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Abstract 

 

 

 The aim of the work presented here is to investigate the oxidation behaviour 

of nanoparticles produced using novel physical vapour deposition methods with 

magnetic moments and saturation greater than commercially available Fe-oxide 

nanoparticles. The production of such nanoparticles is tailored towards usage in 

biomedical applications, where, due to health and safety concerns the strength and 

frequency of magnet fields is limited. As such the goal is to produce highly 

optimised and tailored nanostructures that offer the best magnetic performance 

possible under the medical constraints. This necessitates building a detailed 

understanding of the oxidation pathways and processes that nanoparticles undergo as 

the formation of oxide layers on nanoparticles hinders their magnetic performances.  

 Furthermore, while the oxidation of bulk materials is well-studied and 

documented applying this understanding at the nanoscale presents many challenges 

as oxidation behaviour at this level differs greatly based on the physical properties of 

the samples. Fe was used throughout this study due to the materials desirable 

magnetic properties and current use in medical applications. The study presented 

here examines the mechanisms behind the oxidation of spherical Fe/FexOy particles 

with the oxidation process enhanced through annealing at 200°C as well as attempts 

to create protective metal shells around pure Fe particles to preserve the iron core 

from oxidation. To this end investigation into the production of Fe@Cu, Fe@Ag, 

Fe@Al and Fe@Mg is given. Particle analysis was carried out using the wide variety 

of characterisation techniques available through electron microscopy using a JEOL 

2011 TEM and JEOL 2200 FS (S)TEM.  

 It was found that diffusion through iron oxide grain boundaries in the particle 

shell had a significant effect with the diffusion coefficient estimated to be 

4.67 × 10−11𝑐𝑚2 𝑠−1. While the best performing metallic coating was Fe@Cu with 

particle exhibiting vastly different physical properties due to the addition of copper. 
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Chapter 1: Introduction 
 

 

The motivations for the study of oxidation in iron-based nanostructures are 

manifold; on the one hand nanotechnology is a well-established, fast growing, 

disruptive field, with the opportunity to enhance our current understanding and 

technological ability in a wide range of fields such as biomedicine, magnetic data 

storage, and imaging[1]. By 2019 the market for nanomedicine alone is expected to 

exceed $526 billion according to financial reports[2]. On the other hand, iron-based 

nanostructures offer strong magnetic properties that make them highly desirable in 

biomedical and therapeutic fields[3], where it is hoped they can be functionalised to 

aid in the mortification of cancerous cells or targeted drug delivery, allowing for 

higher doses without the risk of damage to the rest of the body. Therefore, it would 

be beneficial to gain a deeper understanding of how such systems function on the 

nanoscale for both medical and mechanical purposes[3]. 

Nanoparticles can be synthesised or found naturally and consist of a wide 

variety of materials and alloys. Some particularly well-known and well-studied 

nanostructures include: carbon nanotubes, which have been considered for many 

applications, including the field of neurobiology[4]; and silver nanoparticles which 

have been used to kill bacteria in fabrics[5]. Nanoparticles are a fascinating area of 

study due, in part to their size-dependent properties, often being described as a 

‘bridge’ between the classical and quantum effects. This is because of quantum 

effects can be observed when the size of a nanoparticle is very small (~ 10 nm)[6]. 

These unique properties arise from a significant proportion of the particle’s atoms 

being located at the surface. This can be visualised by imaging a particle with a 

diameter of 2 cm compared to one with a diameter of 10nm. The former will have 

only one atom in ten million located at the surface whereas for the nanoparticle it 

will have one atom in every ten, while the exact number depends on the crystal 

structure this illustrates the large difference in the number of surface atoms. This 

difference of five orders of magnitude is key, with surface atoms behaving very 

differently to bulk atoms in many important areas such as chemical bonding. 

Understanding these behaviours and properties of nanoparticles is essential to exploit 

these properties. 
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One particularly interesting application of magnetic iron nanoparticles is the 

mortification of cancerous tissue through magnetic field induced hyperthermia 

(MFH).  Whereby heating generated by iron nanoparticles due to the oscillation of an 

external magnetic field is used as a treatment for cancer. This is because proteins in 

cells that are heated to around 42°C are denatured and their membranes become 

permeable resulting in the death of the cell or increased susceptibility to traditional 

cancer treatments such as Radio- and Chemotherapy[7]. This would allow for lower 

doses of the normally severely damaging cancer drugs to be used and in some cases 

reduce the collateral damage of such treatments through increased targeting. Such 

outcomes are highly desirable and as such, small superparamagnetic and 

ferromagnetic iron nanoparticles are considered for use in this manner. However, 

due to the limits on the strength and frequency of an external magnetic field applied 

to a human body achieving the desired levels of heating and performance is 

challenging. As such understanding the mechanisms behind the oxidation of such 

particles is critical as oxide formation serves to lower the magnetic response of iron 

particles which limits their viability in medical settings. 

In this chapter, an introduction to magnetic iron oxide nanoparticles will be 

given along with a short literature review to explain the motivation for this study; 

this will be followed by a description of the synthesis of the nanoparticles and end 

with an explanation of: the experiments carried out, the thesis structure and a 

discussion of the key concepts. 

 

 

 

 

 

 

 

 

 



3 
 

1.1 Magnetic Nanoparticles: Motivation and Background 

 

The most common material used in the development of magnetic 

nanoparticles for biomedical purposes is ferromagnetic iron. Ferromagnetism is 

important as it offers the best magnetic properties of all materials in terms of 

magnetic response, and its ability to retain a magnetic field without the presence of 

an external field. The magnetic susceptibility of ferromagnets can be up to four 

orders of magnitude higher than that of paramagnets or diamagnets[8]. Out of the 

group of ferromagnetic elements iron, nickel, and cobalt only some iron oxides have 

been approved for use in human medicine due to the issues surrounding the 

biocompatibility of the other materials. This short-coming is not a major limitation 

as iron contains the largest magnetic moment of the three materials at ≈3.19 μB per 

atom with nickel and cobalt possessing 1.20 μB and 2.54 μB per atom respectively[9]. 

This, and the fact that iron also possesses the largest magnetic susceptibility of the 

three materials making it the ideal candidate due to the restrictions imposed on using 

magnetic fields in medical settings, makes iron the most commonly studied material 

for biomedical nanostructures[10]. As such iron nanoparticles are typically the basis 

any material system considered for medical applications. The typical system will 

consist of the iron base material and a functional material (often in the form of a 

shell) that will act to either transport a drug, attach to sample, or serve some other 

medical purpose.  

Iron, and its oxides, are naturally abundant in the earth crust and have been 

an integral part of human civilisation since antiquity. Iron and iron oxides are 

important across a wide variety of contemporary fields such as clean fuel, data 

storage[11], water treatment[12] and biomedicine[13,14] with each application desiring 

their own specialised iron/iron oxide particles[15]. Of particular interest are core-shell 

iron structures consisting of a metallic iron core and either an oxide or secondary 

metal shell, these particles possess readily controllable physical and magnetic 

properties and the ability to insulate the magnetic iron core from oxidation, thereby 

increasing the overall magnetic response of the nanoparticle, especially in the case of 

iron/metal core-shell particles[13]. Despite the high degree of attention these materials 

attract, the study of nanoparticles still faces many challenges. Undoubtedly the 

largest barriers to continued progress across all these fields is the lack of magnetic 
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response and reactivity that can occur as a result of oxidation [15]. As such 

understanding the nature of the oxidation process occurring within these particles is 

of great importance.  

The oxidation processes and characteristics of bulk iron have been 

extensively examined at both academic and industrial levels[16,17]. However, the 

nature of these processes is still only just beginning to be understood. The difficulty 

becomes apparent when one considers the substantial number of sizes and shapes 

that such nanoparticles can exhibit. As physical characteristics determine the 

electronic, structural, and magnetic properties, this wide array of particle 

morphologies results in a wide variety of characteristics. Furthermore, the effect of 

temperature on the oxidation of these particles is of critical importance, as the idea of 

heating magnetic particles in vivo, as a potential method of targeting (or aiding in the 

targeting of) cancerous cells is one possible application of magnetic nanoparticles[18].  

Research of the medical use of magnetic nanoparticles began in the late 

1950’s by Gilchrist et al[19], where the possibility of using external magnetic fields 

with nanoparticles as a non-invasive agent was addressed. Through this work the 

most notable challenges, namely the possible toxicity of the agent and the safety of 

the alternating magnetic field (AMF) were established, these problems are still 

debated today and frame the basic motivation for studies into the oxidation of iron 

oxide nanoparticles. One particular problem is the upper limit of the strength of any 

external magnetic field which can be safely applied to a patient[20]. Therefore, 

maximising the magnetic response of the particles to get the optimal performance out 

of particles within a range of magnetic field strength values is a key challenge for 

materials scientists.  

Currently, four main avenues of functionality for magnetic nanoparticles 

which are being explored in biomedicine are: 

• Drug delivery agents 

• Cell separation techniques 

• MRI contrast enhancers 

• Magnetic Hyperthermia  

Of those four main areas of usage MRI contrast enhancement is the most mature 

where iron oxide nanoparticles have been used as agents for over 25 years and are 
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becoming increasingly common, as per mole iron-based contrast is typically stronger 

than the traditional Gd-based agents[21]. Furthermore, as Gd-based agents have been 

shown to occasionally cause health problems in some patients, such as fibrosis in 

renal-impaired patients[22] and with the increasing quality of iron oxide based agents, 

this is leading to more research and development on superparamagnetic iron oxide 

nanoparticles (SPIONs) as a potential new generation of agents[23]. Furthermore, 

with the development of magnetic particle imaging (MPI), which uses 

superparamagnetic nanoparticles to produce 3D maps in a similar manner to a 

gamma camera, even more attention is being paid to this application of iron 

nanoparticles.  

Targeted drug delivery using magnetic nanoparticles is a technique that requires 

the functionalisation of magnetic iron nanoparticles, such that a therapeutic agent is 

bound to an iron/iron oxide nanoparticle, and the magnetic core then allows for the 

targeting of previously difficult-to-reach tumours. Furthermore, in the ideal case, the 

therapeutic agent would be embedded in a material that would only release the drug 

after heating; oscillation of the external magnetic field can achieve this heating of the 

particles. This would allow for the administration of higher doses of drugs with less 

risk to surrounding healthy tissue. In this respect, the drug delivery and magnetic 

hyperthermia applications share common requirements and problems.  

A similar technique is that of magnetic nanoparticle hyperthermia (MNP) 

whereby cancerous tissue is destroyed through the heating of nanoparticles via 

external oscillating magnetic fields at cancerous regions of the body. The benefits of 

such techniques are obvious as the technique could in principle replace or limit the 

need for dangerous and toxic chemotherapy drugs or radiotherapy which damage 

surrounding healthy tissue as well as cancerous tissue. Unfortunately, current 

commercially available nanoparticles cannot achieve the required heating for this 

treatment to be effective stand-alone. However, it has been suggested that magnetic 

particles used in conjunction with chemotherapy, radiotherapy and other cancer 

treatments can increase the success rates of the treatments[24,25]. The difficulty in 

reaching effective heating levels arises when the effect of external magnetic fields on 

the body are considered; while increasing the strength of the applied magnetic field 

would increase the heating output of a magnetic particle, the field itself leads to 

serious damage to healthy tissue. This is due to the fact that as eddy currents are 
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formed as the field amplitude is increased, this eddy currents occurring in 

surrounding tissue and bone structures can lead to severe muscle and nerve damage. 

As such a limit is placed on the maximum strength and frequency of an applied 

magnetic field which can be used in a medical setting, this limit (the Atkinson-

Bresovich limit) is that the product of the magnetic field strength H0 and frequency f 

and cannot exceed (H0 × f = 4.85 ×108 Am-1 s-1) [26].  

Due to the Atkinson-Bresovich limit, one of the key issues regarding the use 

of magnetic nanoparticles in biomedical settings is the optimisation of the particles’ 

magnetic response. To achieve the best possible magnetic properties within these 

limits a detailed understanding of the material systems is critical. Arguably the 

largest concern regarding the optimisation of magnetic iron nanoparticles lies in the 

spontaneous and rapid oxidation of iron in air. This oxidation resulting in particle 

shells of iron oxide has a negative effect on the magnetic properties of the particles, 

as many of natural iron oxides within the range of temperatures and conditions that 

would be common in biomedical settings are antiferromagnetic. That is, the 

magnetic moments of the atoms in the particle align such that neighbouring magnetic 

moments ‘point’ in the opposite direction, this results in particles with anti-

ferromagnetic or ferrimagnetic oxides possessing a significantly lower magnetic 

response. Furthermore, as iron readily oxidises this results in weak magnetic 

performance from particles that have oxidised. Thus, the understanding of the 

processes governing oxidation at the nanoscale is critical to improve the performance 

of nanoparticles to be used in biomedical settings. 

Furthermore, other key challenges facing the study of magnetic nanoparticles are:  

• the effective particle size,  

• surface effects,  

• stoichiometry.  

The effective particle size is important to be considered as the magnetic and 

physical characteristics of nanoparticle samples can vary widely based on the size 

and shape distributions of the sample. As such, methods of synthesis that can 

generate monodisperse iron core-shell structures are critical. Secondly, the surface 

effects of the particles become important due to many applications of magnetic 

nanoparticles requiring a form of biological functionalisation[27]. Moreover, as the 
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diameter decreases, the surface atoms make up an increased proportion of the total 

particle and surfaces have a significant role in the magnetic properties of the 

particles, where surface oxidation is believed to play a major role. Lastly, particle 

stoichiometry has been shown to have the effect of lowering the magnetic saturation 

(Ms ) of the material with pure stoichiometric magnetite possessing an Ms of 480 

kA/m, which decreases as non-stoichiometry increases[28]. This effect has been 

observed during particle synthesis and after long periods of storage. 

The study presented here is motivated by the unique challenges posed by the 

applications of iron nanostructures and the critical importance of understanding the 

oxidation processes they undergo. This led to an exploration of the iron 

nanostructures and attempts to drive the oxidation process through thermal means. 

To this end, a variety of iron nanostructures were designed based on the desired shell 

material; samples of pure iron that could form an initial oxide shell layer and 

samples of iron that were coated in a variety of metallic materials with the desire to 

form a protective shell layer. 

 

1.2 Research Objectives and Aims 

 

In the study presented here, iron and iron oxide core-shell nanoparticles are 

investigated and characterised to determine the distribution of physical 

characteristics such as size and shape, as well the extent of oxidation and the 

processes that drive it. The iron oxide particles are split into two types: core-oxide 

particles consisting of an iron core and oxide shell, and core-metal particles which 

consist of an iron core and a secondary metal shell.  

All sets of samples were characterised using scanning transmission electron 

microscopy (STEM) or conventional transmission electron microscopy (CTEM). 

Particle size and morphology were characterised using CTEM to provide a balance 

between accuracy of measurement and coverage of the samples, while particle 

composition was determined using Selective Area Electron Diffraction (SAED) and, 

where appropriate, Energy Dispersive X-ray Spectroscopy (EDX). Samples were 

heated in an alumina tube furnace with a maximum temperature of 1500K to 
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thermally induce further oxidation where needed, as oxidation times in air are 

impractically long beyond initial oxide formation. Detailed investigation of the 

structure of the samples was performed using high-resolution STEM and TEM 

(HRSTEM/HRTEM).  

The first sub-set of particles is core-shell structures, where the attempt has 

been made to deposit a protective metallic shell around the iron core. The goal of this 

approach is to attempt to create a particle where the iron core is shielded from 

oxidation, thus preserving the high magnetic moment associated with the core metal. 

The second type of particle is an iron core surrounded by a layer of iron oxide, the 

goal with these particles is to investigate the behaviour of the particles when 

oxidation is thermally induced. Particles were prepared using a gas aggregation 

cluster source under ultra-high vacuum conditions and were deposited directly onto 

copper TEM grids with carbon support films. This approach allowed for control over 

the physical characteristics of the samples produced and the possibility of coating the 

particles in secondary metal layers.  

The initial samples were prepared at varying temperatures with the aim of 

exploring how the conditions in the core-shell deposition chamber affect the 

samples; these samples were then moved into ambient surroundings to form their 

initial oxide layers. For samples that were to be coated further the core-shell chamber 

would be heated and filled with the target metal before being deposited and left to 

cool. Samples designed to be heated ex situ after deposition would be prepared in a 

similar way and removed immediately into atmospheric conditions to form their 

initial oxide. Any subsequent heating to thermally force oxidation was performed 

using a tube furnace at 200°C which is considered a low temperature for oxidation 

heating experiments. 
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1.3 Thesis Outline 

 

This thesis will begin with a general introduction to the key concepts 

surrounding iron and iron oxide and a discussion of the current understanding 

regarding the known processes that govern the oxidation of bulk iron and how they 

may apply at the nanoscale. The fundamental theory behind the characterisation 

using (S)TEM and the many avenues it provides for obtaining supplementary data 

will be presented. This will then be followed by a detailed description of the method 

used to synthesis the samples and a discussion of its advantages over other common 

methods of creating core-shell nanoparticles. Data will then be presented regarding 

the coating of iron nanoparticles with copper and the implications of this will be 

discussed, along with attempts to insulate the iron nanoparticles with other metal 

materials. Lastly, results regarding the investigation into oxidation processes at the 

nanoscale will be presented and discussed. Finally, the thesis will discuss the results 

and compare the experimental data to that found in other studies, with the goal of 

formulating a working model for the oxidation processes of metallic nanoparticles. 

 

1.4 Key Concepts: Oxidation of Iron 

 

1.4.1 Oxides of Iron 

 

There are six iron oxides composed of Fe and O: namely wüstite (FeO), 

hematite (α-Fe2O3), Maghemite (γ-Fe2O3), (β-Fe2O3), (ε-Fe2O3) and Magnetite 

(Fe3O4). The most common naturally occurring iron oxides in current biomedical 

settings are maghemite (γ-Fe2O3) and magnetite (Fe3O4). The latter, magnetite, is a 

black magnetic material whose molecular formula can be written as a combination of 

wüstite (FeO) and hematite (α-Fe2O3) and has the strongest magnetism of all 

naturally occurring minerals. Magnetite has an inverse spinel structure with oxygen 

forming a face-centered cubic (FCC) structure, the iron atoms located at the 

interstices with Fe2+ and Fe3+ ions found at the octahedral sites while only Fe3+ ions 

are found at the tetrahedral sites it is ferromagnetic until the Curie temperature of 
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853K[29] whereupon it becomes paramagnetic. Maghemite, however, is a brown, 

magnetic mineral found in soils and can be formed through the weathering or low-

temperature oxidation of magnetite and other spinels; it is metastable with respect to 

hematite at higher temperatures (α-Fe2O3). It is isostructural with respect to 

magnetite but with cation deficient sites.  

Of the remaining iron oxides, hematite is the oldest known compound and is 

very common in soils and rocks. It is extremely stable and mined as the main ore of 

iron. It possesses a trigonal crystal structure and is paramagnetic. Lastly, wüstite has 

a simple cubic structure, which shares a similar structure to NaCl, the mineral has 

been found in meteorites and deep-sea trenches and displays a high concentration of 

defects making pure wüstite crystals difficult to obtain. 

The nanostructures explored in this study consist of multiple different 

morphologies ranging from traditional spherical particles to cubic structures. Cubic 

nanoparticles have recently seen an increase in interest, primarily due to their 

potential advantages in catalytic activity and their high specific absorption rate 

(SAR) values, which is critically important in medical hyperthermia[30]. The 

oxidation processes behind both spherical and cubic nanoparticles have been 

explored in detail by researchers, yet many aspects of the oxidation process remain 

uncertain[31,32]. The initial oxide layer evident after the particles are removed from 

the deposition chamber into atmospheric conditions can be readily explained with 

Cabrera-Mott theory, the foundation of the theory of metal oxidation[33].  

The reactions of iron and the formation of iron oxide are frequently used as 

examples when discussing oxidation behaviours. This is likely due to the availability 

of the material as well as its widespread use across many fields and applications. As 

noted previously, iron forms six distinct oxides, three of which are stable: wüstite 

(FeO), magnetite (Fe3O4) and maghemite (Fe2O3) with the phase diagram shown 

above in Fig. 1.1. As it is common for all three oxides to exist in oxidised iron it is 

sensible to divide the oxidation of the iron-oxygen system into three distinct 

temperature regions above and below 570ºC and above 900ºC with oxygen partial 

pressures similar to those in atmosphere[34,35,36].  
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Figure 1.1. Phase diagram for iron oxide[37]. 

 

At high-temperatures above 750ºC-900ºC, the oxide shell was found to 

contain no significant amounts of either magnetite or maghemite, as the 

disassociation pressure of these two oxides is substantially lower than for wüstite[38]. 

In this regime, oxidation is observed to be linear although at certain oxygen partial 

pressures, the rate will transition to parabolic. Above 570ºC the oxide shell remains 

mostly composed of FeO, however now thin films of Fe2O3 and Fe3O4 can be seen, 

with the Fe3O4 being the larger of the two layers. Below 570ºC, wüstite becomes 

unstable in bulk and is not present, with the oxide shell being composed primarily of 

Fe3O4. When the oxide shell is very thin, wüstite may exist as a thin film at the 

metal-oxide interface at temperatures approaching 400ºC[39]. At this temperature and 

below, the growth rate of the magnetite phase controls the oxidation rate, and, 

furthermore, the mechanism of oxidation is different for the separate oxide phases, 

with both wüstite and magnetite oxidising predominately through cation diffusion, 

although oxygen in-diffusion does have a non-trivial role in the oxidation of 

magnetite[40]. Maghemite however, oxidises primarily through oxygen anion 

diffusion and it is possible that at these low temperatures oxygen in-diffusion may 

reach the metal-oxide interface and penetrate the metal. It was found that there was a 

change in the oxidation growth rate at low temperatures, from parabolic at 

temperatures above 200ºC to logarithmic at temperatures below this. 
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Having discussed the iron material system and its observed oxidation 

behaviour in bulk, a discussion regarding the known methods of oxidation will be 

given, this will include a short historical overview of early models, before focusing 

on the theory behind the two main models for the prediction of oxidation. 

 

1.4.2 Theories on the Oxidation Metals 

 

In 1923 oxidation of metals was divided into two categories by Pilling and 

Bedworth according to the relative formation of oxide to metal consumed[41].  This 

was represented as the ‘Pilling-Bedworth ratio’ which compares the volume of the 

oxide produced with the volume of metal consumed; with materials whose ratio was 

greater than unity being described as ‘protective’ oxide shells, as they tended to 

surround the particle completely. This leads to the oxide shell growing according to a 

parabolic relationship. For materials with ratios below unity it was argued that the 

oxide shell would be porous and non-protective and grow according to a rectilinear 

growth law.  

Pilling and Bedworth’s description proved to be effective only in limited 

cases. While initially it was supported by experiments on calcium and copper (light 

and heavy metals with ratios of 0.64 and 1.75 respectively)[42]. Pilling and Bedworth 

assumed that the oxidation proceeded by in-diffusion of oxygen through the oxide 

film. However this has been shown to not always be the case and that the dominant 

diffusing species is typically the metal ‘out-diffusing’ towards the oxygen[43]. This 

makes sense in heavier metals, especially where the metal cation is often smaller 

than the oxygen anion. However, for metals whose diffusion mechanism operates 

through transport of material from the surface to the metal-oxide interface, the 

Pilling-Bedworth rule has some degree of applicability.  

An example of such a system would be the linear oxidation of magnesium 

above 475ºC, although there are many exceptions to their rule. The main flaw in the 

early understanding of oxidation was the poor assumption that stress and strain 

effects acted in opposition to oxidation; it was assumed that small compressional 

stresses could act to ‘push’ together cracks in oxide scales and retard oxidation. 
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However, there are cases of materials that would experience ‘breakaway’ oxidation 

above certain temperatures, which suggested the role of stress and strain energies in 

the oxidation process is more complicated than allowed for in the early models[44]. 

As the understanding of oxidation behaviour increased it became necessary to 

consider the mechanisms behind the growth of oxide scales and films; this is often 

represented in the form of ‘oxidation vs time’ curves, which can in most cases be 

described simply. The most common of these curves is split into two distinct 

categories that depend on the thickness of the oxide scale formed: where the scale is 

thick (often defined as >1µm), parabolic and linear time curves are observed and 

when the scale is thin, logarithmic and cubic curves predominate[35].  

 

Wagner Theory of Oxidation 

In the case of thick films, the most well tested theory was developed by 

Wagner in 1933 and provides a means by which the rate of oxide growth can be 

linked to measurable transport properties of the material. Based on the parabolic 

relationships that had been observed previously,  

𝑑𝑋

𝑑𝑡
=

𝑘𝑝

2𝑋
 (1.1) 

Where 𝑋 is the film thickness and 𝑘𝑝 is the parabolic rate constant the rate of 

oxide growth[45]. Therefore, the parabolic kinetics can be seen as the transport of 

material along a gradient (driving force) that decreases as the oxide thickness 

increases[46]. 

𝑋2 = 𝑘𝑝𝑡 (1.2) 

The details of the transport mechanism (if metal cation diffusion is dominates 

oxygen anion diffusion) depend on the material in question. For example, it has been 

found that iron cation diffusion dominates in magnetite while maghemite is 

dominated largely by oxygen anion diffusion[47]. However, as the diffusion species 

are electrically charged as shown in Fig. 1.2 both electronic and ionic transport is 

needed to cause oxidation at the oxide-gas interface, with the respective fluxes being 
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driven by both chemical and electric field gradients. The general expression for the 

flux of a diffusing species is given by; 

𝐽𝑖 =
𝐷𝑖𝐶𝑖

𝑘𝑇
[−

𝑑𝜇𝑖

𝑑𝑥
+ 𝑞𝑖𝐸] (1.3) 

Where i represents the species or defect being transported, for example, an 

electron or iron ion. 𝐶𝑖 is the concentration of the species or defect, 𝐷𝑖 the diffusion 

coefficient, 𝜇𝑖 the chemical potential and 𝑞𝑖 the charge, 𝑘 and 𝑇 represents the 

Boltzmann constant and absolute temperature respectively with 𝐸 as the electric 

field. The chemical potential μi can be expressed further as μi =kT ln(Ci) + constant 

for ideal diffusing species[48]. 

 The ability to express electrical transport properties in terms of diffusion 

characteristics is derived from the Nernst-Einstein relation, which establishes the 

relationship between the molar conductivity Λ and the diffusion coefficient and can 

is given by; 

𝐷𝑖 =
𝑅𝑇

𝑞𝑖
2𝐹2

𝛬𝑚,𝑖
0  (1.4) 

Where 𝑞 is the charge on the ion i, 𝐹 is the Faraday constant, 𝑅 is the gas 

constant and 𝑇 is the absolute temperature. This relationship assumes that the electric 

field is small such that (qEa << kT) where a is the ionic jump distance. When this 

relationship holds true Wagner’s theory of oxidation can be applied. However when 

the electric fields are large enough that 𝐸 ≪
𝑘𝑇

𝑎𝑞
 this relationship break downs, such 

as in the case for thin films, Cabrera-Mott theory must be applied[49].  

A full derivation of Wagner theory is beyond the scope of this study as it can 

only be applied in cases where the oxide film is suitably thick, which is also shown 

to not occur in nanoparticles. The final result expresses the parabolic rate constant as 

a function of the diffusion coefficient for a given molecular oxygen activity at the 

oxide-gas interface[50]. 

𝑘𝑝 =
6

𝑓
𝐷∗ (1.5) 
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Where 𝐷∗ is the diffusion coefficient for a given oxide-gas interface oxygen 

activity and f is the correlation factor for the metal and oxygen ion self-diffusion 

mechanism. 

 

Cabrera-Mott Theory of Oxidation 

When the oxide film is below the thickness stated previously then the Nernst-

Einstein relationship and the assumption of charge neutrality are no longer valid, and 

the theory of oxide growth must take into account the atomic jumps in the presence 

of large electric field gradients. Cabrera and Mott developed their theory in 1949 in 

an attempt to describe the oxidation process in atomistic terms[33]. The first 

assumption is that electrons can pass freely from the metal to the oxide shell so that 

surface oxygen atoms may be ionised. The resulting effect is that a uniform electric 

field is created across the oxide film, due to the positive surface charge from the 

metal ions at the metal/oxide interface and a negative surface charge due to the 

excess oxygen ions at the surface. In Wagner theory, due to the small electrical 

fields, transport is largely driven by the chemical gradient across the oxide film. 

However, in Cabrera-Mott theory the electric field drives the ionic transport through 

the diffusion of metal ions out towards the surface and the diffusion of oxygen ions 

inwards[46].  

