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Abstract 

During the spray drying of detergent formulations, powder commonly accumulates on 

the inner walls of the spray drying tower. Under certain conditions, when these 

accumulations are large enough, self-heating can occur, whereby exothermic reactions 

within the accumulations cause an increase in the powder temperature within these 

layers. This can lead to unwanted charring and in severe cases to thermal runaway.  

This study aims to evaluate the methods for characterising the self-heating behaviour of 

these detergent powders. Firstly, two basket heating methods, namely the steady-state 

approach and cross-point temperature (CPT) method, were used to estimate the zero-

order kinetics of the self-heating reaction of a typical detergent formulation. The 

resulting kinetics of these methods were not in agreement, with this being attributed to 

the CPT method’s sensitivity to errors. 

The kinetics estimated from these methods were used in a developed 2D-axismmetric 

transient model of heat and mass transfer within an oven heated basket of detergent 

powder. This was used to make temperature-time profile and critical ambient 

temperature (temperature above which thermal runaway occurs) predictions, and to 

simulate aspects of the basket heating experiments. 

A novel approach was developed using a combination of the basket experiments and 

the numerical model. This “parameter estimation approach” uses maximum likelihood 

estimations to estimate the required parameters. The model was fitted to 

experimentally measured temperature data, allowing the values of the powder thermal 

conductivity, specific heat capacity, and self-heating reaction kinetics could be 

estimated. Determining the specific heat capacity prior to fitting greatly improved the 

results. This approach was found to be considerably faster than the existing oven based 

methods (5 times faster than steady-state approach), determine more parameters, and 

improve greatly on the error of the estimated parameters (over 20 times more accurate 

than CPT method). 

An approach was presented showing how the findings of this research are applied in 

predicting self-heating in spray dryers for different tower temperatures, heat transfer 

coefficients, and build-up thicknesses. 
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1. Introduction 

1.1. Self-Heating in Spray Dried Detergents 

The focus of this thesis is on the problem of self-heating that is observed to occur in the 

spray drying of laundry detergent powders. Laundry detergents are used across the 

globe to help with the cleaning of clothing and other fabrics. Detergents come in an 

array of forms, but detergent powders are still commonly used, particularly in 

developing countries where the majority of consumers still hand wash their laundry. 

Detergent powders are typically manufactured in two ways: agglomeration and spray 

drying. Agglomeration consists of mixing smaller particles with a liquid binder in order 

to produce larger granules. Spray drying on the other hand is a process by which a slurry 

of ingredients is atomised into small droplets, which when introduced into hot air are 

dried and form a powder product.  

In the spray drying of these detergent powders, it is common for layers of the newly 

formed powder product to deposit on the inner walls of the spray drying tower (Francia, 

et al., 2015) (Hassall, 2011). This is not a problem exclusive to detergent powders and 

has also been shown to occur in the spray drying of milk powders (Beever, 1985) (Chen, 

et al., 1993). At the high temperatures at which these towers operate these powder 

deposits have the propensity to “self-heat”. Self-heating is the process by which some 

materials can increase in temperature without the application of an external energy 

source. Exothermic reactions within the material causes an increase in temperature. The 

stability of these systems is a balance between the internal heat generation and heat 

loss from the boundaries. If the rate of heat generation is lower than the rate of heat 

loss from the boundaries, these systems will reach a steady elevated temperature and 

remain stable. However, if the rate of heat generation exceeds the rate of heat loss from 

the boundaries, then thermal runaway will occur, whereby a runaway reaction causes a 

substantial rise in temperature. Many materials exhibit self-heating behaviour including 

milk powder (Chong, et al., 1996), coal (Sujanti, et al., 1999), and biomass (Caballos, et 

al., 2015). Self-heating is not only a problem in spray drying, but is also a problem in the 

storage and transport of these materials. 
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Consumers have come to expect certain requirements from their laundry detergent. The 

obvious requirements are that the detergent performs well in cleaning their laundry, 

while also protecting it from damage. In addition to this, the consumer expects the 

detergent itself to look and smell clean and appealing. The problem with self-heating is 

not only the heat generated in the process, but the effect is has on the product. 

Significant self-heating in the powder deposits on the inner spray dryer walls can cause 

the powder to char. This produces charred, or burnt, particles which are at risk of falling 

from the walls and getting collected along with the finished product. Over 20% of the 

finished product comes from the wall (Francia, et al., 2015) highlighting why self-heating 

in these build-ups is an issue. This compromises the quality of the finished product, and 

leaves the consumer with a product that does not meet their requirements of looking 

clean and appealing. 

Limiting the threat of self-heating and charring requires an understanding of the 

mathematics behind these reactions. The fundamentals of self-heating can be traced 

back to Frank-Kamenetskii and his Theory of Thermal Explosions (Frank-Kamenetskii, 

1969). Frank-Kamenetskii explored the mathematics governing self-heating in an 

idealised system with a zero-order reaction self-heating reaction. In doing so he derived 

a dimensionless parameter, 𝛿, often referred to as the Frank-Kamenetskii parameter. 

This parameter is a ratio of the heat generated to the heat dissipated and encompasses 

all the quantities required to describe the problems associated with self-heating, 

inflammation, and ignition. This parameter is a function of the geometry of the problem, 

the reaction kinetics, and the boundary conditions, such that if these are known, then 

predictions of self-heating and thermal runaway can easily be made. Much of the 

subsequent research was based around this important parameter. 

Different approaches have previously been applied to address the problem of self-

heating. Experimental methods have been applied to measure the self-heating reaction 

kinetics of similar materials. The long established method is the steady-state method 

based on Frank-Kamenetskii’s theory of thermal explosions (Frank-Kamenetskii, 1969). 

This is a basket heating method which was originally used to estimate self-heating 

kinetics for activated carbons (Bowes & Cameron, 1971). More recent work makes use 

of the cross-point temperature method, first proposed by Chong et al. (1996), and 

originally used to estimate the self-heating kinetics of skimmed and whole milk powders. 
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These two methods are based around oven heated baskets, and have been effectively 

used to make predictions of self-heating and thermal runaway in a range of materials.  

 

1.2. Objective of Thesis 

The overall objective of this thesis is to understand, and address the problem of self-

heating in spray drying and spray dryer wall build-up. In doing this, the research seeks 

to determine the best means of measuring the self-heating reaction kinetics of a typical 

detergent powder, and seeks to apply these kinetics in order to predict self-heating and 

charring in oven heated powder baskets and spray dryer wall deposits. This is broken 

down further into the following objectives: 

1. Review the literature that addresses the fundamentals of self-heating and 

thermal runaway. 

2. Evaluate the self-heating behaviour that occurs in detergent powders and the 

detrimental effects of this under different heating conditions. 

3. Apply a range of experimental techniques to measure the self-heating reaction 

kinetics of a typical detergent powder and determine the best methods for 

measuring these self-heating reaction kinetics. 

4. Develop numerical models capable of predicting self-heating and thermal 

runaway in oven heated baskets of powder and spray dryer wall build-up. 

5. Advance the overall research in this area such that the knowledge gained and 

methods develop in this investigation can be applied by industry to address the 

problem of self-heating in the spray drying of detergent powders. 

 

1.3. Structure of Thesis 

This thesis aims to meet these objectives by using a combination of experimental 

methods and numerical models to explore the self-heating behaviour of detergent 

powders. The breakdown of the thesis chapters is outlined below. 
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Chapter 2 - Literature Review 

This chapter of this thesis consists of a review of the literature relevant to the problem 

of self-heating in spray dried detergents. This chapter is broken down into five sections. 

The first section addresses the literature about self-heating and charring in the process 

of spray drying. This covers both the spray drying of detergent and the related area of 

the spray drying of milk powders, which exhibits similar self-heating. The second section 

address the mathematical fundamentals of self-heating and thermal runaway, and the 

analytical solutions that spawned from this. These analytical solutions are for the critical 

parameter 𝛿𝑐𝑟 for different geometries. The third section is a brief section reviewing a 

numerical, rather than analytical, approach for determining the critical parameter 𝛿𝑐𝑟. 

The fourth section details the experimental methods commonly used in characterising 

self-heating materials. The primary focus is on a number of oven heated basket 

methods, while DSC and TGA based methods are also explored. The final section reviews 

the numerical models frequently used to model and predict self-heating and thermal 

runaway. These model are used to make predictions in material stockpiles and to 

explore experimental phenomena in the oven heated basket methods. 

 

Chapter 3 - Evaluation of Self-Heating in Detergent Powders 

This chapter details the initial experimental evaluation of the self-heating behaviour 

observed in a typical detergent powder. Baskets of detergent powder were heated in an 

oven and the self-heating evaluated by looking at the measured temperature-time 

profiles at the basket centre and charring that occurs. Initial cross-point temperature 

method experiments were also performed. Differential Scanning Calorimetry (DSC) and 

Thermogravimetric Analysis (TGA) were also used to evaluate the self-heating 

behaviour. 

 

Chapter 4 - Numerical Model of Self-Heating Detergent Powder Systems 

This chapter details the numerical model used in this investigation. It details the variants 

of the model used depending on whether drying and/or reactant consumption is being 

modelled. This model was code validated against analytical solutions. The validity of a 
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shape factor approximation, used in some of the literature, for approximating 2D and 

3D geometries with 1D equations was tested. 

 

Chapter 5 - Assessment of Methods for Characterising Detergent Formulations 

This chapter covers a more comprehensive assessment of the self-heating behaviour, 

and explores means of characterising the reaction kinetics of the detergent powder. 

Firstly, the reaction kinetics are measured using the steady-state method. In doing this, 

the critical parameter 𝛿𝑐𝑟 was solved for numerically as a function of the boundary 

conditions and the reaction activation energy. The cross-point temperature method was 

then used, the results discussed, and model simulation of this method explored in order 

to address a number of arising issues. A method known as the DTG method was then 

used to fit nth order kinetics to thermogravimetric data. The measured kinetics of all 

these methods were compared using the numerical model outlined in Chapter 4. The 

influence of different model parameters and the use of zero and nth order reaction 

models were explored. 

 

Chapter 6 - Novel Parameter Estimation Approach for Characterising Self-Heating 

Powders 

This chapter outlines a novel parameter estimation approach for characterising the self-

heating behaviour of these detergent powders. This approach determines the specific 

heat capacity, thermal conductivity, and self-heating reaction kinetics of the powder 

though parameter estimation. The development, approximations, and procedure of this 

approach are all detailed. Also detailed are the DSC based methods used to determine 

the specific heat capacity and reaction activation energy prior to fitting. This approach 

is applied to a single formulation of detergent. The results of this approach for different 

fitting scenarios are discussed, and the results of this method compared with the oven 

heated basket methods. The advantages of this approach over the existing methods are 

also discussed. 
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Chapter 7 - Parameter Estimation Approach Workflow and Application to Other 

Detergent Formulations 

A recommended workflow for applying this approach to new formulations is detailed. 

The parameter estimation approach is then applied to three additional detergent 

powder formulations to help in validating this approach as an alternative to the existing 

characterisation methods. 

 

Chapter 8 - Modelling of Self-Heating in Spray Drying Towers 

This chapter briefly demonstrates how the experimental methods and developed 

models are to be applied to predict self-heating in spray dryer wall deposits of detergent 

powders. A 1D adaption of the model used in this investigation is applied to spray dryer 

wall build-up, and the influence of the ambient temperature, heat transfer coefficient, 

and build-up thickness explored. 

 

Chapter 9 - Conclusions and Recommended Future Work 

Chapter 9 draws conclusions from this research and recommends future work that could 

follow on from this. 
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2. Literature Review 

2.1. Introduction 

The problem of self-heating is not exclusive to the spray dryer wall build-ups, and not 

exclusive to detergent powders. In order to have a greater understanding as to the state 

of the current research, it is necessary to look beyond detergent powders and spray 

dryer build-ups, and to look at other related areas. In doing so, this literature review will 

cover self-heating in many different materials and scenarios, and means of 

characterising this behaviour and predicting it. It will also address the fundamentals of 

self-heating by looking at the analytical origins of Frank-Kamenetskii’s Theory of Thermal 

Explosions (Frank-Kamenetskii, 1969), and the more recent developments in numerical 

analysis and modelling of self-heating systems. 

This literature review explores these problems in four major sections: 

 Self-Heating in Spray Drying Operations. This section looks at some of the 

published research which explores self-heating as an issue in the spray-drying 

process, with much of the work centring on the spray drying of milk-powders. 

Also discussed are the deposition and re-entrainment rates of detergent 

powders in a counter current spray dryer. 

 Analytical Solutions to the Problem of Self-Heating. The mathematical 

fundamentals of self-heating are discussed here, including Frank-Kamenetskii’s 

Theory of Thermal Explosions (Frank-Kamenetskii, 1969) which provided the 

basis from which much of the future work on predictions of self-heating and 

thermal runaway was developed. Also discussed are analytical solutions to a 

number of simple cases, such as slabs and cylinders with differing boundary 

conditions. 

 Experimental Methods for the Characterisation of Self-Heating. This sections 

explores different methods used to measure the self-heating reaction kinetics of 

a range of materials. A number of methods are explored including some based 

around oven heated baskets of powder, DSC and TGA based isoconversional 

techniques, and a method where kinetics are fit to measured thermal 

degradation profiles. 
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 Numerical Modelling of Self-Heating Powder Systems. Finally, the use of 

numerical models in predicting self-heating are discussed. Numerical models of 

self-heating in powder baskets and stockpiles are explored. These models are 

not only used to predict self-heating and thermal runaway in the storage of these 

materials, but they have also been used to simulate the basket heating 

experiments such that issues and phenomena of these methods can be explored. 

The literature reviewed here will help to determine the best approach that can be used 

to address the problem of self-heating in detergent powders. The analytical solutions 

help to provide an understanding of the fundamentals of the self-heating, and the basis 

on which some of the experimental methods are based. Understanding the available 

methods, and the associated advantages and disadvantages of each will help in making 

informed decisions with regards which methods to use. Finally the measured kinetics 

can be used to develop a numerical model of a self-heating powder basket. This model 

can be used to explore the methods further, and having validated it, it can be adapted 

to model self-heating in spray dryer deposits, allowing predictions to be made in the 

spray drying tower. 

 

2.2. Self-Heating in Spray Drying Operations 

Self-heating and spontaneous combustion is a phenomena long observed in spray 

drying, and this problem is not exclusive to spray dried detergent powders. Beever 

(1985) and Beever and Crowhurst (1989) noted that although the spray drying of milk 

powders is not considered to be a particularly hazardous operation, charring and minor 

fires are seen to occur regularly, whilst occasionally more severe dust exposition are 

seen to occur. He noted that thirty five major accidents occurred in the French dairy 

industry between the years of 1967 and 1982, and that fourteen of these accidents 

involved fire and explosion. Dust explosions are known to occur when fine particulate 

material is dispersed in air in the presence of an ignition source. It was noted in certain 

regions of the spray drying tower, all the conditions required for a dust explosion exist 

during normal operation, other than the existence of an ignition source.  

Beever noted that self-ignition is believed to be the ignition source for most fires in milk 

powders, arising from oxidation of powder build-ups which are exposed to high 
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temperatures in the spray dryer. These reactions are known to all be exothermic with 

heat generation increasing substantially with temperature. In the case of milk powders, 

heat generation at an ambient temperature of 100°C will be 1,000 times greater than at 

20°C, and more than 100,000 time greater at 200°C, with self-heating in milk powder 

deposits increasing their temperatures to in excess of 700°C. These heated deposits 

serve as an ignition source for dust explosions in the spray dryer. 

In the spray drying of milk, as in the spray drying of detergent powders, the size of the 

deposits are key to the extent to which they will self-heat. For small deposits, all the 

heat generated by the reaction can be dissipated such that there is no risk of explosion, 

although it has been observed that discolouration of the milk powder may occur. Similar 

behaviour is observed when slight self-heating is observed in detergent powders. As the 

deposits increase in size, the heat generation increases with little increase in heat 

dissipation. In such cases, if heat generation exceeds heat dissipation, thermal ignition 

occurs, and dust explosions now become a potential hazard. He noted that because this 

heat generation is so strongly dependent on temperature, then the critical thickness for 

self-ignition is also strongly dependent on temperature. 

Typically deposits and temperatures as documented by Beever in a co-current spray 

dryer can be seen in Figure 2-1. It can be seen that the largest deposits are found in the 

corners where the cone begins to slope, and in the top corners, where the turbulence 

induced by the rotary atomiser creates eddies which throws the powder up to these 

corners. Deposits can also form layers on the wall, and even build-up in the exhaust and 

fines return pipes. 

In regions where temperatures are about 200°C, the time to ignition is approximately 

an hour, whereas at 100°C this increases to a few hours. This is assuming an 

instantaneous build-up, whereas in practice these layers will oxidise as they are formed 

and present less of a hazard. It has been suggested that the region considered to be of 

greatest risk to self-ignition is at the outlet of the spray dryer, which would typically be 

at about 80°C. At this temperature a thickness of 20-40cm would be required, taking 

many hours to self-ignite, although it is hard to imagine that such deposits would go 

unnoticed. Nonetheless, it is also stated that this analysis is worth noting for the storage 

of these milk powders. Even at the lower temperatures at which the powder leaves the 

production cycle, there may be a risk of self-ignition if large quantities are stored. 
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Figure 2-1: Co-current spray dryer for milk products showing typical temperature 
distribution and regions of powder deposits, as detailed by Beever (1985). 

 

Beever also outlines approaches to avoid ignition of dust explosions in spray drying. 

Correct maintenance of equipment prevents sources of ignition such as sparks and 

adverse heating as a result of mechanical failure, but the risk of self-ignition in powder 

deposits is not so easily addressed. Often it is not possible to operate these spray dryers 

without the build-up of powder, and in some cases mechanical means of preventing 

build-up have been applied. Devices such as knocking hammers, vibrators or scrapers 

have been used, but should any of these devices develop a fault, then build-up could 

occur which isn’t being actively monitored. Typically, regular cleaning of the spray dryers 

is used to prevent self-ignition by cleaning at such intervals that deposits do not have 

sufficient time to reach critical thickness. 

Even for dryers that are regularly cleaned, or which typically stay clean, it is possible for 

deposits to unexpectedly form. The start-up procedure of the spray dryer is the most 

important factor in this. If the dryer is not given sufficient time to heat up, then damp 

patches can form on the dryer walls, to which powder is more likely to deposit. Once 

such depositions are made, they provide a layer to which powder can more easily 

deposit. For this reason, regular visual inspections need to be carried out, and sufficient 
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care taken in cleaning and dryer start-up. Beever notes that charred lumps, caused by 

the self-heating of deposits, may fall from the walls and be collected in the finished 

product. Watching for these lumps is important as not only do they compromise the 

finished product, but they also give an indication that the tower needs to be cleaned. 

These problems are not limited to milk powders and are readily observed in detergent 

powders. The issue of charred product being found in the finished product is the primary 

motivation of this research, whereas the problem of self-ignition and thermal runaway 

not as important, although it is still a concern that is being addressed. 

Chen et al. (1993) also looked at the issue of milk powder depositions in industrial spray 

dryers. They note that the milk powder deposits that form on the internal walls of these 

dryers need to be regularly cleaned for a number of reasons. These build-ups are a fire 

safety hazard due to the risk of self-ignition and are a risk to product quality because 

these deposits can fall off into the product, but in milk powder dryers they also pose a 

hygiene risk. Chen et al. noted that in co-current spray dryers, deposits are seen to occur 

in three regions 

1. Deposits form on the side walls of the dryer due to direct impact of wet particles 

with high velocities 

2. Deposits form on the lower cone of the dryer, either by direct impact of wet 

particles, or by dry particles swirling downwards and striking the sloping walls of 

the cone. 

3. Deposits form on the ceiling of the dryer, either by dispersion from the atomiser, 

or by entrainment of particles in the turbulent air caused by the sudden 

expansion of air entering the dryer. 

The deposits that form on the ceiling are of particular risk. Because of the high inlet 

temperature, with the inlet at the ceiling of these co-current dryers, these deposits are 

at risk of self-ignition should they become sufficiently large. Similarly, in counter-current 

spray dryers, although the inlets are in the lower portion of the tower, build-up around 

these inlets is of particular risk. The probability of powder deposition in milk powders is 

highly dependent on formulation, with fat and lactose content and how their physical 

properties change with temperature believed to be the most important factors. 

Chen et al. also noted this issue of “browning” or “scorching” of milk powder particles 

which can impact on the quality of the final product. In milk powder there are strict 
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limitations on the permitted amount of scorched particles in the final product, such that 

limiting this problem is of high importance in this industry, just as it is in detergent 

powders. 

Milk powders are typically dried using co-current spray dryers, whereas detergent 

powders tend to be dried using counter-current swirl spray dryers (Francia, et al., 2015), 

the difference being that the air hot inlet of a counter-current dryer is towards the 

bottom with the outlet at the top. Francia et al. (2015) looked to understand the role 

that wall depositions and particle re-entrainment plays in these counter-current spray 

dryers when drying detergent powders. These dryers operate differently to co-current 

in that the counter-current design creates a strong turbulent swirling flow which 

increases the particle residence time and helps to increase process efficiency. This 

counter flow also increases particle concentration, such that more particle-particle 

contacts and agglomeration occurs. The swirl aspect of the dryer creates a size 

preferential concentration of particle close to the dryer internal walls. This 

concentration close to the walls leads to more impacts and a much higher rate of 

deposition. 

In drying these detergent powders, deposition and re-entrainment contribute to three 

main issues: (1) product degradation and the safety and quality concerns associated with 

self-heating, (2) a decrease in product yield and process efficiency, and (3) increased 

costs due to cleaning and maintenance. Despite this, these swirl counter-current towers 

are known to operate for longer without cleaning than their co-current counterparts, as 

it is thought that the rate of deposition is balanced, or supressed by the re-entrainment 

of wall deposited particles. In exploring the role of these depositions, Francia et al. 

developed a new experimental approach to study deposition rates. Deposits were made 

traceable by injecting a dye into the slurry feed. Firstly a non-dyed batch is run to allow 

a build-up to form on the walls. The dye is then injected into the slurry feed such that 

the next batch is visibly pink in colour. This batch is run for some time and the pink 

powder is seen to deposit on the walls. The dye injector is then turned off and normal, 

white powder is produced. A section of the internal wall is periodical monitored 

throughout this entire process to determine deposition rates. The powder was also 

monitored as it exited to tower which allowed the re-entrainment of the pink particles 

to be monitored. It was found that clusters of particle form and break at the walls, such 
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that an active layer of deposits is formed, with a degree of constant surface refreshment. 

The impact on this investigation is that constant refreshment of the powder layer will 

have significant effects on the self-heating in these layers, although it will also be difficult 

to account for using models. Francia et al. also remarked that particles falling from the 

walls account for more than 20% of the final product, and the majority of the large 

granules. Having such a high proportion of the powder come from the walls increases 

the risk of charred powder, charred due to self-heating in layers on the walls, finding its 

way into the finished product, greatly reducing the product quality. 

Other work has addressed the problem of self-heating in different ways. Chong and 

Chen (1999), and Chen (2001) used a similar approach to model heat and mass transfer 

in oven heated baskets of milk powder using a pseudo-1D finite difference model. This 

model was used to simulate the basket-heating methods but it was noted by the authors 

that these milk powders deposit in layers in the spray dryer and that this model could 

be extended to model these layer scenarios. Liang and Tanaka (1987) also modelled 

spontaneous ignition in dust deposits, but using a generalised model not specific to any 

material. They used a 1D model of heat transfer in a dust layer, looking at different 

scenarios that may arise. These articles show how the problem of self-heating is being 

addressed for more than just powder storage problems. These models will be explored 

in more detail in subsequent sections. 

 

2.3. Analytical Solutions to Self-Heating Problems 

2.3.1. The Theory of Thermal Explosions 

Self-heating systems are complex in that they are transient systems involving the 

evolution of reactants, products and temperatures. The Theory of Thermal Explosions 

was first proposed by Semenov (1928) and this work simplified these concepts to 

understand the evolution of heat generation in reactant containing vessels and the 

critical conditions that would lead to thermal explosions. Semenov primarily worked 

with gaseous systems and remarked that under certain conditions for temperature, 

pressure, and heat dissipation from the system, it could be seen that the heat generated 

by the reactions occurring could not fully escape through the walls of the system, and 

this would lead to an increases in the temperature of the gas. This increase in 
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temperature would cause an acceleration of the reaction, and a further increase in heat 

generation. This process is what leads to these thermal explosions. Knowing the kinetics 

laws that govern this heat generation, the mechanisms of heat transfer, the initial 

conditions, and the boundary conditions, this theory of thermal explosions allows the 

critical conditions of these systems to be determined. 

Frank-Kamenetskii, a former student of Semenov, further developed this theory of 

thermal explosions, working initially on gaseous systems, but also later applying this 

theory to condensed, self-heating materials. In approaching this issue Frank-

Kamenetskii (1969) focused on the use of dimensionless parameters for simplified 

systems. In choosing the correct dimensionless variables, he noted that it would be 

possible to interpret the physical laws that govern inflammation and ignition, and 

determined the critical conditions that lead to thermal ignition. 

Firstly he defined the basic equation of combustion theory, which measures the 

transient evolution of temperature in a self-heating system. He noted that the reaction 

rate in these systems is non-linearly dependent on temperature. This non-linearity is 

important because without it critical conditions would not exist, and combustion could 

not occur. Essentially it is an energy balance defined by the following quasilinear 

equation: 

 For 0 ≤ 𝑥 ≤ 𝑟 and 𝑡 ≥ 0, 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= ∇(𝑘∇𝑇 − 𝜌𝐶𝑝𝑣𝑇) + 𝜌𝑄𝐴𝑒−

𝐸
𝑅𝑇 (2-1) 

Where 𝑇 is the temperature, 𝜌 is the density of the material, 𝐶𝑝 is the specific heat 

capacity, 𝑘 is the thermal conductivity, 𝑄 the heat of reaction, 𝐴 the Arrhenius pre-

exponential factor, 𝐸 the activation energy of the reaction, and 𝑅 the universal gas 

constant. 𝑣 is the flow velocity which stems from this theory’s application to gaseous 

systems. In condensed medium, such as the powder layers of interest to this 

investigation, the medium is assumed stationary. The temperature dependence of the 

thermal conductivity, 𝑘, is also neglected, and this equation reduces to: 

 For 0 ≤ 𝑥 ≤ 𝑟 and 𝑡 ≥ 0, 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘∇2𝑇 + 𝜌𝑄𝐴𝑒−

𝐸
𝑅𝑇 (2-2) 
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This equation forms the basis of Frank-Kamenetskii’s Stationary Theory of Thermal 

Explosion. It captures the change in energy of the system as a function of time, due to 

conduction of heat into/out of the system, and addition/loss of heat from the system 

because of exothermic/endothermic reactions described using an Arrhenius expression. 

This steady-state form is given as: 

 For 0 ≤ 𝑥 ≤ 𝑟, 

 𝑘∇2𝑇 = −𝜌𝑄𝐴𝑒−
𝐸
𝑅𝑇 (2-3) 

The goal of this theory is to reduce the basic equation down to a dimensionless equation 

such that the critical conditions of the system can be determined. These critical 

conditions are defined to be those at which the steady-state distribution of temperature 

becomes impossible. Because of this, the method for transforming this equation into 

one containing only dimensionless variables is of vital importance. There are two means 

of doing this, one stems from the exact form of the Arrhenius expression, and the other 

uses an approximation known as the method of expanding the exponent. For both 

approaches the following dimensionless parameters, the dimensionless coordinate, 𝜉, 

and the dimensionless temperature, 𝜃, are defined: 

 𝜉 =
𝑥

𝑟
 (2-4) 

 𝜃 =
𝐸

𝑅𝑇∗
2
Δ𝑇 =

𝐸

𝑅𝑇∗
2
(𝑇 − 𝑇∗) (2-5) 

Where 𝑥 is the usual spatial coordinates, 𝑟 is some characteristic length, and 𝑇∗ is a 

temperature near to which the reaction takes place. According to the basic empirical 

law of chemical kinetics, as described by the Arrhenius expression, the rate of chemical 

reaction never reduces to zero, as can be seen. Instead it decreases exponentially with 

temperature, and must react after a sufficiently long period of time. If the reaction is 

not neglected at the initial temperature, then the initial state cannot be regarded as 

stationary. If the exponential term reduces to zero at the initial temperature (i.e. the 

reaction rate reduces to zero), then the system can be assumed stationary, but unstable, 

since any small change in conditions can impart a change in reaction rate. 

The method of expanding the exponent uses the following expansion of the Arrhenius 

exponent which still retains the exponential nature of the term: 
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𝐸

𝑅𝑇
=

𝐸

𝑅(𝑇∗ + Δ𝑇)
=

𝐸

𝑅𝑇∗

1

1 +
Δ𝑇
𝑇∗

 
(2-6) 

The final term can be approximated by the Taylor series expansion of 
1

1+𝑥
: 

 
1

1 +
Δ𝑇
𝑇∗

≈ 1 −
Δ𝑇

𝑇∗
+ (

Δ𝑇

𝑇∗
)
2

− (
Δ𝑇

𝑇∗
)
3

+ ⋯ 
(2-7) 

In the problem of spontaneous inflammation the temperature 𝑇∗ is taken to be the 

ambient temperature 𝑇∞. Δ𝑇 is the difference between the temperature 𝑇∗ and the 

temperature at a point of interest, such that Δ𝑇 ≪ 𝑇∗. This means that the first two 

terms of the above expansion are a sufficient approximation of this term, and the 

exponent can be expressed as: 

 
𝐸

𝑅𝑇
≈

𝐸

𝑅𝑇∗
−

𝐸Δ𝑇

𝑅𝑇∗
2

 (2-8) 

And the Arrhenius term approximated by: 

 𝑒−
𝐸
𝑅𝑇 ≈ 𝑒

−
𝐸

𝑅𝑇∗ ⋅ 𝑒𝜃  (2-9) 

Using this approximation, as well as the previously defined dimensionless coordinate 

and temperature, the steady-state energy balance in equation (A-1) can be reduced to: 

 ∇𝜉
2𝜃 = −

𝐸

𝑅𝑇∗
2

𝜌𝑄𝐴

𝑘
𝑟2𝑒

−
𝐸

𝑅𝑇∗ ⋅ 𝑒𝜃 (2-10) 

From this equation, the following dimensionless parameter can be defined: 

 𝛿 =
𝐸

𝑅𝑇∗
2

𝜌𝑄𝐴𝑟2

𝑘
𝑒

−
𝐸

𝑅𝑇∗  (2-11) 

This term encompasses all the quantities essential in discussing the problems associated 

with inflammation and ignition. It is a ratio of the heat generated due to the reaction to 

the heat dissipation from the system, via the conduction and the heat loss across the 

boundary. Soon it will be shown how this parameter can be used to predict thermal 

runaway in these self-heating systems. In future work following the publication of this 

by Frank-Kamenetskii, this dimensionless parameter is often referred to as the Frank-

Kamenetskii parameter. Using this term equation (2-10) is reduced to its dimensionless 

form:  
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 For 0 ≤ 𝜉 ≤ 1, 

 ∇𝜉
2𝜃 = −𝛿𝑒𝜃 (2-12) 

The other method of reducing equation (2-10) to its dimensionless form involves the 

exact form of the Arrhenius exponent rather that the approximation used here. Using 

the dimensionless temperature difference term in equation (2-8), the exponent can be 

expressed in the following, exact form: 

 
𝑒−

𝐸
𝑅𝑇 = 𝑒

−
𝐸

𝑅𝑇∗ ⋅ 𝑒

𝜃

1+
𝜃
𝜑 (2-13) 

Where 𝜑 is defined as: 

 𝜑 =
𝐸

𝑅𝑇∗
 (2-14) 

This derivation in detail can be seen in Appendix A. Using this, equation (A-1) in exact 

dimensionless form is expressed as: 

For 0 ≤ 𝜉 ≤ 1, 

 
∇𝜉

2𝜃 = −𝛿𝑒

𝜃

1+
𝜃
𝜑 (2-15) 

It can be seen that for high activation energies the value of 𝜑 approaches infinity, and 

equation (2-15) reduces to equation (2-12). This is in agreement with the assumption 

made in the method of the exponent that Δ𝑇 ≪ 𝑇∗, where 𝑇∗ is taken as the ambient 

temperature. This equation will be used later in the numerically solving for the critical 

parameter 𝛿𝑐𝑟. 

The importance of these equations was evident to Frank-Kamenetskii. He noted that the 

stationary temperature distribution must have a solution of the form: 

 𝜃 = 𝑓(𝜉, 𝛿) (2-16) 

He also noted that the critical condition for inflammation or ignition is the condition for 

which this stationary temperature distribution ceases to exist. For the simplest case, the 

boundary condition is expressed by 𝜃 = 0 at the surface, and the critical condition 

reduces to: 

 𝛿 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛿𝑐𝑟 (2-17) 
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This is because the parameter 𝛿 is the only parameter in either the equation or the 

boundary conditions at this point. By substituting the system values into equation (2-11), 

one obtains the value of 𝛿 for that system. A critical value of 𝛿 can be defined, 𝛿𝑐𝑟, based 

on the system geometry, boundary conditions, and reaction kinetics. This will be 

explored in detail in the next few sections. If the value of 𝛿 is below 𝛿𝑐𝑟 then a steady-

state temperature distribution exists, otherwise thermal runaway will occur. This has 

many uses in understanding the problem of self-heating in a range of systems. The next 

issue was to determine this critical value 𝛿𝑐𝑟 for the system in question. 

 

2.3.2. Solutions for the Critical Condition 𝜹𝒄𝒓 for Infinite Slabs 

Semenov’s approach to such inflammation problems considered a vessel in which it is 

assumed that the temperature is uniform at all points. This “homogenous inflammation” 

does not agree with the fact that inflammation is known to begin at a single point, and 

propagate from there. Such systems with this temperature uniformity only exist where 

high levels of convection occur, typically with stirring. Frank-Kamenetskii considered a 

vessel filled with a reacting gas in which heat transfer occurs purely by conduction. This 

system is of interest because this condition also describes how heat transfer occurs in 

powder systems. A temperature gradient exists in this system with the highest 

temperature being at the centre of the vessel, where it is thought inflammation ought 

to start. This allows the critical condition for inflammation to be determined by the 

temperature distribution, with inflammation occurring when this temperature 

distribution ceases to exist. 

Firstly three assumptions must be made in order to develop a solution; 

1. The pre-explosion temperature rise is considered small in comparison to the 

absolute temperature of the vessel walls. i.e. Δ𝑇/𝑇 ≪ 1. This is equivalent to 

𝑅𝑇 ≪ 𝐸 and is the foundation of the method of expanding the exponent. 

2. The reaction rate is assumed to depend only on temperature in accordance with 

the Arrhenius expression exp (−
𝐸

𝑅𝑇
), such that the depletion of fuel, any 

temperature dependence of pre-exponential factor, and any change in density is 

neglected. 
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3. The thermal conductivity of the system boundary walls is regarded as infinitely 

large. This corresponds to an infinite Biot number, given by ℎ𝐿/𝑘, where ℎ is the 

external heat transfer coefficient, 𝑘 the thermal conductivity, and 𝐿 some 

characteristic length. 

Frank-Kamenetskii solved this for an infinite vessel with plane-parallel walls, equivalent 

to an infinite slab of powdered material. For this geometry, where 𝑟 is the vessel half-

width, equation (A-1) can be expressed as: 

For −𝑟 ≤ 𝑥 ≤ 𝑟, 

 𝑘
𝑑2𝑇

𝑑𝑥2
= −𝜌𝑄𝐴𝑒−

𝐸
𝑅𝑇 (2-18) 

In dimensionless form this expressed as: 

 For 0 ≤ 𝜉 ≤ 1, 

 
𝑑2𝜃

𝑑𝜉2
= −𝛿𝑒𝜃 (2-19) 

The solution to this equation, found by integration by substitution is: 

 
𝑒𝜃 =

𝑎

cosh2 (𝑏 ± √𝑎𝛿
2 ⋅ 𝜉)

 
(2-20) 

This solution contains two arbitrary constant 𝑎 and 𝑏. Because of the symmetry of the 

system: 

 
𝑑𝜃

𝑑𝜉
𝜉=0

= 0 (2-21) 

From this it can be seen that 𝜃(𝜉) = 𝜃(−𝜉), from which it can be deduced that the 

constant 𝑏 must be equal to zero. The constant 𝑎 is determined using the boundary 

conditions at the wall of the vessel, 𝜃 = 0 at 𝜉 = 1. This gives the transcendental 

equation for 𝑎: 

 𝑎 = cosh2 √
𝑎𝛿

2
 (2-22) 

A transcendental equation is a non-algebraic equation where the equation is a function 

of the variable that is being solved for. Often such equations do not have closed form 



20 
 
solutions. A stationary temperature distribution exists only for values of 𝛿 at which 

equation (2-22) has a solution. If a solution exists then the corresponding values of 𝑎 

and 𝛿 can be used in (2-20) to obtain this distribution. An explosion must occur for values 

of 𝛿 for which no solution exists. The largest value of 𝛿 for which (2-22) a solution exists 

is considered to be 𝛿𝑐𝑟 and is the critical condition for inflammation. 

By defining the following: 

 𝑎 = cosh2 𝜎 (2-23) 

It is possible to redefine the transcendental equation (2-22) as: 

 cosh 𝜎

𝜎
= (

𝛿

2
)
−

1
2
 (2-24) 

From this it is possible to see that the critical condition for inflammation occurs for the 

minimum value of 
cosh𝜎

𝜎
, which occurs for 𝜎𝑐𝑟 = 1.2, which when substituted back gives: 

 𝛿𝑐𝑟 = 0.88 (2-25) 

This result can also be seen from the plot of the solution to the transcendental equation 

(2-22) in Figure 2-2 where the extreme value on the right is the critical conditions for 

inflammation.  

 

Figure 2-2: Solution of the transcendental equation (2-22) illustrating the critical 
condition 𝛿𝑐𝑟 = 0.88. 



21 
 
 

It can be seen that no solution exists for a value of 𝛿 greater than 0.88. This occurs for a 

value of 𝑎𝑐𝑟 of 3.28, which corresponds to a value for 𝜎𝑐𝑟 of 1.2. If the system has a 𝛿 

value equal to 𝛿𝑐𝑟 then after an infinite amount of time the system will combust. 

Although this was original developed for gaseous systems, it is clear that the assumption 

of heat transfer purely by conduction allows this solution to be applied to the problem 

of self-heating in condensed powder geometries. However, this solution still only holds 

true for the assumption that 𝜃 = 0 at the vessel surface, corresponding to an infinite 

Biot number. Thomas (1957) extended this approach to determining the critical 

condition for self-heating materials that are subjected to surface cooling. In doing so the 

same approach is used as by Frank-Kamenetskii and the solution to the energy balance 

equation is equivalent to equation (2-20). Taking the logarithmic form of this equation 

gives: 

 𝜃 = ln 𝑎 − 2 ln cosh(𝑏 ± 𝜉√
𝑎𝛿

2
) (2-26) 

In this case though, the reacting substance is a self-heating infinite slab of material 

subjected to boundary cooling. This system is illustrated in Figure 2-3. 

 

Figure 2-3: Temperature profile across a symmetrically cooled self-heating slab, with 
ambient temperature 𝑇∞, surface temperature 𝑇𝑠, peak temperature 𝑇𝑝, characteristic 

dimension 𝑟, and overall width 2𝑟. 
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The maximum temperature occurs at the basket centre and the boundary condition is 

given by: 

 At 𝜉 = 0 

 
𝑑𝜃

𝑑𝜉
= 0 (2-27) 

At the slab surface, the external convective heat transfer from the surface is equal to 

the conductive heat transfer to the surface: 

 At 𝜉 = 1, 

 𝐵𝑖 𝜃 +
𝑑𝜃

𝑑𝜉
= 0 (2-28) 

Here the Biot number, 𝐵𝑖, is the ratio of heat transfer resistance inside of a body to the 

heat transfer resistance at the surface of a body, given by ℎ𝑟/𝑘. The first of these 

boundary conditions is satisfied if the constant of integration, 𝑏, is equal to zero. The 

second is satisfied as long as the following holds true: 

 ln 𝛿 =
2𝜎2

cosh2 𝜎
−

2𝜎 tanh𝜎

𝐵𝑖
 (2-29) 

For this case, the critical value 𝜎𝑐𝑟 is found in terms of the Biot Number, 𝐵𝑖, when the 

value of 𝛿 is maximised. This is done by differentiating (2-29) which gives: 

 𝐵𝑖 =
𝜎𝑐𝑟  sinh𝜎𝑐𝑟  cosh 𝜎𝑐𝑟 + 𝜎𝑐𝑟

2

(1 − 𝜎𝑐𝑟  tanh𝜎𝑐𝑟) cosh2 𝜎𝑐𝑟
 (2-30) 

The solution to (2-30) is plotted in Figure 2-4 and shows that as the Biot number 

approaches infinity, the value of 𝜎𝑐𝑟 approaches 1.2, corresponding to the value of 𝛿𝑐𝑟 

calculated by Frank-Kamenetskii (1969) of 0.88. 
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Figure 2-4: 𝛿 as a function of Biot number for an infinite slab with boundary cooling. 

 

2.3.3. Extension of Solutions to Other Geometries 

Thomas (1957) also solved for the critical conditions for an infinite cylinder and a sphere 

subjected to boundary cooling, as was done for an infinite slab. For geometries where 

the conduction is only dependent on one spatial coordinate, the Laplacian operator can 

be made dimensionless, resulting in the following equation: 

For 0 ≤ 𝑥𝑖 ≤ 1, 

 
𝑑2𝜃

𝑑𝑧2
+

𝜅

𝜉

𝑑𝜃

𝑑𝜉
= −𝛿𝑒𝜃 (2-31) 

Where 𝜅 = 0 for an infinite slab, 𝜅 = 1 for an infinite cylinder, and 𝜅 = 2 for a sphere. 

Chambré (1952) solved for these systems using the infinite Biot number assumption of 

Frank-Kamenetskii. Thomas (1957) continued this work to solve for these geometries 

with boundary cooling. He showed that the dimensionless temperature difference for a 

cylinder can be expressed as: 

 𝜃 = ln (
2𝐹2𝐵𝜉𝐹−2

𝛿(1 + 𝐵𝜉𝐹)2
) (2-32) 

Where 𝐵 is a constant of integration and: 

 𝐹2 = 𝐸 + 4 (2-33) 
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For the case of a hollow cylinder 𝐸 is non-zero, and this case is defined by the above 

equation. For a solid cylinder 𝐸 is equal to zero, such that 𝐹 = 2 and the equation 

reduces to: 

 𝜃 = ln (
8𝐵

𝛿(1 + 𝐵𝜉2)2
) (2-34) 

Applying this equation to the surface boundary condition, and applying the conditions 

such that 𝛿 is maximised gives the following equation for the critical value of the 

constant of integration, 𝐵𝑐𝑟, with respect to the Biot number: 

 𝐵𝑖 =
4𝐵𝑐𝑟

1 − 𝐵𝑐𝑟
2

 (2-35) 

This can be plotted similar to Figure 2-4, to show that the critical condition 𝛿𝑐𝑟 for a solid 

cylinder as 𝐵𝑖 approaches infinity is 2.0. For a sphere, it was shown that as 𝐵𝑖 

approaches infinity the critical condition 𝛿𝑐𝑟 approaches 3.32, as can be calculated from: 

 𝐵𝑖 =

𝜂𝑠
2𝑒−𝜂𝑠 − 𝜂𝑠 (

𝑑𝜓
𝑑𝜂

)
𝑠

1 − 𝜂𝑠 (
𝑑𝜓
𝑑𝜂

)
𝑠

 (2-36) 

Where the subscript 𝑠 denotes at the surface (i.e. 𝜉 = 1) and 

 𝜓 = 𝜃0 − 𝜃 (2-37) 

 𝜂 = 𝜉(𝛿𝑒𝜃∞)
1
2 (2-38) 

Other analytical solutions have been developed that look to determine the critical 

parameter 𝛿𝑐𝑟 under different conditions. One such solution is that of Thomas and 

Bowes (1961) who solved for 𝛿𝑐𝑟 for the case of a self-heating infinite slab with 

unsymmetrical boundary conditions, such that one surface is at a constant high 

temperature.  Another case is that of Bowes and Thomas (1966) who investigated the 

ignition and extinction phenomena which accompany oxygen-dependent self-heating 

reactions in porous bodies. These solutions are rather complex, and will not be discussed 

any further, but they are worthy of mentioning. 

Nelson and Chen (2007) summarised the values of 𝛿𝑐𝑟 and the maximum dimensionless 

temperature rise, 𝜃𝑚𝑎𝑥, for common geometries under the following two assumptions: 
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 The activation term is sufficiently high, such that 𝐸 ≫ 𝑅𝑇, an approximation 

made in the method of expanding the exponent. 

 The Biot number is sufficiently high that the surface of the body can be assumed 

equal to the surrounding temperature. 

These values are shown in Table 2-1. The following section will explore how 𝛿𝑐𝑟 can be 

determined when the first of these assumptions is not being applied. 

 

Table 2-1: 𝛿𝑐𝑟 and 𝜃𝑚𝑎𝑥  values for common geometries as summarised by Nelson and 

Chen (2007) with the assumption that 𝐸 ≫ 𝑅𝑇 and 𝐵𝑖 = ∞ applied. 

Geometry 𝜹𝒄𝒓 𝜽𝒎𝒂𝒙 

Infinite Slab 0.878 1.119 

Infinite Cylinder 2 1.386 

Equi-Cylinder 2.844 1.778 

Cube 2.569 1.888 

 

2.3.4. Numerical Solutions for the Frank-Kamenetskii Critical Criterion 𝜹𝒄𝒓 

The literature covered to date shows the difficulty in analytically calculating the Frank-

Kamenetskii critical criterion 𝛿𝑐𝑟, and how it can only be calculated for very specific 

conditions, such as for an infinite Biot number or where Δ𝑇/𝑇 ≪ 1. Parks (1961) sought 

to evaluate this critical criterion for a broader range of circumstances numerically using 

an IBM 704 data processing machine and using analogic method using a Pace analogue 

computer. In doing so, the energy balance in equation (2-2) was reduced to its steady-

state dimensionless form, using the exact form of the exponent in equation (2-13), to 

give: 

For 0 ≤ 𝜉 ≤ 1, 

 
∇𝜉

2𝜃 = −𝛿𝑒

𝜃

1+
𝜃
𝜑 (2-39) 

The analogue computer was used to explore the solutions of the steady-state energy 

balance in spherical coordinates and is of little interest due to its dated approach. The 

digital computer was used to numerical solve the steady-state equation (2-39). Parks 
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modified the Laplacian term and the boundary conditions to model a sphere, an 

infinitely long cylinder, an infinite slab of finite thickness, a cube, and an equi-cylinder (a 

cylinder of equal height and diameter). The equations were reduced to difference 

equations with spatial increments in 𝜉 of 0.1.  

The analytical solution assumes that Δ𝑇/𝑇 ≪ 1, which means 𝑅𝑇 ≪ 𝐸 and the 

exponential reduces to 𝑒𝜃. Parks sought to evaluate the critical criterion for finite values 

of 𝜑 (= 𝐸/𝑅𝑇), allowing this critical criterion to be applied to a greater range of 

situations. To do this, a value of 𝜑 was selected and a double iterative procedure was 

used. The devised program would select a value of 𝛽 from a range in increments of 𝑘, 

with 𝜑𝛽 = 𝛿. For each selected value of 𝛽𝑘, the computer would numerically solve for 

the steady-state solution that meets the boundary conditions. If a solution existed then 

the computer would increase the value of 𝛽𝑘 to 𝛽𝑘+1. This would be repeated until no 

steady-state solution could be found. At this point, where no solution could be found, 

the critical criterion could be defined as: 

 𝜑𝛽𝑘 < 𝛿𝑐𝑟 < 𝜑𝛽𝑘+1 (2-40) 

Using this approach. Parks produced the results shown in Table 2-2. The computational 

limitations of the time meant that iteration in 𝜑 of 10 were used for the cube and regular 

right circular cylinder. As the value of 𝛼 increases, these results can be seen to approach 

the values solved for analytically as documented previously. 

Parks’ calculated values of 𝛿𝑐𝑟 for the cube and regular right circular cylinder are seen 

to make abrupt changes between some values of 𝛼, implying that the precision of these 

results can be improved on massively using modern computation techniques. 

Additionally, although these values were calculated for a range of values for 𝜑, this 

approach still applies the infinite Biot number assumption to the boundary conditions, 

as used by Frank-Kamenetskii. This leaves scope to improve on this work by solving for 

a greater, and finer range of 𝛼 values, as well as for a wide range of Biot numbers. 
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Table 2-2: Numerical solutions for 𝛿𝑐𝑟, as calculated by Parks (1961) for a sphere, 
infinitely long cylinder, infinite slab of finite thickness, cube, and regular right circular 

cylinder.  

Sphere Infinitely Long 
Cylinder 

Infinite Slab of 
Finite Thickness 

Cube Regular Right 
Circular Cylinder 

𝝋 𝜹𝒄𝒓 𝜹𝒄𝒓 𝜹𝒄𝒓 𝜹𝒄𝒓 𝜹𝒄𝒓 

20 3.51 2.11 0.927 2.68 2.93 

25 3.47 2.08 0.915   

30 3.44 2.07 0.911 2.63 2.88 

35 3.42 2.06 0.905   

40 3.41 2.05 0.904 2.58 2.83 

45 3.40 2.04 0.894   

50 3.38 2.04 0.892 2.58 2.83 

55 3.38 2.03 0.892   

60 3.38 2.03 0.891 2.58 2.83 

65 3.37 2.03 0.886   

70 3.36 2.02 0.884 2.58 2.83 

75 3.36 2.02 0.882   

80 3.35 2.01 0.881 2.58 2.83 

85 3.35 2.01 0.880   

90 3.35 2.01 0.880 2.53 2.78 

95 3.34 2.01 0.880   

100 3.34 2.01 0.880 2.53 2.78 

 

2.4. Experimental Methods for the Characterisation of Self-Heating 

The characterisation of detergent powders and spray drying tower wall make-up as 

explored by this project focuses largely around determining the nature and kinetics of 

the self-heating reaction occurring within the powder. Methods for doing this include 

basket heating methods of determining zero-order kinetics. These methods are the 

steady-state, cross-point temperature, and heat release methods. Other methods 

include micro-gram scale techniques that use thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC). These methods are the Ozawa-Flynn-Wall 

method, Friedman method, and the DTG curve fitting approach.  
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These methods have been applied to the study of many materials including coal, 

activated carbons, and milk powders. Little work has been done on the reaction kinetics 

of detergent powders and as such the nature of the reaction and the best methods to 

use are largely unknown. This section will review these methods, their applications, and 

the advantages of each in order to make a better informed decision as to which methods 

to use in characterising these detergent powders. 

 

2.4.1. The Steady-State/ Frank-Kamenetskii Basket Heating Method 

2.4.1.1. Basis of the Steady-State Method 

The steady-state method, often referred to as the Frank-Kamenetskii method, is so 

called because it is based on the theory of thermal explosions developed by Frank-

Kamenetskii (1969). This method is largely dependent on the dimensionless parameter 

derived for predicting criticality, 𝛿, which is often referred to as the Frank-Kamenetskii 

parameter. The steady-state method has been used extensively to characterise the self-

heating behaviour of many materials such as charcoal (Bowes & Cameron, 1971) 

(Cameron & MacDowall, 1972), bagasse (Gray, et al., 1984), milk powder (Duane & 

Synnot, 1992), and in particular coal (Jones & Raj, 1989) (Jones & Vais, 1991). This 

approach is widely documented and has been also standardised as EN 15188:2007 

entitled “Determination of the spontaneous ignition behaviour of dust accumulations” 

(British Standards Institution, 2007). This method is a basket heating method in which 

mesh baskets of different shapes and sizes, full of the self-heating powdered material, 

are heated in an oven under highly convective conditions. The critical ambient 

temperature for different materials, and for differently shaped and sized baskets are 

determined. From this, the self-heating reaction kinetics can be measured. 

The steady-state method is based on the steady-state form of the energy conservation 

equation of a self-heating system, given by equation (2-3). In this method, the 

dimensionless form of this equation is used, along with the approximation from the 

method of expanding the exponent. This is given by equation (2-12). The dimensionless 

parameter 𝛿 is key to this method, and is defined as: 
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 𝛿 =
𝐸

𝑅𝑇∞
2

𝜌𝑄𝐴𝐿2

𝑘
𝑒

−
𝐸

𝑅𝑇∞  (2-41) 

From the formula for 𝛿 it can be seen that this parameter is dependent on: 

 The reaction parameters such as activation energy, 𝐸, pre-exponential factor, 𝐴, 

and heat of reaction, 𝑄. 

 The material properties such as conductivity, 𝑘. 

 The ambient temperature, 𝑇∞. 

 And the characteristic length of the geometry (i.e. slab thickness, basket radius, 

etc.), 𝐿. 

This model is limited in that it is subjected to the following assumptions: 

 The material is assumed to be homogeneous and isotropic with regards to 

chemical and thermal properties. The structure of the particles is not considered, 

and instead the system is considered in bulk. 

 The heat generation term is for one exothermic reaction, or several reactions 

occurring simultaneously but considered to be one reaction. 

 Heat transfer through the powder material is by conduction alone. Connectivity 

between the individual powder particles is not considered. 

This dimensionless Frank-Kamenetskii parameter is used in predicting the criticality of a 

system. If the 𝛿 value of the system in question, based on the physical parameters of 

that system, exceeds the critical value 𝛿𝑐𝑟, then the system is predicted to thermally 

runaway (i.e. the heat generation rate will exceed the rate of heat dissipation from the 

system). Much of the literature that uses this method applies the following two 

assumptions which were also used by Frank-Kamenetskii in determining analytical 

solutions for the parameter 𝛿𝑐𝑟: 

 The activation term is sufficiently high, such that 𝐸 ≫ 𝑅𝑇, an approximation 

made in the method of expanding the exponent. 

 The Biot number is sufficiently high that the surface of the body can be assumed 

equal to the surrounding temperature. 

Using these assumptions, the value of 𝛿𝑐𝑟 is assumed constant, solely dependent on the 

system geometry. It has already been shown in previous sections that 𝛿𝑐𝑟 is in fact also 
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dependent on the activation energy and the boundary conditions of the system, and in 

order to use an accurate value for 𝛿𝑐𝑟, these two assumptions cannot be applied. In 

carrying out this method, a number of baskets filled with self-heating materials are 

heated in a forced convection oven such that their critical ambient temperatures can be 

determined. Knowing the critical ambient temperatures and the critical criteria 𝛿𝑐𝑟 for 

a number of different baskets allows the data to be plotted according to the following 

manipulation of equation (2-41): 

 ln (
𝛿𝑐𝑟𝑇∞,𝑐𝑟

2

𝐿2
) = −

𝐸

𝑅𝑇∞,𝑐𝑟
+ ln (

𝜌𝑄𝐴

𝑘

𝐸

𝑅
) (2-42) 

From this it can be seen that by plotting the reciprocal of the critical ambient 

temperature, 1/𝑇∞,𝑐𝑟, against ln (
𝛿𝑐𝑟𝑇∞,𝑐𝑟

2

𝐿2 ) allows the activation energy, 𝐸, to be 

determined from the slope, and the product of the pre-exponential factor, 𝐴, and the 

heat of reaction, 𝑄, to be determined from the intercept of the line fitted to these 

points. 

In performing these experiments, EN 15188:2007 (British Standards Institution, 2007) 

dictates that at least three mesh baskets of different volumes are to be used. It also 

suggest that a higher level of certainty can be achieved from using four different baskets. 

It recommends that the smallest volume should be of the order of 10 cm3, and the 

largest should be at least 1000 cm3, although if sample material is limited then smaller 

baskets can be used. It also recommends that the baskets as a series should increase in 

volume by at least a factor of 2. Each basket is heated in an oven with a temperature 

controller than can maintain the temperature within a range of ±1% of the oven 

temperature. Tests are run to determine the critical ambient temperature using a 

“closing in” approach. Mathematically speaking, the critical ambient temperature is the 

temperature at which a solution to the temperature distribution fails to exist. Practically 

speaking, baskets are heated at different oven temperature to the highest oven 

temperature at which no ignition occurs, and the lowest temperature at which ignition 

does occur, with the critical ambient temperature taken as the mean of these two 

values. 

Having these data it is then possible to determine the critical ambient temperature for 

any geometry by substituting for the newly calculated reaction kinetics, and 
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characteristics of the geometry for which the critical ambient temperature is being 

sought (i.e. 𝛿𝑐𝑟 for the geometry type, and characteristic dimension 𝐿), into equation 

(2-41). 

2.4.1.2. Applications of the Steady-State Method in Literature 

Bowes and Cameron (1971) were one of the early adopters of the steady-state method 

and they used it to examine the self-heating behaviour of activated carbons. They had 

observed that self-heating was an issue in the transport of activated carbon, with six 

fires breaking out in shipments of activated carbon on board ships between May 1962 

and May 1963. This self-heating is known to be due to the oxidation of the carbon, but 

this oxidation is a slow process and can continue for weeks or even months, with these 

fires being discovered 3 to 4 weeks after stowing.  

Bowes and Cameron applied the Theory of Thermal Explosions and the steady-state 

method to address this issue. They used phosphoric acid-activated vegetable charcoal 

and cubic wire mesh baskets ranging in size from 25.4 mm to 610 mm, which is 

particularly large and took 68 hours to ignite. A chromel/ alumel thermocouple was 

placed at the centre of the basket and the basket heated to determine the minimum 

ambient temperature to within ±5°C or better. This is not a particularly accurate range 

but it was chosen such that a larger range of sizes could be covered in a relatively short 

period of time. The results of these experiments were plotted in accordance with 

equation (2-42). They realised that the value of 𝛿𝑐𝑟 for cubic baskets in Table 2-1 was 

not sufficient for this analysis. Instead they used the 𝛿𝑐𝑟 values numerically calculated 

by Parks (1961), using values from the range of 30 ≤
𝐸

𝑅𝑇∞
≤ 80. They found that using 

this method to measure small-scale self-ignition allowed them to make realistic 

estimates for the critical ambient temperatures of considerably larger quantities, 

although the times to ignition were found to be overestimated by a factor of 5. In 

addition to the long-term self-heating reaction which causes the majority of the 

observed temperature rise, there are also short-term temperature rises caused by 

processes such as the attainment of moisture equilibrium. It was also found that the use 

of polyethylene bags for storing this material can limit the fires observed in transport. 

Cameron and MacDowall (1972) was another early adopter of this method, and again 

look at the problems seen in shipping activated carbons. These carbons were packed 
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into cubic baskets ranging in sizes from 51 mm to 305 mm and heated in accordance 

with the steady-state method, using a constant value for 𝛿𝑐𝑟 of 2.6, based on the 

numerical values calculated by Parks (1961). They also looked at activated carbons made 

using different processes as it had been suggested that the two common methods of 

making activated carbons result in carbons with different oxygen contents which may 

react differently.  

The first method is the chemically activated process where carbons are produced by 

mixing a chemical with a carbonaceous materials, generally wood. This process is done 

at what is considered a relatively low temperature of 400 to 500°C. The second method 

is the steam activated process, typically done using starting materials of peat, coal, 

lignite, and wood. Firstly the materials are carbonised but the pores produced are too 

small to be useful as an absorbent. The carbon is reacted with steam at between 900 

and 1000°C to enlarge the pores. This high temperature is what leads to a different 

chemical structure, which is reflected in the chemical analysis of the carbons used in this 

investigation. All steam activated carbons were found to have oxygen contents of less 

than 2%, whereas the chemically activated carbons have much greater oxygen contents.  

It was found that the critical ambient temperatures of these carbons increases for a 

decrease in the oxygen content, and for an increase in carbon content, as shown in 

Figure 2-5. The difference in self-heating behaviour of powdered materials with 

chemical composition is important for most materials, but in particular detergent 

powders which have many different formulations. In this case oxygen content is the 

biggest contributor, but in detergents a different oxidizer content may be important. 

Gray et al. (1984) used the steady-state method to examine the problem of self-heating 

in bagasse stock-piles. Bagasse is residue from the processing of sugar cane. The bagasse 

exits the mill at a very high water content and at temperatures between 50 and 70°C 

where it is immediately stock-piled. In these stockpiles there is a risk of spontaneous 

ignition because of the self-heating this material is known to undergo. Bagasse consists 

of cellulose, hemi-cellulose and lignin. This material is quite fibrous and in order to 

eliminate variations in density and surface area, it was sieved using a 3mm mesh. The 

method was applied as before, but in this case the critical ambient temperature was 

found to within ±0.25°C, which is a much greater precision than the previous examples. 
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Figure 2-5: Qualitative relationship between critical ambient temperature and the 
oxygen and carbon contents for charcoal, as measured by Cameron and MacDowall 

(1972). 

 

In heating theses samples Gray et al. noted that each sample exhibit a quasi-stationary 

central temperature during the experiment. This behaviour is due to evaporation of 

water from the sample. This behaviour would be expected of any material that is not 

entirely dry before commencing the experiment, including detergent powder which may 

contain residual moisture. During this period the temperature attained was found to be 

dependent on the packing density, while the duration is dependent on the amount of 

water present. Despite this, it was seen that self-heating is unaffected by the amount of 

drying required, which is useful information when it comes to exploring the self-heating 

of detergent powders. 

Interestingly, Gray et al. used a different approach to determine the value for 𝛿𝑐𝑟 in this 

case. The previous cases, and many other cases, refer to the work of Parks (1961) and 

the numerically solved values he obtained for 𝛿𝑐𝑟 as a function of the activation energy, 

𝐸. In this case, the approach of Boddington et al. (1971) was used. Here, the harmonic 

root-mean square radius 𝑅0 is used as an approximation for the Frank-Kamenetskii 

radius. This can then be used along with the Semenov radius 𝑅𝑠, where 𝑅𝑠 = 3𝑉/𝑆. 𝑉 is 

the geometry volume and 𝑆 the surface area, and this is used to define a shape factor 𝑗: 



34 
 

 𝑗 = 3(
𝑅0

2

𝑅𝑠
2
) − 1 (2-43) 

From this, the critical value 𝛿𝑐𝑟 for an arbritray shape can be determined using: 

 𝛿𝑐𝑟(𝑅0) = 3 (
2𝑗 + 6

𝑗 + 7
) (2-44) 

The values determined by Boddington et al. are shown in Table 2-3. The problem with 

this approach is that the 𝛿𝑐𝑟 values calculated using this approach are different from 

those determined analytically by Frank-Kamenetskii (1969) and Chambré (1952), and 

from those calculated numerically by Parks (1961). In some case they vary largely, as can 

be seen in Table 2-4. This shows that care must be taken when choosing the value of 𝛿𝑐𝑟 

to use, especially when taking these values from literature. 

 

Table 2-3: 𝛿𝑐𝑟 as used by Gray et al. (1984), calculated from the shape factor approach 

of Boddington et al. (1971). 

Shape 𝑹𝟎 𝑹𝒔 𝒋 𝜹𝒄𝒓 

Infinite Slab, thickness = 2a 1.732a 3a 0 2.571 

Infinite Cylinder, radius = a 1.225a 1.5a 1 3 

Equi-Cylinder, radius = a 1.115a 1a 2.728 3.531 

Cube, side = 2a 1.194a 1a 3.280 3.663 

 

Table 2-4: Comparison between analytically solved for 𝛿𝑐𝑟 values and those calculated 

using the method of Boddington et al (1971). 

Geometry 𝜹𝒄𝒓 - Analytical 𝜹𝒄𝒓 – Boddington et al. 

Infinite Slab 0.878 2.571 

Infinite Cylinder 2 3 

Equi-Cylinder 2.844 3.531 

Cube 2.569 3.663 

 

In this work Gray et al. (1984) had difficulty in matching predictions of self-ignition to 

experimental results, noting that they only matched over a limited range of sizes. This 
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maybe because of the incorrect values of 𝛿𝑐𝑟 used which would impact on the scaling of 

predictions. They also noted that a measured temperature difference of 4.5°C between 

the surface and ambient temperature implies that the infinite Biot number assumption 

may not hold in these experiments. A finite value for the Biot number would also impact 

on the value of 𝛿𝑐𝑟 that should be used in these experiments, further increasing the 

errors in scaling predictions. 

Jones and Raj (1989) and Jones and Vais (1991) looked at self-heating in coals. Jones and 

Raj explored the self-heating of solar-dried coal slurry in particular but did little to add 

to the knowledge in the area, other than determining that lime-treated samples had a 

larger activation energy, attributed to a lower oxygen penetration of the micropores due 

to the calcium treatment. Jones and Vais examined self-heating in four different low-

rank coals. In doing so it is worth noting that they used a value for 𝛿𝑐𝑟 for a cubic basket 

of 3.663, which is the same as that used by Gray et al. (1984). This was the value 

calculated by Boddington et al. (1971) that was shown to disagree with the analytical 

and numerical solutions for 𝛿𝑐𝑟. This shows that there are two sets of 𝛿𝑐𝑟 values being 

used in the literature, and it is important to choose the correct set of values.  

Jones and Wake (1990) briefly explored the measured activation energies of a number 

of different solid materials. These include carbonaceous materials, solar dried coal 

slurry, protein-containing materials, and cellulosic materials. They used the 𝛿𝑐𝑟 value of 

2.569 as calculated by Parks (1961). They noted that this value is dependent on the Biot 

number of the system, with this value suitable for very large Biot numbers. Despite this, 

they concluded that this condition is met for baskets heated in air ovens, but without 

measuring the heat transfer coefficient of the system it is difficult to verify this. 

Duane and Synnott (1992) used the steady-state method to explore self-heating in 

spray-dried milk powders. Being a spray-dried powder, the self-heating of milk powder 

has more in common with detergent powders than the previous cases of coal and other 

carbonaceous materials. They used cubes ranging in size from 25mm to 102mm in side 

length. This work also realised that the value of 𝛿𝑐𝑟 is dependent on the Biot number. 

