ck(β) we have α ≤ γ = min{β, γ}. Thus, by definition of α Cτ β, we have

α ∈ Ck(γ) = Ck(α).

Since α ∈ Ck(α) and β ∈ Ck(β), with α < β, it follows that ψkα < ψkβ. Now, suppose

ψkα ≤ δ ≤ min{ψkβ, η} and δ, τ ∈ Cm(η). We shall prove ψkα ∈ Cm(η) by induction

on the construction of δ. Since ψkα ≤ δ ≤ ψkβ, we know Ωk ≤ δ < Ωk+1. Thus, we

must consider the following cases:

1. If δ < Ωm then ψkα < Ωm, and thus ψkα ∈ Cm(η).
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2. If Ωm < δ =nf ϕδ0, δ1, then δ0, δ1 ∈ Cm(η). Recall that ψkα = ϕψk(α)0. It

follows, therefore, that either ψkα ≤ δ0 or ψkα < δ1. Either way, owing to the

induction hypothesis, ψkα ∈ Cm(η).

3. If Ωm < δ =nf δ0 + δ1 for δ0, δ1 ∈ Cm(η), then ψkα ≤ δ0, and thus ψkα ∈ Cm(η).

4. If Ωm < δ =nf ψmδ0, then δ0 ∈ Cm(η) and δ0 < η. Now, if k < m then ψkα < Ωm

and thus ψkα ∈ Cm(η). Otherwise, k = m. Then α < δ0 < η. Furthermore, since

ψkδ0 < ψkβ, we have δ0 < β. Since α Cτ β we have α ∈ Cm(η), and since α < η

we have ψkα ∈ Cm(η).

2

Corollary 3.2.9 (See [2] Corollary 4.6) α = α0 + 1 ∈ Ck(α) implies α0 ∈ Ck(α) and

ψk(α0) C ψk(α).

Proof

The proof follows immediately from the preceding lemma with τ = 0. We need only note

that α0 C α, via Lemma 3.2.2 (5), since 1 < ϕ10.

2

3.2.2 Fundamental Functions

Definition 3.2.10 A function f : dom(f)→ OT (ψ0(EΩω+X
)) with the domain dom(f) ⊆

OT (ψ0(EΩω+X
)) is a fundamental function if the following hold:
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1. If β ∈ dom(f) and α < β, then α ∈ dom(f) and f(α) Cα f(β).

2. If β ∈ dom(f) and f(0) ≤ δ < f(β) then there is an α ∈ dom(f) such that

f(α) ≤ δ < f(α + 1) and f(α) C f(α + 1).

3. If α ∈ dom(f) and f(α) ∈ Ck(η) then α ∈ Ck(η).

Lemma 3.2.11 (See [2] Lemma 5.1) If f is a fundamental function and α ∈ dom(f),

then α ≤ f(α).

Proof

Suppose for a contradiction that α is the least ordinal in dom(f) such that f(α) < α. Then,

by property (1) of fundamental functions, f(α) ∈ dom(f) and f(f(α)) Cf(α) f(α). So in

particular, f(f(α)) < f(α), but this contradicts our initial assumption. Thus, α ≤ f(α)

for all α ∈ dom(f).

2

Definition 3.2.12 Let Idβ be the identity function with dom(Idβ) = {α ∈

OT (ψ0(EΩω+X
))|α ≤ β} and Idβ(α) = α for all α ∈ dom(Idβ).

Lemma 3.2.13 (See [2] Lemma 5.2) Idβ is a fundamental function.

Proof

This is obvious from the definition of a fundamental function. 2

Definition 3.2.14 Let f be a fundamental function.
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1. ωγ + f is the function with dom(ωγ + f) = {α ∈ dom(f)|f(α) < ωγ+1} and

(ωγ + f)(α) = ωγ + f(α) for all α ∈ dom(ωγ + f).

2. ωf is the function with dom(ωf ) = dom(f) and (ωf )(α) = ωf(α) for all α ∈

dom(ωf ).

3. ϕγf is the function with dom(ϕγf) = dom(f), where (ϕγf)(α) = ϕγ(fα).

4. Let ψkf be the function with dom(ψkf) = {α ∈ dom(f)|α < Ωk+1, f(α) ∈

Ck(f(α))} and (ψkf)(α) = ψk(f(α)) for all α ∈ dom(ψkf).

Lemma 3.2.15 (See [2] Lemma 5.3) If f is a fundamental function, then so are

1. ωγ + f

2. ωf

3. ϕγf

4. ψkf

Proof

We shall briefly sketch the proofs for the first three functions. The proof for ψk is

considerably more involved, and will be handled in full.

1. Property (1) follows by virtue of Lemma 3.2.4. For property (2), we observe that

if ωγ + f(0) ≤ δ < ωγ + f(β), then δ = ωγ + δ0, with f(0) ≤ δ < f(β), and

hence α can be found such that f(α) ≤ δ0 < f(α + 1). To show ωγ + f(α) C

ωγ + f(α + 1), note that if δ ∈ Ck(η), then ωγ, δ0 ∈ Ck(η) by closure, and from

f(α) C f(α + 1), combined with f(α) ≤ δ0 < f(α + 1), we get f(α) ∈ Ck(η).
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Hence, by closure, ωγ + f(α) ∈ Ck(η), as needed. Property (3) is shown by first

noting that if ωγ + f(α) ∈ Ck(η) then f(α) ∈ Ck(η). α ∈ Ck(η) then follows

because f is fundamental.

2. Property (1) holds due to Lemma 3.2.6, where n = 1. For property (2), we note

that if ωf(0) ≤ δ < ωf(β) then δ = ωδ0 + δ1, with f(0) ≤ δ0 < f(β). Since f is

fundamental, we can find α such that f(α) ≤ δ0 < f(α + 1), and thus ωf(α) ≤

δ < ωf(α+1). Supposing δ ∈ Ck(η), we find that δ0 ∈ Ck(η) by closure. Since

f(α) C f(α + 1), this gives us f(α) ∈ Ck(η) and, by closure, ωf(α) ∈ Ck(η).

Hence, ωf(α) C ωf(α+1). Property (3) is proven by noting that if ωf(α) ∈ Ck(η)

then f(α) ∈ Ck(η). α ∈ Ck(η) then follows because f is fundamental.

3. Property (1) holds due to Lemma 3.2.7, where n = 1. For property (2), we note

that if ϕγf(0) ≤ δ < ϕγf(β) then δ = (ϕγδ0) + δ1, with f(0) ≤ δ0 < f(β).

Since f is fundamental, we can find α such that f(α) ≤ δ0 < f(α + 1), and

thus(ϕγf(α)) ≤ δ0 < (ϕγf(α + 1)). If δ0 ∈ Ck(η), then since f(α) C f(α + 1),

we get f(α) ∈ Ck(η), and hence, by closure, ϕγf(α) ∈ Ck(η). Thus ϕγf(α) C

ϕγf(α + 1). Property (3) follows immediately via the closure of Cn(η), where

ϕγf(α) ∈ Cn(η), since f is fundamental.

4. We now consider the ψk function.

(a) Suppose β ∈ dom(ψkf) and α < β. We must show α ∈ dom(ψkf) and

ψkf(α) Cα ψkf(β).

Since f is a fundamental function and α < β we have α ∈ dom(f) and

f(α) Cα f(β). We also have f(β) ∈ Ck(f(β)) and β < Ωk+1 by the

definition of dom(ψkf).

By Lemma 2.2.7 there is γ = min{ξ|f(α) ≤ ξ ∈ Ck(f(α))} such that

Ck(γ) = Ck(f(α)). Since f(β) ∈ Ck(f(β)), it follows that f(α) ≤ γ ≤

f(β).
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If γ = f(β), then f(β) ∈ Ck(f(β)) = Ck(f(α)). By property (3) of

fundamental functions, this implies β ∈ Ck(f(α)). Since α < β < Ωk+1,

and β ∈ Ck(f(α)) it follows that α ∈ Ck(f(α)).

If γ < f(β), then there exists τ < β such that f(τ) ≤ γ < f(τ + 1), α ≤ τ

and f(τ) C f(τ + 1). Since γ ∈ Ck(γ), it follows that f(τ) ∈ Ck(γ). By

property (3) of fundamental functions this means τ ∈ Ck(γ) and since α ≤ τ

we get α ∈ Ck(τ) = Ck(f(α)).

Thus, we have α ∈ Ck(f(α)). Combining this with the fact that f(α) Cα

f(β), it follows that f(α) ∈ Ck(f(α)). Hence α ∈ dom(ψkf) and ψkf(α) C

ψkf(β) by Lemma (3.2.8).

(b) Suppose β ∈ dom(ψkf) and ψkf(0) ≤ δ < ψkf(β). We shall prove there

exists α < β such that f(α) ≤ δ < f(α + 1), using induction on the

construction of δ.

For the base case, if δ = 0,Ωm, or Eu then δ cannot be between ψkf(0) and

ψkf(β), so the statement holds vacuously.

If δ =nf δ0 + δ1, then by induction hypothesis, there is α such that ψkf(α) ≤

δ0 < ψkf(α + 1), and thus ψkf(α) ≤ δ0 + δ1 < ψkf(α + 1).

If δ =nf ϕδ0δ1. Choose the greater of δ0, δ1. We shall assume δ0 > δ1 in

this case, though the opposite argument proceeds much the same way. By our

induction hypothesis, we find ψkf(α) ≤ δ0 < ψk(α + 1). Then by Lemma

2.1.4 we see that ψkf(α) ≤ ϕδ0δ1 ≤ ϕδ0δ0 < ψk(α + 1), as required.

(c) Suppose β ∈ dom(ψkf). If k < m then obviously β ∈ Cm(η) since β <

Ωk+1. If k = m and ψkf(β) ∈ Cm(f(η)) then f(β) ∈ Cm(η) by definition,

and since f is fundamental, it follows that β ∈ Cm(η).