Electrons may be transported across the film through two possible 

mechanisms namely tunnelling across the potential barrier which binds them to their 

original atom, and   transport through thermionic emission. In the case of tunnelling, 

the critical limit was considered by Fromhold and colleagues who solved the 

problem numerically were able to determine that the critical thickness for electron 

tunnelling was of the order of 25Å, above which, the tunnelling current would 

become too small to account for oxide growth[46,51]. This was backed by observation 

for oxidising materials at low temperatures which achieved films on average 

between 20-30Å. The mechanism described by the Cabrera-Mott theory of oxidation 

relies on this tunnelling of electrons through the surface such that surface oxygen is 

ionised; the simplest such ionisation interaction is give in Eq. 1.6 and is shown in 

Fig. 1.2.  
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Figure 1.2 Schematic diagram of the basic surface interaction that involves an electron 

tunnelling through the oxide shell to the surface to ionise excess oxygen atoms. The resulting 

potential acts as a driving force to facilitate the ionic transport of iron and/or oxygen ions across 

the oxide. 

 

1

2
𝑂2(𝑔𝑎𝑠) + 2𝑒(𝑚𝑒𝑡𝑎𝑙) → 𝑂2−(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) (1.6) 

Fig. 1.2 shows a schematic representation of a basic surface interaction that 

results in the oxidation of material on the particles surface, free electrons 𝑒−pass 

through the oxide shell freely resulting in a separation of charge, with the anode at 

the metal/oxide interface and the cathode at the oxide/gas interface. This drives the 

transport of Fe2+ ions through the oxide shell to the surface and O2- ions through the 

shell to the core, the relative rates of in- and out-diffusion are dependent on the ions 

being transported. 

Other more complicated surface interactions can occur, but only the simplest 

case will be explored as the same principles can be applied for all surface 

interactions. If the interaction is assumed to be at equilibrium, then the equilibrium 

constant is given in Eq. 1.7 as in the case where the Gibbs free energy change is 

zero, then the ratio of activities in the reaction are equal to the equilibrium constant.  

𝐾 =
𝑎(𝑂2−)

𝑎(𝑂2)1/2𝑎(𝑒)2
 (1.7) 

Where 𝐾 is related to the Gibbs free energy change and can be expressed as; 
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𝐾 =
∆𝐺

𝑘𝑇
 (1.8) 

And 𝑎(𝑂2) is given by; 

𝑎(𝑂2−) =
𝑛0

𝑁𝑠
 (1.9) 

Where 𝑛0 is the number of excess oxygen ions and 𝑁𝑠 is the total number of 

oxygen ions per unit of surface area. The electron activity is given by[46]; 

𝑎(𝑒)  = exp (−
𝑒∆𝛷

𝑘𝑇
) (1.10) 

Where ∆𝛷 is the Mott potential, from these equations we can derive an 

expression for the number of excess oxygen ions. The number of excess oxygen ions 

is therefore given by; 

𝑛0 = 𝑁𝑠 𝑎(𝑂2)1/2𝑒𝑥𝑝 [−
(∆𝐺 + 2𝑒∆𝛷)

𝑘𝑇
] (1.11) 

This equation was solved for the Mott potential ∆𝛷, which can be estimated 

from[46]. 

∆𝛷 ≈
∆𝐺

2𝑒
 (1.12) 

To calculate the diffusion rate caused by the electric field, Cabrera and Mott 

assumed that the rate-controlling step of the process is the injection of defects into 

the oxide shell at one of the two interfaces. This introduction of defects has been 

highlighted schematically in Fig. 1.3. In the simplest case, the defect, which can be a 

metal interstitial or oxygen vacancy, is introduced at the metal/oxide interface. The 

metal interstitial defect is more likely to occur as, under the electric field, it acts to 

bias the direction of travel for the ion in the direction of the particle surface. As such 

the potential barrier the ion must overcome to jump towards the core of the particle 

is raised by 𝑞𝑎∆𝛷/2𝑋, As a result, it is possible for the field to become so large that 

ion transport in the direction of the core is negligible due to an insurmountable 

potential barrier in that direction.  
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Figure 1.3 Illustration of the basic surface interaction and limiting process in Cabrera-Mott 

theory for the injection of a point defect into the oxide film at the metal/oxide and oxide/gas 

interfaces. (a) the transfer of a metal atom to an interstitial site in the oxide shell and (b) the 

transfer of a metal ion to a site on the surface of the particle creating a metal vacancy in the 

shell. 

The probability of an atom overcoming the potential barrier and travelling 

into the oxide shell (where it should be noted that the activation energy for 

subsequent jumps through the oxide is much lower than the energy required for the 

initial jump) can thus be expressed as in Eq. 1.13[52]. 

𝛾 = 𝑒𝑥𝑝 (
−𝑊

𝑘𝑇
) 𝑒𝑥𝑝 (

𝑞𝑎∆𝛷

2𝑘𝑇𝑋
) (1.13) 

Where, 𝑊 is the activation energy required to make the ‘saddling’ jump into 

the oxide, 𝑞 is the electric charge of the ion, 𝑎 is the interatomic distance, ∆𝛷 is the 

Mott potential, 𝑋 is the oxide shell thickness, 𝑘 is the Boltzmann constant and 𝑇 is 

the absolute temperature. 

 This expression comes from the fact that the chance of an ion overcoming a 

potential barrier in the absence of any electric field would be 𝑒𝑥𝑝 (
−𝑊

𝑘𝑇
), however, as 

mentioned the electric field will lower the potential barrier by 𝑞𝑎∆𝛷/2𝑋. 

Furthermore, the chance per unit time for the ion to overcome the potential barrier 

will be the value in Eq. 1.13 multiplied by the ionic jump attempt frequency 𝜐 which 
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represents the number of ‘attempts’ an ion will make per second to overcome the 

potential barrier[53].  

𝛾(𝑡) = 𝜐𝑒𝑥𝑝 (
−𝑊

𝑘𝑇
) 𝑒𝑥𝑝 (

𝑞𝑎∆𝛷

2𝑘𝑇𝑋
) (1.14) 

The overall diffusion rate can be calculated as the number of ions that diffuse 

successfully across the oxide per unit time; which would be given by the product of 

𝛾(𝑡) and 𝑁0 the number of ions in positions to diffuse at a given time. This would 

lead to an increase in the oxide shell given in Eq. 1.15[54]. 

𝑑𝑋

𝑑𝑡
= 𝑁0𝛺𝑣 𝑒𝑥𝑝 (

𝑞𝑎𝛥𝛷

2𝑘𝑇𝑋
−

𝑊

𝑘𝑇
) (1.15) 

Where 𝛺 is the oxide volume produced per diffusing ion with all other 

variables maintaining the definitions given previously. As can be seen in Eq. 1.15, as 

the oxide shell thickness increases, the rate of oxidation drops, while it will never 

reach completely zero as there will always be a finite chance for an atom to jump 

into the oxide it can become negligible. The value for the negligible oxidation rate is 

arbitrary and was defined by Cabrera and Mott’s original paper as to be (10-15 ms-1) 

which is equal to roughly 30nm per year oxide growth. When the rate becomes 

negligible, however, should be considered with reference to the material and context. 

 The limits to the applicability of Cabrera-Mott theory can be determined by 

first considering the velocity of drift for a diffusing particle, which can be expressed 

as the distance travelled in a single ‘jump’ into the oxide shell, multiplied by the 

chance of overcoming the potential barrier and the attempt frequency. 

𝑑𝑋

𝑑𝑡
= 𝑎𝑣 𝑒𝑥𝑝 (

𝑞𝑎𝛥𝛷

2𝑘𝑇𝑋
−

𝑊

𝑘𝑇
) (1.16) 

Where the interatomic distance 𝑎 provides the distance travelled by the ion in each 

jump, this can be simplified and written as shown in Eq. 1.17[46]. 

𝑑𝑋

𝑑𝑡
=

𝐷𝑖

𝑎
𝑒𝑥𝑝 (

𝑋1

𝑋
) (1.17) 
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Where 𝐷𝑖  can be linked to the diffusion coefficient with similar dimensions 

shown in Eq. 1.18 and 𝑋1 which provides the upper limit for validity of the theory 

shown in Eq. 1.19. 

𝐷𝑖 = 𝑎2𝜐 exp (−
𝑊

𝑘𝑇
) (1.18) 

𝑋1 =
𝑞𝑎∆𝛷

2𝑘𝑇
 (1.19) 

Using iron as an example we can construct an estimate for the predicted shell 

thickness using the Cabrera-Mott approach. Working through the variables in 1.16 

we can estimate the value for 𝑁0 as the number of iron atoms at the metal/oxide 

interface. In practice, this is an overestimation as not all the atoms at the interface 

will be on active sites and capable of making the jump into the oxide shell. As such, 

the oxidation will be an overestimate with the true rate being somewhat slower. 

Assuming a spherical iron particle with a diameter of 20nm we would expect that 

𝑁0 = 6.13 × 1018 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚−2. The value for oxide formed per diffusion iron can 

be calculated as the volume of the magnetite unit cell per iron atom; the magnetite 

cell has a lattice parameter of 0.839nm and consists of 8 Fe3O4 units for a total 

number of 24 Fe atoms and 32 O atoms. We can estimate that  

𝛺 = 2.46 × 1023 𝑐𝑚3𝑎𝑡𝑜𝑚−1[55]. The jump attempt frequency is analogous to the 

atoms vibrational frequency which can be modelled as a simple harmonic oscillator 

with a frequency 𝑣[56]. 

𝑣 =
𝜔

2𝜋
=

1

2𝜋
√

𝑘

𝑚
 (1.20) 

Where 𝑚 is the atomic mass and 𝑘 is the force constant. This value is usually 

approximated to 𝑣 = 1 × 1013 s-1 as this is a good approximation of the atoms 

vibrational frequency[57]. Using values in the literature for the α-Fe force constant 

(1520 Nm-1) we get a vibrational frequency of 𝑣 = 2.03 × 1013 𝑠−1[58]. The charge 

on the ion is 𝑞 = +2𝑒 and the interatomic spacing is approximated to be 𝑎 =

0.25𝑛𝑚 as the bond length can be affected in many ways but is often of this order of 

magnitude[59]. At room temperature kT can be estimated as ~ 25meV. The value for 

the Mott potential can be estimated using Eq. 1.13 with a literature value for the free-
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energy change being ∆𝐺 = 5.26 𝑒𝑉[60]. The activation energy for the ion to make a 

‘jump’ into the oxide shell is heavily dependent upon the nature of the system in 

question. For this example, a literature value representing the activation energy for 

oxidation in oxygen at room temperature has been used with 𝑊 = 1.39 𝑒𝑉[61]. 

The result of the calculation can be seen in Fig. 1.4 and shows the 

exponentially decreasing diffusion rate with increasing oxide thickness. Assuming 

the criteria postulated in Mott’s original work as to what should constitute a 

negligible growth rate of  

𝑑𝑋

𝑑𝑡
= 10−15 𝑚𝑠−1 this results in an oxide shell with a thickness of 2.5nm for 

particles oxidised in atmospheric conditions which fits well with the initial 

observation observed in iron nanoparticles[62,63]. 

 

 

 

Figure 1.4 Graph showing the result of the oxide shell thickness calculations for the iron/iron 

oxide system, the black dashed lines showing the point at which the oxidation rate reaches 

Mott’s criteria for negligibility (10-15 ms-1). An oxide shell thickness of 2.5nm is predicted in this 

manner and fits well with observations made in the literature. 
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1.4.3 Oxidation of Nanoparticle Structures 

 The models discussed so far were developed for considering bulk materials 

with either thin or thick oxide films, however, the oxidation of nanoparticles presents 

interesting limitations. For example, the geometry of nanoparticles has been shown 

to have a significant effect on the properties of the particles. One example for this is 

that cubic shaped nanoparticles have shown advantages in terms of catalytic 

properties, packing density and orientability[63]. It was found that for cubic 

nanoparticles, oxidation would be enhanced at the centre of the side facets due to 

ionic transport of material along a strain gradient. 

 Generally, oxidation in bulk surfaces results in the strain in the oxide film 

being homogenously distributed and decreasing away from the metal/oxide interface, 

if the strain is large enough, due to the misfit between the core and oxide lattices, 

then misfit dislocations will be introduced at a critical thickness[64]. This allows for 

the relaxation of the strain in the lattice. It was found however that for cubic 

particles, the strain in the oxide increased away from the metal/oxide interface 

towards the centre of the facet[65]. 

 The mechanism identified to account for the strain gradients and was 

explained using a modification to Fick’s second law. Fick’s laws were developed by 

Adolf Fick in 1855 and describe the diffusion coefficient of a material; the one-

dimensional formulation is discussed here although it can be extended to three-

dimensions. In this simple model of diffusion, we consider a diffusing trace amount 

of impurity or element (often referred to as the tracer) in a single-phase metal or 

alloy[66]. The volume density of the tracer can be given by;  

𝐶(𝑥) =
𝜎(𝑥)

∆𝑥
 (1.21) 

Where 𝜎(𝑥) is the density of impurities in a plane given in (atoms m-2) and 

where ∆𝑥 is the separation of the planes. In general, we can assume that a molecule 

undergoing diffusion has neighbouring vacancies to which it can jump, we can 

further simplify the system by assuming that the tracer element is chemical identical 

to its surrounding atoms. This is the case for radioactive isotope tracers which 

remain distinguishable from their host atoms. We can define the flux of atoms that 
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move from a plane at position z to one at position 𝑥 + ∆𝑥 as J1 and the flux of atoms 

moving in the reverse direction as J2. 

𝐽1 =
1

2
𝑣𝜎(𝑥) (1.22) 

𝐽2 =
1

2
𝑣𝜎(𝑥 +  ∆𝑥) (1.23) 

Where ν is the average ionic jump attempt frequency and the factor of (1/2) 

represents the possibility of jumps being able to go in one of two directions; forward 

or back. As such the total flux J can be given by Fick’s first law; 

𝐽 = 𝐽1 − 𝐽2 = −𝐷
𝑑𝐶(𝑥)

𝑑𝑥
 (1.24) 

Where D is known as the diffusivity and is given, in the one-dimensional 

case by with units of (m2 s-1); 

𝐷 =
1

2
𝑣(∆𝑥)2 (1.25) 

The diffusion coefficient is the proportionality factor which links the rate of 

diffusion to a direction determined by the concentration gradient, which in 

qualitative terms implies that the mass of a substance diffuses through a unit surface 

in unit time for a given concentration gradient. The diffusion coefficient is dependent 

on several factors such as molecule size, temperature, and pressure as well as the 

properties of the diffusing species; it is often determined experimentally and is the 

most common figure quoted in literature on diffusion properties. 

Fick’s second law predicts how the diffusion process changes the 

concentration profile with time in a system. It arises from a combination of Fick’s 

first law shown in Eq. 1.24 and the continuity equation shown in Eq. 1.26 which 

states that as particles cannot be created or destroyed any change in the concentration 

at a cross-section must be equal to the change in flux. 

(
𝜕𝐶

𝜕𝑡
)

𝑥
= − (

𝜕𝐽

𝜕𝑥
)

𝑡
 (1.26) 
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Combining equations 1.24 and 1.25 gives us Fick’s second law that states the 

change in concentration with time at some point on along a concentration gradient 

depends on the second derivative of that gradient. 

(
𝜕𝐶

𝜕𝑡
)

𝑥
= 𝐷 (

𝜕2𝐶

𝜕𝑥2
)

𝑡

 (1.27) 

The effect of strain on the change in the concentration profile can be 

expressed by a modification to the equation above by Pratt and Kröger et al. to 

include a term that accounts for the transport of matter due to strain gradients in the 

oxide[65]. 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
+

𝐷

𝑘𝐵𝑇

𝜕

𝜕𝑥
[
𝑑𝑈(𝑥)

𝑑𝑥
𝑐(𝑥, 𝑡)] (1.28) 

The findings accurately model observations of iron nanoparticles oxidising 

under ambient conditions in air over a period of up to two years which sees the 

particles evolve from cubic core-shell structures to fully oxidised spherical particles 

with central Kirkendall voids. However, such effects have yet to be observed in the 

more common spherical nanoparticles, this is likely due to the increased number of 

grain boundaries in such particles. It has been well established that atoms at grain 

boundaries are more mobile than those in a lattice with the difference in the diffusion 

coefficient being as large as 10 orders of magnitude for some materials and certain 

temperatures[67]. The effects of the diffusion along the grain boundaries may play a 

significant role in the diffusion of spherical nanoparticles, a similar role to that 

played by strain-effects in the oxidation of cubic nanoparticles. 

It is also well known that the effect of diffusion along grain boundaries is 

increasingly dominant for materials at lower temperatures as diffusion through the 

lattice reaches very low diffusivities[46]. However, when temperatures are raised such 

that the diffusion through the lattice is non-negligible, this pathway will come to 

dominate the diffusion process. This is due to the small relative volume of the 

particle that is composed of grain boundaries compared to the lattice. A simplified 

model of grain boundary diffusion assumes that there are no fundamental differences 

between grain boundaries and the lattice[68]. Instead, the grain boundary may be 

treated as a lattice with a large number of vacancies that act as the main mechanism 



25 
 

behind diffusion. In this model the main difference between lattice and grain 

boundary regions is the activation energy for the initial diffusing ‘jump’ being much 

lower around grain boundaries than through the bulk lattice resulting in faster 

diffusion. The diffusion coefficient for grain boundaries is given by the Arrhenius’ 

equation and has been well supported in practice by experiment[69]. 

𝐷𝑖 = 𝐷𝑜𝑖
 exp (−

𝑄𝑖

𝑘𝑇
) (1.29) 

Where D0 is the pre-exponential component, Q is the activation energy, k is 

the Boltzmann constant and T is the absolute temperature.  

This model has been the prevailing mode of thinking since the 1970’s and 

remains a good explanation of grain boundary diffusion today; computer simulations 

and experimental work have since evolved the understanding of how diffusion along 

grain boundary regions operates[70]. Diffusion along the grain boundaries of a 

material has been shown to occur through interstitial or substitutional mechanisms, 

not just vacancy diffusion. Furthermore, the rate of diffusion is heavily linked to the 

properties of individual grain boundaries with the grains structure, orientation and, 

energy having significant effects. It is likely that boundaries in a polycrystalline 

sample have their own diffusion coefficient and that the overall diffusion coefficient 

along grain boundaries is an average over the different grains in the sample.  

 It is useful to view diffusion in a polycrystalline sample as the combination 

of contributions of both lattice and grain boundary diffusion. These contributions are 

weighted by the respective volume fractions for a given particle. This leads to the 

effect where despite their relatively low fraction, the lower activation energy for 

diffusion around grain boundaries leads to increased diffusivity at low temperatures; 

resulting in a grain boundary dominated mechanism. When describing the effective 

diffusion coefficient 𝐷𝑒𝑓𝑓 two main interpretations exist, the first is to over-estimate 

the effective coefficient by assuming that the processes for lattice and grain 

boundary can be combined in parallel. This leads to Hart’s equation[71]. 

𝐷𝑒𝑓𝑓 = 𝑔𝐷𝑔𝑏 + (1 − 𝑔)𝐷𝑙 (1.30) 

Where 𝑔 represents the volume fraction and is equal to 3δ/d, where δ is the 

grain boundary width which is approximated through experiment to be 0.5nm and d 
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is the average grain size. 𝐷𝑙 and 𝐷𝑔𝑏 represent the diffusion coefficients for the 

lattice and grain boundaries respectively. This equation assumes that all boundaries 

are in parallel, as such it provides an upper limit to the effective diffusion coefficient 

while the series combination provides the lower limit such that. 

𝐷𝑒𝑓𝑓 =
𝐷𝑔𝑏𝐷𝑙

𝑔𝐷𝑔𝑏 + (1 − 𝑔)𝐷𝑙
 (1.31) 

Hart’s equation has the advantage of being simple and understandable, 

providing an upper limit on the effective diffusivity. Importantly, as the atomistic 

mechanisms behind grain boundary are still controversial, it is useful to be able to 

provide a concrete upper estimate. However, experiments have shown that the best 

estimate to the effective diffusivity is not to treat the polycrystal as either a parallel 

or serial arrangement of grains but as an effective medium approximation using the 

Maxwell-Garnett equation[72]. 

𝐷𝑒𝑓𝑓 =
𝐷𝑔𝑏[2𝑔𝐷𝑔𝑏 + (3 − 2𝑔)𝐷𝑙]

(3 − 𝑔)𝐷𝑔𝑏 + 𝑔𝐷𝑙
 (1.32) 

Where all the variables retain the same meanings as in Hart’s equation. This 

approach is the method best supported by computer simulation and experiment. 

Furthermore, at low temperatures where the difference in the diffusivities is such that 

𝐷𝑔𝑏 >> 𝐷𝑙 and when the volume fraction becomes large then both the Hart and 

Maxwell-Garnett equations can be approximated as; 

𝐷𝑒𝑓𝑓 ≈ 𝑔𝐷𝑔𝑏 =
3𝜕

𝑑
𝐷𝑔𝑏 (1.33) 

and 

𝐷𝑒𝑓𝑓 ≈
2𝑔

3 − 𝑔
𝐷𝑔𝑏 =

2𝜕

3 − 𝑑
𝐷𝑔𝑏 (1.34) 

This allows for the estimation of the grain boundary diffusion coefficient for 

the sample, as the effective diffusion coefficient can be inferred empirically by 

comparing the decrease in the size of the iron core during heating and considering 

the amount of iron core material that must out-diffuse to account for this. In addition 

to this, the average grain size of the particles can be measured in HRTEM and 
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HRSTEM using the Fourier Filtering and analysis of the image’s FFT. As mentioned 

before, the grain boundary width was estimated as 0.5 nm which is supported in the 

literature[73]. The value for the diffusion coefficient is often determined empirically 

from ln(D) vs 1/T plots. 

As a follow-on from these observations, this study aims to investigate the 

effect on the diffusion of similar nanoparticles caused by the presence of grain 

boundaries. This is important for the overall picture of nanoparticle diffusion as the 

more commonly found spherical particles have many grain boundaries, although the 

cubic particles in the aforementioned studies showed mostly mono-crystalline side 

facets which imply a low presence of grain boundaries. 

 

1.4.4 Coating of Metal Nanoparticles 

 

The materials selected for the use as nanoparticles optimised for biomedical 

applications are required to have strong magnetic properties, this is due to the 

limitations regarding the use of magnetic fields in medical environments as 

described previously. When a magnetic material is exposed to a magnetic field with 

strength H, the magnetic induction is given by; 

𝐵 =  𝜇0(𝐻 + 𝑀) (1.35) 

Where μ0 is the permeability of free space, M is the magnetisation where M = mN/V 

with m representing the atomic magnetic moment and N/V the number of atoms per 

unit volume.  

 The magnetism of a material is derived through the magnetic moments of the 

electrons and originates from their orbital motion and spin. All materials are 

magnetic to some degree with their magnetic responses being classified in terms of 

their magnetic susceptibility χ where; 

𝑀 =  𝜒𝐻 (1.36) 

Which describes the magnetisation induced by a magnetic field H. The 

susceptibility is dimensionless, and most materials have low values between 10-6 and 

10-1[74] and even then, only in the presence of a magnetic field. These materials are 
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classified as paramagnetic or diamagnetic depending on the origin of their 

magnetisation. In the case of diamagnetic materials, the magnetic response arises 

from the distortion of orbiting electrons such that a weak field is produced in 

opposition to the external magnetic field. This response is very weak and only 

significant in materials with no permanent magnetic moment. In the case of 

paramagnets, the magnetic response arises from the aligning of the material’s 

magnetic moments within the external magnetic field. When the magnetic field is 

removed the net magnetisation of the material returns to zero, due to the random 

orientation of the atomic moments within the sample.  

The most useful magnetic materials are those with the ability to maintain their 

magnetisation without the presence of a magnetic field. These materials are 

classified as ferromagnetic, ferrimagnetic or anti-ferromagnetic depending on the 

nature of the alignment between the spins in the material. The advantage of these 

materials is this coupling gives rise to very high susceptibilities which allow for very 

high magnetic responses even in relatively small magnetic fields. The susceptibility 

in ordered materials is a function of temperature such that; 

𝜒 =  
𝐶

𝑇
 (1.37) 

Where C is the Curie Constant and T is the temperature. The susceptibility is 

also dependent on the field strength H as shown previously and this gives rise to the 

characteristic sigmoidal M-H curve where M approaches a saturation point at a large 

value of H.  

 The explanation for this effect is that the magnetic moments/spins in 

ferromagnetic, ferrimagnetic and antiferromagnetic materials order themselves in 

such a way that domains are created. A magnetic domain is a region of a material in 

which the magnetic moments of the individual atoms in the region align in a uniform 

direction. Domains form in magnetic materials as a way for the material to minimise 

its internal energy (magnetic self-energy). The formation of domains is limited by 

the creation of domain boundaries associated with the formation of a new domain, 

the domain boundaries represent areas of increased exchange energy. As such there 

will reach a point where the increased energy from domain boundaries balances out 

the energy minimised through the formation of a domain. This effect is important as 
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it infers a critical size for domain boundary formation. In fact, it has been observed 

that nanoparticles; which go below this size exhibit superparamagnetic behaviour. 

This occurs because at the macroscopic scale magnetic materials are formed of 

several randomly oriented domains, while at the nanoscale the number of domains in 

a particle is very small. If the particle’s size goes below the critical size for domain 

formation, then it will become energetically-favourable for the particle to become a 

particle with only a single domain. The size of superparamagnetic particles tends to 

be of the order of ~1nm to ~10nm[15].  

 In ferromagnetic materials there is a splitting of the materials magnetic 

behaviour at the Curie Temperature Tc where below this temperature the material 

acts as a ferromagnet and above the temperature the material exhibits 

paramagnetism. This is due to thermal fluctuations overcoming the ordering of the 

magnetic moments resulting in a disorder of the magnetic moments. A similar 

transition occurs in a superparamagnet described by the Néel relaxation time 𝜏𝑁. 

This represents the average time for the magnetic moment to flip between the two 

stable antiparallel orientations and is given by; 

𝜏𝑁 = 𝜏0 𝑒𝑥𝑝 (
∆𝐸

𝑘𝑇
) (1.38) 

Where τ0 represents the pre-exponential factor (usually ranging between 10-9 

and 10-11 s) and ∆𝐸 represents the energy barrier that must be overcome. 

Superparamagnetism is desirable as the particles do not exhibit any hysteresis and 

display no magnetic memory after the external magnetic field is removed. This 

makes them very interesting in applications where directing or targeting is a 

requirement. It should be noted, however, that typically superparamagnetic particles 

have lower induced magnetisation than ferromagnetic materials do. 

It is clear, therefore that iron nanoparticles represent a very interesting and 

useful material for use in medical applications as the magnetic response of 

ferromagnetic materials is very large. The challenge arises due to the near 

instantaneous oxidation that iron will undergo once exposed to oxygen, this process 

is highly undesirable because, as mentioned, there are strict limits on the strength 

and frequency of the magnetic fields allowed and as such particles must be 

functionalised to provide the best magnetic response within these limits. Of the 
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stable oxides of iron wüstite is unstable at temperatures below 500K but both 

maghemite and magnetite (γ-Fe2O3 and Fe3O4) are ferrimagnetic while hematite (α- 

Fe2O3) is anti-ferromagnetic below 250K above which it is weakly ferromagnetic.  In 

all cases except the latter the formation of oxide will serve to limit the magnetic 

response of the particles. One potential way around this is to coat the iron cores 

during deposition (before the formation of their initial oxide layers) with a protective 

coating that is either resistant to oxidation or whose oxides do not have a strong 

effect on the overall magnetism of the particle. The metal coating materials 

attempted in this study include; copper, silver, aluminium, and magnesium.  

 

Copper 

The motivation behind the usage of copper as a shell material stems from its 

previous successful use in core-shell particle deposition[75]. Where the presence of 

copper in the iron-metal nanoparticle system was inferred due to the increase in 

cluster size observed before and after the iron clusters preceded through the shell-

evaporator region. This indicates a degree of copper uptake onto the iron clusters, 

however, the exact nature of the uptake; such as the location of the copper and 

degree of alloying could not be determined. These early indications however, make 

the use of copper a convenient test case to see if such core-metal nanoparticles can 

be produced.  

 One important factor to consider is the lattice misfit between the two desired 

materials. A small lattice misfit is important for the growth of one material upon 

another; in this case copper on iron. The concept of lattice misfit is most often used 

in regard to epitaxial growth and is determined by comparing the lattice parameters 

of the two materials in question. For example, when depositing one material upon 

another (the substrate) the perfect case would be for the coating material to match 

perfectly with the lattice from the substrate and simply continue that lattice structure 

as it is deposited. 

Practically even small degrees of misfit influence the final shell structure, 

with the degree of misfit calculated using the expression; 
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𝑓 =
(𝑎𝐴 − 𝑎𝐵)

𝑎𝐴
 (1.39) 

Where 𝑎𝐴 and 𝑎𝐵 are the lattice parameters for the two respective materials. 

