
The Fractal Nature of Fault Slip

and its Incorporation into

Earthquake Slip Inversions

Ruth Mary Joy Amey

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Earth and Environment

September 2018





Declaration i

The candidate confirms that the work submitted is her own, except where work
which has formed part of jointly authored publications has been included. The contri-
bution of the candidate and the other authors to this work has been explicitly indicated
below. The candidate confirms that appropriate credit has been given within the thesis
where reference has been made to the work of others.

The work in Chapter 2 of this thesis is a manuscript to be submitted to Earth and
Planetary Science Letters as follows:
Amey, R.M.J., L. Gregory, L. Wedmore, A. Hooper, H. Goodall, J. Woodman, M.
Wilkinson, K.J.W. McCaffrey (in prep), Fractal properties of the Campo Felice fault in
the Italian Apennines.

The idea for this paper was developed by myself and the co-authors, and method-
ology was developed by myself using published literature. Some terrestrial laser scans
were collected by myself and co-authors during fieldwork in Italy, and some scans were
provided by the other co-authors. I processed the results, wrote and produced all fig-
ures for the manuscript, which was improved by suggestions and comments from all
co-authors and Jessica Hawthorne. The data and codes from this chapter can be found
here: https://doi.org/10.5518/443

An edited version of Chapter 3 was published by AGU, Copyright (2018) American
Geophysical Union:
Amey, R.M.J., A.J. Hooper, and R. Walters (2018), A Bayesian Method for Incorpo-
rating Self-Similarity into Earthquake Slip Inversions, Journal of Geophysical Research
Solid Earth, 123, doi:10.1029/2017JB015316

The idea and methodology in this paper was developed by Andy Hooper and the
data used is from Richard Walters and co-authors of Floyd et al. (2016). I wrote a code
to develop this methodology and implemented it on data from the Napa Valley earth-
quake. Additionally I wrote the manuscript and produced all figures for it, which was
improved by comments from the co-authors and Laura Gregory. The code developed
in this chapter can be found here: https://doi.org/10.5518/444
The data required to run this codes and models outputs from this chapter can be found
here: https://doi.org/10.5518/445

The work in Chapter 4 of this thesis has been submitted for publication in the
Journal of Geophysical Research as follows:
Amey, R.M.J., A.J. Hooper, and Y. Morishita (2018), Going to Any Lengths: Solving
for Fault Size and Fractal Slip for the 2016, Mw 6.2 Central Tottori Earthquake, Japan,
using a Trans-dimensional Inversion Scheme, Journal of Geophysical Research Solid
Earth

The idea and methodology was developed by myself and Andy Hooper. I up-

https://doi.org/10.5518/443
doi:10.1029/2017JB015316
https://doi.org/10.5518/444
https://doi.org/10.5518/445


ii References

dated and implemented the code and processed the Sentinel-1 data. The ALOS-2 and
GNSS data was provided by Yu Morishita. All authors and Huw Goodall read the
manuscript and made improvements. The code developed in this chapter can be found
here: https://doi.org/10.5518/444
The data required to run this code and models outputs from this chapter can be found
here: https://doi.org/10.5518/446

This copy has been supplied on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledgement

Copyright c© 2018 The University of Leeds and Ruth Amey.
The right of Ruth Amey to be identified as Author of this work has been asserted by
her in accordance with the Copyright, Designs and Patents Act 1988.

https://doi.org/10.5518/444
https://doi.org/10.5518/446


References

Floyd, M. A., R. J. Walters, J. R. Elliott, G. J. Funning, J. L. Svarc, J. R. Murray,
A. J. Hooper, Y. Larsen, P. Marinkovic, R. Bürgmann, I. A. Johanson, and T. J.
Wright (2016), Spatial variations in fault friction related to lithology from rupture
and afterslip of the 2014 South Napa, California, earthquake, Geophysical Research
Letters, 43 (13), 6808–6816, doi:10.1002/2016GL069428. (document)

iii

http://dx.doi.org/10.1002/2016GL069428




Acknowledgements

PhDs are difficult, and there’s a lot that goes into them that no one ever sees. For any-
one reading this shiny, finished version, particularly anyone who’s still in the middle of
their PhD, don’t forget that success is an iceberg. Here I’d like to take the opportunity
to thank everyone who’s helped me along the way.

Many thanks to my supervisor Andy Hooper, for teaching me many new things, for
your ongoing patience and for reading every thing that I sent to you. To Laura Gregory
and Luke Wedmore for taking me on fieldwork and your enthusiasm about Chapter 2
of this thesis. To Jessica Hawthorne for making me want to be a scientist, rather than
just a person with a PhD. To Tim Wright and many other IGT folk past and present
for the science and the laughs, particularly John Elliott for giving me a postdoc. To
Richard Rigby for your ability to fix any computer problem and do so with a smile,
Pre Carbo for all the fun I’ve had doing outreach and seeing the bees, to Debbie Rosen
for cake chat at COMET meetings and Graham Blyth for your patience in helping me
make the online data repository that accompanies this thesis.

Figure 1: Figure credit to Sylvia Duckworth https://sylviaduckworth.com

v

https://sylviaduckworth.com


vi Acknowledgements

Where would I be without everyone in office 8.125? What a lovely bunch of people
to work with. Wishing everyone good things and a painless write-up. Thanks also to
those I started with, the tectonics folk I kept bumping into at conferences those I have
lunch with. With particular mention to Tom, my first Leeds buddy, who helped me
with almost every thing I’ve done in this PhD, to Claire for every time you rolled your
chair across the office to talk to me, to Ben for the memes and your terrible puns and
to Lauren, and because we are both worriers and perfectionists, but we both made it.
I couldn’t have done it without you guys, and even if I could have, it wouldn’t have
been any fun.

With many, many thanks to my family, to Sher, Jacqui and Erin and especially my
parents, who have all provided me with unending love and support at the low points
of this PhD.

And finally to Huw, for reminding me every day at 5pm that there is life beyond
my PhD. For some reason we thought it’d be a good idea to buy a house at the same
time as I finish this thesis, and whilst moving in the month before hand-in has been
hectic, it has been fun. Now that this is handed in, I promise to stop being boring so
we can go on some adventures (at least until you write-up).



Acknowledgements vii

It is not the critic who counts; not the man who points out how the strong man
stumbles, or where the doer of deeds could have done them better. The credit belongs
to the man who is actually in the arena, whose face is marred by dust and sweat
and blood; who strives valiantly; who errs, who comes short again and again, because
there is no effort without error and shortcoming; but who does actually strive to do
the deeds; who knows great enthusiasms, the great devotions; who spends himself in a
worthy cause; who at the best knows in the end the triumph of high achievement, and
who at the worst, if he fails, at least fails while daring greatly, so that his place shall
never be with those cold and timid souls who neither know victory nor defeat.

- Theodore Roosevelt





Abstract

In order to understand how earthquakes nucleate, propagate and terminate it is es-
sential to understand the properties and stress conditions of the surfaces upon which
earthquakes occur. Fault surfaces control frictional properties and by measuring ex-
humed faults we can better understand earthquake propagation and how this may
be linked to fault structure. In order to forecast areas of a fault likely to be at risk
from future failure it is necessary to accurately model the slip that occurs during each
measured earthquake.

In recent years many lines of evidence suggest that fault surfaces and earthquake
slip show fractal properties. This includes high resolution scans of fault surfaces, ob-
servations of coseismic surface slip and analysis of published slip distributions. In this
thesis I investigate how fault structure may affect the fractal properties of fault surface
roughness, by investigating the along-strike changes in properties of the Campo Felice
fault in the Italian Apennines. I then incorporate observations of fractal properties into
earthquake slip inversions through a new form of regularisation, which I develop using
Bayesian methods. Through this I aim to improve our understanding of the surfaces
upon which earthquakes occur, how this links to fault structure and to improve our
coseismic slip models, that provide the basis of stress models and hazard analysis.

Fault surfaces displaying fractal properties mean that there is a power-law relation-
ship between the topography of a fault and the wavelength of this topography: the
magnitude of height fluctuations depends upon the scale at which they are observed.
Whilst many studies have investigated fault roughness properties, here I present the
first study of how fault roughness varies along the strike of a fault. I use terrestrial laser
scans and laser profilometer scans at 14 locations along the length of the Campo Felice
normal fault in the Italian Apennines, as well as a scan encompassing several hundred
meters along the length of the fault. These scans show that the Campo Felice fault dis-
plays fractal properties over at least six orders of magnitude perpendicular to slip and
at least three orders of magnitude parallel to slip. But, contrary to previous findings
on other faults, I find that the Hurst parameter, which controls the fractal nature of
the fault surface, changes considerably and unpredictably along the length of the fault,
even between observations tens of metres apart. I suggest that this variability may be
due to the variation of slip vector along the length of the fault, as is frequently observed
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in earthquakes. This variability could, additionally, be linked to fault asperities halting
or impeding rupture, such that some areas of the fault experience more earthquakes, or
experience different stress conditions during the same earthquake. I also find that the
magnitude of topography displayed by Campo Felice fault is low compared to previous
studies, suggesting it may be at risk of larger earthquakes.

Observations of fractal fault surfaces suggest that earthquake slip should be fractal
too. By using geodetic data taken at the surface before and after an earthquake we
can perform slip inversions to give a model of how much slip occurred underground,
on the fault surface. This is routinely performed for large, continental earthquakes.
Due to noise and lack of data these inversions are frequently regularised to produce a
stable solution, but the standard regularisation techniques have little physical basis.
I incorporate fractal properties of earthquake slip into slip inversions by introducing
a new regularisation technique: von Karman regularisation. I use a Bayesian method
to fully explore parameter space and better understand uncertainties on the model
parameters. From synthetic tests I find that this regularisation performs comparably,
if not better, than other frequently used methods upon both fractal and Laplacian
input slip distributions. Using InSAR (Interferometric Synthetic Aperture Radar) and
GPS (Global Positioning System) data from the 2014 Mw 6.0 Napa Valley earthquake,
I invert for slip using a two-segment fault model. I find that the choice of regularisation
changes the location and magnitude of slip, which could have important implications
for stress transfer and our understanding of the so-called shallow slip deficit.

Through its incorporation of fractal properties, von Karman regularisation repre-
sents a more physical regularisation of earthquake slip along a fault plane. However,
some bias can be introduced by incorrectly choosing the length and width of the fault
plane. If a fault plane is too large, the regularisation can cause slip smearing, particu-
larly at depth where the model is poorly constrained by the data, in order to improve
the von Karman probability. To eliminate this bias I modify my Bayesian inversion
scheme to solve for the size of the fault plane during the inversion, along with slip,
rake and a hyperparameter controlling slip variance. This makes the inversion trans-
dimensional, and aims to reduce the bias caused by an incorrect model. I apply it to
the Mw 6.2 Central Tottori earthquake, Japan, using InSAR and GNSS (Global Navi-
gation Satellite System) data. My model shows that the earthquake ruptured most of
the seismogenic zone, in contrast to seismological studies.

My results in this thesis further confirm that fault surface roughness shows frac-
tal properties, and that fault structure may play an important role in the exact re-
lationship between fault topography and the lengthscale of observation. Further in-
vestigation of exhumed fault surfaces can help inform earthquake models, including
earthquake slip inversions, particularly if an earthquake were to occur on a fault upon
which surface roughness measurements had already been taken. By incorporating ob-
served fractal properties into earthquake slip inversions I aim to introduce less bias than
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other, less physical regularisations. With the European Space Agency’s new satellites
Sentinel-1a/b providing regular observations of the Earth’s deforming regions, we are
in a position to model earthquake slip better than ever before. I hope that by incor-
porating more realistic observations and using Bayesian methods to fully understand
uncertainties, we can produce better, more realistic models. These models help our
understanding of earthquakes, and, most importantly, earthquake hazard.
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Chapter 1

Introduction

Earthquakes pose a significant risk to life, and whilst earthquakes affect many coun-
tries in the world, the vulnerability to earthquakes (and all hazards) is significantly
increased in developing countries (Schneiderbauer and Ehrlich, 2004). Wealthier coun-
tries incur significant economic costs from earthquake, but there are disproportionately
more deaths in poorer countries (Figure 1.1, Bilham 2013). How much slip occurs on a
fault, at what depth and whether this slip can continue on nearby or connecting faults,
is fundamental to our understanding of seismic hazard (Elliott et al., 2016). Currently
one of our best methods for forecasting future earthquakes is to measure and model
earthquakes that occur, and use these results to infer properties such as stress transfer,
to identify regions of the fault that have been brought closer to failure (Walters et al.,
2009). But most current slip modelling methods are riddled with assumptions and
often subjective choices that, if incorrect, will impact the slip solution (Minson et al.,
2013) and consequently any conclusions taken from it.

The amount of slip that occurs during an earthquake is controlled by roughness
of a fault surface (Candela et al., 2011a). Thus understanding a fault surface, its

Figure 1.1: Countries with low per capita income (above the dotted line) suffer from large
number of fatalities during earthquakes, whereas wealthier countries (below dotted line) incur
greater reconstruction costs, yet relatively few people die. From Bilham (2013)
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topography and behaviour over a large scale, is essential to understanding how faults
slip. If we can parameterise fault surfaces correctly then we can incorporate the correct
prior assumptions into earthquake models. This could help us understand earthquake
friction on a fault surface (Biegel et al., 1992), how earthquakes nucleate (Harbord et al.,
2017, Tal et al., 2018), how they propagate (Bruhat et al., 2016, Fang and Dunham,
2013, Shi and Day , 2013), how much moment is released (Zielke et al., 2017), how much
slip occurs (Amey et al., 2018) and how they stop (Parsons and Minasian, 2015). These
are all fundamental to seismic hazard assessment.

This thesis will focus on the observations that fault surfaces and earthquake slip,
along with many features of earthquakes, show self-similar properties (Ben-Zion, 2008).
Fractal properties, or self-similarity, means that a feature is similar at all scales, or
mathematically, that a feature can be described by a power law (Mandelbrot , 1967).
This long-scale structure of slip provides properties to help constrain earthquake slip
distribution. It is important to properly characterise fractal fault properties using
observations from fault and earthquakes, to then incorporate these features into models
of earthquakes. In light of this, this thesis is concerned with two aspects of fractal slip.
Chapter 2 focuses on the observed fractal nature of fault surface roughness and how
it varies along-strike of a fault, and Chapters 3 and 4 introduce methodologies to
incorporate this as a prior assumption into earthquake slip inversions.

In this chapter I will provide background on fault surfaces and earthquake slip
showing self-similarity, or self-affinity (Mai and Beroza, 2002, Sagy et al., 2007, Milliner
et al., 2015). I will then provide details on slip inversions and regularisation techniques,
and how self-affinity can be incorporated. Finally I will lay out my aims and objectives
and present a roadmap for this thesis.

1.1 Fractal fault roughness

1.1.1 Observations and context

Exhumed fault surfaces, whilst on first look seem remarkably planar, actually display
topography at all scales. Early work found that this topography showed fractal (self-
similar) properties (Brown and Scholz , 1985, Poon et al., 1992, Power and Tullis, 1995).
This means that root-mean-square height fluctuations are proportional to the profile
length (Fang and Dunham, 2013) and that fault topography cannot be described by
one value: the magnitude of topography depends upon the scale of observation. Math-
ematically a fractal relationship means that a feature can be described by a power
law (Mandelbrot , 1967). This is a common feature of earthquake behaviour, includ-
ing the Gutenberg-Richter frequency magnitude scale (Gutenberg and Richter , 1955,
Kanamori and Anderson, 1975), the Omori decay of aftershocks (Omori , 1894), the
decay of postseismic velocities (Ingleby and Wright , 2017) as well as many others (see
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Ben-Zion 2008).
More recent work, aided by the availability of higher-resolution scanners, has quan-

tified this relationship further and found that the topography of fault surfaces is self-
affine, rather than self-similar (Renard et al., 2006, Sagy et al., 2007, Brodsky et al.,
2011, Candela et al., 2012). Whereas a self-similar feature remains statistically iden-
tical at larger or smaller scales, a self-affine feature requires a different scaling in one
direction. In the context of fault surfaces, if a profile perpendicular to slip, δx, under-
went the transformation δx→ γδx by the scaling factor γ, then the fault topography,
δz would undergo the transformation δz → γHδz, where H is the Hurst parameter.
Different values of H are found in the along-slip and perpendicular to slip directions
(Candela et al., 2012).

Whilst a large number of faults have been studied with multiple scans at various
scales, no roughness study has quantified the change in self-affine properties along-
strike of a fault. This is vital to understanding the role of fault structure and asperities
in earthquake propagation and termination. In Chapter 2 of this thesis I present
an investigation of the along-strike properties of fault roughness and investigate its
relationship to fault structure on the Campo Felice fault, Italy.

1.1.2 Methodology of investigating fault roughness

Data in previous studies has been taken by numerous different methods, at different
scales. At the very smallest scale, white light interferometers and laser profilometers
have measured micro-meter topography (e.g. Candela et al. 2012, Brodsky et al. 2016,
Candela and Brodsky 2016). Observations at these scales led to suggestions that the
minimum scale of grooving is linked to the scale at which deformation mechanisms
change (Brodsky et al., 2016, Candela and Brodsky , 2016). At the largest scale, digitised
surface rupture maps give data over hundreds of kilometers (Klinger , 2010, Candela
et al., 2012). In between these, terrestrial laser scanners or LiDAR can provide scans
on meter to hundreds of meter scale (Renard et al., 2006, Sagy et al., 2007, Candela
et al., 2009, 2012). Photogrammetry has also proved a useful tool for scales inbetween
terrestrial laser scanners and laser profilometers (Bistacchi et al., 2011, Corradetti et al.,
2017). A combination of these data allows fractal properties to be constrained over
many orders of magnitude (Figure 2.4).

Processing methods vary depending on exact techniques employed, but an example
is shown in Figure 1.2. Common to all processing steps is the first in which grass, bushes
and highly weathered areas are removed from the raw scans. The point clouds must
then be orientated such that the fault plane lies approximately in the x, y plane, where
one axis is orientated in the slip parallel direction, another in the slip perpendicular
direction and z is topography of the fault. This orientation has been done a variety of
ways, with Principal Component Analysis (PCA) proving a useful tool to fit the plane,
as unlike a linear least-squares plane fitting method, principal component analysis takes
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Figure 1.2: Workflow for investigating fault roughness. Starting from a fault surface (1), the
scan is cleaned and orientated (2), then profiles are taken, detrended and filtered (3), so that
the power spectra can be calculated (4). The power spectra are then stacked to give an average
perpendicular to slip and parallel to slip (5).

into account uncertainties in x and y coordinates, as well as z (Bistacchi et al., 2011).
Orientating in the slip parallel/perpendicular direction relies upon features such as
striations (Renard et al., 2006, Sagy et al., 2007), grooves, corrugations or slickenslides
(Dascher-Cousineau et al., 2018), or using PCA (Bistacchi et al., 2011), or finding the
smallest relative power spectra (Brodsky et al., 2011).

Numerous profiles are then taken perpendicular and parallel to slip. Fourier analysis
is a suitable tool for analysing fault roughness surfaces, as long as enough profiles are
used and averaged, to eliminate noise (Simonsen et al., 1998). A Fourier transform
decomposes a signal into different frequencies and calculates the strength (power) of
each signal. A Fourier transform requires that a signal does not have a trend and the
ends of the signal taper, in order to prevent artifacts being created. To ensure this, each
profile must be detrended and a taper removed, frequently a 3% or 5% cosine taper
function (e.g. Candela et al. 2012). The Fourier transform gives power of topography
at each lengthscale, in order to investigate if the topography is fractal and exactly what
fractal properties it shows. By stacking and averaging the profiles, average properties
of a fault surface can be determined.

Other power spectral methods include the Welch method (Welch, 1967) or Thomson
Multitaper method (Thomson, 1982), which have been found to be more stable for
this kind of analysis (Bistacchi et al., 2011). Instead of power spectral methods, RMS
roughness could be calculated directly, or can be calculated from power spectral density
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using Parseval’s Theorem (see Brodsky et al. 2011).

1.1.3 Features of fractal fault roughness

From the power spectra, P (k), two numbers can help quantify the fractal properties of
the fault surface: the Hurst parameter, H and ‘pre-factor’, C, (Sagy et al., 2007) by:

P (k) = Ck−1−2H (1.1)

The Hurst parameter is inversely proportional to the gradient of power against
wavenumber, k, in log-log space and is a measure of the long-term memory of a system.
It describes, in this context, whether an observed topography trend along a profile is
likely to continue or not. Hurst parameters in the range 0.5 < H < 1 show persistent
behaviour, in that a trend is likely to continue whereas Hurst parameters in the range
0 < H < 0.5 show antipersistent behaviour, with a trend likely to change, resulting in
an oscillating profile (Simonsen et al., 1998) (Figure 1.3).

Since fault topography is fractal, the magnitude of topography changes depending
on the scale of observation. Thus the pre-factor, C, is a useful parameter as it gives
magnitude at a given lengthscale, enabling comparison between faults and scan sites.

These two parameters help to quantify the smoothness of a fault surface, and con-
sequently how a fault may fail in an earthquake.

1.1.4 Implications for earthquake slip

Measurements of the self-similar nature of fault surfaces can be used to better inform
earthquake models. Fault roughness has been incorporated into many different earth-
quake models and experiments. These include investigations on the effect on nucleation
(Harbord et al., 2017, Tal et al., 2018), dynamic rupture models (Bruhat et al., 2016,
Fang and Dunham, 2013, Parsons and Minasian, 2015, Shi and Day , 2013), ground-
motion simulations (Mai et al., 2017) and stress-drop and strain numerical models
(Zielke and Mai , 2016, Zielke et al., 2017). It is suggested that faults smooth with ma-
turity (Sagy et al., 2007, Brodsky et al., 2011), with implications for Gutenberg-Richter
b values (Goebel et al., 2017) and seismic hazard (Zielke et al., 2017).

Surfaces with fractal roughness are predicted to cause fractal stress drops and coseis-
mic slip distributions (Candela et al., 2011b). Fractal distribution of coseismic slip has
been observed in surface slip in the Landers earthquake (Milliner et al., 2015, 2016). In
addition, an investigation into published seismological slip distributions demonstrated
these distributions have fractal properties (Mai and Beroza, 2002).

These observations imply that fractal slip properties should be incorporated into
models of earthquake slip inversions.
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Figure 1.3: Some examples of generated fractal surfaces. The root-mean-square roughness (σ)
defines the magnitude of topography and the Hurst parameter, H, defines the long-term trend
of a signal. Profiles with H < 0.5 have high-frequency oscillations (antipersistent behaviour)
compared to profiles where H > 0.5, which show persistent behaviour. The topography of
profiles A and B have been vertically offset from each other for clarity.

1.1.5 Incorporating fractal properties into slip inversions through von

Karman regularisation

The meta-analysis by Mai and Beroza (2002) investigated the autocorrelation (corre-
lation between slip magnitude on patches as a function of distance between them) for
various published slip inversion solutions. They looked mostly at seismological finite-
fault inversions and investigated which of four types of autocorrelation function best
described the slip distributions: Gaussian, exponential, fractal and von Karman. The
von Karman autocorrelation best matched the power spectral density of slip correla-
tion, particularly the gradual roll-off of the power spectral density at small wavenumbers
(large wavelengths).

The von Karman correlation was first used to describe turbulence in fluids (von
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Kármán, 1948). The von Karman correlation, C(r), is given by:

C(r) =
GH(r/a)
GH(0)

(1.2)

Where GH(r/a) = (r/a)HKH(r/a), where KH is a modified Bessel function of the
second kind of order H, H is the Hurst parameter and r is the separation distanced,
scaled by a.

The Hurst parameter, as described above, controls the fractal properties and is re-
lated to the fractal dimension, D, by D = (Euclidian dimension) + 1 −H. Whereas
a fractal correlation only has one term to describe its correlation (fractal dimension,
D) the von Karman correlation has multiple terms, the Hurst parameter H and corre-
lation lengths along strike, aas and down dip, add. This allows for different properties
along-strike and down-dip, which is useful for capturing the self-affine earthquake slip
properties: differences in scaling along-strike and down-dip.

The von Karman autocorrelation function is similar to an exponential decay func-
tion (Figure 1.4; for H = 0.5 the von Karman autocorrelation is equal to exponential
decay). It is a way of defining the expected decay of similarity between slip patches as
a function of the distance between them, scaled by the correlation lengths. This can
be incorporated into the slip inversion using a Bayesian approach.
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Figure 1.4: The autocorrelation function (left) and power spectrum (right) of the von Karman
autocorrelation function. The autocorrelation decays as a function of lag, with the exact rela-
tionship defined by the Hurst parameter, H. For H = 0.5, the autocorrelation function is equal
to an exponential decay. The power spectrum of a von Karman function is similar to a fractal
spectrum, but the von Karman power spectrum decays more slowly at small wavenumbers,
whereas a fractal medium is controlled by corner wave number, kc, related to the characteristic
source dimension. Adapted from Mai and Beroza 2002.
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1.2 Slip inversions

Modelling the magnitude and direction of slip that occurs during an earthquake has
become a standard procedure during an earthquake investigation (Elliott et al., 2016).
By using observations of ground displacements from geodetic data such as Interferomet-
ric Synthetic Aperture Radar (InSAR) or Global Navigation Satellite System (GNSS),
or seismological data, we can create a model of how much slip occurred underground,
along the fault plane, where we cannot directly measure it. The early seismological slip
inversions used the finite-fault inversion method, which relied on waveform matching
synthetic seismograms for each patch on the fault plane with observed waveform data
(Olson and Apsel , 1982, Hartzell and Heaton, 1983).

