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Abstract 
 

High throughput screening experiments are typically used within the pharmaceutical 

industry for the identification and evaluation of candidate drugs.  Using a high 

throughput screen with automated imaging platform allows a large number of 

compounds to be tested in a biological assay in order to identify any activity 

inhibiting or activating a biological process.  High throughput fluorescent images 

contain information that can be used to define fully the effects of a compound on 

cells.  It is for this reason that florescent imaging assays have been termed high 

content screening (Clemons, 2004). 

 

The studies analysed in this thesis involve the use of an automated robotic system to 

administer compounds to cellular assays and take high content images.  These 

images are then analysed and quantified using imaging algorithms to produce a set of 

variables.  Each high content screen may extend to a million or more individual 

assays.   

 

Supervised classification methods have important applications in high content 

screening experiments where they are used to predict which compounds have the 

potential to be developed into new drugs.  The use of supervised classification for 

high content screening data is investigated and a new classification method is 

proposed for batches of compounds where the rule is updated sequentially using 

information from the classification of previous batches.  This methodology accounts 

for the possibility that the training data are not a representative sample of the test 

data and that the underlying group distributions may change as new compounds are 

analysed. 

 

Unsupervised classification methods are used in the analysis of high content 

screening experiments to evaluate potential new drugs.  The study in this thesis 

considers clustering compounds based on their toxicological effect on the liver.  

Drug induced liver injury is the most common cause for non-approval and 
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withdrawal by the Food and Drug Administration (Ainscow, 2007a) and therefore 

this is an important stage in drug development.   
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Chapter 1 

 

Introduction 

 

 

High throughput screening experiments are typically used within the 

pharmaceutical industry for the identification and evaluation of candidate drugs.  

Using a high throughput screen with automated imaging platform allows a large 

number of chemical compounds to be tested in a biological assay in order to 

identify any activity inhibiting or activating a biological process.  High throughput 

fluorescent imaging platforms have several advantages over conventional 

screening techniques that rely on in vitro techniques.  The most important of these 

advantages is that the images contain a wealth of information that can be used to 

define fully the effects of a chemical compound on cells.  It is for this reason that 

florescent imaging assays have been termed high content screening (Clemons, 

2004). 

 

The studies analysed in this thesis involve the use of an automated robotic system 

to administer compounds to cellular assays and take high content images.  These 

images are then analysed and quantified using advanced imaging algorithms to 

produce a set of variables.  In order to sample as diverse a chemical space as 

possible, each high content screen may extend to a million or more individual 

assays (Kenny et al., 1998).  This, and the fact that only a small number of 

compounds in a screen (<1%) are expected to have a desired biological effect 

means that a number of statistical challenges arise when analysing data from such 

experiments.  In particular, the true classifications of all compounds in a screen 

are never known because this would involve an expert classifying each of the 
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million or more compound images by eye.  Therefore conventional methods of 

comparing classification rules cannot be used.  In addition, due to the large 

numbers of compounds the training data for supervised classification is chosen 

because of the known properties of the compounds and not as a random sample of 

all compounds.  This means that the training data may not be representative of the 

compounds in future batches. 

 

The motivation for this research comes from AstraZeneca, the industrial sponsor, 

who provided the data and high content images from a number of screening 

experiments.  Their current approaches for analysing data from this type of 

screening experiment involve using a single parameter because multi-parametric 

approaches for compound selection and evaluation are still in their infancy within 

such industries.  However, it is believed that the proper exploitation of the 

information contained within each high content image will enable more refined 

compound selection.  This results in the statistical problem of developing multi-

parametric approaches for classifying and selecting compounds with the desired 

biological effect on cells from the data generated from high content screening 

experiments.  

 

Chapter 2 offers a review of the classification literature.  The first half of the 

chapter provides a taxonomy of classifiers and classification methods.  In 

particular, the difference between supervised and unsupervised classification is 

defined before further subclasses of methods are discussed.  The second half of 

the chapter gives details of some of the statistical methodologies that are used in 

this thesis such as discriminant analysis, random forests and principal component 

analysis.  This section is designed to be a point of reference for the subsequent 

chapters.  Throughout the chapter reference is made to the suitability of the 

methodologies to the analysis of high content screening data. 

 

The motivating case studies for the work in this thesis are introduced in Chapter 3.  

The chapter is divided into two main sections, the first concentrates on the 

selection of ‘hit’ compounds with the data forming a supervised classification 
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problem and the second focuses on the clustering of dose response compounds 

with the data forming an unsupervised classification problem.  Each of these 

sections gives an outline of the problem, a description of the data and defines the 

objectives before some exploratory analyses are conducted.     

 

Chapter 4 concentrates on the selection of compounds using supervised 

classification.  In particular, it looks at using unlabelled data (i.e. data with 

unknown group membership) to update classification rules.  The first half of the 

chapter describes the methodologies of model based discriminant analysis and the 

classification expectation maximization algorithm before they are applied to the 

high content screening data in the second half.  Further analyses adapt the 

technique of updating using unlabelled data by incorporating the classification 

reject option and the use of robust estimation of multivariate location and scale. 

 

Chapter 5 introduces a new updating algorithm for classifying high content 

screening data.  This algorithm addresses a number of issues associated with the 

data; namely, that the training data is not representative of the test data and the 

underlying group distributions change as new batches of compounds are analysed.  

This algorithm is applied to the data using a number of different classifiers before 

comparing the results with the current single parameter approach and classical 

multivariate classifiers. 

 

The study of the new classification updating algorithm is continued in Chapter 6.  

The methodology introduced in Chapter 5 is applied to a new high content 

screening case study with a different biological assay to that considered 

previously.  The data that is analysed comes in two forms.  The first uses the same 

imaging algorithms as were used to produce the variables for the data described in 

Chapter 3.  The second uses some new imaging algorithms which are expected to 

be more accurate in their measurements of the biological features.   The results of 

classifying the two forms of data are compared and the overall results of using the 

updating algorithm assessed. 

 



Chapter 1: Introduction 

 

 4 

Chapter 7 focuses on the problem of clustering dose response compounds.  The 

chapter begins by reviewing some of the existing methodologies that can be found 

in the literature.  The approach by Perlman et al. (2004a, 2004b) is applied to the 

high content screening data and possible alterations are discussed. 

 

Chapter 8 discusses some areas in which analysis of previous chapters can be 

extended.  It also outlines some areas where further work may be appropriate.  

The final chapter, Chapter 9, gives conclusions and comments from the analysis 

carried out in this thesis. 

 



 

Chapter 2 

 

Review of Multivariate Classifiers 

 

2.1 Introduction 

 

Classification has been used for many hundreds of years, certainly since the Greek 

philosopher Aristotle used a system to classify animals and plants in the fourth 

century BC.  These early examples of classification were not numerical but were 

based on the characteristics of the objects of interest (Aristotle’s work grouped 

species of animals into those with red blood and those without).  Numerical 

techniques for classification originated in the natural sciences as an attempt to rid 

taxonomy of its subjective nature.  In particular, the use of single characteristics to 

classify objects was replaced by the use of multiple characteristics. Techniques 

were used that produced consistent classifications regardless of whether more 

objects were added to the study or the analysis repeated.  Classification has played 

an important role in many different scientific fields and will continue to do so into 

the future (Everitt et al., 2001).  This chapter outlines the structure of different 

methods of classification and relates the methodologies to the research in this 

thesis, that of analysing data from high content screening experiments. 

 

First an introduction to classifiers is provided and the differences between 

supervised and unsupervised classification are outlined.  In particular, Section 2.2, 

takes the form of a taxonomy with a comparison of the structures of different 

types of classifiers and the data that they can be used to analyse.  Section 2.3 

concentrates on the relevant methodology and literature for the later chapters; this 
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includes descriptions of discriminant analysis, random forests, the k-nearest 

neighbour classifier, principal component analysis, principal coordinate analysis 

and the k-means clustering algorithm.  Throughout the chapter comments are 

made on the application of classifiers to high content screening data but specific 

reviews of existing methodologies are given in later chapters.  Section 2.4 

discusses methods of assessing classification rules and Section 2.5 outlines the 

statistical packages used for the analyses conducted in this thesis.  Section 2.6 is 

the final section of this chapter and it contains a summary and some discussion. 
 

2.2  Classifier Taxonomy 

 
This section gives a general introduction to the different methods of classification.  

The aim is to provide an overview of the structure of different groups of 

classifiers before Section 2.3 goes into specific details of the classifiers used in the 

remainder of the thesis.  Figure 2.1 is a graphical representation of the taxonomy 

of classification and will be referred to throughout the remainder of this section. 

 

The main division between classifiers is that of supervised (also referred to as 

discrimination or supervised pattern recognition) and unsupervised (also referred 

to as cluster analysis or unsupervised pattern recognition).  These two groups of 

classifiers can then be subdivided further.  The supervised classifiers can be split 

into methods which approximate classification boundaries and methods which 

approximate class conditional boundaries (see Section 2.2.1 for details).  

Unsupervised classifiers can be subdivided into three main groups, those which 

are hierarchical, data analytic and optimized (see Section 2.2.2 for details). 

 

2.2.1 Supervised Classification 
 

In supervised classification the class structure is known a priori.  The aim is to use 

a sample of objects (described in terms of vectors of features) with known class to 

construct a rule which allows new objects to be assigned to one of the pre-

specified classes based only on their measurement vectors.  The sample of objects 
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with known class are called the design set, training set, learning set or labelled 

data and the new objects with unknown classes are called the test set or unlabelled 

data.  It is assumed that the objects in the training set are randomly sampled from 

the same distribution as the objects that are in the test set, however, this is not 

always the case (see Section 5.1 for further discussion).   The features that are 

used to describe the objects together span a multivariate space known as the 

measurement space or feature space (Hand, 1997 and 2006).   

 

Supervised classification in this thesis will focus on classifying compounds into 

those that activate a biological process and those that do not.  The training data set 

is made up of compounds with known biological effect (i.e. both compounds that 

are known to activate and not to activate the biological process) and the test data 

contains compounds with unknown properties.  A full description of the high 

content screening data set used for supervised classification is given in Section 

3.2.  Chapters 4, 5 and 6 will concentrate on analysis using supervised 

classification. 

 

The main distinction between supervised methods of classification is based on 

whether they approximate classification boundaries (or discriminant functions) or 

they approximate class conditional densities.  The aim of those methods which 

approximate classification boundaries is to segment the measurement space into 

regions belonging to different classes.  The segmentation of the measurement 

space can be done in two different ways. Techniques such as the combination of 

classifiers and tree classifiers are termed structural, techniques such as Fisher’s 

linear discriminant analysis and generalized linear discriminators are termed 

functional.  The functional classifiers estimate discriminant functions using 

combinations of variables (either linear or non-linear).  The structural classifiers 

estimate classification boundaries by a process of segmenting the measurement 

space over a number of steps using single variables or combinations of small 

numbers of variables.  A description of the different methods of combining 

classifiers is given in Section 2.2.3 and the method of Fisher’s linear discriminant 

analysis is given in Section 2.3.1. 



Figure 2.1: Taxonomy of Classifiers1 

                                                      
1 Adapted from Kuncheva (2004) 
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The approximation of class conditional densities can be done either 

parametrically, semi-parametrically or non-parametrically.  In other words, the 

differences between the techniques in this group are based on the method used for 

approximating the class densities.  The most common methods used are K-nearest 

neighbours (see Section 2.3.4) and maximum likelihood linear and quadratic 

discriminant analysis (see Section 2.3.1).  Although, examples of the different 

classifiers have been given in Figure 2.1, the distinction between the groups is not 

always clear-cut.  For example, the k-nearest neighbour is grouped under the non-

parametric estimation of densities but also produces an estimate of the 

classification boundaries so it could be grouped under structural methods for 

estimating classification boundaries (Kuncheva, 2004). 

 

In terms of data from high content screening experiments there is no particular 

reason why methods that approximate classification boundaries or discriminant 

functions should be used over methods that approximate class conditional 

densities.  However, from a general statistical view point those methods that 

require assumptions to be made about distributions (for example, multivariate 

normality) are less flexible than those that do not.  A review of the current 

methodologies being used for supervised problems in high content screening 

experiments is given in Section 3.2.3. 

 

 

2.2.2 Unsupervised Classification 
 

The difference between unsupervised and supervised classification is that the class 

structure is not known a priori in the former.  Given a collection of objects, the 

aim is to determine a natural class structure; that is, to decide on the number of 

classes and to assign each object to one of these classes.  Unsupervised 

classification can be separated into two types, depending on the objective of the 

analysis.  The first type seeks to identify naturally occurring structure.  The 

research in this thesis focuses on this type as chemical compounds are classified 

based on their effect on cells.  The second type of unsupervised classification 
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simply seeks convenient division of objects, examples of this can be found in 

marketing and finance (Hand, 1997).   

 

Unsupervised classification in this thesis will focus on clustering compounds with 

respect to their toxicological effect on cells.  A detailed description of the high 

content data set that will be analysed using unsupervised classification is given in 

Section 3.3.  Chapter 7 concentrates on the analysis of this data. 

 

Hierarchical clustering differs from other methods of unsupervised classification 

as data is not partitioned into groups in a single step.  Instead the division occurs 

over a number of steps where each one can be viewed as the most efficient 

partition for the progressive subdivision of the population.  Hierarchical clustering 

techniques may be subdivided into agglomerative methods and divisive methods.   

Agglomerative techniques start with each individual being its own cluster. At each 

step of the analysis the clusters are then combined until all individuals belong to a 

single cluster.  Two examples of agglomerative hierarchical clustering techniques 

are single linkage clustering and complete linkage clustering.  The techniques 

differ by the way in which distance (or similarity) is defined between individuals 

or groups of individuals.  Divisive methods work in the opposite way to 

agglomerative methods, starting with one large cluster of all individuals and 

successively splitting into smaller clusters.   These methods can be further divided 

in to monothetic techniques which are based on a single specified attribute and 

polythetic techniques which are based on values taken from all attributes.  For 

both types of hierarchical clustering the results can be displayed on a dendrogram.  

Further details on hierarchical clustering techniques and methods of measuring 

distance and similarity can be found in Everitt et al. (2001). 

 

Optimization clustering works by their minimizing or maximizing a numerical 

criterion to produce a partition of the data into a specified number of groups.  The 

clustering methods in this class differ from each other in the criteria that is 

optimized and the optimization algorithm used.  These methods also differ from 

those of hierarchical clustering in that the number of clusters has to be decided 
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beforehand.  Details of different clustering criteria and methods for optimizing 

these criteria can be found in Chapter 5 of Everitt et al. (2001).  A description of 

the K-means algorithm is given in Section 2.3.7. 

 

Hierarchical and optimization clustering both use algorithms to determine which 

objects should be grouped into the same clusters.  The groups of techniques that 

are called data analytic differ in that they do not directly determine clusters for 

individual objects but instead allow the data points to be plotted in low 

dimensions so the user can visualise clusters of objects.  This has a number of 

benefits which include giving an insight into the structure of the data before a 

more formal clustering algorithm is used and aiding the selection of the number of 

groups in the data for use in other analyses.  The two data analytic methods used 

in this thesis are principal component analysis and principal coordinate analysis 

(see Sections 2.3.5 and 2.3.6 respectively for details). 

 

The three categories of methods for supervised classification (hierarchical, 

optimization and data analytic) that have already been discussed contain the most 

widely used clustering techniques.  However, there are still a considerable number 

of other methods that do not fall clearly into these categories.  There are far too 

many techniques left to give a comprehensive review of them all but some 

examples are: fuzzy methods (objects are assigned a membership function 

indicating the strength of membership to each cluster), methods which allow 

overlapping clusters and density search analysis (clusters are assumed to be 

concentrated in dense patches in a metric space).  Details of these and many other 

methods are given in Chapter 7 of Everitt et al. (2001). 

 

 

2.2.3 Combining Classifiers 
 

The previous sections of this classifier taxonomy have all concentrated on 

methods for discrimination using a single classifier.  However, methodologies are 

available for combining more than one classifier to use in one classification 
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technique.  When combining classifiers the two main strategies available are 

classifier fusion and classifier selection.  These two strategies are outlined below. 

 

Dasarathy and Sheela (1978) were the first to suggest the idea of using different 

classifiers for different inputs when they combined a linear classifier with k-

nearest neighbours.  Classifier selection rules base their classification on a choice 

from a set of constituent rules.  The idea behind this method is to partition the 

measurement space into regions, with each region being associated with the 

constituent rule that best suits it (Hand, 1997).   

 

In contrast to classifier selection, each classifier in a classifier fusion ensemble 

has knowledge of the whole feature space.  Hence, methods of combining 

classifiers such as average and weighted vote are used.  The two most popular 

methods of classifier fusion are bagging (Breiman, 1994) and boosting.  A 

detailed description of a Random Forest (a bagging algorithm for tree classifiers) 

is given in Section 2.3.3.   

 

 

2.3  Methodology 

 

2.3.1  Discriminant Analysis 

 
Discriminant analysis can take many different forms but the overall aim of each of 

the different methods is the same; to predict the membership of objects in the 

classes of a categorical dependent variable from their measurements on one or 

more predictor variables.  Fisher (1936, 1938) first suggested an approach to 

discrimination for two groups that does not make any assumptions about the 

parametric form of the distributions of populations.  Fisher’s suggestion was to 

look for a linear function that maximised the ratio of the between-groups sum of 

squares to the within-groups sum of squares. 
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The methodology of Fisher can be extended from the situation with two 

populations to situations with three or more populations.  Given k  populations or 

groups iΠ , i = 1,2,...,k ; each with in  observations and a data matrix iX  (so data 

are { }ij i; i = 1,..., k; j = 1,..., nx ) look for the linear function Ta x  that maximises the 

ratio of the between-groups sum of squares to the within-groups sum of squares.  

The linear function Ta x  is called Fisher’s linear discriminant function or the first 

crimcoords.  The vector a  in this function is defined to be the eigenvector of 
-1W B  corresponding to the largest eigenvalue, where B  is the between-groups 

sum of squares given by 

 

( )( )
k

T
i i i

i=1

1= n - -
k-1∑B x x x x  ( x  is the overall mean and ix  the mean of group Π i ), 

 

and W is the within-groups sum of squares given by 

 

( )
k

i i
i=1

1= n -1
n-k∑W S , 

 

with 

 

( )( )
in T

i ij i ij i
j=1i

1= - -
n -1∑S x x x x . 

 

Once the linear discriminant functions have been calculated, an observation x can 

be classified to one of the populations on the basis of Ta x ; its linear discriminant 

score.  The discriminant rule in the two population case is given by: 

 

“allocate x to population 1Π  if ( ) ( ){ }T -1 1
1 2 1 22- - + >0x x W x x x  and to population 

2Π  otherwise “. 
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When applying to a situation with three groups, a second linear function is defined 

as the eigenvector of -1W B  corresponding to the second largest eigenvalue.  

Hence, an allocation rule based on two discriminant functions can be calculated.   

 

When the distributions of the group populations are known a maximum likelihood 

alternative to Fisher’s linear discriminant analysis may be used.  The maximum 

likelihood approach described below gives optimal results if each group is 

normally distributed with a common with-in group covariance matrix. However, if 

the groups are non-normal but the distribution is known then an alternative 

optimal rule can be constructed.  For a problem with two or more groups the rule 

for classification is straight forward.  Let jπ  be the prior probability for class j and 

then a new point x  is assigned to the class j which has the largest value of 

 

( )
( )

( ) ( )d 1
2 2

Tj -1
j j

π 1f j| exp - - -
22π

 ∝   
x x µ Σ x µ

Σ
. 

 

Fisher’s linear discriminant analysis has the advantage over other linear 

discriminant techniques in that multivariate normal distributions (or any other 

distribution) are not assumed.  This makes the method more flexible than a 

parametric approach and hence can be applied to a wider range of discriminant 

problems.  Fisher’s criterion is also intuitively attractive because it is easier to tell 

the groups apart if the between-groups sum of squares is large relative to the with-

in group sum of squares (Mardia, et al., 1979). 

 

The discriminant analysis decision surfaces that have been discussed thus far have 

all been linear.  An alternative to these linear discriminators can be produced by 

including transformations of the measurement variables.  In other words, by 

including extra, ‘derived’ variables, which are functions of the original variables it 

is possible to produce more flexible classification rules.  One possible quadratic 

classification rule can be derived by relaxing the restriction that the covariance 

matrices of the groups be assumed equal.  A new point x can then be assigned to 

the class j that has the largest value of  
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( )
( )

( ) ( )1d 22

Tj -1
j j j

j

π 1f j| exp - - -
22π

 ∝   
x x µ Σ x µ

Σ
. 

 

Although quadratic discriminant analysis provides more flexible classification 

rules, Hand (1997) suggests that it should be implemented cautiously. This 

caution is required because the quadratic functions are more complicated than the 

linear ones; hence, this method can easily overfit the data and produce unreliable 

results.  There is some evidence to support this in Section 3.2.6 where 

classification using linear discriminant analysis produced a lower overall 

misclassification rate than when using quadratic discriminant analysis. 

 

In addition to the methods of discriminant analysis that have already been 

described, there are further ways in which these methods can be generalized.  The 

two techniques that are considered in this thesis are mixture discriminant analysis 

and model based discriminant analysis.  Mixture discriminant analysis allows 

each observed class to be a mixture of unobserved normally distributed 

subclasses.  A description of the methodology is given in Section 2.3.2.  Model 

based discriminant analysis is an extension of the maximum likelihood approach 

to discriminant analysis and allows restrictions to be placed on the volume, shape 

and orientation of the groups.  Section 4.2.1 contains a description of the model 

based discriminant technique and Section 4.3 describes the application of this 

methodology in the context of using unlabelled data to update classification rules. 

 

 

2.3.2 Mixture Discriminant Analysis 

 
Linear discriminant analysis can be derived using maximum likelihood for normal 

populations with different means and common covariance matrix.  Mixture 

discriminant analysis generalizes this method by assuming that each observed 

class is a mixture of unobserved normally distributed subclasses (Hastie and 

Tibshirani, 1996).  The mixture discriminant analysis model used in this thesis 

assumes that each subclass has a multivariate normal distribution with mean 
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vector jrµ  and common covariance matrix Σ  (other models are possible, for 

example, each subclass may be allowed to have a different covariance matrix).  

 

Given k classes jG , j = 1,..., k  each with 1,.., jr R=  subclasses, let jΠ  be the prior 

probability for class j, and within class j let jrπ  be the mixing probability for the 

rth subclass, 

 
jR

jr
r=1
π =1∑ . 

 

The mixture density for class j is 

 

( )
( )

( )
j

1 1
2 2

R

j jr jr
r=1

1 1m (x)=P X=x G=j = π exp - D ,
22π

 
 
 

∑ x µ
Σ

 

 

where 

 

( ) ( ) ( )T -1D , = - -x µ x µ Σ x µ , 

 

the Mahalanobis distance between x and µ.  The expectation maximization (EM) 

algorithm is used to maximize the conditional log-likelihood for the data (for 

details of the EM steps see Hastie and Tibshirani (1996)).  The posterior class 

probabilities are given by 

 

( ) ( ) ( )
jR

j j jr jr
r=1

1P G=j X= ~Π P j ~Π π exp - D ,
2

 
 
 

∑x x x µ  

 

normalized so that 

 

( )
J

j=1
P G=j X= =1∑ x .  
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An observation is then classified by choosing j to maximize ( )P j x . 