2
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The following Lemma is central to the proof of the collapsing theorem in Chapter 4, which

sets an upper bound on the height of proofs.

Lemma 3.2.16 (See [2] Lemma 5.4) If f is a fundamental function with α,Ωk+1 ∈

dom(f), α < β = ψk(f(α)), and f(α) C f(Ωk+1), then f(β) C f(Ωk+1).

Proof

Since β = ψkf(α) < Ωk+1, by property (3) of fundamental functions we obtain f(β) Cβ

f(Ωk+1). Now suppose that f(β) ≤ δ ≤ min{Ωk+1, η} and δ ∈ Ct(η), for some t. We

will prove that β ∈ Ct(η).

Since α < β, we get f(α) < f(β) < η. Moreover, f(α) ≤ δ ≤ min{f(Ωk+1), η}, so by

f(α) C f(Ωk+1), we have f(α) ∈ Ct(η).

Since f(α) ∈ Ct(η) and f(α) < η, it follows that β = ψkf(α) ∈ Ct(η), as desired.

Applying f(β) Cβ f(Ωk+1), we get f(β) ∈ Ct(η). Thus f(β) C f(Ωk+1).

2

Readers may note that the above proof is somewhat simpler than that presented in [2].

This is because we are using only a fragment of the full ordinal representation system

presented in that book. In the full system, there is a function Ωx : τ 7→ Ωτ , where τ is

itself an ordinal term. When dealing with larger τ, one has to be careful, and ensure that

τ ∈ Ct(η) before applying the corresponding ψτ function.

Corollary 3.2.17 (See [2] Corollary 5.4) If f is a fundmental function with Ωk+1 ∈

dom(f) then f(ψkf(0)) C f(Ωk+1).

Proof

This is a direct application of the preceding lemma, with α = 0, observing that
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f(0) C f(Ωk+1). 2

Lemma 3.2.18 (See [2] Lemma 5.5) Let f be a fundamental function, where Ωk+1 ∈

dom(f), j ≤ k, f(Ωk+1) ∈ Cj(f(Ωk+1)), and let (βn) be the sequence where β0 = 0

and βn+1 = ψj(f(βn)). Let g be the function with dom(g) = {α|α ≤ ω}, where g(n) =

ψj(f(βn)), and g(ω) = ψj(f(Ωk+1)). Then g is a fundamental function.

Proof

To prove the first property of fundamental functions, we begin by noting that if γ ∈

dom(g) = {α|α ≤ ω}, then for all α < γ, α ∈ dom(g).

Next, we shall prove

(1) βn < βn+1 and f(βn) C f(Ωk+1)

using induction on n.

When n = 0 we have 0 < ψk(f(0)) and by part 4 of Lemma 3.2.2 0 C f(Ωk+1).

For the induction step, assume βn < βn+1 and f(βn) C f(Ωk+1). Note that f(Ωk+1) ∈

Cj(f(Ωk+1)) ⊆ Ck(f(Ωk+1)). Combining this with f(βn) C f(Ωk+1), we apply Lemma

3.2.8 to obtain f(βn) ∈ Ck(f(βn)). Since f is fundamental, and βn < βn+1 we get

f(βn) < f(βn+1). Hence ψj(f(βn)) = βn+1 ∈ Cj(f(βn+1)), and thus

βn+1 = ψj(f(βn)) < ψj(f(βn+1)) = βn+2.

Since βn < βn+1 and f(βn) C f(Ωk+1), then by Lemma 3.2.16 we get f(ψk(f(βn))) =

f(βn+1) C f(Ωk+2), which completes the inductive proof of (1).

Next, using f(βn) C f(Ωk+1) and f(Ωk+1) ∈ Cj(f(Ωk+1)) we apply Lemma 3.2.8 to get

f(βn) ∈ Cj(f(βn)). Combined with f(βn) < f(βn+1), this yields

(2) g(n) = ψj(f(βn)) < ψj(f(βn+1)) = g(n+ 1).
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Applying 3.2.8 once more yields

(3) g(n) = ψj(f(βn)) C ψj(f(Ωk+1)) = g(ω).

Hence, if γ ∈ dom(g) and α < γ, then g(α) C ψj(f(Ωk+1)). By part 3 of Lemma

3.2.2, g(α) C g(γ), and thus g(α) Cα g(γ). Thus, we have proven the first property of

fundamental functions for g.

For the second property, we begin by proving

(4) if γ < ψk(f(Ωk+1)),. then there is n such that βn ≤ γ < βn+1.

using induction on the construction of γ.

For the base case, if γ < β then β0 = 0 ≤ γ < β1.

Otherwise, assume β1 = ψk(f(0)) ≤ γ < ψk(f(Ωk+1)). If γ =nf ωγ0 < γ1, then

the assertion follows immediately from the induction hypothesis. If γ =nf ϕγ0γ1 then

γ0, γ1 < ϕγ0γ1. We take the greater of γ0 and γ1. We shall assume γ0 in this case, but the

proof is similar for γ1. Then by induction hypothesis, we can find βn ≤ γ0 < βn+1. Using

lemma 2.1.4, we have βn ≤ ϕγ0γ1 < ϕγ0γ0 < βn+1.

This leaves the case where γ = ψk(γ0), with γ0 ∈ Ck(γ0), with f(0) ≤ γ0 < f(Ωk+1).

Since f is fundamental, we may find α < Ωk+1 such that f(α) ≤ γ0 < f(α + 1) and

f(α) C f(α + 1). Applying part 3 of Lemma 3.2.2 yields f(α) C γ0 < and since

γ0 ∈ Ck(γ0), we may apply Lemma 3.2.8 to get f(α) ∈ Ck(f(α)) ⊆ Ck(γ0). Since f

is fundamental, α ∈ Ck(γ0) and since α < Ωk+1 we know α < ψk(γ0). Applying our

induction hypothesis, we get βn ≤ α < α + 1 < βn+1. Hence

f(βn) ≤ f(α) ≤ γ0 < f(α + 1) < f(βn+1)

and thus βn+1 = ψk(f(βn)) ≤ ψk(γ0) = γ < ψk(f(βn+1)) = βn+1. This completes the

proof of (4).
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Next, by induction on the construction of δ we shall prove

(5) if g(0) ≤ δ < g(ω), then there is n such that g(n) ≤ δ < g(n+ 1).

If δ =nf ω
δ0 + δ1 or δ =nf ϕδ0δ1, then this follows from the induction hypothesis, much

like in the proof of (4).

Otherwise, δ = ψj(δ) with δ0 ∈ Cj(δ0) and f(0) ≤ δ0 < f(Ωk+1). Since f

is fundamental, we may find α < Ωk+1 such that f(α) ≤ δ0 < f(α + 1), with

f(α) C f(α + 1). Much like the proof of (4), this yields, f(α) ∈ Cj(δ0) and hence

α ∈ Cj(δ0) ⊆ Cj(f(Ωk+1)). This, in turn, gives us α < ψk(f(Ωk+1)) so we may apply

(4), to find βn ≤ α < α + 1 < βn+1. Thus,

f(βn) ≤ f(α) ≤ δ0 < f(α + 1) < f(βn+1)

which leads to

g(n) = ψj(f(βn)) ≤ ψj(δ0) < ψj(f(βn+1)) = g(n+ 1).

And since g(n) C g(n + 1) follows from (3) by use of part 3 of Lemma 3.2.2, this

completes the proof of property 2.

For the third property of fundamental functions note that if γ ≤ ω, then γ ∈ Ch(η) for all

h and all η. 2
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Chapter 4

Existence of ω-models for Π1
1−CA0 + BI

4.1 The Infinitary Calculus T ∗Q

The calculus T ∗ appears in [9], and was subsequently adapted in [8] to prove a well-

ordering principle result for ACA0+ Bar Induction. By extending the Ω-rule, we can

adapt this system for the ordinal analysis of Π1
1−CA0 +BI. We shall also fix a setQ ⊆ N.

Hence, for every set Q (and thus for every deduction chain DQ) there is a corresponding

calculus T ∗Q. The languageLQ2 is the usual language of second-order arithmetic augmented

by the unary predicateQ.We shall use x′ to denote the successor of x. As usual, numerical

variables shall be denoted via lowercase letters x, y, z, etc. Likewise, set variables shall

be denoted via capital letters, U, V,W, etc.

In the first section, we shall prove some basic properties of T ∗Q, ultimately showing that the

axioms of Π1
1−CA0 + BI are provable in T ∗Q. The next section proves the cut elimination

and collapsing theorems for T ∗Q. The last section embeds DQ into T ∗Q, and then leverages

cut elimination to show that DQ cannot be well-founded (and hence there is an ω-model

of Π1
1 − CA0 + BI containing Q.).

Definition 4.1.1 Let A,B be formulas in LQ2 . Then
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1. SV (A) is the set of all free set variables that appear within the scope of a set

quantifier. For example, if A is the formula x ∈ U ∧ ∀V (y ∈ V ∧ y ∈ W ), then

SV (A) = {W}.

2. the length l(A) is defined as follows:

(a) If A is atomic then l(A) = 0.

(b) l(A ∗B) = max{l(A), l(B)}+ 1 where ∗ ∈ {∧,∨,→}

(c) l(∀XA(X)) = l(∃XA(X)) = l(A(U0)) + 1.

(d) l(∀xA(x)) = l(∃xA(x)) = l(A(0)) + 1.

Definition 4.1.2 Let Σ,Γ be sets of LQ2 formulas. Then we call Σ⇒ Γ a sequent.

Definition 4.1.3 (Weak Formulas) The set of weak formulas is inductively defined as

follows:

1. All atomic formulas are weak.

2. If A and B are weak formulas, then A∧B,A∨B,A→ B,¬A, ∀xA, and ∃xA are

weak formulas.