Producing a slip solution is achieved using inverse methods; by using observations
we work backwards to solve for parameters of interest, using some assumed knowledge
of the Earth that relates the parameters we can observe to those we cannot. The
standard set-up of inverse methods is:

d = g(m) (1.3)

Or, for a linear inverse problem:

d = Gm (1.4)

Where d is data, m are the model parameters (values for which you are solving,
such as slip, rake) and G is a mapping function that relates the model parameters to
the data. In this thesis I used geodetic data, and so will focus on it here.

The most popular inversion method is a linear least-squares method (Fukuda and
Johnson, 2008). This is because the slip inversion can be written as a linear problem
for a known fault geometry, and least-squares methods are quick and computationally
cheap. For a distributed slip model, as is used here, the aim is to quantify how slip
varies in magnitude and location along a fault plane. The problem is set up such that a
fault plane is broken down into discrete elements, such as commonly used rectangular
patches (e.g. Wright 2003) or triangular patches (e.g. Barnhart et al. 2011) of the same
size or of different sizes (e.g. Jolivet et al. 2014a). The choice of size of these elements
is driven by data sensitivity. A high concentration of surface observations means that
smaller elements can be used to resolve slip at higher detail, but if too many patches
are used there is the risk of over-fitting noise. In contrast, the use of fewer patches
averages noise contributions, but potentially resolvable slip is unnecessarily averaged,
too. The size of patches is frequently chosen in advance or can be solved for (Barnhart
and Lohman, 2010, Atzori and Antonioli , 2011).

The mapping function, G that relates slip at depth on a fault plane to observable
surface displacements is frequently formulated using Okada (1985). This models the
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fault as a rectangular dislocation in an elastic half space, and with Lamé parameters, λ
(Lamé’s first parameter) and µ (Lamé’s second parameter, shear modulus), can be used
to predict the surface displacements due to elastic motion at depth. Some approaches
include varying elastic parameters with depth, particularly joint geodetic-seismic meth-
ods (Simons, 2002, Jolivet et al., 2014a). The matrix G must be correctly formulated
using the strike and dip of the fault plane, the locations of the discrete fault patches
and the rake (direction of earthquake slip). By calculating G for unit slip, when G

is multiplied by column vector m, which contains the value of slip, this produces the
predicted observations d for that magnitude of slip.

1.2.1 InSAR and GNSS

InSAR and GNSS are invaluable tools for investigating earthquake surface displace-
ments. GNSS provides high temporal resolution but a sparse spatial distribution, which
can instead be provided by InSAR.

In-depth descriptions of InSAR processing are provided by works such as Hanssen
(2001) and Grandin et al. (2016) and the application to tectonic settings are provided
by reviews such as Wright (2002) and Elliott et al. (2016). Briefly, by interfering two
radar images, taken before and after the earthquake, and correcting for parameters
such as topography, geometry and atmospheric delays, a map of surface displacements
incurred during an earthquake can be obtained. These measurements give wide ground
coverage, provided the area is coherent between InSAR acquisitions. Originally used
for topographic mapping (Gabriel et al., 1989), InSAR was first applied in a tectonic
setting on the 1992 Landers earthquake (Massonnet et al., 1993). The displacement
measurement is in the ‘line-of-sight’ of the satellite, meaning that the satellite can
only distinguish movement in the look direction of the satellite, and is blind to other
movement. The number of datapoints provided by InSAR is unnecessarily high for
modelling purposes, and if all used would make a calculation very computationally ex-
pensive. Thus InSAR scenes are downsampled, frequently using a quadtree downsample
method (Jónsson et al., 2002, Lohman and Simons, 2005) or by uniform downsampling,
to provide enough detail in areas where displacement magnitudes change quickly, but
without slowing down computation too much.

In contrast, GNSS measurements provide higher temporal resolution and can be
used to determine displacements over a matter of days (e.g. Floyd et al. 2016). By
triangulating between at least four satellites, the exact ground location can be deter-
mined. A site can then be re-occupied (campaign GNSS) or continuously monitored to
give displacements through time. Unlike InSAR, GNSS gives North, East and vertical
displacements.

By using InSAR and GNSS measurements before and after an earthquake, the co-
seismic surface displacements can be calculated to a high degree of accuracy. These
can then be used to calculate slip at depth in slip inversions.
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1.2.2 Regularisation in slip inversions

If a forward model of surface displacements is created from an input slip distribution
using Okada (1985) by d = Gm and then the same surface displacements are inverted
for slip, then the exact solution will be returned.

Unfortunately in the real world the InSAR and GNSS measurements of surface dis-
placement are affected by noise, including spatially correlated noise and model errors.
The data coverage depends upon the location of GNSS receivers and by areas of coher-
ence in interferograms. This means that slip inversions do not have a unique solution
(they are ill posed), or that there is a unique solution but the inversion is too close
to singular and the solution will attempt to fit noise, which can cause oscillations in
the solution (the solution is unstable). To attempt to find a unique, stable solution,
frequently some form of regularisation is used. In the geodetic community, Laplacian
smoothing is the commonly adopted approach (Harris and Segall , 1987, Wright , 2003,
Funning et al., 2005). Laplacian smoothing minimises the sum of the second spatial
derivatives, thereby seeking to keep the difference in slip between patches small. The
weight of this smoothing is controlled by a scalar smoothing factor, the value of which
is often chosen by repeating the inversion for different smoothing factors, calculating
the misfit and then generating an ‘L-curve’ of smoothing factor against mistfit (Jónsson
et al., 2002, Wright , 2003, Walters et al., 2009). The smoothing factor is then chosen to
balance the misfit and roughness, generally chosen to be near the bend in the L-curve,
but a limitation of this is that the bend is often not sharp and the position of the
bend changes with the scale of the graph (Fukuda and Johnson, 2008). The smoothing
parameter can be chosen objectively with methods such as ABIC (Akaike’s Bayesian In-
formation Criterion) (Yabuki and Matsu’ura, 1992) or cross-validation (Johnson et al.,
2001, Hreinsdóttir , 2003) but most frequently the trade-off approach is used, and com-
monly little or no justification is given at all. This can result in a range of possible
solutions (Figure 1.5).

Laplacian smoothing is beneficial in that by minimising the difference in slip between
patches it stops unrealistic stress drops in slip solutions, but this does not mean it is
necessarily the best regularisation to use. Indeed there are many other regularisations,
including methods that promote spatially compact solutions (Evans and Meade, 2012)
or those that include no regularization at all if resolution allows (Minson et al., 2013,
Jolivet et al., 2014b).

This thesis is concerned with incorporating a more realistic regularisation into earth-
quake slip inversions. As discussed previously, many avenues of research have shown
that earthquake slip shows self-similar properties. Since this is an observed and mea-
sured feature of earthquake slip this suggests that it is a more realistic prior assumption
to bring into earthquake slip inversions. In this thesis I incorporate fractal slip as a
regularization into slip inversions, after Hooper (2012). This is done using Bayesian
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Figure 1.5: Three different smoothing parameters used in a Laplacian smoothed solution for
the Mw 7.1 Hector Mine Earthquake. Figure from Jónsson et al. (2002).

methods (Section 1.2.3), after Fukuda and Johnson (2008), Hooper and Wright (2009),
Hooper et al. (2013), Minson et al. (2013), through the von Karman function (Section
1.1.5). In Chapter 3 I fully introduce the method. Upon finding some limitations to it
I further refine this method in Chapter 4.

1.2.3 Bayesian methods

In recent years there has been a move towards Bayesian slip inversions in the geo-
physical community (Hooper et al., 2013, Minson et al., 2013). Unlike a least-squares
solution, which presents an answer and a Gaussian distribution through propagation
of errors, a Bayesian approach allows the full exploration of the range of values that
parameters can take that both fit the data and our prior assumptions about them.
It is also a very flexible approach, so constraints can be easily incorporated through
the prior probability density function (PDF) and additionally hyperparameters, such
as smoothing parameters (discussed in section 1.2.2), can be fit within the inversion.
The full solution is a PDF for each model parameter (posterior PDF) that captures the
full range of values suitable for that model parameter, as well as an indication of the
value it is most likely to be. A fundamental assumption in Bayesian inversions is that
our prior knowledge about all the model parameters (the unknowns for which we are
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solving) can be expressed as a probability.
Bayes theorem states:

p(m|d) =
p(d|m)p(m)∫∞

−∞ p(d|m)p(m)dm
(1.5)

Where the posterior distribution, p(m|d), is comprised of how well the model fits
the observed data (the likelihood, p(d|m)) and how well a model fits prior assumptions
(the prior, p(m)). The denominator is referred to as the ‘evidence’ and is a normalising
constant, so is frequently ignored. Throughout the inversion our prior knowledge,
p(m), about the model parameters is updated by the data, d, to give the posterior
distribution.

Some Bayesian solutions can be solved analytically, but if this is not possible (e.g. if
solving for hyperparameters) then frequently Bayesian methods are paired with MCMC
(Markov chain Monte Carlo) methods. This is a sampling method so that instead of
attempting to evaluate Equation 1.5 for all possible values of every parameter, which
would quickly become impractical for a problem with a large number of parameters, it
allows an efficient search of parameter space.

A Markov chain is a memoryless chain in which a trial is generated as a perturbation
of the current state. By accepting or rejecting new trials based on the ratio of their
probability to the probability of the current state, the Markov chain preferentially
samples in areas of high probability, thus building the posterior PDF. The flexible
Bayesian framework allows us to incorporate prior assumptions such as fractal slip,
prevent unphysical features such as backslip and solve for hyperparameters within the
inversion.

I implement the Bayesian framework using two steps, as described by Tarantola
(2005). I use the first step to sample the prior: a slip distribution consistent with the
von Karman prior, which is non-trivial to directly generate using a random walk. Whilst
generating a von Karman slip distribution is simple, the MCMC sampling requires a
perturbation from the current distribution, and so we select von Karman trials using
the first sampling step instead of attempting to produce von Karman trials directly.
The second step then samples the posterior, by calculating the likelihoods. There is an
efficiency benefit to performing this in two steps, since the likelihood is computationally
expensive and this calculation need not be performed for trials that would have been
rejected for low prior probability anyway.

Our method for incorporating the von Karman correlation is developed and de-
scribed in Chapter 3.

1.2.4 Trans-dimensional approaches

If the number of unknowns within an inversion is itself unknown, this becomes a trans-
dimensional inversion.
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Geyer and Møller (1994) and Green (1995) introduced a method of sampling trans-
dimensional posteriors. Green (1995) termed the method ‘reversible-jump MCMC’
methods, in which the chain is able to ‘jump’ between differently-sized parameter spaces
as the number of model parameters changes. Trans-dimensional Bayesian approaches
have been applied to many geophysical problems (Sambridge et al., 2006), including
parameterising the number, thickness and geophysical properties in a layered Earth
model (Malinverno et al., 2002), tomography (Bodin and Sambridge, 2009) and recently
finite-fault inversions (Dettmer et al., 2014).

In Chapter 4 I use trans-dimensional methods to solve for the number of slipping
patches within an inversion, so that the inversion is not biased by initial assumptions
on fault size.

1.3 Faults and earthquakes in this study

1.3.1 Campo Felice fault, Italian Apennines

The Italian Apennines are a northeast-southwest striking mountain belt consisting of
many normal faults that are accommodating the current ∼3 mm/yr extension (Malin-
verno and Ryan, 1986, D’Agostino et al., 2014) (Figure 1.6).

The Campo Felice fault in the Italian Apennines offers an excellent opportunity to
conduct an along-strike fault roughness study, as its bedrock fault scarp is well exposed
along its ∼5 km length. This provides suitable scanning sites along its length, enabling
the quantification of differences between the fault surface properties over a small (tens
of meters to hundreds of meters) scale. Using this data I will examine any systematic
variation along the fault, and the relationship between fault roughness and rupture
propagation and termination.

A previous study of the limestone fault scarp divided the fault into three different
morphological units up-dip but the roughness measurements did not distinguish any
differences in weathering up the fault scarp, that could have related to seismic events
(Giaccio et al., 2003). A terrestrial laser scanner study identified a prominent bend
that links across a former left-stepping relay zone, with increased throw rates in the
vicinity of the bend (Wilkinson et al., 2015).

1.3.2 The Napa Valley earthquake

The Mw 6.0 Napa Valley, California earthquake, also called the South Napa earthquake,
happened on the 24th August 2014 (Figure 1.7). This was the first earthquake imaged
by Sentinel-1a, with the image before the earthquake taken on the first day it reached
its operation orbit. It was also the largest earthquake in the San Francisco Bay area for
twenty-five years, so attracted a lot of scientific interest (Hudnut et al., 2014, Parsons
et al., 2014, Grapenthin et al., 2014, Dreger et al., 2015, Elliott et al., 2015, Ji et al.,
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Figure 1.6: Continuous GNSS observations (panel a), strain rates (panel b) and earthquakes
<30 km depth across the Italian Apennines. Figure from D’Agostino et al. (2014)

2015, Guangcai et al., 2015, Barnhart et al., 2015, Zhang et al., 2015, Langbein, 2015,
Taira et al., 2015, Melgar et al., 2015, DeLong et al., 2016, Floyd et al., 2016). It
had right-lateral strike-slip sense of motion and occurred on the West Napa Fault and
the surface ruptures were extensively mapped (Hudnut et al., 2014) which provided
excellent detail to constrain the fault plane.

1.3.3 The Central Tottori earthquake

The Central Tottori earthquake occurred in the Tottori prefecture of the Chugoku
region, Japan, 2016 (Figure 1.8). It had a left-lateral strike-slip sense of motion and
occurred in the Northern Chugoku shear zone, in a region in which there has been
several large magnitude earthquakes including a magnitude 7.2 in 1943 (Kanamori ,
1972), a magnitude 6.2 in 1983 (Tsukuda, 1988) and magnitude 6.6 in 2000 (Semmane
et al., 2005, Monelli et al., 2009).

At the time of writing, no geodetic investigation of this earthquake had been un-
dertaken, though two seismology investigations had performed slip inversions to which
I could compare my results.

One benefit of this earthquake is that it presented simpler fault geometry than
Napa, for testing our new method. Whereas for Napa the mapped surface rupture
and complicated InSAR pattern suggested multiple faults may be necessary, here the
deformation pattern suggests modelling as one fault may be more reasonable.
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Figure 1.7: Coseismic InSAR and GPS surface displacements for the Napa Valley earthquake.
Pre earthquake seismicity shown in black (Waldhauser , 2009), mapped surface rupture shown
in red (Morelan et al., 2015), GPS vectors in yellow with grey 95% confidence ellipses. Figure
from (Floyd et al., 2016) .

1.4 Aims and objectives

In this work I aim to further explore the fractal properties of fault surfaces and fault
slip, to confirm that these properties can be incorporated into earthquake slip inversions
and introduce this new method of regularisation. In doing so I aim to present a viable
new methodology that the scientific community can adopt for slip inversions, or at the
very least cause the community to question its default regularisation choice.

My specific objectives are:

1. Investigate properties of fractal slip and incorporate them into multiple earth-
quake scenarios

2. Explore how the fractal properties of fault surfaces change along-strike of a fault
and the link to fault structure

3. Develop a Bayesian method to efficiently and reliably solve for earthquake slip
from InSAR and GNSS data on a multi-fault model, incorporating fractal prop-
erties

4. Further refine the method of incorporating fractal slip to make the inversion as
unbiased as possible, by solving for the number of slip patches within the inversion
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Figure 1.8: The Central Tottori earthquake occurred in the Chugoku region of Japan (Figure
a). Panel b shows the peak ground acceleration (PGA) during the earthquake as measured by
K-NET and KiK-net. Panel b shows the 2016 earthquake (green star), focal mechanism and
fault plane as well as aftershocks and approximate fault planes from other recent earthquakes
in the region. Figure from (Kubo et al., 2017).
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1.5 Thesis roadmap

In Chapter 2, I investigate how the fractal properties of fault roughness vary along the
Campo Felice fault in the Italian Apennines and relate this to fault structure.

In Chapter 3, I develop a method for incorporating self-affine properties into earth-
quake slip inversions. I do this using a Bayesian inversion, incorporating several mea-
sures for efficiency. I test this on several synthetic tests to show that this regularization
is as good if not better than current methods and then apply this method to the Napa
Valley earthquake.

In Chapter 4, I further refine this method, making it trans-dimensional to remove
the bias caused by choosing fault size in advance.

In Chapter 5, I discuss this work in the wider context of understanding earthquake
slip and its importance and use to the tectonics community, as well as future work.
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Chapter 2

Fractal Properties of the Campo

Felice Fault

2.1 Abstract

The roughness of fault surfaces has fractal properties: there is a power-law relation-
ship between the topography of a fault and the wavelength of this topography. This
understanding of the behaviour of fault surfaces over many spatial scales gives vital
information for studying earthquake friction, nucleation, slip behaviour and fault me-
chanics, but no previous study has addressed how fractal properties vary along strike
in an individual fault. Here we present our investigation of how fault roughness varies
along-strike of the Campo Felice fault in the Italian Apennines. Using a combination of
measurements from terrestrial laser scanners and a laser profilometer we have created
3D point clouds of the fault surfaces, with scales ranging from submillimeter up to
over 1 km. We show results from 14 locations along the fault, with multiple samples
taken to investigate in the lab using a laser profilometer at two locations, as well as a
scan covering several hundred meters along the length of the fault. We find that the
Campo Felice fault shows fractal properties over six orders of magnitude in length in
the slip perpendicular direction (along strike), and at least three orders of magnitude
in the slip parallel direction. The Hurst parameter, which constrains self-similarity,
varies considerably along the length of the fault. We speculate this variation is due
to structural complexity, and that the fault surface may be recording variations in slip
direction along the fault, or that the variation is due to different asperities on the fault
experiencing different faulting histories or stress conditions. Our measurements of the
self-similar nature of the faults will enable us to better inform earthquake models, in
particular modelling of coseismic slip.
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2.2 Introduction

Understanding the nature of fault surfaces is vital to understanding how faults and
earthquakes nucleate, propagate and terminate as the slip surfaces record these pro-
cesses as they evolve over time. Fault surfaces have long been known to be rough
and early work showed that this roughness is not random but shows fractal properties
(Brown and Scholz , 1985, Power et al., 1987), meaning that a feature is similar at all
scales, often used interchangeably with ‘self-similarity’. In the context of fault sur-
faces, this means that the geometric pattern of topography is replicated at every length
scale (Bistacchi et al., 2011). In other words, Power and Tullis (1995) say ‘if both
an elephant and an ant were to walk on a self-similar surface, they would observe the
same type of topography relative to their respective body size’. Mathematically fractal
behaviour means that a feature can be described by a power law, i.e. in this case that
the root-mean-square fluctuations of fault topography are proportional to the length
of the profile (Fang and Dunham, 2013). Earthquake surface ruptures have also been
shown to be fractal (Rockwell and Klinger , 2013, Candela et al., 2012) as has coseismic
surface slip (Milliner et al., 2015, 2016).

This study quantifies for the first time how the fault roughness varies along-strike
of a fault. We provide details at multiple scales, with sampling sites spaced within tens
or hundreds of meters along-strike. These measurements can help inform earthquake
models, which frequently parameterise the fault into minimum 1 km elements, without
any consideration for how the fault properties may change at distances less than this.

Roughness affects nucleation (Tal et al., 2018) and the minimum scale of grooving
may be linked to the transition in deformation mechanism of the fault (Brodsky et al.,
2016). It has been suggested that faults smooth gradually with maturity (Brodsky
et al., 2016) and that this may affect Gutenberg-Richter b values (Goebel et al., 2017).
Fault roughness has been incorporated into ground-motion simulations (Mai et al.,
2017) as well as into dynamic rupture models (Fang and Dunham, 2013, Shi and Day ,
2013, Parsons and Minasian, 2015, Bruhat et al., 2016) and fractal properties have
been incorporated into earthquake slip inversions (Amey et al., 2018). Thus it is vital
to properly quantify fractal nature of fault roughness to better inform these models,
which in turn help estimate magnitude of shaking and stress transfer that can help
inform seismic hazard analysis.

In recent years investigations of fault surfaces have been conducted at a full range
of scales, using white light interferometers and laser profilometers at the shortest scale
to measure µm roughness (Candela et al., 2009, 2012, Candela and Brodsky , 2016)
up to LiDAR and photogrammetry scans at the longest scale to measure hundreds of
meters (Renard et al., 2006, Sagy et al., 2007, Candela et al., 2009, Bistacchi et al.,
2011, Candela et al., 2012, Corradetti et al., 2017). This enables the quantification of
the fractal properties of a fault over several orders of magnitude.
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One method to determine the roughness of the fault from laser scans is to calculate
the average deviation of the profile from planarity (RMS, root-mean-square, roughness;
Tal et al. 2018), but instead of measuring the roughness directly, we calculate the power
spectrum of the scan to constrain the power of each oscillation for each wavelength.
From the power spectra we can calculate the Hurst parameter (Candela et al., 2012).
The Hurst parameter is related to the fractal dimension and quantifies the power of
a feature as a function of the scale at which the feature is observed (Figure 2.1). It
was first defined by Hurst et al. (1965) who showed that the flow through the River
Nile on a particular year correlated to the rainfall in subsequent years with a long-term
trend. In the context of fault roughness, it gives a measure of the long-term trend of
the topography of the fault (Figure 2.1), and it quantifies the change in power as a
function of lengthscale. Hurst parameters in the range 0.5 < H < 1 have a positive
autocorrelation, meaning that the observed trend is likely to continue (persistent be-
haviour) (Simonsen et al., 1998). In these instances the profile is dominated by long
wavelength signals, and the profile is smoother at small wavelengths, because the to-
pographic trend is continuing instead of oscillating, as in Figure 2.1. In contrast, if
H is in the range 0 < H < 0.5 then an observed trend is likely to reverse (antipersis-
tent behaviour) (Simonsen et al., 1998), resulting in oscillating fault topography that
alternates between high and low values along a profile. The Hurst parameter is only
valid in the range 0 − 1, as the upper limit ensures the fault tends to a flat surface,
and the lower limit ensures topography increases at increasing scale (Simonsen et al.,
1998). Figure 2.1 highlights the difficulty in defining ‘smoothness’ of a fault, as a higher
Hurst parameter with the same RMS roughness is smoother, but lower RMS roughness
represents a lower deviation from a planar surface and therefore is also smoother. In
this paper we use ‘smoother’ to mean lower magnitude of topography, i.e. lower RMS
roughness; lower power topography.

Recent higher-resolution studies of fault topography (e.g. Sagy et al. 2007) find
that faults are self-affine, rather than self-similar. This implies that whereas a self-
similar feature will appear statistically identical on small and large scales, a self-affine
feature requires scaling in one direction (Poon et al., 1992). As the length scale of
observation of a self-similar fault surface increased the magnitude of topography would
increase by the same factor, that is if the length, δx, increased by a factor of γ then
the topography δz would increase by γ also, by δx→ γδx, δz → γHδz (Candela et al.,
2012). These studies also showed a difference in the Hurst parameter parallel to slip
and perpendicular to slip (Sagy et al., 2007), demonstrating a relationship between the
direction of slip and the roughness of a fault. The Hurst parameter is thus a useful
scaling for understanding the variations across many scales of fault roughness. We can
also calculate a ‘pre-factor’ term that gives an estimation of the inherent roughness of
the fault (Sagy et al., 2007), i.e. a measure of the magnitude of the fault topography,
related to RMSroughness (σ in Figure 2.1).
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Figure 2.1: Generated fractal surfaces and profiles along the surfaces, illustrating the effect
of Hurst parameter, H and RMS roughness, σ. The Hurst parameter defines the relative
contribution of long-wavelength and small-wavelength topography features. A surface with
Hurst parameter in the range 0 < H < 0.5 is antipersistent, meaning an observed trend
unlikely to continue, resulting in oscillations (profile A-A’). In contrast, Hurst parameters in
the range 0.5 < H < 1 are persistent, and observed trends are likely to continue (profile B-B’),
meaning the surface has fewer topographic highs and lows, and is instead dominated by the
long wavelength signal. The topographic profiles have been vertically offset for clarity. Note
that these are isotropic surfaces, with the same Hurst parameter in both the x and y directions,
whereas natural fault surfaces are observed to have different Hurst parameters parallel to slip
and perpendicular to slip.
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Here we present an in-depth study along several hundreds meters of the Campo
Felice fault in the Italian Apennines, measured using a terrestrial laser scanner and a
laser profilometer, ranging from millimetre to several hundred meter scale. We present
our findings for the Campo Felice fault and discuss the implications for earthquake
mechanisms, rupture dynamics and seismic hazard. We find the fault shows fractal
properties, and that the exact scaling of this parameter values along-strike.