To correct for this the heat transfer coefficient, ℎ, was measured using the lumped 

capacity method. Aluminium cubes were heated in the same oven used for the steady-

state method experiments and the heat-up curves analysed to determine ℎ from: 



36 
 

 
𝑇 − 𝑇∞

𝑇0 − 𝑇∞
= 𝑒

−
ℎ𝐴

𝐶𝑝𝑚
𝑡
 (2-45) 

Here, 𝑇 is the temperature at time 𝑡, 𝑇∞ is the ambient temperature, 𝑇0 is the initial 

temperature at time 𝑡 = 0, 𝐴 is the surface area of the aluminium cube, and 𝑚 is the 

mass. Knowing the heat transfer coefficient and the thermal conductivity, Duane and 

Synnott were able to calculate the Biot number. Based on this value, and using the work 

of Thomas (1960), the values of 𝛿𝑐𝑟 ranged from 1.3664 to 2.0386, corresponding to Biot 

numbers between 2.625 to 8.450. This shows that the variation in 𝛿𝑐𝑟 due to finite Biot 

numbers is an important factor that must be considered to accurately measure the 

correct self-heating reaction kinetics. 

There can be large variations in the contents of different formulations of milk powder, 

and it is widely accepted that the presence of unsaturated products in milk powders 

increase the susceptibility of these powders to self-heating. Duane and Synnott showed 

that high levels of unsaturated products lowers the critical ambient temperature of 

these powders, which has implications in the manufacturing of powders with increased 

amounts of unsaturated fats. Interestingly, they were able to establish a relation for the 

critical ambient temperature relative to the fat and protein content of the powder: 

 𝑇𝑐𝑟𝑖𝑡 = 282.6 − 1.35664(% 𝑝𝑟𝑜𝑡𝑒𝑖𝑛) − 2.3133(% 𝑓𝑎𝑡) (2-46) 

Such an analysis could be applied to determine critical ambient temperatures of 

detergent powders relative to the percentage content of particular ingredients. 

Another piece of work which accounts for finite Biot numbers is that of Gray and 

Halliburton (2000), which explores the thermal decomposition of hydrated calcium 

hypochlorite. Because of a relatively high value of thermal conductivity, they realised 

that the Biot number was not sufficiently large for the infinite Biot number 

approximation often used. They used the measured Biot number to correct the value of 

𝛿𝑐𝑟 for each sample size used. The corrected 𝛿𝑐𝑟 values are all significantly smaller than 

those for the infinite Biot number approximation and affect the results. The results were 

processed using both sets of 𝛿𝑐𝑟 values, corrected and non-corrected, and it was found 

that the correct values considerably reduced the deviations in the steady-state method 

results in comparison. They also noted that corrections for finite Biot numbers are larger 

for smaller sample sizes, which is important to take note of when choosing baskets sizes 
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for these experiments. The other interesting element of this work is that the steady-

state method plot of hydrated calcium hypochlorite exhibited a bi-linear profile, 

showing that two reactions occur in this material. There is a high temperature reaction 

and a low temperature reaction, which can only be seen using a wide range of basket 

sizes in the experiments. 

The steady-state technique is widely used and a very capable method for measuring the 

self-heating reaction kinetics of these systems. It is a well-established method with 

plenty of available literature with regards technique and results for different materials, 

including coal, sawdust, and milk powder. Applying the theory of thermal explosions of 

Frank-Kamenetskii and in particular the Frank-Kamenetskii parameter, 𝛿, it is easy to 

evaluate the criticality of different geometries and materials, and at different ambient 

temperatures. Using the correct value of 𝛿𝑐𝑟 is important as this will impact on the 

results. Often the assumptions that the activation energy is sufficiently large and the 

Biot number infinite are used, such that the analytically calculated values of 𝛿𝑐𝑟 for these 

ideal cases can be used. Many of the covered works address the approximation applied 

for high activation energies, and correct the value using the numerically calculated 

values of Parks (1961). More recent work also accounts for finite Biot numbers and 

correct the value of 𝛿𝑐𝑟 accordingly, again improving results. 

Despite this it can also be seen that there are a number of disadvantages to this method. 

Not every test that is run yields a usable data point. A number of runs need to be 

completed using the “closing in” approach to determine the critical ambient 

temperature for a specific geometry. This is time consuming and inefficient, given that 

each test can take a number of hours to complete. For particularly large baskets used 

these tests can take upwards of days to lead to self-ignition. Because a number of 

noticeably different sized baskets must be used, oven size may also be an issue, as 

sufficient space to allow for convection at the basket boundaries is required. 

 

2.4.2. The Transient/ Cross-Point Temperature Method 

In modelling the transient energy conservation equation for a self-heating slab, Chen 

and Chong (1995) noticed the existence of what has come to be referred to as the 
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“crossing-point” or “cross-point” temperature. This transient energy conservation 

equation for a slab is written as: 

For 0 ≤ 𝑥 ≤ 𝑟 and 𝑡 ≥ 0, 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ 𝜌𝑄𝐴𝑒−

𝐸
𝑅𝑇 (2-47) 

If it is assumed that the activation energy is sufficiently large, then in dimensionless form 

this equation reduces to: 

 For 0 ≤ 𝜉 ≤ 1 and 𝜏 ≥ 0, 

 
𝜕𝜃

𝜕𝜏
=

𝜕2𝜃

𝜕𝜉2
+ 𝛿𝑒𝜃 (2-48) 

In this case, the dimensionless time, 𝜏, is defined as: 

 𝜏 =
𝑡

𝑟2

𝑘

𝜌𝐶𝑝
 (2-49) 

Using these model equations, Chen and Chong simulated these self-heating slabs, with 

particular interest paid to the temperature-distance profiles produced at different 

times. The sample initially heat-up from the peripheries inwards. The heat conduction 

term in this model increases from zero initially, before decreasing monotonically. In 

doing so it goes from a positive to a negative value, and therefore there must be some 

point at which this term becomes zero. The temperature at the slab centre at this point 

in time is what Chen and Chong defined as the crossing-point temperature. This 

phenomena can be seen in the qualitative plot of the temperature-distance profiles in 

Figure 2-6 adapted from Chen and Chong (1995), which shows how at some point this 

profile must become flat, at which point conduction at the centre becomes zero. At this 

point, with the conduction term equal to zero, equation (2-47) at 𝑥 = 0 reduces to: 

 
𝜕𝑇

𝜕𝑡
|
𝑇=𝑇𝐶𝑃𝑇

=
𝑄𝐴

𝐶𝑝
𝑒

−
𝐸

𝑅𝑇𝐶𝑃𝑇  (2-50) 

They hypothesised that should you be able to experimentally determine the crossing-

point temperature, 𝑇𝐶𝑃𝑇, and record the temperature-time profile, which would be used 

to determine the value of 𝜕𝑇/𝜕𝑡 at the crossing-point temperature, then this could used 

to measure the self-heating kinetics. This would be done by plotting ln (
𝑑𝑇

𝑑𝑡
) at the 

crossing-point and 1/𝑇𝐶𝑃𝑇. 
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Figure 2-6: Qualitative plot of temperature-distance profiles in a self-heating slab. It 
can be seen that at some point the profile becomes flat and the conduction at the 

centre reduces to zero. This is the crossing-point. 

 

Chong et al. (1996) applied this concept as a novel procedure for determining 

exothermic reactivates of skimmed and whole milk powders. As discusses previously, 

this method is based on equation (2-50), and in logarithmic form this is expressed as: 

 ln (
𝑑𝑇

𝑑𝑡
)

𝑇=𝑇𝐶𝑃𝑇

= −
𝐸

𝑅𝑇𝐶𝑃𝑇
+ ln

𝑄𝐴

𝐶𝑝
 (2-51) 

Baskets of powder are oven heated at different ambient temperature with two 

thermocouples placed within the powder. One of these thermocouples is at the basket 

centre and one is offset by a small difference along the basket radius in the same cross-

sectional plane. A typical experimental setup for this method is shown in Figure 2-7. 

Temperatures are measured by these thermocouples and when these temperatures are 

equal conduction in that region is assumed to be equal to zero. This is the crossing-point 

temperature and a typical temperature-time profile showing how this occurs is shown 

in Figure 2-8.  



40 
 

 

Figure 2-7: Typical apparatus set-up for cross-point temperature method, illustrating 
the placement of the thermocouples at the centre of the geometry and offset from 

this on the same plane. 

 

Figure 2-8: Typical plot of temperature as a function of time for the cross-point 
temperature method illustrating the existence of the cross-point. 

 

Plotting ln(𝑑𝑇/𝑑𝑡) at the crossing-point temperature against the reciprocal of the 

crossing-point temperature 1/𝑇𝐶𝑃𝑇, will make a line with a slope of −𝐸/𝑅 and an 

intercept of ln(𝑄𝐴/𝐶𝑝). From this it is simple to extract values for the activation energy, 

𝐸, and the product of the heat of reaction and the pre-exponential factor, 𝑄𝐴, so long 

as the specific heat capacity, 𝐶𝑝, of the material is accurately known. 

Chong et al. states that this method has been proven to be independent of the boundary 

conditions, unlike the steady-state method which requires a “well agitated” oven to 
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ensure that the Biot number is sufficiently large. It is incorrect to say that the steady-

state method requires an infinite Biot number, but this is commonly stated in literature. 

In fact a “well agitated” oven is only required when the analytical solutions for 𝛿𝑐𝑟, 

calculated under the assumption of an infinite Biot number, discussed previously are 

used. The value of 𝛿𝑐𝑟 can be solved for finite Biot numbers and these corrected values 

have been used in the steady-state method previously (Duane & Synnot, 1992) (Gray & 

Halliburton, 2000). 

Chen and Chong (1995) noted that if this phenomena is to be used as a means of 

measuring the reaction kinetics, then it must be shown that the crossing-point 

temperature is constant for the same exothermicity, activation energy, thermal 

properties, slab-thickness, and boundary temperatures, regardless of the initial uniform 

temperature. To do this, they built a simple 1D model using the energy conservation 

equation in (2-47), and solved it using time increments of 1s and an x-axis discretised 

into 40 sections. They validated this model by predicting the critical ambient 

temperatures of different slabs and comparing these to those predicted using steady-

state theory, which they did to within ±0.5°C. 

Using this model they sought to verify the uniqueness of the cross-point temperature. 

Simulations were performed for slabs of half-widths from 20mm to 50mm, for boundary 

temperature between 90 and 140°C, and for initial temperatures from 5 to 120°C. 

Comparing the results of simulations where only the initial temperature varied showed 

that the crossing-point temperature is indeed unique, and in this case a discrepancy of 

±0.01°C was seen across all simulations, which is smaller than the experimental error. 

The only exceptions were for the cases where the boundary temperature was high 

enough to lead to peripheral ignition or the initial temperature was in excess of the slab 

critical ambient temperature. This means that this unique crossing-point temperature 

can be used as a physico-chemical property that can be used to determine if a system 

will lead to self-ignition. 

The concept of the crossing-point temperature and its uniqueness was also validated 

experimentally. This was done by performing basket tests using dried sawdust. A 

cylindrical stainless steel mesh basket of height and diameter 6cm was used. This basket 

was packed with sawdust to the same density for each experiment and heated from 

different initial temperatures with a constant oven temperature of 200°C. These initial 
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temperatures were 1°C, achieved using an ice-making machine, 24°C, 25°C, and 38°C. 

Three thermocouples were placed into the sawdust sample. The first thermocouple was 

placed at the geometric centre of the basket, the second was offset by 7mm from this, 

and the third 7mm from the second, on the same cross-sectional plane both horizontally 

and vertically. Using this setup the crossing-point temperature was determine in three 

ways: 

1. The crossing-point between the first thermocouple, 𝑇1, and second 

thermocouple, 𝑇2. 

2. The crossing-point between the first thermocouple, 𝑇1, and third thermocouple, 

𝑇3. 

3. A second order difference approximation for the temperature derivative: 

 
𝜕2𝑇

𝜕𝑥2
≈

𝑇3 − 2𝑇2 + 𝑇1

(Δ𝑥)2
 (2-52) 

Where Δ𝑥 is the spacing between the thermocouples, i.e. 7mm. The issue using the third 

method is that this finite difference approximation measures the crossing-point 

temperature at the position of the second thermocouple, 𝑇2, while 𝑑𝑇/𝑑𝑡 is measured 

at the central thermocouple, 𝑇1. 

The crossing-points as measured using the three methods are shown in Table 2-5. The 

error across all the experiment for each method are ±0.6°C, ±0.7°C, and ±3.3°C 

respectively. The error in method 3 is considerably larger. This error is a combination of 

the errors in thermocouple measurement (±0.2°C) and the error in thermocouple 

placement (±1mm) across the three thermocouples. It may also be because the 

temperature derivative is measured at the wrong point as explained above. The 

difference in temperatures across the three thermocouples at the crossing-point is 

within ±0.5°C, which makes the error in the measurement error of ±0.2°C significant. 

Despite this, these errors are within acceptable limits and suggest that the crossing-

point temperature is independent of the initial temperature. 
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Table 2-5: The crossing-point temperatures measured by Chen and Chong (1995) for 

the three different methods. 

 𝑻𝑪𝑷𝑻 (°C) 

𝑻𝟎 (°C) Method 1 Method 2 Method 3 

1 214.5 214.8 216.0 

24 214.8 214.1 211.1 

25 215.7 213.5 212.8 

38 214.8 216.0 218.3 

 

In their investigation, Chong et al. (1996) tested skimmed and whole milk powder 

samples using a forced convection oven. A number of insulation bricks were placed on 

the floor of the oven, increasing the thermal capacity of the oven and hence decreasing 

the time taken for the temperature to stabilise. The temperature distribution in the 

region where the sample was to be placed was measured, with little variation (±1.5°C) 

found over the area. The samples were packed into cubic (5cm and 6cm side lengths) 

and cylindrical baskets (height x diameter of 6 x 6cm and 12 x 4cm) at constant density. 

Two type K thermocouples placed within the sample at spacings ranging from 0.4cm to 

0.8cm, depending on the basket used. To confirm the placement of the thermocouples, 

each sample was cut in half following the experiment. The experiment was repeated if 

any of the thermocouples were out of position. Tests were run at temperatures between 

130 and 170°C depending on the milk sample and basket used.  

Being able to cut through the sample to verify thermocouple position implies that at 

these temperatures the milk powder exhibits significant self-heating and form a burnt 

solid mass, even in the peripheral regions. This is confirmed in how Chong et al. refers 

to the “dark brown colour” of the powder, which increased in intensity as the 

temperature increased. These temperature put the experiments at risk of contradicting 

the observation made using the simulations by Chen and Chong (1995) in which it was 

shown that the boundary temperature must not lead to peripheral ignition. This degree 

of self-heating may also damage the thermocouples and limit the number of runs they 

can be used for. 
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In terms of results, they found that the plot of results for whole milk powder has two 

slope regions. This was attributed to Maillard reactions in the lower temperature range 

and fat oxidation in the high temperature range. This was confirmed by the skimmed 

milk powder, which only exhibited the Maillard reactions because the fat content of this 

powder was only 0.8%. The results were found to compare reasonably well with those 

of others found in literature. They also confirmed that pre-heating has little effect on 

the results, and that the effects of size and shape of the baskets are negligible. 

With such small distances between thermocouples, accuracy is always going to be an 

issue. The accuracy of thermocouple measurements was found to be ±0.2°C. This lead 

to an error in the measurement of the crossing-point temperature of ±1% and error in 

measuring ln(𝑑𝑇/𝑑𝑡) of ±10%. This culminates in an error in the measured activation 

energy of ±1 kJ mol-1, a similar error to the steady-state method. They also found these 

results to be reproducible and suitable as a replacement for the steady-state method 

which can considerably reduce the time required to measure the self-heating kinetics. 

In comparing this approach to the steady-state method, Chen and Chong (1998) noted 

the following advantageous: 

 Only one basket size is required, which means oven size is not restricted. 

 An infinite Biot number is not required, although this point has already been 

refuted above. 

 Only one experiment is required to determine each point on the kinetic plot. 

 This method can determine temperature dependence of the kinetic parameters 

(because 𝐸 and 𝑄𝐴 are measured at the reaction temperature). 

 This method can also be used to explore a process without gaseous reactions. 

In publishing these data, a number of issues arose from other researchers with regards 

the cross-point temperature method. Chen and Chong addressed these issues. Firstly 

they stated that in discussing the method with other researchers, a question that was 

frequently posed was whether or not two temperatures is enough to determine that the 

heat conduction term was equal to zero. To show this, Chen and Chong firstly 

approximated the second derivative using a finite (central) difference approximation: 

 
𝜕2𝑇

𝜕𝑥2
≈

𝑇𝑖+1 − 2𝑇𝑖 + 𝑇𝑖−1

(Δ𝑥)2
 (2-53) 
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𝑇𝑖 is the temperature at the centre, and because of the symmetrical boundary condition  

𝑇𝑖+1 and 𝑇𝑖−1 are equally spaced either side of the centre and must be equal such that: 

 
𝜕2𝑇

𝜕𝑥2
≈

2𝑇𝑖+1 − 2𝑇𝑖

(Δ𝑥)2
 (2-54) 

From this it can be seen that if the temperature at the centre 𝑇𝑖 and at the offset point 

𝑇𝑖+1 at a distance Δ𝑥 away are equal, then the second derivative, and thus the 

conduction term, reduces to zero. However, because only two thermocouples are used, 

it is important that they are accurately placed, especially the central one. Chong et al. 

(1996) sliced the down the middle after the experiment to confirm the thermocouple 

position, but this may not always be possible.  

The second problem is the extension of this slab justification for two temperatures to 

other symmetrical geometries. The full form of the heat balance equation for 

symmetrical geometries is given as: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝑗

𝑥

𝜕𝑇

𝜕𝑥
) + 𝜌𝑄𝐴𝑒−

𝐸
𝑅𝑇 (2-55) 

Where 𝑗 = 0 for an infinite slab, 𝑗 = 1 for an infinite cylinder, 𝑗 = 2 for a sphere, 𝑗 =

2.728 for a short cylinder, and 𝑗 = 3.28 for a cube. At the centre it can be shown using 

l'Hôpital's rule that as 𝑥 → 0; 

 
𝜕2𝑇

𝜕𝑥2
+

𝑗

𝑥

𝜕𝑇

𝜕𝑥
≈ (𝑗 + 1)

𝜕2𝑇

𝜕𝑥2
 (2-56) 

Such that the same finite difference approach can be applied and two temperatures is 

sufficient to determine the cross-point temperature. 

The specific heat capacity cannot always be assumed constant, as has been done up to 

this point, and is often a function of temperature over the range being used. If it is being 

treated as temperature dependent then the following form of equation (2-51) is to be 

used: 

 ln (
𝑑𝑇

𝑑𝑡
)|

𝑇=𝑇𝐶𝑃𝑇

+ ln𝐶𝑝(𝑇𝐶𝑃𝑇) = ln(𝑄𝐴) −
𝐸

𝑅𝑇𝐶𝑃𝑇
 (2-57) 
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If the relationship for specific heat capacity, 𝐶𝑝, as a function of cross-point temperature, 

𝑇𝐶𝑃𝑇, is known then ln (
𝑑𝑇

𝑑𝑡
)|

𝑇=𝑇𝐶𝑃𝑇

+ ln𝐶𝑝(𝑇𝐶𝑃𝑇) can be plotted against 1/𝑇𝐶𝑃𝑇 to 

obtain 𝐸 and 𝑄𝐴 in a similar manner as before. 

Sujanti et al. (1999) used this new method, now being referred to as the cross-point 

temperature method or the transient method, and the more established steady-state 

method to characterise the low-temperature oxidation of coal. Seven cylindrical baskets 

were used for the steady-state method but a constant value for 𝛿𝑐𝑟 was used for each 

basket. This means that the dependency of 𝛿𝑐𝑟 on both the activation energy and the 

Biot numbers were not accounted for, and will have implications when comparing the 

results of the methods. 

For the cross-point temperature method experiment, they used three thermocouples 

similar to Chen and Chong (1995), with 𝑇1 at the centre, 𝑇2 offset from this, and 𝑇3 offset 

from this. One cross-point is determined using these thermcouples using the following 

expression: 

 
𝑇3 − 2𝑇2 + 𝑇1

(Δ𝑟)2
+

𝑇3 − 𝑇1

2Δ𝑟
≈ 0 (2-58) 

The problem here is the same as that of Chen and Chong (1995), in that this term 

determines the cross-point at 𝑇2 while 𝑑𝑇/𝑑𝑡 is measured at 𝑇1, which is inconsistent 

with the equations. 

Despite these issues, Sujanti et al. appeared to have good results, with a good linear fit 

achieved for both methods, with the effects of these issues not obvious without further 

analysis. Variations were seen in both 𝐸 and 𝐴, but in general a higher value of 𝐸 

corresponds to a higher value of 𝐴, which indicates similar reactivates. To compare these 

results, they predicted critical ambient temperatures using the results of the cross-point 

temperature method for each basket, and for the steady-state methods. The predicted 

critical thicknesses compare well across the results of all the experiments. Again this 

shows that this method is a suitable alternative to the steady-state method. 
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2.4.3. Heat Release Method 

The heat release (HR) method is a method that was proposed at around the same time 

as the cross-point temperature method by Jones et al. (1996). They stated that no 

matter whether the experiment is run at a sub-critical or super-critical ambient 

temperature, when the sample it at or very close to the ambient temperature there 

must be no heat transfer between the ambient and the sample. At this point the sample 

temperature is assumed to be spatially uniform, although in reality it is thought that this 

is not the case, such that the following is true: 

 
𝜕𝑇

𝜕𝑡
|
𝑇=𝑇∞

=
𝑄𝐴

𝐶𝑝
𝑒

−
𝐸

𝑅𝑇∞  (2-59) 

This is very similar to the cross-point temperature assumption, except this occurs when 

the sample is equal to the ambient temperature, rather than at the cross-point 

temperature. In a similar way to the cross-point temperature method, the logarithmic 

form is expressed as: 

 ln (
𝑑𝑇

𝑑𝑡
)

𝑇=𝑇∞

= −
𝐸

𝑅𝑇∞
+ ln

𝑄𝐴

𝐶𝑝
 (2-60) 

Plotting ln 𝑑𝑇/𝑑𝑡 when 𝑇 = 𝑇∞ against 1/𝑇∞ as before allows the reaction kinetics to 

be determined. Jones et al. noted that it has been postulated that the existence of 

peripheral self-heating means the assumption that the sample is spatially uniform may 

be wrong, for which they suggested a modification to the analysis. Nonetheless, they 

suggested that this method is capable of characterising self-heating materials 

effectively. In a second paper Jones et al. (1996) used this method to characterise two 

different Scottish bituminous coals. They successfully used this method to relatively 

characterise them, i.e. being able to determine which is more likely to self-heat, but 

without comparing to the steady-state method, it is not known how reliable this method 

is. 

Chen (1999) sought to compare the validity of the heat release and cross-point 

temperature methods, and the extent to which the cross-point temperature departs 

from that of the oven. They noted that Nugroho et al. (1998) compared a number of 

methods in their assessment of Indonesian coals and showed that the cross-point 

temperature method and the steady-state method gave practically the same results. 
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Sujanti et al. (1999) also showed this. Nugroho et al. also noted in comparing these 

experimental techniques that it is difficult to assess the validity of the heat release 

method as it ignores the fundamental principle of the cross-over temperature effect. 

Chen noted that in some cases the cross-point temperature method and the heat 

release method can yield similar results, although in some cases the results can be 

significantly different. In directly comparing the cross-point temperature, 𝑇𝐶𝑃𝑇, to the 

oven temperature, 𝑇∞, he observed that they are relatively close for low temperatures, 

which for testing sawdust was approximately 180°C, and for milk powder approximately 

130°C. As the oven temperature increased, so did the departure of the cross-point 

temperature from it, with temperature differences up to 10°C observed in sawdust and 

30°C observed in milk powders. 

Plotting the HR and CPT plots together shows, the HR method produces a line of similar 

slope, but a significantly higher y-axis intercept, corresponding to ln(𝑄𝐴/𝐶𝑝). The 

slopes for the wood sawdust tests strongly agree, whilst there is more of a difference 

between the slopes of the milk powder plots. The departure of the cross-point 

temperature from that of the oven is attributed to the how the reaction initially begins 

in the regions away from the centre of the material, with the centre temperature initially 

at a temperature much less than that of the oven. This is deduced from the comparison 

of the cross-point temperature and oven temperature. As the cross-point temperature 

increases, which occurs for increasing basket sizes, the departure also increases. For 

larger baskets, heating in the regions away from the centre and closer to the edges 

occurs to a greater extent before the reaction at the centre begins to speed up, thus 

increasing the cross-point temperature.  

It is difficult to know beforehand whether the heat release method will be suitable for 

the material used. For particulate materials in particular, Chen recommend the cross-

point temperature method, although there may be an element of bias here. This analysis 

also illustrates the importance of accurate placement of the thermocouples in the CPT 

method. A suitable distance between the two (or three) thermocouples is important, as 

too great a distance is analogous to the HR method, whereby the extent of periphery 

self-heating can affect the results. 
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Malow and Krause (2004) sought to compare the steady-state, cross-point temperature 

(CPT), and heat release (HR) methods for a number of thermally unstable materials. 

These methods are referred to as the self-heating experiments and are run at constant 

ambient temperatures. Two different methods that utilise differential scanning 

calorimetry (DSC) are also used. These methods are the Ozawa-Flynn-Wall method and 

the Kissinger-Akahira-Sunose method and will be discussed in more detail in later 

sections. These methods are known as the temperature programmed experiments as 

they are run at a programmed constant heating rate. The materials tested were a 

German lignite coal dust, a cork dust, a riboflavin (vitamin B2), and a detergent powder. 

This paper is of particular interest because it is one of few, if not the only, paper that 

seeks to characterise self-heating in a detergent powder, even though no details of the 

formulation are shared. 

The results of these methods are compared. For the lignite coal dust, cork dust, and the 

riboflavin, it was found that the results of the steady-state method and CPT method 

agree very well, but the HR method give slightly higher activation energy values. For the 

detergent powder, the steady-state and CPT methods again agree well, but the HR 

method gives much higher activation energy values. This confirms that the HR method 

is not suitable for use with detergent powders, which can be explored later. It can be 

seen for all samples that the cross-point temperature is much higher than the ambient 

temperature, particularly in the case of the detergent powder. It can also be seen that 

the higher the ambient temperature, the higher the difference between the cross-point 

temperature and the ambient temperature. This is in agreement with the observations 

of Chen (1999) and it is thought that this is what leads to differences in these methods. 

The uncertainty in these measurements are attributed to a 2°C error in thermocouple 

readings, and an uncertainty in 𝑑𝑇/𝑑𝑡 of approximately 5%. 

 

2.4.4. DSC and TGA Methods for determining nth Order Reaction Kinetics 

Two differential scanning calorimetry (DSC) based, isoconversional methods are 

commonly used in measuring the kinetics of self-heating reactions, the Ozawa-Flynn-

Wall approach, proposed independently by Ozawa (1965) and Flynn and Wall (1966), 

and the Friedman method (1964). Prior to these methods being proposed, Flynn and 
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Wall stated that cumbersome curve-fitting techniques were typically used to fit kinetics 

to thermogravimetric data, which often involved fitting for an unknown order 𝑛. In many 

cases where a simple order is not followed, this would lead to poor results. This was in 

the 1960’s and although curve fitting is not the computationally expensive process it 

used to be, these alternative isoconversional methods are still of interest. These two 

methods were independently proposed to provide a model independent estimate of the 

activation energy without any assumptions regarding the form of the kinetic equation, 

other than that the system is of Arrhenius type temperature dependence. 

The Friedman method can be described as a differential isoconversional method, whilst 

the Ozawa-Flynn-Wall approach can be described as an isoconversional integral 

approach. Both of these approaches were originally proposed as thermogravimetric 

analysis (TGA) methods, based on sample weight loss with increasing temperature, but 

they can also be used with differential scanning calorimetry (DSC). In doing so the degree 

of conversion of the reaction is used. 

Both of these approaches are based on the following single-step reaction: 

 
𝑑𝛼

𝑑𝑡
= 𝑓(𝛼)𝑘(𝑇) (2-61) 

Where 𝛼 is the degree of conversion, 𝑓(𝛼) is the kinetic model, and 𝑘(𝑇) is the rate 

constant which can be substituted for the Arrhenius equation: 

 𝑘(𝑇) = −𝐴 𝑒−
𝐸
𝑅𝑇 (2-62) 

 

2.4.4.1. The Friedman Method 

The Friedman method is the more straightforward of the two methods to derive 

mathematically, but requires more mathematical manipulation of the data to determine 

the results. The Friedman method uses the logarithmic form of equation (2-61) as the 

basis of its approach, and in originally proposing it Friedman used the sample mass 

instead of the conversion: 

 ln [(−
1

𝑤0
) (

𝑑𝑤

𝑑𝑡
)] = ln 𝑓 (

𝑤

𝑤0
) + ln𝐴 −

𝐸

𝑅𝑇
 (2-63) 

In terms of conversion this can be expressed as: 
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 ln
𝑑𝛼

𝑑𝑡
= ln 𝑓(𝛼) + ln𝐴 −

𝐸

𝑅𝑇
 (2-64) 

Using the method, the kinetics can be found by plotting ln [(−
1

𝑤0
) (

𝑑𝑤

𝑑𝑡
)] or ln

𝑑𝛼

𝑑𝑡
 against 

1/𝑇 for mass loss curves at different heating rates, and for isoconversional fractions, i.e. 

constant values of conversion 𝑤/𝑤0. From this plot, the activation energy can be found 

from the slope of the line, −𝐸/𝑅, while the pre-exponential factor can be found from 

the intercept, ln 𝐴 + ln 𝑓(𝑤/𝑤0). In proposing this approach, Friedman (1964) 

measured the kinetics of the thermal degradation of Fibreglass-reinforced CTL 91-LD 

phenolic resin. 12 conversional values were chosen at equal intervals and the value of 

the activation energy, 𝐸, measured. 

In order to determine the pre-exponential factor, 𝐴, Friedman plotted the intercept 

ln 𝐴 + ln 𝑓(𝑤/𝑤0) against the conversion 𝛼. Although not a straight line, the smooth 

curve produced confirmed that the kinetics were consistent. For this material 𝑓(𝑤/𝑤0) 

was assumed to take the form: 

𝑓 (
𝑤

𝑤0
) = [

𝑤 − 𝑤𝑓

𝑤0
]
𝑛

 

It this holds true, then a plot of the intercept ln 𝐴 + ln 𝑓(𝑤/𝑤0) against ln[(𝑤 − 𝑤𝑓)/

𝑤0] should give a straight line of slope 𝑛 and intercept ln 𝐴. For the resin used, a straight 

line was formed, although there was some deviation at higher weights, attributed to 

contributions of early weight loss, allowing the order of the reaction, 𝑛, and the pre-

exponential factor, 𝐴, to be measured. These results compared well with other methods 

and proved this to be a valid approach.  

2.4.4.2. The Ozawa-Flynn-Wall Method 

The Ozawa-Flynn-Wall approach was a method proposed independently by Ozawa 

(1965) and by Flynn and Wall (1966) and requires some more mathematical 

manipulation. For measurements with a constant heating rate, 𝛽, (i.e. 𝑇 = 𝑇0 + 𝛽𝑡), 

integrating equation (2-61) gives: 

 𝐺(𝛼) = ∫
𝑑𝛼

𝑓(𝛼)

𝛼

0

=
𝐴

𝛽
∫ 𝑒−

𝐸
𝑅𝑇  𝑑𝑡

𝑇

𝑇0

 
(2-65) 

Taking the logarithm of this gives: 
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 ln 𝐺(𝛼) = ln (
𝐴𝐸

𝑇
) − ln𝛽 + ln 𝑝(𝑥) (2-66) 

In this equation 𝑥 = 𝐸/𝑅𝑇 and: 

 𝑝(𝑥) =
e−x

𝑥
− ∫

𝑒−𝑥

𝑥

𝑥

∞

𝑑𝑥 (2-67) 

Doyle (1962) proposed the following approximation for the solution to this expression: 

 ln 𝑝(𝑥) ≈ −5.3305 + 1.052𝑥 (2-68) 

Applying this approximation to equation (2-66) gives: 

 ln 𝛽 = ln (
𝐴𝐸

𝑅
) − ln 𝐺(𝛼) − 5.3305 + 1.052

𝐸

𝑅𝑇
  (2-69) 

It can be seen from this expression that when ln 𝛽 is plotted against 1/𝑇 for 

isoconversional fractions and a series of measurements at heating rates of 𝛽1 …𝛽𝑗, a 

straight line is formed with a slope of 1.052𝐸/𝑅. The temperature 𝑇𝑗𝑘 at which the 

conversion 𝛼𝑘 is achieved is taken at the heating rate 𝛽𝑗. Ozawa applied this approach 

to two reactions: the decomposition of calcium oxalate into calcium carbonate and 

carbon monoxide, and the thermal degradation of nylon 6. The results from using this 

approach are in agreement with values reported in literature. 

The approximation of the exponential integral in equation (2-67) has significant errors 

associated with it. For values of 31 < 𝑥 < 47 the errors are smaller than 1%, but for 

values of 𝑥 < 25 or 𝑥 < 100 these errors are in excess of 3%. A correction for this was 

suggested by Flynn (1983). Flynn provided a table of values from which to determine the 

correction, while Opfermann and Kaisersberger suggest the empirical correction factor 

in equation (2-70). Firstly 𝐸 is estimated using equation (2-69), the mean temperature 

𝑇𝑚 is determined, and from this the mean value for 𝑥𝑚 = 𝐸/𝑅𝑇𝑚 is determined. This is 

used to determine the empirical correction factor 𝐹(𝑥); 

 𝐹(𝑥) = 𝑎0 (1 +
𝑎1 + 𝑥

1 + 𝑎2𝑥 + 𝑎3𝑥2
). 

(2-70) 

Where 𝑎0 = 0.94961, 𝑎1 = 7.770439, 𝑎2 = 4.56092, and 𝑎3 = 0.48843. The 

corrected activation energy, 𝐸𝑐𝑜𝑟𝑟, is calculated by dividing the first estimate of 𝐸 by the 

correction factor 𝐹(𝑥𝑚). 

Venkatesh et al. (2013) compared these two approaches in determining the kinetics of 

decomposition of Nitroimidazoles. They noted that the Ozawa-Flynn-Wall method is 
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suited to measuring kinetics of systems where multiple reactions are occurring, such 

that the activation energy is observed to vary with time. If these reactions are of widely 

different types, such that they have largely different activation energies, then this 

method may fail. They also noted that the Ozawa-Flynn-Wall method is less accurate 

than the Friedman method. This may be because of the approximations associated with 

the Ozawa-Flynn-Wall method. If the activation energy, 𝐸, is dependent on the 

conversion, 𝛼, or if competitive reactions are occurring then the values obtained using 

these methods are found to be different. On the other hand, if the activation energy is 

independent of the conversion, then these two methods should measure the same 

values. 

2.4.4.3. Applications of these Methods 

As mentioned Venkatesh et al. (2013) used both of these methods to analyse the 

thermal decomposition of Nitroimidazoles. They showed that multi-step reactions were 

occurring, evident from the nonlinear relationship observed between the activation 

energy and the conversion. They also showed the two methods to have variations in 

their results, and attributed this to the approximations used for the temperature 

integral in the Ozawa-Flynn-Wall method. This may also be because they did not use the 

correction factor proposed by Flynn (1983) for the Ozawa-Flynn-Wall method. 

Pielichowski et al. (1998) used these two methods to determine the kinetics of 

gelatinisation of potato starch using DSC. Although both methods were used, the 

comparison of the two methods was never mentioned, and only one set of results was 

shared. Again it is worth noting that they did not use the correction factor in the Ozawa-

Flynn-Wall method. The results showed that 𝐸 changed with conversion, suggesting that 

a single-step reaction model was not appropriate. Instead a double-step reaction was 

fitted using non-linear regression, where the first reaction is of nth order scheme, and 

the second is of three-dimensional diffusion Jander’s type. This model was found to 

approximate the reaction very well. 

Opfermann and Kaiserberger (1992) simulated reactions and used the Ozawa-Flynn-

Wall and Friedman methods to characterise them. In doing so, two reactions were 

simulated, a single step reaction, and a double step reaction. For the single step reaction, 

both methods accurately measured the kinetics. The double step reaction was not so 
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simple. These methods measured the kinetics well in the regions where the two 

reactions were sufficiently isolated, i.e. 𝛼 < 0.3 and 𝛼 > 0.8. Unlike the work of 

Venkatesh et al. (2013), Opfermann and Kaiserberger showed the Ozawa-Flynn-Wall 

method to be more reliable. They also showed this method to be less sensitive to noise 

due to its integral nature. However, the Friedman method was showed to provide better 

visual separation of the different reaction steps, and more detail with regards the 

presence of an auto-catalytically activated process. 

As mentioned in section 2.4.3, Malow and Krause (2004) compared the basket heating 

method with DSC methods for determining overall activation energies for self-heating 

materials. The DSC methods used were the Ozawa-Flynn-Wall and Kissinger-Akahira-

Sunose methods. The materials tested were a German lignite coal dust, a cork dust, a 

riboflavin (vitamin B2), and a detergent powder. The results of the DSC methods were 

all in reasonable agreement with the results from the basket heating methods, except 

for the riboflavin. This was possibly due to a phase transition underlying the 

decomposition reaction. The DSC curves for cork dust had a second peak. This suggested 

that consecutive reactions may be occurring in this sample, a feature that would be 

difficult to measure using the basket heating methods. Despite this, the activation 

energy was not shown to be dependent on the conversion, and suggested that no 

consecutive reactions were occurring.  The other samples shown a similar lack of 

conversion dependence. DSC based methods may prove to be a good alternative to the 

basket heating methods, although the erroneous results of riboflavin, and the possibility 

of consecutive reactions, shows that a degree of caution is required. 

 

2.4.5. DTG Curve Fitting Method for determining nth Order Reaction Kinetics 

The DTG (differential thermogravimetry) curve fitting method is a means of measuring 

apparent kinetics proposed by Yang et al. (2001). This approach measures the apparent 

kinetic parameters from the overall weight loss behaviour of polymers undergoing 

thermal decomposition, although this approach can be adapted for other materials. 

Yang et al. noted that researchers are often more interested in weight loss behaviour 

rather that the complex chemical mechanisms at work during thermal decomposition. 
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The following Arrhenius expression is fitted to experimentally measured weight loss 

data to determine the kinetic parameters: 

 
𝑑𝑊

𝑑𝑡
= 𝐴𝑒−

𝐸
𝑅𝑇(1 − 𝑊)𝑛 (2-71) 

𝑊 is the sample weight, 𝐸 is the apparent activation energy, 𝐴 is the pre-exponential 

factor, and 𝑛 is the order of the reaction. The advantage of this method is that only one 

DTG curve is required to determine the kinetic parameters. They used this method to 

measure the apparent kinetics of six plastics: HDPE, LDPE, PS, PP, PVC, and PET. The DTG 

measured kinetics were compared with those measured using the Friedman method. 

The DTG curve fitting method follows the workflow documented in Figure 2-9. The 

software iterates through all possible combinations of 𝐸 and 𝑛, determining the best fit 

parameters using the method of least squares. The least square method uses the 

following equation: 

 𝜀 = ∑[(
𝑑𝑊

𝑑𝑡
)
𝑒𝑥𝑝

− (
𝑑𝑊

𝑑𝑡
)
𝑓𝑖𝑡

]

2

 (2-72) 

(𝑑𝑊/𝑑𝑡)𝑒𝑥𝑝 is the experimentally measured DTG data, and (𝑑𝑊/𝑑𝑡)𝑓𝑖𝑡 is the fitted 

value. The start and end temperature of the thermal decomposition, and the peak of 

the maximum decomposition rate were all input into the software. It is unclear how 

Yang et al. determine the best fit value of 𝐴 as it is not included in their workflow. This 

approach is also inefficient in that it fits every combination of 𝐸 and 𝑛 instead of applying 

a different approach where the best fit parameters are closed in on. Other software 

packages with curve fitting software such as MATLAB may be more appropriate.  

This method was used to measure the thermal decomposition kinetics of high-density 

polyethylene (HDPE). Using a Seiko 220 TG/DTA instrument, the mass loss of a sample 

between 3 and 5mg was measured at constant ramped heating rates. For experiments 

carried out at heating rates of 2, 5, 10, and 20°C/min, the fittings determined the 

apparent activation energies to be 242, 262, 242, and 264 kJ mol-1 respectively. Using an 

activation energy of 242 kJ mol-1 the simulated curves fitted very well to the 

experimental data for the 0-80% portion of the curve. When using an activation energy 

of 262 kJ mol-1 the simulated curves fitted very well to the experimental data for the 20-

100% portion of the curve. Although Yang et al. did not note it, this may be due to a 

temperature dependence of the activation energy, or due to a two-step reaction 
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occurring. These results compared very well to those measured using the Friedman 

method, which exhibit the same temperature dependence feature. This is to be 

expected given that the two methods are derived from the same equations. They did 

note that the Friedman method required 10 hours of computation time, in comparison 

to the 1 hours required by the DTG curve fitting method, although this does not make 

sense, as the Friedman method is in no way computationally difficult. The DTG curve 

fitting method was successfully used to measure the apparent kinetics of other plastics. 

This shows that the DTG curve fitting approach should be considered as a possible 

alternative to the Ozawa-Flynn-Wall and Friedman methods for determining these 

kinetics. 

 

Figure 2-9: The workflow of the DTG curve fitting program used by Yang et al. (2001). 

 

2.5. Numerical Modelling of Self-Heating Powder Systems 

Ignition in self-heating systems can be difficult to predict and analytical solutions to the 

equations governing their behaviour can only be found for the simplest of cases. In order 

to effectively predict the behaviour of these systems it is necessary to model the 

complex processes that occur in these systems. The self-heating of detergent powders 
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has not been explored in the literature and as such it is necessary to explore other 

applicable areas which can be used to model these systems. Additionally the problem of 

self-heating has not be explored from the point of view of limiting the charring of 

material, and instead the focus is typically on predicting thermal runaway or the 

smouldering behaviour of materials. The models in literature are used to predict the 

evolution of temperature, moisture content, vapour concentration, and reaction species 

concentrations as a function of space and time. One approach explored is that taken by 

Chen (1994) (2001), and Chong and Chen (1999), in which the self-heating of physical 

entities such as a coal stockpiles or baskets of milk powder are subjected to cross-point 

temperature method testing. Another approach explored is taken by Krause and 

Schmidt (2001), Krause et al. (2006), and Muramatsu et al. (1979) in which models are 

used to replicate the smouldering behaviour of some materials, where more complex 

reactions and species transfer are modelled, with less of an emphasis on particle drying. 

 

2.5.1. Modelling of Zero-Order Reactions in Stockpiles and Baskets 

For some materials, being able to effectively model the drying is key to being able to 

accurately predict self-heating. In the modelling of self-heating in coal stockpiles, Chen 

(1994) stated that previous studies have shown that the heat of drying increases with 

reducing moisture content of the coal. It was observed that there are three distinctive 

energy levels, each corresponding to the vaporisation of different types of moisture 

(from lowest heat of drying to highest): free moisture, loosely bound moisture, and 

tightly bound moisture. This drying is expected to impact on the temperature-time 

profiles during the self-heating process. A simple model of self-heating in coal was 

proposed which follows the following assumptions: 

 The moisture in the gas stream is in equilibrium with the moisture in the coal. 

 Heat transfer in the bed is by conduction, and in the gas stream by convection. 

 Mass transfer of oxygen is by diffusion and convection. Mass transfer of moisture 

is by convection. 

 The dry gas flow-rate is constant, and independent of space and time. 

 The local temperatures of the solid and gaseous are equal. 
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 The heat of oxidation is constant. The heat of drying/wetting is dependent on 

the moisture content of the coal. 

Using this model, Chen solved for steady-state solutions to determine the maximum 

possible temperatures at different moisture contents. A qualitative plot of the predicted 

maximum temperatures as a function of moisture contents for three different heats of 

drying is shown in Figure 2-10. 𝐻𝑤,1 is the lowest heat of drying while 𝐻𝑤,3 is the highest. 

As free moisture is evaporated first, the temperature rise would follow curve 1. Once 

enough moisture has been evaporated, a stepwise change would occur and the 

temperature rise would follow curve 2, before doing the same with regards curve 3. This 

change in the temperature rise as moisture content reduces is represented by the red 

line. It is possible that as moisture content decreases the heat generated by the 

oxidation of the coal may slow down or even stop because it is not sufficient to drive off 

the remaining moisture. This model was shown to be capable of predicting self-heating 

and spontaneous ignition in moist coal. Without this stepwise change, the model does 

not agree with observations as well. 

 

Figure 2-10: Maximum possible temperatures as a function of the moisture content of 
the coal and for the three different heats of drying. The red line indicates the stepwise 

change in the heat of drying as the moisture content of the coal decreases. 

  

In this later work Chen (2001), and Chong and Chen (1999) built on this work to propose 

a model for predicting the self-heating behaviour of spray dried food powders. Chen 

(2001) aimed to model the basket heating procedure and cross point behaviour as 

observed in the novel method of Chong et al.  (1996), while Chong and Chen (1999) 

explored the influence that different parameters have on the model heat and mass 
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transfer predictions. Effectively the same model is used in both of these works. This 

model does not account for oxygen transport, but instead has a more complex model of 

moisture transport. 

For this model, the moisture transport within the system involves the evaporation of 

moisture from the particles to the void in the powder mass. This moisture then diffuses 

through the voids, out towards the outer boundary of the powder domain, where it is 

carried into the ambient air by means of convection. Similar to the previous model, a 

number of assumptions are applied, these are: 

 Reactant consumption (i.e. oxygen and solid reactants) is assumed negligible. 

 No convection occurs within the powder mass. 

 Newtonian cooling is assumed at the outer boundary. 

 The thermal conductivity and diffusion coefficient of water vapour in air is 

assumed constant. 

 The solid particle, moisture, and gas in the voids are assumed to be at the same 

local temperature. 

 Negligible moisture transfer occurs via solid contacts, and the moisture transfer 

from the inner powder mass to the outer boundary is assumed to occur by 

diffusion of water vapour. 

With these assumptions in place, the following governing equation for energy 

conservation in the powder mass, accounting for drying of the powder, is defined as: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘∇2𝑇 + 𝜌𝑠𝑑𝑄𝐴𝑒−

𝐸
𝑅𝑇 + 𝜌𝑠𝑑𝐻𝑣

𝜕𝑋

𝜕𝑡
 (2-73) 

Here the first term is the local rate of enthalpy change in the solid, the second is the 

conductive heat transfer in the solid, the third is the heat generation term of the lumped 

exothermic reactions, and the fourth is the rate of heat release due to drying. With 

regards the parameters, 𝜌 is the density (kg m-3), 𝐶𝑝 is the specific heat capacity 

(J kg-1 K-1), 𝑘 is the thermal conductivity (W m-1 K-1), 𝜌𝑠𝑑  is the solid density (kg m-3), 𝑄 is 

the heat of reaction (J kg-1), 𝐴 is the pre-exponential factor (s-1), 𝐸 is the activation 

energy (J mol-1), 𝐻𝑣 is the heat of drying/wetting (J kg-1), and 𝑋 is the moisture content 

of the solid on a dry basis (kg kg-1). The Laplacian of the second term can be expanded 

for regular geometries to: 
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 𝑘∇2𝑇 = 𝑘 (
𝜕2𝑇

𝜕𝑥2
+

𝑗

𝑥

𝜕𝑇

𝜕𝑥
) (2-74) 

Here, 𝑗 is the shape factor and is equal to 0 for an infinite slab, 1 for an infinite cylinder, 

2 for a sphere, 3.28 for a cube, or 2.728 for an equi-cylinder (cylinder of equal height 

and diameter). This shape factor is the same as that used by Boddington et al. (1971) in 

determining the critical parameter 𝛿𝑐𝑟 for arbitrary geometries. This was shown to gives 

values of 𝛿𝑐𝑟 that did not agree with those determined analytically. Although the shape 

factor leads to the correct Laplacian term for an infinite slab, infinite cylinder, and 

sphere, it is unclear as to why these shape factors can be used as an approximation to 

reduce 3-dimensional heat transfer to 1-dimensional for an equi-cylinder or cube. This 

approach is questionable and needs to be validated by comparing a 2D axisymmetric or 

3D models with this shape factor based model. 

Unlike the model of Chen (1994), oxygen consumption is assumed negligible, meaning 

only the mass transfer of the moisture in the system needs to be accounted for. There 

are two mass conservation equations in this model, the first representing the liquid 

water within the solid particles, and the second representing the water vapour in the 

voids between the particles. The first of these is given by: 

 −𝜌𝑠𝑑

𝜕𝑋

𝜕𝑡
= ℎ𝑚,𝑖𝑛𝐴𝑝𝑛𝑝(𝑌𝑠,𝑖𝑛 − 𝑌) (2-75) 

Where ℎ𝑚,𝑖𝑛 is the effective mass transfer coefficient between the particles and the gas 

in the voids (m s-1), 𝐴𝑝 is the surface area of one particle (m2), 𝑛𝑝 is the number of 

particles per unit volume (m-3), 𝑌𝑠,𝑖𝑛 is the vapour concentration at the surface of the 

particle (kg m-3), and 𝑌 is the vapour concentration in the voids (kg m-3). The effective 

mass transfer coefficient in the above equation is chosen such that it reflects the 

influence of the diffusivity of water on the solid particles. The diffusivity of water in the 

solid particles is of the order of 1x10-10 to 1x10-12 m2 s-1 at low water contents, in 

comparison to the diffusivity of water vapour in air which is of the order of 2x10-5 m2 s-1. 

Taking ℎ𝑚,𝑖𝑛 as the overall mass transfer coefficient through a solid and air layer, and 

assuming a stagnant layer of 50μm, the effective mass transfer coefficient is of the order 

of 2x10-6 to 2x10-8 m s-1. 

In defining the vapour concentration at the surface of the particles, 𝑌𝑠,𝑖𝑛, it is necessary 

to first define the relative humidity at the surface of these particles, 𝑅𝐻𝑠, as: 
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 𝑅𝐻𝑠 =
𝑝𝑠,𝑖𝑛

𝑝𝑠𝑎𝑡
≈

𝑌𝑠,𝑖𝑛

𝑌𝑠𝑎𝑡
 (2-76) 

Where 𝑝𝑠,𝑖𝑛 and 𝑝𝑠𝑎𝑡 are the partial pressures at the surface of the particle and at 

saturation respectively (Pa), and can be approximated by the ratio of vapour 

concentrations. The temperature dependence of 𝑌𝑠𝑎𝑡 can then be expressed as: 

 𝑌𝑠𝑎𝑡(𝑇) = 𝐾𝑣𝑒
−

𝐸𝑣
𝑅𝑇 (2-77) 

Where 𝐾𝑣 is the apparent reaction frequency for evaporation (kg m-3), and 𝐸𝑣 is the 

activation energy for pure water evaporation (J mol-1). Substituting this into equation 

(2-75) gives the following expression for the conservation of water in the particles: 

 
𝜕𝑋

𝜕𝑡
=

ℎ𝑚,𝑖𝑛𝐴𝑝𝑛𝑝

𝜌𝑠𝑑
(𝑅𝐻𝑠𝐾𝑣𝑒

−
𝐸𝑣
𝑅𝑇 − 𝑌) (2-78) 

In this expression the relative humidity needs to be calculated. In this work, Chong and 

Chen correlated this value using a Reaction Engineering Approach (REA). The REA was 

proposed by Chen (1997) and is a means of modelling drying kinetics by applying 

chemical reaction engineering principles. This approach assumes that evaporation is a 

first order activation process with an energy barrier to overcome, taking the form of an 

activation energy. Condensation is assumed to be a zero order process without such a 

barrier. The dynamic process of drying and the equilibrium state of drying are then 

unified in this approach. In this approach, the following Arrhenius equation is used to 

express the relative humidity at the particle surface: 

 𝑅𝐻𝑠 = 𝑒−
Δ𝐸𝑣
𝑅𝑇  (2-79) 

Where Δ𝐸𝑣 is the apparent activation energy (J mol-1), although Chen (1997) (1998) 

often refers to this as an additional activation energy or the activation energy correction 

factor, which seems more appropriate. It is so called because it is effectively energy 

required in addition to the activation energy of pure water evaporation, which accounts 

for the added difficulty in removing water as the water content decreases. The equation 

for Δ𝐸𝑣 is a purely empirical fitting and the self-heating model of Chen (2001), and Chong 

and Chen (1999) was defined as: 

 Δ𝐸𝑣 =
𝑎𝑋−𝑏

𝑇𝑛−1
 (2-80) 
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Where 𝑎, 𝑏, and 𝑛 are positive constants, with 𝑛 reflecting the strength of the 

temperature dependence of this expression. These coefficients are different for whole 

and skimmed milk powders and reflect the difference in drying of the two powders. This 

is not the only expression used to define Δ𝐸𝑣. Chen (1997) used the following expression 

in addition to that in equation (2-80) in correlating the additional activation energy for 

Bambara groundnut: 

 Δ𝐸𝑣 =
𝑎 𝑒−𝑏𝑋𝑗

𝑇𝑛−1
 (2-81) 

This expression is more difficult to fit. 𝑛 and 𝑗 are value found by trial and error, while 𝑎 

and 𝑏 are fitting parameters greater than zero. 𝑛 was found to be the most important 

parameter in collapsing the data at different temperatures onto a single curve. Chen 

(1998) used the following expressions, which are solely a function of moisture content: 

 

Δ𝐸𝑣 =
𝑎

𝑋
+ 𝑏, 

Δ𝐸𝑣 = 𝑎𝑋 − 𝑏, 

𝑜𝑟 Δ𝐸𝑣 =
𝑎

𝑋2
+

𝑏

𝑋
+ 𝑐 

(2-82) 

These polynomials were used to successfully examine the isotherms of 19 different 

materials from other literature, including rice, peppers, and yoghurt. A ratio of the 

additional activation energy to the equilibrium activation, Δ𝐸𝑣 the maximum of the 

drying air, Δ𝐸𝑣,∞, is also used: 

 

Δ𝐸𝑣

Δ𝐸𝑣,∞
= 𝑎 ⋅ exp(−𝑏(𝑋 − 𝑋∞)𝑗), 

𝑜𝑟 
Δ𝐸𝑣

Δ𝐸𝑣,∞
= 𝑎(𝑋 − 𝑋∞)3 + 𝑏(𝑋 − 𝑋∞)2 + 𝑐(𝑋 − 𝑋∞) 

(2-83) 

Where Δ𝐸𝑣,∞ is defined as: 

 Δ𝐸𝑣,∞ = 𝑅𝑇∞ ln(𝑅𝐻∞) (2-84) 

These expressions have been used by Chen (2008) and Chen and Xie (1997) in measuring 

the drying of pulped kiwifruit, apple and potato slices, silica gel, and single milk powder 

droplets, and by Putranto et al. (2011) in the drying of mango and apple tissue. 
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The additional activation energy accounts for the added difficulty in drying at low 

moisture contents. From the outlined equations, it can be seen that when water covers 

the entire surface of the solid this correction term reduces to zero, with relative 

humidity increasing to unity and drying reducing to evaporation from a pure water 

surface. The REA is a simple and robust approach capable of describing drying behaviour 

with minimal experiments required to yield the necessary model parameters. There is 

no evident relationship between the REA and other drying theory. However, in 

modelling self-heating powder this approach was considered sufficient.  

Returning to the self-heating models of Chen (2001), and Chong and Chen (1999), the 

heat of wetting/drying, 𝐻𝑣, the heat required to remove water from the solid particles, 

or the heat released when wetting occurs, is correlated to the oven temperature and 

the relative humidity as follows: 

 𝐻𝑣 = 𝐿𝑣 − 𝑓
𝑅𝑇

𝑀𝐻2𝑂
ln(𝑅𝐻𝑠) (2-85) 

𝐿𝑣 is the latent heat of vaporisation of water (J kg-1) and 𝑀𝐻2𝑂 is the molecular mass of 

water (kg mol-1). In this model, 𝑓 is assumed to be the same as 𝑛 used in the relative 

humidity correlation. 

The mass balance for the water vapour in the voids between the particles, 𝑌, is given by; 

 
𝜕𝑌

𝜕𝑡
= 𝜀𝐷 (

𝜕2𝑇

𝜕𝑥2
+

𝑗

𝑥

𝜕𝑌

𝜕𝑥
) − 𝜌𝑠𝑑

𝜕𝑋

𝜕𝑡
 (2-86) 

Where 𝜀 is the porosity/void fraction of the powder bed, and 𝐷 is the diffusion 

coefficient for water in air (m2 s-1). In this expression the last term represents the 

addition/removal of vapour to the voids due to the rate of decrease/increase of 

moisture content in the solid particles. 

A symmetrical boundary condition is applied at the basket centre:  

For 𝑥 = 0 

 
𝜕𝑇

𝜕𝑥
= 0 (2-87) 

At the external boundary, the body is subjected to Newtonian cooling, such that; 

For 𝑥 = 𝑟 
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 −𝑘
𝜕𝑇

𝜕𝑥
= ℎ(𝑇 − 𝑇∞) (2-88) 

Where ℎ is the heat transfer coefficient between the bulk solid and the ambient air at 

the interface (W m-2 K-1), and 𝑇∞ is the ambient air temperature (K). Similarly boundary 

conditions are applied to the mass transfer in the system. At the centre of the body, 

because of symmetry: 

For 𝑥 = 0 

 
𝜕𝑌

𝜕𝑥
= 0 (2-89) 

At the boundary, the diffusion of vapour from the system is driven by the vapour 

concentration gradient between the boundary and the ambient air. This is expressed as: 

For 𝑥 = 𝑟 

 𝜀𝐷
𝜕𝑌

𝜕𝑥
= ℎ𝑚,𝑜𝑢𝑡(𝜌𝑠,𝑜𝑢𝑡 − 𝜌∞) (2-90) 

Where ℎ𝑚,𝑜𝑢𝑡 is the mass transfer coefficient between the outer surface and the 

ambient air (m s-1), 𝜌𝑠,𝑜𝑢𝑡 is the vapour concentration at the outer surface of the powder 

mass (kg m-3), and 𝜌∞ is the vapour concentration of the ambient air (kg m-3). 𝜌𝑠,𝑜𝑢𝑡 at 

𝑥 = 𝑟 is found from: 

 𝜌𝑠,𝑜𝑢𝑡 =
𝑌

𝜀
|
𝑥=𝑟

 (2-91) 

Using a series of water evaporation tests the heat and mass transfer coefficients were 

correlated empirically to the oven temperature. Similarly the specific heat capacity of 

the powder was correlated to the oven temperature for both whole and skimmed milk 

powder, as a sum of the fractions of the specific heat capacities of the individual 

components of the powder (i.e. fat, protein, carbohydrates, moisture, and ash). The heat 

capacity was then determined based on the porosity of the powder: 

 𝐶𝑝 = 𝜀𝐶𝑝,𝑎𝑖𝑟 + (1 − 𝜀)𝐶𝑝,𝑠𝑜𝑙𝑖𝑑𝑠 (2-92) 

This system of equations, consisting of the energy balance (2-73), the mass conservation 

equation for moisture in the solid particles (2-75), and the mass conservation equation 

for the vapour in the voids between the particles (2-86), were coupled together and 
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solved using the standard explicit method of finite differences. The model solver was 

written in FORTRAN. Using this method, the energy balance is expressed as: 

 

𝜌𝐶𝑝

𝑇𝑖
𝑚 − 𝑇𝑖

𝑚−1

Δ𝑡

= 𝑘 (
𝑇𝑖+1

𝑚−1 − 2𝑇𝑖
𝑚−1 + 𝑇𝑖−1

𝑚−1

Δ𝑥2
+

𝑗

𝑥𝑖

𝑇𝑖+1
𝑚−1 − 𝑇𝑖

𝑚−1

Δ𝑥
)

+ 𝜌𝑠𝑑𝑄𝐴𝑒
−

𝐸

𝑅𝑇𝑖
𝑚−1

+ 𝜌𝑠𝑑𝐻𝑣,𝑖
𝑚−1 (

𝑋𝑖
𝑚 − 𝑋𝑖

𝑚−1

Δ𝑡
) 

(2-93) 

Where Δ𝑥 is the distance increment, Δ𝑡 is the time increment, superscript 𝑚 represents 

elements of the current time increment, superscript 𝑚 − 1 represents elements of the 

previous time increment, subscript 𝑖 represents the current nodal element, and 𝑖 − 1 

and 𝑖 + 1 represent the directly adjacent nodes. 𝑖Δ𝑥 can be used in place of 𝑥𝑖. Chen 

(2001) used a forward difference for the first order difference in temperature. A central 

difference scheme for this term would reduce the order of the error from 𝑂Δ𝑥 to 𝑂Δ𝑥2. 

Stability, convergence and compatibility for this model was not discussed but is an issue 

that should be examined. A quasi-steady-state assumption was applied, assuming that 

𝜕𝑌/𝜕𝑡 = 0, thus implying that the moisture transfer from the solid particles to the voids 

is the limiting process.  

In solving the model the approach outlined in Figure 2-11 was followed. After retrieving 

the input data and initial conditions, the physical properties correlated to the oven 

temperature are calculated and the mesh is created. Once all required data is calculated 

the iterative process begins. First the boundary values of temperature, 𝑇, and vapour 

concentration, 𝑌, are calculated, followed by the values for relative humidity, 𝑅𝐻𝑠, and 

heat of wetting/drying, 𝐻𝑣, for the entire mesh. Finally the internal values of 

temperature, 𝑇, vapour concentration, 𝑌, and moisture content, 𝑋 are calculated. After 

writing these results to the output file, they are checked against the pre-set limits such 

that the iterative process is stopped if thermal runaway occurs or the time limit is 

exceeded. If these pre-set limits are not exceeded then the time increments by Δ𝑡 and 

the iterative procedure is repeated for the next time step. 
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Figure 2-11: Flow diagram of the method taken in solving the sets of equations 
outlined as part of the model proposed by Chen (2001) and Chong and Chen (1999).  

 

Using standard explicit finite differences to solve the system of partial differential 

equations is an inefficient, and potentially problematic approach. This explicit approach 

is only valid for 0 < Δ𝑡/Δ𝑥2 ≤ 0.5, and as such requires small time steps to be stable. 

Implicit methods with approximations for the non-linear terms would be much more 

suitable for solving this system of equations, as will be discussed later. 

Chong and Chen (1999) used to model to explore the sensitivity of the model 

parameters, and after having determine the most appropriate set of parameters, this 

model was used to simulate oven heated baskets of milk powder. The effect of the 

internal mass transfer coefficient, ℎ𝑚,𝑖𝑛, was explored. As mentioned, this value was to 

be considered as an overall mass transfer coefficient for a solid and air layer. This 

parameter determined the temperature at which the majority of the moisture 

evaporated, effectively creating a plateau in the temperature-time profile. As ℎ𝑚,𝑖𝑛 

increases, the plateau temperature decreases. By plotting moisture content-time 

curves, it can be seen that as ℎ𝑚,𝑖𝑛 increases the rate of evaporation increases, as would 
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be expected. For particularly high values of ℎ𝑚,𝑖𝑛, the moisture content at the basket 

centre was found to increase initially. This was because moisture that evaporates at the 

basket edges diffuses into the central region. 

The influence of surface relative humidity was determined by adjusting the parameter 

𝑛 in equation (2-80). As 𝑛 increases the “curvature” of the evaporation region is seen to 

increase, with higher values leading to thermal runaway faster. The heat of drying was 

adjusted by varying the parameter 𝑓 in (2-85). As 𝑓 increases, 𝐻𝑣 increases more sharply 

with falling moisture contents, and the rate of temperature rise in the evaporation 

region decreases. 

Finally the thermal conductivity, 𝑘, was adjusted. The influence of this can be easily seen 

from equation (2-73). Higher values of 𝑘 lead to a sharper temperature rise in the basket, 

although for all values of 𝑘 a lag in temperature rise is seen in the initial stages of the 

heating, relative to the experimentally measured basket central temperature. This 

difference was attributed to the fact that the oven was pre-heated before the basket 

was placed in it. This meant that the thermocouple was pre-heated before it was placed 

into the sample and thus may be giving false readings initially. 

Having determine the parameters which best reflected the observed behaviour, Chong 

and Chen compared this model to a greater range of experiments. For samples heated 

above 150°C, the model predicts the temperature profiles in the drying region 

reasonably well, but over predicts the temperatures after this. It was suggested that this 

may be because the thermal properties of the milk powder change at these higher 

temperatures. Similarly for ambient temperatures below 150°C, the model under-

predicted the temperatures at all stages. The lower temperatures in the drying region 

suggest that a lower value of ℎ𝑚,𝑖𝑛 is required here, suggesting that ℎ𝑚,𝑖𝑛 is also 

temperature dependent. The model was shown to at least quantitatively predict the 

temperature-time profiles observed experimentally, although more work is required to 

be able to accurately model this behaviour for a range of different conditions. 

Chen (2001) used this model to look at the cross-point temperature method. It was 

shown that this model replicates the experimentally measured basket temperatures for 

two thermocouples inserted at the centre and at 6mm from this. Having validated the 

model against this experimental data, Chen noted that the model accurately predicts 
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the cross-over behaviour observed. It was also seen that the difference between the 

cross-point temperature and the oven temperature increases with an increase in oven 

temperature. This again shows that the Heat Release method of Jones et al. (1996) may 

lead to significant errors. 

Secondly, Chen looked to confirm the premise that cross-points can be found 

“everywhere”. Essentially, along the same horizontal plane of the basket, different 

placements of the second thermocouple will exhibit their own cross-points, i.e. 

𝜕2𝑇/𝜕𝑥2 = 0. Chen showed this to be the case, and suggested that by using more of 

thermocouples in the sample, more cross-points can be measured, with each 

experiment yielding multiple data points. This approach may be problematic. There are 

assumptions with regards the cross-point. Firstly conduction is not considered in the 

basket axial direction. Secondly a simple finite difference approximation is used which 

may not adequately represent the temperature derivative term. With these 

assumptions, particularly the second, it may not be correct to use cross-points for 

different spacings of Δ𝑥 in the same plot. Also as Δ𝑥 approaches the basket radius, the 

cross-point temperature becomes more similar to the heat-release method, particularly 

for high Biot numbers. Ideally Δ𝑥 should be kept small. 

 

2.5.2. Implicit Finite Difference Methods 

The models of Chen (2001), and Chong and Chen (1999) were solved using a standard 

explicit finite difference scheme. As discussed, this approach may be problematic 

because it is only valid for 0 < Δ𝑡/Δ𝑥2 ≤ 0.5, and as such requires small time steps to 

be stable. Instead an implicit finite difference scheme would be much more robust. For 

a one-dimensional model the Crank-Nicolson implicit method or the fully implicit 

backwards method would be suitable, and much more stable. 

