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Abstract

Saturn has a rather peculiar magnetic field in that it is highly spin axisymmet-

ric. Evidence for the decay time of a magnetic field on the scale of Saturn would

suggest that a dynamo operates deep within its interior. As a consequence, the

observed field would be in violation of Cowling’s theorem. It is believed that a

stably stratified layer under the influence of a thermal shear is the reason for the

observed axisymmetric field. This stable layer is believed to be formed from helium

sedimentation deep within Saturn, with the thermal shear driven by pole-equator

temperature differences. The combined effects of shearing and the stable layer at-

tenuate the non-axisymmetric field components leaving only the axisymmetric field

at the surface.

Motivated by the influence of this stable stratification, we follow on from initial work

by Stevenson (1982b) by first considering the linear problem with variable conduc-

tivity and looking at the consequences of increasing the parameter that controls the

strength of the thermal wind as mentioned in his paper.

In subsequent chapters the analysis concentrates on the nonlinear contributions by

including the momentum equation into our calculations. We present asymptotic

analysis of such a system and show that the geostrophic flow, found by satisfying

Taylor’s constraint, is singular for an inviscid interior solution in the limit of small

Rm, where Rm, the magnetic Reynolds number, controls the strength of the shearing

effect within the layer.

Numerical treatment of the system of equations for a viscous system are also consid-

ered. The results of exploring the parameter space for Rm and Ha, the Hartmann

number, lead to further asymptotic analysis in which viscosity is considered. A

boundary layer solution is found, which is validated by the numerical solution.

The latter part of the thesis looks at the numerical solution with the inclusion of

a horizontal field, the motivation for which will become apparent in the analysis of

the inviscid regime.
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Chapter 1

Introduction

1.1 Motivation and background

Magnetic fields are ubiquitous throughout the universe and exist on a wide range of

scales, from the macroscale, such as a fridge magnet, to the galactic scale, such as

the magnetic field of the Milky Way. Our work focuses on the dynamics of planetary

magnetic fields.

The existence of Earth’s magnetic field has been known for some time; the invention

of the compass has been a valuable tool for many explorers over the years and the

historical evolution of the geomagnetic field can be observed from chemical isotopes

in rocks and ice cores. However, only in recent history has our discovery of magnetic

fields in other astrophysical objects come to fruition. In 1908 the magnetic field of

the Sun was discovered by Hale (1908) and later the magnetic field of the outer

planets were reported by Burke & Franklin (1955). The understanding of how such

fields work is a complex process and a very active part of research to this day.

One of the main topics of interest is the self-excitement of magnetic fields due to com-

plex motions of electrically conducting fluids within stars and planets. This is known

as the dynamo process (Moffatt, 1978). The dynamo process stems from earlier dis-

cussion on how the Sun could have became a magnet (Larmor, 1919) and its theory

is still relatively young compared to other topics in mathematics. In its infancy

1



Chapter 1. Introduction

(during the 20th century), analytical focus on the dynamo problem revealed diffi-

culties in sustaining the magnetic field from simple fluid motions; as a consequence

several anti-dynamo theorems were derived (see Cowling 1933, Zeldovich 1957 and

Childress 1969). The invention of the computer has allowed numerical treatment of

the equations that describe the dynamo, thereby finding solutions where analytical

techniques would become intractable. As processing power has increased with time,

so has the complexity of the dynamics considered, with numerical solutions to the

self-consistent geodynamo in a convecting spherical shell first calculated by Zhang &

Busse (1988) (and see also Zhang & Busse (1989)). Since then the latest computer

codes have the ability to simulate many physical aspects of astrophysical objects in

order to study the dynamo that operates. Although these simulations are still not

at the correct physical parameter regimes (Jones, 2003) they do provide deep insight

into the dynamics of the problem.

1.2 Saturn’s magnetic field

This thesis is motivated by observations of Saturn’s magnetic field. Along with

Mercury, it is unique compared to other observed planetary magnetic fields as it

is almost perfectly axisymmetric (Stevenson, 2003). In figure 1.1 the radial surface

field of Saturn is plotted to highlight this axisymmetry. The magnetic field of Saturn

was not detected until the Pioneer 11 flyby owing to its weak radio emissions and

its distance from Earth (Connerney, 1993), whilst the subsequent Voyager 1 and

Voyager 2 flybys provided a more detailed mapping of the magnetic field.

An estimate of the decay time (τ) for Saturn’s magnetic field, if primordial, can

be calculated as τ ∼ L2λ−1 where L = 5.83 × 107m is the radius of Saturn and

λ ∼ 2m2s−1 is the magnetic diffusivity estimate within Saturn (from laboratory

experiments). This gives an approximate decay time of 22 million years. It is

understood that the magnetic fields of the planets formed at the same time as the

solar system, which would put the age of a primordial field at 4.5 billion years. This

mismatch in time scales strongly suggests that a dynamo operates within Saturn in

order for there to be a magnetic field.

2



1.2 Saturn’s magnetic field

-0.06mT 0.06mT

Figure 1.1: Surface field of Saturn reconstructed from its Gauss coefficients, kindly

reproduced from Jones (2011).

The observational evidence does not bode well for a dynamo operating in Saturn

as this violates Cowling’s theorem (Cowling, 1933), which states that axisymmetric

fields cannot be maintained by dynamo action. This therefore suggests that the field

generated deep inside is inherently different to that observed at the surface.

Stevenson (1980) put forward the idea that this axisymmetry is due to the presence

of a stably stratified layer. He suggested that flows in this layer might reduce the

non-axisymmetric components of the magnetic field in and above this region. The

dynamo could then be generating a non-axisymmetric field in the deep interior,

this being consistent with Cowling’s theorem, but we are observing at the surface

where the non-axisymmetric components have been eliminated. There is a variety

of evidence that supports this theory, which shall be discussed, as well as evidence

for a dynamo source.

3



Chapter 1. Introduction

1.3 Evidence of a stratified layer

1.3.1 Solar abundances and depletion of helium

It is reasonable to assume that the gas giants have chemical abundances similar to

that of the protosolar nebula abundance at the time of planetary formation (Guillot,

1999), which would put the helium mass mixing ratio at 0.280 ± 0.005. Whilst for

Saturn this ratio has been calculated as 0.226 ± 0.03 (Ben-Jaffel & Abbes, 2015)

near the surface, no in situ measurements have yet been made, which may lead to

possible inaccuracies with the result. This discrepancy in ratios would suggest that

the helium in the upper layers of Saturn’s atmosphere has sunk to the greater depths

via some mechanism, thereby resulting in a helium rich deep interior and a helium

depleted envelope.

The internal structure of Saturn suggested by Stevenson (1980) (schematic provided

in figure 1.2) is motivated by this apparent depletion of helium in the upper atmo-

sphere. One possibility for the lack of helium is that the helium has slowly “rained”

down to the lower atmosphere owing to gravitational differentiation. This differenti-

ation is due to helium becoming immiscible in molecular hydrogen at high pressure.

During this process a stratified layer forms between the upper atmosphere (He de-

pleted) and lower atmosphere (He rich). The concept of gravitational differentiation

would also explain the excess luminosity observed (see §1.3.2). The size of the layer

from figure 1.2 would be approximately 2900 km. The thickness of the layer is very

thin compared to the radius of Saturn (∼ 58, 000km).

4



1.3 Evidence of a stratified layer

1 Rs

Molecular H2-He layer

depleted in He

0.51 Rs

Inhomogeneous

0.44 Rs
Metallic H-He

(He rich)

0.25 Rs

Figure 1.2: Internal structure of Saturn originally proposed by Stevenson. The core

is believed to be made of ice and rock. The dashed line represents approximately

the stratified layer, with corresponding radii (Stevenson, 1982a) – these are yet to

be determined precisely.

This model also supports a dynamo region to sustain the magnetic field which

would operate at depth. Under high pressures, hydrogen transitions to a metal-

lic phase (Stixrude & Jeanloz, 2008); the pressures required for this process would

be found in the deep interior of Saturn. This metallization is due to the pressure

decreasing the energy valence gap, enabling the electrons to escape from the atomic

structure, thus allowing for electrical conduction. As a result, there is an electrically

conducting fluid region below the stratified layer that could generate the magnetic

field. The depth at which it operates would also explain the relative weakness of

the observed magnetic field (Jones, 2011).

Spherical shell models have been produced that replicate the magnetic field of Sat-

urn reasonably well and although dipolar dominated fields can be produced without

a stable layer, the suppression of non-axisymmetric components by the stable layer

5
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highlights the importance of having one (Christensen & Wicht, 2008). Variable

conductivity within stratified layers has been tested for Jupiter-like models (Duarte

et al., 2013), whilst variable conductivity for Saturn-like models has only recently

been considered (Dietrich & Jones, 2018). The results of Dietrich & Jones (2018)

suggest that although fields with a small degree of non-axisymmetry can be gener-

ated in models without a stable layer, no model without a stable layer can generate

surface fields that are as remarkably axisymmetric as Saturn’s.

1.3.2 Excessive surface heat fluxes and planetary evolution

Measuring the surface temperature of the gas giants, Saturn and Jupiter, can give

insight into whether internal power sources exist. The first surface temperature

calculations go back to the 1920’s (Jeffreys, 1923). The result of Jeffreys (1923)

was inconclusive to whether an internal power source existed for the gas giants. In

hindsight, this inconclusive result was due to technological constraints in accurately

measuring the surface temperature.

Later attempts to measure the surface temperature by Low (1966) suggested that

in fact an internal heat source would be required in order to fit the observations of

excess heat flux. The results of Low were further supported by the measurements of

the Voyager 1 and Voyager 2 missions that explored the outer planets throughout the

1980s. An effective temperature of Teff = 95K has been measured, which exceeds the

calculated black body temperature, or the equilibrium temperature, of Teq = 93K,

indicating that more heat is coming out of Saturn than expected (Hanel et al., 1983).

This difference in temperature was suggested by Stevenson & Salpeter (1977) to be

due to gravitational differentiation of helium releasing energy via viscous dissipa-

tion (Smoluchowski, 1967). This phase separation has also been discussed by Hub-

bard (1980) and earlier, in an application to Jupiter, by Salpeter (1973).

Running in parallel to the discussion of H-He sedimentation, equation of state (EOS)

models investigating the homogeneous evolution of planetary cooling were developed

to see how the gas giants would cool from an initial hot state as they age. Early

models with a homogeneous interior predicted a much faster cooling rate and hence a

6



1.3 Evidence of a stratified layer

lower temperature for Saturn than what has been observed. This supported the need

for helium separation as an internal power source (Pollack et al., 1977). Later models

that had inhomogeneous evolution confirmed the requirement for stratification in the

interior (Fortney & Hubbard, 2003). These models are also in agreement with the

observed helium abundance for Jupiter from the Galileo mission, which measured a

different mass mixing ratio to the Voyager missions, suggesting that the originally

measured helium depletion is not as low as previously thought (Hubbard et al.,

1999). Although phase separation of helium and hydrogen does indeed provide

enough energy to match with observations, Fortney & Hubbard (2003) also discuss

the possibility of separation of heavier elements for an additional energy source.

1.3.3 Asteroseismology

As a relatively new piece of evidence for the existence of the stable layer, the devel-

opment of seismic techniques in astrophysical objects, asteroseismology, has allowed

us to probe the interior of Saturn through wave patterns in Saturn’s C and D-rings.

Wave-like structures and patterns within the rings of Saturn have been observed from

both Voyager and Cassini radio occultation data (Rosen et al., 1991a). Initially, the

presence of outwardly spiralling wave patterns was explained by the gravitational

perturbations of the orbiting satellites, whilst Rosen et al. (1991b) noticed unex-

plained inwardly propagating spiral waves. Marley & Porco (1993) predicted that

these inward spirals were due to Saturn’s oscillation modes interacting with the

C-ring but, due to insufficient data from the Voyager mission, their progress was

limited.

Cassini radio occultation data provided much more detail into the ring oscillations.

Hedman & Nicholson (2013) used this data to measure the properties of the waves

in Saturn’s C-ring and found that they supported the prediction made by Marley

& Porco (1993) twenty years earlier. Given this, Fuller et al. (2014) applied models

of Saturn to elucidate the internal structure via the observed wave frequencies and

found that a solid inner core can be associated with f-mode propagation in the rings.

However, a lack of degenerate mixing meant that the effect of stratification could
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be used to explain this phenomena.

A model that included stable stratification deep within the interior was developed

to explain the degenerate mixing (Fuller, 2014). It was found that some of the

frequencies observed in the C-ring could not be obtained without the presence of a

stable region, which allows for gravity modes to propagate. The model also predicted

further frequencies that may not be detectable within the rings due to their weakness.

For a further description of the different oscillation modes see Fuller et al. (2014),

and for details on the mathematics of waves within planetary rings see Shu (1984).

1.4 A plane layer model of the stratified layer

The first attempts to explain the axisymmetry of Saturn’s magnetic field were per-

formed by Stevenson (1982b), who considered a localized Cartesian plane layer

model. In a kinematic model, in which the velocity field is prescribed a priori and the

magnetic field evolves under the magnetic induction equation, the non-axisymmetric

radial field was shown to be attenuated under the influence of a thermal shear. This

suggested that, at least in the kinematic theory, the stable layer does indeed play a

role in the observed surface magnetic field. Stevenson suggested that this thermal

shear was driven by a pole-equator temperature difference. The strength of the

thermal shear in this model was controlled by the magnetic Reynolds number, Rm,

which is a nondimensional ratio of the magnetic induction and magnetic diffusivity.

Stevenson (1982b) considered an extension to tackle the dynamic regime model in

which the momentum equation is also included in the calculation of the velocity

field. Stevenson highlighted the consequences of Taylor’s constraint; however, a full

analysis was not considered in this paper.

1.4.1 Driving mechanism behind the zonal flow

Although the prescribed azimuthal shear flow in the Stevenson model is, in some

respects, a mathematical convenience, the physical implications are justified by a

pole-equator temperature difference driving a thermal wind. Solar insolation, whilst
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1.4 A plane layer model of the stratified layer

effective on Earth and is the major contributor to the driving of atmospheric cur-

rents, could be one possibility (Stanley, 2010). However, the latitudinal distribution

of the surface temperature is uniform for Saturn suggesting that the deeper atmo-

sphere redistributes the heat leading to the measured surface temperature profile.

Rotating convection in spherical shells generating zonal flows have been studied

previously (Aubert, 2005), whilst the effect of heat transfer has also been further

considered by Jonathan et al. (2008) and provides a possible explanation for both

the zonal flow in the interior and the surface temperature profile. This would allow

for the attenuation of the non-axisymmetric magnetic field within the stable layer

due to the convection in the molecular envelope above generating a pole-equator

temperature gradient. Such conditions have been considered for spherical models

imposing a cold pole and warm equator by Stanley (2010) with smaller dipole tilts

occurring in the above case.

1.4.2 Thesis structure

This thesis has the following structure. In Chapter 2 we investigate the kinematic

regime by prescribing the shear flow, akin to the Stevenson model, and solve for

the magnetic field with variable electrical conductivity. Chapter 3 then sets up the

extended model by including the momentum equation into our calculation; Tay-

lor’s constraint is then derived for the dynamic regime in a Cartesian geometry.

Chapter 4 considers asymptotic solutions to the dynamic model for an inviscid fluid

for Rm → 0. Although Rm is large in Saturn, the low Rm limit allows analytic

solutions to be found, which greatly helps develop understanding of the complex

nonlinear behaviour of the dynamical models. Chapter 5 introduces the numerical

methodology and Chapter 6 contains the numerical solutions for finite values of Rm

and the viscosity parameter Ha, the Hartmann number. Chapter 7 returns to the

asymptotic theory, this time for viscous solutions, and Chapter 8 considers some

recent results from the horizontal field case. We discuss our conclusions in Chapter

9.
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Chapter 2

Extension of the kinematic plane

layer model

This thesis is motivated by the plane layer model analysis of Stevenson (1982b). In

this chapter we present the description of the ansatz and begin by extending the

kinematic problem to include the effects of variable conductivity and different veloc-

ity profiles. Throughout this thesis we focus on a Cartesian geometry for analytical

and numerical ease. Subsequent chapters will extend the analysis to the dynamic

regime and will contain a separate derivation of the basic equations.

2.1 Mathematical set up

We consider a layer, height d, of conducting fluid above a dynamo-generating region

and below an insulating layer. In a Cartesian geometry, z corresponds to extend-

ing radially outwards, with z = 0 at the bottom of the layer (near the dynamo

region) and z = d the top of the layer (near the insulating boundary). The layer is

unbounded in both x, which represents the azimuthal direction, and y, the merid-

ional direction. In the layer, there is an incompressible shear flow u = ω0zx̂. For

simplification, we do not consider the field inside the dynamo region at any point

throughout this thesis; we are primarily concerned with the dynamics within
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the stratified layer.

Dynamo region

Imposed field Bz = B0 cos (kx)

z = 0

u = ω0zx̂

z = d
Insulator

Figure 2.1: Plane layer setup

The magnetic field in the dynamo region beneath is modelled simply by imposing

the field B0 cos (kx) ẑ at the lower boundary, z = 0. This corresponds to a non-

axisymmetric magnetic field coming out of the dynamo region, this being appropriate

as dynamo generated fields are non-axisymmetric (Cowling, 1933). Axisymmetric

components in this model correspond to fields in the y and z directions which are

independent of x. These components are not affected by the shear, so they are

able to reach the surface. We concentrate here on the nonaxisymmetric component,

which is attenuated by the shear. The field satisfies the solenoidal condition,

∇ ·B = 0, (2.1)

and the induction equation,

∂B

∂t
= ∇× (u×B)−∇× (η∇×B) , (2.2)

where η is the magnetic diffusivity. We look for steady solutions, i.e. with ∂/∂t = 0,

and consider a 2D magnetic field in the x-z plane. The field is expressed in terms

of a magnetic potential A (x, z) as,

B = ∇× A (x, z) ŷ, (2.3)

and the flow in terms of the stream function ψ (x, z),

u = ∇× ψ (x, z) ŷ. (2.4)
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2.1 Mathematical set up

At this stage of the analysis there is no ŷ component of the flow; this will be included

in subsequent chapters. The following the dimensionless quantities are introduced

z = dz∗, (2.5a)

k =
k∗

d
, (2.5b)

η = η0η
∗, (2.5c)

Rm =
ω0d

2

η0

, (2.5d)

where η0 is the coefficient of diffusion. k represents the azimuthal wavenumber in

a Cartesian geometry and is related to the spherical azimuthal wavenumber m. In

Saturn the least non-axisymmetric wavenumber corresponds to a wavelength λ that

is the circumference of the planet. This can be calculated as

k =
2π

λ
. (2.6)

Given a radius of r = 58, 000km and a stratified layer thickness of 3000km as

suggested by Stevenson would result in k∗ ≈ 0.05. By substituting (2.3) and (2.4)

into the steady form of (2.2), the z-component becomes,

∂

∂x

(
η∇2A+

∂ (A,ψ)

∂ (x, z)

)
= 0. (2.7)

Since the potential has x-dependence of the form eikx,

A (x, z) = A (z) eikx, (2.8)

substitution of (2.8) into equation (2.7) gives the following dimensionless ODE

d2A

dz2
− k2A =

ik

η
RmzA, (2.9)

where Rm is the magnetic Reynolds number. Note that the asterisk notation has

been dropped for ease so all quantities in (2.9) are dimensionless. Equation (2.9)

describes the behaviour of the magnetic field in the layer under the influence of an

azimuthal shear. The parameter Rm can be interpreted as the strength of the shear

flow with respect to the conductivity within the layer. For a constant diffusivity

throughout the layer, one can set η = 1. Equation (2.9) is a second order ODE

and thus requires two boundary conditions for the particular solution A (x, z). At
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Chapter 2. Extension of the kinematic plane layer model

the bottom of the layer, z = 0, we assume that a dynamo source is continuously

producing a field of maximum strength B0 in the radial direction, i.e.

Bz = B0 cos (kx) . (2.10)

In terms of the potential field A (x, z), this is essentially

A = A0 sin (kx) (2.11)

at z = 0. At the top of the layer, z = d, there is an insulating boundary at which

there is no current, J , in the insulating region so

J =
1

µ
∇×B = 0 (2.12)

here, where µ is the magnetic permeability. The magnetic field acts as a potential

field in this region and extends to infinity. Combining (2.1), (2.3) and (2.12) this

gives

∇2A =
∂2A

∂z2
+
∂2A

∂x2
= 0; (2.13)

since the x-dependence is of the form sin (kx) this would imply,

∂2A

∂z2
= k2A, (2.14)

i.e. the z-dependence is of the form

A ∼ e−kz. (2.15)

The radial and azimuthal magnetic field, Bx and Bz, must also be continuous across

the boundary z = 1 leading to the boundary condition

∂A

∂z
= −kA. (2.16)

The magnetic potential is thus governed by (2.9) with boundary conditions (2.11)

and (2.16).

2.1.1 Constant diffusivity

The simplest case we can consider is η constant. By considering finite Rm solutions

with k2 � kRm, (2.9) reduces to,

d2A

dz2
= ikRmzA. (2.17)
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Although this looks relatively simple – a second order, linear, homogeneous ODE –

its solution is expressed in terms of special functions. By applying (2.11) and (2.16),

the solution to (2.17) is

A (z) =A0z
1/2

{[
H

(2)
1/3

(√
2

3
(1− i) (kRm)1/2 z3/2

)

+ exp

(
−2
√

2

3
(kRm)1/2 (1 + i) +

5iπ

6

)
H

(1)
1/3

(√
2

3
(1− i) (kRm)1/2 z3/2

)]

× exp

(
ikx− 7iπ

12

)}
+ c.c., (2.18)

where H
(1)
ν and H

(2)
ν are Hankel functions of the first and second kind of order

ν (Abramowitz & Stegun, 1964). We now compare the solution (2.18) with a BVP

solver in MATLAB to see whether they match well. As expected, for k � Rm the

analytical solution (2.18) matches very well with the bvp4c solution in figure 2.2.

Figure 2.3 shows solutions for k ∼ Rm, where the analytic solution (2.18) is not

valid. Larger values of k correspond to shorter wavelengths – physically these will

be attenuated much more easily than the longer wavelengths (small k); this can be

seen in figure 2.3.