2.3 Laser scanning data from the Campo Felice fault

2.3.1 Campo Felice fault

The Campo Felice fault is a normal fault within the central Italian Apennines (Figure
2.2). The Apennines are a northwest-southeast striking mountain range that have been
undergoing extension for the past 2-3 Myr and are currently extending at ∼3 mm/yr
(Malinverno and Ryan, 1986, D’Agostino et al., 2014). The basins are bounded by
young, segmented, normal faults that accommodate this extension in medium to large
(> Mw 6) earthquakes, which have devastated towns and cities in the Apennines (recent
earthquakes shown in Figure 2.2).

The Campo Felice fault is a northwest-southeast striking fault with a nearly con-
tinuous exposed limestone bedrock scarp for much of its ∼5km length. The lowest part
of the fault scarp is a clean, largely unbroken surface, which has been suggested to be
almost unweathered apart from a low level of biokarst (Giaccio et al., 2003). The fault
surface was previously investigated using a microroughness-meter on transects along
the fault but did not define any observable roughness variation relating to palaeoseis-
mic events (Giaccio et al., 2003). A detailed study using a terrestrial laser scan of the
fault surface has shown that a bend in the fault (Figure 2.2d) produces local maxima
in Quaternary throw-rates (Wilkinson et al., 2015). We will investigate the effect of
this structural complexity upon the fault roughness.

We sampled the central section of the fault where it is best exposed and preserved,
focusing on two main areas: from hereafter denoted as the northwest and southeast
localities. The northwest locality is close to the center of the fault, and the south-
east locality is just north of prominent change in strike or relay zone (Figure 2.2d)
(Wilkinson et al., 2015).

Details, field photographs and figures of the gridded scans can be found in Appendix
A, Table A.1 and Figures A.1 - A.7.

2.3.2 Terrestrial Laser Scanner

We scanned the fault surface using a range of different scanning equipment, with details
summarised in Table 2.1.

For the largest scales we used terrestrial laser scanners (TLS). The full-length scan
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Figure 2.2: Italian Apennines fault system. This northwest-southeast trending system of nor-
mal faults is accommodating extension across Italy and has been the source of many devastating
earthquakes, with recent ones indicated by their focal mechanisms in panel a. The location of
the Campo Felice fault and its neighbouring faults is shown in panel c, with a birds-eye Google
Earth image in panel d showing the fault trace (black arrows), two scanning localities used in
this study (red arrows) and location of a change in strike of the fault (white star). Panel a and
c plotted on SRTM topography (Farr et al., 2007)
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of the fault was acquired using a Riegl LMS-z420i laser scanner, consisting of 6 scan
positions from at a range of ∼400 m to cover a 5 km length of the fault (Wilkinson
et al., 2015). Detailed scans were acquired within a couple of meters of the fault to
capture surface sections of up to 4 m perpendicular to slip by 10 m parallel to slip.
The first five scans were taken in 2014 using a Leica C10 and the next nine scans were
taken in 2017 using a Riegl VZ-1000.

2.3.3 Laser profilometer

We acquired topographical scans of 14 cm slip perpendicular x 10 cm slip parallel
sample blocks using a NextEngine 2020i laser profilometer. Scans were obtained with a
capture density of 40,000 points/cm2, and dimensional accuracy of ± 100 µm. The laser
profilometer scans were taken parallel to the slip direction at approximately 200 µm
intervals.

Type of instrument Site Name of scanner Precision Accuracy
Terrestrial laser scanner A,B,C,D,E,F,G, J, N Riegl VZ-1000 8 mm 5 mm
Terrestrial laser scanner H,I,K,L,M Leica C10 2 mm 6 mm
Terrestrial laser scanner Whole fault Riegl LMS-z420i 8 mm 10 mm
Laser profilometer D, J NextEngine 2020i 100 µm

Table 2.1: Details of the different scanner used in this study. The sites correspond to the
locations on the fault at which scans were performed, see Figure 2.5. Laser profilometer scans
were taken at the same locations as terrestrial laser scans, D and J.

2.4 Method

We broadly follow the methodology of Candela et al. (2012), shown in Figure 2.3.

The fault surface scans give raw point clouds of x, y, z data. Starting from the point
clouds, we first remove features such as shrubs, bushes and areas of weathering from the
point cloud based on field photos using the CloudCompare software. We then orientate
the fault such that the x axis is perpendicular to slip, the y axis is parallel to slip and
the z axis is fault topography. This is achieved by performing principal component
analysis on the pointcloud in MatLab to identify the vector normal to the plane and
use this to rotate the pointcloud into the xy plane, with z being topography. The
benefit of principal component analysis is that it accounts for errors in x, y in addition
to accounting for z errors as with linear-least squares (Bistacchi et al., 2011). Once this
is achieved, for the small and medium-scale datasets we manually pick grooves in the
fault surfaces and use this vector to orientate the plane so that y is parallel to the slip
direction as indicated by the grooves. For the scan of the whole fault, the slip parallel
direction is assumed to coincide with the fault dip.

When the pointcloud has been fully orientated we crop it to a rectangle and grid
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Figure 2.3: Methodology employed to estimate power spectra. Panel 1 shows the fault surface,
with notebook for scale. This is then scanned and orientated to give a point cloud as shown in
panel 2. We take profiles parallel and perpendicular to slip to gain profiles which we detrend
and apply a taper function as in panel 3. We calculate the power spectra of the profile (panel
4 ) and stack the power spectra for all the profiles (panel 5 ) to get an average.

it. For the laser profilometer we choose the gridsize to be twice the average separation
distance between points in the cropped pointcloud. For the terrestrial laser scan of the
whole fault we vertically average up-dip and then grid every 1 m, giving only one profile
along the length of the fault, with 1 m spacing between datapoints. For the meter-scale
terrestrial laser scans we grid the data where either the gridsize is twice the average
separation distance between points in the cropped pointcloud, or 1 mm, whichever is
larger. Due to areas of grass there may be some gaps in the pointcloud between which
we interpolate during gridding, but Candela et al. (2009) found that this analysis is
not biased by randomly distributed absent data.

Fourier spectral analysis can be used to quantify roughness, as long as many pro-
files are available, to stack and allow signal to dominate over noise (Simonsen et al.,
1998). Therefore we compute spectral analysis by taking profiles parallel to slip and
perpendicular to slip from the gridded pointcloud. The Fourier transform requires that
each profile be detrended, and that the profile starts and ends at the same value, to
remove artifacts in the power calculation caused by topography at the edge of the pro-
files. We achieve this by fitting a line through the first and last point in the profile
and then using a 3% cosine taper (Candela et al., 2012). We found that this method
gave fewer topographic artifacts at the end of the profile than either fitting a linear
trend to the data or using principal component analysis. We then compute the Fourier
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transform and calculate the power, P (k) as a function of wavenumber, k, by squaring
the modulus of the Fourier transform. Since we use the fast Fourier transform, which
is a discrete sum, it must be multiplied by the sampling distance, dx to produce the
fourier transform as an integral quantity. Thus power = (FFT × δx)2. The power
is then normalised by dividing by the length of the profile multiplied by the sampling
distance (Nδx). This gives the power spectral density calculated at each wavenumber,
k, with units m3 (Sagy et al., 2007).

To stack the profiles we calculate the mean of all the profiles at wavenumbers in
geometric progression, to which we fit a best-fit line. This reduces noise associated with
each individual profile. From this the ‘pre-factor’, C, and Hurst parameter, H, can be
calculated, as:

P (k) = Ck−1−2H (2.1)

Where the Hurst parameter quantifies the power of a feature as a function of scale
at which the feature is observed and is inversely proportional to the gradient of the line,
in log-log space. The pre-factor is a measure of the magnitude of the fault roughness
at a given wavelength.

2.5 Results

The Campo Felice fault shows fractal properties over six orders of magnitude in the
slip perpendicular direction (along strike), and at least three orders of magnitude in
the slip parallel direction (Figure 2.4). This is demonstrated by the straight line of the
power spectra in log-log space, from the millimeter scale up to 1.5 km along the length
of the entire fault.

The spectra taken at different scales are offset vertically from each other in Figure
2.4. This is likely due to the bias introduced by the necessity of choosing un-cracked
hand samples to measure in the laboratory and choosing smoother, unweathered sec-
tions of fault plane to scan. Whereas the natural fault surfaces are cross-cut by nu-
merous cracks and pits, formed during earthquakes (Dascher-Cousineau et al., 2018),
when choosing samples to cut from the rock it is necessary to choose areas where these
features are not present. The same is true when picking smoother areas of the fault to
scan with the terrestrial laser scanner.

The terrestrial laser scanner measurements at meter to centimeter scale (warm
colours in Figure 2.4) show high variability at low wavenumbers due to fewer profiles
of this length being available in the power spectra, so there are fewer available data
points to remove noise by stacking. We also note that at this scale the power spectra
flatten at the highest wavenumbers. We attribute this to the power spectra intersecting
the noise spectrum, as it occurs at approximately similar wavelengths in the spectra
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Figure 2.4: Power spectra parallel to slip and perpendicular to slip, with photos indicating how
the topography was measured. Green indicates terrestrial laser scan of the entire fault Wilkinson
et al. 2015, panel a), warm colours are meter scale measurements taken by the terrestrial laser
scanner (panel b) and cold colours are measurements from the laser profilometer (panel c). The
full-length scan means we have power spectra at much larger wavelengths perpendicular to slip
(along strike) than parallel to slip (up-dip), where there are only a few meters available. Dotted
lines indicate the minimum and maximum pre-factors (y-intercepts) at 1 m wavelength, where
the minimum values are calculated from extrapolating the lower power laser profilometer profile
and the maximum value is calculated from the maximum power terrestrial laser scanner profile.
The Hurst parameters are inversely proportional to the gradient of the line (a steeper negative
slope is a higher Hurst parameter).
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for all the different medium-scale terrestrial laser scans, at ∼1-2 cm, and not for the
laser profilometer scans.

We also calculated the pre-factors (y-axis intercept, Figure 2.4) at 1 m wavelength,
to give a measure of roughness magnitude. Since the topography is fractal, the mag-
nitude of the topography depends upon the scale of observation, but calculating the
pre-factor at a given wavelength enables comparison between different faults or sites. In
the slip parallel direction the maximum prefactor is 1.5× 10−6 (from a terrestrial laser
scan) and the minimum prefactor is 1.7× 10−8 (from a laser profilometer scan). In the
slip perpendicular direction the maximum prefactor is 8.8× 10−6 (from the terrestrial
laser scan of the entire fault) and the minimum prefactor is 3.5 × 10−8 (from a laser
profilometer scan).

Using the power spectra, we calculated the Hurst parameters for each using Equa-
tion 2.1. A steeper slope of the power spectra represents a higher Hurst parameter,
results shown in Figure 2.5. Our scans give mean and standard deviation values of
H⊥ = 0.50± 0.21 and H‖ = 0.40± 0.14.

We find that the Campo Felice fault displays a broad range of Hurst parameters.
Figure 2.5 shows that there is not an observable trend of Hurst parameters as a function
of distance along the fault from the centre or the ends. In the slip perpendicular
direction, different measurements taken at the same location (D and J) show similar
Hurst values, with a range of ∼0.2, but in the slip parallel direction the variation for
measurements at the same site is much larger, of ∼0.3.

We find the highest value of 0.9 for the Hurst parameter perpendicular to slip at
scanning site F. Whereas most exposed fault surfaces we scanned were approximately
planar, this fault surface was extremely curved, with topography of 8 cm across a 2 m
scan. This accounts for the higher Hurst number: its power spectra has a steeper
slope in log-log space, indicating that the signal is dominated by the large wavelength
corrugation and is lacking in low wavelength topography. The power spectra still shows
a fractal relationship: it is a straight line in log-log space down to the noise level, but
the slope is steeper.

Scanning site E displays very low Hurst parameters in both the slip parallel and slip
perpendicular direction. The fault scarp at this site had a large density of pink lichen
covering it, which could not be removed during the data cleaning. This may mean that
the signal from the fault surface is being obscured, leading to a similar topography
power at higher and lower wavelengths.
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Figure 2.5: Hurst parameters plotted as a function of distance along the Campo Felice fault.
Panel a shows a bird-eye Google Earth image of the fault with black arrows showing fault
trace, red arrows showing rough location of the scanning localities and the star (*) showing
the location of a suggested fault bend (Wilkinson et al., 2015). Panel b shows Google Earth
image looking at the uplifted footwall as if standing in the basin, with red arrows indicating
locations that scans have been taken. Panel c and d show the Hurst parameters parallel
to slip and perpendicular to slip respectively, as a function of distance along the fault, with
the measurement sites labelled A to N. Circles indicate readings taken above the ground and
diamonds indicate readings below the ground, where we have dug a trench and then sampled
the fault surface. Blue symbols are measurements taken by terrestrial laser scanner and red
symbols are taken by laser profilometer, where all laser profilometer samples were taken at a
site that we also scanned with the terrestrial laser scanner. The slip perpendicular direction
has the additional scan of the entire fault length, which is on the right of panel d.
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2.6 Discussion on the relationship between roughness and

fault structure

Fault rupture and asperities

Previous work has shown faults of different lithology and tectonic regime to have a
remarkably constant Hurst parameter of ∼0.8 in the slip perpendicular direction, and
∼0.6 in the slip parallel direction (Bistacchi et al., 2011, Candela et al., 2012), with
the exception of Dascher-Cousineau et al. (2018). Here we find, generally, lower values
of Hurst parameter. In the slip parallel direction only two sites are within the one
sigma range found by Candela et al. (2012). This lower Hurst parameter is consistent
with Campo Felice being a young (‘immature’), short and segmented fault, meaning
that small wavelength topography has not eroded. We also find a higher variability
in the Hurst parameters along the same fault than has been found in previous studies
for datasets consisting of numerous faults (Candela et al., 2012), suggesting that con-
clusions drawn from fault roughness, including its relationship with fault displacement
(Brodsky et al., 2011), must be based on a representative sample of the fault has been
scanned, to ensure apparent differences between faults are not instead due to natural
variations along a fault.

Of the two distinct scan groups, the samples in the northwest group (towards the
center of the fault) display increased variability to those in the southeast group (towards
the fault tip). Considering only the northwest region gives a mean of H⊥ = 0.42± 0.17
and H‖ = 0.40 ± 0.18, where the southeast group gives a mean of H⊥ = 0.46 ± 0.10
and H‖ = 0.40 ± 0.13. Whilst the means are similar the higher standard deviation
in the northwest is of interest. We also calculated the power and Hurst parameters
separately on the entire northwest fault section and entire southeast fault section down
to 1 m and found Hnorthwest = 0.82 and Hsoutheast = 0.93, both perpendicular to slip
direction. It’s worth noting that the scanning sites in the southeast are located closer
together than those in the northwest: spread over 463 m in the north-west compared
to 228 m in the south-east, which may play a part in the decreased variability.

These two areas could have experienced different conditions in a number of ways.
Wilkinson et al. (2015) found that whilst the strike, dip and plunge were constant
between the two fault areas, the throw and strain rate (since 15±3 ka) decreases from
the northwest to the southeast along the fault, with an anomalous decrease between
our two scanning areas. They suggest that a bend in the fault, which is very prominent
in the continuation of the fault to the south-east (not sampled here, shown as a star
in Figure 2.5a), begins in the region of the south-eastern group of fault scans. Fault
bends frequently arrest or stop earthquake rupture (Wesnousky , 1988), so it could
be that these two slip areas have experienced a different number of earthquakes, and
presumably a different amount of slip, because the rupture may have stopped between
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them. Indeed, Campo Felice must have grown from smaller segments and linked to form
the long fault strand currently exposed, so it’s reasonable to assume that as the relay
zone developed, the area in this zone (the southeast locality) would have experienced
fewer earthquakes. Thus even if more recently the southeast and northwest localities
have experienced similar earthquake histories, before linking the southeast would have
experienced a drastically different slip history from the rest of the Campo Felice fault.

Alternatively, even if most recently these two localities failed in the same earth-
quakes as a result of fault bend complexity, they could have experienced different stress
conditions due to their location on an asperity. If one locality was positioned where rup-
ture is frequently stopped or slowed-down, due to the fault bend, and the other locality
were frequently in the center of an asperity that rupture goes through, then different
stress drops may lead to different imprints onto the fault surface. We speculate that
potentially, the variability in Hurst parameters could be used to determine the size of
asperities. If areas of the fault within an asperity experience similar conditions within
an earthquake, then they may have more similar Hurst parameters than an area of a
fault not within the asperity, or on its edge. Alternatively, by assessing the changes in
Hurst parameters along strike, potentially different asperities or long-standing asperi-
ties could be identified and investigated.

Whatever its cause, the variability in the fault surface over a scale of a few hundreds
meters could have important implications for modeling. The roughness of a fault surface
affects ground-motion (Mai et al., 2017) and stress drop (Zielke et al., 2017) in an
earthquake, yet many static or dynamic slip models parameterise fault planes into
patches much larger than the scale over which we observe variability. This will be
averaged over the fault patch, thus losing some of the intrinsic complexity of earthquake
processes (e.g. Zielke and Mai 2016).

Permissible earthquake mechanisms

We find that half (9 out of the 18) Hurst parameters were larger in the slip perpendic-
ular direction than the slip parallel direction, whereas previous results have reported
consistently larger values in the slip perpendicular directions (Candela et al., 2012).
Larger Hurst parameters in the slip perpendicular direction suggest that long wave-
length signals (grooves, corrugations) dominate over short wavelength signals. Sites
where the fault visibly curved did show higher values in the slip perpendicular direc-
tion, but many surfaces and hand samples that we scanned were remarkably flat and
lacking in prominent grooves or striations to distinguish the slip perpendicular and
slip parallel directions. As well as having implications for earthquake size, this lack of
difference between the slip parallel and slip perpendicular directions could mean that
a larger range of focal mechanisms is possible for the Campo Felice fault. Whereas a
highly corrugated fault plane with grooves on the order of typical slip would strongly
arrest rupture perpendicular to the axis of these grooves, the smoothness (small power
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deviation from a planar surface) of the Campo Felice fault surface may mean that a
wide range of slip vector is possible without being stopped by the friction associated
with corrugations. This is consistent with the significant variation (up to 10 degrees)
of slip plunge between measurement sites that are up to only 100 m apart (Wilkinson
et al., 2015). This may be the consequence of multiple ruptures producing different
generations of slickenslides at individual locations, or may be capturing the variation
in the direction of slip during one event, or the imprint of segment linkage that’s not
been masked.

2.6.1 Implications for seismic hazard

We consider the pre-factor (y-intercept) at 1 m, using the minimum values from the
laser profilometer and maximum values from the laser scan of the whole fault, as shown
in Figure 2.4, to compare with measurements in Candela et al. (2012). We find that
in the slip parallel direction the maximum pre-factor we measured (1.5 ×10−6) is one
or two orders of magnitude lower (at 1 m) than the five faults Candela et al. (2012)
measured, including the Magnola fault, which is another limestone normal fault in the
Italian Apennines, ∼12 km south of Campo Felice (see Figure 2.2). The minimum
pre-factor we measured slip parallel (1.7×10−8) is on the same order, or an order of
magnitude lower than their measurements. In the slip perpendicular direction, our
minimum prefactor of (3.5×10−8) is up to three orders of magnitude lower than the
faults measured by Candela et al. (2012), and the maximum prefactor of (8.8×10−6)
two orders of magnitude lower, though we note our measurement of the entire fault
is not directly comparable to a meter scale scan. This shows that Campo Felice has
lower power topography deviations from a planar surface than the faults in the study
by Candela et al. (2012) (Figure 2.1 lower panel compared to the top panel). This
has implications for seismic hazard, as the seismic moment release in an earthquake
is modelled to be strongly affected by fault roughness: smoother faults, with a lower
deviation from a planar surface, are capable of generating larger earthquakes than
rougher faults, in the same loading conditions (Zielke et al., 2017).

2.6.2 Limitations and caveats

Availability of well-preserved fault plane

All roughness studies are biased by the necessity of scanning well preserved fault plane.
This means that, whilst we have a large number of scanned sites, it is hard to get a rep-
resentative survey along the entire Campo Felice fault. In particular, it is unfortunate
that the exposed fault scarp in the continuation of the fault to the southeast, across
the suggested relay zone (Wilkinson et al., 2015), is largely poorly preserved with a
high degree of vegetation, and lacking in large areas of exposed fault that would make
this area suitable for analysis.
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Scanner noise

Noise must be considered as a factor in leading to low Hurst parameters. Increased
noise in the data would mean increased power at small wavelengths, artificially inflating
the power and thus decreasing the difference between the power at low wavelengths and
high wavelengths, which decreases the Hurst parameter. However we do not believe
this to be the case, as the generally lower Hurst parameters are measured using four
different instruments (three different laser scanners and the laser profilometer). We also
find that the minimum and maximum pre-factor at k = 1 is lower than other scanned
faults, whilst we expect noise in a scanner to artificially increase the minimum pre-
factor. We do find however that estimates of Hurst parameter from the Riegl VZ-1000
laser scanner show larger scatter in Hurst parameters than the other laser scanner or
the laser profilometer (Figure 2.6), as well as having the largest scanner errors (Table
2.1). This scanner was used measuring all the northwestern scanning sites (pentagons
in Figure 2.6), as well as two south-eastern scanning locations (squares in Figure 2.6).
It is therefore difficult to say for sure if the sites measured by this scanner are recording
true differences between the localities. But we note that all scanners revealed a range
in Hurst parameter of at least 0.2, suggesting there is a lot of variability in the Campo
Felice fault, compared to others that have been scanned (Candela et al., 2012).

Depth

The depth at which the fault surface features gains its fractal topography affects its
relevance to faulting processes. Previous studies have suggested fault surfaces such as
the one we measured may have been exhumed from depths of 5 km (Sagy et al., 2007),
whilst others have focussed on outcrops exhumed from deeper, up to 10 km depths
(Bistacchi et al., 2011).

The surfaces that we are measuring are unlikely to preserve any of the features from
depths any greater than a few kilometers, and so could only preserve nucleation infor-
mation for earthquakes that nucleated at very shallow depths. But we speculate that
in the brittle crust similar fracturing processes occur and may leave a similar rough-
ness signature, so roughness observed at the surface could potentially be a reasonable
estimate of roughness at depth.

2.7 Conclusion

In this study we find that the roughness of the Campo Felice fault surface displays self-
similar properties over six orders of magnitude in the slip perpendicular direction and
at least three orders of magnitude in the slip parallel direction, as is shown by the power
spectra of the topography of the fault surface. The Hurst parameter, which records this
self-similarity is variable along the length of the fault, with increased variability in the
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Figure 2.6: Hurst parameters calculated from scans taken by four different scanners. The blue
and green measurement points are terrestrial laser scanners, and the red is a laser profilometer.
The Riegl VZ-1000 has the largest variability in the calculated Hurst parameters.
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northwestern scans compared to the southeastern scans. We hypothesise that the vari-
ability could be attributed to 1) the variability of slip vector along a fault plane in one
earthquake or 2) a fault bend arresting rupture, meaning the two localities experienced
a different number of earthquakes, and consequently different slip histories or 3) the
fault bend creating long-standing asperities, with one locality experiencing the center
of the asperity through which rupture always propagates and the other experiencing
the edge of the asperity, where rupture is frequently stalled or stopped. The small scale
(few hundred meters) over which variability occurs also has important implications for
fault modelling, where regularly earthquake slip models are parameterised into >1 km
fault patches. Finally, the low pre-factors displayed by the fault surface suggest that
the Campo Felice fault is particularly smooth (low magnitude deviations from a planar
surface) which implies that it may be at risk from larger earthquakes than faults that
are rougher.
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Chapter 3

Incorporating Fractal Properties

into Geodetic Slip Inversions

An edited version of Chapter 3 was published by AGU, Copyright (2018) American
Geophysical Union:
Amey, R.M.J., A.J. Hooper, and R. Walters (2018), A Bayesian Method for Incorpo-
rating Self-Similarity into Earthquake Slip Inversions, Journal of Geophysical Research
Solid Earth, 123, doi:10.1029/2017JB015316

3.1 Abstract

Distributions of coseismic slip help illuminate many properties of earthquakes, includ-
ing fault geometry, stress changes, frictional properties and potential future hazard.
Slip inversions take observations and calculate slip at depth, but there are a number
of commonly-adopted assumptions such as minimizing the second spatial derivative of
slip (the Laplacian), that have little physical basis and potentially bias the result. In
light of growing evidence that fault slip shows fractal properties, we suggest that this
information should be incorporated into slip inversions as a form of regularization, in-
stead of Laplacian smoothing. We have developed a Bayesian approach to efficiently
solve for slip incorporating von Karman regularization. In synthetic tests, our approach
retrieves fractal slip better than Laplacian regularization, as expected, but even per-
forms comparably, or better, when the input slip is not fractal. We apply this to the
2014 Mw 6.0 Napa Valley earthquake on a two-segment fault using InSAR and GPS
data. We find the von Karman and Laplacian inversions give similar slip magnitude
but in different locations and the von Karman solution has much tighter confidence
bounds on slip than the Laplacian solution. Differences in earthquake slip due to the
regularization technique could have important implications for the interpretation and
modeling of stress changes on the causative and neighbouring faults. We therefore rec-
ommend that choice of regularization method should be routinely made explicit and
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justified and that von Karman regularization is a better default than Laplacian.