The Crank-Nicolson method is an approach that considers the partial differential 

equation to be satisfied at the mid time step 𝑛 + 1/2 (Smith, 1985). It is based on the 

trapezoidal rule and can be described by the stencil in Figure 2-12. 
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Figure 2-12: The stencil for a one-dimensional problem using the Crank-Nicolson 
method. 

 

Whereas the standard explicit scheme solves for one unknown point at the next time 

step of 𝑛 + 1 using three known points at the current time step of 𝑛, the Crank-Nicolson 

scheme solves for three unknown points at the next time step of 𝑛 + 1 using three 

known points from the current time step of 𝑛. Using this method, the basic energy 

balance, consisting of only the transient and conduction terms can be solved as: 

 𝜌𝐶𝑝

𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

Δ𝑡
= 𝑘 (

(𝑇𝑖−1
𝑛+1 − 2𝑇𝑖

𝑛+1 + 𝑇𝑖+1
𝑛+1) + (𝑇𝑖−1

𝑛 − 2𝑇𝑖
𝑛 + 𝑇𝑖+1

𝑛 )

2Δ𝑥2
) (2-94) 

The fully implicit backwards method is similar but does not rely on three known points 

at the current time step 𝑛, instead solving for for three unknown points at the next time 

step of 𝑛 + 1 using one known point from the current time step of 𝑛. It can be described 

by the stencil in Figure 2-13. 

 

Figure 2-13: The stencil for a one-dimensional problem using the fully implicit 
backwards method. 

 

Using this method, the basic energy balance, consisting of only the transient and 

conduction terms can be solved as: 
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 𝜌𝐶𝑝

𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

Δ𝑡
= 𝑘 (

𝑇𝑖−1
𝑛+1 − 2𝑇𝑖

𝑛+1 + 𝑇𝑖+1
𝑛+1

Δ𝑥2
) (2-95) 

These equations consist of 𝐼 − 1 internal mesh points along each time row. These 

equations can be expressed in form of a tri-diagonal matrix on the left of size (𝐼 − 1, 𝐼 −

1), and a matrix of size (𝐼 − 1, 1) on the right hand side. This takes the general form: 

 

[
 
 
 
 
 
 
 
 
 
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2 𝑎2,3

. . .
. . .

𝑎𝑖,𝑖−1 𝑎𝑖,𝑖 𝑎𝑖,𝑖+1

. . .
. . .

𝑎𝐼−2,𝐼−3 𝑎𝐼−2,𝐼−2 𝑎𝐼−2,𝐼−1

𝑎𝐼−1,𝐼−2 𝑎𝐼−1,𝐼−1]
 
 
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
 

𝑇1

𝑇2

.

.
𝑇𝑖

.

.
𝑇𝐼−2

𝑇𝐼−1]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝑏1

𝑏2

.

.
𝑏𝑖

.

.
𝑏𝐼−2

𝑏𝐼−1]
 
 
 
 
 
 
 
 

 (2-96) 

 

Using Gaussian elimination, this set of matrices can be solved. At the boundaries, 

applying equations like equation (2-95) leaves imaginary temperature beyond the 

matrix bounds, 𝑇0 and 𝑇𝐼. These points are eliminated by using central difference 

equations for the boundary conditions which can be rearranged to give an equation in 

terms of 𝑇1 and 𝑇2 in the first row, and in terms of 𝑇𝐼−1 and 𝑇𝐼−2 in the final row. 

If a two-dimensional model is to be solved then a different approach is required. One 

such approach is the alternating difference implicit method. In this method the time step 

is divided in two to give a half time step 𝑛 + 1/2. The first step, in a similar way to the 

previous method, involves solving for three points in the 𝑖 dimension at the half time 

step 𝑛 + 1/2 using three points in the 𝑗 dimension at the current time step 𝑛. Having 

done this, three points are then solved for in the 𝑗 dimension at the full time step 𝑛 + 1, 

using three points in the 𝑖 dimension previously solved for at the half time step 𝑛 + 1/2. 

This can be seen from the stencil in Figure 2-14. 

In this case the energy balance for the first step would be given by: 

 𝜌𝐶𝑝

𝑇
𝑖,𝑗

𝑛+
1
2 − 𝑇𝑖,𝑗

𝑛

Δ𝑡/2 
= 𝑘 (

𝑇
𝑖−1,𝑗

𝑛+
1
2 − 2𝑇

𝑖,𝑗

𝑛+
1
2 + 𝑇

𝑖+1,𝑗

𝑛+
1
2

Δ𝑥2
+

𝑇𝑖,𝑗−1
𝑛 − 2𝑇𝑖,𝑗

𝑛 + 𝑇𝑖,𝑗+1
𝑛

Δ𝑦2
) (2-97) 

Then in the second step, this energy balance would be given by: 
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 𝜌𝐶𝑝

𝑇𝑖,𝑗
𝑛+1 − 𝑇

𝑖,𝑗

𝑛+
1
2

Δ𝑡/2 
= 𝑘 (

𝑇
𝑖−1,𝑗

𝑛+
1
2 − 2𝑇

𝑖,𝑗

𝑛+
1
2 + 𝑇

𝑖+1,𝑗

𝑛+
1
2

Δ𝑥2
+

𝑇𝑖,𝑗−1
𝑛+1 − 2𝑇𝑖,𝑗

𝑛+1 + 𝑇𝑖,𝑗+1
𝑛+1

Δ𝑦2
) (2-98) 

This approach could also be adapted to solve a three dimensional model by solving in 

the 𝑖 dimension at the time step 𝑛 + 1/3, in the 𝑗 dimension at the time step 𝑛 + 2/3, 

and in the 𝑘 dimension at the time step 𝑛 + 1. 

 

Figure 2-14: The stencil for a two-dimensional problem using the alternating difference 
implicit method. 

 

When applying these approaches to the problem of self-heating, the non-linearity of the 

temperature in the Arrhenius term is problematic. A means of linearizing this term is 

required in order to solve this set of equations. One such approach is that used by 

Shepherd et al. (2015) in modelling the pre-oxidation of a uranium carbide fuel pellet. 

In this case the numerator and denominator of the heat of reaction term is multiplied 

by 𝑇𝑖
𝑛+1. An iterative procedure is then used where the numerator temperature is 

solved for as it is now a linear term, and the denominator and exponent temperatures 

use the value from the previous iteration. If the iteration is given by 𝑧 and for the first 

iteration it is assumed that 𝑇𝑖
𝑛+1,𝑧 = 𝑇𝑖

𝑛, then the heat of reaction term can be solved 

using: 

 …+ (
𝑇𝑖

𝑛+1,𝑧+1

𝑇𝑖
𝑛+1,𝑧 )𝜌𝑄𝐴 exp(−

𝐸

𝑅𝑇𝑖
𝑛+1,𝑧) (2-99) 
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This process is iterated until the following condition is met, where the tolerance is 

typically set to around 0.1% of the temperature, with the solution becoming more stable 

for a decreasing tolerance. 

 
𝑇𝑖

𝑛+1,𝑧+1 − 𝑇𝑖
𝑛+1,𝑧

𝑇𝑖
𝑛+1,𝑧+1 < 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (2-100) 

Once the tolerance is met, the solver can continue to the next time step. 

 

2.5.3. Smouldering Models with Higher Order Reactions 

In the literature there are a number of papers that report on the modelling of 

smouldering in materials such as dust accumulations, tobacco, biomass, and generalised 

carbonaceous materials. In general these models are of the same form as those of Chen 

(2001), and Chong and Chen (1999). The main difference in these models is that 

moisture is not modelled here and a much more complex reaction model is used. 

Krause and Schmidt (2001) presented a model incorporating the combined phenomena 

of heat and species transfer occurring in the smouldering of dust accumulations. They 

used this model to predict the self-ignition temperatures of a number of dust 

accumulations, out of an economic need to address the issue of smouldering fires 

occurring in bulk materials. Krause and Schmidt built a model capable of modelling using 

three-dimensional equations whereby the evolution of the scalar quantities of heat and 

species transfer can each be described by Fourier's Equation, provided that the 

transport coefficient Γ does not vary with time or space: 

 
𝜕𝜙

𝜕𝑡
= Γ(

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2
) + 𝑆𝜙 (2-101) 

Here 𝑡 is the time, 𝑥, 𝑦, and 𝑧 are the spatial coordinates and 𝑆𝜙 is the source term for 

the scalar quantity 𝜙. For the case of heat transfer the scalar quantity is temperature 

and the transport coefficient is the thermal diffusivity of the medium. For the case of 

species transfer the scalar quantity is the concentration of the species in question, and 

assuming the species to be gaseous, the transport coefficient is the diffusion coefficient 

through the porous medium. 
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For the purpose of simplicity, but yet to make the model as comprehensive as possible 

for a generalised case, the reaction was modelled as a single step reaction as follows; 

 𝑆𝐹 + 𝜈𝑂𝑥𝑂𝑥 → 𝜈𝑆𝑃𝑆𝑃 + 𝜈𝐺𝑃𝐺𝑃 + 𝑄 (2-102) 

Where 𝑆𝐹 is the solid fuel, 𝑂𝑥 is the oxidiser, 𝑆𝑃 is a fictitious solid product and 𝐺𝑃 is a 

fictitious gaseous product. The stoichiometric coefficients are given by 𝜈𝑖 for each 

species 𝑖, and 𝑄 is the heat of the reaction. In this reaction, the fictitious species are 

representative of a mixture of real reactants or products, with the coefficients chosen 

to match these. 

Choosing the solid fuel to be the leading species, the reaction rate was determined using 

a second-order Arrhenius law of the form; 

 𝑆𝐶,𝑆𝐹 = −𝑐𝑆𝐹
𝑎 𝑐𝑂𝑥

𝑏 𝐴𝑒−
𝐸
𝑅𝑇 (2-103) 

Where 𝐶𝑆𝐹  is the concentration of solid fuel, 𝐶𝑂𝑥 is the concentration of the oxidiser, 𝑎 

and 𝑏 are the reaction orders. This second-order expression is dependent on the 

concentrations of both the fuel and the oxidiser, such that as these deplete the rate of 

the reaction changes accordingly. Additionally if the oxidiser is chosen to be gaseous, 

then the rate of diffusion of this gas into the porous medium will also be of influence. 

The reaction rate of the other species involved in the reaction is dependent on reaction 

rate of the fuel, and is given by: 

 𝑆𝐶,𝑖 = 𝑠𝑖𝑔𝑛(𝜈𝑖)
𝜈𝑖

𝜈𝑆𝐹

𝑀𝑖

𝑀𝑆𝐹
 𝑆𝐶,𝑆𝐹   (2-104) 

Where the index 𝑖 refers to the species in question, 𝜈𝑖 is the corresponding 

stoichiometric coefficient, and 𝑀𝑖  the molecular weight. The function 𝑠𝑖𝑔𝑛(𝜈𝑖) is equal 

to 1 for reactants and -1 for products. This is so that the source term is negative for 

reactants, corresponding to a depletion, and positive for products, to correspond to an 

increase. For the case of nitrogen this function is 0. 

The source term for temperature, corresponding to a generation of heat proportional 

to the rate of reaction, is given by: 

 𝑆𝑇 =
1

𝜌𝐶𝑝
Δ𝐻𝑅|𝑆𝐶,𝑆𝐹| (2-105) 
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This set of model equations was solved by Krause and Schmidt using a finite element 

method (FEM), whereby the control volume in question is overlaid with node points. 

The connections between these nodes form the finite elements. Each of these nodes 

exhibits six degrees of freedom, one of which is the temperature, with the other five 

occupied by the other chemical species. 

Hot storage experiments were performed for four different powders: cork dust, wood 

dust, lignite coal dust, and dyestuff powder. These samples were analysed and the 

measured self-ignition temperatures compared to those predicted by this model.  

Analysing the measured core temperature profiles of the samples showed that 

smouldering fires follow the behaviour outlined in Figure 2-15. 

 

Figure 2-15: Temperature profile as a function of time followed by a material 
undergoing smouldering as documented by Krause and Schmidt (2001). 

 

Initially the temperature increases to that of the evaporation temperature of the 

residual moisture. Once the dust has dried the temperature increases again until a 

characteristic smouldering temperature is reached, which is maintained for the entire 

smouldering period. Once the smouldering front reaches the sample of the surface, a 

glowing fire occurs, which may or may not by accompanied by a flame. This occurs from 

the surface and propagates inwards and results in a significantly higher temperature. 

Finally, once the fuel has depleted, the temperature begins to drop. 

Using the model, the self-ignition temperatures for different volumes of deposits were 

calculated and compared to experimentally measured values. The model exhibited the 

same relationship between deposits volume and self-ignition temperature. Despite this, 
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the model over-predicted these temperatures consistently by 50 to 60°C. This was 

attributed to inaccuracies in the experimentally measured activation energies, such that 

the validity of the model is highly dependent on the reliability of the experiments. 

Krause et al. (2006) followed up on this model with improvements to the modelling of 

the reaction. In this case the modelling of heat transfer was unchanged but a specific 

reaction was instead modelled. A fictitious “fuel molecule” was assumed. This molecule 

was based on an elemental analysis of German lignite coal used. The first step of the 

reaction, the decomposition of the fuel, can be expressed as: 

 𝐶241𝐻228𝑂46 → 213𝐶 + 18𝐶𝑂2 + 10𝐶𝑂 + 114𝐻2 (2-106) 

This is followed by char combustion, oxidation of carbon monoxide, and the oxidation 

of hydrogen, given by: 

 

𝐶 + 𝑂2 → 𝐶𝑂2 

2𝐶𝑂 + 𝑂2 → 2𝐶𝑂2 

2𝐻2 + 𝑂2 → 2𝐻2𝑂 

(2-107) 

It can be seen that the evolution of seven species is followed using this model. Each 

reaction has its own leading species, and the reaction rate of each of the other 

constituent parts of that reaction is determined as before, in accordance with equation 

(2-104), but relative to the leading species of that reaction. This model is useful in that 

it applies molecules to the generalised model used before, and by treating it as a 

multiple step reaction, different conditions will lead to different final concentrations of 

each product.  

This model was used to explore a number of problems. Firstly the influence of different 

oxygen fractions on the self-ignition was determined. Experimentally it has been shown 

that the self-ignition temperatures of this coal increases for a decrease in the oxygen 

fraction. The model predictions agreed with observation for the most part. For very low 

oxygen fractions (below 5%) the predicted values massively exceeded those measured 

experimentally, although this was attributed to the difficulty in experimentally 

differentiating between ignition and non-ignition at these low oxygen fractions. Similar 

to the previous model, Krasue et al. states that the model is capable of qualitatively 

modelling these systems, noting that the accuracy of the measured kinetics limits the 

ability of the model to quantitatively model these systems. 
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Another smouldering model worth noting is that of Muramatsu et al. (1979). This model 

predicts pyrolysis and evaporation in a naturally smouldering cigarette. The interesting 

element of this model is the mass balance used. Here the concentrations of a solid, a 

char and water are modelled. The solid concertation is modelled using a normalised 

conversion approach similar to that used in DSC and TGA methods. The conversion, 𝛼, 

is defined relative to the reactant concentration, 𝑐𝑟𝑐, as: 

 𝛼 =
𝑐𝑟𝑐,0 − 𝑐𝑟𝑐

𝑐𝑟𝑐,0
 (2-108) 

Using this, the rate of change of conversion, relative to the reaction order, 𝑛, is given by: 

 
𝜕𝛼

𝜕𝑡
= −𝐴(1 − 𝛼)𝑛𝑒−

𝐸
𝑅𝑇 (2-109) 

Relating this back to the concentration of the solid gives: 

 
𝜕𝑐𝑟𝑐

𝜕𝑡
= −𝐴𝑐𝑟𝑐,0 (

𝑐𝑟𝑐

𝑐𝑟𝑐,0
)

𝑛

𝑒−
𝐸
𝑅𝑇 (2-110) 

By relating the reaction to the conversion instead of purely the concentration means 

that the approach could still be compatible with the zero-order kinetics measured using 

the basket heating methods, unlike the other smouldering models. The problem with 

this equation is that it may fail to model situations where the initial concentration of 

reactive component is different. However, in such cases, the reaction kinetics may also 

be different and they themselves may not be applicable. 

 

2.6. Conclusions 

The literature relevant to the problem of self-heating in spray dryer wall deposits was 

explored here. This literature was not exclusive to detergent powder, but instead 

covered materials such as coal, milk powder, and sawdust, and the problems that self-

heating causes in the spray drying and storage of these materials. It can be seen from 

the first section that self-heating is a problem in spray dryer wall accumulations, with 

deposition and re-entrainment rates meaning that an active layer is formed. With these 

deposits falling from the wall, it is evident as to why an understanding of self-heating is 

required. With significant self-heating comes charring, and having charred particles fall 

from the wall with affect the finished product quality. The literature has shown that this 
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is not a problem limited to detergents, and that this is also a significant issue in the spray 

drying of milk powders, which are subject to strict hygiene standards. There has been 

little work done to look at the problem of self-heating in detergent powders, with Malow 

and Krause (2004) the only evident example. This will be addressed in this investigation 

by extensively exploring this problem exclusively for detergent powders. 

Frank-Kamenetskii’s Theory of Thermal Explosions (Frank-Kamenetskii, 1969), and the 

subsequent analytical solutions developed using this theory helped to provide a basic 

understanding of the mathematics behind the problem of self-heating. The parameter 

𝛿, defined by Frank-Kamenetskii as a dimensionless parameter containing all the 

parameters required to fully describe the problem of self-heating, is of particular 

importance. Knowing the critical value, 𝛿𝑐𝑟, whether this is determined analytically or 

numerically, allows predictions of thermal runaway and the extent to which self-heating 

will occur to be made. Values of 𝛿𝑐𝑟 have been numerically solved for at a range of values 

for 𝜑 (= 𝐸/𝑅𝑇), and for a number of different geometries by Parks (1961). However, 

there is much room for improvement here. In this investigation, values of 𝛿𝑐𝑟 will be 

solved for more accurately, for a number of geometries, and for varying values of 𝜑 and 

Biot numbers. This will allow more representative values of 𝛿𝑐𝑟 to be applied throughout 

this investigation. This parameter can then be used as an effective means of comparing 

results, and of making predictions for thermal runaway in oven heated baskets. 

The 𝛿 parameter is also the basis of the steady-state basket heating method, which has 

been extensively used to measure the self-heating reaction kinetics of different 

materials. Here, this will be used to measure the self-heating reaction kinetics of 

different detergent powders. 

The steady-state method is a slow, yet frequently used approach for measuring these 

kinetics, as it is a relatively simple and accurate method. The cross-point temperature 

method was developed as a faster alternative based on the existence of a “cross-point”, 

whereby conduction across a portion of a heated basket is hypothesised to cease. In 

more recent years, this approach has been successfully applied as an alternative to the 

much slower steady-state method. The CPT method will be explored further as part of 

this investigation and will be applied to measure the self-heating reaction kinetics of 

detergent powders. Different thermocouple setups and cross-point approximations will 

be applied, building upon the three thermocouple setups used by Chen and Chong 
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(1995) and Sujanti et al. (1999). A novel 5-point finite difference stencil for the second 

order temperature derivative will be used instead of the incorrectly applied 3-point 

stencil applied in these previous works.  

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) will also 

be used, and the methods such as the Ozawa-Flynn-Wall method, Friedman method, 

and the DTG curve fitting applied. 

The numerical models explored, which predicted self-heating in stockpiles and baskets, 

have provided a good basis from which to develop a model of self-heating detergent 

powder in oven heated baskets and in spray dryer wall deposits. The models explored 

were capable of modelling the oven heated basket experiments to explore some of the 

phenomena of these methods. The model developed in this investigation will be applied 

to explore aspects of the baskets heating methods that have not been previously 

explored. Having a model that is able to accurately replicate the basket heating 

experiments will allow issues such as thermocouple placement, the form of the cross-

point temperature assumption, and errors in thermocouple readings to be explored. 

Exploring these phenomena will allow a more quantitative analysis of the issues in the 

CPT method to be undertaken. 

These models all focused on modelling heat transfer in self-heating materials, but they 

also explored different aspects. Some of these models focused on the drying aspect and 

how this influenced the observed self-heating. Other focused on the reaction and the 

depletion and production of reactants and products. In developing the model in this 

investigation, the inclusion of powder drying and of an nth order reaction model will also 

be explored. The value of these different aspects of the model will be evaluated. 
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3. Evaluation of Self-Heating in Detergent Powders 

3.1. Introduction 

Due to the lack of information regarding self-heating in detergent powders in the 

literature, it was decided that an initial evaluation of self-heating in detergent powders 

must be conducted. A model detergent formulation was produced by Procter and 

Gamble, designed to be representative of the spray-dried detergents typically produced. 

The self-heating in this formulation was evaluated using oven heat basket experiments, 

differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). In doing 

so, the following aspects of self-heating were evaluated: 

 The influence of self-heating on the core temperature profiles of oven heated 

baskets full of this formulation of detergent powder. 

 The detrimental effects of excessive self-heating and thermal runaway in oven 

heated powder baskets. 

 Localised self-heating in layer-like geometries of oven heated powder. 

 Initial cross-point temperature experiments for an equi-cylindrical basket 

(cylinder of equal diameter and height) and a cubic basket. 

 Heat flow profiles for samples of different particle size ranges using DSC. 

 Mass loss profiles for samples of different particle size ranges using TGA. 

 Influence of oxygen on the self-heating reaction using DSC and TGA. 

 Variability in reactivity across different size ranges of particles due to variability 

in powder composition. 

This size distribution of this formulations was first determined. This also allowed the 

sample to be sieved into individual size fractions, allowing some experiments to be 

performed on individual fractions. 

Chapter 5 explores the basket heating experiments, such as the steady-state, cross-point 

temperature, and heat release methods, in a considerable amount of detail. Before this 

is done, an initial evaluation of the oven heating of these baskets is performed here. 

Baskets of powder in this section are heated and temperature profiles recorded to help 

understand how self-heating occurs in these systems. Equi-cylindrical and cubic baskets 

were heated at sub-critical and super-critical temperatures and the different aspects of 



80 
 
the temperature profiles at the basket core evaluated. The slow increase in core 

temperature, the delays in temperature increase due to drying, and the increase in 

temperature above the ambient temperature due to self-heating are all discussed. The 

discolouration of particles, and in extreme cases burning, of these powder baskets are 

discussed, as is the problem of localised thermal runaway in layer-like geometries. 

Initial cross-point temperature experiments were conducted using a simple two 

thermocouple setup. This is done for an equi-cylindrical and cubic basket. Evaluating this 

method here will help in improving the methodology in later chapters, and will give an 

indication as to whether this approach is suitable for measuring the self-heating reaction 

kinetics of detergent powders.  

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used 

to evaluate the heat flow and mass loss associated with the self-heating reaction. 

Different size fractions of detergent were heated to determine reactivity variability with 

particle size. These experiments were also conducted under nitrogen, rather than air, 

such that the role of oxygen on the reaction could be determined. The oxygen 

dependency of the reaction is important should the reaction be modelled as nth order 

rather than zero order. 

 

3.2. Detergent Powder Composition and Physical Properties 

In this chapter, an evaluation of self-heating was performed on a single detergent 

powder formulation. This formulation was produced by Procter and Gamble, and 

consisted of surfactant, polymer, and inorganic salts. This formulations was designed to 

be a model formulation that is representative of the spray-dried powder present in a 

commercial laundry detergent products.  

This formulation’s primary components are sodium sulphate and linear alkylbenzene 

sulphonate (LAS). A finer grade of sodium sulphate was used to reduce the composition 

variability that can be seen between particles and between different sizes of particles. 

The surfactant LAS is present at a level of 17% in the spray dried powder and causes the 

majority of the observed self-heating behaviour. The powder also contains lower levels 

of sodium silicate, sodium carbonate, and polycarboxylate polymer. Few other details 

regarding the detergent formulation can be shared. 
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The particle size distribution of the detergent powder was measured by sieving. Sieving 

the sample also allowed the subsequent DSC and TGA experiments to be carried out on 

different size fractions of the powder. In doing so, the reactivity of the different size 

fractions can be evaluated. 9 sieve were used: 150μm, 212μm, 300μm, 425μm, 600μm, 

710μm, 1.1 mm, 1.60mm, and 2.36mm. The sieves were stacked, a powder sample 

between 99g and 108g placed into the top sieve, and the stack shook using an 

automated stack shaker for 5 minutes. This was repeated 4 times to account for any 

variability in the powder sample used in the each run. The particle size distribution by 

mass is shown in Figure 3-1.  

 

Figure 3-1: Cumulative size distribution by mass of the detergent powder for 4 
separate samples. 

 

All four runs are seen to agree very well. The mass median particle diameter, 𝐷50, of the 

detergent was measured as 343μm. This is the diameter for which 50% of the mass of 

particles are smaller. Also measured were the 𝐷10 of 101μm, and the 𝐷90 of 990μm. The 

percentage contribution of each of these size ranges to the overall composition can also 

be seen in Table 3-1. The largest particle is smaller than 2.36mm, while 99.6% of particles 

are smaller than 1.6mm. 
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Table 3-1: Percentage contribution by mass of each size range to the overall powder 
size distribution. 

 Percentage of Overall Sample Mass 

0 μm - 150 μm 14.8% 

150 μm – 212 μm 14.0% 

212 μm – 300 μm 15.5% 

300 μm – 425 μm 16.5% 

425 μm - 600 μm 14.4% 

600 μm - 710 μm 4.8% 

710 μm – 1.18 mm 16.7% 

1.18 mm – 1.60 mm 2.9% 

1.60 mm – 2.36 mm 0.4% 

> 2.36 mm 0% 

 

This powder is not entirely dry when it is produced, with some residual moisture present 

in the particles. The moisture content varies between samples and for most samples it 

was found to be approximately 0.025 kg kg-1. This value is also influenced by exposure 

to the ambient air. The moisture content of the sample was found to increase with 

longer exposure to the ambient air, suggesting that the relative humidity of the ambient 

air is greater than the equilibrium relative humidity of the particles. 

 

3.3. Self-Heating in Detergent Powder Baskets 

3.3.1. Initial Basket Heating of Detergent Powder 

In order to evaluate the self-heating in bulk detergent powder systems, samples of this 

powder were oven heated. This was done for an equi-cylindrical basket (cylinder of 

equal height and diameter), a cubic basket, and a layer-like, tray full of powder. The 

equi-cylinder had a diameter and height of 60mm while the cube had a side length of 

50mm. The baskets were filled and tapped, such that they were consistently filled to the 

same mass, ensuring the same density for each experiment. The equi-cylindrical basket 

was filled to a mass of approximately 135g, while the cubic basket was filled to a mass 

of approximately 99g. 
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Initially the sample were heated with a single type K thermocouple (RS Pro 363-0294) 

embedded at the basket centre. This thermocouple was glass fibre insulated with a 

welded exposed junction and supplied with a working range of -60° to 350°C. This 

thermocouple was inserted after the basket was filled with powder to ensure the basket 

was filled to a consistent mass for each experiment. As such it was difficult to verify its 

placement exactly at the basket centre. All these samples were heated in a Memmert 

UF 75 forced convection oven, shown in Figure 3-2. This oven’s control system allowed 

the temperature to be controlled to within 0.5°C, while also allowing control over fan 

speed, exhaust opening size, and duration of heating. 

  

Figure 3-2: Memmert UF 75 forced convection oven used to heat the powder samples. 
1) Oven controls. 2) Variable outlet vent. 3) Variable speed fan. 

 

The two baskets of powder, prior to heating, can be seen in Figure 3-3. These baskets 

were made of SS304 grade stainless steel with apertures of 0.223mm and a wire 

diameter of 0.14mm. In filling these baskets only some of the smaller particles would 

escape through the mesh apertures, yet this porosity allowed free movement of gas 

through the basket. This is important because air needs to be able to reach to powder 

in order for the self-heating reaction to occur, gaseous products of the reaction must be 

allowed to escape, and the basket itself should impact minimally on the experiment.  
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Figure 3-3: Equi-cylindrical basket (cylinder of equal height and diameter) and cubic 
basket of detergent powder prior to oven heating. 

The central temperature profiles of these baskets, as measured by a thermocouple 

embedded at the core of each basket, can be seen in Figure 3-4 and Figure 3-5. These 

temperature profiles were used to evaluate the different aspects of the heating of these 

powders, and how self-heating in particular influences the measured temperature 

profiles. Figure 3-4 shows the central temperature profiles at a sub-critical ambient 

temperature of 223°C (496K). Initially, both baskets start at the room temperature, as 

does the oven. The oven heats up to its set temperature within about 15 minutes, and 

after some small fluctuations it stabilises. The baskets slowly begin to heat up and after 

about 25 – 30 minutes, the baskets both reach a temporary plateau. This plateau occurs 

at approximately 100°C (373K) and is caused by the drying of the powder. This powder 

is not entirely dry when it is produced, with some residual moisture present in the 

particles. The energy in this time region is used to evaporate the residual moisture which 

diffuses out of the powder basket. Once drying has completed, the temperature is again 

seen to rise, continuing up to the set ambient temperature and increasing further above 

this ambient temperature due to self-heating. 

Although a significant increase in temperature above the ambient temperature occurs 

at the basket centre in this case, thermal runaway does not occur. At this temperature 

the heat generation due to the reaction is balanced out by the heat dissipation from the 

basket, and thus this system is stable. Similar profiles are observed in the two 

geometries, but by the end the cubic basket has increased to a higher temperature than 

the equi-cylindrical basket. It is thought that the set ambient temperature of 223°C 

(496K) is too low to cause thermal runaway of this baskets, but this experiment was 

stopped too early to be sure. 
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Figure 3-4: Central temperatures of the equi-cylindrical and cubic baskets for a sub-
critical ambient temperature of 223°C (496K). 

 

Figure 3-5 shows the central temperature profiles at a super-critical ambient 

temperature of 239°C (512K). Similar profiles can be observed initially, but as the basket 

reaches the ambient temperature the core temperature is seen to continue to rise 

rapidly, rather than slow down as in the previous case. This increase in temperature 

continues, and even accelerates as these baskets culminate in thermal runaway. The 

ambient temperature in this case is considerably higher than that of the previous case, 

with a difference in ambient temperature of 16°C. Although the difference in ambient 

temperatures between these cases is quite high, only a small difference in ambient 

temperature is needed for a stable system to become unstable and lead to thermal 

runaway. When this happens an increase in core temperature of several hundreds of 

degrees can occur. 
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Figure 3-5: Central temperatures of the equi-cylindrical and cubic baskets for a super-
critical ambient temperature of 239°C (512K). 

 

Thermal runaway at the basket core is evident by looking at the powder following the 

experiment. The core of a similar experiment that culminated in thermal runaway can 

be seen in Figure 3-6. The core of the basket is very clearly burnt and black. From this it 

is obvious as to why charred particles that can form in spray dryer wall accumulations 

are a problem. Should these charred particles fall from the wall accumulations and make 

their way into the finished detergent product, then they would be immediately obvious 

and detrimental to the product quality. The considerable heat generated when these 

charred particle are produced is also a significant risk to process safety. This was 

discussed by Beever (1985) who noted that this self-heating can serve as an ignition 

source for dust explosions in the spray drying of milk powders. 
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Figure 3-6: Basket of powder that has undergone thermal runaway at its core. This 
experiment was stopped before the entire basket was allowed to thermally runaway. 

 

Once it had become evident that the sample in Figure 3-6 had undergone thermal 

runaway, the oven was switched off and the sample removed to prevent further burning 

of the powder. If the sample was left to continue burning, then the sample in Figure 3-7 

would be found in the oven. The high degree of self-heating at the core eventually leads 

to an increase in self-heating across the rest of the basket, and a completely burnt 

sample. Interestingly it can be seen that the entire basket is not black in colour. When 

broken open, the core is seen to have become a white, brittle, crystalline, hollow sphere. 

It is not known why this is, but this degree of self-heating is unlikely to be reached in 

practice, and as such is not explored further. 

   

Figure 3-7: Equi-cylindrical basket of detergent powder that has completely thermally 
runaway. (left) Before breaking open. (right) After breaking open to show basket core. 
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3.3.2. Self-Heating in Layer-Like Geometries of Detergent Powder 

A tray full of powder was heated to simulate layer-like systems similar to those that may 

accumulate on the inner walls of the spray drying tower. When a layer of powder is 

heated it is unclear where thermal runaway will occur, unlike a basket of powder which 

will typically undergo thermal runaway at the basket centre. This can be seen in Figure 

3-8 where localised thermal runaway occurs in one corner of the tray. This localisation 

may be due to variations in layer thickness across the tray, heterogeneity in powder 

composition of size across the layer, or variations in temperature in the oven. The 

thermal runaway is also seen to occur at a central point, and propagate outwards from 

this in a circular pattern. The rest of the powder, where some degree of self-heating but 

not thermal runaway has occur, can be seen to be slightly discoloured and “browned”. 

This “browning” is consistently seen across all basket experiments where thermal 

runaway does not occur, and is still detrimental to the product quality. 

 

Figure 3-8: Tray of powder used to simulate powder layers, exhibiting thermal runaway 
in one corner, possible due to heterogeneity or difference in layer thickness. 

 

3.3.3. Initial Cross-Point Temperature Method Experiments 

By inserting a second type K thermocouple into the equi-cylindrical and cubic baskets 

used in the previous section, similar oven heating experiments can be used as part of 

the cross-point temperature method. This method can then be used to estimate the 

kinetics of this detergent powder. The first thermocouple was inserted at half height at 

the centre of each basket, and a second was inserted at approximately 6mm from the 

first in the same horizontal plane. 6mm was chosen as the spacing as it was thought that 

this spacing was large to allow for a noticeable difference in recorded temperature 
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between the thermocouples, but not so large that it impacts heavily on the finite 

difference approximation used to determine the cross-point temperature. These 

thermocouples were connect to a Pico Technology USB TC-08 data logger and sampled 

at a rate of 1 measurement per second. Experiments were run for 9 different ambient 

temperature between 216°C (489K) and 234°C (507K). 

In these initial tests, the thermocouples were simply twisted together. Because of the 

rigidity of these thermocouples, twisting them together helped to maintain a constant 

6mm spacing between them. Although the spacing could be ensured, it was difficult to 

ensure the placement of these thermocouples, and in particular difficult to ensure that 

one of these is at the basket geometric centre. The basket setup can be seen in Figure 

3-9.  

 

Figure 3-9: Equi-cylindrical and cubic basket setup for the initial cross-point 
temperature experiments. 

 

The oven controller controls the temperature by measuring the ambient temperature 

using the thermocouple at position 1 in Figure 3-10, which is integrated with the oven’s 

temperature control system. This thermocouple is shielded by a metallic tube and is at 

the top of the oven. Experiments indicated that the temperature measured by this 

thermocouple was lower than that at the level where the baskets are placed by between 

3 and 4°C. For this reason an additional thermocouple, denoted by 2, was placed on the 

level of the two baskets to measure a more representative ambient temperature, as can 

be seen in Figure 3-10. 
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Figure 3-10: Oven setup and additional thermocouples. The thermocouple at 1 is used 
by the oven temperature controller. The thermocouple at 2 was used to measure a 

more representative ambient temperature. 

 

The cross-point temperature method is a mean of determining zero-order self-heating 

reaction kinetics in self-heating materials. The literature related to this was method was 

discussed Section 2.4.2. It was developed by Chong et al. (1996) and is based on the 

following energy balance for a self-heating body given by equation (2-47). 

As a basket of powder is heated in an oven the peripheral regions of the basket reach 

the oven temperature first. Heat conducts slowly into the centre of the basket and as 

self-heating begins the core temperature rises above that of the periphery, such that at 

some time the thermocouple at the basket centre the thermocouple offset from this by 

6mm are at the same temperature. At this time the conduction between these two 

points is assumed to be zero. The temperature at which this occurs is known as the cross-

point temperature (CPT) and at this point equation (2-47) reduces to: 

 ln (
𝑑𝑇

𝑑𝑡
)|

𝑇=𝑇𝐶𝑃𝑇

= ln(
𝑄𝐴

𝐶𝑝
) −

𝐸

𝑅𝑇𝐶𝑃𝑇
 (3-1) 

For each set ambient temperature the basket is heated and the temperature is recorded 

at the centre and offset point for the duration of the experiment. From this, the cross-

point temperature, 𝑇𝐶𝑃𝑇, and heating rate at basket centre, 𝑑𝑇/𝑑𝑡, is noted. This is 

repeated for a range of ambient temperatures. By plotting 𝑇𝐶𝑃𝑇 and 𝑑𝑇/𝑑𝑡 values for 

each test, the self-heating reaction kinetics can be measured using equation (3-1). The 
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activation energy, 𝐸, and logarithmic term, ln (𝑄𝐴/𝐶𝑃), are determined from the slope 

and intercept respectively. 

Firstly the results are discussed for the equi-cylindrical basket. Temperature-time 

profiles were recorded at the basket centre and at the 6mm offset point and are shown 

in Figure 3-11. These profiles are for four different ambient temperatures: (a) 218°C 

(491K), (b) 222°C (495K), (c) 228°C (501K), and (d) 232°C (505K). These experiments were 

stopped once the central temperature increased above the offset temperature. For each 

experiment it can be seen that the basket temperature rises from room temperature to 

some temperature in excess of the oven temperature. In doing so, the baskets can again 

be seen to undergo drying, as seen before in Figure 3-4 and Figure 3-5. A more significant 

step is seen on the central thermocouple in each case, but this is simply because drying 

takes longer at the basket centre. 

 

Figure 3-11: Equi-cylindrical basket temperature profiles at ambient temperatures of 
(a) 218°C (491K), (b) 222°C (495K), (c) 228°C (501K), and (d) 232°C (505K). 

 

It can be seen that the difference between the ambient and the basket central 

temperature increases with an increase in ambient temperature, indicating an increase 

in self-heating. It can also be seen that the experiments at 218°C (491K) and 222°C 
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(495K) do not seem as though they will lead to thermal runaway, while the experiments 

at 228°C (501K) and 232°C (505K) are already beginning to thermally runaway when they 

are stopped.  

In this case, where two thermocouples are used, the cross-point is based on the 

following finite difference approximation for the conduction term in equation (2-47): 

 
𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1

Δ𝑥2
= 0 (3-2) 

If 𝑇𝑖 is taken as the thermocouple at the basket centre, and 𝑇𝑖+1 is taken as the offset 

thermocouple, then because of symmetry the cross-point reduces to:  

 𝑇𝑖 = 𝑇𝑖+1 (3-3) 

To determine the cross-point temperature a MATLAB script was employed. This script 

firstly determined the instance where the central temperature first exceeds the offset 

temperature. The temperature at which this occurs is the cross-point temperature. At 

this point the heating rate 𝑑𝑇/𝑑𝑡 at the central thermocouple, corresponding to the 

centre of the finite difference in equation (3-2), was also recorded using the MATLAB 

script. A degree of smoothing was applied to the 𝑑𝑇/𝑑𝑡 data to improve the results. 

The cross-points at two ambient temperatures are shown in Figure 3-12. It can be seen 

that in this region there is little difference between the two measured temperatures. 

This is problematic because any small errors in thermocouple readings or any errors in 

thermocouple placement could lead to significant differences in the measured cross-

point temperature and heating rate. This problem is discussed later in the uncertainty 

analysis of this method in Section 5.3.2 and in the model simulations of this method in 

Section 5.4. 
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Figure 3-12: Cross-points for equi-cylindrical baskets at ambient temperatures of (a) 
220°C (493K) and (b) 228°C (501K). 

 

Plotting the 𝑇𝐶𝑃𝑇 and 𝑑𝑇/𝑑𝑡 for each experiment in accordance with (3-1) gives the plot 

shown in Figure 3-13. Experiments were run for 9 different ambient temperatures 

between 216°C (489K) and 234°C (507K), with each experiment yielding a data point. A 

reasonably linear plot is formed with only a couple of outliers. These outliers are 

probably due to poor thermocouple placement, spacing, or powder variability. These 

issues can be addressed by developing a new and improved means of accurately 

inserting the thermocouples into the baskets.  

 

Figure 3-13: Cross-point temperature results for an equi-cylindrical basket of detergent 
powder run at 9 ambient temperatures between 216°C (487K) and 234°C (507K). 
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From this plot, the self-heating reaction kinetics can be estimated. Using these data, the 

activation energy, 𝐸, was estimated as 128(±31)x103 J mol-1. The error associated with 

these term shown in brackets are the 95% confidence interval of the linear regression 

to these data points. The logarithmic term, ln (𝑄𝐴/𝐶𝑃), encapsulating the pre-

exponential factor, 𝐴, the heat of reaction, 𝑄, and the specific heat capacity, 𝐶𝑝, was 

estimated from the intercept as 25.6(±7.4). It can be seen that the confidence intervals 

associated with these kinetics are relatively large. Again, this can be improved by 

developing an improved means of inserting the thermocouples that allows repeatable 

and accurate insertion at the desired points. 

Previous work has not commented on the problems of thermocouple placement, other 

than noting that a ±1mm error is typically associated with thermocouple placement 

(Chen & Chong, 1995). In originally using this method, Chong et al. (1996) halved the 

sample after each experiment to verify the positioning of the thermocouples, with 

experiments repeated if either thermocouple was found to be out of position. This is 

only possible if the sample is left to burn and form a solid mass. This was not done here 

because not every temperature tested would culminate in thermal runaway. 

Additionally such temperature rises can be dangerous and risk damaging the oven and 

thermocouples. The cross-point method will be explored in much more detail in Section 

5.3 of this thesis, but for now this shows that this method may be a suitable means of 

determining the self-heating kinetics of detergent powders. 

The cross-point temperature method was also performed for a cubic basket, although 

the results were considerably poorer. Temperature profiles recorded during these 

experiments are shown in Figure 3-14, whilst the results of the cross-point method are 

shown in Figure 3-15. No linear regression of the data can be seen in the results plot, 

while from the temperature profiles it is unclear as to why the results are so poor. Again 

the problem may be due to thermocouple placement. Unlike the cylindrical basket, the 

cubic basket is not axisymmetric, and as such basket orientation must be considered 

when inserting the thermocouples. Following these poor results, it was decided that 

cubic baskets would no longer be used for cross-point temperature experiments, and 

that differently sized equi-cylindrical baskets would be used instead. Cubic baskets have 

been previously used in literature, but the majority of baskets used are cylindrical in 

shape, as discussed in the literature review Section 2.4.2. 
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Figure 3-14: Cubic basket temperature profiles at ambient temperatures of (a) 218°C 
(491K), (b) 222°C (495K), (c) 228°C (501K), and (d) 232°C (505K). 

 

Figure 3-15: Cross-point temperature results for a cubic basket of detergent powder. 
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3.4. Self-Heating as Evaluated using Differential Scanning Calorimetry 

(DSC) 

It was thought that smaller scale experiments may help to give more indication as to the 

nature of these reactions. The two techniques used were differential scanning 

calorimetry (DSC) and thermogravimetric analysis (TGA). In later sections these 

techniques will also be explored as a means of determining the self-heating reaction 

kinetics. In this section DSC is applied to help gain an understanding of the heat flow 

profiles during the self-heating reaction. Tests were run for samples of different size 

ranges such that the variability of reactivity with particle size could be evaluated. Finally 

the role that oxygen plays in this reactions was explored. 

DSC is a technique in which the difference in supplied heat required to raise the 

temperature of a sample and a reference material is measured as a function of 

temperature. In this study the TA Instruments DSC Q2000 was used. This equipment 

uses an auto-sampler capable of running 50 experiments without human intervention. 

Open aluminium pans of sample powder were loaded in the auto-sampler along with an 

empty reference pan. The auto-sampler would load a sample pan and the reference pan 

into the heating cell. Each pan was placed onto a chromel area thermocouple and the 

heating cell lid closed. The DSC could then be programmed to heat the cell under 

different isothermal, ramped, or modulated heating rates, depending on what is being 

measured.  

For this part of the study, the DSC was programmed to hold an isothermal temperature 

of 50°C (323K) for 5 minutes before increasing in temperature up to 500°C (773K) using 

a constant ramped heating rate of between 5°C min-1 and 10°C min-1. This samples were 

heated in an atmosphere of air. Open pans containing approximately 8mg of different 

size ranges of particles were tested such that the difference in reactivity of differently 

sized particles, which may vary in composition, can be determined. This was done for six 

size ranges of particles: >150μm and <212μm, >212μm and <300μm, >300μm and 

<425μm, >425μm and <600μm, >60μm and <710μm, and >710μm and <1.18mm 

Figure 3-16 shows the auto-sampler tray with 7 sample pans and two reference pans. 

These samples have already been heated and they are seen to be discoloured. All 

samples are seen to be similarly discoloured, which gives an initial indication that 
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reactivity is similar across all particles sizes. As mentioned previously, a finer grade of 

inorganic salt was used in this formulation, and that should help to reduce variability in 

reactivity. 

 

Figure 3-16: DSC sample pans of different size ranges heated from 50°C (323K) to 
500°C (773K) and showing discolouration, with particle size increasing from pan 1 to 

pan 7. 

 

The measured heat flow for samples of 6 different particle sizes can be seen in Figure 

3-17. Firstly it can be seen that the heat flow for all particle size ranges are in agreement, 

and react almost identically. This confirms, at least for this formulation of detergent 

where a finer grade of inorganic salt was used, that reactivity is consistent across all 

particle sizes. This is important because if different particle sizes were found to exhibit 

different reactions, then this would have implications in the basket heating experiments 

and in modelling these systems. Consistent packing of the baskets would be much more 

important, and the modelling of particle size distributions would be required. 

Looking in more detail at these profiles, it can be seen that there is a small endotherm 

at approximately 100°C (373K). This endotherm would be consistent with the energy 

required to evaporate any residual moisture in the detergent particles. Nothing is seen 

to happen after this until a sharper endotherm at around 540K (267°C). It is unknown as 

to what causes this endotherm, but it is seen to occur immediately prior to the start of 

the sharp exothermic reaction peak. This endotherm may be due to a phase change in 

the material, but it is thought that it does not impact on the reaction. The self-heating 

reaction is evident as the sharp exothermic peak seen in the heat flow curve. From the 
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magnitude of this peak it is clear as to why the self-heating reactions that occur in these 

materials can be problematic. The reaction can be seen to output a significant amount 

of heat for a relatively small change in temperature. 

 

Figure 3-17: DSC heat flow plots for samples of different particle size ranges at a 
heating rate of 5°C min-1 in air. 

 

The temperatures at which the reactions occur in the DSC are significantly higher than 

the ambient temperatures required to induce thermal runaway in the basket 

experiments. This is because the detergent powder has a low thermal conductivity, so 

the rate of heat dissipation is relatively low, and only a small amount of self-heating is 

required to induce thermal runaway. In the small sample pans used in the DSC, the 

problem of conduction of heat out of the sample is not as much of an issue. 

The previous DSC experiments were run with air as the gas in the heating cell. Following 

this, a sample was run using nitrogen, under the same program settings, such that the 

effect this has on the reaction can be observed. The resulting plot can be seen in Figure 

3-18. The endotherm due to evaporation of residual moisture seen in Figure 3-17 is also 

present in this profile. The endotherm that occurs immediately prior to the reaction in 

Figure 3-17 is also seen here. As was expected though, the reaction itself does not occur 

in the absence of oxygen. Instead, little activity in seen above temperatures 570K 

(297°C), when the self-heating reaction would typically start. This confirms that the 
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reaction is an oxidation reaction, which is worth considering when it comes to modelling 

this reaction. 

 

Figure 3-18: DSC heat flow plots at a heating rate of 5°C min-1 in nitrogen, which 
inhibits the self-heating reaction seen to occur in air. 

 

3.5. Self-Heating as Evaluated using Thermogravimetric Analysis (TGA) 

The second technique used was thermogravimetric analysis. TGA is a technique whereby 

the mass change of a sample is measured as a function of temperature, or time if the 

experiments are run isothermally. In this study the TA Instruments Discovery TGA was 

used. This equipment uses an auto-sampler capable of running 25 experiments without 

human intervention. Reusable aluminium pans of sample were loaded in the auto-

sampler along with an empty reference pan. The auto-sampler would load a sample pan 

and the reference pan into the heating cell. Each pan was hung from a mass balance 

integrated into the heating cell and the chamber closed. This mass balance then weighs 

the sample as it is heated under different conditions. The TGA can be programmed to 

heat the cell under different isothermal or ramped heating rates, depending on what is 

being measured. 

For this part of the study, the TGA was programmed to hold an isothermal temperature 

of 50°C (323K) for 5 minutes before increasing in temperature up to 500°C (773K) using 
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constant ramped heating rates between 5°C min-1 and 20°C min-1. These samples were 

heated in an atmosphere of air. Pans were run containing approximately 12mg of 

different size ranges of particles such that the difference in reactivity of differently sized 

particles can again be determined. Again this was done for six size ranges of particles: 

>150μm and <212μm, >212μm and <300μm, >300μm and <425μm, >425μm and 

<600μm, >60μm and <710μm, and >710μm and <1.18mm. Figure 3-19 shows the auto-

sampler tray with 6 sample pans.  

 

Figure 3-19: TGA sample pans of different size ranges heated from 50°C (323K) to 
500°C (773K) and showing discolouration. Sample 5, 6, 8, and 10 were heated in air, 

whilst samples 7 and 9 were heated under nitrogen and show a much darker 
discolouration. 

 

These sample have already been heated and they are all seen to be discoloured. Sample 

pan 5, 6, 8, and 10 were all heated in air and show a similar discolouration as those 

heated in air in the DSC, again giving an indication that reactivity is similar across all 

particles sizes. The samples in pans 7 and 9 were heated in nitrogen rather than air. 

These samples can be seen to be very discoloured, and almost black in colour. The self-

heating reaction was shown not to occur in the absence of oxygen in the DSC. The 

sample were also cooled before removed from the heating cell, and as such sudden 

exposure to air while hot was not the cause. This discolouration must be due to a form 

of non-oxidative degradation. 
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Figure 3-20 shows the normalised sample mass of samples containing particles of 

different size ranges as a function of temperature. The shape of these profiles are all in 

agreement with one another, but there is an offset between the curves. It can be seen 

that the large particle sizes have a greater normalised mass loss in the initial period. This 

occurs at around 100°C (373K) and is due to the evaporation of residual moisture in the 

particles. The larger particles contain more moisture, and as such have a greater mass 

loss initially as this evaporates. Again the agreement in profile of all these curves 

confirms, at least for this formulation, that the reactivity is consistent across all particle 

sizes. 

 

Figure 3-20: TGA normalises sample mass plots for samples of different particle size 
ranges at a heating rate of 5°C min-1 in air. 

 

As shown in Figure 3-19, some of the TGA samples were run in nitrogen to see what 

affect this has on the reaction. These experiments were run under the same program 

settings as those under air (isothermal at  50°C (323K) for 5 minutes, then ramped at 

5°C min-1 up to 500°C (773K)). This normalised mass loss profiles are shown in Figure 

3-21 and the presence of air is seen to have a significant effect. Again the reaction is 

seen not to occur without the presence of oxygen, but instead, at a very high 

temperature of approximately 700K (427°C), the sample is seen to undergo a rapid and 

substantial mass loss. It is not known what causes this mass loss, but it is probably what 
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leads to the dark discolouration seen in these samples. However, these temperatures 

are well in excess of any temperatures relevant to this study, and as such this 

unexplained behaviour will not be explored any further. 

 

Figure 3-21: TGA normalised sample mass plots for samples of particle size range 
>212μm and < 300μm at a heating rate of 5°C min-1 in air and nitrogen. 

 

3.6. Conclusions 

An initial assessment of the self-heating behaviour of a typical detergent powder was 

conducted. It was shown that this formulation undergoes an exothermic oxidative 

reaction. For an equi-cylinder of diameter and height 60mm, this formulation is shown 

to generate a considerable amount of heat for ambient temperatures in excess of 216°C 

(489K). At some ambient temperature between 222°C (495K) and 228°C (501K), these 

baskets are seen to go from stable to unstable, with the unstable cases culminating in 

thermal runaway. 

The initial basket heating experiments conducted here have shown the detrimental 

effects that self-heating can have on detergent formulations. Even if the powder does 

not completely thermally runaway, localised thermal runaway at the basket core, or at 

particular points in a layer can be damaging. Even when thermal runaway does not 
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occur, the discolouration or “browning” seen in the sample may be enough to 

compromise the quality of the finished product. 

The cross-point temperature method experiments conducted here show that this 

method shows promise as a means of estimating self-heating reaction kinetics. Using 

this approach and a 60mm equi-cylinder, kinetics of 𝐸 = 128(±31)x103 J mol-1 and 

ln (𝑄𝐴/𝐶𝑃) = 25.6(±7.4) were estimated. However, there are a number of issues that 

need to be addressed before this approach can be effectively used. The main issue is 

that of thermocouple placement. In these experiments, the thermocouples were simply 

twisted together and inserted approximately at the basket centre. A new, and improved 

means of inserting these thermocouples, which ensure repeatable and accurate 

placement and spacing of the thermocouples is required, and this will be addressed in 

later sections. Considerably poorer results were achieved when using a cubic basket 

rather than an equi-cylindrical basket. It is unclear as to why this is, but it is though that 

the orientation of the thermocouples within the cubic basket was an issue. In 

subsequent cross-point temperature experiments, only equi-cylindrical baskets are 

used. 

The DSC and TGA experiments have shown, at least for this formulation, that variability 

in reactivity is not present across different size fractions. This was expected due to the 

finer grade of sodium sulphate used in this formulation. The DSC heat flow profile 

showed the large amount of energy produced by the self-heating reaction and why it 

can be such an issue. The TGA showed a large mass loss corresponding to this reaction. 

These techniques produced repeatable profiles which are used in later sections to 

characterise the self-heating reaction using a number of different methods. 

Performing these experiments under nitrogen, rather than air, showed that the self-

heating reaction is dependent on oxygen. Without oxygen, the reaction was seen not to 

occur in the DSC and TGA profiles in the temperature range of interest, confirming that 

the self-heating reaction in this detergent formulation is an oxidative reaction. Although 

the self-heating reaction did not occur in nitrogen, the TGA profile showed a different, 

non-oxidative, mass loss at a temperature in excess of the usual reaction onset 

temperature. It is not known what causes this non-oxidative degradation but it occurs 

at a temperature outside of the temperature range of interest, and as such is not 

explored further.  
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4. Numerical Model of Self-Heating Detergent Powder 

Systems 

4.1. Introduction 

This chapter outlines the numerical model that is used throughout this investigation. 

Three different variants of this model are used depending on what aspects of self-

heating are being explored. Typically these are modelled in 2D axisymmetric cylindrical 

coordinates, although the model equations also allow the coordinate system to be 

varied. These variants are: 

 A model of heat transfer with a zero order self-heating reaction. 

 A model of heat transfer with a zero order self-heating reaction and mass 

transfer of moisture used to model particle drying. Moisture is modelled as liquid 

moisture in the solid particles as vapour in the voids between the particles. 

 An nth order, reactant concentration dependent, self-heating reaction model 

which can used instead of the zero order reaction model used in the previous 

two variants. 

These models were initially built in MATLAB and solved using custom-built, finite 

difference based solvers. This was later improved by transferring this model in gPROMS 

ModelBuilder, an advanced process modelling environment, which allows for easier 

editing and faster solving of the model, due to the more efficient in-built solvers 

available. The in-built solvers of gPROMS that were used and the adaptive approach to 

discretising time were outlined. 

This model was validated by comparing the numerical solutions to analytical solutions 

for a finite slab and infinite cylinder. The validation included the following comparisons: 

 1D numerical model of a finite slab compared with analytical solutions for a finite 

slab. 

 1D numerical model of an infinite cylinder with varying boundary conditions 

compared with analytical solutions for an infinite cylinder. 
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 2D numerical model of a finite cylinder, using a high axial length to radius ratio 

such that the model is analogous to an infinite cylinder, with varying boundary 

conditions compared with analytical solutions for an infinite cylinder. 

The developed 2D model was also used to refute the shape factor approximation used 

by Chen (2001), and Chong and Chen (1999). They used this shape factor to approximate 

heat transfer in an equi-cylinder using 1D equations, but this approach is problematic. A 

comparison is made of the 1D model using this shape factor approximation and the 2D 

axisymmetric model used to discuss the problems of this approximation.  

The model boundary conditions require the convective heat transfer coefficient to the 

oven to be known. The effective heat transfer coefficient was measured using the 

transient temperature measurement method, used by both Sato et al. (1987) and 

Carson et al. (2006). From this the convective heat transfer coefficient could be 

correlated, and applied in the boundary conditions of this model. 

 

4.2. Modelling Heat and Mass Transfer in Self-Heating Systems 

4.2.1. Governing Equations for Heat Transfer in Self-Heating Systems 

These self-heating problems were modelled using a set of 2D-axisymmetric partial 

differential equations in the radial direction, 𝑟, and axial direction, 𝑧. These equations 

describe the heat transfer and mass transport in a cylindrical basket of powder. Within 

the powder, heat transfer is by conduction, while at the outer boundary the heat 

transfer to the ambient is by convection. A number of assumptions are applied to this 

model, these are: 

 Reactant consumption (i.e. oxygen and solid reactants) is assumed negligible, 

such that the reaction is modelled as zeroth order. 

 No convection occurs within the powder mass. 

 Newton’s Law of Cooling is applied at the outer boundary. 

 The thermal conductivity and specific heat capacity are assumed constant. 

The transient energy conservation equation for a generic geometry, and in a generic 

coordinate system, is given by:  
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 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘∇2T + 𝜌𝑄𝐴𝑒

−𝐸
𝑅𝑇  (4-1) 

In this energy balance the left hand term denotes the local rate of enthalpy change in 

the solid, the first right hand side term denotes the conductive heat transfer in the solid, 

and the final term denotes the heat generation of a single zero-order exothermic 

reaction, or several simultaneous zero-order reactions assumed to be one overall 

reaction. 

In this model, the Laplacian conduction term is replaced with 2D cylindrical coordinates 

modelling heat transfer in a basket of radius 𝑅 (m) and half-height 𝑍 (m), giving: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2
) + 𝜌𝑄𝐴𝑒

−𝐸
𝑅𝑇  (4-2) 

Here, 𝜌 (kg m-3) is the bulk density of the powder, 𝐶𝑝 (J kg-1 K-1) is the specific heat 

capacity, 𝑘 (W m-1 K-1) is the thermal conductivity, 𝑄 (J kg-1) is the heat of reaction, 𝐴 

(s-1) is the pre-exponential factor of the zero-order Arrhenius reaction, 𝐸 (J mol-1) is the 

activation energy, 𝑅 (J mol-1 K-1) the universal gas constant,  𝑡 (s) the time, and 𝑇 (K) the 

temperature.  

In previous work, Chen (2001), and Chong and Chen (1999) used a similar equation but 

with a shape factor, 𝑗, to approximate 2D heat transfer using a 1D model. In doing so, 

the conduction term is replaced with: 

 𝑘∇2𝑇 = 𝑘 (
𝜕2𝑇

𝜕𝑥2
+

𝑗

𝑥

𝜕𝑇

𝜕𝑥
) (4-3) 

Where the shape factor and is equal to 0 for a finite slab, 1 for an infinite cylinder, 2 for 

a sphere, 3.28 for a cube, or 2.728 for an equi-cylinder. However, this shape factor 

approximation leads to incorrect results when modelling heat transfer in equi-cylindrical 

geometries. The refuting of this shape factor for equi-cylindrical geometries is shown in 

Section 4.4. 

This model was validated against analytical solutions for heat transfer in an infinite 

cylinder documented by Carslaw and Jaeger (1959). This was done by using a large ratio 

of axial to radial length such that this model can be assumed to be for an infinite cylinder. 

The heat of reaction and drying terms were removed for this validation. The model 
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solution agreed with the analytical solution for the discretisation in space and time used. 

This validation will be discussed in Section 4.3. 

Symmetrical boundary conditions apply along the central axes of the cylinder in both 

the radial and axial directions, and these are expressed as: 

 

𝑑𝑇

𝑑𝑟
|
𝑟=0

= 0, 

𝑑𝑇

𝑑𝑧
|
𝑧=0

= 0. 

(4-4) 

At the exposed boundaries Newton’s Law of Cooling is applied, whereby heat transfer is 

dependent on the effective heat transfer coefficient, ℎ (W m-2 K-1), and the ambient 

temperature, 𝑇∞ (K), such that: 

 

−𝑘
𝑑𝑇

𝑑𝑟
|
𝑟=𝑅

= ℎ(𝑇|𝑟=𝑅 − 𝑇∞), 

−𝑘
𝑑𝑇

𝑑𝑧
|
𝑧=𝑍

= ℎ(𝑇|𝑧=Z − 𝑇∞). 

(4-5) 

For simplicity, it is assumed that there is no thermal boundary layer at the cylinder 

boundary, such that the temperature immediately adjacent to the cylinder edge is equal 

to the ambient temperature. The heat transfer coefficient for the oven was determined 

by using the transient temperature measurement method used by Carson et al. (2006). 

This is discussed in detail in Section 4.5. 

 

4.2.2. Inclusion of Powder Drying Equations 

A variation of this model was developed which includes the equations required to model 

the drying of the powder. This model is largely based on that of Chen (2001), and Chong 

and Chen (1999). The moisture movement within the system involves the evaporation 

of moisture from the particles to the void in the powder mass. This moisture is then 

diffused through the voids, out towards the outer boundary of the powder domain, 

where it is carried into the ambient air by means of convection. A number of additional 

assumptions are applied to this model, these are: 

 The solid particle, moisture, and gas in the voids are assumed to be at the same 

local temperature. 
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 Negligible moisture transfer occurs via solid contacts, and the moisture transfer 

from the inner powder mass to the outer boundary is assumed to occur by 

diffusion of water vapour. 

 The vapour diffusion coefficient is assumed to be constant. 

The transient energy conservation equation in 2D cylindrical coordinates, modelling 

heat transfer in a basket of radius 𝑅 (m) and height 𝑍 (m), and with the inclusion of 

drying is given by: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2
) + 𝜌𝑄𝐴𝑒

−𝐸
𝑅𝑇 + 𝜌𝑠𝑑𝐻𝑣

𝜕𝑋

𝜕𝑡
 (4-6) 

Here, 𝜌𝑠𝑑 (kg m-3) is the solid density of the powder particles, 𝐻𝑣 (J kg-1) is the heat of 

vaporisation of the liquid water in the particles, and 𝑋 (kg kg-1) is the moisture content 

of the particles on a dry basis. The final term denotes the heat of wetting or drying of 

the powder. 

The moisture in the system is modelled in two states, firstly as liquid moisture in the 

particles and secondly as vapour in the voids between the particles. The first of these is 

described by the following: 

 −𝜌𝑠𝑑

𝜕𝑋

𝜕𝑡
= ℎ𝑚,𝑖𝑛𝐴𝑝𝑛𝑝(𝑌𝑠,𝑖𝑛 − 𝑌) (4-7) 

Where ℎ𝑚,𝑖𝑛 is the effective mass transfer coefficient between the particles and the gas 

in the voids (m s-1), 𝐴𝑝 is the surface area of one particle (m2), 𝑛𝑝 is the number of 

particles per unit volume (m-3), 𝑌𝑠,𝑖𝑛 is the vapour concentration at the surface of the 

particle (kg m-3), and 𝑌 is the vapour concentration in the voids (kg m-3). 

To solve the above equation, the vapour concentration at the particle surface, 𝑌𝑠,𝑖𝑛 

(kg m-3), is required. This is achieved by first defining the surface relative humidity, 𝑅𝐻𝑠: 

 𝑅𝐻𝑠 =
𝑝𝑠,𝑖𝑛

𝑝𝑠𝑎𝑡
≈

𝑌𝑠,𝑖𝑛

𝑌𝑠𝑎𝑡
 (4-8) 

The surface relative humidity, 𝑅𝐻𝑠, is defined as the ratio of the internal partial pressure, 

𝑝𝑠,𝑖𝑛 (Pa), to the saturated partial pressure, 𝑝𝑠𝑎𝑡 (Pa). This can be approximated by the 

ratio of vapour concentrations, where 𝑌𝑠𝑎𝑡 is the saturated vapour concentration (kg m-

3). 𝑌𝑠𝑎𝑡 was determined using the following correlation used by Putranto et al. (2011): 
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𝑌𝑠𝑎𝑡 = 4.844 × 10−9(𝑇 − 273)4 − 1.4807 × 10−7(𝑇 − 273)3

+ 2.6572 × 10−5(𝑇 − 273)2 − 4.8613

× 10−5(𝑇 − 273) + 8.342 × 10−3 

(4-9) 

Using this expression, and rearranging equation (4-8), the mass conservation equation 

(2-75) can now be expressed as: 

 −𝜌𝑠𝑑

𝜕𝑋

𝜕𝑡
= ℎ𝑚,𝑖𝑛𝐴𝑝𝑛𝑝(𝑅𝐻𝑠Ysat − 𝑌) (4-10) 

Now the surface relative humidity needs to be calculated. This was done by applying the 

Reaction Engineering Approach (REA), proposed by Chen (1998), which is a means of 

modelling drying kinetics by applying chemical reaction engineering principles. This 

approach assumes that evaporation is a first order activation process with an energy 

barrier to overcome, taking the form of an activation energy. The dynamic process of 

drying and the equilibrium state of drying are then unified in this approach. The REA is 

a simple and robust approach capable of describing drying behaviour with minimal 

experiments required to yield the necessary model parameters (Putranto, et al., 2011). 

The relationship between the REA and other drying theories, such as the characteristic 

drying curves model and the distributed-parameter models, are unclear, but for this self-

heating model where drying is not of critical importance this approach is sufficient. The 

following Arrhenius expression is used to describe the relative humidity at the particle 

surface: 

 𝑅𝐻𝑠 = 𝑒−
Δ𝐸𝑣
𝑅𝑇  (4-11) 

Where Δ𝐸𝑣 (J mol-1) is the additional activation energy to that of pure water 

evaporation, which accounts for the added difficulty in removing water at low water 

contents. When water covers the entire surface of the solid this correction term reduces 

to zero, with relative humidity increasing to unity and drying modelled as evaporation 

from a pure water surface. This value is determined through a purely empirical fitting to 

sorption isotherms. 