In the case of materials where the lattice mismatch is small ≈10% it is possible for 

the material to maintain the lattice structure of the substrate; however, the deposited 

material will need to either slightly stretch or contract its own lattice structure to 

accommodate and this will result in the building up of strain energy in the lattice. 

This stress and strain energy intuitively scales with the thickness of the deposited 

material until a critical thickness is reached in which it will become energetically 

favourable for misfit dislocations or other methods of relieving the strain to occur. 

This critical thickness is given by the expression; 

𝑑𝑐𝑟𝑖𝑡 =
𝑏

9.9 ∙ 𝑓
  (1.40) 

Where 𝑏 is the Burgers vector and 𝑓 is the lattice misfit. As such when this 

the critically limit is plotted against the lattice misfit we find that even for very small 

misfits of 1% the critical shell thickness for dislocation formation is only ≈4nm.  

 In the context of the Fe@Cu material system the misfit is 26% between α-Fe 

(BCC) and Cu, while being <1% between γ-Fe (FCC) and Cu. As such depositing a 

copper film onto the iron clusters is expected to produce either highly strained 

metallic shells or else a large number of defects. 

 In terms of copper’s magnetic suitability as a shell, the material is 

diamagnetic with a mass magnetic susceptibility of -1.08×10-9 m3/kg compared to 

ferromagnetic iron and as such will have little overall impact on the magnetic 

applicability of the iron particle. This is desirable, as the high magnetic response of 

pure α-iron is needed for the material system to function well in its intended setting. 

In terms of oxidation, copper has two stable oxides; Copper(I) Oxide (CuO2) and 

Copper(II) Oxide (CuO). CuO2
 is formed through exposure of copper to air through 

the reaction; 

4 𝐶𝑢 +  𝑂2 → 2 𝐶𝑢2𝑂  (1.41) 

Like bulk copper the material is diamagnetic and therefore ideal as a shell 

material from a magnetic point of view. On the other hand, CuO2 is formed by 
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heating copper in air at temperatures between 300°C and 800°C, the material is 

paramagnetic which like diamagnetic materials should not have a significant effect 

on the overall magnetic response when compared to the ferromagnetic iron core.  

 Another possibility is that deposition of copper onto the iron clusters will 

lead to the alloying of the iron and copper at the surface, this could have interesting 

effects as the higher than normal surface-to-volume ratio that makes nanoparticles 

uniquely interesting also implies that a larger proportion of the particles overall 

magnetic activity will be influenced by the surface atoms. If these same surface 

atoms are alloyed with copper, the effects could influence the overall magnetic 

properties to a significant degree, as the magnetic behaviour of Fe-based alloys is 

more complex than the behaviours of the other ferromagnetic elements, Co, and Ni. 

In general, the alloying effect on the magnetic behaviour of transition metals such as 

Co and Ni are well understood by the Friedel’s Theory, but in the case of Fe-based 

alloys it has been found that the magnetic moment of the alloy reduces sharply as the 

Fe content of the alloy changes. This is attributed to the fact that the majority spin-

band in Iron is not filled and so more open to perturbation upon alloying. One 

notable exception however is the case of the FeCu alloy, which displays a constant 

magnetic moment when alloyed with α-Fe. While the alloy maintains a high degree 

of Fe content (>75%) then the iron will retain its BCC crystal structure and magnetic 

moment. As more copper is introduced to the material the iron will shift to γ-Fe and 

a FCC structure, which will reduce the magnetic moment of the material. This phase 

shift occurs at roughly 60% iron content. As such even if a degree of alloying occurs 

at the surface it is possible that the iron nanoparticle will retain much of its desirable 

magnetic properties making even the alloyed material system a particularly 

interesting area of study. 

With this said however, it is important to highlight that both copper oxides 

(CuO) and (CuO2) are bio-incompatible, with studies having highlighted major 

problems with the environmental impact of copper oxide nanoparticles[76]. Therefore, 

such materials will need to be coated with biocompatible films before use in any 

biomedical application. The coating of both iron and non-iron nanoparticles has been 

studied in great detail and is beyond the scope of this study. The main aim of this 

study is to investigate the feasibility of iron-metal nanoparticles by determining if the 

shell material is present in the particles and to what extent the deposition properties 



33 
 

such as temperature affect the characteristics of the particles; size, shape, shell 

thickness for example. 
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Chapter 2: TEM Techniques 
 

 

This chapter will cover the different techniques available in both scanning 

transmission electron microscopy (STEM) and transmission electron microscopy 

(TEM). The techniques discussed will cover only those directly applicable to the 

characterisation of the iron-based nanoparticles, as TEMs of all types provide many 

possible characterisation techniques and not all will be used in this study. 

Firstly, there will be a general discussion of overall TEM theory covering how 

signals are generated, along with a brief description of the two microscopes used in 

the study. Following this, each technique will be presented separately with a 

discussion of the theoretical background and how it is used for characterisation in 

this study. The techniques used and covered are: 

 

• Bright-Field imaging (BF) and Dark-Field imaging (DF) 

• High-Resolution imaging (HRTEM) and (HRSTEM) 

• Energy-Dispersive X-Ray Spectroscopy (EDX) 

• Selective-Area Electron Diffraction (SAED) 

 

Following this, there will be a description of the sample preparation method, this 

will include a description of the cluster source and the background theory regarding 

the formation of low-energy nanoclusters. Lastly, there will be a discussion behind 

the design of the heating and coating experiments that have been carried out in this 

study, here a description of the sample preparation parameters for each experiment 

will be presented. 
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2.1 Introduction to Electron Microscopy 

 The use of electrons as an imaging tool has many benefits, the most 

important being that they allow for resolutions much smaller than those achieved by 

the best visible light microscopes (VLM).As techniques in electron microscopy 

developed,  it was realised that electrons possess several other benefits, such as the 

production of many types of secondary signals that can be used alongside or as 

stand-alone techniques to gather chemical, structural and physical information from 

samples[77]. However, the main benefit of electron microscopy, namely the ability to 

resolve increasingly smaller objects, the idea can be best demonstrated by 

considering the Rayleigh criterion for a VLM. The Rayleigh criterion represents the 

smallest distance that can be resolved using a given light source. 

𝛿 =
0.61𝜆

𝜇 sin β
 (2.1) 

Where λ is the wavelength of the radiation, μ is the refractive index of the 

medium through which the object is being viewed and β is the semi-angle of 

collection for the lens. As such, a good estimate for the resolution limit of a green 

light VLM (λ ~ 550nm) is about 300nm which corresponds to a particle of roughly 

1000 atoms in diameter. To probe smaller diameters a better radiation source is 

needed. Through De Broglie’s theory that electrons, and indeed all particles, have 

wave-like characteristics, we can estimate the wavelength of the electron in a TEM 

(note that relativistic effects must be considered as, the electrons’ velocities exceed 

0.5c where c is the speed of light)[78]. Using De Broglie’s wave-particle duality we 

can relate the particles wavelength to its momentum such that 

𝜆 =
ℎ

𝑝
 (2.2) 

Furthermore, due to the law of conservation of energy, the electron, as it is 

accelerated through a potential, must gain kinetic energy equivalent to that imparted 

to the scattering electron inside the TEM, and that the momentum can be related to 

the particles mass we obtain; 
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𝑒𝑉 =
𝑚0𝑣2

2
 (2.3) 

and 

𝑝 = 𝑚0𝑣 = (2𝑚0𝑒𝑉)1/2 (2.4) 

Equations 2.2, 2.3 and 2.4 can be combined to give Eq. 2.5 which has been 

modified for relativistic effects[79]. 

𝜆 =
ℎ

[2𝑚0𝑒𝑉 (1 +
𝑒𝑉

2𝑚0𝑒2)]
1/2

 
(2.5) 

Therefore, for an accelerating voltage of 200V, the voltage used by the 

microscopes in this study the resolution limit determined through the equations 2.1 

and 2.5 is δ ~ 4pm, which is many times smaller than the diameter of an atom. It is 

worth noting however, that this limit has never been reached in practice and is 

unlikely to be approached in the near future, due to the quality of current electron 

lens; the current best TEM microscopes are able to achieve resolutions on the sub-

ångstrom level (<0.1nm [80]). This sub- angstrom resolutions are achievable due to 

the advances made in aberration correction, the JEOL 2200 FS in this study is one 

such microscope. 

Electrons are a type of ionising radiation, this means that they can remove 

tightly bound inner-shell electrons by imparting some of the electron energy to a 

specimen’s constituent atoms. While this can lead to complications regarding 

specimen damage (particularly when higher accelerating voltages are used, or on 

more sensitive samples) it does possess the benefit of producing a variety of 

secondary signals which can be used as analytical tools to provide a great level of 

insight into a specimen [81]. A schematic of some of the signals produced in a TEM is 

given in Fig. 2.1. 
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Figure 2.1 Schematic diagram of signals generated due to the interaction of the incident electron 

beam with a thin specimen. Most signals may be detected in a TEM with the appropriate 

detector, the direction of the arrow indicates the general direction of the signal; either back 

away from the specimen or transmitted through it. 

 

The most common form of ‘interaction’ between the electron beam and the 

sample is for the electron to pass through the sample without undergoing any 

noticeable scattering or interaction. This occurs because the effective size of the 

electron is many orders of magnitude smaller than the characteristic sizes of atoms 

and the spacings between them, as such, from the perspective of the electron, the 

specimen is largely empty space. Electrons that pass through the sample in this 

manner form the direct beam. The direct beam can also contain electrons that have 

undergone plural or multiple scattering in such a way that their trajectories have 

realigned with the direct beam as shown in Fig. 2.2 [82]. This is a highly undesirable 

event due to the complications it causes for image interpretation, which is heavily 

dependent on understanding the scattering processes each electron has undergone. 

This leads to the requirement that TEM samples be very thin films to reduce the 

chance of a single electron undergoing multiple scattering events. 
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Figure 2.2 Schematic of electron scattering in a thin specimen, for resulting images to be 

interpretable only single scattering events should be occurring in the specimen. This is achieved 

by thinning the specimen. The thicker the specimen the greater the possibility of plural or 

multiple scattering events to occur resulting in potential for scattered electrons to make up 

signal from the direct beam (scattered electrons) or other scattered beams than the one 

corresponding to the original scattering event. 

 

For electrons that interact with the specimen and are deflected from their 

original trajectory, interactions can be split into two rough categories: signals 

produced due to elastic interactions and those produced through inelastic 

interactions. Elastic interactions are characterised by zero or negligible energy 

transfer between the electron and the sample. These events occur due to deflection 

via Coulomb interactions. Electrons scattered in this way are often coherent, 

meaning they are in phase with each other and scatter at relatively low angles 

between 1° and 10°. However, as the scattering angle increases, the chance of 

incoherent scattering increases. These elastic interactions are often used in imaging, 

as their scattering angle is heavily dependent on the atom with which the electron 

interacted[83].  

The case where energy is transferred between the incident electron and the 

specimen, inelastic scattering occurs; this type of scattering is almost always 

incoherent and occurs at very low scattering angles (<1°). Furthermore, the energy 
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imparted by the electron will cause a variety of secondary signals such as x-rays, 

Auger electrons, or secondary electrons.  

X-rays are produced through inelastic scattering, when an unexcited ground-

state atom within the sample has an inner-shell electron excited by the electron 

beam. Upon de-excitation, the excited electron, or another outer-shell electron fills 

the vacant hole in the inner shell, and an x-ray will be produced with an energy equal 

to the energy difference between the two atomic shells. As the relationship between 

atomic shells is unique to each atom, these x-rays, once detected with a spectrometer, 

can be used to chemically identify the atoms in a sample; this forms the basis of 

EDX, which will be described in more detail later[79]. Another useful spectroscopic 

signal is the emission of electrons from the outer shell due to the Auger effect, this is 

when the incident electron beam ejects an electron completely from the inner atomic 

shells which is subsequently filled by an outer-shell electron. The energy required 

for the outer-shell electron to fill the vacancy will cause the ejection of a second 

outer-shell electron, if the energy drop is greater than the binding energy. This effect 

was originally considered a nuisance effect, but has since become a powerful tool for 

generating high-resolution chemical information from a specimen with specially 

designed Scanning Auger Microscopes (SAMs)[84].  

Secondary and back-scattered electrons signals form the back-bone of 

Scanning Electron Microscopy (SEM), which is a very commonly used technique to 

probe surface information of materials. Back-scattered electrons arise when an 

electron undergoes strong Coulomb interaction after passing close to a nucleus, but 

instead of being merely diverted, they are deflected at a very large scattering angle. 

These events are much rarer than forward elastic scattering, such as that which 

makes up the direct beam, and are strongly dependent on the atomic number Z, with 

heavier atoms producing more back-scattered electrons, with most back-scattered 

electrons coming from surface regions. The number of back-scattering events also 

decreases with increasing accelerating voltage as faster electrons are less likely to be 

deflected from their original paths. Secondary electrons are produced when loosely 

bound outer-shell electrons are liberated from their parent atom by an inelastic 

scattering event and are used to in SEM to generate a high-resolution signal 

combining spatial resolution with characteristically shallow sampling depth making 

them a useful surface-probing signal [85]. 
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Despite these many advantages, there are drawbacks to the use of electron 

microscopy as a characterisation tool. The most evident drawback is that with any 

higher-resolution imaging method, the area of a sample that can be realistically 

imaged is very small. Therefore, drawing overall conclusions about a sample can be 

problematic if the area sampled in the TEM is not representative of the sample as a 

whole. As such, it can be useful to combine TEM with lower-resolution techniques 

such as VLM or SEM which offer better sampling abilities.  

Another major issue with TEM images, is the interpretation of the 2D images 

provided as 3D structures. As the images are also viewed in transmission it can be 

difficult to draw conclusions about the overall structure of the particles or specimen 

being imaged. This is because the TEM may be able to resolve neighbouring 

features, depending on the microscopes point-resolution, however, features that are 

stacked on top of each other will be resolved incorrectly as a single feature. As such 

it is necessary to interpret TEM images with the aid of accompanying 

characterisation techniques such as EDX, EELS or Auger spectroscopy, SEM, or 

Electron Tomography.  

Sample preparation of TEM specimens must also be considered as, for a 

sample to be imaged properly in a TEM, it must be thin (usually a specimen 

thickness of <100nm is considered appropriate) however thicker samples can be 

used. This thickness limit is to ensure that the specimen remains ‘transparent’ to 

electrons, and that enough electrons will be transmitted to produce a resolvable 

signal. How thin a sample must be is dependent on the electron energy (higher 

energy results in deeper penetration, but has its own drawbacks) and the atomic 

number Z of the specimen; in the case of very high-resolution TEM imaging 

(HRTEM), a sample may need to be as thin as 10nm. There are a number of sample 

preparation methods that offer varying degrees of control over the thickness of the 

specimen, often requiring a compromise with the difficulty or time investment in 

preparing a sample and the desired thickness. The samples for this study were 

produced using a physical vapour deposition technique explored in detail in Chapter 

3. 

The final consideration is the potential for damage to the sample when used 

in a TEM as electrons function as ionising radiation, which can result in damage, 

especially to samples such as polymers and organic specimens. Damaging effects are 
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also increased with increased accelerating voltages, with some specialist TEMs 

capable of voltages of the order of MeV only capable of imaging very specific 

materials [86].  

 

2.2 Electron Diffraction and Scattering 

 

 An understanding of the theory behind the scattering events is essential to be 

able to characterise and identify the types of electronic scattering and signals which 

will be encountered while performing STM of any type. Here, we consider both the 

elastic and inelastic scattering events. In the case of elastic events, electrons are 

scattered through interaction with atoms or planes of atoms through the Coulomb 

interaction as shown schematically in Fig. 2.3. The number of electrons scattered 

through any given angle is proportional to effective area of the scattering body (often 

called the differential scattering cross-section). The cross-section for scattering due 

to the atomic nucleus is given by the Rutherford scattering cross-section in  

Eq. 2.6 [87] 

𝜎𝑟(𝜃) =
𝑒4𝑍2

16(4𝜋𝜀0𝐸0)2

𝑑𝛺

𝑠𝑖𝑛4 (
𝜃
2)

 (2.6) 

Where 𝑒 is the electron charge, 𝑍 is the atomic number, 𝐸0 is the energy of 

the particles which are scattered through angle 𝜃 into a solid angle 𝛺. In general, the 

cross-section used is dependent on the type of scattering being observed, the 

Rutherford cross-section ignores low-angle electron-electron scattering and must be 

modified to account of screening and relativistic effects. The screened, relativistic 

differential Rutherford equation is shown in Eq. 2.7 and has the benefit of not going 

to infinity as the scattering angle tends towards zero[79]. 

𝜎𝑅(𝜃) =
𝜆𝑅

4 𝑍2

64𝜋4𝑎0
2

𝑑𝛺

[𝑠𝑖𝑛2 (
𝜃
2) +

𝜃0
2

4 ]
2 

(2.7) 

Where 𝑎0 is the Bohr radius of the scattering atom and 𝜃0 is the screening 

parameter. The Rutherford scattering cross section allows us to predict the 
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distribution of scattering angles for an electron beam, with the cross-section 

decreasing as the scattering angle approaches 180°. Therefore, scattering in thin 

samples is heavily forward peaked. Increasing the atomic number of the scattering 

atom increases the cross-section across all angles, as such thinner samples are 

needed when examining heavy elements in the TEM. Furthermore, increasing the 

beam energy decreases the scattering cross-section as the faster electrons have less 

‘contact’ time within the interaction range of the atom. 

 

 

 

 

 

 

Figure 2.3 A schematic diagram of high-energy electron scattering of a single isolated atom, 

Coulomb interaction within the electron cloud leads to low-angled scattering while interaction 

with the nucleus leads to high-angle scattering and potentially back-scattering.  
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As the scattering cross-section is heavily dependent on both the properties of 

the beam, that can be well defined, and the atomic configuration of the sample, the 

resulting patterns can be analysed and indexed to provide a wide variety of 

crystallographic information about any given sample. The most common method of 

doing this is by comparing the patterns made by the scattered beams due to a 

specimen with known patterns for given materials. These diffraction patterns appear 

as images consisting of ‘spots’ with varying intensity and size in a pattern around 

some central maxima an example of which can be seen in Fig. 2.4.  

The position and pattern of the diffraction spots can be explained by 

expanding the atomistic scattering model talked about previously to consider the 

scattering of the electron beam from a plane of atoms in a crystal. In this way the 

spacing between the atoms in a crystal can be thought of as a diffraction grating 

where the wavefront K is diffracted by an atomic plane. The subsequent diffracted 

beam will appear as a point in the diffraction pattern if the atoms are scattering 

electrons in phase with each other. The angle at which diffraction points appear in a 

diffraction pattern is given by Bragg’s Law while the criteria for determining if 

individual scattered waves are in phase is the Laue condition[88].  

 

 

 

Figure 2.4 A) SAED diffraction pattern from a Fe/FexOy nanoparticle, bright ring is likely due 

to oxide grains, B) simulated diffraction pattern for α-Fe along the (100) zone axis. 
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Bragg’s Law can be derived by considering the path difference of the 

incident and diffracted beams such that the difference in the wavevector K is 

∆𝐾 = 𝑘𝐷 − 𝑘𝐼 (2.8) 

Where 𝑘𝐷 is the diffracted wavevector and 𝑘𝐼 is the incident wavevector, this 

gives us the scattering angle. 

sin (𝜃) =
|∆𝐾|/2

|𝑘𝐼|
 (2.9) 

|∆𝐾| = |𝑘𝐷| = |𝑘𝐼| =
1

𝜆
 (2.10) 

Combining the equations 2.9 and 2.10 we can derive an expression for the 

scattering angle when the path difference is a whole number of wavelengths 

(corresponding to constructive interference), as this is the position of the scattering 

maximum.  

𝑘 =
2 sin 𝜃𝐵

𝜆
 (2.11) 

If there are only two planes of atoms contributing to the diffraction, then 

there would be a gradual transition between constructive and destructive interference 

with a maximum at the Bragg angle. In real crystals however, there are many 

contributing atomic planes resulting in very sharp peaks of constructive interference; 

the diffraction ‘spots’ surrounded by mostly destructive interference. This is what 

gives rise to the diffraction patterns observed in TEM, furthermore, as the atomic 

spacing is unique to each crystal, the diffraction pattern for each pure crystal will be 

unique, allowing comparison between specimens and ‘ideal’ patterns. As such it is 

possible to determine the composition of a sample through its diffraction pattern.  
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Figure 2.5 Schematic diagram depicting the scattering from two points on two different lattice 

planes separated by a spacing d the beams will constructively interfere when the path difference 

is an integer number of wavelengths such that 𝟐𝒅 𝐬𝐢𝐧 𝜽 = 𝒏𝝀. 

 

The intensity and size of a diffraction spot can be determined through the 

structure factor 𝐹(𝜃), which is a measure of the amplitude of a wave scattered by a 

unit cell in a crystal. As the structure factor is unique to the unit cell in question, it 

provides additional crystallographic information that can be used in conjunction with 

the diffraction pattern to index scattered beams and identify materials. The structure 

factor can be expressed as the product of the atomic scattering factors  𝑓(𝜃) from all 

the atoms in the unit cell and the phase factor. The atomic scattering factor is a 

measure of the amplitude of an electron wave scattered by an individual atom and is 

given by[79]. 

|f(𝜃)|2 =
𝑑𝜎(𝜃)

𝑑𝛺
 (2.12) 

When Eq. 2.12 is combined with the scattering cross-section the atomic 

scattering factor is given by. 
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f(𝜃) =
(1 +

𝐸0

𝑚0𝑐2)

8𝜋2𝑎0
(

𝜆

sin
𝜃
2

)

2

(𝑍 − 𝑓𝑥) (2.13) 

Where 𝜆 is the wavelength and 𝑓𝑥 is the scattering factor for x-rays with all 

other variables having been previously defined. Lastly, the phase factor takes into 

account the difference in phase between scattered waves due to different but parallel 

planes of atoms. As such the structure factor can be expressed as. 

F(𝜃) = ∑ 𝑓𝑖𝑒
2𝜋𝑖(ℎ𝑥𝑖+𝑘𝑦𝑖+𝑙𝑧𝑖)

∞

𝑖

 (2.14) 

The amplitude and by extension the intensity of the diffraction spot due to the 

scattering of a plane of atoms with the Miller index (hkl) can then be calculated 

allowing for the simulation of diffraction patterns for ideal crystals and the indexing 

of unknown specimens through comparison to these simulations. 

 

2.3 Bright and Dark Field Imaging 

 

 Generating images in both STEM and TEM is performed by selecting a 

scattered beam of electrons and constructing an image based on the information 

provided by that beam. In the case of bright field imaging (BF) the direct beam is 

selected, and the objective aperture is used to exclude any scattered beam. As such, 

the image generated has increased intensity in regions where the number of 

transmitted (non-scattering) electrons is higher and will have dark regions that 

correspond to scattering centres from the sample. The term bright field is taken from 

the fact that the ‘background’ region will have the largest intensity while the features 

in the sample (particles etc.) will appear dark. Conversely, in dark field images the 

image is constructed using one of the scattered beams, with either the objective 

aperture positioned to exclude the direct beam and other scattered beams, or the 

beam is tilted to provide the same effect[89]. This will result in an image where the 

highest intensity features correspond to areas in the sample which scattered electrons 

at the chosen angle, with the background and features that scattered electrons at 
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different angles being dark. Bright field images have the general advantage of 

showing all the features of a specimen as dark regions as all scattered beams will be 

represented in the image. Dark field (DF) images however offer better contrast 

distinctions, as only electrons scattered at the given angle will contribute to the 

image, however not all features can be included in the same image. This limitation is 

lifted somewhat in STEM where an annular dark field detector can be used to create 

an image summed over all the scattering angles. 

 The images can both be understood in terms of intensity and contrast where 

the former is defined as the number of electrons per unit area, regions of high 

intensity will appear brighter in the image representing a greater number of electrons 

being either transmitted (in the case of a BF image) or scattered (in the case of a DF 

image). Contrast is the difference in intensity between two adjacent areas and can be 

expressed as shown in Eq. 2.15[79]. 

c =  
(𝐼2 − 𝐼1)

𝐼1
=

∆𝐼

𝐼1
 (2.15) 

Because contrast is how features can be distinguished in an image, it is 

important to understand the types of contrast produced in a TEM or STEM and their 

causes. The two basic forms of contrast primarily associated with electron images 

will be discussed below, with the two forms mostly concerning the production of 

high-resolution atomic imaging discussed in section 2.4. The method of creating 

bright and dark field images in both TEM and STEM is shown schematically in  

Fig. 2.6. 

 

2.3.1 Mass-Thickness Contrast 

 

 The overall term given to the contrast used to form bright and dark field 

images is amplitude contrast, which results from any variation in either the thickness 

of a specimen or the mass of the atoms. The former results in more atoms interacting 

with the sample thereby changing the intensity and the contrast at a given position, 

while the latter results in a change in the interaction cross-section resulting in more 

scattered electrons as discussed previously. Mass-thickness contrast results from 
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incoherent elastic scattering (Rutherford scattering) of the kind previously 

discussed[83]. As was shown in Eq. 2.6 the Rutherford scattering cross-section is a 

function of the atomic mass and specimen thickness. As scattering in a thin specimen 

is heavily forward-peaked this often includes electrons scattered through angles of 

less than ~ 5°. Mass-thickness contrast is an important mechanism in the study of 

non-crystalline materials such as polymers and organic specimens[90]. 

 

 

 

 

Figure 2.6 Schematic diagram showing the production of bright field images in a) TEM and c) 

STEM and the production of dark field images in b) TEM and d) STEM. 
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Figure 2.7 Example TEM images of iron nanoparticles with iron oxide shell in A) bright field 

and B) dark field. 

 

For instance, in the case of an iron core-shell nanoparticle the iron core with 

its atoms arranged in a BCC structure would have a density of 2.4039 amu Å-1 while 

the iron oxide in the shell (assuming the phase was magnetite) would have a density 

of iron atoms of 0.3912 amu Å-1. While this does not account for scattering from the 

oxygen atoms in the magnetite structure it demonstrates the expected reduction in 

contrast that would be observed between the iron core and oxide shell due to the 

lower density of iron in the shell and oxygen being a very weak scatter by 

comparison. This can be seen clear in the iron core-shell particles in Fig. 2.7. 

 

2.3.2 Bragg (Diffraction) Contrast  

 

 Contrast due to Bragg diffraction occurs in both TEM and STEM images and 

is the dominant contrast mechanism, particularly at lower magnifications[91]. 

Diffraction contrast is a form of amplitude contrast where scattering at the Bragg 

angles (Section 2.2) is stronger. This leads to greater intensity in the parts of an 

image corresponding to electrons scattered in this manner. While any diffracted 

beam may be used to form an image using mass-thickness contrast, the beam must 

be carefully selected to produce the strongest diffraction contrast. This occurs when 
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the specimen is tilted so that only one diffracted beam is ‘strong’, i.e. will show great 

intensity in the diffraction pattern compared to other diffracted beams. Alongside the 

already strong direct beam this is known as the two-beam condition and both BF and 

DF images may be formed in this manner. This form of contrast is especially useful 

for imaging defects in a crystal lattice. This is because the specimen can be tilted 

such that it very nearly adheres to the two-beam condition and is only slightly tilted 

away from the Bragg angle, thus any distortion of the crystal lattice (defect) which 

would cause any scattering of electrons, will then be scattered to the Bragg angle and 

will produce strong contrast[92]. 

The principle of forming bright and dark field images in the STEM is the 

same as for forming BF and DF images using mass-thickness contrast. This usually 

means having a BF detector to collect the direct beam and an annular dark field 

detector (ADF) to pick up the diffracted beam. The two-beam condition is 

maintained by using the objective aperture to select only one strongly diffracted 

beam. The diffraction contrast produced in STEM is typically much weaker than in 

TEM images. This is because the ratio of the beam convergence angle to the 

detector’s collection angle is much larger in STEM, as the beam is converged rather 

than parallel. Therefore, to recreate the conditions of a TEM and achieve the same 

strength contrast, the detector’s collection angle must be limited, which decreases the 

amount of signal that can be collected by the detector[79]. 

 

2.4 High-Resolution Imaging (HRTEM and HRSTEM) 

 

2.4.1 Phase-Contrast Imaging (HRTEM) 

 

 Phase contrast imaging is the name given to the TEM image mode that 

allows for images of samples with atomic resolution; the resolution achievable with 

this imaging mode is of the order of 0.5Å, and this small scale allows for the 

imaging of atomic planes and defects in a crystal[93]. This contrast mechanism arises 

due to the difference in phase between electron beams scattered through a thin 

specimen and is very sensitive to changes in the thickness, orientation or scattering 
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of the specimen. The most notable features observable using phase contrast are the 

lattice fringes. These fringes arise from the interaction of a scattered electron beam 

and the direct electron beam such that the resulting wavefront can be expressed as a 

linear combination of the incident and diffracted waves. 