 

 

2.3.3 Classification Trees and Random Forests 

 
The automatic construction of classification trees originates from work in the 

social sciences (Venables & Ripley, 2002).  However, Breiman et al. (1984) were 

the first to bring the work to the attention of statisticians and to propose new 

algorithms for constructing trees. 

 

Tree-based models are fitted by binary recursive partitioning.  A collection of 

rules, each based on a single variable, are used to split the training data into 

increasingly similar subsets.  The splitting of the data stops when the subsets are 

either homogeneous or consist of not enough observations.  Every time the 

classification tree is split a new node is formed.  The next split is chosen by taking 

the maximum reduction in deviance over all allowed splits of all nodes.  The 

deviance in this case is a measure of node heterogeneity. At each of the splits the 

variables have to be considered in order to decide which should be used. The tree 

is a probability model and therefore at each of the nodes there is a probability 

distribution over the classes.  The endpoints or terminal nodes of a tree have the 

observations assigned to them, where the class with the highest probability is 

chosen (Chambers and Hastie, 1993, Ripley, 1996, and Venables and Ripley, 

2002).   

 

Breiman (2001) proposed a method of combining many classification trees; this 

classifier is called a random forest.  This method combines the idea of bagging 

(Breiman, 1994) with random features. (Bagging is a method of combining 

classifiers using a majority vote.  N bootstrap samples are taken from a dataset 

and a classifier is constructed for each sample.  The final classification for each 

observation is the one most often predicted by the N classifiers).  Each 

classification tree within the forest is constructed in the following way.  Let the 



Chapter 2: Review of Multivariate Classifiers 

 18 

number of observations in the training data be N and the number of variables be 

M.  For each tree a training set of size N is selected by taking a bootstrap sample 

of the data.  When growing each tree a number m M≤  is specified such that at 

each node of the tree, m variables are selected at random out of the M and the best 

split on these m variables is used to split the node.  In addition, there is no pruning 

of the individual tree classifiers.  The random forest classifies observations by 

choosing the most frequently occurring of the classes as determined by the 

individual trees in the forest. 

 

In tests conducted by Breiman (2001) the combining of random features with 

bagging in the random forest classifier indicated that significantly lower error 

rates were possible for larger data sets.  However, less improvement was found 

for smaller data sets.  Nevertheless, this paper does conclude that different 

injections of randomness can produce better results than classical methodologies.  

The results of the analyses conducted in Section 3.2.6 support these findings with 

the random forest producing a smaller overall misclassification rate than a single 

classification tree.  Further comparisons of classifiers in Section 5.4 also show 

that the random forest outperforms linear discriminant analysis and the k-nearest 

neighbour classifier. 

 

 

2.3.4 K-Nearest Neighbour Classifier  
 

The K-Nearest Neighbour (KNN) classifier is based on a non-parametric 

estimation of class densities (see Figure 2.1).  Given an object with measurement 

vector x the objective is to estimate the conditional probability that the object 

belongs to class j.  An estimate of this probability is given by the proportion of 

training points in class j amongst the k nearest to x.  In other words, given the k 

training points that are closest to x, the object is classified using a majority vote 

amongst these neighbours (ties broken at random). Despite the simplicity, KNN 

has been successful in a large number of classification problems; in particular, it is 



Chapter 2: Review of Multivariate Classifiers 

 19

often successful when decision boundaries are very irregular (Ripley, 1996 and 

Hastie et al., 2001). 

 

When implementing the k-nearest neighbour methodology, decisions have to be 

made about the value of the parameter k (determining the size of the 

neighbourhood) and the metric by which to measure nearness (determining the 

shape of the neighbourhood).  With regards to the parameter k, a large value 

means that there is less variance in the probability estimates, but there is also 

likely to be increased bias.  Conversely, a small value of k, means that there will 

be increased variance and decreased bias.  The method for determining the value 

of k in this thesis is the leave-one-out cross-validatory approach.  Details of this 

are given in Section 5.3.3 along with an example of the application.  With regards 

to the distance metric, the Euclidean distance is used for measuring distance 

during all applications.  Further details on choice of metric and the selection of k 

can be found in Hand (1997). 

 

The k-nearest neighbour classifier is used to classify high content screening data 

in Chapter 5.  The results of these analyses (see Section 5.4) show that it does not 

perform as well as the current single parameter approach in terms of selecting the 

compounds of interest but it does reduce the number of false positives.  However, 

the analyses were only conducted on one data set and therefore the results cannot 

be generalised to all high content screening data. 

 

 

2.3.5 Principal Component Analysis 

 
Principal component analysis is included in this review of multivariate classifiers 

because it is a useful tool for visualising data.  Using this method the multivariate 

data can be plotted on a small number of principal components which allows a 

visual search for any structure or clustering.  With regards to high content 

screening data, principal component analysis will be used for both data that is 

supervised and unsupervised in nature.  This will take the form of visualizing data 
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in a low number of dimensions as a method of preliminary analysis of both data 

sets in Chapter 3 and as a method of looking at changing group distributions in 

Chapter 5. 

 

The aim of principal component analysis is to find a set of orthogonal coordinates 

such that the sample variances of the data are in descending order of magnitude 

with respect to the coordinates.  Let ( )T= 1 nX x , ..., x  be a sample data matrix and 

let a  be a standardized vector.  Then Xa  gives n observations on a new variable 

defined as a weighted sum of the columns of X .  The sample variance of this new 

variable is given by Ta Sa , where S  is the sample covariance matrix of X .  The 

vector a  such that the projection of the data X  onto a  has maximal variance is 

known as the first principal component.  This is equivalent to maximising Ta Sa  

subject to the normalizing constraint Ta a = 1  and is solved by finding 1λ , the 

largest eigenvalues of S , and a , the corresponding eigenvector.  The maximum 

value of this variance is then 1λ .  This is the solution to the eigenequation 

1= λSa a .   

 

The remaining principal components are found by maximising the variance of the 

projection of the data X  onto ja  subject to the additional constraint of being 

orthogonal to all preceding components 1 j-1a , ...,a .  It can be shown that the p 

principal components of data X  are the p eigenvectors 1 pa , ...,a  corresponding to 

the p ordered eigenvalues 1 2 pλ λ ... λ≥ ≥ ≥  of the variance of TX  (Mardia et al., 

1979).  Typically the majority of the variation in the data is accounted for by the 

first few principal components and therefore these are the most interesting.  Later 

principal components explain decreasing amounts of variation and little 

information is lost if they are discarded.  A scree plot of cumulative relative 

proportion of variance explained is a good graphical method of deciding how 

many principal components need to be examined.  Typically, a scree plot will 

increase steeply for the first few principal components and then begin to level off.  

The point where it starts to level off indicates that using more principal 



Chapter 2: Review of Multivariate Classifiers 

 21

components brings less return in terms of variance explained.  Examination of the 

first few principal components can reveal the major types of variation and by 

displaying the original data referred to these coordinates divisions between cases 

can be shown that can be described by the differences in the components.  Further 

details of this method can be found in Mardia et al. (1979). 

 

 

2.3.6 Principal Coordinate Analysis 

 
Principal coordinate analysis or multidimensional scaling is a method for 

visualizing clusters of data.  The aim is to construct a configuration of n points in 

Euclidean space using information about the distances between the n objects.  

These distances do not need to be Euclidean, and can be based on both 

dissimilarities and similarities.  This method differs from that of principal 

component analysis in the previous section as the data points are not directly 

observable as n points in p-space (Cox and Cox, 2001 and Mardia et al., 1979).  

Principal coordinate analysis is applied in Chapter 7 as a method of visualizing 

clusters of dose response data. 

 

Given an (n×n)  distance matrix ( )ij= dD , the objective is to represent the inter 

object distances in a Euclidean space of low dimension k.  The matrix D does not 

need to be Euclidean.  The classical solution is to choose a configuration of points 

whose coordinates are determined by the first eigenvectors of the matrix B 

defined below.   The calculations of this classical solution are as follows.  Firstly, 

construct the matrix 21
ij2=(- d )A .  Then obtain the matrix =B HAH  where H is 

the centring matrix 1
n= -n nH I J  ( nI  is the n×n  identity matrix and nJ  is the 

n×n  matrix with all entries equal to 1).  From the matrix B find the k largest 

eigenvalues λ1≥λ2≥…≥λk and their corresponding eigenvectors.  The principal 

coordinates are then the rows of the matrix of ordered eigenvectors of B (Mardia 

et al., 1979). 
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When applying the principal coordinate methodology, the number of dimensions 

that are required for representing the dissimilarities needs to be decided upon.  

The maximum dimensions of the space required are determined by the 

eigenvalues of the matrix B.  If B is positive semi-definite then the number of 

non-zero eigenvalue determines the number of dimensions required.  If B is not 

positive semi-definite then the required dimension is the number of positive 

eigenvalues.  However, in practical applications the number of dimensions should 

be smaller than the maximum space.  As with principal component analysis, a 

scree plot of cumulative relative proportion of variance explained is a good 

graphical method of deciding how many principal coordinates need to be 

examined.  Further details of this method can be found in Cox and Cox (2001). 

 

In the preceding paragraphs the classical solution has been described.  Implicit in 

this solution is the assumption that there is a configuration in k dimensions with 

inter point distances ijδ .  This configuration is constructed using an observed 

distance matrix D with elements of the form ij ij ijd = δ + e  ( ije  represent errors of 

measurement).  However, it is possible to have a non-metric solution where there 

is a less rigid relationship between ijd  and ijδ ; namely ( )ij ij ijd =f δ +e , where f is 

an unknown monotone increasing function.  For this approach D is not thought of 

as a distance matrix but as a dissimilarity matrix and the only information that can 

be used to reconstruct the ijδ  is the rank order of the ijd .  For more information on 

non-metric methods see Cox and Cox (2001) and Mardia et al. (1979). 

 

 

2.3.7 K-Means Clustering 

 
The k-means clustering algorithm is an optimization method of unsupervised 

classification (see Figure 2.1).  It seeks to partition the data into a specified 

number of groups, k. It is not possible to consider every partition (a problem of 

clustering 100 objects into 5 groups gives a total of approximately 676.6 10×  
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different partitions) so the algorithm searches for minimum values of the 

clustering criterion by rearranging existing partitions, keeping the new one if it 

makes an improvement.  However, this does not guarantee that the global 

minimum is found. Algorithms of this type are called hill-climbing algorithms and 

the essential steps are as follows: 

 

1. Find an initial partition of the observations into the required number of 

groups. 

2. Calculate the change in the clustering criterion produced by ‘moving’ each 

individual from its own to another cluster. 

3. Make the change that leads to the greatest improvement in the value of the 

clustering criterion. 

4. Repeat steps (2) and (3) until no move of an individual causes the clustering 

criterion to improve. 

 

One possible hill-climbing algorithm is to iteratively update the partitions by 

simultaneously relocating each object to the group whose mean is closest and then 

relocating the group means.  It can be shown that this is equivalent to finding the 

partition that minimizes the within-group sum of squares.  Such algorithms, 

involving the calculation of the mean (centroid) of each cluster, are referred to as 

k-means algorithms (Everitt et al., 2001 and Everitt, 2005).      

 

In order to apply the k-means clustering algorithm (and for most optimization 

methods), the number of clusters in the data has to be estimated.  There are a 

variety of methods that can be used for this estimation.  In this thesis an informal 

method of plotting the value of the clustering algorithm against the number of 

groups will be applied.  In other words, plotting the within-group sum of squares 

associated with a range of values of k.  Large changes of levels in the plot are 

taken as suggestive of a particular number of groups.  Examples of more formal 

methods for selecting the number of groups can be found in Everitt et al. (2001). 
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2.4  Assessment of Classification Rules 
 

The objective of building a classification rule is to classify correctly as many 

future objects as possible.  It is therefore important to identify methods which 

enable different classification rules to be evaluated and compared. 

 

The most popular measure of performance for classification rules in the 

misclassification rate.  The misclassification rate is the proportion of objects that 

are misclassified by a rule.  However, it is suggested by Hand (1997) to avoid 

testing a rule on the data used for its construction because this would lead to a 

misclassification rate that is optimistically biased as an estimate of future 

performance.  The estimate of error rate obtained by reusing the data used to train 

the classification rule is termed the resubstitution or apparent error rate.   

 

There are several different methods in which an estimate of the misclassification 

rate can be obtained without incurring resubstitution bias.  These methods are the 

independent test set approach, cross validation and jackknife methods.  For the 

purpose of the evaluation of classification rules in Section 3.2.6 and Section 4.3 

the independent test set approach will be used as the data is most suited to this.  

This method counts the proportion of objects which the rule misclassifies in a set 

of test data.  This method is suitable for the high content screening data that will 

be analysed in these sections because the data comes from a pre-screen 

experiment with a randomly selected set of training data that will be used to build 

the classifiers and a set of test data that shall be used for evaluation. However, 

when evaluating classification rules in Section 4.4, Chapter 5 and Chapter 6 this 

method approach is not viable.  In these cases, due to the large number of 

compounds in each of the test batches it was only possible to check the 

classification of those compounds that were predicted to be true hits.  This was 

considered to be sufficient because the numbers of true hits and false positives 

could be compared for each classifier. 
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In addition to using the estimated classification rate to compare classifiers it is 

also possible to calculate other measures such as inaccuracy (how effective the 

rule is in assigning an object to the correct class) and imprecision (how different 

the estimated class probabilities are from the true probabilities).  Details of these 

measures along with other aspects of evaluation can be found in Chapters 6 and 7 

of Hand (1997). 

 

 

2.5  Computational Notes 
 

All of the statistical analyses in this thesis have been conducted in the R statistical 

computing package (R Development Core Team, 2008).  A number of R packages 

were used when implementing methodologies in Chapters 3-7, details of these 

packages are as follows.  Classification trees in Chapter 3 were applied using the 

package tree (Ripley, 2007).  The random forest classifier used in Chapters 3, 5 

and 6 was implemented using the randomForest package (Liaw and Wienner, 

2002).  The mclust package (Fraley and Raftery, 2007) for model based clustering 

was used in Chapter 4 for applying the methodology of updating classification 

rules using unlabelled data.  Finally, Chapter 5 used the packages mda (Hastie and 

Tibshirani, 2006) and class (Venables and Ripley, 2002) for mixture discriminant 

analysis and the k-nearest neighbour classifier respectively.   

 

 

2.6  Summary and Discussion 
 

This chapter has provided an overview of multivariate classifiers and comments 

have been made about general applications to data from high content screening 

experiments.  This thesis is concerned with problems that are both supervised and 

unsupervised from a classification point of view.  The differences between these 

two types of classification problem were discussed in the form of a taxonomy of 

classifiers at the beginning of the chapter and the idea of combining different 
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classifiers was introduced.  The remainder of the chapter gave specific details of 

the methodologies that are applied in the remaining chapters. 

 

Although this research is motivated by high content screening experiments, 

specific examples of the current methods for analysis of data from these 

experiments has not been giving in this chapter.  Instead a review of the 

methodologies for the supervised hit selection problem (as described in Section 

3.2) is given in Section 3.2.3 and existing techniques for the unsupervised dose 

response clustering problem (as described in Section 3.3) is given in Section 7.2. 

 



 

Chapter 3 

 

Data Description 

 

3.1 Introduction 

 

This chapter introduces the datasets whose analyses have provided the motivation 

for much of the work in this thesis.  Various features of the datasets required 

extensions and developments of statistical methodology, especially for 

classification.  There are two main sections, the first (Section 3.2) concentrates on 

compound hit selection with the data forming a supervised classification problem 

and the second (Section 3.3) focuses on clustering dose response compounds with 

the data forming an unsupervised classification problem.  In each of these sections 

a description of the data, a brief overview of the biological background and the 

general statistical objectives are given.  Key features of the data sets are 

highlighted through exploratory analyses and lead onto main analyses and new 

methodologies in subsequent chapters.  The chapter concludes by emphasising the 

key problems for each case study.       

 

 

3.2 Compound Hit Selection 
 

The data in this section relate to a high content screening experiment designed to 

discriminate between chemical compounds that may have the potential to be 

developed into future drugs and those that do not.  Hits are compounds that are 
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selected as having a beneficial effect on the cells.  These hits are currently 

selected using a single parameter approach (see Section 3.2.3) before a manual 

image inspection is carried out by a screening expert to classify them as either true 

hits or false hits (false positives). Those compounds that are not selected as hits 

are denoted as non-hits and no manual image inspection is carried out on these 

compounds.   

 

The remainder of this section is organised as follows.  Section 3.2.1 gives a brief 

description of the biological background to the dataset before Section 3.2.2 

describes the data and method of collection.  A review of the current methodology 

for hit selection in high content screening experiments is given in Section 3.2.3 

before the objectives of analysis are described in Section 3.2.4.  Finally, Section 

3.2.5 describes some exploratory analysis of the data set.    

 

 

3.2.1 Biological Background 
 

The data is derived from a high throughput screen to identify antagonists for a G-

Protein Coupled Receptor (GPCR). The GPCR class of proteins represent a major 

class of drug targets. The assay used here is derived from a generic assay for 

GPCR activation. A cell line was generated that expressed the receptor of interest 

and fluorescently tagged protein β-arrestin. Upon activation of the receptor, β-

arrestin will associate with the receptor at the cell membrane and then drive the 

internalisation of the receptor into intracellular vesicles. The appearance of the 

fluorescent label thus appears as a punctate distribution. In the presence of an 

antagonist of the receptor, the receptor does not associate with β-arrestin. Under 

these conditions, β-arrestin is uniformly distributed throughout the cell’s 

cytoplasm. The assay uses an automated imaging platform to visualise the 

fluorescence distribution within the cells in response to the test compounds. Image 

analysis algorithms are then used to quantify the distribution of fluorescence as to 

the degree to which the fluorescence appears punctate to identify active 

compounds within those screened. 
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The cells are also counterstained with a nuclear die to identify their location. 

Using additional image analysis algorithms, it is possible to quantify features of 

the cells not related to antagonism of the receptor. These include changes in 

nuclear morphology, fluorescent label intensity and cell health. In combination, 

the features potentially report the ability of a test compound to specifically inhibit 

the receptor of interest, versus non-specific effects such as toxicity.   

 

 

3.2.2 Data Description 
 

Compounds are processed through the screen on plates consisting of arrays of 384 

wells.  One compound is added to each well with approximately 250 cells.   

Images of the wells are taken before advanced imaging algorithms take 

measurements and produce a set of sixteen variables consisting of identifiers and 

quantified variables.  The identifiers give information on the run or cycle of the 

experiment, plate number and well grid reference for each compound.  This 

allows the quantified variables to be matched to their compounds and 

corresponding images.  Descriptions of the quantified variables are given in Table 

3.1.  The first variable listed, Npos, is a count of the cells in the image, while the 

remaining fifteen variables are means.  Note that the imaging algorithms produce 

raw variables based on the individual cells in each image but only the means and 

standard deviations of these variables are available.   

 

All wells that are selected as being hits have their images manually inspected by 

eye.  During this process, in addition to the hits being classified as true hits or 

false hits, each are categorized further.  The true hits are classified into two groups 

depending on the level of inhibition.  Those compounds which show the greatest 

levels of inhibition are classified as ‘potent hits’ (also called ‘good hits’) and the 

remaining hits are classified as just a ‘hit’.  On the other hand, the false hits are 
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sorted into nine different groups according to the reason for the false hit.  Figure 

3.1 shows typical images for a non-hit, hit and potent hit.   

 

Table 3.1: Description of variables 

Variable Description 
Npos Number of positive cells in the image 

Ngrains Mean number of punctate granuli per cell 
Agrains Mean fractional area of the cytoplasm of the cells containing 

granuli 
Fgrains Mean fractional fluorescence within granuli compared to total cell 

fluorescence 
Ipos Mean Green Fluorescent Protein fluorescence intensity per cell 
Ixpr Nuclear intensity of green fluorescence within the nucleus 
Itail Mean cellular green fluorescence at the nuclear end of a series of 

radial spokes originating from the nucleus 
Ipeak Mean cellular peak intensity of green fluorescence found along the 

radial spokes 
Rpk-tl Mean cellular Ipeak / Itail 
Rpk-xp Mean cellular Ipeak / Ixpr 
Dpeak Mean cellular distance along the radial spoke to the position of peak 

intensity of green fluorescence 
Iline Mean cellular intensity of green fluorescence averaged across the 

length of the radial spokes 
Dwght Mean of the intensity weighted distribution along the radial spokes 
Imrk Mean intensity of the red nuclear marker 
Amrk Mean area of the red nuclear marker 

 

 

Figure 3.1: Examples of images 

 
 

 

Non-hit Hit Potent Hit 
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Figure 3.2 shows images for four types of false hit: ‘toxicity’, ‘high background’, 

‘overconfluent’ and ‘focus error’.  The high background error is caused by a 

compound being fluorescent.  If a compound is fluorescent then it causes 

problems with the granularity algorithm because it is looking for punctuate 

regions of fluorescence, but the image has a higher overall level of fluorescence 

than is usual.  If there are too few or too many cells in the well then the error is 

termed ‘underconfluent’ and ‘overconfluent’ respectively.  The cells have to be 

grown before the screening takes place; if they grow on top of each other then this 

leads to them being overconfluent.  The nuclei of the cells are dyed red (the red 

dye used binds to DNA which is contained in the nuclei) during the automated 

assay procedure.  If there is a problem with this procedure then this leads to a ‘low 

Draq5’ error. Table 3.2 shows the nine different types of false hit with an 

explanation for each.  

 

Figure 3.2: Images of false positives 

 
Table 3.2: Causes of false hits 

Cause Explanation 
Toxicity Possibly due to plate or compound 
Focus Error Cells in focus not inhibited 
No visible image No discernable cells 
Underconfluent Unreliable score, no clear inhibition 
Overconfluent Resulting in unreliable underestimated score 
Low Draq5 Poor nuclear stain but no apparent inhibition 
High background Not a hit but possibly fluorescent compound 
Foreign particle But no apparent inhibition 
Well dry Poor focus but no evidence of inhibition 
 

Toxicity Compound 
Fluorescence 

Over- 
Confluent 

Imaging 
Error 
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The data available from the screening experiment were collected in three batches.  

The first of 12,288 compounds were selected because of their known properties 

and were used in a pre-screen to validate the experimental procedures.  The data 

from this batch form the training data.  The remaining two batches of 33,941 and 

33,408 compounds (labelled A and B respectively) yielded the test data for 

classifying each of these 67,349 compounds. 

 

Figure 3.3: Example of data scaling: 

(a) before scaling and (b) after scaling. 