It was found in evaluating the drying model parameters used, in Section 5.7.3, that the 

value of the internal mass transfer coefficient, ℎ𝑚,𝑖𝑛, and the vapour diffusion 

coefficient, 𝐷𝑣𝑎𝑝, have as much of an influence on the predicted behaviour as the 

correlation of Δ𝐸𝑣 used. As such, only a single experiment was used to determine the 
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correlation for Δ𝐸𝑣. Using an approach based on that of Chen (1997) this REA model was 

fitted to sorption isotherm data at a temperature of 25°C (298K) determined using 

dynamic vapour sorption (DVS) equipment. The correction factor was assumed to take 

the form: 

 Δ𝐸𝑣 = 𝑎 ⋅ exp[𝑏(𝑋𝑐)] (4-12) 

The change in mass relative to a completely dried sample was plotted against ln(𝑅𝐻) ⋅

𝑅𝑇 to which this equation (4-13) was fitted using the MATLAB curve fitting toolbox. This 

fitting can be seen in Figure 4-1, and from this the correlation for the correction factor 

was approximated as: 

 Δ𝐸𝑣 = 4.68 × 106 exp[−9.43(𝑋0.0613)] (4-13) 

 

Figure 4-1: Correction factor, Δ𝐸𝑣, fitted to DVS sorption data for a sample of 
detergent heated at 25°C under different ambient relative humidifies, 𝑅𝐻. 

 

Chen (2001), and Chong and Chen (1999) used equation (2-85) to determine the heat of 

wetting or drying, 𝐻𝑣, in their models which essentially corrected the heat of 

vaporisation of water with a term that was a function of the surface relative humidity 

and temperature. The value of 𝐻𝑣 changed very little and in this model the value of 𝐻𝑣 

was assumed constant and taken as the heat of vaporisation of water, with a value of 

2257x103 J kg-1. 
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 The transport of water vapour through the voids in the basket of particles is described 

by the following equation in 2D cylindrical coordinates: 

 
𝜕𝑌

𝜕𝑡
= 𝜀𝐷𝑣𝑎𝑝 (

𝜕2𝑌

𝜕𝑟2
+

1

𝑟

𝜕𝑌

𝜕𝑟
+

𝜕2𝑌

𝜕𝑧2
) − 𝜌𝑠𝑑

𝜕𝑋

𝜕𝑡
 (4-14) 

𝑌 is the water vapour concentration (kg m-3), 𝜀 is the void fraction or porosity, and 𝐷𝑣𝑎𝑝 

is the diffusion coefficient of vapour through the powder voids (m2 s-1). The last term in 

this equation represents the addition/removal of vapour to the voids due to the rate of 

decrease/increase of moisture content in the solid particles. 

Similar to the temperature boundary conditions, symmetrical boundary conditions for 

the vapour concentration are applied along the central axes of the cylinder. In the radial 

direction this is expressed as: 

 
𝑑𝑌

𝑑𝑟
|
𝑟=0

= 0 (4-15) 

A similar gradient applies in the axial direction apply at 𝑧 = 0.  

 
𝑑𝑌

𝑑𝑧
|
z=0

= 0 (4-16) 

At the exposed boundaries heat transfer was defined using the effective heat transfer 

coefficient, ℎ. Here the mass transfer is dependent on the mass transfer coefficient, ℎ𝑚 

(m s-1), such that in the radial direction: 

 −𝜀𝐷𝑣𝑎𝑝

𝑑𝑌

𝑑𝑟
|
𝑟=𝑅

= ℎ𝑚 (
𝑌

𝜀
|
𝑟=𝑅

− 𝑌∞) . (4-17) 

Where 𝑌∞ is the ambient vapour concentration (kg m-3). Again, a similar gradient applies 

in the axial direction at 𝑧 = 𝑍.  

 −𝜀𝐷𝑣𝑎𝑝

𝑑𝑌

𝑑𝑧
|
𝑧=Z

= ℎ𝑚 (
𝑌

𝜀
|
𝑧=Z

− 𝑌∞) . (4-18) 

The drying model has been included to allow this model to be more easily compared 

with experimental results. It was seen that the drying had very little impact on the 

predicted self-heating behaviour and critical ambient temperatures. As such, little work 

has been done in characterising the drying of the detergent powders in this 

investigation. This variant of the model will only be used to qualitatively evaluate the 

drying behaviour. 
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4.2.3. Modelling of nth Order Reactions 

For the most part, a zero-order reaction model was used in this investigation, using 

reaction kinetics as measured using the basket heating methods. In Section 5.6 nth order 

kinetics are estimated using the DTG curve fitting approach. This kinetics are used in the 

model, but in doing so the heat generation term of the energy balance in equation (4-1) 

needs to be adjusted accordingly. This term needs to be adjusted to account for the 

reaction’s dependency on the concentration of reactive component, 𝑐𝑟𝑐 (kg m-3), its 

initial concentration, 𝑐𝑟𝑐,0 (kg m-3), and the reaction order, 𝑛. As the reactive component 

depletes, the reaction rate decreases, until all the reactive component has depleted and 

the reaction ceases. The approach used by Muramatsu et al. (1979) was applied in which 

the following expression is used: 

 
𝜕𝑐𝑟𝑐

𝜕𝑡
= −𝑐𝑟𝑐,0 (

𝑐𝑟𝑐

𝑐𝑟𝑐,0
)

𝑛

𝐴𝑒−
𝐸
𝑅𝑇 (4-19) 

In this case, the depletion of reactive component is captured as a ratio to the initial 

concertation of the reactive component. In this model, the value of 𝑛 influences the 

“strength” of the reaction with the depletion of reactive component. This is because 

(
𝑐𝑟𝑐

𝑐𝑟𝑐,0
)
𝑛

will never exceed 1. Using a ratio of the concentration to the initial concentration 

means that the value of 𝑛 in this model does not impact on the units of the pre-

exponential factor, 𝐴. However, this model has issues as discussed in Section 2.5.3. 

Similar to equation (4-19), the heat generation term in equation (4-2) is adjusted to 

account for the reaction’s dependency on the concentration of reactive component. This 

equation now becomes: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2
) + 𝑐𝑟𝑐,0 (

𝑐𝑟𝑐

𝑐𝑟𝑐,0
)

𝑛

𝑄𝐴𝑒
−𝐸
𝑅𝑇  (4-20) 

 

4.2.4. Solving the Model using gPROMS ModelBuilder 

Originally this model was solved using custom built solvers in MATLAB. The 1D variant 

of the model was solved using a Fully Implicit Backwards finite difference scheme, while 
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the 2D variant was solved using an Alternating Difference Implicit (ADI) finite difference 

scheme. These methods are outlined in Section 2.5.2. The custom built, non-adaptive 

time, solver used was found to give accurate results which were successfully validated 

against analytical solutions. However, these solvers could be rather slow and difficult to 

update given how they were coded in MATLAB. 

As this investigation progressed, it was thought that transferring the models to gPROMS 

ModelBuilder would be beneficial. gPROMS ModelBuilder is an advanced process 

modelling environment which allows for easier building and solving of models due to its 

intuitive GUI, in-built solvers, and adaptive approach to the discretisation of time. It also 

meant that some of the other useful features of gPROMS ModelBuilder could be used. 

These include: 

 Simple GUI with separate scripts for the model and the model parameters. This 

allows the same model to be easily updated and allows the model to be easily 

run under different conditions or with different parameter values. 

 Improved run time and accuracy. The in-built solvers are much more optimised 

than the custom built solvers built in MATLAB. An adaptive discretization of time 

is used that helps to improve on the time required to run the model. 

 Easy input of experimental input. Experimentally measured values and control 

variables can be input into the software for any number of experiments. These 

can be used to simulate the experiments, or can be used in parameter estimation 

or the design of experiments. 

Having transferred the model to gPROMS ModelBuilder, its in-built solvers were used to 

solve this set of 2D model equations. The model and process scripts are shown in 

Appendix B. Most simulations were run for an equi-cylindrical basket of radius and half-

height 30mm. The basket radius and half height were each discretized into 31 points.  

This number of discretised points was chosen so that grid points were spaced by 1mm 

when modelling an equi-cylindrical basket of diameter 60mm, making simulations of the 

basket heating methods easier. Having solved this model with discretisations of 61 and 

121 points, it was found that 31 points was sufficient to achieve grid independence. 
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gPROMS ModelBuilder uses a number of different solvers. The default solvers were 

found to work well for this model. The solvers are separated based on the type of 

equations they are used to solve. The solvers used for this model were: 

Linear Algebraic Equations 

 MA48 Solver 

o This solver uses direct LU-factorisation algorithms designed for large, 

sparse, asymmetric systems of linear equations. 

Non-Linear Algebraic Equations 

 BDNLSOL Solver 

o This stands for “Block Decomposition Non-Linear Solver”. It is a general 

solver for solving sets of non-linear equations rearranged into block 

triangular form. 

Differential Algebraic Equations 

 DASOLV Solver 

o This is a solver that uses variable time step and variable order Backward 

Differentiation Formulae. For most problems this solver is efficient, but it 

struggles with highly oscillatory problems or problems with frequent 

discontinuities. 

Both of the Differential Algebraic Equation solvers use a variable time step, and adjust 

this time step so that the following criterion is satisfied: 

 √
1

𝑛𝑑
 ∑(

𝜖𝑖

𝑎 + 𝑟|𝑥𝑖|
)
2

𝑛𝑑

𝑖=1

≤ 1 (4-21) 

Where 𝑛𝑑 is the number of differential variables in the problem, 𝜖𝑖 is the solver’s 

estimate of the local error in the ith differential variable, 𝑥𝑖  is the current value of the ith 

differential variable, 𝑎 is the absolute error tolerance, and 𝑟 is the relative error 

tolerance. This means that error, 𝜖𝑖, in the variable 𝑥𝑖  is not allowed to exceed 𝑎 + 𝑟|𝑥𝑖| 

over a single time step, where the default value for 𝑎 and 𝑟 of 1x10-5 was used. 
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4.3. Code Validation of Numerical Model against Analytical Solutions 

4.3.1. Finite Slab 

There exist analytical solutions to the transient temperature profiles for simple 

geometries such as finite slabs, infinite cylinders, and spheres. A finite solid slab can be 

defined as occupying the space between 𝑦 = −𝑏 to y= +𝑏, and initially being at a 

temperature of 𝑇0. For this solution, at the time 𝑡 = 0 the surfaces of the slab at 𝑥 =

±𝑏 are suddenly raised to some temperature 𝑇1 and maintained at this temperature 

from this time onwards. The solution to this case is outlined by Bird et al. (2007) and 

firstly requires a number of dimensionless variables to be defined. 

Dimensionless temperature: 

 Θ =
𝑇1 − 𝑇

𝑇1 − 𝑇0
 (4-22) 

Dimensionless coordinate: 

 𝜂 =
𝑦

𝑏
 (4-23) 

Dimensionless time: 

 𝜏 =
𝛼𝑇𝑡

𝑏2
 (4-24) 

𝛼𝑇 is the thermal diffusivity, equal to 𝑘/𝜌𝐶𝑝, of the body in question. Using these 

dimensionless variables, the differential equation outlining the heat transfer in this 

system can be expressed as: 

 
𝜕Θ

𝜕𝜏
=

𝜕2Θ

𝜕𝜂2
 (4-25) 

Initially the slab is at temperature 𝑇0, such that the initial conditions can be expressed 

as: 

 Θ = 1        𝑎𝑡 𝜏 = 0 (4-26) 

 

At time 𝑡 = 0 the slab faces at 𝑦 = ±𝑏 are raised to temperature 𝑇1 such that the 

boundary conditions can be defined as: 
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 Θ = 0        𝑎𝑡 𝜂 = ±1 (4-27) 

The solution to this problem is detailed in Appendix C. From this solution, it was found 

that the temperature profile in a finite slab under the outlined conditions can be 

expressed as: 

 Θ = 2 ∑
(−1)𝑛

(𝑛 +
1
2) 𝜋

exp [−(𝑛 +
1

2
)

2

𝜋2𝜏] cos (𝑛 +
1

2
) 𝜋𝜂

∞

𝑛=0

 (4-28) 

Using the original variables, this is expressed as: 

 
𝑇1 − 𝑇

𝑇1 − 𝑇0
= 2 ∑

(−1)𝑛

(𝑛 +
1
2) 𝜋

exp [−(𝑛 +
1

2
)
2

𝜋2
𝛼𝑇𝑡

𝑏2
] cos (𝑛 +

1

2
)
𝜋𝑦

𝑏
 

∞

𝑛=0

 (4-29) 

The results of the numerical model for heat transfer, with no heat generation, in a finite 

slab were compared with analytical solutions using equation (C-22). These solutions are 

seen to agree and this serves to validate this 1D finite slab model. 

 

Figure 4-2: Overlay of analytical and numerical solutions (𝐵𝑖 = ∞) for transient 
temperature profiles in a finite slab. 

 



117 
 
4.3.2. Infinite Cylinder 

Similar to the case of the finite slab above, there exist analytical solutions for the 

temperature profile of an infinite cylinder for some special cases. The solution for the 

geometry is more complex than the finite slab case outlined above and has been 

explored by Carslaw and Jaeger (1959). Initially the temperature of the cylinder is a 

function of the radius and given by 𝑇 = 𝑓(𝑟). The surface, at 𝑟 = 𝑏 is at a constant 

temperature, which may be taken as zero. Based on this, the equations for the 

temperature of the cylinder are: 

 
𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
) (4-30) 

 𝑇 = 0        𝑎𝑡 𝑟 = 𝑏 (4-31) 

 𝑇 = 𝑓(𝑟)        𝑎𝑡 𝑡 = 0 (4-32) 

The solution to this problem is detailed in Appendix D. If the case is similar to that of the 

slab discussed previously where the initial temperature is zero and the surface is 

maintained at some higher temperature 𝑇1 for 𝑡 > 0, then the dimensionless 

temperature can be expressed as: 

 Θ = 1 − 2 ∑ 𝑒−𝛾𝑛
2𝜏

∞

𝑛=0

𝐽0(𝛾𝑛𝜂)

𝛾𝑛𝐽1(𝛾𝑛)
 (4-33) 

Where 𝐽0(𝑥) is the Bessel function of order zero of the first kind, 𝐽1(𝑥) is the Bessel 

function of order one of the first kind, and ±𝛾𝑛, 𝑛 = 1,2, …, are the roots of: 

 𝐽0(𝛾) = 0 (4-34) 

The results of the numerical model for heat transfer, with no heat generation, in an 

infinite cylinder were compared with analytical solutions using equation (D-14). These 

solutions are seen to completely agree and this serves to validate this 1D infinite cylinder 

model. 
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Figure 4-3: Overlay of analytical (𝑛 = 100) and numerical solutions (𝐵𝑖 = ∞) for 
transient temperature profiles in an infinite cylinder. 

 

The above solutions are for an infinite Biot number. The Biot number, 𝐵𝑖, is the 

dimensionless ratio of internal to external heat transfer resistance, and is equal to ℎ𝐿/𝑘, 

where 𝐿 is some characteristic length. The model solutions for varying values of the Biot 

number were compared with the analytical solutions. This was done for value of 𝐵𝑖 of 

2, 10, 20, and 200, and can be seen in Figure 4-4. As expected, it can be seen that the 

numerical solution for a low Biot number of 2 are very different to the analytical 

solutions, where an infinite Biot number is used. 

For the analytical solutions, the dimensionless temperature, Θ, at all dimensionless 

times, 𝜏, is equal to 1 at a dimensionless coordinate, 𝜂, equal to 1, corresponding to the 

slab surface. As the time progresses, all points increase in temperature to the steady-

state temperature. For the low finite Biot number cases, as expected, the slab surface is 

seen not to be at a constant temperature and instead increases in temperature as time 

progresses. As the Biot number increases, and heat transfer at the boundary becomes 

more pronounced, the numerical model solutions are seen to approach the analytical 

solutions, with a Biot number of 200 providing sufficient agreement. 
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Figure 4-4: Overlay of analytical (𝑛 = 100) and numerical solutions for transient 
temperature profiles in an infinite cylinder with Newtonian boundary conditions and a 
Biot number, 𝐵𝑖, of (a) 2, (b) 10, (c) 20, and (d) 200. The analytical solutions are for an 

infinite Biot number. 

 

Finally, the 2D numerical model of a finite cylinder was also validated. In this case a high 

radial to axial length ratio was used such that the finite cylinder becomes analogous to 

an infinite cylinder. A radius of 0.03m and an axial length of 1m was used. These results 

can be seen in Figure 4-5. Almost the same results are seen. As the Biot number increase, 

the numerical results are again seen to approach the analytical solutions. 

The numerical model solutions were shown to be in agreement with analytical solutions 

for the following three variants of the model for increasing Biot numbers: 

 1D finite slab model. 

 1D infinite cylinder model. 

 2D cylinder model using a high axial length to radius ratio, such that the model 

is analogous to an infinite cylinder. 
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The agreements for these three cases validates the heat transfer aspect of this numerical 

model. 

 

Figure 4-5: Overlay of analytical (𝑛 = 100) and numerical solutions for transient 
temperature profiles in a 2D pseudo-infinite cylinder (𝑟 = 0.03𝑚 and 𝑧 = 1𝑚) with a 

Biot number, 𝐵𝑖, of (a) 2, (b) 10, (c) 20, and (d) 200. 

 

4.4. Refuting the Pseudo-2D Shape Factor in Modelling Equi-Cylindrical 

Heat Transfer  

4.4.1. Introduction 

Chen (2001), and Chong and Chen (1999) proposed a model for predicting the self-

heating behaviour of spray dried food powders. In this model the following governing 

equation for energy conservation in the powder mass, accounting for heat generation 

and drying of the powder, was used: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘∇2𝑇 + 𝜌𝑠𝑑𝑄𝐴𝑒−

𝐸
𝑅𝑇 + 𝜌𝑠𝑑𝐻𝑣

𝜕𝑋

𝜕𝑡
 (4-35) 
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The second term represents the conductive heat transfer in the solid. The Laplacian in 

this term is dependent on the coordinate system being used and the geometry being 

modelled. In this model, they used the following expansion of the Laplacian: 

 𝑘∇2𝑇 = 𝑘 (
𝜕2𝑇

𝜕𝑥2
+

𝑗

𝑥

𝜕𝑇

𝜕𝑥
) (4-36) 

Here, 𝑗 is the shape factor and is changed to reflect the geometry being modelled. For 

1D geometries, the exact value of 0 for a finite slab, 1 for an infinite cylinder, and 2 for 

a sphere can be used. For other geometries, such as a cube and equi-cylinder (cylinder 

of equal diameter and height), the shape factor was used under the premise that it 

allows 2D or 3D geometry to be approximated using 1D model equations. A shape factor 

of 3.28 for a cube, and 2.728 for an equi-cylinder was used.  

This shape factor is that first proposed by Boddington et al. (1971) in determining the 

critical parameter 𝛿𝑐𝑟 for arbitrary geometries. It was shown in Section 2.4.1.2 that the 

values of 𝛿𝑐𝑟 calculated using this shape factor in other work did not agree with the 

values of 𝛿𝑐𝑟 solved for analytically. This puts the use of this shape factor into doubt. 

Although the shape factor uses the correct Laplacian term for a finite slab, infinite 

cylinder, and sphere, it is unclear if this shape factors can be used as an approximation 

for an equi-cylinder or a cube. In an equi-cylinder, it is though that axial conduction plays 

a key role, and that modelling in at least axisymmetric 2D is required. No work could be 

found that validates the use of this shape factor for an equi-cylinder so it was decided 

that the use of this shape factor needed to be validated or refuted here. 

 

4.4.2. Refuting the Shape Factor Approximation for Equi-Cylindrical Geometries 

To do this, the 1D model of heat transfer, with no heat generation or drying, was used. 

This model uses the conduction term in equation (4-36) with a shape factor value of 

2.728 as suggested by Chen (2001), and Chong and Chen (1999) in order to model an 

equi-cylinder. This model was solved using the Finite Implicit Backwards (FIB) scheme. 

Dimensionless temperature profiles were determined using this model, similar to those 

used in validating these models against analytical solutions. These profiles were 

compared to profiles generated from a 2D axisymmetric model of heat transfer in an 

equi-cylinder. 
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Profiles were plotted for dimensionless lengths 0 ≤ 𝜂 ≤ 1, for dimensionless 

temperatures 0 ≤ Θ ≤ 1, and at dimensionless times of 𝜏 = 0.01, 0.04, 0.1, 0.2, and 

0.4. For a very high Biot number (3000), such that it can be assumed infinite, the 

comparison of these two models is shown in Figure 4-6. 

 

Figure 4-6: Comparison of dimensionless temperature profiles for a 1D heat transfer 
model using the shape factor, 𝑗 = 2.728, used by Chen (2001), and Chong and Chen 

(1999) and a 2D axisymmetric equi-cylinder model. 

 

Both of these models have previously been validated. The 1D model was validated 

against analytical solutions for transient heat transfer using a shape factor of 0 to model 

a slab, and a shape factor of 1 to model an infinite cylinder. The 2D model was validated 

against analytical solutions for transient heat transfer in an infinite cylinder by using a 

high radial to axial length ratio. Despite this, the results of these two models, when a 

shape factor of 2.728 is used, are not in agreement. Initially, at a dimensionless time of 

0.01, these models are quite similar, yet as time progresses the two models are seen to 

diverge. The 1D model is seen to approach the steady-state temperature faster than the 

2D model. The 1D model profiles are also different in shape. Close to the surface at 𝜂 =

1, the 1D model profiles have a greater degree of “curvature”. This can be seen 

particularly well at 𝜏 = 0.1 and 𝜏 = 0.2. These results suggest that using a 1D model 
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with this shape factor is not suitable for modelling equi-cylindrical heat transfer, and 

that a 2D axisymmetric model is required. 

This analysis was repeated for finite Biot number values of 3, 15, 30, and 300. These 

results are shown in Figure 4-7 and the same behaviour as before can be seen. In each 

case the 1D shape factor model heat up faster than the 2D model. Again these results 

suggest that using a 1D model with the shape factor approximation, or at least using a 

shape factor of 𝑗 = 2.728, is not suitable for modelling equi-cylindrical heat transfer. 

Although more computationally expensive, and more complex, a 2D axisymmetric 

model is the minimum required to model such systems. This also suggest that axial 

conduction has an impact that cannot be approximated. This has implications in the 

cross-point temperature method, where only radial conduction is considered in 

determining the cross-point. The effect of axial conduction on the cross-point, and the 

true form of the cross-point assumption, will be explored later in Section 5.4.2. 

 

Figure 4-7: Comparison of dimensionless temperature profiles for a 1D heat transfer 
model using the shape factor of 𝑗 = 2.728 and a 2D axisymmetric equi-cylinder model 

for Biot number of (a) 3, (b) 15, (c) 30, and (d) 300. 
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4.5. Experimentally Measuring the Convective Heat Transfer Coefficient 

in the Oven 

In order to accurately model the heat transfer in oven heated baskets of detergent 

powder, one must be able to accurately model the heat transfer at the basket 

boundaries. To do this, the heat transfer coefficient must be known, or rather measured. 

Firstly, the heat transfer across the boundary is quantified by what is commonly referred 

to as Newton’s Law of Cooling: 

 𝑞 = ℎ𝑒𝑓𝑓(𝑇𝑠 − 𝑇∞) (4-37) 

Where 𝑞 is the heat flux (W m-2), ℎ is the effective heat transfer coefficient (W m-2 K-1), 

𝑇𝑠 is the surface temperature (K), and 𝑇∞ is the ambient temperature (K). The effective 

heat transfer coefficient is the sum of the convective heat transfer coefficient, ℎ𝑐𝑜𝑛𝑣, 

and the radiative heat transfer coefficient, ℎ𝑟𝑎𝑑: 

 ℎ𝑒𝑓𝑓 = ℎ𝑐𝑜𝑛𝑣 + ℎ𝑟𝑎𝑑 (4-38) 

The most common method for measuring the effective heat transfer coefficient is the 

transient temperature measurement method, used by both Sato et al. (1987) and 

Carson et al. (2006). This method consists of fitting a mathematical model to transient 

temperature vs time data, and using this to back-calculate the heat transfer coefficient. 

The general solution to the heat transfer equation for a body with convective heat 

transfer at its surface is defined as: 

 𝜃 = ∑𝑓𝑗(𝐵𝑖)

∞

𝑗=1

exp(−𝑔𝑗(𝐵𝑖)𝐹𝑜) (4-39) 

𝜃 is the dimensionless temperature at some position, defined relative to the 

temperature at that position, 𝑇,  as: 

 𝜃 =
𝑇 − 𝑇∞

𝑇0 − 𝑇∞
 (4-40) 

Here, 𝑇0 is the initial temperature. 𝐵𝑖 is the Biot number, the ratio of internal to external 

thermal resistance, defined as: 

 𝐵𝑖 =
ℎ𝐿

𝑘
 (4-41) 

𝐹𝑜 is the Fourier number, which is essentially the dimensionless time, defined as: 
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 𝐹𝑜 =
𝑘𝑡

𝜌𝐶𝑝𝐿2
 (4-42) 

The function 𝑓𝑗(𝐵𝑖) and 𝑔𝑗(𝐵𝑖) in equation (4-39) are dependent on the geometry of 

the body. By plotting the logarithm of the dimensionless temperature change against 

time, the following can be fitted to the linear region: 

 ln 𝜃 = 𝐵 − 𝑠𝑡 (4-43) 

If the Biot number of the body is less than 0.1, then the lumped heat capacity 

approximation can be used. This avoids rather complex solutions to equation (4-39). In 

doing so, and by using the volume to surface area ratio as the characteristic length (i.e. 

𝐿 = 𝑉/𝐴), equation (4-39) can instead be expressed as: 

 𝜃 = exp(−𝐵𝑖 𝐹𝑜) (4-44) 

Rearranging this allows the effective heat transfer coefficient to be back-calculated from 

the following: 

 ℎ𝑒𝑓𝑓 = 𝜌𝐶𝑝

𝑉

𝐴
𝑠 (4-45) 

Where 𝜌 is the density, 𝐶𝑝 is the specific heat capacity, and 𝑠 is the slope of the linear 

fitting in equation (4-43). By knowing the radiative heat transfer coefficient, ℎ𝑟𝑎𝑑, the 

convective heat transfer coefficient, ℎ𝑐𝑜𝑛𝑣, can be determined. ℎ𝑟𝑎𝑑 is defined as: 

 ℎ𝑟𝑎𝑑 = 𝜎𝜖(𝑇𝑠 + 𝑇𝑤𝑎𝑙𝑙)(𝑇𝑠
2 + 𝑇𝑤𝑎𝑙𝑙

2 ) (4-46) 

Where 𝜎 is the Stefan Boltzmann constant (5.67x10-8 W m-2 K-4), 𝜖 is the emissivity, and 

𝑇𝑤𝑎𝑙𝑙 (K) is the temperature of the internal oven walls. Here it is assumed that the 

temperature of the oven walls is equal to the ambient temperature, 𝑇∞. To determine 

this heat transfer coefficient of the oven in this study, a Memmert UF 75 forced 

convection oven, an aluminium equi-cylinder of height and dimeter 50mm was used. 

The thermal conductivity of aluminium (≈215 W m-1 K-1 at 125°C) is large enough that 

the temperature of the cylinder can be considered uniform. A hole was drilled into the 

cylinder to allow a probe-type type K thermocouple to be inserted and the central 

temperature of the cylinder measured. The cylinder was also painted using matte black, 

high temperature, spray paint, such that the emissivity of the cylinder could be assumed 

to be equal to 0.97. A thermocouple is also placed close to the cylinder to allow the true 

ambient temperature to be recorded. The experimental setup can be seen in Figure 4-8. 
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Figure 4-8: Setup of black painted aluminium cylinder used in the transient 
temperature measurement method for determining the convective heat transfer 

coefficient. 

 

Aluminium was used because a material with known properties is required. The 

following properties for aluminium were used in this method: 

Table 4-1: Properties of aluminium used in this method. 

Property Value 

Specific Heat Capacity, 𝑪𝒑 (J kg-1 K-1) 910 

Density, 𝝆 (kg m-3) 2700 

 

In this method, small ambient temperature changes are made and the temperature-

time profile at the cylinder centre recorded. Ambient temperature changes of 20°C were 

made starting from 20°C (293K) and finishing at 240°C (513K), corresponding to 11 

experiments. For each temperature change, the cylinder was allowed time to reach a 

uniform steady-state temperature before proceeding to the next temperature increase. 

The start and end temperatures for each of the experiments are shown in Table 4-2. 
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Table 4-2: Start and end temperatures for the 11 transient temperature measurement 

experiments. 

Test Number Start Temperature End Temperature 

1 20°C 40°C 

2 40°C 60°C 

3 60°C 80°C 

4 80°C 100°C 

5 100°C 120°C 

6 120°C 140°C 

7 140°C 160°C 

8 160°C 180°C 

9 180°C 200°C 

10 200°C 220°C 

11 220°C 240°C 

 

The temperature difference between the ambient and cylinder temperature, and 

cylinder temperature alone can be seen in Figure 4-9 at an ambient temperature of 

180°C (453K). It can be seen that the temperature difference is initially equal to 0K 

because the oven temperature is yet to be increased. The oven temperature is changed, 

and it takes a short amount of time for the oven to reach this temperature, causing the 

temperature difference to reach some value between 15 and 20K. The temperature 

difference then reduces to 0K once again as the cylinder heats up. Some noise can be 

seen on the latter part of the temperature difference profile. This noise is more 

pronounced at lower ambient temperatures. 
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Figure 4-9: Temperature difference and cylinder temperature for an ambient 
temperature of approximately 180°C (453K). 

 

For each experiment, the recorded cylinder, initial, and ambient temperatures are used 

to calculate the dimensionless temperature difference, 𝜃, in equation (4-40). This is 

plotted in Figure 4-10. It can be seen that this value begins at 0, before approaching a 

final value of approximately -4. There is considerably more noise on this profile, but the 

initial portion of the profile is reasonably linear. It is to this region that equation (4-43) 

is fitted. This is done for each of the experiments outlined in Table 4-2, and the heat 

transfer coefficient for each test calculated from equation (4-45). The results for 

ambient temperature of approximately 200°C (473K) and 220°C (493K) can be seen in 

Figure 4-11 and Figure 4-12 respectively. These are temperatures close to those at which 

the baskets of detergent powders will be heated. 
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Figure 4-10: Dimensionless temperature difference, fitting region, and linear fit to 
these data for a cylinder heated at an ambient temperature of approximately 180°C 

(453K). 

 

 

Figure 4-11: Dimensionless temperature difference, fitting region, and linear fit to 
these data for a cylinder heated at an ambient temperature of approximately 200°C 

(473K) 
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Figure 4-12: Dimensionless temperature difference, fitting region, and linear fit to 
these data for a cylinder heated at an ambient temperature of approximately 220°C 

(493K). 

 

The effective heat transfer coefficient, ℎ𝑒𝑓𝑓, for each test was plotted as a function of 

the ambient temperature in Figure 4-13. A relatively good fit is seen that shows how the 

effective heat transfer coefficient is seen to increase with ambient temperature, from 

approximately 34 W m-2 K-1 at 20°C (293K) to approximately 44 W m-2 K-1 at 220°C 

(493K). 

The following correlation was fitted to allow ℎ𝑒𝑓𝑓 to be estimated for any ambient 

temperature: 

 ℎ𝑒𝑓𝑓 ≈ 7.64 × 10−5 𝑇2 − 6.67 × 10−3 𝑇 + 28.19 (4-47) 

This is the effective heat transfer coefficient for a black aluminium cylinder in this oven. 

To apply this to other objects heated in this oven, the effective heat transfer coefficient 

needs to be separated into the radiative and convective heat transfer coefficient. The 

radiative component will vary from object to object, and is dependent on the surface 

emissivity, 𝜖. By painting this cylinder matte black, the emissivity is assumed equal to 

0.97, allowing the radiative heat transfer coefficient to calculated using equation (4-46) 

for different ambient temperatures. This value, as a function of ambient temperature is 
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shown in Figure 4-14. Subtracting this from the effective heat transfer coefficient gives 

the convective heat transfer coefficient, and this can be seen in Figure 4-15.  

 

Figure 4-13: Effective heat transfer coefficient as a function of ambient temperature. 

 

 

Figure 4-14: Radiative heat transfer coefficient as a function of ambient temperature. 
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Figure 4-15: Convective heat transfer coefficient as a function of ambient temperature. 

 

The following correlation was fitted to allow ℎ𝑐𝑜𝑛𝑣 to be estimated for any ambient 

temperature: 

 ℎ𝑐𝑜𝑛𝑣 ≈ −1.93 × 10−4 𝑇2 − 0.102 𝑇 + 13.71 (4-48) 

The correlated value of ℎ𝑐𝑜𝑛𝑣 is seen to decrease with a decrease in ambient 

temperature. This is unexpected and may be due to the radiative heat transfer 

coefficient. As shown in equation (4-46), the radiative heat transfer coefficient is 

dependent on the temperature of the internal oven walls. However, it was assumed that 

this was equal to the ambient temperature. It may be incorrect to assume this, and this 

may be the reason that the convective heat transfer coefficient decreases with 

temperature. As such, this correlation is only applicable in the temperature ranges for 

which it was calculated. This correlation can be used in the numerical model to estimate 

the convective heat transfer coefficient for a basket of detergent powder in this oven. 

  

4.6. Conclusions 

In this chapter, the model equations for three different variants of a numerical model 

capable of predicting self-heating behaviour in self-heating systems were outlined.  
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These were modelled using 2D axisymmetric cylindrical coordinates, although the model 

equations also allow the coordinate system to be varied. These models allow different 

combinations of heat transfer, mass transport of moisture, zero order self-heating 

reactions, and nth order reactant concentration dependent reactions, to be modelled. 

These models were initially built in MATLAB but transferring these models in gPROMS 

ModelBuilder allowed for easier editing and faster, and more accurate, solving of these 

models. The in-built solvers of gPROMS and the adaptive approach to discretising time 

helped in improving these models. 

Different variants of this model were successfully validated by comparing the numerical 

solutions to analytical solutions for a finite slab and infinite cylinder. Both the 1D and 2D 

variants of this model were validated against analytical solutions for a finite slab and 

infinite cylinder. These analytical solutions assumed an infinite Biot number, and using 

the same assumption, these models agreed very well with the analytical solutions. 

Model solutions with varying Biot numbers were also compared to analytical solutions. 

It could be seen that the model solutions approached the analytical solutions for 

increasing values of the Biot number. As expected, solutions with lower Biot numbers 

were shown to have a greater difference in surface to ambient temperatures. 

This model was successfully used to refute shape factor approximation used by Chen 

(2001), and Chong and Chen (1999). By comparing a 1D variant of the developed model 

using this shape factor approximation and the 2D axisymmetric model variant, it was 

shown that the model with this shape factor gave incorrect results. Chen (2001), and 

Chong and Chen (1999) suggested that this approximation could be used to model heat 

transfer in an equi-cylinder using 1D equations. This comparison showed that this shape 

factor approximation should not be used, at least for the value of 𝑗 = 2.728 suggested, 

and that at least a 2D axisymmetric model is required. 

Finally, the transient temperature measurement method was used to correlate the 

convective heat transfer coefficient of the oven to the ambient temperature. This was 

correlated as: 

 ℎ𝑐𝑜𝑛𝑣 ≈ −1.93 × 10−4 𝑇2 − 0.102 𝑇 + 13.71 (4-49) 
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This can be summed with the radiative heat transfer coefficient to give the effective heat 

transfer coefficient. This correlation is applied in simulating the oven heating of 

detergent powder baskets in later applications of these models. 
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5. Assessment of Methods for Characterising Detergent 

Formulations 

5.1. Introduction 

The self-heating behaviour of materials other than detergent powders have previously 

been explored using a number of methods. The long established method is the steady-

state method based on Frank-Kamenetskii’s theory of thermal explosions (Frank-

Kamenetskii, 1969). This is a basket heating method which was originally used to 

estimate self-heating kinetics for activated carbons (Bowes & Cameron, 1971). The 

steady-state method is an effective approach based on determining the critical ambient 

temperatures, the temperature above which thermal runaway will occur, for different 

basket sizes of material. This is a slow method requiring several experiments to yield a 

single data point. Developed as a faster alternative, the cross-point temperature (CPT) 

method is another basket heating method, first proposed by Chong et al. (1996), and 

originally used to estimate the self-heating kinetics of skimmed and whole milk powders. 

Since then, Sujanti et al. (1999) has used this approach to study coal, and has shown that 

the steady-state method and the cross-point temperature method estimate similar 

kinetics. Malow and Krause (2004) has also compared these two methods, along with 

the differential scanning calorimetry (DSC) based Ozawa-Flynn-Wall method to estimate 

the kinetics of coal dust, cork dust, riboflavin and a detergent powder. This is also one 

of the few studies that addresses self-heating in detergent powders. Few details were 

given with regards the detergent powder formulation, but it was shown that the steady-

state and CPT methods estimated similar kinetics, giving activation energies of 

102(±30)x103 J mol-1 and 112(±24)x103 J mol-1 respectively. These errors are relatively 

large but this is possibly due to only 4 and 5 points being determined for the steady-

state and CPT methods respectively. 

The work presented in this chapter draws on this previous work and seeks to determine 

the best means of estimating the self-heating reaction kinetics of a typical detergent 

powder, such that the estimated kinetics can be used in the numerical model developed 

in Section 4.2 and applied to the study of self-heating in detergent powder 

accumulations. The reaction kinetics in this chapter have been estimated using three 
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different methods. Two of these are the previously outlined steady-state and cross-

point temperature (CPT) methods, which are used to estimate zero-order reaction 

kinetics. The third method is a thermogravimetric fitting method, adapted from that of 

Yang et al. (2001). This method is used to fit nth order kinetics to mass loss data from 

Thermogravimetric Analysis (TGA). The kinetics estimated using these methods are 

compared and the advantages and disadvantages of each method explored. 

The majority of the work in this chapter was done using the detergent formulation used 

in Section 3.2. This formulation used a finer grade of sodium sulphate to reduce 

composition variability. As such this formulation will be referred to as Micronized 

Formulation 1. Cross-point temperature method experiments were also conducted 

using three other detergent formulations. The first of these formulations is referred to 

as Non-Micronized Formulation 1. As the name suggests, this formulation uses a non-

micronized grade of sodium sulphate, but in all other ways it is the same as Micronized 

Formulation 1. This means that it also contains LAS surfactant at a level of 17%, which is 

thought to cause the majority of the observed self-heating behaviour. It also contains 

low levels of Sodium Silicate, Sodium Carbonate, and Polycarboxylate Polymer at the 

same levels at Micronized Formulations 1. 

The other two formulations, Formulation 2 and Formulation 3, are similar to one 

another. These formulations have a similar composition to Formulation 1, but vary in 

the exact level of the individual components. They both contain approximately 17% LAS 

but their compositions vary from one another in that Formulation 3 contains 1% 

Polycarboxylate Polymer, whilst Formulation 2 contains 0%. These formulations allow 

the influence of this polymer on the self-heating to be evaluated. The estimated kinetics 

of all these formulations are discussed. 

These kinetics are applied in the 2D-axistmmetric model of transient heat and mass 

transfer in a cylindrical basket of detergent powder. This model is adapted from the 

models of Chen (2001) and Chong and Chen (1999), which were used to model self-

heating in milk powders and explore aspects of the cross-point temperature method. 

The comparison of this model to experimental temperature profiles is explored. Both 

the numerical model and the two basket heating methods are based on the same energy 

balance for a self-heating body, given by equation (4-1). 
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The model based on this energy balance, discussed in detail in Chapter 4, was used to 

simulate the cross-point temperature method experiments, such that the impact of the 

form of the cross-point approximation on the results could be explored. The effects of 

errors in the thermocouple readings were also simulated. This model was then used to 

predict temperature-time profiles in baskets of detergent powder across a range of 

ambient temperatures. Critical ambient temperatures for baskets of varying sizes are 

also predicted. These predictions are then compared with experimental data. The 

influence of the specific heat capacity, a number of drying parameters, and the 

differences in predicted temperature profiles from using zero-order and nth order 

reaction models are also explored. 

 

5.2. Steady-State Basket Method 

The steady-state approach, sometimes referred to as the F-K method, initially developed 

by Bowes and Cameron (Bowes & Cameron, 1971), is based on the steady-state 

dimensionless form of the energy conservation equation (4-1). It is widely used for 

determining the zero-order reaction kinetics of self-heating powders and is the basis of 

the British Standard BS EN 15118:2007 (British Standards Institution, 2007). The 

dimensionless form is obtained by defining the dimensionless temperature, 𝜃, the 

dimensionless length, 𝜉, the dimensionless exponent, 𝜑, and the dimensionless 

parameter, 𝛿: 

𝜃 =
𝐸

𝑅𝑇∞
2
(𝑇 − 𝑇∞)  (5-1) 

𝜉 =
𝑥

𝐿
  (5-2) 

𝜑 =
𝐸

𝑅𝑇∞
 (5-3) 

𝛿 =
𝐸

𝑅𝑇∞
2

𝜌𝑄𝐴𝐿2

𝑘
𝑒

−
𝐸

𝑅𝑇∞  (5-4) 

Where 𝑥 (m) is the position, 𝐿 (m) is a characteristic length, and 𝑇∞ (K) the ambient 

temperature. The steady-state energy conservation equation can then be expressed as: 
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∇ξ

2𝜃 = −𝛿𝑒

𝜃

1+
𝜃
𝜑 (5-5) 

The Frank-Kamenetskii parameter, 𝛿, is a dimensionless term that encompasses all the 

quantities required to describe the problem of self-heating, with a value above the 

critical value, 𝛿𝑐𝑟, leading to thermal runaway. The value of 𝛿𝑐𝑟 is a function of geometry, 

the dimensionless exponent 𝜑 in equation (5-3), and the Biot number, 𝐵𝑖, used in 

defining the dimensionless boundary conditions of this problem. Rearranging 𝛿 in 

equation (5-4) gives: 

 ln (
𝛿𝑐𝑟𝑇∞,𝑐𝑟

2

𝐿2
) = ln (

𝜌𝑄𝐴

𝑘

𝐸

𝑅
) −

𝐸

𝑅𝑇∞,𝑐𝑟
 (5-6) 

The steady-state approach is based on this equation. A stainless steel equi-cylindrical 

(cylinder of equal height and diameter) mesh basket was filled with detergent powder 

and placed in a Memmert UF75 forced convection oven. The baskets were filled and 

tapped, such that they were consistently filled to the same mass, ensuring the same 

density for each experiment. A type K thermocouple (RS Pro 363-0294) was inserted into 

the centre of this basket to measure the core temperature. This thermocouple was glass 

fibre insulated with a welded exposed junction and supplied with a working range of -

60° to 350°C. The oven temperature was set and an additional thermocouple was placed 

near to the basket to measure the true ambient temperature close to the basket. The 

temperature was measured over a number of hours to determine if the powder 

undergoes thermal runaway at the oven set ambient temperature. The test was 

repeated at different ambient temperatures, in 0.5°C increments, to find the critical 

ambient temperature, above which the basket of powder undergoes thermal runaway, 

for the size of basket used.  0.5°C increments were used because that was increment to 

which the oven temperature could be set. Repeating this for baskets of different sizes 

and plotting according to equation (5-6) allowed the zero-order activation energy and 

pre-exponential factor for the self-heating reaction to be estimated. In this investigation 

three equi-cylindrical baskets were used, with diameters of 50mm, 60mm, and 70mm. 
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5.2.1. Numerical Solutions for the Frank-Kamenetskii Parameter, 𝜹𝒄𝒓 

As mentioned, 𝛿 is a dimensionless term that encompasses all the quantities required 

to describe the problem of self-heating. For a value above the critical value, 𝛿𝑐𝑟, the 

system will lead to thermal runaway. In order to accurately execute the steady-state 

method the value of 𝛿𝑐𝑟 must be known. 𝛿𝑐𝑟 has previously been calculated for common 

geometries, such as for an infinite slab detailed in Section 2.3. This solution was 

accompanied by a number of assumptions. It was assumed that Biot number (𝐵𝑖 =

ℎ𝐿/𝑘) was infinite, such that the edge temperature of the slab is equal to the ambient 

temperature. It was also assumed that Δ𝑇 ≪ 𝑇∞, such that 𝜑 was assumed infinite, and 

a simplified exponential term of 𝑒𝜃 could be used in equation (5-5). These assumptions 

limit the use of these solved for 𝛿𝑐𝑟 values. Chambré (1952) detailed this solution for 

other geometries but these same assumptions were applied. Parks (1961) used a digital 

computer to solve for these 𝛿𝑐𝑟 values for a range of 𝜑 values and for a number of 

geometries, as detailed in section 2.3.4, but the limitations of 1960s computing means 

there is scope to expand on this work. 

Here 𝛿𝑐𝑟 is solved for numerically for four geometries, a finite slab, an infinite cylinder, 

a sphere, and an equi-cylinder (cylinder of equal diameter and height), for a range of 

values for 𝜑 and the Biot number. Solving in terms of 𝜑 allows more material specific 

values of 𝛿𝑐𝑟 to be used, whilst solving in terms of the Biot number allows 𝛿𝑐𝑟 for 

different boundary conditions to be used. To calculate the critical value 𝛿𝑐𝑟, the 

dimensionless steady-state equation (5-5) is solved for varying values of 𝜑, 𝐵𝑖, and 𝛿. 

For set values of 𝜑 and 𝐵𝑖, the value of 𝛿 was increased to find the maximum value for 

which a steady-state solution exists. This maximum value is the critical value, 𝛿𝑐𝑟. The 

Laplacian term in equation (5-5) has been expanded to model the four different 

geometries explored in this investigations. For the 1-dimensional systems the following 

expanded equations are used: 

 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑙𝑎𝑏          
𝑑2𝜃

𝑑𝜉2
= −𝛿𝑒

𝜃

1+
𝜃
𝜑 (5-7) 

 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟          
𝑑2𝜃

𝑑𝜉2
+

1

𝜉

𝑑𝜃

𝑑𝜉
= −𝛿𝑒

𝜃

1+
𝜃
𝜑 (5-8) 
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 𝑠𝑝ℎ𝑒𝑟𝑒          
𝑑2𝜃

𝑑𝜉2
+

2

𝜉

𝑑𝜃

𝑑𝜉
= −𝛿𝑒

𝜃

1+
𝜃
𝜑 (5-9) 

To solve for 𝛿𝑐𝑟 for an equi-cylinder, a 2D model was required, which requires solving 

for 𝜃 in both the dimensionless radial and axial directions, hereby denoted as 𝜉𝑟 and 𝜉𝑧 

respectively: 

 𝑒𝑞𝑢𝑖 − 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟         
𝑑2𝜃

𝑑𝜉𝑟
2

+
1

𝜉𝑟

𝑑𝜃

𝑑𝜉𝑟
+

𝑑2𝜃

𝑑𝜉𝑧
2

= −𝛿𝑒

𝜃

1+
𝜃
𝜑 (5-10) 

Boundary conditions are required to solve this problem. A symmetrical boundary 

condition applies at the centre of the geometry such that: 

 𝑎𝑡 𝜉 = 0,
𝜕𝜃

𝜕𝜉
= 0 (5-11) 

Or in 2D coordinates this boundary condition is expressed as: 

 𝑎𝑡 𝜉𝑟 = 0,
𝜕𝜃

𝜕𝜉𝑟
= 0 (5-12) 

 𝑎𝑡 𝜉𝑧 = 0,
𝜕𝜃

𝜕𝜉𝑧
= 0 (5-13) 

At the exposed boundary of the body, heat transfer is dependent on the Biot number, 

𝐵𝑖, which is the ratio of the conductive heat transfer resistance within the body to the 

convective heat transfer resistance at the boundary. This parameter was a specified 

input parameter in the model. Using this, the boundary condition can be defined as: 

 𝑎𝑡 𝜉 = 1,
𝜕𝜃

𝜕𝜉
= −𝐵𝑖 𝜃 (5-14) 

As the Biot number increases, the temperature at 𝜉 = 1 approaches the ambient 

temperature. For an infinitely high Biot number this boundary condition reduces to 

𝜃𝜉=1 = 0. In 2D coordinates this boundary condition is expressed as: 

 𝑎𝑡 𝜉𝑟 = 1,
𝜕𝜃

𝜕𝜉𝑟
= −𝐵𝑖 𝜃 (5-15) 

 𝑎𝑡 𝜉𝑧 = 1,
𝜕𝜃

𝜕𝜉𝑧
= −𝐵𝑖 𝜃 (5-16) 
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5.2.1.1. Critical Criterion 𝜹𝒄𝒓 Numerically Solved as a Function of 𝝋 

Parks (1961) solved for 𝛿𝑐𝑟 for 𝜑 values from 20 to 100 in increments of 5, and using the 

boundary condition at 𝜉 = 1 of 𝜃 = 0. This was replicated here using implicit finite 

difference models built in MATLAB. The 1D model was discretised in 𝜉 into 21 points. 

Both the 1D and 2D models were solved for discretisations of 21, 41, and 81 points. All 

the solved for 𝜃 profiles were the same, such that 21 points was sufficient to achieve 

grid independence. In this method the three values of 𝜃 captured in the Laplacian term 

of the next iteration (𝑛 + 1) , 𝜃𝑖−1
𝑛+1, 𝜃𝑖

𝑛+1, and 𝜃𝑖+1
𝑛+1, were solved using a single value 

from the current iteration (𝑛) of 𝜃𝑖
𝑛 in the exponential term. Here 𝑖 denotes the spatial 

position in 𝜉. The MATLAB script of this solver is in Appendix E. The method is illustrated 

in Figure 5-1, and the discretised model equation is as follows, where 𝜅 is varied 

depending on the geometry that is being solved for (i.e. 0 for a finite slab, 1 for an infinite 

cylinder, and 2 for a sphere): 

 
𝜃𝑖−1

𝑛+1 − 2𝜃𝑖
𝑛+1 + 𝜃𝑖+1

𝑛+1

Δ𝜉2
+

𝜅

𝜉𝑖

𝜃𝑖+1
𝑛+1 − 𝜃𝑖−1

𝑛+1

2Δξ
= −𝛿 exp(

𝜃𝑖
𝑛

1 +
𝜃𝑖

𝑛

𝜑

) (5-17) 

  

Figure 5-1: Schematic of the 1D finite difference solving procedure. 

 

The 2D model uses a similar approach but it is split into two parts. The model was 

discretized into 21 points in both 𝜉𝑟 and 𝜉𝑧. Firstly the three values of 𝜃𝑖−1,𝑗
𝑛+1/2

, 𝜃𝑖,𝑗
𝑛+1/2

, 

and 𝜃𝑖+1,𝑗
𝑛+1/2

 are solved for in the radial direction at the half iteration (𝑛 + 1/2), using 

three values from the current iteration (𝑛) of 𝜃𝑖,𝑗−1
𝑛 , 𝜃𝑖,𝑗

𝑛 , and 𝜃𝑖,𝑗+1
𝑛 .  Here 𝑖 denotes the 

spatial position in 𝜉𝑟 and 𝑗 denotes the spatial position in 𝜉𝑧. Secondly the three values 

of 𝜃𝑖,𝑗−1
𝑛+1 , 𝜃𝑖,𝑗

𝑛+1, and 𝜃𝑖,𝑗+1
𝑛+1  are solved for in the axial direction at the full iteration (𝑛 + 1), 
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using three values from the half iteration (𝑛 + 1/2) of 𝜃𝑖−1,𝑗
𝑛+1/2

, 𝜃𝑖,𝑗
𝑛+1/2

, and 𝜃𝑖+1,𝑗
𝑛+1/2

. The 

MATLAB script of this solver is in Appendix F. The method is illustrated in Figure 5-2, and 

the discretised model equation is as follows for the first step: 

 

𝜃𝑖−1,𝑗
𝑛+1/2

− 2𝜃𝑖,𝑗
𝑛+1/2

+ 𝜃𝑖+1,𝑗
𝑛+1/2

Δ𝜉𝑟
2

+
1

𝜉𝑟,𝑖

𝜃𝑖+1,𝑗
𝑛+1/2

− 𝜃𝑖−1,𝑗
𝑛+1/2

2Δξr
  

+
𝜃𝑖,𝑗−1

𝑛 − 2𝜃𝑖,𝑗
𝑛+1/2

+ 𝜃𝑖,𝑗+1
𝑛

Δ𝜉𝑧
2

= −𝛿 exp

(

 
𝜃𝑖,𝑗

𝑛

1 +
𝜃𝑖,𝑗

𝑛

𝜑 )

  

(5-18) 

At the step second it is discretised as follows: 

 

𝜃𝑖−1,𝑗
𝑛+1/2

− 2𝜃𝑖,𝑗
𝑛+1 + 𝜃𝑖+1,𝑗

𝑛+1/2

𝛥𝜉𝑟
2

+
1

𝜉𝑟,𝑖

𝜃𝑖+1,𝑗
𝑛+1/2

− 𝜃𝑖−1,𝑗
𝑛+1/2
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(5-19) 

 

Figure 5-2: Schematic of the 2D finite difference solving procedure. 

 

Using these models, the critical criterion 𝛿𝑐𝑟 was found for each of the four geometries. 

For each geometry a minimum and maximum guess for 𝛿𝑐𝑟 was specified. Then average 

of these two values is taken as the first guess for 𝛿𝑐𝑟. The model then attempts to solve 

for a steady-state solution. There are two possible outcomes. The first is that a steady-

state solution exists, meaning the chosen value of 𝛿𝑐𝑟 was too low. The minimum 𝛿𝑐𝑟 is 
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set to this value and the procedure repeated. The second scenario is that there is no 

steady-state solution. In this case, the chosen value of 𝛿𝑐𝑟 was too high, and the 

maximum 𝛿𝑐𝑟 is set to this value, and the procedure repeated. This continues until the 

value of 𝛿𝑐𝑟 changes by less than 1x10-6 for the 1D model, and by less than 1x10-4 for the 

2D model for consecutive iterations. This was done for a range of different value of 𝜑, 

with the results tabulated in Table 5-1. These results are also plotted in Figure 5-3 which 

shows how for all geometries the value of 𝛿𝑐𝑟 increases with a decreases in 𝜑, which 

corresponds to a decrease in activation energy, 𝐸. 

 

Table 5-1: 𝛿𝑐𝑟 as a function of 𝜑 (= 𝐸/𝑅𝑇) and for an infinte Biot number, for an 
infinite slab, infinite cylinder, sphere, and equi-cylinder.  

Infinite Slab Infinite Cylinder Sphere Equi-Cylinder 

𝝋 𝜹𝒄𝒓 𝜹𝒄𝒓 𝜹𝒄𝒓 𝜹𝒄𝒓 

5 1.207 2.681 4.504 3.719 

10 1.023 2.261 3.768 3.127 

15 0.980 2.163 3.598 2.987 

20 0.960 2.119 3.522 2.924 

25 0.949 2.093 3.478 2.888 

30 0.942 2.077 3.449 2.864 

35 0.937 2.065 3.430 2.848 

40 0.933 2.057 3.415 2.836 

45 0.930 2.050 3.404 2.827 

50 0.928 2.045 3.395 2.819 

55 0.926 2.041 3.388 2.813 

60 0.925 2.037 3.382 2.808 

65 0.923 2.034 3.376 2.804 

70 0.922 2.032 3.372 2.801 

75 0.921 2.030 3.368 2.797 

80 0.920 2.028 3.365 2.795 

85 0.920 2.026 3.362 2.792 

90 0.919 2.025 3.360 2.790 

95 0.918 2.023 3.357 2.788 

100 0.918 2.022 3.355 2.787 
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These results are in agreement with those of Parks (1961) for all cases except the infinite 

slab. Whereas Parks’ results for 𝛿𝑐𝑟 for the infinite slab approach the analytical solution 

value of 0.88 as 𝛼 approaches infinity, the results of this investigation approach 0.909. 

The reason for this discrepancy is still unknown. Despite this, the calculated temperature 

difference at the slab centre, 𝜃0, approaches the analytically solution value of 1.2. 

All other cases approach the 𝛿𝑐𝑟 values documented in the literature (Nelson & Chen, 

2007). These are a value of 2 for an infinite cylinder, 3.32 for a sphere, and 2.78 for an 

equi-cylinder. Essentially these results show that the values of 𝛿𝑐𝑟 solved for analytically 

by Frank-Kamenetskii is an approximation which becomes increasingly less accurate as 

𝜑 decreases. Therefore it is important that these adapted 𝛿𝑐𝑟 values are accounted for 

when measuring kinetics using the steady-state method, or when predicting the 

criticality of systems.  

 

Figure 5-3: 𝛿𝑐𝑟 as a function of 𝜑 (= 𝐸/𝑅𝑇) and for an infinte Biot number, for an 
infinite slab, infinite cylinder, sphere, and equi-cylinder. 

 

5.2.1.2. Critical Criterion 𝜹𝒄𝒓 Numerically Solved as a Function of 𝝋 and 𝑩𝒊 

The previous case looked to replicate the work of Parks (1961) by assuming an infinite 

Biot number, such that the surface of the body is at the same temperature as the 
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surroundings. This greatly simplifying the problem but in reality the Biot number is often 

so low that it cannot be assumed infinite. In this investigation it typically took a value of 

between 11 and 15. By adapting this model to account for Newton’s Law of Cooling at 

the boundary, using the boundary conditions outlined in (5-14), (5-15), and (5-16), the 

value of 𝛿𝑐𝑟 can be found as a function of both 𝜑 and 𝐵𝑖. 

The same solving procedure was used as before, solving for 𝛿𝑐𝑟 iteratively by looking for 

the existence of a steady-state solution, but in this case it was done for a range of values 

of both 𝜑 and 𝐵𝑖. Values of 𝜑 between 10 and 100 in increments of 5 were used. Values 

of 𝐵𝑖 between 1 and 10 in increments of 1, and 10 and 100 in increments of 5, were 

used. Solving for these values is much more computationally expensive than the 

previous case because 19 values of 𝜑 and 28 values of 𝐵𝑖 give 532 combinations which 

need to be solved for. The results are plotted in Figure 5-4 and Figure 5-5. For all four 

geometries investigated, it was found that for low Biot numbers the value of 𝛿𝑐𝑟 

decreased substantially, in contrast to low values of 𝜑 which caused an increase in the 

value of 𝛿𝑐𝑟 as before.  

 

Figure 5-4: 𝛿𝑐𝑟 as a function of 𝜑 and 𝐵𝑖 for (a) an infinite slab, (b) an infinite cylinder, 
and (c) a sphere. 
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Figure 5-5: 𝛿𝑐𝑟 as a function of 𝜑 and 𝐵𝑖 for an equi-cylinder. 

 

For the equi-cylinder 𝛿𝑐𝑟 as a function of 𝐵𝑖 at 𝜑 = 100 is plotted in Figure 5-6 (a). At 

this value it is the value of 𝐵𝑖 that has the greatest influence on the calculated value of 

𝛿𝑐𝑟. Biot numbers below 30 are seen to have a significant impact on the value of 𝛿𝑐𝑟, 

with a Biot number of 1 found to decrease 𝛿𝑐𝑟 below 1 (note that when 𝜑 = ∞ and 𝐵𝑖 =

∞ the value of 𝛿𝑐𝑟 = 2.78). In contrast to this, 𝛿𝑐𝑟 as a function of 𝜑 at 𝐵𝑖 = 100 are 

plotted in Figure 5-6 (b). In this case, very low values of 𝜑 increase the value of 𝛿𝑐𝑟, but 

its impact is almost an order of magnitude lower than that of the Biot number. These 

results can also be seen in Table 5-2, which is colour coded to show to gradient seen 

graphically in the other figures. 

 

Figure 5-6: (a) 𝛿𝑐𝑟 as a function of 𝐵𝑖 at 𝜑 = 100 and (b) 𝛿𝑐𝑟 as a function of 𝜑 at 𝐵𝑖 =
100.
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Table 5-2: 𝛿𝑐𝑟 as a function of 𝜑 and 𝐵𝑖 for an equi-cylinder. 

 

  𝑩𝒊 

  1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

𝝋 

10 0.95 1.49 1.83 2.05 2.21 2.33 2.43 2.50 2.56 2.61 2.77 2.85 2.91 2.94 2.97 2.99 3.01 3.02 3.03 3.04 3.05 3.05 3.06 3.06 3.07 3.07 3.08 3.08 

15 0.91 1.43 1.75 1.97 2.12 2.23 2.32 2.39 2.44 2.49 2.64 2.72 2.78 2.81 2.84 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.92 2.93 2.93 2.93 2.94 2.94 

20 0.89 1.40 1.72 1.92 2.07 2.18 2.27 2.34 2.39 2.44 2.59 2.67 2.72 2.75 2.78 2.79 2.81 2.82 2.83 2.84 2.85 2.85 2.86 2.86 2.87 2.87 2.87 2.88 

25 0.88 1.39 1.70 1.90 2.05 2.16 2.24 2.31 2.36 2.41 2.55 2.63 2.68 2.72 2.74 2.76 2.77 2.79 2.80 2.80 2.81 2.82 2.82 2.83 2.83 2.83 2.84 2.84 

30 0.88 1.38 1.68 1.89 2.03 2.14 2.22 2.29 2.34 2.39 2.53 2.61 2.66 2.69 2.72 2.74 2.75 2.76 2.77 2.78 2.79 2.79 2.80 2.80 2.81 2.81 2.81 2.82 

35 0.87 1.37 1.67 1.88 2.02 2.13 2.21 2.28 2.33 2.38 2.52 2.60 2.65 2.68 2.70 2.72 2.74 2.75 2.76 2.77 2.77 2.78 2.78 2.79 2.79 2.80 2.80 2.80 

40 0.87 1.36 1.67 1.87 2.01 2.12 2.20 2.27 2.32 2.37 2.51 2.59 2.63 2.67 2.69 2.71 2.72 2.74 2.75 2.75 2.76 2.77 2.77 2.78 2.78 2.78 2.79 2.79 

45 0.87 1.36 1.66 1.86 2.01 2.11 2.19 2.26 2.31 2.36 2.50 2.58 2.63 2.66 2.68 2.70 2.72 2.73 2.74 2.74 2.75 2.76 2.76 2.77 2.77 2.77 2.78 2.78 

50 0.87 1.36 1.66 1.86 2.00 2.11 2.19 2.25 2.31 2.35 2.49 2.57 2.62 2.65 2.68 2.69 2.71 2.72 2.73 2.74 2.74 2.75 2.76 2.76 2.76 2.77 2.77 2.77 

55 0.86 1.35 1.65 1.85 2.00 2.10 2.18 2.25 2.30 2.35 2.49 2.56 2.61 2.65 2.67 2.69 2.70 2.71 2.72 2.73 2.74 2.74 2.75 2.75 2.76 2.76 2.76 2.77 

60 0.86 1.35 1.65 1.85 1.99 2.10 2.18 2.24 2.30 2.34 2.48 2.56 2.61 2.64 2.66 2.68 2.70 2.71 2.72 2.73 2.73 2.74 2.74 2.75 2.75 2.76 2.76 2.76 

65 0.86 1.35 1.65 1.85 1.99 2.10 2.18 2.24 2.29 2.34 2.48 2.56 2.60 2.64 2.66 2.68 2.69 2.70 2.71 2.72 2.73 2.73 2.74 2.74 2.75 2.75 2.76 2.76 

70 0.86 1.35 1.65 1.85 1.99 2.09 2.17 2.24 2.29 2.34 2.48 2.55 2.60 2.63 2.66 2.68 2.69 2.70 2.71 2.72 2.73 2.73 2.74 2.74 2.74 2.75 2.75 2.75 

75 0.86 1.35 1.64 1.84 1.98 2.09 2.17 2.24 2.29 2.33 2.47 2.55 2.60 2.63 2.65 2.67 2.69 2.70 2.71 2.72 2.72 2.73 2.73 2.74 2.74 2.75 2.75 2.75 

80 0.86 1.34 1.64 1.84 1.98 2.09 2.17 2.23 2.29 2.33 2.47 2.55 2.60 2.63 2.65 2.67 2.68 2.70 2.71 2.71 2.72 2.73 2.73 2.74 2.74 2.74 2.75 2.75 

85 0.86 1.34 1.64 1.84 1.98 2.09 2.17 2.23 2.29 2.33 2.47 2.55 2.59 2.63 2.65 2.67 2.68 2.69 2.70 2.71 2.72 2.72 2.73 2.73 2.74 2.74 2.74 2.75 

90 0.86 1.34 1.64 1.84 1.98 2.08 2.17 2.23 2.28 2.33 2.47 2.54 2.59 2.62 2.65 2.67 2.68 2.69 2.70 2.71 2.72 2.72 2.73 2.73 2.73 2.74 2.74 2.74 

95 0.86 1.34 1.64 1.84 1.98 2.08 2.16 2.23 2.28 2.33 2.47 2.54 2.59 2.62 2.65 2.66 2.68 2.69 2.70 2.71 2.71 2.72 2.72 2.73 2.73 2.74 2.74 2.74 

100 0.86 1.34 1.64 1.84 1.98 2.08 2.16 2.23 2.28 2.32 2.46 2.54 2.59 2.62 2.64 2.66 2.68 2.69 2.70 2.71 2.71 2.72 2.72 2.73 2.73 2.73 2.74 2.74 
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The values for 𝜑 and 𝐵𝑖 in this investigation were estimated as 32.64 and 11.57 

respectively. These values were estimated for a 60mm equi-cylindrical basket. How this 

influences the value of 𝛿𝑐𝑟 that is to be used in this investigation can be seen in Table 

5-3. All geometries are seen to have a considerably lower value of 𝛿𝑐𝑟 when the correct 

values of 𝜑 and 𝐵𝑖 are used. In reality, the value of 𝛿𝑐𝑟 varies with basket size because 

this changes the value of 𝐵𝑖. Also the value of 𝜑 is dependent on the activation energy, 

𝐸, which is calculated using this value of 𝛿𝑐𝑟, such that these value are inextricably 

linked. In calculating the kinetics using this method, an iterative procedure is required 

and this is discussed next. 

 

Table 5-3: 𝛿𝑐𝑟 values for common geometries at ideal conditions (left) and at the 
conditions used in this investigation (right). 