With this in mind, we can now begin to expand on the 1D problem with confidence

by including more physical assumptions. In figure 2.4 we have compared the solution

to (2.9) for k = 1 at increasing values of Rm to see how the field attenuates in the

layer. At lower values of Rm it is not necessarily the case that the non-axisymmetric

radial component of the magnetic field is attenuated entirely. This is expected, as

at low Rm the shear is not strong enough to attenuate the non-axisymmetric radial

component completely.

It is apparent that removing some of the simplifications we have made will mean

more physically realistic behaviour can be studied, whether this be by additional

physical terms, or extending to consider more than one spatial dimension. However

this comes at the cost of intractable analytical solutions; in order to proceed we

must now consider numerical solutions throughout.
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Figure 2.2: A comparison of the analytical solution (2.18) and the BVP solution

to (2.17) with k = 1 and Rm = 100.
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Figure 2.3: A comparison of the analytical solution (2.18) and the BVP solution to (2.9) for Rm = 50 and increasing k.
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Figure 2.4: Comparison of the field for increasing values of Rm (k = 1 for all three

cases).

2.1.2 Variable conductivity

In reality, a depth-dependent conductivity would exist in the interior (French et al.,

2012). We expect that the conductivity drops off gradually between the base of

the dynamo region and the top of the stratified layer, as opposed to a constant

conductivity throughout (Jones, 2011).

The z-component of the magnetic induction equation when η = η (z) is spatially

dependent is still given by equation (2.9). Expressing the magnetic diffusivity in

terms of the electrical conductivity allows the insulating property to be properly

attained at the top of the layer i.e. η → ∞. The relationship between electrical

conductivity and magnetic diffusivity is

η =
1

µσ
, (2.19)

where µ is the electrical permeability and σ is the electrical conductivity. All con-
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ductivity profiles we will investigate in the 2D case have the property σ (1) = 0, i.e.

an insulator at z = 1. We can compare the attenuation of the magnetic field for a

range of conductivity profiles. The constant conductivity case is compared to three

different profiles: σ1 (z) = 1 − z, σ2 (z) = (1− z) ez and σ3 (z) = (1− z) e−z. The

choice of these functions is simply to compare smoothly changing profiles with the

more abrupt constant diffusivity drop off at the insulating boundary.

In figure 2.5 we can see that the decreasing conductivity profiles are less effective at

removing the non-axisymmetric field. At Rm = 10 the original constant conductivity

profile (blue) attenuates the field entirely by the time it reaches the insulating region,

whilst with the other three profiles are less effective at attenuating the magnetic field

within the layer. We can see that conductivity plays a role in the attenuation of

the non-axisymmetric field for the linear kinematic problem. The nature of the

conductivity profile in the inhomogeneous layer will change the value of Rm at

which we see an axisymmetric surface field.
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Figure 2.5: A comparison of the field at various Rm for the conductivity profiles:

constant (blue), σ1 (red), σ2 (green) and σ3 (black).

2.2 The 3D solution

The problem is now extended to three spatial coordinates. We express the magnetic

field in a poloidal-toroidal decomposition (Jones, 2008) as

B (x, y, z) = ∇× T (x, y, z) ẑ +∇×∇× P (x, y, z) ẑ +Bx (z) x̂ +By (z) ŷ. (2.20)

Bx (z) and By (z) are the mean parts of the field; however both are zero because we

are going to consider fields fluctuating in x and y. The flow is again a function only

of z,

u = u (z) x̂. (2.21)
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We seek plane wave solutions of the form,

T (x, y, z) = T (z) ei(kx+ly), (2.22)

P (x, y, z) = P (z) ei(kx+ly), (2.23)

where k and l are the wavenumbers associated with the azimuthal and meridional

directions respectively. To solve for both T and P we require two equations. The

expansion (2.20) is substituted into (2.2) and the curl of (2.2). The z-components

are,

d2P

dz2
=
(
k2 + l2

)
P +

iku

η
P, (2.24)

d2T

dz2
=
il

η

du

dz
P +

iku

η
T − 1

η

dη

dz

dT

dz
+
(
k2 + l2

)
T, (2.25)

where η = η (z). Additional terms appear through contributions from the y-spatial

dependence these are,
il

η

du

dz
P (2.26)

and a term that involves the derivative of diffusivity,

− 1

η

dη

dz

dT

dz
. (2.27)

Equations (2.24) and (2.25) can be made dimensionless through the scalings,

T = dT ∗, (2.28a)

P = d2P ∗, (2.28b)

η = η0η
∗, (2.28c)

x =
x∗

d
, (2.28d)

where η0 is the strength of the magnetic diffusivity. Then (after dropping the asterisk

notation for ease) (2.24) and (2.25) become,

d2P

dz2
=
(
k2 + l2

)
P + ikRm

u (z)

η (z)
P, (2.29)

d2T

dz2
= ilRm

1

η (z)

du

dz
P + ikRm

u (z)

η (z)
T − 1

η

dη

dz

dT

dz
+
(
k2 + l2

)
T. (2.30)

This coupled pair of ODE’s can be solved in bvp4c. We first derive the boundary

conditions before considering various cases. For the boundary condition at the
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bottom of the layer (z = 0) we impose a radial magnetic field that has both azimuthal

and meridional dependence, Bz = B0 cos (kx) cos (ly), giving

P (z = 0) =
1

k2 + l2
cos (kx) cos (ly) , (2.31)

T (z = 0) = 0. (2.32)

The choice of T = 0 arises because T does not have a radial component throughout

the layer. At the top of the layer (z = 1) the field is matched to a potential field

satisfying

∇2P =
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= 0. (2.33)

This results in
∂2P

∂z2
=
(
k2 + l2

)
P, (2.34)

suggesting that P takes the form of a decaying exponential function depending on

k and l,

P ∼ e−(k2+l2)z. (2.35)

Hence our top boundary condition for the poloidal and toroidal field is,

dP

dz

∣∣∣∣
z=1

= −
√
k2 + l2P, (2.36)

T (z = 1) = 0. (2.37)

2.2.1 Variable conductivity in the 3D case

Let us now consider the case of a fixed velocity profile u = zx̂ with variable con-

ductivity, σ (z). The governing equations are

d2P

dz2
=
(
k2 + l2

)
P +

ikRmz

η (z)
P, (2.38)

d2T

dz2
= ilRm

1

η (z)
P +

ikRmz

η (z)
T − 1

η

dη

dz

dT

dz
+
(
k2 + l2

)
T. (2.39)

We consider two different profiles for the conductivity: one in which the conductivity

is concentrated in the lower half of the domain and drops off at the midpoint, and

the reverse case, where the conductivity is concentrated in the upper half of the
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domain. The functional forms of these two profiles are,

σ1 (z) =
1

2

(
1− tanh

(
25

(
z − 1

2

)))
, (2.40)

σ2 (z) =
1

2

(
1 + tanh

(
25

(
z − 1

2

)))
. (2.41)

Below are the results of investigating the parameter space 0 < k, l < 1.

In figure 2.6 we have plotted the toroidal and poloidal field for the two conductivity

profiles with a flow u (z) = z at Rm = 800. The wavenumber in y is fixed at l = 0.01

and the x wavenumber is varied. There is a stark contrast between the toroidal

fields for the two conductivity profiles; the toroidal field is strongly dependent on

the location of the conducting region with the smaller values of k, corresponding to a

longer wavelength in the azimuthal direction, having a larger amplitude. Physically

we expect the less non-axisymmetric wavelengths to have a larger amplitude as the

shearing effect is less effective here.

For the poloidal field, we see that the field diffuses more or less the same with

wavenumber for the σ1 (z) profile. For the other conductivity profile, σ2 (z), the

diffusion is much slower for the poloidal field when the conducting region is situated

in the upper half of the domain. There is a greater difference in attenuation with

wavenumber for this case too. Unlike the toroidal field, the location of the poloidal

field in the layer is not as strongly linked with the location of the conducting region.
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Figure 2.6: A comparison of the poloidal and toroidal field for two different conduc-

tivity profiles (σ1 (z) in blue and σ2 (z) in red) with flow u = z at Rm = 800 and

l = 0.01 for wavenumbers k = 0.01, 0.05, 0.5.
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2.2.2 The effect of shear

For the remainder of this chapter, we shall use the conductivity profile that would

be similar to that of Saturn’s inhomogeneous layer, i.e. equation (2.40). Essentially

this would be a conductivity profile that drops off smoothly towards the insulating

boundary; in this case we have picked a profile that drops off at z = 0.5. Figure 2.7

shows the magnetic field for different velocity profiles in the layer. We have con-

sidered two nonlinear profiles such that the du
dz

term is no longer constant in (2.30);

these are

u1 (z) = sech2 (10z − 5) , (2.42)

u2 (z) =
1

2
(1− tanh (10z − 5)) . (2.43)

These flows are displayed by the red and blue profiles respectively. Physically these

can be interpreted as convection within the layer and convection beneath the layer

driving the flow, although the physical process of convection within a stratified

layer would not make sense; physically this is primarily chosen as a mathematical

convenience. The poloidal field for the red velocity profile is quite consistent with

increasing wavenumber, there is no drastic change in structure. Comparing the two

velocity profiles we see some difference in magnetic field attenuation; although they

both attenuate all of the nonaxisymmetric components, the blue profile is much more

effective at doing this in the bottom half of the layer. The maximum amplitude of the

toroidal field differs greatly between u1 and u2 with max (T ) = 1.3856, 0.3433, 0.1787

for u1 and max (T ) = 0.0425, 0.0014, 7.86×10−5 for u2 for α = 1, 0.5, 0.1 respectively.

The amplitude of the field is connected to the strength and location of the shearing

effect. In the u2 profile the shear is concentrated in the lower half of the domain

and, as a result, is immediately influencing the structure of the toroidal field at the

base of the layer. Since there is no toroidal field being produced at z = 0 the strong

shearing suppresses any toroidal field from being produced in the conducting region.

In the case of u2, because the shearing effect does not begin until the mid-point of

the layer, the toroidal field has time to grow in amplitude throughout the conducting

region. In figure 2.7 we can see that the growth in toroidal field in the lower half is

slower than the decay in the region of shear.
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Chapter 2. Extension of the kinematic plane layer model

The linear solutions provide some insight into the behaviour of the non-axisymmetric

components of the magnetic field. It now makes sense to follow on from this and

look at the consequences of introducing nonlinearities by introducing the momentum

equation. This poses a series of questions: under what conditions do we have the

Stevenson ansatz? what physical mechanism could be driving the shear in the

inhomogeneous layer? and what will happen to the flow when the back reaction of

the Lorentz force take place?
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Chapter 3

Model set up in the dynamical

regime

3.1 Introduction

Here we wish to investigate the effects of the dynamic regime for a stratified plane

layer model. This is more complicated than the kinematic study of Chapter 2 as we

now need to consider the momentum equation,

∂u

∂t
+ u · ∇u + 2Ω × u = −1

ρ
∇Π +

1

ρ
J ×B + ν∇2u + Fθ. (3.1)

The first two terms in (3.1) are related to the acceleration of the fluid; ∂tu is the

acceleration and u · ∇u is the inertial acceleration. Π is the pressure, J is the

current density, ν is the kinematic viscosity and ν∇2u is the viscous diffusion term.

The final term is the buoyancy force representing the effect of convection.

The various balances between terms in the momentum equation also introduce new

dimensionless parameters. The magnetic Reynolds number, Rm, which is a balance

between the imposed shear and the magnetic diffusivity in the layer, is considered.

We will be considering the balance between the Coriolis force and the Lorentz force,

this is represented by the Elsasser number,

Λ =
|(∇×B)×B|
|2µρΩ × u|

, (3.2)
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Chapter 3. Model set up in the dynamical regime

and the balance between the magnetic field strength and viscosity, this is represented

by the Hartmann number,

Ha2 =
Λ

Ek

. (3.3)

The Hartmann number is defined in terms of Λ and the Ekman number Ek, where

the Ekman number is a dimensionless measure of the ratio between viscous diffusion

and the Coriolis force,

Ek =
|ν∇2u|
|2Ω × u|

. (3.4)

In planetary cores, the common assumption is that Λ ∼ 1, i.e. Coriolis and Lorentz

forces balance. In this thesis we shall consider, for ease of analysis, small Elsasser

solutions; although this is not physically accurate in a planetary application, it

provides some insight into the behaviour of the equations.

3.2 System of equations

Our model follows from Chapter 2; a non-axisymmetric radial magnetic field of

maximum strength B0, generated from the dynamo region, is prescribed at z = 0

whilst a constant horizontal field of strength BH exists throughout the layer. A

pole-equator temperature gradient drives an azimuthal thermal shear profile within

the layer, that acts on the magnetic field. An insulating region exists at the top

of the layer (z = 1) and both top and bottom boundaries are considered to be

impenetrable. The layer is under the influence of rotation with the Coriolis vector

defined as,

Ω = Ω0 (0, cosϑ, sinϑ) , (3.5)

where ϑ is the angle measured from the equator to the plane (see fig. 3.1).
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ŷ
ẑ

ϑ

Ω

⊗ x̂

Figure 3.1: Schematic of the Coriolis vector on the sphere in relation to the plane

layer.

The magnetic field, which we shall assume is independent of y, takes the form,

B = ∇× A (x, z) ŷ +H (x, z) ŷ +BHx̂, (3.6)

and obeys the magnetic induction equation,

∂B

∂t
= ∇× (u×B)−∇× (η∇×B) , (3.7)

where η is the magnetic diffusivity. A (x, z) is the magnetic potential and acts in

both the radial (z) and azimuthal (x) direction, H (x, z) is the meridional magnetic

field and exists in the meridional (y) direction, and BH is the constant azimuthal

field. Since the layer is thin with respect to the radius (i.e. L� R), the lengthscale

of BH is long in the azimuthal direction and so it is reasonable to assume that it

could appear constant with respect to the thin layer. The magnetic field also obeys

the Maxwell equation,

∇ ·B = 0. (3.8)

The current density is,

J = µ−1∇×B, (3.9)

where µ is the magnetic permeability. Equation (3.9) has y-component,

Jy = −µ−1

(
∂2A

∂x2
+
∂2A

∂z2

)
. (3.10)
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Chapter 3. Model set up in the dynamical regime

We consider an incompressible and steady flow that is independent of y. The flow

satisfies the equation of motion

2 (Ω × u) ρ = −∇Π + J ×B + ρν∇2u + ρgαT0 (y) ẑ, (3.11)

where α is the coefficient of thermal expansion. The final term in (3.11) is a buoy-

ancy term that has a meridional temperature dependence i.e. we have a constant

temperature gradient from pole to equator. We have assumed that the differences

in y differ much more than in z and so T0 (y) is a function of y only. Pole-equator

temperature gradients lead to thermal winds, such as the jet stream in Earth’s at-

mosphere. They may be responsible for the differential rotation that lies at the heart

of the Stevenson model. The origin of this temperature gradient is due to the outer

convection zone having convection that is dependent on rotation, affecting the heat

transfer in this part of the atmosphere – this was discussed in the introduction in

§1.4.1. We write the flow as

u = U0 (z) x̂ +∇× ψ (x, z) ŷ + v (x, z) ŷ,

where ψ (x, z) is the stream function, v (x, z) is the meridional velocity field and

U0 (z) is the shear profile driven by the buoyancy term. u0 = U0 (z) x̂ is the solution

of taking the curl of (3.11),

− 2 (Ω · ∇)u0 = ∇× gαT0ẑ, (3.12)

with x-component,

− 2Ω0 sinϑ
∂u0

∂z
= gα

dT0

dy
= gαT ′0 (y) . (3.13)

As T ′0 (y) is a constant, we have,

u0 = − gαT ′0
2Ω0 sinϑ

z + const (3.14)

Without loss of generality we choose the constant to be zero, and hence

u0 = γz, (3.15)

where

γ = − gαT ′0
2Ω0 sinϑ

. (3.16)
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We note that γ has the units time−1. So u0 (z) = γzx̂ is the thermal wind that is

now driven rather than forced. For ease of analysis, we introduce the scalings,

A = B0dÃ, (3.17a)

Jy = Rm
B0

d3µ
J̃y, (3.17b)

v = RmΛ
η

d
ṽ, (3.17c)

H = B0RmΛH̃, (3.17d)

ψ = ηRmΛ2ψ̃, (3.17e)

where ∼ represents a dimensionless quantity. We also introduce the dimensionless

numbers

Rm =
γd2

η
, (3.18a)

Λ =
B2

0

2Ω0ρµη sinϑ
, (3.18b)

Bs =
BH

B0

, (3.18c)

Ek =
ν

2d2Ω0ρµη sinϑ
, (3.18d)

Ha =

√
Λ

Ek

. (3.18e)

The choice of Rm is because γ has units of time−1 which means the ratio γd2η−1 has

the correct dimension of UL
η

where U and L are a typical velocity and length scale.

Bs determines the ratio between the imposed field at the bottom boundary B0 and

the horizontal field BH .

The remaining contribution of the flow,

uM = ∇× ψ (x, z) ŷ + v (x, z) ŷ (3.19)

is the magnetic wind uM , which satisfies

2 (Ω × uM) ρ = −∇ΠM + J ×B + ρν∇2uM , (3.20)

where ΠM is the magnetic pressure, and is independent of y, this being consistent

with the magnetic field and uM being independent of y. The y-component of (3.20)
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is,
∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (3.21)

H (x, z) is required to be non-zero to generate a meridional circulation contribution

to the magnetic wind. The y-component of the curl of (3.20) is

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
− Bs

∂Jy
∂x

+
Λ

Ha2

(
∂4ψ

∂x4
+
∂4ψ

∂z4
+ 2

∂4ψ

∂x2∂z2

)
. (3.22)

Note that Jy (x, z) and A (x, z) are non-zero in the kinematic Stevenson problem,

this forces non-zero v (x, z) and this then generates a magnetic wind in the dynamic

problem. The induction equation, assuming a steady flow is,

0 = ∇× ((u0 + uM)×B) + η∇2B. (3.23)

The y-component of the uncurled induction equation is

Jy = −z∂A
∂x

+ Λ2∂ (A,ψ)

∂ (x, z)
+ Bs

∂ψ

∂x
. (3.24)

Note that the balance in Stevenson’s kinematic theory is just (3.24) with ψ (x, z) = 0

meaning that there is no back reaction between the magnetic field and flow. Finally,

the y-component of the induction equation is

0 =
∂ (A, v)

∂ (x, z)
− Rmz

∂H

∂x
+ RmΛ2∂ (H,ψ)

∂ (x, z)
+

(
∂2H

∂x2
+
∂2H

∂z2

)
+ Bs

∂v

∂x
. (3.25)

The system is governed by the four coupled PDE’s (3.21), (3.22), (3.24) and (3.25),

for the four unknowns, A, H, v and ψ. The full set of equations are then,

Rm−1

(
∂2A

∂x2
+
∂2A

∂z2

)
= z

∂A

∂x
+ Λ2∂ (ψ,A)

∂ (x, z)
− BsΛ

2∂ψ

∂x
, (3.26)

Jy = −z∂A
∂x

+ Λ2∂ (A,ψ)

∂ (x, z)
+ BsΛ

2∂ψ

∂x
, (3.27)

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
− Bs

∂Jy
∂x

+
Λ

Ha2

(
∂4ψ

∂x4
+
∂4ψ

∂z4
+ 2

∂4ψ

∂x2z2

)
, (3.28)

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v, A)

∂ (x, z)
+ Rmz

∂H

∂x
+ RmΛ2∂ (ψ,H)

∂ (x, z)
− Bs

∂v

∂x
, (3.29)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (3.30)

The additional equation (3.27) is also included for Jy. Equations (3.26)–(3.30) form

the full set of equations that we shall be investigating throughout the rest of this
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3.3 Boundary conditions

thesis. In the next chapter we shall consider the simplest case of an inviscid, small

Rm, small Λ and Bs = 0 system. In subsequent chapters we will build up to solving

the system for small Λ with more general Rm and Bs.

3.3 Boundary conditions

As the magnetic induction equation is second order in B, we require two boundary

conditions for B in order to determine its full solution. At the top of the dynamo

region (z = 0) we impose a vertical magnetic field Bz = B0 cos (kx) ẑ, in terms of

the magnetic potential A, this is,

A (x, z) =
B0

k
sin (kx) . (3.31)

At the top of the stratified layer (z = 1) is the insulating region, so we match to a

potential field

∇2B = 0. (3.32)

The normal component of B is continuous across the interface and this will give us

our second boundary condition for the magnetic field potential A (x, z),

dA

dz
= −kA. (3.33)

As there is no meridional field imposed at z = 0 the meridional field satisfies

H (x, z) = 0 (3.34)

at both z = 0 and z = 1. This completes the set of magnetic boundary conditions.

For the mechanical boundary conditions; the bottom and top boundaries are im-

penetrable, hence the normal velocity (uz) must vanish. Hence

∂ψ

∂x

∣∣∣∣
z=0,1

= 0 =⇒ ψ = constant on z = 0, 1. (3.35)

Viscous boundary conditions are not required for small Λ, this is because the ∇4ψ

term does not appear in (3.28) in limit Λ → 0. As a result, this reduces (3.28)

from a fourth order equation to a second order equation, and hence we require only

the impenetrable boundary condition. When we consider solutions for Ha ∼ O (1)
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Chapter 3. Model set up in the dynamical regime

only the Ha−2∇2v term will appear in the governing equations in the limit Λ →

0. Mathematically speaking, we are solving the interior solution to the governing

equations and the limit Ha → ∞ is interpreted as “inviscid” – although this is

only in the sense of an interior solution. All references to inviscid in this thesis

are therefore associated within the interior solution. The choice of Λ → 0 allows

for analytical solutions to be found and simplifies the numerical approach to this

problem.

This completes our boundary conditions on A, H and ψ. At first glance one would

immediately question why we have two boundary conditions on ψ for a first order

equation. However, in the next chapter we show that the freedom in v is constrained

by one of the boundary conditions in (3.35), this additional boundary condition is

Taylor’s constraint. In the next section we explain what the connection is between

Taylor’s original constraint in spherical geometry and our Cartesian version of the

constraint.

3.3.1 Taylor’s constraint

A fundamental result which lies at the heart of the problem in the dynamic regime,

and as a consequence, this thesis, is Taylor’s constraint (Taylor, 1963).