3. ∀XA(X) and ∃XA(X) are weak formulas if A(U) is a weak formula and U 6∈

SV (A(U)).

It should be noted that the set of Π1
1-formulas is a subset of the weak formulas. We

shall shall prove that comprehension over weak formulae is in fact equivalent to Π1
1

comprehension. To do so, we require some further definitions.

Definition 4.1.4 (Weak and Strong set quantifiers) We define weak and strong set

quantifiers inductively as follows:
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1. Atomic formulas contain no set quantifiers.

2. A set quantifier in (A ∧ B), (A ∨ B), (A → B), or ¬A is a weak quantifier if the

corresponding quantifier in A or B is weak. Likewise, the quantifier is strong if the

corresponding quantifier in A or B is strong.

3. A set quantifier in ∀xA(x) or ∃xA(x) is weak if the corresponding quantifier in

A(0) is weak. Likewise, the quantifier is strong if the corresponding quantifier in

A(0) is strong. Note that A(0) is merely canonical reference point. The precise

term substituted for x does not affect whether a given set quantifier is strong or

weak.

4. The set quantifier ∀X in ∀XA(X) is a weak quantifier if ∀XA(X) is a weak

formula. Otherwise, it is a strong quantifier. Other set quantifiers appearing in

∀XA(X) are weak if the corresponding quantifier in A(U) is weak, and strong if

the corresponding quantifier in A(U) is strong.

Any formula containing a strong quantifier is a strong formula.

Definition 4.1.5 (Formulas in T ∗Q) The formulas of the system T ∗Q are generated fromLQ2
formulas through the following procedure:

1. Every free number variable is replaced by a closed term.

2. Every free set variable U is replaced by Un where n ∈ N.

3. Every strong predicate quantifier ∀X and ∃X is replaced by ∀ωX and ∃ωX

respectively.

The formula obtained by eliminating the superscripts n and ω shall be called the

corresponding formula in LQ2 .

Definition 4.1.6 The grade gr(A) of a T ∗Q formula A is defined inductively as follows:
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1. gr(A) = 0 ifA is an atomic formula, or has the form ∀XF (X) or ∃XF (X), where

F is a weak formula.

2. gr(¬A) = gr(∀xA) = (∃xA) = gr(A) + 1.

3. gr(A ∗B) = max{gr(A), gr(B)}+ 1 where ∗ ∈ {∧,∨,→}

4. gr(∀ωXA(X)) = gr(∃ωXA(X)) = gr(A(U0)) + 1.

In order to stratify weak formulas, we shall also define the notion of stage. Since we shall

be using a two-sided sequent calculus in T ∗Q, we require dual notions of stage.

Definition 4.1.7 The stage right, stR(A), of a formula A is defined inductively as

follows:

1. stR(A) = stR(¬A) = 0 if A is a atomic formula with no set variables.

2. stR(t ∈ Un) = stR(¬t ∈ Un) = n.

3. stR(A ∗B) = max{stR(A), stR(B)}, if ∗ ∈ {∧,∨}.

4. stR(¬(A ∗B)) = stR(¬A ∗ ¬B) if ∗ ∈ {∧,∨}.

5. stR(A→ B) = max{stR(¬A), stR(B)}.

6. stR(¬(A→ B)) = stR(A ∧ ¬B).

7. stR(∀xA(x)) = stR(∃xA(x)) = stR(A(0)).

8. stR(¬∀xA(x)) = stR(¬∃xA(x)) = stR(¬A(0)).

9. stR(∃XA(X)) = stR(¬∀XA(X)) = stR(A(U0)) + 1.

10. stR(∀XA(X)) = stR(¬∃XA(X)) = stR(A(U0)).
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11. stR(∀ωXA(X)) = stR(¬∀ωXA(X)) = stR(∃ωXA(X)) = stR(¬∃ωXA(X)) =

ω.

12. stR(¬¬A) = stR(A).

The stage left, stL(A), of a formula A is defined in the same way, except for

(8)stL(∀XA(X)) = stL(¬∃XA(X)) = stL(A(U0)) + 1.

and

(9)stL(∃XA(X)) = stL(¬∀XA(X)) = stR(A(U0))

Thus, all weak formulas have finite stages, and all strong formulas have stage ω.

We may occasionally say stL(Γ) ≤ n or stR(Γ) ≤ m, where Γ is a set of formulas.

In such a case, we mean that for every formula A ∈ Γ we have stL(A) ≤ n or

stR(A) ≤ m.

This dual notion of stage is necessary, since A appearing in the antecedent of a sequent

is equivalent to ¬A appearing in the succedent and vice versa. These notions of stage

track the alternations of quantifiers as we ascend the arithmetical heirarchy, with stR(A)

tracking Σ1
n-formulas, and stL(A) tracking Π1

n-formulas. From time to time, we may also

use notations such as stL(Σ) ≤ n, where Σ is a set of formulas, to denote that for every

formula A ∈ Σ, stL(A) ≤ n. The same notations hold for stR(A).

In what follows, we shall use ∗1 to designate a placeholder for an arbitrary term.

As we shall see, comprehension over weak formulas is equivalent to Π1
1-comprehension.

To show this, we first require the following lemma:

Lemma 4.1.8 Let F (a) be a weak formula. Then there exists a formula

G(a, U0, . . . Uk) ∈ Π1
1 ∪ Σ1

1 containing at most one second-order quantifier, such that

F (a) ≡ G(a,A0(a, ∗1), . . . Ak(a, ∗1)) where Ai(a, b) are weak formulas of length less
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than F (a), and G(a,A0(a, ∗1), . . . , Ak(a, ∗1)) is obtained by replacing every expression

b ∈ U0 with the formula A0(a, b), then replacing every instance of b ∈ U1 with A0(a, b),

etc., and SV (G(a,A0(a, ∗1), . . . Ak(a, ∗1))) = SV (F (a)).

Proof

Proceed by induction on the length (not the grade) of F (a).

1. If F (a) is a atomic formula, then F (a) is Π1
1 by definition, and hence F (a) = G(a).

2. If F (a) has the form ∀XF0(a,X) then by induction hypothesis, we have

F0(a, V ) ≡ G0(a,A1(a, ∗1) . . . , Ak(a, ∗1), U) where G0(a, U1, . . . Uk, U) ∈

Π1
1 ∪ Σ1

1 with at most one set quantifier, and SV (G(a,A0(a, ∗1), . . . Ak(a, ∗1))) =

SV (F (a, V )). If G0(a, U1, . . . Uk, U) does not contain a set quantifier,

then this is trivial. Otherwise, suppose QY B0(a, b, U1, . . . Uk) is the

largest subformula of G0(a, U1, . . . Uk, U) bounded by the quantifier

QY. Then QY B0(a, b, U1, . . . Uk) is a weak formula. Moreover,

QY B0(a, b, A1(a, ∗1), . . . Ak(a, ∗1)) is weak, since A1, . . . Ak are weak. Thus,

we define Ak+1(a, b) := QY B0(a, b, A1(a, ∗1), . . . Ak(a, ∗1)), and replace

all inbstances of QY B0(a, b, U1, . . . Uk) with the formula b ∈ Uk to obtain

G′0(a, U1, . . . , Uk, Uk+1, V ). We may iterate this process, replacing the next-largest

subformula at each step, until no second-order quantifiers remain, with each

subformula QY Bi being substituted with a formula Ak+i for all i ≤ m, where m is

the number of iterations needed to remove all second-order quantifiers. Then

∀XF0(a,X) ≡ ∀XG′0(a,A1(a, ∗1), . . . , Ak+1(a, ∗1), . . . , Ak+m(a, ∗1), X),

where

∀XG′0(a,A1(a, ∗1), . . . , Ak+1(a, ∗1), . . . , Ak+m(a, ∗1), X) ∈ Π1
1 ∪ Σ1

1
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with only a single set quantifier, and

SV (F (a)) = SV (∀XG′0(a,A1(a, ∗1), . . . , Ak+1(a, ∗1), . . . , Ak+m(a, ∗1), X)).

3. If F (a) ≡ ∃XF0(X, a) is proven similarly to the universal case.

4. If F (a) ≡ ¬F0(a), then by induction hypothesis we have F0(a) ≡

G(a,A1(a, ∗1) . . . Ak(a, ∗1)) and hence F (a) ≡ ¬G(a,A1(a, ∗1) . . . Ak(a, ∗1)).

5. If F (a) ≡ F0(a) ∨ F1(a) then let A0(a, ∗1) = F0(a) and A1(a, ∗1) = F1(a).

G(a, U1, U2) = a ∈ U1 ∨ a ∈ U2. Likewise, if F (a) ≡ A1(a) ∧ A2(a) then

G(a, U1, U2) = a ∈ U1 ∧ a ∈ U2, and A0(a, ∗1) = F0(a) and A1(a, ∗1) = F1(a).

6. If F (a) ≡ F0(a) → F1(a) then A0(a, ∗1) = F0(a) and A1(a, ∗1) = F1(a).

G(a, U1, U2) = (¬a ∈ U1) ∨ a ∈ U2.

7. If F (a) ≡ ∀xF0(a, x). Then let G(a, U1) = ∀zz ∈ U1 and F0(a, ∗1) = A1(a, ∗1).

8. If F (a) ≡ ∃xF0(a, x). Then let G(a, U1) = ∃z, z ∈ U1 and F0(a, ∗1) = A1(a, ∗1).

2

Definition 4.1.9 (Axioms of T ∗Q) Let Σ,Γ be sets of T ∗Q formulas. The following are

axioms of T ∗Q.