3.2 Introduction

Determining the magnitude and distribution of slip along a fault plane is an essential
component of earthquake investigations. Coseismic slip can help elucidate the geometry,
strength and frictional properties of active faults (Milliner et al., 2015, Perrin et al.,
2016) and can be used to estimate where stress has been partially released and where
it remains or has increased, which may indicate areas of the fault or neighbouring
faults that have been brought closer to or further from failure (Walters et al., 2009,
Lorito et al., 2011, Avouac et al., 2015). The same inversion methods can also be
used to monitor postseismic and interseismic slip (e.g. Floyd et al. 2016) and to help
deduce the distribution and proportion of off-fault deformation, giving insight into the
earthquake cycle (Wang et al., 2015, Lindsey and Fialko, 2016). Values of slip are also
used extensively in palaeoseismic studies to estimate the magnitude of pre-instrumental
earthquakes (Campbell et al., 2015).

By combining satellite acquisitions before and after an earthquake, InSAR (Inter-
ferometric Synthetic Aperture Radar) provides spatially dense measurements of surface
displacement which along with GPS measurements can be used to invert for the mag-
nitude, location and direction of earthquake slip along a fault plane (Wright , 2003).
With the new European Space Agency (ESA) satellites Sentinel-1A and B providing
unprecedented ground repeat times, the scientific community is now in a position to
routinely investigate all large continental earthquakes using InSAR (Elliott et al., 2015),
and inverting for slip is a crucial part of that procedure. However, in order for slip in-
versions to be useful we need to ensure that the inversion processes give results that
adequately represent the true slip distribution.

Slip inversions are usually ill-posed and unstable, meaning that the solution is non-
unique and small amounts of data noise lead to slip oscillations in least-squares so-
lutions. Because of this inversions are usually regularized, with Laplacian smoothing
being the most common approach (Harris and Segall , 1987, Wright , 2003, Funning
et al., 2005). This regularization approach minimizes the second derivative of slip with
the importance of this constraint relative to minimizing data misfit controlled by a
scalar smoothing factor. The choice of smoothing factor is often subjective and often
not stated at all in the literature but can result in major differences between solutions
derived from the same data. There is no specific justification for the use of Laplacian
smoothing in slip inversions, other than that a rough or oscillating slip distribution
would produce unrealistically large stress-drops. Whilst Laplacian smoothing can pre-
vent such large stress-drops this does not mean it is the best function to describe the
nature of slip; it is just a mathematical constraint rather than being based on any
observed fundamental feature of slip distributions.
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Other regularization techniques promote sparse solutions (Evans and Meade, 2012)
or impose little regularization (Minson et al., 2013, Jolivet et al., 2014), and these
approaches, together with smoothness-promoting methods produce a huge range in
solutions for the same earthquake. We argue that whichever regularization method
is used, it should have a physical justification based on some observed behaviour of
earthquakes and faulting.

Many features of earthquakes and faults show self-similar (fractal) properties, mean-
ing that a feature is similar at all scales, or mathematically that a behaviour can be
described by a power law (Mandelbrot , 1983). Features that show this relationship in-
clude the Gutenberg-Richter frequency magnitude scale (Gutenberg and Richter , 1955,
Kanamori and Anderson, 1975), the Omori aftershock frequency law (Omori , 1894),
seismicity distribution across faults (Powers and Jordan, 2010), spatial structure of
faults (Aviles et al., 1987, Okubo and Aki , 1987), spatial distribution of earthquake
hypocentres (Robertson et al., 1995), fault gouge texture (Rice and Cocco, 2007, Muto
et al., 2015), fracture energy (Passelègue et al., 2016) and many others (see Ben-Zion
2008).

Fault surfaces are naturally rough and early work found this roughness is self-
similar (Brown and Scholz , 1985, Power et al., 1988, Poon et al., 1992), meaning that
the root-mean-square height fluctuations are proportional to the profile length (Fang
and Dunham, 2013). Recent higher-resolution studies of exhumed faults (Renard et al.,
2006, Sagy et al., 2007, Brodsky et al., 2011, Candela et al., 2012) support these initial
observations but find that roughness is self-affine rather than self-similar. Self-affine
systems require different scaling in the x and z direction to maintain their similarity,
where self-similar systems have the same scaling. In the context of fault roughness,
a profile of fault topography is self-affine if it remains statistically invariant if the x
(along-strike) and z (topography) coordinates are subject to the scaling transformation
δx → γδx, δz → γHδz, where H is the Hurst parameter (Candela et al., 2012). For
a self-similar system, the scaling is instead γ in both directions. Different values of
H are found along-strike and down-dip directions, giving rise to different properties
perpendicular and parallel to the slip vector.

Modeling of slip on a surface with fractal roughness predicts that both the distribu-
tion of stress drop and coseismic slip should also have a fractal distribution (Candela
et al., 2011). Milliner et al. (2015, 2016) observed this in their field investigations of sur-
face slip of the Landers earthquake rupture, where a power-law describes the relation-
ship between slip amplitude and wavelength. Models that produce power-law frequency
magnitude statistics of earthquake occurrence, in keeping with the Gutenberg-Richter
law, also produce fractal slip distributions (Fisher et al., 1997).

Additionally, Mai and Beroza (2002) found that seismological slip solutions show
fractal properties, a feature that was robust irrespective of the regularization imposed
upon the inversions. They tested various autocorrelation functions to assess how the



52 Chapter 3: Incorporating Fractal Properties into Geodetic Slip Inversions

magnitude of slip varied as a function of distance and found that the von Karman
autocorrelation function best describes slip distributions. This function has a similar
power law relationship as a fractal distribution at high spatial frequencies, but the
power decays more slowly for small wavenumbers (large wavelength).

These studies imply that a better and more realistic alternative to regularization
by Laplacian smoothing is regularization by constraining the slip distribution to be
self-affine. By using a regularization technique that does not capture the fractal nature
of slip we may be biasing slip solutions, and therefore also any conclusions drawn
from them. Fractal fault roughness is now incorporated into many numerical models of
dynamic rupture (Fang and Dunham, 2013, Shi and Day , 2013, Parsons and Minasian,
2015, Bruhat et al., 2016) and ground-motion simulations (Mai et al., 2017) and in this
paper we incorporate the von Karman autocorrelation function into a geodetic slip
inversion as a prior assumption, using Bayesian methods.

The von Karman correlation was first introduced in fluid dynamics to describe
turbulence (von Kármán, 1948). Unlike a fractal correlation, that has only a single
term to describe its power (the fractal dimension, D), the von Karman distribution
also has correlation lengths, which define the cut off lengths of fractal behaviour (Dolan
et al., 1998) and allow for different scalings down-dip and along-strike, which is useful
for capturing the nature of slip.

Here we use the von Karman distribution to describe the expected similarity of
magnitude of slip between all patches of the fault. This correlation function, C(r) is
given by:

C(r) =
GH(r/a)
GH(0)

(3.1)

Where GH(r/a) = (r/a)HKH(r/a) where KH is a modified Bessel function of the
second kind, of order H, r is the distance between slip patches, a is the correlation
length used to scale this distance and H is the Hurst parameter (Mai and Beroza,
2002). The Hurst parameter describes the fractal properties of the correlation and
controls the decay of this correlation (Figure 3.1). For self-affine profiles the Hurst
parameter is linked to the fractal dimension, D, by D = (Euclidian dimension + 1 -
H ) and is a measure of the long-term memory of a system.

In form, the von Karman correlation decays as a function of lag (scaled distance),
and for H = 0.5 the von Karman function is identical to an exponential decay function.
The von Karman correlation decays quicker for either decreased Hurst parameter or
decreased correlation lengths. Thus the correlation between the magnitude of slip on
two patches decays as a function of the distance between them, and the nature of this
decay is controlled by the Hurst parameter and correlation lengths.

The von Karman correlation can be added as a prior assumption into a slip inversion,
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Figure 3.1: Left = The von Karman autoccorelation function, C(r). The autocorrelation
(similarity) between two functions decays with lag (scaled distance) between them. The exact
shape of the drop-off is controlled by the Hurst parameter, H, where H = 0.5 is equivalent
to an exponential decay function. Right = von Karman power spectrum, P (k), using ax = 5,
az = 15 and H = 0.8 at kz = 0. Also plotted at kz = 0 is the fractal power spectrum, again
using H = 0.8, giving a fractal dimension D = E + 1 −H = 2.2. For high wavenumbers both
are a straight line on the log-log graph, displaying characteristic self-similar properties. The
fractal power spectrum decays beyond a corner wave number, kc = 0.3, which is related to the
characteristic source dimension (Mai and Beroza, 2002) whereas the von Karman shows a more
gradual roll-off, the start of which is related to the correlation lengths, ax and az. Here ax
and az were chosen to align the two functions at small wavenumbers. Adapted from (Mai and
Beroza, 2002).

so that a slip solution has a joint probability based upon how well a slip distribution
fits the observed data and how well the slip distribution fits the von Karman autocor-
relation function. The parameters describing the von Karman distribution (H, a) could
themselves be solved for as hyperparameters, with their prior probability distributions
determined by the seismic study meta-analysis from Mai and Beroza (2002). These pa-
rameters differ depending on fault type (normal, reverse or strike-slip) and also differ
in the along-strike and down-dip directions.

In this study we present a method to invert for slip incorporating von Karman reg-
ularization, using a Bayesian approach and implemented using a Markov chain Monte
Carlo (MCMC) algorithm. A Bayesian approach allows us to fully explore the range of
parameters that fit the data, incorporate constraints (e.g. on rake to avoid unphysical
features such as back-slip), and solve for a hyperparameter which represents the vari-
ance of the slip (discussed more in Section 3.3.3). This means that instead of having
to assume in advance the variance of slip we are able to search the range of slip mag-
nitudes and rakes for a range of permitted variances. This flexible approach, whilst
computationally expensive, allows us to be more objective and explore the full range
of possible solutions in more detail.

We test this method on synthetic data, and then apply it to the Mw 6.0 Napa Valley,
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California, 2014 earthquake. For comparison we also invert for slip with Laplacian
smoothing implemented using the same Bayesian approach.

3.3 Method and Data

3.3.1 Bayesian inversion

In Bayesian inversions each parameter to be solved for (e.g. slip, rake) is treated as
a random variable with a prior PDF (probability density function) that is updated
by the inversion process. The result is the full joint posterior PDF for every model
parameter, giving an ensemble of all possible models that fit the data reasonably, as
well as providing a good understanding of the uncertainties on parameters and the
covariance between them. This approach also allows us to solve for hyperparameters
within the inversion.

Following Fukuda and Johnson (2008) and Hooper et al. (2013)’s incorporation of
Laplacian smoothing into slip inversions using a non-linear Bayesian approach, here we
present our method for incorporating a von Karman prior assumption, after (Hooper ,
2012).

The posterior probability is built from the prior and likelihood function using Bayes’
theorem. The prior probability describes how well the model parameters fit a prior
assumption. The likelihood function describes how well the forward model calculated
using these model parameters fits the observed data.

Bayes’ theorem states:

p(m|d) =
p(d|m)p(m)∫∞

−∞ p(d|m)p(m)dm
(3.2)

Meaning that the posterior probability, p(m|d), of a model, m, given a set of data,
d, is the product of the prior probability of the model, p(m) and the fit to data p(d|m),
where the denominator is a normalizing constant.

We use an MCMC method incorporating the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953, Hastings, 1970) to generate samples of the prior probability density and
also to sample the parameter space and thus approximate the posterior PDF. The al-
gorithm samples parameter space in such a way that more models are drawn in areas
of high probability. We adapt the approach of Fukuda and Johnson (2008) to include
multiple Metropolis steps and sensitivity tests.

An MCMC chain is a memoryless system in which parameter space is sampled
using random walks, with each random step depending only upon the previous step (in
contrast to methods such as the neighbourhood algorithm (Sambridge et al., 1999)).
The MCMC chain samples parameter space to provide an estimation of the posterior
PDF (Tarantola (2005), Chapter 2, Pg 50 ).
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3.3.2 Our MCMC approach

In an MCMC chain each parameter is perturbed at the start of each iteration, meaning
a random number is added to each model parameter giving a new ‘trial’ value. The new
trial is drawn from the prior distribution, then the likelihood is calculated. The trial
is then accepted or rejecting using the ‘Metropolis rule’. This acceptance rule states
that if the trial likelihood is greater than that of the current model it is accepted. If
the trial likelihood is lower, then the probability of acceptance is calculated: the ratio
of the two likelihoods. This ratio is compared to a randomly drawn number between 0
and 1. If the probability of acceptance is greater than this random number, the trial is
accepted. Otherwise it is rejected. This means that sometimes trials that have lower
likelihood are accepted, which allows the chain to not get stuck in local minima. If a
trial is accepted it is saved; the next random step is taken from those model parameters.

At the end of the inversion the first B iterations which constitute the ‘burn-in’
are removed. These are the early steps which do not properly sample the posterior as
they may be influenced by starting state (Fukuda and Johnson, 2008). The rest of the
saved trials represent the posterior, giving the full range of models which adequately fit
the data and prior assumptions. This posterior can be represented by some statistical
representation of the distribution, which is discussed further in Section 3.5.3.

Here we implement the MCMC chain in two separate steps for efficiency, as de-
scribed by (Tarantola (2005), Chapter 2, Pg 52 ). The first step generates samples of
the prior probability density: a von Karman trial. We draw random slip trials for each
patch from their prior distribution (Section 3.3.4) and use the Metropolis-Hastings al-
gorithm to accept/reject these trials based on their von Karman probability. The slip
trials are generated by adding a random number from a boxcar distribution between
± each parameters’ ‘step size’. The second step is to sample the posterior probabil-
ity distribution, which is achieved by comparing the likelihoods of the current trial to
the previous trial (Tarantola (2005) Chapter 2, Pg 52 ). This implementation reduces
the number of times the particularly computationally-expensive likelihood calculation
is made, since it avoids making the calculation for most models that already have a
low posterior probability due to their slip distribution having very low von Karman
probability. Also for efficiency we periodically perform a sensitivity test to adapt the
step sizes being taken, which is discussed in detail in Section 3.3.6. In Section 3.3.4 we
describe how we sample the prior and in Section 3.3.5 we describe how we sample the
posterior, using the likelihood; these two steps together comprise one iteration of our
algorithm.

3.3.3 Model parameterisation

We divide the fault into M slip patches and solve for magnitude of slip and rake
(the direction of slip) separately for each patch, as well as a hyperparameter α2 for
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each separate fault. The physical meaning of the hyperparameter α2 is the variance
of the slip. The correlation matrix calculated using Equation 3.2 defines the desired
von Karman correlation between slipping patches and the hyperparameter α2 acts on
this to dictate the magnitude of the slip, in effect converting correlation to variance-
covariance. It is necessary to solve for α2 in order to explore the full plethora of slip
and rake solutions that fit a range of permitted variances. If a model contains multiple
faults that are assumed to be uncorrelated in terms of their slip, then we would calculate
separate von Karman prior probabilities for each fault and consequently we assign one
α2 parameter per fault. Slip and α2 are the only parameters used in the von Karman
prior probability calculation.

3.3.4 First MCMC step - sampling the prior

The prior probability describes how well a slip distribution fits the prior assumptions.
Here the prior is the product of prior distributions of slip magnitude and rake for
individual patches, α2 for each separate fault, the von Karman probability of slip and
a moment regularization (if this option is used).

Model parameter priors

We solve for slip magnitude and rake using boxcar priors and we solve for α2 using
a logarithmic prior. This means that for slip and rake the new trials are generated
with uniform probability between a given range i.e. slip is given uniform probability
between 0 meters and x meters, and the probability is zero outside of this range. For
α2 we implement a logarithmic prior. This means that we solve for a model parameter,
q, and then calculate α2 by α2 = 10q, thus transforming a uniform prior for q into a
logarithmic prior for α2.

Von Karman prior

Once each model parameter has been drawn from its prior, we apply the von Karman
prior using the Metropolis-Hastings algorithm, since it is difficult to directly generate
von Karman distributions directly with a random walk.

The von Karman autocorrelation is given by:

p(s) = (2πα2)−M/2|Σs|−1/2e
−1

2α2 sTΣs
−1s (3.3)

Where:
p(s) = probability of this slip distribution
α2 = a hyperparameter controlling the slip variance
M = number of slip patches in a fault strand
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|Σs| = the determinant of the slip patch autocorrelation matrix
s = vector of slip magnitudes

We calculate the probability for each separate fault using a corresponding α2 term
for that strand. The product of the prior probabilities for all the faults gives the
the joint probability of the overall distribution of slip conforming to the von Karman
correlation function.

The autocorrelation, Σs is calculated for a particular fault strand from the von
Karman correlation function given in Equation 3.2. In MATLAB, GH(0) gives an
infinite value, so we investigated the limr→0 of GH(r) = (r)HKH(r). We found any
values smaller than r = 10−4 changed the value of GH(r) significantly less than 1% so
we therefore used a value of r = 10−10 to approximate r = 0.

We calculate the scaled distance, r/a, by calculating the along-strike and down-dip
separation distance between each fault patch, then dividing this by the along-strike,
aas, or down-dip, add, correlation value respectively. We then used these scaled along-
strike and down-dip separation distances to calculate the scaled separation distance
between each patch. We used the correlation values from Mai and Beroza (2002) for
strike-slip faults:

aas = 1860 + 0.34× (fault length) (meters) (3.4)

add = −390 + 0.44× (fault width) (meters) (3.5)

We also used Hurst parameter values, H, from Mai and Beroza (2002) for along-
strike, Has = 0.71, and down-dip, Hdd = 0.77 and scaled them appropriately for angles
between purely along-strike and down-dip. These values are calculated in the meta-
analysis performed by Mai and Beroza (2002) and have uncertainties associated with
them, which we have not accounted for here. These correlation lengths and Hurst
parameters could be solved for as hyperparameters as part of the inversion in future
studies, using the distribution from Mai and Beroza (2002).

Moment regularization prior

Geodetic slip inversions have poor depth resolution since all the data are acquired
at the surface. Consequently deep slip makes very little difference to the likelihood;
it is almost in the null space. To attempt to limit the amount of slip being put in
the null space we optionally include moment regularization in the inversion such that
slip trials with a moment very different to that of the seismological moment are more
likely to be rejected. We use a Gaussian prior for moment: it is calculated with the
standard equation for calculating the probability from a Gaussian distribution given a
mean (moment from the USGS page) and standard deviation (standard deviation of
the different moment calculations on the USGS page). The prior probability is then
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the von Karman prior multiplied by the moment regularization prior.

However, we prefer to avoid this regularization where possible, since many geodetic
measurements also include surface displacements from postseismic slip or aftershocks,
and there are often systematic differences between geodetically and seismologically-
derived seismic moments (Weston et al., 2011). It is not clear whether this is pre-
dominantly due to real differences from aseismic slip, errors in the seismic estimate or
errors in the geodetic estimate, or some combination of these. In this study moment
regularization is not applied unless specifically mentioned.

Prior acceptance rule

We use the Metropolis rule to decide if a temporary trial is accepted, as discussed in
Section 3.3.2. If it is accepted then it is a representative draw from the von Karman
distribution and the other prior distributions; therefore we move onto the second step.

3.3.5 Second MCMC step - sampling the posterior

Once we have drawn a sample from the prior using the first MCMC step, we sample
the posterior by calculating the likelihood.

A forward model of surface displacements is calculated from the trial model param-
eters, using the formulation for rectangular dislocations in an elastic half-space (Okada,
1985). This is calculated by multiplying the current slip model, s, by a kernel G, which
gives predicted surface displacements, d̂, at each of the locations of our InSAR and
GPS data for unit slip on each fault patch and the appropriate rake:

d̂ = Gs (3.6)

Because we solve for slip magnitude and rake, the kernel G needs to be updated for
the current rake value during each iteration. For a linear case in which fault geometry
is held fixed (i.e. not changing dip), G matrices for purely left-lateral strike-slip, Gss,
and purely thrust dip-slip, Gds, movement can be calculated before commencing the
inversion. Then the G matrix for the current iteration is calculated using the current
values of rake by:

G = Gss × cos(rake) + Gds × sin(rake) (3.7)

Where cos(rake) and sin(rake) are diagonal matrices.

The likelihood is calculated using the weighted misfit of a forward model to the
observed data. The misfit is weighted by the inverse of the variance-covariance matrix,
Σd, which represents data uncertainty. The likelihood is given by:

p(d|s) = (2π)−N/2|Σd|−1/2e
−1
2

(d−Gs)TΣd
−1(d−Gs) (3.8)
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Where:
p(d|s) = the probability of the observation, given the slip and rake distribution
N = total number of data points
Σd = variance-covariance of the data
d = data (e.g. InSAR, GPS, vertical displacement of coral atolls)
s = magnitude of slip
G = kernel, calculated for the appropriate rake and dip values

We then once again use the Metropolis rule on the ratio of the trial likelihood to
current model likelihood. If the trial passes this test, then it is saved as the current
model and future trials will be drawn as a step from this trial, until another more likely
trial is drawn. If the trial is rejected, the previous model is saved and next trial is
initiated from this trial.

The inversion results in a joint probability from which we can calculate a histogram
of the posterior for each model parameter. We can also calculate the 2D PDFs, which
show the joint PDF of each pair of parameters.

3.3.6 Efficiency

Bayesian inversions are computationally expensive and so methods are employed to
improve the efficiency of the parameter search, such as the use of multiple MCMC
chains e.g. (Minson et al., 2013). Here we improve efficiency by using two steps within
one MCMC chain as discussed in Section 3.3.2 and by modifying the step size for each
parameter within the MCMC chain, in a manner similar to that used by Hooper et al.
(2013) and also Minson et al. (2013) between chains.

We modify the step size for each parameter to achieve an optimal acceptance rate
of 0.234 (Roberts et al., 1997). Acceptance rates that are higher or lower than this give
an inefficient search of parameter space. For the sensitivity tests we use a ‘rejection’ to
mean either a rejection at the prior or likelihood stage.

In order to ensure we achieve this ideal rejection ratio whilst properly exploring
parameter space, we perform sensitivity tests at regular intervals throughout the inver-
sion, with the first sensitivity test, j = 1, starting at i = 100 where i is the iteration,
then at i = 500 and every 1000 iterations up until 10,000 and then every 10,000 it-
erations for higher values of i. We use a ‘probability target’ parameter to adjust the
step sizes, so that perturbation of each model parameter results in the same amount
of change to the posterior probability. This probability target is the expected ratio
of the posterior probability after perturbing a single model parameter, to the current
posterior probability. Changing step sizes to match this probability target ensures no
parameter is having too great or too little an effect on the posterior probability. Adapt-
ing the probability target with the rejection rate forces step sizes to increase or decrease
to optimise efficiency. At the start of a sensitivity test we first adjust the probability
target at the current sensitivity test, j, using the probability target from the previous
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sensitivity test, j − 1, by:

Ptargetj = Ptargetj−1 ×
rideal

rj
(3.9)

This means if too many trials are being rejected (i.e. the rejection ratio since last
sensitivity test, rj , is larger than the ideal rejection ratio, rideal) then the previous
probability target, Ptargetj−1, will be decreased. We then adjust step sizes of each
model parameter using this new probability target. This is done during a sensitiv-
ity test by calculating the posterior probability, perturbing each parameter by half a
step size in turn and recalculating the posterior probability. The ratio of posterior-
before-perturbation to posterior-after-perturbation is calculated and subtracted from
the probability target to give the difference, D. If the perturbation is such that model
parameter’s contribution to the posterior probability is more than the probability tar-
get (D < 0) then the step size is having too large an effect, which means the step size
must be decreased. We decrease or increase step sizes using the empirical formula:

stepsizej = stepsizej−1 × e
D

Ptargetj×C1 for D > 0 (step sizes too small) (3.10)

stepsizej = stepsizej−1 × e
D

(1−Ptargetj)×C2 for D < 0 (step sizes too big) (3.11)

Where the constants, C1 and C2, are arbitrarily chosen to control how quickly
step sizes increase or decrease in size; increasing C1 decreases the amount by which
step size increases, increasing C2 increases the amount by which a step size decreases.
These values were chosen after experimentation as they resulted in gradual changes in
rejection rates in synthetic tests. Different values may work better in different situa-
tions, depending on the number of model parameters. For a von Karman regularized
inversion we use C1 = 16 and C2 = 2, although we find higher values of C1 work better
for Laplacian and moment regularized inversions. If we are re-running an inversion we
optionally use the idealised step sizes from a previous run. A simple test demonstrates
that an inversion scheme with changing step sizes correctly samples the posterior (Ap-
pendix B, Figure B.1); a mathematical proof of this is beyond the scope of the current
paper would be a valuable avenue of future work.