 

 

 

 

 

 

 

 

  (a)             (b) 

  

 

All data that are produced from the experiment are normalized to the median to 

account for the possibility of ‘plate slip’.  A plate is considered to have ‘slipped’ 

when all the values for all the variables are found to be lower than on all the other 

plates.  This is exemplified in Figure 3.3.  The left hand plot shows the Fgrains 

parameter plotted against the well number for the raw data.  It can be seen that the 

compounds on the plate with well numbers of approximately 6000 have lower 

Fgrains values than the other plates and may therefore have an effect on any 

analysis which is carried out on the data.  Using the scaling 
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where pmedian  and pσ  are respectively the median and standard deviation 

corresponding to plate p, the slip effect can be removed.  The results of this 

scaling are shown in the right hand plot in Figure 3.3, which shows the 

normalized Fgrains parameter plotted against the well number.  It can be seen that 

there is no longer any evidence of plate ‘slip’. 

 

 

3.2.3 Review of Current Methodologies 

 
Early approaches for identifying hits from high content screening data involved 

the use of a single parameter selected as the most sensitive during assay 

development.  Hits are identified as those compounds whose measurements 

deviate from the majority of measurements on the same plate.  The current 

practice is to select compounds that differ from the median by c standard 

deviations, where c is a preliminary chosen constant (Gagarin et al., 2006).  For 

the data set analysed here the Fgrain parameter is used for filtering as it was found 

to be the most instructive in identifying activity of compounds.  In this case, an 

observation is considered to be a statistical outlier if it is more than three standard 

deviations away from the median and since the objective is to find an antagonist a 

‘hit’ is expected to have a low value for this parameter.  However, a low Fgrain 

value can also occur when there are false positives so all wells selected as hits 

have to be manually checked by eye so that these wells can be excluded (Cooke et 

al., 2003).  In addition, the images from a small random sample of non-hits are 

also checked by eye to ensure that the experiment and method of selection is 

working correctly.  Figure 3.4 shows the process of selecting hits using this 

approach. 

 

Recent developments in the analysis of high content screening data have focused 

on investigating the implementation of multivariate classifiers.  Huang and 

Murphy (2004) and Zhou et al. (2007) compare classification using K-nearest 

neighbours, neural networks, support vector machines, Gaussian mixture models 

and decision trees with high content screening data from location proteomics and 
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time-lapse fluorescence microscopy respectively.  Svetnik et al. (2003) made a 

comparison of the random forest classifier (see Section 2.3.3 for details) with 

other classifiers for predicting the activities of a compound based on a quantitative 

description of its molecular structure.  The random forest was found to have the 

highest accuracy amongst all of the classifiers compared.  A general review of 

classifiers and statistical modelling of high content screening data can be found in 

Zouh and Wong (2006) and Ainscow (2007b). 

 

Figure 3.4: Hit selection using a single parameter 

 
 

To show the potential of multi-parameter analysis of high content screening data a 

statistical pilot study (Mills, 2004) considered a refined selection of compounds 

from a data set previously analysed using the one-parameter approach.  This 

refined analysis enabled the removal of ‘false positives’, arising from compounds 

that were, for example, intrinsically fluorescent or toxic.  In this way, the number 

of selected compounds was reduced and therefore enabled rapid progression of the 

most likely candidate drugs (Cooke et al., 2003). 
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3.2.4 Objectives 

 
The aim of this high content screening experiment is to discriminate between 

compounds that inhibit a biological process and those that do not (see Section 

3.2.1).  The main objective of the data analysis is to develop a multi-parametric 

approach to hit selection that uses the full potential of the information that is 

extracted from the high content images.  AstraZeneca would like a reliable 

automated method of hit selection so that manual image inspection, which is slow 

and subjective, can be minimized.  It is therefore important to reduce the number 

of false positives (i.e. false hits and non-hits that have been misclassified as true 

hits) as these generate unnecessary additional costs through manual image 

inspection.  At the same time it is also important not to have many false negatives 

(i.e. true hits that have been misclassified as non-hits) because this may result in 

compounds with the potential to be developed further being ignored.  However, as 

there are only a limited number of compounds that can be taken forward to the 

next stage of screening the most important factor is to reduce the amount of 

manual image inspection. 

 

 

3.2.5 Exploratory Analyses 

 
The exploratory analysis for this case study involves the 12,288 compounds used 

in the pre-screen validation experiment and takes several forms.  The structure of 

the data is investigated to determine whether it is possible to discriminate between 

the pre-defined groups.   The remaining analysis focuses on applying existing 

classifiers to determine which produces the least numbers of misclassifications.   

 

The existing single parameter approach described in Section 3.2.3 relies on hits 

being outlying from non-hits for correct classification to be possible.  It is 

therefore important when considering multi-parametric classification to 

investigate the structure of the variables to see if it is possible to discriminate 
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between the different groups.  Visual inspection of scatterplots and kernel density 

estimates for the different groups of each variable reveals some common features 

of the individual parameters.   

 

Figure 3.5: Scatter plots and kernel density estimates for Agrains variable 

 
 

Figure 3.5 shows scatter plots and plots of kernel density estimates of the Agrains 

parameter for each of the three groups (true hits, false hits and non-hits).  

Examining the scatter plots it can be seen that the majority of the points for the 

non-hits have values with range between -2 and 2 whereas the majority of points 

for the true and false hits have values that are less than -2.  This suggests that 

when using the Agrains parameter there maybe some difficulty in distinguishing 

between the true hits and false hits.  This is further reflected in the kernel density 
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plots.  Here it can see that the densities of the true hits and false hits both have 

peaks at approximately -4 with a large proportion of the densities overlapping.  

On the other hand, only the left hand tail of the non-hits overlaps with right hand 

tails of the true hits and false hits.  This suggests that it should be much easier to 

distinguish between the non-hits and the other two groups using this Agrains 

parameter.  Scatter plots and kernel density estimates of the remaining variables 

were also examined but are not shown here. 

 

Figure 3.6: Principal component plot of the training data 

 
 

To further assess the ability to discriminate between the three groups principal 

component analysis was used to visualize the data.  This was performed on the 

training data with the true hits, false hits and non-hits being determined by the 
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single parameter classification approach.  As the variables are of mixed type the 

correlation matrix was used for analysis; in addition to the two principal 

components that are displayed in Figure 3.6, plots of higher components were also 

examined (not shown here) but found they did not add any extra information 

about the structure of the data.  (The principal component methodology is 

described in Section 2.3.5). 

 

The plot of principal components in Figure 3.6 reveals similar results to the 

scatterplots and kernel density estimates in Figure 3.5.  In particular, those points 

that represent true hits and false hits occupy the same space on the plot suggesting 

that discriminating between these groups maybe difficult.  In addition, both the 

true hit and false hit groups overlap with the edge of the non-hits suggesting that a 

model may misclassify some of the observations within these groups.  However, it 

is important to consider that the groupings of the observations in both Figures 3.5 

and 3.6 have been determined by using the single parameter approach and 

therefore only the classifications of the true hits and false hits are certain (these 

compounds have been checked by eye whereas the non-hits have not).   

 

In order to assess some of the existing supervised classification methodologies, an 

artificial problem was created using the 12,285 compounds used in the pre-screen 

validation experiment.  After classifying these compounds using the single 

parameter methodology described in Section 3.2.3, the data was used to create a 

training and test set.  A random sample of 1000 non-hits was placed in each of the 

two sets before the true hits and false hits were randomly split between them.  

This gave a training set consisting of 1261 compounds (1000 non-hits, 158 false 

hits and 103 true hits) and a test set consisting of 1260 compounds (1000 non-hits, 

157 false hits and 103 true hits).     

 

The results of classification using the existing multi-parametric methodologies are 

displayed in Table 3.3.   The first column indicates the method of classification 

being used (linear discriminant analysis, quadratic discriminant analysis, 

classification trees or random forests) while the second column indicates which 
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data (training or test) is being used for evaluation.  The remaining four columns 

show the overall misclassification rate, the percentage of true hits misclassified, 

the percentage of false hits misclassified as true hits and the percentage of non-

hits misclassified as true hits respectively.  When comparing results it is important 

to remember that the results of classifying the test data give a better indication of 

performance because they have not been used to train the classifier and are not 

biased.  

 

Table 3.3: Comparison of multivariate classifiers 

Percentage Misclassified Method Data Overall 
Misclassification 

Rate 
True Hits False Hits 

As True 
Hits 

Non Hits 
As True 

Hits 
LDA Train 7.06% 21.34% 7.59% 1.00% 
LDA Test 9.52% 24.27% 13.38% 1.10% 
QDA Train 9.13% 5.83% 17.72% 3.90% 
QDA Test 12.30% 13.59% 21.66% 4.80% 

C. Tree Train 4.58% 23.30% 9.49% 1.00% 
C. Tree Test 8.57% 29.13% 16.56% 1.40% 

R. Forest Train 0% 0% 0% 0% 
R. Forest Test 6.59% 25.24% 11.52% 1.20% 

 

 

 

Comparing the results for the test data in Table 3.3, it can be seen that the smallest 

overall misclassification rate of 6.59% is produced when using the random forest 

classifier.  The misclassification rates for the true hits are all too high with linear 

discriminant analysis, classification trees and random forests classifying over 20% 

of this group incorrectly.  A high misclassification rate for the true hit group 

implies that many compounds that may have the potential to be developed further 

are being ignored as false negatives or non-hits.  Although the misclassification 

rates for the false hits are smaller than those of the true hits when using linear 

discriminant analysis, classification trees and random forests, these values still 

represent many compounds that are incorrectly being classified as hits.  This 

evidence of misclassification of the true hits and false hits suggests that none of 

the classifiers considered in Table 3.3 are suitable for the classification of this data 
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in their current form and therefore new methods of classification need to be 

investigated in order to meet the objectives set out in Section 3.2.5. 

 

 

3.3 Dose Response Clustering 

 
The data described in this section relate to a high content screening experiment 

designed to assay chemical compounds for hepatotoxicity (a compound is said to 

be hepatotoxic if it is toxic to liver cells).  Specifically, the data represent dose 

responses from compounds applied to liver cells to analyse indicators of the 

altered metabolism of phospholipids (this altered metabolism of phospholipids 

leads to phospholipidosis).  This type of screen is an important step in the 

evaluation of potential drugs because drug induced liver injury is the most 

common cause for non-approval, withdrawal, limitation in use, and clinical 

monitoring by the Food and Drug Administration (Ainscow, 2007a). 

 

The remainder of this section is organised as follows.  Section 3.3.1 describes the 

data and method of collection before Section 3.3.2 outlines the objectives of 

analysis.  Finally, Section 3.3.3 describes some exploratory analysis of the data 

set.  Note that the review of current methodologies from the literature for this type 

of data is not described in this chapter but forms a section of Chapter 7. 

 

 

3.3.1 Data Description 

 
Compounds were processed through the screen on plates consisting of eight rows 

of wells.  Approximately 250 cells were added to each well and then dosed with 

one of 850 compounds with a range of different doses (8 concentrations).  Each 

row of wells on a plate had one compound at each of the 8 doses and 2 control 

compounds.  The control compounds were the same for each row and consisted of 

one positive control (i.e. a compound that was toxic and showed strong signs of 
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phospholipidosis) and one negative compound (i.e. a compound that was non-

toxic and showed no signs of phospholipidosis).  The 850 compounds were made 

up of a mixture of compounds with unknown properties and compounds that had 

known toxicological properties.  The compounds with unknown properties had 

2×  dose responses with concentrations between 1.9µM and 250µM.  The 

reference compounds had 2×  dose responses with concentrations between 

0.08µM and 1000µM.  The majority of the reference compounds were replicated 

several times. 

 

Figure 3.7: Examples of dose response images 

 
 

For each well a high content image was taken and advanced imaging algorithms 

produced a set of quantified variables.  An example of images from each of the 8 

dose concentrations of one compound is given in Figure 3.6.  The imaging expert 

indicated that the images show a toxic response for doses above 125µM, doses 

between 16µM and 63µM show signs of phospholipidosis and doses below 7.8µM 

show no toxicological effect.   

 

There are three imaging algorithms that are used to produce the measured 

variables from the high content images.  The main test algorithm, GRN, analyses 

the extent of dye accumulation in punctate regions of the cells; analysis of the 

nuclei is conducted by the NUC algorithm (this can only be carried out on non-

1.9 µM 

250 µM 125 µM 63 µM 31 µM 

16 µM 7.8 µM 3.9 µM 
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viable cells); and the OBI algorithm analyses the nuclear area, intensity and 

cytoplasmic label.  Table 3.4 gives details of the variables that are produced by 

each of the algorithms.  Note that each of the imaging algorithms produce raw 

data based on the measurements of the individual cells in each image but only the 

means and standard deviations of these measurements are available for the full 

850 compounds.  The raw data values are available for 197 compounds.  In 

addition, values are calculated from two viable subsets.  The first subset consists 

of all cells in the images and a total of 18 variables are produced; the second 

subset consists of all ‘viable’ or live cells and a total of 11 variables are produced 

(this is because the 7 variables measured by the NUC algorithm produce values of 

0 for viable cells).  Information is available on the cells count in each image along 

with the viable cell count. 

 

Table 3.4: Description of variables associated with the imaging algorithms 

Algorithm Variable Description 
GRN/NUC Ngrains Number of puntate regions found in cells 
GRN/NUC Agrains Fractional area of the cell defined as being puncta 
GRN/NUC Fgrains Fractional proportion of cell label found within puncta 
GRN/NUC Dnuc Diameter of nuclear marker 
GRN/NUC Inuc Mean pixel intensity of label in nucleus 
GRN/NUC Icyt Mean pixel intensity of label in area analysed for puncta 
GRN/NUC Igrains Pixel intensity of label within puncta 
OBI Imrk Mean pixel intensity of nuclear marker 
OBI Amrk Area of nuclear marker 
OBI Isig Mean pixel intensity of label in perinuclear region 
OBI Asig Area of perinuclear region 

 

 

 

Table 3.5 shows the classification of the 11 reference compounds used in the 

screen.  The compounds are classified both for toxicity and phospholipidosis; the 

positive or negative label for a compound relates to the phospholipidosis and any 

remaining label relates to toxicity (for example, Amiodarone shows strong signs 

of phospholipidosis and is toxic).  In addition to the classifications, the screening 

expert also indicated that Amiodarone and Metformin are used as the plate 

positive and negative controls respectively and that Memantidine is related to 
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Amantidine in structure but is more potent.  Further to the classifications of the 11 

compounds, there are also classifications available for 289 of the 850 test 

compounds.  These classifications will allow observations to be made on the 

effectiveness of any method of clustering.  

 

Table 3.5: Classification of reference compounds 

Compound Class 
Amantidine Weak Positive 
Amiodarone Strong Positive, Toxic 
CCCP Negative, Toxic 
Fluoxetine Strong Positive 
HT0026 Strong Positive 
HT0027 Strong Positive 
Maprotilene Strong Positive 
Memantidine Positive 
Metformin Negative, Non-Toxic 
Rimantidine Positive 
Tacrine Weak Positive 

 

 

 

3.3.2  Objectives 

 
The primary aim of the analysis of this dose response high content screening 

experiment is to investigate how to cluster compounds in terms of their 

toxicological effect on cellular assays.  In particular, it is of interest to compare 

the toxicological effect of clusters of compounds with the 11 reference 

compounds that were introduced in Table 3.5.  This would allow the screening 

experts to evaluate compounds (which have unknown toxicological effects) in 

terms of phospholipidosis and other forms of toxicity.  As discussed at the 

beginning of Section 3.3, drug induced liver injury is the most common cause for 

non-approval, withdrawal, limitation in use, and clinical monitoring by the Food 

and Drug Administration and therefore investigating toxicity forms an important 

step in the evaluation of potential drugs (Ainscow, 2007a). 
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The primary aim of the analysis for this experiment leads to a key problem: how 

to compare compounds with different dose response ranges.  This problem is 

important to the investigation because the dose responses of the compounds with 

unknown properties have been measured at different concentrations to the dose 

responses of the 11 reference compounds (see Section 3.3.1).  Therefore a method 

is required that will allow compounds to be compared at different ranges of dose 

so that the screening expert can be shown evidence to suggest that, for example, 

compound A has the same response over doses of 1.9µM to 15.6µM as compound 

B over doses of 31.25µM to 250µM. 

    

 

3.3.3  Exploratory Analyses 

 
The exploratory analysis for this data set takes a number of different forms.  

Firstly the reference compounds were investigated to see how the response 

changes as dose increases and to compare the effects of compounds with different 

properties (i.e. those which are negative positive and toxic).  The second part of 

the analysis concentrates on visualising both the reference compounds and the 

compounds with unknown properties using principal component analysis.  

Throughout the exploratory analyses, comparisons between results using 

measurements from all cells and using measurements from only live cells shall be 

made. 

 

Figure 3.8 shows dose response values of the granularity (GRN) Ngrains 

parameter for 8 of the reference compounds.  The mean values (calculated using 

the measurements from all the individual cells on the image) have been plotted for 

the eight doses and the curves between these points have been calculated using 

cubic spline interpolation (see Venables and Ripley (2002) for details).  It can be 

seen that for some of these reference compounds there is more than one curve; in 

these cases the compound has been replicated on a number of different plates.  

Examining these replicates shows that there is some variability between the values 

found on different plates but the overall shapes of the curves are the same.  
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Comparing reference compounds with different classifications (see Table 3.5) it 

can be seen that some of the compounds with different classifications have similar 

responses for this Ngrains parameter.  For example, Metformin which is classified 

as being a negative compound has a similar response to Amantidine which is 

classified as being a weak positive compound.  In addition, the two compounds 

that are structurally related to each other (Amantidine and Memantidine) have 

very different responses with Amantidine showing little difference in response 

over the dose range and Memantidine showing a large drop off in response for the 

highest dose. 

 

Figure 3.8: Dose response plots of reference compounds 
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Figure 3.9: Kernel density plots of the Tacrine compound 

 

 
 

Figure 3.9 shows the distributions of the dose response values of the granularity 

(GRN) Ngrains parameter for one of the Tacrine reference compounds.  The top 

left-hand plot shows the log dose plotted against the parameter values calculated 

from the individual cells in the high content image (as in Figure 3.8). However, 

unlike the plots in Figure 3.8, values have now been plotted for both the case 

when all cells are used for analysis and for when only the live cells are used.   The 

remaining eight plots show kernel density estimates of the data corresponding to 

the eight mean parameter values.  By examining these plots it can be seen how the 

distributions of the single cell values change as the dose increases.  It will also be 
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possible to compare the different densities that are produced when using all the 

cells and when using only the live cells. 

 

From the plots in Figure 3.9 it can be seen that for the majority of doses there is 

little difference between the densities when all cells are used and when only live 

cells are used.  However, concentrating on the plots for doses 125µM and 250µM 

shows that the distributions when using all cells are positively skewed while the 

distributions when using the live cells are much more symmetric.  This suggests 

that there are more cells dying at these doses; this is to be expected as they are the 

larger doses of the Tacrine compound.  There is further evidence of this in the 

500µM dose with both densities being positively skewed but the density for all 

cells having a larger peak.   

 

Figure 3.10: Principal component plots of the reference compounds 
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Principal component analysis (see Section 2.3.5) was used for exploratory 

visualisation of the multivariate data.  This analysis was conducted in several 

stages with the first stage using all 850 compounds with each of the eight doses 

displayed as different observations.  The principal component plot produced (not 

shown here) was not informative due to the large number (6800) of observations 

that were plotted.  Therefore the next stages of analysis concentrated on 

visualising the reference compounds. 

 

Figure 3.10 shows four principal component plots of the reference compounds 

(note that plots are displayed only for the first two principal components but plots 

of larger components have also been examined).  The top two plots show 

individual doses of compounds plotted as separate observations with the left hand 

plot using data from all cells and the right hand plot using data from those cells 

which were determined to be live.  The bottom two plots show individual 

compounds (i.e. the data from each dose are combined in a single observation).  

Again, the left hand plot uses data from all cells and the right hand plot uses data 

from those cells which were determined to be live.   

 
Examining the two plots in Figure 3.10 that are based on individual doses it can 

be seen that in both cases (using all cells and using only live cells) there is no 

separation between compounds that are classified as being negative and those that 

are classified as being positive.  This suggests that when using the individual 

doses of compounds as observations it is not possible to distinguish between 

clusters of reference compounds with different classifications; hence, 

classification of future compounds with unknown properties would be difficult.    

Examination of the plots of individual compounds shows that there is more 

separation of the groups than when using individual doses.  In particular, the 

negative compounds are in a separate cluster to the positive compounds.  

However, there are no clearly defined clusters for the positive and weak positive 

compounds.    
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The results of comparing analyses (see Figures 3.9 and 3.10) that have been 

conducted using measurements from all cells and using measurements from only 

live cells have shown that there is little difference between the two.  However, it 

is suggested that there may be extra information contained in those cells which are 

considered to be dead or non-viable and will therefore conduct future analyses 

using measurements from all cells. 

 

 

3.4 Summary 
 

This chapter has provided an introduction to the case studies that are motivating 

the work in this thesis.  In each case a description of the high content screen in 

question has been given and the relevant study aims highlighted.  Although the 

data sets described are from specific high content screens it is envisaged that the 

methodologies developed in the later chapters will be widely applicable to other 

areas both within and outside of screening experiments.    

 

Exploratory analysis for the compound hit selection problem in Section 3.2 has 

identified a number of key features and problems.  Visualisation of the pre-screen 

data using principal component analysis has shown that it may be difficult to 

distinguish between the three groups of interest (especially the true hits and false 

hits) and therefore any method of classification would have to take this into 

account.  This was further reflected in the number of true hits that were 

misclassified as false hits when examining the results of classifying this data using 

a number of existing multivariate classifiers.  It is important to overcome this 

problem because reducing the number of false positives and false negatives was 

one of the main objectives set out in Section 3.2.5.   

 

The classifications that were carried out during exploratory analysis in Section 

3.2.6 showed that the multi-parameter classifiers (linear discriminant analysis, 

quadratic discriminant analysis, classification tress and random forests) did not 

meet the objectives that were set out in Section 3.2.5.  This suggests that none of 
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these classifiers are suitable for analysing the data in their current form.  Chapters 

4, 5 and 6 will continue the analysis of this data by looking at different methods of 

updating classification rules.  Chapter 4 will begin the investigation by using 

unlabelled data to update classification rules.  

 

The exploratory analyses that were conducted for the dose response clustering 

problem in Section 3.3.3 all concentrated on methods of visualising the 

compounds and their responses.  However, none of methods (with the exception 

of principal component analysis for individual doses) have taken into account the 

problem of how to compare responses over different dose ranges.  It is this 

problem that will be key to any methodology that is designed to cluster the 

compounds.  Chapter 7 concentrates on this problem further. 