 𝝋 = ∞,𝑩𝒊 = ∞ 𝝋 = 𝟑𝟐. 𝟔𝟒,𝑩𝒊 = 𝟏𝟏. 𝟓𝟕 

Infinite Slab 0.878 0.790 

Infinite Cylinder 2 1.745 

Sphere 3.32 2.891 

Equi-Cylinder (height=diameter) 2.844 2.427 

 

5.2.2. Steady-State Method Results 

The steady-state approach was performed as outlined previously in Section 5.2. The 

critical ambient temperature was determined for three equi-cylindrical baskets, of equal 

height and diameter 50mm, 60mm, and 70mm. A thermocouple was placed close to the 

basket to measure the true ambient temperature. This was done because the ambient 

temperature measured close to the basket varied from that measured by the in-built 

thermocouple, housed towards the roof of the oven, which was used by the oven’s 

temperature controller to set the temperature. In some the set oven temperature and 

the temperature measured close to the basket could vary by as much as 4°C. The critical 

ambient temperatures for the three baskets are shown in Table 5-4. Sinusoidal 

fluctuations were seen in the oven temperature causing this temperature to fluctuate 

within approximately a 0.5°C ranges. This was probably due to a slow response in the 
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oven’s temperature controller. Because of this, the critical ambient temperatures for 

each basket were taken as the average oven temperature over the duration of the 

experiment. 

 

Table 5-4: Critical ambient temperatures for the baskets used in the steady-state 
method. 

Basket Diameter/Height Critical Ambient Temperature, 𝑻𝒄𝒓𝒊𝒕 

50mm 227.26°C (500.41K) 

60mm 221.30°C (494.45K) 

70mm 216.38°C (489.53K) 

 

Using these critical ambient temperatures, the kinetics of this formulation were 

estimated in accordance with equation (5-6). To estimate these kinetics, a value of 𝛿𝑐𝑟 

needed to be used. As mentioned, an iterative procedure is required in order to use the 

correct value of 𝛿𝑐𝑟 for each data point. Firstly, using the estimated value of 𝛿𝑐𝑟 for an 

equi-cylinder in Table 5-3, 
1

𝑇∞,𝑐𝑟
 was plotted against ln (

𝛿𝑐𝑟𝑇∞,𝑐𝑟
2

𝐿2 ) and the first guess for 

the kinetics 𝐸 and ln 𝑄𝐴 were found. Now, using this first guess, an iterative procedure 

can be implemented. 

The Biot number for each basket must next be calculated. The heat transfer coefficient, 

ℎ, was calculated using the correlation measured using the transient temperature 

measurement method in Section 4.5. The thermal conductivity, 𝑘, was taken as 0.08 W 

m-1 K-1, a value approximated from the novel Parameter Estimation Approach used in 

the subsequent Chapter 6. The characteristic length was taken as the basket radius or 

half-height, which are equal for an equi-cylinder. The Biot number, 𝐵𝑖, for each of the 

baskets is shown in Table 5-5. These value remains constant for each iteration. 

 

Table 5-5: Biot numbers for the baskets used in the steady-state method. 

Basket Diameter/Height Biot Number, 𝑩𝒊 

50mm 9.64 

60mm 11.58 

70mm 13.52 
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The value of 𝜑 is calculated next. This value changes with each iteration because it is 

dependent on the estimated value of the activation energy, 𝐸, from the previous 

iteration. Each basket also has its’s own value of 𝜑 because each basket has a different 

value of 𝑇∞,𝑐𝑟. Using the values of 𝜑 and 𝐵𝑖, a new value of 𝛿𝑐𝑟 is interpolated for each 

basket using Table 5-2, and new values of 
1

𝑇∞,𝑐𝑟
  are plotted against ln (

𝛿𝑐𝑟𝑇∞,𝑐𝑟
2

𝐿2
). This 

gives the new values of 𝐸 and ln 𝑄𝐴. This iterative procedure is repeated until little 

change is seen in the estimated kinetics. In this case, only 4 iterations were required for 

the estimated values of 𝐸 and ln 𝑄𝐴 to converge to 7 significant figures. The final values 

of 𝜑 and 𝛿𝑐𝑟 for each basket are shown in Table 5-6. The results of the final iteration can 

be seen in Figure 5-7. The resulting kinetics are shown in Table 5-7. The associated errors 

in Table 5-7 are the 95% confidence intervals of the linear regression to the data. 

 

Figure 5-7: Steady-state approach results using 50mm, 60mm, and 70mm equi-
cylindrical baskets. 

 

Table 5-6: The final values of 𝜑 and 𝛿𝑐𝑟 for each basket as calculated using the outlined 
iterative procedure. 

 𝝋 𝜹𝒄𝒓 

50mm 30.11 2.372 

60mm 30.47 2.434 

70mm 30.78 2.490 
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Table 5-7: Activation energy, 𝐸, and the natural logarithm of the product of the heat of 
reaction and the pre-exponential factor, ln 𝑄𝐴, as estimated using the steady-state 

method. 

 𝑬 (J mol-1) 𝐥𝐧𝑸𝑨 

Steady-State Approach 125.3 (±1.0) x103 31.90 (±0.25) 

 

How the iterative procedure affects the results can be seen in Figure 5-8. The results are 

seen to slightly change between the first and final iteration. This is also seen to have an 

impact on the critical ambient temperature calculated using the resulting kinetics from 

each of these iterations and the equation for 𝛿 (5-4). The results from the first iteration 

do not compare as well with the actual 𝑇∞,𝑐𝑟 values as the final iteration does. The 

difference in critical ambient temperature is also seen to increase as the basket size 

increases or decreases considerably beyond the measured sizes. This shows that using 

the correct value of 𝛿𝑐𝑟 for the system, and even each basket used, is important. Equally 

important is the iterative procedure applied here. 

 

Figure 5-8: Steady-State method results after the first and final iterations. (a) Results 
plotted in accordance with equation (5-6). (b) Critical ambient temperatures as a 

function of basket size calculated using the resulting kinetics of each iteration. 

 

Only three baskets were used to produce these results so it is difficult to say definitively 

that these results are good, but a good fit was found to these three points. This can be 

seen from the low 95% confidence intervals shown in Table 5-7. This method is relatively 

easily to perform, with only a single thermocouple required to measure the temperature 

at the centre of the basket. The accuracy of the placement of this thermocouple is not 
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of critical importance. So long as it is placed close to the basket centre then it will be 

easy to see when thermal runaway occurs. The only error is in the measurement of the 

ambient temperature. Another advantage is that the kinetics measured using this 

method are based on experimentally measured critical ambient temperatures, such that 

a model using these kinetics will predict thermal runaway in agreement with 

experimentally measured runaway. 

Despite this, there are a number of disadvantages associated with this method. This 

method is particularly slow. Experiments for the 50mm equi-cylindrical basket took 

approximately 5 hours, while experiments for the 70mm equi-cylindrical basket took 

approximately 8 hours. Larger baskets than this are rather impractical to experiment 

with. Additionally, each of these experiments does not yield a data point, and it can take 

a considerable number of experiments to find the critical ambient temperature to within 

0.5°C, as was done here. For this reason, a less time consuming method is required. 

 

5.3. Cross-Point Temperature Method 

The Cross-Point Temperature (CPT) method is a transient means of determining zero-

order self-heating reaction kinetics developed by Chong et al. (Chong, et al., 1996), and 

seen as a faster alternative to the much slower steady-state method. This method was 

outlined in Section 3.3.3, where initial CPT method experiments were performed using 

a setup with two thermocouples. These initial experiments showed that this method has 

promise as a means of measuring the self-heating kinetics of these powders. Errors, and 

in particular thermocouple placement errors, significantly affected the results. Further 

experiments and analysis are conducted here to improve upon this method. 

As outline in Section 3.3.3, the cross-point temperature method is based around the 

assumption that at some point the conduction term in equation (4-1) reduces the zero. 

The temperature at which this occurs is known as the cross-point temperature (CPT) and 

at this point equation (4-1) reduces to: 

 ln (
𝑑𝑇

𝑑𝑡
)|

𝑇=𝑇𝐶𝑃𝑇

= ln(
𝑄𝐴

𝐶𝑝
) −

𝐸

𝑅𝑇𝐶𝑃𝑇
 (5-20) 
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In this chapter, two equi-cylindrical baskets of diameter 50mm and 60mm were used 

with an array of three thermocouples placed within the powder. Type K thermocouples 

(RS Pro 363-0294) were used. These thermocouples were glass fibre insulated with a 

welded exposed junction and supplied with a working range of -60° to 350°C. Of these 

thermocouples, one was placed at the centre of the basket at the basket half-height. 

The other two were offset from this at spacings of 6mm and 12mm from the centre, as 

can be seen in Figure 5-9.  

For each experiments the baskets were filled to the same mass of powder. The baskets 

were filled and tapped. The 60mm basket was filled to a mass of approximately 

118.5(±0.5)g and the 50mm basket to a mass of approximately 68.5(±0.5)g, 

corresponding to a density of approximately 698.5 kg m-3. 

This setup also included a new approach to thermocouple placement. In the initial 

experiments carried out in Section 3.3.3, two thermocouples were used that were 

simply twisted together. Twisting them together helped to ensure that a constant 

spacing of 6mm was achieved, but made accurate placement of these thermocouples 

difficult. As can be seen in Figure 5-9, a spacer above the basket was used to ensure the 

thermocouples were at positions of 0mm, 6mm, and 12mm. Once the basket was filled, 

the spacer was attached to the top of the basket and the thermocouples inserted down 

to the basket half-height. The thermocouples were rigid enough that they did not bend 

when inserted into the powder. This method improves upon the previous approach, but 

it is still not possible to verify the placement of the thermocouples once inserted, such 

that there are still errors associated with this method. 

These baskets were heated in a Memmert UF75 forced convection oven. The 

thermocouples were connected to a Pico Technology USB TC-08 data logger and 

sampled at a rate of 1 measurement per second. These baskets were heated at 

temperatures ranging from 222°C (495K) to 235°C (508K). An additional thermocouple 

is placed close to the basket to measure the true ambient temperature, which varied 

from the in-built thermocouple used by the oven’s temperature controller to set the 

oven temperature. In some cases these measured temperatures varied by as much as 

4°C. 
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Figure 5-9: Basket of detergent powder and thermocouple setup. 

 

5.3.1. Cross-Point Temperature Method Results 

In this investigation an array of three radially spaced thermocouples was used. These 

thermocouples, as labelled in Figure 2, are 𝑇1 at 0mm, 𝑇2 at 6mm, and 𝑇3 at 12mm from 

the centre. The temperature-time profiles measured by these three thermocouples at 

ambient temperatures ranging from 225°C to 231°C are shown in Figure 5-10. 

It can be seen in each of these plots that the basket starts at a uniform temperature 

close to room temperature. As time progresses the basket is seen to increase in 

temperature, with the outermost thermocouple at 12mm increasing in temperature 

first, as would be expected. The plateau seen to occur in each of the plots is due to the 

evaporation of the residual moisture in the detergent powder particles. The central 

temperature is seen to stagnate longest, and this is because of the slow diffusion of the 

evaporated moisture out of the basket, limiting the temperature rise at the centre. 
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Figure 5-10: Temperature-time profiles for a 60mm basket as measured by 
thermocouples at the basket centre, +6mm, and +12mm for ambient temperatures of 

approximately (a) 225°C (498K), (b) 227°C (500K), (c) 229°C (502K), and (d) 231°C 
(504K). 

 

By having an array of three thermocouple it is possible to evaluate three different cross-

point temperatures. The first case (case 1) is taken when the centre (0mm) and 

thermocouple offset at 6mm are at the same temperature, with the temperature rate, 

𝑑𝑇/𝑑𝑡, taken at the basket centre point. A three point, central, second order, finite 

difference approximation is used to approximate the conduction term at this cross-

point. At some position 𝑖, this approximation is expressed as: 

 
𝑑2𝑇

𝑑𝑟2
=

𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1

Δ𝑟2
 (5-21) 

If 𝑖 is taken as the basket centre, then because of symmetry about the central axis in an 

equi-cylinder, 𝑇𝑖−1 = 𝑇𝑖+1, where 𝑖 − 1 and 𝑖 + 1 are two points equally spaced by a 

distance of Δ𝑟 either side of the basket centre. Substituting for the thermocouples at 

0mm and 6mm, it can be seen when these temperatures are equal, the conduction term 

can be approximated as equal to zero: 
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𝑑2𝑇

𝑑𝑟2
=

2(𝑇6𝑚𝑚 − 𝑇0𝑚𝑚)

Δ𝑟2
= 0    →     𝑇0𝑚𝑚 = 𝑇6𝑚𝑚  (5-22) 

The second case (case 2) uses the same equation but measures the conduction between 

the central thermocouple and the thermocouple at 12mm from the basket centre. 

 
𝑑2𝑇

𝑑𝑟2
=

2(𝑇12𝑚𝑚 − 𝑇0𝑚𝑚)

Δ𝑟2
= 0   →     𝑇0𝑚𝑚 = 𝑇12𝑚𝑚 (5-23) 

The third case (case 3) is somewhat more complex. Whereas the previous two cases use 

the three point stencil for the second order temperature difference term in equation 

(5-21), the conduction term here is approximated using a five point stencil for the 

second order finite difference approximation. This stencil makes use of the 

temperatures at five points, instead of three, centrally spaced about the temperature 

𝑇𝑖. The temperature rate, 𝑑𝑇/𝑑𝑡, is again taken at the centre. This difference 

approximation is given by: 

 
𝑑2𝑇

𝑑𝑟2
=

−𝑇𝑖−2 + 16𝑇𝑖−1 − 30𝑇𝑖 + 16𝑇𝑖+1 − 𝑇𝑖+2

12Δ𝑟2
, (5-24) 

Again, because of symmetry, 𝑇𝑖−2 = 𝑇𝑖+2 and 𝑇𝑖−1 = 𝑇𝑖+1, and substituting for the 

thermocouples at 0mm, 6mm, and 12mm, this equation reduces to:  

 
𝑑2𝑇

𝑑𝑟2
=

−15𝑇0𝑚𝑚 + 16𝑇6𝑚𝑚 − 𝑇12𝑚𝑚

6𝛥𝑟2
= 0. (5-25) 

In a perfect system a five point stencil reduces the order of the error in approximating 

the second order derivative term from an order of 𝑂(Δ𝑟2) to 𝑂(Δ𝑟4). It is worth noting 

that a similar three thermocouple setup has been used in previous investigations (Chen 

& Chong, 1995), but in each case a three-point second order finite difference 

approximation was applied to the three thermocouples. In doing this the cross-point 

was measured at the position of 𝑇2. This is not incorrect, and the cross-point can be 

measured here, but the problem was that the temperature rate, 𝑑𝑇/𝑑𝑡, was measured 

at the position of 𝑇1 (i.e. the basket centre), instead of at the centre of the finite 

difference. In this approach, using symmetry, case 3 measures both the cross-point 

temperature and the temperature rate, 𝑑𝑇/𝑑𝑡, at the position of 𝑇1. 

At each of the cross-points, the corresponding temperature rate 𝑑𝑇/𝑑𝑡 is measured. 

These values are plotted in accordance with equation (5-20) to estimate the kinetics. For 

a 50mm equi-cylindrical basket at an ambient temperature of approximately 229°C 
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(502K), the case 1 cross-point and temperature rate are shown in Figure 5-11 (a). It can 

be seen in Figure 5-11 (b) that the temperature difference between the central and 6mm 

thermocouple is very small, making it very difficult to accurately measure the cross-

point. This small temperature difference makes thermocouple placement very 

important, with any error in placement and readings impacting on the result. 

A similar plot, but for the case 2 cross-point, consisting of the central and 12mm 

thermocouple, is shown in Figure 5-12. It can be seen that at this distance, although still 

small, the difference is considerably larger. This makes reading this cross-point much 

easier, and in theory less susceptible to errors in thermocouple placement and readings. 

Again, this will be discussed in the upcoming uncertainty analysis. 

 

Figure 5-11: Case 1 cross-point for a 50mm basket at an oven temperature of 
approximately 229°C (502K). 

 

 

Figure 5-12: Case 2 cross-point for a 50mm basket at an oven temperature of 
approximately 229°C (502K). 
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Finally, the case 3 cross-point has also been plotted, and this can be seen in Figure 5-13. 

In this case, the close-up of the cross-point is not included because the equation used 

to calculate this cross-point means that it does not coincide with the crossing of two of 

the temperature profiles. This case looks very similar to that of case 1, and this is found 

for all ambient temperatures. This is because case 3 is more heavily influenced by the 

thermocouple at 6mm (𝑇2) used in case 1, than by the thermocouple at 12mm (𝑇3) used 

in case 2. Again the influence of this is discussed in the upcoming uncertainty analysis. 

 

Figure 5-13: Case 3 cross-point for a 50mm basket at an oven temperature of 
approximately 229°C (502K). 

 

In this investigation, a 50mm and a 60mm equi-cylindrical basket was used. Cross-points 

are only evident over a narrow band of ambient temperatures, so using two basket sizes 

allowed more cross-points to be determined. In both baskets, the same thermocouple 

setup was used. These baskets were run at ambient temperatures between 222°C (495K) 

and 235°C (508K). The ambient temperatures at which each basket was run is detailed 

in Table 5-8. At the lower of these ambient temperatures, little self-heating is exhibited, 

while the baskets at the higher ambient temperatures culminate in thermal runaway. 

Additional experiments were run at oven temperatures below 222°C (495K), but they 

were seen exhibited very little self-heating, making the cross-point temperatures 
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difficult to measure and more sensitive to errors in thermocouple readings and 

placement. 

The results for this method have been calculated for each basket separately, and for 

both baskets together, and these results explored. The results for the two baskets 

separately, showing the three cases and the best fit linear regression to each case from 

which the kinetics are estimated, are shown in Figure 5-14. Figure 5-14 (a) shows the 

results for the 50mm basket, while Figure 5-14 (b) shows the results for the 60mm 

basket. Figure 5-15 shows the results for each case where the results of both baskets 

are combined. 

 

Table 5-8: Temperatures at which the 50mm and 60mm equi-cylindrical baskets were 
run. 

 50mm Basket 60mm Basket 

222°C  ✔ 

223°C  ✔ 

224°C ✔ ✔ 

225°C ✔ ✔ 

226°C ✔ ✔ 

227°C ✔ ✔ 

228°C ✔  

229°C ✔ ✔ 

230°C ✔  

231°C ✔ ✔ 

232°C ✔  

233°C ✔ ✔ 

235°C ✔  
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Figure 5-14: CPT method results for a (a) 50mm equi-cylindrical basket and (b) 60mm 
equi-cylindrical basket. 

 

Figure 5-15: Combined results for the CPT method using both a 50mm and 60mm 
baskets. 

 

The resulting kinetics for the three cases where both the 50mm and 60mm baskets are 

considered are shown in Table 5-9. It can be seen that each case gives different results. 

The activation energies of case 1 and 3, 139.7x103 J mol-1 and 144.4x103 J mol-1 

respectively, are very different to the activation energy estimated using the steady-state 

approach, 125.3x103 J mol-1. The kinetics of case 2, with an activation energy of 

115.5x103 J mol-1 and ln (𝑄𝐴/𝐶𝑝) value of 22.88, are more similar to the steady-state 

approach kinetics. They also predict a much closer critical ambient temperature, 223.9°C 
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(497.1K), to that observed experimentally for a 60mm equi-cylindrical basket, 221.3°C 

(494.5K). Case 1 and 3 over predict this with values of 229.1°C (502.3K) and 229.9°C 

(503.1K) respectively. Other work (Sujanti, et al., 1999) (Malow & Krause, 2004) has 

shown that the steady-state approach and CPT method yield comparable results for 

coal, cork dust, riboflavin, and a detergent powder. The activation energies for this 

detergent formulation are greater than those of Malow and Krause (2004), who 

measured values of 102(±30)x103 J mol-1 and 112(±24)x103 J mol-1 using the steady-

state approach and CPT method respectively. Details of the detergent powder 

formulations used by Malow and Krause were not given, and as such it is difficult to draw 

comparisons between the kinetics. However, the associated error, which is the 95% 

confidence interval of the linear regression to the data, for the steady-state and case 2 

results in particular are considerably smaller than those of Malow and Krause. 

 

Table 5-9: Summary of estimated kinetics for the two basket heating methods and the 
corresponding critical ambient temperature for a 60mm equi-cylindrical basket. 

 𝑬 (J mol-1) 𝐥𝐧𝑸𝑨 𝐥𝐧
𝑸𝑨

𝑪𝒑
 60mm 𝑻𝒄𝒓𝒊𝒕 (°C) 

Steady-State 
Approach 

125.3 (±1.0) x103 31.90 (±0.25) - 221.3 

CPT Case 1 139.7 (±14.9) x103 - 28.21 (±3.51) 229.1 

CPT Case 2 115.5 (±6.4) x103 - 22.88 (±1.53) 223.9 

CPT Case 3 144.4 (±21.2) x103 - 29.24 (±4.99) 229.9 

 

Figure 5-16 shows the three cases separately and from this it can be seen that the data 

points for case 2 are much less scattered than the other two cases. This is echoed in the 

confidence intervals for case 2 which are considerably smaller than those of case 1 and 

3, with the confidence intervals of case 3 found to be particularly large. 

These experiments were simulated using the numerical model and the cross-point 

temperatures determined for the same three cases. This analysis is discussed in detail 

in the next section. The results of this analysis are shown in Figure 5-17 and suggest that 

there should not be such a large discrepancy between the results of these three cases. 

It does, however, show that a small difference should exist between the cases. This 

difference is found to increase with an increase in thermocouple spacing. The 
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approximation associated with the cross-point temperature assumption and the finite 

difference approximation used in equation (5-21) is thought to be the reason for this 

difference. 

 

Figure 5-16: CPT method results separated by case using both a 50mm and 60mm 
baskets. 
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Figure 5-17: Model simulated cross-point temperature method experiments simulating 
the same three thermocouple pairing cases as measured experimentally. 

 

The kinetics from the three cases were compared by using the kinetics in the equation 

for 𝛿 (5-4). The critical ambient temperature for equi-cylindrical baskets of a range of 

sizes were predicted using the kinetics measured for the 50mm and 60mm baskets both 

separately and together. This can be seen in Figure 5-18. It can be seen that none of 

these cases agree exactly with the experimentally measured critical ambient 

temperatures, with case 1 and case 3 over predicting the critical ambient temperatures, 

and case 2 under predicting. It can be seen that the case 2 results are better, particularly 

for smaller basket sizes, and that the kinetics from all three methods (50mm basket, 

60mm basket, and both) are in agreement. This coincides with the reduced scatter seen 

for the case 2 results in the previous plots. Again there is a big difference in the 

predictions of each of the cases. 
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Figure 5-18: Critical ambient temperature for a ranges of equi-cylindrical basket sizes, 
using the kinetics for the 50mm and 60mm baskets both separately and together, for 

(a) case 1, (b) case 2, and (c) case 3. 

 

5.3.2. Uncertainty Analysis 

The errors in the cross-point temperature method can be attributed to a combination 

of the error in thermocouple readings (±0.25°C) and error in thermocouple placement 

(±1mm). In the cross-point region, the difference in temperatures across the three 

thermocouples is quite small, and thus any error in the measured temperatures, be it 

due to error in thermocouple readings or errors in placement, will have a significant 

impact on the measured cross-points. Looking across all the 50mm basket experiments, 

an increase in oven temperature of 1°C corresponds to an average increase in the case 

2 cross-point temperature of 1.32°C. With such small differences in cross-point 

temperatures it is evident that an error in thermocouple readings of ±0.25°C will have a 

significant impact. Errors in thermocouple placement are difficult to quantify. It is 

difficult to verify their position because the thermocouples are inserted into the powder 
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after the basket is filled, and thus the approximated error in placement of ±1mm could 

have a significant impact on the measured cross-points. 

These issues account for the errors in the measured values, but do not explain why the 

three cross-point cases estimate different kinetics. The difference between the three 

cases may be due to the spacing between the 0mm and 6mm thermocouple being too 

small. Only a small number of particle diameters would fit into the 6mm gap between 

thermocouples 𝑇1 and 𝑇2. The mass median particle diameter is 328μm, such that 19 

median particles would fall within this space. Although micronized sodium sulphate was 

used in this formulation in an effort to reduce composition variability, some variability 

in composition will still exist between the particles. The packing of the baskets, which 

were simply filled to a consistent density, will also impact on the variability, and with an 

average of 19 particles in the 6mm spacing, these sources of variability with impact on 

the results. In particular, this would heavily influence the case 1 results, whereas the 

larger spacing of 12mm used for the case 2 cross-point means that these results are not 

a susceptible to this variability. 

The susceptibility of the case 1 results to this variability explains why the confidence 

intervals associated with the case 2 results are much smaller than those of case 1. Similar 

experiments conducted using other detergent formulations are shown in Section 5.5. 

These formulations do not make use of micronized sodium sulphate, and as such may 

have a greater degree of composition variability. These formulations have much more 

pronounced issues when using the same thermocouple spacing of 6mm, and for each of 

the three formulations tested, this variability made it impossible to fit kinetics to the 

case 1 results. 

It can been seen from the equation for case 3 in (5-25) that the thermocouple 𝑇2 has a 

much greater influence than 𝑇3 on the five point finite difference approximation for the 

second order temperature derivative. This explains why the case 3 results are more 

similar to the case 1 results, with case 3 also being affected by the issues of variability 

that impacted on the case 1 results, and the problem of the small number of particle 

diameters that would fit between the thermocouples 𝑇1 and 𝑇2.  
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5.4. Model Analysis of the Cross-Point Temperature Method 

5.4.1. Simulation of the Performed Cross-Point Temperature Method Experiments 

The kinetics measured using the steady-state method, shown in Table 5-7, were used in 

the numerical model. Using these kinetics gives a model that predicts critical ambient 

temperatures in almost exact agreement with the experimentally measured values, so 

long as the correct value for 𝛿𝑐𝑟 is used, which reflects the self-heating reaction kinetics 

and model boundary conditions. This is because the dimensionless equations used to 

derive the steady-state method are the exact dimensionless equivalents of the 

numerical model equations.  

Using the kinetics from the cross-point temperature method, the predicted critical 

ambient temperature were very different. It is thought that this is because the CPT 

method is more susceptible to errors. In a perfect system, one would expect the results 

of these two methods to be identical. This was explored numerically using the heat 

transfer model outline in Section 4.2, making use of the kinetics determined using the 

steady-state method. The drying equations are excluded from this model, such that only 

heat transfer and heat generation are modelled. The model is used to predict 

temperature-time profiles for a 60mm equi-cylindrical basket of powder, heated from 

room temperature to a range of different ambient temperatures. 

The model was used to replicate the performed experiments. An equi-cylindrical basket 

of diameter and height 60mm was simulated with thermocouples at radial distances of 

0mm, 6mm, and 12mm from the basket centre and at the basket half-height, as shown 

in Figure 5-19. Using this setup it is possible to predict the temperatures at the three 

thermocouple positions and therefore calculate the three different cross-point 

temperatures identified by equations (5-22), (5-23), and (5-25). 

The model was simulated at 10 ambient temperatures between 493K (220°C) and 502K 

(229°C). In each simulated experiment the oven starts at the same temperature as the 

powder basket, 293K (20°C), and is ramped up to its final temperature. 
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Figure 5-19: Experimental basket setup replicated numerically. Three thermocouples 
were simulated at radial distances of 0mm, 6mm, and 12mm. 

 

The profile of the second order temperature derivative term was calculated for each 

case, and for the duration of the experiment. This profile allows the cross-point to be 

identified by determining the point at which these temperature derivatives are equal to 

zero. This can be seen along with the simulated basket core temperature in Figure 5-20. 

It can be seen that all these profiles start at zero and then increase in value to some 

peak. This is because the basket starts at a uniform temperature, then as the oven 

temperature increases the basket heats from the basket edges inwards, increasing the 

temperature gradient. The basket then approaches a steady-state temperature, 

reducing this temperature gradient back towards zero. As the temperature in the basket 

increases, the reaction rate increases, and self-heating increases the temperature at the 

core above the temperatures of the surrounding regions. This can be seen in how the 

temperature gradient falls below zero. The cross-point for each case is the point at which 

this gradient equals zero. 

The temperature gradient for case 1 and 3 are almost identical. The 5 point stencil used 

for case 3 should in theory reduce the order of the error of the finite difference 

approximation. Case 2 measures the gradient across a greater distance, and this is 

reflected in the greater temperature gradient seen at the profile peak. 
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Figure 5-20: The profile of the second order temperature derivative term for three 
cross-point cases, and the simulated basket core temperature at an ambient 

temperature of 497K (224°C). 

 

The radial temperature profiles at each of the three cross-points are shown in Figure 

5-21 (a). The profile close to the central axis is relatively flat at these points, but it is 

thought that if larger thermocouple spacing are used, then this radial temperature 

profile may not be entirely flat at the cross-point. Figure 5-21 (b) confirms this problem, 

showing that for a very large thermocouple spacing the temperature profile would not 

be flat, even though the thermocouples may be at the same temperature. In this case it 

would be wrong to assume that conduction across that region has ceased. 

 

Figure 5-21: (a) Radial temperature profile at each of the three cross-points for an 
ambient temperature of 497K (224°C). (b) Radial temperature profiles at 𝑧 = 0𝑚𝑚 as 
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time progresses throughout the experiment, simulated at an ambient temperature of 

497K (224°C). 

 

Using these data, the three different cross-points were found for each experiment. The 

results, plotted as they would be in the cross-point temperature method, can be seen in 

Figure 5-22. A slight difference can be seen across the three cases. They all have a similar 

slope, which would lead to all cases measuring similar activation energy values, 𝐸, but 

they have slightly different intercepts, which influences the measured values of the 

logarithmic term ln(𝑄𝐴/𝐶𝑝).  

 

Figure 5-22: Results of the simulated cross-point temperature method experiments, 
measuring the same three cross-point cases as measured experimentally. 

 

The kinetics from each of these three simulated cases are shown in Table 5-10. It can be 

seen that there is little difference between the kinetics of each case. However, these 

kinetics were also used to predict the critical ambient temperature of a 60mm equi-

cylindrical basket, and there is some discrepancy between these values. The simulated 

case 3 predicted critical ambient temperature is over 1°C higher than that of case 2. For 

an ideal system, this is a notable difference, and warrants further investigation. 
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Table 5-10: Simulated cross-point temperature method results and the predicted 

critical ambient temperature for a 60mm equi-cylindrical basket using these kinetics. 

 𝑬 (J mol-1) 
𝐥𝐧 (

𝑸𝑨

𝑪𝒑
) 

𝑻𝒄𝒓𝒊𝒕 for 30mm radius 
basket 

Simulated Case 1 125.7x103 25.04 220.59°C 

Simulated Case 2 125.5x103 25.03 219.72°C 

Simulated Case 3 125.4x103 24.95 220.89°C 

Model Input Kinetics 125.3x103 24.89 221.38°C 

 

Using the equation for 𝛿𝑐𝑟 in (5-4), critical ambient temperatures for a range of basket 

sizes were calculated. This allows the kinetics to be compared with those from the 

steady-state method, and this comparison can be seen in Figure 5-23. 

 

Figure 5-23: Critical ambient temperatures for a range of basket sizes, calculated using 
the kinetics for each case as measured from the simulated experiments. 

 

The predicted critical ambient temperatures for each case are similar, although there 

exists a difference as shown in Table 5-10. They are also similar to those calculated using 

the steady-state method kinetics. The case 3 results are the most similar, as would be 

expected because of the reduced error of the 5 point stencil used in the finite difference 

approximation. The other results are similar but not exactly the same, implying that the 

cross-point approximation used influences the measured kinetics. 
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Also included in this plot are the results of the heat release method, discussed in Section 

2.4.3, which predict very different critical ambient temperatures. This method is similar 

to the cross-point method, but conduction is assumed to cease when the core 

temperature equals the ambient temperature. The radial temperatures in Figure 5-21 

(b) show why this method is flawed. This model uses the heat transfer coefficient 

correlation in equation (4-49), such that a finite Biot number is used. For a system with 

a near infinite Biot number, the difference in results of the heat release method may not 

be as pronounced as in this case. 

 

5.4.2. Analysis of the Cross-Point Assumption 

Having analysed the cross-point temperature method for the thermocouple setup used 

experimentally, the next step is to explore why a difference is seen between each of the 

cases. This was done by exploring the form of the cross-point approximation used and 

the spacing of the thermocouples used.  

 

5.4.2.1. Approximating the Conduction Term with a Three Point Stencil in the 

Radial Direction 

The first form of the cross-point approximation explored was that used in case 1 and 2 

of the experiments, a three point stencil for the second order temperature difference in 

the radial direction. Despite being a three point stencil, because of symmetry one of the 

outer thermocouples is not needed. This layout can be seen in Figure 5-24. 

 

Figure 5-24: Three point stencil in the radial direction used to approximate the second 
order temperature difference term. 
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The cross-point using this form of the approximation is given by the following: 

 
𝑑2𝑇

𝑑𝑟2
=

𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1

Δ𝑟2
=

2(𝑇𝑖+1 − 𝑇𝑖)

Δ𝑟2
= 0. (5-26) 

The same model simulated experiments, run at 10 ambient temperatures between 493K 

and 502K, were used and the cross-point was calculated as before using this equation. 

Results were measured for thermocouple spacings from 1mm to 15mm in 1mm 

increments. The results are shown in Figure 5-25.  

 

Figure 5-25: Simulated cross-point temperature method results using a three point 
stencil in the radial direction.  

 

The results vary with thermocouple spacing. The slopes of each spacing are similar, from 

which similar activation energy values, 𝐸, are measured, with the difference coming 

from the intercept, which influences the measured value of ln 𝑄𝐴/𝐶𝑝. Although it is not 

shown here, increasing the thermocouple spacing up to 30mm further increases the 

difference in results. 
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Figure 5-26: Critical ambient temperatures for a range of basket sizes calculated using 
the kinetics for different thermocouple spacings. 

 

The kinetics measured from each thermocouple spacing was used to calculate critical 

ambient temperatures for a range of basket sizes as before. These results can be seen 

in Figure 5-26. Some variation can be seen between the predicted critical ambient 

temperatures for the different thermocouple spacings. An increase in thermocouple 

spacing is seen to decrease the predicted critical ambient temperature for any basket 

size. The finite difference approximation in equation (5-26) becomes more accurate with 

decreasing values of Δ𝑟. The error is of the order Δ𝑟2, and as Δ𝑟 → 0, this approximation 

approaches the exact value of 𝑑2𝑇/𝑑𝑟2. This implies that the smallest possible values 

of Δ𝑟 would produce the best results, but practically speaking, this value of Δ𝑟 is 

impossible to achieve. Instead, more practical spacings are used, such as 6mm, but with 

this approximation, the results for such a spacing would under predict the critical 

ambient temperatures. Using more accurate approximations for the temperature 

difference term would improve these results. 
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5.4.2.2. Approximating the Conduction Term with a Five Point Stencil in the 

Radial Direction 

The second form of the cross-point approximation explored was that used in case 3 of 

the experiments, a five point stencil for the second order temperature difference in the 

radial direction. In theory, using a five point stencil instead of a three point stencil will 

reduce the order of the finite difference approximation from an order of 𝑂(Δ𝑟2) to 

𝑂(Δ𝑟4). The required thermocouple layout can be seen in Figure 5-27. 

 

Figure 5-27: Five point stencil in the radial direction used to approximate the second 
order temperature difference term. 

 

The cross-point using this form of the approximation is given by the following: 

 

𝑑2𝑇

𝑑𝑟2
=

−𝑇𝑖−2 + 16𝑇𝑖−1 − 30𝑇𝑖 + 16𝑇𝑖+1 − 𝑇𝑖+2

12Δ𝑟2
    

=
−15𝑇𝑖 + 16𝑇𝑖+1 − 𝑇𝑖+2

6Δ𝑟2
= 0. 

(5-27) 

The cross-point was calculated as before using this equation. Results were measured for 

thermocouples spacings between 𝑇𝑖 and 𝑇𝑖+1 from 1mm to 15mm in 1mm increments. 

15mm was used as the largest spacing because for a spacing of 15mm between 𝑇𝑖 and 

𝑇𝑖+1, the spacing between 𝑇𝑖 and 𝑇𝑖+1 was 30mm. 

The results for spacings between 1mm and 15mm are shown in Figure 5-28. The results 

do not vary largely with thermocouple spacing as in the previous case. The similarity of 
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the results for all thermocouple spacings means that similar values for the activation 

energy, 𝐸, and the logarithmic term, ln 𝑄𝐴/𝐶𝑝, are measured. 

 

Figure 5-28: Simulated cross-point temperature method results using a five point 
stencil in the radial direction.  

 

 

Figure 5-29: Critical ambient temperatures for a range of basket sizes calculated using 
the kinetics for different thermocouple spacings. 
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As before, the measured kinetics from these simulated experiments were used to 

calculate critical ambient temperatures for a range of basket sizes. As would be 

expected, based on the results plot in Figure 5-28, the predicted critical ambient 

temperatures are consistent across all the thermocouple spacings simulated. This can 

be seen in Figure 5-29, and implies that using a five point stencil makes this an accurate 

approximation of the conduction term and the cross-point assumption. This also implies 

that no matter the thermocouple spacing, the measured kinetics from case 3 in the 

experiments should be consistent, but evidently, the errors discussed in the uncertainty 

analysis of Section 5.3.2 have a significant influence on these results. The kinetics of 

these different approximation will be compared in Section 5.4.2.5. 

 

5.4.2.3. Approximating the Conduction Term with a Three Point Stencils in the 

Radial and Axial Directions 

Although the previous approximation form predicted consistently measured kinetics for 

all thermocouple spacings, it was not an entirely accurately approximation of the 

conduction term. For pseudo-one-dimensional geometries such as an infinite slab, 

infinite cylinder, or sphere, approximated conduction in one dimension is sufficient. 

However, for an equi-cylinder a more accurate representation of the conduction term 

would include conduction in both the radial and the axial directions. At the cross-point, 

even if conduction in the radial direction is zero, it does not necessarily mean conduction 

in the axial direction is zero. For this reason, conduction in both directions is considered 

in this form of the approximation, although this setup is difficult to implement 

experimentally. 

Figure 5-30 shows the simulated axial temperatures profiles at 𝑟 = 0𝑚𝑚 of the basket 

throughout the experiment. These profiles are very similar to those in the radial 

direction. At no point is this profile flat, and for a large thermocouple spacing this may 

be an issue. 
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Figure 5-30: Axial temperature profiles at 𝑟 = 0𝑚𝑚 as time progress throughout the 
experiment, simulated at an ambient temperature of 497K (224°C). 

 

To explore the influence of axial conduction, the value of axial conduction term 𝑑2𝑇/𝑑𝑧2 

was calculated at the previous cross-point, where a five point stencil in the radial 

direction only was used. This value was calculated using a consistent thermocouple 

spacing of 6mm at the 10 different ambient temperatures simulated and can be seen in 

Figure 5-31.  

 

Figure 5-31: Axial conduction value calculated at the cross-points as measured using a 
five point stencil in the radial direction only. 
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It can be seen that axial conduction still exists at the cross-point, and that it increases 

with an increase in ambient temperature. Considering at its peak, the second order 

temperature derivative reached a value of almost 2000 K m-2, the magnitude of the axial 

conduction may turn out to be negligible, but this will not be known until this is explored 

further. 

The form of the cross-point approximation used here is a three point stencil for the 

second order temperature difference in both the radial and axial directions. Again 

symmetry is used to eliminate two of the thermocouples. This layout can be seen in 

Figure 5-32. 

The cross-point using this form of the approximation is given by the following: 

 

𝑑2𝑇

𝑑𝑟2
+

𝑑2𝑇

𝑑𝑧2
=

𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗

Δ𝑟2
+

𝑇𝑖,𝑗−1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗+1

Δ𝑧2
  

=
2(𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗)

Δ𝑟2
+

2(𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗)

Δz2
= 0. 

(5-28) 

The cross-point was calculated as before using this equation. Results were measured for 

thermocouples spacings between 𝑇𝑖,𝑗 and 𝑇𝑖+1,𝑗 from 1mm to 15mm in 1mm 

increments. The spacings in the axial direction, between 𝑇𝑖,𝑗 and 𝑇𝑖,𝑗+1, were 

incremented in the same way as the spacings in the axial radial direction, such Δ𝑟 was 

always equal to Δ𝑧. 

 

Figure 5-32: Three point stencils in the radial and axial directions used to approximate 
the second order temperature difference term. 
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The results for spacings between 1mm and 15mm are shown in Figure 5-33. It was 

thought that including axial conduction would improve the results, but instead the 

results are seen to vary with thermocouple spacings, as they did when the 

approximation of conduction solely in the radial direction using a three point stencil was 

used. This implies that the error induced by the stencil of the finite difference 

approximation used is more influential than including axial conduction in the 

approximation, at least for an equi-cylindrical basket. This may not be the case for 

cylinders where the height and diameter and not equal. 

 

Figure 5-33: Simulated cross-point temperature method results using a three point 
stencil in both the radial and axial directions. 

 

The measured kinetics from these simulated experiments were used to calculate critical 

ambient temperatures for a range of basket sizes as seen in Figure 5-34. Some variation 

can be seen between the predicted critical ambient temperatures for the different 

thermocouple spacings. An increase in thermocouple spacing is seen to decrease the 

predicted critical ambient temperature for any basket size. This same behaviour was 

seen for the results when the three point stencil for conduction solely in the radial 

direction was used, again emphasising that the error induced by the stencil of the finite 

difference approximation used is more influential than including axial conduction in the 

approximation. 
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Figure 5-34: Critical ambient temperatures for a range of basket sizes calculated using 
the kinetics for different thermocouple spacings. 

 

5.4.2.4. Approximating the Conduction Term with a Five Point Stencils in the 

Radial and Axial Directions 

This approximation looks to combine the best elements of the previous approximations, 

the five point stencil for the finite difference term and the inclusion of axial conduction.  

Conduction in both the radial and axial directions is considered in this form of the 

approximation, with both approximated using a five points stencil. Again this would be 

difficult to implement experimentally, but is being explored anyway to help understand 

the implications of the approximations used. Because of symmetry, two thermocouples 

in both directions are not required for this stencil. This layout can be seen in Figure 5-35. 
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Figure 5-35: Five point stencils in the radial and axial directions used to approximate 
the second order temperature difference term. 

 

The cross-point using this form of the approximation is given by the following: 

 

𝑑2𝑇

𝑑𝑟2
+

𝑑2𝑇

𝑑𝑧2
=

−𝑇𝑖−2,𝑗 + 16𝑇𝑖−1,𝑗 − 30𝑇𝑖,𝑗 + 16𝑇𝑖+1,𝑗 − 𝑇𝑖+2,𝑗

12Δ𝑟2

+
−𝑇𝑖,𝑗−2 + 16𝑇𝑖,𝑗−1 − 30𝑇𝑖,𝑗 + 16𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗+2

12Δ𝑧2
= 0 

(5-29) 

Applying symmetry this reduces to: 

 

𝑑2𝑇

𝑑𝑟2
+

𝑑2𝑇

𝑑𝑧2
=

−15𝑇𝑖,𝑗 + 16𝑇𝑖+1,𝑗 − 𝑇𝑖+2,𝑗

6Δ𝑟2
         

+
−15𝑇𝑖,𝑗 + 16𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗+2

6Δ𝑧2
= 0. 

(5-30) 

The cross-point was calculated as before using this equation. Results were measured for 

thermocouples spacings between 𝑇𝑖,𝑗 and 𝑇𝑖+1,𝑗 from 1mm to 15mm in 1mm 

increments. The spacings in the axial direction, between 𝑇𝑖,𝑗 and 𝑇𝑖,𝑗+1, were 

incremented in the same way as the spacings in the axial radial direction, such Δ𝑟 was 

always equal to Δ𝑧. The results for spacings between 1mm and 15mm are shown in 

Figure 5-36. The results do not vary largely with thermocouple spacing as in the previous 

case where only three point stencils were used. The similarity of the results for all 

thermocouple spacings means that similar values kinetics are always measured. 
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Figure 5-36: Simulated cross-point temperature method results using a five point 
stencil in both the radial and axial directions. 

 

 

Figure 5-37: Critical ambient temperatures for a range of basket sizes calculated using 
the kinetics for different thermocouple spacings. 

 

The measured kinetics from these simulated experiments were used to calculate critical 

ambient temperatures for a range of basket sizes, and can be seen in Figure 5-37. For 
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this approximation, as was the case when conduction was accounted for in only the 

radial direction but using a five point stencil, there is little variation across the predicted 

critical ambient temperatures for different thermocouple spacings. This behaviour 

implies again that the error induced by the stencil of the finite difference approximation 

used is more influential than including axial conduction in the approximation, although 

this approximation can be considered the most thorough of the approximations used. 

 

5.4.2.5. Comparison of the Different Approximations for the Conduction Term 

The previous analysis has suggested that the stencil of the finite difference 

approximation has more of an influence on the cross-point temperature method results 

than the thorough inclusion of conduction in both the radial and axial directions. This 

section compares the four approximations explored, and looks to confirm if these results 

agree with those from the Steady-State method, which are based on measured critical 

ambient temperatures. Plotting the simulated experimental results for these four 

approximations can be seen in Figure 5-38. A slight difference in results can be seen for 

each of the four approximations. All results have similar slopes, which would lead to 

similar values for the activation energy, 𝐸, and the difference primarily comes for the 

intercepts, which influences the measured value of ln 𝑄𝐴/𝐶𝑝. 

 

Figure 5-38: Comparison of the results from the four cross-point approximations used 
for a thermocouple spacing of 6mm. 
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The kinetics for each approximation as determined from the plot in Figure 5-38 were 

used to predict critical ambient temperatures for a range of basket sizes. These values 

have been plotted in Figure 5-39 and shows that all these cases predict similar critical 

ambient temperatures, at least for the thermocouple spacing of 6mm compared here. 

The kinetics for each approximation are shown in Table 5-11. For a basket of radius 

30mm, less than 2°C difference is predicted in critical ambient. This shows that the 

difference in measured kinetics is not significant, and that even the simplest setup of 

two radially spaced thermocouples would produce good results. Axially spaced 

thermocouples would be difficult to implement experimentally, and this shows that they 

are not required to obtain good results. 

These results were also compared with the critical ambient temperatures predicted by 

the kinetics measured using the steady-state method. These kinetics were used in the 

numerical model, and as such if the cross-point approximation is accurate then the 

simulated results should agree with the steady-state method results. The results for all 

four approximations agree very well with steady-state method results, but in particular 

the results when both radial and axial conduction is accounted for. This is not a surprise 

as including conduction in the axial direction makes this a much more accurate 

approximation. However, the difference is not sufficient to justify the added complexity 

of using both radially and axially spaced thermocouples. 

The previous analysis has showed that the error induced by the finite difference 

approximation used is of more importance than including conduction in the axial 

direction. Using a five point stencil for the finite difference approximation instead of a 

three point stencil reduces the order of the error from an order of 𝑂(Δ𝑟2) to 𝑂(Δ𝑟4).  

Experimentally, of the three cases used in this investigation, case 3 is the best 

approximations for the conduction term. However, it was seen that the errors induced 

by errors in thermocouple readings and placement overshadow the benefits of this 

approximation. 
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Figure 5-39: Comparison of the four cross-point approximations using a thermocouple 
spacing of 6mm. 

 

Table 5-11: Kinetics as predicted from simulated experiments using the four different 
cross-point temperature approximations. 

  𝑬 (J mol-1) 
𝐥𝐧 (

𝑸𝑨

𝑪𝒑
) 

𝑻𝒄𝒓𝒊𝒕 for 30mm radius 
basket 

𝒅𝟐𝑻

𝒅𝒓𝟐
= 𝟎 

3 point stencil 125.7x103 25.04 220.59°C 

5 point stencil 125.4x103 24.95 220.89°C 

𝒅𝟐𝑻

𝒅𝒓𝟐
+

𝒅𝟐𝑻

𝒅𝒛𝟐
= 𝟎 

3 point stencil 125.3x103 24.89 221.41°C 

5 point stencil 125.1x103 24.83 221.75°C 

Input Model Kinetics 125.3x103 24.89 221.38°C 

 

5.4.3. Model Analysis of the Effects of Thermocouple Reading Errors on the Measured 

Cross-Point Temperature 

It is thought that the measured cross-point temperatures are influenced not only by the 

errors in the placements of the thermocouples, but by the errors in the thermocouple 

readings. As such, the effects of errors in the thermocouple readings were also explored 

using the model simulated CPT method experiments. The experimental temperature-

time profiles in Figure 5-40 show how an error of ±0.25°C on the thermocouple at the 

basket centre could affect the measured cross-point. The band of error effectively 
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means that the cross-point temperature can now occur anywhere within the highlighted 

range. It can be seen that there is little difference between the gradients of the 

temperature-time profiles of the thermocouple at 0mm and at 6mm, and this makes this 

case particularly susceptible to errors in thermocouple readings. For case 1, where these 

two thermocouples are used, the range in which the cross-point temperature can occur 

spans over 400s. Within this range the cross-point temperature could be anywhere 

between 510.7K (237.5°C) and 514.7K (241.5°C). This 4°C difference may have a large 

impact on the measured kinetics. 

 

Figure 5-40: The influence of a thermocouple reading error of ±0.25°C on the 
measured case 1 cross-point temperature of a 50mm equi-cylindrical basket heated at 

231°C (504K). 

 

The effects of this error on the case 2 results was also explored, as can be seen in Figure 

5-41. In this case, the gradients of the two temperature-time profiles are not as similar 

as before. This makes this case much less susceptible to errors in thermocouple 

readings. This can also be seen in the range of possible cross-point temperatures 

highlighted. For case 2, this only spans a range of approximately 150s, which 

corresponds to a cross-point temperature between 508.0K (234.8°C) and 509.5K 

(236.3°C), a difference of only 1.5°C. This again shows why the experimental case 2 

kinetics are more accurate than those of case 1 and case 3. 
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Figure 5-41: The influence of a thermocouple reading error of ±0.25°C on the 
measured case 2 cross-point temperature of a 50mm equi-cylindrical basket heated at 

231°C (504K). 

 

The model simulated experiments used in the previous section were also used to explore 

the effects of thermocouple reading errors in the measured CPT method kinetics. To do 

this, after the experiments had been simulated, an error of +0.25°C was applied to each 

of the thermocouples individually. The three different cross-point cases were then 

evaluated from the simulated thermocouples, and the influence of the simulated errors 

explored. The combinations of thermocouple errors detailed in Table 5-12 were applied. 

 

Table 5-12: Simulated errors applied to the thermocouples of the simulated 
experiments. 

Error on 𝑻𝟏 (0mm) 
(°C) 

Error on 𝑻𝟐 (6mm) 
(°C) 

Error on 𝑻𝟑 (12mm) 
(°C) 

0 0 0 

+0.25 0 0 

0 +0.25 0 

0 0 +0.25 

 

The results of the simulated experiments without any error applied can be seen in Figure 

5-22. Here it can be seen that all three cases have similar results. The offset between 



188 
 
the three different cases can be attributed to the cross-point assumption and the form 

of the second order temperature derivative term as shown in Section 5.4.2. 

Firstly, an error of +0.25°C was applied to the thermocouple 𝑇1 at the basket centre 

(0mm). The CPT method results for these data can be seen in Figure 5-42. This error can 

be seen the affect the results of all three cross-point cases. This was expected because 

𝑇1 is the only thermocouple that is used by all three of the cross-point cases. The kinetics 

as measured from these data can be seen in Table 5-13. The kinetics for each case are 

seen to change relative to where no error was applied. This effect is even more 

pronounced for cases 1 and 3, with a significantly larger decrease in the kinetics of these 

case relative to case 2. This was expected based on what was seen when applying an 

error to the experimental temperature-time profiles in Figure 5-40 and Figure 5-41. 

 

Figure 5-42: Simulated CPT method experiments with a thermocouple reading error of 
+0.25°C applied to thermocouple 𝑇1 at the basket centre. 

 

The next step was to apply an thermocouple reading error of +0.25°C to the 

thermocouple 𝑇2 at 6mm from the basket centre. The CPT method results for these data 

can be seen in Figure 5-43. For this error, it can be seen that the case 1 and 3 results are 

again affected. However, the case 2 results are not affected because case 2 does not 

involve the thermocouple 𝑇2. The kinetics as measured from these data can again be 

seen in Table 5-13. The case 1 and 3 kinetics are now seen to increase significantly for 

this error, whereas they decreased when the error was applied to the thermocouple 𝑇1. 
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Figure 5-43: Simulated CPT method experiments with a thermocouple reading error of 
+0.25°C applied to thermocouple 𝑇2 at 6mm from the centre. 

 

Finally, a thermocouple reading error of +0.25°C to the thermocouple 𝑇3 at 12mm from 

the basket centre. The CPT method results for these data can be seen in Figure 5-44. For 

this error, much less difference in the results can be seen. Case 2 and 3 are affects by 

this error, with case 1 unaffected as this case does not use the thermocouple 𝑇3. The 

kinetics as measured from these data can again be seen in Table 5-13. The case 2 kinetics 

are seen to increase relative to the kinetics where no error was applied. However, this 

difference is considerably smaller than that seen in the case 1 kinetics where previous 

errors were applied. Again, this was expected based on the analysis in Figure 5-40 and 

Figure 5-41, and shows why the experimental case 2 kinetics are more accurate than 

those of case 1 and 3. 

The case 3 kinetics exhibit a much smaller decrease relative to the kinetics where no 

error was applied. This is because case 3 is more heavily influence by the thermocouples 

𝑇1 and 𝑇2 than by the thermocouple 𝑇3, as discussed in Section 5.3.2. 
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Figure 5-44: Simulated CPT method experiments with a thermocouple reading error of 
+0.25°C applied to thermocouple 𝑇3 at 12mm from the centre. 

 

Table 5-13: Results of the simulated CPT method experiments with different 
combinations of errors applied to the thermocouples. The results in red highlight the 

cases affected by the error applied in each combination. 

Simulated 

Thermocouple 

Error [𝑻𝟏, 𝑻𝟐, 𝑻𝟑] 

(°C) 

Case 1 Case 2 Case 3 

𝑬 

(J mol-1) 
𝐥𝐧 (

𝑸𝑨

𝑪𝒑
) 

𝑬 

(J mol-1) 
𝐥𝐧 (

𝑸𝑨

𝑪𝒑
) 

𝑬 

(J mol-1) 
𝐥𝐧 (

𝑸𝑨

𝑪𝒑
) 

[0, 0, 0] 125.7x103 25.04 125.5x103 25.03 125.4x103 24.95 

[+0.25, 0, 0] 72.2x103 12.64 109.0x103 21.21 63.3x103 10.58 

[0, +0.25, 0] 215.8x103 45.82 125.5x103 25.03 255.9x103 55.03 

[0, 0, +0.25] 125.7x103 25.04 144.3x103 29.38 120.1x103 23.71 

 

These simulated experiments illustrate that the errors in the thermocouple readings 

heavily influence the measured kinetics using the CPT method. This shows that the CPT 

method is very susceptible to errors in comparison to the steady-state method. It also 

shows that both the thermocouple placement and thermocouple readings errors are 

important and where possible, all efforts to alleviate these errors must be applied. 
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5.5. Application of the Cross-Point Temperature Method to Other 

Detergent Formulations 

The cross-point temperature method was applied to three other formulations outlined 

in the introduction of this chapter. The first of these formulations is referred to as Non-

Micronized Formulation 1. As the name suggests, this formulation uses a non-

micronized grade of sodium sulphate, but in all other ways it is the same as Micronized 

Formulation 1. The other two formulations, Formulation 2 and Formulation 3, are similar 

to one another, with Formulation 3 containing 1% Polycarboxylate Polymer, whilst 

Formulation 2 contains none. This is discussed in more detail in Section 5.1. 

These formulations were characterised using the same three thermocouple setup, with 

the first at the centre (0mm), the second offset at 6mm, and the third offset at 12mm. 

The results shown in Figure 5-45, Figure 5-46, and Figure 5-47 are for the case 1 and case 

2 kinetics. It can be seen for all formulations that the case 1 kinetics are poor results. All 

of these formulations contained non-micronized sodium sulphate, unlike the previously 

analysed formulation which used a micronized variant. It is thought that without 

micronized sodium sulphate there is too much variability in the particles, and coupling 

this with the errors in thermocouple readings and placement has led to these poor 

results for case 1. Nonetheless, the results of case 2 are significantly better. This case 

used the larger 12mm spacing, and it is thought that this spacing help to alleviate some 

of the problems of composition variability and the impact of thermocouple errors.  

 

Figure 5-45: CPT method results for Non-Micronized Formulation 1, separated by case 
using both a 60mm baskets. 
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Figure 5-46: CPT method results for Formulation 2 separated by case using both a 
60mm baskets. 

 

 

Figure 5-47: CPT method results for Formulation 3, separated by case using both a 
60mm baskets. 

 

Differential Scanning Calorimetry (DSC) was used to explore the problem of composition 

variability in these three formulations where non-micronized sodium sulphate was used. 

The powder samples were sieved into four different particle size ranges: >150μm and 

<250μm, >250μm and <355μm, >355μm and <425μm, and >425μm and <600μm. Heat 
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flow profiles as a function of temperature were measured for each of these four 

particles size ranges and compared. These comparisons can be seen in Figure 5-48.  

Non-Micronized Formulation 1 is seen to react similarly to Micronized Formulation 1, as 

discussed in Section 3.4, in that low variability in reactivity is seen across the differently 

sized particles. However, Formulation 2 and Formulation 3 do not exhibit this behaviour. 

Instead, it can be seen that the smaller particles react less than the larger particles. This 

variability will impact on the cross-point temperature case 1 results because of the small 

number of particles that on average are between the thermocouple at 0mm and 6mm. 

This explains why the case 1 results for these two formulations are so poor, and helps 

to verify that composition variability needs to be considered when choosing the spacing 

between thermocouples in this method. However, this does not explain why the results 

for Non-Micronized Formulation 1 are also poor. 

These results will be discussed again in Section 7.2 where they are compared with the 

kinetics estimated using the new Parameter Estimation Approach. 

 

Figure 5-48: DSC measured heat flow profiles at a ramped heating rate of 4°C min-1 for 
four particle size ranges and for (a) Non-Micronized Formulation 1 (b) Formulation 2, 

and (c) Formulation 3. 
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5.6. DTG Method for Estimating nth Order Kinetics 

A method adapted from the DTG (differential thermogravimetry) method of Yang et al. 

(2001) was used to fit nth order kinetics to the mass loss curves of samples of Micronized 

Formulation 1 measured using thermogravimetric analysis (TGA) under ramped heating 

conditions. A sample of powder was sieved into a number of size ranges such that the 

kinetics of different size ranges could be compared. Samples of detergent powder, 

approximately 11mg in mass, were placed into aluminium pans and loaded into the TA 

Instruments Discovery TGA. These pans were hung from a mass balance integrated into 

the heating cell of the TGA, such that the mass loss of the sample throughout the 

experiment could be measured. These samples were heated from 50°C (323K) to 500°C 

(773K) in an environment of air at a heating rate of 5°C min-1. Data were sampled by the 

equipment at a rate of 1 measurement every 0.5 seconds. The normalised mass loss 

curves for the samples of different particle sizes at a heating rate of 5°C min-1 are shown 

in Figure 3-20. 

 

Figure 5-49: TGA normalises sample mass plots for samples of different particle size 
ranges at a heating rate of 5°C min-1 in air. 
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It can be seen that all samples react similarly which confirms that there is little difference 

in reactivity across the different particle sizes of this formulation. This has also been 

explored in Section 3.5. Despite this, it can be seen that there is an offset which develops 

in the initial period of the curves. It can be seen that the large particle sizes have a 

greater mass loss in the initial period, and that this occurs at around 100°C (373K). This 

behaviour can be attributed to the evaporation of residual moisture in the particles, with 

the larger particles having a greater amount of residual moisture. 

The data were normalised by picking a start and end point of the reaction. This allowed 

the initial mass loss due to water evaporation and mass loss to occur after the reaction 

to be removed. These data were then normalised. To these normalised curves, the 

following equation for conversion rate during the reaction was fitted, where 𝛼 is the 

normalised conversion of the sample: 

 
𝑑𝛼

𝑑𝑡
= (1 − 𝛼)𝑛𝐴𝑒−

𝐸
𝑅𝑇 (5-31) 

Here, 𝐸 is the activation energy (J mol-1), 𝐴 is the pre-exponential factor (s-1), and 𝑛 is 

the reaction order. Measurements were made by the TGA every 0.5 seconds, such that 

approximately 2400 points were included in the fitting. Yang et al. used an inefficient 

approach whereby every combination of 𝐸 and 𝑛 is fit to the experimental data, with 

the best fitting parameters by chosen by the method of least squares. It is also unclear 

as to how 𝐴 was fitted as it was not included in the flowsheet of their fitting procedure. 

In this study, the curve fitting toolbox built into MATLAB was used to fit this equation to 

the experimental data. This toolbox uses optimised solvers to efficiently determine the 

best fitting parameters. This toolbox also uses the method of least squares in fitting to 

these data, in which the software attempts to minimise the following parameter 𝑆: 

 S = ∑ [(
𝑑𝛼

𝑑𝑡
)

𝑒𝑥𝑝
− (

𝑑𝛼

𝑑𝑡
)
𝑓𝑖𝑡

]

2

 (5-32) 

The best fitting values for the activation energy, 𝐸, the pre-exponential factor, 𝐴, and 

the order of the reaction, 𝑛, were determined for each of the TGA experiments. 
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5.6.1. DTG Method Results 

As mentioned, samples of different particle size ranges were tested, these ranges being: 

>150μm and <212μm, >212μm and < 300μm, >300μm and <425μm, >425μm and 

600μm, >600μm and <710μm, and >710μm and <1.18mm. As shown there was little 

difference in the reactivity of these samples. The four smallest size ranges were tested 

further, and at a heating rate of 5°C min-1. The normalised conversion curves for each of 

these four samples were overlaid in Figure 5-50. It can be seen that all four samples have 

similar conversion profiles. Kinetics were fitted to these normalised conversion curves. 

The best fit kinetics using this approach were found to be dependent on the initial guess 

for the pre-exponential factor, 𝐴. The best fit kinetics for five different initial guesses of 

𝐴 are shown in Table 5-14. It can be seen that for initial guesses of 𝐴 above 1x108 s-1, 

that the fit value of 𝐴 are close to the initial guess. This shows the difficulty in fitting for 

three parameters simultaneously, and suggests that a lower initial guess of 𝐴 should be 

used. However, each fitting has a 𝑅2 value of 0.999. This shows that the fittings are still 

good, and that the difference in parameters is due to the correlation between them, 

which allows them to compensate for one another. 

Table 5-14: Best fit kinetics for a sample of particle sizes >212μm and < 300μm for five 
different initial guesses for the pre-exponential factor, 𝐴. 

Initial Guess 𝑨 (s-1) 
Best Fit Kinetics 

𝑹𝟐 
𝑬 (J mol-1) 𝑨 (s-1) 𝒏 

1x107 136.6x103 6.10x108 1.36 0.999 

1x108 137.0x103 6.56x108 1.37 0.999 

1x109 139.1x103 9.98x108 1.39 0.999 

1x1010 150.6x103 9.93x109 1.49 0.999 

1x1011 161.9x103 9.51x1010 1.60 0.999 

 

Using an initial guess for 𝐴 of 1x108 s-1, the best fit of the nth order conversion equation 

(5-31) to these normalised conversion curves can be seen in Figure 5-51. All four samples 

have a good fit, with an 𝑅2 value in excess of 0.998 achieved for each fit. Similar kinetics 

were also measured for each of the four samples, with activation energies, 𝐸, of 

approximately 137x103 J mol-1, pre-exponential factors, 𝐴, ranging from 5.99x108 s-1 to 

7.02x108 s-1, and orders of the reaction, 𝑛, ranging from 1.24 to 1.38. Because the 
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conversion curves in Figure 5-50 are the same, it would be expected that the kinetics for 

each fitting would be the same. Although similar, the kinetics are not the same and it is 

thought that again this is because of the difficulty in fitting three parameter 

simultaneously. 

 

Figure 5-50: Normalised conversion curves for four particle size ranges at a heating 
rate of 5°C min-1. 

 

These nth order kinetics are difficult to compare with those from the steady-state 

method and the cross-point temperature method as these two methods measure zero-

order kinetics. However, the activation energies are somewhat comparable, and it can 

been seen that the activation energies in this method are slightly larger. These kinetics 

are used in the numerical model to understand the impact that this difference in 

activation energy will have on the self-heating reaction.  
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Figure 5-51: DTG fitted results for samples heated at a ramped heating rate of 
5°C min-1 of particle size (a) >150 and <212μm, (b) >212 and <300μm, (c) >300 and 

<425μm, and (d) >425 and <600μm. 

 

The temperatures at which these reaction occurs in the TGA experiments are in excess 

of the temperatures reached in the basket heating experiments. This lead to speculation 

that the kinetics estmated using the DTG method may not be representative of those 

seen in the basket heating experiments. A 50mm equi-cylindrical baskets of powder 

heated at a sub-critical temperature of approximately 500K (227°C), was seen to reach 

a maximum core temperature of 541K (268°C). This core temperature of 541K (268°C) is 

still below the reaction onset temperature seen in these TGA experiments. For this 

reason it was thought that the self-heating seen to occur in the baskets is largely caused 

by the initial portion of the reaction observed using TGA. As such, a second DTG 

approach was applied where the fitting was applied only to the initial portion of the 

normalised conversion curve, for 0 ≥ 𝛼 ≥ 0.4. The normalised conversrions curves for 

the four samples can be seen in Figure 5-52. 
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Figure 5-52: The initial portion of the normalised conversion curves for four particle 
size ranges at a heating rate of 5°C min-1, to which kinetics are fitted. 

 

Again the same problem was found whereby the initial guess of 𝐴 influenced the best 

fit kinetics. The fittings to this initial portion for the four different size ranges and an 

initial guess for 𝐴 1x108 s-1 can be seen in Figure 5-53. All four samples are found to have 

good fittings with all 𝑅2 values in excess of 0.998. The fitted kinetics to each sample are 

again similar, with activation energies, 𝐸, of approximately 129x103 J mol-1 and a 

consistent pre-exponential factors, 𝐴, of 1.17x108 s-1. Fittings were attempted over a 

range of values for the order of the reaction, 𝑛, but the best fit value would always tend 

towards the lower fitting bound value, with little change in the shape of the profile. For 

this reason 𝑛 in these fittings was fixed to a value of 1. The effects of mass loss on the 

reaction are much less pronounced in this fitted region, and it is though that this causes 

the software to have difficulty in fitting a value of 𝑛. The activation energies of these 

fittings are more similar to those found using the basket heating methods shown in 

Table 5-9. 
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Figure 5-53: Kinetics fitted to the initial degradation profile of samples heated at a 
ramped heating rate of 5°C min-1 of particle size (a) >150 and <212μm, (b) >212 and 

<300μm, (c) >300 and <425μm, and (d) >425 and <600μm. 