φ = Φ0(𝑧) 𝑒[2𝜋𝑖(𝑘𝐼∙𝑟)] + Φ𝑔(𝑧) 𝑒[2𝜋𝑖(𝑘𝐷∙𝑟)] (2.16) 

Where Φ𝑖 is the electron beam (either direct or diffracted). The interaction 

between these two waves results in a pattern of constructive and destructive 

interference with a sinusoidally varying intensity[75,79]. In high-resolution images this 

effect displays as ‘lattice fringes’. The periodicity of the lattice fringes is dependent 

on the constituent diffracted electron beam and as such, the lattice fringes allow for 

direct measurements of the crystal structure[94]. 

The limiting resolution for images generated in this manner is determined by 

the contrast transfer function (CTF). The CTF describes how information is 

transferred as a function of spatial frequency and can be used to determine the 

contrast generated by the microscope. This is necessary because after the incident 

electron beam interacts with the specimen, the phase and amplitude of the beam is 

altered; detectors are only able to directly measure amplitude and so phase 

information is often lost. However, the phase interference can be measured through 

the electrons’ interactions with crystalline solids and, in a thin sample, the CTF can 

be expressed as shown in Eq. 2.17[95]. 

CTF = − sin (
𝜋

2
𝐶𝑠𝜆3𝑘4 + 𝜋𝑘2∆𝑓) (2.17) 

Where 𝐶𝑠 is the spherical aberration coefficient, which measures the quality 

of the objective lens, 𝜆 is the wavelength of the incident electron beam, 𝑘 is the 

spatial frequency and ∆𝑓 is the defocus value (the aberration caused by the specimen 

being out of focus and corresponds directly to the focal value used for the image). 

An example of the contrast transfer function is shown in Fig. 2.8. 
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Figure 2.8 Examples of contrast transfer functions taken from Transmission Electron 

Microscope, Williams and Carter where A) CTF for a 200keV microscope with 𝐶𝑠 of 1mm and 

∆𝑓 of -30nm where k1 represents the point-resolution of the image, B) a CTF at extended 

Scherzer defocus without damping functions and C) a CTF at extended Scherzer defocus with 

damping functions[75]. 

 

The important features of the function are the oscillatory nature and the sign; 

where the CTF crosses the x-axis there is no information transferred at this spatial 

frequency and as such no contrast will be seen, when the CTF is positive, negative 

phase contrast will occur so that atoms will appear bright against a dark background, 

lastly when the CTF is negative the atoms will be dark with a bright background. 

The point at which the CTF crosses the x-axis for the first time represents the point-

resolution limit of the microscope, beyond this point the features caused by the phase 

contrast can no longer be directly interpreted. This limit can be exceeded with the 

use of image simulation software provided the microscopes information limit is 

greater than the point-resolution limit. The information limit provides the maximum 

limit of the CTF as the expression in Eq. 2.16 allows for a continuous CTF however 

in practice envelope functions limit the maximum spatial frequency. These functions 

express the damping effects of chromatic aberrations and finite beam convergence 
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and can be expressed as 𝐸𝑐 and EA respectively. The resulting effective contrast 

transfer function is expressed in Eq. 2.17 [96]. 

CTF𝑒𝑓𝑓 = 𝐸𝑐𝐸𝐴 ∙ 𝐶𝑇𝐹 (2.18) 

In practice, this means that a lot of focus in high-resolution imaging revolves 

around maximising the contrast transfer function by extending the region of spatial 

frequencies before the point-resolution is reached. Another method of optimising 

high-resolution images is by creating a contrast transfer function with high, uniform 

contrast in the region before the point-resolution. This is achieved by setting the 

defocus value to the Scherzer defocus which represents the optimal working 

conditions for phase contrast imaging. The value for the Scherzer defocus is 

dependent on the microscope in question and is a function of the accelerating voltage 

λ and the spherical aberration coefficient Cs as expressed in Eq. 2.18 [97].  

∆f𝑆𝑐ℎ𝑒𝑟𝑧𝑒𝑟 = −1.2√𝐶𝑠𝜆 (2.19) 

An example of the contrast transfer function optimised for the extended 

Scherzer defocus is shown in Fig. 2.8. 

 

2.4.2 Z-Contrast Imaging (HRSTEM) 

 

 Z-contrast is the name given to the high-resolution mechanism for mass-

thickness used in the STEM. Images are formed by collecting low-angled elastically 

scattered electrons using the annular dark field (ADF) detector as single atom 

scatterings are incoherent, the image intensity is the combination of the individual 

atomic scattering contributions. As mentioned previously, this process is sensitive to 

the changes in the thickness of the substrate and it is impractical to a get a perfectly 

uniform thickness in a specimen, making the contribution from localised variations 

in specimen thickness indistinguishable from changes due to the atomic mass of the 

scattering atom. This problem is addressed in STEM by subtracting the ADF signal 

from the inelastic signal that would normally be used for EELS (Electron Energy 

Loss Spectroscopy)[98]. 
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2.5 Energy Dispersive X-Ray Spectroscopy (EDX) 

 

 The last technique used in this study is that of electron spectroscopy, as 

mentioned previously, the interaction between the incident electron beam and the 

specimen produces a number of secondary signals. EDX spectroscopy makes use of 

the x-rays emitted by a specimen that undergoes inelastic scattering events that cause 

an electron excitation and de-excitation event producing a characteristic x-ray. All 

elements from Be (atomic number 4) to Uranium (atomic number 92) can, in 

principle, be detected, but not all microscopes are suitable for detecting lighter 

elements (Z < 10)[99]. The x-rays emitted by these elements can be quantitatively 

analysed to determine the concentration of the elements present by measuring the 

line intensities for each element and comparing it to the line intensities measured for 

the background regions[79]. 

EDX detectors are typically constructed out of semiconductors such as 

silicon and will be positioned to allow emitted x-rays to be collected by the 

detector’s window. Emitted x-rays deposit energy into the semiconductor and cause 

valence band electrons to excite into the conduction band, creating electron-hole 

pairs. As the material for the detector is known the energy required for this transfer is 

also known (Si ~ 3.8ev)[100]. Since characteristic x-rays have energies often much 

larger than 1keV, thousands of electron-hole pairs can be created by a single incident 

x-ray, this number being proportional to the energy of the x-ray. Due to this, it is 

possible to determine what the energy of the incident x-ray was by detecting the 

number of electron-holes produced which, in turn, allows of the identification of the 

atom that produced the x-ray. 

The accuracy of the EDX detector is limited by both the statistical accuracy, 

as the process relies on the counting of incident x-ray photons and the number of 

electron-hole pairs that are created, and the energy resolution. The energy resolution 

is important as the natural line width of an emitted x-ray is only a few eV, however 

empirically measured line widths in an EDX signal can be much greater than 

100eV[101]. Detectors lose resolution as their temperature increases or the count rate 

is increased, this is balanced by the fact that low count rates (resulting in small 

peaks) can be indistinguishable from the ‘background’ caused by the continuous x-
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ray spectrum emitted. This continuous bremsstrahlung radiation is produced as beam 

electrons are slowed down or stopped due to the electrostatic interactions with atoms 

in the specimen. The resulting continuum of x-rays is zero at the beam energy and 

tends to infinity at zero energy. This signal overlaps with the signals produced by 

characteristic x-rays and provides a limit to the size of x-ray peaks that can be 

identified and is more pronounced at lower energies[79]. 

 

2.6 Sample Preparation 

 

The creation of nanoparticles through physical vapour deposition has a 

number of advantages over traditional chemical methods, for example, the nature of 

any chemical reaction requires detailed knowledge of the chemistry of all the 

reactants while deposition in the gas phase can be achieved through the same method 

regardless of materials. Furthermore, deposition of particles in this way can produce 

exciting, novel structures that would be extremely difficult through chemical means. 

The ability to create core-shell structures with, in principle, any shell material is 

extremely valuable, as the coating of nanoparticles allows for different possibilities 

in their functionalisation such as; protection from oxidation, increased catalytic 

activity or the design of a more functional particle surface. 

All the particles in this study were created through the deposition of 

nanoclusters in ultra-high vacuum (UHV) conditions in a sputter gas aggregation 

cluster source at the University of Leicester. A schematic diagram of the cluster is 

shown in Fig. 2.9 and consists of four main components: the cluster production 

chamber, inter aperture, core-shell evaporator and the sample deposition chamber. 

The clusters are produced through sputtering and gas aggregation in a bath of argon 

(Ar) gas, which is controlled and monitored by pressure gauges across the whole of 

the cluster source. A systematic breakdown of the creation of the samples will now 

be examined from the production of the metal (iron) clusters to deposition onto the 

TEM grid. 
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Figure 2.9 Schematic of UHV cluster source at the University of Leicester, diagram reproduced 

with permission[102] 

 

To produce the nanoclusters, the target material is sputtered using an Ar bath 

gas. This is achieved due to the transfer of kinetic energy from the Ar atoms that 

have been ionised through free electrons to a negatively biased Fe (or other material) 

target, the application of a voltage between the target (cathode) and the magnetron 

cover (anode) causes the positively charged argon gas to collide with the fixed target. 

This provides a super-saturated region around the target, which causes the iron 

vapour to nucleate through subsequent collisions with argon atoms/ions. This is 

required as, after the sputtering event liberates Fe material from the target the 

resulting free Fe atoms have high momenta and cannot form clusters; further 

collisions with the argon reduce this momentum. The iron clusters are then steered 

through the system by a pressure gradient that is manipulated by regulating the 

amount of argon gas in the system. The rate of collision with the Fe target is further 

enhanced by the presence of magnets behind the target to aid the likelihood of 

nearby argon ions being driven in the direction of the target. 

The coating of nanoparticles is done as the newly formed iron clusters are 

passed through a tubular crucible, this allows for the creation of a second metal 

vapour that will collide and adhere to the passing nanoclusters. The thickness of the 

deposition can be controlled through the manipulation of the temperature in the 
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evaporator, although the technique works best when the vapour pressure of the 

original material is lower than the vapour pressure of the desired coating material, as 

this prevents any vaporisation of the original nanoclusters. The core-shell evaporator 

can also be used without any shell material, in this case it will function as a furnace 

for the iron clusters. This is advantageous, as it allows for the studying of heating 

effects without the presence of oxidation as, assuming no leakage of outside oxygen 

from the air into the system, the particles will have yet to form their initial oxide, 

which usually occurs instantly after the sample is exposed to air. While it is possible 

to protect the nanoparticles from oxidation after synthesis through chemical 

methods, this will involve suspending the nanoparticles in a solution. This 

complicates the chemistry of the system and, subjecting the iron nanoclusters to 

heating during the deposition process allows for a direct study of the effects of 

heating on the structure of the clusters. The shell evaporator is 100mm in length with 

an alumina crucible which is surrounded by a heating filament, the whole region is 

heat shielded so that particles are heated only as they pass through the region. 

The morphology of a deposited sample depends on a number of factors 

including: the substrate, particle material, temperature and impact energy, which will 

all affect the result. In general, the type of deposition expected can be divided into 

three categories based on the impact energy the nanoclusters have when they reach 

the substrate[103]. Low-energy deposition typically occurs when the energy is <1eV 

per atom, in the case of a thin film deposition, this will produce a weak adherence 

that can easily be removed. In the case of low-energy nanoparticle deposition, the 

impacting clusters will suffer little distortion on impact and as such will not damage 

the surface. If the rate of deposition is high this will produce an array of randomly 

stacked particles that will be hard to interpret when imaging, as such it is often 

necessary to limit the deposition rate, so that only one particle will occupy one local 

region of the substrate, to make image interpretation easier. In most cases, the 

impacting atoms in the cluster will not have the energy to diffuse across the 

substrate, as is the case in this study. However, with some substrates the diffusion of 

atoms post-deposition can still occur. 

Medium-energy deposition occurs at impact energies roughly 1-10eV per 

atom, with the particles often remaining intact upon deposition. though significant 

changes in their morphologies may occur, including the introduction of defects into 
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the particle surface. Diffusion across the substrate surface must be considered at 

medium-energies as, depending on the materials being deposited and the material of 

the substrate, the atoms may be highly mobile. High-energy deposition is considered 

as any impact energy greater than 10eV per atom and in this case the impacting 

particles are often completely disrupted, with non-negligible damage to the substrate 

surface, this type of deposition can rarely be used to produce individual 

nanoparticles and will instead result in the deposition of a metallic thin film. The 

samples created in this study are deposited at low deposition energies, with the 

energy being controlled by the manipulation of the gas pressure gradient in the 

cluster source. 

 

2.7 Experimental Design 

 

2.7.1 Experiment One: Annealed Iron Core-Shell Nanoparticles 

 

 The experiment was designed to investigate the structural changes that iron 

core-shell (Fe/FexOy) nanoparticles undergo when oxidising. Due to iron particles 

requiring periods of up to two years to fully oxidise in air, however, oxidation was 

induced through heating in atmosphere[65]. Understanding the effects of oxidation on 

particles such as these is important to optimise the material properties for use in 

medical applications as discussed in chapter 1. 

The temperature for heating was chosen to be 200°C and was picked as it 

offered the best mix between enhancing the oxidation process to more practical time-

scales while preventing damage to the carbon-support grid, which has been found to 

occur at temperatures above 300°C[104]. At these temperatures, the carbon-support 

film becomes mechanically unstable and can break or lead to hydrocarbon 

contamination build-up on the grid that can severely impair image quality[105]. The 

temperature is not chosen to represent that used during medical processes (<45°C) 

but instead used purely as a means of increasing the rate of oxidation. 
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The heating duration was chosen to be 15 minutes based on a short 

preliminary experiment where samples were heated at the target temperature (200°C) 

for 15, 30, 60 and 120 minutes. It was found that after 15 minutes heating there were 

no significant changes in either the particle size or morphology with all the values 

for the size lying within error of the mean of all samples and with an average particle 

geometry ratio of 0.97 (corresponding to highly spherical). The results have been 

displayed in (Table 2.1). 

The particles were deposited onto copper TEM grids using a holey-carbon 

support film with an estimated thickness of 20nm from Agar Scientific[106]. The 

nanoparticles were heated in an alumina tube furnace with a maximum temperature 

of 1500K and the ability to set the heating time. For analysis the samples were 

imaged and characterised in TEM and STEM due to their ability to image and 

resolve the samples down to atomic resolution and to carry out chemical analysis 

using EDX (section 2.4). 

 

 

 

 

 

 

Table 4.1 Average particle size and geometry for different heating times at 200°C. Average 

particle size and geometry determined through the collection of 200 data points per sample with 

particle geometry expressed as the ratio of the particle maximum and minimum calliper 

distances with cubic particles at a minimum of 0.63 and spherical particles at a maximum of 

1.00. 
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2.7.2 Experiment Two: Coated Iron Nanoparticles 

 

The particles were deposited at the University of Leicester using a cluster 

deposition source as outlined above. The empty crucible in the shell evaporator was 

loaded with ≈1g of Cu across a potential heating range from room temperature up to 

1200°C. Samples of Fe@Cu were created at the temperatures of 218°C, 317°C, 

442°C, 705°C, 777°C, 895°C, 994°C, 1052°C and 1131°C. The average error in the 

temperature reading was given as ±45°C. These temperatures were chosen as they 

covered the range of temperatures possible using the shell evaporator. Furthermore, 

the vapour pressure of Cu within the crucible was estimated using the temperature to 

range from ≈10-11 mbar to ≈10-3 mbar. The temperature was adjusted to allow for 

the comparison of the sample characteristic between the different temperatures; of 

particular interest are the size and shape of the particles as well as the shell thickness. 

The shape plays an especially important role as there is evidence linking the 

magnetic properties of iron nanoparticles with the geometry, with cubic particles 

offering highly favourable magnetic properties compared to spherical particles. 

The cluster source operating parameters for these samples were: a sputter 

magnetron between 10W and 20W with an Argon gas bath sputtered into the system 

at pressures of 30 mbar for P1 and 2×10-4 mbar for P3. The terms are described in 

detail during the section on the cluster deposition source in section 2.6. This section 

aims to investigate the sample characteristics of the various samples using TEM and 

STEM imaging. To this end, all samples were created through low-energy deposition 

of the prepared Fe@Cu onto lacey or holey carbon TEM support grids. Due to 

copper being one of the working materials Ni TEM grids were used for this section. 

The presence of copper material will be inferred using Energy Dispersive X-Ray 

Spectroscopy (EDX) mapping, a feature available to the STEM. 
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Chapter 3: Heated Iron Nanoparticles 
 

 

In this chapter, the thermally-induced oxidation processes of core-shell 

Fe/FexOy nanoparticles are examined by (S)TEM as discussed in chapter 2. An 

explanation of the motivation and scientific context was given in chapter 1, with a 

short discussion of the experimental design presented in chapter 2. In this chapter, 

the characterisation of the samples before and after annealing is given and the 

changes in the nanostructure are presented, lastly, there will be a discussion on the 

mechanisms governing those changes.  

 It was found, that after annealing at temperatures of 200°C in atmospheric 

conditions for a duration of 15 minutes, the sample displays a doubling of the oxide 

shell thickness with the average shell being 7nm thick. The oxidation of these 

particles was accompanied by the formation of Kirkendall voids at the metal/oxide 

interface that developed during the heating process. Furthermore, it was found, that 

the samples underwent significant morphological changes after heating, with the 

average size increasing and the shape of the particles in the sample dominated by 

spherical nanostructures as opposed to cubic structures. The rapid growth of the 

oxide shell cannot be attributed to the traditional Cabrera-Mott theory, which is used 

to characterise the initial formation of the oxide layer, as discussed in chapter 1. 

 We hypothesise that transport of material along grain-boundaries explains the 

oxidation observed, because, at such temperatures diffusion through the bulk lattice 

is energetically unfavourable. To determine the validity of this the diffusion 

coefficient of the material through the grain boundaries was empirically estimated 

from High-Resolution Scanning Transmission Electron microscopy (HRSTEM) 

images. 

 The particles were deposited at the University of Leicester 

(Department of Physics and Astronomy) and the analysis of the particles was 

performed using a JEOL 2011 Transmission Electron Microscope (TEM) and JEOL 

2200 FS (Scanning) Transmission Electron Microscope (STEM) at the JEOL York 

Nanocentre of the University of York. 
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3.1 Pre-Annealing Iron Core-Shell Nanoparticles 

 

 

 

Figure 3.1 High-resolution images of unheated iron oxide nanoparticles taken using a JEOL 

2200 (S)TEM, A) Bright-field TEM image of a cubic particle showing (100) and (110) directions, 

particle shows no truncation of the in the (110) directions and is common in samples prepared 

at colder temperatures. B) FFT of particle in A displaying typical structure of iron and iron 

oxide with iron reflections labelled, C) Bright-field TEM image of truncated cubic particle with 

(100) and (110) directions shown, the (110) surface facet is indicated by white dashed lines. D) 

Bright-field STEM image of spherical particle showing iron core and oxide grains. 
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3.1.1 Effect of Deposition Conditions  

 

In the sample prior to heating, it was found that most particles possessed a 

‘truncated’ cubic morphology. These cubes were confined by the six {100} planes 

and truncated by the twelve {110} planes with different degrees of truncation being 

observed, an example of the truncation is shown in Fig. 3.1C. However, many 

particles were found as cubic shapes, possessing only a small truncation along the 

{110} plane as shown in Fig 3.1A. At the other extreme there were particles found 

that possessed spherical geometries, representing the lowest surface energy 

configuration for the system (Fig. 3.1D). Where geometry is defined as; 

𝐺 =
𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥
 (3.1) 

Where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥are the minimum and maximum calliper distances for 

the particle as shown schematically in Fig. 3.2. While a large number of particles 

were found to contain a heavily truncated geometry such as the particle in Fig. 3.1C 

where the truncation along the {110} plane was very large. No particles observed 

were confined only by the {110} planes with no {100} plane, these particles 

however, have been found in samples deposited at very high temperatures above 

500K[107]. The deposition temperatures of the samples used here range from 81°C to 

494°C making the formation of rhombohedral particles less likely. 

 

Figure 3.2 Schematic diagram of the particle geometry classifications. Particles in the sample 

are described by the ratio of the of the minimum and maximum feret diameters such that a 

perfect cubic particle (this would appear as a square in transmission) would have a ratio of 0.63. 

A perfectly spherical particle (which would appear as a circle in transmission) would have a 

value of unity.  
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The average particle geometry of the sample can be related to the deposition 

temperature of the sample, as increased temperatures results in greater amounts of 

thermal energy, which the clusters can utilise to re-organise into low surface energy 

configurations. Therefore, a larger number of spherical particles would be expected 

in a sample produced at higher temperatures, this can be seen in Fig. 3.3, which 

shows the increase in the average geometry as a function of particle deposition 

temperature. 

Particles were deposited at temperatures between 81°C and 494°C, the former 

representing the lower limit for the temperature achievable using the cluster 

deposition method (see chapter 2). The highest temperature was chosen due to a 

combination of limits in the deposition method; only four samples can be deposited, 

and the temperature range of interest. Temperatures used in medical settings are 

much lower than the temperatures used here, however, the mechanisms behind 

oxidation are still debated at temperatures below 500K, where grain boundaries are 

assumed to play a significant role.  

 

Figure 3.3 Graph showing measurements for the average particle geometry depending on the 

deposition temperature for the sample. The averages for each sample were calculated on the 

basis of 200 particles. The geometry was manually determined with the error bars representing 

the standard deviation.  
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The samples deposited at higher temperatures showed a greater proportion of 

large, truncated and spherical particles compared to those deposited at lower 

temperatures. This is shown by measuring the diameters and geometry of between 

100 and 200 particles for each sample as shown in Fig. 3.3. The breakdowns of the 

size, geometry, and initial oxide thickness distributions are shown in Fig. 3.4 and 

Fig. 3.5, with the oxide thickness discussed later as its formation is, in theory, not 

effected by deposition temperature. The range of particles observed across all 

samples was between 10nm and 60nm, with the lower limit of the particle size 

increasing to 20nm at 304°C and 494°C. The size histograms show an average size 

of 19.7±0.6nm for the sample deposited at 81°C, 24.8±0.5nm for the sample 

deposited at 204°C, 31.7±0.6nm for the sample deposited at 304°C, and 36.4±0.6nm 

for the sample deposited at 494°C. Representing a 184% increase in the size of the 

average particle across the range of temperatures, assuming that zero or negligible 

oxidation occurs during deposition due to the ultra-high vacuum conditions this 

increase cannot be attributed to growth of the oxide shell and is a result of the 

deposition conditions. 

It has long been established that the best way to model the distribution of 

particle sizes is using the lognormal distribution, this originates from early studies 

regarding aerosols and has since been found to be a common trend in nanoparticle 

distributions as well[108]. A quantity is described as lognormal when its natural 

logarithm is normally distributed. The origin of lognormality is thought to be due to 

the nature of any change in particle size away from the mean is due to random 

processes; modelled as a random walk on an exponential scale. As a random process 

can be modelled by a normal distribution, a random process on an exponential scale 

can be modelled by a lognormal distribution[109]. Mathematically the lognormal 

distribution can be fitted through the equation; 

𝑓(𝑥 ⎸𝜇, 𝜎) =  
1

𝑥𝜎√2𝜋
 𝑒𝑥𝑝 (

−(𝑙𝑛(𝑥) − 𝜇

2𝜎2
) (3.2) 

Where 𝜇 is the sample mean and 𝜎 is the standard deviation. The goodness-

of-fit for a lognormal distribution is often taken to be the goodness-of-fit of the 

data’s natural logarithm to a normal distribution, this can be measured through a chi-

squared test[110]. The chi squared test is appropriate when the sampling is random, 
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and the variable is categorical, the threshold for the number of counts is roughly 100 

which is the number of counts per sample in this study[111]. The test is conducted by 

comparing χ2 which is calculated as shown in Eq. 3.3 against the desired significance 

level, the significance level used for the distributions in this study was 0.05 (95% 

goodness-of-fit).  

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸
 (3.3) 

Where 𝑂 represents the observed frequency (number of counts) and 𝐸 

represents the frequency predicted by the normal distribution. All chi squared tests 

fell within the significance range stated previously and thus the distributions 

presented offer a good model for the distribution of particle sizes in the pure Fe 

nanoparticle samples.  

 

Figure 3.4 Size distribution histograms for samples created at four deposition temperature 

81°C, 204°C, 304°C and 494°C. Average particles sizes were found to be 19.7±0.4nm, 

24.8±0.5nm, 31.7±0.6nm and 36.4±0.6nm respectively with the average for each histogram 

denoted by a black dashed line. The number of particles measured was a) 200, b) 172, c) 101 

and d) 121. 
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The error in measuring the size of an individual particle was determined by 

comparing the size determined using a threshold value calculated as described above 

with upper and lower limit thresholds which were determined by hand. The upper 

threshold limit was determined as the value at which the derived particle size would 

not increase anymore while the lower limit was determined by the point at which the 

oxide shell was no longer included in the binarised image. The errors calculated this 

way were of the order of 1nm. The error in the bin counts was determined by 

measuring the number of particles that fell within 1nm of the bin edges. 

The classifications for the qualitative description of particle morphology 

were based on the ratio of the of the maximum and minimum calliper distances as 

shown in Fig. 3.2. The particles were considered cubic if their calliper ratio was 

between the minimum of 0.63 and 0.75, while a particle was classed as spherical if 

the ratio was between 0.85 and 1.00. Any transitional geometries with ratios between 

these two classifications were classed as ‘truncated’ particles. This term describes 

both ‘truncated cubic’ shapes, characterised by significant {110} truncations but 

where the length of the {110} planes was still lower than the {100} planes. As well 

as, ‘truncated octahedral’ shapes which contain even larger {110} truncations such 

that the length of the {110} is approaching or exceeding that of the {100} planes. 

The errors for the histograms in both Fig. 3.4 and 3.5 were calculated through 

counting the number of particles that were within 10% of the bin edges, with the 

error for the sample averages determined by the standard error in the mean. 

As can be seen in Fig. 3.5, a particle is more likely to possess a spherical or 

truncated geometry at high deposition temperatures. The average particle geometry 

in the coldest deposited sample (81°C) was determined to be 0.7533±0.005, 

representing the ratio of the minimum and maximum Feret diameters. For the sample 

deposited at 204°C the average was found to be 0.775±0.006, with 0.792±0.008 for 

the sample deposited at 304°C, and lastly, 0.844±0.008 for the hottest deposition 

temperature of 494°C. This represents a 12% increase in the Feret ratio and shows 

an evolution to spherical particle geometries.  
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Figure 3.5 Geometry distribution histograms for samples created at four deposition 

temperature 81°C, 204°C, 304°C and 494°C. Average particles sizes were found to be 

0.753±0.005, 0.775±0.006, 0.792±0.008 and 0.844±0.008 respectively with the average for each 

histogram denoted by a black dashed line. The number of particles measured was a) 200, b) 172, 

c) 101 and d) 121. 

 

A comparison of the respective increases in particle size and geometry due to 

deposition conditions can be seen in Fig. 3.6. The increase in size due to deposition 

temperature must arise from a separate process than the increase in size due to 

oxidation because, as stated previously, oxidation should not have occurred at this 

stage (during deposition). It is believed that the increase in size can be attributed to 

increase in the collision frequency between iron nanoclusters and molecule iron in 

the deposition chamber, combined with re-evaporation of material from the chamber 

walls, as discussed later. 
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Figure 3.6 Summary of the change in particle size and geometry as a function of the deposition 

temperature, clearly seen is the significant increase in particle size across the temperature range 

with average size increasing by 186%. Particle geometry ratio increases by 12% with the 

average particle increasing in the degree of truncation along the <110> facets. 

 

The construction of a particle’s 3D structure can be done through the Wulff 

construction where, in an unrestricted environment the growth rate along various 

directions will determine the overall shape of the crystal. Similar to the surface 

energy in a Wulff construction and the various ratios along the <100> and <110> 

directions can be used to construct the observed geometries as shown in Fig. 3.7. It 

has been found that the main factor determining the dominant morphology is the 

deposition temperature, with samples deposited at room temperature more likely to 

have a cubic structured particles, with few heavily truncated particles and no 

rhombohedral particles[112]. Conversely it has been shown that particles deposited at 

high temperatures contained no cubic morphologies[113]. This fits well with what has 

been observed here with the cooler samples which contain particles with smaller 

degrees of truncation than those in the hotter samples. 
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Figure 3.7 Schematic diagram showing the variation in particle morphologies by their calliper 

ratio with accompanying Wulff construction (constructed through publicly available 

Mathematica code[114]) where the surface energy ratio is equal to the calliper ratio. 