 

Chapter 4 

 

Using Unlabelled Data to Update Classification 

Rules 

 

4.1 Introduction 

 

This chapter is concerned with the updating of classification rules using 

unlabelled data.  This method of classification stems from the idea that the 

unlabelled data may contain useful information even though the group 

membership is unknown.  The data from a full high content screening experiment 

contains many fewer observations in the labelled training data (approximately ten 

thousand) than in the batches of unlabelled test data (approximately one million) 

and therefore large amounts of potential extra information is being ignored if 

classification rules are not updated. 

 

In Chapter 3, four multivariate classifiers (linear discriminant analysis, quadratic 

discriminant analysis, classification trees and random forests) were investigated to 

analyse the high content screening data.  The results of these analyses showed that 

in their current form the classifiers did not meet the objectives that were set out in 

Section 3.2.5.  Hence, updating the rules using the methodologies described in this 

chapter is the next step in trying to find a suitable method of classifying high 

content screening data. 
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The idea of using unlabelled data originated with Hartley and Rao (1968) who 

used a combination of labelled and unlabelled data for estimating maximum 

likelihood and classification.  It has been used in various forms since then and in 

particular an iterative procedure for classification of two groups based on both 

labelled and unlabelled data was introduced by McLachlan (1975) and was found 

to be asymptotically optimal (i.e. minimising the risk of misclassifying a 

randomly chosen observation) when the number of unlabelled observations tends 

to infinity and the number of labelled observations from the groups is moderately 

large.  More recent applications have considered problems with more than two 

groups with Dean et al. (2006) applying the idea to data from food authenticity 

studies.  It is the outline of the methodology in this paper that forms the basis of 

this chapter. 

 

The remainder of this chapter is structured in the following way.  The first section 

outlines the methodology that is used in the remainder of the chapter.  Sections 

4.3 and 4.4 describe the application of the methodology to data in two different 

forms.  Firstly, Section 4.3 describes the application of updating using unlabelled 

data when using the artificial data set that was created from the pre-screen.  It also 

extends the updating methodology by introducing and applying the ideas of robust 

estimation of multivariate location and scale, and the reject classification option.  

Section 4.4 then applies the methodology to a version of the full data set with a 

training set and two batches of test data.  Section 4.5 concludes the chapter with a 

summary and some discussion. 

 

 

4.2 Methodology 
 

This section outlines the methodology of using unlabelled data to update 

classification rules.  In particular, Sections 4.2.1 and 4.2.2 introduce model based 

discriminant analysis and model selection respectively before Section 4.2.3 

outlines the Classification Expectation Maximisation (CEM) algorithm.  Finally, 

Section 4.3.4 introduces some methods for the robustly estimating multivariate 
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location and scale which shall be applied as an extension to the current 

methodology. 

 

 

4.2.1 Model Based Discriminant Analysis 
 

Model based discriminant analysis is an extension of the maximum likelihood 

approach to linear discriminant analysis that was described in Section 2.3.1.  The 

basis of this model-based approach is to use constraints to impose restrictions on 

the volume, shape and orientation of the groups in the data.  These imposed 

restrictions are implemented through the eigenvalue decomposition of the 

covariance matrix Σg for each group.  These covariance matrices can be written in 

the form 

 
T

g g g g gD A DλΣ =  

 

where Dg is an orthogonal matrix of eigenvectors of Σg, the Ag is a diagonal 

matrix with entries proportional to the eigenvalues of Σg  (and first eigenvalue 

equal to 1) and λg is a proportional constant.  Each component of the eigenvalue 

decomposition has a different morphological interpretation in terms of the data in 

the group.  The matrix Dg governs the orientation of the group, Ag controls the 

shape and λg controls the volume. By imposing restrictions on some or all of the 

different components of the eigenvalue decomposition different models are 

formed (Dean et al., 2006). 

 

Table 4.1 contains details of the ten possible discriminant models that are 

available by imposing different restrictions on the components of the eigenvalue 

decomposition of the covariance matrices.  The first column of the table contains 

the names of the different models; and the second, third and fourth columns show 

details of the restrictions on volume, shape and orientation respectively.  The final 

column shows the form that the eigenvalue decomposition takes for each of the 

models.  A visual representation of each of the ten models in Table 4.1 is shown 
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in Figure 4.1.  Note that the model EEE corresponds to classical linear 

discriminant analysis and VVV corresponds to quadratic discriminant analysis. 

  

 

Table 4.1: Covariance restrictions 

Model Volume Shape Orientation Decomposition 
EII Equal Spherical - g IλΣ =  
VII Variable Spherical - g g IλΣ =  
EEI Equal Equal Axis Aligned g AλΣ =  
VEI Variable Equal Axis Aligned g g AλΣ =  
EVI Equal Variable Axis Aligned g gAλΣ =  
VVI Variable Variable Axis Aligned g g gAλΣ =  
EEE Equal Equal Equal T

g DADλΣ =  
EEV Equal Equal Variable T

g g gD ADλΣ =  
VEV Variable Equal Variable T

g g g gD ADλΣ =  
VVV Variable Variable Variable T

g g g g gD A DλΣ =  
 

 

Figure 4.1: Cluster shapes allowed by covariance restrictions1 

 
 

 

 

                                                      
1 Adapted from Dean et al. (2006) 

EII VII EEI VEI EVI 

VVI EEE EEV VEV VVV 
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4.2.2 Model Selection 
 

In discriminant analysis the grouping of the observations in the training set and 

the number of groups are known.  Therefore, a natural way to choose a model is to 

select the one that minimizes the sample based estimate of future misclassification 

by cross-validation.  In other words, for the ten available discriminant models a 

leave-one-out method is employed to calculate a cross validation error.  The 

model which minimizes this error is then applied.  However, in many 

circumstances several models may provide exactly the same cross-validated 

misclassification rate.  In such a case, the most parsimonious or simplest model is 

selected; that is to say, tied models are ranked using the following criteria: at first, 

a spherical model is preferred to a diagonal model which is preferred to a non-

diagonal model; secondly, a model with different volumes is preferred to a model 

with different shapes which is preferred to a model with different orientations 

(Biernacki and Govaert, 1999).    

 

 

4.2.3 Classification Expectation Maximization (CEM) Algorithm 
 

Let ( )1 2, ,...,N Nx x x x=  denote the labelled data with labels ( )1 2, ,...,N Nl l l l=  

where 1ngl =  if observation n comes from group g and 0ngl =  otherwise.  Let the 

unlabelled data be denoted by ( )1 2, ,...,M My y y y=  with unknown labels 

( )1 2, ,...,N Mz z z z=  that are defined in the same way as the known labels.  The 

four steps of the CEM algorithm are then defined as: 

 

Step 1 

Set 0k = .  Find the starting values for the algorithm by using the model-based 

discriminant analysis estimates of the parameters in the model.  Call these 

estimates (0)π̂  and (0)θ̂ . 
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Step 2 

Calculate the expected value of the unknown labels using the formula 

 

( )
( )

( ) ( )

( ) ( )
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g m g
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g m g
g
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∑
 for g = 1,2,…G and m = 1,2,…,M 
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Then the expected class of the unknown labels is calculated by 

 

( 1) 1 if  for all 
ˆ
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Step 3 

Using the data, the known labels and the current estimates of the unknown labels 

(from step 2) estimate the parameters by 
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The estimation of the covariance matrices Σg depends on the constraints that are 

put on the eigenvalue decomposition of the matrix. Details of the different 

covariance matrices can be found in Bensmail and Celeux (1996). 

 

 

Step 4 

Check that the algorithm has converged.  The algorithm should be stopped when 

the ( )ˆ k
mgz -values are equal to within specified limit on two consecutive iterations.  If 

the algorithm has not converged, set k = k+1 and repeat steps 2-4. 

 

 

4.3 Application to Pre-Screen Data 
 

This section describes the application of the methodology to the artificial data set 

that was created from the pre-screen.  The training set (or labelled data) from this 

data consists of 1000 non-hits, 158 false hits and 103 true hits; and the test set (or 

unlabelled data) consists of 1000 non-hits, 157 false hits and 103 true hits.  The 

application of the methodology is computationally slow when using large data 

sets and therefore the aim of this first application was to use a small data set to 

assess the potential of the methodology. 

 

Applying the cross validatory method of model selection (described in Section 

4.2.2) it was found that the model with equal volume, shape and orientation had 

the smallest cross validation error.  This model is equivalent to classical linear 

discriminant analysis and the observations from the labelled training data are 

plotted on crimcoords in Figure 4.2.   

 

Examining the linear discriminant plot in Figure 4.2 it can be seen that there are a 

number of important features.  Firstly, the three groups are not clearly defined; in 

particular, there is a large overlap between the cluster of true hits and non-hits, 

and the cluster of true hits and false hits.  This feature is consistent with 

visualising the data using principal component analysis in Section 3.2.4 and 
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suggests that misclassifications of observations in all of the groups are expected.  

The second feature of the visualised data is the number of outlying observations 

from each group.  All three groups appear to have some points that are outlying 

from their respective main cluster.  This feature is considered further in Section 

4.3.1. 

 

Figure 4.2: Linear discriminant plot of training data 

 
 

The results of applying the methodology from Section 4.2 to the current data set 

are shown in Table 4.2.  The first column shows the observed classifications of 

the data and the remaining three columns show the number of observations that 

were predicted to be false hits, non-hits and true hits respectively.  From this table 

it can be seen that 12.3% of the observations in the test data have been 

misclassified.  This corresponds to 24.3% of the true hits being misclassified, 21% 

of the false hits being classified as true hits and 0.9% of non-hits being classified 

as true hits.  These results are compared with the remaining analyses on this data 

set and the results from classifying during exploratory analysis in Section 4.3.3. 
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Table 4.2: Non-Robust Model 

Predicted Classification Observed 
Classification False Hits Non-Hits True Hits 

False Hits 81 43 33 
Non-Hits 45 946 9 
True Hits 0 25 78 

 

 

4.3.1 Robust Estimation of Multivariate Location and Scale 
 

The estimation of the multivariate location vector µ and the scale matrix Σ is 

important when applying the methodology described in Section 4.2.  In the 

application to data above, these parameters were estimated using maximum 

likelihood and are optimal if the data come from a multivariate normal 

distribution.  These estimates are extremely sensitive to the presence of outliers 

and this may cause a decline in the performance of a procedure based on these 

estimates.  Hence, it is important to consider robust alternatives for the estimation 

of location and scale. 

 

For the purpose of this work two different methods (minimum covariance 

determination (Rousseeuw, 1984) and minimum volume ellipsoid) were applied 

for robustly estimating location and scale.  Give n observations and p variables, 

the minimum covariance determination method identifies h observations whose 

classical covariance matrix has the lowest possible determinant (Hubert et al., 

2005).  The minimum volume ellipsoid method seeks an ellipsoid containing 

( )1 2h n p = + +   observations that is of minimum volume.  For both methods 

the estimation of location and scale is the average of the h selected observations 

and their covariance matrix respectively.  The two methods were implemented 

using cov.rob in R (Venables and Ripley, 2002).  A full description for the current 

algorithm for calculating minimum covariance determination can be found in 

Rousseeuw and Van Driessen (1999). 
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Figure 4.3: Linear discriminant plot of training data with outliers removed by 

minimum covariance determinant method 

 
 

Figures 4.3 and 4.4 show linear discriminant plots of the training data with the 

outliers removed respectively by the methods of minimum covariance 

determination and minimum volume ellipsoid.  Comparing these plots with the 

plot of the full training data in Figure 4.2 it can be seen that there is much less 

overlap between the observations in the different groups when the outliers have 

been removed.  This suggests that linear discriminant analysis would perform 

better if it was trained using the data with the outliers removed.  A further 

comparison of the two different methods that were used for the removal of the 

outliers suggest that the minimum covariance determination method is more strict 

than the minimum volume ellipsoid method; this is particularly reflected in the 

groups of true hits and false hits where the groups look much more homogeneous 

after the removal of the outliers using the minimum covariance determination 

method. 
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Figure 4.4: Linear discriminant plot of training data with outliers removed by 

minimum volume ellipsoid method 

 
 

When using the classification EM algorithm to update the model with robust 

estimations of location and scale it was found that after 1000 iterations the 

algorithm had not converged (i.e. (999) (1000)ˆ ˆmg mgz z≠ ).  Further investigation found that 

there were inconsistencies in the classifications of two compounds when using the 

minimum volume ellipsoid method and a further five inconsistencies were found 

when using the minimum covariance determinant method.  Examining the 

posterior probabilities of these seven compounds revealed that the difference in 

the probability of being a true hit and the probability of being a non-hit was very 

small (with both being approximately 0.5).  This suggested that the algorithm was 

not converging because the largest posterior probability for these observations 

was oscillating between the true hit and non-hit group; and that using a higher 

number of iterations would not make the algorithm converge.  It was decided that 

in this case the reject classification option should be used. 
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4.3.2 The Reject Option  
 

The reject option can be used within some classification models to reduce the 

number of misclassifications.  This method allows the final classification decision 

to be left to a human expert when the model is not sufficiently confident in 

making a decision.  In this situation the model rejects the observation without 

allocating it to a group.  Dubuisson and Masson (1993) define two different types 

of reject options, ambiguity rejection and distance rejection.  The ambiguity 

rejection option relates to a situation when an observation is located between 

existing classes, that is, near a decision boundary.  Alternatively, the distance 

rejection option relates to a situation when an observation is actually a member of 

class that is unknown or not a part of the training set. 

 

The previous section identified that the algorithm was not converging because the 

largest posterior probability for a small number of observations was oscillating 

between two groups.  These oscillations maybe caused by these observations 

being close to a decision boundary and therefore it is recommended that the 

ambiguity rejection option is applied.  This means that the seven observations 

from the analyses that did not have consistent classifications for the 999th and the 

1000th iteration are classified by eye by the screening expert. 

 

Figure 4.5 is an example of a situation where the ambiguity reject option would be 

used.  In this example it can be seen that the two observations that are rejected lie 

on the discriminant boundary between the true hits and non-hits and therefore a 

decision cannot be made by the automated classifier.  This plot was created using 

the two observations that were rejected when using the minimum volume ellipsoid 

method of robust estimation and a selection of observations from the three groups.  

The plot is not an accurate representation of the data that were classified and is 

only included for illustrative purposes. 
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Figure 4.5: Linear discriminant plot illustrating the ambiguity reject option 

 
 

The results of applying the ambiguity reject option when classifying using 

minimum covariance determination and minimum volume ellipsoid robust 

estimates of location and scale are shown respectively in Tables 4.3 and 4.4.  For 

both tables the first column shows the possible observed classifications of the data 

and the remaining three columns show the number of observations that where 

predicted to be false hits, non-hits and true hits respectively.  Table 4.3 shows that 

17.3% of the observations have been misclassified when using minimum 

covariance determination for robust estimation.  This corresponds to 8.7% of true 

hits being misclassified and 14.2% of non-hits being misclassified.  In addition, 

31.9% of false hits were incorrectly classified as true hits and 9.6% of non-hits 

were misclassified as true hits.  The results in Table 4.4 show that 17.6% of 

observations were incorrectly classified when using the minimum volume 

ellipsoid approach with 7.8% of true hits and 14.6% of non-hits being 

misclassified.  It can also be seen that 31.9% of false hits and 10% of non-hits 

were misclassified as true hits.  These results are compared further in the 
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following section with the results from the non-robust model and the results 

obtained during exploratory analysis. 

 

 

Table 4.3: Classification using minimum covariance determination estimation 

Predicted Classification Observed 
Classification False Hits Non-Hits True Hits 

False Hits 90 17 50 
Non-Hits 46 858 96 
True Hits 5 4 94 

 

 

Table 4.4: Classification using minimum volume ellipsoid estimation 

Predicted Classification Observed 
Classification False Hits Non-Hits True Hits 

False Hits 89 18 50 
Non-Hits 46 854 100 
True Hits 5 3 95 

 

 

 

4.3.3 Comparison of Methodologies 

 
To assess how using unlabelled data to update classification rules performs on the 

current data set the three models (non-robust, minimum volume ellipsoid and 

minimum covariance determination estimation) were compared with the results of 

classifying using linear discriminant analysis and random forests from Section 

3.2.6.  The results for this comparison are displayed in Table 4.5.  The first two 

columns show the method of classification and the corresponding overall 

misclassification rate.  The remaining three columns respectively show the 

percentage of misclassifications for true hits, false hits classified as true hits and 

non-hits classified as true hits. 
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Table 4.5: Comparing methodologies 

Percentage Misclassified Method Overall 
Misclassification 

Rate 
True 
Hits 

False Hits 
As True Hits 

Non Hits As 
True Hits 

Update 12.30% 24.27% 21.02% 0.90% 
MVE 17.62% 7.77% 31.85% 10.00% 
MCD 17.30% 8.74% 31.85% 9.60% 
LDA 9.52% 24.27% 13.38% 1.10% 

Random Forest 6.59% 25.24% 11.52% 1.20% 
 

 

Comparing the classification results in Tables 4.5 it can be seen that both classical 

linear discriminant analysis and the random forest classifier have lower overall 

misclassification rates than the three models that use unlabelled data to update the 

classification rules.  However, the overall misclassification rate may not give the 

best indication of which classifier is best for high content screening data.  As 

discussed in Section 3.2.5, the aim of the analysis for the supervised classification 

data is to reduce the number of false positives and false negatives.  Hence, a more 

appropriate comparison may be for the percentage of true hits that were 

misclassified, the percentage of false hits that were predicted to be true hits and 

the percentage of non-hits that were predicted to be true hits.   

 

A comparison of the three different models for updating using unlabelled data 

shows that the two robust methods predict less false negatives than the non-robust 

method.  In other words, the two robust methods are correctly predicting more 

true hits.  However, the non-robust method predicts less false positives than the 

two robust methods.  Overall this shows that although the robust methods are 

predicting more true hits correctly they are also predicting more false hits and 

non-hits to be true hits.  An overall comparison of the three different models for 

updating with linear discriminant analysis and random forests also shows that the 

two robust updating methods correctly classify the most true hits but both linear 

discriminant analysis and random forests predict less false positives. 

 

The objective of this application section was to assess the potential of the 

methodologies described in Section 4.2.  The results of these analyses have shown 
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that updating using unlabelled data (especially the robust models) has reduced the 

number of predicted false negatives when compared to linear discriminant 

analysis and random forests.  However, these models also have the disadvantage 

of having increased numbers of false positives and are much computationally 

slower than linear discriminant analysis.  As the results indicated that there is no 

clear ‘best’ method at this stage it was decided to continue the investigation of 

these methods by applying them to a larger set of data which has the same form as 

data from future high content screening experiments.  A description of this larger 

data set and the analyses completed on it are given in Section 4.4. 

 

 

4.4 Application to Full Data 
 

The aim of this Section is to apply the methodologies and extensions from 4.2 and 

4.3 to the full set of supervised data that was described in Section 3.2 so that a 

comparison can be made with the existing one-parameter approach for classifying 

high content screening data.  However, when attempting to apply the updating 

methodology computational memory problems were encountered.  In order to 

solve these problems it was decided that the number of observations in each batch 

of data should be reduced whilst preserving the overall data structure.   

 

The data was set up in the following way.  The full training data consisting of 

12,288 compounds was retained to train the models.  The two test batches were 

then reduced in size from 33,941 and 33,408 compounds in batch A and B 

respectively to 1500 compounds in each.  The compounds in each batch were 

selected by firstly taking the 81 compounds from batch A and the 39 compounds 

from batch B that were identified as true hits by the single parameter approach.  

The remaining 1419 and 1461 compounds for each batch were then selected 

randomly.  By selecting the data for analysis in this way the objective changed to 

identifying if the updating methodology could correctly predict more or less true 

hits than the single parameter approach. 
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Applying the cross validatory method of model selection (described in Section 

4.2.2) it was found that the model with equal volume, shape and orientation 

(model EEE in table and figure 4.1) had the smallest cross validation error.  This 

model is the same as that selected for the analysis of the pre-screen data in Section 

4.3 and is equivalent to classical linear discriminant analysis.  The observations 

from the labelled training data are plotted on crimcoords in Figure 4.6. 

 

 

Figure 4.6: Linear discriminant plot of training data 

 
 

Examining the linear discriminant plot in Figure 4.6 it can be seen that the same 

features exist as with the linear discriminant plot in the pre-screen analysis (Figure 

4.2).  Firstly, the three groups are not clearly defined with there being a large 

overlap between all of the groups.  In the case of the true hits and false hits the 

groups almost lie entirely on top of each other which suggests that large numbers 

of false positives and false negatives are expected.  In addition, the problem of 

outlying data points is also a problem with all three groups having outlying 
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observations.  The removal of these outliers using the two robust methods of 

estimating location and scale is shown in Figures 4.7 and 4.8. 

 

Figure 4.7: Linear discriminant plot of training data with outliers removed by 

minimum covariance determinant method 

 
 

Figure 4.7 and 4.8 respectively show linear discriminant plots of the training data 

with outliers removed by the methods of minimum covariance determination and 

minimum volume ellipsoid estimation (see Section 4.3.1).  A comparison of these 

plots with the plot of the full training data in Figure 4.6 shows that the groups 

look much more homogeneous after removing the outliers (especially in the case 

of minimum covariance determination).  However, there is still a significant 

problem with the true hits and false hits overlapping (which was overcome in the 

previous analysis for the pre-screen data).  Hence, the predictive performance of 

the classifier is not expected to improve when using the robust estimates. 
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Figure 4.8: Linear discriminant plot of training data with outliers removed by 

minimum volume ellipsoid method 

 
 

 

4.4.1 Computational Problems 
 

During the application of the methodology two computational problems were 

encountered.  The first problem originated from the selection of starting values of 

the parameters in the CEM algorithm.  During the previous applications of the 

algorithm the prior probabilities for each group were selected to be proportional to 

the number of observations in the group (calculated using the labelled training 

data) but when this approach was applied to the current data set it was found that 

the prior probability of an observation being a non-hit was much greater than that 

of being a true hit or false hit causing the algorithm to converge after one iteration 

with all of the unlabelled test data being classified as non-hits.  As a solution to 

this problem the prior probabilities were changed so that they were equal for each 

group.  This solution was considered adequate because the group probabilities are 
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recalculated at the start of each of the iterations and hence over a large number of 

iterations should have a negligible effect on the final classifications. 

 

The second problem was concerned with the application of the minimum 

covariance determination method for calculating robust estimates of multivariate 

location and scale.  When applying this methodology each iteration of the 

algorithm was taking approximately ten minutes on a Pentium 4 3GHz machine 

and therefore, to allow for one thousand iterations, the algorithm would take 

nearly seven days to complete.  Hence, this methodology is not suitable for use in 

high content screening experiments and continued our investigation using the 

minimum volume ellipsoid method of estimation. 

 

 

4.4.2 Comparison of Methodologies 

 
One of the aims of the application section was to identify if the updating 

methodology predicts more or less true hits than the single parameter approach. 