1. If A is a true atomic formula, then Σ⇒ Γ, A is an axiom.

2. If A is a false atomic formula, then A,Σ⇒ Γ is an axiom.

3. If n ∈ Q and t is a closed term with value n, then Σ⇒ Γ, Q(t) is an axiom.

4. If n 6∈ Q and t is a closed term with value n, then Q(t),Σ⇒ Γ is an axiom.
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5. If A(s1, . . . , sn) is a weak formula of grade 0 and si and ti are equivalent terms for

1 ≤ i ≤ n, then A(s1, . . . , sn),Σ⇒ Γ, A(t1, . . . , tn)

Lemma 4.1.10 Comprehension over weak formulas is equivalent to comprehension over

Π1
1 formulas over RCA0

Proof

Again, let F (a) be a weak formula and proceed by induction on the length of the formula.

We shall show that {z|F (z)} is a set.

If F (a) is atomic, then it is arithmetic, and hence {z|F (z)} is a set by Π1
1 comprehension.

Otherwise, by the preceding lemma we know that there is a formula G(a, U1, . . . , Uk) ∈

Π1
1 ∪ Σ1

1 and weak formulas Ai(a, ∗1) of length less than F (a) such that F (a) ≡

G(a,A1(a, ∗1), . . . , Ak(a, ∗1)). Inductively, we have the sets Vi = {z|Ai(z, ∗1)}.

Then

{z|F (z)} ≡ {z|G(z, 〈z, ∗1〉 ∈ V1, . . . , 〈z, ∗1〉 ∈ Vk)},

where < a, ∗1 > is a coding of the pair (a, ∗1). And since G ∈ Π1
1 ∪ Σ1

1, we find that

{z|G(z, 〈z, ∗1〉 ∈ V1, . . . , 〈z, ∗1〉 ∈ Vk)} is a set, and thus {z|F (z)} is a set.

2

4.1.1 Inference Rules of T ∗Q

Let Γ,Θ,Σ,Ξ be sets of T ∗Q formulas, and let t be a closed term.The sequent calculus T ∗Q

has the following first-order rules of inference:
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• Γ⇒Θ, A
¬L ¬AΓ⇒Θ

• A,Γ⇒Θ
∧L

A ∧B,Γ⇒Θ
, B,Γ⇒Θ
A ∧B,Γ⇒Θ

• A,Γ⇒ Θ B,Σ⇒ Ξ
∨L

A ∨B,Γ,Σ⇒ Θ,Ξ

• Γ⇒ Θ, A B,Σ⇒ Ξ
→L

A→ B,Γ,Σ⇒ Θ,Ξ

• A(t),Γ⇒Θ
∀1L ∀xA(x),Γ⇒Θ

• A,Γ⇒Θ
¬R

Γ⇒Θ,¬A

• Γ⇒ Θ, A Σ⇒ Ξ, B
∧R

Γ,Σ⇒ Θ,ΞA ∧B

• Γ⇒Θ, A
∨R

Γ⇒Θ, A ∨B
, Γ⇒Θ, B

Γ⇒Θ, A ∨B

• Γ, A⇒B,Θ
→R

Γ⇒Θ, A→ B

• Γ⇒Θ, A(t)
∃1R

Γ⇒Θ,∃xA(x)

A(0),Γ⇒ Θ A(1),Γ⇒ Θ . . .
ω1L ∃xA(x),Γ⇒ Θ

Γ⇒ Θ, A(0) Γ⇒ Θ, A(1) . . .
ω1R

Γ⇒ Θ,∀xA(x)

Additionally, there are the following second-order rules of inference.

Suppose stR(∀XA(X)) = stL(∃XA(X)) = n < ω, and U i does not occur in the

conclusion of the inference for any i < ω. Then:

• Γ⇒Θ, A(Un)
∀2Rn

Γ⇒Θ,∀XA(X)

• A(Un),Γ⇒Θ
∃2Ln ∃XA(x),Γ⇒Θ

Now, suppose U does not occur in the conclusion of the inference. Then:

• A(U0),Γ⇒ Θ A(U1),Γ⇒ Θ . . .
ω2L ∃ωXA(X),Γ⇒ Θ

• A(Un),Γ⇒Θ
∀2L ∀ωXA(X),Γ⇒Θ

for any n < ω.
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• Γ⇒ Θ, A(U0) Γ⇒ Θ, A(U1) . . .
ω2R

Γ⇒ Θ,∀ωXA(X)

• Γ⇒Θ, A(Un)
∃2R

Γ⇒Θ,∃ωXA(X)
for any n < ω.

Collectively, we call these first- and second-order rules the principal inferences of T ∗Q.

We also have the cut rule

Γ⇒ Θ, A A,Σ⇒ Ξ
Cut

Γ,Σ⇒ Θ,Ξ

We say that l(A) is the grade of the cut.

Definition 4.1.11 Let Σ ⇒ Γ be a sequent, γ ∈ OT(EΩω+X
)and ρ < ω. We define the

relation T ∗Q ρ
γ

Σ⇒ Γ inductively as follows:

1. If Σ⇒ Γ is an axiom of T ∗Q then T ∗Q ρ
γ

Σ⇒ Γ for all γ, ρ.

2. If T ∗Q ρ
β

Σi ⇒ Γi with β / γ for every premise of a principal inference, or a cut

of grade ρ0 < ρ, then T ∗Q ρ
γ

Σi ⇒ Γi holds for the conclusion Σ ⇒ Γ of that

inference.

3. (Ωn+1R-rule) Let f be a fundamental function with Ωn+1 ∈ dom(f). T ∗Q ρ
γ

Σ⇒ Γ

holds if the following are satisfied:

(a) f(Ωn+1) E γ

(b) T ∗Q ρ

f(0)
Σ⇒ Γ, ∀XF (X), where stR(∀XF (X)) ≤ n.

(c) T ∗Q 0
α

Ξ ⇒ Θ,∀XF (X), implies T ∗Q ρ

f(α)
Ξ,Σ ⇒ Θ,Γ for every α < Ωn+1

and every set of weak formulas Ξ,Θ where stR(Ξ) + 1, stR(Θ) ≤ n.

4. (Ωn+1L-rule) Let f be a fundamental function with Ωn+1 ∈ dom(f). T ∗Q ρ
γ

Σ⇒ Γ

holds if the following are satisfied:
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(a) f(Ωn+1) E γ

(b) T ∗Q ρ

f(0)
∃XF (X),Σ⇒ Γ, where stL(∃XF (X)) ≤ n.

(c) T ∗Q 0
α ∃XF (X),Ξ ⇒ Θ, implies T ∗Q ρ

f(α)
Ξ,Σ ⇒ Θ,Γ for every α < Ωn+1

and every set of weak formulas Ξ,Θ where stL(Ξ), stL(Θ) + 1 ≤ n.

We call γ the height, and ρ the cut rank of the proof.

It should be noted that T ∗Q 0

α
Ξ ⇒ Θ,∀XF (X) and T ∗Q 0

α ∃XF (X),Ξ ⇒ Θ occur

negatively in part (c) of the Ωn+1R- and Ωn+1L-rules respectively. If an Ωk+1-rule with

n ≤ k was required to derive the this negative occurrence, this would undermine the

inductive definition of derivability in T ∗Q.However, since we know α < Ωn+1 and Ωn+1 ≤

f(Ωn+1) E γ, we know that any application of an Ωk-rule must have k ≤ n. Thus,

derivability has an iterative inductive definition. The primary induction occurs over γ,

and defines the basic derivability predicate, while a secondary induction on k defines

derivability with the use of Ωn+1 rules with n < k.

We should also note the stage restrictions on the Ω + n+ 1 rules. Since the Ωn+1R-

rules have an active formula of the form ∀XF (X) we must track the usage of universal

quantifiers, hence we use stR. We require stR(Ξ) + 1 ≤ n since a formula A on the

left side of a sequent can be moved to the right side via a ¬R inference, and stR(¬A) =

stR(A) + 1. The dual case naturally holds for the Ωn+1L-rules.

Lemma 4.1.12 (Weakening And Inversion) [See [8] Lemma 5.14]

1. Weakening: If T ∗Q δ

α
Γ ⇒ Σ and Γ ⊆ ∆,Σ ⊆ Θ, with α E β and δ ≤ ρ then

T ∗Q ρ
β

∆⇒ Θ.

2. If T ∗Q ρ
α

Γ⇒ Σ, A ∧B then T ∗Q ρ
α

Γ⇒ Σ, A and T ∗Q ρ
α

Γ⇒ Σ, B.

3. If T ∗Q ρ
α
A ∨B,Γ⇒ Σ then T ∗Q ρ

α
A,Γ⇒ Σ and T ∗Q ρ

α
B,Γ⇒ Σ.
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4. If T ∗Q ρ
α

Γ⇒ Σ, A ∨B then T ∗Q ρ
α

Γ⇒ Σ, A,B.

5. If T ∗Q ρ
α
A ∧B,Γ⇒ Σ then T ∗Q ρ

α
A,B,Γ⇒ Σ.

6. If T ∗Q ρ
α
A→ B,Γ⇒ Σ then T ∗Q ρ

α
B,Γ⇒ Σ and T ∗Q ρ

α
Γ⇒ A,Σ

7. If T ∗Q ρ
α

Γ⇒ Σ, A→ B then T ∗Q ρ
α

Γ, A⇒ Σ, B

8. If s and t are terms and s = t and T ∗Q ρ
α

Γ ⇒ Σ, F (s) then T ∗Q ρ
α

Γ ⇒ Σ, F (t).

Likewise, if T ∗Q ρ
α
F (s),Γ⇒ Σ then T ∗Q ρ

α
F (t),Γ⇒ Σ.

9. If T ∗Q ρ
α

Γ⇒ Σ,∀xF (x) then T ∗Q ρ
α

Γ⇒ Σ, F (s) for all terms s.