Taylor’s constraint is derived from the magnetostrophic limit of the Navier-Stokes

equation. This limit is believed to be the case in planetary interiors, where the

Rossby number, the balance between rotation and inertial forces

Ro =
|u · ∇u|
|2Ω × u|

(3.36)

and the Ekman number, (3.4), are small. Since our problem is independent of y,

Taylor’s constraint enters in a rather unusual way. In this section we describe the

usual way Taylor’s constraint enters planetary dynamo theory, and then we discuss

how a similar constraint is relevant to our problem.

In a spherical geometry, Taylor’s constraint arises when the magnetostrophic limit

of the Navier-Stokes equation is integrated over a cylinder. The magnetostrophic
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limit of the Navier-Stokes equation is

2ρΩ × u = −∇Π + J ×B + FT ẑ, (3.37)

where FT is the buoyancy term in the radial direction. A caveat of (3.37) is that

a solution may not exist at all and, as a consequence, Taylor’s constraint must be

applied in order for a solution to exist. The φ-component of equation (3.37) is

integrated with respect to φ and z (cylindrical) (see figure 3.2); the buoyancy term

has no φ-component and vanishes, whilst the pressure term must also vanish as it

must be continuous in φ, the Coriolis force also vanishes as there is no net flow

across the cylinder. What remains is the integral of the Lorentz force and as result

the integration of (3.37) over the cylinder becomes∫
C(s)

(J ×B)φ dzds = 0. (3.38)

The physical interpretation of (3.38) is a restriction on zonal Lorentz torques, as

not all of these torques can be balanced the Coriolis force in this limit.

s

φ

z

Figure 3.2: The coaxial cylinder in which the magnetostrophic limit of Navier-Stokes

is integrated over.
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In order to satisfy (3.38) a “free” geostrophic velocity, Vφ (s), is required that can

change the structure of the magnetic field B and hence change J×B such that (3.38)

is satisfied (Malkus & Proctor, 1975). The geostrophic velocity is found in the az-

imuthal (φ) direction in the original Taylor’s constraint and fully determines u in

this problem. The mathetical interpretation of Taylor’s constraint is a solveability

condition on the geostrophic flow Vφ (s) in the spherical problem. We note that due

to the nature of the geostrophic cylinders this problem corresponds to an axisym-

metric solution. A similar analogy for a solveability condition can be seen in the

Cartesian derivation in §3.3.3 where non-axisymmetric solutions are considered.

Not only does the field satisfy equation (3.38) at an initial time but the geostrophic

flow must also change such that the field satisfies Taylor’s constraint at subsequent

times. Unfortuately such solutions hae yet to be found in this scenario. This prob-

lem is circumvented by including the small viscous effects from the Ekman boundary

layer. In reality, even when small, the viscous term will have some non-zero contri-

bution to the zonal Lorentz torques, leading to the formation of Ekman layers at

the cylinder boundary. This leads to a slightly different expression for (3.38) i.e.∫
C(s)

(J ×B)φ dsdz = 4πs
Vφ (Ek)

1
2

(1− s2)
1
4

. (3.39)

The derivation of (3.39) can be found in the asymptotic analysis of Hollerbach

(1996). The difference between equation (3.38) and (3.39) is that (3.38) implic-

itly defines the geostrophic flow Vφ (s) due to its nature as a solveability condition

whilst (3.39) explicitly defines the geostrophic flow via,

Vφ (s) = E
− 1

2
k

(1− s2)
1
4

4πs

∫
C(s)

(J ×B)φ dsdz. (3.40)

The connection between the spherical and Cartesian geometry for Taylor’s con-

straint as a solveability condition can be seen in the next section. Whilst a non-

axisymmetric constraint is also derived; this is somewhat less obvious to conceive

given the basis of the axisymmetric coaxial cylinders Taylor’s constraint is originally

based on.
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3.3 Boundary conditions

3.3.2 Soward & Jones (1983) Cartesian Taylor’s constraint

Soward & Jones (1983) (and later Abdel-Aziz & Jones (1988)) developed a Cartesian

model of flows subject to Taylor’s constraint; their Cartesian set up was such that the

meridional, azimuthal and radial directions were represented by (x, y, z) respectively,

here we stress that their (x, y) coordinates are the opposite way round to our model.

A plane layer bound between z = ±d is considered and the flow is expressed as,

u = ∇× ψ (x, z) ŷ + uyŷ (3.41)

where uy contains thermal, magnetic and geostrophic contributions, and the mag-

netic field is expressed as,

B = ∇× A (x, z) ŷ +B (x, z) ŷ. (3.42)

The equation of motion is

2ρ (Ω × u) = −∇Π + J ×B + FA + Fν , (3.43)

where FA represents buoyancy forces and Fν the viscous terms. The thermal and

magnetic contributions are defined such that they balance the buoyancy and mag-

netic forces respectively. The geostrophic contribution to uy is determined by taking

the y-component of the equation of motion, and integrating over the domain i.e.

− 2ρΩ

∫ d

−d

∂ψ

∂z
dz = µ−1

∫ d

−d

∂ (A,B)

∂ (x, z)
dz +

∫ d

−d
Fνydz (3.44)

For axisymmetric solutions (y-invariant), the resulting geostrophic velocity is in the

azimuthal direction. Here a direct comparison to the original Taylor’s constraint can

be made to the axisymmetric problem; a constraint on the azimuthal component

of the Lorentz force relates to an azimuthal geostrophic flow. This basis for the

Cartesian version of the Taylor’s constraint is considered for our problem.

3.3.3 Cartesian Taylor’s constraint for non-axisymmetric so-

lutions

In our Cartesian geometry, (x, y, z) represents the azimuthal, meridional and ra-

dial directions respectively. For our system of equations, we take the y-component
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of (3.20) as we are looking for non-axisymmetric solutions giving,

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (3.45)

Equation (3.45) is integrated over the domain z,

ψ (x, 1)− ψ (x, 0) =

∫ 1

0

∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
dz. (3.46)

From (3.35), we are free to set ψ (x, 0) = 0 without loss of generality as the constant

can be absorbed into ψ (x, 1), as a consequence (3.46) becomes

ψ (x, 1) =

∫ 1

0

∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
dz, (3.47)

this quantity is to be a constant, however to fully determine the solution we use the

fact that the x-derivative should be zero, i.e.

∂

∂x
ψ (x, 1) =

∂

∂x

∫ 1

0

∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
dz = 0. (3.48)

This result is analogous to (3.44) which is Taylor’s constraint in a Cartesian geometry

for axisymmetric solutions. Hence, (3.48) is Taylor’s constraint for non-axisymmetric

solutions. The geostrophic velocity arises from integrating (3.28) and is determined

by satisfying (3.48).

The difference between the two models is the direction in geostrophic velocity. For

axisymmetric solutions, the resulting geostrophic velocity is in the azimuthal direc-

tion. Here a direct comparison to the original Taylor’s constraint can be made to the

axisymmetric problem; a constraint on the azimuthal component of the Lorentz force

relates to an azimuthal geostrophic flow. Whilst in our non-axisymmetric scenario

the geostrophic velocity is in the meridional direction, which a direct comparison to

Taylor’s constraint is not so obvious.

The final term in (3.48) is analogous to the Ekman boundary layers that form when

small viscous effects are included in the spherical problem as seen in equation (3.39).

We expect to see boundary layer formation when including small viscous effects.

Taylor’s constraint would not be used if we are considering a viscous system with

finite Λ, instead we would revert to no slip boundary conditions. We do not consider

such a case in this thesis, as all solutions considered are for Λ→ 0. This simplifies

our calculations both in an analytical and numerical scope.
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Chapter 4

Asymptotic solutions at small Rm

for an inviscid model

In order to make analytical progress with the governing equations, in this chapter we

make the additional assumptions that Rm� 1 and Bs = 0. It should be pointed out

that the regime of Λ � 1, Rm � 1 is not that which occurs in planetary interiors;

there Λ ∼ O (1) and Rm � 1. Nonetheless, this regime allows analytical progress,

which contributes to our understanding of the general problem. As a result of these

assumptions, the governing equations are as follows:

∂2A

∂x2
+
∂2A

∂z2
= Rmz

∂A

∂x
, (4.1)

Jy = −z∂A
∂x

, (4.2)

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
, (4.3)

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v,A)

∂ (x, z)
+ Rmz

∂H

∂x
, (4.4)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
. (4.5)
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Chapter 4. Asymptotic solutions at small Rm for an inviscid model

As we are considering Rm � 1, the variables A, Jy, v, H and ψ, are expressed as

asymptotic series in Rm, namely,

A (x, z) = A0 (x, z) + RmA1 (x, z) + Rm2A2 (x, z) + . . . , (4.6)

Jy (x, z) = Jy,0 (x, z) + RmJy,1 (x, z) + Rm2Jy,2 (x, z) + . . . , (4.7)

v (x, z) = v0 (x, z) + Rmv1 (x, z) + Rm2v2 (x, z) + . . . , (4.8)

H (x, z) = H0 (x, z) + RmH1 (x, z) + Rm2H2 (x, z) + . . . , (4.9)

ψ (x, z) = ψ0 (x, z) + Rmψ1 (x, z) + Rm2ψ2 (x, z) + · · · . (4.10)

On substituting (4.6)–(4.10), into (4.1)–(4.5) the leading order equations are

∂2A

∂x2
+
∂2A

∂z2
= 0, (4.11)

Jy = −z∂A
∂x

, (4.12)

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
, (4.13)

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v,A)

∂ (x, z)
, (4.14)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
. (4.15)

There is a clear order in which to solve these equations: one begins with (4.11)

followed by (4.12), (4.13), (4.14) and finally (4.15).

4.1 Leading order solutions

The leading order solution for A satisfies (4.11), subject to the boundary conditions

A (x, 0) =
1

k
sin (kx) , (4.16)

dA

dz

∣∣∣∣
z=1

= −kA, (4.17)

and has solution,

A0 (x, z) =
1

k
sin (kx) e−kz. (4.18)

The solution (4.18) is plotted in figure 4.1; the field emitted at the bottom of the

layer is not attenuated entirely at z = 1 in the small Rm case; it is also antisymmetric

about x = π.
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Figure 4.1: Contour plot of A (x, z) in the small Rm limit for k = 1.

The leading order solution for the current density is

Jy,0 (x, z) = −z cos (kx) e−kz. (4.19)

Substituting into (4.13) and integrating with respect to z gives

v0 (x, z) = − 1

4k
e−2kz cos (2kx) +

1

2
ze−2kz + V0 (x) , (4.20)

where V0 (x) is the geostrophic flow, i.e. it has only azimuthal structure. The remain-

ing terms in (4.20) contribute to the ageostrophic flow, which has both azimuthal

and radial dependence. The geostrophic flow is normally found by satisfying Tay-

lor’s constraint (3.38), with the resulting geostrophic velocity found in the azimuthal

direction, Vφ (s). However, because we are looking at non-axisymmetric solutions

which are invariant in y, the geostrophic velocity here is in the meridional direction

y, and not the azimuthal direction x. Owing to our choice of geometry, Taylor’s

constraint itself is slightly different in this analysis. To determine the geostrophic

flow in this geometry requires us to use the boundary condition for ψ (x, z) at the

top of the layer.
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Chapter 4. Asymptotic solutions at small Rm for an inviscid model

The ageostrophic component of (4.20) is plotted in figure 4.2. There is symmetry

about x = π and the strength of the velocity is much greater in the lower half of

the domain. At this stage, we are yet to determine the solution of the geostrophic
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Figure 4.2: Contour plot of the ageostrophic part of v (x, z) in the small Rm limit

for k = 1.

part V0 (x); this will be determined by our ψ boundary condition at z = 1. Ex-

pression (4.20) is substituted directly into equation (4.14), giving the leading order

PDE(
∂2

∂x2
+

∂2

∂z2

)
H0 (x, z) = ke−3kz

(
z − 1

k

)
cos (kx)− e−kzV ′0 (x) sin (kx) . (4.21)

We write

H0 (x, z) = Ha (x, z) +Hg (x, z) . (4.22)

whereHa (x, z) andHg (x, z) are the ageostrophic and geostrophic parts respectively.

The geostrophic part, Hg (x, z), is such that it is dependent solely on the contribution

from the geostrophic flow V ′0 (x), and the ageostrophic part, Ha (x, z), the contrary.

By expressing H0 (x, z) in the form (4.22), equation (4.21) can be separated into an

ODE for Ha (x, z) and a PDE for Hg (x, z). The ageostrophic part already has its
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4.1 Leading order solutions

x-dependence determined via balancing the ageostrophic part of (4.21), i.e.

Ha (x, z) = ha (z) cos (kx) , (4.23)

where ha (z) obeys the second order ODE

d2ha
dz2

− k2ha = k

(
z − 1

k

)
e−3kz, (4.24)

subject to the boundary conditions ha (0) = ha (1) = 0. The geostrophic part,

Hg (x, z), then obeys the PDE

∂2Hg

∂x2
+
∂2Hg

∂z2
= −e−kzV ′0 (x) sin (kx) . (4.25)

The solution to (4.24) is

ha (z) = α0 sinh (kz) + α1 cosh (kz) +
1

8k

(
z − 1

4k

)
e−3kz, (4.26)

where

α0 =
1

8k2 sinh (k)

[
k

(
1

4k
− 1

)
e−3k − 1

4
cosh (k)

]
, (4.27)

α1 =
1

32k2
. (4.28)

On substituting (4.18) and (4.22) into (4.15), and making use of (4.23), we obtain

∂ψ0

∂z
=− 1

2
cos (2kx)

[
d

dz

(
hae

−kz)+ 2ke−kzha

]
− 1

2

d

dz

(
hae

−kz)− e−kz [cos (kx)
∂Hg

∂z
+ sin (kx)

∂Hg

∂x

]
. (4.29)

Equation (4.29) is integrated over the domain, noting that the bottom boundary

condition gives ψ (x, 0) = 0, to give the the following expression,

ψ0 (x, 1) =− k cos (2kx)

∫ 1

0

ha (z) e−kzdz

−
∫ 1

0

e−kz
(

cos (kx)
∂Hg

∂z
+ sin (kx)

∂Hg

∂x

)
dz. (4.30)

Assuming Hg (x, z) is of the separable form Hg (x, z) = F1 (x)G1 (z), equation (4.30)

can be expressed in the form

α sin (kx)
dF1

dx
+ β cos (kx)F1 = γ cos (2kx) , (4.31)
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Chapter 4. Asymptotic solutions at small Rm for an inviscid model

where

α =

∫ 1

0

e−kzG1 (z) dz, (4.32)

β =

∫ 1

0

e−kzG′1 (z) dz = k

∫ 1

0

e−kzG1 (z) dz = kα. (4.33)

The left hand side of (4.31) can be expressed as a perfect derivative and can be

solved via an integrating factor, If , with

If = sin (kx)
β
αk = sin (kx) . (4.34)

Hence

F1 (x) =
γ

2kα

sin (2kx)

sin (kx)
=

γ

kα
cos (kx) . (4.35)

Equation (4.35) indicates that Hg (x, z) takes the form

Hg (x, z) = hg (z) cos (kx) , (4.36)

where hg (z) is to be determined. Substituting (4.36) back into (4.25) gives

d2hg
dz2
− k2hg = −e−kzV ′0 (x)

sin (kx)

cos (kx)
. (4.37)

Equation (4.37) can be reduced to an ODE in z provided that we choose

V ′0 (x) = Ṽ0k cot (kx) . (4.38)

The x-dependence of the geostrophic flow has now been determined. In order to

determine its amplitude Ṽ0 we need to apply the condition

∂

∂x
ψ (x, 1) = 0. (4.39)

This is possible once we have the full solution to H1 (x, z). With the choice (4.38)

of V ′0 (x), we see that hg (z) satisfies the second order ODE

d2hg
dz2
− k2hg = −Ṽ0ke

−kz. (4.40)

Equation (4.40) is subject to the boundary conditions hg (0) = hg (1) = 0. This has

solution

hg (z) =
Ṽ0

2

[
ze−kz − sinh (kz) e−k

sinh (k)

]
. (4.41)
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4.1 Leading order solutions

Hence from (4.26) and (4.41),

H0 (x, z) = cos (kx)

[(
α0 sinh (kz) + α1 cosh (kz) +

1

8k

(
z − 1

4k

)
e−3kz

)
+

Ṽ0

2

(
ze−kz − sinh (kz) e−k

sinh (k)

)]
. (4.42)

The final steps are to determine Ṽ0, thus leading to a complete expression for the

geostrophic flow and then determining ψ (x, z). Ṽ0 is evaluated using the top bound-

ary condition for the stream function,

∂

∂x
ψ (x, 1) =

∂

∂x

∫ 1

0

∂ (H,A)

∂ (x, z)
dz = 0. (4.43)

On introducing the notation, H0 (x, z) = ĥ (z) cos (kx), (4.43) becomes

∂

∂x
ψ1 (x, 1) =− 1

2

∂

∂x

∫ 1

0

d

dz

(
ĥe−kz

)
dz

− ∂

∂x
cos (2kx)

∫ 1

0

[
1

2

d

dz

(
ĥe−kz

)
+ kĥe−kz

]
dz = 0. (4.44)

At the top and bottom boundaries, H (x, z) is subject to (3.34), i.e.

ĥ (0) = ĥ (1) = 0 (4.45)

at z = 0, 1, thus simplifying the evaluation of (4.44). We are now left with just

one term to evaluate, which will determine the coefficient of V0 (x). Equation (4.44)

becomes ∫ 1

0

ĥ (z) e−kzdz = 0, (4.46)

which will determine Ṽ0 which is contained within the function ĥ (z) and as a result

will satisfy (4.43). Equation (4.46) is

Ṽ0

2

∫ 1

0

ze−2kz − sinh (kz) e−ke−kz

sinh (k)
dz

= −
∫ 1

0

α0e
−kz sinh (kz) + α1e

−kz cosh (kz) +
1

8k

(
z − 1

4k

)
e−4kzdz; (4.47)

after some algebraic manipulation, we derive the following expression for Ṽ0,

Ṽ0 =−
{
−e
−2k

2k

(
1 +

1

2k

)
+

1

4k2
− e−k

sinh (k)

(
e−2k

4k
+

1

2
− 1

4k

)}−1

×
{
α0

(
1

2k

(
e−2k − 1

)
+ 1

)
+ α1

(
1 +

1

2k

(
1− e−2k

))
− ke−4k

16

}
. (4.48)
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Chapter 4. Asymptotic solutions at small Rm for an inviscid model

We note that Ṽ0 = −0.302913 when k = 1. The stream function ψ (x, z) is

ψ0 (x, z) =− 1

2

∫ z

0

d

dz′

(
ĥ (z′) e−kz

′
)

dz′

− cos (2kx)

∫ z

0

1

2

d

dz′

(
ĥ (z′) e−kz

′
)

+ kĥ (z′) e−kz
′
dz′, (4.49)

i.e.,

ψ0 (x, z) =− 1

2

{
e−kz

[
α0 sinh (kz) + α1 cosh (kz) +

1

8k

(
z − 1

4k

)
e−3kz

+
Ṽ0

2

(
ze−kz − sinh (kz) e−k

sinh (k)

)]}

− k

2
cos (2kx)

{
e−kz

[
α0 sinh (kz) + α1 cosh (kz) +

1

8k

(
z − 1

4k

)
e−3kz

+
Ṽ0

2

(
ze−kz − sinh (kz) e−k

sinh (k)

)]

+α0

(
e−2kz

2k
+ z − 1

2k

)
+ α1

(
z − e−2kz

2k
+

1

2k

)
− 1

16k2
ze−4kz

+Ṽ0

[
1

4k2
− e−2kz

2k

(
z +

1

2k

)
+

e−k

sinh (k)

(
1

4k
− e−2kz

4k
− z

2

)]}
. (4.50)

This completes the solution to the system of equations at O (Rm).

The meridional field H (x, z), given by (4.42), is plotted in figure 4.3. The meridional

field is also symmetric about x = π and has maximum amplitude of 4× 10−3.
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Figure 4.3: Contour plot of H (x, z) in the small Rm limit for k = 1.

The stream function ψ is plotted in figure 4.4; ψ takes the form of cellular-like

patterns and is symmetric about x = π with maximum amplitude of 4× 10−3.

The individual harmonics of ψ (x, z) are plotted in figure 4.5. The harmonic ψ(0) (x, z)

corresponds to the purely z part of ψ (x, z),

ψ(0) (x, z) = −1

2
e−kz

[
α0 sinh (kz) + α1 cosh (kz) +

1

8k

(
z − 1

4k

)
e−3kz

+
Ṽ0

2

(
ze−kz − sinh (kz) e−k

sinh (k)

)]
, (4.51)

and ψ(2) (x, z) corresponds to the cos (2kx) part,

ψ(2) (x, z) = −k
2

{
e−kz

[
α0 sinh (kz) + α1 cosh (kz) +

1

8k

(
z − 1

4k

)
e−3kz

+
Ṽ0

2

(
ze−kz − sinh (kz) e−k

sinh (k)

)]

+α0

(
e−2kz

2k
+ z − 1

2k

)
+ α1

(
z − e−2kz

2k
+

1

2k

)
− 1

16k2
ze−4kz

+Ṽ0

[
1

4k2
− e−2kz

2k

(
z +

1

2k

)
+

e−k

sinh (k)

(
1

4k
− e−2kz

4k
− z

2

)]}
.

(4.52)
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Figure 4.4: Contour plot of the stream function ψ (x, z) in the small Rm limit for

k = 1.
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Rm limit for k = 1.
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4.1 Leading order solutions

Integrating (4.38) with respect to x gives,

V0 (x) = Ṽ0 log (sin (kx)) . (4.53)

V0 (x) goes to infinity as x → 0 and x → π. In figure 4.6, V ′0 (x) is plotted to show

this singular behaviour near these points. Of course, this property is physically

unrealistic as such velocities cannot exist. The reason for this singular behaviour

stems from the generation of the meridional magnetic field H (x, z) which is gener-

ated from the magnetic stretching of the potential field A (x, z) by the meridional

circulation v (x, z). Magnetic stretching is described by the term

(B · ∇)uy =
∂A

∂x

∂v

∂z
− ∂A

∂z

∂v

∂x
, (4.54)

and the geostrophic contribution to magnetic stretching arises from V0 (x) acting on

the azimuthal field Bx = ∂A
∂x

. Since the horizontal field is zero at x = 0, there is no

field to stretch out into the y-direction at x = 0. In order to get a non-zero effect

from Bx
dV0
dx

at x = 0, we require an infinite dV0
dx

to counter the lack of Bx there,

whence this singularity occurs.