3.4 Synthetic tests

3.4.1 Synthetic test set up

We first tested our slip inversion code on three synthetic cases. Each consists of a strike-
slip fault modeled as two connected strands, and the simulated surface displacements
are created using our forward model described by Equation 3.6, shown in Figure 3.2.
The three synthetic slip distributions created are:
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Figure 3.2: Setup of synthetic tests. a) Fault plane, with two joining strands, with example
slip distribution indicated by colour. Thick black line shows top of fault, at the surface. b) Plan
view of location of surface displacements caused by this right-lateral fault, indicated by a black
line c) Zoomed in on box shown in b), showing the surface displacements around the fault.

1. Uniform, pure strike-slip motion that ruptures the surface down to ∼6km depth.

2. Laplacian smoothed slip.

3. Slip displaying von Karman autocorrelation.

The Laplacian smoothed slip is created using a matrix of discretised Laplacians
appropriate for this fault geometry, the inverse of which is multiplied by normally-
distributed random numbers.

The von Karman consistent synthetic test is created by transforming a random slip
distribution into a correlated distribution using the appropriate correlation matrix (e.g.
Lohman and Simons 2005), for a fault of given dimensions.

To investigate the differences caused by regularization alone we conducted the syn-
thetic tests on noise-free synthetic data. We used a high density of 3D surface displace-
ments, spaced every 400 m within 5 km of the fault and every 2 km up to a distance
of 20 km from the center of the fault.

We then inverted for slip for these three separate synthetic tests using three modes
of the Bayesian inversion: with no regularization, Laplacian regularization and von
Karman regularization.

Each was performed with the correct fault geometry, with a prior rake within ±30
degrees of the true value, adding no further regularization than that specified above. For
Laplacian regularization we solved for the hyperparameter that controls the strength
of the smoothing within the inversion.
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3.4.2 Synthetic test results

The results are shown in Figures 3.3 and 3.4, Appendix B Figures B.2 - B.3 and the fit
to the data for each model shown in Appendix B Figures B.4 - B.12.

It is not simple to display the results from a Bayesian inversion since the inversion
produces a multidimensional joint PDF for all model parameters. All saved models
formulate the solution, which would best be displayed as a video. However to present
the results in a 2D image, in Figure 3.3 we have plotted the ‘mode’ solution for each
slip patch. This slip distribution itself has not been drawn as a trial in the Bayesian
inversion, but gives an indication of where slip is likely to have occurred from all the
saved trials. We calculate the joint slip mode and rake mode for each patch by finding
the value of the peak of the highest bar in the 2D histogram of slip against rake.

All solutions fit the data very well; however low data residuals do not ensure a
correct source model, as the Earthquake-Source Inversion Validation project has pre-
viously shown (Mai et al., 2016). The smoothed solutions give a less oscillatory result
than the unsmoothed solutions, and also the unsmoothed solutions add additional high
slip at depth; no moment regularization was applied to any of the synthetic test in-
versions. This illustrates the unstable nature of an unsmoothed inversion. Neither the
Laplacian nor von Karman regularised inversions fit the distribution of uniform slip
adequately, as is to be expected, but are equally biased.

These tests show that a von Karman correlation constraint retrieves a von Kar-
man slip distribution better than a Laplacian or no constraint, as might be expected.
However von Karman also adequately resolves a slip solution that is not von Kar-
man. The von Karman regularization outperforms both Laplacian regularized and
unsmoothed inversions for uniform slip, as is shown by the lower RMS (text under
each solution in Figure 3.3). For the Laplacian slip input model and von Karman
slip input model the RMS for von Karman regularization and Laplacian smoothing
is similar enough to suggest they have the same resolving power for these slip distri-
butions (RMSLaplacian = 0.182 and RMSvonKarman = 0.187 for Laplacian slip, and
RMSLaplacian = 0.252 and RMSvonKarman = 0.241 for von Karman slip.

Further comparisons using the method outlined by (Zhang et al., 2015a) confirm
this, shown in Appendix B Figure B.13. We find that the von Karman solution out-
performs Laplacian and unsmoothed solutions in matching the magnitude of slip and
correlation of slip for all three input slip distributions, though for Laplacian input slip
the von Karman is only marginally better than the Laplacian.

The histograms in Figure 3.3 show the posterior PDF for a single slip patch, indi-
cated by the black box, for each of the different inversion methods. An unsmoothed
inversion has a very high standard deviation in the histogram, showing that the slip is
poorly constrained. In comparison, the smoothed solutions have much lower standard
deviations, meaning they have a much tighter constraint. This is apparent in Figure
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3.4 for von Karman slip and Appendix B Figures B.2 and B.3 for surface slip and
Laplacian slip, which show that the smoothed inversions yield much tighter confidence
intervals than for the unsmoothed inversion. For von Karman slip the true value of slip
lies within the 95% confidence intervals for 94 out of 100 patches using von Karman
regularization and 99 out of 100 patches for Laplacian regularization.

3.4.3 InSAR/GPS synthetic test

We explored the effects that data-type (InSAR and or GPS) may have on the ability
for a regularization style to resolve an input slip distribution. InSAR has the benefit
of high spatial resolution, but the displacement field is only measured in one dimen-
sion (satellite line of sight, or LOS). In contrast GPS provides 3D measurements of
displacement but at a spatially sparser set of discrete locations.

We created a synthetic test with noise-free InSAR data spaced every 400 m within
5 km of the fault, and every 2 km up to a distance of 20 km away from the fault, with
the same LOS vector as for the Sentinel-1 interferograms in the Napa earthquake. To
simulate loss of coherence we randomly remove 800 data points, which also serves to
reduce the time to calculate the likelihood. We randomly scattered thirty noise-free 3D
GPS measurements around the fault.

We simulated von Karman slip on a strike-slip fault consisting of two connected
segments and solved for this with von Karman regularization and Laplacian smoothing.

We find that the von Karman regularization consistently matches the magnitude
of input slip and spatial distribution of input slip better than Laplacian, regardless of
datatype used in the inversion (Appendix B Figures B.14 and B.15).

3.4.4 Synthetic test summary

These tests demonstrate that our method is working as expected and that inversions
incorporating von Karman regularization can successfully recover the distribution of
slip from geodetic data.

Our new method of regularization not only outperforms Laplacian smoothing when
the slip has a fractal distribution, but also does better for uniform slip and performs
comparably when slip is smooth. This suggests that incorporating von Karman regu-
larization into slip inversions is likely to produce solutions that are at least as accurate
than those generated by inversions incorporating Laplacian smoothing, and if the true
slip conforms to the von Karman correlation function our method is significantly more
accurate. Therefore is a better default regularization approach to use than Laplacian.
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Figure 3.4: Top: 95% confidence intervals (red line) for each slip patch, patch mean (black
circle) and the true value for that slip patch (green cross) for von Karman slip solved for
with no smoothing (top), Laplacian smoothing (middle) and von Karman smoothing (bottom).
For von Karman regularization 94% of patches had the true value of slip within the 95%
confidence intervals, compared to 99% for Laplacian smoothing. Note that Row 1 (the surface)
has significantly smaller confidence intervals due to better resolving power nearer to the data,
which means the patch mean and true slip are plotting in very similar locations, and confidence
intervals are too small to see.
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Figure 3.5: Regional setting of the Napa Valley earthquake. Left: Focal mechanism was
almost entirely strike slip with a strike of 345 degrees. Historical (yellow), Holocene (orange) and
selected Quaternary (coral) faults (USGS , 2006). Right: surface rupture of Napa earthquake
from (Hudnut et al., 2014) and aftershocks from August to February shown in blue, with size
indicating magnitude. Yellow shows faults of all ages (USGS , 2006).

3.5 Mw 6.0 Napa Valley earthquake, 2014

We applied our method to the Mw 6.0 Napa Valley, California earthquake of Au-
gust 24th 2014. This was the first earthquake imaged by Sentinel-1A, with the pre-
earthquake image acquired on the first day that the satellite reached its operational
orbit. The earthquake occurred on the West Napa Fault (Hudnut et al., 2014) which
is part of the San Andreas fault system; the broad region of faults that accommodates
right-lateral movement between the Pacific and North American plates (Figure 3.5).

3.5.1 InSAR and GPS data

The details of the acquisition and processing of the InSAR and GPS data are given in
Floyd et al. (2016). The earthquake happened on 24th August 2014 and the second
Sentinel-1 acquisition was on the 31st August, meaning that the interferogram contains
7 days of postseismic displacement in addition to the coseismic signal. We use GPS
displacements calculated between the day before the earthquake and the 31st August,
for continuity between the two datasets. We do not weight either dataset above the
other, though there are more InSAR datapoints than GPS datapoints.

Spatio-temporal variation in propagation path properties through the atmosphere
adds noise to InSAR scenes that is spatially correlated. To account for the covariance
of this noise we calculate the variance-covariance matrix by selecting an undeforming
region of the interferogram and computing the 1D semivariogram (e.g. Lohman and
Simons 2005, Oliver and Webster 2014), which is a function of variance with distance
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that describes the spatial dependence in a data set (Foody and Atkinson, 2002). This
model gives us three values: the sill, nugget and range, which are indicated on our
semi-variogram shown in Appendix Figure B.16 and that can be used to estimate the
spatially-correlated error in the InSAR data. The nugget indicates the level of spatially
independent noise present and the sill is the maximum value of the semi-variance as
the range tends to infinity (Foody and Atkinson, 2002). The range is the distance at
which the semi-variance reaches approximately 95% of the sill (Curran, 1988) and is the
distance over which we expect data points to be spatially correlated. We calculate a sill
of 5×10−4 m2, nugget of 1×10−5 m2 and a range of 12.8 km from the semi-variogram,
which we use to calculate the variance-covariance matrix using the exponential function:

Σd = (sill − nugget)× e
−3×x
r (3.12)

Where x is the distance between each InSAR data point, r is the range, and Σd

has dimensions N ×N where N is the number of data points. At r = 0 the variance of
a datapoint is equal to the sill.

A larger range would mean that covariance between datapoints extends over a
larger distance (e.g. larger wavelength atmospheric signals). A larger sill would mean
a higher variance for individual datapoints (at r = 0), i.e. greater uncertainty on
individual datapoints and also higher covariance between datapoints. A larger nugget
indicates decreased covariance if the sill remains the same. Many studies find the range
for an interferogram to be > 10 km, the standard deviation (

√
variance) of the sill to

be a couple of centimeters, and the nugget to be significantly smaller than the sill (e.g.
Hanssen 2001, Bekaert et al. 2016). The values we estimate for these parameters are
indeed in accordance with these previous studies.

3.5.2 Model parameters

We constrained the surface fault using the rupture map of Hudnut et al. (2014). Based
on this we modeled the fault as two vertical strands, one with three sections to cap-
ture the fault curve, and one straight (details given in Table 3.1). We assumed slip
correlation did not continue between the two separate fault strands.

Correlation lengths for the two faults were calculated based upon the length and
width of the faults using Equations 3.4 and 3.5, giving the correlation down-dip as
add = 5330 meters and along-strike as aas = 5070 meters for the north-eastern fault
strand and add = 5330 meters and aas = 6040 meters for the separate segments on
the most south-western fault strand. We note that ideally these parameters would
be drawn from their prior distributions, discussed more in Section 3.6.4. The Lamé
parameters used in the Okada Green’s function calculation were λ = µ = 3.23 GPa.
The initial probability target (later used in sensitivity tests to adjust step sizes) was
10−4.
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The InSAR and GPS data were only weighted according to their variance-covariance.
In this case an offset and ramp has been removed from the InSAR before the inversion.

To ensure the inversion had reached convergence we check four criteria:

1. Smoothness of histograms for each model parameter.

2. Smoothness of 2D histograms of the six patches with the most slip.

3. Posterior probability is no longer increasing.

4. The value of each parameter through the inversion has reached stability and does
not have an increasing or decreasing trend.

As standard we remove the first 2000 saved trials to remove the burn-in. We then
check if the posterior probability is stable, and the form of the joint PDFs. An increase
in the posterior probability for the first saved-trials or a visible tail in the joint PDFs
implies that the burn-in has not been fully removed, and we increase the burn-in period
so as to remove these two effects.

Examples of unconverged and converged solutions with burn-in present are shown
in Figure 3.6.

Priors

For the slip prior we used a uniform probability density between 0 and 50 meters. The
upper bound slip prior was set arbitrarily high, but we found that slip at no point
explored values higher than 1.8 meters, so this choice of high upper bound made no
difference to the efficiency of our inversion. For rake we used a uniform probability
density between 135 and 225 degrees on the south-western fault and 135 and 270 on
the north-eastern fault where previous studies have found normal motion on a releasing
step-over of the S. Napa fault (Floyd et al., 2016). The probability outside of the ranges
given for slip and rake is 0, so model parameters were only drawn from within these
ranges. We used a logarithmic prior for α as discussed in Section 3.3.3.

3.5.3 Napa von Karman results

As discussed previously, the solution of a Bayesian inversion is a multidimensional
probability density function, which is difficult to visualize. A video is an appropriate
method of showing a selection of the saved results (Supplementary materials in ?). To
illustrate this with static images we have used statistical parameters estimated from
the model parameters’ PDFs. These are shown in Figure 3.7, for a Bayesian inversion
with von Karman smoothing. The ‘mode’ for each patch is shown in 3D to show fault
geometry and as for the synthetic tests, we calculate the joint slip mode and rake mode
for each patch by finding the value of the peak of the highest bar in the 2D histogram
of slip against rake. The mode, mean and median have not been drawn as trials, but
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Figure 3.6: Illustrating converged and unconverged solutions and those with the burn-in not
fully removed. Panels a and b show the posterior probability and value of one of the model
slip on fault patch 22 respectively; in this case they are both still influenced by the starting
parameters because some of the burn-in remains. Note the difference in x-axis between a and
b, because we have zoomed in on a for clarity. Panels c and d show unconverged inversion: the
PDF is not filled out and the joint PDF is rough. In this example we have also left the burn-in
present, which is shown by an elongate tail extending from the starting value of ∼0.9m. Panels
e and f show converged solutions of c and d : both PDFs are smooth. Note that the frequency
shown by the colour bar for the joint PDFs is not plotted on the same scale, to illustrate how
the PDF would look at the end of the unconverged inversion, rather than in comparison to the
later one.
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Figure 3.7: Results of inversion for the Napa Valley earthquake incorporating a von Karman
prior. All five show the same fault plane, which is in two strands, and dotted vertical lines
indicate the bends on the south-western fault. The first three are different statistical parameters
to visually capture the full PDF, whereas the MAP solution is the saved trial with the maximum
a posteriori result. The MAP is the multi-dimensional mode solution; the single solution that
maximises the posterior PDF (i.e. that maximises both the prior and the likelihood). Peak slip
is around ∼1.2m and at a depth of 2km. The right hand figure shows the mode solution shown
in 3D, showing the fault geometry of the two separate strands more clearly. Note that the rake
display oscillatory features, discussed further in Section 5.5.

by plotting them all we hope to give an indication of where slip is most probable and
the probable direction of rake.

These results show that the majority of slip occurred as strike-slip motion on the
south-western fault, near to the surface. We found peak magnitude of slip of ∼1.2m at
about 2km depth. This is similar in magnitude and location to InSAR and GPS studies
by Guangcai et al. (2015), Wei et al. (2015), Floyd et al. (2016) and the strong-motion
study by Zhang et al. (2015b). Many studies also find a peak magnitude of 1.2 m,
though find slip deeper at ∼5 km (Barnhart et al., 2015, Dreger et al., 2015, Melgar
et al., 2015). On the north-eastern fault there was a component of normal motion
between 3 and 6 km depth, as also found by Wei et al. (2015), Floyd et al. (2016).

The MAP result gives a moment of 2.78×1018 Nm which is higher than the seismic
moment of 1.33× 1018 Nm from the USGS event page. Part of this over-estimation of
the energy release may be due to the 7 days afterslip included in the InSAR and GPS.
We found MAP values of α2 where 0.05 on the north-eastern strand and 0.26 on the
south-western strand.

Figure 3.8 shows the fit of the MAP model to the InSAR and GPS data. The
predicted InSAR displacements fit the magnitude and wavelength of the signals in the
data, but there are some areas of high residuals. The InSAR misfit on the eastern side
of the south-western fault is in part due to displacements on a separate, third fault
which ruptured at the surface in this earthquake but which we have not modeled here
(Hudnut et al., 2014). The three GPS points nearest to the fault are not fit within the
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Figure 3.8: The InSAR data (a), model fit (b) and residuals (c) for the von Karman regularized
MAP slip solution on selected patches for the Napa earthquake. Panel (d) shows the closest
GPS data (black) to the fault, with model vector (orange) and 95% confidence intervals.

95% error ellipses and show a very similar misfit as found by Floyd et al. (2016) using
the same data. The complexity of surface deformation in the north-east, where two
GPS points are poorly fit, is shown in the InSAR data (panel a of Figure 3.8). This
could be due to an unmodeled fault as suggested by Guangcai et al. (2015) or due to
local surface effects and changes in elastic properties in the north-east due to a change
in lithology to Quaternary sediments. The modeling of these complexities is beyond
the scope of this paper.

3.6 Discussion

3.6.1 Comparison of VK and Laplacian result for Napa

For comparison we also solved for slip in a Bayesian fashion using a Laplacian prior, in
which we solved simultaneously for the model fit to the data and for the fit of the model
to a Laplacian distribution as well as for the Laplacian smoothing hyperparameter. In
the Laplacian solution we assume all the edges are free surfaces, so the solution is not
constrained to tend to 0 m of slip at any edge. The results of the mode solutions
are shown in Figure 3.9 and fit to the data for the Laplacian solution is shown in
Appendix B Figure B.17. Both put more slip on the south-western fault (shown on the
right in Figure 3.9) than the north-eastern fault and find a peak slip of just over 1 m,
however the Laplacian solution has a slightly higher peak slip and extends this slip
further along the south-western fault. The standard deviation on the south-western
fault is significantly larger than for the von Karman regularized inversion, showing the
larger uncertainty for the Laplacian solution in this area. This is not unexpected as the
von Karman prior provides a tighter constraint than the Laplacian prior, but it is an
important result, as the tighter constraint is based upon observed features of fault slip.
The von Karman solution puts a slightly lower magnitude of slip on the north-eastern



§3.6 Discussion 73

fault and fits the data better in this region (Appendix Figure B.17).
The moment of the MAP Laplacian solution is 3.04 ×1018 Nm which is significantly

larger than the USGS moment of 1.33 × 1018 Nm, and slightly larger than the von
Karman MAP moment of 2.78× 1018 Nm.

We find that the von Karman solution extends high slip right to the surface, in con-
trast with the Laplacian solution and many other geodetic studies for this earthquake
(Melgar et al., 2015, Guangcai et al., 2015, Wei et al., 2015, Barnhart et al., 2015,
Floyd et al., 2016). Oversmoothing, as well as non-negativity in the inversion and lack
of data near the fault have been found to result in a lack of slip at the surface and
apparent shallow-slip deficit (Xu et al., 2016). By solving for the degree of smoothing
with the hyperparameter α2 we speculate that the von Karman regularization could
potentially resolve slip at the surface better in the Napa Valley earthquake. However,
we note that it is hard to directly compare specifics of slip solutions between published
studies since different studies use different fault geometry, including one fault (Dreger
et al., 2015, Barnhart et al., 2015, Zhang et al., 2015b, Melgar et al., 2015), two straight
faults (Wei et al., 2015, Ji et al., 2015) or a more complicated curved fault geometry
such as we used here (Guangcai et al., 2015, Floyd et al., 2016).

These two different results show the bias that a regularization technique can cause.

3.6.2 Trade-offs

We examined trade-offs between different model parameters for the von Karman solu-
tion. First we computed the correlation coefficients between all the model parameters,
using their full posterior PDFs (Appendix B Figure B.18). This identified some inter-
esting behaviour which we explored further by examining the individual histograms.
We find strong positive trade-offs between the five patches with the largest magnitude
of slip. This is as expected because they are located close together, at distances smaller
than the von Karman correlation lengths (Appendix B Figure B.19). We also exam-
ined the spatial distribution of slip and potential correlations. We found that there
is no covariance between the patches with the highest slip on the south-western fault
and patches with the highest slip on the north-eastern fault as shown in Appendix B
Figure B.20. We also found no covariance between the patches with maximum slip on
the south-western fault and patches along-strike from them (Appendix B Figure B.21).
There is positive correlation between the magnitude of slip of patches down-dip from
each other on the north-eastern fault (Appendix B Figure B.22), though not on patches
farthest away from each other, indicating that this is largely due to the von Karman
correlation.

The von Karman correlation acts on the magnitude of slip but it does not act upon
the rake. We found that normal faulting sense of motion was required on the north-
eastern fault to fit the InSAR in this area. In light of this, we consider the trade-offs
between the normal-faulting sense of motion rake on this fault. We found that near
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Figure 3.9: Results (mode) of a Bayesian inversion incorporating VK (left) and Laplacian
(right) priors. The Laplacian solution has all edges as free; the solution is not forced to 0 m
slip at any edge. Below, the standard deviation of each fault patch. The results are broadly
similar in magnitude but vary in location, as the Laplacian extends slip along strike for the
south-western fault (shown on the right) and puts higher slip on the north-eastern fault. The
uncertainties are much higher for the Laplacian solution, as is evident from the higher standard
deviations across the fault. For comparison the slip magnitude colourbar is the same as Figure
3.7.
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the surface, the rake was well constrained to have normal faulting motion, up to the
maximum of the rake prior, 270 degrees (Appendix B Figure B.23). At depth the rake
is very poorly constrained and all of parameter space within the rake prior is almost
equally searched. On the south-western fault we observed some oscillatory slip along-
strike; the histograms in Appendix B Figure B.24 show that many patches display
either no correlation or negative correlation with the rake of a patch next to them, but
show either no correlation or positive correlation with a patch two along. This indicates
that patches next to each other are anti- correlated and so we observe an oscillation in
rake along the fault.

From our trade-off analysis, the main influence on magnitude of slip magnitude for
any given patch is that of its nearest neighbours, as is to be expected from von Karman
regularization. Rake shows some oscillatory behaviour, with the rake of a patch likely
to be anticorrelated to the rake of its immediate neighbours along-strike, and positively
correlated to rake on those patches that are separated along-strike by a single patch.

3.6.3 Slip at the step-over

Our fault geometry includes a step-over, with the rupture originating at the hypocenter
at 11 km depth on the south-western fault and propagating to the northwest (Wei
et al., 2015). Strike-slip earthquakes have often been found to stop at such step-
overs (Wesnousky , 2006), and how earthquake rupture is able to propagate through
complicated geometry and across step-overs like these is important in understanding
why earthquake ruptures stop, and subsequently for seismic hazard. We investigated
the trade-offs at the overlap area of the two faults. The faults overlap by over 5
km but are separated by approximately 1.5 km at the maximum separation, which is
in keeping with observations of overlap and separation for echelon strike-slip faults,
which are themselves self-similar (Aydin and Schultz , 1990). We impose von Karman
regularization separately on the two faults, so any form of correlation is independent
of regularization. We find that there is a negative correlation between the two fault
strands: where there is high slip on the south-western fault there is low slip on the
north-eastern strand (Appendix B Figure B.25). There is also a change in rake, with
the south-western fault undergoing primarily right-lateral slip motion, whereas the
north-eastern fault displays largely normal fault motion, which is required to fit the
InSAR to the north-east of the surface rupture.

This negative correlation means that there is a sharp drop in slip from one fault
to the other. Observations of slip magnitude at step overs suggests that an abrupt
decrease in slip magnitude at the step over makes the rupture more likely to continue
to rupture on the other side (Elliott et al., 2009), as does the proximity of two faults
(Wesnousky , 2006), both of which we observe in this study. This proximity also means
that stress may increase or decrease on one fault due to failure of the other, made more
complicated by their overlap and curved geometry of the south-western fault. This
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interaction between the faults affects how fault systems grow (Cowie, 1998) and simplify
over time (Wesnousky , 1988). The significantly lower slip on the north-eastern fault
may suggest that whilst the rupture was able to cross this geometrical complexity the
earthquake rupture may have been impeded by it, as has frequently been documented
and modeled at step overs (Wesnousky , 1988, Harris and Day , 1993).

We note that this interpretation is affected by our assumption to treat the two
faults as independent, and not smooth between them. We have also assumed that they
remain as separate faults at depth and do not merge.

3.6.4 Fault parameterisation - fault size

In contrast to the Laplacian smoothness constraint, the von Karman constraint pe-
nalises regions of zero slip. If the modeled fault plane is larger than the area that
actually slipped, a Laplacian smoothed solution would give a high probability to zero
slip in regions that are not well resolved as long as the solution is smooth, whereas the
von Karman correlation would give greater probability to non-zero slip in these areas.
This is because regions of zero slip have 100% correlation at all distances, which is
inconsistent with a VK distribution. This is particularly a problem at depth or when
lack of data mean resolution is poor elsewhere. Ideally only areas that actually slipped
should be included in a von Karman constrained inversion.

Additionally, choice of fault dimensions in a von Karman slip inversion affects the
correlation lengths (empirical Equations 3.4 and 3.5 include fault length and width).
In the case of the Napa Valley earthquake we could constrain the fault geometry due
to an abundance of mapped surface rupture (Hudnut et al., 2014) but if a rupture
does not break the surface then some constraint on length must be adopted, such
as the distribution of aftershocks. Any vastly incorrect estimation of fault length and
therefore correlation parameters at this initial stage has the potential to bias the results
of the inversion.