 

The qualitative classifications described above can separate the different 

geometries, with cubic (geometry ratio <0.75), spherical (ratio >0.85), and truncated 

particles investigated separately to determine the effect of increased temperature on 

each type of particle. The relationship between the particle geometry and the particle 

size has been explored in more detail in Fig. 3.8. The majority of particles occupy 

the top-left side of the diagram representing smaller, spherical or truncated particles, 

however, there is a general tendency for larger particles to be more spherical in 

shape with few large particles exhibiting cubic geometries. This suggests that as the 

sample’s average particle size increases, due to either the deposition temperature or 

the natural variance of particle size in the sample, the possible range of geometries 

for these particles narrows. 
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Figure 3.8 Particle geometry as measured by the ratio of the minimum to maximum calliper 

distance for 546 iron nanoparticles deposited at temperatures from 81°C to 494°C against their 

particle area measured in transmission. 

 

As such the evolution of the particle geometry with deposition temperature 

appears to be driven by the increase in the proportion of spherical particles as 

opposed to truncated particles. This is inferred because of the established increase in 

the average particle size with deposition temperature and the fact that larger particles 

predominantly occupy the spherical region in Fig. 3.8. This is confirmed in Fig. 3.9 

where the percentage breakdown of the particle geometries is given as a function of 

particle size. As can be seen in the figures the percentage of both cubic and truncated 

geometries decreases while the percentage of spherical particles increases from 17% 

of the smallest particles to 94% of the largest particles.  
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Figure 3.9 (Top) Histogram showing the number of cubic (blue), truncated (orange) and 

spherical (yellow) particles that appear at increasing particle size. (Bottom) Percentage of 

particles that display cubic (blue), truncated (green) or spherical (red) geometries as a function 

of particle size. Linear regressions are fitted to highlight the decrease in cubic and truncated 

particles and increase in spherical particles. 
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3.1.2 Initial Oxidation  

 

Assuming that no oxidation occurs prior to the deposition of iron clusters 

onto the TEM substrate, the initial oxide will be formed after the samples have been 

removed from the chamber. As such any variations in the oxide thickness between 

samples should not be related to the deposition temperature but to the physical 

properties of the particles being oxidised. The oxide shell thickness distributions for 

all four deposition temperatures can be seen in Fig. 3.10 with an average oxide 

thickness of 3.11±0.19nm, 3.40±0.11nm, 4.24±0.21nm and 3.66±0.12nm for the 

81°C, 204°C, 304°C and 494°C samples respectively. Except in a small number of 

case the oxide shell thickness lies within a range of 2nm to 6nm with no particle 

observed with an oxide shell of 6nm or greater. This initial oxide is well explained 

through Cabrera-Mott theory and has been observed on a number of 

occasions[29,49,115].  

 

Figure 3.10 Shell thickness distribution histograms for samples created at four deposition 

temperature 81°C, 204°C, 304°C and 494°C. Average oxide shell thickness were found to be 

3.11±0.19nm, 3.40±0.11nm, 4.24±0.21nm and 3.66±0.12nm respectively with the average for 

each histogram denoted by a black dashed line. The number of particles measured for each 

sample was 50. 
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The histograms in Fig. 3.10 have been fitted with a normal distribution that 

was confirmed using a chi squared goodness-of-fit test to be within the 95% 

confidence bounds for fitting. There was no significant divergence in the extent of 

the oxide thickness which would be expected if the oxide formed post-deposition. 

 

3.2 Post-Annealing Iron Core-Shell Nanoparticles 

 

3.2.1 Particle Size and Geometry Post-Annealing 

 

The result of the annealing can be seen in Fig. 3.11 which displays in Fig. 

3.11A an image from the coldest deposited sample (81°C). The coldest sample was 

chosen because it offered the largest variety of particle morphologies with cubic, 

spherical, and truncated particles being represented in the sample. Assuming that the 

oxide shell formed after the deposition process it allows for comparison of the 

oxidation behaviour for different particle geometries. Fig. 3.11A shows examples of 

cubic, truncated, and spherical particles while Fig. 3.11B and 3.11C show a high-

resolution image of a particle, an interesting feature being the formation of interface 

voids and oxide ridges connecting the core to the shell. The sample was annealed at 

200°C for 15 minutes and in the resulting sample it can be seen in there have been 

significant changes in the particle’s size, shape, and oxide shell thickness. The 

resulting characterisation of the sample is displayed in Fig. 3.12 which shows the 

size, geometry, and shell thickness distributions measured from the sample post-

annealing. A comparison with the sample prior to annealing is provided with the 

average particle size having increased to 43.8nm from 19.7nm, the average geometry 

ratio increasing to 0.9753 from 0.7533, and the average oxide shell thickness 

increasing to 7.4nm from 3.1nm. The represents an increase of 122% in the particle 

size, a 138% increase in the shell thickness, and an evolution to spherical geometries 

which has been observed in other oxidation experiments[116].  

The increase in the oxide shell thickness depends on the ‘type’ of particle in 

question with some particles having dramatically increased oxide shell thickness 
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(such as in the case for the fully oxidised particles observed in the sample) and some 

particles retaining a smaller, but still increased by comparison to the sample pre-

annealing, oxide shell. This is represented in the change in oxide thickness range 

from 2-5nm before annealing to 3-14nm afterwards. Overall the changes to the 

sample after heating can be summarised in the following manner, with three general 

conclusions being drawn. 

1) An increase in the average particle size pre-annealing from 19.7nm to 

43.8nm post-annealing, the particle sizes range from 10nm to 50nm before 

and 20nm to 100nm afterwards. 

2) A shift towards more spherical geometries can be seen in Fig. 3.12; almost no 

cubic particles exist in the sample post-annealing, with only spherical 

particles or highly truncated particles being observed. However, this shift 

only applies surface geometry with the geometries of the iron cores still 

retaining some degree of their cubic structure. 

3) A large increase in the oxide shell from the average of 3.1nm (within the 2-

5nm range predicted by Cabrera-Mott theory in chapter 1) to 7.4nm 

determined empirically post-annealing. Before annealing the range of sizes 

for the oxide shell was between 1nm and 5nm, after annealing, the range has 

increased from 3nm to 14nm depending on the extent of the particles 

oxidation. 

 

A breakdown of the various particles will now be given before an analysis of the 

changes to the samples characteristics (e.g. size, geometry, and shell thickness), this 

will allow for a discussion on the various transport pathways that facilitate the 

enhanced oxidation that has been observed post-annealing (see chapter 5).  

An interesting feature observed post-annealing is the development of Kirkendall 

voids at the metal-oxide interface[117]. The presence of small void structures is very 

interesting for medical-driven material physics as such particles are being considered 

as drug delivery agents [19]. Typically, studies involving 'hollow' particles focus on 

the type of particle that is completely hollow as opposed to the partially oxidised 

particles observed in these samples, these particles however, may be able to provide 

useful magnetic properties due to retaining their iron core. 
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Figure 3.11 A) Post-annealing bright field TEM image of the sample showing the variety of 

particle types, B) HRSTEM image of a particle having formed interface void and oxide ‘ridges’, 

C) Dark field STEM image of B. 

 

The particles post-annealing can be classified into three rough types of 

particles as shown in Fig. 3.11A. The first type are smaller particles that appear to 

retain no iron core and have fully oxidised in a manner that has resulted in a 

completely iron oxide nanoparticle. These particles are characterised by highly 

spherical geometries and particle sizes spread across the whole range of particle sizes 

as shown in Fig. 3.13. The average particle size for particles that have transitioned 

into iron oxide nanoparticles is 45.99±2.24nm with an average geometry of 

0.952±0.004 corresponding to highly spherical shapes as viewed in transmission. 

A notable feature of these particle is the presence of small central Kirkendall 

voids, the voids measured and compared with the area of the particles as measured in 

transmission images and were found to account for on average 19.3±0.9% of the 

particle volume assuming a spherical geometry. The distribution of the Kirkendall 

width percentages is shown in Fig. 3.14, the extent to which the Kirkendall voids 

compose the width of the particles is similar to those that have been allowed to 

oxidise gradually in air over extended periods[65]. This is much lower than reported 

in previously literature, with Kirkendall voids composing up to 60% of the deposited 

particles total width[32]. 
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Figure 3.12 Size, shape, and shell thickness distributions of the samples before and after 

heating. With the errors calculated through the error in the mean.  
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Figure 3.13 Particle size and geometry distributions for fully oxidised ‘non-hollow’ iron oxide 

nanoparticles with an average particle size of 45.99±2.24 nm and average geometry ratio of 

0.952±0.004. 
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Figure 3.14 Calculation of the width percentage taken up by Kirkendall void in fully oxidised 

‘non-hollow’ nanoparticles as shown in Fig 4.9. 

 

3.2.2 Enhanced Oxidation  

 

The progression from iron/iron oxide particle to full iron oxide particle has 

been observed to occur in cubic particles, as such it is likely that particles that have 

been oxidised in this manner originally started as cubic particles. This suggests that 

the oxidation front for these particles occurs at both the oxide/gas interface 

(accounting for the general increase in average particle size) and the metal/oxide 

interface allowing for the total oxidation of the iron core. This is surprising as in 

most cases the iron ions are the only diffusing species considered mobile at low 

temperatures while the oxygen anions are considered immobile. Therefore, the O ion 

diffusivity must be enhanced for these particles as the formation of Kirkendall voids 

relies on the faster out-diffusion of iron ions. 

The second type of particle observed in the sample are particles characterised 

by being slightly larger than the previously mentioned particles and with the absence 

of an iron core. The average particle size and geometry for this type of particle can 
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be seen in Fig. 3.15 with values of 32.21±0.71 and 0.945±0.005 respectively, as 

such, these particles tend to be smaller than the average particle in the sample with 

no examples being found with sizes over 45nm. The oxide shell in these particles 

enclose a very large Kirkendall void, the distribution of the oxide shell thicknesses 

has been determined and displayed in Fig 3.16, with an average oxide shell thickness 

of 6.67±0.25nm with a range between 2-11nm. This represents a roughly 10% 

decrease in the average oxide thickness compared to the sample average after 

annealing. As with the ‘non-hollow’ iron oxide particles previously shown the width 

percentage of the Kirkendall void was measured for 50 particles and the distribution 

is shown in Fig.3.16.  

The average width of the Kirkendall void that has developed in these 

particles was found to be roughly 60%, this is much closer to the value for particles 

in previous reports for iron nanoparticles oxidising in air[118]. This implies that the 

unlike in the previously seen particles, the diffusivity of the oxygen in-diffusion was 

not significantly enhanced; this is despite originating from the same sample as the 

aforementioned ‘non-hollow’ particles. As was determined in the case of cubic 

particles oxidising in atmospheric conditions, the enhanced oxidation was attributed 

to strain fields in the oxide shell. No such fields have been observed in spherical 

particles, as such, it is likely that particles of this type originate from spherical 

particles pre-annealing, this would explain why the oxygen in-diffusion has only 

been enhanced in certain particles (resulting in the difference in Kirkendall void 

size). 

 

Figure 3.15 Particle size and geometry distributions for ‘hollow’ iron oxide nanoparticles with 

an average particle size of 32.21±0.71 nm and average geometry ratio of 0.945±0.005. 
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The heating of iron nanoparticles resulted in the formation of ‘hollow’ 

Kirkendall voids due relativity diffusivities, as oxygen in-diffusion is typically 

considered to be immobile when compared to iron out-diffusion, as such material 

leaves the core faster than enters it. The resulting Kirkendall void can be clearly seen 

in the dark field image in Fig. 3.16C which shows the iron oxide shell along with 

three small islands in the core. In the particles presented here it appears that the main 

pathway for the thickening of the oxide shell is the outward expansion of the 

oxidation front at the oxide/gas interface. This is in opposition to the previous 

particles where the enhanced O ion diffusivity that produces smaller Kirkendall 

voids suggests a more mobile oxidation front at the metal/oxide interface.  

 

 

 

Figure 3.16 A) Bright-field STEM image of ‘hollow’ iron nanoparticle, B) dark-field STEM 

image of particle imaged in A. C) Shell thickness distribution for fully oxidised ‘hollow’ 

particles with an average oxide thickness of 6.67±0.25nm D) distribution of Kirkendall width 

percentages with an average of 58.9±1.1% calculated for 50 counts. 
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The last type of particle observed post-annealing are characterised by the 

growth of Kirkendall voids at the metal/oxide interface, the average size and 

geometry of these particles is shown in Fig. 3.17. The average particle size was 

determined to be 43.89±1.11 nm with an average geometry of 0.975±0.006, 

representing a greater average particle size than the ‘hollow’ particles and sample 

average, no example of a particle retaining its iron core was found below 26 nm. 

These particles are interesting as typically Kirkendall voids are expected to form at 

the centre of the particle due to the relative rates of anion and cation diffusion. In the 

particles observed here however, it appears that the increase in oxidation rate due to 

heating was enough to create vacancies at the interface. 

 

 

Figure 3.17 Particle size and geometry distributions for iron/iron oxide nanoparticles that have 

formed Kirkendall voids at the metal/oxide interface with an average particle size of 43.89±1.11 

nm and average geometry ratio of 0.975±0.006. 
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Furthermore, the particle’s iron core appears to be surrounded by a ring of 

these interface voids, which are in-turn terminated by ‘oxide-ridges’ connecting the 

remaining iron core to the oxide shell. It should be noted, that there appears to be a 

critical size with which these particles appear in the sample shown in Fig. 3.18, 

below this size particles are fully oxidised as either iron oxide particles or ‘hollow’ 

particles. Above this size ‘hollow’ and ‘non-hollow’ fully oxidised particles can still 

be observed alongside this type of particle as shown in Fig. 3.13. The degree to 

which the iron core is retained is dependent on the particle size with smaller particles 

being more sensitive to the effects of heating. In this manner, it may be possible in 

principle to tune the size of the iron core of these particles by controlling the 

annealing temperature and time. This could allow for the tuning of the particles 

magnetic properties as both the fully oxidised and ‘hollow’ particles do not retain 

their iron cores and by extension the desirable magnetic properties of iron. It is likely 

that had the heating temperature been higher or the duration longer then some of the 

particles that had been partially oxidised, forming metal/oxide voids, would have 

transitioned into the ‘hollow’ particles described previously. This is due to the 

coalescence of the smaller metal/oxide Kirkendall voids into larger islands and 

eventually into a hollow core. 

 
Figure 3.18 Graph of core size against particle size with line of best fit plotted in black with a 

gradient of m = 0.9927 and a y-intercept of 28.12 nm which represents the cut-off point for iron 

core retention with no particles retaining their cores being found below this size. 
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After heating, the sample underwent many significant changes and the 

resulting particles were classified into one of three types. Of the particles that fully 

oxidised the first type were iron oxide nanoparticles and were found to cover the 

complete range of particle sizes ranging from 15 nm in size to 90 nm. In some cases, 

these particles were found to have developed central Kirkendall voids occupying 

roughly 20% of the whole particle width similar to iron/iron oxide nanoparticles 

oxidised gradually in air. As such it is likely that this type of particle accounts for the 

oxidation of cubic nanostructures in the sample at a faster than rate due to the 

annealing. The other type of fully oxidised particles were those that had retained an 

oxide shell around a large depleted core, these particles had no iron core left and 

tended to be smaller particles ranging from 15 nm to 40 nm in size. The ‘hollow’ 

nature of these particles suggests they underwent rapid oxidation. With the relative 

diffusivity of out-diffusing iron ions being much greater than in-diffusing oxygen 

ions as this would account for large Kirkendall voids formed in these particles. 

Particles of this nature have been observed to occur in nanoparticle samples at 

temperatures around 250K from spherical particles that have been synthesised 

chemically. As such it is likely that this type of particle arises from the smaller 

spherical particles in the sample with the diffusion rates enhanced by the presence of 

grain boundaries in the particles. 

The last type of particle observed were larger particles that had developed 

clearly defined Kirkendall voids at the metal/oxide interface, these particles range 

from 30 nm to 75 nm with the critical size of core retention observed to be roughly 

28 nm. These particles are consistent with the model for the formation of ‘hollow’ 

nanoparticles due to the coalescence of interface voids. It is likely that these particles 

were originally spherical or highly truncated cubic particles as in some cases the 

particles core retains some of its original geometry. This can be seen in Fig 3.19. A 

comparison of the samples properties with regards to the average size, geometry, and 

the thickness of the oxide shells before and after annealing have been presented in 

table 3.1. 
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Table 3.1 Summary of the characterisation data for samples before and after annealing along 

with a comparison of the characterisation for the different types of iron oxide particles that 

result. 

 

 

 

 

 

 

Figure 3.19 A) Bright-field STEM image of a particle at the transitional point between initial 

oxidation and full oxidation, formation of Kirkendall voids at the interface can be seen clearly 

as well as oxide ‘ridges’ connecting the shrinking iron core to the spherical oxide shell. B) Dark-

field STEM image of the particle in A which shows clearly the retention of the original 

truncated core-geometry with the original {100} and {110} facets marked by the red dashed line. 
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3.3 Magnetometry  

The magnetic properties of the iron samples were tested using a SQUID 

magnetometer by our collaborators at the University of Leicester with the total 

sample moment measured as a fraction of the applied magnetic field; at 5K and 

300K with the field ranging between +/- 5T. The raw data was gathered at the 

University of Warwick and processed by our collaborators at the University of 

Leicester, the results of which are summarised here to highlight the viability of 

oxidised iron oxide nanoparticles in biomedical settings. The moment per gram of 

iron (Am2/g) was plotted against the magnetic field (T) and the resulting 

magnetisation curve from which the magnetic properties of the samples can be 

obtained are shown in Fig. 3.20. 

The magnetisation curves for samples created at different deposition 

temperatures can be seen and the overall trend shows an increase in the observed 

magnetic moment with decreasing deposition temperature. Furthermore, the graphs 

in Fig. 3.20 show a degree of hysteresis in the M-H curves, as such the saturation 

magnetism was calculated by fitting a Langevin function of the form described in 

Eq. 3.4.  

𝐿(𝑥) = coth(𝑥) −
1

𝑥
 (3.4) 

The Langevin function was used as the classical limit of the Brillouin 

function that describes the dependency of the magnetisation M on the applied 

magnetic field for a collection of non-interacting paramagnetic atoms or ions. The 

exchange interaction of the atoms locks the atomic moments so that the Fe 

nanoparticles act as a single magnetic moment, as such it will behave as a classical 

magnetic dipole. The temperature dependency of the saturation magnetism is shown 

in Fig. 3.21 as can be seen there is a sharp drop off around 300K which is above the 

annealing temperature used in this study. The nanoparticles measured here were not 

annealed post-deposition although the constituent iron nanoclusters were subjected 

to a similar temperature during deposition. It would be interesting in further studies 

to investigate how the magnetic saturation of the particles annealed post-deposition 

compares with those used in the magnetic measurements presented her.  
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Figure 3.20 Raw magnetometry data obtained via SQUID and processed by collaborators at the 

University of Leicester (reproduced with permission)[102]. 
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Compared to the average size of iron cores after annealing and the increase in 

the amount of iron oxide it would be expected that the magnetic saturation would be 

lower for particles post-annealing however understand to what extent this would be 

would be useful for the continued development of medically-functionalized 

nanoparticles.  

The expected heating output of the un-annealed particles was also calculated 

by our collaborators at the University of Leicester as the area subtended by the 

hysteresis curves is directly linked to the heating output of the particles with the area 

under each hysteresis curve being presented in Fig. 3.21. A similar relationship to the 

measure saturation magnetism was observed with the expected heating output being 

greater for particles deposited at low temperatures. As such it the effect of the 

enhanced oxidation that can be observed occurring in the particles in chapter 4 that 

are heated post-deposition may have significant effects on the resulting magnetic 

response of iron nanoclusters that would undergo low levels of heating in some 

medical settings such as Hyperthermia or MRI or moderate heating when used as 

cell separation techniques that do not have the same limits for heating conditions as 

discussed in chapter 1. As such understanding how, the oxidation processes occur in 

different types of nanoparticles will be needed if efforts to created highly novel and 

tailored nanoparticles is to be realised. 

 

Figure 3.21 A) Saturation magnetism calculated through Langevin fitting of the raw hysteresis 

curves in Fig.5.14 as a function of deposition temperature, B) calculated area subtended by 

hysteresis curve showing a rough prediction of expected heating output of the particles in the 

sample as a function of deposition temperature. (Reproduced with permission)[102]. 
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3.4 Discussion 

 

The change in the particles physical characteristics (size, shape, and oxide 

thickness) as a function of deposition temperature (the temperature of the empty 

core-shell evaporator as described in chapter 2) is interesting to consider. It is 

possible to control the deposition conditions; for example, pressure, temperature, and 

time and as such understanding the effect the deposition conditions can have is a step 

towards developing better tailored nanoparticles for any application. The particles 

size and shape distributions have been presented in Fig. 3.4 and 3.5 respectively with 

the initial oxide formed post-deposition shown in Fig. 3.8. The change in physical 

characteristics with deposition temperature can be summarised as an increase in the 

average particle size from 19.7nm to 36.4nm and a change in the ratio between the 

particles maximum and minimum calliper distances from 0.75 to 0.84 representing 

an evolution from cubic particles to truncated particles. 

 The increase in the average particle size may be attributed to a number of 

processes centered either around the nanoclusters themselves or the deposition 

method. For instance, it is possible that the expansion of the iron lattice due to 

heating could result in an increase in the overall particle size when summed over the 

number of individual iron unit cells in the material. To investigate this possibility the 

increase in the iron unit cell lattice parameter at 494°C was determined to be 0.02Å 

for a lattice constant of 2.88Å, this increase was then applied to the average particle 

from the coldest sample at 81°C such that; 

∆𝐿

𝐿
= 𝛼 ∙ ∆𝑇 (3.5) 

where 𝛼 is the thermal expansion coefficient (15.5 × 10−6 𝐶°−1 for iron)[119], ∆𝑇 is 

the change in temperature and 𝐿 is the original lattice parameter. The result for an 

average particle of 13.5nm (average particle size of 19.7nm minus the average shell 

thickness) was found to provide a 0.2% increase in the particle size for a total of 

19.8nm. As such it is unlikely that the thermal expansion of the particles has a major 

effect on the physical characteristics during deposition.  



92 
 

 It is more likely that the increase in size arise from an increase in the 

collisional frequency of the particles in the molecular beam as they pass through the 

heated core-shell region. This can be due to two different sources; the first is an 

increase in the collisions between the iron nanoclusters and molecular iron as a result 

of the non-monoenergetic velocity distribution in the beam, the second is due to the 

re-evaporation of iron material from the chamber walls. In both cases a quantitative 

understanding of the kinetics is very difficult and is highly sensitive on the type of 

molecular beam and its properties, however, it is possible to offer a qualitative 

explanation for the increase in particle size.  

 One of the main advantages of molecular beams is that in principle no 

molecular collisions will occur along the beam path. This is however a very idealised 

model as it relies on the distribution of velocities in the beam to be mono-energetic, 

this would result in all molecules in the beam moving along the beam path at a 

uniform speed and not interacting[120]. In non-ideal cases however, molecules in the 

beam can possess a distribution of velocities for instance due to non-uniform particle 

sizes. The wider the velocity distribution the greater the chance of molecular 

collisions in the beam. The temperature dependence of the collisional frequency can 

be determined through the application of Kinetic theory where a mobile particle 

sweeps out a cylinder populated by a species of other static particles as shown in  

Fig. 3.22. In this regard the number of collisions per unit time is equal to; 

𝑍𝑖 =
𝑉 ∙ 𝜌

∆𝑡
 (3.6) 

where  𝑉 is the volume of the cylinder which is equal to the atom’s collisional cross 

section and is 𝜋𝑑2(the area of the circle) multiplied by the length which is the 

product of the relative speed and the change in time √2〈𝑣𝑟𝑒𝑙〉∆𝑡.  
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Figure 3.22 Schematic diagram of a target particle in a cylinder with static particles. 

 

 

The density of the cylinder must account for all the atoms in the path of the 

particle that can be hit and assuming uniform density will equal the density of the 

gas given by the number density per unit volume. As such Eq. 3.6 may be re-written 

as; 

𝑍𝑖 =
√2𝜋𝑑2〈𝑣𝑟𝑒𝑙〉𝑁

𝑉
 (3.7) 

 By allowing for two different species of particles and using the relative mean 

speed as taken from Kinetic theory the equation can be further modified to the more 

familiar version with a temperature dependence. 

𝑍𝑖 = 𝑁𝐴𝑁𝐵(𝑟𝐴 + 𝑟𝐵)2𝜋√
8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
 (3.8) 

where 𝑁𝑖 is the number of atoms of type i in the system, where 𝑟𝑖 is the radius of the 

atom, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the absolute temperature and 𝜇𝐴𝐵 is the 

reduced mass. 
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 Although the ideal gas assumptions used to derive the equation in 3.8 are not 

valid for molecular beams the temperature and mass dependences of the relative 

speed are important to note. Molecular beams are special in that a lower number of 

atomic collisions should occur however, it has been estimated that the ratio of the 

collisional frequency in a molecular beam and the frequency in a gas is such that up 

to a third fewer collisions are predicted[121]. This however, still allows for an 

increasing number of collisions with increasing temperature and is compounded 

when the re-evaporation of material from the deposition chamber walls is 

considered. 

 As the iron clusters are sputtered onto the TEM grids it follows that some 

will collide with the walls of the deposition rather than hit the target grids, these 

particles will then be re-evaporated as molecular iron if the temperature in the 

deposition chamber is raised such that the atoms can break away from such clusters. 

This material will then collide with free nanoclusters passing through the chamber 

and coalesce into larger iron particles. This effect has been seen in the deposition of 

Au-coated Fe nanoparticles where a second Fe shell was observed under high-

resolution STEM. This second shell of iron was attributed to the re-evaporation of 

iron clusters from the deposition chamber demonstrating that in theory multiple 

shells may be deposited onto a single particle.  

 

  

 

Figure 3.23 Equilibrium shape at T=0K for a BCC crystal composed of {100} and {110} 

facets[122]. 
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The change in the particle geometry during deposition is likely due to the 

redistribution of surface atoms due to increased thermal energy. This allows the 

particle to re-organise its surface atoms to create lower energy configurations which 

for BCC iron result in a progression towards more spherical geometries which as 

explored later minimise the surface energy. This will manifest as an evolution of 

particles towards their equilibrium shape as defined by the Wulff construction, the 

equilibrium shape for a BCC crystal such as iron is shown in Fig. 3.23. This is 

supported by the fact that particles deposited at various temperatures show a similar 

distribution of particle shapes, with more cubic geometries being formed at lower 

temperatures. As a result, it is common for sample deposited closer to room 

temperature to consist of cubic and truncated cubic morphologies, while samples 

deposited at higher temperatures have an increasing number of truncated and 

rhombohedral particles[123.124].  

The transition to the more spherical morphologies is driven by an increase in 

the size of the nanoparticles as the deposition temperature increases, it was further 

found that as the particle size increased the geometry became increasingly spherical. 

It is highly likely that the two changes in physical properties are linked. As outlined 

previously, the increase in particle size is likely due to the increased number of 

collisions between iron nanoclusters and molecular iron during deposition caused by 

the re-evaporation of material from the walls of the deposition chamber. This 

colliding iron atoms will also possess a greater amount of thermal energy as the 

deposition temperature is increased leading to a greater chance of spherical clusters 

forming to minimise surface energy. The resulting particle geometry appears to be a 

critical factor in determining the future oxidation behaviour of the particle, with 

cubic structures having been shown to develop significantly strained lattice 

structures along the side facets to enhance the rates of oxygen anion in-diffusion. On 

the other hand, spherical particles display oxidation behaviour that results in the 

formation of large Kirkendall voids that eventually coalesce into a large central 

vacancy. As the deposition temperature can be used to control the type of 

morphology that dominates a sample it is possible in principle to exercise a degree 

particle selection by adjusting the deposition conditions to promote the formation of 

desirable geometries.  
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Chapter 4: Cu coated Iron  

 Nanoparticles 
 

 

One potential method of protecting pure Fe nanoparticles from the effects of 

increased oxidation is to coat the particle in a shell material that is either resistant to 

oxide formation or else forms oxides that have little effect on the overall magnetic 

properties of the particle. The aim as laid out in previous chapters is to create the 

best performing magnetic iron nanoparticles for magnetic nanoparticle hyperthermia 

(MNH), MRI contrast, drug delivery and/or magnetic particle imaging (MPI).  

 In this chapter, the attempted deposition of elemental copper onto the surface 

of the iron nanoclusters is investigated. The sample characteristics are examined in a 

similar style to the pure Fe samples in the previous chapter with a focus on how the 

particles size, shape and oxide thickness evolves with deposition temperature. It was 

found that the addition of copper material during deposition changed the way the 

particles change with increasing temperature with the average particle growing larger 

and more cubic as opposed to spherical. The presence of copper was confirmed 

through EDX measurements and an attempt was made to determine the location of 

the copper in the particle; if a copper oxide shell was present or the copper alloyed 

with the iron at the surface.  