10. If T ∗Q ρ
α ∃xF (x),Γ⇒ Σ then T ∗Q ρ

α
F (s),Γ⇒ Σ for all terms s.

11. If T ∗Q ρ
α

Γ⇒ Σ,∀ωXF (X) then T ∗Q ρ
α

Γ⇒ Σ, F (Un) for all n.

12. If T ∗Q ρ
α ∃ωXF (X),Γ⇒ Σ then T ∗Q ρ

α
F (Un),Γ⇒ Σ for all n.

Proof

(1) is the standard weakening principle, and proceeds via induction on α. When α = 0,

Γ ⇒ Σ is an axiom and the proof is trivial. Otherwise, suppose T ∗Q δ

α
Γ ⇒ Σ and

Γ ⊆ ∆,Σ ⊆ Θ, with α E β and δ ≤ ρ. If the last inference was any non-Ωk+1 rule, then

we have T ∗Q δ

α0
Γi ⇒ Σi, where α0 C α, and {Γi ⇒ Σi}i<ω are the premises of the

inference. Applying the induction hypothesis yields

T ∗Q ρ
α

∆,Γi ⇒ Θ,Σi,

since α0 C α, and reapplying the inference gives

T ∗Q ρ
β

∆⇒ Σi.

Otherwise, if the last inference was an Ωk+1 rule, there is a fundamental function f such

that f(Ωn+1) E α. We note that Ωn+1 ≤ f(Ωn+1) ≤ β, so by Lemma 3.2.2 (3), we
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have f(Ωn+1) E β. Hence, we may apply our induction hypothesis to the premises of the

inference, then reapply the Ωn+1-rule to get

T ∗Q ρ
β

∆⇒ Σi.

The rest are standard inversion principles used throughout proof theory, also proved by

induction on the length of the formula. 2

Lemma 4.1.13 (See [8] Lemma 5.15) T ∗Q 0
2·α

Γ, A(s1, . . . , sn) ⇒ Σ, A(t1, . . . , tn)

when gr(A(s1, . . . , sn)) E α and si = ti for all i ≤ n.

Proof

We prove this by induction. Note that when gr(A(s1, . . . , sn)) = 0 the sequent in question

is an axiom. From there, we observe that in each induction step we require the application

of a left-side rule and a right-side rule, which adds 2 to the height of the proof as needed.

Since the grade is always finite, Lemma 3.2.2 (4) guarantees that gr(A(s1, . . . , sn)) E α.

2

Lemma 4.1.14 (See [8] Lemma 5.16) 1. T ∗Q 0

2m+1
0 ∈ Un,∀x(x ∈ Un → x′ ∈

Un)⇒ m ∈ Un for all m,n ∈ N.

2. T ∗Q 0

ω+4 ∀X[(0 ∈ X ∧ ∀x(x ∈ X → x′ ∈ X))→ ∀x(x ∈ X)].

Proof
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(1) Proceed by induction on m. We have T ∗Q 0

1
0 ∈ Un,∀x(x ∈ Un → x′ ∈ Un) ⇒ 0 ∈

Un as an axiom.

Now, suppose we have T ∗Q 0

2m+1
0 ∈ Un, ∀x(x ∈ Un → x′ ∈ Un)⇒ m ∈ Un. Then we

have:

0 ∈ Un,∀x(x ∈ Un → x′ ∈ Un)⇒ m ∈ Un m+ 1 ∈ Un ⇒ m+ 1 ∈ Un

→L
0 ∈ Un,∀x(x ∈ Un → x′ ∈ Un), (m ∈ Un → m+ 1 ∈ Un)⇒m+ 1 ∈ Un

∀1L
0 ∈ Un,∀x(x ∈ Un → x′ ∈ Un)⇒m+ 1 ∈ Un

The two inferences get us a height of 2m+ 3 as desired.

(2) By the previous result, using the ωR-rule we get

T ∗Q 0

ω
0 ∈ Un,∀x(x ∈ Un → x′ ∈ Un)⇒ ∀x(x ∈ Un).

Two applications of ∧R yield

T ∗Q 0

ω+2
(0 ∈ Un ∧ ∀x(x ∈ Un → x′ ∈ Un))⇒ ∀x(x ∈ Un).

Using→R we get

T ∗Q 0

ω+3⇒ (0 ∈ Un ∧ ∀x(x ∈ Un → x′ ∈ Un))→ ∀x(x ∈ Un).

Finally, since our formula is arithmetic, we may use ∀2R to obtain

T ∗Q 0

ω+4⇒ (∀X[0 ∈ X ∧ ∀x(x ∈ X → x′ ∈ X))→ ∀x(x ∈ X)].

2

Definition 4.1.15 Let F (Un) andA(a) be formulas such that no variable bound inF (Un)

occurs bound in A(a). Then F (A) is the formula obtained by replacing every instance of

t ∈ Un with A(t). By ensuring F and A do not share bound variables, the result is, in

fact, a well-formed formula.
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Lemma 4.1.16 (See [8] Lemma 5.18) Suppose α C Ωn+1 and let

Γ(U0) = {G1(U0), . . . , GmΓ
(U0)}

and

∆(U0) = {F1(U0), . . . , Fm∆
(U0)}

be finite sets of weak formulas such that stL(Gi(U
0)) ≤ n for i ≤ mΓ and stR(Fi(U

0)) ≤

n for i ≤ m∆. For an arbitrary formula A(a),

if T ∗Q 0
α

Γ(U0)⇒ ∆(U0) then T ∗Q 0

Ωn+1+α
Γ(A)⇒ ∆(A).

Proof

Note that Ωn+1 ∈ Cj(η) for all j and all η. Hence if α C Ωn+1 then α ∈ Cj(η). Hence

α C Ωn+1 + α. This satisfies our conditions for the proof height.

We proceed by induction on α. If α = 0 then Γ(U0) ⇒ ∆(U0) is an axiom. Then

either U0 occurs only in side-formulas, in which case ∆(A) ⇒ Γ(A) is still an axiom,

or t ∈ U0, s ∈ U0 are the active formulas of the axiom. In this case by Lemma 4.1.13

we know T ∗Q 0

ω+ω
Γ(A) ⇒ ∆(A). Hence we may simply assign the proof a height of

Ωn+1 + α, with Lemma 3.2.2 (4) ensuring that α E Ωn+1 + α.

If T ∗Q 0

α
Γ(U0) ⇒ ∆(U0) is the result of an inference, then most of the cases follow

by induction hypothesis. Since the proof is cut free, the final inference cannot be a cut.

Furthermore, since Γ(U0),∆(U0) are weak formulas whose respective stages are less than

n+ 1 the final inference cannot be an ω2-rule, or an Ωh+1-rule where n+ 1 ≤ h.

The one remaining case is when the inference is an Ωh+1-rule where h ≤ n. We shall use

Ωh+1R, though the proof is essentially the same for the left-handed rule as well.

By assumption, we have a fundamental function f such that f(Ωh+1) E α, and we know

that

T ∗Q 0

f(0)
Γ(U0)⇒ ∆(U0),∀XH(X) for stR(∀XH(X)) ≤ h
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and

T ∗Q 0

β
Σ⇒ Θ,∀XH(X) implies T ∗Q 0

f(β)
Σ,Γ(U0)⇒ Θ,∆(U0) where stL(Σ), stR(Θ) ≤ h.

Using the induction hypothesis we find:

(1)T ∗Q 0

Ωn+1+f(0)
Γ(A)⇒ ∆(A),∀XH(X) for stR(∀XH(X)) ≤ h

and

(2)T ∗Q 0

β
Σ⇒ Θ, ∀XH(X) implies T ∗Q 0

Ωn+1+f(β)
Σ,Γ(A)⇒ Θ,∆(A)

where stL(Σ), stR(Θ) ≤ h.

Observe that Ωn+1+f is fundamental with dom(Ωn+1+f) = {β|β ∈ dom(f)∧α < Ωh}.

Moreover, Ωn+1 + f(Ωh) E Ωn+1 + α. This allows us to conclude

T ∗Q 0

Ωn+1+α
Γ(A)⇒ ∆(A)

via the Ωn+1R-rule as desired.

2

Lemma 4.1.17 (See [8] Lemma 5.19) Suppose we have

stR(∆) + 1, stR(Γ) ≤ stR(∀XF (X)) = n,

and let α < Ωn+1.

If T ∗Q 0
α

Γ⇒ ∆,∀XF (X) then T ∗Q 0
α

Γ⇒ ∆, F (Un).

Likewise, suppose stL(Γ) + 1, stL(∆) ≤ stL(∃XF (X)) = n.

If T ∗Q 0
α ∃XF (X),Γ⇒ ∆ then T ∗Q 0

α
F (Un),Γ⇒ ∆.
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Proof

We shall only concern ourself with the ∀XF (X) case. The case for ∃XF (X) proceeds

in much the same fashion. We proceed by induction on α, observing that if α = 0 then

Γ⇒ ∆,∀XF (X) is an axiom, where ∀XF (X) occurs as a side formula (since we require

stR(∆) < stR(∀XF (X))) and hence ∀XF (X) 6∈ ∆. Thus, we may replace ∀XF (X)

with F (Un) without any difficulty.

Now, assume that T ∗Q 0

α
Γ ⇒ ∆,∀XF (X) follows via an inference rule. If the last

inference was a ∀2Rn-rule, then the proof is trivial. We also observe that the proof is cut

free, and since α < Ωn+1, no use of Ωn+1-rules may occur. If the final inference is an Ωk+1

rule for k < n then crucially n < stR(∀XF (X)), so ∀XF (X) cannot be the primary

formula of the inference, where the removal of a universal quantifier might invalidate the

inference. In all other cases, the proof follows immediately from the induction hypothesis.

2

The following result and its corollaries establish the pivotal role of the Ωn+1-rules in T ∗Q.