Consequently, the results displayed in Tables 4.6 and 4.7 are the observed 

classifications (i.e. those made by the screening expert) of compounds that were 

predicted to be true hits by the single parameter approach, the non-robust updating 

model and the updating model with parameters estimated by the minimum volume 

ellipsoid method.  In a change from the previous analyses the observed 

classifications of two of the groups have now been split into further sub-groups 

with the true hits being split into hits and good hits and the false hits being split 

into the nine groups shown in Table 3.2.  This change in grouping reflects the 

change in assessment of classifier performance being used and allows a more in 

depth comparison to be carried out.  This method of comparison shall be used in 

the remaining chapters of this thesis.   
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Table 4.6: Comparison of methodologies for batch A 

Observed 
Classifications 

Single Parameter 
Approach 

Non-Robust 
Updating 

MVE Updating 

Hits 50 45 27 
Good Hits 31 30 34 
Non-Hits 0 2 1 
Focus Error 1 0 0 
High Background 4 2 4 
Over Confluent 0 0 0 
 

 

A comparison of the results of batch A in Table 4.6 shows that both the updating 

models fail to correctly predict as many hits as the single parameter approach.  

Further analysis revealed that thirty-one of the hits correctly predicted by the non-

robust model were the same as those found by the single parameter method.  This 

suggests that there is a minimum of sixty-four hits in this data set and highlights 

the number of false negatives associated with both methodologies.  Further 

comparison shows that the robust model has correctly predicted three more good 

hits than the single parameter approach but this is not enough to justify its use 

over the single parameter or non-robust updating approaches given its 

performance in predicting hits.  Note also that the ambiguity reject option of 

Section 4.3.2 was applied when using the robust updating model with forty-five 

observations being rejected (four of which were found to be good hits and one 

was found to be a hit). 

 

A comparison of the results for batch B in Table 4.7 shows a contrast to those of 

batch A with both of the updating models correctly predicting more hits than the 

single parameter approach but less good hits.  Further comparison of the false hits 

and non-hits shows that there is little difference in the numbers of false positives 

for each model.  Note that in batch B ten observations were rejected using the 

ambiguity method and two of these observations were classified as hits by the 

screening expert.  These results are discussed further in Section 4.5. 
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Table 4.7: Comparison of methodologies for batch B 

Observed 
Classifications 

Single 
Parameter 
Approach 

Non-Robust 
Updating 

MVE Updating 

Hits 19 22 25 
Good Hits 20 16 18 
Non-Hits 0 3 3 
Focus Error 1 1 1 
High Background 1 0 0 
Over Confluent 0 2 5 
 

 
The comparison of the single parameter approach to the two methods of using 

unlabelled data to update classification rules has shown mixed results.  For the 

first batch of compounds (batch A) the single parameter appears to perform the 

‘best’ in terms of numbers of hits and good hits predicted correctly but for the 

second batch of compounds (batch B) the updating model with robust parameter 

estimation appears to outperform the single parameter approach.  The data set 

used for these comparisons is much more akin to data that would be produced 

from a high content screening experiment than the data used in Section 4.3 and it 

is for this reason that this method of updating is not pursued further.     

 

 

4.5 Summary and Discussion 

 
The aims of this chapter were to firstly introduce the idea of using unlabelled data 

to update classification rules before applying the methodology to data from high 

content screening experiments.  The analyses took two different forms with the 

first application being used on the pre-screen data as an initial assessment before 

applying the methodology to the full high content screening data.  The results of 

both these analyses were mixed with the updating methods (both robust and non-

robust) making an improvement over the single parameter approach, linear 

discriminant analysis and random forests for some criteria but failing to match the 

performance for other criteria.  Overall there was not enough gain in predictive 
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performance from updating in this manner for it to be considered over the existing 

methodologies.  In addition, the updating method is computationally much slower 

than when using the single parameter approach, linear discriminant analysis or 

random forests and therefore regardless of its performance may have not been 

considered suitable. 

 

The ambiguity reject option from Section 4.3 was only applied to the data when 

the CEM algorithm would not converge.  However, it is also possible to apply this 

method in a more general situation by defining criteria for when to reject.  For 

example, it would be possible to reject all those observations whose largest 

posterior probability was not greater than 0.6.  By using the ambiguity reject 

option in this way the classification results maybe improved because the 

uncertainty around decision boundaries would be reduced by using the screening 

expert’s classifications.  The disadvantage of this would be an increased number 

of images that were required to be visually classified.  The idea of ambiguity 

rejection is considered further in the context of random forests in Chapter 8. 

 

Throughout this chapter the methodologies that have been described and applied 

have all made the assumption that the training data is randomly sampled from the 

same distribution as the test data.  In the case of the data used during the analysis 

in Section 4.3 this assumption is true because this is an artificial data set that was 

created by sampling from the pre-screen data.  However, in the case of the data 

used in Section 4.4 this assumption is in fact false with the training data being 

selected for its known properties so that the experiment can be validated.  It is 

data in this form that is representative of that from high content screening 

experiments. 

 

There are many issues associated with training data not being representative of 

test data with the main problem being a reduction in the performance of the 

classifier being used.  A particularly relevant problem to the work of this chapter 

is the estimation of parameters.  McLachlan (1992) suggests that in the situation 

where classified data is not representative of an observed random sample from the 
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sample space of the feature vector appropriate steps must be taken, such as fitting 

truncated densities, or estimation of unknown parameters using only the data of 

known origin will be biased.  In other words, by only using the unrepresentative 

training data to estimate the unknown parameters in Section 4.4 the estimates 

obtained were biased.  However, this is not an issue investigated further.  

 

The next chapter continues developing the idea of updating classifications rules 

with a new algorithm for classifying compounds in batches. This new algorithm is 

designed to take into account the training data not being representative of the test 

data and the possibility that the underlying populations change throughout the 

course of the experiment. 

 

 

 

 

 

  

 

 



 

Chapter 5 

 

Updating Algorithm 

 

5.1 Introduction 

 

Following the work in the previous chapter of exploring the use of unlabelled data 

to update classification rules, this chapter introduces a new classification method 

for batches of compounds where the rule is updated sequentially using 

information from the classification of previous batches.  This continues the 

investigation of the classification of the high content screening data from Section 

3.2.   

 

The new updating methodology takes into account two problems that may cause a 

reduction in the performance of classical multivariate classifiers.  Firstly, 

traditional multi-parametric methods of classification make the assumption that 

the data used to train the classifier are randomly sampled from the same 

distribution as the points to be classified in the future (Hand, 2006).  In other 

words, any model that is based on an empirical fit to data collected under different 

circumstances to that currently being classified may not yield good predictions 

(Brentnall et al., 2008).  In the case of high content screening experiments the 

data in the training set are from compounds selected because of their known 

biological effects.  Hence these data points may not be representative of the data 

to be classified in the future.  
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A second fundamental assumption of classical classification techniques is that the 

various distributions do not change over time (Hand, 2006) but in many situations 

this assumption fails to hold and may lead to a decline in performance of a 

classifier over time  (for example, credit scoring models where there may be 

changes to distributions over time due to seasonal variation).  With the application 

to high content screening data the class populations do not evolve over time but 

instead the changes are associated with compounds being analysed in batches.  

High content screens contain a finite number of compounds, so given the 

classifications of those compounds it would be possible to calculate the 

distribution of each class.  However, as analysis is sequential these distributions 

are not known, therefore the distributions of the classes are based on the non-

random sample of compounds in the training data.  Each new batch of data brings 

with it compounds that may have different properties to those in the training data 

and those in previous batches so the class distributions in any model need to 

change to accommodate these new observations.  In other words, the new data are 

from different distributions to those in the training data and changes to the 

distributions of the classes and hence the posterior distributions of class 

membership may be required sequentially so that classifier performance does not 

deteriorate (Kelly et al., 1999). 

 

The remainder of this chapter can be summarized as follows. Section 5.2 

describes in detail the new updating methodology before Sections 5.3 and 5.4 

respectively apply and compare the algorithm based on each of the four 

alternatives of a random forest, linear discriminant analysis, k-nearest neighbours 

and mixture discriminant analysis. Section 5.5 investigates the sensitivity of the 

batch orderings before the chapter concludes with a summary and discussion.  
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5.2  Updating Methodology 
 

In this section the new method for updating classification rules is outlined, it is 

then used in the following section to classify data from a high content screening 

experiment.  This is followed by a mathematical description of the algorithm in 

Section 5.2.1. 

 

The methodology for the new updating algorithm is as follows.  The training data 

are initially classified using the single parameter plus visual checking approach 

(described in Section 3.1) and a classifier is constructed using these data.  This 

classification rule is then used to classify those compounds which were screened 

as part of the first batch (in our case batch A) into groups of true hits, non-hits and 

false hits. 

 

The compounds identified as true hits by the classifier are examined visually by 

the screening expert to verify the predictions.  At this stage all true hits that have 

been misclassified have their classification labels corrected.  A new training data 

set is now created by combining the data from batch 1 (the original training data) 

with the visually checked compounds from batch A.  

 

This new updated training data is used to construct a new classifier for the 

classification of Batch B.  This part of the algorithm accommodates the possibility 

that the training data is not representative of the test data by correcting the 

assumptions on underlying distributions made from the training data.   

 

For each new batch of data the training data is updated using the previous batches 

until the final classification rule that is constructed is the ‘best’ possible.  At this 

stage it is recommended that each of the batches are classified again to see if any 

true hits were misclassified during the previous classification.  
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5.2.1  Algorithm 
 

Let the pre-screen training data (0)L  consist of data ( ){ }n ny ,x ,n=1,...,N  where the 

y’s are the class labels.  Let the set of all data test data T  consist of data 

( ){ }m my ,x ,m=1,...,M  where the y’s are the unknown class labels. 

 

Step 1: (k = 0) Given the training set (0)L  , construct a classifier ( )(0) (0)
0 x ,Lϕ , 

where given input x  the class membership y  is given by ( )x,Lϕ . 

 

Step 2: (k = 1) Classify batch k (denoted t (k) ) of the data using the classifier k-1ϕ  

to give class labels ( )(k) (k-1)
1 t ,Lkϕ − . 

 

Step 3: Identify { }(k) (k)
i mx x∈  such that ( )(k) (k-1)

k-1 ix ,Lϕ  = True Hit. 

 

Step 4: Check the classification of the observations (k)
ix  identified in step 3 and 

adjust any incorrect labels 

 

Step 5: Construct a new training set (k)L  consisting of data ( ){ }(k) (k)
n ny ,x ,n =1,...,N′ ′ ′ ′  

where (k)
nx ′  is the combined data  (k-1)

nx  and (k)
ix . 

 

Step 6: Construct a classifier kϕ  using the data (k)L . 

 

Set k = k+1 and repeat steps 2-6 until k = B, the number of batches. 

 

Step 7: Apply the classifier Bϕ  to batches 1,…,B to identify any true hits that 

have previously been misclassified. 
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5.3  Application to HCS Data Set 

 

This section is concerned with applying the updating algorithm from Section 5.2 

to the high content screening data set described in Section 3.2 using different 

classifiers.  Four different classifiers were used for the application, random 

forests, linear discriminant analysis, k-nearest neighbours and mixture 

discriminant analysis.  Random forests were chosen because this method 

produced the lowest misclassification rate during exploratory analysis (see Table 

3.3 in Section 3.2.4) and there are comparisons in the literature (Svetnik et al., 

2003) which indicate it may generally have the highest classification accuracy.  

Linear discriminant analysis was applied because it is considered as a ‘standard’ 

method of discrimination and therefore is a good bench mark with which to 

compare other classifiers.  K-nearest neighbour classification was used as it has 

received good reviews in terms of its performance in the statistical literature (for 

example Weiss and Kapouleas (1989) and Michie et al. (1994)).  Finally, mixture 

discriminant analysis was applied for an extra comparison. 

 

Due to the large number of compounds in each of the test batches of data (33,941 

and 33,408 respectively) it was only possible to check the classification of those 

compounds that were predicted to be true hits (a full comparison would require all 

67,349 compounds to be visually classified by the screening expert).  This was 

considered to be sufficient because comparisons could be made between the 

number of true hits and false positives for each of the classifiers.  In addition, by 

constructing a list of all true hits found during analysis the minimum number of 

false negatives for each method was identified.   

 

It is also important when comparing the classification results to take into account 

the number of images that were required to be checked by the screening expert in 

order to achieve the final classification.  This was considered to be important 

because of the time it takes for each image to be checked.  For the updating 

algorithm this required counting the number of images to be checked at the end of 

each iteration in addition to those when applying the final model.  For the non-
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updating method the number of compounds selected as hits for both batches were 

counted.  The methods were then compared by looking at the ratio of hits found to 

images checked.  These comparisons are shown when evaluating all methods in 

Section 5.4.5. 

 

 

5.3.1  Random Forests 
 

This section applies the random forest classifier to the data set both as part of and 

independent of the updating algorithm.  All of the analyses were carried out using 

the randomForest package in R (Liaw and Wiener, 2002).  The random forest 

methodology is outlined in Section 2.3.3. 

 

Table 5.1 compares the results of classifying the two batches of test data (A and 

B) using a random forest classifier as part of and independently of the updating 

algorithm.  The first column of this table contains a list of all possible 

classifications and the second and third columns show the observed classifications 

(for batches A and B respectively) of those compounds that were predicted to be 

hits by the random forest with no updating.  When applying the updating 

algorithm, each iteration (with the exception of the first) uses a different model for 

prediction than when there are no updates, therefore the fourth column shows the 

results of classifying batch B after the model has been updated using the addition 

information from batch A.  The fifth and sixth columns contain the observed 

classifications (for batches A and B respectively) of those compounds that were 

predicted to be hits by the final updating model.  In other words, these are the 

results of applying the random forest model that has been updated using all 

batches of data.    
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Table 5.1: Comparing updating with no updating using a random forest classifier 

No Updating Iteration Final Model (Updating) Observed 
Classifications A B B A B 

Hits 75 21 22 75 22 
Good Hits 30 19 19 29 20 
Non-Hits 15 35 31 0 1 
Focus Error 5 2 2 0 0 
Over Confluent 6 39 34 0 0 
Toxic 7 18 1 0 0 
High Background 0 6 1 0 0 
No Image 0 0 1 0 0 
Well Dry 0 1 0 0 0 
 

Comparing the results of classifying without updating with those of the final 

model of the updating algorithm (i.e. comparing the second and third columns of 

Table 5.1 with the fifth and sixth columns) it can be seen that there is a noticeable 

reduction in the number of compounds that are classified incorrectly when using 

the updating algorithm.  In particular, the final model of the updating algorithm 

has not misclassified any non-hits or false hits as true hits for batch A and has 

only misclassified one non-hit as a true hit for batch B; whereas classification 

without updating has made thirty-three mistakes when predicting true hits in batch 

A and one hundred and one mistakes when predicting true hits in batch B.  

However, in order to compare the two methods properly it is important to consider 

the misclassifications that were made during the iterative stages of the algorithm.  

Comparing the results of classifying batch B at the iterative stage of the updating 

with those using the no update method (columns four and three respectively in 

Table 5.1) it can be seen that the updating method reduced the number of non-hits, 

over confluent, toxic, well dry and high background compounds that were 

misclassified but did misclassify one compound with no image that was not 

selected by the other method.   

 

Overall, the results suggest that the predictive capability of the random forest 

classifier is improved when using the updating algorithm.  These results are 

compared further and also with the results of using other classifiers in Section 

5.3.5. 
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Figure 5.1: Principal component plots for updating training data using random 

forests 

 
 

In order to see how the distributions of the three groups (true hits, false hits and 

non-hits) changed as the training data was updated the three iterations of the data 

were plotted on principal components.  The first row of principal component plots 

in Figure 5.1 show the three groups for the original training data.  Each group is 

plotted on separate axes because all the groups overlap in the principal component 

space making it difficult to see any distributional changes.  The second and third 

rows of plots show the three groups for the first and second update of the training 

data respectively.  Each update of the training data is plotted on different principal 

components calculated using the relevant data but as only a relatively small 
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amount of new data is added at each update it is not expected that there will be 

much change in the axes. 

 

Comparing the principal component plots in Figure 5.1 it is possible to see very 

subtle changes to the shapes of the groups for the true hits and false hits.  These 

results suggest that principal component axes may not be the best method of 

visualising the data in order to see changes in the distributions of the groups.  

Further inspection of higher principal components (not shown here) did not reveal 

any improvement and neither did the principal component plots for updates using 

the remaining classifiers that are discussed in this chapter so with the exception of 

linear discriminant analysis (where principal components are compared to 

crimcoords) these plots are not shown.  

 

 

5.3.2  Linear Discriminant Analysis 

 
This section applies linear discriminant analysis to the data set both with and 

without the updating algorithm.  In addition to discussing the results of 

classification, the training data is examined to see how it changed as it was 

updated. This was done by plotting the data on principal components and 

crimcoords.  

 

Table 5.2: Comparing updating with no updating using linear discriminant 

analysis 

No Updating Iteration Final Model (Updating) Observed 
Classifications A B B A B 

Hits 55 18 18 39 18 
Good Hits 31 19 19 30 15 
Non-Hits 16 36 50 16 32 
Focus Error 3 0 2 2 2 
Over Confluent 5 9 46 1 19 
Toxic 2 0 0 0 0 
High Background 2 0 4 3 4 
No Image 0 0 0 0 0 
Well Dry 0 0 0 0 0 
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Table 5.2 compares the results of classifying the two batches of test data (A and 

B) using linear discriminant analysis as part of and independently of the updating 

algorithm.  The first column of this table contains a list of all possible 

classifications. The observed classifications of those compounds that were 

predicted to be hits by linear discriminant analysis with no-updating for batches A 

and B are shown in the second and third columns respectively.  When applying 

the updating algorithm each iteration (with the exception of the first) uses a 

different model for prediction than when there are no updates, therefore the fourth 

column shows the results of classifying batch B after the model has been updated 

using the addition information from batch A.  The observed classifications (for 

batches A and B) of those compounds that were predicted to be hits by the final 

updating model are shown in the fifth and sixth columns respectively.  In other 

words, these are the results of applying linear discriminant analysis that has been 

constructed using training data that has been updated using all batches of test data.    

 

Comparing the results for batch A of classifying without updating with those of 

the final linear discriminant rule of the updating algorithm (i.e. comparing the 

second column of Table 5.2 with the fifth) it can be seen that the updating 

algorithm has reduced the number of compounds that are over confluent or have 

focus error from being classified as hits.  However, this small reduction in false 

hits is at the expense of a reduction in the number of hits and good hits found, 

with the updating method finding sixteen less hits and one less good hit.  Similar 

results are found when comparing the results of classifying batch B at the iterative 

stage of updating with those using the no update method and those using the final 

linear discriminant rule of the updating algorithm (columns four, three and six of 

Table 5.2 respectively).  Here it can be seen that the same number of hits are 

found at each stage but less good hits are found by the final model than the no 

updating method or the iteration.  In addition, there is a large increase in the 

number of non-hits and over confluent compounds classified as hits by the 

iteration when compared to the no update but these numbers are reduced when 

applying the final model.   
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Overall, the results in Table 5.2 suggest that the final updated model is not an 

improvement on the classical linear discriminant model.  This reduction in 

predictive performance maybe due to linear discriminant analysis being 

susceptible to the influence of the additional observations in the updated training 

data.  In other words, linear discriminant analysis is less robust to outliers and 

other influencing observations than other classifiers (for example, the random 

forest applied in the previous section). The influence of observations is discussed 

in Campbell (1978) but is not pursued further here.  These results are compared 

further and with the results of using other classifiers in Section 5.3.5.   

 

The changes to the distributions of the three groups (true hits, false-hits and non-

hits) as the training data was updated were investigated by plotting the data at 

each stage on principal components and on crimcoords.  The first row of plots in 

Figures 5.2 and 5.3 show the original training data plotted on principal 

components and crimcoords respectively.  Each group is presented on its own plot 

so that it is easier to identify any changes in the data clusters (when the data is 

shown on one plot some of the groups overlap).  The second and third rows of 

both figures show the respective plots for the first and second updates of the 

training data.  For both the plots of principal components and crimcoords each 

update of the training data is plotted on axes calculated using the relevant data.  

This means that there will be slight differences in axes but as only a relatively 

small amount of new data is added at each update it is not expected that there will 

be much change (and this is reflected in the plots).   

 

The principal component plots in Figure 5.2 show that there are some subtle 

changes to the clusters as the updates take place.  In particular, there is a much 

higher density of points around (0, 0) on the plot of false hits after the second 

update than there is for the original training data.  However, as discussed in 

Section 5.3.1, these results suggest that principal component axes may not be the 

best method of visualising the data in order to see changes in the distributions of 

the groups.  In contrast, the plots of crimcoords in Figure 5.3 give a much better 

indication of how the distributions of the true hit and false hit groups are changing 
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as the training data is updated.  The true hit group has expanded so that its 

boundaries are at 0 and -12 on crimcoord 1 for the second update of the training 

data whereas the boundaries on crimcoord 1 for the original training data were at  

1 and -8.  In other words, the within group variability of the observations has 

increased and the group centroid has moved.   

 

 

Figure 5.2: Principal component plots for updating training data using linear 

discriminant analysis 

 

 
Further to the discussion earlier in this section about the results in Table 5.2 not 

suggesting that the updating algorithm is improving the predictive performance of 
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linear discriminant analysis, the plots in Figure 5.3 show that there is no clear 

distinction of the groups in linear discriminant space for any of the iterations of 

the training data. In other words, for the original training data and for the two 

updated training sets the three groups are overlapping each other and therefore the 

linear discriminants will make classification errors.  This is not improved by the 

updating procedure because changes are not made at the overlapping boundaries 

of the groups to make them distinct.  

 

Figure 5.3: Linear discriminant plots for updating training data 
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5.3.3  K-Nearest Neighbours 

 
This section involves the application of the k-nearest neighbour algorithm both as 

part of and independent of the updating algorithm.  A comparison of the results of 

applying both methods is presented but first a description of the method for 

selecting the value of k (the number of neighbours) is given.  Full details of the k-

nearest neighbour algorithm can be found in Section 2.3.4. 

 

Figure 5.4: Associated misclassification rates for numbers of nearest neighbours 

 
When implementing the k-nearest neighbour algorithm the knn.cv function in R 

was used to apply a leave-one-out cross-validatory approach for selecting the 

value of the parameter k.  For each observation in the training data, the k nearest 

(in Euclidean distance†) other training observations are found, the classification is 

then decided by majority vote with any ties broken at random.  In the case of there 

being ties for the kth nearest observation, all candidates are included in the vote 

                                                      
† Note that other distance metrics can be used (see Section 2.3.4). 
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(Molina et al., 1994 and Venables and Ripley, 2002).  Figure 5.4 is a plot of k (the 

number of nearest neighbours) against the leave-one-out cross-validated 

misclassification rate.  In this case the expected optimum value for k would be 

small because the principal component plots in Figures 3.6, 5.1 and 5.2 show the 

three groups in the data to be occupying the same space.  In other words, choosing 

a large value for k would increase the chance of selecting data points from the 

wrong group.  This is reflected in Figure 5.4 where the misclassification rate is 

minimised when k equals four and the misclassification rate tends to increase as 

the value of k increases.  The above procedure for selecting a value of k was 

repeated each time the training data was updated (not shown here). 