 The particles were deposited at the University of Leicester (Department of 

Physics and Astronomy), particles were imaged and analysed using the JEOL 2011 

TEM and JEOL 2200 FS (S)TEM at the JEOL York Nanocentre at the University of 

York. Magnetic data obtained by our collaborators is briefly summarised to provide 

context.  
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4.1 Sample Characterisation  

Particles were characterised using information extracted from images taken 

using a JEOL 2011 TEM with high-resolution images taken using a JEOL 2200 

(S)TEM. Particles were characterised by their size, geometry and the thickness of the 

oxide shell that formed post-deposition, sample characteristics are compared against 

their deposition temperature and where appropriate against other characteristics. 

Particles in the sample were observed to possess geometries ranging from cubic to 

spherical. With cubic particles being confined by the six {100} planes and truncated 

by the twelve {110} planes with different degrees of truncation. As such the 

geometry was quantified using the ratio of the particles calliper distances (the 

maximum and minimum between two opposing points on the particles surface). 

Where geometry is defined as 

𝐺 =
𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥
 (4.1) 

Where 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥are the minimum and maximum calliper distances of 

the particle respectively as shown schematically in Fig. 4.1. 

 

Figure 4.1 Schematic diagram of the particle geometry classifications. Particles in the sample 

are described by the ratio of the of the minimum and maximum feret diameters such that a 

perfect cubic particle (this would appear as a square in transmission) would have a ratio of 0.63. 

A perfectly spherical particle (which would appear as a circle in transmission) would have a 

value of unity.  
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To match the geometry ratio as shown above to qualitive descriptions of the 

particles geometry cubic particles were considered to be those with a ratio of <0.75 

and spherical particles were considered to have ratios of >0.90 with particles that fall 

between these values being described as truncated cubic particles due to their 

appearance in transmission (Fig. 4.2). The particle sizes were determined by 

measuring the particles dimensions in ImageJ after binarising the images to remove 

the background. Images were first converted to 8-bit greyscale and binarised using a 

threshold value determined by the software’s ‘max entropy’ method which offered 

the best thresholding values that included the less dark shells[125]. 

The model is based on Otsu thresholding which separates the image into two 

classes of pixels: foreground pixels and background pixels. The threshold value is 

then determined by minimising the inter-class variance of the two groups as 

determined by the weighted sum of the two variances[126]. The model is useful for 

thresholding images where the image histogram has a bimodal distribution, in the 

case of the TEM images used here it is possible to define two separate groups of 

pixels, those belonging to a particle and those belonging to the background[127]. 

Particle shell thickness was measured by comparing the particle size determined 

through the above method with the size of the core determined by setting the 

threshold manually to encompass only the particles core. Measurements are then 

compared with the original image to make sure no double particles were counted, the 

process is highlighted in Fig. 4.2. 

 

Figure 4.2 A) Bright-field TEM image of Fe@Cu particles, B) image with filter set at the 

threshold value determined by the Max Entropy method in ImageJ and C) final image after 

binarisation, measurements obtained are compared to original image to remove anomalies such 

as the ‘double’ particle. 
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Fig. 4.3 shows the distribution of 100 particle sizes for samples deposited at 

435°C, 792°C, 978°C and 1191°C, the particles range in size from 10nm to 50nm 

however large cubic particles are sporadically observed with sizes greater than 

50nm. The average particles sizes for the samples were determined to be 

15.6±0.8nm, 17.6±0.5nm, 22.5±0.7nm and 24.1±0.6nm respectively and shown as a 

function of the deposition temperature in Fig. 4.4. The error in measuring the size of 

an individual particle was determined by comparing the size determined using a 

threshold value calculated as described above with upper and lower limit thresholds 

which were measured by hand. The upper threshold limit was determined as the 

value at which the derived particle size would not increase anymore while the lower 

limit was determined by the point at which the oxide shell was no longer included in 

the binarised image. The errors calculated this way were of the order of 1nm. The 

error in the bin counts was determined by measuring the number of particles that fell 

within 1nm of the bin edges. 

 

Figure 4.3 Size distribution histograms for samples created at four deposition temperature 

435°C, 792°C, 978°C and 1191°C. Average particle sizes were found to be 15.6±0.8nm, 

17.6±0.5nm, 22.5±0.7nm and 24.1±0.6nm respectively with the average for each histogram 

denoted by a black dashed line with 100 particles being measured for each sample. 
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 As with the pure Fe nanoparticles in the previous chapter the average particle 

size distributions were fitted with lognormal functions with the equation, explained 

in detail in chapter 3; 

𝑓(𝑥 ⎸𝜇, 𝜎) =  
1

𝑥𝜎√2𝜋
 𝑒𝑥𝑝 (

−(𝑙𝑛(𝑥) − 𝜇

2𝜎2
) (4.2) 

All chi squared tests fell within the significance range stated previously and 

thus the distributions presented offer a good model for the distribution of particle 

sizes in the Fe@Cu samples. 

Overall the samples show a slight increase in particle size with temperature 

increasing from 15.6nm to 24.1nm within the temperature range from 445°C to 

1191°C. This represents an increase of 54% across the temperature range and is 

significantly lower than the average particle size increase observed in pure Fe 

nanoparticles across a temperature range of 419°C. A comparison between the 

observed increase in the particle size of the pure Fe samples and the Fe@Cu samples 

is shown in Fig. 4.4.  

The range of the deposition temperatures only overlaps at the lower end of 

the temperature scale, so more data points are needed to draw concrete conclusions. 

However, the graph does illustrate the difference in the rate of increase of the 

particle size with increasing deposition temperature. This increase in temperature is 

expected due to the addition of Cu material to the particle surface resulting in either 

the formation of a copper shell or a Cu/Fe alloy. Furthermore, absorption of material 

due to the re-evaporation of iron and copper from the deposition chamber walls 

should also increase the average size of the particles with higher temperatures 

resulting in more re-evaporated material. Interestingly a much lower increase in 

particle size across the temperature range was observed in this case. This effect may 

be attributed to the difficulty of constructing multiple shelled particles. If the copper 

adheres to the surface of the iron nanoclusters any re-evaporated iron would have to 

adhere to the new copper surface. It is possible that this is energetically unfavourable 

and the contribution to the particle size by re-evaporated material is subsequently 

very low. This would leave only the addition of copper material (either direct or re-

evaporated) as the main driving mechanism behind the increase in the particle size 

with temperature. 
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Figure 4.4 Graph showing the comparison between the rate of particle size increase with 

increasing deposition temperature for Fe@Cu particles (red) and pure Fe (blue). Linear 

regression fits are used to highlight the difference in the rate of increase as a function of 

temperature with R2 values for the fit of 0.96 and 0.91 for the Fe@Cu and pure Fe respectively. 

 

The rate of increase in average particle size can be seen in Fig. 4.4, linear 

regressions have been plotted to highlight the difference with a gradient (rate of 

increase in size as a function of temperature) of 0.01 nm/C° for the Fe@Cu particles 

and 0.04 nm/C° for the pure Fe particles. This represents a 400% decrease in the rate 

of particle growth through increased deposition temperature due to addition of 

copper material. The linear regressions had goodness-of-fit R2 values of 0.96 and 

0.91 for the Fe@Cu and pure Fe respectively, suggesting that the linear fit is reliable 

across the respective temperature ranges. However, as the samples only overlap 

between 400°C and 500°C more data points would be needed to aid a deeper 

understanding of how the copper material effects the relationship between average 

particle size and temperature.  

Fig. 4.5 shows the distribution of particle geometries in the samples 

deposited at 435°C, 792°C, 978°C and 1191°C, unlike in the pure iron samples, 

which displayed a clear evolution towards spherical geometries the overall geometry 
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of the samples has remained constant. The average particle geometries can be seen in 

Fig. 4.6 with all average geometries lying within the truncated cubic to spherical 

range. Given that this behaviour differs from the pure Fe samples which experience 

significant changes in the average particle geometries during deposition based on the 

temperature this suggests the addition of Cu material has a significant effect on the 

properties of the sample. The average shape of the particle when was roughly 

hexagonal with the majority of particles deposited at higher temperatures possessing 

roughly equally sized {100} and {110} facets as seen in Fig. 4.7. Furthermore, as 

shown in the histograms in Fig. 3.5 there appears to be a decrease in the number of 

highly spherical particles (geometry ratio >0.9) as the deposition temperature is 

increased. 

 The distributions in Fig. 4.5 were fitted using the two-parameter Weibull 

distribution as this was found to match best with the data when the chi squared 

goodness-of-fit tests were performed against normal and lognormal distributions. 

The distribution for the average particle geometry mirrors the distribution for 

average particle size, in that the former case shows a clear negatively skewed 

distribution (right-of-centre sew). Whereas the lognormal distribution shows a 

‘skew’ to the left-of-centre. The Weibull distribution is often used to describe very 

narrow particle size distributions as it predicts far fewer smaller particles than the 

standard lognormal distribution. The distribution is also commonly found in the 

analysis of life data and product reliability however, the distribution is highly 

flexible and can be fit using the expression in Eq. 4.3. 

𝑓(𝑥 ⎸𝑎, 𝑏) =  𝑏𝑎−𝑏𝑥(𝑏−1)𝑒𝑥𝑝 (−
𝑥

𝑎
)

2

 (4.3) 

 Where the parameters 𝑎 and 𝑏 represent the scale and shape parameters 

respectively, with the former describing the spread of the distribution and the latter 

describing the shape. In the case of the scale parameter a larger value indicates a 

larger spread, one the other hand, the shape parameter denotes the skew of the 

distribution. A shape parameter between 3 and 4 results in a bell-curve similar to a 

normal distribution while a parameter value greater than this results in a negatively 

skewed distribution like those shown in Fig. 4.5. The goodness-of-fit or the 

distributions was determined using the chi squared test as described previously. In all 
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cases the distributions were found to lie within the 5% significance band suggesting 

a that the distributions offer a good description of the observed data.  

Across the range of temperatures there was no significant change in the 

particles average geometry with the samples average values lying between 0.87 and 

0.89, this represents a very narrow range of morphologies with the particles in this 

region being highly truncated. Whereas the particles in the region between 0.7 and 

0.8 are often characterised by the presence of sizeable {110} facets these facets 

remain smaller than the {100} facets when observed in transmission. The Fe@Cu 

particles observed here however adopt geometries where the {100} and {110} facets 

are of roughly equal length. 

 

 

 

Figure 4.5 Geometric distribution histograms for samples created at four deposition 

temperature 435°C, 792°C, 978°C and 1191°C. Average particle geometries were found to be 

0.874±0.005, 0.892±0.004, 0.875±0.005nm and 0.874±0.004nm respectively with the average for 

each histogram denoted by a black dashed line with 100 particles being measured for each 

sample. 
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The errors for the histograms in Fig. 4.5 were calculate in the same manner as 

the histograms in Fig. 4.3 where the average error in the measurements for the 

geometry ratio was found to be ±0.01. The errors for the averages in Fig. 4.6 were 

calculated from the standard error in the mean. To investigate the effect of the 

deposition conditions on the geometry further the relationship between the particle 

size and the particle geometry was examined by comparing the values for all 400 

particles across all samples (Fig. 4.7). The result shows a largely uniform 

distribution of the majority of particles between geometry ratios of 0.75 and 0.95 

with sizes between 10nm and 40nm. However, it can also be seen that almost all the 

highly cubic structures are larger particles, as the average particle size increases 

slightly with deposition temperature it is possible there is increase in the number of 

cubic particles alongside this in hotter samples. 

 

 

 

Figure 4.6 Graph comparing the change in average particle geometry with increased deposition 

temperature for Fe@Cu particles (red) and pure Fe (blue). Linear regressions were fit to show 

the lack of significant evolution in average geometry in Fe@Cu samples compared to the cubic 

to spherical transition observed in pure Fe particles. Regressions had a goodness-of-fit R2 value 

of 0.98 for Fe@Cu and pure Fe.  
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Figure 4.7 Particle geometry ratio against particle size for 400 nanoparticles deposited at a 

temperature range of 435°C to 1191°C with dashed lines to highlight the qualitive descriptions 

of the particle shapes with cubic particles (<0.7), truncated cubic particles (0.7<x<0.8) 

cuboctahedral particles at (0.8<x<0.9) and spherical particles (>0.9). 

 

Figure 4.8 Graph showing the variation of particle geometries across the different deposition 

temperatures with cubic particles (red), truncated particles (blue) and spherical particles 

(green) with dashed lines to aid the eye. Line regressions are fitted to aid the eye. 
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Fig. 4.8 shows the change in the percentage of particles adopting cubic 

(<0.75), truncated (0.75<x<0.90) or spherical (>0.90) geometries with increasing 

deposition temperature. It can be seen from the graph that the most dominant 

geometry is that of truncated cubic (hexagonal as viewed in transmission) particles. 

The least common type of particle is the cubic particle. However, it is interesting to 

observe that as the deposition temperature is increased the percentage of truncated 

cubic particles increases. This is the opposite of what was observed in pure Fe 

particles where the number of cubic and truncated particles decreased rapidly as the 

number of spherical particles rose. For Fe@Cu particles however the reverse is 

observed with the number of spherical and truncated particles decreasing and the 

number of cubic particles increasing. This is likely linked to the gradual increase in 

size caused by increased temperature coupled with the observation that the largest 

particles tend to adopt cubic geometries. This can be shown in greater detail in Fig. 

4.9 where the percentage of cubic, truncated, and spherical particles is shown as a 

function of particle size. The figure shows a clear and significant increase in the 

percentage of larger particles that adopt cubic geometries, with the percentage of 

truncated and spherical geometries decreasing sharply with increased particle size.  

 

 

 

Figure 4.9 Distribution of particle geometries across different particle sizes with histogram (left) 

showing the distribution of cubic, truncated, and spherical particles and the percentage of 

particle for each size range that each geometry classification makes up (right) with cubic (red), 

truncated (blue) and spherical (green) particles with dashed line to aid the eye. 
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The drastic change in behaviour of the Fe@Cu nanoparticles compared to 

pure Fe particles suggests that the addition of copper material into the nanostructures 

has a major effect on the nanoparticles at higher deposition temperatures. The main 

difference is in how the evolution of particle geometry from cubic to spherical 

particles does not occur after the addition of Cu material. A potential explanation of 

this could be the reduction in surface energy of the nanoparticles resulting in higher 

temperatures being needed to drive particle geometries to more spherical shapes. 

This is supported by the fact that the percentage of truncated cubic particles does not 

decrease with increasing deposition temperature while the percentage of spherical 

particles does. The lowest energy close-packed surface in FCC Cu is the (111) and 

has a surface energy of 1409 Jm-2 which is far below the surface energy for the 

lowest energy surface in BCC Fe (110) which is 2123 Jm-2[128,129]. As such the 

addition of copper material onto the iron nanoclusters will serve to lower the total 

surface energy of the particle in the event of a Cu shell forming or alloying of the Fe 

and Cu material. The ability to retain the cubic geometries of particles despite 

deposition at higher temperatures is a useful feature, as mentioned in chapter 1 cubic 

particles have desirable catalytic properties as well as packing density and 

orientability[130]. 

 

4.2 EDX Results 

 

 EDX was employed to first determine the extent to which uptake of copper 

onto the iron clusters has occurred. This spectroscopic method in conjunction with 

electron microscopy provides an excellent method for determining the element 

composition of samples with nanometre resolution. A theoretical treatment of the 

technique is given in Chapter 2 and will only briefly be described here in terms of 

the EDX functions used. The data presented here was taken from the samples created 

at 435°C, 792°C, 978°C and 1191°C, the EDX functions used were as follows. 

1) EDX ‘point and shoot’ scans were performed to obtain EDX spectra of the 

localised area around the particle This was done to create a background 

reference for the determination of the copper content. The advantage of this 

method is to allow for spectrum acquisition from small areas within the 
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region of interest. This however, comes at the cost of signal-to-noise ratio. If 

the region is too small or the element of interest too sparsely distributed these 

small-area EDX scans may not be sensitive enough.  

 

2) EDX line-scans were obtained across the areas of the nanoparticle 

comprising shell and core, the aim of which was to determine if a noticeable 

increase in copper signal was detectable across the shell. 

 

3) Lastly EDX maps were created over the course of 30 minutes per map to 

attempt to detect the if the copper was homogeneously distributed around the 

particle or concentrated at the ‘edges’. This would suggest the formation of a 

shell while the former case would be more suggestive of alloying. 

 

Fig. 4.10 shows the EDX spectra gathered for a particle in the coldest sample 

(deposition temperature of 435°C) alongside the spectra corresponding to the 

background region. The particle measured was between 30-40nm in diameter with a 

spherical geometry. The spectra for the background region shows the expected mix 

of C, Ni (Ni TEM grids were used as opposed to standard Cu ones), and Si, as these 

elements are all present in the sample and expected as background. For instance, the 

carbon signal is likely generated from the support film which for these samples was a 

holey-carbon support. The nickel and silicon signals are due to the TEM grid and the 

TEM holder respectively. Interestingly there is a small amount of copper picked up 

in the background regions, this signal is small but consistent and was determined to 

be approximately 0.04±0.01% of the elemental weight and 0.01% of the atomic 

weight of the signal from both background regions. This suggests that there has been 

some degree of elemental copper deposition that has occurred. This is likely due to 

not all the copper being absorbed onto the iron clusters during deposition and as the 

clusters move through the shell evaporator region of the deposition chamber some 

elemental copper will be deposited alongside the clusters. Elemental copper is likely 

to be deposited onto the TEM grid along with the nanoparticle clusters. Interestingly 

this signal is present in the background regions regardless of temperature and 

remains at a very consistent atomic percentage. 
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Figure 4.10 EDX spectra for a random particle for the 435°C deposition temperature sample 

with spectra taken from a background (top) and particle (bottom) region, with characteristic 

peaks labelled. The intensity of copper peak has been denoted by a black dashed line to 

highlight the increase in the copper signal from background to particle regions.  

 

When compared to the spectra collected from the region of interest we can 

see the addition of O and Fe peaks as expected, the origin of the iron is obvious as 

the core of the particle will be made purely of iron. With the oxygen coming from 

the oxidation that will invariably occur when the sample is removed from the 

deposition chamber and exposed to air. It is not possible with this current technique 

to determine if the oxide comes from iron oxide (likely magnetite) or copper oxide. 

It is also noticeable that the copper peak in the region of interest spectra is 

significantly more pronounced. This suggests that there is an increase in the amount 

of copper being detected in the region corresponding to the nanoparticle. This 

comparative increase in the copper signal from the nanoparticle over the signal from 

the background region is present across all samples and for all particles. This 

suggests that there has been a consistent degree of copper uptake onto the particle as 

desired. Interestingly the amount of copper detected from the nanoparticle region 

varies greatly with deposition temperature (Fig. 4.11). This variation of copper 

content as measured through the analysis of the EDX spectra suggests that the both 

the coldest and hottest samples (377°C and 1131°C respectively) have the largest 

copper-to-iron ratio with an atomic weight for copper of 20.96±2.38% and 

16.40±4.23% respectively. 
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Figure 4.11 Graph displaying the copper content as a percentage of the signal from the particle, 

signal is filtered to show copper content as a percentage of the combination of Cu, Fe and O 

signal with the weight percentage (red) and atomic percentage (blue). 

 

For a nanoparticle with an iron-core and a diameter of 30nm, which represent 

good approximations of the average particle in the sample. Having an atomic copper 

percentage of 21% would result in the formation of a homogeneous copper shell with 

the thickness of a few monolayers. It should be noted however that the formation of 

such a homogeneous shell is unlikely as spectra gathered from different areas along 

the edge of the nanoparticle result in wildly varying amounts of copper detected as 

can be seen in Fig.4.12. While such scans are highly sensitive to drift, as even a 

small particle movement may take it out of the scan region and such small regions 

generate very little signal. 

To attempt to determine the location and concentration of the copper in the 

sample EDX maps were generated of a collection of particles in each sample, the 

resulting maps are displayed in Fig. 4.13. The maps confirm the idea that there is a 

distribution of copper across the whole sample as observed in the background 

spectra, as mentioned this is likely due to leakage of Cu material from the core-shell 

evaporator into the deposition chamber. This would result in the deposition of 

elemental copper on the TEM grid and explain the observation made here.  
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Figure 4.12 EDX linescan spectra the core and shell regions of a particle in the coldest sample 

(435°C deposition temperature) with oxygen signal (red), iron signal (green), nickel signal from 

the TEM grid (blue) and copper signal (purple).  

 

Fig. 4.13 also shows an increase in copper signal within the area of the 

particle, this has been highlighted qualitatively by comparing the density of signal in 

the EDX maps in the particle region (highlighted by the dashed lines) and the 

background. As can be seen by in Fig 4.13 the particle region is marked on the EDX 

maps by a black dashed line, it should be noted, that drift has not been accounted for. 

As can be seen in Fig. 4.13 the Cu signal inside the particle region is significantly 

larger than that outside the region suggesting a degree of copper uptake by the 

Fe@Cu nanoparticles. This suggests that there has been a degree of copper uptake by 

the Fe nanocluster and although it is not possible to determine if the material has 

formed a shell or alloyed (more likely) with the Fe material, the increase in Cu signal 

generated in the particle region is a positive result.  

Overall the EDX analysis of the samples shows that the presence of the Fe 

material is confined to regions corresponding to a Fe@Cu particle. This is useful as 

it suggests that the particles are being deposited with little to no elemental iron in the 

molecular beam, indicating that all the iron material in the core shell is forming 
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clusters. As such this can imply the presence of little to no elemental iron in the 

molecular beam, suggesting that the main method for particle size growth during 

deposition as shown in both pure Fe and Fe@Cu particles is the re-evaporation of 

material from the walls. Furthermore, there is enough increase in the Cu signal 

around the particle regions to suggest that a degree of uptake has occurred although 

it is unlikely that a full ‘protective’ copper shell has formed around the iron 

nanocluster. This is further supported by the fact that the copper content does not 

show any significant variation across the width of the particle. This is more 

consistent with the idea of alloying than with shell deposition where it would be 

expected for the copper to aggregate around the particle edges and for signal to be 

increased there. This is not present in Fig. 4.12 or 4.13 where the copper signal is 

largely homogeneously distributed with an increase in density around the particle 

regions. To investigate this further it is possible to use high-resolution images 

gathered in TEM and STEM modes to compare the lattice spacings in the particles 

shell with the expected lattice spacings for copper and iron oxides. 

 

Figure 4.13 EDX maps of two particles with spherical (top) and cubic (bottom) geometries, 

particle region has been marked by dashed lines on both the HAADF image and the maps for 

Fe (green) and Cu (purple). The effect of particle drift has not been accounted for but can be 

seen clearly in the EDX maps with the signal generated from the particle drifting outside of the 

dashed line. EDX maps were created over a period of 15 minutes with both Fe and Cu maps 

generated simultaneously.  
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4.3 Magnetometry 

 

 As with the pure Fe samples in chapter 3 magnetometry information was 

obtained using a SQUID magnetometer and analysed by our collaborators at the 

University of Leicester. The data presented in this section was reproduced with 

permission to add context to the discussion surrounding the production of coated 

Fe@metal nanoclusters. A description of how the magnetometry data is analysed is 

provided in chapter 3 with the plots shown in Fig. 4.14 displaying the magnetisation 

curves of thee samples with deposition temperatures of 442°C, 774°C and, 1137°C 

deposited on Si (100) substrates. The plots show the magnetisation curves across 

field ranges from -5T to +5T and -1T to +1T respectively. Unlike with the pure Fe 

samples there is no significant change in the magnetic response or hysteresis of the 

particles with the curves for samples at 5K and 300K shown. The data was taken as a 

measurement of the total sample moment (emu) as a function of the applied 

magnetic field at the two temperatures mentioned (5K and 300K). The magnetic 

moment is expressed in Fig. 4.14 as the moment per gram of iron with the mass of 

iron determined by XTM measurements during and after the sample deposition.  

 As with the iron samples the saturation magnetism was determined by fitting 

Langevin functions such that; 

𝐿(𝑥) = coth(𝑥) −
1

𝑥
 (4.4) 

The Langevin function was used as the classical limit of the Brillouin 

function that describes the dependency of the magnetisation M on the applied 

magnetic field for a collection of non-interacting paramagnetic atoms or ions. The 

exchange interaction of the atoms locks the atomic moments so that the Fe 

nanoparticles act as a single magnetic moment, as such it will behave as a classical 

magnetic dipole. The saturation magnetism is shown in Fig. 4.15 and unlike with the 

pure Fe samples does not seem to decrease with higher deposition temperatures. 

However, this conclusion is not certain as more data points are needed to confirm the 

magnetic behaviour at higher deposition temperatures. Furthermore, there is not a 

major difference between the saturation magnetism of the pure Fe and Fe@Cu 

samples, this could imply that the diamagnetic copper does not interfere with the 
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ferromagnetic Fe. This is useful as the presence of the Cu material has a significant 

effect on the physical properties as a function of deposition temperature as discussed 

previously. As such it may be possible to tailor the physical properties of the samples 

through the addition of metallic material onto the surface of the Fe nanocluster while 

maintaining the desirable magnetic response characteristic of iron nanoclusters. 

 

Figure 4.14 Raw magnetometry data obtained via SQUID and processed by collaborators at the 

University of Leicester (reproduced with permission)[102]. 
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Figure 4.15 A) Saturation magnetism calculated through Langevin fitting of the raw hysteresis 

curves and plotted as a function of deposition temperature, B) calculated area subtended by 

hysteresis curve showing a rough prediction of expected heating output of the particles in the 

sample as a function of deposition temperature. (Reproduced with permission)[102]. 
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Chapter 5: Investigation of Oxidation 

 Pathways 
 

 

 The coating nanoparticles with metallic, protective shells is one potential 

method to control the oxidation process of the pure Fe nanoparticles as the addition 

of copper material has been shown to preserve cubic geometries at higher deposition 

temperatures. However, much more work needs to be done on identifying, 

depositing, and analysing various potential coatings. As such understanding the 

oxidation pathways of the pure Fe nanoparticles is important for building a fuller 

understanding of nanoscale oxidation. 

The oxidation of cubic nanoparticles has been studied as described in chapter 

1 as such the oxidation mechanisms that govern the process in spherical particles is 

examined in this chapter. To this end the diffusion co-efficient of the particles in the 

samples is estimated statistically based on the observed oxidation behaviour post-

annealing. This is then discussed in context of the diffusion along the grain 

boundaries that are more common in spherical particles. 

Particles were imaged and analysed using the JEOL 2011 TEM and JEOL 

2200 FS (S)TEM at the JEOL Nanocentre at the University of York. 
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5.1 Effect of Annealing 

5.1.1 Increase in Average Particle Size 

After annealing at 200°C for 15 minutes the average particle size increased from  

19.7nm to 36.4nm with a range of sizes between 10nm and 50nm prior to the 

annealing and a range of sizes between 20nm and 100nm afterwards. The increase in 

size across the temperature range can be attributed to the increase in the oxide shell 

thickness due to oxidation. We can estimate the increase in the oxide shell and 

therefore the increase in the particle size due to oxidation by comparing the sample 

averages before and after annealing. Assuming an average particle before annealing 

undergoes oxidation and fully oxidises its iron core then we can estimate the 

expected amount of oxide this process would add assuming that iron transported to 

the surface is immobile and instantly oxidises. As such this estimate provides an 

over estimate of the contribution to the particle size increase due to oxidation. The 

number of atoms in the iron core can be estimated by comparing the volume of the 

core to that of the α-Fe unit cell. 

𝑁𝑗 =  
𝑉𝑗

𝑉0
 × 𝑛 (5.1) 

Where Nj is the number of atoms in either the core or shell, Vj is the volume 

of the core or shell and V0 is the volume of the unit cell while n is the number of 

atoms in the unit cell (2 for α-Fe). In the case of the completely depleted core then 

the number of atoms that have diffused out to the surface for oxidation is equal to the 

number of atoms in the core. As such the theoretical increase in the oxide shell based 

on the assumption that all the iron atoms stay on the surface and oxidise can be 

calculated. 

𝑉𝑜𝑥𝑖𝑑𝑒
𝑓

=  𝛺 ×  𝑁𝑐 (5.2) 

Where the final volume of the oxide is equal to the amount of oxide formed 

per atom (Ω) and the number of atoms in the core (Nc). In the case of fully oxidised 

particles with both ‘hollow’ and ‘non-hollow’ cores the increase in the amount of 

oxide from an original average of 3.1nm was compared with the potential increase in 

the oxide thickness due to full oxidation of the core. Furthermore, it is important to 
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consider the direction of the oxidation front, it was discussed in chapter 4 that the 

relative rates or iron and oxygen diffusion determine the direction of the oxide shell 

growth; outwards from the oxide/gas interface, or inwards from the metal/oxide 

interface. In practice, there will be non-zero growth at both interfaces however, for 

simplification only the dominant direction will be considered.  