 

The kinetics for these two approaches are summarised in Table 5-15 for samples of 

particle size >212 and <300μm. These kinetics are used in the numerical model to 

explore the effects of nth order kinetics. 

 

Table 5-15: Kinetics estimated using the DTG approach for samples of particle size 
>212 and <300μm and at a heating rate of 5°C min-1. 

 𝑬 (J mol-1) 𝑨 (s-1) 𝒏 

Full Profile Fitting 137x103 6.56x108 1.367 

Initial Profile Fitting 129x103 1.17x108 1 

 

5.7. Model Simulations of the Basket Experiments 

The model developed as part of the investigation is discussed in Section 4.2. This model 

is capable of predicting temperature, moisture content, and vapour concentration 
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profiles in the radial and axial directions of a quarter portion of a cylindrical basket. The 

predicted temperature profiles are of most interest in this investigation and have 

already been used to explore aspects of the cross-point temperature method. In this 

section the drying behaviour is included in the model. The drying of the powder is not 

of importance to this study as does not impact on the self-heating behaviour of the 

detergent, but it has been included to allow for a better comparison with experimental 

data. It also illustrates the capabilities of the model, should drying need to be included 

in modelling spray dryer wall deposits, which will have a higher moisture content than 

these powders.  

The evolution of temperature across the 2D basket domain with time can be seen in 

Figure 5-54. This plot shows the capabilities of the model and illustrates how the core of 

the basket increases in temperature due to self-heating in a typical basket heating 

experiment. In this model the reaction kinetics were taken as those measured using the 

steady-state method. These kinetics were used because they predict the same critical 

ambient temperatures as measured experimentally, and as such are considered the 

most representative set of kinetics. The model parameters are summarised in Table 

5-16. 

 

Figure 5-54: 2D model calculated temperature evolution in 50mm equi-cylindrical 
basket at and ambient temperature of 502.5K as self-heating causes the core 

temperature to rise. 
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Table 5-16: Parameters used in the numerical model of a self-heating basket of 
Micronized Formulation 1 detergent powder. 

Parameter Symbol Value 

Basket Radius 𝑅 0.025m 

Basket Half-Height 𝑍 0.025m 

Powder Density 𝜌 683.8 kg m-3 

Thermal Conductivity 𝑘 0.08 W m-1 K-1 

Activation Energy 𝐸 125.3x103 J mol-1 

Logarithmic Product of the Heat of 
Reaction and Pre-Exponential Factor 

ln 𝑄𝐴 32.11 

Emissivity 𝜖 0.5 

 

The correlation for the heat transfer coefficient is given in equation (4-49), while other 

parameters are determined through qualitatively fitting. These parameters are the 

specific heat capacity, 𝐶𝑝 (J kg-1 K-1), the initial moisture content, 𝑋0 (kg kg-1), the internal 

mass transfer coefficient, ℎ𝑚,𝑖𝑛 (m s-1), and the vapour diffusion coefficient, 𝐷𝑣𝑎𝑝 

(m2 s-1). Best fit values of these parameters are shown in Table 5-17. The process by 

which these values were determined is discussed in Sections 5.7.2 and 5.7.3. 

 

Table 5-17:  Parameters used in the numerical model determined through qualitative 
fitting in Sections 5.7.2 and 5.7.3. 

Parameter Symbol Value 

Specific Heat Capacity 𝐶𝑝 1350 J kg-1 K-1 

Initial Moisture Content 𝑋0 0.025 kg kg-1 

Internal Mass Transfer Coefficient ℎ𝑚,𝑖𝑛 6x10-5 m s-1 

Vapour Diffusion Coefficient 𝐷𝑣𝑎𝑝 0.08 m2 s-1 

 

5.7.1. Comparison of Model Predicted and Experimental Temperature Profiles 

The model predicted central temperature-time profile using the parameter values in 

Table 5-16 and Table 5-17, and how this compares to the experimental data can be seen 

in Figure 5-55. For each experiment, the model ambient temperature profile is imported 
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from experimental data. The model predicted temperature profile is seen to compare 

well with the experimental data. 

 

Figure 5-55: Comparison of model predicted basket core temperature profile and 
experimental data at an oven temperature of 502.5K (229.3°C). Kinetics for this model 

were estimated using the steady-state method. 

 

The increase in temperature of the powder basket above the oven temperature is of 

most interest as this is an indication of the self-heating occurring. The agreement in this 

region is an indication that the kinetics determined using the steady-state method which 

were applied in this model are correct, and a good representation of this system. 

Additionally, it shows that a zero-order reaction model, at least up to this point in the 

temperature-time profiles, is a suitable model for predicting this behaviour. 

Further comparisons of the model predicted temperature profiles with experimental 

data at a range of different ambient temperatures were made. These are shown in 

Figure 5-56 and show the comparison of the model predictions to the three 

thermocouples at radial distances of 0mm, 6mm, and 12mm. These plots are for four 

experiments run at oven controlled ambient temperatures from 498.5K (225.3°C) to 

504.4K (231.2°C). Again good agreement is seen across these experiments, suggesting 

that this model is very capable of predicting these temperature profiles. This also 

validates the use of this model in simulating these basket heating experiments. 
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Figure 5-56: Comparison of model predicted temperature profiles to experimental data 
from an array of three thermocouples at radial distances of 0mm, 6mm, and 12mm, 

and at oven temperatures from 498.5K (225.3°C) to 504.4K (231.2°C). Kinetics for this 
model were estimated using the steady-state method. 

 

5.7.2. Influence of Specific Heat Capacity on Model Predicted Temperature Profiles 

In this study, the influence of the specific heat capacity, 𝐶𝑝, of the powder was also 

explored. 𝐶𝑝 is calculated in the next chapter, Chapter 6, as part of the parameter 

estimation approach as approximately 1350 J kg-1 K-1 using modulated differential 

scanning calorimetry. The specific heat capacity, and thermal conductivity, 𝑘, are highly 

correlated values, as will also be seen in Chapter 6. This correlation leads to a 

corresponding thermal conductivity value of approximately 0.08 W m-1 K-1. 𝑘 was fixed 

here while 𝐶𝑝 was varied. This effectively changes the value of the thermal diffusivity 

(𝑘/𝜌𝐶𝑝), which dictates the rate of thermal response of the powder. 
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The specific heat capacity does not feature in equation (5-4), the equation for the Frank-

Kamenetskii parameter, 𝛿. Therefore its value does not influence the critical ambient 

temperature, merely the thermal response time. The effect of varying the specific heat 

capacity is shown in Figure 5-57. This figure shows the model predicted core 

temperature profile of the basket using varying values of 𝐶𝑝 and how this compares to 

the experimentally measured temperature. Using these values outlined previously, the 

temperature profile using a 𝐶𝑝 value of 1350 J kg-1 K-1 is seen to compare best with the 

experimental data. Higher values than this giving a slower thermal response, but this 

slower thermal response will impact on the basket’s tendency to thermally runaway. 

 

Figure 5-57: Comparison of model predicted basket core temperature profiles to 
experimental data using different specific heat capacity values. 

 

5.7.3. Influence of Drying Parameters on Model Predicted Temperature Profiles 

In this study, the prediction of drying behaviour was not considered important. Instead 

of predicting this, an established model was fitted to the observed drying behaviour. The 

drying does not impact on the models ability to predict self-heating behaviour, and as 

such, only a qualitative fit for the drying model parameters was required. 

A Reaction Engineering Approach (REA) was taken to modelling the drying kinetics. 

These kinetics were determined by fitting a simple model to sorption isotherm data as 
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discussed in Section 4.2.2. A correlation for the apparent activation energy correction 

factor, Δ𝐸𝑣, was calculated as: 

 Δ𝐸𝑣 = 8.36𝑥107 exp[−13.65(𝑋0.09928)] (5-33) 

Despite having these drying kinetics, parameters such as that vapour diffusion 

coefficient, 𝐷𝑣𝑎𝑝, the initial moisture content, 𝑋0, and the internal mass transfer 

coefficient, ℎ𝑚,𝑖𝑛, were found to largely influence the drying behaviour. The influence 

of each of these parameters on the predicted drying behaviour was explored by varying 

these parameters and plotting the model predicted temperature profiles along with 

experimental data. Figure 5-58 shows the influence of 𝑋0, Figure 5-59 shows the 

influence of ℎ𝑚,𝑖𝑛, and Figure 5-60 shows the influence of 𝐷𝑣𝑎𝑝 in comparison to the 

experimental measured central temperature profile. 

An approximate value of 𝑋0 was known from measuring the mass loss of samples 

following drying in the oven, varying slightly between samples. The comparison in Figure 

5-58 was used to determine the best fitting value for this sample. 

 

Figure 5-58: Effects of initial moisture content on the fitting of the model to the 
experimental core temperature profile in the drying region. 

 

Values for ℎ𝑚,𝑖𝑛 and 𝐷𝑣𝑎𝑝 similar to those of Chen (2001) and Chong and Chen (1999), 

used in the modelling of heat and mass transfer in oven heated baskets of milk powder, 
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were used. It was found that above a value of 5x10-5 m s-1 for the internal mass transfer 

coefficient, ℎ𝑚.𝑖𝑛, there is little change in the core temperature profile in the drying 

region of the curve, as can be seen in Figure 5-59. This is due to the drying behaviour 

being limited by the value of the vapour diffusion coefficient, 𝐷𝑣𝑎𝑝.  

 

Figure 5-59: Effects of internal mass transfer coefficient on the fitting of the model to 
the experimental core temperature profile in the drying region. 

 

For decreasing values of 𝐷𝑣𝑎𝑝 the plateau in the core temperature profile, where the 

majority of the drying happens, is seen to occur later. This is shown in Figure 5-60. This 

is caused by the slow diffusion of vapour to the boundary. Drying is known to be slowest 

at the basket centre. The low diffusion coefficient means that the evaporated moisture 

at the basket centre takes longer to reach the basket edges where is can be transferred 

to the ambient air. This is also why a more severe “step” is seen in the temperature 

profiles of the central thermocouples, relative to those of the thermocouples at 6mm 

and 12mm. This can be seen in Figure 5-56.  
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Figure 5-60: Effects of vapour diffusion coefficient on the fitting of the model to the 
experimental core temperature profile in the drying region. 

 

5.7.4. Model Results Comparison using Zero-Order vs. nth Order Reaction Kinetics 

Two different sets of kinetics and their accompanying models were used in this 

investigation, these being zero-order kinetics as estimated using the steady-state 

approach and the cross-point temperature method, and nth order kinetics as estimated 

using the Thermogravimetric approach. The steady-state approach kinetics were fitted 

to the experimentally determined critical ambient temperatures, with the equation 

using an exact dimensionless manipulation of the governing equation of this model. This 

means that, so long as the correct value of 𝛿𝑐𝑟 is used in measuring these kinetics, the 

thermal runaway as predicted by the model will occur at the same temperatures as in 

the experiments. This can be seen in the plot of the basket core temperature profile at 

a sub-critical ambient temperature in Figure 5-61 and at a super-critical ambient 

temperature in Figure 5-62. These comparisons are made over a longer time period than 

those in Figure 5-56, such that thermal runaway can be observed. This agreement also 

serves as a validation of the heat generation aspect of the model. The model and 

experimental temperature profiles agree very well in the initial period of self-heating, 

but after about 2.5 hours (9000 seconds) the profiles diverge. The model predicted 

temperature reaches a steady-state, a feature only possible because a zero-order kinetic 

model is used. The experimental data continue to increase in temperature before 
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reaching a temperature peak after about 4.5 hours (16200 seconds), and then falling in 

temperature. This temperature peak exists because in reality the reaction rate is 

influenced by the concentration of reactive component, with depletion of this causing 

this reaction rate to eventually begin to fall. The concentration of reactive component 

is not accounted for in the zero-order kinetics model and is why the use of an nth order 

model was explored. 

 

Figure 5-61: Comparison of model temperature profiles using zero- and nth order 
kinetics to experimental data for a 50mm equi-cylindrical basket at a sub-critical 

temperature of 500.3K (227.1°C). 

 

The kinetics determine using the DTG method were used to model nth order reactions 

using the equations outlined in Section 4.2.3. This kinetics determined from fitting to 

the initial portion of the degradation were used here. The heat of reaction, 𝑄, was 

determined using DSC by measuring the area under the reaction heat flow profile. A 

value of 1.6x106 J kg-1 was used. The model predicted temperature profiles using this set 

of nth order kinetics are significantly different to the experimental profiles, as can be 

seen in Figure 5-61 and Figure 5-62. Using these kinetics, the model predicts very little 

self-heating in these oven heated baskets. This is not surprising, given that the TGA 

reaction is seen to have a higher reaction onset temperature. Similarly, little self-heating 

was exhibited when using the kinetics determined from fitting to the entire degradation 
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profile. For this reason, it was thought that this ambient temperature was too low to 

initiate the reaction using these kinetics. 

 

Figure 5-62: Comparison of model temperature profiles using zero-order and nth order 
kinetics to experimental data for a 50mm equi-cylindrical basket at a super-critical 

temperature of 500.9K (227.7°C). 

 

Higher ambient temperature were modelled so that the predicted temperature profiles 

when self-heating is exhibited could be analysed. This was done for two sub-critical 

ambient temperatures of 515K (242°C) and 518K (245°C), and a super-critical 

temperature of 519K (246°C), as shown in Figure 5-61. These ambient temperatures are 

significantly higher than the experimentally measured critical ambient temperature, 

500.4K (227.2°C). 

At a sub-critical temperature of 518K (245°C), the powder is seen to react quicker than 

in the experiments, but as the reactive component depletes the reaction slows quickly 

and the temperature falls towards the oven temperature. At a super-critical 

temperature, the powder is seen to suddenly spike in temperature, as happens in the 

experiments and zero-order model. With regards the initially quick reaction rate 

increase, inclusion of the observed oxygen dependency of the reaction may improve the 

results. The reaction is known to be oxygen dependent from previous TGA and DSC 

experiments in Sections 3.4 and 3.5, and the slow diffusion of oxygen into the basket 

core may inhibit this rapid increase in temperature seen. 
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Only the initial portion of the reaction was accounted for when fitting these kinetics. 

Isoconversional DSC experiments carried out later in Chapter 6 show that the reaction 

activation energy changes as a function of conversion. Characterising these reactions 

and modelling a multi-step reaction may help in replicating the experimental behaviour. 

 

Figure 5-63: Model predicted central temperature of a 50mm equi-cylindrical basket of 
powder using an nth order reaction model at different ambient temperatures. 

 

The added complexity of the nth order model, the difficulty in getting the model to 

replicate the observed behaviour, and the fact that it over predicts thermal runaway by 

almost 20°C, makes the zero-order model the preferred choice for modelling these 

systems. The zero-order model predicted the same critical ambient temperature, and 

was found to fit very well with the self-heating period, only deviating in the peak 

temperature reached. When modelling self-heating in oven heated baskets or in spray 

dryer wall accumulations such complexity is typically not required and it is thought that 

the zero-order models used here will provide good, representative results. 

 

5.8. Conclusions 

This aspect of the study sought to determine the best means of estimating the self-

heating reaction kinetics of detergent powders. The first method discussed was the 

steady-state method. This method is based around the critical criterion 𝛿𝑐𝑟. This 
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parameter is a function of the dimensionless exponent, 𝜑 (= 𝐸/𝑅𝑇), and the Biot 

number, 𝐵𝑖, and has been previously solved for analytically for ideal conditions, such 

that 𝜑 = ∞ and 𝐵𝑖 = ∞. Parks (1961) numerically calculated 𝛿𝑐𝑟 for a range of values 

for 𝜑, but there was scope for improvement. 1D and 2D dimensionless numerical models 

were used here to calculate 𝛿𝑐𝑟 as a function of 𝜑 and 𝐵𝑖. It was shown that using 

incorrect values for 𝛿𝑐𝑟 can impact strongly on the results. If the correct value for 𝛿𝑐𝑟 is 

used in estimating the self-heating reaction kinetics of the powder using the steady-

state method, then a model can be developed which agrees almost exactly with the 

experimentally measured critical ambient temperatures. This was what was done here. 

The model predictions using these kinetics fitted very well with observed temperature 

profiles for the majority of the reaction period. The steady-state method however is 

slow with each test taking between 4 and 8 hours, and a number of tests required to 

obtain a single data point. 

The cross-point temperature method is a faster alternative, but this approach was seen 

to be more susceptible to errors. The estimated kinetics using this approach varied 

depending on the spacing of the thermocouples used. Model simulations showed that 

some variation should exist between the cases, but not to the extent seen here. In fact, 

model simulations have shown that similar results should be achieved no matter the 

thermocouple spacing, so long as it is not greater than half the radius. 

Further simulations of the method were conducted to evaluate the impact of the finite 

difference approximation for the conduction term on the results. The impact of 

thermocouple spacing and the inclusion of axial conduction were also explored. It was 

found that using a more accurate finite difference stencil (i.e. 5 point instead of a 3 point 

stencil) had more of an impact than the inclusion of axial conduction. Ideally a five-point 

stencil in both the radial and axial directions should be used to approximate the second 

order temperature derivative. In reality this involves five thermocouples and is 

impractical to apply experimentally. Instead, a five-point stencil in the radial direction, 

consisting of three thermocouples, as used here for case 3, should be sufficient. 

However, it was shown both in the experiments and with the model, that errors in 

thermocouple readings overshadowed the improvements in the accuracy of this setup. 

In the experiments, a relatively large spacing of 12mm was found to give to best results. 

The kinetics estimated using this spacing predicted thermal runaway for a 60mm equi-
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cylindrical basket at 223.9°C (497.1K), only 2.6°C greater than the experimentally 

measured critical ambient temperature of 221.3°C (494.5K). A smaller spacing of 6mm 

produced more variability and kinetics that significantly over-predicted this temperature 

at 229.0°C (502.2K). A slight discrepancy in estimated kinetics is expected, as shown 

using model simulated experiments, but the large discrepancy observed experimentally 

could be due to a combination of errors in thermocouple placement (±1mm), 

thermocouple readings (±0.25°C), and the variability caused by the small number of 

particle diameters that fits in the smaller thermocouple spacing of 6mm. 

The numerical model developed as part of this study allowed predictions in temperature 

profiles and critical ambient temperatures to be made. Having estimated a number of 

parameters, in particular the drying parameters, and using a zero-order reaction model 

with the kinetics estimated using the steady-state method, the predictions of this model 

were found to agree well with the experimentally measured temperature profiles. This 

agreement was shown for baskets at a range of ambient temperatures. 

In this study, nth order kinetics were found using a TGA based method, whereby kinetics 

were fitted to the normalised mass loss data observed in the sample across the reaction. 

Applying these kinetics in an nth order model exhibited little self-heating, with critical 

ambient temperatures under predicted by almost 20°C. This is not surprising given that 

the TGA reaction onset temperature was found to be considerably in excess of the onset 

temperature in the basket tests. Even at higher ambient temperatures, the nth order 

model predicted behaviour was different to that observed experimentally. The reaction 

was seen to occur much quicker using this model. It may be that this model can be 

improved by including a multi-step reaction or oxygen dependency of the reaction and 

oxygen diffusion. However, this will not improve this models predictions of critical 

ambient temperatures. 

The much simpler zero-order model compared considerably better to experimental 

data. It is also thought that a zero-order model is sufficient when it comes to predicting 

self-heating in these systems. The next chapter will look at improving the basket heating 

methods discussed here using a novel parameter estimation approach, whereby the 

zero-order model is fitted to the temperature profiles measured in the oven heated 

baskets. 
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6. Novel Parameter Estimation Approach for 

Characterising Self-Heating Powders 

6.1. Introduction 

The characterisation of the self-heating behaviour of detergent powders has thus far 

been done using the steady-state method and the cross-point temperature method. The 

steady-state method was shown to give good results, allowing accurate model 

predictions of self-heating to be made. However, this method is particularly slow. The 

cross-point temperature is a faster method, but it was shown that this method is 

susceptible to errors. Building on these methods, a novel approach was developed 

which was used to characterise the self-heating reaction kinetics, and the powder 

thermal conductivity and specific heat capacity. This novel approach is developed from 

the same basket setup as the cross-point temperature method but uses the numerical 

model of a self-heating basket of detergent powder, outlined in Section 4.2.1, to 

determine these parameters through parameter estimation. 

Parameter estimation is the process of fitting a number of model parameters to 

experimental data in order to make the model predictions match the observed data. 

This was done using the parameter estimation features of gPROMS ModelBuilder, where 

parameters are estimated using maximum likelihood formulation. The results of this 

methods, as well as the advantages and disadvantages in comparison to the existing 

methods explored, are discussed in this chapter. 

The parameter estimation approach uses a 2D-axisymmetric model of heat transfer with 

heat generation in an equi-cylindrical (cylinder of equal height and diameter) basket of 

detergent powder. This model is simultaneously fit to temperature profiles from a 

number of basket experiments. The experiments consists of oven heated basket 

experiments which follow the same procedure as the cross-point temperature method 

experiments, whereby an equi-cylindrical basket full of detergent powder is heated to 

some high temperature with an array of three thermocouples embedded within the 

powder. These thermocouples provide three temperature profiles for each experiment, 

to which the model can be fitted. 
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This approach was used to fit the activation energy, 𝐸, and logarithmic term capturing 

the pre-exponential factor and heat of reaction, ln 𝑄𝐴. However, the thermal 

conductivity, 𝑘, and specific heat capacity, 𝐶𝑝, of the powder are also required to predict 

self-heating behaviour. To reduce the number of experiments required to characterise 

these powders, these parameters were also estimated using this method. 

The powder thermal conductivity and specific heat capacity are highly correlated 

parameters. As such, Modulated Differential Scanning Calorimetry (Modulated DSC or 

MDSC) was used to determine the specific heat capacity value prior to fitting. It was also 

thought that the correlation between the activation energy and the logarithmic term 

may be an issue, and as such the activation energy was also determined prior to fitting 

using DSC and the Ozawa-Flynn-Wall and Friedman approaches. The effects of fixing 

these values in the fittings is explored. This approach was developed to be faster than 

the previous basket methods, whilst also improving on the error of the measured 

parameters. Throughout this chapter, the results of this method will be compared to 

those for the other basket heating methods, to establish whether this approach is an 

improvement on the existing methods. 

However, this approach is not without its flaws. Assumptions applied in the numerical 

model will have an impact on the model accuracy and the estimated parameters. These 

assumptions include: 

 Heat generation is assumed to be due to a single zero-order reaction, or several 

simultaneous zero-order reactions assumed to be one overall reaction. 

 Reactant consumption is assumed negligible, such that a zero-order reaction can 

be assumed. 

 The thermal conductivity, 𝑘, and specific heat capacity, 𝐶𝑝, are assumed constant 

(i.e. independent of temperature). 

These assumptions introduce a degree of artificial bias into the estimation of the model 

parameters. 
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6.2. Development of the Parameter Estimation Approach 

The Parameter Estimation Approach was developed as an alternative to the existing 

basket methods, the steady-state method and the cross-point temperature method. The 

detergent powder formulations characterised using the Parameter Estimation Approach 

were originally characterised using these existing basket methods. These methods both 

have their advantages and disadvantages, and it was thought that a model based 

approach could be developed to improve on these methods using the Parameter 

Estimation capabilities of gPROMS ModelBuilder. The advantages and disadvantages of 

the existing methods are detailed below. 

Steady-State Method 

Advantages: 

 This is a well-established approach that has been used to measure self-heating 

reaction kinetics of powder based systems since its inception by Bowes and 

Cameron (1971). 

 This approach is well detailed in literature and has been used to characterise 

powders such as milk-powder, coal, and sawdust. 

 The kinetics measured using this method are essentially fit to the measured 

critical ambient temperatures, such that models using these kinetics agree 

exactly with experimentally measured critical ambient temperatures. 

Disadvantages: 

 This method is particularly slow. Each experiment takes between 5 (50mm equi-

cylindrical basket) and 8 hours (70mm equi-cylindrical basket) to complete, and 

not every experiment yields a data point. On average, about 5 experiments were 

required to determine the critical ambient temperature to within 0.5°C. 

 The basket size is limited. The low thermal conductivity of the detergent powder 

means that large baskets of powder would take far too long to run. 

 Because of how long these experiments take, and the limitation in basket size, 

few data points are used in this method. In this case only three points were used. 
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Cross-Point Temperature Method 

Advantages: 

 This method is developed from the same energy balance as the steady-state 

method, making them comparable. 

 It is a faster alternative to the steady-state method. Each experiment takes 

between 1.5 (50mm equi-cylindrical basket) and 3.5 hours (70mm equi-

cylindrical basket) to complete. Every experiment yields a data point. 

 Although not as much as the steady-state method, there is a considerable 

amount of literature detailing this method. 

Disadvantages: 

 It is difficult to verify the results of this method without comparing the predicted 

critical ambient temperatures with those measured experimentally. 

 It was found that this method is very susceptible to thermocouple errors. This 

can be seen from how the three cross-point cases explored often failed to agree 

with one another. It can also be seen from the scatter of the points measured. 

Simulating these experiments showed that the approximation used for the 

conduction term in determining the cross-point can affect the results. In 

particular, the thermocouple placement errors largely affect the results. 

The Parameter Estimation Approach was developed to improve upon these methods. 

The following points illustrate the promise that this method has: 

 This approach is based on the same energy balance as two existing basket 

methods, again making these methods and the results comparable. 

 The basket setup used in this approach is the same as that used in the cross-point 

temperature method, meaning that the kinetics can be determined using both 

approaches for a single set of experiments.  

 This approach fits a numerical model to a large portion of the measured 

temperature profiles. This means that this approach uses thousands of data 

points, across three thermocouples and a number of experiments. In this case 

up to 13 experiments were used in the different fittings, although there is no 

limit to the amount that could be used. In comparison, the steady-state method 
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used 3 data points, and the cross-point temperature method used between 10 

and 15 data points. 

 Using the same experimental procedure as the cross-point temperature method 

means that this approach preserves the time advantage that the cross-point 

temperature method has over the steady-state method. 

These points detail how the proposed parameter estimation approach is potentially 

advantageous over the existing basket methods. This chapter will detail the 

experimental procedure, the numerical model used for fitting, the Maximum Likelihood 

Function used to determine the best fit parameters, the initial temperature profile 

approximation for the experimental data, and the DSC experiments used to determine 

the specific heat capacity and activation energy values prior to fitting. 

 

6.3. Detergent Powder Composition 

This approach was used the estimate the self-heating parameters of the four detergent 

powder formulations outlined in Sections 3.2 and 5.1. This chapter focuses on the 

characterisation of the formulation referred to as Micronized Formulation 1, while 

Section 7.2 focuses on the application of this approach to three other formulations: non-

Micronized Formulation 1, Formulation 2, and Formulation 3. Micronized Formulation 1 

is a model composition that is representative of the spray-dried powder present in a 

commercial laundry detergent product, with a finer, micronized grade of sodium 

sulphate used to reduce the composition variability that can be seen between particles 

and between different sizes of particles.  

The particle size distribution of these formulations were measured by sieving. This also 

allowed the specific heat capacity, 𝐶𝑝, and activation energy, 𝐸, of individual size ranges 

to be measured, giving an insight into the variability of the self-heating behaviour with 

particle size. Experiments were performed on four size ranges for each formulation. The 

size ranges used were >150μm and <250μm, >250μm and <355μm, >355μm and 

<425μm, and >425μm and <600μm. The percentage contribution of each of these size 

ranges to the overall composition can be seen in Table 6-1. This size distribution analysis 

also allowed the mass median particle diameter, 𝐷50, the diameter for which 50% of the 
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particles are smaller to be measured. This is shown in Table 6-2 along with the bulk-

densities of the formulations.  

 

Table 6-1: Percentage contribution of each size range to the overall powder size 
distribution for each of the four detergent powder formulations. 

 Micronized 
Formulation 1 

Non-Micronized 
Formulation 1 

Formulation 
2 

Formulation 
3 

150 - 250μm 20% 21% 10% 8% 

250 - 355μm 15% 22% 46% 34% 

355 - 425μm 7% 10% 13% 12% 

425 - 600μm 13% 15% 15% 17% 

Total % of 
Overall 

Composition 
56% 68% 83% 70% 

 

Table 6-2: Mass median particle diameter for each of the four detergent powder 
formulations. 

 Micronized 
Formulation 1 

Non-Micronized 
Formulation 1 

Formulation 
2 

Formulation 
3 

Mass Median 
Particle 

Diameter (𝑫𝟓𝟎) 
325μm 341μm 329μm 376μm 

Bulk Density 683.8 kg m-3 545.2 kg m-3 586.5 kg m-3 610.1 kg m-3 

 

6.4. Oven Heated Basket Experiments 

For each detergent formulation 13 experiments were performed. 13 experiments 

allowed different combinations of these experiments to be used in the fittings, such that 

the number of experiments required to achieve good results can be determined. Each 

experiment was performed at a different oven controlled ambient temperature. 

Experiments for three samples: Micronized Formulation 1, Non-Micronized Formulation 

1, and Formulation 3 were run at temperatures from 216°C (489K) to 228°C (501K), while 

the samples of Formulation 3 were found to not be significantly reactive at these 

temperatures and instead was run at temperatures from 222°C (495K) to 234°C (507K). 
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All experiments followed the same procedure as the cross-point temperature method 

experiments outline in Section 5.3. 60mm equi-cylindrical baskets, were each filled with 

powder and tapped to a similar mass, with this mass varying by formulation. The baskets 

were heated in the same Memmert UF75 Forced Convection oven as for the previous 

experiments. An array of three type K thermocouples (RS Pro 363-0294) were placed 

within the basket. These thermocouple were glass fibre insulated with a welded exposed 

junction and supplied with a working range of -60° to 350°C. These thermocouples were 

inserted to the basket half-height and at radial distances of 0mm, 6mm, and 12mm from 

the basket centre. An additional thermocouple was placed close to the basket within the 

oven to give a true reading of the ambient temperature experienced by the basket. The 

recorded ambient temperature profile was important as this was input in gPROMS 

ModelBuilder as an experimental control variable. The experiments were run for 

between 130 and 160 minutes, until such time that significant self-heating had been 

observed but before thermal runaway had occurred. 

 

6.5. Numerical Model used for Parameter Estimation 

The numerical model of an oven heated equi-cylindrical basket of powder as outlined in 

Section 4.2.1 was used for the fittings. This model consisted of the heat transfer and 

heat generation equations, where a zero-order reaction model was used. In this model, 

the temperature evolution in the basket is modelled using the following: 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘∇2𝑇 + 𝜌𝑄𝐴𝑒

−𝐸
𝑅𝑇 , (6-1) 

The drying equations outlined in Section 4.2.2 were not used in this model. This was 

done because the fitting was only performed to the region after drying had completed 

of the experimentally measured temperature profiles. This meant that the model could 

be greatly simplified as the drying parameters did not need to be determined. 

 

6.6. Initial Temperature Profile Approximation 

This approach seeks to determine four parameters which are key to predicting self-

heating in detergent powders. To determine these values the most appropriate portion 
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of the experimentally measured temperature profiles must be used. Figure 6-1 shows 

how a typical experimental temperature profile can be divided into three regions, the 

initial heating region, the drying region, and the self-heating region. 

During the initial region the reaction term in equation (6-1) is of almost negligible 

influence, and the model reduces to the transient and conductive heat transfer terms. 

The drying region is self-explanatory, in that the drying of the residual moisture in the 

particles occurs within this period. The equation describing this behaviour were not 

included in the model for this investigation as this region is not of interest and the 

inclusion of these equations would greatly add to the complexity of the model. The self-

heating region begins after drying has completed and at the temperatures where the 

self-heating reaction begins to occur. During this region all four parameters, 𝑘, 𝐶𝑝, 𝐸, 

and ln𝑄𝐴, have an influence on the model predicted temperatures and the complexity 

of including a drying model can be avoided because by this time drying has finished. For 

this reason this region of the experimental temperature profiles was used for the 

fittings. 

 

Figure 6-1: Typical experimental temperature profile split in three regions, the initial 
heating region, the drying region, and the self-heating region. 

 

The model which is to be fit requires initial conditions to run, and because the fitting is 

to begin in the self-heating region, a steady-state temperature profile cannot be used. 
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Instead an initial 2D temperature profile in the radial and axial directions is needed. The 

problem is that this profile is not known, and only the temperatures as measured by the 

three thermocouples at radial distances of 0mm, 6mm, and 12mm (all measured at an 

basket half-height, i.e. 𝑧 = 0mm), and the ambient temperature are known. An 

approximation of the 2D initial temperature profile must be developed from these data. 

Before, the profile could be approximated, a start time for each experiment was 

determined. A similar starting point was desired for each of the experiments. This 

allowed the initial temperature profiles for each experiment to be compared. All the 

experiments were compared to find the time for each experiment at which the 

difference in temperatures across all 13 experiments was minimised. 

After determining the starting time for each experiment, the initial temperature profiles 

for each experiment could be approximated. The first step is to approximate the radial 

temperature profile at 𝑧 = 0. It was decided that the cubic profile in equation (6-2) was 

to be used. It was thought that having only three measured temperatures would make 

fitting difficult, and as such, the assumption that the temperature profile follows this 

cubic shape was applied. The choice of this profile is validated later. 

 𝑇 = 𝑝3𝑟
3 + 𝑝2𝑟

2 + 𝑝1𝑟 + 𝑝0. (6-2) 

To fit this polynomial to the measured temperature data, some mathematical 

manipulation was required. Instead of fitting the four coefficients, 𝑝0, 𝑝1, 𝑝2, and 𝑝3, 

this equation could be reduced to one containing parameters which would better 

describe this system. These parameters include known system input parameters, and 3 

parameters that will be determined through fitting. The known parameters are the 

effective heat transfer coefficient, ℎ, the thermal conductivity, 𝑘, the basket radius, 𝑅, 

and the ambient temperature, 𝑇∞. The parameters to be determine through fitting are 

the temperature at the basket centre, 𝑇𝑟=0, the temperature at the basket edge, 𝑇𝑟=𝑅, 

and the polynomial coefficient 𝑝3, which dictates the shape of the curve. 

The polynomial can be reduced by looking at the constraining boundary conditions. The 

same boundary conditions that apply to the numerical model also apply here: 

 
𝑑𝑇

𝑑𝑟
|
𝑟=0

= 0, (6-3) 
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 −𝑘
𝑑𝑇

𝑑𝑟
|
𝑟=𝑅

= ℎ(𝑇|𝑟=𝑅 − 𝑇∞). (6-4) 

At 𝑟 = 0 it can be seen that the coefficient 𝑝0 = 𝑇𝑟=0, the temperature at the basket 

centre. Taking the first derivative of equation (6-2) with respect to 𝑟, and using the 

boundary condition at 𝑟 = 0, it can be seen that the coefficient 𝑝1 reduces to zero. This 

reduces the temperature profile to: 

 𝑇 = 𝑝3𝑟
3 + 𝑝2𝑟

2 + 𝑇𝑟=0. (6-5) 

By taking the first derivative of equation (6-2), applying the boundary condition at 𝑟 =

𝑅, and rearranging for 𝑝2 in terms of the radius, 𝑅, the conductivity, 𝑘, the effective heat 

transfer coefficient, ℎ, the ambient temperature, 𝑇∞, and the temperature at the basket 

edge, 𝑇𝑟=𝑅, the following is found: 

 𝑝2 = −
1

2𝑅
(3𝑝3𝑅

2 +
ℎ

𝑘
(𝑇𝑟=𝑅 − 𝑇∞)) (6-6) 

This is substituted back into equation (6-2) gives the equation that will be fit to the 

known experimental temperatures: 

 𝑇 = 𝑝3𝑟
3 −

𝑟2

2𝑅
(3𝑝3𝑅

2 +
ℎ

𝑘
(𝑇𝑟=𝑅 − 𝑇∞)) + 𝑇𝑟=0. (6-7) 

As mentioned previously, in this equation there are three unknowns that are to be 

determined through fitting, these being the coefficient 𝑝3, and the two temperature 

𝑇𝑟=0 and 𝑇𝑟=𝑅. The thermocouple at 0mm could be used as the 𝑇𝑟=0,but instead this 

value’s errors in placement and readings may mean that the measured value is not the 

best value for this approximation. This fitting was done using MATLAB and its curve 

fitting toolbox, whereby the method of least squares is used to determine the best fit 

values.  

Initially, equation (6-7) was fitted to only the three temperature points at 0mm, 6mm, 

and 12mm. From this, the best fit values of 𝑝3, 𝑇𝑟=0, and 𝑇𝑟=𝑅 were determined. Issues 

then arose with this approach. Using the best fit parameters, the radial temperature 

profile was calculated. The plot of this profile can be seen as the red line in Figure 6-2. 

The issue is that the best fit value of the temperature 𝑇𝑟=𝑅 (yellow point) does not agree 

with the temperature profile at the basket radius (𝑟 = 0.03m), as calculated from the 
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best fit parameters. This issue led to the implementation of an iterative procedure to 

determine the temperature 𝑇𝑟=𝑅. 

 

Figure 6-2: Fitting only to the measured temperature points gives rise to the above 
issue, where the fitted value of 𝑇𝑟=𝑅 is not in agreement with the temperature profile 

calculated from the best fit parameters 

 

In this iterative approach, an initial guess for 𝑇𝑟=𝑅 was specified and this was added to 

the three measured temperatures at 0mm, 6mm, and 12mm to give four points to which 

this profile is fit. An iterative procedure was then used to fit for 𝑝3, 𝑇𝑟=0, and 𝑇𝑟=𝑅. After 

each iteration the fitted value of 𝑇𝑟=𝑅 was compared to the value calculated from 

equation (6-7) at 𝑟 = 𝑅, using the best fit parameters from the fitting. The next guess 

was set to the mean of these two values and the fitting repeated until the difference 

between them was less than 0.1°C. The agreement between these two values ensured 

the matching of the conductive flux at the basket edge to the convective flux at the 

surface. The resulting profile from this step can be seen in Figure 6-3. 

This profile applied to the 2D basket domain in 𝑟 and 𝑧 can be seen in Step 1 of Figure 

6-4. Because the only measured temperatures are along the basket radius, it was 

assumed that the profile along the axial direction at 𝑟 = 0 is the same as in the radial 

direction at 𝑧 = 0. This assumption is validated later. This profile applied to the 2D 

basket domain in 𝑟 and 𝑧 can be seen in Step 2 of Figure 6-4. 



225 
 

 

Figure 6-3: Temperature profile fitted to the experimentally measured temperatures 
along the basket radius (at 𝑧 = 0𝑚𝑚), in accordance with equation (6-5). 

 

The next step is to approximate the edge temperature profile at 𝑧 = 𝑍. Equation (6-7) 

is still applicable at the edge and is used for this fitting. At the edge, the only known 

temperature point is the temperature at (𝑟, 𝑧) = (0, 𝑍) , and this comes from the end 

temperature of the profile determined in Step 1 at 𝑟 = 0. This means that in the fitting 

𝑇𝑟=0 is known, and only 𝑝3 and 𝑇𝑟=𝑅 need to be determined. Again the same iterative 

procedure is used and the results of this step can be seen in Step 3 of Figure 6-4. 

Although it looks flat, there is in fact a profile to this edge. Because the profile along the 

edge at 𝑟 = 0 was assumed equal to the profile along the edge at 𝑧 = 0, it was also 

assumed that the profile along the edge at 𝑟 = 𝑅 is equal to that along the edge at 𝑧 =

𝑍. This can also be seen in Step 3 of Figure 6-4. 

Step 4 of the procedure is to fit profiles at 29 intermittent axial lengths from 𝑧 > 0 to 

𝑧 < 𝑍. Equation (6-7) is again used in this fitting, but for each curve two temperature 

points are known. These temperatures are those along the already determined profiles 

at 𝑟 = 0 and 𝑟 = 𝑅. This means that 𝑇𝑟=0 and 𝑇𝑟=𝑅 in equation (6-5) are both known 

and only the coefficient 𝑝3 needs to be determined for each of the 29 curves. This also 

means that the iterative procedure used before is no longer required. The results of this 

step can be seen Step 4 in Figure 6-4. 
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Finally, in order to use this profile in gPROMS ModelBuilder a equation needs to be 

determined that describes this 2D profile in the form 𝑇 = 𝑓(𝑟, 𝑧). MATLAB’s curve fitting 

toolbox is again used to fit the following 4th degree polynomial in 𝑟 and 𝑧 to a 31x31 grid 

of points defined by the collection of curves determined in the previous steps: 

 

𝑇 = 𝑝00 + 𝑝10 𝑟 + 𝑝01 𝑧 + 𝑝20 𝑟
2 + 𝑝11 𝑟 𝑧 + 𝑝02 𝑧

2 + 𝑝30 𝑟
3

+ 𝑝21 𝑟
2 𝑧 + 𝑝12 𝑟 𝑧

2 + 𝑝03 𝑧
3 + 𝑝40 𝑟

4 + 𝑝31 𝑟
3 𝑧

+ 𝑝22 𝑟
2 𝑧2 + 𝑝13 𝑟 𝑧

3 + 𝑝04 𝑧
4. 

(6-8) 

The resulting profile can be seen in Figure 6-5.  

 

Figure 6-4: Steps involved in approximating the 2D temperature profile from the 
measured temperature data. 
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Figure 6-5: 4th degree polynomial fitted to the collection of curves determined in the 
previous steps shown in Figure 6-4. 

 

This process is repeated for each experiment and these coefficients are then used to 

define the initial temperature conditions for each experiment. How this profile relates 

to the basket geometry can be seen in the overlay of the temperature profile onto an 

image of a basket of powder in Figure 6-6. 

 

Figure 6-6: Overlay of initial temperature profile onto a photograph of a basket of 
powder used for conducting these experiments. 
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6.6.1. Model Verification of the Initial Temperature Profile Approximation Method 

This method for approximating the initial temperature profile and the associated 

assumption were verified using the numerical model. To do this, the approximation 

method was applied to data from a full, model simulated, 2D temperature profile. This 

was done to validate the choice of polynomial used to describe the temperature profile 

in equation (6-2), and the assumption that the radial and axial temperature profiles are 

equal. The entire, fitted, 2D profile is compared to the original, model simulated, 2D 

profile from which it came, to determine if this method is a satisfactory approach for 

approximating the initial temperature profile. 

The model was use to simulate a basket heating experiment at an ambient temperature 

of 224°C (497K). The temperature profile after 3200s was taken from this. This is the 

data that will be used for this verification. At this time, the temperatures at 0mm, 6mm, 

and 12mm from the centre were noted, these being the temperatures that would be 

measured by the three thermocouples in experimental practice. It is to these 

temperatures that the fitting is performed. 

The radial temperature profile is fitted, as outlined in the procedure of the previous 

section. The profile fitted to these three points agrees well with the model predicted 

radial temperature profile, as shown in Figure 6-7 (a). The model predicted radial 

temperature profile at 𝑧 = 0 and the axial profile at 𝑟 = 0 were compared, as shown in 

Figure 6-7 (b). These profiles are sufficiently similar to validate the approximation used 

whereby the radial and axial temperature profiles were assumed equal. 

The entire, fitted 2D temperature profile approximated from the three simulated 

thermocouples was compared to the model predicted 2D profile from which these three 

points were taken. The comparison of these profiles can be seen in Figure 6-8. These 

profiles are seen to compare very well, with a root mean squared error of 2.75°C. The 

difference between the minimum and maximum temperatures in this profile is almost 

70°C, such that there is an approximate error of 4% across the profile. This suggests that 

this method for generating an approximated initial temperature profile from the data of 

three thermocouples and the ambient temperature is satisfactory, and can be applied 

in the subsequent parameter estimations. 
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Figure 6-7: Model verification of the Initial temperature profile approximation method 
using a model simulated basket heating experiment at 224°C (497K). (a) Comparison of 

model predicted and approximated radial temperature profiles. (b) Validation of the 
approximation that the radial and axial temperature profiles are assumed equal. 

 

 

Figure 6-8: (a) The model predicted temperature profile from which the three 
simulated thermocouples were taken. (b) The fitted temperature profile approximated 

from the three simulated thermocouples. 

 

6.7. Maximum Likelihood Estimation 

Parameter estimation is the process of fitting a number of model parameters to 

experimental data in order to make the model predictions match the observed data. In 

this study, four parameters were estimated using this approach: the activation energy, 

𝐸, the logarithmic term capturing the pre-exponential factor and heat of reaction, ln 𝑄𝐴, 

the thermal conductivity, 𝑘, and specific heat capacity, 𝐶𝑝. 

Parameter estimation in gPROMS is based on the Maximum Likelihood method, allowing 

for the simultaneous estimation of both the physical parameters in the model and the 
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variance of the measuring instruments. The variance is the uncertainty to which the 

measurements are known and is detailed in Section 6.8 and can be fit as part of this 

procedure. In this case the variance is the uncertainty in the thermocouple 

measurements. The method is based on the following objective function: 

 Φ =
𝑁

2
ln(2𝜋) +

1

2
min

𝜃
{∑ ∑ ∑ [ln(𝜎𝑖𝑗𝑘

2 ) +
(𝑧𝑖𝑗𝑘−𝑧𝑖𝑗𝑘)

2

𝜎𝑖𝑗𝑘
2 ]

𝑁𝑀𝑖𝑗

𝑘=1
𝑁𝑉𝑖
𝑗=1

𝑁𝐸
𝑖=1  }. (6-9) 

This objective function can be described by three terms: the constant term, 
𝑁

2
ln(2𝜋), 

the variance term, ln(𝜎𝑖𝑗𝑘
2 ), and the residual term, 

(𝑧𝑖𝑗𝑘−𝑧𝑖𝑗𝑘)
2

𝜎𝑖𝑗𝑘
2 . This function consists of 

the following definitions: 

 𝑁 – Total number of measurements taken during all the experiments. 

 𝜃 – Set of model parameters to be estimated. The acceptance values may be 

subject to given lower and upper bounds, i.e. 𝜃𝑙 ≤ 𝜃 ≤ 𝜃𝑢. 

 𝑁𝐸 – Number of experiments performed. 

 𝑁𝑉𝑖 – Number of variables measured in the ith experiment. 

 𝑁𝑀𝑖𝑗 – Number of measurements of the jth variable in the ith experiment. 

 𝜎𝑖𝑗𝑘
2  – Variance of the kth measurement of the variable j in experiment i. This is 

determined by the measured variable’s variance model. 

 �̃�𝑖𝑗𝑘 – kth measured value of the variable j in experiment i. 

 𝑧𝑖𝑗𝑘 – kth (model-) predicted value of the variable j in experiment i. 

In estimating parameters using the maximum likelihood method, gPROMS attempts to 

determine values for the unknown parameters, 𝜃, that maximises the probability that 

the model predictions will match the measured values determined experimentally. 

 

6.8. Parameter Estimation Variance Model 

The variance, which is the uncertainty to which the measurements are known, was fitted 

as part of the parameter estimation procedure. All the experiments used the same array 

of thermocouples and as such one variance value was fitted for each thermocouple. A 

constant variance model was used (i.e. variance was independent of temperature or 
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time) and is specified by gPROMS as 𝜎2 = 𝜔2, where 𝜔 is the variance, and 𝜎 is the 

standard deviation. 

The variance was fitted because the error associated with the experimental 

measurements was unknown and is comprised of three factors: the error in 

thermocouple readings, the error in thermocouple placement, and the variability of the 

powder between the thermocouples. The thermocouples were sold with a tolerance of 

±1.5°C, although when comparing thermocouple readings at the start of the experiment, 

when the powder was at a steady-state, the difference between all three thermocouples 

was found to be with 0.25°C. This error alone has been found to be significant in 

performing the cross-point temperature method, but what is of greater significance is 

the error in thermocouple placement. Placing the thermocouples accurately is very 

difficult and there is no way to know how accurate this placement is. Finally the variance 

associated with sample variability is due largely to the small gap of 6mm between each 

of the thermocouples. These three factors together contribute to a variance that is 

difficult to quantify, and as such was estimated as part of this method. 

The same thermocouples were used for all the experiments, and in the software this 

was noted by grouping each of the three thermocouples across all the experiments. In 

doing so, a single variance value was fit for each thermocouple, using all the experiments 

used for that particular fitting.  

 

6.9. Determining Specific Heat Capacity from MDSC 

From the energy balance in equation (6-1), and from initial fittings using the parameter 

estimation approach, it could be seen that the thermal conductivity, 𝑘, and the specific 

heat capacity, 𝐶𝑝, are very highly correlated. This means that these two parameters are 

dependent on one another, such that a change in one value will induce a change in the 

other. Because of this high degree of correlation, the software had difficulty in fitting 

both of these values, and as such it was thought measuring a value of the specific heat 

capacity and fixing this in the parameter estimation would improve the fitting 

procedure.  

The specific heat capacity was measured using Modulated Differential Scanning 

Calorimetry (Modulated DSC or MDSC), and the method documented by TA 
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Instruments, the manufactures of the DSC equipment used (Thomas, n.d.). Conventional 

DSC measures the energy released or absorbed by a sample when it is heated or cooled. 

Typically the sample is heated either isothermally or at a constant heating ramp rate. 

Modulated DSC differs from conventional DSC in that a sinusoidal modulation is overlaid 

on the conventional linear heating or cooling ramp. This gives a profile for which the 

average sample temperature continuously changes with time but not in a linear fashion. 

MDSC is preferred over conventional DSC for measuring 𝐶𝑝 values because a stable 

baseline is not required to obtained high accuracy, however, in MDSC the choice of 

average and modulated heating rates is critical to obtaining good results from this 

method. Firstly the average heating rate is chosen, and then the temperature 

modulation period and amplitude is selected accordingly. The key considerations for this 

approach are: 

 The modulation period must be long enough to allow for sufficient heat flow 

between the sensor and the sample. 

 The modulation amplitude must be sufficiently large to provide good sensitivity, 

but not so large that the resolution is reduced. 

 The average heating rate is slow enough to allow for a sufficient number of 

modulation cycles over the period of interest. 

For these detergent powder samples, the temperature range over which MDSC was to 

be performed was of importance. The temperature range of interest is in excess of 200°C 

(473K) but at some point this powder will self-heat. The conventional DSC runs 

performed using the TA Instruments Q2000 DSC in Section 3.4 showed that a range of 

200°C (473K) to 230°C (503K) could be used to provide 𝐶𝑝 values within the range of 

interest, but without self-heating occurring and affecting the results.  

Before the value of 𝐶𝑝 can be measured for this sample, the equipment must first be 

calibrated using a sample of known specific heat capacity. The sample used was a disk 

of sapphire. A sapphire disk weighing 25.2mg was sealed in an aluminium pan and placed 

in the DSC along with a sealed reference pan. At 215°C (488K), the midway temperature 

in the range to be used for the detergent powder samples, the sapphire disk was heated 

with at a modulation of ±1°C/min every 120s for 5 minutes. The resulting reversing heat 

capacity, 𝑅𝑒𝑣 𝐶𝑝, signal is calculated as: 
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 𝑅𝑒𝑣 𝐶𝑝 =
𝐻𝑒𝑎𝑡 𝐹𝑙𝑜𝑤 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
∙ 𝐾𝐶𝑝. 

(6-10) 

The reversing heat capacity calibration constant, 𝐾𝐶𝑝, is set to zero for the calibration. 

The reversing heat capacity signal was plotted against time and the heat capacity value 

at the end of the 5 minute period was determined. Using this, the reversing heat 

capacity calibration constant, 𝐾𝐶𝑝, can be calculated by the dividing the theoretical 

value of the heat capacity of sapphire at 215°C by the measured value. 

 𝐾𝐶𝑝 =
𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑣 𝐶𝑝

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑒𝑣 𝐶𝑝
=

1.0315

1.0950
= 0.942 

(6-11) 

Having this value for 𝐾𝐶𝑝, the reversing heat capacity can be measured for the detergent 

powders. Samples of approximately 10mg in mass were placed into aluminium pans and 

sealed with a lid. Samples of three different size ranges of particles were tested: >150μm 

and <250μm, >250μm and <355μm, and >355μm and <425μm. These samples were 

heated from 200°C (473K) to 230°C (503K) using the heating rates recommended by TA 

Instruments: an average heating rate of 3°C/min, using a modulation period of 120s and 

a modulation amplitude of ±1°C. The results of this method for Micronized Formulation 

1 are discussed below. 

 

6.9.1. Specific Heat Capacity Results for Micronized Formulation 1 

Figure 6-9 shows the modulated temperature input of the DSC and the measured 

modulated heat flow output from the samples of different size ranges. Little difference 

is seen across the different size ranges of particles. It is difficult to read much else from 

the heat flow profiles in this form. From this heat flow output, and knowing the reversing 

heat capacity calibration constant, 𝐾𝐶𝑝, from the sapphire disk calibration, the non-

reversing 𝐶𝑝value is calculated. This can be seen in Figure 6-10 along with the modulated 

temperature input of the DSC. 
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Figure 6-9: Modulated DSC input temperature and sample heat flow as a function of 
time for particles of size ranges (a) 150-250μm, (b) 250-355μm, and (c) 355-425μm. 

 

The measured non-reversing 𝐶𝑝 for the three different size ranges of particles can be 

seen as a function of temperature in Figure 6-11. It can be seen that 𝐶𝑝 is not constant 

throughout the experiment. This may be due to the modulation period used, which 

although recommended by the instrument manufacturer, may not be small enough for 

this case, with only 7 or 8 modulation periods occur within the 30°C range used for these 

experiments. This would be the first thing to address if these experiments were 

repeated. 

Despite this, each sample is seen to follow a similar profile with a peak at the start of 

the temperature range and another at the end, although there is no logical order in the 

plots from a particle size perspective. The weighted average 𝐶𝑝 was calculated as the 

average 𝐶𝑝 as a function of temperature, weighted by each size ranges percentage 

contribution by mass to the overall powder size distribution, shown in Table 6-1. 
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Figure 6-10: Measured non-reversing 𝐶𝑝 and modulated DSC input temperature for 

particles of size ranges (a) 150-250μm, (b) 250-355μm, and (c) 355-425μm. 

 

The most stable region of the profile for all three size ranges is between 485K (212°C) 

and 496K (223°C), and it was from this region that the value of 𝐶𝑝 to be used in the 

parameter estimation fittings was chosen. Figure 6-12 shows the 𝐶𝑝 profiles for this 

temperature range for the three size ranges and the weighted average 𝐶𝑝. The 𝐶𝑝 used 

in the fitting was calculated as the overall average value of the weighted profile in this 

temperature range, and has a value of 1367 J kg-1 K-1.  
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Figure 6-11: Measured non-reversing 𝐶𝑝 for samples of three different particle size 

ranges for the entire duration of the experiment. 

 

Figure 6-12: Measured non-reversing 𝐶𝑝 for samples of three different particle size 

ranges for the most stable region from which the value used in the fittings was chosen. 

 

6.10. Determining Arrhenius Activation Energy from DSC 

It was found from initial fittings using the parameter estimation approach that the 

pairing of the reaction activation energy, 𝐸, and the logarithmic term capturing the pre-

exponential factor and heat of reaction, ln 𝑄𝐴, are somewhat correlated. In fitting to 

the basket experiments individually, the software would struggle to estimate these two 
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parameters simultaneously, with a change in one value being compensated for by a 

change in the value of the other, with one parameter often getting stuck on the fitting 

bounds. This problem was not seen to occur when multiple experiments were fitted to 

simultaneously, because the variation in ambient temperature of the experiments 

meant different levels of self-heating were exhibited amongst the experiments, making 

it possibly to fit these kinetics. Nonetheless, the possibility of fixing the activation energy 

to a measured value was explored in Section 6.11.4. 

The activation energy is considerably easier to measure than the logarithmic term. This 

was done using isoconversional analysis methods and differential scanning calorimetry 

(DSC). Two isoconversional methods were explored, the Ozawa-Flynn-Wall approach, 

proposed independently by Ozawa (1965) and Flynn and Wall (1966), and the Friedman 

method (1964). These two methods both use the same experimental procedure. 

These methods have previously been used to characterise a number of materials. 

Pielichowksi et al. (1998) used both of these methods to determine the kinetics of 

decomposition of potato starch, while Venkatesh et al. (2013) used these methods to 

analysis the decomposition of Nitroimidazoles.  

These two methods were independently proposed to provide a model independent 

estimate of the activation energy without any assumptions regarding the form of the 

kinetic equation, other than that the system is of Arrhenius type temperature 

dependence. The Friedman method is often described as a differential isoconversional 

method, whilst the Ozawa-Flynn-Wall approach is described as an isoconversional 

integral approach. Both of these approaches are based on the following single-step 

reaction: 

 
𝑑𝛼

𝑑𝑡
= 𝑓(𝛼)𝑘(𝑇). (6-12) 

Where 𝛼 is the degree of conversion, 𝑓(𝛼) is the kinetic model, and 𝑘(𝑇) is the rate 

constant which can be substituted for the Arrhenius equation: 

 𝑘(𝑇) = −𝐴 𝑒−
𝐸
𝑅𝑇. (6-13) 

The Friedman method is the simpler of the two methods to derive mathematically, but 

requires more mathematical manipulation of the data to determine the results. The 

Friedman method uses the logarithmic form of equation (2-61) as the basis of its 

approach: 
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 ln
𝑑𝛼

𝑑𝑡
= ln 𝑓(𝛼) + ln 𝐴 −

𝐸

𝑅𝑇
. (6-14) 

Using the method, the activation energy can be found from the slope of the line (𝑚 =

−𝐸/𝑅) produced by plotting ln 𝑑𝛼/𝑑𝑡 against 1/𝑇 for isoconversional fractions. 

The Ozawa-Flynn-Wall method requires some more manipulation, which is outlined in 

Section 2.4.4.2. Without going into detail, the following equation is reached: 

 ln 𝛽 = ln (
𝐴𝐸

𝑅
) − ln 𝐺(𝛼) − 5.3305 + 1.052

𝐸

𝑅𝑇
 . (6-15) 

It can be seen from this that when ln 𝛽 is plotted against 1/𝑇 for isoconversional 

fractions and a series of measurements at heating rates of 𝛽1 …𝛽𝑗, a straight line is 

formed with a slope of 1.052𝐸/𝑅. The temperature 𝑇𝑗𝑘 at which the conversion 𝛼𝑘 is 

achieved is taken at the heating rate 𝛽𝑗. The approximation of the exponential integral 

in this approach has significant errors associated with it. For values of 31 < 𝑥 < 47 the 

errors are smaller than 1%, but for values of 𝑥 < 25 or 𝑥 < 100 these errors are in 

excess of 3%. An empirical correction factor for this that was suggested by Flynn (Flynn, 

1983). Firstly 𝐸 is estimated using equation (2-69), the mean temperature 𝑇𝑚 is 

determined, and from this the mean value 𝑥𝑚 = 𝐸/𝑅𝑇𝑚 is determined. This is used to 

determine the empirical correction factor 𝐹(𝑥); 

 𝐹(𝑥) = 𝑎0 (1 +
𝑎1 + 𝑥

1 + 𝑎2𝑥 + 𝑎3𝑥2
). 

(6-16) 

Where 𝑎0 = 0.94961, 𝑎1 = 7.770439, 𝑎2 = 4.56092, and 𝑎3 = 0.48843. The 

corrected activation energy is calculated by dividing the first estimate of 𝐸 by the 

correction factor 𝐹(𝑥𝑚). 

The Ozawa-Flynn-Wall method is suited to measuring kinetics of systems where multiple 

reactions are occurring, such that the activation energy varies with time, although if 

these reactions are occurring simultaneously and have largely different activation 

energies, then this method may fail. It is also worth noting that the Ozawa-Flynn-Wall 

method is less accurate than the Friedman method. If the activation energy, 𝐸, is 

dependent on the conversion, 𝛼, or if competitive reactions are occurring then the 

values obtained using these methods are found to be different. On the other hand, if 

the activation energy is independent of the conversion, then these two methods should 

measure the same values (Venkatesh, et al., 2013). 
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In this investigation, the activation energy, 𝐸, was measured for four different particle 

size ranges of each formulation. Samples of these powders weighing approximately 8mg 

were placed into Tzero aluminium pans. These pans were placed into the TA instruments 

Q2000 DSC along with an empty reference pan. This reference pan allows the heat flow 

in the powder sample to be separated from that of the pan. The DSC was equilibrated 

at 200°C in air, at which no self-heating is exhibited, and held isothermally for 2 minutes. 

The temperature is then increased linearly from 200°C (473K) to 500°C (773K). This was 

done at four different ramped heating rates: 4°C/min, 6°C/min, 8°C/min, and 10°C/min. 

Data were sampled every 0.2s, measuring the temperature and heat flow in the cell. 

These two methods were used to measures the activation energy at a range of 

conversions. 

 

6.10.1. Arrhenius Activation Energy Results for Micronized Formulation 1 

Each of the four size ranges of particles were heated at each of the four heating rates, 

amounting to 16 DSC experiments. The start and end point of the reaction was defined 

for each experiment. These were chosen as the start and end points of the observed 

exothermic peak. These can be seen in Figure 6-13, where the four different size ranges 

of particles have been grouped into separate plots, such that the activation energy can 

be measured separately for each size range. The exotherms look similar across the four 

size ranges, again implying that reactivity is independent of particle size in Micronized 

Formulation 1. These plots were made with respect to temperature and it can be seen 

how the peak heat flow increases with heating rate. Plotting with respect to time would 

produce plots with the same peak heat flow but with a variation in the time span of each 

experiment due to the different heating rates used. The area under the exotherm for 

each experiment in this plot would be the same. 
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Figure 6-13: Heat flow per unit mass for the four heating rates of 4°C/min, 6°C/min, 
8°C/min, and 10°C/min for particles of the size ranges (a) 150-250μm, (b) 250-355μm, 

(c) 355-425μm, and (d) 425-600μm. 

 

Equation (2-61) on which these two methods are based require the reaction to be 

expressed as a conversion, 𝛼, a value between 0 and 1 indicating the degree to which 

the reaction has completed, with 0 indicating that the reaction has yet to begin, and 1 

indicating that the reaction has completed. To do this, the area under the exotherm of 

the heat flow against time profiles was found. A sinusoidal baseline was used between 

the start and end points of each curve and the area between the curve and this baseline 

determine by numerical integration. The conversion was determined by summing the 

area of consecutive slices as a fraction of the total area and this can be seen for the four 

heat rating rates in Figure 6-14 for the four particle size ranges. It can be seen that the 

lower the heating rate, the lower the temperature at which the conversion occurs. This 

is because at these lower heating rates, the sample has longer to react at the lower 

temperatures. Using these conversion curves it is now possible to use both the Friedman 
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method and the Ozawa-Flynn-Wall method to determine the activation energy of these 

samples. 

 

Figure 6-14: Conversion, 𝛼, for the four heating rates of 4°C/min, 6°C/min, 8°C/min, 
and 10°C/min for particles of the size ranges (a) 150-250μm, (b) 250-355μm, (c) 355-

425μm, and (d) 425-600μm. 

 

The Friedman method is sometimes referred to as the differential method, and is based 

on the conversion derivative with time, as outlined in Equation (2-64). The derivative of 

the conversion curve with respect to time, 𝑑𝛼/𝑑𝑡, was calculated, and a small degree of 

smoothing was applied to this curve in order to improve results. The natural logarithm 

of the derivative, ln 𝑑𝛼/𝑑𝑡, was plotted against the reciprocal of the temperature, 1/𝑇, 

for each of the four heating rates, as can be seen in Figure 6-15. Linear regression was 

used to fit lines to these data at isoconversional fractions across the four heating rates. 

This was done for 17 isoconversional fractions for 0.1 to 0.9 and can be seen as the black 

lines plotted in Figure 6-15. 
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The slope of each of the isoconversional fraction lines is equal to −𝐸/𝑅, allowing the 

activation to be easily measured for each of the 17 fitted isoconversional fractions. This 

was done for each of the four particle size ranges, and is plotted in Figure 6-16 (a). 

 

Figure 6-15: Plot of the Friedman method of ln 𝑑𝛼/𝑑𝑡 against 1/𝑇 for isoconversional 
fractions (black lines), used to measure the activation energy, 𝐸, for particles of the 

size ranges (a) 150-250μm, (b) 250-355μm, (c) 355-425μm, and (d) 425-600μm. 

 

It can be seen that the measured activation energy is very similar for the particle size 

ranges of 150-250μm, 250-355μm, and 355-425μm, but the measured activation energy 

for particles of the size range 425-600μm is slightly lower. Four heating rates were used 

to measure these values, so it is thought repeatability is not the issue. Previous evidence 

has suggest that reaction variability is not an issue for different particle size ranges of 

this formulation. However, the difference in measured activation energy is quite small 

(≈5%), and it is thought this difference may be due to slight differences in composition 

with size. 

It can be seen that the activation energy increases with conversion for all size ranges. 

This implies that reaction seen to occur may not be a simple single-step reaction, but 
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instead multiple simultaneous reactions. Investigating this reaction beyond a single step 

reaction is beyond the scope of this investigation. 

The weighted average activation energy as a function of the conversion is shown in 

Figure 6-16 (b). This was calculated by taking the weighted average of the activation 

energy at each conversion. This was weighted by the percentage contribution of the 

particle size ranges to the overall powder mass, as detailed in Table 6-1. 

 

Figure 6-16: Friedman method results showing the activation energy, 𝐸, as a function 
of conversion, 𝛼, for (a) the four different particle size ranges tested, and (b) for the 

weighted average of these four size ranges. 

 

The Ozawa-Flynn-Wall method was also used to determine the activation energy of 

these powder samples. This methods uses equation (2-69), where the natural logarithm 

of the heating rate, 𝛽, is plotted against the reciprocal of the temperature, 1/𝑇, for each 

of the four heating rates, as can be seen in  Figure 6-17. Linear regression was used to 

fit lines to these data at isoconversional fractions across the four heating rates. This was 

done for 17 isoconversional fractions for 0.1 to 0.9, and this can be seen as the black 

lines plotted in Figure 6-17. 

The slope of each of the isoconversional fraction lines is equal to −1.052 𝐸/𝑅, allowing 

the activation to be easily measured for each of the 17 fitted isoconversional fractions. 