 

 

Table 5.3: Comparing updating with no updating using a k-nearest neighbour 

classifier 

No Updating Iteration Final Model (Updating) Observed 
Classifications A B B A B 

Hits 32 13 12 36 17 
Good Hits 24 11 18 27 16 
Non-Hits 4 16 22 7 11 
Focus Error 19 4 3 5 2 
Over Confluent 5 1 26 1 5 
Toxic 5 25 3 0 2 
High Background 1 24 1 1 0 
No Image 0 1 0 0 0 
Well Dry 0 0 0 0 0 
 

 

Table 5.3 compares the results of classifying the two batches of test data (A and 

B) using a k-nearest neighbour classifier as part of and independently of the 

updating algorithm.  A list of all possible classifications is contained in the first 

column of this table and the observed classifications of those compounds that 

were predicted to be hits by k-nearest neighbour with no-updating for batches A 

and B are shown in the second and third columns respectively.  When applying 

the updating algorithm each iteration (with the exception of the first) uses a 

different model for prediction than when there are no updates, therefore the fourth 

column shows the results of classifying batch B after the model has been updated 
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using the addition information from batch A.  The fifth and sixth columns contain 

the observed classifications (for batches A and B respectively) of those 

compounds that were predicted to be hits by the final updating model.  In other 

words, these are the results of applying the k-nearest neighbour classifier that has 

been updated using all batches of data.    

 

Comparing the results of classifying using k-nearest neighbours without updating 

with those of the final model of the updating algorithm (i.e. comparing the second 

and third columns of Table 5.3 with the fifth and sixth columns) it can be seen 

that for both batches the number of hits and good hits identified has been 

increased by using the updating methodology.  The most noticeable difference 

between the two methods is seen when comparing the results for batch B with the 

final model classifying twenty-three fewer toxic compounds and twenty-four 

fewer compounds with high background as hits than the no updating method.  

Further reductions in the number of focus errors, over confluent compounds and 

toxic compounds are seen in Batch A but there is a slight increase in the number 

of non-hits. 

 

Comparing the results of classifying batch B at the iterative stage of the updating 

algorithm with those using the no update method (columns four and three 

respectively in Table 5.3) it can be seen that there are an extra seven good hits 

selected by updating and a reduction in the number of toxic and high background 

compounds selected as hits (twenty-two and twenty-three less respectively).  

However, these improvements are at the cost of an extra six non-hits and twenty-

five over confluent compounds being incorrectly classified.    
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5.3.4  Mixture Discriminant Analysis 

 
In this section mixture discriminant analysis is applied to the data set both as part 

of and independent of the updating algorithm.  A comparison of the results of 

applying both methods is presented but first a description of the method for 

selecting the number of clusters for each group is given.  See Section 2.3.2 of 

Chapter 2 for details of the mixture discriminant analysis methodology. 

 

Figure 5.5: Selecting cluster numbers for mixture discriminant analysis: 

(a) plot of number of clusters against within-group sum of squares; (b) principal 

component plot with two clusters; (c) principal component plot with three clusters; and 

(d) principal component plot with four clusters.  

 

 

 

 

 

 

 

 

  (a)            (b) 

 

 

 

 

 

 

 

 

 

  (c)            (d) 
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The mixture discriminant analysis was carried out using the mda package (Hastie 

et al., 2006) within R.  This function requires the number of clusters for each 

group to be chosen.  In order to determine this, the informal method of examining 

the value of the within-group sum of squares associated with solutions for a range 

of different group sizes was used.  As the number of groups increases the within-

group sum of squares will decrease but a large change in the level of the plot may 

be indicative of the best solution (Everitt et al., 2001 and Everitt, 2005).  This is 

exemplified by the top left-hand plot of Figure 5.5, where the number of clusters 

for the true hits class is being investigated.  This plot of the number of clusters 

against within-group sum of squares shows that the main change in level occurs 

between 2 and 4 clusters.  The decision is further aided by the remaining three 

plots of Figure 5.5 which show the first two principal components for the 

corresponding data with the top left-hand plot showing 2 clusters (as determined 

by a k-means clustering algorithm) for the data and the bottom left and right-hand 

plots showing 3 and 4 clusters respectively.  The large blue crosses on each plot 

indicate where the mean is located for each cluster.  Using this information it was 

decided that 4 clusters would be the most appropriate because this treats the small 

outlying group to the right of principal component one as a separate cluster.  For 

alternative methods for choosing numbers of clusters see Everitt et al. (2001). 

 

Table 5.4: Comparing updating with no updating using mixture discriminant 

analysis 

No Updating Iteration Final Model (Updating) Observed 
Classifications A B B A B 

Hits 85 15 22 64 20 
Good Hits 15 16 19 31 18 
Non-Hits 36 27 36 20 34 
Focus Error 27 5 9 21 9 
Over Confluent 27 25 30 20 28 
Toxic 39 45 1 1 0 
High Background 5 4 3 3 0 
No Image 0 0 0 3 6 
Well Dry 0 0 0 0 1 
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Table 5.4 compares the results of classifying the two batches of test data (A and 

B) using mixture discriminant analysis as part of and independently of the 

updating algorithm.  The first column of this table contains a list of all possible 

classifications and the observed classifications of those compounds that were 

predicted to be hits by mixture discriminant analysis with no-updating for batches 

A and B are shown in the second and third columns respectively.  When applying 

the updating algorithm each iteration (with the exception of the first) uses a 

different model for prediction than when there are no updates, therefore the fourth 

column shows the results of classifying batch B after the model has been updated 

using the additional information from batch A.  The observed classifications (for 

batches A and B) of those compounds that were predicted to be hits by the final 

updating model are shown in the fifth and sixth columns respectively.  In other 

words, these are the results of applying mixture discriminant analysis that has 

been constructed using training data that has been updated using all batches of test 

data.   

 
Comparing the results of classifying batch A without updating with those of using 

the final mixture discriminant model of the updating algorithm (i.e. comparing the 

second column of Table 5.4 with the fifth) it can be seen that by updating the rule 

there is a reduction in the number of false hits and non-hits classified as hits.  57% 

of compounds that were predicted to be hits by the none updating model were 

found to be misclassifications whereas 42% of compounds predicted to be hits by 

the final updating model were misclassifications.  In addition, the final updating 

model predicted an extra sixteen good hits but this was at the expense of 

classifying twenty-one fewer hits than the non-updating model. 

 

A comparison of the results of classifying batch B at the iterative stage of 

updating with those using the non-updating model and those using the final 

mixture discriminant model (fourth, third and sixth columns of Table 5.4 

respectively) shows that both at the iterative stage and when using the final model 

there is an increase in the number of hits and good hits found and a large decrease 

in the number of toxic compounds classified as hits.  However, there are small 
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increases in the numbers of non-hits, over confluent compounds and compounds 

with focus error that were classified as hits.   

 

 

5.4 Overall Comparison of Classification Methods 

 
The next stage of the analysis was to collate all of the results from sections 5.3.1 

to 5.3.4 so that a comparison of the four different multivariate classifiers (both 

with and without using the updating algorithm) could be made with the current 

single parameter approach.  This section presents the subsequent findings. 

 

Table 5.5 compares the results of classifying the two batches of test data (A and 

B) using the single parameter approach (see Section 3.2.3 of Chapter 3 for details) 

and the four classifiers (random forests, linear discriminant analysis, k-nearest 

neighbours and mixture discriminant analysis) from Sections 5.4.1 to 5.4.4.  With 

the exception of the single parameter approach the classifiers are applied using the 

classical non-updating methods and the updating algorithm.  The results of 

applying the updating algorithm differ from those in the previous four sections 

because the results of the iterative stages of classification have been combined 

with classifications of the final models (this corresponds to step 7 of the 

algorithm).  The first column of the table contains a list of all possible observed 

classifications.  The remaining columns show the observed classifications of those 

compounds that were predicted to be hits by the nine different methods.  Note that 

the results of updating displayed in Table 5.5 are the final results of applying the 

algorithm and do not represent the number of images that were required to be 

checked to achieve the final classifications.  These results are compared later in 

Table 5.6. 

 

 





 

Table 5.5: Comparing the single parameter classifier with multi-parameter classifiers 

 

Single 

Parameter 

Approach 

Random 

Forest 

Random 

Forest 

(Updated) 

LDA LDA 

(Updated) 

KNN KNN 

(Updated) 

MDA MDA 

(Updated) 

 

A B A B A B A B A B A B A B A B A B 

Hits 50 19 75 21 75 22 55 18 58 19 32 13 43 17 85 15 101 23 

Good Hits 31 20 30 19 30 20 31 19 34 19 24 11 27 18 15 16 36 20 

Non-Hits 0 0 15 35 0 1 16 36 7 2 4 16 5 2 36 27 11 7 

Focus Error 21 10 5 2 0 0 3 0 1 1 19 4 3 0 27 5 6 3 

Over Confluent 2 3 6 39 0 0 5 9 0 1 5 1 0 0 27 25 10 7 

Toxic 3 7 7 18 0 0 2 0 1 0 5 25 0 1 39 45 1 0 

High Background 12 7 0 6 0 0 2 0 2 0 1 24 1 0 5 4 2 0 

No Image 3 7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 6 

Well Dry 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

O
bserved C

lassification 

Low Draq 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Comparing the results in Table 5.5 the most noticeable difference between the 

classifiers is the number of extra hits and good hits that have been found when 

using mixture discriminant analysis.  The updated version of this classifier finds 

one hundred and one hits in batch A which is sixteen more than the non-updated 

version and twenty-six more than the closest alternative (random forests).  In 

general, it can be seen that with the exception of the two versions of k-nearest 

neighbours all the multi-parameter classifiers find more hits for batch A than the 

single parameter approach and the two versions of random forests and updated 

mixture discriminant analysis find more in batch B.  However, in the case of 

finding good hits, only the updated versions of linear discriminant analysis and 

mixture discriminant analysis perform better than the single parameter approach 

for batch A and, updated random forests and updated mixture discriminant 

analysis find the same number for batch B. 

 

Focusing on the comparison of the number of non-hits and false hits predicted to 

be hits by the different classifiers shows that mixture discriminant analysis makes 

the most mistakes with two hundred and forty misclassifications for the two test 

batches combined.  The best performance in terms of accuracy was the updated 

random forest which only made one mistake in final classification.  However, it is 

important to remember that the updating results in Table 5.5 are obtained from 

applying the full updating algorithm and do not show the mistakes made during 

each of the iterations (these can be seen in Tables 5.1 to 5.4).  A further 

comparison of misclassifications is made later in Table 5.6 when the ratio of hits 

found to images checked by the expert is examined. 

 

A further important criterion in comparing the classifiers is the number of false 

negatives misclassified by each model; in other words, the number of hits that 

were classified incorrectly as non-hits or false hits.  As described at the beginning 

of this application section, the large number of compounds in each test batch 

means that it was not possible to check the true classifications of the false hit and 

non-hit groups but by compiling a list of all compounds found to be hits by the 

different classifiers an idea of how they are performing can be gained.  
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Completing this analysis shows that in batch A a total of one hundred and twenty 

hits and fifty-one good hits were found and in batch B, thirty-five hits and twenty-

one good hits were found.  These results show that for updated mixture 

discriminant analysis (which identified the most hits) there were a minimum of 

nineteen false negatives (i.e. nineteen hits classified as non-hits or false hits that 

were in fact hits).  

 

Table 5.6 compares the number of hits and good hits found by each classifier to 

the number of images that were required to be checked in order to achieve the 

classification.  The first column is a list of all classifiers used and, the second, 

third and fourth columns show the number of hits found, good hits found and 

images checked respectively.  The final column shows the percentage of images 

checked that were found to be hits for each method.  The aim of this analysis is to 

look at the time and effort required by the expert to check images with respect to 

the number of good compounds found. 

 

 

Table 5.6: Comparing hits found to number of images checked for different 

classifiers 

Classifier Hits 
Found

Good 
Hits 

Found 

Images 
Checked

% Images Checked 
That Were Found 

to be Hits 
Single Parameter 69 51 202 59 % 
Random Forest 96 49 272 53 % 
Random Forest (Updated) 97 50 250 59 % 
LDA 73 50 196 63 % 
LDA (Updated) 77 35 256 44 % 
KNN 45 35 185 43 % 
KNN (Updated) 60 35 196 49 % 
MDA 100 31 371 35 % 
MDA (Updated) 124 56 450 40 % 
 

 

The updated mixture discriminant analysis identifies the most hits and good hits 

of all the classifiers but as the results in Table 5.6 show, this method also requires 

the largest number of images to be checked in order to achieve this classification 
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(only 40% of images checked turned out to be hits).  Conversely, linear 

discriminant analysis has the largest percentage of images checked that turn out to 

be hits (63%) but it identifies fifty-one less hits and six less good hits than mixture 

discriminant analysis.  

 

It is clear that the optimum classifier would find a large number of hits and these 

hits would correspond to a high percentage of the images checked.  The evidence 

in Table 5.6 suggests that the updated random forest is the optimum classifier.  

Using this method the joint second (with the single parameter approach) highest 

percentage of images checked that turn out to be hits (59%) is found but the 

method also identifies twenty-eight more hits than the single parameter.  

However, the single parameter does identify one extra good hit than the updated 

random forest.  

 

 

5.5 Sensitivity of Batch Orderings 
 

The previous sections of this chapter have concentrated on describing the new 

methodology and applying it based on a number of different classifiers.  This 

section will concentrate on a further aspect of evaluating the methodology by 

investigating how sensitive the algorithm is to the ordering of the batches.  In 

other words, does the algorithm produce the same classification results regardless 

of the order of the batches?  During this investigation, the updating algorithm was 

applied with the random forest classifier. 

 

If the exact form of the final models as determined by the updating algorithm 

could be written down then the results produced by different batch orderings 

could be compared.  However, as a random forest classifier is being used, this is 

not possible.  Therefore, to empirically investigate the sensitivity of the batch 

orderings a comparison was made between the results of classifying the 

compounds as batches were permuted.  In particular, each of the two batches of 

test data were randomly divided into two sub-batches (A1, A2, B1, B2); a random 
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order was then assigned to the sub-batches and the updating methodology was 

used to predict the class of the compounds.  This process was repeated 8 times so 

that the predictions made by the model for each sub-batch order could be 

compared. 

 

Table 5.7 shows the results of investigating the sensitivity of the classification 

results when permuting the batch orders.  The first column lists the eight different 

permutations of batches used for classifications and the remaining seven columns 

show the true classifications of all those compounds identified as hits.  These 

results suggest that there is some variation in the predicted classifications for the 

different batch orderings.  The most noticeable difference appears to be between 

those orderings which start with batch A and those which start with batch B.  A 

detailed comparison of this difference shows that when a sub-batch from batch A 

is the first to be classified there are more hits identified than when a sub-batch 

from batch B is the first to be classified.  However, when comparing the numbers 

of compounds that were found to have been misclassified (i.e. the non-hits and the 

false hits) it can be seen that there is little difference between the results for all 

eight permutations. 

 

 

Table 5.7: Observed classifications of hit selected compounds using updated 

random forests with different batch orders 

Batch Order Hit Good 
Hit 

Non-
Hit 

Focus 
Error 

High 
Background

Over 
Confluent 

Toxic 

A1, B1, A2, B2 95 52 1 2 0 3 1 
A1, B2, A2, B1 96 50 1 1 0 0 0 
A2, B1, B2, A1 94 49 3 1 0 2 0 
A2, B2, A1, B1 91 50 2 0 0 0 0 
B1, A2, B2, A1 83 48 2 0 0 0 0 
B1, B2, A1, A2 84 49 2 1 3 0 0 
B2, A1, A2, B1 87 49 3 0 0 0 0 
B2, A1, B1, A2 83 49 2 0 1 0 0 
 

 

In conclusion, the results of Table 5.7 show that the results of classification vary 

as the batch ordering is permuted but it is suggested that in this case the updating 
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algorithm approximately converges to the same classification.  However, it may 

be of interest to investigate this further by considering larger numbers of batches 

(this has not been done here because the process of classifying the data in 

different batch orders is very time consuming for the imaging expert).  Further 

discussion of this is given in Section 5.6. 

 

 

5.6 Summary 

 
The aim of this chapter was two-fold.  The first was to introduce the methodology 

for a new classification method for batches of compounds where the rule is 

updated sequentially using information from the classification of previous 

batches.  The aim of this new algorithm was to take into account a reduction in 

classifier performance due to the training data not being representative of the test 

data and that the distributions of the groups in the data change as new batches of 

compounds are introduced.   The second aim of the chapter was to apply this new 

methodology to our example data set using a number of different classifiers so 

that the results could be compared with standard methods of classification and the 

current single parameter methodology from high content screening data analysis. 

 

The updating algorithm has been shown to improve the predictive capability of 

the four classifiers it has been tested on.  In particular, all of the updated 

classifiers have identified more hits than their equivalent non-updated classifiers 

and the single parameter approach.  In addition, by updating random forests, 

k-nearest neighbours and mixture discriminant analysis it has been shown that 

they are more efficient in terms of the number of images that are required to be 

checked by the screening expert per hit found than when not updating.    

 

Further analysis concentrated on showing how the distributions of the groups in 

the training data changed as new batches of data were introduced and the training 

data was updated.  From the results of this analysis it was concluded that principal 

component analysis is not useful in visualising data for this purpose but by 
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plotting the data on crimcoords calculated during linear discriminant analysis it is 

possible to show how the shape of the true hit and false hit clusters change as the 

data is updated; hence, indicating an increase in within group variability and a 

change in the position of the centroid of the groups.  

 

The results of investigating the sensitivity of the classification results when 

changing the batch orderings showed that there is some variation when permuting 

the batches but it is suggested that in this case the updating algorithm 

approximately converges to the same classification.  However, without further 

analysis it is not possible to comment generally on how sensitive the algorithm is 

to changes of batch orderings.  It is possible to optimise the orderings of the 

batches or the compounds within the batches before they are classified by the 

updating algorithm using methods such as Willett (2006). However, any increase 

in accuracy from doing this would have to be balanced against the time taken to 

implement it.   

 

In addition to looking at the sensitivity of classifications in future high content 

screening data sets, it may also be of interest to investigate this area further by 

considering larger numbers of batches (the batches used in our analysis only make 

up a small proportion of a full high content screening experiment).  Further 

analysis could also focus on finding an optimal batch size (i.e. finding the most 

appropriate number of compounds to be in each batch).  This could vary from 

only classifying a single compound at a time (this would not be practical in the 

case of high content screening experiments because of the very large number of 

compounds to be classified but may be appropriate in other contexts) to 

classifying batches of many thousands of compounds.  

 

The objectives of the compound hit selection data set out in Section 3.2.5 

identified that any multi-parametric approach should aim to identify more hits 

than the single parameter approach while reducing the number of false positives 

and false negatives.  The results of the analyses in this chapter have shown that 

when applying the updating algorithm with the random forest, k nearest neighbour 
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and mixture discriminant classifiers these objectives are fulfilled.  However, the 

study of the new classification algorithm has so far focused on the application of a 

number of classifiers to one high content screening experiment data set.  In the 

next chapter a new high content screening case study is introduced so that the 

application of the updating algorithm can be investigated further.  This work will 

focus on using the random forest classifier as this was found to perform ‘best’ 

during comparisons made in Section 5.4. 



 

 

Chapter 6 

 

 

Second Case Study 

 

6.1 Introduction 

 

This chapter continues the study of the new classification updating algorithm that 

was introduced in Chapter 5.  The methodology is applied to a new high content 

screening case study with a different biological assay to that described in Chapter 

3 as an illustration of its application in a different context. All multi-parametric 

classifications in this chapter are made using a random forest as this was found to 

perform ‘best’ in the previous chapter and comparisons are made with the single 

parameter approach. 

 

The data to be analysed in this chapter comes in two forms.  The first uses the 

same imaging algorithms as were used to produce the variables for the data 

described in Chapter 3.  The second uses some new imaging algorithms which are 

supposed to be more accurate in their measurements of the biological features.  

Therefore, a further aim of this chapter is to make comparisons of the results 

produced using these different methods of producing variables. 

 

The outline of the remainder of this chapter is as follows.  Section 6.2 gives 

details of the data and a brief discussion of the features that are essential to the 

analysis.  Section 6.3 applies the random forest and updated random forest 
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methods of classification to the two sets of data.  Comparisons are then made 

between using the old and new sets of variables and the multi-parametric 

classifiers are compared with the single parameter approach.  Finally, Section 6.4 

summarises and discusses the results of this chapter.  

 

 

6.2 Data Description 
 

As with the first case study, the data available from the screening experiment were 

collected in three batches.  The first of 7,680 compounds form the training data.  

These compounds were selected because of their known properties and were used 

in a pre-screen to validate the experimental procedures.  The remaining two 

batches each of 15,360 compounds form the test data. 

 

All three batches of data (training and two test sets) were originally classified 

using the single parameter approach that is described in Section 3.2.3.  However, 

this case study differs from that of the previous one in that an observation was 

classified as a hit when it was two and a half standard deviations away from the 

median rather than three.  This change in the selection procedure is not 

uncommon and in this case it was due to the low numbers of hits selected if the 

threshold were three standard deviations.  This is reflected in the classifications 

shown in Table 6.1.   

 

Table 6.1: Single parameter classification 

Single Parameter Observed 
Classifications Training Batch A Batch B 

Hits 0 3 2 
Good Hits 12 37 6 
False Hits 77 112 113 
Non-Hits 1 1 1 

 

 

Table 6.1 shows the results of classifying the training data and batches A and B of 

the test data using the single parameter approach.  Note that although there are 
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two sets of variables for this data set, the variable used for the single parameter 

classifications remains the same throughout.  Examining the results of classifying 

the training data a number of features can be seen.  Firstly, no hits and only a 

small number of good hits have been identified, and secondly, the classifier has 

found a comparatively large number of false hits.  This suggests that the single 

parameter approach cannot accurately distinguish between the hits and false hits 

and that there are either a small number of hits and good hits to be found or there 

are false negatives (i.e. hits classified as non-hits).   Moreover, any multi-

parameter classifier that is based on this training data will have no information 

from which to classify hits in the test batches and hence provides evidence that the 

updating algorithm may benefit classification accuracy. 

 
 

6.3 Application of Updating Algorithm 

 
This section is concerned with applying the updating algorithm for Section 5.2 to 

the second high content screening data set that was described in the previous 

section. All classifications in this section have been made using the random forest 

classifier (both with and without updating) as this was found to be the most 

successful classifier of those tested in the previous chapter.  Section 6.3.1 

concentrates on the classification of the data generated using the old imaging 

algorithms, Section 6.3.2 focuses on classifying the data generated using the new 

imaging algorithms and Section 6.3.3 compares the results of the two multi-

parametric models with that of the single parameter approach. 