Lemma 4.1.18 (See [8] Lemma 5.20) (1) T ∗Q 0

(Ωn+1·2)
F (A)⇒ ∃XF (X) for ∃XF (X)

a weak formula with stR(∃XF (X)) = n and A(a) an arbitrary formula.

(2) T ∗Q 0

(Ωn+1·2)
∀XF (X)⇒ F (A) for ∀XF (X) a weak formula with stL(∃XF (X)) =

n and A(a) an arbitrary formula.

Proof

By Lemma 3.2.15 (1), f(α) = Ωn+1 + α is a fundamental function (noting that ωΩ
n+1 =

Ωn+1.)

Then T ∗Q 0

f(0)
F (A),∃XF (X)⇒ ∃XF (X) by Lemma 4.1.13.
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Suppose β < Ωn+1 and Σ,Θ are sets of weak formulas, such that stR(Σ) + 1, stR(Θ) ≤

n. If

T ∗Q 0

β
∃XF (X),Σ⇒ Θ

then by Lemmas 4.1.16 and 4.1.17 we obtain

T ∗Q 0

f(β)
F (A),Σ⇒ Θ

and by Lemma 4.1.12

T ∗Q 0

f(β)
F (A),Σ⇒ Θ,∃XF (X).

Thus, by the Ωn+1L-rule, we obtain:

T ∗Q 0

(Ωn+1·2)
F (A)⇒ ∃XF (X).

The case for (2) follows a similar argument using the Ωn+1R-rule.

2

Corollary 4.1.19 (Provability of Weak Comprehension) [See [8] Lemma 5.21]

T ∗Q gr(B(0))+3

(Ωn+1·2)+1
∅ ⇒ ∃X∀y(y ∈ X ↔ B(y)) for all weak formulas B(a) such that

st(B(a)) ≤ n.

Proof

By the previous lemma we obtain

(∗)T ∗Q 0

(Ωn+1·2)
∀y(B(y)↔ B(y))⇒ ∃X∀y(y ∈ X ↔ B(y)).

By lemma 4.1.13 we get B(t) ⇒ B(t) for all terms t. From this we may derive ⇒

∀y(B(y)↔ B(y)) in a cut free proof of finite height.

(Note: B(t) ⇒ B(t) ≡ ∀y((B(y) → B(y)) ∧ (B(y) → B(y))), and therefore has

gr(B(0)) + 3.)
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Cutting this sequent with (∗) yields

T ∗Q gr(B(0)+3)

(Ωn+1·2)+1
∅ ⇒ ∃X∀y(y ∈ X ↔ B(y))

as needed. 2

Corollary 4.1.20 (See [8] Lemma 5.22) For all relations≺ definable via weak formulas

(allowing parameters), and for an arbitrary formula A(a) we have

T ∗Q 0

Ωω+ω ∅ ⇒ ∀
−→
X∀−→x (WF (≺)→ TI(≺, A(a))),

where ∀
−→
X∀−→x bind the free variables of (WF (≺)→ TI(≺, A(a))).

Proof

By lemma 4.1.18 we have T ∗Q 0

Ωω
(WF (≺))′ ⇒ (TI(≺, A))′ where ′ denotes any

assignment of variables to closed terms. We may then apply →R followed by ω1R and

∀2R sufficiently many times to close off any free variables, giving us

T ∗Q 0

Ωω+ω ∅ ⇒ ∀
−→
X∀−→x (WF (≺)→ TI(≺, A(a))),

as desired. 2

4.1.2 The Reduction Procedure for T ∗Q

Lemma 4.1.21 If C is a true literal and T ∗0 ρ
δ

Γ0, C ⇒ Γ1, then T ∗0 ρ
δ

Γ0 ⇒ Γ1.

Likewise, if C is a false literal and T ∗0 ρ
δ

Γ0 ⇒ Γ1, C, then T ∗0 ρ
δ

Γ0 ⇒ Γ1.

Proof
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The is proved inductively on δ. In the base case, it is obvious Γ0 ⇒ Γ1 must be an axiom.

The inductive step follows immediately from the induction hypothesis, since no inference

rule can introduce a literal to the proof.

2

Lemma 4.1.22 (See [8] Lemma 5.23) Suppose gr(C) = ρ and δ E α = ωα0 + . . . ωαn

with ωα0 ≥ . . . ≥ ωαn ≥ δ.

1. If C is atomic, or has the form ∃xF (x),∃XF (X),∃ωF (X), A ∨B, where

T ∗Q ρ
α

∆0, C ⇒ ∆1 and T ∗Q ρ
δ

Γ0 ⇒ Γ1, C, then T ∗Q ρ
α+δ

∆0,Γ0 ⇒ ∆1,Γ1.

2. If C has the form ∀xF (x), ∀XF (X),∀ωF (X), A ∧ B, where T ∗Q ρ
α

Γ0 ⇒ Γ1, C

and T ∗Q ρ
δ

∆0, C ⇒ ∆1 then T ∗Q ρ
α+δ

∆0,Γ0 ⇒ ∆1,Γ1.

Proof

We shall prove (1) here. The proof for (2) is the dual case of (1). We proceed by induction

on δ.

1. Suppose δ = 0. Then Γ0 ⇒ Γ1, C is an axiom. Then we have three subcases.

(a) Γ0 ⇒ Γ1 is an axiom. Then by Lemma 4.1.12 T ∗Q ρ
α+δ

∆0,Γ0 ⇒ ∆1,Γ1.

(b) C is a true literal. Then by Lemma 4.1.21 we have T ∗Q ρ
α

∆0 ⇒ ∆1 and by

weakening, T ∗Q ρ
α+δ

∆0,Γ0 ⇒ ∆1,Γ1.

(c) C has the form A(s1, . . . , sm) and A(t1, . . . , tm) ∈ Γ0 where si and ti are

equivalents terms. Then from T ∗Q ρ
α

∆0, A(s1, . . . , sm)⇒ ∆1 we get

T ∗Q ρ
α

∆0, A(t1, . . . , tm)⇒ ∆1
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by Lemma 4.1.12. And since A(t1, . . . , tm) ∈ Γ0, by Lemma 4.1.13 we have

T ∗Q ρ
α

∆0,Γ0 ⇒ ∆1,Γ1.

(d) C = ∃XF (X) with C ∈ Γ0. Then by weakening, T ∗Q ρ
α

∆0,Γ0 ⇒ ∆1,Γ1,

with ∃XF (X) being absorbed into Γ0.

In what follows, we shall assume that in the proof of T ∗Q ρ
δ

Γ0 ⇒ Γ1, C the final

inference is one where C is the principle formula or where an Ωk+1 rule was used.

Otherwise, the proof follows from applying the induction hypothesis to the premises

of the inference, and then carrying out the inference once again.

2. If C = A ∨ B was obtained by a ∨R-rule, then we have (i)T ∗Q ρ
δ0

Γ0 ⇒ Γ1, A,B

for some δ0 C δ, and gr(A), gr(B) < ρ. By inversion we have (ii)T ∗Q ρ
α

∆0, A⇒

∆1 and (iii)T ∗Q ρ
α

∆0, B ⇒ ∆1. Applying our induction hypothesis to (i) and

(ii) gives T ∗Q ρ
α+δ0

Γ0,∆0 ⇒ Γ1,∆1, B, and a applying a cut with (iii) gives

T ∗Q ρ
α+δ0+1

Γ0,∆0 ⇒ Γ1,∆1, with α+ δ0 + 1 E α+ δ. A weakening concludes the

proof of this case.

3. If C = ∃xF (x) was obtained by a ∃1R-rule then T ∗Q ρ
δ0

Γ0 ⇒ Γ1, F (t) for some

t ∈ N and by inversion T ∗Q ρ
α

∆0, F (s)⇒ ∆1 for all s ∈ N. Taking the case where

t = s, we may apply our induction hypothesis to get T ∗Q ρ
α+δ0

Γ0,∆0 ⇒ Γ1,∆1.

4. If C = ∃XF (X), then C cannot be the principle formula of an inference.

5. If C = ∃ωXF (X) was obtained via a ∃2R-rule, then T ∗Q ρ
δ0

Γ0 ⇒ Γ1, F (Un) for

all n ∈ N and by inversion T ∗Q ρ
α

∆0, F (Um) ⇒ ∆1 for some m ∈ N. Taking the

case where n = m, we may apply our induction hypothesis to get

T ∗Q ρ
α+δ0

Γ0,∆0 ⇒ Γ1,∆1.

6. If T ∗Q ρ
δ0

Γ0 ⇒ Γ1, C is obtained by a Ωk+1R inference then we have a fundamental

function f such that
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(a) f(Ωk+1) E δ

(b) T ∗Q ρ

f(0)
Γ0 ⇒ Γ1, C, ∀XF (X), with stR(∀XF (X)) ≤ n.

(c) T ∗Q 0

β
Ξ ⇒ Θ,∀XF (X) implies T ∗Q 0

f(β)
Ξ,Γ0 ⇒ Θ,Γ1, where stR(Ξ) +

1, stR(Θ) ≤ n, and β < Ωk+1.

Applying the induction hypothesis to (b) and (c) yields:

(b*) T ∗Q ρ

α+f(0)
Γ0,∆0 ⇒ Γ1,∆1,∀XF (X)

and

T ∗Q 0

α+f(β)
Ξ,Γ0,∆0 ⇒ Θ,Γ1,∆1.

Since f(Ωk+1) E δ E α + δ, we have f(Ωk+1) E α + δ, and α + f is

a fundamental function. Hence. we may apply Ωk+1R once again to find

T ∗Q ρ
α+δ

Γ0,∆0 ⇒ Γ1,∆1.

7. If T ∗Q ρ
δ0

Γ0 ⇒ Γ1, C is obtained by a Ωk+1L inference, then the proof is similar to

the Ωk+1R case.