In the case of ‘hollow’ iron oxide nanoparticles it is clear that oxidation is 

dominated by growth at the oxide/gas interface due to the large central Kirkendall 

void (~ 60% of the particle). A simple model for the amount of oxide growth 

assumes that oxidation proceeds only through the oxide/gas interface as such this 

allows the position of the original metal/oxide interface to be estimated as the 

position of the void/oxide interface in the particle and from this the size of the iron 

core to be determined. For an average ‘hollow’ particle of 32.21nm with an oxide 

shell of 6.6nm this predicts an iron core of 19nm which would provide enough iron 

material to result in the out-diffusion of 2.46 × 106 𝑎𝑡𝑜𝑚𝑠 if the whole core is 

depleted. This would result in the formation of 6.1 × 104 𝑛𝑚3 of additional iron 

oxide which for this particle should result in an oxide shell of 6.16nm.  

This prediction is within 10% of the observed average shell thickness and is 

consistent when expanded across a number of observed ‘hollow’ nanoparticles. The 

predicted oxide shell based on the assumption of an immobile metal/oxide interface 

and the complete oxidation of iron material on the surface of the particle is shown in 

Fig. 5.1. The difference between the observed thickness and predicted thickness is 

also shown in Fig. 5.1. As such it is likely that in the case of ‘hollow’ iron oxide 

nanoparticles there has been a fast diffusion of iron material out of the core with a 

significantly slower rate of oxygen in-diffusion as is traditionally claimed. As such 

the idea that the change in particle size is driven by the increase in the oxide shell 

thickness holds for ‘hollow’ iron oxide particles. 

 

 

 

 

 



120 
 

 

Figure 5.1 Predicted oxide thickness (red) for 50 ‘hollow’ iron oxide nanoparticles assuming 

oxidation proceeds outwards from the oxide/gas interface and the difference between the 

observed thicknesses and the predicted values (black).  

 

5.1.2 Evolution of Particle Shape 

 

 It is clear from chapter 3 that the particles have undergone significant 

morphological changes after heating resulting in a complete lack of cubic and 

truncated cubic particles remaining in the sample. The resulting sample is composed 

of almost purely spherical particles (geometry ratio of >0.85); this average is derived 

from the geometry of the whole particle and as can be seen best in the dark field 
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images the geometry of the core does not always match that of the shell. This is 

likely dependent on the original morphology of the particle in question as material 

added in oxidation will be distributed in such a way to create the lowest surface 

energy configuration (spherical) resulting in the highly spherical oxide shells. 

However, material is not added to the core but is rather being lost and is hence less 

able to re-arrange from a previously cubic iron core to a spherical one. Therefore, it 

seems likely that in the case of particles large enough to oxidise only partially under 

heating that forming oxide ridges, if the particle was originally cubic, it retains a 

more cubic core geometry after heating. For this group of partially oxidised particles, 

the resulting iron core after heating can in some case retain a certain degree of its 

morphology with some of these particles possessing highly truncated cores. The 

truncated cores in these particles are similar, in nature, to the highly truncated 

particles before heating in that they are terminated by 6<100> planes and truncated 

by 12<110> planes. It should be noted that no particles were found with perfectly 

cubic cores or cores with only slight truncations. In the cases where the core was 

found to not be perfectly spherical it was highly truncated cubic with very large 

<110> side facets. 

 Cubic particles have been shown to contain mostly monocrystalline side 

facets, the only grain boundary dense regions of the oxide shell will be at the 

corners. Spherical particles, on the other hand, will have shorter side facets and more 

breaks in the oxide shell where grain boundaries will form. It follows that particles 

that began as spherical particles will oxidise faster than those that began as cubic 

shaped particles and will be more likely to oxidise fully. 

The shift in the sample from cubic particles to spherical particles can be 

explained based on surface energy minimisation. It has been long established that a 

system will attempt to arrange itself such that the Gibbs free energy of the system is 

a minimum. Where the Gibbs free energy is defined as; 

∆𝐺 =  ∑ 𝛾𝑗𝐴𝑗

𝑗

 (5.3) 

Where γj is the surface energy and Aj is the area of the surface/crystal plane 

and ΔG is the difference in energy between a real crystal composed of many 

molecules with a surface to that of a similarly configured number of molecules in an 
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infinitely large crystal. As such the quantity ΔG is representative of the energy 

associated with the surface. In practical terms it represents the energy required to 

form ‘dangling bonds’ at a crystal surface and can be estimated as the total energy 

required to add an atom or molecule to that surface. The definitions of surface 

energy and its counterpart surface tension are dependent on the phase of the material 

in question, for a solid such as a nanoparticle the surface energy can be described as 

the reversible work with which a new surface can be created at constant volume, 

temperature, and chemical potential μ. When considering the addition of material to 

a nanoparticle through oxidation it follows that the material will be distributed at the 

most energetically favourable locations. As such the growth rate of the particle’s 

crystal planes can be in this way linked to their surface energies in that the largest 

facets of a crystal will be the planes with the lowest surface energy (ie. low index 

facets such as (100) and (110) for BCC crystals). In the case of BCC α-Fe the surface 

energy of its lowest order planes is well studied[131]. The typical approach to 

calculating the surface energy of a crystal plane is to use the slab model, wherein a 

supercell of a crystal is orientated to the plane of interest and atoms are removed to 

form a vacuum. For a given slab the surface energy can be defined as; 

𝛾(ℎ𝑘𝑙) =  
𝐸𝑠𝑙𝑎𝑏

(ℎ𝑘𝑙)
−  𝐸𝑏𝑢𝑙𝑘

(ℎ𝑘𝑙)
 ×  𝑛𝑠𝑙𝑎𝑏

2𝐴𝑠𝑙𝑎𝑏
 (5.4) 

Where 𝐸𝑠𝑙𝑎𝑏
(ℎ𝑘𝑙)

 is the total energy of the slab for a given Miller index (hkl) and 

𝐸𝑏𝑢𝑙𝑘
(ℎ𝑘𝑙)

 is the energy per atom of an ‘orientated’ unit cell where the conventional unit 

cell is transformed such that the lattice vectors are parallel to the plane in question. 

Furthermore, ‘n’ is the total number of atoms in the slab, ‘A’ is the associated 

surface area and the factor of ‘2’ is used to account for both the top and bottom 

surfaces. Analysis of the iron system using this model has been done previously and 

while the exact value for the associated surface energies of the crystal planes often 

varies, the relationship between them holds constant such that for BCC α-Fe. 

𝛾(110) <  𝛾(100) <  𝛾(111) 
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5.1.3 Oxide Shell Growth 

 

It is possible to obtain a rough estimate for the effective diffusion coefficients 

for the particles in the samples by comparing the decrease in the size of the iron core 

during heating and considering the amount of iron core material that must out-diffuse 

to account for this. The value for the diffusion coefficient is often determined 

empirically from ln(D) vs 1/T plots as such this phenological approach is a rough 

estimate based on observations of the particles made in TEM and STEM after 

annealing. In the absence of samples created at different temperatures an estimation 

of the effective diffusion coefficient can be obtained from the mid-oxidation 

particles. This is possible as the critical size for core depletion has been determined 

to be 28.12nm, this marks the size that the annealing conditions were such that full 

oxidation of the iron core was achieved. Particles below this size could in principle 

have completed the oxidation process faster than the annealing time and therefore the 

calculated diffusion rate would be slower than the real diffusion rate. This problem 

can be addressed by considering a particle on the critical size limit for depletion of 

the iron core as no particles with iron cores were observed below this size.  

 

 

Figure 5.2 Change in oxide thickness as a function of particle size for 50 mid-oxidation particles 

(red) observed in the sample after annealing, the linear regression (black) has been fitted to 

allow for the calculation of the expect oxide shell thickness for a particle at the predicted critical 

size limit for core retention of 28.12nm (grey). The fitted regression has a R2 value of 0.845 

suggesting that the linear regression fitted predicts 85% of the variance in the oxide thickness.  
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The particle considered would have an average size of 28.12nm with an 

oxide shell thickness determined from the linear regression in Fig. 5.2 which shows 

the increase in the oxide shell thickness for particles retaining their iron cores against 

particle size. As such we can estimate the oxide shell thickness of a particle at the 

critical limit for core retention to be 5.15nm thick. This would result in an original 

iron core of 17.82nm which is slightly larger than the average iron core size prior to 

annealing. It is assumed again in this case that as the oxide shell grows the 

metal/oxide interface remains static while the oxide/gas interface moves outwards. 

This assumption comes from the idea that oxidation occurs through the out-diffusion 

of iron ions rather than the in-diffusion of oxygen ions, this is based on the 

difference in the diffusion coefficients for iron and oxygen ions in magnetite which 

at differ by several orders of magnetite for example, at temperatures of 823K the 

values are 10-13 cm2/s and 10-18 cm2/s respectively[132]. A schematic diagram of the 

evolution of the particle during annealing is shown in Fig 5.3 and shows the outward 

expansion of the oxide shell and the shrinking of the iron core forming interface 

Kirkendall voids.  

 

Figure 5.3 Schematic diagram showing an overview of the change in the particle 

during heating with A] before heating and B] after heating. The radius of the core 

shrinks as material diffuses out to the surface adding to the thickness of the oxide 

shell. The heating is conducted in atmospheric conditions resulting in instant 

oxidation of the material on the surface. The void region is formed through the 

comparative diffusion coefficients for iron out-diffusion and oxygen in-diffusion, with 

the latter being up to 5 orders of magnitude slower[132].  
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As oxidation progresses these voids are expected to coalesce together to form 

a ring at the metal/oxide interface that will expand as the core shrinks further due to 

heating, the final result will be the ‘hollow’ iron oxide particles described previously. 

As such we can predict the flux of iron atoms that have diffused out-wards per unit 

area and unit time where the area is equal to the surface area of the particle and the 

time is equal to the annealing time. This results in a diffusing flux of 2.1 ×

10−12 𝑘𝑔 𝑐𝑚−2𝑠−1. If we then assume that the concentration profile for iron goes 

from a maximum at the metal/oxide interface to zero at the oxide/gas interface as 

shown in Fig. 5.4 we can then estimate the effective diffusion coefficient using 

Fick’s law. 

𝐽 = −𝐷
𝑑𝐶(𝑥)

𝑑𝑥
 (5.5) 

This leads to an estimated diffusion coefficient for a 28.12nm thick particle 

with 5.15nm thick oxide shell assuming that oxidation proceeds through the out-

diffusion of iron of 1.37 × 10−12𝑐𝑚 𝑠−1. The concentration gradient was estimated 

as the density of iron atoms at in α-Fe at one side of the oxide and zero at the surface 

of the particle. The same analysis can be expanded to include all particles that have 

retained some portion of their iron core, this is possible as the amount of material 

that has been oxidised from the core during annealing can be estimated from the size 

of the Kirkendall interface voids. Assuming an immobile metal/oxide boundary the 

distance between the void/oxide boundary and the metal/void boundary should be 

equal to the volume of iron core that has been oxidised.  The distribution of the 

calculated diffusivities has been presented in Fig. 5.5 which displays an increase of 

the diffusivity with increasing particle size. The average diffusion coefficient was 

found to be 8.41 × 10−12 𝑐𝑚−2𝑠−1 which represents a significant increase the 

diffusion coefficients measured in previous literature. 
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Figure 5.4 A) Schematic diagram of the Fe concentration gradient across a particle and B) 

calculated concentration gradient across the predicted oxide shell for a 28.12nm particle. 

 

The diffusivities calculated are close to the levels of liquid metal and have 

been seen in high temperature studies with Dieckmann et al[133] finding diffusion 

coefficients for bulk iron at temperatures between 900-1400K of between 

10−11𝑐𝑚−2𝑠−1 and 10−14𝑐𝑚−2𝑠−1. Atkinson et al[134] studied the diffusion of bulk 

iron at the lower temperature of 773K and found diffusivities of 10−16 𝑐𝑚−2𝑠−1. For 

Fe diffusion at temperatures similar to the study here, Sidhu et al[135] found the 

coefficient to be of the order of 10−15 𝑐𝑚−2𝑠−1at 190 K which makes it an order 

faster than Atkinson’s coefficient despite the much lower temperature. Hence, the 

rates of oxidation observed in the nanoparticles studied here are greatly enhanced 

over what would be expected for annealing at 200°C while still remaining in the 

range of diffusivities that have been observed at other temperatures. 

The increase in the observed diffusion rates with particle size is likely due to 

the fact that as spherical particles increase in size more grain boundaries are 

introduced into the oxide shell due to the larger particle being able to sustain a 

greater number of grains in the shell. It is predicted that the contribution to the 

oxidation provided by a greater number of grain boundaries in a particle plays a 

significant role in the oxidation process spherical nanoparticles. As such 

understanding how, grain boundaries fit into the oxidation model is important and 

will be explored in the next section.  
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Figure 5.5 Graph showing the calculated diffusivities of 50 partially-oxidised particles that have 

retained their iron cores and developed Kirkendall voids at the interface, the average diffusion 

coefficient was found to be 𝟖. 𝟒𝟏 × 𝟏𝟎−𝟏𝟐 𝒌𝒈 𝒄𝒎−𝟐𝒔−𝟏. The linear regression was plotted to 

show the general increase in the diffusivity with particle size and has a R2 value of 0.67. 

 

5.3 Contribution from Grain Boundaries 

 

The role of grain boundary diffusion has been shown to have a significant 

role in diffusion at temperatures below 500K with the contribution to the overall 

diffusion of the sample increasing as temperatures are lowered. This is compounded 

by the density of grain boundaries in the sample with spherical particles possessing a 

much larger fraction of grain boundaries when compared to the bulk lattice. A grain 

boundary is the interface between two crystal grains in a polycrystalline material, 

they are 2D defects that are often associated a reduction in conductivity and an 

increase in the rate of diffusion. To describe a grain boundary crystallographically 

several variables need to be used[136]. The standard way of describing the boundary is 

through the rotation of a grain by angle θ about a rotation axis o which is often 

described by its Miller index [h,k,l]. The orientation of the grain is described by the 

Miller index of the normal to the boundary plane. As such the common way of 

expressing a grain boundary takes the form θ[hi,ki,li](hni,kni,lni) where θ is the misfit 

or misorientation angle.  
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In a grain boundary, individual atoms are displaced from their regular lattice 

sites compared to the crystal structure of the bulk lattice. Grain boundaries occur in 

one of or a combination of two types; the first is the twist boundary where one grain 

is rotated about the normal of the boundary plane and the second tilt boundary is 

where one grain is rotated by an angle perpendicular to the boundary plane. 

Furthermore, grain boundaries can be distinguished by two different groups, low-

angle grain boundaries and high-angle grain boundaries. In some literature the terms 

small-angle and large-angle are used respectively although the definitions are the 

same and can be used interchangeably, the former descriptions will be used here. 

If the angle between two grains is sufficiently small enough, typically θ < 15° 

then the boundary can be adequately described through the model proposed by 

Burgers in 1940[136]. In this model it was proposed that a low angle tilt boundary 

joined through two simple cubic grains with a common axis can be thought of as 

composing of a series of edge dislocations parallel to the cube direction. The spacing 

between the dislocations is given as; 

𝜆𝑑 =
𝑏

2 𝑠𝑖𝑛 (
𝜃
2)

≅
𝑏

𝜃
 (5.6) 

Where b is the Burgers vector for the lattice. This is the vector that describes 

the difference between the distorted lattice around a dislocation and the perfect 

lattice by denoting the direction and magnitude of atomic displacements due to 

dislocation. 

 The dislocation spacing 𝜆𝑑 will decrease with increasing angle 𝜃 with the 

spacing between individual dislocations becoming so small that they will eventually 

be unresolvable and will appear as extended clusters of dislocations. Generally, this 

point is taken to be around 13° to 15° corresponding to a value of 𝜆𝑑 ≈ 4|𝑏|[137]. 

This represents the upper limit for the validity of the dislocation model of grain 

boundaries and the transition point between a low-angle and high-angle grain 

boundary. This limit is justified in literature by the transition away from a low-angle 

structure to the grain boundaries occurring at 15° in bismuth or 13.6° in 

aluminium[138,139]. An example of a low-angle boundary is shown in Fig. 5.6 with the 

structure of the low-angle grain boundaries for magnetite simulated using CrystalKit 



129 
 

used to create Fig. 5.7. Diffusion through low-angle boundaries has been found to be 

similar to diffusion through the bulk lattice with the low-angle grain boundary acting 

as a slightly more open lattice with diffusion along low-angle boundaries being 

similar to the bulk lattice[140]. 

As the grain boundary angle increases beyond the limit of Burger’s 

dislocation model the individual dislocations are no longer distinguishable as they 

begin to overlap, and computer simulation is needed to examine the behaviour of 

large-angle boundaries. These approaches operate by modelling the atoms at or 

nearby grain boundary regions with a given rotation angle and summing of the 

interaction of each individual atom with its nearby neighbours[141]. The computer 

simulations of multiple grain boundaries resulted in the development of the 

structural unit model for high-angle grain boundaries, the model predicts that the 

boundary is composed of repeating structural units[142]. Ashby et al. found the typical 

structural units to consist of several different polyhedral shapes which has been 

supported by other simulations and imaging experiments with the majority of grain 

structures composing of a combination of these fundamental units[143,144]. The 

structural units that make up the high-angle grain boundaries are described by the 

concept of the coincidence site lattice model that uses the repeated units to describe 

how two highly mismatched lattices collide.  

 

Figure 5.6 Schematic diagram of a low-angle grain boundary. 
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Figure 5.7 Schematic depiction of the grain boundary between two magnetite grains viewed 

along the [100] zone axis rotated with respect to each other by an angle of A) 10° B) 30° and C) 

60°  

 

The coincident site lattice describes the degree of fit between two 

neighbouring lattices as ∑ 𝑋 where X is the number reciprocal of the ratio of 

coincident sites in a structural unit to the total number of sites in the unit. In the case 

of low-angle grain boundaries that can be described purely in terms of dislocations 

they will be described as ∑ 1 grain boundaries, in high-angle grain boundaries they 

may be described as ∑ 3 and ∑ 5 which would represent one atom in 3 or 5 

respectively that would be shared between the two lattice structures. The type of 

grain boundary has been shown to have an effect on the local diffusion coefficient as 

the different boundaries have different degrees of openness. In a simple model this 
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would serve to lower the activation energy for diffusion along that path which would 

in turn lower the diffusion coefficient as per the Arrhenius in Eq. 5.7. 

𝐷𝑔𝑏 = 𝐷0 𝑒𝑥𝑝 (−
𝐸

𝑘𝐵𝑇
) (5.7) 

 Where 𝐷0 is the frequency factor and 𝐸 is the activation energy. The 

relationship between the mobility of diffusing atoms and the CSL of the grain 

boundary is non-linear and does not imply that high sigma grain boundaries are more 

mobile than low sigma boundaries, with the mobility instead determined by the 

atomic structure of the grain boundary. 

Nanoparticles with more spherical geometries have been shown to have a larger 

number and density of grain boundaries in their shells as such the effective diffusion 

coefficient as shown in chapter 1 will have a much greater contribution from 

diffusion along the boundaries. Furthermore, it has been established previously that 

the effect of diffusion along grain boundaries is more pronounced at lower 

temperatures. The volume fraction of the grain boundaries has been estimated below 

as a function of particle geometry. This was measured using HRTEM which could be 

Fourier filtered to determine the average grain size in the particle, an example of a 

Fourier filtered particle is given in Fig. 5.8. The filtered grains were then compared 

to the original image to determine screen the result for any artefacts and the average 

grain size determined. The volume fraction was then plotted as a function of the 

particle geometry by assuming a grain boundary width of 𝛿 = 0.5 𝑛𝑚 which is 

commonly used value in literature[145]. The grains were taken as spherical regions 

surrounded by a boundary with radius of 𝑟 +
𝛿

2
 where r is the average length of the 

grain and the factor of 1/2 is to represent the grain boundary being shared by two 

neighbouring grains.  
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Figure 5.8 A] a Bright-field HRSTEM image of a spherical particle and B] Fourier filtered 

image of the particle displaying the iron core (red) and the oxide grains (blue).   

 

The total volume of the grains with the additional component due to the grain 

boundary can then be compared to the volume measured without considering a grain 

boundary. The volume fraction of the grain boundaries in the particles is shown in 

Fig. 5.9. As discussed, the diffusion behaviour of low-angle and high-angle grain 

boundaries is very different with the former, being very similar to the bulk lattice 

while the latter has greatly enhanced diffusivities compared to the bulk. The 

diffusivity of any given grain boundary will depend on the structure of the boundary 

and as such will be different for different rotation angles. With the angular 

dependence of the diffusivity has been shown increase to a maximum rotation angle 

of 45° with diffusivity along grains rotated at small angle <20° being virtually 

indistinguishable from the bulk. This is explained by Achter and Smoluchowski[131]. 

To investigate the type of grain boundaries, present in the iron oxide shell the 

rotation angle of neighbouring grains was measured by selecting adjacent grains in 

the Fourier filtered HRTEM images. This is a highly qualitative approach as the 

structure of the individual grains is difficult to identify and hence the result is 

intended to show an indication of typical rotations angles and to determine whether 

they lie within the low-angle or high-angle regime for grain boundaries. The 

distribution of the rotation angles is shown in Fig. 5.10 and suggests that the 

majority of neighbouring grains are rotated by >15° with respect to each other 
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suggesting a high number of high-angle grain boundaries within the oxide shell. This 

aids to explain the rapid oxidation process observed in the samples. 

 

Figure 5.9 Volume fraction of grain boundaries as a percentage of the total volume of oxide 

shell with an assumed grain boundary width of 𝜹 = 𝟎. 𝟓𝒏𝒎 around spherical grains. Errors 

calculated through comparison of maximum and minimum threshold values when filtering 

grains from particle FFT. 

 

The contribution to the diffusion due to grain boundaries can be estimated by 

comparing the diffusion coefficients measured previously for particles in this study 

with the literature values for the diffusion of Fe through magnetite. Using the 

diffusion coefficient put forward by Sidhu et al[135] for the diffusion of Fe in Fe3O4 

which yields a diffusion coefficient at 190K of 1.8 × 10−15𝑐𝑚2 𝑠−1which was 

determined for non-spherical iron/iron oxide nanoparticles. We can take this a 

measurement of the diffusion through the iron lattice as the particles used in the 

study were mostly cubic structured particles which have been shown to have largely 

monocrystalline side facets and a lower density of grain boundaries as a result.  
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Figure 5.10 Distribution of angle of rotation between neighbouring grains in a spherical particle 

of R=13.7nm (fig. 5.8) the regions for grain boundaries marked as small-angle have been 

labelled with the other areas being classified as large-angle boundaries. The distribution shows 

that are over twice the number of high-angle boundaries.  

 

We apply the equation for the effective diffusion coefficient 

𝐷𝑒𝑓𝑓 = 𝑔𝐷𝑔𝑏 + (1 − 𝑔)𝐷𝑙 (5.8) 

where g represents the volume fraction and is equal to 3δ/d, where δ is the grain 

boundary width which is approximated through experiment to be 0.5nm and d is the 

average grain size. This provides a value for the grain boundary diffusion coefficient 

of 

𝐷𝑔𝑏 = 4.67 × 10−11𝑐𝑚2 𝑠−1 

Due to the high density of large-angle boundaries rapid oxidation should 

occur in the immediate regions around the boundaries. This effect will be most 

prominent in spherical particles which possess a much higher density of boundaries. 

Due to the low temperatures for heating and short heating times it is expected that 

diffusion through the lattice will be negligible resulting in the atoms around the 

centre of grains being unable to diffuse out to the surface while the atoms located 
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around the boundaries would do. Combined with the relative speeds of iron out-

diffusion and oxygen in-diffusion, a Kirkendall void region should begin to form at 

the boundary, this can be seen in Fig. 5.13 where the large cubic particle has 

developed voids at the corners. The result is the growth of voids around the 

boundaries and spoke-structures in the regions with lower boundary density. It is 

likely that the spokes originate due to the presence of grain boundaries in the oxide 

shell, diffusion along the grain boundaries is enhanced as discussed above, and as 

such the difference between the Fe and O ion mobility will be exaggerated. Grain 

boundaries at a basic level act as regions with lower activation energy, this is 

because high-angle grain boundaries (characterised by changes in the crystal 

structure) are often more open than the bulk lattice. In the case of a low-angle 

boundary, as discussed, they can be modelled purely through dislocations so the 

change in the activation energy will be minimal as the structure remains similar to 

the bulk lattice. Due to the lower energy barrier around the high-angle boundaries the 

rate of both iron out-diffusion and oxygen in-diffusion should increase, however, as 

the more mobile ion the effect should be greater for the Fe out-diffusion process.  

 

 

Figure 5.11 (Top) Bright-field TEM images of particles of increasing size where size collates to 

time in that small particles are further along in the oxidation process than larger particles due 

to the constant heating time and temperature. (Bottom) Schematic diagrams of the 

corresponding particles highlighting the smaller cores, larger shells, and void positions in each 

particle. With Kirkendall voids outlined by the dashed line. 
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This would explain why the voids form in the corners of cubic particles as 

seen in Fig. 5.11 and would provide an explanation for the presence of oxide ‘ridges’ 

as well. As the oxidation progresses the Kirkendall voids will grow and coalesce, as 

such, it is reasonable to expect that the last region to form voids will be at the centre 

of the oxide grains where the diffusion is slowest. It is also likely that after the 

Kirkendall voids grow to such an extent that ionic transport across the Kirkendall 

voids is energetically unfavourable, these oxide ‘ridges’ will serve as another 

pathway for oxidation. 
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Chapter 6: Conclusions 
 

 

In chapter 3 the heating during and post-deposition of Fe/FexOy nanoparticles 

was discussed, and the samples characterised by the effect of the deposition 

temperature and post-deposition annealing on their physical properties (size, shape 

and shell thickness). The particles were observed to form two types of iron oxide 

nanoparticle as the end-point for the oxidation process, it is theorised that, cubic 

particles resulted in thick, ‘non-hollow’, iron oxide particles. This is inferred due to 

previous studies showing the evolution of cubic particles in atmospheric conditions 

into iron oxide nanoparticles with small (<20%) Kirkendall voids at the centre. This 

was supported by measurements of the Kirkendall void width and the idea purposed 

in previous studies by Pratt and Kröger et al[65] that cubic particles have enhanced 

oxygen in-diffusion due to the presence of strain gradients in the shell. As such it is 

reasonable to conclude that the thick, ‘non-hollow’ iron oxide particles observed in 

the sample originate from similar particles. This is because the cubic structure results 

in fewer grain boundaries which would otherwise dominate the particles diffusion 

behaviour. Without a large number of grain boundaries, oxidation will proceed 

through the strain-enhanced processes reported in the aforementioned study, 

resulting in iron oxide particles with small Kirkendall voids. 

For spherical particles however, the behaviour is different, with particles 

forming ‘hollow’ nanoparticles with thinner oxide shells and Kirkendall voids 

consisting of >60% of the particles width. This suggests very rapid out-diffusion of 

iron with respect to the in-diffusion of oxygen, as cubic structures exhibit enhanced 

oxygen in-diffusion it follows that the ‘hollow’ iron oxide particles result from non-

cubic (spherical) morphologies. This is theorised as being a result of the high grain 

boundary density in spherical particles due to the nature of the geometry not 

allowing for extended oxide facets such as the (100) facet in cubic particles. As grain 

boundary diffusion can be seen at a basic level as a region of lower activation energy 

for diffusion the resulting increase in diffusion will be greater for the already more 

mobile iron cations than the oxygen anions. This would result in extended Kirkendall 
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voids due to the relative difference in ion mobility being exaggerated by the presence 

of grain boundaries in the oxide. 

Partially oxidised particles were also observed in the sample, these particles 

were often larger, as larger particles are more insensitive to the annealing-driven 

oxidation. The particles were found to form Kirkendall voids at the metal/oxide 

interface as opposed to at the centre of the particle with oxide ‘ridges’ separating the 

voids and linking the shell to the remaining iron core. It is believed that the oxide 

‘ridge’ structures, which, have not been commonly reported in literature are formed 

at regions corresponding to the centre of oxide grains. This is because the iron out-

diffusion results in voids forming at the grain boundaries as seen in Fig. 5.11 where a 

large cubic particle has developed small Kirkendall voids at the corner regions 

(where the grain boundaries would be located). As such, it is believed that the voids 

form around grain boundary regions and extend across the metal/oxide interface until 

a ring is formed. Oxidation then proceeds at slower rates due to the additional energy 

cost in an ion crossing the formed voids, however, given enough time/energy the 

particle will eventually full oxidise.  