51



Chapter 4. Asymptotic solutions at small Rm for an inviscid model

x
0 1 2 3 4 5 6

V
0′
(x

)

-5

-4

-3

-2

-1

0

1

2

3

4

5
Geostrophic V

0
′ (x) across x

Figure 4.6: A plot of the geostrophic flow in the small Rm limit for k = 1.

52



Chapter 5

Numerical method for general Rm

and Ha

In general, for finite values of Rm and Ha, equations (3.26)–(3.30) require a numeri-

cal solution. In this chapter an overview of the methodology is discussed for solving

the equations for a general Rm-Ha system.

The asymptotic solutions found for small Rm can be used to test whether the code

is working correctly. Of course, a slightly different approach has to be made in

the inviscid regime where the geostrophic flow is singular – this causes difficulties

when trying to directly evaluate V ′0 (x) numerically. A comparison between the two

methods is given.

5.1 Method of solution

The numerical approach to solving (3.26)–(3.30) is somewhat unconventional com-

pared to standard methods. As we are dealing with what is essentially a constraint

on the geostrophic flow, we require a root finding algorithm to be implemented into
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Chapter 5. Numerical method for general Rm and Ha

the numerical code. The PDEs that are to be solved are

∂2A

∂x2
+
∂2A

∂z2
= Rmz

∂A

∂x
, (5.1)

Jy = −z∂A
∂x

, (5.2)

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
− Bs

∂Jy
∂x

, (5.3)

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v,A)

∂ (x, z)
+ Rmz

∂H

∂x
− Bs

∂v

∂x
, (5.4)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (5.5)

The solution to (5.1) at finite Rm is the Hankel function solution found earlier in

Chapter 2. We express the solution to (5.1) as

A (x, z) = − i
2

(
f (z) eikx − f̄ (z) e−ikx

)
, (5.6)

where f (z) is the Hankel function solution (2.18). We shall leave the solutions in

terms of f (z). The choice of the prefactor i
2

is to ensure that in the low Rm limit,

A (x, z) takes the form,

A (x, z) = A (z) sin (kx) . (5.7)

We can find A (x, z) by solving for the harmonics eikx and e−ikx. By considering the

eikx harmonic, the corresponding second order ODE for f (z) is

d2f

dz2
= k2f + ikRmzf, (5.8)

where the boundary conditions (3.31) and (3.33) are applied, i.e.

f (0) =
1

k
, (5.9)

f ′ (1) = −kf (1) . (5.10)

The conjugate solution, f̄ (z), is the solution to (5.8) but with −i in the final term.

Equation (5.8) with the boundary conditions (5.9), (5.10) is then solved by using

the inbuilt MATLAB function bvp4c; this integrates a system of ODEs over a given

interval when subject to two boundary conditions, using a finite difference code in

order to integrate the ODEs.
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5.1 Method of solution

The current density, Jy, is expressed in terms of f (z) as

Jy = −k
2
z
(
f (z) eikx + f̄ (z) e−ikx

)
. (5.11)

On substitution of (5.6) and (5.11) into (5.3), v (x, z) takes the form,

v (x, z) = v0 (z)+v1 (z) eikx+ v̄1 (z) e−ikx+v2 (z) e2ikx+ v̄2 (z) e−2ikx+V0 (x) , (5.12)

where each of the harmonics in the ageostrophic solution is governed by the ODEs:

dv0

dz
=
k2

2

[
zf ′f̄ + zf f̄ ′ + ff̄

]
, (5.13)

dv1

dz
=
ik2Bsz

2
f, (5.14)

dv2

dz
=
k2

4
f 2. (5.15)

The solution f is carried throughout the numerical routine, meaning that we only

need to solve for f once and, as a result, this solution is then used for each of the

harmonics in v (x, z). It is important to note that in the theory, and from equa-

tion (5.3), there are no boundary conditions explicitly applied to v (x, z), but we

add in a geostrophic flow term V0 (x), which is subsequently determined by Taylor’s

constraint. In the numerical code we must however provide a boundary condition

to solve equations (5.13)- (5.15). The choice of boundary conditions will change the

solutions to (5.13)-(5.15) individually, but when we apply Taylor’s constraint, V0 (x)

adjusts so that whichever boundary condition is used, a unique solution (up to a

constant) for v (x, z) is obtained for the sum of the ageostrophic and geostrophic

components. Therefore it is important to stress that the choice of boundary condi-

tion is arbitrary. We solve equations (5.13)- (5.15) using bvp4c and set v (x, z) = 0

at z = 0. A comparison is provided later which shows that changing the boundary

condition does not change the overall solution.

The geostrophic velocity, V0 (x), is still to be determined in this problem. The

derivative to the geostrophic velocity is the only explicit term throughout the system

of equations and it is expressed as a Fourier series in x in order to satisfy periodicity.

We write

V ′0 (x) =
N∑
n=1

(un + ivn) einkx + c.c., (5.16)
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where un and vn are purely real and N is the number of modes. Here N is chosen to

be large enough so that the omitted terms in the Fourier expansion are numerically

small, but not so large that the amount of computation becomes impractically large.

Substituting the expressions (5.12) and (5.6) into equation (5.4) gives the following

PDE,

∇2H − Rmz
∂H

∂x
=

dV0

dx

(
i

2
f̄ ′e−ikx − i

2
f ′eikx − Bs

)
− k

2

(
fv̄′1 + f̄v′1 + f ′v̄1 + f̄ ′v1

)
+ ke3ikx

[
f ′v2 −

1

2
fv′2

]
− ke2ikx

[
2iBsv2 +

1

2
fv′1 −

1

2
f ′v1

]
− keikx

[
iBsv1 + f̄ ′v2 +

1

2
fv′0 +

1

2
f̄v′2

]
+ c.c. (5.17)

By expressing H (x, z) as

H (x, z) =h0 (z) + h1 (z) eikx + h̄1 (z) e−ikx + h2 (z) e2ikx + h̄2 (z) e−2ikx

+ h3 (z) e3ikx + h̄3 (z) e−3ikx + hg (x, z) , (5.18)

equation (5.17) can then be separated into seven linear ODEs and one PDE. hg (x, z)

represents the geostrophic part of the meridional field. The PDE and the four non-

conjugate ODEs are

d2h0

dz2
= −k

2

(
fv̄′1 + f̄v′1 + f ′v̄1 + f̄ ′v1

)
, (5.19)

d2h1

dz2
− k2h1 − ikRmzh1 = −k

(
iBsv1 + f̄ ′v2 +

1

2
fv′0 +

1

2
f̄v′2

)
, (5.20)

d2h2

dz2
− 4k2h2 − 2ikRmzh2 = −k

(
2iBsv2 +

1

2
fv′1 −

1

2
f ′v1

)
, (5.21)

d2h3

dz2
− 9k2h3 − 3ikRmzh3 = k

(
f ′v2 −

1

2
fv′2

)
, (5.22)

∂2hg
∂z2

+
∂2hg
∂x2

− Rmz
∂h

∂x
=

dV0

dx

(
i

2
f̄ ′e−ikx − i

2
f ′eikx − Bs

)
, (5.23)

the three corresponding conjugate ODEs for (5.20) (5.21) and (5.22) complete the

set of ODEs/PDE for (5.18). The ODE for h0 (z) arises only in the non-zero hor-

izontal field case. The solution to equations (5.19)-(5.22) provide the ageostrophic
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5.1 Method of solution

contributions to H (x, z) and are subject to

hn (0) = 0, (5.24)

hn (1) = 0, (5.25)

for n = 0 . . . 3. The boundary conditions (5.24) and (5.25) correspond to the mag-

netic boundary condition (3.34). Using (5.16), equation (5.23) will reduce to a sys-

tem of ODEs in z, which can then be solved for each harmonic in x. Equation (5.23)

becomes

L (hg) =
i

2

[
N∑
n=1

(un + ivn) f̄ ′eik(n−1)x − (un + ivn) f ′eik(n+1)x + c.c.

]

− Bs

[
N∑
n=1

(un + ivn) einkx + c.c

]
, (5.26)

where L denotes the linear operator acting on the left hand side of (5.23). It is

apparent that the geostrophic meridional field, hg (x, z), takes the form of a Fourier

series in x with unknown functions of z as its coefficients. We may then express

hg (x, z) as

hg (x, z) =
1

2
q0 (z) +

N+1∑
n=1

qn (z) einkx + c.c., (5.27)

where the coefficients qn (z) satisfy the following ODEs,

q′′0 = i
[
(u1 + iv1) f̄ ′ − (u1 − iv1) f ′

]
, (5.28)

q′′1 − k2q1 − ikRmzq1 =
i

2
(u2 + iv2) f̄ ′ − Bs (u1 + iv1) , (5.29)

q′′n − n2k2qn − inkRmzqn =
i

2

[
(un+1 + ivn+1) f̄ ′

− (un−1 + ivn−1) f ′]− Bs (un + ivn) , (5.30)

q′′N −N2k2qN − iNkRmzqN = − i
2

(uN−1 + ivN−1) f ′ − Bs (uN + ivN) , (5.31)

q′′N+1 − (N + 1)2 k2qN+1 − i (N + 1) kRmzqN+1 = − i
2

(uN + ivN) f ′, (5.32)

and are subject to the boundary conditions

qn (0) = 0, (5.33)

qn (1) = 0, (5.34)
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for n = 0 . . . N + 1.

Finally, the stream function is evaluated by substitution of (5.6), (5.18) and (5.27)

into (5.5), giving

∂ψ

∂z
=− k

2

[
h1f̄

′ + h′1f̄ + h̄1f
′ + h̄′1f

]
− k

2

[
2h2f̄

′ + h′2f̄ +
1

2
fq′0 + h′0f + 2iBsh1

]
eikx

+
k

2

[
h1f

′ − 3h3f̄
′ − h′1f − h′3f̄ − 4iBsh2

]
e2ikx +

k

2
[2h2f

′ − h′2f − 6iBsh3] e3ikx

+
k

2
[3h3f − h′3f ] e4ikx +

k

2

(
f ′eikx − f̄ ′e−ikx

)(N+1∑
n=1

nqne
inkx + c.c.

)

− k

2

(
feikx + f̄ e−ikx

)(N+1∑
n=1

q′ne
inkx + c.c.

)
− ikBs

N∑
n=1

nqne
inkx + c.c.

+
1

Ha2

[
v′′0 +

(
v′′2 − 4k2v2

)
e2ikx +

(
v̄′′2 − 4k2v̄2

)
e−2ikx

]
+

1

Ha2

N∑
n=1

(
ikn (un + ivn) einkx + c.c.

)
. (5.35)

By letting

ψ (x, z) =
1

2
ψ0 (z) +

N+2∑
n=1

ψn (z) einkx + c.c., (5.36)

equation (5.35) can be then split into 2N + 1 first order ODEs, which includes the

conjugate ODEs.
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5.1 Method of solution

We then solve for the harmonics n = 0 . . . N ,

dψ0

dz
=− k

2

[
h1f̄

′ + h′1f̄ + h̄1f
′ + h̄′1f + q1f̄

′ + q̄1f
′ + q̄′1f + q′1f̄

]
− k2

Ha2

[
f ′f̄ + ff̄ ′ + zf ′f̄ ′ + k2zf̄f

]
, (5.37)

dψ1

dz
=− k

4
fq′0 −

k

2

[
2q2f̄

′ + f̄ q′2
]
− ik

Ha2 (u1 + iv1)− iBskq1, (5.38)

dψ2

dz
=
k

2

[
h1f

′ − 3h3f̄
′ − h′1f − h′3f̄ − q′1f − q′3f̄ − 3q3f̄

′ + q1f
′]

− 1

Ha2

[
k2

2
ff ′ − 4k2v2 + 2ik (u2 + iv2)

]
− 2iBskq2, (5.39)

dψ3

dz
=
k

2

[
2q2f

′ − 4q4f̄
′ − q′2f − q′4f̄

]
− 3ik

Ha2 (u3 + iv3)− 3iBskq3, (5.40)

dψ4

dz
=
k

2

[
3h3f

′ − h′3f + 3q3f
′ − 5q5f̄

′ − q′3f − q′5f̄
]

− 4ik

Ha2 (u4 + iv4)− 4iBskq4, (5.41)

dψn
dz

=
k

2

[
(n− 1) qn−1f

′ − (n+ 1) qn+1f̄
′ − q′n−1f − qn+1f̄

]
− ink

Ha2 (un + ivn)− inBskqn. (5.42)

Equations (5.37) to (5.42) are solved subject to the boundary condition ψ = 0 at

z = 0. However, we also aim to satisfy the boundary condition

∂

∂x
ψ (x, 1) = 0, (5.43)

since there is no fluid flux through the boundary at z = 1. This second boundary

condition on a first order in z system determines the geostrophic, flow which up to

this point has been arbitrary. This gives the condition

ψn (1) = 0, (5.44)

for n = 1 . . . N . The choice of solving up to the N th harmonic in ψn is to keep the

problem square so that the system of equations is not overdetermined.

All the equations we wish to solve are solved by bvp4c. However, an initial choice

of un and vn will not (in practice) satisfy (5.44), meaning that the geostrophic

velocity has to readjust in order to satisfy (5.44). To overcome this issue, the ODEs

that depend on the geostrophic coefficients, i.e. equations (5.28)–(5.32) and (5.38)–

(5.42), are solved inside an Fsolve routine. Fsolve is an inbuilt Matlab function
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that solves a system of nonlinear equations subject to

F (x) = 0, (5.45)

where F (x) is set to (5.44) and x is a vector containing the coefficients un and vn.

For a given initial seed of x = (u1, . . . , un, v1, . . . , vn), the quantities h (x, z) and

ψ (x, z) are calculated inside Fsolve and ψn (1) is evaluated. If (5.44) is not satisfied

then the coefficients x are changed and the system of equations is re-evaluated

for the new coefficients. This process is repeated until (5.44) is achieved within a

numerical tolerance; the tolerance can be imposed on the step size in x, the function

evaluation or the first order optimality. We set the step size and function evaluation

tolerances to 10−7 and the first order optimality tolerance is left at its default value

of 10−6. Once the tolerance has been achieved, the program terminates and Taylor’s

constraint is then satisfied to the required degree of accuracy.

To summarise this procedure, an N -term expansion for (5.16) results in 2N un-

knowns (N for un and N for vn). We then solve for 2N + 3 equations in qn (z)

(q0, . . . , qN+1, q̄1 . . . , q̄N+1),; this is to ensure all the terms are accounted for when

integrating ψ (x, z). To keep the problem square, we solve 2N equations for the ψ (z)

harmonics (ψn up to the Nth harmonic and the conjugates) for the 2N unknowns

in un and vn. We note that ψ0 (z) trivially satisfies (5.44) as it does not have any

x-dependence, so this is not included in the constraint in the Fsolve routine, but it

is still calculated for the full solution to ψ (x, z).

In figure 5.1 a flow chart highlights the main steps and processes for the numerical

procedure.
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Figure 5.1: Flow chart for MATLAB implementation.
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5.1.1 Low Rm, inviscid approach

In the inviscid, small Rm limit and when Bs = 0, the numerical method described in

§5.1 has its limitations. Unfortunately the Fsolve routine, as expected, struggles to

resolve the geostrophic flow since the solution is singular in the small Rm limit. In

theory, the code would require infinitely many modes to resolve the infinite gradient

at x = 0. To overcome this, we employ a different approach. The method described

next will be for the Bs = 0 case.

In the low Rm regime, the geostrophic flow is of the form

V ′0 (x) = Ṽ0k cot (kx) . (5.46)

We therefore introduce the quantity

W (x) = sin (kx)V ′0 (x) , (5.47)

which is well behaved and takes the form of cos (kx) as Rm → 0. The aim now is

to solve for the function W (x). We write (5.47) as a Fourier expansion,

W (x) =
i

2

(
e−ikx − eikx

)
V ′0 (x) =

N∑
n=1

(un + ivn) einkx + c.c.. (5.48)

The PDEs for A (x, z), Jy (x, z) and v (x, z) are the same as before, i.e. (5.1),(5.2)

and (5.3) with Bs = 0, so the focus is now on (5.23) and (5.5),

∂2hg
∂z2

+
∂2hg
∂x2

− Rmz
∂hg
∂x

=
dV0

dx

(
i

2
f̄ ′e−ikx − i

2
f ′eikx

)
, (5.49)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
. (5.50)

Multiplying (5.49) by sin (kx) we can express it in terms of W (x) as

i

2

(
e−ikx − eikx

)
L (hg) = W (x)

(
i

2
f̄ ′e−ikx − i

2
f ′eikx

)
, (5.51)

where L is the linear operator on the left-hand side of (5.49). Substituting the

expression (5.48) into (5.51) gives

i

2

(
e−ikx − eikx

)
L (hg) =

[
N∑
n=1

i

2
(un + ivn) f̄ ′eik(n−1)x − i

2
(un + ivn) f ′eik(n+1)x + c.c.

]
,

(5.52)
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which can be expressed as,

i

2

(
e−ikx − eikx

)
L (hg) =

i

2

[
N−1∑
n=0

(un+1 + ivn+1) f̄ ′einkx

−
N+1∑
n=2

(un−1 + ivn−1) f ′einkx + c.c.

]
(5.53)

The function hg (x, z) must take the form

hg (x, z) =
N∑
n=1

qn (z) einkx + c.c.. (5.54)

The left hand side of (5.52) is then expanded as

N−1∑
n=0

i

2

(
q′′n+1 − (n+ 1)2 k2qn+1 − i (n+ 1) kRmzqn+1

)
einkx + c.c.

−
N+1∑
n=2

i

2

(
q′′n−1 − (n− 1)2 k2qn−1 − i (n− 1) kRmzqn−1

)
einkx + c.c.

By substituting the next harmonic in qi (z), we can simplify the ODEs, and as a

result, the even terms satisfy

q′′2n − 4n2k2q2n − 2inkRmzq2n = (u2n + iv2n) f̄ ′ +
n∑

m=1

(u2m + iv2m)
(
f̄ ′ − f ′

)
whereas the odd terms satisfy

q′′2n+1 − (2n+ 1)2 k2q2n+1−i (2n+ 1) kRmzq2n+1 = (u2n+1 + iv2n+1) f̄ ′

+
n−1∑
m=0

(u2m+1 + iv2m+1)
(
f̄ ′ − f ′

)
.

The solution to ψ (x, z) follows the same procedure as outlined above.

5.2 Verification of solutions

Before we begin a full exploration of parameter space we need to verify that the

numerical solutions are correct and well resolved. The obvious starting point is

to compare the numerics to the asymptotic results found in Chapter 4. We shall

also consider varying the boundary condition of the ageostrophic part of v (x, z),

which is not required in the theory, but numerically is required for integration of

the individual harmonics (5.13) – (5.15).
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In order to test whether the solution is well resolved we shall consider increasing the

number of modes in the expansion of V ′0 (x) and comparing the solutions. Plotting

the energy spectra of the harmonics of V ′0 (x), qn (z) and ψn (z) will also help confirm

whether the solution to the system of equations is resolved appropriately.

5.2.1 Comparison with asymptotic results

By using the asymptotic results we can verify that the code is working in the small

Rm regime. The difficulty with the inviscid regime is that the geostrophic flow

is singular, which is difficult to achieve numerically. For plotting purposes we use

Nx = Nz = 100 meshpoints — this does not affect the truncation or solution in any

sense as this is determined by the choice of modes in the Fourier expansion of the

geostrophic flow.

Below we compare the asymptotic and numerical results for an inviscid fluid at

small Rm. In both codes we expect the ageostrophic quantities to match with high

accuracy since they are well-behaved for the inviscid interior solution at small Rm.

The geostrophic quantities in h (x, z) and ψ (x, z) will be different between the two

numerical approaches because of the difference in evaluating the singular V ′0 (x) term

and the nonsingular W (x).

In figure 5.2, the numerical solution of (5.6) matches well when compared to the z

component of (4.18) in the asymptotic theory. This is achieved by setting Rm = 0

in the numerical code.
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In figure 5.3, the ageostrophic solutions v0 (z) and v2 (z) are plotted against the

corresponding asymptotic solution (4.20). In order for the numerical solution to

match to the asymptotic solution (4.20) we impose a boundary condition derived

from the asymptotic result by evaluating (4.20) at z = 0, namely

v (x, z) = − 1

4k
cos (2kx) . (5.55)

Hence the boundary condition at z = 0 is

v0 (z) = 0, (5.56)

v2 (z) = − 1

8k
. (5.57)

We note that the choice of boundary condition is arbitrary as it does not affect the

overall solution (see §5.2.2). From herein all solutions are subject to the boundary

conditions (5.56)–(5.57).

In figure 5.4 the small Rm ageostrophic solution to H (x, z), given by (5.20), is

compared to the numerical solution of (4.26), thus confirming that the solution is

correct in this regime.
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In figure 5.5, using the numerical method that evaluates (5.16), the numerical so-

lution of the geostrophic meridional field, h (x, z), the harmonics ψ0 (z) and ψ2 (z),

and the geostrophic flow are plotted, together with their corresponding asymptotic

result. As expected, the code struggles to find a smooth solution to V ′0 (x), owing

to the singularity at x = 0, π. Away from the singularity there is some agree-

ment, but it is quite poor. Near the singularity Gibbs phenomena occurs. Even

when increasing the number of modes, the singularity will always cause an issue

when evaluating (5.16), as shown in figure 5.7 where we have tested for the cases

M = 10, 20, 30, 40 modes.

In figure 5.6 the same quantities are evaluated, but for the code in which W (x)

is evaluated and in which V ′0 (x) is then recovered by dividing through by sin (kx).

Here we can see that this is a much better match for the geostrophic flow. Figure 5.6

shows the solution to an M = 5 mode expansion, taking 96.6 seconds to compute,

whilst figure 5.5 is the solution to an M = 40 mode expansion, taking 7975.3 seconds

to compute.