2

Lemma 4.1.23 (Cut Elimination) [See [8] Lemma 5.24]

If T ∗Q ρ+1
α

Γ0 ⇒ Γ1, then T ∗Q ρ
ωα

Γ0 ⇒ Γ1.

Proof

Proceed by induction on α. We need only deal with the critical case, where the final

inference of the proof is a cut of grade ρ.
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Thus, suppose we have T ∗Q ρ+1

α0
Γ0 ⇒ Γ1, C and T ∗Q ρ+1

α0
C,Γ0 ⇒ Γ1, where α0 / α

gr(C) = ρ. By our induction hypothesis, we get T ∗Q ρ
ωα0

Γ0 ⇒ Γ1, C and T ∗Q ρ
ωα0

C,Γ0 ⇒ Γ1.

If C has the form ∃xF (x),∃XF (X), ∃ωXF (X), a ∨ b then we apply Lemma 4.1.22 (1),

and we are finished. Likewise, if C has the form ∀xF (x), ∀XF (X),∀ωXF (X), a ∧ b

then we apply Lemma 4.1.22 (2). Since α0 C α, we may apply weakening to get T ∗Q ρ
ωα

Γ0 ⇒ Γ1.

If C has the form A → B, then we may apply inversion to T ∗Q ρ
ωα0

Γ0 ⇒ Γ1, C which

gives us

(i) T ∗Q ρ
ωα0

Γ0, A⇒ Γ1, B.

Applying inversion to T ∗Q ρ
ωα0

A→ B,Γ0 ⇒ Γ1 gives us

(ii) T ∗Q ρ
ωα0

Γ0 ⇒ Γ1, A and (iii) T ∗Q ρ
ωα0

Γ0, B ⇒ Γ1.

We may then apply the cut rule to (i) and (ii), followed by a cut with (iii) to get,

T ∗Q ρ
ωα0+2

Γ0, A⇒ Γ1. Weakening one again gives us the desired result.

IfC has the form ¬A then we apply inversion to both derivations, followed by a cut, much

like in the previous case.

2

Theorem 4.1.24 (Collapsing Theorem) [See [8] Lemma 5.25]

Suppose Γ0,Γ1 are sets of weak formulas, such that stL(Γ0), stR(Γ1) ≤ n, and let α ∈

Cn(α). Then:

If T ∗Q 0
α

Γ0 ⇒ Γ1 then T ∗Q 0

ψnα
Γ0 ⇒ Γ1.

Proof



Chapter 4. Existence of ω-models for Π1
1 − CA0 + BI 88

We proceed by induction on α. The base case is trivial.

For the induction step, assume the proposition holds up to α. If If T ∗Q 0

α
Γ0 ⇒ Γ1 is

derived by any inference other than an Ωk+1 rule, then we have some α0 C α such that

If T ∗Q 0

α0
Γi0 ⇒ Γi1, where Γi0 ⇒ Γi1 is the ith premise of the inference. By Corollary

3.2.8 we find α0 ∈ Cn(α0) and ψn(α0) C ψn(α). Hence, by weakening, we are finished.

We shall prove the cases for the Ωk+1R-rules, but the left-sided cases proceed similarly.

If T ∗Q 0

α
Γ0 ⇒ Γ1 is the result of an Ωk+1R inference, and k < n. Then we have

a fundamental function f such that f(Ωk+1) E α. Moreover ψn(f) is a fundamental

function with Ωk+1 ∈ dom(f), and f(Ωk+1) E ψnf(Ωk+1). Thus, we may apply Ωk+1R

to get If T ∗Q 0

ψnf(Ωk+1)
Γ0 ⇒ Γ1.

Since f(Ωk+1) E α, and α ∈ Cn(α), we have ψn(f(Ωk+1)) E ψn(α) and once again, by

weakening, we are finished.

Finally, suppose If T ∗Q 0

α
Γ0 ⇒ Γ1 is the result of an Ωk+1R inference, and n ≤ k.

Then we have f(Ωk+1) E α, and

(1) T ∗Q 0

f(0)
Γ0 ⇒ Γ1, ∀XF (X).

and

(2) T ∗Q 0

β
Ξ⇒ Θ,∀XF (X) implies T ∗Q 0

f(β)
Ξ,Γ0 ⇒ Θ,Γ1,

for all β < Ωk+1 and all sets of weak formulas Ξ,Θ such that stR(Ξ) + 1, stR(Θ) ≤ n.

Applying out induction hypothesis to (1),we get T ∗Q 0

ψn(f(0))
Γ0 ⇒ Γ1,∀XF (X).Hence,

by (2), taking Ξ = Γ0 and Θ = Γ1 we obtain

T ∗Q 0

f(ψn(f(0)))
Γ0 ⇒ Γ1,

with Corollary 3.2.17 proving that f(ψn(f(0))) C f(Ωk+1) E α.We apply our induction

hypothesis one more time, to get

T ∗Q 0

ψn(f(ψn(f(0))))
Γ0 ⇒ Γ1,
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and since f(ψn(f(0))) C α, we have ψn(f(ψn(f(0)))) C ψn(α). 2

4.1.3 Embedding DQ into T ∗Q

In this section, we shall show that if DQ is a well-founded tree, then we may embed it

into T ∗Q, and thereby obtain a proof of the empty sequent. We may then leverage cut

elimination and the collapsing theorem in order to show that such a proof is impossible,

and therefore DQ is not well founded, thereby proving our central result. Suppose that X

is the Kleene-Brouwer ordering of DQ. We shall use DQ
τ

Γ0 ⇒ Γ1 to denote that the

sequent Γ0 ⇒ Γ1 is attached to the node τ. Also, recall that in enumerating the axioms of

Π1
1 − CA0 + BI we specified that Ai is always an instance of Π1

1 − CA0 when i is even,

and an instance of Bar Induction when odd.

Recall that ωnα as shorthand to indicate ω .
. .
ωα

, iterated n times.

Definition 4.1.25 A T ∗Q formula F ∗ is said to be an interpretation of a LQ2 -formula F , if

F ∗ is the result of replacing every free set variable U in F with Um for some m < ω and

every strong predicate quantifier ∀X with ∀ωX. If Γ is a set of formulas, we shall then

Γ∗ := {F ∗|F ∈ Γ} for some interpretation ∗.

Theorem 4.1.26 (See [8] Lemma 5.26) DQ
τ

∆⇒ Γ implies ∃k < ω, T ∗Q 0

Eτ+k
∆∗ ⇒

Γ∗.

Proof

We proceed by induction on τ, i.e. the Kleene-Brouwer ordering on DQ. Recall that by

Lemma 3.2.2 (9), that Eu C Ev for all u < v.

If τ is an end node, then ∆⇒ Γ is axiomatic, and therefore ∆∗ ⇒ Γ∗ is axiomatic. Hence

T ∗Q 0

Eτ+k
∆∗ ⇒ Γ∗ follows by Lemma 4.1.12.
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Now suppose τ is not an end node.

If τ is not reducible, then there is a node τ0 immediately above τ such that DQ
τ0

Ai, Q̄(i)∆⇒ Γ. Applying our induction hypothesis, we have

T ∗Q 0

Eτ0+k0

A∗i , Q̄(i)∗∆∗ ⇒ Γ∗.

We also have T ∗Q 0

0
Q̄(i) and, using Corollary 4.1.19 (for even i) and Corollary 4.1.20

(for odd i) we have T ∗Q 0

Ωω+ω
Ai. Since Ωω + ω / Eτ0 + k0, by applying two cuts, we

obtain

T ∗Q n

Eτ0+k0+2
∆∗ ⇒ Γ∗,

with n 6= 0 and by applying cut elimination we find T ∗Q 0

ωn(Eτ0+k0+2)
∆∗ ⇒ Γ∗. Recall

that ωn(α) is shorthand for ω .
. .
ωα

. Since ωn(Eτ0 + k0 + 2) /Eτ , we may apply weakening

to obtain T ∗Q 0

Eτ+k
∆∗ ⇒ Γ∗ as desired.

Now, suppose that ∆ ⇒ Γ is reducible, and of the form ∆ ⇒ Γ′, E,Γ′′ where E is the

redex, and Γ′i contains only literals. Any case where E ∈ ∆ has a dual case in Γ that

proceeds by a similar process.

Suppose E has the form ∀xF (x). Then for each m there is a node τm immediately above

τ such that:

DQ
τm

Ai, Q̄(i),∆⇒ Γ′, F (m),Γ′′.

Applying our induction hypothesis yields:

T ∗Q 0

Eτm+km
Ai, Q̄(i),∆∗ ⇒ Γ′∗, F (m),Γ′′∗.

As above, we cut Q̄(i) and A(i), yielding

T ∗Q n

Eτm+km+2
∆∗ ⇒ Γ′∗, F (m),Γ′′∗

and Cut Elimination yields

T ∗Q 0

ωn(Eτm+km+2)
∆∗ ⇒ Γ′∗, F (m),Γ′′∗.
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and thus

T ∗Q 0

Eτ
∆∗ ⇒ Γ′∗, F (m),Γ′′∗.

Finally, we apply ω1R to obtain

T ∗Q 0

Eτ
∆∗ ⇒ Γ′∗,∀xF (x),Γ′′∗

as desired.

The case for ∃xF (x) ∈ ∆ proceeds by much the same procedure, and indeed the cases

involving the remaining first-order quantifiers and logical connectives in general resemble

finitary versions of the above case. The critical cases revolve around the secondary

quantifiers.