This was done for each of the four particle size ranges and the empirical correction factor 

suggested by Flynn in equation (2-70) was applied to the results. The final values are 

plotted in Figure 6-18. Again it can be seen that the measured activation energy is very 

similar for the particle size ranges of 150-250μm, 250-355μm, and 355-425μm, but the 

measured activation energy for particles of the size range 425-600μm is slightly lower. 
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It can again be seen that the activation energy increases with conversion for all size 

ranges as before. The weighted average activation energy was also calculated for this 

method and this can be seen in Figure 6-18 (b).  

 

Figure 6-17: Plot of the Ozawa-Flynn-Wall method of ln 𝑑𝛼/𝑑𝑡 against 1/𝑇 for 
isoconversional fractions, used to measure the activation energy, 𝐸, for particles of the 

size ranges (a) 150-250μm, (b) 250-355μm, (c) 355-425μm, and (d) 425-600μm. 

 

The activation energy as measured using these two methods was compared, and this 

can be seen in Figure 6-19 for the four particle size ranges. The results of both methods 

follow similar profiles for all four size ranges, but in each case the Friedman method 

measured a slightly larger activation energy. This is also consistent with the results of 

Venkatesh et al. (2013) who showed a similar discrepancy for these two methods when 

measuring the kinetics of decompositions of Nitroimidazoles, and suggested that for 

systems of competitive or independent reactions these two methods lead to different 

values of 𝐸. This may be what is happening in this system, but studying the possibility of 

a multi-step reaction is beyond the scope of this investigation. 
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Figure 6-18: Ozawa-Flynn-Wall method results showing the activation energy, 𝐸, as a 
function of conversion, 𝛼, for (a) the four different particle size ranges tested, and (b) 

for the weighted average of these four size ranges. 

 

 

Figure 6-19: Comparison of the activation energy, 𝐸, as a function of conversion, 𝛼, as 
measured using the Friedman method and the Ozawa-Flynn-Wall method for particles 
of the size ranges (a) 150-250μm, (b) 250-355μm, (c) 355-425μm, and (d) 425-600μm. 
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A value for the activation energy value for use in the Parameter Estimation fittings needs 

to be chosen. The model used in the Parameter Estimation Approach consists of a zero-

order self-heating reaction, and as such the reaction is independent of conversion. A 

constant value for the activation energy is required. The Friedman method was chosen 

as the preferred method for two reasons. Firstly it does not require the approximations 

and correction factors applied during the Ozawa-Flynn-Wall method as it is directly 

derived from the equation for a single-step reaction. Secondly this method predicted 

slightly higher values of activation energy which were closer to the value measured using 

the steady-state method (125.3x103 J mol-1), which up until now is the preferred 

approach. The activation energy at a conversion of 0.5 was chosen for the value to be 

used in the fittings. This value was 110x103 J mol-1. 

 

6.11. Parameter Estimation Approach for Micronized Formulation 1 

The Parameter Estimation Approach was performed as outlined previously. The full 

report of the Parameter Estimation results as produced by gPROMS ModelBuilder for 

one of the performed fittings can be seen in Appendix G. This report is quite 

comprehensive and contains a lot of information that it was deemed unnecessary to 

show here. The more useful of this information has been included in the tables of the 

subsequent sections.  

 

6.11.1. Choice of Experiments for Parameter Estimation 

Basket experiments were run at 13 different oven controlled ambient temperatures 

from 216°C (489K) to 228°C (501K). For each of these tests an array of three 

thermocouples was embedded within the powder. These were placed at the basket half-

height and at radial distances of 0mm, 6mm, and 12mm from the basket centre. The 

placement of the thermocouples within the powder is subject to error as the 

thermocouples were only inserted once the basket was filled with powder and there is 

no way to verify the position of the thermocouples in the basket. It is assumed that 

thermocouple placement error is the biggest contributor to the error in these 

experiments. Experiments with thermocouples out of place may have the potential to 
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greatly influence the fitted parameters. It is because of this that the objective function 

in equation (6-9) of the maximum likelihood method was used to find which 

experiments had the greatest thermocouple placement error. 

An initial parameter estimation was performed by fitting to all 13 experiments 

simultaneously. In doing so, it should be possible to determine which experiments have 

a high degree of error due to poor thermocouple placement. The three experiments 

with the highest error can then be omitted from subsequent fittings, where different 

groupings of 10, 8, 6, and 4 experiments will be used. 

The objective function is comprised of a constant term, a variance term, and a residual 

term as shown in equation (6-9). All 13 experiments were fitted to simultaneously. The 

report generated by the software, shown in Appendix G, gives a breakdown of the 

contributions of the different elements of the objective function. If it is assumed that 

thermocouples in most of the experiments are well placed, it should be visible from the 

residual term of the objective function as to which experiments have poor placement. 

The value of the residual term for each experiment can be seen in Table 6-3, with colour 

indicating the relative severity of the error, ranging from low errors in green, to high 

errors in red. 

The three experiments with the highest residual terms were those at ambient 

temperatures of 218°C (491K), 222°C (495K), and 226°C (499K). These experiments were 

omitted from further fittings, such that subsequent fittings were performed for different 

grouping of the remaining 10 experiments. Fittings were done with different groupings 

of these experiments to confirm that similar parameters were estimated for each 

selection, and to explore how many experiments are required to generate adequate 

results when using this approach to characterise new detergent formulations. 
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Table 6-3: Contribution of the residual term to the maximum likelihood function for 

each of the 13 experiments when fitted simultaneously. 

Experiment Ambient 
Temperature 

Maximum Likelihood 
Residual Term 

216°C 1567.4 

217°C 718.6 

218°C 9030.2 

219°C 5363.7 

220°C 1137.3 

221°C 1582.9 

222°C 8744.1 

223°C 883.3 

224°C 1967.5 

225°C 4539.3 

226°C 65824.2 

227°C 3445.8 

228°C 4073.3 

 

Five groupings of these experiments were used in the fittings, and are detailed in Table 

6-4. The first grouping is the 10 experiments which exclude those deemed to have poor 

thermocouple placement error through the residual term analysis. The next groupings 

are two groupings of 8 experiments and a grouping of 6 experiments. These groupings 

maintained the overall temperature span of the experiments. The final grouping is of 4 

experiments, and these were chosen as those not used by the grouping of 6 

experiments, such that these two cases are entirely independent of one another. For 

each grouping, the experiments not used for fitting are used for validation. 
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Table 6-4: Different selections of experiments for simultaneous fittings. 

 10 exps 8 exps (1) 8 exps (2) 6 exps 4 exps 

216°C ✔ ✔ ✔ ✔  

217°C ✔ ✔ ✔  ✔ 

218°C      

219°C ✔ ✔  ✔  

220°C ✔  ✔  ✔ 

221°C ✔ ✔ ✔ ✔  

222°C      

223°C ✔ ✔ ✔ ✔  

224°C ✔  ✔  ✔ 

225°C ✔ ✔  ✔  

226°C      

227°C ✔ ✔ ✔  ✔ 

228°C ✔ ✔ ✔ ✔  

 

6.11.2. No Fixed Parameters in the Parameter Estimation 

Fittings in this section were performed with none of the four parameters, 𝐸, ln 𝑄𝐴, 𝑘, 

and 𝐶𝑝, fixed. The best fit parameters from these fittings are shown in Table 6-5. Firstly 

it can be seen that 𝑘 is stuck on the lower fitting bound for all fittings. This is discussed 

in Section 6.11.2.2. However, the fitted parameters values are similar across the 

different groupings of experiments. The largest difference can be seen between the 

parameters of the 6 experiments and 4 experiments groupings. These two cases are 

entirely independent of one another in that they share no experiments in their fittings. 

These estimated parameters were used in the following equation for 𝛿𝑐𝑟 to predict 

critical ambient temperatures for equi-cylindrical baskets of different sizes: 

 𝛿 =
𝐸

𝑅𝑇∞
2

𝜌𝑄𝐴𝐿2

𝑘
𝑒

−
𝐸

𝑅𝑇∞ , (6-17) 

These predicted critical ambient temperatures are shown in Figure 6-20, and despite the 

difference in the best fit parameters, the predicted critical ambient temperatures for 

each set of parameters are very similar, particularly between basket radii of 15mm and 
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50mm. In this range the predicted critical ambient temperatures are all within 1.5°C of 

one another. It can also be seen that the critical ambient temperatures as predicted 

using the parameter estimation approach results are very similar to those measured 

experimentally. 

 

Table 6-5: Results of the fittings where all parameter were left free. 95% confidence 

intervals of the fitted parameters are shown in brackets. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 138.8 (±1.0) x103 34.69 (±0.07) 0.04 (±0.007)** 703.8 (±119) 

8 exps (1) 139.1 (±2.0) x103 34.75 (±0.12) 0.04 (±0.015)** 698.1 (±261) 

8 exps (2) 136.2 (±0.3) x103 34.09 (±0.05) 0.04 (±0.002)** 721.7 (±35) 

6 exps 141.7 (±12.2) x103 35.36 (±0.66) 0.04 (±0.094)** 693.0 (±1592) 

4 exps 133.8 (±0.5) x103 33.51 (±0.07) 0.04 (±0.003)** 722.4 (±55) 

** Stuck on fitting bound 

 

 

Figure 6-20: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using equation (6-17) and the estimated parameters from 

Table 6-5 for the groupings of 10, 8 (1), 6, and 4 experiments. 

 

It can be seen that the parameters 95% confidence intervals for some groupings are 

larger, in particular the grouping of 6 experiments. It would be expected that an increase 
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in the number of experiments used in the fitting would reduce the error associated with 

the fitting. However, it is evident here that an increase in the number of fitted 

experiments does not ensure a decrease in the value of the 95% confidence intervals. 

The variability in these confidence intervals may be due to the difficulty in fitting four 

parameters simultaneously and the correlation of these parameters to one another. 

 

6.11.2.1. Variance in Thermocouple Measurements 

The variance, 𝜔, of the measurements of the three thermocouples was fitted as part of 

the fitting procedure because it was difficult to define this value prior to fitting, as 

discussed in Section 6.8. The fitted variance values are shown in Table 6-6, and it can be 

seen that the variance of the thermocouple measurements across the different fittings 

are similar, with an acceptable variance of approximately 1°C. Thermocouple 3 

(thermocouple at a radial distance of 12mm) has a consistently smaller variance value 

than the other two thermocouples. Assuming that the error in thermocouple placement 

and readings are consistent across all three thermocouples, this suggests that errors in 

placement at the basket centre lead to greater errors in measured temperatures. 

 

Table 6-6: Variance (𝜔) values as fit by during the Parameter Estimation for each 

thermocouple and for each grouping of experiments. 

 Thermocouple 1 (0mm) 

𝝎 (°C) 

Thermocouple 2 (6mm) 

𝝎 (°C) 

Thermocouple 3 (12mm) 

𝝎 (°C) 

10 exps 1.117 (±0.025) 1.212 (±0.024) 0.619 (±0.021) 

8 exps (1) 0.934 (±0.010) 1.076 (±0.011) 0.572 (±0.006) 

8 exps (2) 1.082 (±0.057) 1.188 (±0.051) 0.592 (±0.049) 

6 exps 1.144 (±0.357) 1.318 (±0.328) 0.594 (±0.314) 

4 exps 0.968 (±0.014) 0.987 (±0.014) 0.607 (±0.010) 

 

The consistent variance across the fittings suggests that the variability in these 

confidence intervals may be due to the difficulty in fitting four parameters 

simultaneously, and the correlation of these parameters to one another. The predicted 

critical ambient temperatures for the grouping of 10 experiments along with this error 
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is plotted in Figure 6-21. The band of predicted critical ambient temperatures is quite 

large using these results. Fixing parameters in the fitting may help to reduce this error. 

 

Figure 6-21: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using equation (6-17) and the kinetics and standard 

deviation for the 10 experiments grouping in Table 6-5. 

 

6.11.2.2. Correlation of the Fitted Parameters 

It can be seen in Table 6-5 that the value of thermal conductivity is stuck on the lower 

fitting bound for every grouping of experiments used. Adjusting the fitting bounds was 

found to have little effect on this, and one parameter of either the thermal conductivity 

or the specific heat capacity always tends towards one of the fitting bounds. A 

correlation matrix is generated as part of the report generated by the software. The 

correlation matrix for the grouping of 10 experiments is shown in Table 6-7. From this it 

can be seen why there is difficulty in fitting 𝑘 and 𝐶𝑝. The table shows that the thermal 

conductivity, 𝑘, and the specific heat capacity, 𝐶𝑝, are very highly correlated with a 

correlation coefficient of 1. This is not surprising because this relationship is evident 

from the governing energy conservation equation (6-1) of this model. For the initial 

portion of the fitted temperature profile, the heat generation term has negligible effect, 

reducing this equation to two terms, the local rate of enthalpy change and the 

conductive heat transfer in the solid, from which the correlation between 𝑘 and 𝐶𝑝 can 

be seen. It is because of this correlation that the value of 𝐶𝑝 was determined prior to 
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fitting using Modulated DSC. Interestingly, the activation energy, 𝐸, and the logarithmic 

term, ln𝑄𝐴, have a high correlation coefficient of 0.912, but the same difficulty in fitting 

these parameters is not seen. 

 

Table 6-7: Correlation matrix of fitted parameters. A value close to 1 indicates a very 

high correlation between the two parameters. 

 𝑬 𝐥𝐧𝑸𝑨 𝒌 𝑪𝒑 

𝑬 1 - - - 

𝐥𝐧𝑸𝑨 0.912 1 - - 

𝒌 -0.516 -0.12 1 - 

𝑪𝒑 -0.526 -0.132 1 1 

 

6.11.2.3. Validation of Best Fit Parameters 

For each of the different groupings, the experiments that were not used as part of the 

parameter estimation fitting, shown in Table 6-4, were used for validation of the 

estimated parameters, i.e. for the grouping of 8 (1) experiments, the experiments at 

ambient temperatures of 220°C (493K) and 224°C (497K) were used. The fit of the model 

with the parameters from the grouping of 8 (1) experiments to the experimentally 

measured temperature profiles can be seen in Figure 6-22 and Figure 6-23. Figure 6-22 

shows the fit of the model to the individual temperature profiles for each of the three 

thermocouples for the experiment run at an oven controlled ambient temperature of 

220°C (493K). The model is seen to fit well and is within the variance of the 

thermocouple measurements for the majority of the temperature profile. Figure 6-23 

shows to fit to the three thermocouples in one plot for experiments run at 220°C (493K) 

and 224°C (497K), again showing a reasonable fit. 
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Figure 6-22: Validation of the numerical model using the grouping of 8 (1) experiments 
best fit parameters against individual experimental temperature profiles at an ambient 
temperature of 220°C (493K), at radial distances of (a) 0mm, (b) 6mm, and (c) 12mm. 

 

 

Figure 6-23: Validation of the numerical model using the grouping of 8 (2) experiments 
best fit parameters against experimentally measured temperature profiles for ambient 

temperatures of (a) 220°C (493K) and (b) 224°C (497K). 

 

The Root Mean Square Error (RMSE) and R2 values were calculated for the validation of 

each of the groupings of experiments. In each case, the RMSE and R2 values are 

calculated from the entire temperature profile, for all the experiments used for 

validation together. This was done for each of the three thermocouples used in the 

experiments. It can be seen that the grouping with the highest error is the grouping of 

4 experiments, but all RMSE values are within 1.2°C, which is small relative to the high 
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temperatures at which these experiments were run, 216°C (489K) to 228°C (501K). The 

high R2 values, all in excess of 0.996, also indicate a good model fit. 

 

Table 6-8: Root Mean Square Root (RMSE) and R2 values for the fit of the model to the 

data from the three thermocouples, for each grouping of experiments. 

 RMSE (R2) of 𝑻𝟎𝒎𝒎 RMSE (R2) of 𝑻𝟔𝒎𝒎 RMSE (R2) of 𝑻𝟏𝟐𝒎𝒎 

8 exps (1) 1.10°C (0.997) 1.06°C (0.997) 0.76°C (0.998) 

8 exps (2) 0.83°C (0.998) 0.60°C (0.999) 0.49°C (0.999) 

6 exps 0.74°C (0.999) 0.69°C (0.999) 0.49°C (0.999) 

4 exps 1.13°C (0.997) 1.19°C (0.996) 0.74°C (0.998) 

 

6.11.3. Specific Heat Capacity, 𝑪𝒑, Fixed in the Parameter Estimation 

The value of the specific heat capacity, 𝐶𝑝, was fixed in the parameter estimation. This 

was fixed to the value of 1367 J kg-1 K-1, as determined using MSDC in Section 6.9.1. In 

doing so, the best fit parameters shown in Table 6-9 were determined.  

Firstly it can be seen that by fixing 𝐶𝑝 the value of the thermal conductivity, 𝑘, is no 

longer stuck on the fitting bounds. Because 𝐶𝑝 is fixed, and because of the correlation 

between 𝑘 and 𝐶𝑝, the 95% confidence interval of 𝑘 has reduced by up to three orders 

of magnitude in some cases. Overall, the best fit activation energy, 𝐸, for all groupings 

of experiments has consistently reduced by values between 6.0x103 and 6.6x103 J mol-

1. This is due to the correlation between 𝐸 and 𝑘 (-0.516), and between 𝐸 and 𝐶𝑝 (-

0.526). Because 𝐶𝑝 is now fixed to a higher value, which in turn has increased the value 

of 𝑘, the value of 𝐸 has reduced accordingly. Similarly, the correlation of 𝐸 and ln𝑄𝐴 

(0.912) means that the value of ln 𝑄𝐴 has also reduced.  

The confidence intervals associated with 𝐸 and ln 𝑄𝐴 have also reduced, and are 

consistently low across all groupings of experiments, although no correlation between 

grouping size and error can be seen. This may be because the choice of the experiments 

in each grouping has a greater impact on the error than the number of experiments. 

An overlap of the 95% confidence intervals of 𝐸 and ln 𝑄𝐴 would also be expected 

between the different groupings of experiments, but was not observed. This is probably 
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due to the strong correlations between 𝐸 and ln 𝑄𝐴, and how this leads to one value 

compensating for the other. 

 

Table 6-9: Results of the fittings where the specific heat capacity was fixed. 95% 

confidence intervals of the fitted parameters are shown in brackets. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 132.2 (±0.2) x103 33.77 (±0.05) 0.0791 (±5x10-5) 1367* 

8 exps (1) 132.9 (±0.2) x103 33.93 (±0.05) 0.0799 (±5x10-5) 1367* 

8 exps (2) 130.2 (±0.2) x103 33.29 (±0.05) 0.0768 (±5x10-5) 1367* 

6 exps 135.3 (±0.3) x103 34.50 (±0.07) 0.0806 (±6x10-5) 1367* 

4 exps 127.2 (±0.3) x103 32.56 (±0.07) 0.0766 (±7x10-5) 1367* 

* Fixed in fitting 

 

The parameter estimates are similar for all groupings of experiments, and any difference 

in one of the parameters is compensated for by its correlation to other parameters. 

Figure 6-24 shows how to parameters of the grouping of 10 experiments, 8 (1) 

experiments, 6 experiments, and 4 experiments compare. In this plot, the critical 

ambient temperature for equi-cylindrical baskets of different radii is calculated using the 

parameters from Table 6-9 and equation (6-17). Less than 1°C difference can be seen 

between the calculated critical ambient temperatures for each set of parameters. These 

predicted values for all groupings of experiments are also within 0.5°C of the three 

experimentally measured critical ambient temperatures. 
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Figure 6-24: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using equation (6-17) and the estimated parameters from 

Table 6-9 for the groupings of 10, 8 (1), 6, and 4 experiments. 

 

6.11.3.1. Variance in Thermocouple Measurements 

The fitted variances for the measurements of the three thermocouples are shown in 

Table 6-10. These variance values have increased slightly relative to those fitted in the 

previous case where no parameters were fixed in the parameter estimation, shown in 

Table 6-6. This may be because the fitting is more limited by fixing 𝐶𝑝, even though this 

improves the results. Nonetheless, the variance values are all within acceptable limits. 

 

Table 6-10: Variance (𝜔) values as fitted by during the Parameter Estimation for each 

thermocouple and for each grouping of experiments. 

 Thermocouple 1 (0mm) 

𝝎 (°C) 

Thermocouple 2 (6mm) 

𝝎 (°C) 

Thermocouple 3 (12mm) 

𝝎 (°C) 

10 exps 1.259 (±0.011) 1.338°C (±0.010) 0.769°C (±0.007) 

8 exps (1) 1.076 (±0.010) 1.193 (±0.012) 0.729 (±0.008) 

8 exps (2) 1.229 (±0.012) 1.317 (±0.012) 0.741 (±0.007) 

6 exps 1.290 (±0.014) 1.446 (±0.016) 0.744 (±0.009) 

4 exps 1.104 (±0.015) 1.111 (±0.015) 0.756 (±0.011) 
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Figure 6-25 shows the predicted critical ambient temperatures as calculated using the 

estimated parameters, and the 95% confidence bounds of the best fit value of the 

activation energy, 𝐸. With these confidence intervals applied, the calculated critical 

ambient temperatures for any basket radius has a variation of within ±1°C. 

 

Figure 6-25: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using equation (6-17) and the kinetics and standard 

deviation for the 10 experiments grouping in Table 6-9. 

 

6.11.3.2. Validation of Best Fit Model Parameters 

For each of the different groupings, the experiments that were not used as part of the 

parameter estimation fitting were used for validation of the estimated parameters. The 

fit of the model with the parameters from the grouping of 8 (1) experiments to the 

experimentally measured temperature profiles can be seen in Figure 6-26. This figure 

shows the fit of the model to the individual temperature profiles for each of the three 

thermocouples for the experiment run at an ambient temperature of 220°C (493K). The 

model is seen to fit well and is within the variance of the thermocouple measurements 

for the majority of the temperature profile. Figure 6-27 shows the fit of the model with 

the parameters from the grouping of 6 experiments to four experiments used as 

validation for this case:  217°C (490K), 220°C (493K), 224°C (497K), and 227°C (500K). 

Again the model is seen to agree very well with the experimentally measured data, even 
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though fewer experiments were used in the fitting of the parameters for this grouping 

of experiments. 

 

Figure 6-26: Validation of the numerical model using the grouping of 8 (1) experiments 
best fit parameters against individual experimental temperature profiles at an ambient 
temperature of 220°C (493K), at radial distances of (a) 0mm, (b) 6mm, and (c) 12mm. 

 

The Root Mean Square Error (RMSE) and R2 values were calculated for the validation of 

each of the groupings of experiments, as before. It can be seen that the grouping with 

the highest error is the grouping of 8 (1) experiments, but all RMSE values are within 

1.2°C. The high R2 values, all in excess of 0.997, also indicate a good model fit. 

 

Table 6-11: Root Mean Square Root (RMSE) and R2 values for the fit of the model to 

the data from the three thermocouples, for each grouping of experiments. 

 RMSE (R2) of 𝑻𝟎𝒎𝒎 RMSE (R2) of 𝑻𝟔𝒎𝒎 RMSE (R2) of 𝑻𝟏𝟐𝒎𝒎 

8 exps (1) 1.15°C (0.996) 1.09°C (0.996) 0.93°C (0.998) 

8 exps (2) 0.74°C (0.998) 0.68°C (0.998) 0.57°C (0.998) 

6 exps 0.68°C (0.998) 0.64°C (0.998) 0.54°C (0.998) 

4 exps 0.82°C (0.998) 0.78°C (0.998) 0.70°C (0.998) 
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The groupings of 8 (2), 6, and 4 experiments all have reduced RMSE in comparison to 

those measured in the previous case, where no parameters were fixed in the parameter 

estimation. The RMSE of these groupings reduced on average by approximately 0.08°C, 

0.06°C, and 0.25°C respectively. The RMSE of the grouping of 8 (1) experiments increase 

on average by approximately 0.08°C. 

 

Figure 6-27: Validation of the numerical model using the grouping of 6 experiments 
best fit parameters against experimentally measured temperature profiles for ambient 

temperatures of (a) 217°C, (b) 220°C, (c) 224°C, and (d) 227°C. 

 

6.11.4. Specific Heat Capacity, 𝑪𝒑, and Activation Energy, 𝑬, Fixed in the Parameter 

Estimation 

It can be seen from the correlation matrix in Table 6-7 that there is significant correlation 

between 𝐸 and ln 𝑄𝐴, with a correlation coefficient of 0.912. When attempting to fit 

this model to these experiments individually, it was found that either the activation 

energy or the logarithmic term would always tend towards one of the fitting bounds. It 

is thought that this is because of this strong correlation. Fitting to these experiments 
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simultaneously, as is done in this investigation, is found to alleviate this issue as can be 

seen in the previous cases. This may be because fitting to a range of experiment, which 

are run at different ambient temperatures and exhibit different degrees of self-heating, 

allow the reaction kinetics to be readily fit. This suggest that fixing the activation energy 

is not required to improve the Parameter Estimation Approach, nonetheless fixing both 

the specific heat capacity and activation energy in the fitting was discussed.  

Fixing both the value of the specific heat capacity, 𝐶𝑝, and the activation energy, 𝐸, in 

the fittings produced the best fit parameters shown in Table 6-12. The activation energy 

was fixed to the weighted average value determined using the Friedman DSC method of 

110x103 J mol-1. 𝐶𝑝 was again fixed to a value of 1367 J kg-1 K-1 to the value of the thermal 

conductivity, 𝑘, from being stuck on the lower fitting bound. By fixing the values of 𝐶𝑝 

and 𝐸, the 95% confidence intervals of the thermal conductivity, 𝑘, and the logarithmic 

term, ln𝑄𝐴, have reduced substantially. Some of these intervals have reduced by up to 

three order of magnitude. 

The best fit values of 𝑘 and ln 𝑄𝐴 is consistent across all groupings of the experiments, 

with average values of 0.0759 W m-1 K-1 and 28.46 respectively. The values of 𝑘 are 

similar to those fitted in the previous case where only 𝐶𝑝 was fixed. The fitted value of 

ln 𝑄𝐴 is much lower than that in the previous case, but this is because the fixed value of 

𝐸, to which this is strongly correlated, is considerably lower than before. 

 

Table 6-12: Results of the fittings where the specific heat capacity was fixed. 95% 

confidence intervals of the fitted parameters are shown in brackets. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 110.x103* 28.45 (±6x10-4) 0.0764 (±4x10-5) 1367* 

8 exps (1) 110.x103* 28.46 (±6x10-4) 0.0742 (±4x10-5) 1367* 

8 exps (2) 110.x103* 28.46 (±6x10-4) 0.0770 (±4x10-5) 1367* 

6 exps 110.x103* 28.45 (±8x10-4) 0.0776 (±5x10-5) 1367* 

4 exps 110.x103* 28.46 (±8x10-4) 0.0745 (±5x10-5) 1367* 

* Fixed in fitting 
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Figure 6-28 shows how to parameters of the grouping of 10 experiments, 8 (1) 

experiments, 6 experiments, and 4 experiments compare. In this plot, the critical 

ambient temperature for equi-cylindrical baskets of different radii is calculated using the 

parameters from Table 6-12 and equation (6-17). Less than 1°C difference can be seen 

between the calculated critical ambient temperatures for each set of parameters, and 

this is due to the little freedom allowed to the parameter estimation by fixing two 

parameters. 

These predicted critical ambient temperatures are not in agreement with the three 

experimentally measured critical ambient temperature. The predicted and experimental 

values agree at a radius of 35mm, but diverge at radii larger and smaller than this. This 

strongly suggests that the value of activation energy to which it was fixed in this case 

was incorrect. The fixed value (110.1x103 J mol-1) is about 20x103 J mol-1 lower than the 

best fit values of 𝐸 in the previous case, where only 𝐶𝑝 was fixed in the fittings. 

 

Figure 6-28: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using equation (6-17) and the estimated parameters from 

Table 6-12 for the groupings of 10, 8 (1), 6, and 4 experiments. 

 

The Root Mean Square Error (RMSE) and R2 values were calculated for the validation of 

each of the groupings of experiments as before. It can be seen that the grouping with 

the highest error is the grouping of 4 experiments, as would be expected because the 

fewest experiments were used for this fitting. All RMSE values are within 1.5°C, which is 



263 
 
higher than the previous two cases. This is because fixing two values in the fitting, 

especially with such high correlations to the remaining, non-fixed values, greatly reduces 

the freedom of the parameter estimation. The R2 values, all in excess of 0.994, are lower 

than the previous parameter estimation cases. 

 

Table 6-13: Root Mean Square Root (RMSE) and R2 values for the fit of the model to 

the data from the three thermocouples, for each grouping of experiments. 

 RMSE (R2) of 𝑻𝟎𝒎𝒎 RMSE (R2) of 𝑻𝟔𝒎𝒎 RMSE (R2) of 𝑻𝟏𝟐𝒎𝒎 

8 exps (1) 1.40°C (0.995) 1.39°C (0.995) 1.10°C (0.996) 

8 exps (2) 0.87°C (0.998) 0.66°C (0.999) 0.65°C (0.998) 

6 exps 0.89°C (0.998) 0.86°C (0.998) 0.74°C (0.998) 

4 exps 1.40°C (0.995) 1.45°C (0.994) 1.09°C (0.995) 

 

6.11.5. Comparison of the Different Parameter Estimation Approaches 

The best fit parameters from the three different parameter estimation cases were 

compared, these being: 1) no fixed parameters, 2) fixed specific heat capacity, 𝐶𝑝, and 

3) fixed 𝐶𝑝 and activation energy, 𝐸. These were compared by looking at the critical 

ambient temperatures predicted by the best fit parameters for the grouping of 10 

experiments from each approach. The grouping of 10 experiments was chosen because 

all groupings predicted similar results. This is shown in Figure 6-29. 

It can be seen that the results of the approach where only 𝐶𝑝 is fixed provides the best 

match to the experimental data. Fixing both 𝐸 and 𝐶𝑝 leads to the poorest match. This 

suggests that parameter estimation approach, where  𝐶𝑝 is fixed, is capable of accurately 

measuring the powder reaction kinetics. It also suggest that 𝐸 as measured using the 

isoconversional DSC methods is unreliable, or at least inapplicable in this sort of 

approach. 

Fixing 𝐶𝑝 improves the agreement with experimentally measured critical ambient 

temperature only slightly, in comparison to the approach where 𝐶𝑝 is not fixed. This 

shows that the values of the reaction kinetics, 𝐸 and ln 𝑄𝐴, affect the predicted critical 

ambient temperatures more than the value of 𝑘 and 𝐶𝑝. However, measuring 𝐶𝑝 using 
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MDSC and fixing it in the fitting is clearly a better approach because of how it allows a 

value of 𝑘 to be determined. If 𝐶𝑝 is not fixed, then because of the strong correlation 

between 𝑘 and 𝐶𝑝, seen from the correlation coefficient of 1 in Table 6-7, the value of 𝑘 

becomes stuck on the lower fitting bound. Comparing Table 6-9 to Table 6-5 also shows 

that fixing 𝐶𝑝 helps to greatly reduce the fitting error of the model parameters. 

 

Figure 6-29: Comparison of the three Parameter Estimation Approach cases: no fixed 
parameters, fixed 𝐶𝑝, and fixed 𝐸 and 𝐶𝑝. 

 

6.12. Results Comparison with other Characterisation Methods 

The Parameter Estimation Approach was developed as an alternative to the existing 

basket methods, namely the steady-state basket method and the cross-point 

temperature (CPT) method. These methods were previously used to characterise 

Micronized Formulation 1 with the measured kinetics summarised in Table 6-14. The 

parameter estimation approach results are taken from the groupings of 10 experiments.  

The steady-state method results are dependent on knowing a value for the thermal 

conductivity, which was taken as 0.08 W m-1 K-1. This method measures the activation 

energy, 𝐸, and the logarithmic term, ln 𝑄𝐴, which are also measured by the parameter 

estimation approach.  The results from the Cross-Point Temperature Method are not all 

directly comparable, in that this method measures 𝐸 and a logarithmic term ln 𝑄𝐴/𝐶𝑝, 

which encapsulates the heat of reaction, pre-exponential factor, and specific heat 
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capacity. Taking the value for 𝐶𝑝 of 1367 J kg-1 K-1 measured using MDSC, the value of 

ln 𝑄𝐴 from the CPT Method is 37.51, which is larger than the parameter estimation 

approach values, and considerably larger than the steady-state method value, which has 

the most comparable value of 𝐸. 

The kinetics as measured using the parameter estimation approach where both 𝐸 and 

𝐶𝑝 were fixed are seen to be well below those of the other two parameter estimation 

approaches, and the steady-state method kinetics. It was already shown in Section 

6.11.5 that the kinetics measured by fixing both 𝐸 and 𝐶𝑝 are believed to be wrong. 

Instead, the parameter estimation approach where only 𝐶𝑝 was fixed is believed to be 

the best approach. The kinetics of this approach are the most similar to those measured 

using the steady-state method. 

 

Table 6-14: Results from the Parameter Estimation Approach compared with the 

results from the existing basket methods. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒍𝒏
𝑸𝑨

𝑪𝒑
 

𝒌 

(W m-1 K-1) 

𝑪𝒑 

(J kg-1 K-1) 

Parameter 

Estimation 

Approach 

 

All Free 138.8 (±1.0) x103 
34.69 

(±0.07) 
- 

0.04 

(±0.007)** 

703.8 

(±119) 

Fixed 𝑪𝒑 132.2 (±0.3) x103 
33.77 

(±0.07) 
- 

0.0791 

(±6x10-5) 
1367* 

Fixed 𝑬 

and 𝑪𝒑 
110x103* 

28.45 

(±6x10-4) 
- 

0.0764 

(±4x10-5) 
1367* 

Steady-State Method 125.3 (±1.0) x103 
31.90 

(±0.25) 
- - - 

CPT Method 124.3 (±8.8) x103 - 
30.29 

(±2.11) 
- - 

** Stuck on fitting bound * Fixed in fitting 

 

The 95% confidence intervals of the parameter estimation approach kinetics, in 

particular the case where 𝐶𝑝 is fixed, are smaller than those of the other methods. The 

CPT method results in particular have very large confidence intervals. The errors 

associated with the kinetics from the steady-state method are due to the lack of data 
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points used in the fitting (3 data points), while the errors associated with the CPT 

method are due to the sensitivity of the method to thermocouple errors. 

These results are easier to compare graphically and the calculated critical ambient 

temperatures using the parameters from the different methods are shown in Figure 

6-30. The parameter estimation approach results shown here are for the grouping of 10 

experiments where only 𝐶𝑝 is fixed. It can be seen that the results of the parameter 

estimation approach and the steady-state method agree very well, with less than 0.5°C 

difference in predicted critical ambient temperatures. This helps to validate the 

parameter estimation approach as a means of predicting critical ambient temperatures 

and thermal runaway. The parameters from the CPT method predict very different 

critical ambient temperatures. For a basket of radius 30mm, the CPT Method under 

predicts the critical ambient temperature by more than 4°C, with this under prediction 

increasing with increasing basket radius. 

 

Figure 6-30: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using equation (6-17) and kinetics from the steady-state 

method, cross-point temperature method, and the new parameter estimation 
approach. 

 

The agreement of the parameter estimation approach and the steady-state method 

helps to validate this approach as a faster, more accurate means of characterising self-

heating powders. This approach requires less than 10 experiments, each taking about 

2.5 hours, while the steady-state method requires a number of experiments, typically 4 
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or 5, each taking between 6 and 8 hours, to determine one data point. The parameter 

estimation approach uses the same basket setup and measured temperature profiles as 

the CPT method, yet the results show that this approach is much less susceptible to the 

errors in thermocouple placements that greatly affect the CPT method results. This 

improvement may be because this approach fits to large portions of the measured 

temperature profiles, providing thousands of data points instead of the tens of points 

used in the CPT method.  

 

6.13. Conclusions in using the Parameter Estimation Approach to 

Characterise the Detergent Powder Micronized Formulation 1 

This investigation aimed to develop a novel methodology, the parameter estimation 

approach, for characterising the self-heating behaviour of detergent powders. This new 

approach successfully uses a 2D-axisymmetirc heat transfer model to estimate the best 

fit powder thermal conductivity, 𝑘, specific heat capacity, 𝐶𝑝, and self-heating reaction 

kinetics, 𝐸 and ln𝑄𝐴, from experimentally measured temperature profiles within an 

oven heat basket of detergent powder. 

13 experiments were performed, and parameter estimation was performed for 

groupings of different denominations (10, 8, 6, and 4) of these experiments. Parameter 

Estimation with for all four parameters, 𝑘, 𝐶𝑝, 𝐸, and ln 𝑄𝐴, free in the fitting produced 

similar best fit values for all groupings of experiments, but 𝑘 was consistently stuck on 

the lower fitting bound. Some variability was also seen in the confidence intervals of the 

estimated parameters. 

Due to the correlated nature of 𝑘 and 𝐶𝑝, Modulated DSC was used to determine a value 

of 𝐶𝑝 prior to the parameter estimation. Fixing this value in the parameter estimation 

prevented 𝑘 from becoming stuck on the fitting bounds, and improved the confidence 

intervals for the estimated parameters for all groupings of experiments. 

The Friedman and Ozawa-Flynn-Wall methods were also used to measure the self-

heating reaction activation energy, 𝐸, prior to the parameter estimation. Fixing the value 

of 𝐸 as well as 𝐶𝑝 in the parameter estimation largely reduced the freedom allowed to 

the fitting, resulting in best fit parameters that did not agree with experimentally 
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measured critical ambient temperatures as well as the previous approaches. It was 

decided that the best approach is to only fix the value of 𝐶𝑝 in the parameter estimation. 

The results of the fittings were validated against basket temperature profiles not used 

in the fittings. Even for the grouping of experiments with the highest fitting error, all 

RMSE values were within 1.2°C, which is small relative to the high temperatures at which 

these experiments were run, 216°C (489K) to 228°C (501K). All validated fittings also had 

R2 values in excess of 0.997, indicating a good model fit. The parameters from each 

grouping of experiments were used to predict critical ambient temperatures for equi-

cylindrical baskets of different radii. When using the approach where only 𝐶𝑝 was fixed 

in the fitting, the parameters from all groupings predicted critical ambient temperatures 

within 0.5°C of the experimentally measured values. 

This approach was developed to improve upon the existing basket methods, namely the 

steady-state method and the cross-point temperature method. This approach has been 

shown to successfully predict critical ambient temperatures for a range of basket sizes 

while improving massively on the time required by the steady-state method to measure 

such values. This approach requires no more than 10 experiments, each taking 

approximately 2.5 hours to complete, while the Steady-State Approach takes between 

6 and 8 hours per experiment, with one data point yielded per 4 or 5 experiments. 

This approach uses the same basket setup as used for the cross-point temperature 

method, but the CPT method fails to agree with experimentally measured critical 

ambient temperatures, under predicting the critical ambient temperature for a 60mm 

equi-cylindrical basket by approximately 4°C. This shows that the CPT Method is much 

more susceptible to errors in thermocouple placement, while the parameter estimation 

approach is not. This may be because a considerable portion of the temperature profiles 

from each experiment are used for fitting to, providing thousands of data points, while 

the CPT method yields only one data point per experiment.  

This investigation has shown that the novel parameter estimation approach is a viable, 

faster, and more accurate alternative to existing basket heating methods. This approach 

has also been used to characterise three more formulations. This will be discussed in 

Section 7.2, and will serve to validate this approach further. 
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7. Parameter Estimation Approach Workflow and 

Application to Other Detergent Formulations 

The previous chapter used the parameter estimation approach to characterise 

Micronized Formulation 1. Here, a recommended workflow for this method is outlined, 

and then used to characterise three other detergent powder formulations. These 

formulations are were discussed in Section 6.3 and are referred to as: 1) Non-Micronized 

Formulation 1, 2) Formulation 2, and 3) Formulation 3. 

7.1. Recommended Workflow for the Parameter Estimation Approach 

From this research it is possible to conclude that parameter estimation approach where 

the value of the specific heat capacity, 𝐶𝑝, is fixed, is a good method for charactersing 

the self-heating behaviour of detergent powders. Here a recommended workflow for 

this appraoch is discussed.  

Fitting Pre-Requisites: 

 Before fitting the convective heat transfer coefficient in the oven needs to be 

determined. This can be determined using the transient temperature 

measurement method used by Carson et al. (2006) and discussed in Section 4.5. 

Specific Heat Capacity, 𝑪𝒑, by MDSC 

 Modulated Differential Scanning Calorimetry (MDSC) can be used to measure the 

powder specific heat capacity, 𝐶𝑝, as was done in Section 6.9. 𝐶𝑝 in the 

parameter estimation is fixed to this value to prevent the thermal conductivity, 

𝑘, from getting stuck on the fitting bounds due to the high correlation between 

these two parameters. 

Basket Experiments: 

 The 60mm diameter equi-cylindrical basket used in this investigation is 

recommended. This basket size is small enough so the experiments only require 

approximately 2.5 hours to complete, although a number of different basket 

sizes could also be used. A 60mm basket is also large enough that an array of 

three thermocouples can comfortably be inserted into the powder. 
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 These thermocouples should be spaced at 0mm, 6mm, and 12mm from the 

basket centre and at basket half-height. Although quite small, this spacing allows 

for a large enough difference in temperature to be measured for each of the 

thermocouples, whilst the outermost thermocouple is not too close to the 

basket edge. 

 An array of three thermocouples is required in order to fit the initial temperature 

profile approximation, as discussed in Section 6.4. 

 The 13 experiments used here are not required. The fitting was seen to work for 

as few as 4 experiments. The recommended approach would be to run 8 

experiments at different oven controlled ambient temperatures, such that 6 

experiments are used in the parameter estimation, and the remaining 2 can be 

used for validation. 

 Determining the oven controlled ambient temperatures at which to run these 

experiments requires a degree of trial and error. Running experiments at 200°C, 

215°C, and 230°C, and looking at the amount of self-heating exhibited in each 

experiment would give an indication as to what ambient temperatures to use. 

Ideally, at the lowest chosen ambient temperature, the baskets would exhibit a 

core temperature rise of at least of at least 5°C. The other experiments would be 

run at increasing ambient temperatures in increments of 1°C. 

gPROMS Parameter Estimation 

 gPROMS was used to determine the best fit parameters using its Parameter 

Estimation capabilites. 𝐶𝑝 is fixed to the value measured using MDSC in the fitting 

and the best fit 𝑘, 𝐸, and ln 𝑄𝐴 are determined. The statistical analysis of the 

results provided by gPROMS, in particular the 95% confidence intervals and the 

standard deviation, will give an indication as to the quality of the fitted results. 

Validation of Results 

 The results are validated against the two experiments designated beforehand. 

The fit of the model using the best fit parameters to the experimental data is 

examined graphically and by means of Root Mean Square Error and R2 analysis. 
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 An additional step of this validation would be to experimentally determine the 

critical ambient temperature of a selected basket size, and compare this with the 

critical ambient temperature predicted using the best fit parameters. 

Predicting Self-Heating and Thermal Runaway in Spray Drying Tower Build-Up 

 The parameters determined here can be used to predict self-heating and thermal 

runaway in powder build-up in spray drying towers. This is discussed in more 

details in Chapter 8. 

This workflow is detailed graphically in Figure 7-1. This workflow could be applied to 

characterise the self-heating behaviour of different detergent formulations, such that 

the optimum spray drying operating conditions that prevent self-heating in the wall 

deposits can be determined. 

 

Figure 7-1: Suggested workflow for the Parameter Estimation Approach. 
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7.2. Application of the Parameter Estimation Approach to Other 

Detergent Powder Formulations 

Three other formulations were characterised using the Parameter Estimation Approach 

and the results documented here. The same approach was used but these results are 

not scrutinised to the same degree as for the previous formulation. These results are 

presented to help justify, and validate, the Parameter Estimation Approach as viable, 

and effective alternative to the existing characterisation methods. These formulations 

are were discussed in Section 6.3 and are referred to as: 1) Non-Micronized Formulation 

1, 2) Formulation 2, and 3) Formulation 3. 

As the name suggests, Non-Micronized Formulation 1 uses a non-micronized grade of 

sodium sulphate, but in all other ways it is the same as Micronized Formulation 1. The 

other two formulations, Formulation 2 and Formulation 3, are similar to one another, 

with Formulation 3 containing 1% Polycarboxylate Polymer, whilst Formulation 2 

contains none. 

The reaction kinetics of these formulations have already been estimated using the cross-

point temperature method in Section 5.5 with mixed results. Reasonable results were 

achieved using a thermocouple spacing of 12mm, while very poor results, from which 

no kinetics could be estimated, were achieved using a spacing of 6mm. The same 

experiments were used to for the cross-point temperature experiments and the 

parameter estimation approach experiments. 

DSC experiments were also discussed in Section 5.5. Non-Micronized Formulation 1 was 

shown to react similarly for all particle size ranges, whereas Formulation 2 and 

Formulation 3 did not exhibit this behaviour. The smaller particles in these two 

formulations produced exotherms with smaller peaks. This showed that there is some 

variability in reactivity with particle size in these formulations, which could impact on 

their characterisation. 

The objectives of this characterisation are as follows: 
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 Use the parameter estimation approach, as detailed in the workflow in Section 

7.1, to characterise the thermal conductivity, 𝑘, specific heat capacity, 𝐶𝑝, and 

reaction kinetics, 𝐸 and ln 𝑄𝐴, of the three formulations outlined above. 

 Compare the measured results with those measured using the steady-state 

method and the cross-point temperature method. 

 Predict critical ambient temperatures using the estimated parameters and 

validate these against experimentally measured values for a 50mm and 60mm 

equi-cylindrical basket. 

 Show that the parameter estimation approach estimates these parameters with 

reduced error in comparison to the other basket heating methods. 

 Show that this approach can be successfully used to characterise a number of 

different detergent powder formulations, thus helping to validate this approach. 

 

7.2.1. Parameter Estimation Results for Non-Micronized Formulation 1 

7.2.1.1. Specific Heat Capacity as Measured using DSC 

The specific heat capacity of Non-Micronized Formulation 1 was measured using the 

same approach outlined in Section 6.9. This was done for three different size ranges of 

particles, 150 to 250μm, 250 to 355μm, and 355 to 425μm. From the measured heat 

flow output the non-reversing 𝐶𝑝value was calculated. This can be seen in Figure 7-2 

along with the modulated temperature input of the DSC. 

It can be seen that 𝐶𝑝 is not constant throughout the experiment. This may be due to 

the modulation period used. The weighted average 𝐶𝑝 profile shown was calculated as 

the average 𝐶𝑝 as a function of temperature, weighted by each size ranges percentage 

contribution by mass to the overall powder size distribution. The most stable region of 

the profile for all three size ranges is between 488.0K (214.8°C) and 495.5K (222.3°C), 

and it was from this region that the value of 𝐶𝑝 to be used in the parameter estimation 

fittings was chosen. Figure 7-3 shows the 𝐶𝑝 profiles for this temperature range. The 𝐶𝑝 

used in the fitting was calculated as the overall average value of the weighted profile in 

this temperature range, and has a value of 1298 J kg-1 K-1.  
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Figure 7-2: Measured non-reversing 𝐶𝑝 and modulated DSC input temperature for 

particles of size ranges (a) 150-250μm, (b) 250-355μm, and (c) 355-425μm. 

 

Figure 7-3: Measured non-reversing 𝐶𝑝 for samples of three different particle size 

ranges for the most stable region from which the value used in the fittings was chosen. 
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7.2.1.2. Choice of Experiments for Parameter Estimation 

The Parameter Estimation Approach was performed as outlined previously. Basket 

experiments were run at 13 different oven controlled ambient temperatures from 216°C 

(489K) to 228°C (501K). At 216°C (489K) a moderate amount of self-heating is observed, 

while at 228°C (501K) much more self-heating is observed, culminating in thermal 

runaway of the basket. An array of three thermocouples was embedded within the 

powder, and the initial temperature profile approximated using the method in Section 

6.6. All 13 experiments were fitted to simultaneously, with none of the four parameters 

fixed. These experiments were filtered based on the residual term of the maximum 

likelihood method objective function, as done previously in Section 6.11.1. This residual 

term should be an indication of poor thermocouple placement. The value of the residual 

term for each experiment can be seen in Table 7-1, with colour indicating the relative 

severity. For this formulation, the experiments run at 219°C (492K), 225°C (498K), and 

226°C (499K) were omitted, and groupings of 10, 8, 6, and 4 experiments used in the 

parameter estimations. 

 

Table 7-1: Contribution of the residual term to the maximum likelihood function for 
each of the 13 experiments when fitted simultaneously. 

Experiment Ambient 
Temperature 

Maximum Likelihood 
Residual Term 

216°C 4233.3 

217°C 6792.3 

218°C 2438.6 

219°C 11234.5 

220°C 1800.9 

221°C 5334.3 

222°C 5632.5 

223°C 2968.5 

224°C 4949.7 

225°C 14813.9 

226°C 39502.5 

227°C 4287.1 

228°C 4106.4 
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7.2.1.3. No Fixed Parameters in the Parameter Estimation 

The same issue as with Micronized Formulation 1 arose in fitting to these experiments 

with all four parameters free in the fitting, whereby the thermal conductivity became 

stuck on the lower fitting bound. The results of these fittings can be seen in Table 7-2. 

 

Table 7-2: Results of the fittings where no parameters were fixed. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 128.0 (±0.1) x103 32.28 (±0.04) 0.04 (±0.005)** 874.2 (±105) 

8 exps (1) 128.5 (±0.1) x103 32.40 (±0.05) 0.04 (±0.008)** 874.9 (±170) 

8 exps (2) 129.4 (±0.6) x103 32.62 (±0.05) 0.04 (±0.005)** 873.8 (±124) 

6 exps 127.1 (±0.5) x103 32.06 (±0.06) 0.04 (±0.005)** 875.6 (±111) 

4 exps 128.5 (±0.5) x103 32.41 (±0.07) 0.04 (±0.004)** 871.6 (±91) 

** Stuck on fitting bound 

 

Again, the correlation matrix in Table 7-3 shows the thermal conductivity, 𝑘, and specific 

heat capacity, 𝐶𝑝, to be entirely correlated. There is a high correlation between the 

activation energy, 𝐸, and the logarithmic term, ln𝑄𝐴, of 0.873, but this does no inhibit 

the parameter estimation’s fitting of these two parameters. 

 

Table 7-3: Correlation matrix of fitted parameters. A value close to 1 indicates a very 
high correlation between the two parameters. 

 𝑬 𝐥𝐧𝑸𝑨 𝒌 𝑪𝒑 

𝑬 1 - - - 

𝐥𝐧𝑸𝑨 0.873 1 - - 

𝒌 -0.473 0.0164 1 - 

𝑪𝒑 -0.484 0.00465 1 1 
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7.2.1.4. Specific Heat Capacity, 𝑪𝒑, Fixed in the Parameter Estimation 

Because of this correlation, the value of the specific heat capacity was fixed to the value 

of 1298 J kg-1 K-1 determined using modulated DSC. The results of this parameter 

estimation are shown in Table 7-4. It can be seen that by fixing 𝐶𝑝, the value of the 

thermal conductivity, 𝑘, is no longer stuck on the fitting bounds. These results are shown 

graphically in Figure 7-4 (a) where it can be seen that all groupings of experiments 

predict similar results. It can also be seen that there is reasonable agreement with the 

experimentally measured critical ambient temperatures, under predicting these values 

by approximately 1°C for a 50mm basket and 2.5°C for a 60mm basket. 

The confidence intervals of this case, where 𝐶𝑝 was fixed, are similar to those where no 

parameters were fixed. This is different to the results of Micronized Formulation 1, 

where not fixing 𝐶𝑝 produced much larger confidence intervals. For this formulations, 

there was not the same degree of difficulty in fitting when 𝐶𝑝 was not fixed. It can also 

be seen that there is a slight correlation between grouping size and fitting error for this 

formulation. Fitting error is seen to decreases slightly with an increase in grouping size. 

 

Figure 7-4: (a) Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii using the estimated parameters from Table 7-4. (b) Predicted critical 

ambient temperatures and 95% confidence intervals for the 10 experiments grouping. 

 

For each of the different groupings, the experiments that were not used as part of the 

parameter estimation fitting were used for validation of the estimated parameters. The 

Root Mean Square Error (RMSE) and R2 values were calculated for the validation of each 

of the groupings of experiments. It can be seen that error is similar across all groupings 

of experiments, with no single grouping having particularly high errors. All RMSE values 
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are within 1°C, which is acceptably small. The high R2 values, all in excess of 0.997, also 

indicate a good model fit. 

 

Table 7-4: Results of the fittings where the specific heat capacity was fixed. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 125.2 (±0.2) x103 32.00 (±0.05) 0.0598 (±4x10-5) 1298* 

8 exps (1) 125.9(±0.2) x103 32.15 (±0.05) 0.0598 (±4x10-5) 1298* 

8 exps (2) 126.7 (±0.2) x103 32.34 (±0.05) 0.0598 (±5x10-5) 1298* 

6 exps 124.4 (±0.3) x103 31.80 (±0.06) 0.0598 (±5x10-5) 1298* 

4 exps 125.5 (±0.3) x103 32.06 (±0.07) 0.0599 (±6x10-5) 1298* 

* Fixed in fitting 

 

Table 7-5: Root Mean Square Root (RMSE) and R2 values for the fit of the model to the 
data from the three thermocouples, for each grouping of experiments. 

 RMSE (R2) of 𝑻𝟎𝒎𝒎 RMSE (R2) of 𝑻𝟔𝒎𝒎 RMSE (R2) of 𝑻𝟏𝟐𝒎𝒎 

8 exps (1) 0.69°C (0.998) 0.93°C (0.997) 0.57°C (0.998) 

8 exps (2) 0.56°C (0.999) 0.55°C (0.999) 0.53°C (0.998) 

6 exps 0.68°C (0.999) 0.67°C (0.998) 0.60°C (0.998) 

4 exps 0.78°C (0.998) 0.91°C (0.997) 0.61°C (0.998) 

 

7.2.1.5. Results Comparison with other Characterisation Methods 

The kinetics as measured using the parameter estimation approach, steady-state 

method, and cross-point temperature method are compared in Table 7-6. The 

parameter estimation approach results are taken from the groupings of 10 experiments. 

The steady-state method results are based on only two measured basket critical 

ambient temperatures, and as such the fitting error could not be calculated. The 95% 

confidence intervals of the parameter estimation approach are considerably smaller 

than those of the CPT method. These experiments are compared graphically in terms of 

predicted critical ambient temperatures in Figure 7-5.  

The parameter estimation approach results are similar to the steady-state method 

results, under predicting the critical ambient temperatures by between 2 and 3°C. The 
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same experiments were used to calculate the CPT method results and for fitting to in 

the parameter estimation approach, however, the CPT method results predict very 

different results. The again shows that the cross-point temperature method is more 

susceptible to errors in thermocouple placement and readings than the parameter 

estimation approach. 

 

Table 7-6: Results from the parameter estimation approach compared with the results 
from the existing basket methods. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒍𝒏
𝑸𝑨

𝑪𝒑
 

𝒌 
(W m-1 K-1) 

𝑪𝒑 

(J kg-1 K-1) 

Parameter 
Estimation 
Approach 

 

All Free 128.0 (±0.1) x103 
32.28 

(±0.04) 
- 

0.04 
(±0.005)** 

874.2 
(±105) 

Fixed 𝑪𝒑 125.2 (±0.2) x103 
32.00 

(±0.05) 
- 

0.0598 
(±4x10-5) 

1298* 

Steady-State Method 134.3x103 33.99 - - - 

CPT Method 111.2 (±11.8) x103 - 
21.73 

(±2.84) 
- - 

** Stuck on fitting bound * Fixed in fitting 

 

 

Figure 7-5: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using kinetics from the steady-state method, cross-point 

temperature method, and the parameter estimation approach. 
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7.2.2. Parameter Estimation Results for Formulation 2 

7.2.2.1. Specific Heat Capacity as Measured using DSC 

The specific heat capacity of the Formulation 2 was measured using the same approach 

outlined in Section 6.9. This was done for four different size ranges of particles, 150 to 

250μm, 250 to 355μm, 355 to 425μm, and 425μm to 600μm. From the measured heat 

flow output, the non-reversing 𝐶𝑝value was calculated. This can be seen in Figure 7-6 

along with the modulated temperature input of the DSC. 

 

Figure 7-6: Measured non-reversing 𝐶𝑝 and modulated DSC input temperature for 

particles of size ranges (a) 150-250μm, (b) 250-355μm, (c) 355-425μm, and (d) 425-
600μm. 

 

Again, it can be seen that 𝐶𝑝 is not constant throughout the experiment. The weighted 

average 𝐶𝑝 profile is also shown. The most stable region of the profile for all three size 

ranges is between 486K and 496K, and it was from this region that the value of 𝐶𝑝 was 

chosen. Figure 7-7 shows the 𝐶𝑝 profiles for this temperature range. The 𝐶𝑝 used in the 



281 
 
fitting was calculated as the overall average value of the weighted profile in this 

temperature range, and has a value of 1499 J kg-1 K-1.  

 

Figure 7-7: Measured non-reversing 𝐶𝑝 for samples of four different particle size 

ranges for the most stable region from which the value used in the fittings was chosen. 

 

7.2.2.2. Choice of Experiments for Parameter Estimation 

The Parameter Estimation Approach was performed as outlined previously. Basket 

experiments were run at 13 different oven controlled ambient temperatures from 222°C 

(495K) to 234°C (507K). An array of three thermocouples was embedded within the 

powder. These experiments were filtered based on the residual term of the maximum 

likelihood method objective function. This residual term should be an indication of poor 

thermocouple placement. The value of the residual term for each experiment can be 

seen in Table 7-13. For this formulation, the experiments run at 225°C (498K), 231°C 

(504K), and 233°C (506K) were omitted, and groupings of 10, 8, 6, and 4 experiments 

used in the fittings. 
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Table 7-7: Contribution of the residual term to the maximum likelihood function for 
each of the 13 experiments when fitted simultaneously. 

Experiment Ambient 
Temperature 

Maximum Likelihood 
Residual Term 

222°C 1352.9 

223°C 2127.7 

224°C 1177.1 

225°C 53121.7 

226°C 456.2 

227°C 1239.3 

228°C 1277.8 

229°C 4845.4 

230°C 2325.2 

231°C 15059.7 

232°C 1687.8 

233°C 17552.5 

234°C 2383.6 

 

7.2.2.3. No Fixed Parameters in the Parameter Estimation 

The same issue as with the other formulations arose in fitting to these experiments with 

all four parameters free in the fitting, whereby the thermal conductivity became stuck 

on the lower fitting bound. The results of these fittings can be seen in Table 7-2. 

 

Table 7-8: Results of the fittings where no parameter were fixed. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 129.5 (±0.3) x103 32.69 (±0.06) 0.0677 (±0.001) 1386.8 (±22) 

8 exps (1) 130.2 (±0.3) x103 32.83 (±0.06) 0.0660 (±0.001) 1358.2 (±26) 

8 exps (2) 124.7 (±0.3) x103 31.64 (±0.05) 0.0749 (±0.001) 1542.4 (±23) 

6 exps 130.1 (±0.3) x103 32.35 (±0.06) 0.04 (±0.001)** 849.8 (±28) 

4 exps 126.7 (±0.5) x103 32.57 (±0.11) 0.1252 (±0.002) 2421.1 (±33) 

** Stuck on fitting bound 
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Again, the correlation matrix in Table 7-15 shows the thermal conductivity, 𝑘, and 

specific heat capacity, 𝐶𝑝, to be entirely correlated. There is also a high correlation 

between the activation energy, 𝐸, and the logarithmic term, ln𝑄𝐴, of 0.97, but this does 

no inhibit the parameter estimation’s fitting of these two parameters. 

 

Table 7-9: Correlation matrix of fitted parameters. A value close to 1 indicates a very 
high correlation between the two parameters. 

 𝑬 𝐥𝐧𝑸𝑨 𝒌 𝑪𝒑 

𝑬 1 - - - 

𝐥𝐧𝑸𝑨 0.97* 1 - - 

𝒌 -0.503 -0.28 1 - 

𝑪𝒑 -0.52 -0.298 0.999 1 

 

7.2.2.4. Specific Heat Capacity, 𝑪𝒑, Fixed in the Parameter Estimation 

Because of this correlation, the value of the specific heat capacity was fixed to the value 

of 1499 J kg-1 K-1 determined using modulated DSC. The results of this parameter 

estimation are shown in Table 7-16. It can be seen that by fixing 𝐶𝑝, the value of the 

thermal conductivity, 𝑘, is no longer stuck on the fitting bounds. These results are shown 

graphically in Figure 7-12. It can be seen that the parameter estimation approach over 

predicts the critical ambient temperatures, relative to the experimentally measured 

values, by approximately 4°C. 

 

Table 7-10: Results of the fittings where the specific heat capacity was fixed. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 128.8 (±0.2) x103 32.59 (±0.05) 0.0734 (±4x10-5) 1499* 

8 exps (1) 129.1 (±0.3) x103 32.67 (±0.06) 0.0731 (±5x10-5) 1499* 

8 exps (2) 125.0 (±0.2) x103 31.70 (±0.05) 0.0728 (±4x10-5) 1499* 

6 exps 125.8 (±0.2) x103 31.89 (±0.06) 0.0717 (±5x10-5) 1499* 

4 exps 132.6 (±0.5) x103 33.50 (±0.11) 0.0757 (±6x10-5) 1499* 

* Fixed in fitting 
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The confidence intervals of this case, where 𝐶𝑝 was fixed, are similar to those where no 

parameters were fixed. For this formulation there is no clear correlation between 

grouping size and fitting error. 

 

Figure 7-8: (a) Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii using the estimated parameters from Table 7-4. (b) Predicted critical 

ambient temperatures and 95% confidence intervals for the 10 experiments grouping. 

 

For each of the different groupings, the experiments that were not used as part of the 

parameter estimation fitting were used for validation of the estimated parameters. The 

Root Mean Square Error (RMSE) and R2 values were calculated for the validation of each 

of the groupings of experiments. It can be seen that error is similar across all groupings 

of experiments, although the grouping of 8 experiments (2) has a slightly higher error, 

particularly relative to the other grouping of 8 experiments. All RMSE values are within 

1.1°C, which is acceptably small. The high R2 values, all in excess of 0.995, also indicate 

a good model fit, although not as high as the previous two formulations. 

 

Table 7-11: Root Mean Square Root (RMSE) and R2 values for the fit of the model to 
the data from the three thermocouples, for each grouping of experiments. 

 RMSE (R2) of 𝑻𝟎𝒎𝒎 RMSE (R2) of 𝑻𝟔𝒎𝒎 RMSE (R2) of 𝑻𝟏𝟐𝒎𝒎 

8 exps (1) 0.52°C (0.999) 0.65°C (0.998) 0.39°C (0.999) 

8 exps (2) 1.04°C (0.996) 1.01°C (0.995) 0.87°C (0.995) 

6 exps 0.93°C (0.997) 0.91°C (0.996) 0.73°C (0.997) 

4 exps 0.93°C (0.997) 0.91°C (0.996) 0.58°C (0.998) 
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7.2.2.5. Results Comparison with Other Characterisation Methods 

The kinetics as measured using the parameter estimation approach, steady-state 

method, and cross-point temperature method are compared in Table 7-18. The 

parameter estimation approach results are taken from the groupings of 10 experiments. 

The steady-state method results are based on only two measured basket critical 

ambient temperatures, and as such the fitting error could not be calculated. The 95% 

confidence intervals of the parameter estimation approach are considerably smaller 

than those of the CPT method. These experiments are compared graphically in terms of 

predicted critical ambient temperatures in Figure 7-13.  

 

Table 7-12: Results from the Parameter Estimation Approach compared with the 
results from the existing basket methods. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒍𝒏
𝑸𝑨

𝑪𝒑
 

𝒌  
(W m-1 K-1) 

𝑪𝒑  

(J kg-1 K-1) 

Parameter 
Estimation 
Approach 

 

All Free 129.5 (±0.3) x103 
32.69 

(±0.06) 
- 

0.0677 
(±0.001) 

1386.8 
(±22) 

Fixed 𝑪𝒑 128.8 (±0.2) x103 
32.59 

(±0.05) 
- 

0.0734 
(±4x10-5) 

1499.44* 

Steady-State Method 142.3x103 35.96 - - - 

CPT Method 149.2 (±30.7) x103 - 
30.32 

(±7.32) 
- - 

* Fixed in fitting 

 

Interestingly, the CPT and steady-state method for this formulation predict similar 

critical ambient temperatures, unlike any of the other formulations. However, the very 

high 95% confidence intervals of the CPT method indicate that this agreement may not 

be as good as it appears. The parameter estimation approach results are somewhat 

similar to the steady-state method results, but over predict the critical ambient 

temperatures at low radii by approximately 5°C. 
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Figure 7-9: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using kinetics from the steady-state method, cross-point 

temperature method, and the parameter estimation approach. 

 

7.2.3. Parameter Estimation Results for Formulation 3 

7.2.3.1. Specific Heat Capacity as Measured using DSC 

The specific heat capacity of the Formulation 3 was measured using the same approach 

outlined in Section 6.9. This was done for four different size ranges of particles, 150 to 

250μm, 250 to 355μm, 355 to 425μm, and 425μm to 600μm. From the measured heat 

flow output the non-reversing 𝐶𝑝value was calculated. This can be seen in Figure 7-10 

along with the modulated temperature input of the DSC. 

It can be seen that 𝐶𝑝 is not constant throughout the experiment. This may be due to 

the modulation period used. The weighted average 𝐶𝑝 profile shown was calculated as 

the average 𝐶𝑝 as a function of temperature, weighted by each size ranges percentage 

contribution by mass to the overall powder size distribution. The most stable region of 

the profile for all three size ranges is between 486K and 496K, and it was from this region 

that the value of 𝐶𝑝 to be used in the parameter estimation fittings was chosen. Figure 

7-11 shows the 𝐶𝑝 profiles for this temperature range. The 𝐶𝑝 used in the fitting was 
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calculated as the overall average value of the weighted profile in this temperature range, 

and has a value of 1428 J kg-1 K-1.  

 

Figure 7-10: Measured non-reversing 𝐶𝑝 and modulated DSC input temperature for 

particles of size ranges (a) 150-250μm, (b) 250-355μm, (c) 355-425μm, and (d) 425-
600μm. 