Although the direct evaluation of (5.16) for an inviscid fluid at small Rm results

in a poorly resolved solution for the geostrophic flow, the code works reasonably

well at solving the harmonics of h (x, z) and ψ (x, z). We are confident that the

solutions will be accurate providing we are not in the inviscid small Rm limit. The

indirect evaluation of V ′0 (x) is computationally cheaper, but limited to only inviscid

solutions at small Rm.
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5.2.2 Boundary conditions

The subtlety in the code compared to the theory is the integration of the ageostrophic

component of v (x, z), i.e. integrating equations (5.13)–(5.15). The numerical solver

requires one boundary condition to solve the first order ODE, and the choice of this

will change the solution to the geostrophic part V ′0 (x). However, this should not

change vx (x, z) in its entirety, as it only adds an extra constant to v (x, z). The

same also applies to the full solution of H (x, z) and ψ (x, z).

To highlight this issue, we test two cases: one with the boundary conditions (5.55),

and the other with a boundary condition in which we simply impose zero meridional

flux at the bottom of the layer, i.e. v (x, z) = 0. Neither of these should change

the solution, although they almost always change the solution to the separated

ageostrophic and geostrophic quantities.

In figure 5.8 we plot the contours of both solutions and, in figure 5.9, the difference

between them, namely

D =

√
(QA −QB)2, (5.58)

where Q is one of vx (x, z), H (x, z) and ψ (x, z) evaluated with boundary condition

A (equations (5.56)–(5.57)) or boundary condition B (v (x, z) = 0). This is tested

for the case Rm→ 0, Bs = 0, Ha = 1 and k = 1.
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5.2.3 Energy spectra and scalings

The choice of how many modes to retain in the expansion (5.16) depends on the

structure of V ′0 (x); too few modes can lead to a solution that is not well resolved.

This will become apparent when we investigate the effects of varying the Hartmann

number, Ha, at small Rm. To be confident that our solution is well resolved, one

can either rerun the code for a variety of modes to see if the solution changes, or

plot the energy spectra of the coefficients of V ′0 (x). In a well resolved solution, the

energy of the higher harmonics should be insignificant compared to the rest of the

spectra. We measure the energy of the harmonics of V ′0 (x) using

Eun =
1

2
u2
n, (5.59)

Evn =
1

2
v2
n, (5.60)

and for both qn (z), ψn (z) we take the average over the domain, then calculate

Eψn =
1

2
〈ψn (z)〉2. (5.61)

x

0 1 2 3 4 5 6

V
0′
(x

)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Comparison of V
0

′ (x) for different number of modes

5 modes

10 modes

15 modes

Figure 5.10: An example where the solution is not resolved at N = 5 modes, but

N = 10 and N = 15 are consistent. Ha = 15, Rm→ 0.1 and Bs = 0. Note that the

red curve is obscured by the overlapping yellow curve in this plot.
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Figure 5.11 confirms that the solution is well resolved with N = 15 modes, since

the energy in the higher harmonics is much smaller than that at lower harmonics.

Owing to the nature of the solutions in the Bs = 0 case, only the even harmonics in

V ′0 (x) are calculated, since the solutions have symmetry in x and, as a consequence,

the odd harmonics are numerically small. Even with an initial seed of purely non-

zero odd modes, the solution always reverts to the even harmonics being the only

non-zero contribution.

5.2.4 Computation time

When running the code, it is useful to know how the running time scales with

increasing modal expansion; this allows us to know what the limitations are for

parameter space exploration. In the cases for large Ha, the number of modes will

have to increase to accommodate for the small-scale structure near the boundary

layer, so it is good to know how large can Ha be and how long it will take to compute

a solution.
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Below we plot the computational time for the code with increasing number of modes,

to indicate how long it takes to find the solution. A line of fit can be made if we

assume that the simulation time take the form

τ = λNα, (5.62)

where τ is the time in seconds using a single processor machine. We would expect

the scaling with N to be approximately independent of the computer used. We

calculate the parameters as λ = 15.26 and α = 1.78, where N is the number of

modes.

Modes

10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

10
2

10
3

10
4

10
5

Computation time with modes (Ha=10)

Rm=1

Rm=5

Rm=10

Fit

Figure 5.12: Computation time of runs with fixed Ha and various Rm against in-

creasing modes.

5.3 Symmetries of the solutions

Equations (5.1) to (5.5) with the given boundary conditions have certain symmetry

properties. All our solutions are periodic in space with period 2π/k. This occurs

because the magnetic field forcing at z = 0 is assumed periodic in 2π/k in the

x-direction, and there is no other explicit x-dependence in the model equations.
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However, some solutions have additional symmetries. There is an important dis-

tinction between the cases with Bs = 0 and Bs 6= 0. In Chapter 8 we will see that

Bs 6= 0 will break the following symmetries.

5.3.1 The case Bs = 0 and Rm ∼ O (1)

From (5.6), we note that because of the nature of the imposed field

A (x+ π, z) = −A (x, z) . (5.63)

It follows that the current density has the symmetry

Jy (x+ π, z) = −Jy (x, z) . (5.64)

From (5.3), when Bs = 0, the right hand side of (5.3) consists of products of A (x, z)

and Jy (x, z), it is apparent that the meridional flow has the symmetry

v (x+ π, z) = v (x, z) . (5.65)

When Bs 6= 0 this symmetry will be broken, as the Bs term in (5.3) reverses sign

under the transition x→ x+ π but the Jacobian term does not.

From equations (5.4)–(5.5) we see that

H (x+ π, z) = −H (x, z) , (5.66)

ψ (x+ π, z) = ψ (x, z) , (5.67)

noting that the Hartmann number term in (5.5) preserves this symmetry. The

geostrophic flow also respects this symmetry since V ′0 (x+ π) = V ′0 (x).

5.3.2 The case Bs = 0 and Rm→ 0

In this limit, (5.1) becomes purely real, and hence we have the additional symmetry,

A (x, z) = −A (−x, z) , (5.68)

along with the previous symmetry of (5.63). In this limit, all quantities become

purely real, and noting that taking an x-derivative transforms odd functions into
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even functions, and vice versa, we have the following additional symmetries:

Jy (x, z) = Jy (−x, z) , (5.69)

v (x, z) = v (−x, z) , (5.70)

H (x, z) = H (−x, z) , (5.71)

ψ (x, z) = ψ (−x, z) , (5.72)

V ′0 (x) = −V ′0 (−x) . (5.73)

These results are all consistent with the results presented in Chapter 4.
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Chapter 6

Numerical solutions in the absence

of a horizontal field

In this chapter we present the solutions to the system of equations for general values

of Rm and Ha without an imposed horizontal field, i.e. Bs = 0. All the diagnostics

described in §5 are used to determine whether the solution is well resolved.

6.1 General behaviour of ageostrophic quantities

at moderate Rm

The effect of Rm on the ageostrophic components of A (x, z), v (x, z) and H (x, z)

is the same for both the inviscid and viscous regimes for small Λ. Large values

of Rm are related to an increase in strength of the thermal shear in the stratified

layer. At large Rm we expect the magnetic field to be strongly attenuated within

the layer such that very little of the non-axisymmetric field exists at the top of the

domain. This is supported by figure (6.1), which shows the magnetic potential field

for specific values of Rm up to Rm = 100.

In figure 6.1 we can see that the radial structure is strongly dependent on Rm; the

field lines are bent by the strong shearing effect. The solutions presented in (6.1)

are for k = 1; larger values of k correspond to shorter wavelengths, which would
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result in greater attenuation.

The ageostrophic meridional flow is plotted in figure 6.2. The magnitude of the

velocity field does not change substantially as Rm increases. It is quite surprising

that v (x, z) does not follow a similar pattern to A (x, z) as Rm increases given that

v (x, z) depends on the solution of A (x, z). However, the large Rm solutions in

figure 6.2 do become rather independent of z in the upper region where A (x, z) and

Jy (x, z) are small. From equation (5.3), this is to be expected. Interestingly though,

v (x, z) itself is not necessarily small in the upper regions because the forcing due

to A (x, z) and Jy (x, z) near z = 0 generates a finite v (x, z) which persists to the

upper layers. This non-zero upper region v (x, z) structure would be wiped out if

there were significant viscous diffusion in the layer, but viscous diffusion is believed

to be small in stably stratified layers. So although Stevenson’s argument that non-

axisymmetric magnetic fields are sheared away by the thermal wind in the stable

layer still holds in the dynamical regime, it does not necessarily follow that the

non-axisymmetric flow generated by the fluid is wiped out at the top of the layer.

Figure 6.3 shows that the ageostrophic part of the meridional field H (x, z) is com-

pressed into the lower half of the domain as Rm is increased. At large Rm we may

begin to see boundary layer formation at z = 0.
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Figure 6.1: Contour plots of A (x, z) as Rm increases.
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Figure 6.2: Contour plots of ageostrophic v (x, z) as Rm increases.
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Figure 6.3: Contour plots of ageostrophic H (x, z) as Rm increases.
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Chapter 6. Numerical solutions in the absence of a horizontal field

6.2 Inviscid, moderate Rm

At moderate Rm the geostrophic velocity, V ′0 (x), is no longer singular for an inviscid

fluid, i.e. Ha → ∞. This was somewhat unexpected as one might expect this

singularity to continue to exist until either the introduction of the horizontal field

or viscosity into the system of equations.

In figure 6.5, H (x, z), ψ (x, z), vx (x, z) and V ′0 (x) are plotted at Rm = 100 for

an inviscid fluid. The solution presented is calculated using N = 30 modes in

the expansion for V ′0 (x), given by equation (5.16). Figure 6.5 shows that V ′0 (x) is

smooth and continuous in x. The other three quantities considered all feature a

radial structure that is strongly confined to the lower half of the domain.

The azimuthal symmetry of ψ (x, z) is still π-periodic, but is no longer symmetric

about π unlike in the Rm → 0 solution (cf. figure 4.4). The effect of increasing

Rm is to shear the structure of the stream function and compress it. The radial

structure of ψ (x, z) is compressed to the lower third of the domain at Rm = 100.

The solution presented in figure 6.5 is well resolved, as verified by the energy spectra

of V ′0 (x) and ψ (x, z). In figure 6.6, these energies, defined by equations (5.59),

(5.60) and (5.61), decrease rapidly with harmonic power n — this being a sign of a

well-resolved solution. We note that there are some unusual spikes in energy in Eψ

around n = 20 but this is due to numerical noise given the size of Eψ at n = 20.

Only the even harmonics are plotted in the energy spectra for ψ (x, z) and V ′0 (x) as

the odd harmonics are numerically small; this is a consequence of the zero horizontal

field solutions. The geostrophic flow and stream function are symmetric throughout

the Bs = 0 case.

The meridional field has a much more drastic change in its structure as Rm is

increased; there is both the effect of shearing in x and compression in z; its amplitude

has also decreased by a factor of 10 from the small Rm solution as seen in figure 6.3.

The maximum amplitude of the ageostrophic magnetic field Ha (x, z) is plotted

against Rm in figure 6.4. As we can see, there is a trend of decreasing amplitude

for the meridional magnetic field as Rm increases.
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6.2 Inviscid, moderate Rm

Higher values of Rm lead to boundary layer formation, which suggest that there

is singular behaviour in ψ (x, z) as Rm → ∞. In figure 6.7, higher values of Rm

are sampled and the leading harmonic ψ0 (z) is plotted, showing a decreasing width

of the boundary layer near z = 0. From inspection of higher values of Rm, the

boundary layer maximum is calculated. A line of fit of these values is plotted in

figure 6.8, showing that the maxima decrease approximately as Rm−0.65.
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Figure 6.4: Maximum amplitude of Ha (x, z) as Rm increases.

6.2.1 Why does Rm remove the singularity in V ′0 (x)?

As shown in §4, in the limit as Rm → 0, the magnetic potential A (x, z) vanishes

at the point x = 0 and x = π throughout the whole layer. This means that the

magnetic stretching term has to overcome the lack of field at the points x = 0, π

by having an infinite geostrophic gradient at these points as the geostrophic flow

is purely a function of x. When Rm increases the strength of the shear flow, it

causes the field lines to bend, as seen in figure 6.1. The consequence of this is that
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Chapter 6. Numerical solutions in the absence of a horizontal field

at the given fixed points x = 0, π there will eventually be a point in z where there

is a non-zero field line, resulting in the magnetic stretching no longer requiring an

infinite geostrophic gradient at those points. This suggests that there is a critical

Rm beyond which the singularity does not occur. As soon as Rm is non-zero, there

will be a small field contribution at x = 0, π and hence the singularity will no longer

occur. For non-zero Rm it would be expected that a finite peak in V ′0 (x) occurs

around the two points.
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Figure 6.5: Contours of vx (x, z), H (x, z) and ψ (x, z) at Rm = 100 and Ha−1 = 0 with N = 30 modes.
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Figure 6.6: Energy spectra of ψ (x, z) at Rm = 100 and Ha−1 = 0 with N = 30 modes.

88



6.2 Inviscid, moderate Rm
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Chapter 6. Numerical solutions in the absence of a horizontal field

6.3 Viscous flow moderate Rm

An extensive parameter space search was conducted for (Rm,Ha) = 0 → 100.

Generally most of the solutions were quite “easy” to find in the sense that there was

no singular behaviour found at finite values of the parameter space covered. It is

not practical or possible to show every possible solution at every possible parameter

value, so we are selective with how we display our results. We first show a general

overview of vx (x, z) in parameter space by measuring the root-mean square speed,

vrms =

√√√√ 1

NxNz

Nx∑
i=1

Nz∑
j=1

v2
x (xi, zj). (6.1)

where Nx and Nz are the number of mesh points in the x and z direction. The

choice of combining both the ageostrophic and geostrophic parts is to ensure that

this choice is independent of the boundary condition on the ageostrophic component

of v (x, z) as mentioned in §5.2.2.

Figure 6.9 plots vrms of vx (x, z), given by (6.1), for fixed values of Rm with increasing

Hartmann number. There is a non-monotonic relationship with Ha throughout

the selected values of Rm, which highlights three regimes of viscosity to discuss:

dominant viscosity Ha < 0.1, moderate viscosity 1 < Ha < 10 and weak viscosity

Ha > 10.

It can be seen in figure 6.9 that vrms does not become large with increasing Ha for

moderate values of Rm. As expected, vrms should become large in the singular limit

of Rm→ 0 and Ha→∞, as seen in the blue line of figure 6.9. The moderate values

of Rm, given by the yellow, purple and green lines, further support the notion that

the geostrophic flow is no longer singular for finite values of Rm.

In figures 6.10 to 6.13, an overview of Ha-Rm space is provided for V ′0 (x), vx (x, z),

H (x, z) and ψ (x, z), showing the behaviour of the solutions for the extreme values

and also a quick glance at the intermediate values.
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Chapter 6. Numerical solutions in the absence of a horizontal field

6.3.1 Dominant viscosity Ha� 1

In the dominant viscous limit, Ha → 0, there is a wide variety of behaviour with

Rm amongst the four quantities studied, these being, A (x, z), v (x, z), H (x, z) and

ψ (x, z). On the basis of the results presented in figures 6.10-6.13 we develop an

asymptotic theory in this limit in section 7.1 below. As Rm → 0, the geostrophic

flow and the geostrophic meridional field are noticeably smaller in magnitude than

the corresponding solutions found in the inviscid regime. In figure 6.13, the contour

plot of the stream function for Rm→ 0 and Ha = 0.1 has no azimuthal dependence,

which strongly suggests that both the geostrophic flow and meridional field are in

fact zero in the Ha→ 0 limit. If viscosity dominates, then (5.5) is approximated by

∂ψ

∂z
=

1

Ha2∇
2v. (6.2)

If the right hand side of (6.2) is purely a function of z, as the numerics suggest, then

clearly V ′0 (x)→ 0 as Ha→ 0, as seen in figure 6.10.

From 6.10 it can be seen that as Rm increases in the dominant viscous regime (refer

to the Ha = 0.1 column) the amplitude of the geostrophic flow is no longer small

and hence begins to have an influence on the azimuthal dependence of ψ (x, z), as

seen in the corresponding plots of figure 6.13. Consequently, the stream function

takes the form of cellular-like patterns with π-periodicity. The magnitude of the

stream function is doubled between Rm→ 0 to Rm = 100.

There is little variation in the average speed of vx (x, z) in the dominant viscosity

regime even when Rm generates non-zero V ′0 (x). This is countered by the change

in the ageostrophic meridional flow. Changing Rm leads to changes in the structure

of ageostrophic v (x, z) (see figure 6.2) but does not have much effect on its vrms.

6.3.2 Moderate viscosity Ha ∼ O (1)

Away from the dominant viscosity limit, where Ha ∼ O (1), the geostrophic flow is

no longer negligible and appears to take the form of a sin (2kx) function at Ha = 1.

In this region of parameter space the Jacobian term plays an influence in the stream

function equation. The azimuthal dependence of the meridional field is linked with
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6.3 Viscous flow moderate Rm

the geostrophic flow, and hence this dependence manifests itself in the contours of

ψ (x, z) as the Hartmann number becomes order 1. At the same time, there is a

decrease in the magnitude of ψ (x, z) on leaving the dominant viscous regime.

For more moderate values, Ha = 1 → 10, there is a shift in the structure of V ′0 (x)

and a rapid transition to cellular patterns in ψ (x, z), due to the fact that the viscous

term scales as Ha−2. In figure 6.10, the geostrophic flow at moderate Ha has elements

of the singular behaviour found at Ha → ∞ and can be seen to have a tendency

to shift to that singularity. Increasing Rm shifts this structure back to the well

behaved solution found at large Rm.

6.3.3 Weak viscosity

A boundary layer forms in the geostrophic flow as we approach the inviscid limit of

Ha→∞ when Rm is small. This is not so surprising as the geostrophic flow has to

make the transition from a continuous solution in the viscous regime to the singular

solution found in the asymptotic inviscid limit. An asymptotic theory to the viscous

regime helps verify this behaviour as Ha → ∞ for Rm → 0; this is considered in

§7.3.

For moderate values of Rm, the boundary layer begins to disappear, as can be seen

in figure 6.10 for Ha = 100. It is clear that Rm = 1 is not large enough to remove

the singularity, whilst Rm = 10 seems to be a critical point in which the transition

away from the boundary layer begins. At Rm = 100 the solution is well behaved

for Ha = 100; the reason for this well-behaved solution at large Rm is discussed in

§6.2.1.

The vrms begins to slow down in the transition from moderate to weak viscosity, as

seen in figure 6.9. The location of the minima for vrms moves to higher Ha as Rm is

increased. The values of Rm plotted all display non-monotonic behaviour in vrms,

although the reason for this is not so clear. This non-monotonic nature may not

always be the case for Rm > 100, as figure 6.9 suggests that this larger Rm may in

fact have monotonically decreasing behaviour.
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Chapter 6. Numerical solutions in the absence of a horizontal field

For weak viscosity, figure 6.12 shows that the meridional field has two regions of

opposite polarity between the bottom and the top of the layer (Ha = 100). This is a

distinct feature of the weakly viscous regime for the meridional field as smaller values

of Ha do not display this behaviour. Increasing Rm results in both the compression

of the field into the lower half of the domain, and the shearing of the field in x.
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Figure 6.10: An overview of Rm-Ha space for the geostrophic flow.
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Figure 6.11: An overview of Rm-Ha space for vx (x, z).
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Figure 6.12: An overview of Rm-Ha space for the meridional field.

97



C
h
ap

ter
6.

N
u
m

erical
solu

tion
s

in
th

e
ab

sen
ce

of
a

h
orizon

tal
fi
eld

5101520253035
40
45
50

55

ψ (x,z) Rm=0 Ha=0.1

0 2 4 6
0

0.5

1

0.050.10.150.20.250.30.35
0.4

0.45
0.5

0.55

ψ (x,z) Rm=0 Ha=1

0 2 4 6
0

0.5

1

-0.006
-0.004

-0.002

0

0 0

0

0.
00

2

0.
00

20.
00

4

0.
00

4

0.
00

6

0.
00

6

ψ (x,z) Rm=0 Ha=10

0 2 4 6
0

0.5

1

-0.003

-0.002

-0
.0

01

-0
.0

01

-0.001

0.
00

1

0.
00

1

0.
00

1

0.
00

1

ψ (x,z) Rm=0 Ha=100

0 2 4 6
0

0.5

1

51015202530
35
40
45

50

55

55

ψ (x,z) Rm=1 Ha=0.1

0 2 4 6
0

0.5

1

0.050.10.150.20.25
0.3

0.35
0.4

0.45

0.5

0.55

0.55

ψ (x,z) Rm=1 Ha=1

0 2 4 6
0

0.5

1

-0.006
-0.004

-0
.0

02

-0.002

0

0 0

0

0.
00

2

0.
00

2

0.
00

4

0.
00

4

0.
00

6

0.
00

6

ψ (x,z) Rm=1 Ha=10

0 2 4 6
0

0.5

1

-0.003
-0.002

-0
.0

01

-0.001

0.
00

1

0.
00

1

0.
00

1

ψ (x,z) Rm=1 Ha=100

0 2 4 6
0

0.5

1

10
2030

40

40

50
50 50

60

60

60

70

70

ψ (x,z) Rm=10 Ha=0.1

0 2 4 6
0

0.5

1

0.1
0.2

0.30.4

0.4

0.
5

0.
5 0.5

0.6

0.6

0.
6

0.7

0.
7

ψ (x,z) Rm=10 Ha=1

0 2 4 6
0

0.5

1

0

0

00.001
0.002

0.003

0.003

0.004 0.004

0.005

0.
00

5

0.
00

6

0.
00

6

ψ (x,z) Rm=10 Ha=10

0 2 4 6
0

0.5

1

-0.0015

-0.001

-0.0005

0

0

0

00.
00

05

0.
00

05

ψ (x,z) Rm=10 Ha=100

0 2 4 6
0

0.5

1

10
20

30

30

40

40 40

50

50

50

50

60

60

60

70

70

70

80

80

8090

ψ (x,z) Rm=100 Ha=0.1

0 2 4 6
0

0.5

1

0.1
0.2

0.3

0.3

0.
4

0.4

0.4

0.
5

0.
5

0.5

0.5

0.6

0.6

0.
60.7

0.7

0.
7

0.80.
8

0.9

ψ (x,z) Rm=100 Ha=1

0 2 4 6
0

0.5

1

0 0
0.001
0.002
0.003

0.004

0.005

0.005

0.
00

5 0.006

0.
00

6

0.007

ψ (x,z) Rm=100 Ha=10

0 2 4 6
0

0.5

1

-0.0002

0

0 0

0

0.0002 0.0002

ψ (x,z) Rm=100 Ha=100

0 2 4 6
0

0.5

1

Figure 6.13: An overview of Rm-Ha space for the stream function.
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6.4 Estimates for flow speeds in Saturn

6.4 Estimates for flow speeds in Saturn

In reality the Ekman number is extremely small in Saturn (Ek ∼ 10−15) and the

Elsasser number is of order unity (Christensen & Wicht, 2008). To achieve Ekman

numbers of a planetary value would require the Hartmann number to be of order

Ha ∼ 107 − 108; this is difficult to achieve even with today’s computational power

owing to the small scale structures that would be required to resolve the boundary

layer. Although we have not calculated solutions in which the Elsasser number is

of order unity, typical flow speeds can be calculated from our calculated urms to see

how they compare with the estimates for the meridional flow.