 

 

6.3.1 Old Variables 
 

Table 6.2 compares the results of classifying the two batches of test data (A and 

B) using a random forest classifier as part of and independently of the updating 

algorithm.  The results shown in this table are from data generated by using the 

old imaging algorithms.  The first column of this table contains a list of all 
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possible classifications and the second and third columns show the observed 

classifications (for batches A and B respectively) of those compounds that were 

predicted to be hits by the random forest with no updating.  When applying the 

updating algorithm, each iteration (with the exception of the first) uses a different 

model for prediction than when there are no updates, therefore the fourth column 

shows the results of classifying batch B after the model has been updated using 

the addition information from batch A.  The fifth and sixth columns contain the 

observed classifications (for batches A and B respectively) of those compounds 

that were predicted to be hits by the final updating model.  In other words, these 

are the results of applying the random forest model that has been updated using all 

batches of data.    

 

 

Table 6.2: Comparing updating with no updating using a random forest classifier 

No Updating Iteration Final Model (Updating) Observed 
Classifications A B B A B 

Hits 2 0 0 2 0 
Good Hits 27 3 3 30 4 
False Hits 2 1 0 1 0 
Non-Hits 0 0 0 0 0 
 

 

Comparing the results of classifying without updating with those of the final 

model of the updating algorithm (i.e. comparing the second and third columns of 

Table 6.2 with the fifth and sixth columns) it can be seen that for both batches 

there is a slight increase in the number of good hits found with the updating 

methodology identifying three extra good hits in batch A and one extra in batch B.  

In addition, the updating methodology has reduced the number of false hits from 

that of the non-updated random forest with two fewer being found over the two 

batches.  Further comparison with the classifications at the iterative stage of the 

updating algorithm ( column four in Table 6.2) shows that the reduction in false 

hits for batch B occurs after updating the training data with the classifications 

from batch A.  The reduction in false hits for batch A and the increases in good 
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hits found in batches A and B occur when applying the final model to the two test 

batches. 

 

6.3.2 New Variables 
 

Table 6.3 compares the results of classifying the two batches of test data (A and 

B) using a random forest classifier as part of and independently of the updating 

algorithm.  The results shown in this table are from data generated by using the 

new imaging algorithms and variables.  A list of all possible classifications is 

contained in the first column of the table and the observed classifications of those 

compounds that were predicted to be hits by the random forest with no-updating 

for batches A and B are shown in the second and third columns respectively.  

When applying the updating algorithm each iteration (with the exception of the 

first) uses a different model for prediction than when there are no updates, 

therefore the fourth column shows the results of classifying batch B after the 

model has been updated using the additional information from batch A.  The fifth 

and sixth columns contain the observed classifications (for batches A and B 

respectively) of those compounds that were predicted to be hits by the final 

updated model. 

 

 

Table 6.3: Comparing updating with no updating using a random forest classifier 

No Updating Iteration Final Model (Updating) Observed 
Classifications A B B A B 

Hits 2 0 0 2 0 
Good Hits 26 4 4 28 4 
False Hits 2 1 0 0 0 
Non-Hits 0 0 0 0 0 
 

 

Comparing the results of classifying without updating with those of the final 

model of the updating algorithm (i.e. comparing the second and third columns of 

Table 6.2 with the fifth and sixth columns) it can be seen that for both batches 

there is a slight increase in the number of good hits found with the updating 
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methodology identifying two extra good hits in batch A.   In addition, the 

updating methodology has reduced the number of false hits from that of the non-

updated random forest with the updating model classifying no false hits as true 

hits.   

 

 

6.3.3 Comparison of Classifiers 
 

The next stage of analysis was to collate the results of the single and multi-

parameter approaches from sections 6.2, 6.3.1 and 6.3.2 so that a comparison 

could be made.  This section presents the subsequent findings. 

 

Table 6.4 compares the results of classifying the two batches of test data (A and 

B) using the single parameter approach and the two random forest classifiers (one 

using the old variables and the other using the new) from sections 6.3.1 and 6.3.2.  

Both of the random forest classifiers are applied using the classical non-updating 

method and the new updating algorithm.  The first column of the table contains a 

list of all the possible observed classifications.  The remaining columns show the 

observed classifications of those compounds predicted to be hits by the five 

different methods.  Note that the results of updating displayed in Table 6.4 are the 

final results of applying the algorithm and do not represent the number of images 

that were required to be checked to achieve the final classifications.  These results 

are compared later in Table 6.5. 

 

Focusing on the results of classifying using the random forest in Table 6.4 it can 

be seen that there is little difference between using the old and new variables.  The 

results of classifying using the random forest with no update (columns three and 

five of Table 6.4) show that when using the old variables an extra good hit is 

found in batch A but when using the old variables an extra good hit is found in 

batch B.  However, the results of applying the updating algorithm (columns four 

and six of Table 6.4) show that two extra good hits are found in batch A when 

using the old variables while the results for batch B were found to be the same for 
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both sets of variables.  These results suggest that the updating algorithm performs 

better in terms of classification when using the old set of variables and therefore 

the remainder of the analysis in this chapter will concentrate on using these 

variables.  

 

 

Table 6.4: Comparing the single parameter approach with multi-parameter 

classifiers 

Old Variables New Variables  
Single 

Parameter 
Approach 

Random 
Forest 

Random 
Forest 

(Updated) 

Random 
Forest 

Random 
Forest 

(Updated) 

 
 

Observed 
Classifications 

A B A B A B A B A B 
Hits 3 2 2 0 2 0 2 0 2 0 

Good Hits 37 6 27 3 30 4 26 4 28 4 
False Hits 112 113 2 1 1 0 2 1 0 0 
Non-Hits 1 1 0 0 0 0 0 0 0 0 

 

 

Further comparison of the results in Table 6.4 shows that the most noticeable 

difference between the single parameter approach and the random forest is the 

number of false hits that have been incorrectly classified as hits.  The updated 

version of the random forest (using the old variables) only misclassifies one false 

hit as a hit over the two batches of test data whereas the single parameter approach 

misclassifies two hundred and twenty five compounds.  However, the single 

parameter approach does identify more hits and good hits than the updated 

random forest for both batches.  These results show that the updated random 

forest has achieved the objective of reducing the number of false positives but has 

more false negatives than the single parameter approach. As stated in Section 

3.2.5, only a limited number of compounds can be taken forward to the next stage 

of screening and therefore the most important objective is to reduce the amount of 

manual image inspection.  The results of investigating this are shown in Table 6.5.  

 

Table 6.5 compares the number of hits and good hits found by each classifier to 

the number of images that were required to be checked in order to achieve the 
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classification.  The first column lists all the classifiers used and, the second, third 

and fourth columns show the number of hits found, true hits found and images 

checked respectively.  The final column shows the percentage of images checked 

that were found to be hits.  The aim of this analysis is to look at the number of 

images that are required to be checked by the imaging expert for each of the hits 

and good hits found. 

 

 

Table 6.5: Comparing hits found to number of images checked for different 

classifiers 

Classifier Hits 
Found

Good 
Hits 

Found 

Images 
Checked

% Images Checked 
That Were Found 

to be Hits 
Single Parameter 5 43 275 17.5% 
Random Forest 2 30 35 85.7% 
Random Forest (Updated) 2 34 38 94.7% 
 

 

Comparisons of the results in Table 6.4 have shown that the single parameter 

approach identifies more hits and good hits than both the updated and non-

updated random forest.  However, as the results in Table 6.5 show, the single 

parameter approach also requires the largest number of images to be checked in 

order to achieve this classification (only 17.5% of images checked turned out to 

be hits).  If this is compared to the non-updated random forest it can be seen that 

there is a great reduction in the number of images that are required to be checked 

per hit found with 85.7% of the images checked being hits.  This figure is then 

improved upon further by using the updated random forest with 94.7% of the 

images checked being found to be hits. 

 

From the objectives set out in Chapter 3 and the previous analysis described in 

Chapter 5, the optimum classifier for the high content screening experiments 

described in this thesis would find a large number of hits (or good hits) and these 

hits would correspond to a high percentage of the images that are checked by the 

screening experiment.  The results shown in Tables 6.4 and 6.5 suggest that the 
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updated random forest fits these criteria better than the single parameter approach 

and therefore the updated random forest is believed to be the optimal classifier of 

those tested. 

 

 

6.4 Summary 

 
The analyses in this chapter have applied the new updating algorithm that was 

introduced in Chapter 5 to a second high content screening case study.  The 

primary aims of this were to demonstrate that the algorithm can be used on more 

than just one data set and to further investigate the algorithm with respect to the 

objectives set out in Section 3.2.5. 

 

The results presented in this chapter have again shown that the updating algorithm 

improves the predictive capability of the random forest when sequentially 

classifying batches of compounds.  In particular, when using the updating 

methodology there was an increase in the number of good hits found and a 

reduction in the number of false hits than when classifying using the non-updated 

random forest.  However, comparison has also shown that the single parameter 

approach identifies more hits and good hits than both the updated forests but the 

single parameter approach is much less efficient in terms of the number of images 

that are required to be checked by the screening expert per hit found.  Hence, in 

this case the updating algorithm has not fulfilled all the objectives that were set 

out in Section 3.2.5 but has still been shown to be a much more efficient method 

of classifying high content screening data when compared to the single parameter 

approach. 

 

The secondary objective of this chapter was at the request of the screening expert 

and involved comparing classifications when using two different sets of variables.  

The first set of variables were produced using the same imaging algorithms as 

were described in Chapter 3 and the second set of variables were produced using a 

new set of imaging algorithms.  The results of these comparisons showed that 
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when using the updating algorithm there was little difference between the 

classifications but there were two extra good hits found in batch A when using the 

old set of variables.  It is however important to note that the comparison of the 

different sets of variables has only been conducted on one data set and further 

analysis would be required to make general conclusions about which variables are 

most suitable for classification.  

 

The multi-parameter classifications that have been conducted in this chapter have 

used the random forest as this was found to be the ‘best’ method of classification 

in Chapter 5.  Further analysis of the data in this chapter may focus on testing 

further classifiers to compare with the random forest.  It is suggested that different 

classifiers may perform optimally for data generated using different biological 

assays or from different experiments.   

 

All of the multi-parameter classifiers that have been applied to the data in this 

chapter were trained using all of the available variables.  In other words, no 

variable selection has been applied to the data before making classifications and 

comparisons between classifiers and different methods of generating data.  Any 

further comparisons between classifiers the old and new variables may wish to 

take this into account as the variables selected may have an effect on the final 

classifications.  This is discussed in further detail and in the wider context of all 

supervised classifiers in this thesis in Chapter 8. 

 

 



 

Chapter 7 

 

Clustering Dose Response Data 

 

7.1 Introduction 

 

This chapter is concerned with using data from high content screening 

experiments to cluster compounds based on similarities of their dose response on 

liver cells.  As previously described in Section 3.3, this type of analysis is an 

important step in the evaluation of potential drugs because drug induced liver 

injury is the most common cause for non-approval, withdrawal, limitation in use, 

and clinical monitoring by the Food and Drug Administration (Ainscow, 2007a). 

  

The main focus of the work reviews and applies the methodology of Perlman et 

al. (2004a).  The results of these analyses show that in its current form this 

methodology is not suitable for clustering the compounds in the data set being 

considered and therefore alternative approaches are suggested and applied. 

 

The remainder of this chapter is structured in the following way.  A review of the 

existing methodologies in the literature is given in Section 7.2.  The approach of 

Perlman et al. (2004a) is applied to the data set of interest in Section 7.3 before 

Section 7.4 describes and applies possible changes to the methodology.  Finally, 

Section 7.5 summarizes the chapter. 
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7.2  Existing Methodologies 
 

There are two specific examples of clustering the dose response effects of 

compounds on cells in high throughput screening experiments in the literature; 

Perlman et al. (2004a, 2004b) and O’Brien et al. (2006).  Both of these are 

described and discussed below.  

 

Perlman et al. (2004a) describe an approach of multidimensional drug profiling 

using the Kolmogorov-Smirnov statistic and titration-invariant similarity scores. 

(Note that titration is the process of gradually adjusting the dose until a desired 

effect is achieved.  The experiment being considered here defines the doses a 

priori and therefore the titration terminology should be replaced with dose).  In 

order to apply this methodology a population histogram and cumulative 

distribution function are generated for each given compound, titration (dose) and 

descriptor (variable).  Given c = 1,…,C compounds, t = 1,…,T titrations and d = 

1,…,D descriptors then the effect of a compound c at titration t is assessed by 

calculating the Kolmogorov-Smirnov statistic KSc,d,t = KScdt(pc,d,t,q) for each of 

the D descriptors. The KS statistics provides a measure of the maximum vertical 

distance between the cumulative distribution function of the population response 

pc,d,t and the cumulative distribution function of the control q.  From this z-scores 

are computed, , , , , ( ( ))c d t c d t dz KS std q n= , where n is the population size of the 

cells used to determine pc,d,t. 

 

The next stage involves comparing different compounds independently of their 

titration (dose).  Perlman et al. (2004a, 2004b) suggest using a titration-invariant 

similarity score (TISS).  The methodology is described as follows.  For each 

compound c, a vector of z-scores across D descriptors and T titrations, 

 

( ),1,1 , ,1 ,1, , ,,..., ,..., ,c c c D c T c D TX z z z z= ,  
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is formed.  In order to allow comparisons of compounds with different titration 

starting points, a titration sub-series is defined as  

 

( ),1,1 , ,1 ,1, , ,( ) ,..., ,..., ,...,c c c D c T s c D T sX s z z z z− −=   

 

and  

 

( ),1,1 , ,1 ,1, , ,( ) ,..., ,..., ,...,c c s c D s c T c D TX s z z z z+ +− = .   

 

This truncation of the starting or ending titrations allows the starting point of the 

series to be “shifted”.  The s-correlation for all vectors iX  and jX  is then defined 

as  

 

( )( ) , ( ) ( ), ( ) ( ) ( )ij i j i j i jx s X X s X s X s X s X s= = − . 

 

The “shifting” of compounds is illustrated in Figure 7.1.  From this figure it can be 

seen that when s has a value of zero the two compounds are compared with the 

same range of dose but when s has a value of one this allows each dose of 

compound 2 to be compared to the higher dose of compound 1.   

 

The final stage of Perlman et al. (2004a) involves finding a value of s from a range 

S s S− ≤ ≤  that maximizes the correlation.  However, since the s-correlations of 

compound vectors are not directly comparable for different values of s, a non-

parametric ranking is used to normalize these values.  Pearlman et al. (2004b) 

suggest that as each matrix followed an approximate Gaussian distribution an s-

similarity score could be defined by: 

 

( ) ( ) ( )( ){ }2min ( ) min # 1ij ij ijs entries in X s X s Cϕ ϕ= = ≥ − ,         (7.1) 
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where C is the number of entries in each matrix.  A value of zero corresponds to 

the most correlated pairs of compounds and a value of one corresponds to the least 

correlated pairs of compounds.   

 

Figure 7.1: Calculating correlation when “shifting” doses of compounds 

 
 

The methodology outlined by Perlman et al. (2004a) is shown to work when 

applied to the data set in their paper.  However, there are some aspects which raise 

concerns.  The main area of concern relates to the non-parametric ranking of the s-

correlations.  Using the definitions provided it is not possible to get a full range of 

similarity scores. Using equation 7.1 the following results can be obtained: 

 

( ) 1ijX s = −  ⇒  ( ) 1 2ijX s − = −  ⇒  1ijϕ = , 

( ) 0ijX s =  ⇒  ( ) 1 1ijX s − = −  ⇒  1ijϕ = , 

( ) 1ijX s =  ⇒  ( ) 1 0ijX s − =  ⇒  1
2ijϕ ≈ . 

 

Hence it is not possible to get a score of zero if the Gaussian assumption is 

correct.   As an alternative the s-similarity score could be defined as: 
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( ){ }2# ( )ij ijentries in X s X s C Cϕ = ≥ −  

 

The first change that has been made is to the denominator of the expression.  It is 

not necessary to consider the diagonal values of the correlation matrix because in 

the case where the doses are not being shifted (0) 1ijX = . This will skew the 

distribution for calculating a similarity score and in the case where the doses are 

shifted it does not make sense to compare the same compound with different dose 

scales.  The second change that has been made is to the expression ( ) 1ijX s −  

which has been replaced with ( )ijX s .  This makes it possible for ijϕ  to range 

between zero and one.  Using this definition the following results are obtained: 

 

( ) 1ijX s = −   ⇒  1ijϕ = , 

( ) 0ijX s =   ⇒  1
2ijϕ ≈ , 

( ) 1ijX s =  ⇒  0ijϕ ≈ . 

 

Where a value of zero corresponds to the most correlated pairs of compounds and 

a value of one corresponds to the least correlated pairs of compounds.   

 

O’Brien et al. (2006) present a rather ad hoc method for discriminating between 

positive (toxic) compounds and negative compounds.  The method is based 

around quantifying a dose response relationship for each of five parameters using 

the IC50, the concentration causing 50% inhibition.    Discrimination of positive 

test results is based on several criteria.  Firstly, a minimum of two parameters has 

to show an effect greater than the variance of their measures across the wells 

within the plate.  Secondly, there needs to be a clear concentration-response 

relationship for the parameters in question.  Finally, the effect is categorized as 

either equivocal, positive of strongly positive.  When a change in parameter is 

between 1 and 2 times the coefficient of variation of the controls, the test is 

designated equivocal or weakly positive.  If a parameter has a change of 2 or 4 

times the coefficient of variation the test is designated positive of strongly 
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positive.  A negative test result is designated to be a result where the above 

criteria are absent.  

 

The methodology descried by O’Brien et al. (2006) clearly works for the data set 

that they are considering.  However, this approach is very data set specific and 

does not appear to be suitable as an automated method of classification.  For this 

reason this method has not been pursued any further.  The next section will 

concentrate on the application of the Perlman et al. (2004a) procedure. 

 

 

7.3  Application of Perlman et al. Methodology 

 

This section concentrates on applying and evaluating the technique of Perlman et 

al. (2004a, 2004b).  The main method of evaluating the results of the analysis was 

by examining the clusters of compounds that were produced when visualising the 

calculated similarities through principal coordinate plots.  Discussion is also 

included on the different ranges of dose shifts that are allowed through the 

methodology and the effect these have on the clustering. 

 

Figure 7.2: Cumulative distribution function curves  
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The first stage of applying the Perlman et al. (2004a) procedure involved plotting 

cumulative density curves.  This was done for a number of reasons.  Firstly, the 

controls from a number of different plates were compared in order to assess any 

between plate variability.  The plot of these curves in Figure 7.2 shows that there 

is a small amount of variability between the plates (as is to be expected) but not 

enough to suggest that there could be any plate effect on the compound 

measurements.  Secondly, curves were plotted for a number of compounds (both 

positive and negative) at different doses to see how these compounds differed 

from the controls.  Examining Figure 7.2 it can be seen that the cumulative 

density curves corresponding to the negative compounds are clustered around the 

control compound with small Kolmogorov-Smirnov distances (both positive and 

negative).  The positive compounds are located away from the cluster of negative 

and control compounds with larger negative Kolmogorov-Smirnov distances.  

 

Figure 7.3 shows a plot of the first two principal coordinate axes of compounds 

with no shift in dose allowed.  The corresponding plots in Figures 7.4, 7.5 and 7.6 

show compounds with a maximum dose shift of one, two and three respectively.  

Each compound on the plots is coloured according to the level of phospholipidosis 

expected and the reference compounds are labelled using letters.    

 

Examining the principal coordinate plots in Figures 7.3, 7.4, 7.5 and 7.6 it can be 

seen that there are no coherent clusters.  In particular, with the exception of a 

couple of compounds, those compounds which are positive are positioned in the 

same cluster as those which are negative (although plots of principal coordinates 

one and two are displayed here plots of higher dimensions were also examined).  

In addition, some of the reference compounds that have been replicated in the 

screen are not positioned in the same principal coordinate subspace (for example, 

CCCP and Fluoxetine in Figure 7.3) suggesting that either the measurements 

taken from the experiment are not consistent for identical compounds that have 

been replicated or the analysis being used is not appropriate for capturing the 

biological activity in the data set. 
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Figure 7.3: Principal coordinate plot of compounds with no dose shift allowed 

 
 

Figure 7.4: Principal coordinate plot of compounds with maximum of one dose 

shift allowed 

 



Chapter 7: Clustering Dose Response Data 

 

 121

Figure 7.5: Principal coordinate plot of compounds with maximum of two dose 

shifts allowed 

 
Figure 7.6: Principal coordinate plot of compounds with maximum of three dose 

shifts allowed 
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Further investigation of the reference compounds in Figures 7.3, 7.4, 7.5 and 7.6 

was carried out by looking at which shift in dose (-3, -2, -1, 0, 1, 2 or 3) 

minimized the dissimilarity between replicates of identical compounds.  The 

screening expert suggested that variability in the experiment may account for a 

maximum of one shift in dose between the identical compounds.  In other words, 

when comparing two different replicates of an identical compound the shift that 

minimizes the dissimilarity should have a value of -1, 0 or 1.  Examining the 

compounds it was found that the minimising dose shifts for all compounds could 

be explained by the variability in the experiment with the exception of Metformin 

compounds which were found to have a minimizing dose shift of 2 or -2 

(depending on which order the compounds are labelled).  This suggests that the 

features of the reference compounds seen in the principal coordinated plots may 

be a feature of the statistical methodology rather than the experimental procedure.   

 

In addition to the previously described features of Figures 7.3, 7.4, 7.5 and 7.6, it 

can also be seen that the majority of compounds are clustered around an arc with a 

small number of negative compounds (including Metformin) at the centre.  This 

feature appears to be a consequence of using correlation as a measure of similarity 

and the position of the compounds relative to the controls. It may also explain 

why negative compounds are not separated from positive ones.  As described in 

Section 7.2, the first stage of analysis is to calculate the KS distance between the 

control and each compound (for each descriptor at each dose).  In the data set that 

is being used the control is negative (specifically it is Metformin at a fixed dose) 

and therefore is located at one extreme of the toxicological scale.  Hence, the 

majority of KS distances will have the same sign (i.e. positive or negative) with 

the majority negative compounds being a short distance from the control and the 

positive compounds being further away.  Therefore using correlation (measured as 

the cosine of the angle θ between two vectors) as a measure of similarity will not 

separate those compounds which are negative from those that are positive.  This is 

demonstrated graphical using a two-dimensional example in Figure 7.7.  
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Figure 7.7: Clustering using correlation as a measure of similarity: 

(a) KS distances represented as vectors for a control at an extreme; (b) KS distances 

represented as vectors for a centred control; (c) principal coordinate plot corresponding to 

a control at an extreme; and (d) principal coordinate plot corresponding to a centred 

control. 