 

Figure 7-11: Measured non-reversing 𝐶𝑝 for samples of four different particle size 

ranges for the most stable region from which the value used in the fittings was chosen. 
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7.2.3.2. Choice of Experiments for Parameter Estimation 

The parameter estimation approach was performed as outlined previously. Basket 

experiments were run at 13 different oven controlled ambient temperatures from 216°C 

(489K) to 228°C (501K). An array of three thermocouples was embedded within the 

powder. These experiments were filtered based on the residual term of the maximum 

likelihood method objective function. This residual term should be an indication of poor 

thermocouple placement. The value of the residual term for each experiment can be 

seen in Table 7-13. The experiments run at 224°C (497K), 225°C (498K), and 228°C (501K) 

were omitted, and groupings of 10, 8, 6, and 4 experiments used in the fittings. 

 

Table 7-13: Contribution of the residual term to the maximum likelihood function for 
each of the 13 experiments when fitted simultaneously. 

Experiment Ambient 
Temperature 

Maximum Likelihood 
Residual Term 

216°C 4154.2 

217°C 2414.0 

218°C 2849.4 

219°C 2140.7 

220°C 9146.3 

221°C 2769.6 

222°C 5781.3 

223°C 2073.7 

224°C 14987.0 

225°C 36341.9 

226°C 2178.2 

227°C 2872.9 

228°C 25783.6 

 

7.2.3.3. No Fixed Parameters in the Parameter Estimation 

The same issue as with the other formulations arose in fitting to these experiments with 

no parameters fixed in the fittings, whereby the thermal conductivity became stuck on 

the lower fitting bound. The results of these fittings can be seen in Table 7-2. 
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Table 7-14: Results of the fittings where all parameter were left free. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 129.6 (±0.1) x103 32.65 (±0.03) 0.0412 (±6x10-4) 828.3 (±11) 

8 exps (1) 131.6 (±0.1) x103 33.12 (±0.03) 0.04 (±8x10-4)** 805.3 (±12) 

8 exps (2) 128.8 (±0.1) x103 32.45 (±0.03) 0.0401 (±8x10-4) 811.4 (±12) 

6 exps 129.4 (±0.2) x103 32.59 (±0.04) 0.0402 (±9x10-4) 814.4 (±14) 

4 exps 132.5 (±0.2) x103 33.59 (±0.05) 0.0522 (±8x10-4) 1023.4 (±15) 

** Stuck on fitting bound 

 

Again, the correlation matrix in Table 7-15 shows the thermal conductivity, 𝑘, and 

specific heat capacity, 𝐶𝑝, to be entirely correlated. Again there is a high correlation 

between the activation energy, 𝐸, and the logarithmic term, ln𝑄𝐴, of 0.916, but this 

does no inhibit the parameter estimation’s fitting of these two parameters. 

 

Table 7-15: Correlation matrix of fitted parameters. A value close to 1 indicates a very 
high correlation between the two parameters. 

 𝑬 𝐥𝐧𝑸𝑨 𝒌 𝑪𝒑 

𝑬 1 - - - 

𝐥𝐧𝑸𝑨 0.916 1 - - 

𝒌 -0.264 0.144 1 - 

𝑪𝒑 -0.275 0.133 1 1 

 

7.2.3.4. Specific Heat Capacity, 𝑪𝒑, Fixed in the Parameter Estimation 

Because of this correlation, the value of the specific heat capacity was fixed to the value 

of 1428 J kg-1 K-1 determined using modulated DSC. The results of this parameter 

estimation are shown in Table 7-16. It can be seen that by fixing 𝐶𝑝, the value of the 

thermal conductivity, 𝑘, is no longer stuck on the fitting bounds. These results are shown 

graphically in Figure 7-12 and it can be seen that they agree very well with the 

experimentally measured critical ambient temperatures, over predicting them by 

approximately 1°C. 



290 
 
 

Table 7-16: Results of the fittings where the specific heat capacity was fixed. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒌 (W m-1 K-1) 𝑪𝒑 (J kg-1 K-1) 

10 exps 127.5 (±0.1) x103 32.69 (±0.03) 0.0728 (±2x10-5) 1428* 

8 exps (1) 129.8 (±0.1) x103 33.23 (±0.04) 0.0728 (±3x10-5) 1428* 

8 exps (2) 127.1 (±0.1) x103 32.59 (±0.03) 0.0723 (±2x10-5) 1428* 

6 exps 127.7 (±0.2) x103 32.72 (±0.04) 0.0722 (±3x10-5) 1428* 

4 exps 131.0 (±0.2) x103 33.55 (±0.05) 0.0741 (±3x10-5) 1428* 

* Fixed in fitting 

 

The confidence intervals of this case, where 𝐶𝑝 was fixed, are similar to those where no 

parameters were fixed. For this formulation there is no clear correlation between 

grouping size and fitting error.  

 

Figure 7-12: (a) Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii using the estimated parameters from Table 7-4. (b) Predicted critical 

ambient temperatures and 95% confidence intervals for the 10 experiments grouping. 

 

For each of the different groupings, the experiments that were not used as part of the 

parameter estimation fitting were used for validation of the estimated parameters. The 

Root Mean Square Error (RMSE) and R2 values were calculated for the validation of each 

of the groupings of experiments. It can be seen that error is similar across all groupings 

of experiments, with no single grouping being particularly poor. All RMSE values are 

within 0.7°C, which is acceptably small. The high R2 values, all in excess of 0.999, also 

indicate a good model fit. 
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Table 7-17: Root Mean Square Root (RMSE) and R2 values for the fit of the model to 
the data from the three thermocouples, for each grouping of experiments. 

 RMSE (R2) of 𝑻𝟎𝒎𝒎 RMSE (R2) of 𝑻𝟔𝒎𝒎 RMSE (R2) of 𝑻𝟏𝟐𝒎𝒎 

8 exps (1) 0.39°C (0.999) 0.31°C (1.000) 0.32°C (0.999) 

8 exps (2) 0.53°C (0.999) 0.56°C (0.999) 0.48°C (0.999) 

6 exps 0.49°C (0.999) 0.57°C (0.999) 0.38°C (0.999) 

4 exps 0.61°C (0.999) 0.49°C (0.999) 0.43°C (0.999) 

 

7.2.3.5. Results Comparison with other Characterisation Methods 

The kinetics as measured using the parameter estimation approach, steady-state 

method, and cross-point temperature method are compared in Table 7-18. The 

parameter estimation approach results are taken from the groupings of 10 experiments. 

The steady-state method results are based on only two measured basket critical 

ambient temperatures, and as such the fitting error could not be calculated. The 95% 

confidence intervals of the Parameter Estimation Approach are considerably smaller 

than those of the CPT method. These experiments are compared graphically in terms of 

predicted critical ambient temperatures in Figure 7-13.  

 

Table 7-18: Results from the Parameter Estimation Approach compared with the 
results from the existing basket methods. 

 𝑬 (J mol-1) 𝐥𝐧 𝑸𝑨 𝒍𝒏
𝑸𝑨

𝑪𝒑
 

𝒌 

(W m-1 K-1) 

𝑪𝒑 

(J kg-1 K-1) 

Parameter 
Estimation 
Approach 

 

All Free 129.6 (±0.1) x103 
32.65 

(±0.03) 
- 

0.0412 
(±6x10-4) 

828.3 
(±11) 

Fixed 𝑪𝒑 127.5 (±0.1) x103 
32.69 

(±0.03) 
- 

0.0728 
(±2x10-5) 

1427.87* 

Steady-State Method 134.1x103 34.30 - - - 

CPT Method 111.3 (±12.2) x103 - 
21.69 

(±2.94) 
- - 

* Fixed in fitting 
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The parameter estimation approach results are very similar to the steady-state method 

results, only slightly over predicting the critical ambient temperatures at very low radii. 

The same experiments were used to calculate the CPT method results and for fitting to 

in the parameter estimation approach, however, the CPT method results predict 

different results. Again, this shows that the cross-point temperature method is more 

susceptible to errors in thermocouple placement and readings than the parameter 

estimation approach. 

 

Figure 7-13: Predicted critical ambient temperatures for equi-cylindrical baskets of 
different radii as calculated using kinetics from the steady-state method, cross-point 

temperature method, and the parameter estimation approach. 

 

7.3. Conclusions 

In this chapter, the parameter estimation approach was used to characterise three more 

detergent powder formulations. Good results were achieved using this approach. 

Similar to the characterisation of Micronized Formulation 1 in Section 6.11, there was a 

very high correlation factor between the specific heat capacity, 𝐶𝑝, and the thermal 

conductivity, 𝑘. With no parameters fixed, 𝑘 was found to get stuck on the lower fitting 

bounds. Fixing the value of 𝐶𝑝 prevented this from happening. 𝐶𝑝 was fixed to a value 

measuring using Modulated DSC for each formulation. For all formulations, 𝐶𝑝 was 

measured over a range of 200°C (473K) to 230°C (503K), but was not constant across 
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this entire range. It was though that the modulation size of the heating profile may have 

been too large. However, a stable sub-region was found for each formulation, and the 

value taken from this. 

For each formulation, all groupings of experiments used in the parameter estimation 

produced similar results. For Non-Micronized Formulation 1, the predicted critical 

ambient temperatures were under-predicted by between 2 and 3°C. For Formulation 2, 

the predicted critical ambient temperatures were similar at high radii, but over-

predicted at low radii by approximately 5°C. For Formulation 3, the predicted critical 

ambient temperatures were over-predicted by approximately 1°C. Overall, the 

predicted critical ambient temperatures were in reasonable agreement with the 

experimentally measured values. 

These estimated parameters were compared with those measured using the cross-point 

temperature method, with varying agreement. For all formulations however, the 95% 

confidence intervals of the estimated parameters using the parameter estimation 

approach were considerably lower than those of the cross-point temperature method. 

These methods used the same experiments, and this again shows that the parameter 

estimation approach is not as susceptible as the cross-point temperature method to 

errors in thermocouple placement and readings. 

By showing that this approach works for a further three formulations, the results of this 

chapter help to validate the parameter estimation approach as a faster, less error-prone 

method for characterising the self-heating behaviour of detergent powders. 
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8. Modelling of Self-Heating in Spray Drying Towers 

The primary focus of this research was to explore the means of characterising and 

predicting self-heating in spray dried detergent formulations. In doing so, the work was 

focused on oven based basket heating methods for estimating the self-heating reaction 

kinetics of the detergent powder, and on modelling these basket experiments such that 

predictions at this scale could be validated. 

The original motivation for this research was the desire to develop a methodology for 

characterising and predicting the self-heating behaviour of detergent formulations. This 

would allow predictions of self-heating in spray-dryer wall deposits to be made such that 

the problem of charring, known to occur in these deposits, can be prevented. Future 

work will see Procter and Gamble apply the knowledge, methods, and models 

developed here to address this problem in spray drying operations. An approach similar 

to that outlined here is to be used which will apply the developed model in conjunction 

with other spray drying models. Having characterised the formulations using the 

parameter estimation approach, a simple 1D model of heat transfer in an finite slab 

would allow for a quick assessment as to whether the operating conditions at the time 

are likely to cause significant self-heating, and possible charring in the wall deposits. A 

brief example of how this may work is discussed. 

 

8.1. Application of Models to Spray Drying Tower Wall Build-Up 

Figure 8-1 shows a graphical representation of a counter current spray drying tower, the 

kind used to spray dry detergent powders. The regions in yellow are representative of 

build-up that may occur on the tower wall, although the exact regions may vary. It is 

thought that the tower could be broken down into regions that are at risk of self-heating. 

One region particularly at risk is the region close to the air inlets where the temperatures 

are the highest. For each of these regions four things need to be known to evaluate 

whether self-heating is a risk under specific operating conditions: 

 Detergent powder parameters that influence self-heating, such as the reaction 

kinetics, density, and thermal conductivity. These can be determined using the 

parameter estimation approach. 
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 The build-up thickness. This can either be measured or estimated as a typical or 

maximum thickness. 

 Temperature above the build-up surface. 

 Heat transfer coefficient for the heat transfer between the build-up and 

circulating tower air. 

Using CFD models of these counter current spray drying towers that have previously 

been developed, for a specific tower inlet temperature it would be relatively simple to 

determine the temperature above the build-up surface in different regions. Using 

correlations for the Nusselt number (𝑁𝑢 = ℎ𝐿/𝑘), where the Nusselt number is 

correlated as a function of the Reynolds number (𝑅𝑒 = 𝜌𝐿𝑢/𝜇, where 𝑢 is the air 

velocity and 𝜇 is the dynamic viscosity) and Prandtl number (𝑃𝑟 = 𝜇𝐶𝑝/𝑘 ), it is also 

possible to determine the heat transfer coefficient for different regions of the tower. 

 

Figure 8-1: Graphical representation of a counter-current spray drying tower with 
representative build-up shown in yellow. The box represents an example region at risk 

of self-heating being assessed. 

 

With these parameters known, a simple 1D model of self-heating in an infinite slab can 

be used to assess the risk of self-heating in each region of the tower. The 1D model 

consists of the following energy balance, previously used in the models of Chapter 4: 
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 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ 𝜌𝑄𝐴𝑒

−𝐸
𝑅𝑇  (8-1) 

If it is assumed that the tower walls are perfect insulated, then the following boundary 

condition applies at the wall: 

 
𝑑𝑇

𝑑𝑥
|
𝑥=0

= 0, (8-2) 

This boundary condition can be replaced with equations denoting conduction through a 

composite layer wall of the wall and insulation, if it is not reasonable to apply the 

assumption that the wall is a perfect insulator. At the exposed boundaries Newton’s Law 

of Cooling is applied, whereby heat transfer is dependent on the external effective heat 

transfer coefficient, ℎ (W m-2 K-1), such that: 

 −𝑘
𝑑𝑇

𝑑𝑥
|
𝑥=𝐿

= ℎ(𝑇|x=𝐿 − 𝑇∞), (8-3) 

 

8.2. Prediction of Self-Heating in Spray Drying Towers 

This simple model was applied to show how the temperature above the powder build-

up, 𝑇∞, the heat transfer coefficient, ℎ, and the build-up thickness, 𝐿, affect the self-

heating in these build-ups. For each case the model was run until a steady-state was 

reached. Figure 8-2 shows how the temperature above the build-up influences the self-

heating. At a temperature of 460K (187°C), little self-heating is predicted, with a 

temperature rise of less than 3°C at the wall. For a temperature of 475K (202°C), 

significantly more self-heating is predicted, with a temperature rise of more than 15°C 

at the wall. Thermal runaway was predicted to occur at a temperature of 476K (203°C). 

Figure 8-3 shows how the heat transfer coefficient influences the self-heating. Little 

difference is seen between the predicted temperatures at the wall for each value of ℎ 

used. The difference primarily comes from the temperature at the build-up surface. For 

higher heat transfer coefficients the temperature at the build-up surface is closer to the 

temperature of the air above the surface. 
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Figure 8-2: Temperature profile across the build-up for ambient temperatures of (a) 
460K (187°C), (b) 465K (192°C), (c) 470K (197°C), and (d) 475K (202°C). 

 

Figure 8-3: Temperature profile across the build-up for heat transfer coefficients of (a) 
22 W m-2 K-1, (b) 30 W m-2 K-1, (c) 38 W m-2 K-1, and (d) 46 W m-2 K-1. 

 

Figure 8-4 shows how the build-up thickness influences the predicted self-heating at an 

ambient temperature of 468K (195°C). As expected, a larger build-up thickness leads to 

more self-heating because the build-up has greater difficulty dissipating the generated 
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heat. At a thickness of 0.026m a temperature rise of approximately 4°C occurs at the 

wall, while for a build-up thickness of 0.038m a much larger temperature rise of 

approximately 15°C occurs. At this ambient temperature, 0.038m is almost the critical 

thickness of the build-up.  

 

Figure 8-4: Temperature profile across the build-up for thicknesses of (a) 0.026m, (b) 
0.030m, (c) 0.034m, and (d) 0.038m. 

 

8.3. Conclusions 

This simple model has shown how the knowledge and models developed in this research 

can be applied to the problem of self-heating in spray drying operations. The parameter 

estimation approach developed as part of this study can be applied to determine the 

required parameters of the detergent powder, namely the self-heating reaction kinetics 

and the thermal conductivity. Existing CFD models can be applied to determine the 

temperature above the build-up and the heat transfer coefficient. Together these 

parameters can be used to determine the optimum temperature to prevent significant 

self-heating for a known build-up thickness. Alternatively this approach can be used to 

determine the thickness to which the build-up can be allowed to reach at a specified 

operating temperature before self-heating becomes an issue. In future work the 

integration of this model with existing spray drying tower models could be explored.  
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9. Conclusions and Recommended Future Work 

9.1. Summary of Research 

The aim of this thesis was to explore the problem of self-heating in detergent powders. 

In doing this, the research was broken down into a number of topics that were explored. 

Firstly, an evaluation of the self-heating exhibited by a typical detergent powder was 

performed. Next, a number of experimental methods were used to measure the self-

heating reaction kinetics of a typical detergent powder. A numerical model, developed 

to predict temperature profiles in self-heating powder baskets, was used to evaluate 

these experimental methods and make predictions of self-heating and thermal runaway. 

Finally, the numerical model and oven heated basket experiments were combined in a 

novel parameter estimation approach. This approach was developed, validated, and 

used as a means of measuring the reaction kinetics and heat transfer properties of four 

different detergent formulations.  

 

9.2. Self-Heating in Detergents 

Initial basket heating experiments were used to evaluate the problem of self-heating in 

a typical detergent powder. These initial experiments showed the detrimental effects 

that self-heating can have on detergent formulations. Even if the powder does not lead 

to complete thermal runaway of the basket, localised thermal runaway at the basket 

core or at particular points in a layer can be damaging. Even when thermal runaway does 

not occur, the discolouration or “browning” seen in the sample may be enough to 

compromise the quality of the finished product. 

Initial cross-point temperature method (CPT) experiments showed promise, but also 

showed there to be a number of issues that needed to be addressed, particularly the 

issue of thermocouple placement. This issue was addressed in subsequent chapters. 

The initial DSC and TGA experiments conducted here showed, at least for Micronized 

Formulation 1, that variability in reactivity across different size fractions did not exist. 

The DSC heat flow profile showed the large amount of energy produced by the self-

heating reaction and why self-heating can be such an issue. The TGA showed a large 
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mass loss corresponding to this reaction. These techniques produced repeatable profiles 

which in later chapters were used to estimate the self-heating reaction kinetics. 

Running these experiments under nitrogen, rather than air, showed that these reactions 

are dependent on oxygen. Without oxygen, the reaction was seen not to occur in the 

DSC and TGA profiles in the temperature range of interest, confirming that the self-

heating reaction in this detergent formulation is an oxidative reaction.  

 

9.3. Experimental Methods for Characterising Self-Heating and Using 

the Numerical Model to Evaluate these Methods 

This aspect of the study sought to determine the best means of estimating the self-

heating reaction kinetics of detergent powders. Three methods were used: the steady-

state method, the cross-point temperature method, and the DTG curve fitting method.  

The first method explored was the steady-state method. This method is based around 

the critical criterion 𝛿𝑐𝑟. The dimensionless parameter 𝛿 is the ratio of the heat 

generated to the heat dissipated in a self-heating system, and encompasses all the 

quantities required to describe the problems associated with self-heating, 

inflammation, and ignition. The critical criterion, 𝛿𝑐𝑟, is a function of the dimensionless 

exponent, 𝜑 (= 𝐸/𝑅𝑇), and the Biot number, 𝐵𝑖. 1D and 2D dimensionless numerical 

models were used here to calculate 𝛿𝑐𝑟 as a function of 𝜑 and 𝐵𝑖. It was shown that 

using incorrect values for 𝛿𝑐𝑟 can impact strongly on the results. The model predictions 

using these kinetics fitted very well with observed temperature profiles for the majority 

of the reaction period. The steady-state method however is slow with each test taking 

between 4 and 8 hours, and a number of tests required to obtain a single data point. 

The cross-point temperature method was initially developed as a faster alternative, but 

it was found that this approach is more susceptible to errors. The estimated kinetics 

using this approach varied depending on the spacing of the thermocouples used. Using 

the numerical model to simulate these basket experiments, it could be seen that some 

variation should exist between the cases for the cross-point approximations used, but 

the variation should not be to the extent seen here.  
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Using the model, it was found that using a more accurate finite difference stencil (i.e. 5 

point instead of a 3 point stencil) had more of an impact than the inclusion of axial 

conduction on the cross-point temperature method results. It was shown that a five-

point stencil in the radial direction, consisting of three thermocouples, as used here for 

the case 3 cross-point was sufficient. However, it was shown in the experiments, and in 

simulating the experiments using the numerical model, that errors in thermocouple 

readings greatly overshadowed the improvements that accompany this setup. 

In the experiments, a relatively large spacing of 12mm was found to give to best results. 

The kinetics estimated using this spacing predicted thermal runaway for a 60mm equi-

cylindrical basket at 223.9°C (497.1K), only 2.6°C greater than the experimentally 

measured critical ambient temperature of 221.3°C (494.5K). A smaller spacing of 6mm 

produced more variability and kinetics that significantly over-predicted this temperature 

at 229.0°C (502.2K). The large discrepancy observed experimentally between the 

different case kinetics was attributed to a combination of errors in thermocouple 

placement (±1mm), thermocouple readings (±0.25°C), and the variability caused by the 

small number of particle diameters that fits in the smaller thermocouple spacing of 

6mm. 

The numerical model developed as part of this study allowed predictions in temperature 

profiles and critical ambient temperatures to be made. Having estimated a number of 

parameters, in particular the drying parameters, and using a zero-order reaction model 

with the kinetics estimated using the steady-state method, the predictions of this model 

were found to agree well with the experimentally measured temperature profiles. This 

agreement was shown for baskets at a range of ambient temperatures. 

In this study, nth order kinetics were found using a TGA based method, whereby kinetics 

were fitted to the normalised mass loss data observed in the sample across the reaction. 

Applying these kinetics in an nth order model exhibited little self-heating, with critical 

ambient temperatures over predicted by almost 20°C. The much simpler zero-order 

model compared considerably better to experimental data. It is also thought that a zero-

order model is sufficient when it comes to predicting self-heating in these systems.  
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9.4. Novel Parameter Estimation Approach 

In this investigation a novel methodology, the Parameter Estimation Approach, was 

developed for characterising the self-heating behaviour of detergent powders. This new 

approach successfully used a 2D-axisymmetirc heat transfer model to estimate the best 

fit powder thermal conductivity, 𝑘, specific heat capacity, 𝐶𝑝 and self-heating reaction 

kinetics, 𝐸 and ln𝑄𝐴, from experimentally measured temperature profiles within an 

oven heated basket of detergent powder. This was done using an equi-cylindrical basket, 

but with changes to the coordinates system of the model, this could be applied to 

different basket geometries. 

13 experiments were performed, and parameter estimation was performed for 

groupings of different denominations (10, 8, 6, and 4) of these experiments. Fitting for 

all four parameters, 𝑘, 𝐶𝑝, 𝐸, and ln 𝑄𝐴 produced similar values for all groupings of 

experiments, but 𝑘 was consistently stuck on the lower fitting bound. 

The thermal conductivity and the specific heat capacity of the powder are highly 

correlated through the thermal diffusivity of the powder (= 𝑘/𝜌𝐶𝑝). Because of this, 

Modulated DSC was used to determine 𝐶𝑝 prior to fitting. Fixing this value in the fitting 

prevented 𝑘 from becoming stuck on the parameter estimation fitting bounds, and 

improved the confidence intervals for the estimated parameters. 

The Friedman and Ozawa-Flynn-Wall methods were also used to measure the self-

heating reaction activation energy, 𝐸, prior to fittings. Fixing the value of 𝐸 as well as 𝐶𝑝 

largely reduced the freedom allowed to the fitting, resulting in best fit parameters that 

did not agree with experimentally measured critical ambient temperatures as well as 

before. It was decided that the best approach is to only fix the value of 𝐶𝑝 in the fittings. 

The results of the fittings were validated against basket temperature profiles not used 

in the fittings. For Micronized Formulation 1, all RMSE values were within 1.2°C, which 

is small relative to the high temperatures at which these experiments were run, 216°C 

(489K) to 228°C (501K). All validation fittings also had R2 values in excess of 0.997, 

indicating a good model fit. The parameters from each grouping of experiments were 

used to predict critical ambient temperatures for equi-cylindrical baskets of different 

radii. When using the approach where only 𝐶𝑝 was fixed in the fitting, the parameters 
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from all groupings predicted very similar critical ambient temperatures and were all in 

agreement with experimentally measured values. 

The Parameter Estimation Approach was also used to characterise three other detergent 

formulations: Non-Micronized Formulation 1, Formulation 2, and Formulation 3. The 

same strong correlation between 𝑘 and 𝐶𝑝 was found for each of these formulations, 

such that 𝑘 would become stuck on the lower fitting bound when both 𝑘 and 𝐶𝑝 are left 

free in the fittings. Fixing the value of 𝐶𝑝 to values determined using MDSC again vastly 

improved the fittings. The predicted critical ambient temperatures for a range of basket 

radii for each formulation, agreed reasonably well with the experimentally measured 

values. This helped to validate the Parameter Estimation Approach as an alternative to 

the existing basket heating methods. 

This approach was developed to improve upon the existing basket methods, namely the 

steady-state method and the cross-point temperature method. This approach has been 

shown to successfully predict critical ambient temperatures for a range of basket sizes 

while improving massively on the time required by the steady-state method to measure 

such values. This approach requires no more than 10 experiments, with each taking 

approximately 2.5 hours to complete. 

This approach uses the same basket setup as used for the cross-point temperature 

method. It was shown that the CPT Method is much more susceptible to errors in 

thermocouple placement than the Parameter Estimation Approach. It is thought that 

this is because a considerable portion of the temperature prolife is used for fitting, 

providing thousands of data points, while the CPT Method yields only one data point per 

experiment.  

This research has proved that the novel parameter estimation approach is a viable, 

faster, and more accurate alternative to existing basket heating methods. This approach 

can now be applied to measure the self-heating reaction kinetics of new detergent 

formulations such that optimum spray dryer operating conditions for limiting the 

problem of self-heating can be determined. 
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9.5. Application of Knowledge Gained to Spray Dryer Build-Up 

The model and kinetics determined using the methods explored in this study were 

applied to the problem of predicting self-heating in spray dryer wall deposits. A simple 

1D infinite slab model, where one surface is perfectly insulated, and the other subject 

to Newton’s Law of Cooling, was used. This model was used as an example of how this 

knowledge can be applied to determine the optimum operating conditions of the spray 

drying tower. The influence of the temperature above the exposed surface, 𝑇∞, the 

effective heat transfer coefficient, ℎ, and the slab thickness, 𝐿, were explored. It is 

thought that 𝑇∞ and ℎ can be determined from existing CFD models of the spray drying 

tower, while 𝐿 can be measured or estimated. These parameters are all found to 

influence the extent to which the wall build-up self-heats, and this simple analysis shows 

how the knowledge gained and methods developed here can be used to predict self-

heating in spray drying operations. 

 

9.6. Recommended Future Work 

There is plenty of scope for future work following this research. With regards the 

experimental methods explored here, there is scope to improve upon them. The cross-

point temperature method in particular, is much faster than the steady-state method, 

and much simpler than the novel parameter estimation approach to apply, but has been 

found to be very susceptible to errors. Although improvements were made to 

thermocouple placement within the powder basket as this investigation progressed, a 

more accurate placement method is still desired. A means of being able to verify the 

position of the thermocouples is also desired, and should be explored should the cross-

point temperature method be pursued further. 

It was concluded that a zero-order reaction model is sufficient for modelling these 

systems because it is much simpler and fitted well in the regions of interest. However, 

the nth order reaction model could be explored further. A variation of the DTG fitting 

method could be applied, whereby a rate constant, fitted at some temperature, is used 

as a fit parameter instead of the pre-exponential factor. The pre-exponential factor 

could then be determined from the rate constant afterwards. This approach would be 
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considerably faster, and would alleviate the issues seen whereby there is difficulty in 

fitting all three parameters simultaneously. 

Using the kinetics determined using the DTG curve fitting approach, this model did not 

agree very well with the observed behaviour, under predicting the critical ambient 

temperature by almost 20°C. These kinetics were determined by fitting to the initial 

portion of the degradation profile because it was assumed that the majority of the 

observed self-heating was caused by this initial portion of the reaction. However, using 

the Ozawa-Flynn-Wall and Friedman methods to measure the reaction activation 

energy, 𝐸, the change in 𝐸 with conversion, 𝛼, implied that a multi-step reaction occurs 

in the sample. Also, the reaction is known to be oxygen dependent, as seen from the 

lack of an exotherm in the DSC experiments carried out in nitrogen rather than air. 

Future work could look at incorporating this multi-step reaction and oxygen dependency 

into the numerical model to provide a better agreement with the observed behaviour. 

The novel parameter estimation approach was successfully applied to determine the 

heat transfer and reaction kinetics of four detergent formulations. The workflow in 

Chapter 7 showed how this approach could be applied. Future work could see this 

workflow applied to new formulations. Chapter 8 showed a brief example of how, 

following this characterisation, the measured parameters could be used in conjunction 

with a simple 1D model to determine the optimum operating conditions for the spray 

drying tower for a particular formulation. This was merely a brief example of how this 

could be applied, and leaves plenty of scope for future work. This approach could be 

applied to address the problem of self-heating in practice. 

The approaches and models developed here could be incorporated with existing models 

of the spray drying tower, possibly under the gPROMS software platform, to provide a 

robust solution for the problem of self-heating and charring in spray drying. Having this 

solution it could be simple for the operators to quickly characterise the detergent 

formulation using the workflow detailed in Chapter 7, then using the results and this 

hypothesised model approach they could determine the ideal tower operating 

conditions or maximum thickness that the wall build-up can be allowed to reach. 
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Appendix A. True Form of the Dimensionless Arrhenius 

Exponent 

Frank-Kamenetskii (1969) outlined two methods for transforming the basic energy 

balance of the stationary theory of thermal explosion. One of these methods involves 

approximating the Arrhenius exponent, while the second uses the exact form of the 

exponent. In using the exact form, the following dimensionless temperature difference 

must first be defined: 

 𝜃 =
𝐸

𝑅𝑇∗
2
Δ𝑇 =

𝐸

𝑅𝑇∗
2
(𝑇 − 𝑇∗) (A-1) 

Where 𝐸 is the Arrhenius activation energy, 𝑅 is the universal gas constant, 𝑇 is the 

temperature of interest, and 𝑇∗ is a temperature near to which the reaction takes place. 

Using the temperature difference, Δ𝑇, the exponent of the Arrhenius term can be 

expressed as: 

 
𝐸

𝑅𝑇
=

𝐸

𝑅(𝑇∗ + Δ𝑇)
 (A-2) 

Expanding this gives: 

 
𝐸

𝑅𝑇
=

𝐸

𝑅𝑇∗
(

1

1 +
Δ𝑇
𝑇∗

) (A-3) 

This can also be expressed as: 

 
𝐸

𝑅𝑇
=

𝐸

𝑅𝑇∗
(1 −

Δ𝑇
𝑇∗

1 +
Δ𝑇
𝑇∗

) (A-4) 

The following dimensionless term is defined: 

 𝛼 =
𝐸

𝑅𝑇
 (A-5) 

Using this new term, and by multiplying out the bracketed term of equation (A-4), the 

following exact form of the exponent is formed: 
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𝐸

𝑅𝑇
=

𝐸

𝑅𝑇∗
−

𝜃

1 +
𝜃
𝛼

 
(A-6) 

Applying this to the Arrhenius term gives the final expression which can be substituted 

into the governing equation of the stationary theory of thermal explosion: 

 
𝑒−

𝐸
𝑅𝑇 = 𝑒

−
𝐸

𝑅𝑇∗ ⋅ 𝑒

𝜃

1+
𝜃
𝛼 (A-7) 
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Appendix B. gPROMS Model and Process Scripts 

gPROMS ModelBuilder Model Script 

PARAMETER 

    radial_length  AS  REAL    # basket radius, m 

    axial_length   AS  REAL    # bakset half height, m 

    bulk_density  AS  REAL    # powder bulk density, kg m^-3 

    gas_constant  AS  REAL    # universal gas constant, J mol^-1 K^-1 

    emissivity    AS  REAL    # powder emissivity 

    stefan_boltzmann                AS  REAL    # Stefan-Boltzmann constant, W m^-2 K^-4 

    temp_init   AS  REAL    # initial powder temperature, K 

    temp_ambient_init  AS  REAL    # initial ambient temperature, K 

    temp_ambient_max AS  REAL    # initial ambient temperature, K 

    conductivity   AS  REAL    # thermal conductivity, J kg^-1 K^-1 

    specific_heat  AS  REAL    # specific heat capacity, W m^-1 K^-1 

    activation_energy  AS  REAL    # activation energy, J mol^-1 

    ln_QA   AS  REAL    # ln(QA) 

 

DISTRIBUTION_DOMAIN 

    radial AS [ 0 : radial_length ] 

    axial  AS [ 0 : axial_length ] 

 

VARIABLE 

    temperature   AS DISTRIBUTION (radial, axial) 

OF  temperature 

# temperature, K 

    heat_transfer_coeff_con  AS heat_transfer_Coeff 

# convective heat transfer coefficient, W m^-2 K^-1 

    heat_transfer_coeff_rad_axial AS DISTRIBUTION (axial) 

OF heat_transfer_Coeff 

   # axial radiative heat transfer coefficient, W m^-2 K^-1 

    heat_transfer_coeff_rad_radial AS  DISTRIBUTION (radial) 

OF  heat_transfer_Coeff 

   # radial radiative heat transfer coefficient, W m^-2 K^-1 
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    heat_transfer_coeff_eff_axial AS  DISTRIBUTION (axial) 

OF  heat_transfer_Coeff 

   # axial effective heat transfer coefficient, W m^-2 K^-1 

    heat_transfer_coeff_eff_radial AS  DISTRIBUTION (radial) 

OF  heat_transfer_Coeff 

   #radial effective heat transfer coefficient, W m^-2 K^-1 

    temp_ambient    AS temperature  

# ambient temperature, K 

    my_time                       AS no_type 

# time for use in equations 

 

BOUNDARY 

# Along 2D Domain Edges 

    # radial = 0 

    FOR z := 0|+ TO axial_length|- DO 

        PARTIAL(temperature(0,z),radial) = 0 ; 

    END 

 

    # radial = radial_length 

    FOR z := 0|+ TO axial_length|- DO 

        -conductivity * PARTIAL(temperature(radial_length,z),radial) = 
heat_transfer_coeff_eff_axial(z) * (temperature(radial_length,z) - temp_ambient) ;  

    END 

 

    # axial = 0 

    FOR r := 0|+ TO radial_length|- DO 

        PARTIAL(temperature(r,0),axial) = 0 ; 

    END 

 

    # axial = axial_length 

    FOR r := 0|+ TO radial_length|- DO 

        -conductivity * PARTIAL(temperature(r,axial_length),axial) = 
heat_transfer_coeff_eff_radial(r) * (temperature(r,axial_length) - temp_ambient) ; 

    END 
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# At 2D Domain Corners         

    # radial = 0 and axial = 0 

        PARTIAL(temperature(0,0),radial) + PARTIAL(temperature(0,0),axial) = 0 ; 

 

    # radial = 0 and axial = axial_length 

        PARTIAL(temperature(0,axial_length),radial) + conductivity * 
PARTIAL(temperature(0,axial_length),axial) + heat_transfer_coeff_eff_radial(0) * 
(temperature(0,axial_length) - temp_ambient) = 0 ; 

 

    # radial = radial_length and axial = 0 

        PARTIAL(temperature(radial_length,0),axial) + conductivity * 
PARTIAL(temperature(radial_length,0),radial) + heat_transfer_coeff_eff_axial(0) * 
(temperature(radial_length,0) - temp_ambient) = 0 ; 

 

    # radial = radial_length and axial = axial_length 

        PARTIAL(temperature(radial_length,axial_length),radial) + 
PARTIAL(temperature(radial_length,axial_length),axial) = 0 ; 

 

EQUATION 

# ------------------ Heat Transfer Coefficeint Equations -------------------------------------- 

    # convective heat transfer coefficient 

    heat_transfer_coeff_con = -1.93153e-4 * (temp_ambient^2) + 0.102499 * 
temp_ambient + 13.7055 ; 

 

    # radiative heat transfer coefficeint 

    FOR z := 0 TO axial_length DO 

        heat_transfer_coeff_rad_axial(z) = 

            emissivity * stefan_boltzmann * (temperature(radial_length,z) + temp_ambient) 
* (temperature(radial_length,z)^2 + temp_ambient^2) ; 

    END #z 

 

    FOR r := 0 TO radial_length DO 

        heat_transfer_coeff_rad_radial(r) = 

            emissivity * stefan_boltzmann * (temperature(r,axial_length) + temp_ambient) 
* (temperature(r,axial_length)^2 + temp_ambient^2) ; 

    END #r 
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    # effective heat transfer coefficient 

    FOR z := 0 TO axial_length DO 

        heat_transfer_coeff_eff_axial(z) =  

            heat_transfer_coeff_con + heat_transfer_coeff_rad_axial(z) ; 

    END #z 

 

    FOR r := 0 TO radial_length DO 

        heat_transfer_coeff_eff_radial(r) =  

            heat_transfer_coeff_con + heat_transfer_coeff_rad_radial(r) ; 

    END #r 

 

# ------------------ Main Model Equations ------------------------------------- 

 

## ------ Equations for zero order reaction model ------ 

    FOR z := 0|+ TO axial_length|- DO 

        FOR r := 0|+ TO radial_length|- DO 

            bulk_density * specific_heat * $temperature(r,z) = 

                conductivity * ( PARTIAL(PARTIAL(temperature(r,z),radial),radial) + (1 / 
r)*PARTIAL(temperature(r,z),radial) + PARTIAL(PARTIAL(temperature(r,z),axial),axial) ) 

                + bulk_density * exp(ln_QA) * EXP(-activation_energy / (gas_constant * 
temperature(r,z))) ; 

        END #r 

    END #z 

 

    # time varying ambient temperature 

    IF temp_ambient < temp_ambient_max THEN 

        temp_ambient = (0.218152 * my_time) + temp_ambient_init ; 

    ELSE 

        temp_ambient = temp_ambient_max ; 

    END 

 

    # time for use in equations 

    $my_time = 1; 
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gPROMS ModelBuilder Process Script 

UNIT 

    Basket_k_Cp_Estimation  AS  Basket_k_Cp_Region_ln_QA_1 

 

SET 

    WITHIN Basket_k_Cp_Estimation DO 

        # ---------- discretisation method -------- 

        Radial   := [ CFDM, 2, 30 ] ; 

        Axial   := [ CFDM, 2, 30 ] ; 

        # -------------------------------------------------- 

        radial_length  := 0.030 ; # basket radius, m 

        axial_length   := 0.030 ; # basket half height, m 

        bulk_density  := 683.76 ; # powder bulk density, kg m^-3 

        gas_constant  := 8.314 ; # universal gas constant, J mol^-1 K^-1 

        emissivity   := 0.5 ;  # powder emissivity 

        stefan_boltzmann := 5.67e-8 ; # Stefan-Boltzmann const, W m^-2 K^-4 

        temp_init   := 293 ;  # initial powder temperature, K 

        temp_ambient_init  := 293 ; # ambient temperature, K 

        temp_ambient_max := 502 ; # ambient temperature, K 

        conductivity      :=  0.08 ; # thermal conductivity, W m^-1 K^-1 

        specific_heat     :=  1367.47 ; # specific heat capacity, J kg^-1 K^-1 

        ln_QA         :=  32.10654 ; # ln(QA) 

        activation_energy    :=  125260.8 ; # activation energy, J mol^-1 

    END 

 

INITIAL 

    WITHIN Basket_k_Cp_Estimation DO 

        FOR z := 0|+ TO axial_length|- DO 

            FOR r := 0|+ TO radial_length|- DO 

               temperature(r,z) = temp_init ; 

            END # r 

        END # z 

        my_time = 1; 

    END # within 
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SCHEDULE 

    SEQUENCE 

            CONTINUE FOR 10000 

    END 
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Appendix C. Analytical Solution for Temperature 

Evolution in a Finite Slab 

As outline in Section 4.3.1, there exist analytical solutions to the transient temperature 

profiles for a finite slab. For this solution, at the time 𝑡 = 0 the surfaces of the slab at 

𝑥 = ±𝑏 are suddenly raised to some temperature 𝑇1 and maintained at this 

temperature from this time onwards. The solution to this case is outlined by Bird et al. 

(2007) and firstly requires a number of dimensionless variables to be defined. 

Dimensionless temperature: 

 Θ =
𝑇1 − 𝑇

𝑇1 − 𝑇0
 (C-1) 

Dimensionless coordinate: 

 𝜂 =
𝑦

𝑏
 (C-2) 

Dimensionless time: 

 𝜏 =
𝛼𝑇𝑡

𝑏2
 (C-3) 

𝛼𝑇 is the thermal diffusivity, equal to 𝑘/𝜌𝐶𝑝, of the body in question. Using these 

dimensionless variables, the differential equation outlining the heat transfer in this 

system can be expressed as: 

 
𝜕Θ

𝜕𝜏
=

𝜕2Θ

𝜕𝜂2
 (C-4) 

Initially the slab is at temperature 𝑇0, such that the initial conditions can be expressed 

as: 

 Θ = 1        𝑎𝑡 𝜏 = 0 (C-5) 

 

At time 𝑡 = 0 the slab faces at 𝑦 = ±𝑏 are raised to temperature 𝑇1 such that the 

boundary conditions can be defined as: 

 Θ = 0        𝑎𝑡 𝜂 = ±1 (C-6) 
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This problem can be solved by means of separation of variables, where the solution is of 

the form of the following product: 

 Θ(𝜂, 𝜏) = 𝑓(𝜂) ⋅ 𝑔(𝜏) (C-7) 

Substituting this into equation (C-4), and dividing by 𝑓(𝜂) ⋅ 𝑔(𝜏) gives: 

 
1

g

𝑑𝑔

𝑑𝜏
=

1

𝑓

𝑑2𝑓

𝑑𝜂2
 (C-8) 

Where the left hand side is solely a function of 𝜏, and the right hand side is solely a 

function of 𝜂. Both sides are set equal to the constant −𝑐2, although +𝑐2, +𝑐, and −𝑐 

can also be used but produce more complicated solutions. This allows the above 

equation to be separated in two ordinary differential equations: 

 
𝑑𝑔

𝑑𝜏
= −𝑐2𝑔 (C-9) 

 
𝑑2𝑓

𝑑𝜂2
= −𝑐2𝑓 (C-10) 

Integrating these equations gives the following: 

 g = A exp(−𝑐2𝜏) (C-11) 

 𝑓 = 𝐵 sin 𝑐𝜂 + C cos 𝑐𝜂 (C-12) 

Where 𝐴, 𝐵, and 𝐶 are constant of integration. 

The slab in question occupies the space between 𝑦 = −𝑏 and 𝑦 = +𝑏, and because of 

symmetry about this plane it must be that Θ(𝜂, 𝜏) = Θ(−𝜂, 𝜏), and thus 𝑓(𝜂) = 𝑓(−𝜂). 

As such, because sin(𝑦) ≠ sin(−𝑦), 𝐵 must be equal to zero. Applying the boundary 

conditions outlined previously, it can also be shown that: 

 𝐶 cos 𝑐 = 0 (C-13) 

𝐶 cannot be equal to zero as this leads to an impossible solution, and as such the choice 

of 𝑐 has to satisfy this expressions. The infinite choices of 𝑐 that satisfy this expression, 

𝑐𝑛, can be expressed as: 

 𝑐𝑛 = (𝑛 +
1

2
)𝜋        𝑛 = 0,±1,±2,±3,… ,±∞ (C-14) 

Substituting this into the product of equations (C-11) and (C-12) gives the following: 
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 Θ𝑛 = 𝐴𝑛𝐶𝑛 exp [−(𝑛 +
1

2
)

2

𝜋2𝜏] cos (𝑛 +
1

2
)𝜋𝜂 (C-15) 

The subscript 𝑛 is used to show that the values of 𝐴 and 𝐶 are different for each value 

of 𝑛. We now superimpose all solutions of the form of equation (C-15). It can be seen 

that for any value of 𝑛, the exponential and cosine terms have the same value as those 

for −(𝑛 + 1), such that the terms with negative indices combine with those with 

positive indices to give: 

 Θ𝑛 = ∑ 𝐷𝑛

∞

𝑛=0

exp [−(𝑛 +
1

2
)
2

𝜋2𝜏] cos (𝑛 +
1

2
)𝜋𝜂 (C-16) 

Where 𝐷𝑛 = 𝐴𝑛𝐶𝑛 + 𝐴−(𝑛+1)𝐶−(𝑛+1). 

Using the initial condition outlined before, 𝐷𝑛 can now be determined from: 

 1 = ∑ 𝐷𝑛

∞

𝑛=0

cos (𝑛 +
1

2
)𝜋𝜂 (C-17) 

Multiplying both sides by cos (𝑚 +
1

2
) 𝜋𝜂 and integrating from 𝜂 = −1 to 𝜂 = +1 gives: 

 ∫ cos (𝑚 +
1

2
)𝜋𝜂  𝑑𝜂

+1

−1

= ∑ 𝐷𝑛

∞

𝑛=0

∫ cos (𝑚 +
1

2
)𝜋𝜂

+1

−1

cos (𝑛 +
1

2
) 𝜋𝜂  𝑑𝜂 (C-18) 

After integrating, it can be seen that all integrals on the right hand side are identically 

zero except for the term where 𝑛 = 𝑚, such that: 

 
sin (𝑚 +

1
2)𝜋𝜂

(𝑚 +
1
2)𝜋 

|

𝜂=−1

𝜂=+1

= 𝐷𝑚

1
2 (𝑚 +

1
2)𝜋𝜂 +

1
4 sin 2 (𝑚 +

1
2)𝜋𝜂

(𝑚 +
1
2)𝜋

|

𝜂=−1

𝜂=+1

 (C-19) 

Inserting the limits reduces this to the following expression for 𝐷𝑚: 

 𝐷𝑚 =
2(−1)𝑚

(𝑚 +
1
2)𝜋

 
(C-20) 

Substituting this into equation (C-16) gives the following solution for the temperature 

profile in a finite slab under the outlined conditions: 

 Θ = 2 ∑
(−1)𝑛

(𝑛 +
1
2)𝜋

exp [− (𝑛 +
1

2
)
2

𝜋2𝜏] cos (𝑛 +
1

2
)𝜋𝜂

∞

𝑛=0

 (C-21) 
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Using the original variables, this is expressed as: 

 
𝑇1 − 𝑇

𝑇1 − 𝑇0
= 2 ∑

(−1)𝑛

(𝑛 +
1
2) 𝜋

exp [−(𝑛 +
1

2
)

2

𝜋2
𝛼𝑇𝑡

𝑏2
] cos (𝑛 +

1

2
)
𝜋𝑦

𝑏
 

∞

𝑛=0

 (C-22) 

This solution was used to validate the numerical model when applied to finite slab 

geometries. This was discussed in detail in Section 4.3.1. 
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Appendix D. Analytical Solution for Temperature 

Evolution in an Infinite Cylinder 

As discussed in Section 4.3.2, there exist analytical solutions for the temperature profile 

of an infinite cylinder for some special cases. The solution for the geometry is more 

complex than the finite slab case outlined above and has been explored by Carslaw and 

Jaeger (1959). Initially the temperature of the cylinder is a function of the radius and 

given by 𝑇 = 𝑓(𝑟). The surface, at 𝑟 = 𝑏 is at a constant temperature, which may be 

taken as zero. Based on this, the equations for the temperature of the cylinder are: 

 
𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
) (D-1) 

 𝑇 = 0        𝑎𝑡 𝑟 = 𝑏 (D-2) 

 𝑇 = 𝑓(𝑟)        𝑎𝑡 𝑡 = 0 (D-3) 

If 𝑇 = 𝑒−𝛼𝛽2𝑡𝑢, where 𝑢 is solely a function of 𝑟, then: 

 
𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
+ 𝛽2𝑢 = 0 (D-4) 

This is Bessel's equation of order zero. As the solution of the second kind is infinite at 

𝑟 = 0, the integral of the temperature equation most suitable for this case is: 

 𝑇 = 𝐴𝐽0(𝛽𝑟)𝑒−𝛼𝛽2𝑡 (D-5) 

Where 𝐽0(𝑥) is the Bessel function of order zero of the first kind. In order to satisfy the 

boundary conditions outlined above, 𝛽 must be a root of: 

 𝐽0(𝑎𝛽) = 0 (D-6) 

This equation is known to have no complex roots, no repeated roots, and an infinite 

number of real positive roots 𝛽1, 𝛽2, 𝛽3…, with each positive root 𝛽 having a 

corresponding root –𝛽. 

𝑓(𝑟) can be expanded into the series: 

 𝑓(𝑟) = 𝐴1𝐽0(𝛽1𝑟) + 𝐴2𝐽0(𝛽2𝑟) + ⋯ (D-7) 

The solution of the problem will be satisfied by: 
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 𝑇 = ∑ 𝐴𝑛𝐽0(𝛽𝑛𝑟)𝑒−𝛼𝛽𝑛
2𝑡

∞

𝑛=1

 (D-8) 

Finding the solution to this equation now involves a large amount of manipulation, 

outlined in greater detail by Carslaw and Jaeger (Carslaw & Jaeger, 1959). To summarise, 

by taking equation (D-7), multiplying both sides by 𝑟𝐽0(𝛽𝑛𝑟), integrating from 0 to 𝑎, 

and using the results of integrals discussed by Carslaw and Jaeger, it can be found that: 

 𝐴𝑛 =
2

𝑎2𝐽1
2(𝑎𝛽𝑛)

∫ 𝑟𝑓(𝑟)𝐽0(𝑟𝛽𝑛)𝑑𝑟
𝑎

0

 (D-9) 

Therefore the following can be said: 

 𝑇 =
2

𝑎2
∑ 𝑒−𝛼𝛽2𝑡

∞

𝑛=1

𝐽0(𝑟𝛽𝑛)

𝐽1
2(𝑎𝛽𝑛)

 ∫ 𝑟𝑓(𝑟)𝐽0(𝑟𝛽𝑛)𝑑𝑟
𝑎

0

 (D-10) 

Here 𝐽1(𝑥) is the Bessel function of order one of the first kind. 

If the initial temperature of the cylinder is constant, 𝑓(𝑟) = 𝑇0, then the integral in 

equation (D-10) can be solved to give: 

 𝑇 =
2𝑇0

𝑎
∑ 𝑒−𝛼𝛽2𝑡

∞

𝑛=1

𝐽0(𝑟𝛽𝑛)

𝛽𝑛𝐽1(𝑎𝛽𝑛)
  (D-11) 

If the case is similar to that of the slab discussed previously where the initial temperature 

is zero and the surface is maintained at some higher temperature 𝑇1 for 𝑡 > 0, then the 

solution is achieved by subtracting equation (D-11) from 𝑇1: 

 𝑇 = 𝑇1 −
2𝑇0

𝑎
∑ 𝑒−𝛼𝛽2𝑡

∞

𝑛=1

𝐽0(𝑟𝛽𝑛)

𝛽𝑛𝐽1(𝑎𝛽𝑛)
  (D-12) 

The above solution can be expressed using the same dimensionless variables as used in 

the solution of the infinite slab to allow simpler comparison with numerical results. 

These are the dimensionless temperature in equation (C-1), the dimensionless 

coordinate in equation (C-2) with 𝑦 changed to the radius 𝑟, and the dimensionless time 

in equation (C-3). Additionally a dimensionless Bessel function root is defined as: 

 𝛾𝑛 = 𝑎𝛽𝑛 (D-13) 

Substituting these into the solution in equation (D-12) gives the following dimensionless 

solutions: 
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 Θ = 1 − 2 ∑ 𝑒−𝛾𝑛
2𝜏

∞

𝑛=0

𝐽0(𝛾𝑛𝜂)

𝛾𝑛𝐽1(𝛾𝑛)
 (D-14) 

Where ±𝛾𝑛, 𝑛 = 1,2, …, are the roots of: 

 𝐽0(𝛾) = 0 (D-15) 

This solution was used to validate the numerical model when applied to infinite cylinder 

geometries. This was discussed in detail in Section 4.3.2. 
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Appendix E. 1-Dimensional Finite Implicit Backwards 

Model used to solve for 𝜹𝒄𝒓 

The 1-dimensional model used to solve for 𝛿𝑐𝑟 as a function of 𝛼 and Biot number for 

an infinite slab, infinite cylinder, and a sphere. This model is solved using an iterative 

Finite Implicit Backwards approach. 

 

% Define Range of alpha and Biot to solve for 

alpha_all=[10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100]; 

Bi_all=[1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

85 90 95 100]; 

  

alpha_no=0; 

  

% Loop through all Biot values 

for Bi=Bi_all(1:end) 

    % Loop through all alpha values 

    for alpha=alpha_all(1:end) 

        clearvars solutions 

        alpha_no=alpha_no+1; 

         

        % Define range delta values in which to look 

        delta_min=0; 

        delta_max=3; 

        delta_old=delta_max; 

         

        delta=((delta_max-delta_min)/2)+delta_min; 

        delta_diff=1; 

        m=1; 

         

        % delta value is found to withtin 1e-6 

        while abs(delta_diff)>1e-6 

             

            clearvars theta_all residual 

             

            % Initial dimensionless temperature difference 

            theta_0=0; 

             

            % Define dimensionless space and discretization 

            z=linspace(0,1,21); 

            z=z'; 

            I=length(z); 

            dz=mean(diff(z)); 

             

            % Shape factor defienes geometry 

            % j=0 is for a slab 

            % j=1 is for an infinite cylinder 

            % j=2 is for a sphere 

            j=0; 

             

            % Defines maximum number of attempts to find solution 

            N=1000; 

             

            % Define matrices used in FIB approach 

            Matrix_A=zeros(I,I); 

            Matrix_C=zeros(I,1); 
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            % Initial Temperture Profile 

            theta_old(1:I,1)=theta_0; 

             

            % Used to flag if a solution is found 

            solution_flag=0; 

             

            for n=1:N; 

                % For all central elements 

                for i=2:I-1 

                    % Define (i,i-1) elements 

                    if j==0 

                        Matrix_A(i,i-1)=(1/(dz^2)); 

                    else 

                        Matrix_A(i,i-1)=(1/(dz^2))-(j/(2*z(i)*dz)); 

                    end 

                     

                    % Define (i,i) elements 

                    Matrix_A(i,i)=(-2/(dz^2)); 

                     

                    % Define (i,i+1) elements 

                    if j==0 

                        Matrix_A(i,i+1)=(1/(dz^2)); 

                    else 

                        Matrix_A(i,i+1)=(1/(dz^2))+(j/(2*z(i)*dz)); 

                    end 

                     

                    % Define right hand side term 

                    Matrix_C(i,1)=-

((delta)*exp(theta_old(i)/(1+(theta_old(i)/alpha)))); 

                end 

                 

                % Boundary conditions at z=0; 

                Matrix_A(1,1)=(-2/(dz^2)); 

                Matrix_A(1,2)=2/(dz^2); 

                 

                % Boundary conditions at z=Z; 

                Matrix_A(I,I-1)=(2/(dz^2)); 

                if j==0 

                    Matrix_A(I,I)=(-2/(dz^2))+((-2*Bi)/dz); 

                else 

                    Matrix_A(I,I)=(-2/(dz^2))+((-2*Bi)/dz)+((-

j*Bi)/z(i)); 

                end 

                 

                % Define right hand side terms for boundary conditions 

                Matrix_C(1,1)=-

((delta)*exp(theta_old(i)/(1+(theta_old(i)/alpha)))); 

                Matrix_C(I,1)=0; 

                Matrix_C(I,1)=-

((delta)*exp(theta_old(i)/(1+(theta_old(i)/alpha)))); 

                 

                % Solve set of equations 

                RHS=Matrix_C; 

                theta_new=Matrix_A\RHS; 

                theta_all(n,:)=theta_new(:); 

                 

                % determine residuals between all theta values 

                for i=1:I 

                    residual(n,:)=abs(theta_all(n,:)-theta_old(:)'); 

                end 

                 

                % Determines if an eligible solution is found 

                if all(residual(n,:)<1e-10) && all(theta_new(:)<1e1); 
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                    solution_flag=1; 

                    break 

                end 

                 

                % Breaks if residuals are small but no solution found 

                if all(residual(n,:)<1e-10); 

                    break 

                end 

                 

                % Stores these results to calculate next residuals 

                theta_old(:)=theta_all(n,:); 

            end 

             

            % If a solution is found, the value of delta becomes the 

new 

            % minimum value of delta 

            if solution_flag==1 

                solutions(m,1)=delta; 

                solutions(m,2)=theta_all(n,1); 

                delta_min=delta; 

                delta=((delta_max-delta)/2)+delta; 

                m=m+1; 

            end 

             

            % If no solution is found, the value of delta becomes the 

new 

            % maximum value of delta 

            if solution_flag==0 

                delta_max=delta; 

                delta=((delta-delta_min)/2)+delta_min; 

            end 

             

            % The difference in seleected delta values is stored 

            delta_diff=delta_old-delta; 

            delta_old=delta; 

             

        end 

         

        % When delta is solved for a value of alpha, the solution is 

logged 

        % to be later tabulated 

        alpha_solutions(alpha_no,1)=alpha; 

        alpha_solutions(alpha_no,2)=solutions(end,1); 

        alpha_solutions(alpha_no,3)=solutions(end,2); 

        alpha_solutions(alpha_no,4)=Bi; 

         

    end 

end 
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Appendix F. 2-Dimensional Alternating Difference 

Implicit Model used to solve for 𝜹𝒄𝒓 

The 2-dimensional model used to solve for 𝛿𝑐𝑟 as a function of 𝛼 and Biot number for 

an equi-cylinder. This model is solved using an iterative Alternating Difference Implicit 

approach. 

 

% Define Range of alpha and Biot to solve for 

alpha_all=[10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100]; 

Bi_all=[1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100]; 

  

alpha_no=0; 

  

% Loop through all Biot values 

for Bi=Bi_all(1:end) 

    % Loop through all alpha values 

    for alpha=alpha_all(1:end) 

        clearvars solutions 

        alpha_no=alpha_no+1; 

         

        % Define range delta values in which to look 

        delta_min=0.1; 

        delta_max=5; 

        delta_old=delta_max; 

         

        delta=((delta_max-delta_min)/2)+delta_min; 

        delta_diff=1; 

        m=1; 

         

        % delta value is found to withtin 1e-4 

        while abs(delta_diff)>1e-4 

             

            clearvars theta_all residual 

             

            % Initial dimensionless temperature difference 

            theta_0=0; 

             

            % Define dimensionless space and discretization 

            r=linspace(0,1,21); 

            r=r'; 

            z=linspace(0,1,21); 

            z=z'; 

            I=length(r); 

            dr=mean(diff(r)); 

            J=length(z); 

            dz=mean(diff(z)); 

             

            % Defines maximum number of attempts to find solution 

            N=10000; 

             

            % Define matrices used in FIB approach 

            Matrix_A=zeros(I,I); 

            Matrix_C=zeros(I,1); 

             

            %Initial Temperture Profile 

            theta_old(1:I,1:J)=theta_0; 

             

            % Used to flag if a solution is found 

            solution_flag=0; 

             

            for n=1:N; 

                %% Solves equations in the radial direction 

                for j=1:J 

                    for i=1:I 

                         

                        % Used to reduce scripting to specify boundary 

                        % conditions 

                        if i==1; 

                            row=1; 

                        elseif i>1 && i<I 
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                            row=2; 

                        elseif i==I 

                            row=3; 

                        end 

                         

                        % Equations for i=0 

                        A_I(1,2)=(-2/(dr^2))+(-2/(dz^2)); 

                        A_I(1,3)=(2/(dr^2)); 

                         

                        % Equations for central element 0>i<I 

                        A_I(2,1)=(1/(dr^2))-(1/(2*r(i)*dr)); 

                        A_I(2,2)=(-2/(dr^2))+(-2/(dz^2)); 

                        A_I(2,3)=(1/(dr^2))+(1/(2*r(i)*dr)); 

                         

                        % Equations for i=I 

                        A_I(3,1)=(2/(dr^2)); 

                        A_I(3,2)=(-2/(dr^2))+(-2/(dz^2))+((-2*Bi)/dr)+(-Bi/r(i)); 

                         

                        % Picks equaions for matrix A based on row value 

                        if i>1 

                            Matrix_A(i,i-1)=A_I(row,1); 

                        end 

                        Matrix_A(i,i)=A_I(row,2); 

                        if i<I 

                            Matrix_A(i,i+1)=A_I(row,3); 

                        end 

                         

                        % Defines equations for right hand side depending 

                        % on axial position j 

                        if j==1; 

                            C_I=(-(2/(dz^2))*theta_old(i,j+1))-

((delta)*exp(theta_old(i,j)/(1+(theta_old(i,j)/alpha)))); 

                        elseif j>1 && j<J 

                            C_I=(-(1/(dz^2))*theta_old(i,j-1))+(-

(1/(dz^2))*theta_old(i,j+1))-((delta)*exp(theta_old(i,j)/(1+(theta_old(i,j)/alpha)))); 

                        elseif j==J 

                            C_I=(-(2/(dz^2))*theta_old(i,j-1))-

((delta)*exp(theta_old(i,j)/(1+(theta_old(i,j)/alpha)))); 

                            Matrix_A(i,i)=Matrix_A(i,i)-((2*Bi)/dz); 

                        end 

                        Matrix_C(i,1)=C_I; 

                         

                    end 

                     

                    % Solve set of equations 

                    RHS=Matrix_C; 

                    theta_r=Matrix_A\RHS; 

                    theta_new(:,j)=theta_r(:); 

                end 

  

                %% Solves equations in the axial direction 

                for i=1:I-1 

                    for j=1:J 

                         

                        % Used to reduce scripting to specify boundary 

                        % conditions 

                        if j==1; 

                            row=1; 

                        elseif j>1 && j<J 

                            row=2; 

                        elseif j==J 

                            row=3; 

                        end 

                         

                        % Equations for j=0 

                        A_J(1,2)=(-2/(dz^2))+(-2/(dr^2)); 

                        A_J(1,3)=(2/(dz^2)); 

                         

                        % Equations for central element 0>i<I 

                        A_J(2,1)=(1/(dz^2)); 

                        A_J(2,2)=(-2/(dz^2))+(-2/(dr^2)); 

                        A_J(2,3)=(1/(dz^2)); 

                         

                        % Equations for j=J 

                        A_J(3,1)=(2/(dz^2)); 

                        A_J(3,2)=(-2/(dz^2))+(-2/(dr^2))-((2*Bi)/dz); 

                         

                        % Picks equaions for matrix A based on row value 

                        if j>1 
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                            Matrix_A(j,j-1)=A_J(row,1); 

                        end 

                        Matrix_A(j,j)=A_J(row,2); 

                        if j<J 

                            Matrix_A(j,j+1)=A_J(row,3); 

                        end 

                         

                        % Defines equations for right hand side depending 

                        % on radial position i 

                        if i==1; 

                            C_J=(-(2/(dr^2))*theta_new(i+1,j))-

((delta)*exp(theta_new(i,j)/(1+(theta_new(i,j)/alpha)))); 

                        elseif i>1 && i<I 

                            C_J=((-(1/(dr^2))+(1/(2*r(i)*dr)))*theta_new(i-1,j))+((-

(1/(dr^2))-(1/(2*r(i)*dr)))*theta_new(i+1,j))-

((delta)*exp(theta_new(i,j)/(1+(theta_new(i,j)/alpha)))); 

                        elseif i==I; 

                            C_J=(-(2/(dr^2))*theta_new(i-1,j))-

((delta)*exp(theta_new(i,j)/(1+(theta_new(i,j)/alpha)))); 

                            Matrix_A(j,j)=Matrix_A(j,j)-((2*Bi)/dr)-(Bi/r(i)); 

                        end 

                        Matrix_C(j,1)=C_J; 

                         

                    end 

                     

                    % Solve set of equations 

                    RHS=Matrix_C; 

                    theta_z=Matrix_A\RHS; 

                    theta_new(i,:)=theta_z(:); 

                end 

                 

                %% Processing of solution 

                % New theat distribution stored 

                theta_all(n,:,:)=theta_new(:,:); 

                 

                % determine residuals between all theta values 

                for i=1:I 

                    for j=1:J 

                        residual(n,i,j)=abs(theta_new(i,j)-theta_old(i,j)); 

                    end 

                end 

                 

                % Determines if an eligible solution is found 

                if all(all(residual(n,:,:)<1e-4)) && all(all(theta_new(:,:)<1e2)); 

                    solution_flag=1; 

                    break 

                end 

                 

                % Breaks if residuals are small but no solution found 

                if all(residual(n,:)<1e-4); 

                    break 

                end 

                 

                if all(all(theta_new(:,:)>1e3)) 

                    break 

                end 

                 

                % Stores these results to calculate next residuals 

                theta_old(:,:)=theta_all(n,:,:); 

            end 

             

            % If a solution is found, the value of delta becomes the new 

            % minimum value of delta 

            if solution_flag==1 

                solutions(m,1)=delta; 

                solutions(m,2)=theta_all(n,1); 

                delta_min=delta; 

                delta=((delta_max-delta)/2)+delta; 

                m=m+1; 

            end 

             

            % If no solution is found, the value of delta becomes the new 

            % maximum value of delta 

            if solution_flag==0 

                delta_max=delta; 

                 

                delta=((delta-delta_min)/2)+delta_min; 

            end 
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            % The difference in seleected delta values is stored 

            delta_diff=delta_old-delta; 

            delta_old=delta; 

             

        end 

         

        % When delta is solved for a value of alpha, the solution is logged 

        % to be later tabulated 

        alpha_solutions(alpha_no,1)=alpha; 

        alpha_solutions(alpha_no,2)=solutions(end,1); 

        alpha_solutions(alpha_no,3)=solutions(end,2); 

        alpha_solutions(alpha_no,4)=Bi; 

         

    end 

end 
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Appendix G. gPROMS Parameter Estimation Full Report 

Below is the full report produced by gPROMS ModelBuilder when performing Parameter 

Estimation for Pandora 13 Formulation 1 for the grouping of 10 experiments with the 

value of the specific heat capacity, 𝐶𝑝, fixed in the fitting. 
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