To apply our numerical results to Saturn we derive estimates for the flow speeds

expected within the stratified layer. These are calculated from observational evi-

dence and other estimated values which give a rough value for what is expected.

The thermal shear in the layer is driven by a pole-equator temperature difference,

which is proposed as 10−4K over a range of d ∼ 3 × 106m, suggested by Stevenson

(1982b). Over the whole distance of 55, 000km between the pole and equator this

would give a temperature difference of 2 × 10−3K. The rotation rate of Saturn is

given by Ω0 = 1.6 × 10−4s−1, the gravity and coefficient of thermal expansion are

g = 11ms−2 and α = 1 × 10−4K−1. For Saturn the magnetic diffusivity is approxi-

mately η = 2m2s−1.

As a result, the thermal wind given by (3.15), where γ is defined as (3.16), can be

estimated to be

γ ∼ gαT ′

2Ω0

∼ 10−10s−1. (6.3)

From (6.3) this gives a typical value of Rm as approximately

Rm ∼ γd2

η
∼ 450. (6.4)

This value suggests that the non-axisymmetric component is reduced by a factor of

10−4, which is roughly consistent with Cassini data. If the non-axisymmetric field in

the dynamo region were comparable with the axisymmetric field, after attenuation

the non-axisymmetric field would be 10−4 times smaller.
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Chapter 6. Numerical solutions in the absence of a horizontal field

In table 6.1, the urms values are calculated for the meridional flow. The urms tend to

the approximate value of 4× 10−3 at large Rm. This can be converted into physical

dimensions via (??), i.e.

v ∼ Rm
η

d
Λṽ ∼ γdΛṽ, (6.5)

where we assume Λ = 1, an appropriate value for Saturn. The resulting velocity is

then v ∼ 10−6ms−1, which is a small velocity compared to the size of Saturn and the

observed surface speeds. The calculated velocity has a turnover time d/v ∼ 3×1012s

or approximately 100,000 years. This means that the meridional circulation will

not be visible on timescales for which we can observe Saturn. These velocities

are significantly slower than the observed jets at the surface which can be up to

400ms−1 (Liu et al., 2008). This means that there is a rapid increase in velocity

towards the upper parts of the atmosphere of Saturn.

The temperature difference of T ∼ 10−4K can also be independently derived from

the heat flux. Convective velocities in Jupiter have been estimated at 10−3ms−1

(Ridley & Holme, 2016) and it is reasonable to assume such a value would also be

the case for Saturn. Heat flux that is transported by convection is given by

F = ρcpUT, (6.6)

with units Wm−2, where ρ is the density (ρ ∼ 103kgm−3), cp is the specific heat

(cp ∼ 1.5×104Jkg−1K−1), U is the convective velocity (U ∼ 10−3ms−1) and T is the

temperature fluctuation (with T ∼ 10−4K). These values would give a heat flux of

F ∼ 1.5Wm−2, which is very close to the observational value of 2Wm−2 (Hanel et al.,

1983). This supports a typical temperature fluctuation of 10−4K in a convecting

region and our calculation suggests that this is also the case in the stably stratified

layer.

In the table below we sample urms speeds for the meridional flow v (x, z) ŷ for varying

Rm, including Rm = 450, in order to see how our numerical result compares with

velocity estimates. At Rm = 450 the urms converts to a meridional flow speed of

4.3× 10−6ms−1, which is the correct order of magnitude of what is expected in the

stable layer.
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6.4 Estimates for flow speeds in Saturn

We note that although computational attempts at higher Rm have been performed,

we have omitted them from the table owing to the difficulty in resolving the solution.

Rm urms Velocity (ms−1)

1× 101 0.1098 7.57× 10−7

5× 101 0.0399 1.37× 10−6

1× 102 0.0303 2.10× 10−6

4.5× 102 0.0161 4.83× 10−6

1× 103 0.0114 7.86× 10−6

3× 103 0.0062 1.28× 10−5

5× 103 0.0047 1.62× 10−5

7× 103 0.0042 2.03× 10−5

1× 104 0.0041 2.83× 10−5

Table 6.1: The urms values and corresponding meridional velocity for Saturn for

increasing Rm.
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Chapter 7

Incorporating viscosity: an

asymptotic approach

In this chapter we incorporate viscosity into an asymptotic analysis for our model.

There are two regimes to consider: one where viscosity is small, corresponding to

Ha� 1, and one where viscosity is large, corresponding to Ha� 1. The numerical

results of Chapter 6 can then be compared to see if the observed behaviour is also

confirmed in an analytical framework.

7.1 Viscous model equations

When viscosity is considered, the governing equations become

∂2A

∂x2
+
∂2A

∂z2
= Rmz

∂A

∂x
, (7.1)

Jy = −z∂A
∂z

, (7.2)

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
, (7.3)

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v, A)

∂ (x, z)
+ Rmz

∂H

∂x
, (7.4)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (7.5)

There is a new Ha−2∇2v term in equation (7.5). As in Chapter 4, we shall again

assume Rm is small. We thus have the expressions (4.6)–(4.10), giving the following

103



Chapter 7. Incorporating viscosity: an asymptotic approach

leading order equations in Rm,

∂2A

∂x2
+
∂2A

∂z2
= 0, (7.6)

Jy = −z∂A
∂z

, (7.7)

∂v

∂z
=
∂ (Jy, A)

∂ (x, z)
, (7.8)

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v,A)

∂ (x, z)
, (7.9)

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (7.10)

Usually, the inclusion of viscosity requires additional no slip boundary conditions;

this analysis is somewhat peculiar as we do not require any viscous boundary condi-

tions since the highest derivative in ψ is second order in equations (7.6)–(7.10). Tay-

lor’s constraint is used to determine the arbitrary geostrophic part, V0 (x), in (7.8).

In a finite Elsasser number regime we would require the additional no slip boundary

conditions since the Λ2Ha−2∇4ψ term would come into (7.8), and so we would then

require four boundary conditions on ψ and hence the additional no slip condition.

We present the solution to two asymptotic regimes: one where Ha is small (viscosity

is dominant) and one where Ha is large, i.e. approaching the inviscid limit.

7.2 Small Ha analysis

7.2.1 Asymptotic approach

By introducing viscosity one expects that the viscous term will smooth out the steep

gradients found near the singularity and hence a smooth, continuous solution can

be found for the geostrophic flow. The inclusion of viscosity does not change the

solution to A, Jy and the ageostrophic part of v. This is because terms involving Ha

do not appear in their corresponding ODEs. As a result, ODEs (7.6), (7.7) and (7.8)
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7.2 Small Ha analysis

have the same solution as found in the analysis of Chapter 4, namely

A (x, z) =
1

k
sin (kx) e−kz, (7.11)

Jy (x, z) = −z cos (kx) e−kz, (7.12)

v (x, z) = − 1

4k
e−2kz cos (2kx) +

1

2
ze−2kz + V0 (x) . (7.13)

What does change though are the solutions to V0 (x), H (x, z) and ψ (x, z). If Ha�

1, then at leading order in Ha, (7.10) becomes

∂ψ

∂z
= − 1

Ha2

(
∂2v

∂x2
+
∂2v

∂z2

)
. (7.14)

This is due to the term ∂(H,A)
∂(x,z)

being O (1) and much smaller than Ha−2∇2v at leading

order. By inspection of (7.14), one can see that we have the asymptotic expansion

ψ (x, z) =
1

Ha2ψ
(0) (x, z) + ψ(1) (x, z) + Ha2ψ(2) (x, z) + O

(
Ha4

)
. (7.15)

On substituting the expansion (7.15) into (7.14), the leading order term ψ(0) (x, z)

has solution,

ψ(0) (x, z) = − 1

Ha2

(
1

2
e−2kz − kze−2kz

)
− 1

Ha2

d2V0

dx2
z + k̂ (x) . (7.16)

Imposing the condition ψ = 0 at z = 0 gives

k̂ (x) =
1

Ha2

1

2
. (7.17)

We also require ψ = constant at z = 1, which gives

∂

∂x
ψ(0) (x, 1) = − 1

Ha2

∂

∂x

(
d2V0

dx2

)
= 0, (7.18)

implying
d2V0

dx2
= const. (7.19)

Since V0 (x) should be periodic the constant in (7.19) should be zero. V0 (x) itself

can be a constant as this just adds a constant to the overall solution of the system of

equations; however the derivatives of V0 (x) will be zero. This confirms the numerical

result of the geostrophic velocity being negligible when Ha = 0.1 and Rm → 0 in

Chapter 6 . As a result, the solution to ψ (x, z) at leading order is

ψ(0) (x, z) = − 1

Ha2

[
1

2

(
e−2kz − 1

)
− kze−2kz

]
. (7.20)
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Chapter 7. Incorporating viscosity: an asymptotic approach

To determine the next order term in ψ (x, z) we expand the geostrophic flow as an

asymptotic series in Ha,

V0 (x) = V
(0)

0 (x) + Ha2V̂0 (x) + O
(
Ha4

)
. (7.21)

Since the leading order solution for V0 (x) is zero, this becomes V0 (x) = Ha2V̂0 (x)

on ignoring the higher order Ha terms. The meridional field is expressed in terms

of its ageostrophic and geostrophic parts as

H (x, z) = Ha (x, z) +Hg (x, z) , (7.22)

where the solution to Ha (x, z) is recovered from (4.23) and (4.26), i.e.

Ha (x, z) =

[
α0 sinh (kz) + α1 cosh (kz) +

1

8k

(
z − 1

4k

)
e−3kz

]
cos (kx) (7.23a)

= ha (z) cos (kx) , (7.23b)

where α0 and α1 are given by (4.27) and (4.28). The geostrophic component

of (7.23a), Hg (x, z), when substituted into (7.9), satisfies

∂2Hg

∂x2
+
∂2Hg

∂z2
= Ha2 dV̂0

dx

∂A

∂z
. (7.24)

Equation (7.24) implies that Hg (x, z) is now small compared to Ha (x, z) due to

it being O
(
Ha2

)
. At O (1) we can calculate the next order solution for ψ (x, z).

Substituting (7.11) and (7.23b) into (7.10) gives

∂ψ(1)

∂z
=
k

2
e−kzha (z)− 1

2
h′a (z) e−kz

− cos (2kx)

[
k

2
e−kzha (z) +

1

2
e−kzh′a (z)

]
− d2V̂0

dx2
, (7.25)

which can be expressed as

∂ψ(1)

∂z
=− 1

2

d

dz

(
hae

−kz)− 1

2
cos (2kx)

[
d

dz

(
hae

−kz)+ 2khae
−kz
]
− d2V̂0

dx2
. (7.26)

Integrating (7.26) over the layer and using the boundary conditions ψ = 0 on z = 0

and ψ = constant on z = 1 yields

d2V̂0

dx2
= − cos (2kx)

∫ 1

0

ke−kzha (z) dz. (7.27)
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7.2 Small Ha analysis

Evaluating (7.27) gives,

V̂ ′′0 (x) = −1

4

[
α1

(
1 + 2k − e−2k

)
− α0

(
1− 2k − e−2k

)
− 1

8k
e−4k

]
cos (2kx) .

(7.28)

Integrating (7.28) then gives,

V ′0 (x) = − 1

8k

[
α1

(
1 + 2k − e−2k

)
− α0

(
1− 2k − e−2k

)
− 1

8k
e−4k

]
sin (2kx) .

(7.29)

The constant of integration is zero as V ′0 (x) is periodic in the domain x. Equa-

tion (7.29) is the derivative of the geostrophic velocity in the dominant viscous

regime and is plotted in figure 7.1. The singularity has been removed at small Ha.

x
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)

×10
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5

V
0

′
(x) for Ha=1

Figure 7.1: Plot of (7.29) for k = 1.

Finally, we can evaluate the first order correction to the stream function by inte-

grating (7.26), which gives

ψ(1) (x, z) =− 1

2
ha (z) e−kz − zV̂ ′′0 (x)

− 1

2
cos (2kx)

[
ha (z) e−kz + 2k

∫ z

0

ha (z′) e−kz
′
dz

]
(7.30)
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Chapter 7. Incorporating viscosity: an asymptotic approach

which, by construction, satisfies ψ (x, 0) = 0. The O (1) correction to ψ (x, z) is

therefore evaluated by substituting (7.23a) into (7.30) and hence,

ψ(1) (x, z) =− 1

2

(
α0 sinh (kz) e−kz + α1 cosh (kz) e−kz +

1

8k

(
z − 1

4k

)
e−4kz

)
+ cos (2kx)

[
α0

(
1

4
− 1

4
e−2kz − 1

2
sinh (kz) e−kz − k

2
z

)
+α1

(
1

4
e−2kz − 1

4
− k

2
z − 1

2
cosh (kz) e−kz

)
+

1

32k
ze−4kz − 1

16k

(
z − 1

4k

)
e−4kz

+z

(
1

4
(α1 − α0) +

1

4
α0e

−2k − 1

4
α1e

−2k +
k

2
(α0 + α1)− 1

32k
e−4k

)]
.

(7.31)

The penultimate term (the coefficient of z) is the geostrophic contribution. Com-

bining (7.20) and (7.31) gives

ψ (x, z) =− 1

Ha2

[
1

2

(
e−2kz − 1

)
− kze−2kz

]
− 1

2

(
α0 sinh (kz) e−kz + α1 cosh (kz) e−kz +

1

8k

(
z − 1

4k

)
e−4kz

)
+ cos (2kx)

[
α0

(
1

4
− 1

4
e−2kz − 1

2
sinh (kz) e−kz − k

2
z

)
+α1

(
1

4
e−2kz − 1

4
− k

2
z − 1

2
cosh (kz) e−kz

)
+z

(
1

4
(α1 − α0) +

1

4
α0e

−2k − 1

4
α1e

−2k +
k

2
(α0 + α1)− 1

32k
e−4k

)
+

1

32k
ze−4kz − 1

16k

(
z − 1

4k

)
e−4kz

]
+ O

(
Ha2

)
, (7.32)

which is plotted in figure 7.2. This completes the solution up to O (1) in ψ (x, z)

and O
(
Ha2

)
in V ′0 (x).
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Figure 7.2: Contour plot of ψ (x, z), given by (7.32), for Ha = 1 and k = 1.

7.2.2 Numerical verification

In figure 7.3 the analytical solution to (7.20) is plotted along with the numerical

solution. The numerical solution is provided from evaluating (5.37) at Ha = 0.1

in order to attain the small Ha limit. There is a good agreement between the two

solutions for Ha� 1 and Rm→ 0.

In figure 7.4, we compare the analytical result (7.32) with the numerical solution

by evaluating both (5.37) and (5.39). To obtain a comparison with the next order

solution we set Ha = 1 in the numerical code. This is to ensure that the O (1) term

is being considered. There is good agreement between the code and the asymptotic

solution when Ha = 1.

The numerical solutions were resolved with a relatively low number of modes owing

to the fact that the structure of V ′0 (x) is smooth and continuous. All solutions

presented are for k = 1.
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Figure 7.3: Comparison of (7.20) and (5.37) at Ha = 0.1, Rm→ 0 and k = 1.
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Figure 7.4: Comparison of (7.32) and both (5.37) and (5.39) at Ha = 1, Rm → 0

and k = 1.
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7.3 Large Ha analysis

In the inviscid regime (Ha formally infinite) we note that the geostrophic flow has

solution (4.38), with singularities at x = 0, π, 2π, whilst in the small Ha regime

the geostrophic flow is continuous across x. We anticipate that the transition from

an inviscid to a weakly viscous fluid will be accommodated by the appearance of

boundary layers in V ′0 (x) for Ha large but finite. Thus we introduce a stretched

coordinate s, which will accommodate the transition to the boundary layer near

x = 0,

s =
x

ε
, (7.33)

where ε� 1 and where its dependence on Ha will emerge in the subsequent analysis.

Throughout the whole domain, A (x, z) and Jy (x, z) have the exterior solution (7.11)

and (7.12). However, v (x, z) will change structure from inside to outside the bound-

ary. Outside the boundary layer, v (x, z) has the exterior solution (4.20)

v (x, z) = − 1

4k
e−2kz cos (2kx) +

1

2
ze−kz + V0 (x) , (7.34)

where V ′0 (x) is given by (4.38). Inside the boundary layer

v (x, z) = − 1

4k
e−2kz cos (2kx) +

1

2
ze−kz + V1 (s) , (7.35)

where V1 (s) is the geostrophic flow inside the boundary layer. The inner and outer

solutions are coupled by the matching principle, which states that

lim
x→0

V ′0 (x) = lim
s→∞

d

dx
V1 (s) = lim

s→∞

1

ε

dV1

ds
. (7.36)

Now
dV0

dx
= Ṽ0k

cos (kx)

sin (kx)
→ Ṽ0

x
(7.37)

as x→ 0. Thus
dV0

dx
→ Ṽ0

x
=
Ṽ0

sε
. (7.38)

Hence
dV1

ds
→ Ṽ0

s
(7.39)

as s→∞. We note that by construction V1 (s) is O (1) in the boundary layer.
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Chapter 7. Incorporating viscosity: an asymptotic approach

Now consider equation (7.4) as Rm→ 0,

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v,A)

∂ (x, z)
. (7.40)

This holds in both the exterior and interior regions. Outside the boundary layer,

we may express H (x, z) as (7.22); as a result, (7.40) becomes

∂2Ha

∂x2
+
∂2Ha

∂z2
+
∂2Hg

∂x2
+
∂2Hg

∂z2
=
∂va

∂x

∂A

∂z
− ∂va

∂z

∂A

∂x
+

dV0

dx

∂A

∂z
, (7.41)

where va is the ageostrophic contribution of (7.34). Ha (x, z) satisfies

∂2Ha

∂x2
+
∂2Ha

∂z2
=
∂va

∂x

∂A

∂z
− ∂va

∂z

∂A

∂x

=ke−3kz

(
z − 1

k

)
cos (kx) , (7.42)

with the solution to Ha (x, z) given by (7.23b). The geostrophic part of H (x, z)

satisfies
∂2Hg

∂x2
+
∂2Hg

∂z2
= −Ṽ0k cos (kx) e−kz, (7.43)

with solution given by (4.41). Inside the boundary layer, we must take account of

the boundary layer structure of the geostrophic flow. Thus equation (7.40) becomes

∂2H

∂x2
+
∂2H

∂z2
=
∂va

∂x

∂A

∂z
− ∂va

∂z

∂A

∂x
+

1

ε

dV1

ds

∂A

∂z
. (7.44)

Inside the boundary layer we express the meridional field as

H (x, z) = Ha (x, z) +Hg (x, z) + ε2h (s, z) , (7.45)

where the expansion (7.45) is motivated by the numerical solutions. We note that

since h (s, z) is a function of s, we have(
∂2

∂x2
+

∂2

∂z2

)(
ε2h (s, z)

)
=
∂2h

∂s2
+ O

(
ε2
)
. (7.46)

Substituting (7.45) into (7.44) and using (7.43) gives

∂2h

∂s2
=

1

ε

dV1

ds

∂A

∂z
+ Ṽ0k cos (kx) e−kz. (7.47)

Inside the boundary layer near x = 0 we note that

cos (kx) = 1− 1

2
k2x2 + . . . = 1− ε2

2
k2s2 + . . . , (7.48)

∂A

∂z
= − sin (kx) e−kz = −kεse−kz + O

(
ε3
)
. (7.49)
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Hence
∂2h

∂s2
= Ṽ0ke

−kz − ke−kzsdV1

ds
+ O

(
ε2
)
. (7.50)

The obvious separable solution of (7.50) is

h (s, z) = ke−kzh1 (s) , (7.51)

giving
d2h1

ds2
= Ṽ0 − s

dV1

ds
. (7.52)

The solution (7.51) however does not satisfy the boundary conditions h (s, z) = 0

on z = 0 and z = 1. Whilst (7.51) is valid away from the boundaries, additional

boundary layer correction terms to h (s, z) are needed in order to complete the

solution. As shown in the next section, these boundary layer corrections play a

significant rôle in determining the leading order form of V ′1 (s).

7.4 Solution to V ′1 (s) including the z-boundary layer

correction terms

As discussed above, we need to reconsider the equation for H (x, z) inside the bound-

ary layer by the inclusion of z-boundary correction terms. This is done by expressing

H (x, z) as

H (x, z) = Ha (x, z) +Hg (x, z) + ε2h (s, z) + ε2ȟ(s, ζ̌) + ε2ĥ(s, ζ̂), (7.53)

where we have introduced the z-boundary layer stretched coordinates ζ̂ = (1− z) /ε

and ζ̌ = z/ε, and where ĥ and ȟ are the new terms that accommodate the upper

and lower z-boundary layers respectively. In figure 7.5 we sketch the x-z-boundary

layers and we note the structure of H (x, z) in the following regions:

H (x, z) = Ha (x, z) +Hg (x, z) in region 1,

H (x, z) = Ha (x, z) +Hg (x, z) + ε2h (s, z) in region 2,

H (x, z) = Ha (x, z) +Hg (x, z) + ε2
(
h(s, ζ̂) + ĥ(s, ζ̂)

)
in region 3,

H (x, z) = Ha (x, z) +Hg (x, z) + ε2
(
h(s, ζ̂) + ȟ(s, ζ̌)

)
in region 4.
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Figure 7.5: Sketch of the x- and z-boundary layers.