 

 

 

 

 

 

 

 

(a)             (b) 

 

 

 

 

 

 

 

               

  (c)             (d) 

 

Figure 7.7 shows two artificial examples of the use of KS distances and ranking 

correlation to calculate dissimilarity.  The top left-hand plot (a) shows fourteen 

compounds represented as vectors.  Each axis represents the KS distance between 

the compound and a control compound that is located close to an extreme.  With 

the exception of one compound each of the KS distances is positive with the 

values for the positive compounds being greater than those of the negative.  The 

final negative compound has negative KS distances for each variable.  Calculating 

dissimilarity using the ranked correlation method of Perlman et al. (2004a, 2004b) 

the compounds are displayed on principal coordinates in the bottom left-hand plot 
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(c).  Examining this plot and comparing the compounds to the vector diagram it 

can be seen that the those compounds that have positive KS distances are 

positioned in an arc with the second principal coordinate having values of less that 

0.3 and the single compound with negative KS values is separated with the second 

principal coordinate having a value of approximately 0.7.  These features 

correspond to those seen in Figures 7.3, 7.4, 7.5 and 7.6, and therefore in this case 

correlation is not an appropriate measure of similarity. 

 

 

One solution to the problem of using correlation as a measure of similarity may be 

to use a control that is positioned between the two groups of interest and not at an 

extreme.  This case is presented in the second example in Figure 7.7.  The top 

right-hand plot (b) shows the compounds represented as vectors but this time all 

the positive compounds have positive KS distances for both variables and all of 

the negative compounds have negative KS distances for both variables.  Plotting 

these compounds on principal coordinates (plot (d) in Figure 7.7) using the same 

methodology of calculating dissimilarity as before it can be seen that the two 

groups are separated with the positive compounds having negative values for the 

first principal coordinate and the negative compounds have positive values.   

 

 

7.4 Euclidean Distance as a Measure of Similarity 
 

In Section 7.3 the approach of Perlman et al. (2004a, 2004b) was applied to the 

dose response data from Chapter 3.  It was shown that in its current form this 

method cannot distinguish between the different groups in the data.  In particular, 

the use of correlation as a measure of similarity was found to be inappropriate for 

the data in question.  This section concentrates on using Euclidean distance as a 

measure of similarity to see what effect is made on the clustering of the 

compounds.  
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Considering again the top left-hand plot of Figure 7.7 suggests that when the 

control compound is situated at an extreme, Euclidean distance maybe an 

appropriate measure for distinguishing between the different groups of 

compounds.  However, simply replacing the correlation measure with Euclidean 

distance in the Perlman et al. (2004a, 2004b) technique would not work as the 

non-parametric ranking method for comparing different ranges of dose (see 

Section 7.2) would not be appropriate.  Therefore an initial analysis was carried 

out ignoring any shift in dose so that judgement could be made on how well this 

change performed. 

 

Figure 7.8: Principal coordinate plot using Euclidean distance as a measure of 

similarity 
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Figure 7.8 shows the principal coordinate plot produced by replacing correlation 

with Euclidean distance as the measure of similarity.  Examining this plot it can 

be seen that there is some evidence that the clusters correspond to the negative, 

weak positive and positive compounds.  However, there are four negative 

compounds with are located in or around the cluster of positive compounds.  

Looking at the reference compounds it can be seen that the replicates of 

Metformin, Tacrine and Maprotilene are positioned close to each other but the 

replicates of CCCP, Amiodarone and Fluoxetine are not positioned as close to 

each other as expected (however, this may be due to variation in the experiment 

and therefore may change when taking shifts of doses into account).  Comparing 

Figure 7.8 with Figures 7.3, 7.4, 7.5 and 7.6 it can be seen that the compounds are 

no longer positioned in an arc around the Metformin compounds.  This suggests 

that Euclidean distance is a more appropriate measure of similarity for this data 

than correlation. 

 

In order to investigate this further an alternative approach to the original non-

parametric ranking is required (see Section 7.2 for details).  This method must 

minimize over Euclidean distances that have been calculated in different numbers 

of dimensions (for example, it would be incorrect to compare a distance that was 

calculated in two dimensions to one that was calculated in three).  It may be 

possible to compare distances that have been calculated in different numbers of 

dimensions by weighting the measurements.  In other words, each distance matrix 

could be multiplied by a different constant depending on how many dimensions 

were used to calculate the distance.  It would then be possible to minimize over 

the different matrices.  However, before implementing such a method the 

weightings would need to be calculated.  It may be possible to calculate 

appropriate weightings by simulating distance matrices.  This analysis has not 

been pursued.  
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7.5 Summary 

 
This chapter has described and evaluated a number of different methods for 

clustering dose response data from high content screening experiments.  Through 

the application of the Perlman et al. (2004a) procedure it has been shown that 

clustering using correlation as a measure of similarity is not appropriate when the 

experimental control is located at an extreme (as in the case with the data set in 

this thesis).  Further analysis replacing correlation with Euclidean distance has 

indicated that there may be some potential in this method of clustering; however, 

no clustering has been performed using Euclidean distance when the doses of 

compounds have been ‘shifted’. 

 

In order to continue the clustering of dose response data using this methodology, a 

procedure for comparing compounds that have been ‘shifted’ would be required.  

One possible approach to comparing compounds in this way may be to use 

simulation to calculate weightings for distances calculated in different numbers of 

dimensions.  By weighting the measurements it would be possible to minimize 

distances between compounds with different dose ranges. 

 

When investigating the clustering of dose response data in this chapter a number 

of further analyses were conducted which did not prove to be useful for the data 

set being considered but which may be useful when analysing future data from 

high content screening experiments or any other problems which involve the 

clustering of dose responses.  These are discussed in Chapter 8.  

 



 

Chapter 8 

 

Further Work 

 

 

8.1 Introduction 

 
This chapter describes some suggestions for alternative analyses and further work 

for some of the methods applied in this thesis.  All the suggestions made about the 

analysis of the compound selection data (Chapters 4, 5 and 6) concern areas of 

further analysis while some of the suggestions made about the dose response data 

(Chapter 7) are applied but shown not to be appropriate in this particular case.  

However, the methods described may be appropriate for the analysis of data 

arising from different contexts.  The first three sections concentrate on the 

analysis of the compound selection data.  Section 8.2 suggests altering the size of 

batches for the updating algorithm introduced in Chapter 5 before Section 8.3 

discusses variable selection for classifiers.  A method of ambiguity rejection using 

random forest is suggested in Section 8.4.  The next two sections concentrate on 

the problem of clustering dose response data with Section 8.5 applying the 

method of unsupervised random forests before Section 8.6 introduces profiling 

using single cells. Finally, Section 8.8 contains a summary and discussion. 
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8.2 Batch Size 
 

The two data sets used to test the new updating algorithm in Chapters 5 and 6 

were divided into batches based on runs of the experiment.  In other words, each 

batch of compounds corresponds to a different run.  This approach seems sensible 

as the analysis of one batch can be carried out whilst the next batch of compounds 

is being processed through the experiment.  However, the number of compounds 

in each batch may have an effect on the overall classification results of the 

algorithm.  For example, by reducing the number of compounds in each batch and 

therefore increasing the number of batches, the algorithm will update more times 

and this may produce increased classification accuracy.  This should be 

investigated further to see if there is an optimal batch size in terms of the number 

of hits selected, the cost (time) of analysing the batches and the number of images 

that are required to be checked by an imaging expert. 

 

 

8.3 Variable Selection 
 

All of the multivariate analyses conducted in this thesis have used the full set of 

variables available.  In terms of the number of variables measured this has not 

been a problem (sixteen variables is not particularly many by comparison with 

classification problems in genetics or proteomics with hundreds or even thousands 

of variables).  However, by reducing the number of variables models may be 

simplified and this may have an impact on classification performance. 

 

Further analyses of the updating algorithm should investigate the effect of 

variable selection on the results produced.  In terms of the random forest classifier 

there are methods available in the R package to rank the variables in order of 

performance.  However, choosing the best k variables based on their rank may not 

result in the selection of the best subset of variables (Hand, 1997).   
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Alternative methods of variable selection look for a ‘best’ subset of variables.  An 

example of this is stepwise selection.  Stepwise methods begin by comparing all 

the variables individually.  The ‘best’ is chosen by using some measure of 

impurity or separability.  All remaining variables are then examined to identify 

which yields greatest between class separability when combined with the first.  At 

each subsequent step the variable that produces the best results when combined 

with the previously chosen variables is added to the subset.  However, the subset 

of variables that are chosen may still not be the best because many potential 

subsets will not have been examined by this procedure (Hand, 1997).  A review of 

further methods for variable selection can be found in Hand (1997) and Guyon 

and Elisseff (2003). 

 

 

8.4 Random Forest Ambiguity Rejection 
 

In Chapter 4 the ambiguity reject option was applied to the method of using 

unlabelled data to update classification rules when the CEM algorithm would not 

converge.  In this section the use of the ambiguity reject option is investigated 

further but this time in the context of the random forest classifier. 

 

The previous applications of the random forest in this thesis classified an 

observation to a group based on the majority vote from all trees in the forest.  

Using this method of majority vote means that the classifications of some 

observations have more uncertainty associated with them than others.  For a 

simple illustration of this consider a two class problem as an example.  The first 

observation is classified to group 1 with 90% of the votes and the second 

observation is also classified to group 1 but with only 51% of the votes. This 

suggests that the random forest is “less certain” about the classification of the 

second observation (with 49% of the votes against the given classification) than 

the first observation (with 10% of the votes against the given classification).  

Another way to view this is that the second observation is located near to a 

decision boundary.  In the case of high content screening data there are three 
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groups in which to classify the observations but the idea of uncertainty associated 

with classifications is just the same as the two group example. 

 

Table 8.1: Comparing classification results using different random forest 

thresholds 

Percentage of 
Votes Required 

Hits False 
Negatives 

False 
Positives 

Images 
Checked 

50 103 6 31 134 
55 98 11 29 127 
60 87 22 23 110 
65 79 30 20 99 
70 70 39 11 81 
75 61 48 6 66 
80 54 55 1 55 
85 40 69 1 41 
90 29 80 0 29 
95 9 100 0 9 

 

 

Initial investigation into random forest ambiguity rejection calculated the number 

of hits, false negatives, false positives and the number of images checked for 

differing percentages of votes required for classification.  The results of these 

calculations for batch A of the data described in Section 3.2 are displayed in Table 

8.1 (note that the column labelled hits is the combined total of hits and good hits).  

Examining the results it is clear to see that the number of hits found reduces and 

the minimum number of false negatives increases as the percentage of votes 

required increases.  In addition, the number of false positives and images checked 

reduces as the percentage of votes required increases.    

 

To investigate random forest ambiguity rejection further a method of comparing 

the results of classifying using different thresholds of votes would be required (i.e. 

a method to compare classifications when 90% of votes are required against 

classifications when 60% of votes are required).  One method of comparing 

classifiers in this way is to use a ROC (Receiver Operating Characteristic) curve 

(see Hand (1997) for details).  However, this requires the true classifications to be 

known for each of the groups so that sensitivity and specificity can be calculated.  
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As originally described in Section 2.4 the true classifications of all the compounds 

in the high content screening data sets analysed in this thesis are not known (they 

would all need classifying by eye by a high content screening expert).  Hence, this 

method is not appropriate in its current form. 

 

 

8.5 Classification using Unsupervised Random Forests 
 

In Chapters 5 and 6 random forests were used as a method of supervised 

classification.  However, it is also possible to use random forests for unsupervised 

classification.  This is done by creating an artificial class label for the 

unsupervised data that distinguishes the ‘observed data from suitably generated 

‘synthetic’ data.  The approach of random forests to unsupervised learning is to 

consider the original data as class 1 and then create a synthetic second class of the 

same size that will be labelled as class 2.  The class 2 data can be sampled in two 

different ways.  The first is to sample by independent bootstrap each variable 

separately and the second is to randomly sample from the hyper-rectangle that 

contains the observed data.  The supervised random forest method can then be 

used on this artificial two-class problem (Shi and Horvath, 2006). 

 

The idea behind the unsupervised random forest is that real data points that are 

similar to one another will frequently be found in the same terminal node of a tree.  

This frequency can be measured in a proximity matrix.  This proximity matrix can 

then be taken as a similarity measure, and clustering or multi-dimensional scaling 

using this similarity can be used to divide the original data points into groups for 

visual inspection (Liaw and Wiener, 2002). 

 

As an initial investigation of using unsupervised random forests to cluster 

compounds the measurements from five of the reference compounds were used.  

In this case each dose of each compound was treated as being a separate 

observation.  Figure 8.1 shows the results of displaying the compounds on the first 

two principal coordinates.  Each point on the plot is coloured to identify which 
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compound it is and numbered to show which dose it corresponds to (doses are 

numbered from one to eight with one corresponding to the weakest dose and eight 

corresponding to the strongest).  Inspecting this plot it can be seen that the clusters 

are not representative of the groups that are expected.  For example, the cluster 

with principal coordinates (0.2, -0.2) contains the compound Metform (which is 

negative) and some of the higher doses of CCCP (which is toxic) and Maprotilene 

(which is positive).  This suggests that this is not a suitable method for clustering 

the data being considered.   

 

 

Figure 8.1: Principal coordinate plot of unsupervised random forest clustering   
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8.6 Profiling of Drug Responses using Single Cells 
 

The methods of clustering dose response data in this thesis have used approaches 

that summarize the information from individual cells (for example, Perlman et al. 

2004a) draw cumulative distribution function curves and calculate Kolmogorv-

Smirnov distances).  An alternative approach is to use the measurements from 

individual cells for analysing the effects of compounds.  Loo et al. (2007) and 

Young et al. (2008) have both described different methods of using individual cell 

measurements in this way.   

 

Loo et al. (2007) describe an approach that uses support vector machines to 

classify untreated and treated cancer cells based on phenotype measurements.  For 

each dose of each compound a support vector machine algorithm is used to 

determine a hyperplane that separates the treated and control distributions.  The 

classification accuracy score of the hyperplane indicates the degree to which the 

populations are separated and the normal vector, used as a multivariate profile, 

indicates the line of greatest separation.  Redundant and non-informative variables 

are then removed before the titration series for each compound is partitioned into 

ranges with minimum dissimilarity.  For each partition a representative dosage 

range (d-profile) is obtained by averaging the constituent profiles.  These d-

profiles are then compared with the profiles of reference compounds to see which 

is most similar. 

 

Young et al. (2008) describe a method of using factor analysis to profile 

compound activities.  Given a matrix containing n variables and m cells, factor 

analysis is used to reduce the dimensionality of the data to a k-dimensional space 

described by a set of k factors.  These k factors reflect the underlying attributed 

measured in the data.  Based on the factor model, regression is used to estimate 

scores for each factor on a cell-by-cell basis for each compound.  Each compound 

is then summarized as the mean score on each factor (i.e. the average of each 

factor for all cells in the well).  Hierarchical clustering of the factor scores is then 

used to profile the biological activity of the compounds. 
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The approaches of profiling using single cells by Loo et al. (2007) and Young et 

al. (2008) are possible methods to be considered for future analysis.  However, 

using the information from single cells for analysis may cause problems.  For 

example, visualising any data would be much more difficult.  Instead of one point 

being plotted for each dose of each compound there would be between two 

hundred and fifty and three hundred.  This would be very confusing and any 

useful information about the structure of the data may be lost.  In addition, the 

handling of large quantities of data may become an issue because relatively small 

screens will still have many millions of individual measurements.  

 

 

8.7 Summary and Discussion 

 
This chapter provides a review of some suggestions of alternative analyses and 

further work to the research in this thesis.  Although the alternatives analyses did 

not improve upon those carried out in previous chapters, these methods may be 

more suitable for different data sets and other contexts.   

 

The main suggestions regarding the compound selection data have been 

concerned with further work.  The analysis that has been suggested for 

investigating batch size and variable selection is important for optimizing the 

updating algorithm in terms of hits selected as well as the number of images that 

are required to be visually checked by the imaging expert.  Further to this, the 

random forest ambiguity rejection may also be used for improving these criteria 

but it would also allow some flexibility for classification of different data sets 

with different objectives.  However, a method is still required for comparing 

classifications made with different thresholds of the reject option. 

 

Sections 8.5 and 8.6 described some alternative methods for analysing the dose 

response data.  Unsupervised random forests and the fitting of hyperbolic 

distributions were found not to be appropriate for the analysis of the high content 
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screening data set in question.  Nevertheless, there are examples in the literature 

where these methods have been applied successfully in different contexts.  The 

final section discussed the use of profiling drug responses using single cells.  The 

two approaches of Loo et al. (2007) and Young et al. (2008) were described as 

possible alternative methods of analysing the dose response data.  However, as 

with many of the existing methods of clustering found in the literature it is not 

clear how the approach of Young et al. (2008) would be adapted to allow 

compounds that have different dose ranges to be compared. 

 

The investigation of batch size would be the most useful next step in analysis of 

the compound hit selection problem.  By finding an optimal batch size the 

predictive performance of the updating algorithm would be improved.  However, 

this work would be very time consuming in terms of conducting the statistical 

analysis and having the compound images checked by a screening expert.  The 

most promising approach of those outlined in this chapter for clustering dose 

response data is that of Loo et al. (2007).  Unlike the other methods described, 

this one takes into account the different dose ranges of the compounds.  However, 

there may be difficulties in implementing this technique because the single cell 

data would have to be extracted from the high content screening software and 

there may be issues with handling the data as there would be many millions of 

individual measurements. 

 



 

Chapter 9 

 

Summary and Conclusions 

 

This chapter provides a brief summary of the main chapters of this thesis and the 

conclusions to be drawn about the methodologies used and their application to 

both high content screening experiments and in other contexts. 

 

An overview of multivariate classifiers was given in Chapter 2.  A taxonomy of 

classifiers highlighted the differences between supervised and unsupervised 

classification before subgroups of methods belonging to each were discussed. The 

taxonomy allows approaches to classification to be compared in groups rather 

then comparing individual classifiers.  Furthermore it can be used to identify if a 

particular group of techniques performs better than another.  For example, if tree 

classifiers perform better than Fisher’s linear discriminant analysis this may 

suggest that structural approximation of classification boundaries are more suited 

to the problem than functional approximation.  The remainder of the chapter gave 

specific details of the methodologies used in subsequent chapters. 

 

Chapter 3 provided an introduction to the case studies that motivated the work in 

this thesis.  Exploratory analyses of the data from each case study were used to 

identify a number of key features and problems.  Visualisation of the compound 

hit selection data demonstrated that it would be difficult to distinguish between 

the three groups of interest. This was further reflected in the number of true hits 

that were misclassified as false hits when examining the results of classifying this 

data using a number of existing multivariate classifiers.  The exploratory analyses 
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that were conducted for the dose response clustering problem all concentrated on 

methods of visualising the compounds and their responses.  However, the 

methods applied did not take into account the problem of how to compare 

responses over different dose ranges.  The descriptions of key problems and 

exploratory analyses from this chapter may be used to identify other areas of 

research that may benefit from using the statistical techniques described in later 

chapters.  

 

Chapter 4 was concerned with the updating of classification rules using unlabelled 

data.  This analysis was performed using the method described by Dean et al. 

(2006) and extended by incorporating robust estimates of multivariate location 

and scale.  Overall it was concluded that there was not enough gain in predictive 

performance from updating in this manner for it to be considered over existing 

methodologies.  However, the investigation of this method did bring to our 

attention the idea of updating classification rules and it also high lighted a key 

problem.  The methodologies that were being applied all make the assumption 

that the training data is randomly sampled from the same distribution as the test 

data.  With the data used for supervised classification in the majority of this thesis 

this assumption is false as the training data are selected because of their known 

properties.  With this in mind the new updating algorithm in Chapter 5 was 

developed. 

 

Chapter 5 introduced a new classification method for batches of compounds 

where the rule is updated sequentially using information from the classification of 

previous batches.  The aim of this new algorithm was to take into account a 

reduction in classifier performance due to the training data not being 

representative of the test data and that the distributions of the groups in the data 

change as new batches of compounds are introduced.  The application of the 

updating algorithm showed that it improved the predictive capability of the four 

classifiers it was tested on.  In particular, all of the updated classifiers have 

identified more hits than their equivalent non-updated classifiers and the single 

parameter approach.  In addition, by updating random forests, k-nearest 
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neighbours and mixture discriminant analysis it has been shown that they are 

more efficient in terms of the number of images that are required to be checked by 

the screening expert per hit found than when not updating.  In general, the 

updating algorithm can be used in any situation where data is analysed in batches.  

It is expected to make an improvement on the results of any classical classifier 

when the underlying distributions change as new batches of data are analysed.  

Furthermore, it can be used with any classifier so it is flexible enough to adapt to 

different problems. 

  

Chapter 6 introduced a new case study so that the new updating algorithm that 

was introduced in Chapter 5 could be studied further.  All multi-parameter 

analyses that were conducted in this chapter used the random forest classifier.  

The results indicated that by using the updating algorithm the predictive capability 

of the random forest was improved.  In addition, the updated random forest was 

shown to be more efficient (in terms of the number of images that needed 

checking) than the single parameter approach.  Ninety-five percent of the 

compounds that were selected by the updating algorithm were found to be hits 

whereas only eighteen percent of compounds selected by the single parameter 

were found to be hits.  However, the single parameter approach found less false 

negatives than the updated random forest suggesting that the results can be 

improved upon further. 

 

A number of different methods from clustering high content screening dose 

response data were described and evaluated in Chapter 7.  Through the application 

of the Perlman et al. (2004a) methodology it was shown that clustering using 

correlation as a measure of uncertainty is not appropriate when the experimental 

control is located at an extreme. Further analysis replacing correlation with 

Euclidean distance in the Perlman et al. (2004a) methodology has shown that 

there may be some potential in this method of clustering; however, no clustering 

has been performed using Euclidean distance when the doses of compounds have 

been ‘shifted’.  There is much further work to be done in this area before a 

satisfactory method for clustering compounds with different dose ranges is found. 
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Chapter 8 described some suggestions for alternative analyses and further work 

for some of the methods applied in this thesis.  All the suggestions made about the 

analysis of the compound selection data concern areas of further analysis while 

some of the suggestions made about the dose response data are applied but shown 

not to be appropriate in this particular case.  The area of most interest for further 

work would be the investigation of batch size for the updating algorithm.  By 

finding an optimal batch size the performance of the algorithm would be 

improved further but this work would be time consuming both in terms of 

statistical analysis and the checking of images by the screening expert. 

 

The analyses that have been conducted in this thesis have focused on specific 

problems from high content screening experiments.  However, the methods of 

selecting compounds that have been described are robust enough to be applied to 

other screens that use different biological assays and to problems from completely 

different contexts.  The new updating algorithm that was described and applied to 

two data sets in Chapters 5 and 6 has been shown to improve the predictive 

capability of the classifiers it has been applied with.  It has also been shown to 

reduce the number of images that are required to be manually checked by a 

screening expert.  The analyses in Chapter 5 identified the random forest as being 

the ‘best’ classifier to analyses the data in question but as the algorithm can be 

used with any classifier it can adapt to situations where the random forest does not 

perform well or is unsuitable. 

 

The problem of clustering dose response data is a difficult one especially when 

responses are measured over different dose ranges.  The work in this thesis has 

investigated a number of possible approaches to solving the problem and has 

identified some details in existing methodologies that make them inappropriate for 

the data in question.  It is clear that there is much more work required before a 

satisfactory procedure is established. 
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