In chapter 4 the attempted coating of pure Fe nanoclusters with a Cu shell 

was presented. While it was not possible to determine if the Cu material had alloyed 

or formed the desired protective shell, dramatic changes in the samples behaviour 

due to the deposition temperature was observed. These changes imply a degree of Cu 

uptake had occurred, with particles becoming larger and more cubic with high 

deposition temperatures. This was in contrast to the pure Fe particles, which while 

becoming larger on average, also become more spherical. The presence of Cu was 

confirmed using EDX spectroscopy and was shown using EDX maps to be 

concentrated around the particles, although a small amount of copper material was 

spread across the sample. Furthermore, the particles were determined to have a 

higher magnetic saturation than bulk Fe (0.22 Am2/g) with a value of roughly 0.26 

Am2/g. The successful adherence of copper material to the iron nanoclusters is a 

positive sign in creating optimised magnetic nanoparticles for biomedical 

applications. The retention of the cubic morphology at higher deposition 

temperatures is also beneficial as it has been found that cubic particles have better 

performance as MRI contrast agents[147]. 
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Lastly, in chapter 5 a statistical estimation of the diffusion coefficient was 

made by comparing the amount of diffused material in a particle that was large 

enough to completely lose it core within the heating period of 15 minutes. This was 

then compared with measurements for 50 particles with an estimated effective 

diffusion coefficient of 8.41 × 10−12 𝑘𝑔 𝑐𝑚−2𝑠−1 which is similar to the 

coefficients determined for iron at temperatures over 900K, suggesting that diffusion 

at lower temperatures is greatly enhanced. This enhanced oxidation at lower 

temperatures may prove problematic when optimising nanoparticles for biomedical 

applications. As such, being able to control the distribution of geometries in the 

sample such that the oxidation pathway taken is closer to that observed in cubic 

particles, would allow for the tuning of the particles oxidation behaviour. This would 

be very important in creating particles for biomedical applications where oxidation is 

not a desired outcome. 

Despite the conclusions mentioned above there were a number of technical 

issues that were encountered, as the samples were observed and measured after 

annealing, the conclusion surrounding the nature of the oxidation processes are 

inferred. As such, there are a number of areas for further study that would be 

productive. Firstly, it would be ideal to observe the oxidation processes in real time, 

this could be done using an in situ TEM heating holder, although it would need to 

allow for the same atmospheric conditions to be achieved. Secondly, it would be 

useful to simulate the effect of heating on the iron/iron oxide interface using a 

computer simulation method such as LLAMPS. This would provide important 

theoretical backing to the observation made in the samples studied here as modelling 

the grain boundaries in such a manner may determine the origin of the oxide ‘ridge’ 

structures observed.  

Furthermore, in the case of the Fe@Cu particles, the fact that the EDX 

analysis suggests that the materials have alloyed as opposed to forming a complete 

shell, means it would be useful to extend the study to other magnetic alloy 

nanoparticles. Materials such as: Fe-Co and Fe-Pd would be interesting to study, in 

particular Fe-Co alloys as Fe60Co40 is a material known for having a very high 

magnetic saturation which would make it an ideal candidate in medical applications 

and as a follow-on study to the materials presented here. 



140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

Bibliography 

 

 

1. Mangematin V, Walsh S. The future of nanotechnologies, (2012): p. 157-160. 

2. Ever, P. Nanotechnology in Medical Applications: The Global Market. BCC 

Research (2015).  

3. Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in 

cancer. Drug discovery today. 2012 Sep 30;17(17):928-34. 

4. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and 

medicine: in vitro and in vivo detection, imaging and drug delivery. Nano 

research. 2009 Feb 1;2(2):85-120. 

5. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case 

study on E. coli as a model for Gram-negative bacteria. Journal of colloid and 

interface science. 2004 Jul 1;275(1):177-82. 

6. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, 

quantum-size-related properties, and applications toward biology, catalysis, and 

nanotechnology. Chemical reviews. 2004 Jan 14;104(1):293-346. 

7. Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia 

for prostate cancer. International Journal of Hyperthermia. 2010 Dec 

1;26(8):790-5. 

8. Kahn O. Molecular magnetism. VCH Publishers, Inc.(USA), 1993,. 1993:393. 

9. Langenberg A, Hirsch K, Ławicki A, Zamudio-Bayer V, Niemeyer M, Chmiela 

P, Langbehn B, Terasaki A, Issendorff BV, Lau JT. Spin and orbital magnetic 

moments of size-selected iron, cobalt, and nickel clusters. Physical Review B. 

2014 Nov 19;90(18):184420. 

10. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: 

MRI magnetic compatibility of the first and second kinds. Medical physics. 

1996 Jun 1;23(6):815-50. 

11. Terris, B. D. & Thomson, T. Nanofabricated and self-assembled magnetic 

structures as data storage media. J. Phys. D 38, R199–R222 (2005). 

12. Cundy, A. B., Hopkinson, L. & Whitby, R. L. D. Use of iron-based 

technologies in contaminated land and groundwater remediation: A review. Sci. 

Total Environ. 400, 42–51 (2008). 



142 
 

13. Pankhurst QA, Connolly J, Jones SK, Dobson JJ. Applications of magnetic 

nanoparticles in biomedicine. Journal of physics D: Applied physics. 2003 Jun 

18;36(13):R167. 

14. Tartaj P, Veintemillas-Verdaguer S, Serna CJ. The preparation of magnetic 

nanoparticles for applications in biomedicine. Journal of Physics D: Applied 

Physics. 2003 Jun 18;36(13):R182. 

15. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide 

nanoparticles for biomedical applications. Biomaterials. 2005 Jun 

30;26(18):3995-4021. 

16. Dieckmann R, Schmalzried H. Defects and cation diffusion in magnetite (I). 

Berichte der Bunsengesellschaft für physikalische Chemie. 1977 Mar 

1;81(3):344-7.Sounderya N, Zhang Y. Use of core/shell structured 

nanoparticles for biomedical applications. Recent Patents on Biomedical 

Engineering. 2008 Jan 1;1(1):34-42.Perigo  

17. EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ. 

Fundamentals and advances in magnetic hyperthermia. Applied Physics 

Reviews. 2015 Dec;2(4):041302. 

18. Hussey RJ, Caplan D, Graham MJ. The growth and structure of oxide films on 

Fe. II. Oxidation of polycrystalline Fe at 240–320° C. Oxidation of Metals. 

1981 Jun 1;15(5-6):421-35. 

19. Gilchrist R K, Medal R, Shorey W D, Hanselman R C, Parrott J C and Taylor C 

B 1957 Selective inductive heating of lymph nodes Ann. Surg. 146 596–606 

20. Reilly J P 1992 Principles of nerve and heart excitation by time-varying 

magnetic fields Ann. New York Acad. Sci. 649 96–117 

21. Curvo-Semedo L, Caseiro-Alves F. MR Contrast agents. InClinical MRI of the 

Abdomen 2009 (pp. 17-39). Springer Berlin Heidelberg. 

22. Khawaja AZ, Cassidy DB, Al Shakarchi J, McGrogan DG, Inston NG, Jones 

RG. Revisiting the risks of MRI with Gadolinium based contrast agents—

review of literature and guidelines. Insights into imaging. 2015 Oct 1;6(5):553-

8. 

23. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current 

status of clinical application. Quantitative imaging in medicine and surgery. 

2011 Dec;1(1):35. 



143 
 

24. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, 

Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial 

thermotherapy using magnetic nanoparticles combined with external beam 

radiotherapy: results of a feasibility study on patients with glioblastoma 

multiforme. Journal of neuro-oncology. 2007 Jan 1;81(1):53-60. 

25. Brusentsov NA, Nikitin LV, Brusentsova TN, Kuznetsov AA, Bayburtskiy FS, 

Shumakov LI, Jurchenko NY. Magnetic fluid hyperthermia of the mouse 

experimental tumor. Journal of Magnetism and Magnetic Materials. 2002 Nov 

1;252:378-80. 

26. Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in 

hyperthermia with thermal seeds. IEEE Transactions on Biomedical 

Engineering. 1984 Jan(1):70-5. 

27. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. 

Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, 

physicochemical characterizations, and biological applications. Chemical 

reviews. 2008 Jun 11;108(6):2064-110. 

28. Kumari M. Magnetic properties of iron-oxide nanoparticles and methods for 

their characterization (Doctoral dissertation). 

29. Levy D, Giustetto R, Hoser A. Structure of magnetite (Fe 3 O 4) above the 

Curie temperature: a cation ordering study. Physics and Chemistry of Minerals. 

2012 Feb 1;39(2):169-76. 

30. Shavel A, Rodríguez‐González B, Spasova M, Farle M, Liz‐Marzán LM. 

Synthesis and characterization of iron/iron oxide core/shell nanocubes. 

Advanced functional materials. 2007 Dec 17;17(18):3870-6. 

31. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. 

Formation of hollow nanocrystals through the nanoscale Kirkendall effect. 

Science. 2004 Apr 30;304(5671):711-4. 

32. Wang CM, Baer DR, Thomas LE, Amonette JE, Antony J, Qiang Y, Duscher 

G. Void formation during early stages of passivation: Initial oxidation of iron 

nanoparticles at room temperature. Journal of Applied Physics. 2005 Nov 

1;98(9):094308. 

33. Cabrera NF, Mott NF. Theory of the oxidation of metals. Reports on progress 

in physics. 1949 Jan 1;12(1):163.Adsc 



144 
 

34. Evans VR. The corrosion and oxidation of metals (Second Supplementary 

Volume). 1976. 

35. Hauffe K. Oxidation of Metals. 1965. 

36. Kubaschewski O, Hopkins BE. Oxidation of Metals and Alloys. 1967. 

37. Ahmad Z. High Temperature Corrosion. InTech. 2016 Sep. 

38. Darken L, Gurry RW. The system iron—oxygen. II. Equilibrium and 

thermodynamics of liquid oxide and other phases. Journal of the American 

Chemical society. 1946 May;68(5):798-816. 

39. Davies MH, Simnad MT. c. E. Birchenall. Journal of Metals, Transactions, 

AIME. 1951:889. 

40. Himmel L, Mehl RF, Birchenall CE. Self-diffusion of iron in iron oxides and 

the Wagner theory of oxidation. Trans. Aime. 1953 Jan 1;197(6):827-43. 

41. Fromhold Jr AT. Theory of Metal Oxidation. Fundamentals. North Holland 

Publishing Co., Amsterdam, New York and Oxford. 1976, 547 p. 1976. 

42. Xu C, Gao W. Pilling-Bedworth ratio for oxidation of alloys. Materials 

Research Innovations. 2000 Mar 1;3(4):231-5. 

43. Bedworth RE, Pilling NB. The oxidation of metals at high temperatures. J Inst 

Met. 1923;29(3):529-82. 

44. Leontis TE, Rhines FN. Rates of high temperature oxidation of magnesium and 

magnesium alloys. Transactions AIME. 1946 Jan 1;166:265-94. 

45. C. Wagner, Beitrag zur Theorie des Anlaufvorgangs, Z. phys. Chem 21, 1933, 

25-41 

46. Atkinson A. Transport processes during the growth of oxide films at elevated 

temperature. Reviews of Modern Physics. 1985 Apr 1;57(2):437. 

47. Atkinson A, Taylor RI. Diffusion of 55Fe in Fe2O3 single crystals. Journal of 

Physics and Chemistry of Solids. 1985 Jan 1;46(4):469-75. 

48. N. Birks, G.H. Meier, Introduction to High Temperature Oxidation of Metals, 

Edward Arnold Ltd 1983 

49. P. Kofstad, High Temperaure Corrosion, Elsevier Ltd 1988 

50. Ritchie IM. Chemisorption and Reactions on Metallic Films, Vol. by JR 

Anderson. 

51. Fromhold Jr AT. Theory of metal oxidation. Vol. 2. 

52. Fehlner FP, Mott NF. Low-temperature oxidation. Oxidation of Metals. 1970 

Mar 1;2(1):59-99. 



145 
 

53. Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C. First-

principles calculation of self-diffusion coefficients. Physical review letters. 

2008 May 30;100(21):215901. 

54. Ermoline A, Dreizin EL. Equations for the Cabrera–Mott kinetics of oxidation 

for spherical nanoparticles. Chemical Physics Letters. 2011 Mar 21;505(1-

3):47-50. 

55. Blaney L. Magnetite (Fe3O4): Properties, synthesis, and applications. 

56. Rae AI. Quantum Mechanics 5th Edition. 

57. Mahapatra AK, Bhatta UM, Som T. Oxidation mechanism in metal 

nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters. Journal of Physics 

D: Applied Physics. 2012 Sep 27;45(41):415303. 

58. Low GG. Some measurements of phonon dispersion relations in iron. 

Proceedings of the Physical Society. 1962 Mar;79(3):479. 

59. Mahapatra AK, Bhatta UM, Som T. Oxidation mechanism in metal 

nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters. Journal of Physics 

D: Applied Physics. 2012 Sep 27;45(41):415303. 

60. Dean, John A. Lange’s Handbook of Chemistry, 12th ed.; McGraw-Hill: New 

York, New York, 1979; p 9-4–9-94 

61. Grosvenor AP, Kobe BA, McIntyre NS. Activation energies for the oxidation 

of iron by oxygen gas and water vapour. Surface Science. 2005 Jan 10;574(2-

3):317-21. 

62. Grosvenor AP, Kobe BA, McIntyre NS. Examination of the oxidation of iron 

by oxygen using X-ray photoelectron spectroscopy and QUASESTM. Surface 

science. 2004 Sep 10;565(2-3):151-62. 

63. Sidhu PS, Gilkes RJ, Posner AM. Mechanism of the low temperature oxidation 

of synthetic magnetites. Journal of Inorganic and Nuclear Chemistry. 1977 Jan 

1;39(11):1953-8. 

64. LaGrow, A. P. et al. Synthesis, alignment and magnetic properties of 

monodisperse nickel nanocubes. J. Am. Chem. Soc. 134, 855–858 (2012). 

65. Pratt A, Lari L, Hovorka O, Shah A, Woffinden C, Tear SP, Binns C, Kröger R. 

Enhanced oxidation of nanoparticles through strain-mediated ionic transport. 

Nature materials. 2014 Jan;13(1):26. 

66. Fick A. Ueber diffusion. Annalen der Physik. 1855 Jan 1;170(1):59-86. 



146 
 

67. Levine HS, MacCallum CJ. Grain boundary and lattice diffusion in 

polycrystalline bodies. Journal of Applied Physics. 1960 Mar;31(3):595-9. 

68. Suzuki A, Mishin Y. Atomic mechanisms of grain boundary diffusion: Low 

versus high temperatures. Journal of materials science. 2005 Jun 

1;40(12):3155-61. 

69. Paul A, Laurila T, Vuorinen V, Divinski SV. Fick’s Laws of Diffusion. 

InThermodynamics, Diffusion and the Kirkendall Effect in Solids 2014 (pp. 

115-139). Springer International Publishing. 

70. Liu CL, Plimpton SJ. Molecular-statics and molecular-dynamics study of 

diffusion along [001] tilt grain boundaries in Ag. Physical Review B. 1995 Feb 

15;51(7):4523. 

71. Wang YJ, Gao GJ, Ogata S. Atomistic understanding of diffusion kinetics in 

nanocrystals from molecular dynamics simulations. Physical Review B. 2013 

Sep 9;88(11):115413. 

72. Jamnik J, Kalnin JR, Kotomin EA, Maier J. Generalised Maxwell-Garnett 

equation: application to electrical and chemical transport. Physical Chemistry 

Chemical Physics. 2006;8(11):1310-4. 

73. Prokoshkina D, Esin VA, Wilde G, Divinski SV. Grain boundary width, energy 

and self-diffusion in nickel: effect of material purity. Acta Materialia. 2013 

Aug 31;61(14):5188-97. 

74. Lide DR. Magnetic susceptibility of the elements and inorganic compounds. 

CRC handbook of chemistry and physics. 2005;73:9. 

75. Baker, S., Thornton, S., Edmonds, W., Maher, M. J., Norris, C., & Binns, C. 

(2000). The construction of a gas aggreation source for the preparation of size-

selected nanoscale transition metal clusters. Review of Scientific Instruments, 

3178-3183. 

76. Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles 

are highly toxic: a comparison between metal oxide nanoparticles and carbon 

nanotubes. Chemical research in toxicology. 2008 Aug 19;21(9):1726-32. 

77. Hirsch, PB, Howie, A, Nicholson, RB, Pashley, DW and Whelan, MJ 1977 

Electron Microscopy of Thin Crystals 2nd Ed. Krieger Huntington NY 

78. Rother A, Scheerschmidt K. Relativistic effects in elastic scattering of electrons 

in TEM. Ultramicroscopy. 2009 Jan 1;109(2):154-60. 



147 
 

79. Williams DB, Carter CB, Veyssiere P. Transmission electron microscopy: a 

textbook for materials science. New York: Springer; 1998. 

80. Bleloch A, Brown LM, Brydson R, Craven A, Goodhew P, Kiely C. The 

superSTEM: An Aberration Corrected Analytical Microscopy Facility. 

Microsc. Microanal. 2002 Aug;1. 

81. Garratt-Reed, AJ and Bell, DC 2002 Energy-Dispersive X-ray Analysis in the 

Electron Microscope Bios (Royal Microsc. Soc.) Oxford, UK 

82. Thomas PJ, Midgley PA. Image-spectroscopy–II. The removal of plural 

scattering from extended energy-filtered series by Fourier deconvolution. 

Ultramicroscopy. 2001 Aug 1;88(3):187-94. 

83. DeGraef, M 2003 Introduction to Conventional Transmission Microscopy 

Cambridge University Press New York 

84. Chang CC. Auger electron spectroscopy. Surface Science. 1971 Mar 

1;25(1):53-79. 

85. Egerton, RF 2006 Physical Principles of Electron Microscopy; An Introduction 

to TEM, SEM, and AEM Springer New York 

86. Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 

2004 Aug 1;35(6):399-409. 

87. Mott NF, Massey HS. The theory of atomic collisions. Oxford: Clarendon 

Press; 1965. 

88. Bragg, WL 1965 The Crystalline State I Ed. WL Bragg Cornell University 

Press Ithaca NY 

89. Reimer, L 1997 Transmission Electron Microscopy; Physics of Image 

Formation and Microanalysis 4th Ed. Springer-Verlag New York 

90. Stewart M, Vigers G. Electron microscopy of frozen-hydrated biological 

material. Nature. 1986 Feb;319(6055):631. 

91. Fultz, Brent and Howe, James M. (2007) Transmission Electron Microscopy 

and Diffractometry of Materials (Third Edition). Springer , Heidelberg. 

92. Hirsch PB, Whelan MJ. A kinematical theory of diffraction contrast of electron 

transmission microscope images of dislocations and other defects. Phil. Trans. 

R. Soc. Lond. A. 1960 May 5;252(1017):499-529. 

93. C. Kisielowski et al. (2008). "Detection of single atoms and buried defects in 

three dimensions by aberration-corrected electron microscopy with 0.5 Å 

information limit". Microscopy and Microanalysis. 14: 469–477. 



148 
 

94. Boersch, H, Hamisch, H, Wohlleben, D and Grohmann, K 1920 Z. Phys. 159 

397–404 

95. Wade, R. H. (October 1992). A brief look at imaging and contrast transfer. 

Ultramicroscopy. 46: 145–156 

96. Ludwig Reimer (1997 4th ed) Transmission electron microscopy: Physics of 

image formation and microanalysis (Springer, Berlin) 

97. Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K. High-resolution 

imaging with an aberration-corrected transmission electron microscope. 

Ultramicroscopy. 2002 Aug 1;92(3-4):233-42. 

98. Isaacson, M, Ohtsuki, M and Utlaut, M 1979 in Introduction to Analytical 

Electron Microscopy p 343 Eds. JJ Hren, JI Goldstein and DC Joy Plenum 

Press New York. 

99. Clarke, A. R. (2002) Microscopy techniques for materials science. CRC Press 

(electronic resource) 

100. Lund, MW 1995 Current Trends in Si(Li) Detector Windows for Light Element 

Analysis in X-Ray Spectrometry in Electron Beam Instruments DB Williams, 

JI Goldstein and DE Newbury, Eds. 21–31 Plenum Press New York. 

101. Garratt-Reed, AJ and Bell, DC 2002 Energy-dispersive X-ray Analysis in the 

Electron Microscope Bios (Royal Microsc. Soc.) Oxford UK 

102. Novel Magnetic Nanoparticles for Medical Applications. (2018). K. Dexter. 

University of Leicester 

103. Binns C. Nanoclusters deposited on surfaces. Surface science reports. 2001 Oct 

1;44(1-2):1-49. 

104. Lan Y, Wang H, Wang D, Chen G, Ren Z. Grids for Applications in High-

Temperature High-Resolution Transmission Electron Microscopy. Journal of 

Nanotechnology. 2010;2010. 

105. Zhang Z, Su D. Behaviour of TEM metal grids during in-situ heating 

experiments. Ultramicroscopy. 2009 May 1;109(6):766-74. 

106. Karlsson G. Thickness measurements of lacey carbon films. Journal of 

microscopy. 2001 Sep 1;203(3):326-8. 

107. Saito Y, Mihama K, Uyeda R. Formation of ultrafine metal particles by gas-

evaporation VI. Bcc metals, Fe, V, Nb, Ta, Cr, Mo and W. Japanese Journal of 

Applied Physics. 1980 Sep;19(9):1603. 

http://www.sciencedirect.com/science/article/pii/0304399192900118


149 
 

108. Granqvist CG, Buhrman RA. Ultrafine metal particles. Journal of applied 

Physics. 1976 May;47(5):2200-19. 

109. Kiss LB, Söderlund J, Niklasson GA, Granqvist CG. New approach to the 

origin of lognormal size distributions of nanoparticles. Nanotechnology. 1999 

Mar;10(1):25. 

110. Batsidis A, Economou P, Tzavelas G. Tests of fit for a lognormal distribution. 

Journal of Statistical Computation and Simulation. 2016 Jan 22;86(2):215-35.  

111. Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical data. 

SIAM review. 2009 Nov 6;51(4):661-703. 

112. Wang CM, Baer DR, Amonette JE, Engelhard MH, Qiang Y, Antony J. 

Morphology and oxide shell structure of iron nanoparticles grown by sputter-

gas-aggregation. Nanotechnology. 2007 May 29;18(25):255603. 

113. Hayashi T, Ohno T, Yatsuya S, Uyeda R. Formation of ultrafine metal particles 

by gas-evaporation technique. IV. Crystal habits of iron and Fcc metals, Al, Co, 

Ni, Cu, Pd, Ag, In, Au and Pb. Japanese Journal of Applied Physics. 1977 

May;16(5):705. 

114. R V Zucker, D Chatain, U Dahmen, S Hagege, W C Carter. "New software 

tools for the calculation and display of isolated and attached interfacial-energy 

minimizing particle shapes." Journal of Materials Science, vol. 47, pp. 8290-

8302. 

115. Fromhold Jr AT, Cook EL. Kinetics of oxide film growth on metal crystals: 

electron tunneling and ionic diffusion. Physical Review. 1967 Jun 

15;158(3):600. 

116. Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 

2005 May 1;1(5):482-501. 

117. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. 

Formation of hollow nanocrystals through the nanoscale Kirkendall effect. 

Science. 2004 Apr 30;304(5671):711-4. 

118. Fan HJ, Gösele U, Zacharias M. Formation of nanotubes and hollow 

nanoparticles based on Kirkendall and diffusion processes: a review. small. 

2007 Oct 1;3(10):1660-71. 

119. Hwang JW. Thermal expansion of nickel and iron, and the influence of 

nitrogen on the lattice        parameter of iron at the Curie temperature. 



150 
 

120. Anderson JB, Fenn JB. Velocity distributions in molecular beams from nozzle 

sources. The physics of fluids. 1965 May;8(5):780-7. 

121. Lubman DM, Rettner CT, Zare RN. How isolated are molecules in a molecular 

beam?. The Journal of Physical Chemistry. 1982 Apr;86(7):1129-35. 

122. Nolden IM, Van Beijeren H. Equilibrium shape of bcc crystals: Thermal 

evolution of the facets. Physical Review B. 1994 Jun 15;49(24):17224. S 

123. Saito Y, Mihama K and Uyeda R 1980 Japan. J. Appl. Phys.19 1603–10 

124. Hayashi T, Ohno T, Yatsuya S and Uyeda R 1977 Japan. J.Appl. Phys. 16 705–

17 

125. Kapur, JN; Sahoo, PK & Wong, ACK (1985), "A New Method for Gray-Level 

Picture Thresholding Using the Entropy of the Histogram", Graphical Models 

and Image Processing 29(3): 273-285 

126. Otsu N. A threshold selection method from gray-level histograms. IEEE 

transactions on systems, man, and cybernetics. 1979 Jan;9(1):62-6. 

127. Sahoo PK, Soltani SA, Wong AK. A survey of thresholding techniques. 

Computer vision, graphics, and image processing. 1988 Feb 1;41(2):233-60. 

128. Grochola G, Russo SP, Yarovsky I, Snook IK. “Exact” surface free energies of 

iron surfaces using a modified embedded atom method potential and λ 

integration. The Journal of chemical physics. 2004 Feb 15;120(7):3425-30 

129. Jian-Min Z, Fei M, Ke-Wei X. Calculation of the surface energy of fcc metals 

with modified embedded-atom method. Chinese Physics. 2004 Jul;13(7):1082. 

130. LaGrow AP, Ingham B, Cheong S, Williams GV, Dotzler C, Toney MF, 

Jefferson DA, Corbos EC, Bishop PT, Cookson J, Tilley RD. Synthesis, 

alignment, and magnetic properties of monodisperse nickel nanocubes. Journal 

of the American Chemical Society. 2011 Dec 28;134(2):855-8. 

131. Wang SG, Tian EK, Lung CW. Surface energy of arbitrary crystal plane of bcc 

and fcc metals. Journal of Physics and Chemistry of Solids. 2000 Aug 

1;61(8):1295-300. 

132. Ueda M, Maruyama T. Estimation of the Effect of Grain Boundary Diffusion 

on Microstructure Development in Magnetite Bi-crystal under Oxygen 

Chemical Potential Gradient at 823 K. Journal of the Korean Ceramic Society. 

2012;49(1):37-42. 



151 
 

133. Dieckmann R, Schmalzried H. Defects and cation diffusion in magnetite (I). 

Berichte der Bunsengesellschaft für physikalische Chemie. 1977 Mar 

1;81(3):344-7. 

134. Atkinson A. Wagner theory and short circuit diffusion. Materials science and 

technology. 1988 Dec 1;4(12):1046-51. 

135. Sidhu PS, Gilkes RJ, Posner AM. Mechanism of the low temperature oxidation 

of synthetic magnetites. Journal of Inorganic and Nuclear Chemistry. 1977 Jan 

1;39(11):1953-8. 

136. Lejček P. Grain Boundaries: Description, Structure and Thermodynamics. 

Grain Boundary Segregation in Metals. 2010:5-24. 

137. Kittel C. Introduction to solid state physics. Wiley; 2005. 

138. Taylor GI. The mechanism of plastic deformation of crystals. Part I. 

Theoretical. Proceedings of the Royal Society of London. Series A. 1934 Jul 

2;145(855):362-87. 

139. Glicksman ME, Vold CL. Heterophase dislocations—an approach towards 

interpreting high temperature grain boundary behavior. Surface science. 1972 

Jun 1;31:50-67. 

140. Winning M, Gottstein G, Shvindlerman LS. On the mechanisms of grain 

boundary migration. Acta Materialia. 2002 Jan 22;50(2):353-63. 

141. Couling SR, Smoluchowski R. Anisotropy of diffusion in grain boundaries. 

Journal of Applied Physics. 1954 Dec;25(12):1538-42. 

142. Liu CL, Plimpton SJ. Molecular-statics and molecular-dynamics study of 

diffusion along [001] tilt grain boundaries in Ag. Physical Review B. 1995 Feb 

15;51(7):4523. 

143. Ashby MF, Spaepen F, Williams S. The structure of grain boundaries described 

as a packing of polyhedra. Acta Metallurgica. 1978 Nov 1;26(11):1647-63. 

144. Smith DA. Grain boundary structure and migration. Ultramicroscopy. 1989 

May 2;29(1-4):1-8. 

145. Prokoshkina D, Esin VA, Wilde G, Divinski SV. Grain boundary width, energy 

and self-diffusion in nickel: effect of material purity. Acta Materialia. 2013 

Aug 1;61(14):5188-97. 



152 
 

146. Achter MR, Smoluchowski R. Diffusion in Grain Boundaries. Journal of 

Applied Physics. 1952 Mar 1;23(3):373-4. 

147. Aktaş S, Thornton SC, Binns C, Lari L, Pratt A, Kröger R, Horsfield MA. 

Control of gas phase nanoparticle shape and its effect on MRI relaxivity. 

Materials Research Express. 2015 Feb 17;2(3):035002. 

 

 

 