We note that ȟ and ĥ tend to zero as s → ±∞, i.e. this z-boundary layer is

contained only within the x-boundary layer. The z-boundary correction terms are

substituted into (7.44), leading to Laplace’s equation,(
∂2

∂s2
+

∂2

∂ζ̌2

)
ȟ
(
s, ζ̌
)

= 0, (7.54)(
∂2

∂s2
+

∂2

∂ζ̂2

)
ĥ
(
s, ζ̂
)

= 0, (7.55)

together with the boundary conditions,

ȟ (s, 0) + h1 (s) k = 0, on z = ζ̌ = 0, (7.56)

ĥ (s, 0) + h1 (s) ke−k = 0, on z = 1, ζ̂ = 0. (7.57)

Equations (7.54) and (7.55), with the boundary conditions (7.56) and (7.57), con-

stitute a Dirichlet problem for both ȟ and ĥ. Fortunately, we do not need to solve

these boundary value problems in order to obtain the solution for V ′1 (s).

Substitution of (7.53) into (7.10) gives

∂ψ

∂z
=
∂ (Ha, A)

∂ (x, z)
+
∂ (Hg, A)

∂ (x, z)
+

∂

∂x

(
ε2ke−kzh1 (s)

) ∂A
∂z
− ∂

∂z

(
ε2ke−kzh1 (s)

) ∂A
∂x

+
∂

∂x

(
ε2ȟ(s, ζ̌)

) ∂A
∂z
− ∂

∂z

(
ε2ȟ(s, ζ̌)

) ∂A
∂x

+
∂

∂x

(
ε2ĥ(s, ζ̂)

) ∂A
∂z

− ∂

∂z

(
ε2ĥ(s, ζ̂)

) ∂A
∂x
− 1

ε2Ha2

d2V1

ds2
. (7.58)
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By construction, the leading order solution at O (1) satisfies Taylor’s constraint,∫ 1

0

∂ (Ha, A)

∂ (x, z)
+
∂ (Hg, A)

∂ (x, z)
dz = const. (7.59)

We therefore now need to consider the O (ε2) terms inside the boundary layer. In

order for the ε−2Ha−2 term to be O (ε2), equation (7.58) would suggest an ordering

for ε in terms of Ha as

ε ∼ O
(

Ha−
1
2

)
. (7.60)

Inside the boundary layer we consider expansions about x = 0 (or s = 0) for the

trigonometric functions. Evaluating the x and z boundary layer terms gives∫ 1

0

∂

∂x

(
ε2ke−kzh1 (s)

) ∂A
∂z

dz = −
∫ 1

0

ε2k2e−2kzs
dh1

ds
dz, (7.61)∫ 1

0

∂

∂z

(
ε2ke−kzh1 (s)

) ∂A
∂x

dz =

∫ 1

0

ε2k2e−2kzh1 (s) dz, (7.62)∫ 1

0

∂

∂x

(
ε2ȟ(s, ζ̌)

) ∂A
∂z

dz = −
∫ 1

0

ε2∂ȟ

∂s
ke−kzsdz. (7.63)

To leading order, near z = 0, e−kz ≈ 1; hence (7.63), which is in the bottom z-

boundary layer, is

− ε2k

∫ 1

0

∂ȟ

∂s
e−kzsdz = −ε3ks

∫ ∞
0

∂ȟ

∂s
dζ̌ . (7.64)

Since this integral is O (ε3), and hence smaller than all other terms, it is ignored.

The next correction term is

−
∫ 1

0

∂

∂z

(
ε2ȟ(s, ζ̌)

) ∂A
∂x

dz =− ε2

∫ ∞
0

∂

∂ζ̌

(
ȟ(s, ζ̌)

)
e−kzdζ̌

=− ε2

∫ ∞
0

∂

∂ζ̌
ȟ(s, ζ̌)dζ̌

=ε2ȟ (s, 0) , (7.65)

since ȟ(s, ζ̌) = 0 as ζ̌ → ∞. As ȟ(s, ζ̌) is the correction term for the bottom

boundary condition, it must satisfy (7.56). Therefore

ȟ (s, 0) = −kh1 (s) , (7.66)

allowing us to express (7.65) in terms of the function h1 (s),

−
∫ 1

0

∂

∂z

(
ε2ȟ(s, ζ̌)

) ∂A
∂x

dz = −ε2kh1 (s) . (7.67)
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There is also another O (ε3) term in (7.58); near z = 1, e−kz ≈ e−k and expanding

sin (kx) near x = 0 gives∫ 1

0

∂

∂x

(
ε2ĥ(s, ζ̂)

) ∂A
∂z

dz = −ke−kε3s

∫ ∞
0

∂ĥ

∂s
dζ̂ , (7.68)

which is smaller in comparison to the O (ε2) terms. Finally,

−
∫ 1

0

∂

∂z

(
ε2ĥ(s, ζ̂)

) ∂A
∂x

dz =

∫ ∞
0

∂

∂ζ̂

(
ε2ĥ
)
e−kzdζ̂ . (7.69)

Near z = 1, e−kz ≈ e−k and therefore this upper z-boundary correction term becomes

ε2

∫ ∞
0

∂ĥ

∂ζ̂
ke−kdζ̂ = −ε2ĥ (s, 1) e−k. (7.70)

We take advantage of the boundary condition (7.57), which allows us to express the

upper correction term ĥ(s, ζ̂) in terms of h1 (s). From (7.57) we write

ĥ (s, 0) = −h (s, 1) = −ke−kh1 (s) . (7.71)

Expression (7.70) becomes,

−
∫ 1

0

∂

∂z

(
ε2ĥ(s, ζ̂)

) ∂A
∂x

dz = ε2ke−2kh1 (s) . (7.72)

The diffusion term, Ha−2∇2v, inside the boundary layer is simply

− 1

ε2

1

Ha2

d2V1

ds2

∫ 1

0

dz = − 1

ε2

1

Ha2

d2V1

ds2
. (7.73)

Combining (7.61), (7.62), (7.67), (7.72) and (7.73), the z-boundary layer terms in

equation (7.58) are

−
∫ 1

0

k2e−2kzs
dh1

ds
dz+

∫ 1

0

k2e−2kzh1dz − kh1 (s)

+ ke−2kh1 (s)− 1

ε4

1

Ha2

d2V1

ds2
= 0.

(7.74)

We choose ε to scale as

ε = Ha−
1
2k−

1
2

(∫ 1

0

e−2kzdz

)− 1
4

(7.75)

where the choice of multiplicative constant is simply for algebraic convenience. All

terms in (7.74) are now O (ε2), and with (7.75), we have

d2V1

ds2
= −sdh1

ds
− h1. (7.76)
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Equation (7.76) can be expressed as

d2V1

ds2
= − d

ds
(sh1) , (7.77)

which, on integration, gives

h1 (s) = −V
′

1 (s)

s
. (7.78)

The constant of integration in (7.78) must be zero since V ′1 (s)→ 0 and h1 (s)→ 0

as s→ 0. Given equation (7.78), we can rewrite (7.52) as

d2

ds2

(
V ′1
s

)
− sV ′1 + Ṽ0 = 0. (7.79)

Using the substitution 1
2
s2 = t, and V ′1 = tαy (t), where α is to be determined, gives

tα+ 1
2

d2y

dt2
+ αtα−

1
2

dy

dt
+

(
α− 1

2

)
tα−

1
2

dy

dt

+

(
α− 1

2

)
(α− 1) tα−

3
2y +

Ṽ0√
2
− tα+ 1

2y = 0. (7.80)

We now choose α = 3
4

in order to simplify (7.80), which becomes

t2
d2y

dt2
+ t

dy

dt
−
(

1

16
+ t2

)
y = − Ṽ0√

2
t
3
4 . (7.81)

We now let w = Ay, where A is a constant to be determined, and substitute

into (7.81) to obtain

t2
d2y

dt2
+ t

dy

dt
−
(

1

16
+ t2

)
y = − Ṽ0

A
√

2
t
3
4 . (7.82)

Choosing A as

A = − Ṽ0

2
7
4

√
πΓ

(
1

4

)
, (7.83)

results in equation (7.82) becoming the modified Struve equation of order −1/4.

The modified Struve equation takes the form,

t2
d2w

dt2
+ t

dw

dt
−
(
ν2 + t2

)
w =

4
(
t
2

)1+ν

√
πΓ (ν)

(7.84)

with solution,

w (t) = c1Iν (t) + c2Kν (t) + Lν (t) , (7.85)

where Iν (t) and Kν (t) are the modified Bessel functions of the first and second kind

respectively, and Lν (t) is the modified Struve function (see Abramowitz & Stegun
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(1964)). Hence, given α = −1/4 and V ′1 (s) = tαy (t), the general solution to V ′1 (s)

is

V ′1 (s) = − Ṽ0

4

√
π

2
Γ

(
1

4

)
s

3
2

[
c1I− 1

4

(
1

2
s2

)
+ c2K− 1

4

(
1

2
s2

)
+ L− 1

4

(
1

2
s2

)]
.

(7.86)

To determine the exact form of V ′1 (s), we must ensure that the solution inside

the boundary layer matches onto the exterior solution, as derived in the matching

principle (7.39). The second boundary condition we apply is that the function

V ′1 (s) is an odd function, which ensures that the boundary layer solution has the

same property of the exterior solution, which is also an odd function. Applying both

these conditions will fully determine (7.86). We first note that

K− 1
4

(
1

2
s2

)
= K 1

4

(
1

2
s2

)
∼ s

1
2 (7.87)

is an even function of s, which means that we must have c2 = 0 in order for (7.86)

to be an odd function of s. As s → ∞, we note, from (12.2.6) in Abramowitz &

Stegun (1964),

s
3
2 L− 1

4

(
1

2
s2

)
− s

3
2 I 1

4

(
1

2
s2

)
∼ −2

10
4

√
πΓ
(

1
4

) 1

s
+ O

(
1

s5

)
. (7.88)

Since

K 1
4

(
1

2
s2

)
=

π√
2

(
I− 1

4

(
1

2
s2

)
− I 1

4

(
1

2
s2

))
→ 0 (7.89)

as s→∞, then

I 1
4

(
1

2
s2

)
= I− 1

4

(
1

2
s2

)
(7.90)

as s → ∞. Hence (7.86) will have the correct behaviour at s → ∞ on setting

c1 = −1, such that (7.88) holds, giving

V ′1 (s) = − Ṽ0

4

√
π

2
Γ

(
1

4

)
s

3
2

[
L− 1

4

(
1

2
s2

)
− I− 1

4

(
1

2
s2

)]
. (7.91)

This is the solution in terms of the inner stretched coordinate s. The solution V ′1 (x)

is then recovered from (7.36) and (7.75), namely

V ′1 (x) = − Ṽ0

4

√
π

2
Γ

(
1

4

)
Ha

5
2 c

5
2x

3
2

[
L− 1

4

(
1

2
Hac2x2

)
− I− 1

4

(
1

2
Hac2x2

)]
, (7.92)
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where

c = k
1
2

(∫ 1

0

e−2kzdz

) 1
4

. (7.93)

The solution (7.92) can then be used to find the composite solution, which gives us

the solution throughout the whole domain in x; this is found by adding the inner and

outer solutions and subtracting the overlapping solution. Adding (7.92) and (4.38)

and removing the overlap yields the following composite solution,

V ′1 (x) =− Ṽ0

4

√
π

2
Γ

(
1

4

)
Ha

5
2 c

5
2x

3
2

[
L− 1

4

(
1

2
Hac2x2

)
− I− 1

4

(
1

2
Hac2x2

)]
+ Ṽ0k cot (kx)− Ṽ0

x
. (7.94)

7.5 The O
(
ε3
)
z-boundary correction terms

Equation (7.94) is the solution to V ′1 (s) when considering the O (ε2) terms in the

boundary layer; it does not include the O (ε3) terms that are attributed to the

z-boundary layer. It would therefore be of interest to see whether an analytical

solution to the O (ε3) terms, (7.64) and (7.68), can be found and hence subsequently

the next order contribution for V ′1 (s). On both boundaries we have to solve Laplace’s

equation with Dirichlet boundary conditions. From (7.54) and (7.56) the solution

to ȟ
(
s, ζ̌
)

becomes a half-space Dirichlet problem (Ockendon, 2003). The solution

to ȟ
(
s, ζ̌
)

is then defined as

ȟ
(
s, ζ̌
)

= − ζ̌
π

∫ ∞
−∞

kh1 (s′)

(s− s′)2 + ζ̌2
ds′. (7.95)

Taking the partial derivative with respect to s gives

∂ȟ

∂s
= − ζ̌

π

∫ ∞
−∞

2kh1 (s′) (s′ − s)(
(s− s′)2 + ζ̌2

)2 ds′. (7.96)

Expression (7.96) is integrated with respect to the stretched coordinate ζ̌ over the

domain 0 ≤ ζ̌ <∞, giving∫ ∞
0

∂ȟ

∂s
dζ̌ = − 2

π

∫ ∞
s=−∞

kh1 (s′) (s′ − s)
∫ ∞
ζ̌=0

ζ̌(
(s− s′)2 + ζ̌2

)2 dζ̌ds′. (7.97)
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Let ζ̌ = (s− s′) tan θ; if s > s′ then∫ ∞
ζ̌=0

ζ̌(
(s− s′)2 + ζ̌2

)2 dζ̌ =

∫ π
2

0

sin (2θ)

2 (s− s′)2 dθ

=
1

2 (s− s′)2 (7.98)

whilst if we let ζ̌ = (s′ − s) tan θ with s < s′, we again recover the result (7.98).

Hence substitution of (7.98) into (7.97) leads to a simplified expression in terms of

s and s′, namely ∫ ∞
0

∂ȟ

∂s
dζ̌ =

k

π

∫ ∞
s′=−∞

h1 (s′)

(s− s′)
ds′. (7.99)

As a consequence of (7.99), equation (7.64) can be expressed as

− ε3ks

∫ ∞
0

∂ȟ

∂s
dζ̌ = −ε

3k3s

π

∫ ∞
s′=−∞

h1 (s′)

(s− s′)
ds′. (7.100)

Equation (7.100) is the lower O (ε3) term i.e. it is the contribution from the z-

boundary layer at z = 0 at O (ε3). Likewise, from (7.55) and (7.57) the solution to

ĥ(s, ζ̂) is also a half-space Dirichlet problem. The solution to ĥ(s, ζ̂) is defined as

ĥ(s, ζ̂) = − ζ̂
π

∫ ∞
−∞

ke−kh1 (s′)

(s− s′)2 + ζ̂2
ds′. (7.101)

Taking the partial derivative with respect to s gives

∂ĥ

∂s
= − ζ̂

π

∫ ∞
−∞

2ke−kh1 (s′) (s′ − s)
((s− s′)2 + ζ̂2)2

ds′. (7.102)

Expression (7.102) is integrated with respect to the stretched coordinate ζ̂ over the

domain 0 ≤ ζ̂ <∞, giving∫ ∞
0

∂ĥ

∂s
dζ̂ = − 2

π
e−k

∫ ∞
s=−∞

kh1 (s′) (s′ − s)
∫ ∞
ζ̂=0

ζ̂

((s− s′)2 + ζ̂2)2
dζ̂ds′. (7.103)

Let ζ̂ = (s− s′) tan θ; if s > s′ then∫ ∞
ζ̂=0

ζ̂(
(s− s′)2 + ζ̂2

)2 dζ̂ =

∫ π
2

0

sin (2θ)

2(s− s′)2
dθ

=
1

2 (s− s′)2 (7.104)
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whilst if we let ζ̂ = (s′ − s) tan θ with s < s′, the same result applies. Substitution

of (7.104) into equation (7.103) gives∫ ∞
0

∂ĥ

∂s
dζ̂ =

ke−k

π

∫ ∞
s′=−∞

h1 (s′)

(s− s′)
ds′. (7.105)

The upper O (ε3) term, given by (7.68), which represents the contribution from the

z-boundary layer near z = 1 at O (ε3), can be expressed as

− kε3

∫ 1

0

∂

∂x

(
ĥ(s, ζ̂)

)
e−kzsdz = −ε

3k2e−2ks

π

∫ ∞
s′=−∞

h1 (s′)

s− s′
ds′. (7.106)

Substituting (7.100) and (7.106) into equation (7.58) gives, at O (ε2),

−
∫ 1

0

k2e−2kzs
dh1

ds
dz +

∫ 1

0

k2e−2kzh1dz − kh1 (s) + ke−2kh1 (s)

− εk2s

π

∫ ∞
−∞

h1 (s′)

(s− s′)
ds′ − εk2e−2ks

π

∫ ∞
−∞

h1 (s′)

s− s′
ds′ − 1

ε4

1

Ha2

d2V1

ds2
= 0. (7.107)

Using the scaling (7.75), equation (7.107) becomes

d2V1

ds2
= −sdh1

ds
− h1 −

2εk

π

(
1 + e−2k

1− e−2k

)
s

∫ ∞
−∞

h1 (s′)

s− s′
ds′. (7.108)

Equation (7.108), along with (7.52), determines the solution to V ′1 (s) up to O (ε3)

and the solution to h1 (s, z) up to O (ε2) in the boundary layer.

7.6 Comparisons with the numerical results

The numerical simulations are used for comparison between the analytical solu-

tion (7.92) and the numerically evaluated V ′0 (x) found using the techniques de-

scribed in §5. We have also performed numerical simulations to provide evidence of

the z-boundary layers which would validate the analysis in §7.4 and §7.5.

In figure 7.6, the solution to V ′1 (s), given by (7.91), and the numerical solution

to V ′0 (x) are plotted for increasing values of Ha. The domain of x in figure 7.6

is chosen such that the numerical solution is focused in the boundary layer and

hence a comparison can be made with the boundary layer solution (7.91). As Ha is

increased, the numerical solution tends slowly towards the asymptotic solution and

the difference between the two solutions becomes smaller. The numerical maximum
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is smaller than the asymptotic maxima for all the values of Ha displayed; however

this difference becomes smaller with Ha as the O (ε3) terms become negligible. The

numerical solution is well resolved with M = 40 modes in all solutions.
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Figure 7.6: Comparisons of (7.91) and the numerical solution at varying Ha.

This difference in maxima can be improved if the expression (7.108) were evaluated.

This would result in a significantly improved solution for smaller Ha, but figure 7.7

shows that the agreement of (7.91) is within 90% of the numerical maxima. We feel

that the additional numerical treatment for (7.108) would result in only marginal

gains at large Ha.
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Figure 7.7: Ratio of the maxima of (7.91) and the numerical maxima.

The z-boundary layer structure can be revealed in the numerics by evaluating the

following expression:

Hnum (x, z)−Ha (x, z)−Hg (x, z)− ε2h1 (s) e−kz, (7.109)

where Hnum (x, z) is the numerical solution to H (x, z) at a given Ha. Expres-

sion (7.109) would also validate our assumption for the form of H (x, z) given

by (7.53). In figures 7.8 and 7.9 the contours of (7.109) are plotted for Ha = 100 and

Ha = 200. We can see that there is z-structure at z = 0 and z = 1 that is confined

near x = π. This confirms the theory that the z-boundary layer structure exists

only within the x-boundary layer. The thickness of this boundary layer decreases

with Ha in both the x and z direction. The thickness is expected to decrease in both

directions as Ha increases since both boundary layers have a dependence on Ha.
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Figure 7.8: Contour plots of expression (7.109) at Ha = 100 and k = 1.
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Figure 7.9: Contour plots of expression (7.109) at Ha = 200 and k = 1.
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Chapter 8

The influence of a horizontal field

As shown in Chapter 4, V ′0 (x) has a singularity at x = 0, π in the inviscid, small

Rm limit. This can be attributed to the absence of magnetic field at x = 0, π,

which, consequently, leads to infinite field line stretching at these points. In order

to overcome this problem we have extended our model to include the effects of a

background horizontal field that is confined within the stratified layer. A horizontal

field in a Cartesian geometry represents an azimuthal magnetic field in a spherical

geometry.

We now present numerical solutions for finite values of Bs by solving equations (5.1)-

(5.5). Here we have compared a few cases owing to the time it would take to fully

explore (Rm,Ha,Bs) parameter space. This chapter extends the work presented in

Chapter 6.

8.1 Bs in the extreme parameter value regime of

Rm and Ha

We begin by looking at the effects of the horizontal field in various extreme parameter

regimes, i.e. inviscid small Rm, inviscid large Rm and dominant viscosity at small

Rm, in order to see how the structure of V ′0 (x) changes in these regimes. The choice

of investigating these particular parameter regimes is because they are understood
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Chapter 8. The influence of a horizontal field

in the case of Bs = 0, either by theoretical or numerical results, and so will help us

understand how the inclusion of the horizontal field changes the model.

8.1.1 The inviscid, small Rm regime

The asymptotic theory of Chapter 4 predicts a singularity in the geostrophic flow

for the inviscid small Rm regime due to the vanishing of the imposed magnetic

field lines at x = 0, π. The inclusion of an azimuthal horizontal field in the layer

should lead to the field being non-zero throughout, providing Bs is sufficiently large

to overcome the singularity.

There are three regimes to consider at small Rm for an inviscid fluid with an imposed

horizontal field. The boundary layer length scale found in the Bs = 0 scenario scales

approximately as ε ∼ Ha−
1
2 where ε is a small parameter; we therefore consider

three cases, governed by the magnitude of Bs: 0 < Bs ≤ ε, ε ≤ Bs < 1 and Bs ≥ 1.

The first case is of little interest as this is smaller than an O (ε) contribution to our

solutions and so we expect to see the results shown in §7. The third case would be

when the Ha−2∇2v term is small and so any contributions from Bs are much more

significant. The second case is the most interesting as this is the regime in which the

singularity begins to disappear as Bs is increased; at the same time its contribution

in the boundary layer is of the same order as all other terms.

For ε ≤ Bs < 1, the numerical solutions in figure 8.1 show that the singularity

still exists in V ′0 (x) but its location is shifted in x. The singularity still occurs

owing to the horizontal field not being large enough to eradicate the zero-field lines

everywhere. In figure 8.1 and figure 8.2, the solutions for Bs = 0.1, 0.2, 0.5 are

calculated for Ha = 100 and Rm → 0. This choice of Ha is in the correct regime

as ε ≈ 0.1 < Bs. It is also numerically convenient to calculate solutions with weak

viscosity at small Rm so that we are not susceptible to numerical viscosity in the

inviscid small Rm regime.