If E has the form ∀XF (X), then we know that there is τ0 immediately above τ with

DQ
τ0
Ai, Q̄(i),∆ ⇒ Γ′, F (U),Γ′′. Applying our induction hypothesis, and making the

usual cuts we get:

T ∗Q 0

Eτ0+k+2
∆∗ ⇒ Γ′∗, F ∗(Um),Γ′′∗,

for every interpretation ∗ and hence for every n ≤ ω. If ∀XF (X) is weak, then take

n = stR(∀XF (X)) and apply ∀2Rm, to get

T ∗Q n

Eτ0+k+3
∆∗ ⇒ Γ′∗,∀XF ∗(X),Γ′′∗.

Otherwise, apply the ω2R-rule to get

T ∗Q n

Eτ0+k+3
∆∗ ⇒ Γ′∗,∀ωXF ∗(X),Γ′′∗.

We may then apply Cut Elmination and Lemma 4.1.12 as usual to get the appropriate cut

rank and proof height. The case for ∃XF (X) ∈ ∆ proceeds similarly.

Finally, if E has the form ∃XF (X), then we have τ0 above τ such that DQ
τ0

∆ ⇒

Γ′,∃XF (X),Γ′′. Applying the induction hypothesis and requisite cuts, we get:

T ∗Q n

Eτ0+k+2
∆∗ ⇒ Γ′∗, F ∗(Um),Γ′′∗.
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If ∃X was a strong quantifier, then we apply ∃2R, followed by cut elimination to get

T ∗Q 0

ωn(Eτ0+k+3)
∆∗ ⇒ Γ′∗, ∃ωXF ∗(X),Γ′′∗.

Otherwise, invoking Lemma 4.1.18 we obtain T ∗Q 0

Ωn+1·2
F (Um) ⇒ ∃XF ∗(X).

Applying a cut yields

T ∗Q n

Eτ0+k+4
∆∗ ⇒ Γ′∗,∃XF ∗(X),Γ′′∗.

We then apply cut elimination as usual, and then raise the ordinal using Lemma 4.1.12 to

complete the proof. This case is analogous to when ∀XF (X) ∈ ∆.

2

Corollary 4.1.27 (See [8] Lemma 5.27) If DQ is well-founded, then T ∗Q 0

ψ0(ωn(Eτ0+k))

∅ ⇒ ∅ for some n, k < ω, and τ0 the root node of DQ.

Proof

By the preceding lemma, we have

T ∗Q 0

Eτ0+k
Q̄(0), A0 ⇒ ∅.

Using Lemma 4.1.19 We also have

T ∗Q 0

Ωk+1 ∅ ⇒ A0.

and T ∗Q 0

0 ∅ ⇒ Q̄(0) is axiomatic. Applying two cuts yields

T ∗Q n

Eτ0+k
∅ ⇒ ∅.

We then invoke Cut Elimination and the Collapsing Theorem to get

T ∗Q 0

ψ0(ωnEτ0+k)
∅ ⇒ ∅.

2
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Theorem 4.1.28 (See [8] Lemma 5.28) DQ is not well-founded.

Proof

If DQ were well-founded then we would have T ∗Q 0

ψ0(ωn(Eτ0+k))
∅ ⇒ ∅ for some

n, k < ω, and τ0 the root node of DQ by the preceding lemma. However, if we carry out

an induction on α ≤ Ωω we can see that if T ∗Q 0

α
∆⇒ Γ then either Γ 6= ∅ or ∆ 6= ∅ and

hence there can be no proof of the empty sequent. 2

It remains only to show that this proof can be carried out in the base theoryRCA0 +

WOP(ψ0(EΩω+X
)), which we shall abbreviate as S in the following argument. Note that

through Theorem 1.1.1 that we may bootstrap up to ACA0 in S. Of particular concern is

the notion of derivability in T ∗Q, since it appears to be defined through an iterated inductive

definition, introducing new Ωk-rules at each step. This is not available in our base theory,

S. However, we will show that derivability can in fact be proven using a fixed-point

argument, which is permissible in ACA0. Our argument is adapted from that found at

the end of [8].

Given a set Q, we can prove there exists an ω-model A, with Q ∈ A and A |= BI thanks

to Theorem 1.1.8.

Now, suppose α ∈ OT(EΩω+X
), ρ < ω and Θ ⇒ Γ is a sequent of T ∗Q. We first desire a

derivability predicateD0 such thatD0(α, ρ,Θ⇒ Γ) if and only if Θ⇒ Γ is axiomatic, or

Θ ⇒ Γ the result of a non-Ωk inference in T ∗Q, with premises (Θi ⇒ Γi)i∈I , and βi C α,

such that for all i ∈ I,D0(βi, ρ,Θi ⇒ Γi). If this inference is a cut, we also require that

the the cut rank is less than ρ.

We may view this as a fixed-point statement which, when combined with transfinite

induction over OT (EΩω+X
) implicitly defines derivability in T ∗Q, minus the Ωk-rules.
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Now, ATR0 proves Σ1
1 − AC, the axiom of choice for Σ1

1 formulas (see Theorem V.8.3

in [11]). Moreover, ACA0 + Σ1
1 − AC proves the Second Recursion Theorem: for

every P -positive arithmetical formula A(u, P ) there exists a Σ1
1 formula F (U) such

that ∀x[F (x) ↔ A(x, F )] where A(x, F ) is obtained from A(u, P ) by replacing every

instance of P (t) with F (t).

Thus, arguing in A, we may find an ω-model B0 ∈ A such that X ∈ B0 and B0 |= ATR0.

By applying the Second Recursion Theorem we may define D0 within B0 and therefore

D0 is a set in A.

We may now apply Theorem 1.1.7 iteratively, to create a tower of ω-models, B0 ∈ B1,∈

B2 . . .. In each ω-model, Bi we define a corresponding derivability predicate, Di, and

require that Di ∈ Bi+1 for all i ∈ N.

Each predicateDi+1 encapsulates derivability using Ωk-rules for k ≤ i+1. This is defined

much the same as D0, but we require that in the instance of an Ωi+1 inference that the

negative occurrences must satisfy the Di derivability predicate. With this done, we may

apply ATR to collect these derivability predicates into a single predicate Dω ∈ A.

Finally, we should note that the notion of derivability involves quantifying over the set of

fundamental functions, which is not permitted in ACA0. However, the only fundamental

functions used in our proof are primitive recursive. Hence, by restricting ourselves to

primitive recursive fundamental functions, we may carry out the quantification in ACA0.
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Chapter 5

Conclusion

5.1 Further Avenues of Investigation

This thesis can be regarded as an extension of the methods used in [8], which was the

first paper on well-ordering principles to require the use of a Ω-rule, and consequently

a fixed-point argument at the conclusion to ensure the proof could be carried out over

a base theory of RCA0. However, this thesis and [8] still closely follow the example of

existing proof-theoretic research. For example, [2] and [6] present ordinal analyses of

systems up to ∆1
2-CA + Bar Rule and ∆1

2-CA + BI respectively, with similarly powerful

ordinal representation systems. In [2] this is accomplished by a generalized Ωα function,

whereas [6] uses a collection of Φγα functions, where Φ0 enumerates the class Kr(0)

of uncountable cardinals, and Φγ enumerates the fixed points of Φγ0 for all γ0 < γ, in

much the same way as the ϕ functions enumerate fixed points of the additive principle

numbers. It would be only natural to seek out similar well-ordering principles for these

more powerful systems.

Of course, there is also the question of finding a well-ordering principle for Π1
1-CA0. At

the time of this writing, the author’s thesis advisor is working on a paper that will prove:
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Theorem 5.1.1 The following are equivalent over RCA0 :

1. WOP(Ωω · X).

2. Every set is contained in a countable-coded ω-model of Π1
1-CA0.

Here, OT (Ωω · X) is constructed in a manner similar to OT (ψ0(EΩΩ+X
)), except instead

of having epsilon numbers, Eu for all u ∈ X, we have the terms Ωω · u. Consequently, we

also lose closure under ωγ above OT (Ωω ·X). Removing Bar Induction also removes the

problem of strong formulas appearing in the deduction tree DQ, which accounts for the

reduced height needed to embed DQ into T ∗Q.

5.2 The Utility of ω-Models

As stated in the introduction of this thesis, there are two ways to present well-ordering

principle results. Compare Theorems 1.1.2 and 1.1.5, referenced from [5] and [7]

respectively. In the case of Theorem 1.1.2, we have an equivalence between WOP(εX)

and ACA+
0 . In Theorem 1.1.5, we instead have an equivalence between WOP(εX) and the

statement “Every set is contained in a countable-coded ω-model of ACA0.” During the

defence of this thesis, the examiners asked why one might prefer the latter presentation to

the former.

There are several reasons. The first, is that it lines up more easily with established proof-

theoretic results. In this thesis we adapted the ordinal analysis of Π1
1-CA + BI found

in [2] and [6], using it as a road map for the proof that “Every set is contained in a

countable-coded ω-model of Π1
1-CA + BI.” Likewise, Theorems 1.1.5 and 1.1.7 should

hold a certain ring of familiarity to those versed in proof-theory. Thus, moving forward

we should look to the ω-model presentation as a guide for how to adapt existing proof

theoretic research to the investigation of well-ordering principles.
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Nevertheless, one might argue that it is more intuitive to work directly within a system,

as with the presentation of Theorem 1.1.2. Certainly, if WOP(fX) is equivalent over

RCA0 to the statement “Every set is contained in a countable-coded ω-model of T ,” for

some theory T, then we should be able to find a theory T ′ such that WOP(fX) is directly

equivalent to T ′. However, T ′ may not necessarily be an intuitive system to work in.

Take Theorem 1.1.2, for example. ACA+
0 includes an axiom regarding the existence of

Turing jumps. As the result was proved using computability theory, this makes a great deal

of sense. However, non-computability theorists may find it more intuitive to work with

ω-models of a the familiar system ACA0. Indeed, the fixed point argument at the end of

Chapter 4 is a scenario where it seems advantageous to work in the ω-model presentation,

as we can iteratively generate larger ω-models to suit our needs.
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