The correlation lengths themselves are empirical scaling relations with their own
uncertainty for any particular fault size, and so ideally these would be drawn from their
prior distribution, as discussed in Mai and Beroza (2002).

Solving for fault length and correlation parameters during the inversion would solve
these issues. This would mean that throughout an MCMC chain the size of the fault
would increase or decrease in length and width, and correlation parameters would
be drawn from a normal distribution, centered on the value for the current length
and width. This would require recalculating the correlation matrix, Σs which adds
computational expense, and solving for fault size this would transform the inversion into
a transdimensional problem (e.g. Dettmer et al. 2014). We leave the implementation
of this to future work.
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3.6.5 Fault parameterisation - number of slip patches

In this paper we have chosen the slip patches to be approximately 1km × 1km in size.
In the literature there is very little consistency in choosing the number or dimension of
these patches, and they range from being less than 1km in length up to greater than
25km, rectangular or triangular, with up to thousands of patches. The choice of patch
size should be based on model resolving power (e.g. Page et al. 2009) as determined
by the data and, particularly for Bayesian inversions, computational expense.

If a fault is divided into more patches than can be resolved by the data, this model
will give an artificial level of detail. But if too few patches are used on a fault, then
the data will be poorly fit and the model unrepresentative.

In order to correctly parameterise the model, methods include determining the size
of the patches to reflect the resolving power of surface displacements (Barnhart and
Lohman, 2010, Atzori and Antonioli , 2011) before commencing an inversion. Other
methods include using self-adapting grids that change patch size and number through-
out the inversion (Dettmer et al., 2014).

As a simple test to compare the effect of the number of slip patches, we solved for
the Napa earthquake using exactly the same inversion parameters as the von Karman
inversion above, but with each patch twice as long and twice as wide. Figure 3.10 shows
that the solution has a similar location of peak slip as the von Karman inversion on the
full fault, but the moment is 2.77× 1018 Nm which is also significantly bigger than the
USGS moment of 1.33× 1018 Nm but roughly the same as the von Karman regularized
solutions.

We also solve for von Karman regularization across the entire fault with moment
regularization, using a Gaussian prior with a mean of the USGS moment of 1.33× 1018

Nm and a standard deviation of 1.07 × 1017. Here we found the MAP result gives a
moment of 2.43× 1018 Nm which is still significantly larger than the USGS moment of
1.33× 1018 Nm, though closer to the USGS value than the von Karman regularization
with smaller slip patches. Other geodetic studies also found moments larger than the
USGS moment; the study by Guangcai et al. (2015) found a value of 2.07 × 1018 Nm
and the study by Floyd et al. (2016) found a value of 1.67 × 1018 Nm. Some of this
difference to the USGS moment may be due to the documented differences between
geodetic and seismically derived moment (Weston et al., 2011), as well as to the 7 days
of postseismic deformation present in the InSAR and GPS data (e.g. Floyd et al. 2016).

3.6.6 Solving for smoothing parameters

The von Karman distribution is determined by three parameters: the Hurst parameter
and along-strike and down-dip correlation coefficients. Here we have used the average
value for strike slip faults determined by Mai and Beroza (2002) rather then solving for
them and for the synthetic tests have used the same correlation lengths for generating
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Figure 3.10: The mode results of Bayesian inversions for the Napa earthquake using von
Karman regularization and moment regularization (left) or bigger slip patches (right). For
direct comparison the scalebar is the same as Figure 3.7.

the input slip distributions and for the inversion. An incorrect assumption of correlation
lengths is likely to bias model results, and in future work, to be as objective as possible,
we propose to solve for them as hyperparameters with priors constrained by the full
distribution determined by Mai and Beroza (2002).

There is evidence that faults become smoother with increasing slip (Sagy et al.,
2007, Brodsky et al., 2011) due to fault maturity. This can be characterized using
the Hurst parameter, which has been carried out for several exhumed fault surfaces
(Candela et al., 2011, Bistacchi et al., 2011, Candela et al., 2012). Prior knowledge
of the Hurst parameter or the degree of maturity of a particular fault could therefore
help constrain the Hurst parameter in slip inversions better. Alternatively, solving for
correlation coefficients and the Hurst parameter within the slip inversion could be used
to estimate the smoothness of active faults are, and consequently their maturity. This
could be tested on faults of known age.

3.7 Conclusion

In light of all the evidence suggesting earthquake slip shows fractal properties we sug-
gest that von Karman regularization should be the default for slip inversions in the
future. Our tests show that even if the underlying slip were not fractal, von Karman
regularization does at least as well as the commonly-used Laplacian regularization. We
have developed a method to solve for earthquake slip inversion in a Bayesian sense,
with the capability of incorporating von Karman, Laplacian or no smoothing and with
the potential to add other spatial constraints in the future. MCMC models are more
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computationally expensive than some other inversion algorithms, but enable us to fully
capture the plethora of model solutions that fit the prior and data, and characterize
the uncertainties and trade-offs between parameters. We have made the search more
efficient by using two steps in the MCMC chain and adapting parameter step size as
the inversion proceeds. We find that a Laplacian smoothed inversion places slip in dif-
ferent locations to von Karman regularization for the Napa Valley earthquake and and
the von Karman solution gives much tighter confidence bounds on slip. We argue that
this tighter confidence represents an important improvement on the solution, since the
tighter constraint is arises from the self-similar prior we are imposing which is based
on observational evidence. We therefore suggest that von Karman regularization is a
better constraint since it is capable of capturing the self-affine properties of coseismic
slip.
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Chapter 4

Solving for Fault Size and Fractal

Slip in a Bayesian Inversions

The work in this chapter has been submitted for publication in the Journal of Geo-
physical Research.

4.1 Abstract

Many earthquake properties, including slip, show self-similar (fractal) features. We
can incorporate self-similarity into Bayesian slip inversions via von Karman correla-
tion, so that the regularization applied is representative of observed fault features. In
von Karman regularisation, each slip patch has a relationship to every other patch.
This means that von Karman regularisation only has meaning when applied to patches
that actually slipped; if applied to non-slipping patches, spurious slip can be added to
meet the von Karman correlation criteria. Additionally the fault size, usually chosen
in advance, also affects the von Karman correlation lengths meaning that the final slip
solution may be biased by initial geometry choices. Here we present a method for solv-
ing for the size of the fault plane during the slip inversion process, as well as slip, rake
and a hyperparameter controlling slip variance. We use a trans-dimensional Bayesian
inversion scheme constrained by geodetic surface displacements and regularized using
von Karman correlation. We use circular harmonics to solve for the size of the slip-
ping area, to allow for a complex shape that is connected and continuous across the
fault. We apply this method to the 2016 Mw 6.2 Central Tottori earthquake, Japan,
constrained by InSAR (Sentinel-1, ALOS-2) and GNSS data. We find an area of slip at
approximately 8 km depth, with the slipping area elongated in the down-dip direction.
In contrast to some seismic studies we find slip ruptured most of the seismogenic layer.
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4.2 Introduction

Assumptions incorporated into coseismic slip inversions should be realistic and jus-
tifiable for resulting slip distributions to be useful. Every prior assumption changes
the final slip distribution, which is one of the reasons behind variability between slip
results for the same earthquake (Minson et al., 2013). Most commonly used regu-
larization techniques simply satisfy mathematical constraints (e.g. the Laplacian or
minimum norm) and have no physical basis in how faults are seen to behave in nature.
Consequently they may bias the result.

There are several aspects of earthquakes that display fractal properties, which math-
ematically equates to a behaviour following a power law function. Many recent papers
suggest that earthquake slip also shows fractal properties. This includes measurements
of surface coseismic slip e.g. Milliner et al. (2015), analysis of published finite fault
inversions (Mai and Beroza, 2002) and measurements of exhumed fault surface rough-
ness e.g. Candela et al. (2012). We therefore suggest that fractal slip properties should
be incorporated into slip inversions, as this approach can better capture the physical
properties of faults than other regularisation techniques (Amey et al., 2018).

Mai and Beroza (2002)’s meta-analysis showed that the von Karman autocorrelation
function best describes the long-order correlation of earthquake slip along a fault plane.
Unlike a fractal correlation, which is only described by one variable (fractal dimension,
D), the von Karman correlation is controlled by the Hurst parameter, H, which is
related to the fractal dimension by D = (Euclidian dimension + 1 - H ), and additionally
two correlation lengths. The von Karman correlation power decays more slowly at small
wavenumbers and also captures the self-affine nature of slip through different correlation
lengths in the along-strike and down-dip directions.

We therefore regularise our inversions using von Karman correlation as a prior
assumption. The von Karman autocorrelation function is given by:

Σs =
GH(r/a)
GH(0)

(4.1)

Where r is the distance between slip patches, a is the correlation length used to
scale this distance, H is the Hurst parameter and GH(r/a) = (r/a)HKH(r/a) where
KH is a modified Bessel function of the second kind, of order H (Mai and Beroza,
2002).

We have developed a code, slipBERI (slip from BayE sian Regularised I nversion,
with availability detailed in acknowledgments), to solve for slip in a Bayesian sense using
von Karman regularisation whilst simultaneously solving for rake and a hyperparameter
that controls the degree of regularisation.

A complication with von Karman regularisation is that it is dependent on the choice
of fault size in two ways. First, the empirically derived along-strike and down-dip
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correlation lengths, aas and add, which are used to calculate scaled distance r/a, depend
on fault length and fault width respectively (Mai and Beroza, 2002). Second, unlike
in Laplacian smoothing, where each discrete patch only has a relationship with its
neighbouring patches, with von Karman regularization each patch has a relationship
with every patch. Whilst this can provide a useful constraint for areas of the fault
that are more poorly resolved than patches at the surface, it can result in patches that
are almost in the model null space being assigned slip just to satisfy the von Karman
regularization. This is particularly a problem at depth, where assigning slip may have
little effect on the surface observations, and therefore little affect on the likelihood,
but can increase the von Karman prior probability. Multiple patches with zero slip
do not satisfy von Karman autocorrelation; if a chosen fault is larger than the area
that slipped then there should be zero slip around the edges, but this would lead to
patches both near and far having 100% correlation, which the von Karman constraint
prevents, and so a small amount of slip is placed there instead. This slip at depth is not
representative of earthquake processes and instead is an artifact of the regularisation.
Consequently the von Karman constraint introduces a bias in the inversion if applied
to patches which are not slipping.

Here we present an algorithm for solving for the size of the slipping area within a
Bayesian inversion. We do this using a trans-dimensional MCMC (Markov Chain Monte
Carlo) approach (Green, 1995) that uses circular harmonics to control the shape, size
and orientation of the slipping area whilst ensuring it is continuous.

We apply this inversion technique to the Mw 6.2 Central Tottori, Japan, earthquake
(Figure 1). This occurred on the 21st October 2016 and was a strike-slip earthquake
with a small normal component. We use InSAR (Interferometric Synthetic Aperture
Data) data acquired by Sentinel-1 and ALOS-2, and GNSS (Global Navigation Satellite
System) data to constrain the surface displacements. Following the earthquake, ALOS-
2 acquired extra acquisitions in a left-looking mode in addition to the normal right-
looking acquisitions, for both ascending and descending orbits. These data combined
with GNSS give high resolution displacement measurements for this earthquake. During
the inversion we solve for the size of the fault plane as well as slip and rake of each patch,
the reference displacement of every interferogram and a hyperparameter controlling
the extent of smoothing. Finally, we present the slip results, and comment on seismic
hazard in this region.

4.3 Methods

4.3.1 Model Set Up

Initially we choose a fault size with fixed strike and dip, using InSAR results and
aftershock locations, and extend it along-strike and down-dip to make it larger than
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Figure 4.1: Regional setting of the Central Tottori earthquake. Insert a) shows tectonic
context of this earthquake (area of Japan shown in insert b)). Onshore faults in the region
shown in dark orange from Research Group for Active Faults of Japan (RGAFJ , 1991), and
the focal mechanism for the 2016 Mw 6.2 earthquake. Inset c) shows aftershocks (open, magenta
circles) and GNSS from the earthquake and past large earthquakes in the area (coloured stars).
Also shown is Mount Daisen (brown triangle) and the location of the city Kurayoshi (red circle).
Our modeled fault is shown in red, based on InSAR and aftershock locations. One month of
aftershocks from NIED (National Research Institute for Earth Science and Disaster Resilience)
(2018) K-NET and KiK-net and GNSS from GEONET.

the likely area that actually slipped. We break the fault-plane down into equally sized
rectangular patches and solve separately for slip magnitude and rake for each fault
patch. We also solve for a hyperparameter, α2, which we discuss further in section
4.3.2, a constant offset for each of the InSAR scenes, equivalent to the displacement of
the reference point, and circular harmonics terms, which are discussed below. Although
we fix strike and dip in the inversions presented here, they can also be solved for as
extra model parameters if necessary.

Parameterising fault size with circular harmonics

Having chosen in advance a fault plane that is expected to be too large, we then permit
patches to turn ‘on’ or ‘off’ during the inversion. To ensure a continuous slipping area
we use circular harmonics, the 2D version of spherical harmonics, to define the area;
patches within this area are permitted to slip and those outside are considered to have
zero slip. A patch is ‘on’ if its center lies within slipping and area, and ‘off’ otherwise.
We use the first four terms of the circular harmonic expansions. For convenience, rather
than solving for both positive and negative harmonics, we solve for the coefficient (size)
and a rotation parameter, φ, for each harmonic. We also solve for the x and y location
of the centre of slipping area relative to the top-left of the fault (Figure 4.2).

We calculate the length and width of the slipping area defined by the harmonics,
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Figure 4.2: We use the first four terms of the circular harmonic expansion to define a slipping
area on a fault plane. Patches within this slipping area are ‘on’ and are permitted to slip, those
outside are ‘off’ and are considered to have zero slip. A patch is ‘on’ if its centre is within the
slipping area. We solve for the coefficients (size) of each harmonic, as well as the rotation, φ,
and x, y location of the centre of this slipping area on the fault plane.
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which feeds into equations used for calculating the von Karman probability, discussed
in Section 4.3.2.

We begin our inversion, described below, with the maximum permitted zero-order
harmonic, such that the entire fault is ‘on’ at the start of the inversion.

4.3.2 Bayesian slip inversion

We use a Bayesian approach as it allows us to incorporate prior assumptions on the
model parameters, including the von Karman nature of slip. Also the solution gives
a suite of the models that fit the data within an acceptable level, allowing the quan-
tification of the errors and trade-offs between model parameters. It is also a flexible
framework that allows us to easily incorporate features such as solving for the number
of model parameters.

We have previously presented our method for solving for slip incorporating the von
Karman regularisation (Amey et al., 2018). Here we modify our scheme to allow for a
variable number of slipping patches.

A Bayesian inversion aims to update the joint prior probability density function
(PDF) for all the model parameters (unknowns) given the data. Our knowledge of
what the model parameters should be before commencing the inversion is represented
as a joint prior PDF for all of the model parameters. Throughout the inversion, new
trials are drawn for each parameter from their prior PDFs, then these prior PDFs are
modified based on the likelihood (fit to data) to give the full posterior probability.

By Bayes’ theorem extended to density functions, the posterior probability density,
p(m|d), of a model, m, given a set of data, d, is given by:

p(m|d) =
p(d|m)p(m)∫∞

−∞ p(d|m)p(m)dm
(4.2)

Where p(m) is the prior probability density of the model, which is the initial knowl-
edge of the model parameters before commencing an inversion. p(d|m) is the likelihood
density function, which captures how well the data can be fit by a current model (the
probability of d given m). The denominator, sometimes called ‘evidence’, is a normal-
ising constant, as it is independent of the models (Sambridge et al., 2006).

Some posterior PDF solutions can be determined analytically, but we cannot do
this here as we solve for a hyperparameter, α2, representing the variance of slip within
the inversion (discussed further in section 4.3.2). Instead we must use some form of
sampling to evaluate Equation 4.2 for different models. For a large number of model
parameters, uniform sampling quickly becomes impractical and so we use MCMC sam-
pling. MCMC sampling is a way to efficiently sample a target distribution (Tarantola,
2005). It is a memoryless chain, in which during each iteration a new trial is generated
by perturbing only the current state. We use the Metropolis-Hastings rule (Metropolis
et al., 1953), to decide whether to accept each trial; a new trial is accepted if it is more
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probable, but also less probable new trials are accepted if the ratio of the probabilities
(named the acceptance ratio) is greater than a random number drawn between 0 and
1. This allows the chain to extract itself from local maxima. Thus the chain moves and
preferentially targets regions of parameter space with higher probabilities. Accepted
trials are saved and new trials are drawn from the current model; rejected trials are
discarded and the previous state is saved. At the end of the inversion, the initial sam-
ples are also discarded as these are still influenced by the starting position and do not
properly represent the posterior, but rather the ‘burn in’. The full posterior PDF is
made up of all the saved trials.

The acceptance ratio, a, which is compared to a random number between 0 and 1 in
the Metropolis-Hastings rule, for a new trial m′ from perturbing m is given by (Bodin
and Sambridge, 2009):

a(m′|m) = min[1, prior ratio× likelihood ratio] (4.3)

a(m′|m) = min[1,
p(m′)
p(m)

× p(d|m′)
p(d|m)

] (4.4)

For a trans-dimensional case, extra terms must be considered in the acceptance
ratio, meaning the full acceptance ratio is:

a(m′|m) = min[1, prior ratio× likelihood ratio× proposal ratio× Jacobian] (4.5)

a(m′|m) = min[1,
p(m′)
p(m)

× p(d|m′)
p(d|m)

× q(m|m′)
q(m′|m)

× |J |] (4.6)

Where the proposal distribution is the distribution from which a new sample is
drawn and the role of the Jacobian, J , is to account for scale changes between m

and m′ (Sambridge et al., 2006). For non-trans-dimensional inversions, the proposal
distribution and Jacobian are equal to 1, but this cannot be assumed for an inversion
that changes dimension.

In the following sections we describe each term in the acceptance ratio in turn and
how they are calculated.

Prior

In our set-up the prior can be broken down as the product of the independent prior
for each model parameter, for example the permitted range each model parameter can
take, and the prior imposed by the von Karman constraint, used to ensure that the
overall trials drawn represent a von Karman distribution.



94 Chapter 4: Solving for Fault Size and Fractal Slip in a Bayesian Inversions

Model Parameter Priors We define an independent prior probability distribution
for each model parameter from which trials are drawn. We use boxcar priors for slip,
rake and InSAR offset, meaning that we assign a constant probability in a permitted
range and zero probability outside of that range. For the hyperparameter, α2, we use
a logarithmic prior, discussed above. by solving for a model parameter q with boxcar
prior and setting α2 by α2 = 10q. For the circular harmonics parameters we also use
boxcar priors, and use the dimensions of the fault to set the maximum permitted values,
such that the centre x, y coordinates must be on the fault and any one harmonic cannot
solely produce a slipping area larger than the fault.

The joint prior is the product of the independent priors for each parameter, and
includes a normalising constant. Unlike in Amey et al. (2018), this constant cannot be
ignored as it depends on the number of patches, which here changes throughout the
inversion. For a trans-dimensional case, the prior can be expressed:

p(m) = p(m|n)p(n) (4.7)

Where p(n) is the prior on the number of discrete slip patches, n (Bodin and Sam-
bridge, 2009). We assume a constant prior probability for p(n) between 1 and the
number of patches in our grid, and so p(n) can be ignored.

The slip and rake for the patch can be separated by:

p(m|n) = p(s|n)p(r|n) (4.8)

Where s is slip and r is rake. As discussed above we use a boxcar for both slip
and rake. Thus the prior probability of the patch slip given the number of slip patches
is p(s|n) = 1/(∆s)n when all slips are within the permitted range and zero otherwise,
where ∆s is the range of permitted slip. The same is true for rake, i.e. p(r|n) =
1/(∆r)n.

Thus the trans-dimensional prior is:

p(m|n) = (∆s)−n(∆r)−n (4.9)

von Karman prior As discussed above, fractal properties of slip are incorporated
into the slip inversion using von Karman autocorrelation as a prior.

The von Karman prior probability of a trial slip solution is:

p(s) = (2πα2)−n/2|Σs|−1/2e
−1

2α2 sTΣs
−1s (4.10)

where:
p(s) = prior probability of this slip distribution
α2 = a hyperparameter controlling variance of slip
n = number of slip patches currently on
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|Σs| = determinant of autocorrelation matrix
s = a vector of slip magnitude

The correlation matrix calculation (ΣS, calculated from Equation 4.2) is dependent
on the Hurst parameter H, and the distance between fault patches, normalised by
the correlation length. We find that when changing the size of the slipping area, the
correlation matrix can become close to singular, so we add a stabilising constant of
0.01 to the diagonal of Σs. The normalised distance, r/a, is calculated by scaling the
along-strike and down-dip distances between each fault patch by an by an along-strike,
aas, or down-dip, add, correlation length. We use the scaling relations from Mai and
Beroza (2002) to calculate the correlation lengths:

aas = 1860 + 0.34× (fault length) (meters) (4.11)

add = −390 + 0.44× (fault width) (meters) (4.12)

These correlation lengths are dependent on length and width of the slipping area,
which we recalculate as the size of the slipping area changes (Section 4.3.1).

We use Hdd = 0.77 and Has = 0.71 for down-dip and along-strike Hurst parameters
(Mai and Beroza, 2002).

The hyperparameter, α2, represents the variance of the slip distribution; the corre-
lation matrix Σs defines the von Karman correlation and the hyperparameter α2 scales
this to produce the appropriate magnitude of slip.

Since we solve for the number of slip patches that are on within the inversion, the
scalar n also changes as the slipping area is updated.

Likelihood

On the assumption that the errors are multivariate Gaussian, the likelihood is calculated
by the fit of the current model to the observed data, weighted by the variance-covariance
matrix and given by:

p(d|m) = (2π)−N/2|Σd|−1/2e
−1
2

(d−Gs−k)TΣd
−1(d−Gs−k) (4.13)

where:
p(d|m) = the probability of the observation for the current model
N = total number of data points
Σd = variance-covariance matrix of the data
d = vector of data (InSAR line-of-sight; GNSS, east, north or up)
s = vector of magnitude of slip
G = kernel matrix, calculated for the correct rake values
k = a vector of constants for InSAR data and zero for GNSS
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We use Okada (1985) equations for an elastic dislocation in a half space to calculate
the kernel G for unit slip in LOS (line-of-sight) for InSAR and for east, north or up
for GNSS on each fault patch, for the appropriate rake and dip. The product of kernel
G and slip on each patch, s, gives the surface displacements at each InSAR and GNSS
measurement for that slip distribution. Before commencing the inversion we calculate
kernels with pure strike-slip and dip-slip motion and sum the contribution of these for
the current rake values, as we are solving for rake.

The G matrix is updated with the constant InSAR offsets, k, so that offset is added
or subtracted to the data for the appropriate InSAR scene.

Proposal Distribution

By allowing the number of slip patches to change, the problem becomes trans-dimensional;
the number of unknowns is itself unknown. This requires an extension of the MCMC
methods discussed above in which the algorithm alternates between updating the value
of the model parameters (the current state) and the number of model parameters
(jumping between state spaces), e.g. the reversible-jump MCMC (Green, 1995). In our
algorithm we alternate so that on odd iterations we update the values of the model
parameters, and on even iterations we update the size of the slipping area (the number
of model parameters).

In this case we must consider the potential asymmetry of the proposal distribution,
which defines how each parameter is perturbed during the Markov Chain. For a non-
trans-dimensional problem the proposal distribution is symmetric; the forward proposal
distribution of a step of model m→ m′ is the same as the reverse proposal distribution
of model m′ → m and the ratio of the two proposal distributions is equal to 1 (Bodin
and Sambridge, 2009). Symmetry cannot however be assumed in a trans-dimensional
problem.

For a new model, the proposal ratio can be broken down into:

q(m|m′)
q(m′|m)

=
q(s|m′)
q(s′|m)

× q(r|m′)
q(r′|m)

× (α2|m′)
(α2′ |m)

× (k|m′)
(k′|m)

× q(h|m′)
q(h′|m)

(4.14)

Where s is the slip on the new/removed patch and r is rake on all patches, α2 is
a hyperparameter, k is the constant InSAR offset and h are the harmonic parameters
that we use to define the slipping area.

Even though changes to the harmonic parameters can lead to the addition or dele-
tion of patches, the number of harmonic parameters itself does not change and therefore
q(h|m′) = q(h|m), and the same reasoning can be used for α2 and k.

On addition of a new slip patch, we do not select a new magnitude of slip using
a probability distribution, but instead the new patch takes a constant value: its value
before being turned off. The probability is thus a delta function, with the probability
of its previous value equal to 1 and for all other values equal to 0, meaning that
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q(s′|m) = 1. When this slip patch is removed, the probability of removing the slip
magnitude of this patch is q(s|m′) = 1. Thus q(s′|m) = q(s|m′) for the addition of
a patch, and likewise for the deletion of a patch. Thus the proposal ratio for slip is
always 1, and the same argument can be made for rake. Note that this would not the
case if the slip and rake values for a new patch were selected from from a probability
distribution, see Bodin and Sambridge (2009). The Jacobian, whose role is to account
for scale changes between m and m′ (Sambridge et al., 2006), is equal to 1 as the
bijective transformation m→ m′ involves only constants.