In figure 8.1 the geostrophic flow and the contours of vx (x, z) are plotted. V ′0 (x) has

an asymmetric structure, which is a feature of the horizontal field regime that can

be explained by the coupling between all the harmonics when Bs is introduced, and
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8.1 Bs in the extreme parameter value regime of Rm and Ha

can be seen in the energy spectra of V ′0 (x). We discuss this feature in §8.1.2. This

asymmetry is also seen in the contours of H (x, z) and the stream function shown

in figure 8.2. The possibility of an analytical theory for the asymmetric solution to

V ′0 (x) is considered in §8.3.1, where the boundary layer equations are reconsidered

in the ε� Bs < 1 regime.

Figure 8.3 shows that the singularity in V ′0 (x) has been removed at moderate val-

ues of Bs. As the azimuthal field becomes the dominant contribution in the layer

the meridional flow becomes purely geostrophic. This is due to the magnitude of

V ′0 (x) increasing with Bs such that V ′0 (x) dominates the ageostrophic meridional

flow va (x, z). The asymmetry is no longer a feature of V ′0 (x) at larger values of

Bs but asymmetry is still present in the system as can be seen in the contours of

H (x, z) plotted in figure 8.4. We note that in both figure 8.2 and figure 8.4 the

stream function is asymmetric about x = π.
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Figure 8.1: The geostrophic flow, V ′0 (x), and the contours of vx (x, z) for Rm → 0 and Ha = 100. The horizontal field increases in

strength from left to right: Bs = 0.1, 0.2, 0.5.
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Figure 8.2: Contours of H (x, z) and ψ (x, z) for Rm→ 0 and Ha = 100. The horizontal field increases in strength from left to right:

Bs = 0.1, 0.2, 0.5.
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Figure 8.3: The geostrophic flow and contours of vx (x, z) for Rm→ 0 and Ha = 100. The horizontal field increases in strength from

left to right: Bs = 1, 2, 5.
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Figure 8.4: Contours of H (x, z) and ψ (x, z) for Rm→ 0 and Ha = 100. The horizontal field increases in strength from left to right:

Bs = 1, 2, 5.

133



Chapter 8. The influence of a horizontal field

8.1.2 The inviscid large Rm regime

In §5.2.3 (and additionally in §6.2) the energy spectra of the geostrophic flow was

calculated for the case in which Bs = 0. It was commented that in the case of

Bs = 0 that there was only coupling between the even harmonics in V ′0 (x) and that

this was a property of the Bs = 0 regime. In figure 8.5, the energy spectra of the

geostrophic quantities are plotted for Rm = 100, Ha−1 → 0 and Bs = 1 and, as a

result of introducing the horizontal field, all harmonics are now coupled.

The reason for this coupling can be seen in equation (5.30) — the coefficients of

V ′0 (x) contribute only at the n − 1 and n + 1 levels when Bs = 0. For Bs 6= 0,

the BsV
′

0 (x) term in (5.23) introduces a contribution at the n-level, resulting in a

coupling between odd and even modes for V ′0 (x).

The consequence of coupling between all harmonics in the geostrophic flow is that the

symmetry observed throughout Chapter 6 will be broken and the resulting solutions

to V ′0 (x) will have much more varied structure, as will be described and presented

in figures 8.6 to 8.8. The energy spectra of all four quantities in figure 8.5 imply

that the solution is well resolved.

In figures 8.6–8.8 the contours of vx (x, z), H (x, z) and ψ (x, z) are plotted together

with V ′0 (x) for Rm = 100, Ha−1 → 0 and Bs = 0.5, 1, 2. In figure 8.7 we comment

on the fact that although the singularity is removed from the geostrophic flow in

the inviscid large Rm solution (see §6.1), there are some steep gradients in the

geostrophic flow. This can also be seen in the contour plot of vx (x, z) in figure 8.7.

It is not clear what is causing these steep gradients at this particular point in the

parameter regime but the resulting structure observed is of interest, however, an

analytical theory for this is not possible at large Rm. The contours of vx (x, z) and

H (x, z) show asymmetry throughout figures 8.6–8.8.

The z-boundary layers in the stream function that can be seen at large Rm (see

figure 6.5) no longer exist in the horizontal field case. The amplitude of the stream

function between the Bs = 0 and Bs = 0.5 solution at Rm = 100,Ha−1 → 0 has

increased by a factor of 10. The effect of increasing Rm results in the compression
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Figure 8.5: Energy spectra of geostrophic quantities at Rm = 100, Ha = 100, Bs = 1

for k = 1.

of the z-structure into the lower half of the domain for ψ (x, z) in the Bs = 0 regime,

whilst the inclusion of the horizontal field alleviates this compression effect; the z-

structure of ψ (x, z) extends beyond the lower half of the domain in figure 8.8 when

Bs = 2.

The inclusion of the horizontally imposed field has a strong effect on the amplitude

of vx (x, z), H (x, z) and ψ (x, z) in this regime (cf. figures 8.6 through to figure 8.8

where the amplitude of vx (x, z) is now of order 1). We expect this trend to continue

as Bs becomes large however this would then change the dynamics of the problem

entirely — we would be considering a system in which the horizontal field dominates.
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Figure 8.6: The geostrophic flow and the contours of vx (x, z), H (x, z) and ψ (x, z) for Ha−1 → 0, Rm = 100 and Bs = 0.5.
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Figure 8.7: The geostrophic flow and the contours of vx (x, z), H (x, z) and ψ (x, z) for Ha−1 → 0, Rm = 100 and Bs = 1.
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Figure 8.8: The geostrophic flow and the contours of vx (x, z), H (x, z) and ψ (x, z) for Ha−1 → 0, Rm = 100 and Bs = 2.
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8.1 Bs in the extreme parameter value regime of Rm and Ha

8.1.3 Inviscid small Bs analysis

The form of V ′0 (x) shown in figure 8.1 suggests that there is the possibility to expand

on the analysis of §7.3 by including the horizontal field term into the boundary layer

equations. Below we consider the initial steps to the analysis; however, due to time

constraints and the complexity of the governing equations, we have yet to extend

beyond what is provided below.

The numerical solutions for small Bs and large Ha can be used to determine the

size of the terms in the system of equations. In figures 8.9–8.11, the terms in

equation (5.5) are plotted to highlight which terms are significant in the limit of

Rm → 0, Ha → ∞ and ε � Bs < 1 and also to highlight their significance in the

boundary layer. We can see from figure 8.9 that both the Ha−2 term and the Bs

term in (5.5) are of the same magnitude and that both must therefore be included

in the analysis.

We consider a viscous fluid as Rm→ 0 and ε� Bs < 1 with an exterior and interior

solution for the boundary layer. The solutions to A (x, z) and v (x, z) remain the

same between the interior and exterior; however the geostrophic flow will differ

between the two. The interior solution for v (x, z) is expressed as

v (x, z) = va (x, z) + Vb (s) , (8.1)

where Vb (s) is the geostrophic component that is dependent on the horizontal field

inside the boundary layer. The exterior solution to the meridional field is expressed

as

H (x, z) = Ha (x, z) +Hg (x, z) , (8.2)

where the solutions to Ha (x, z) and Hg (x, z) are determined from the small Rm

inviscid solution (4.26) and (4.41); i.e. they satisfy,

∂2Ha

∂x2
+
∂2Ha

∂z2
=
∂ (va, A)

∂ (x, z)
, (8.3)

∂2Hg

∂x2
+
∂2Hg

∂z2
= Ṽ0k cot (kx)

∂A

∂z
= −Ṽ0k

2e−kz cos (kx) . (8.4)

Inside the boundary layer, Bs is now significant and of the same order as all other
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Chapter 8. The influence of a horizontal field

terms, so we must include an additional contribution to H (x, z), namely

H (x, z) = Ha (x, z) +Hg (x, z) + ε2hb (x, z) , (8.5)

where H (x, z) obeys the equation (cf. equation (7.40)),

∂2H

∂x2
+
∂2H

∂z2
=
∂ (v, A)

∂ (x, z)
− Bs

∂v

∂x
. (8.6)

Inside the boundary layer we now have a new contribution in equation (8.6) with

the additional Bs∂xv term. This additional term means that the boundary layer

contribution hb (x, z) is the solution to the equation

ε2

(
∂2hb
∂x2

+
∂2hb
∂z2

)
= −Bs

ε

dVb
ds

+
1

ε

dVb
ds

∂A

∂z
+ Ṽ0k

2e−kz cos (kx) . (8.7)

Since derivatives in x scale as ∂x ∼ ε−1∂s, equation (8.7) reduces (at leading order)

to,
∂2hb
∂s2

= −Bs

ε

dVb
ds
− 1

ε

dVb
ds

e−kz sin (kx) + Ṽ0ke
−kz cos (kx) . (8.8)

We may expand about x = 0 to express sin (kx) and cos (kx) in terms of s and ε,

sin (kx) ≈ sεk + O
(
ε3
)
, (8.9)

cos (kx) ≈ 1 + O
(
ε2
)
. (8.10)

Hence (8.8) becomes

∂2hb
∂s2

= −Bs

ε

dVb
ds
− ke−kzsdVb

ds
+ Ṽ0ke

−kz. (8.11)

In comparison with equation (7.50) there is an additional Bs term for hb (s, z). We

thus decompose hb (s, z) into two parts, as

hb (s, z) = ke−kzĥ1 (s) + ĥ2 (s) , (8.12)

where

d2ĥ1

ds2
= Ṽ0 − s

dVb
ds

, (8.13)

d2ĥ2

ds2
= −Bs

ε

dVb
ds

. (8.14)

The stream function inside the boundary layer satisfies the equation,

∂ψ

∂z
=
∂ (H,A)

∂ (x, z)
− Bs

∂H

∂x
− 1

Ha2∇
2v, (8.15)
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8.1 Bs in the extreme parameter value regime of Rm and Ha

and substitution of (8.5) into (8.15) gives

∂ψ

∂z
=
∂ (Ha, A)

∂ (x, z)
+
∂ (Hg, A)

∂ (x, z)
− ε∂hb

∂s
e−kz sin (kx)

− ε2∂hb
∂z

e−kz cos (kx)− Bsε
∂hb
∂s
− Bs

∂Ha

∂x
− Bs

∂Hg

∂x
− 1

ε2Ha2

d2Vb
ds2

. (8.16)

The leading order solution of (8.16) at O (1) yields Taylor’s constraint, namely∫ 1

0

∂ (Ha, A)

∂ (x, z)
+
∂ (Hg, A)

∂ (x, z)
dz = constant. (8.17)

On expanding the remaining terms in (8.16) using (8.12), integrating over the do-

main then gives

0 =− ε2k2s
dĥ1

ds

∫ 1

0

e−2kzdz − ε2k
dĥ2

ds

∫ 1

0

e−kzdz

+ ε2k2ĥ1 (s)

∫ 1

0

e−2kzdz − Bsεk
dĥ1

ds

∫ 1

0

e−kzdz − Bsε
dĥ2

ds

+ Bskεs

∫ 1

0

hg (z) + ha (z) dz − 1

ε2Ha2

d2Vb
ds2

. (8.18)

It is clear from both (8.18) and (8.14) that in order for all terms in equation (8.18)

to be O (ε2), we must choose the magnitude of Bs to be Bs ∼ O (ε). The Hartmann

number scaling in this problem is therefore the same as in §7, i.e. Ha ∼ ε−2. We

note that ha (z) and hg (z) are the solutions to (4.24) and (4.40) and take the form

hg (z) =
Ṽ0

2

[
ze−kz − sinh (kz) e−k

sinh (k)

]
, (8.19)

ha (z) =α0 sinh (kz) + α1 cosh (kz) +
1

8k

(
z − 1

4k

)
e−3kz. (8.20)

An exact choice of ε (cf. the choice (7.75) made in §7.4) would reduce equation (8.18)

into our final boundary layer ODE. The reduced ODE form of (8.18) along with

equations (8.13) and (8.14) would be solved together to give V ′b (s). The difficulty

remains in determining the choice of ε such that (8.18) reduces to an ODE; al-

though (8.18) is a coupled ODE in s we have yet to find a way to reduce this into a

simple form. The z-boundary layer correction terms may again need to be included

in our analysis and further consideration will be needed for future work.
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Figure 8.9: Comparison of terms in (5.5) at Ha = 100, Rm → 0 and Bs = 0.1. The top row compares individual terms and the

bottom row compares the right and left hand sides of (5.5) respectively and the geostrophic flow.
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Figure 8.10: Comparison of terms in (5.5) at Ha = 100, Rm → 0 and Bs = 0.2. The top row compares individual terms and the

bottom row compares the right and left hand sides of (5.5) respectively and the geostrophic flow.
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Figure 8.11: Comparison of terms in (5.5) at Ha = 100, Rm → 0 and Bs = 0.5. The top row compares individual terms and the

bottom row compares the right and left hand sides of (5.5) respectively and the geostrophic flow.
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Conclusions and future work

9.1 Summary and conclusions

Since the first measurements of Saturn’s magnetic field and atmospheric composition

there has been a lot of active research across many disciplines to explain its spin-

axisymmetry and lack of helium in the upper atmosphere. Many different pieces

of evidence point towards the formation of a stably stratified layer deep within the

interior that may explain the axisymmetric structure and, at the same time, explain

the lack of helium in the upper atmosphere. This evidence was discussed in §1.2

and there is still some debate regarding the size and depth of the stable layer. Many

models confirm that a stable layer is required in order to have an axisymmetric

magnetic field (Christensen & Wicht, 2008). The physical mechanisms that could

be driving the shear in the Stevenson model are also considered; convection within

the upper atmosphere redistributes heat and generates a pole-equator temperature

gradient above the stratified layer.

The original motivation for this work was to expand on the Stevenson model for the

stratified layer by including a depth dependent conductivity profile in the kinematic

regime and by investigating the consequences of Taylor’s constraint in the dynamic

regime. The presence of a stable layer under the influence of a shear is important

for the attenuation of the non-axisymmetric magnetic field. Although higher order

effects such as variable conductivity have a small effect on the attenuation of the
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poloidal field in the linear regime these higher order effects may become important

in the nonlinear case. In Chapter 2 we expanded on the kinematic model and found

that the poloidal field is somewhat independent of the choice of conductivity profile,

whilst the toroidal field is strongly linked to both the conductivity profile and the

shear profile in the layer.

In the dynamic regime we found that a new flow arises due to the Lorentz forces

induced by the magnetic field. In our two-dimensional model, where the field and

flow are independent of the y-direction (corresponding to the meridional direction in

a spherical geometry), we showed that the y-component of the flow could be divided

into an ageostrophic z-dependent part and a geostrophic z-independent part. The

ageostrophic component could be determined directly from the y-component of the

vorticity equation (magnetic wind equation), but the geostrophic component has

to be determined using a modified form of Taylor’s constraint. We have applied

Taylor’s constraint to determine the geostrophic part of the meridional flow, and

completed the solution by finding the stream function in the x-z plane. We note

the similarity between the axisymmetric solution found in Soward & Jones (1983),

discussed in Chapter 3, and our non-axisymmetric model. The difference between

them is that in our model the geostrophic flow is in the meridional direction, which

is contrary to the azimuthal direction typically found in standard Taylor constraint

problems.

Although we did not consider solutions to Taylor’s constraint for Elsasser number

of order unity there has been progress in the regime of Λ � 1. In Chapter 4

the analytical solution found in the small Rm limit allowed for verification of the

numerical solution to the system of equations at the corresponding parameter values.

The geostrophic flow was found to be discontinuous in the small Rm, inviscid limit;

the reason for this was that the magnetic field vanishes at x = nπ (where n is an

integer) for all z in the Rm → 0 limit, and as a consequence, infinite magnetic

stretching was required to generate the meridional field. We also showed that the

solution has additional symmetries in the cases when Bs = 0 (no imposed horizontal

field) and Rm→ 0. The solutions to the generated meridional field H (x, z) and the
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stream function were also found.

In Chapter 5 we tested two different numerical codes; one was adapted to deal with

the singular behaviour in the limit of an inviscid fluid as Rm→ 0, whilst the other

dealt with the general set of equations for moderate Rm-Ha-Bs. Although the theory

does not have an explicit boundary condition to evaluate the ageostrophic part of

v (x, z), we discuss the need for such a boundary condition in the numerical code and

how different choices do not affect the overall solution. This was done by comparing

two different boundary conditions for the ageostrophic component of v (x, z). The

symmetries observed in the theory in Chapter 4 were also confirmed in the numerics

and further symmetries were noted in the absence of the horizontal field.

In Chapter 2, the solution to the potential field, A (x, z), within the layer was calcu-

lated for moderate Rm and expressed in terms of the Hankel function. The difficulty

in progressing with this solution to evaluate Jy (x, z), v (x, z) etc. meant that an

analytical theory for moderate Rm was deemed intractable. As a consequence, we

developed numerical solutions for moderate Rm in Chapter 6 and found, to our sur-

prise, that the singular behaviour in the geostrophic flow vanishes as Rm becomes

large. The reason for this was due to the shear flow bending the field lines, resulting

in at least some non-zero field over the domain in z at the original singularity points

x = nπ. The non-axisymmetric magnetic field, as predicted by Stevenson, is indeed

attenuated towards the top of the stable layer. This axisymmetrizing effect is shown

in both the kinematic and dynamical models, with Rm the key parameter to this

effect. However, the non-axisymmetric geostrophic meridional flow generated from

the non-axisymmetric field is not attenuated at the top of the stable layer, a result

that would not have been expected from the kinematic theory.

Chapter 6 also explored solutions for a viscous fluid and it was found that viscosity

removes the singularity as Rm→ 0. As solutions for Rm→ 0 are relatively simple

to evaluate for the inviscid fluid, the inclusion of viscosity meant that there were

possible grounds to extend the analysis of Chapter 4 and develop an asymptotic

theory for the viscous case. The flow speeds calculated in our model are within the

correct order of magnitude when compared with estimates for the internal velocities
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of Saturn; this shows that our model can produce credible solutions that are rea-

sonable to compare with the dynamics of Saturn. The expansion of the Stevenson

model to include the nonlinear effects showed that the main mechanism behind the

field attention still holds compared to the kinematic regime for similar values of Rm.

Whilst the flow speeds in Chapter 6 would suggest that Rm ∼ 400 inside Saturn’s

stable layer.

The viscous asymptotic theory was developed in Chapter 7 and solutions to the

system of equations were found in the case of small Hartmann number Ha, i.e.

when viscosity is dominant in the system. In the small Ha limit the leading order

solution to the geostrophic flow is zero but the next order solution gives a well-

behaved solution for V ′0 (x). The explanation for the transition from the well-behaved

viscous solution to the singular inviscid solution can be seen in the numerical results

of Chapter 6 where a boundary layer structure near x = nπ is seen in the geostrophic

flow. A boundary layer solution for the geostrophic flow was derived in Chapter 7

by considering an inner and outer solution for V ′0 (x). The theory suggested that

there were also additional z-boundary layers within the x-boundary layer; this was

supported by the numerical results. Despite these complications, the leading order

asymptotic problem could be solved analytically in terms of modified Struve and

Bessel functions, whose properties are documented. This enabled us to establish

numerical agreement between our asymptotic boundary layer analysis and the full

numerical code. While the leading order asymptotic problem was amenable to exact

solution, the higher order O (ε3) terms could not be solved analytically.

Chapter 8 considered the numerical solutions in the presence of a horizontal field

of strength Bs. A uniform field in the x-direction corresponds to an axisymmetric

toroidal field in Saturn. We know that Saturn has a strong axisymmetric meridional

field and that if a dynamo is producing a meridional field then it is likely also to

produce an axisymmetric toroidal field component. However, the main motivation

for inclusion of the horizontal field was to see if it removed the singular behaviour

as Rm→ 0. We found this to be the case providing Bs was sufficiently large; there

were two significant cases to consider for the magnitude of Bs for small ε: ε ≤ Bs < 1
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and Bs ≥ 1. In the case of Bs ≥ 1, the inclusion of the horizontal field resulted in

the removal of the singular behaviour in V ′0 (x), which was expected. The horizontal

field also removed the boundary layer formation in the stream function for large

Rm. Progressively larger Bs resulted in the magnitude of the geostrophic flow being

large and, consequently, the meridional flow becoming almost entirely geostrophic.

In the case ε ≤ Bs � 1, we found that the singularity in V ′0 (x) is not removed as

we first expected but is instead shifted in x; there is also an asymmetric structure

to the geostrophic flow. This salient feature of asymmetry arises when introducing

the horizontal field and is prevalent also in both the stream function and meridional

field.

The reason for this asymmetry was explained in Chapter 5 in terms of the coupling

of the harmonics in the governing equations. The energy spectra of the geostrophic

quantities further validated the asymmetric behaviour when compared with the en-

ergy spectra of the Bs = 0 solution. We considered the initial steps to an analytical

theory to explain this asymmetry in the geostrophic flow for the case ε ≤ Bs � 1 by

reconsidering the boundary layer equations from Chapter 7. Some initial progress

has been made in formulating the required equations; however, the task of deter-

mining the exact form for small ε has proven difficult and we leave the equations as

they are for future work.

9.2 Future work

There are plenty of opportunities for future work with this model both from a

numerical and an analytical perspective. The next logical step in our model would

be to tackle the moderate Elsasser number equations; this problem would most

likely have some interesting dynamics. The numerical method developed in Chapter

5 could be extended to the moderate Elsasser number case. However, whereas in the

small Λ case, equations (3.26)–(3.30) could be solved sequentially, when Λ is O (1)

all the equations have to be solved simultaneously. This would slow down the code,

but since the problem is two-dimensional it would be feasible on a large computer.
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A more physical extension to our model would be to include a more realistic con-

ductivity profile within the stable layer. This was sampled in our kinematic model

of the plane layer, but was not considered in our main dynamical model. However,

such models have been considered in spherical geometry (Dietrich & Jones, 2018),

and it would be of interest to compare the solutions of a localised Cartesian model

with a global spherical solution and to compare with the flow speed estimates pro-

vided from the numerics in Chapter 6. These flow speed estimates suggest that the

model is working reasonably well at estimating the flow speeds within the stable

layer, so this would also be an interesting point to compare with depth-dependent

conductivity profiles.

Beyond the domain of Cartesian geometry, a solution in spherical geometry would

give deeper insight into the dynamics of the problem; effects such as curvature and

viscosity may have a significant role in the structure of the geostrophic flow. These

considerations would be reasonable to pursue in the quest to extend further our

knowledge of the dynamics of Saturn and its axisymmetric magnetic field.
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