This means that for our formulation of the transdimentional Bayesian method
q(m|m′) = q(m′|m) and thus the proposal ratio is equal to 1 and can be ignored.
This is essentially because the addition of a patch in m→ m′ has the same probability
as removal of that patch in m → m′, unlike adding a new nucleus to a network of
Voronoi cells in (Bodin and Sambridge, 2009), and the properties for a new patch are
constant.

Acceptance ratio

As in Amey et al. (2018) we break the algorithm down into two separate Metropolis
steps, to first draw a trial that is representative of the prior before calculating the
likelihood (Tarantola (2005), Chapter 2, Pg 52). The first Metropolis step considers
only the prior ratio, in order to draw a von Karman trial, which is non-trivial to directly
sample. Then the likelihood is only calculated for trials that pass this prior test, to
avoid the unnecessary calculation if a prior probability is low.

At the start of an iteration each model parameter is perturbed from its current state
such that a step is taken in parameter space. We generate samples from the individual
model priors’ directly: boxcar or logarithmic, as discussed above. For a boxcar prior
PDF, random numbers are drawn and any that are outside of the permitted range are
‘bounced back’ into the permitted bounds: if a trial is drawn that is outside of its
permitted upper bounds X by x meters (in the example of slip) we move the trial back
into permitted bounds by trial = X − x.

Once trials have been drawn from each model parameters’ prior distribution, we use
a prior acceptance ratio to draw a representative transdimensional and von Karman
trial. This means that the first step is to apply the Metropolis-Hastings rule to the
prior acceptance ratio, ap:

ap(m′|m) = min[1, prior ratio] (4.15)

ap(m′|m) = min

[
1,

∆s−n′∆r−n′ × (2πα′2)−n′/2|Σ′s|−1/2e
−1

2α′2
s′TΣ′s

−1s′

∆s−n∆r−n × (2πα2)−n/2|Σs|−1/2e
−1

2α2 sTΣs
−1s

]
(4.16)

If a trial is accepted as a representative sample of the prior, the Metropolis-Hastings
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rule is applied for the second time to the likelihood acceptance ratio, al:

al(m′|m) = min[1, likelihood ratio] (4.17)

al(m′|m) = min

[
1,

(2π)−N/2|Σd|−1/2e
−1
2

(d−G′s′)TΣd
−1(d−G′s′)

(2π)−N/2|Σd|−1/2e
−1
2

(d−Gs)TΣd
−1(d−Gs)

]
(4.18)

(4.19)

If accepted the trial model becomes a representative sample of the posterior distri-
bution. If either of the two Metropolis rule applications lead to rejection, the previous
saved model becomes the new representative sample.

4.3.3 Simulated annealing initialisation and solving for step size

To save time during burn-in we perform an initial simulated annealing inversion, with
all patches ‘on’, and use the solution to set the initial parameter values for the Bayesian
inversion (Bagnardi and Hooper , 2018).

Simulated annealing is a direct search method that uses the analogy of annealing
(heating and cooling) in its inversion to return the maximum likelihood solution of the
posterior PDF (Tarantola, 2005). An ‘annealing schedule’ is chosen prior to starting
the inversion and the probability, σ, of a solution as a given temperature, T , is given
by the Gibbs-Boltzmann distribution:

σ = e
φ(m)
T (4.20)

Where φ(m) is the cost function for the model parameters m. In this case the
cost function is the exponent part of the posterior. The inversion proceeds in a similar
manner to a Bayesian inversion, where new trials are drawn and are accepted or rejected
by the Metropolis-Hastings algorithm using a probability ratio, in this case adapted by
T .

By reducing T slowly throughout the inversion, probability space is distorted so
that the probability of selecting a less likely model gradually decreases. This allows
the inversion to search a wide area initially, but hone in on an area of high probability
as the inversion proceeds. To lower the chance of the solution converging on a local
maxima the annealing schedule should not decrease temperature too quickly. We use
a temperature schedule of T = 1000, 100, 10, 1, 0.1, 0.01, 0.001, 0.0001 and use 10,000
iterations for each value of T .

We perform sensitivity tests after the simulated annealing initialisation, during the
first 20,000 iterations, to tune the proposal distribution. These sensitivity tests increase
or decrease the step sizes of each model parameter depending on the rejection ratio (see
Amey et al. (2018)), aiming to meet an ideal rejection ratio (Roberts et al., 1997). After
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10,000 iterations the step sizes are fixed, and these initial iterations are removed with
the burn-in.

4.4 Synthetic Tests

We created a synthetic test to verify that our method is able to locate localised slip
within a larger fault plane.

The test consists of a single plane, pure strike-slip fault, with one area of slip sur-
rounded by patches of zero slip. The moment, lengthscale and slip are consistent with
a magnitude ∼6 earthquake (Wells and Coppersmith, 1994). The slipping area has slip
that is consistent with von Karman correlation, which we produced by transforming
noisy slip into correctly spatially correlated slip (Lohman and Simons, 2005). We cre-
ated synthetic measurements by calculating surface displacements expected for this slip
distribution using Okada (1985) equations. We then used these surface displacements
to invert for slip on a fault with the correct geometry.

We created a synthetic GNSS and InSAR dataset, and added spatially correlated
noise to the InSAR data with a sill, nugget and range of 10−5 m2, 10−6 m2 and 15 km
respectively. We used InSAR measurements spaced every 400 m within 5 km of the
fault and spaced every 2 km within 20 km of the fault. We randomly removed 800
InSAR datapoints (34%) to simulate loss of coherence. We scattered 40 GNSS data
points within 20 km of the fault.

We solved for this input using our trans-dimensional inversion scheme detailed in
Section 4.3. We used a boxcar prior between 0 m and 10 m for slip and a boxcar prior
between 150 and 210 degrees for rake. We used a logarithmic prior for α2, with a
minimum permitted value of 1× 10−4 m2 and a maximum permitted value of 10−2 m2.
For the circular harmonic coefficients we used a boxcar between 0 and 15,000, for the
circular harmonics center coordinates we used a boxcar between 0 and 15,000 m for
x, and 0 and 20,559 m for y and for the circular harmonics rotation we use a boxcar
between 0 and 100 radians, which is set arbitrarily high.

The results show that the trans-dimensional method is able to resolve the location
of slip very well and also does a reasonable job of resolving magnitude (Figure 4.3).
Using mean slip of 0.1 m as a threshold, the method correctly identifies 37 patches out
of 41 patches, and misidentifies 8 patches that are not slipping. At a 0.2 m threshold,
the trans-dimensional approach puts slip on 3 patches that are not slipping. Also
shown in Figure 4.3 is von Karman regularisation performed on all patches, which
results in smearing of slip over nearly all patches, with mean slip greater than 0.1 m
on 82 non-slipping patches; at 0.2 m threshold it puts slip on 13 patches that are not
slipping. The latter solution also does not correctly capture the magnitude of slip.
The true moment of the synthetic test is 6.95×1017 Nm (equivalent to a magnitude
5.9) earthquake and the transdimensional approach finds a very similar moment of



100 Chapter 4: Solving for Fault Size and Fractal Slip in a Bayesian Inversions

Input

Solution for all patchesSolution Solving For Fault Size

D
ep

th
 (

k
m

)

S
li

p
 (

m
)

Along-strike (km)

Figure 4.3: Synthetic test of trans-dimensional fault size inversion. Top figure shows the
simulated true slip, with a slipping area consistent with von Karman slip surrounded by patches
of zero slip. Bottom left shows the mean solution solving for slip and the size of the fault plane
with von Karman regularisation. Bottom right shows the inversion performed using von Karman
regularisation on all of the patches, for contrast. It is clear that the solution solving for fault
size results in less smearing, since it is more likely to put zero slip in areas where the data do
not require it.

6.79×1017 Nm (equivalent to a magnitude 5.9). The solution for all patches over-
estimates the moment, with a moment of 9.64×1017 Nm, equivalent to a magnitude
6.0 earthquake. The fit to the data for both solutions is shown in Appendix C, Figures
C.1 and C.2.

The synthetic test demonstrates that this method is able to identify slipping patches,
and better resolves the location and magnitude of slip than von Karman regularisation
in a non-trans-dimensional mode.

4.5 Application to the Central Tottori earthquake

4.5.1 Background

The earthquake occurred on the 21st October 2016 in the Tottori prefecture of the
Chugoku region of Japan, on Honshu island (Figure 4.1). Estimates of magnitude
range from 6.2 (https://earthquake.usgs.gov/earthquakes/eventpage/us20007fta) and
6.6 from the Japan Meteorological Agency (Earthquake Research Committee, 2016)
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but fortunately caused no loss of life, though 30 people were injured and more than 300
houses were completely or partially destroyed (Kubo et al., 2017). It was a left-lateral
strike-slip event on a roughly N-S striking fault plane, along which the aftershocks are
distributed, 6 km South of the city of Kurayoshi. Peak ground velocities varied between
0.3-1.4 G and the ground motion was widely felt over Southwest Japan (Kagawa et al.,
2017).

This earthquake occurred in the Northern Chugoku shear zone, in the area geode-
tically identified and named San-in shear zone by Nishimura and Takada (2017). This
shear zone has previously experienced large earthquakes, with a M 7.2 in 1943 (Kanamori ,
1972), M 6.2 in 1983 (Tsukuda, 1988) and Mw 6.6 in 2000 (Semmane et al., 2005, Mon-
elli et al., 2009).

4.5.2 InSAR

We used Sentinel-1 (C-band SAR satellite) Ascending, Track 083, which had a 24 day
repeat at this time. We processed Sentinel-1 data using the LiCSAR processing chain
(Gonzalez et al., 2016). The SAR images for master (20161012) and slave (20161105)
were downloaded from ESA’s (European Space Agency) Copernicus Open Access Hub.
Within LiCSAR the images were coregistered, multilooked twice in azimuth and ten
times in range, filtered, unwrapped and geocoded. We found that the descending track
was too decorrelated for the earthquake to be identified, which we put down to the
large amount of vegetation and larger perpendicular baseline than the ascending track
(82.1 m compared to 30.8 m).

We also used L-band ALOS-2 data; ultrafine-mode SAR data (spatial resolution of
3 m) from four different viewing directions (i.e., a combination of ascending/descending
and right/left looking) were acquired by ALOS-2 within five days of the earthquake. A
10-m mesh DEM (GSI , 2014) was used to remove the effect of topography. We applied
tropospheric noise reduction using a numerical weather model provided by Japan Me-
terological Agency (JMA) (Kobayashi et al., 2014). To reduce long wavelength sources
(i.e., caused by orbital errors, residual tropospheric delay, and ionospheric delay), In-
SAR displacements were fitted to the GNSS displacements using spline interpolation
(Fukushima, 2013, Morishita, 2016).

We used a nested uniform downsampling approach to downsample the data for
modelling. The region within approximately 25 km of the epicenter was downsampled
800 times and outside this region was downsampled 2500 times.

Variance-covariance matrix

Due to atmospheric changes between satellite acquisitions that are correlated in space,
we calculated a variance-covariance matrix, Σd for each InSAR scene. We did this using
the semi-variogram method, details given in Amey et al. (2018).
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4.5.3 Model set up

We fixed the fault geometry as given in Appendix C, Table C.1 (see figures 4.4 and 4.6
for geometry). We used the InSAR surface displacements to determine a fault strike,
and assumed a vertical fault plane. The priors used in this study are given in Table
4.1.

Min Max
Slip (m) 0 10
Rake (degrees) -40 20
InSAR offset (m) -1 1
α2 (m2) 1× 10−5 20
Circular harmonic coefficient 0 15000
Along-strike circular harmonic center (m) 0 20559
Down-dip circular harmonic center (m) 0 15000
Circular harmonic rotation (radians) 0 2π

Table 4.1: Permitted bounds for the boxcar prior PDFs used in this inversion. The probability
for each model parameter is 1 between these bounds, and 0 otherwise.

4.5.4 GNSS

We used the data from continuous GNSS stations of the GNSS Earth Observation
Network (GEONET) operated by the Geospatial Information Authority of Japan (GSI)
(Sagiya, 2004, Nakagawa, 2009). The site of 960640 was selected as a reference station,
which is located >100km ENE from the epicenter, where the coseismic displacement
can be ignored. The coseismic displacements were calculated as the difference in the
averages of the daily solutions between October 6th to 20th and October 22nd to
November 5th, 2016. We also calculated the standard deviations of the daily relative
coordinates and assigned them as data uncertainties.

The GNSS shows up to a maximum of 6.8 cm movement at the GNSS stations
nearest to the fault and is consistent with left-lateral motion (Figure 4.1).

We do not weight either geodetic dataset above the other, though there are more
InSAR datapoints than GNSS measurements.

4.5.5 Results

We chose fault dimensions to be longer and deeper than the area of slip for an earth-
quake of this magnitude and the lengthscale of deformation from the InSAR.

The mean slip for each patch, including solving for fault size, is shown in Figure
4.4, panel a. From the spatial pattern of time spent ‘on’ by each patch (Figure 4.5) and
the slip distribution, the earthquake slipped significantly from depths of approximately
1.5 km down to depths of approximately 10 km. There is a large patch with maximum
average of approximately 1.6 m slip that lies of slip at a depth of 8 km. We repeated
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Figure 4.4: Mean slip for every patch from a von Karman regularised inversion for the Central
Tottori 2016 earthquake. Panel a shows results for a trans-dimensional inversion using circular
harmonics. Panel b shows von Karman regularisation applied to the whole fault, where smearing
has occurred. Black circles show 10 days of aftershocks from Ross et al. (2018) projected onto
fault plane. Note that the aftershocks span a different time period to the geodetic data used
to derive the slip solution, and some aftershocks are up to 20 km away, some on sub-parallel
faults.

the inversion without solving for fault size (Figure 4.4, panel b). This shows a peak slip
is lower, with 1.3 m at a depth of 6 km, but this solution is smeared out, with some slip
occurring on all deeper patches. Including solving for fault size in the inversion focuses
the slip, leader to a larger area of high slip, extending at least 3 km further down-dip.
This solution fits the data well as shown in Figures 4.6 and 4.7, as does the solution
applied to all patches, shown in Appendix C, figure C.3 and C.4. We also solved for
slip using Laplacian smoothing and found it to give a very similar result to the von
Karman solution applied to all patches, but with a slightly higher magnitude of slip
(Figure C.5).

The 95% confidence interval of the moment for solving for slipping area is 1.95×1018 Nm
to 2.66×1018 Nm, which is slightly lower than the USGS moment of 2.82 ×1018 Nm.
The 95% confidence interval for the von Karman MAP solution applied to all patches
is higher, with a range of 2.60 ×1018 and 2.92 ×1018.

4.6 Discussion

4.6.1 Implications for seismic hazard

The tectonics in Southwest Japan is dominated by the Philippine Sea plate subducting
below the Eurasian plate at the Nankai trough. 200 km north of the Nankai trough,
the Median Tectonic line is a mature shear zone (Ross et al., 2018) as is evident from
the topography and orientation of faults (Figure 4.1). But at 350 km north of the
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Figure 4.5: Fraction of time each patch is ‘on’ during the inversion. This indicates that slip is
required from the surface to around 10 km. Many other patches are ‘off’ for the entire inversion,
indicating that slip there is not necessary to fit the data. Patches near the surface that have no
slip are also ‘on’, but the inversion is able to resolve these patches as having zero slip, as the
data is at the surface.
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Figure 4.6: InSAR and near-field GNSS results for, from top, ALOS-2 ascending left-looking,
ALOS-2 descending left-looking, ALOS-2 ascending right-looking, ALOS-2 descending right-
looking, Sentinel-1 ascending. The left hand column shows the unwrapped interferograms,
the middle column contains simulated interferograms for the MAP model including solved-for
InSAR offset and right-hand column displays residuals between the two. Positive is movement
towards the satellite (e.g. uplift). The trace of all candidate fault patches is shown in red.
GNSS vectors are shown in black, with 95% confidence intervals. Note that the residual GNSS
vectors are too small to be easily seen, see Figure 4.7.
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Figure 4.7: GNSS displacements from 6/10/16 to 22/10/16 for the 2016 Central Tottori
earthquake, which occurred on the 21/10/16. Black arrows show the observed displacements
and green arrows show the fit of the MAP model to the data. The fault trace is shown in red.
Ellipses represent the 95% confidence intervals on the data.
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Nankai trough, the San-in Shear Zone (Nishimura and Takada, 2017) (within the right-
lateral Northern Chugoku shear zone (Gutscher and Lallemand , 1999)) in which these
earthquakes occurred is less developed, without visible surface expressions of active
faulting. But there have been several large earthquakes within this zone (Wesnousky
et al., 1982), including, in the last century, a M 7.0 in 1943, a M 6.7 in 1943 and a Mw

6.7 in 2000. This region has been geodetically identified as a right-lateral shear zone,
but without a main fault along the axis of deformation, and with many conjugate Riedel
shears orientated NW-SE left-lateral strike-slip faults instead (Nishimura and Takada,
2017), as observed in the 2016 earthquake and the 2000 western Tottori earthquake.

The 2000 and 2016 earthquakes occurred within approximately 30 km of the volcano
Mount Daisen (Figure 4.1). In this area Zhao et al. (2018) observe significant crustal
heterogeneity using seismic tomography, with a low velocity anomaly, that they suggest
is linked to fluid and arc magma, related to Mt Daisen. Additionally, they suggest that
the subducting Philippine Sea plate is thinner under the Tottori region, leading to
higher temperatures and increased slab dehydration reactions, causing hot upwelling
in the Tottori region, which may have been the cause of the volcanic activity.

The San-in Shear zone fault zone is immature, as are the faults, which may be the
reason for the unusually spatially-extensive off-fault aftershock triggering (Ross et al.,
2018). The aftershocks reveal geometric complexity at shallow (< 8 km) depths, with
many parallel faults, which may explain why the Tottori mainshock was so dissipative
(Ross et al., 2018).

We find the earthquake to have ruptured significantly from depths ∼1.5 km beneath
the surface down to 10 km, suggesting that most of the seismogenic zone ruptured in
this event. This is in contrast to some seismological studies, which suggest significant
slip to occur only at depths of ∼10-12 km. Ross et al. (2018) find a concentrated slip
patch of ∼ 5 m slip with 93 % of the seismic moment released below 8 km, which
would leave the surface at risk from further faulting and considerable seismic hazard.
Kubo et al. (2017), however, find two distinct slipping patches of 0.6 m slip from 3 km
depth down to 12 km depth, supporting our view that most of the seismogenic zone
has ruptured. The InSAR data also encompass several days to weeks of activity after
the earthquake (up to 4 days for the four ALOS-2 scenes and 15 days for Sentinel-1),
which means there could be postseismic and aftershock signal included in our data.
All of the InSAR scenes include the 70 foreshocks in the preceding 12 hours, but the
largest foreshock, with magnitude Mw 4.2 (Ross et al., 2018), represents only 5 ×1015

Nm of moment, which is less than 1% of the moment of the Mw 6.2 event.

The area around the city of Kurayoshi has experienced many earthquakes greater
than Mw 6.2 in the past forty years (Figure 4.1), and due to the ongoing subduction
and fluids in the crust, is likely to experience large earthquakes again. Our slip results
suggest that stress has been released throughout the seismogenic zone but in a relatively
constricted area along-strike, as is particularly evident from the zero slip to the south-
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Figure 4.8: Histograms of sampled slip for every fault patch. Every histogram is plotted on
the same scale, shown on the bottom left figure, and the histograms are plotted such that each
histogram correlates with the patch’s position on the fault plane. The patches that are ‘on’ for
the majority of the inversion have smoother, well-filled out histograms, suggesting this inversion
has converged. Those that are only on for a small percentage of the time (see Figure 4.5, e.g.
the bottom two rows) have fewer samples and are therefore less smooth.

east of the main slipping area in Figure 4.4. This suggests the fault could host another
earthquake in the near future. But we note that this modeling is a simplification,
as we assume all the slip has occurred on our one modeled fault plane, whereas the
aftershocks have shown there to be many sub-parallel fault structures at shallow depths
(Ross et al., 2018).

4.6.2 Convergence

Due to the quantised nature of turning patches ‘on’ and ’off’, the histograms of slip on
each patch are not all as smooth as we would usually expect to determine convergence.
Patches that are off for most iterations are sampled less, leading to rougher histograms
(e.g., see bottom f rows of Figure 4.8). Therefore we judge convergence based on the
histograms for patches that were on for the majority of the inversion only.
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4.6.3 Expansion of work

In this work we have used rectangular patches and have only permitted patches to turn
on in pre-determined positions. However the inversion scheme is completely flexible;
Dettmer et al. (2014), for example, used Voronoi cells in a seismological slip inversion.
This approach could be incorporated into our inversion scheme, to determine the size
of the patches based on resolution during the inversion, as has been done previously in
advance of the inversion (Atzori and Antonioli , 2011, Barnhart and Lohman, 2010).

4.7 Conclusions

In this study we present a new method for solving for the size of a slipping area within a
von Karman regularised inversion. We suggest that von Karman regularisation should
be the default for slip inversions, since it is captures the self-similar nature of slip,
leading to tighter constraints on slip location. Solving for the size of the slipping
area during the inversion removes any bias due to incorrectly choosing the fault length
and width in advance. Application to the 2016 Central Tottori earthquake shows the
earthquake ruptured the entire seismogenic zone, in contrast to some seismological
studies. This implies that an earthquake rupturing the up-dip part of the fault is
unlikely in the near future, though the fault could host another along-strike.
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Chapter 5

Discussion and Conclusions

5.1 Summary of key findings

My aim in this thesis was to investigate the fractal nature of slip and to incorporate it
into earthquake slip models. Here I will summarise my main findings and its importance
for the wider scientific community.

5.1.1 Fractal fault roughness

In Chapter 2 I investigated the fault roughness properties of the Campo Felice fault
in the Italian Apennines, particularly the along-strike change in roughness. My results
show that Campo Felice fault displays fractal properties over at least six orders of
magnitude perpendicular to slip and at least three orders of magnitude in the slip
parallel direction.

I found that the Hurst parameters, which define the fractal nature of the fault
surface, vary considerably along the length of the Campo Felice fault, with no evident
trend. Whereas previous work has found surprisingly consistent Hurst parameters
across a range of faults, H⊥ ≈ 0.8 and H‖ ≈ 0.6, I find a much larger variation along
the Campo Felice fault. This is consistent with field observations, where some fault
surfaces are remarkably planar and lacking any obvious grooves or corrugations (i.e.
long wavelength topography) whereas some fault surfaces are obviously very curved.
This suggests that when incorporating fractal properties into earthquake slip inversions,
the Hurst parameters cannot be simply assumed to be H⊥ ≈ 0.8 and H‖ ≈ 0.6, and
that different faults may display different fractal properties, which must be properly
considered.

We find that the power spectra are vertically offset from each other between the
three different scales at which we observed - the whole fault, meter-sized patches and
centimeter samples. We believe this is due to the necessary bias in selecting sites to
scan. Whereas the fault naturally has cracks and jumps, when selecting hand samples
it’s necessary to select areas of the fault without these features.
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5.1.2 Incorporating fractal properties into earthquake slip inversions

In light of many strands of my work in Chapter 2 and other strands of evidence that
suggest fault slip should be fractal, in Chapter 3 I incorporated fractal properties into
earthquake slip inversions through the use of the von Karman autocorrelation function.
The von Karman function is partly controlled by the Hurst parameter that controls the
long-scale order of a system. It is akin to the fractal dimension and controls the decay
of the autocorrelation as a function of distance, thus incorporating fractal features.

Through the development of the MATLAB code slipBERI I introduced this au-
tocorrelation as a prior assumption. In the Bayesian inversion this means that how
probable a slip solution is depends upon both how well a solution fits the data and
how well if fits the von Karman correlation. In other words, the posterior probability
is proportional to the likelihood multiplied by the prior probability.

Through synthetic tests I found that a von Karman regularised slip inversion is
able to adequately resolve an input slip that is consistent with the von Karman au-
tocorrelation; this is as to be expected. These tests also revealed that a von Karman
regularised solution is able to resolve slip solutions as well as, if not better, than an
unsmoothed inversion or Laplacian smoothing for slip inputs that are either ‘rough’ or
consistent with Laplacian smoothing. This presents an important result, as whilst I
argue the benefit of von Karman regularised slip based upon observable evidence, these
tests show that my new method outperforms previously used methods, for slip that is
both fractal and otherwise. I also found that since every discrete fault patch has a cor-
relation with every other patch, the regularisation provides a much tighter confidence
intervals on the magnitude of slip. This tighter constraint can help in the estimation of
seismic hazard, as having better constraints of where slip and therefore stress release
has and hasn’t occurred helps forecast which areas of a fault may be susceptible to
future rupture.

During development of this method I found that there was a noticeable degree of
smearing, particularly on fault patches at depth. I attributed this to the von Karman
constraint making it favourable to apply slip to patches at depth: whilst this makes
little difference to the likelihood, the prior probability will increase due to better fitting
of the von Karman correlation. Additionally, patches that have zero slip do not follow
the von Karman correlation. If a fault were chosen to be too large, then ideally a
solution would put zero slip around all the patches that did not slip. However this
does not satisfy the von Karman correlation, as patches at a range of distances would
display 100% correlation. Because of this, and their correlation with patches of the
fault that slipped a large amount, the inversion will tend to apply slip to satisfy the
von Karman correlation, where it is almost in the model null space.

In section 3.6.5, I tested applying a moment regularisation to the inversion to see
if this solved the solution, but smearing still occurred. Applying a constraint to a
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geodetic inversion using the seismically-derived moment introduces its own issues and
biases, as there are well documented and systematic differences between them (Weston
et al., 2011).

So to solve this problem, in Chapter 4 I adapted my method to solve for the size of
the slipping area during the inversion. This way, the von Karman correlation is only
applied to patches that are ‘on’ and patches that are ‘off’ can have zero slip without this
affecting any other patches. In synthetic tests I found that this method can adequately
resolve an area of slip embedded in a larger, unslipping fault. Application to the
2016 Central Tottori, Japan, earthquake found that this does change the slip solution.
Whereas a standard von Karman regularisation found a patch of approximately 1.3
m slip at a depth of approximately 5 km with evident smearing, a trans-dimensional
solution was able to put zero slip on the large majority of our modelled fault plane,
with an area of 1.8 m slip extending from 1.5 km depth down to 10 km depth (Figure
4.4. This area of slip was elongated in the down-dip direction compared to the over-
smoothed result, and also fitted the data better (Figure 4.6 and 4.7 compared to Figure
C.3 and Figure C.4). This solution was also rougher in appearance, as there are no
patches with zero slip incorporated into the von Karman correlation that require nearby
patches to have low levels of slip, thus introducing smoothing.

This improved trans-dimensional method that I have developed represents another
step towards fully objective slip inversions.

5.2 Link between fault roughness and fault structure

I found a lot of variability in Hurst parameters along the length of the Campo Felice
fault, which may be controlled by structure. Campo Felice has a prominent bend in
the center, and the location of my southeastern scanning site has been suggested to be
a left-stepping relay zone as this fault grew (Wilkinson et al., 2015). The change in
Hurst parameters along-strike could be reflecting different slip history along the fault.
Slip along a fault has been observed to be highly variable (Milliner et al., 2015) and
the changes in Hurst parameters over only a few hundred meters may be recording this
variation in slip. Alternatively, it could be that, due to structural controls, different
areas of the fault have not all failed in the same earthquakes, due to rupture being
arrested or stopped at the fault bend. Different areas of the fault may also experience
different conditions in the same earthquake. Structurally controlled, long-lasting as-
perities mean that different stress conditions may be felt along the length of the fault,
if that area were located in the center or at the edge of an asperity. If this were to
be the case, then potentially measuring the change in Hurst parameters along a fault
could constrain the size of asperities. It is most likely the case that the variation in
Hurst parameters is a combination of all three factors.

These findings have implications for earthquake slip inversions. When I developed



118 Chapter 5: Discussion and Conclusions

the method in Chapters 3 and 4 I used a consistent Hurst parameter values in the slip
parallel and slip perpendicular direction, however the work in Chapter 2 has shown that
the Hurst parameters are variable along the fault, even within the size of a discretised
fault patch. This implies that using one Hurst parameter for the entire fault may be a
simplification.

5.3 Implications for seismic hazard

The roughness of a fault surface is linked to the size of earthquakes that it can accom-
modate (Zielke et al., 2017). We find, from the pre-factors, that Campo Felice displays
lower topography compared to other faults, i.e. that its fault surface topography de-
viates less from a planar surface. Despite its low Hurst parameters suggesting that its
surface is bumpy and has not matured, this is in keeping with field observations that
many of the sites we scanned are remarkably planar. This smoothness could imply that
it is capable of generating larger earthquakes than a rougher fault in similar conditions
(Zielke et al., 2017).

5.4 Implications from slip solutions incorporating fractal

smoothing

In both Chapter 3 and Chapter 4 I have found that my new von Karman inversion
produced different results to other inversion methods.

In Chapter 3 I found that there were noticeable differences between the solution in
which I solved for slip incorporating Laplacian smoothing compared to von Karman
regularisation. For both solutions I solved for a hyperparameter controlling the degree
of smoothing. I found that the von Karman solution put slip right at the surface,
whereas the Laplacian solution found peak slip just below the surface at 2-3 km depth.
The Laplacian result would corroborate the shallow-slip-deficit theory (Fialko et al.,
2005); that there is a lack of slip at shallow depths during earthquakes. However the von
Karman solution suggests that there is no shallow-slip-deficit, and that any appearance
of one may be an artifact of the inversion.

In Chapter 4 I compared a von Karman solution applied to the whole fault to a
trans-dimensional solution, in which I solved for the number of slip patches. I found
that the trans-dimensional solution put slip much deeper, suggesting that most of
the seismogenic layer ruptured in this earthquake. This has important implications
for seismic hazard, as if the entire seismogenic layer did not rupture it leaves certain
depths susceptible to future rupture. Both of these are in contrast to the seismic study
by (Ross et al., 2018) that suggested most of the slip occurred at greater then 8 km
depth, leaving the surface susceptible to future failure.
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5.5 Limitations

One limitation of the method presented in this thesis is that the von Karman regu-
larisation exerts control over the magnitude of slip on patches, as a function of scaled
distance to its neighbours, but it does not regularise the rake. This has resulted in some
oscillatory rake in the slip distributions, for example Figure 3.7. Patches along-strike
from each other show alternating rake or drastically different rake, suggesting that this
is not capturing true varying rake along the fault, but instead it is an unstable feature
of the inversion. In reality the true rake direction should presumably be an average
of the oscillating rake directions. The von Karman regularisation cannot be applied
separately to dip-slip motion and strike-slip motion as the inverse of the von Karman
correlation matrices is singular if set-up in this way. This implies that some other
regularisation of rake should be explored. Here I have used a boxcar distribution for
rake between a given range, but a normally distributed prior centered upon the main
slip direction may help to regularise rake and minimise oscillations. Another possible
suggestion is to apply von Karman regularisation to rake in the same way as we have
for slip, though it it not clear if rake should be expected to show a fractal distribution,
and so I have not incorporated it here.

Additionally in this thesis I have discretised the fault into equally-sized rectangular
patches. But patches increasing in size with depth would better reflect the resolving
capability of the model. The von Karman correlation allows such an implementation,
since the correlation only depends upon the distance between patches and thus is not
affected by the size of the patches.

5.6 Future work

5.6.1 Expanding the Italian Appenines fault roughness dataset

In this thesis I have presented an in-depth study of the Campo Felice fault, but there
are many faults in the Italian Appenines with well-preserved bedrock scarps, upon
which this analysis could be performed.

In previous work many faults have previously been analysed but from a wide range
of places and locations, whereas the Apennines present a unique opportunity for in-
vestigating a large number of faults (at least 25) all within the same fault system and
under the same tectonic forces, in different lithologies. This presents a unique oppor-
tunity to investigate how fractal properties vary across a mountain-range, which can
be linked to long-term slip histories and maturities of the faults and how the extension
has been distributed between faults.

Additionally, there have been a series of recent earthquakes in Italy (Figure 2.2) and
these have exposed fresh fault scarps. These recently exhumed fault surfaces presents
an opportunity to further investigate how exposure time affects roughness.
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5.6.2 Further improvements to the slip inversion method

There are several improvements that could be made to the code slipBERI. Here I shall
go through each one in detail.

Solving for dip

Because during this thesis I have largely been concerned with strike-slip faults that I
have assumed to be vertical, this was not of key importance. I did incorporate solv-
ing for dip within the algorithm, but since this requires re-calculation of the Green’s
function for every iteration for which the dip is changed, this is very computationally
expensive. Since solving for dip was not essential I did not spend time to optimise this
solution, but this could be done, particularly if combining with databases of Green’s
functions such as Pyrocko (Heimann et al., 2017). This would be an important adap-
tation to make in a situation where dip is poorly constrained.

Solving for strike

Due to the combination of InSAR, aftershocks and surface rupture in this thesis I was
able to constrain the fault traces used to an acceptable degree. However, usually the
location is not known exactly and in order for an inversion to be objective this should
be solved for within the inversion.

Solving for Hurst parameters

The Hurst parameter controls the decay of the von Karman autocorrelation function,
and in this thesis I used the averaged values from Mai and Beroza (2002)’s meta-
analysis. But the results in Chapter 2 have shown that the Hurst parameter is not
necessarily consistent across all faults, or indeed along the length of the same fault.
This suggests the Hurst parameter should be solved for within the inversion, and that
different Hurst parameters may be needed in different areas, perhaps controlled by fault
structure.

But for modelling purposes, this small scale variation may not be significant com-
pared to the scale of fault discretisation, and the resolvable scale from the data. Instead
larger scale values, such as the measurements of H from several hundred meters along
the Campo Felice fault in Chapter 2, may give better estimates of Hurst parameters
to include in modelling. Potentially different areas of the fault could be modelled to
have different Hurst parameters, but over a scale of kilometers, which is larger than
the scale measured in Chapter 2.
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Solving for correlation lengths

In both Chapter 3 and 4 I used fixed values of the correlation lengths, aas and add, as
determined using fault length and fault width using the equations from Mai and Beroza
(2002). But, as discussed in Mai and Beroza (2002), these parameters have their own
distributions and uncertainties. These could be solved for within the inversion, drawing
directly from their prior distributions as determined by Mai and Beroza (2002).

Solving for patch size

A Bayesian inversion is a flexible method, which means that the size of the discrete
fault patches could be solved for during this inversion. In many papers the size of the
fault patches is increased with depth, to recognise the reduced resolution e.g. Minson
et al. (2013), or is determined using the data resolution (Atzori and Antonioli , 2011,
Barnhart and Lohman, 2010). Several trans-dimensional methods use self-adapting
grids (Dettmer et al., 2014) that change throughout the inversion, so this could be
incorporated to limit the effect of choosing patch size in advance of the inversion.

Increasing usage

In order to increase usage and accessibility of the code it could also be integrated it
with already established and widely-used software such as GBIS (Bagnardi and Hooper ,
2018) or re-write it in python.

Benefit of further improvements

Whilst these further improvements represent an ambitious level of software-development,
the benefit of their implementation would be to have a significantly more objective
method of solving for fault slip, which would hopefully not require the manual tuning
that is somewhat essential in Bayesian inversions. In the event of an earthquake we
would be able to set an inversion running with fewer biases and allow the inversion
to solve for all the required parameters. Thus any conclusions drawn from the final
solution would hopefully stand the test of time, with assumptions fully justified and
stated.

5.6.3 Assessing fault maturity using slipBERI

The smoothness of a fault affects earthquake nucleation, propagation and termination.
Largest slips systematically occur on the most mature half of faults, that are smoother
with lower fracture energy (Perrin et al., 2016). This is in keeping with the finding
that faults smooth with increasing slip (Sagy et al., 2007, Brodsky et al., 2011), and
my results from Chapter 2 that showed Campo Felice, a young fault, shows low Hurst
parameters.
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A knowledge of the maturity of a fault could be used to set priors of Hurst parame-
ters and correlation lengths for an earthquake that occurs on that fault. Alternatively,
we could solve for correlation lengths and Hurst parameters using slipBERI, thereby
giving an estimate of the smoothness, assuming that the smoothness of a slip distribu-
tion relates to the smoothness of a fault, as discussed in Chapter 2 and Candela et al.
(2011).

Structural maturity, the degree of advancement in the evolution of a fault’s struc-
tural properties (Perrin et al., 2016), is affected by both fault slip rate but also the
rate of healing. Consequently the smoothness of a slip distribution must be based upon
both the smoothness of the fault surface and the degree of healing. The age of a fault
can be gained from geological evidence, but the healing is difficult to directly compare.
By solving for Hurst parameters for earthquakes that occur on faults of known age and
known slip rate, we could quantify how the structural maturity of a fault is a trade-off
between age and healing.

5.7 Concluding Remarks

In this thesis I have investigated one strand of evidence to suggest that slip should
be fractal, as well as presenting a new method to incorporate these fractal properties
into earthquake slip inversions. The analysis of fault surfaces in such a detailed way
has only been done in the past 12 years (Renard et al., 2006, Sagy et al., 2007), and
so investigations like these may yet show many interesting features of fault surfaces.
With fault roughness being incorporated into a whole host of earthquake models, we
can further target fault roughness investigations with an aim to improve models.

I believe the method of incorporating fractal properties into earthquake slip inver-
sions represents the future of earthquake slip inversions, both in the incorporation of
fractal slip and in its Bayesian implementation. By introducing another form of regular-
isation I hope to make the scientific community question their choice of regularisation,
instead of simply using Laplacian smoothing because it is the norm, especially with the
rise in observations that fault roughness and fault slip shows fractal properties. By us-
ing a Bayesian inversion that solves for the level of smoothing within it I hope that the
scientific community will become aware of the bias they may be adding when arbitrarily
choosing the level of smoothing. This lack of objectivity means that our slip inversions
gradually merge into an accepted idea of what slip solutions should look like. I hope
that by incorporating a regularisation based on observed features of fault slip and by
solving for smoothing, we can question these solutions and ensure that they are backed
up by both the data and observed and quantifiable features of fault slip. Bayesian
methods, whilst computationally expensive and undeniably painful, present a wealth
of knowledge that I think will be a real benefit to our understanding of earthquakes in
the years to come.
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Site UTM x UTM y
A 370863 4677147
B 370930 4677029
C 370993 4676979
D 371006 4676969
E 371048 4676921
F 371175 4676846
G 371198 4676827
H 371536 4676305
I 371661 4676246
J 371692 4676232
K 371735 4676217
L 371746 4676206
M 371753 4676204
N 371823 4676196

Table A.1: Locations of the scanner sites in this study. For approximate location on the fault
see Chapter 2 Figure 2.5. UTM Zone 33 T in WGS 84.
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Figure A.1: Field photo and gridded dataset upon which analysis was performed for sites A
and B. Boxes show same feature in photograph and scan. Yellow field notebook for scale.
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Figure A.2: Field photo and gridded dataset upon which analysis was performed for sites C
and D. Boxes show same feature in photograph and scan. Yellow field notebook (bottom) or
author (top) for scale.
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Figure A.3: Field photo and gridded dataset upon which analysis was performed for sites E
and F. Boxes show same feature in photograph and scan. Yellow field notebook for scale.
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Figure A.4: Field photo and gridded dataset upon which analysis was performed for sites G
and H. Boxes show same feature in photograph and scan. Yellow field notebook for scale.
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Figure A.5: Field photo and gridded dataset upon which analysis was performed for sites I
and J. Boxes show same feature in photograph and scan. Yellow field notebook for scale.
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Figure A.6: Field photo and gridded dataset upon which analysis was performed for sites K
and L. Boxes show same feature in photograph and scan. Yellow field notebook for scale.
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Figure A.7: Field photo and gridded dataset upon which analysis was performed for sites M
and N. Boxes show same feature in photograph and scan. Yellow field notebook for scale.
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Appendix for Chapter 3

Appendix for Chapter 3. This appears as the Supplementary materials in Amey et al.
(2018).
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Figure B.1: We perform a ‘dummy test’ to illustrate that changing step sizes does correctly
sample the prior, for one model parameter. We use a Gaussian prior (mean of 10, standard
deviation of 3) and a saw-function likelihood to generate the posterior as shown in the top
figure. We use a boxcar of ±20 as an inefficiently high starting step-size distribution and
compare not changing the step size to an inversion in which the step size is changed. For the
same number of iterations (15,0000), the inversion in which step size is permitted to change
decreases its step size to ∼2 and converges (bottom right), whereas more iterations are needed
to converge for the inversion in which step sizes does not change (bottom left). We note that
for a simple test like this, unless the step size for the constant step size inversion is chosen to
be unreasonably high, the inversion with changing step sizes will converge after approximately
the same number of iterations as the inversion with fixed step size. The sensitivity test is
also computationally expensive and slows down the inversion. So for very simple situations it
may not improve efficiency. But for inversions with several hundred model parameters we find
changing step sizes can dramatically reduce the number of iterations needed for convergence,
or may be necessary to ensure an MCMC chain does not get stuck.
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Figure B.2: Confidence intervals (red), true values (green cross) and patch means (black
dot) for the three regularization types for uniform surface input slip. Confidence intervals are
significantly smaller for von Karman regularization than the other two types.
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Figure B.3: Confidence intervals (red), true values (green cross) and patch means (black dot)
for the three regularization types for Laplacian input slip. Confidence intervals are significantly
smaller for von Karman regularization than the other two types.
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Figure B.4: Data, model and residuals for synthetic test performed with simple uniform slip
input data and an unsmoothed inversion. We only show residuals nearest to the fault where
they are largest.

Figure B.5: Data, model and residuals for synthetic test performed with simple uniform slip
input data and a Laplacian smoothed inversion. We only show residuals nearest to the fault
where they are largest.
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Figure B.6: Data, model and residuals for synthetic test performed with simple uniform slip
input data and a von Karman regularized inversion. We only show residuals nearest to the
fault where they are largest.

Figure B.7: Data, model and residuals for synthetic test performed with Laplacian slip input
data and an unsmoothed regularized inversion. We only show residuals nearest to the fault
where they are largest.
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Figure B.8: Data, model and residuals for synthetic test performed with Laplacian slip input
data and a Laplacian smoothed inversion. We only show residuals nearest to the fault where
they are largest.

Figure B.9: Data, model and residuals for synthetic test performed with Laplacian slip input
data and a von Karman regularized inversion. We only show residuals nearest to the fault
where they are largest.
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Figure B.10: Data, model and residuals for synthetic test performed with von Karman slip
input data and an unsmoothed inversion. We only show residuals nearest to the fault where
they are largest.

Figure B.11: Data, model and residuals for synthetic test performed with von Karman slip
input data and a Laplacian smoothed inversion. We only show residuals nearest to the fault
where they are largest.
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Figure B.12: Data, model and residuals for synthetic test performed with von Karman slip
input data and von Karman regularised inversion. We only show residuals nearest to the fault
where they are largest.
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Figure B.13: Three loss functions of the three inversion types (unsmoothed, Laplacian
smoothed and von Karman regularized) for three input slip distributions discussed in Fig-
ure 3 of the main text. We briefly explain the use of loss functions to compare slip mod-
els here, but see Zhang et al. (2015) for full details. For each input slip distribution, the
x-axis for the plots corresponding to the same loss metric are identical, and for each reg-
ularization style the y-axis is the same for the three different metrics. The square error
loss function is given by: g[Z(si), Ẑp(si)] = [Z(si) − Ẑp(si)]2 where Z(si) is the model slip
on slip patch i and Ẑp(si) is the true slip on slip patch i. The absolute error loss func-
tion is given by g[Z(si), Ẑp(si)] = |Z(si) − Ẑp(si). The correlation skill function is given by
g[Z(si), Ẑp(si)] = n

(n−1)σ̂zσ̂p
[Z(si) − Z̄][Ẑp(si) − Z̄p]. Where Z̄ is the mean of the model slip

across all patches, Z̄p is the mean of the true slip across all patches, n is the total number
of slip patches, σ̂Z is the standard deviation of the model slip patches across all patches and
σ̂p is the standard deviation of the true slip across all patches. The mean (for all patches)
square error loss and mean absolute error loss give an indication of how well the inversion is
matching the magnitude of slip (lower values are better), whereas the mean correlation skill
gives an indication of how well the inversion is matching the location of slip (higher values are
better).In order to properly compare the Bayesian solutions, we take a representative sample
(every 10 saved trials) of each Bayesian solution. For each sample we compute the three mean
loss functions and compute the histograms shown in Figure S11. We consider primarily the peak
of the histogram, i.e. the modal mean loss function. This Figure shows that the modal mean
square error loss and modal mean absolute error loss function for a von Karman regularized
result is smaller than for a Laplacian or unsmoothed inversion, for all three input slip distribu-
tions, showing that the von Karman solution better matches the magnitude of the input slip.
The von Karman solution also has a higher modal mean correlation skill than the Laplacian
or unsmoothed solutions for all three input slip distributions, showing that the von Karman
better matches the areas of high slip. Therefore the von Karman method is outperforming the
Laplacian and unsmoothed inversions in all criteria for uniform slip, Laplacian slip and von
Karman slip, though we note that in the case of Laplacian input slip the von Karman method
only outperforms the Laplacian by a marginal amount.
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Figure B.14: Slip solutions obtained from von Karman and Laplacian regularized inversions
using InSAR synthetic data alone, GPS synthetic data alone and both InSAR- and GPS syn-
thetic data for von Karman input slip. The von Karman regularized solutions (bottom row)
fit the input slip model better than the Laplacian smoothed solutions in all cases, as indicated
by the lower RMS value, where RMS is the root mean square misfit to the input model. For
the GPS-only dataset both solutions are clearly oversmoothed. We perform further comparison
between the solutions in Appendix B Figure B.15.
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Figure B.15: Comparison of Laplacian and von Karman MAP solutions, using InSAR+GPS,
InSAR only and GPS only data for von Karman input slip. We use the same metrics and the
same method discussed above in Figure B.15, i.e. calculating the square error loss, absolute
error loss and correlation skill for a representative sample of all the saved trials for the von
Karman and Laplacian solution. As is evident from the histograms, the mode value for square
error loss and absolute error loss is smaller for von Karman than the Laplacian for all three
data sets (InSAR and GPS, InSAR only and GPS only). This means that the von Karman is
matching the magnitude of slip better in all these cases; the error is lower. The mode value of
correlation skill is higher for the von Karman than the Laplacian for all three datasets, meaning
that the von Karman captures the location of slip better than the Laplacian regardless of the
datatype.
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Figure B.16: Semivariogram for an undeforming region of the Napa Valley interferogram. We
have indicated the nugget, which is the semivariance at zero lag, the sill, which is the maximum
semivariance and the range, which is the distance at which the semivariance reaches 95% of the
maximum.
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Laplacian

von Karman

Figure B.17: Top shows fit to data for the Laplacian model shown in Figure 3.9. The residuals
are larger than for the von Karman solution shown in Figure 3.8, so below we have replotted the
von Karman fit to data on the same scalebar as the Laplacian to allow for direct comparison.
The Laplacian model has larger residuals in the north-east of the northern fault and also on
the eastern side of the Southern fault than the von Karman solution. Both fit the GPS almost
equally as well.
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Figure B.18: Correlation coefficients between each model parameter, for their full distribu-
tions. Red indicates positive correlation, blue indicates negative correlation. For slip, the signal
is largely dominated by the von Karman regularization ensuring patches located close together
have similar magnitude slip. In the following figures we explore some of the features identified
by this matrix.
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Figure B.19: 2D PDFs to illustrate strong-positive correlation between the magnitude of slip
for the five patches with the largest magnitude of slip, indicated by blue squares on fault. This
correlation is largely due to the von Karman regularization, since they are all within correlation
distances of each other.
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Figure B.20: 2D PDFs indicating that there is no correlation between the magnitude of slip of
the patches on the south-eastern fault with maximum slip and the patches on the north-western
fault with maximum slip. The histograms for patches from different faults are indicated by the
black box: there is observed correlation between slip of patches on the same fault, since they
are within correlation length distance of each other.



150 Appendix B

Mode

UTM y

D
ep

th
 (

k
m

)

UTM x

145

144157

158 67

6679

80

Figure B.21: 2D PDFs of slip magnitude for slip patches along-strike of each other on the
south-western fault, indicating that there is no correlation between them.
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Figure B.22: 2D PDFs exploring whether there is correlation between slip magnitude on
patches with increasing depth, on the north-eastern fault. We find that at the largest distance
there is no correlation, and that closer patches are correlated, which we deduce to be due to
regularization.
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Figure B.23: 2D PDFs of rake with depth on the north-eastern fault. These indicate that
rake is well constrained nearer the surface, but beyond 6km depth it is not constrained at all.
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Figure B.24: 2D PDFs of rake with depth on the north-eastern fault. We observe that slip
patches next to each other display either no correlation or negative correlation and that slip
patches two-along from each other show either no correlation of positive correlation. This is
why we observe some oscillatory rake along the fault.
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Figure B.25: 2D PDFs of rake along-strike on the south-western fault. We observe that slip
patches next to each other display either no correlation or negative correlation and that slip
patches two-along from each other show either no correlation of positive correlation. This is
why we observe some oscillatory rake along the fault.
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Figure B.26: Trade-offs between slip on different faults at the point at which they overlap.
These histograms show that slip is anti-correlated: where slip tends to be high on the south-
western fault it tends to be low on the north-eastern fault.
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Figure C.3: Data, model and residuals for the MAP solution of an inversion applied to the
whole fault (solution shown in Chapter 4 Figure 4.4).
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Figure C.4: GNSS displacements from 6/10/16 to 22/10/16 for the 2016 Central Tottori
earthquake, which occurred on the 21/10/16. Black arrows show the observed displacements
and blue arrows show the fit of the MAP model for the inversion applied to all patches (non
trans-dimensional). Solution shown in Chapter 4 Figure 4.4.
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